Science.gov

Sample records for acid labile subunit

  1. Acid-Labile Subunit Deficiency and Growth Failure: Description of Two Novel Cases

    PubMed Central

    David, A; Rose, S.J.; Miraki-Moud, F.; Metherell, L.A.; Savage, M.O.; Clark, A.J.L.; Camacho-Hübner, C.

    2010-01-01

    Background/Aims Mutations in the acid-labile subunit (ALS) gene (IGFALS) have been associated with circulating insulin-like growth factor I (IGF-I) deficiency and short stature. Whether severe pubertal delay is also part of the phenotype remains controversial due to the small number of cases reported. We report 2 children with a history of growth failure due to novel IGFALS mutations. Methods The growth hormone receptor gene (GHR) and IGFALS were analyzed by direct sequencing. Ternary complex formation was studied by size exclusion chromatography. Results Two boys of 13.3 and 10.6 years, with pubertal stages 2 and 1, had mild short stature (−3.2 and −2.8 SDS, respectively) and a biochemical profile suggestive of growth hormone resistance. No defects were identified in the GHR. Patient 1 was homozygous for the IGFALS missense mutation P73L. Patient 2 was a compound heterozygote for the missense mutation L134Q and a novel GGC to AG substitution at position 546–548 (546–548delGGCinsAG). The latter causes a frameshift and the appearance of a premature stop codon. Size exclusion chromatography showed no peaks corresponding to ternary and binary complexes in either patient. Conclusion Screening of the IGFALS is important in children with short stature associated with low serum IGF-I, IGFBP-3 and ALS. PMID:20389102

  2. The acid-labile subunit is required for full effects of exogenous growth hormone on growth and carbohydrate metabolism.

    PubMed

    Ueki, Iori; Giesy, Sarah L; Harvatine, Kevin J; Kim, Jin Wook; Boisclair, Yves R

    2009-07-01

    Normal postnatal growth is dependent in part on overlapping actions of GH and IGF-I. These actions reflect GH stimulation of IGF-I production in liver and extrahepatic tissues, representing respectively the endocrine and autocrine/paracrine arms of the IGF system. Recent experiments in genetically modified mice show that each source of IGF-I can compensate for absence of the other but do not resolve their relative role in postnatal growth. In an effort to address this issue, we studied the GH responsiveness of mice harboring a null mutation of the acid-labile subunit (ALS). Null ALS mice have a substantial reduction in endocrine IGF-I but, unlike other models of plasma IGF-I deficiency, have no obvious additional endocrine defects. Wild type and null ALS mice of both sexes received daily sc injections of saline or recombinant bovine GH between d 35 and 63 of postnatal age. The GH-stimulated body weight gain of null ALS mice was reduced by more than 30% relative to wild type mice, irrespective of sex. Reductions in GH responsiveness were also seen for kidney and linear growth. Absence of ALS eliminated the ability of GH to increase plasma IGF-I despite intact GH-dependent stimulation of IGF-I expression in liver, adipose tissue, and skeletal muscle. GH treatment was also less efficient in antagonizing insulin action in null ALS mice. Overall, these results suggest that the GH effects mediated by endocrine IGF-I depends on ALS, and accordingly null ALS mice are less responsive to exogenous GH therapy.

  3. Novel acid-labile subunit ( IGFALS ) mutation p.T145K (c.434C>A) in a patient with ALS deficiency, normal stature and immunological dysfunction.

    PubMed

    Schreiner, Felix; Schoenberger, Stefan; Koester, Bernhard; Domené, Horacio M; Woelfle, Joachim

    2013-01-01

    We report a novel missense mutation p.T145K in the insulin-like growth factor (IGF) acid-labile subunit (IGFALS) gene identified in a Turkish patient with normal growth, transient pancytopenic episodes and signs of immunological dysfunction. Because of recurrent cutaneous mycoses and absence of pubertal development until the age of 14.75 years we determined several endocrine parameters in order to rule out autoimmune-polyendocrine syndromes. Despite a normal height between the 25th and 50th percentile we found severely decreased IGF-1 and undetectably low IGFBP-3 levels. Laboratory signs of immunological dysfunction included reduced total lymphocyte count with diminished B and T helper cell fractions, decreased serum concentrations of IgM and IgG subclass 4, and elevated antinuclear antibody and anti-dsDNA titers as well as persistently high interleukin-2-receptor levels. Further endocrine work-up revealed elevated fasting insulin and undetectably low ALS serum levels, leading to the diagnosis of ALS deficiency. Sequencing of the coding region of the IGFALS gene showed a novel homozygous missense mutation (c.434C>A; p.T145K). Since immunological abnormalities have not been reported in more than 20 ALS-deficient patients so far and our patient was born to consanguineous parents, a second autosomal recessive defect is likely to underlie the immunological phenotype, although a causative role of IGFALS p.T145K cannot be entirely ruled out. PMID:24296365

  4. Organization and chromosomal localization of the gene encoding the mouse acid labile subunit of the insulin-like growth factor binding complex.

    PubMed Central

    Boisclair, Y R; Seto, D; Hsieh, S; Hurst, K R; Ooi, G T

    1996-01-01

    After birth, most of insulin-like growth factor I and II (IGFs) circulate as a ternary complex formed by the association of IGF binding protein 3-IGF complexes with a serum protein called acid-labile subunit (ALS). ALS retains the IGF binding protein-3-IGF complexes in the vascular compartment and extends the t1/2 of IGFs in the circulation. Synthesis of ALS occurs mainly in liver after birth and is stimulated by growth hormone. To study the basis for this regulation, we cloned and characterized the mouse ALS gene. Comparison of genomic and cDNA sequences indicated that the gene is composed of two exons separated by a 1126-bp intron. Exon 1 encodes the first 5 amino acids of the signal peptide and contributes the first nucleotide of codon 6. Exon 2 contributes the last 2 nt of codon 6 and encodes the remaining 17 amino acids of the signal peptide as well as the 580 amino acids of the mature protein. The polyadenylylation signal, ATTAAA, is located 241 bp from the termination codon. The cDNA and genomic DNA diverge 16 bp downstream from this signal. Transcription initiation was mapped to 11 sites over a 140-bp TATA-less region. The DNA fragment extending from nt -805 to -11 (ATG, +1) directed basal and growth hormone-regulated expression of a luciferase reporter plasmid in the rat liver cell line H4-II-E. Finally, the ALS gene was mapped to mouse chromosome 17 by fluorescence in situ hybridization. Images Fig. 3 Fig. 5 PMID:8816745

  5. Evaluation of insulin-like growth factor acid-labile subunit as a potential biomarker of effect for deoxynivalenol-induced proinflammatory cytokine expression.

    PubMed

    Flannery, Brenna M; Amuzie, Chidozie J; Pestka, James J

    2013-02-01

    Consumption of the trichothecene deoxynivalenol (DON) suppresses growth in experimental animals - an adverse effect that was used to establish the tolerable daily intake for this toxin. DON ingestion has been recently found to suppress plasma insulin-like growth factor acid-labile subunit (IGFALS), a protein essential for growth. Studies were conducted to explore the feasibility of using plasma IGFALS as a biomarker of effect for DON. In the first study, weanling mice were fed 0, 1, 2.5, 5 and 10 ppm DON and weight and plasma IGFALS determined at intervals over 9 wk. Reduced body weight gains were detectable beginning at wk 5 in the 10 ppm dose and wk 7 at the 5 ppm dose. Plasma IGFALS was significantly depressed at wk 5 in the 5 and 10 ppm groups at wk 9 in the 10 ppm group. Depressed IGFALS significantly correlated with reduced body weight at wk 5 and 9. Benchmark dose modeling revealed the BMDL and BMD for plasma IGFALS reduction were 1.1 and 3.0 ppm DON and for weight reduction were 2.1 and 4.5 ppm DON. In the second study, it was demonstrated that mice fed 15 ppm DON diet had significantly less plasma IGFALS than mice fed identical amounts of control diet. Thus DON's influence on IGFALS likely reflects the combined effects of reduced food intake as well as its physiological action involving suppressors of cytokine signaling. Taken together, these findings suggest that plasma IGFALS might be a useful biomarker for DON's adverse effects on growth.

  6. Suppression of insulin-like growth factor acid-labile subunit expression--a novel mechanism for deoxynivalenol-induced growth retardation.

    PubMed

    Amuzie, Chidozie J; Pestka, James J

    2010-02-01

    Consumption of deoxynivalenol (DON), a trichothecene mycotoxin commonly detected in cereal-based foods, causes impaired growth in many animal species. While growth retardation is used as a basis for regulating DON levels in human food, the underlying mechanisms remain poorly understood. Oral exposure of mice to DON rapidly induces multiorgan expression of proinflammatory cytokines, and this is followed by upregulation of several suppressors of cytokine signaling (SOCS), some of which are capable of impairing growth hormone (GH) signaling. The purpose of this study was to test the hypothesis that impairment of the GH axis precedes DON-induced growth retardation in the mouse. Subchronic dietary exposure of young (4-week old) mice to DON (20 ppm) over a period of 2-8 weeks was found to (1) impair weight gain, (2) result in a steady-state plasma DON concentration (40-60 ng/ml), (3) downregulate hepatic insulin-like growth factor acid-labile subunit (IGFALS) mRNA expression, and (4) reduce circulating insulin-like growth factor 1 (IGF1) and IGFALS levels. Acute oral exposure to DON at 0.5-12.5 mg/kg body weight (bw) markedly suppressed hepatic IGFALS mRNA levels within 2 h in a dose-dependent fashion, whereas 0.1 mg/kg bw was without effect. DON-induced IGFALS mRNA upregulation occurred both with and without exogenous GH treatment. These latter effects co-occurred with robust hepatic suppressors of cytokine signaling 3 upregulation. Taken together, these data suggest that oral DON exposure perturbs GH axis by suppressing two clinically relevant growth-related proteins, IGFALS and IGF1. Both have potential to serve as biomarkers of effect in populations exposed to this common foodborne mycotoxin.

  7. Evaluation of Insulin-Like Growth Factor Acid-Labile Subunit as a Potential Biomarker of Effect for Deoxynivalenol-Induced Proinflammatory Cytokine Expression

    PubMed Central

    Flannery, Brenna M.; Amuzie, Chidozie J.; Pestka, James J.

    2013-01-01

    Consumption of the trichothecene deoxynivalenol (DON) suppresses growth in experimental animals - an adverse effect that was used to establish the tolerable daily intake for this toxin. DON ingestion has been recently found to suppress plasma insulin-like growth factor acid-labile subunit (IGFALS), a protein essential for growth. Studies were conducted to explore the feasibility of using plasma IGFALS as a biomarker of effect for DON. In the first study, weanling mice were fed 0, 1, 2.5, 5 and 10 ppm DON and weight and plasma IGFALS determined at intervals over 9 wk. Reduced body weight gains were detectable beginning at wk 5 in the 10 ppm dose and wk 7 at the 5 ppm dose. Plasma IGFALS was significantly depressed at wk 5 in the 5 and 10 ppm groups at wk 9 in the 10 ppm group. Depressed IGFALS significantly correlated with reduced body weight at wk 5 and 9. Benchmark dose modeling revealed the BMDL and BMD for plasma IGFALS reduction were 1.1 and 3.0 ppm DON and for weight reduction were 2.1 and 4.5 ppm DON. In the second study, it was demonstrated that mice fed 15 ppm DON diet had significantly less plasma IGFALS than mice fed identical amounts of control diet. Thus DON’s influence on IGFALS likely reflects the combined effects of reduced food intake as well as its physiological action involving suppressors of cytokine signaling. Taken together, these findings suggest that plasma IGFALS might be a useful biomarker for DON’s adverse effects on growth. PMID:23298694

  8. Oral immunization of mice with attenuated Salmonella enteritidis containing a recombinant plasmid which codes for production of the B subunit of heat-labile Escherichia coli enterotoxin.

    PubMed Central

    Clements, J D; Lyon, F L; Lowe, K L; Farrand, A L; el-Morshidy, S

    1986-01-01

    We used Salmonella enteritidis serotype dublin strain SL1438, a nonreverting, aromatic-dependent, histidine-requiring mutant, as a recipient for a recombinant plasmid coding for production of the nontoxic B subunit of the heat-labile Escherichia coli enterotoxin. The S. enteritidis derivative EL23 produced heat-labile enterotoxin subunit B that was indistinguishable from heat-labile enterotoxin subunit B produced by strains of E. coli or Salmonella typhi harboring the same plasmid. Mice immunized orally with strain EL23 developed progressively increasing mucosal and serum antibody responses to both heat-labile enterotoxin subunit B and to the lipopolysaccharide of the vaccine strain. The mucosal antibody response was shown to be immunoglobulin A specific and to be capable of neutralizing the biological activities of both E. coli heat-labile enterotoxin and cholera enterotoxin in vitro. Images PMID:3527989

  9. Expression of functional pentameric heat-labile enterotoxin B subunit of Escherichia coli in Saccharomyces cerevisiae.

    PubMed

    Lim, Jung-Gu; Kim, Jung-Ae; Chung, Hea-Jong; Kim, Tae-Geum; Kim, Jung-Mi; Lee, Kyung-Ryul; Park, Seung-Moon; Yang, Moon-Sik; Kim, Dae-Hyuk

    2009-05-01

    Although the Escherichia coli heat-labile enterotoxin B subunit (LTB) has already been expressed in several different systems, including prokaryotic and eukaryotic organisms, studies regarding the synthesis of LTB into oligomeric structures of pentameric size in the budding yeast Saccharomyces cerevisiae have been limited. Therefore, this study used a functional signal peptide of the amylase 1A protein from rice to direct the yeast-expressed LTB towards the endoplasmic reticulum to oligomerize with the expected pentameric size. The expression and assembly of the recombinant LTB were confirmed in both the cell-free extract and culture media of the recombinant strain using a Western blot analysis. The binding of the LTB pentamers to intestinal epithelial cell membrane glycolipid receptors was further verified using a GM1-ganglioside enzyme-linked immunosorbent assay (GM1-ELISA). On the basis of the GM1-ELISA results, pentameric LTB proteins comprised approximately 0.5-2.0% of the total soluble proteins, and the maximum quantity of secreted LTB was estimated to be 3 mg/l after a 3-day cultivation period. Consequently, the synthesis of LTB monomers and their assembly into biologically active oligomers in a recombinant S. cerevisiae strain demonstrated the feasibility of using a GRAS microorganism-based adjuvant, as well as the development of carriers against mucosal disease. PMID:19494699

  10. Intranuclear delivery of an antiviral peptide mediated by the B subunit of Escherichia coli heat-labile enterotoxin

    PubMed Central

    Loregian, Arianna; Papini, Emanuele; Satin, Barbara; Marsden, Howard S.; Hirst, Timothy R.; Palù, Giorgio

    1999-01-01

    We report an intracellular peptide delivery system capable of targeting specific cellular compartments. In the model system we constructed a chimeric protein consisting of the nontoxic B subunit of Escherichia coli heat-labile enterotoxin (EtxB) fused to a 27-mer peptide derived from the DNA polymerase of herpes simplex virus 1. Viral DNA synthesis takes places in the nucleus and requires the interaction with an accessory factor, UL42, encoded by the virus. The peptide, designated Pol, is able to dissociate this interaction. The chimeric protein, EtxB-Pol, retained the functional properties of both EtxB and peptide components and was shown to inhibit viral DNA polymerase activity in vitro via disruption of the polymerase-UL42 complex. When added to virally infected cells, EtxB-Pol had no effect on adenovirus replication but specifically interfered with herpes simplex virus 1 replication. Further studies showed that the antiviral peptide localized in the nucleus, whereas the EtxB component remained associated with vesicular compartments. The results indicate that the chimeric protein entered through endosomal acidic compartments and that the Pol peptide was cleaved from the chimeric protein before being translocated into the nucleus. The system we describe is suitable for delivery of peptides that specifically disrupt protein–protein interactions and may be developed to target specific cellular compartments. PMID:10220447

  11. Enantiomeric Excesses of Acid Labile Amino Acid Precursors of the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Pizzarello, Sandra

    1998-01-01

    Amino acids present in carbonaceous chondrite are extracted in water in part as free compounds and in approximately equal part as acid labile precursors. On the assumption that they would be free of contamination, the precursors of two Murchison amino acids that have terrestrial occurrence, alanine and glutamic acid, have been targeted for analysis of their enantiomeric ratios. Pyroglutamic acid, the precursor of glutamic acid, was found with an L-enantiomeric excess comparable to that of the free acid, while alanine's precursor, N-acetyl alanine, appears approximately racemic. Also alpha-imino propioacetic acid, a proposed end product of alanine synthesis in the meteorite, was analyzed and found racemic.

  12. Quantitative Proteomic Analysis of Escherichia coli Heat-Labile Toxin B Subunit (LTB) with Enterovirus 71 (EV71) Subunit VP1

    PubMed Central

    Liu, Lin; Ma, Yongping; Zhou, Huicong; Wu, Mingjun

    2016-01-01

    The nontoxic heat-labile toxin (LT) B subunit (LTB) was used as mucosal adjuvant experimentally. However, the mechanism of LTB adjuvant was still unclear. The LTB and enterovirus 71 (EV71) VP1 subunit (EVP1) were constructed in pET32 and expressed in E. coli BL21, respectively. The immunogenicity of purified EVP1 and the adjuvanticity of LTB were evaluated via intranasal immunization EVP1 plus LTB in Balb/c mice. In order to elucidate the proteome change triggered by the adjuvant of LTB, the proteomic profiles of LTB, EVP1, and LTB plus EVP1 were quantitatively analyzed by iTRAQ-LC-MS/MS (isobaric tags for relative and absolute quantitation; liquid chromatography-tandem mass spectrometry) in murine macrophage RAW264.7. The proteomic data were analyzed by bioinformatics and validated by western blot analysis. The predicted protein interactions were confirmed using LTB pull-down and the LTB processing pathway was validated by confocal microscopy. The results showed that LTB significantly boosted EVP1 specific systematic and mucosal antibodies. A total of 3666 differential proteins were identified in the three groups. Pathway enrichment of proteomic data predicted that LTB upregulated the specific and dominant MAPK (mitogen-activated protein kinase) signaling pathway and the protein processing in endoplasmic reticulum (PPER) pathway, whereas LTB or EVP1 did not significantly upregulate these two signaling pathways. Confocal microscopy and LTB pull-down assays confirmed that the LTB adjuvant was endocytosed and processed through endocytosis (ENS)-lysosomal-endoplasmic reticulum (ER) system. PMID:27618897

  13. Quantitative Proteomic Analysis of Escherichia coli Heat-Labile Toxin B Subunit (LTB) with Enterovirus 71 (EV71) Subunit VP1.

    PubMed

    Liu, Lin; Ma, Yongping; Zhou, Huicong; Wu, Mingjun

    2016-01-01

    The nontoxic heat-labile toxin (LT) B subunit (LTB) was used as mucosal adjuvant experimentally. However, the mechanism of LTB adjuvant was still unclear. The LTB and enterovirus 71 (EV71) VP1 subunit (EVP1) were constructed in pET32 and expressed in E. coli BL21, respectively. The immunogenicity of purified EVP1 and the adjuvanticity of LTB were evaluated via intranasal immunization EVP1 plus LTB in Balb/c mice. In order to elucidate the proteome change triggered by the adjuvant of LTB, the proteomic profiles of LTB, EVP1, and LTB plus EVP1 were quantitatively analyzed by iTRAQ-LC-MS/MS (isobaric tags for relative and absolute quantitation; liquid chromatography-tandem mass spectrometry) in murine macrophage RAW264.7. The proteomic data were analyzed by bioinformatics and validated by western blot analysis. The predicted protein interactions were confirmed using LTB pull-down and the LTB processing pathway was validated by confocal microscopy. The results showed that LTB significantly boosted EVP1 specific systematic and mucosal antibodies. A total of 3666 differential proteins were identified in the three groups. Pathway enrichment of proteomic data predicted that LTB upregulated the specific and dominant MAPK (mitogen-activated protein kinase) signaling pathway and the protein processing in endoplasmic reticulum (PPER) pathway, whereas LTB or EVP1 did not significantly upregulate these two signaling pathways. Confocal microscopy and LTB pull-down assays confirmed that the LTB adjuvant was endocytosed and processed through endocytosis (ENS)-lysosomal-endoplasmic reticulum (ER) system.

  14. Quantitative Proteomic Analysis of Escherichia coli Heat-Labile Toxin B Subunit (LTB) with Enterovirus 71 (EV71) Subunit VP1.

    PubMed

    Liu, Lin; Ma, Yongping; Zhou, Huicong; Wu, Mingjun

    2016-01-01

    The nontoxic heat-labile toxin (LT) B subunit (LTB) was used as mucosal adjuvant experimentally. However, the mechanism of LTB adjuvant was still unclear. The LTB and enterovirus 71 (EV71) VP1 subunit (EVP1) were constructed in pET32 and expressed in E. coli BL21, respectively. The immunogenicity of purified EVP1 and the adjuvanticity of LTB were evaluated via intranasal immunization EVP1 plus LTB in Balb/c mice. In order to elucidate the proteome change triggered by the adjuvant of LTB, the proteomic profiles of LTB, EVP1, and LTB plus EVP1 were quantitatively analyzed by iTRAQ-LC-MS/MS (isobaric tags for relative and absolute quantitation; liquid chromatography-tandem mass spectrometry) in murine macrophage RAW264.7. The proteomic data were analyzed by bioinformatics and validated by western blot analysis. The predicted protein interactions were confirmed using LTB pull-down and the LTB processing pathway was validated by confocal microscopy. The results showed that LTB significantly boosted EVP1 specific systematic and mucosal antibodies. A total of 3666 differential proteins were identified in the three groups. Pathway enrichment of proteomic data predicted that LTB upregulated the specific and dominant MAPK (mitogen-activated protein kinase) signaling pathway and the protein processing in endoplasmic reticulum (PPER) pathway, whereas LTB or EVP1 did not significantly upregulate these two signaling pathways. Confocal microscopy and LTB pull-down assays confirmed that the LTB adjuvant was endocytosed and processed through endocytosis (ENS)-lysosomal-endoplasmic reticulum (ER) system. PMID:27618897

  15. Nanoparticulated heat-stable (STa) and heat-labile B subunit (LTB) recombinant toxin improves vaccine protection against enterotoxigenic Escherichia coli challenge in mouse.

    PubMed

    Deng, Guangcun; Zeng, Jin; Jian, Minjie; Liu, Wenmiao; Zhang, Zhong; Liu, Xiaoming; Wang, Yujiong

    2013-02-01

    Enterotoxigenic Escherichia coli (ETEC) remains a major cause of diarrheic disease in developing areas, for which there is no effective vaccine available. In this study, we genetically engineered a recombinant heat-stable enterotoxin (STa) coupled to the subunit B of heat-labile enterotoxin (LTB). This fusion protein, STa-LTB, possesses a single amino acid substitution at position 14 of STa. Our data demonstrates that the enterotoxicity of STa in STa-LTB was dramatically reduced. A gelatin nanovaccine candidate was prepared using the purified STa-LTB fusion protein characterized with an entrapment efficiency of 84.88 ± 6.37% and smooth spheres size ranges of 80-200 nm. Antigen-specific antibody responses against STa-LTB and STa in the sera and the intestinal mucus respectively were used to test the immunogenicity of the nanovaccine. This vaccine was further screened in mice by its ability to elicit neutralizing antibodies against STa and protect animals from the challenge with ETEC in mice. The STa-LTB nanoparticles delivered demonstrated a capacity to induce significantly higher and long-lasting antibody responses and increased immune protection against ETEC challenge relative to the control STa-LTB vaccine absorbed in conventional aluminum hydrate salt (p < 0.01). These results warrant the further studies of the development of a novel nanoparticulate vaccine as a broad-spectrum vaccine against ETEC infection.

  16. Mutant Escherichia coli Heat-Labile Toxin B Subunit That Separates Toxoid-Mediated Signaling and Immunomodulatory Action from Trafficking and Delivery Functions

    PubMed Central

    Fraser, Sylvia A.; de Haan, Lolke; Hearn, Arron R.; Bone, Heather K.; Salmond, Robert J.; Rivett, A. Jennifer; Williams, Neil A.; Hirst, Timothy R.

    2003-01-01

    The homopentameric B-subunit components of Escherichia coli heat-labile enterotoxin (EtxB) and cholera toxin (CtxB) possess the capacity to enter mammalian cells and to activate cell-signaling events in leukocytes that modulate immune cell function. Both properties have been attributed to the ability of the B subunits to bind to GM1-ganglioside receptors, a ubiquitous glycosphingolipid found in the plasma membrane. Here we describe the properties of EtxB(H57S), a mutant B subunit with a His→Ser substitution at position 57. The mutant was found to be severely defective in inducing leukocyte signaling, as shown by failure to (i) trigger caspase 3-mediated CD8+-T-cell apoptosis, (ii) activate nuclear translocation of NF-κB in Jurkat T cells, (iii) induce a potent anti-B-subunit response in mice, or (iv) serve as a mucosal adjuvant. However, its GM1 binding, cellular uptake, and delivery functions remained intact. This was further validated by the finding that EtxB(H57S) was as effective as EtxB in delivering a conjugated model class I epitope into the major histocompatibility complex class I pathway of a dendritic cell line. These observations imply that GM1 binding alone is not sufficient to trigger the signaling events responsible for the potent immunomodulatory properties of EtxB. Moreover, they demonstrate that its signaling properties play no role in EtxB uptake and trafficking. Thus, EtxB(H57S) represents a novel tool for evaluating the complex cellular interactions and signaling events occurring after receptor interaction, as well as offering an alternative means of delivering attached peptides in the absence of the potent immunomodulatory signals induced by wild-type B subunits. PMID:12595472

  17. Evaluating the A-Subunit of the Heat-Labile Toxin (LT) As an Immunogen and a Protective Antigen Against Enterotoxigenic Escherichia coli (ETEC).

    PubMed

    Norton, Elizabeth B; Branco, Luis M; Clements, John D

    2015-01-01

    Diarrheal illness contributes to malnutrition, stunted growth, impaired cognitive development, and high morbidity rates in children worldwide. Enterotoxigenic Escherichia coli (ETEC) is a major contributor to this diarrheal disease burden. ETEC cause disease in the small intestine by means of colonization factors and by production of a heat-labile enterotoxin (LT) and/or a small non-immunogenic heat-stable enterotoxin (ST). Overall, the majority of ETEC produce both ST and LT. LT induces secretion via an enzymatically active A-subunit (LT-A) and a pentameric, cell-binding B-subunit (LT-B). The importance of anti-LT antibodies has been demonstrated in multiple clinical and epidemiological studies, and a number of potential ETEC vaccine candidates have included LT-B as an important immunogen. However, there is limited information about the potential contribution of LT-A to development of protective immunity. In the current study, we evaluate the immune response against the A-subunit of LT as well as the A-subunit's potential as a protective antigen when administered alone or in combination with the B-subunit of LT. We evaluated human sera from individuals challenged with a prototypic wild-type ETEC strain as well as sera from individuals living in an ETEC endemic area for the presence of anti-LT, anti-LT-A and anti-LT-B antibodies. In both cases, a significant number of individuals intentionally or endemically infected with ETEC developed antibodies against both LT subunits. In addition, animals immunized with the recombinant proteins developed robust antibody responses that were able to neutralize the enterotoxic and cytotoxic effects of native LT by blocking binding and entry into cells (anti-LT-B) or the intracellular enzymatic activity of the toxin (anti-LT-A). Moreover, antibodies to both LT subunits acted synergistically to neutralize the holotoxin when combined. Taken together, these data support the inclusion of both LT-A and LT-B in prospective vaccines

  18. Design and characterization of a chimeric multiepitope construct containing CfaB, heat-stable toxoid, CssA, CssB, and heat-labile toxin subunit B of enterotoxigenic Escherichia coli: a bioinformatic approach.

    PubMed

    Zeinalzadeh, Narges; Salmanian, Ali Hatef; Ahangari, Ghasem; Sadeghi, Mahdi; Amani, Jafar; Bathaie, S Zahra; Jafari, Mahyat

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains are the most common cause of bacterial diarrhea in children in developing countries and travelers to these areas. Enterotoxins and colonization factors (CFs) are two key virulence factors in ETEC pathogenesis, and the heterogeneity of the CFs is the bottleneck in reaching an effective vaccine. In this study, a candidate subunit vaccine, which is composed of CfaB, CssA and CssB, structural subunits of colonization factor antigen I and CS6 CFs, labile toxin subunit B, and the binding subunit of heat-labile and heat-stable toxoid, was designed to provide broad-spectrum protection against ETEC. The different features of chimeric gene, its mRNA stability, and chimeric protein properties were analyzed by using bioinformatic tools. The optimized chimeric gene was chemically synthesized and expressed successfully in a prokaryotic host. The purified protein was used for assessment of bioinformatic data by experimental methods.

  19. Design and characterization of a chimeric multiepitope construct containing CfaB, heat-stable toxoid, CssA, CssB, and heat-labile toxin subunit B of enterotoxigenic Escherichia coli: a bioinformatic approach.

    PubMed

    Zeinalzadeh, Narges; Salmanian, Ali Hatef; Ahangari, Ghasem; Sadeghi, Mahdi; Amani, Jafar; Bathaie, S Zahra; Jafari, Mahyat

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains are the most common cause of bacterial diarrhea in children in developing countries and travelers to these areas. Enterotoxins and colonization factors (CFs) are two key virulence factors in ETEC pathogenesis, and the heterogeneity of the CFs is the bottleneck in reaching an effective vaccine. In this study, a candidate subunit vaccine, which is composed of CfaB, CssA and CssB, structural subunits of colonization factor antigen I and CS6 CFs, labile toxin subunit B, and the binding subunit of heat-labile and heat-stable toxoid, was designed to provide broad-spectrum protection against ETEC. The different features of chimeric gene, its mRNA stability, and chimeric protein properties were analyzed by using bioinformatic tools. The optimized chimeric gene was chemically synthesized and expressed successfully in a prokaryotic host. The purified protein was used for assessment of bioinformatic data by experimental methods. PMID:24372617

  20. CD44 Binding to Hyaluronic Acid Is Redox Regulated by a Labile Disulfide Bond in the Hyaluronic Acid Binding Site

    PubMed Central

    Kellett-Clarke, Helena; Stegmann, Monika; Barclay, A. Neil; Metcalfe, Clive

    2015-01-01

    CD44 is the primary leukocyte cell surface receptor for hyaluronic acid (HA), a component of the extracellular matrix. Enzymatic post translational cleavage of labile disulfide bonds is a mechanism by which proteins are structurally regulated by imparting an allosteric change and altering activity. We have identified one such disulfide bond in CD44 formed by Cys77 and Cys97 that stabilises the HA binding groove. This bond is labile on the surface of leukocytes treated with chemical and enzymatic reducing agents. Analysis of CD44 crystal structures reveal the disulfide bond to be solvent accessible and in the–LH hook configuration characteristic of labile disulfide bonds. Kinetic trapping and binding experiments on CD44-Fc chimeric proteins show the bond is preferentially reduced over the other disulfide bonds in CD44 and reduction inhibits the CD44-HA interaction. Furthermore cells transfected with CD44 no longer adhere to HA coated surfaces after pre-treatment with reducing agents. The implications of CD44 redox regulation are discussed in the context of immune function, disease and therapeutic strategies. PMID:26379032

  1. Poly(ortho ester amides): Acid-labile Temperature-responsive Copolymers for Potential Biomedical Applications

    PubMed Central

    Tang, Rupei; Palumbo, R. Noelle; Ji, Weihang; Wang, Chun

    2009-01-01

    A new, convenient pathway is developed to synthesize highly hydrolytically labile poly(ortho ester amide) (POEA) copolymers that overcomes some of the major weaknesses of the traditional methods of synthesizing poly(ortho esters) and their derivatives. A diamine monomer containing a built-in, stabilized ortho ester group was synthesized and was used for polycondensation with diacid esters, giving rise to a series of POEA copolymers with unique stimuli-responsive properties. The POEA undergoes temperature-responsive, reversible sol-gel phase transition in water. Phase diagrams of the POEA/H2O mixture reveal the concentration-dependent existence of different phases, including hydrogel and opaque or clear solution. Such behavior may be attributed to the temperature-dependent hydrogen-bonding involving the amide groups in the POEA backbone and hydrophobic interactions between POEA chains, and it is tunable by selecting diacid monomers with different chemical structures. The kinetics of POEA mass loss in physiological aqueous buffers and release of a model macromolecular drug, fluorescently labeled dextran, are nearly zero-order, suggesting predominantly surface-restricted polymer erosion. The rates of polymer erosion and drug release are much faster at pH 5.0 than pH 7.4. No cytotoxicity was found for the polymer extracts and the polymer degradation products at concentrations as high as 1 mg/ml. The normal morphology of fibroblasts cultured directly in contact with POEA films was not altered. These novel acid-labile temperature-responsive POEA copolymers may be potentially useful for a wide range of biomedical applications such as minimal invasive delivery of controlled-release drug formulations that respond to biological temperature and acidic-pH environments in cells and tissues. PMID:19281150

  2. Facile synthesis of acid-labile polymers with pendent ortho esters.

    PubMed

    Cheng, Jing; Ji, Ran; Gao, Shi-Juan; Du, Fu-Sheng; Li, Zi-Chen

    2012-01-01

    This work presents a facile approach for preparation of acid-labile and biocompatible polymers with pendent cyclic ortho esters, which is based on the efficient and mild reactions between cyclic ketene acetal (CKA) and hydroxyl groups. Three CKAs, 2-ethylidene-1,3-dioxane (EDO), 2-ethylidene-1,3-dioxolane (EDL), and 2-ethylidene-4- methyl-1,3-dioxolane (EMD) were prepared from the corresponding cyclic vinyl acetals by catalytic isomerization of the double bond. The reaction of CKAs with different alcohols and diols was examined using trace of p-toluenesulfonic acid as a catalyst. For the monohydroxyl alcohols, cyclic ortho esters were formed by simple addition of the hydroxyl group toward CKAs with ethanol showing a much greater reactivity than iso-propanol. When 1,2- or 1,3-diols were used to react with the CKAs, we observed the isomerized cyclic ortho esters besides the simple addition products. Biocompatible polyols, that is, poly(2-hydroxyethyl acrylate) (PHEA) and poly(vinyl alcohol) (PVA) were then modified with CKAs, and the degree of substitution of the pendent ortho esters can be easily tuned by changing feed ratio. Both the small molecule ortho esters and the CKA-modified polymers demonstrate the pH-dependent hydrolysis profiles, which depend also on the chemical structure of the ortho esters as well as the polymer hydrophobicity. PMID:22176024

  3. A novel nanoparticulate system for sustained delivery of acid-labile lansoprazole.

    PubMed

    Alai, Milind Sadashiv; Lin, Wen Jen

    2013-11-01

    In the present study, an effort was made to develop the Eudragit RS100 based nanoparticulate system for sustained delivery of an acid-labile drug, lansoprazole (LPZ). LPZ-loaded Eudragit RS100 nanoparticles (ERSNPs) were prepared by oil-in-water emulsion-solvent evaporation method. The effects of various formulation variables such as polymer concentration, drug amount and solvent composition on physicochemical performance of nanoparticles and in vitro drug release were investigated. All nanoparticles were spherical with particle size 198.9 ± 8.6-376.9 ± 5.6 nm and zeta potential +35.1 ± 1.7 to +40.2 ± 0.8 mV. The yield of nanoparticles was unaffected by change of these three variables. However, the drug loading and encapsulation efficiency were affected by polymer concentration and drug amount. On the other hand, the particle size of nanoparticles was significantly affected by polymer concentration and internal phase composition due to influence of droplet size during emulsification process. All nanoparticles prolonged drug release for 24h which was dominated by a combination of drug diffusion and polymer chain relaxation. The fastest and the slowest release rates were observed in C2-1002-10/0 and C8-4001-10/0, respectively, based on the release rate constant (k). Thus, the developed nanoparticles possessed a potential as a nano-carrier to sustain drug delivery for treatment of acid related disorders.

  4. Construction of Bifidobacterium infantis as a live oral vaccine that expresses antigens of the major fimbrial subunit (CfaB) and the B subunit of heat-labile enterotoxin (LTB) from enterotoxigenic Escherichia coli.

    PubMed

    Ma, Yongping; Luo, Yaolin; Huang, Xueping; Song, Fangzhou; Liu, Geli

    2012-02-01

    We sought to develop Bifidobacterium infantis (BI) as a vehicle for the expression of heterologous antigens. Two proteins of enterotoxigenic Escherichia coli (ETEC) were expressed in BI: CfaB, a major fimbrial subunit protein, and LTB, the B subunit of heat-labile enterotoxin. The expression of CfaB and LTB in BI was verified by electrophoretic analysis. Sprague-Dawley rats were then subjected to intragastric immunization with BI-CfaB and BI-LTB systems both separately and together. ELISA was used to characterize the serum and mucosal immune responses against ETEC antigens. The immunized rats were intraperitoneally challenged with wild-type ETEC H10407 to study the immune response in vivo. The serum titres of IgG and faecal IgA antibodies in the BI-CfaB plus BI-LTB mixed vaccination group were significantly greater than those in the other two groups, which were immunized with a single vaccine (P<0.05). However, no significant difference was seen between the two groups that received a single immunization. These results suggest that expressing CfaB and LTB in BI provides a probiotic system with immunogenic properties. Furthermore, the expression of LTB in BI preserved its mucosal adjuvant effect. So this study confirms that BI can be used as a novel oral vaccine expression system for a heterologous antigen and BI-LTB can provide mucosal adjuvant properties. PMID:22053005

  5. Subacute effects of maize-expressed vaccine protein, Escherichia coli heat-labile enterotoxin subunit B (LTB), on the Springtail, Folsomia candida , and the earthworm, Eisenia fetida.

    PubMed

    Kosaki, Hirofumi; Wolt, Jeffrey D; Wang, Kan; Coats, Joel R

    2008-12-10

    The ecotoxicological effects of transgenic maize-expressed vaccine protein, Escherichia coli heat-labile enterotoxin subunit B (LTB), on two soil invertebrates were studied under laboratory settings. After being reared for 28 days on LTB-maize-treated soils, no apparent mortality of the springtail, Folsomia candida , or the earthworm, Eisenia fetida , was observed at levels well above conservatively projected estimated environmental concentrations. Therefore, it is concluded that there would be no acutely toxic effect of LTB to these species. As for the subacute effect, no significant differences of F. candida mean reproduction and E. fetida mean growth were observed between LTB-maize-treated samples and non-GM-maize-treated controls. In addition, no LTB was detected in the E. fetida whole-body extraction assay, which indicates there was no tendency for bioaccumulation. On the basis of these observations, it is predicted that any adverse effects of LTB-maize on F. candida and E. fetida would be minimal, if any.

  6. In situ measurements of labile Al and Mn in acid mine drainage using diffusive gradients in thin films.

    PubMed

    Søndergaard, Jens

    2007-08-15

    The technique of diffusive gradients in thin films (DGT) can be used for in situ measurements of labile metal species in water, but the application for this method on acid mine drainage (AMD) is complicated due to reduced sampler adsorption of metals at low pH. This study evaluates the use of DGT on labile Al and Mn in AMD (pH 3.1-4.2). DGT measurements were performed both in standard solutions in the laboratory and in situ in the field. Laboratory results show that DGT can be used in water with pH as low as 3.0 for Al and 4.0 for Mn without correcting for reduced adsorption. Below pH 4.0, the adsorption of Mn showed a linearly decrease with pH to approximately 55% at pH 3.0. Taking this correction into account revealed that 84-100% of the total dissolved Al and Mn measured in the field was DGT-labile. Measurements using DGT agreed well with predictions using the speciation program WHAM VI. This study shows that the use of DGT can be extended below the previously reported pH working range for Al, and for Mn using a simple linear correction with respect to pH, and demonstrates that the technique can be applied for monitoring time-integrated labile metal concentrations at AMD sites. PMID:17620010

  7. Comparative study on characterization of recombinant B subunit of E. coli heat-labile enterotoxin (rLTB) prepared from E. coli and P. patoris.

    PubMed

    Ma, Xingyuan; Yao, Bi; Zheng, Wenyun; Li, Linfeng

    2010-03-01

    Escherichia coli (E. coli) heat-labile enterotoxin B subunit (LTB) was regarded as one of the most powerful mucosal immunoadjuvants eliciting strong immunoresponse to coadministered antigens. In the research, the high-level secretory expression of functional LTB was achieved in P. pastoris through high-density fermentation in a 5-l fermentor. Meanwhile, the protein was expressed in E. coli by the way of inclusion body, although the gene was cloned from E. coli. Some positive yeast and E. coli transformants were obtained respectively by a series of screenings and identifications. Fusion proteins LTB-6x His could be secreted into the supernatant of the medium after the recombinant P. pastoris was induced by 0.5% (v/v) methanol at 30 degrees C, whereas E. coli transformants expressed target protein in inclusion body after being induced by 1 mM IPTG at 37 degrees C. The expression level increased dramatically to 250- 300 mg/l supernatant of fermentation in the former and 80-100 mg/l in the latter. The LTB-6x His were purified to 95% purity by affinity chromatography and characterized by SDS-PAGE and Western blot. Adjuvant activity of target protein was analyzed by binding ability with GM1 gangliosides. The MW of LTB-6x His expressed in P. pastoris was greater than that in E. coli, which was equal to the expected 11 kDa, possibly resulted from glycosylation by P. pastoris that would enhance the immunogenicity of co-administered antigens. These data demonstrated that P. pastoris producing heterologous LTB has significant advantages in higher expression level and in adjuvant activity compared with the homologous E. coli system. PMID:20372026

  8. Protective Mucosal Immunity to Ocular Herpes Simplex Virus Type 1 Infection in Mice by Using Escherichia coli Heat-Labile Enterotoxin B Subunit as an Adjuvant

    PubMed Central

    Richards, C. M.; Aman, A. T.; Hirst, T. R.; Hill, T. J.; Williams, N. A.

    2001-01-01

    The potential of nontoxic recombinant B subunits of cholera toxin (rCtxB) and its close relative Escherichia coli heat-labile enterotoxin (rEtxB) to act as mucosal adjuvants for intranasal immunization with herpes simplex virus type 1 (HSV-1) glycoproteins was assessed. Doses of 10 μg of rEtxB or above with 10 μg of HSV-1 glycoproteins elicited high serum and mucosal anti-HSV-1 titers comparable with that obtained using CtxB (10 μg) with a trace (0.5 μg) of whole toxin (Ctx-CtxB). By contrast, doses of rCtxB up to 100 μg elicited only meager anti-HSV-1 responses. As for Ctx-CtxB, rEtxB resulted in a Th2-biased immune response with high immunoglobulin G1 (IgG1)/IgG2a antibody ratios and production of interleukin 4 (IL-4) and IL-10 as well as gamma interferon by proliferating T cells. The protective efficacy of the immune response induced using rEtxB as an adjuvant was assessed following ocular challenge of immunized and mock-immunized mice. Epithelial disease was observed in both groups, but the immunized mice recovered by day 6 whereas mock-immunized mice developed more severe corneal disease leading to stromal keratitis. In addition, a significant reduction in the incidence of lid disease and zosteriform spread was observed in immunized animals and there was no encephalitis compared with 95% encephalitis in mock-immunized mice. The potential of such mucosal adjuvants for use in human vaccines against pathogens such as HSV-1 is discussed. PMID:11160664

  9. Protective efficacy of a Mycoplasma pneumoniae P1C DNA vaccine fused with the B subunit of Escherichia coli heat-labile enterotoxin.

    PubMed

    Zhu, Cuiming; Wang, Shiping; Hu, Shihai; Yu, Minjun; Zeng, Yanhua; You, Xiaoxing; Xiao, Jinhong; Wu, Yimou

    2012-06-01

    In the present study, we investigated the immunomodulatory responses of a DNA vaccine constructed by fusing Mycoplasma pneumoniae P1 protein carboxy terminal region (P1C) with the Escherichia coli heat-labile toxin B subunit (LTB). BALB/c mice were immunized by intranasal inoculation with control DNAs, the P1C DNA vaccine or the LTB-P1C fusion DNA vaccine. Levels of the anti-M. pneumoniae antibodies and levels of interferon-γ and IL-4 in mice were increased significantly upon inoculation of the LTB-P1C fusion DNA vaccine when compared with the inoculation with P1C DNA vaccine. The LTB-P1C fusion DNA vaccine efficiently enhanced the M. pneumoniae-specific IgA and IgG levels. The IgG2a/IgG1 ratio was significantly higher in bronchoalveolar lavages fluid and sera from mice fusion with LTB and P1C than mice receiving P1C alone. When the mice were challenged intranasally with 10(7) CFU M. pneumoniae strain (M129), the LTB-P1C fusion DNA vaccine conferred significantly better protection than P1C DNA vaccine (P < 0.05), as suggested by the results, such as less inflammation, lower histopathological score values, lower detectable number of M. pneumoniae strain, and lower mortality of challenging from 5 × 10(8) CFU M. pneumoniae. These results indicated that the LTB-P1C fusion DNA vaccine efficiently improved protective efficacy against M. pneumoniae infection and effectively attenuated development of M. pneumoniae in mice.

  10. Attenuated Salmonella Gallinarum secreting an Escherichia coli heat-labile enterotoxin B subunit protein as an adjuvant for oral vaccination against fowl typhoid.

    PubMed

    Jeon, Byung Woo; Jawale, Chetan V; Kim, Seung Hwan; Lee, John Hwa

    2012-12-15

    In our previous study, we constructed a vaccine candidate (JOL916) for fowl typhoid (FT). A live adjuvant Salmonella Gallinarum (SG) strain was generated in the present study to facilitate efficacious oral vaccination with this vaccine. The Escherichia coli eltB gene secreting heat-labile enterotoxin B subunit (LTB) was cloned into an Asd(+) plasmid pJHL65. This was transformed into a Δlon ΔcpxR Δasd SG strain and the resulting strain was designated JOL1229. Secretion of LTB from JOL1229 was confirmed with an immunoblot assay. To determine the optimal dose of the strain, 50 six-week-old female chickens were divided into five groups (Groups A-E, n=10 per group) and orally inoculated with various doses of JOL1229 and JOL916. In Group B (consisting of four parts JOL916 and one part JOL1229), significant cell-mediated immune responses, plasma IgG levels and intestinal secretary IgA levels were induced after inoculation with both strains. On challenge with the wild-type strain, significant reductions in mortality were observed in the group. In addition, after inoculation the LTB strain was not recovered in feces samples, and resulted in no, or very mild, gross lesions in the liver and spleen. Both CD4(+) and CD8(+) T-cells were significantly increased in peripheral blood samples from the chickens immunized with the LTB strain. Expression of the interleukin-6 (IL-6) gene in splenocytes was induced in the chickens immunized with the LTB strain. These results suggest that oral immunization with the LTB-adjuvant strain, in particular with the four parts JOL916 and one part JOL1229 mixture, increased the immune response and provided efficient protection against FT in chickens.

  11. Salmonella enterica serovar enteritidis ghosts carrying the Escherichia coli heat-labile enterotoxin B subunit are capable of inducing enhanced protective immune responses.

    PubMed

    Jawale, Chetan V; Lee, John Hwa

    2014-06-01

    The Escherichia coli heat-labile enterotoxin B subunit (LTB) is a potent vaccine adjuvant. Salmonella enterica serovar Enteritidis ghosts carrying LTB (S. Enteritidis-LTB ghosts) were genetically constructed using a novel plasmid, pJHL187-LTB, designed for the coexpression of the LTB and E lysis proteins. S. Enteritidis-LTB ghosts were characterized using scanning electron microscopy to visualize their transmembrane tunnel structures. The expression of LTB in S. Enteritidis-LTB ghost preparations was confirmed by immunoblot and enzyme-linked immunosorbent assays. The parenteral adjuvant activity of LTB was demonstrated by immunizing chickens with either S. Enteritidis-LTB ghosts or S. Enteritidis ghosts. Chickens were intramuscularly primed at 5 weeks of age and subsequently boosted at 8 weeks of age. In total, 60 chickens were equally divided into three groups (n = 20 for each): group A, nonvaccinated control; group B, immunized with S. Enteritidis-LTB ghosts; and group C, immunized with S. Enteritidis ghosts. Compared with the nonimmunized chickens (group A), the immunized chickens (groups B and C) exhibited increased titers of plasma IgG and intestinal secretory IgA antibodies. The CD3(+) CD4(+) subpopulation of T cells was also significantly increased in both immunized groups. Among the immunized chickens, those in group B exhibited significantly increased titers of specific plasma IgG and intestinal secretory IgA (sIgA) antibodies compared with those in group C, indicating the immunomodulatory effects of the LTB adjuvant. Furthermore, both immunized groups exhibited decreased bacterial loads in their feces and internal organs. These results indicate that parenteral immunization with S. Enteritidis-LTB ghosts can stimulate superior induction of systemic and mucosal immune responses compared to immunization with S. Enteritidis ghosts alone, thus conferring efficient protection against salmonellosis. PMID:24671556

  12. Synthesis of Acid-Labile PEG and PEG-Doxorubicin-Conjugate Nanoparticles via Brush-First ROMP

    PubMed Central

    2015-01-01

    A panel of acid-labile bis-norbornene cross-linkers was synthesized and evaluated for the formation of acid-degradable brush-arm star polymers (BASPs) via the brush-first ring-opening metathesis polymerization (ROMP) method. An acetal-based cross-linker was identified that, when employed in conjunction with a poly(ethylene glycol) (PEG) macromonomer, provided highly controlled BASP formation reactions. A combination of this new cross-linker with a novel doxorubicin (DOX)-branch-PEG macromonomer provided BASPs that simultaneously degrade and release cytotoxic DOX in vitro. PMID:25243099

  13. The Divergent CD8+ T Cell Adjuvant Properties of LT-IIb and LT-IIc, Two Type II Heat-Labile Enterotoxins, Are Conferred by Their Ganglioside-Binding B Subunits

    PubMed Central

    Hu, John C.; Greene, Christopher J.; King-Lyons, Natalie D.; Connell, Terry D.

    2015-01-01

    Poor immune responses elicited by vaccine antigens can be enhanced by the use of appropriate adjuvants. Type II heat-labile enterotoxins (HLT) produced by Escherichia coli are extremely potent adjuvants that augment both humoral and cellular immunity to co-administered antigens. Recent findings demonstrate that LT-IIb and LT-IIc, two type II HLT adjuvants, exhibit potent, yet distinguishable CD8+ T cell adjuvant properties. While LT-IIc elicits a robust and rapid response at one week after administration, LT-IIb engenders a more gradual and slower expansion of antigen-specific CD8+ T cells that correlates with improved immunity. The variations in immune effects elicited by the HLT adjuvants have been generally attributed to their highly divergent B subunits that mediate binding to various gangliosides on cell surfaces. Yet, HLT adjuvants with point mutations in the B subunit that significantly alter ganglioside binding retain similar adjuvant functions. Therefore, the contribution of the B subunits to adjuvanticity remains unclear. To investigate the influence of the B subunits on the enhancement of immune responses by LT-IIb and LT-IIc, chimeric HLT were engineered in which the B subunits of the two adjuvants were exchanged. Comparing the immune potentiating characteristics of both native and chimeric HLT adjuvants, it was found that not all the adjuvant characteristics of the HLT adjuvants were modulated by the respective B subunits. Specifically, the differences in the CD8+ T cell kinetics and protective responses elicited by LT-IIb and LT-IIc did indeed followed their respective B subunits. However, induction of IL-1 from macrophages and the capacity to intoxicate cells in a mouse Y1 adrenal cell bioassay did not correlate with the B subunits. Therefore, it is likely that additional factors other than the B subunits contribute to the effects elicited by the HLT adjuvants. PMID:26565800

  14. Characterization of heat-labile toxin-subunit B from Escherichia coli by liquid chromatography-electrospray ionization-mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Sospedra, I; De Simone, C; Soriano, J M; Mañes, J; Ferranti, P; Ritieni, A

    2012-11-01

    The possibilities of characterizing the heat-labile enterotoxin (LT) of enterotoxigenic Escherichia coli (ETEC) by liquid chromatography electrospray mass spectrometry (LC/ESI-MS) and matrix-assisted laser desorption with time-of-flight mass spectrometry (MALDI-TOF-MS) were investigated. The B subunit from recombinant E. coli (expression in Pichia pastoris) can be detected by LC/ESI-MS expressed in P. pastoris and the charge envelope signals can be observed; LC/ESI-MS and MALDI-TOF-MS analysis allowed the acquisition of labile toxin subunit B (LTB) molecular weight and preliminary structural characterization of LTB toxin. MALDI-TOF analysis after reduction and alkylation of the protein evidenced the presence of one disulfide bond in the structure of the protein. Confirmatory analysis was carried out by detection of most of the tryptic fragments of the B subunit by MALDI-TOF-MS, obtaining total coverage of the protein sequence. Possible biovariations in the toxin can mostly be determined by sequencing, where an increase of molecular mass in the N-terminal side of the protein was identified. This modification may be due to an O-GlcNAc-1-phosphorylation. PMID:22921353

  15. An acid-labile block copolymer of PDMAEMA and PEG as potential carrier for intelligent gene delivery systems.

    PubMed

    Lin, Song; Du, Fusheng; Wang, Yang; Ji, Shouping; Liang, Dehai; Yu, Lei; Li, Zichen

    2008-01-01

    Intelligent gene delivery systems based on physiologically triggered reversible shielding technology have evinced enormous interest due to their potential in vivo applications. In the present work, an acid-labile block copolymer consisting of poly(ethylene glycol) and poly(2-(dimethylamino)ethyl methacrylate) segments connected through a cyclic ortho ester linkage (PEG- a-PDMAEMA) was synthesized by atom transfer radical polymerization of DMAEMA using a PEG macroinitiator with an acid-cleavable end group. PEG- a-PDMAEMA condensed with plasmid DNA formed polyplex nanoparticles with an acid-triggered reversible PEG shield. The pH-dependent shielding/deshielding effect of PEG chains on the polyplex particles were evaluated by zeta potential and size measurements. At pH 7.4, polyplexes generated from PEG- a-PDMAEMA exhibited smaller particle size, lower surface charge, reduced interaction with erythrocytes, and less cytotoxicity compared to PDMAEMA-derived polyplexes. At pH 5.0, zeta potential of polyplexes formed from PEG- a-PDMAEMA increased, leveled up after 2 h of incubation and gradual aggregation occurred in the presence of bovine serum albumin (BSA). In contrast, the stably shielded polyplexes formed by DNA and an acid-stable block copolymer, PEG- b-PDMAEMA, did not change in size and zeta potential in 6 h. In vitro transfection efficiency of the acid-labile copolymer greatly increased after 6 h incubation at pH 5.0, approaching the same level of PDMAEMA, whereas there was only slight increase in efficiency for the stable copolymer, PEG- b-PDMAEMA.

  16. Effect of oxalic acid treatment on sediment arsenic concentrations and lability under reducing conditions.

    PubMed

    Sun, Jing; Bostick, Benjamin C; Mailloux, Brian J; Ross, James M; Chillrud, Steven N

    2016-07-01

    Oxalic acid enhances arsenic (As) mobilization by dissolving As host minerals and competing for sorption sites. Oxalic acid amendments thus could potentially improve the efficiency of widely used pump-and-treat (P&T) remediation. This study investigates the effectiveness of oxalic acid on As mobilization from contaminated sediments with different As input sources and redox conditions, and examines whether residual sediment As after oxalic acid treatment can still be reductively mobilized. Batch extraction, column, and microcosm experiments were performed in the laboratory using sediments from the Dover Municipal Landfill and the Vineland Chemical Company Superfund sites. Oxalic acid mobilized As from both Dover and Vineland sediments, although the efficiency rates were different. The residual As in both Dover and Vineland sediments after oxalic acid treatment was less vulnerable to microbial reduction than before the treatment. Oxalic acid could thus improve the efficiency of P&T. X-ray absorption spectroscopy analysis indicated that the Vineland sediment samples still contained reactive Fe(III) minerals after oxalic acid treatment, and thus released more As into solution under reducing conditions than the treated Dover samples. Therefore, the efficacy of enhanced P&T must consider sediment Fe mineralogy when evaluating its overall potential for remediating groundwater As.

  17. Engineering of an active animal fatty acid synthase dimer with only one competent subunit.

    PubMed

    Joshi, Anil K; Rangan, Vangipuram S; Witkowski, Andrzej; Smith, Stuart

    2003-02-01

    Animal fatty acid synthases are large polypeptides containing seven functional domains that are active only in the dimeric form. Inactivity of the monomeric form has long been attributed to the obligatory participation of domains from both subunits in catalysis of substrate loading and condensation reactions. However, we have engineered a fatty acid synthase containing one wild-type subunit and one subunit compromised by mutations in all seven functional domains that is active in fatty acid synthesis. This finding indicates that a single subunit, in the context of a dimer, is able to catalyze the entire biosynthetic pathway and suggests that, in the natural complex, each of the two subunits forms a scaffold that optimizes the conformation of the companion subunit.

  18. Differing alpha-tocopherol oxidative lability and ascorbic acid sparing effects in buoyant and dense LDL.

    PubMed

    Tribble, D L; Thiel, P M; van den Berg, J J; Krauss, R M

    1995-11-01

    The enhanced oxidizability of smaller, more dense LDL is explained in part by a lower content of antioxidants, including ubiquinol-10 and alpha-tocopherol. In the present studies, we also observed greater rates of depletion of alpha-tocopherol (mole per mole LDL per minute) in dense (d = 1,040 to 1,054 g/mL) compared with buoyant (d = 1,026 to 1,032 g/mL) LDL in the presence of either Cu2+ or the radical-generating agent 2-2'-azobis (2-amidinopropane)dihydrochloride. Differences were particularly pronounced at the lowest Cu2+ concentration tested (0.25 mumol/L), with a fivefold greater rate in dense LDL. At higher concentrations (1.0 and 2.5 mumol/L Cu2+), there was a greater dependence of depletion rate on initial amount of alpha-tocopherol, which was reduced in dense LDL, thus resulting in smaller subfraction-dependent differences in depletion rates. Inclusion of ascorbic acid (15 mumol/L), an aqueous antioxidant capable of recycling alpha-tocopherol by hydrogen donation, was found to extend the course of Cu(2+)-induced alpha-tocopherol depletion in both buoyant and dense LDL, but this effect was more pronounced in dense LDL (time to half-maximal alpha-tocopherol depletion was extended 15.6-fold and 21.2-fold in buoyant and dense LDL, respectively, at 2.5 mumol/L Cu2+; P< .05). Thus, dense LDL exhibits more rapid alpha-tocopherol depletion and conjugated diene formation than buoyant LDL when oxidation is performed in the absence of ascorbic acid, but these differences are reversed in the presence of ascorbic acid.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. LT-IIb(T13I), a non-toxic type II heat-labile enterotoxin, augments the capacity of a ricin toxin subunit vaccine to evoke neutralizing antibodies and protective immunity.

    PubMed

    Greene, Christopher J; Chadwick, Chrystal M; Mandell, Lorrie M; Hu, John C; O'Hara, Joanne M; Brey, Robert N; Mantis, Nicholas J; Connell, Terry D

    2013-01-01

    Currently, there is a shortage of adjuvants that can be employed with protein subunit vaccines to enhance protection against biological threats. LT-IIb(T13I) is an engineered nontoxic derivative of LT-IIb, a member of the type II subfamily of heat labile enterotoxins expressed by Escherichia coli, that possesses potent mucosal adjuvant properties. In this study we evaluated the capacity of LT-IIb(T13I) to augment the potency of RiVax, a recombinant ricin toxin A subunit vaccine, when co-administered to mice via the intradermal (i.d.) and intranasal (i.n.) routes. We report that co-administration of RiVax with LT-IIb(T13I) by the i.d. route enhanced the levels of RiVax-specific serum IgG antibodies (Ab) and elevated the ratio of ricin-neutralizing to non-neutralizing Ab, as compared to RiVax alone. Protection against a lethal ricin challenge was also augmented by LT-IIb(T13I). While local inflammatory responses elicited by LT-IIb(T13I) were comparable to those elicited by aluminum salts (Imject®), LT-IIb(T13I) was more effective than aluminum salts at augmenting production of RiVax-specific serum IgG. Finally, i.n. administration of RiVax with LT-IIb(T13I) also increased levels of RiVax-specific serum and mucosal Ab and enhanced protection against ricin challenge. Collectively, these data highlight the potential of LT-IIb(T13I) as an effective next-generation i.d., or possibly i.n. adjuvant for enhancing the immunogenicity of subunit vaccines for biodefense.

  20. Development of pH-sensitive self-nanoemulsifying drug delivery systems for acid-labile lipophilic drugs.

    PubMed

    Zhao, Tianjing; Maniglio, Devid; Chen, Jie; Chen, Bin; Migliaresi, Claudio

    2016-03-01

    Oral administration is the most convenient way of all the drug delivery routes. Orally administered bioactive compounds must resist the harsh acidic fluids or enzyme digestion in stomach, to reach their absorbed destination in small intestine. This is the case for silibinin, a drug used to protect liver cells against toxins that has also been demonstrated in vitro to possess anti-cancer effects. However, as many other drugs, silibinin can degrade in the stomach due to the action of the gastric fluid. The use of pH-sensitive self-nanoemulsifying drug delivery systems (pH-SNEDDS) could overcome the drawback due to degradation of the drug in the stomach while enhancing its solubility and dissolution rate. In this paper we have investigated pH-sensitive self-nanoemulsifying formulations containing silibinin as model drug. Pseudo-ternary phase diagrams have been constructed in order to identify the self-emulsification regions under different pH. Solubility of silibinin in selected formulations has been assessed and stability of the pure drug and of the silibinin loaded pH-SNEDDS formulations in simulated gastric fluid had been compared. Droplet size of the optimized pH-SNEDDS has been correlated to pH, volume of dilution medium and silibinin loading amount. TEM (transmission electron microscopy) studies have shown that emulsion droplets had spherical shape and narrow size distribution. In vitro drug release studies of the optimal pH-SNEDDS indicated substantial increase of the drug release and release rate in comparison to pure silibinin and to the commercial silibinin tablet. The results indicated that pH-SNEDDS have potential to improve the biopharmaceutics properties of acid-labile lipophilic drugs.

  1. Peracetic Acid: A Practical Agent for Sterilizing Heat-Labile Polymeric Tissue-Engineering Scaffolds

    PubMed Central

    Yoganarasimha, Suyog; Trahan, William R.; Best, Al M.; Bowlin, Gary L.; Kitten, Todd O.; Moon, Peter C.

    2014-01-01

    Advanced biomaterials and sophisticated processing technologies aim at fabricating tissue-engineering scaffolds that can predictably interact within a biological environment at the cellular level. Sterilization of such scaffolds is at the core of patient safety and is an important regulatory issue that needs to be addressed before clinical translation. In addition, it is crucial that meticulously engineered micro- and nano- structures are preserved after sterilization. Conventional sterilization methods involving heat, steam, and radiation are not compatible with engineered polymeric systems because of scaffold degradation and loss of architecture. Using electrospun scaffolds made from polycaprolactone, a low melting polymer, and employing spores of Bacillus atrophaeus as biological indicators, we compared ethylene oxide, autoclaving and 80% ethanol to a known chemical sterilant, peracetic acid (PAA), for their ability to sterilize as well as their effects on scaffold properties. PAA diluted in 20% ethanol to 1000 ppm or above sterilized electrospun scaffolds in 15 min at room temperature while maintaining nano-architecture and mechanical properties. Scaffolds treated with PAA at 5000 ppm were rendered hydrophilic, with contact angles reduced to 0°. Therefore, PAA can provide economical, rapid, and effective sterilization of heat-sensitive polymeric electrospun scaffolds that are used in tissue engineering. PMID:24341350

  2. Peracetic acid: a practical agent for sterilizing heat-labile polymeric tissue-engineering scaffolds.

    PubMed

    Yoganarasimha, Suyog; Trahan, William R; Best, Al M; Bowlin, Gary L; Kitten, Todd O; Moon, Peter C; Madurantakam, Parthasarathy A

    2014-09-01

    Advanced biomaterials and sophisticated processing technologies aim at fabricating tissue-engineering scaffolds that can predictably interact within a biological environment at the cellular level. Sterilization of such scaffolds is at the core of patient safety and is an important regulatory issue that needs to be addressed before clinical translation. In addition, it is crucial that meticulously engineered micro- and nano- structures are preserved after sterilization. Conventional sterilization methods involving heat, steam, and radiation are not compatible with engineered polymeric systems because of scaffold degradation and loss of architecture. Using electrospun scaffolds made from polycaprolactone, a low melting polymer, and employing spores of Bacillus atrophaeus as biological indicators, we compared ethylene oxide, autoclaving and 80% ethanol to a known chemical sterilant, peracetic acid (PAA), for their ability to sterilize as well as their effects on scaffold properties. PAA diluted in 20% ethanol to 1000 ppm or above sterilized electrospun scaffolds in 15 min at room temperature while maintaining nano-architecture and mechanical properties. Scaffolds treated with PAA at 5000 ppm were rendered hydrophilic, with contact angles reduced to 0°. Therefore, PAA can provide economical, rapid, and effective sterilization of heat-sensitive polymeric electrospun scaffolds that are used in tissue engineering. PMID:24341350

  3. A simple and inexpensive enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine.

    PubMed

    Miller, Darren S; Parsons, Anne Michelle; Bresland, John; Herde, Paul; Pham, Duc Minh; Tan, Angel; Hsu, Hung-yao; Prestidge, Clive A; Kuchel, Tim; Begg, Rezaul; Aziz, Syed Mahfuzul; Butler, Ross N

    2015-07-01

    Understanding the ecology of the gastrointestinal tract and the impact of the contents on the host mucosa is emerging as an important area for defining both wellness and susceptibility to disease. Targeted delivery of drugs to treat specific small intestinal disorders such as small bowel bacterial overgrowth and targeting molecules to interrogate or to deliver vaccines to the remote regions of the small intestine has proven difficult. There is an unmet need for methodologies to release probes/drugs to remote regions of the gastrointestinal tract in furthering our understanding of gut health and pathogenesis. In order to address this concern, we need to know how the regional delivery of a surrogate labeled test compound is handled and in turn, if delivered locally as a liquid or powder, the dynamics of its subsequent handling and metabolism. In the studies we report on in this paper, we chose (13)C sodium acetate ((13)C-acetate), which is a stable isotope probe that once absorbed in the small intestine can be readily measured non-invasively by collection and analysis of (13)CO2 in the breath. This would provide information of gastric emptying rates and an indication of the site of release and absorptive capacity. In a series of in vitro and in vivo pig experiments, we assessed the enteric-protective properties of a commercially available polymer EUDRAGIT(®) L100-55 on gelatin capsules and also on DRcaps(®). Test results demonstrated that DRcaps(®) coated with EUDRAGIT(®) L100-55 possessed enhanced enteric-protective properties, particularly in vivo. These studies add to the body of knowledge regarding gastric emptying in pigs and also begin the process of gathering specifications for the design of a simple and cost-effective enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine.

  4. A simple and inexpensive enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine*

    PubMed Central

    Miller, Darren S.; Parsons, Anne Michelle; Bresland, John; Herde, Paul; Pham, Duc Minh; Tan, Angel; Hsu, Hung-yao; Prestidge, Clive A.; Kuchel, Tim; Begg, Rezaul; Aziz, Syed Mahfuzul; Butler, Ross N.

    2015-01-01

    Understanding the ecology of the gastrointestinal tract and the impact of the contents on the host mucosa is emerging as an important area for defining both wellness and susceptibility to disease. Targeted delivery of drugs to treat specific small intestinal disorders such as small bowel bacterial overgrowth and targeting molecules to interrogate or to deliver vaccines to the remote regions of the small intestine has proven difficult. There is an unmet need for methodologies to release probes/drugs to remote regions of the gastrointestinal tract in furthering our understanding of gut health and pathogenesis. In order to address this concern, we need to know how the regional delivery of a surrogate labeled test compound is handled and in turn, if delivered locally as a liquid or powder, the dynamics of its subsequent handling and metabolism. In the studies we report on in this paper, we chose 13C sodium acetate (13C-acetate), which is a stable isotope probe that once absorbed in the small intestine can be readily measured non-invasively by collection and analysis of 13CO2 in the breath. This would provide information of gastric emptying rates and an indication of the site of release and absorptive capacity. In a series of in vitro and in vivo pig experiments, we assessed the enteric-protective properties of a commercially available polymer EUDRAGIT®L100-55 on gelatin capsules and also on DRcaps®. Test results demonstrated that DRcaps®coated with EUDRAGIT®L100-55 possessed enhanced enteric-protective properties, particularly in vivo. These studies add to the body of knowledge regarding gastric emptying in pigs and also begin the process of gathering specifications for the design of a simple and cost-effective enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine. PMID:26160716

  5. Evaluation of acid-labile S-protecting groups to prevent Cys racemization in Fmoc solid-phase peptide synthesis

    PubMed Central

    Hibino, Hajime; Miki, Yasuyoshi; Nishiuchi, Yuji

    2014-01-01

    Phosphonium and uronium salt-based reagents enable efficient and effective coupling reactions and are indispensable in peptide chemistry, especially in machine-assisted SPPS. However, after the activating and coupling steps with these reagents in the presence of tertiary amines, Fmoc derivatives of Cys are known to be considerably racemized during their incorporation. To avoid this side reaction, a coupling method mediated by phosphonium/uronium reagents with a weaker base, such as 2,4,6-trimethylpyridine, than the ordinarily used DIEA or that by carbodiimide has been recommended. However, these methods are appreciably inferior to the standard protocol applied for SPPS, that is, a 1 min preactivation procedure of coupling with phosphonium or uronium reagents/DIEA in DMF, in terms of coupling efficiency, and also the former method cannot reduce racemization of Cys(Trt) to an acceptable level (<1.0%) even when the preactivation procedure is omitted. Here, the 4,4′-dimethoxydiphenylmethyl and 4-methoxybenzyloxymethyl groups were demonstrated to be acid-labile S-protecting groups that can suppress racemization of Cys to an acceptable level (<1.0%) when the respective Fmoc derivatives are incorporated via the standard SPPS protocol of phosphonium or uronium reagents with the aid of DIEA in DMF. Furthermore, these protecting groups significantly reduced the rate of racemization compared to the Trt group even in the case of microwave-assisted SPPS performed at a high temperature. © 2013 The Authors. European Peptide Society published by John Wiley & Sons, Ltd. PMID:24357151

  6. pH-responsive biodegradable micelles based on acid-labile polycarbonate hydrophobe: synthesis and triggered drug release.

    PubMed

    Chen, Wei; Meng, Fenghua; Li, Feng; Ji, Shun-Jun; Zhong, Zhiyuan

    2009-07-13

    pH-responsive biodegradable micelles were prepared from block copolymers comprising of a novel acid-labile polycarbonate hydrophobe and poly(ethylene glycol) (PEG). Two new cyclic aliphatic carbonate monomers, mono-2,4,6-trimethoxybenzylidene-pentaerythritol carbonate (TMBPEC, 2a) and mono-4-methoxybenzylidene-pentaerythritol carbonate (MBPEC, 2b) were designed and successfully synthesized via a two-step procedure. The ring-opening polymerization of 2a or 2b in the presence of methoxy PEG in dichloromethane at 50 °C using zinc bis[bis(trimethylsilyl)amide] as a catalyst yielded the corresponding block copolymers PEG-PTMBPEC (3a) or PEG-PMBPEC (3b) with low polydispersities (PDI 1.03-1.04). The copolymerization of D,L-lactide (DLLA) and 2a under otherwise the same conditions could also proceed smoothly to afford PEG-P(TMBPEC-co-DLLA) (3c) block copolymer. These block copolymers readily formed micelles in water with sizes of about 120 nm as determined by dynamic light scattering (DLS). The hydrolysis of the acetals of the polycarbonate was investigated using UV/vis spectroscopy. The results showed that the acetals of micelles 3a, while stable at pH 7.4 are prone to rapid hydrolysis at mildly acidic pH of 4.0 and 5.0, with a half-life of 1 and 6.5 h, respectively. The acetal hydrolysis resulted in significant swelling of micelles, as a result of change of hydrophobic polycarbonate to hydrophilic polycarbonate. In comparison, the acetals of PMBPEC of micelles 3b displayed obviously slower hydrolysis at the same pH. Both paclitaxel and doxorubicin could be efficiently encapsulated into micelles 3a achieving high drug loading content (13.0 and 11.7 wt %, respectively). The in vitro release studies showed clearly a pH dependent release behavior, that is, significantly faster drug release at mildly acidic pH of 4.0 and 5.0 compared to physiological pH. These pH-responsive biodegradable micelles are promising as smart nanovehicles for targeted delivery of anticancer drugs.

  7. Comparison of a live attenuated Salmonella Enteritidis vaccine candidate secreting Escherichia coli heat-labile enterotoxin B subunit with a commercial vaccine for efficacy of protection against internal egg contamination by Salmonella in hens.

    PubMed

    Nandre, Rahul M; Eo, Seong Kug; Park, Sang Youel; Lee, John Hwa

    2015-07-01

    This study compared a new live attenuated Salmonella Enteritidis vaccine candidate secreting Escherichia coli heat-labile enterotoxin B subunit (SE-LTB) with a commercial Salmonella Enteritidis (SE) vaccine for efficacy of protection against SE infection in laying hens. Chickens were divided into 3 groups of 20 each. Group A chickens were inoculated orally with phosphate-buffered saline and served as controls, group B chickens were inoculated orally with the vaccine candidate, and group C chickens were inoculated intramuscularly with a commercial vaccine, the primary inoculation in groups B and C being at 10 wk of age and the booster at 16 wk. Groups B and C showed significantly higher titers of plasma immunoglobulin G, intestinal secretory immunoglobulin A, and egg yolk immunoglobulin Y antibodies compared with the control group, and both vaccinated groups showed a significantly elevated cellular immune response. After virulent challenge, group B had significantly lower production of thin-shelled and/or malformed eggs and a significantly lower rate of SE contamination of eggs compared with the control group. Furthermore, the challenge strain was detected significantly less in all of the examined organs of group B compared with the control group. Group C had lower gross lesion scores only in the spleen and had lower bacterial counts only in the spleen, ceca, and ovary. These findings indicate that vaccination with the SE-LTB vaccine candidate can efficiently reduce internal egg and internal organ contamination by Salmonella and has advantages over the commercial vaccine.

  8. Development of ultrasonic-assisted closed in-syringe extraction and derivatization for the determination of labile abietic acid and dehydroabietic acid in cosmetics.

    PubMed

    Liu, Jianjun; Liu, Mengge; Li, Xiu; Lu, Xiaomin; Chen, Guang; Sun, Zhiwei; Li, Guoliang; Zhao, Xianen; Zhang, Shijuan; Song, Cuihua; Wang, Hua; Suo, Yourui; You, Jinmao

    2014-12-01

    Two resin acids, abietic acid (AA) and dehydroabietic acid (DHAA), in cosmetics may cause allergy or toxicoderma, but remain inaccurately investigated due to their lability. In this work, an accurate, sensitive, efficient and convenient method, utilizing the ultrasonic-assisted closed in-syringe extraction and derivatization (UCSED) prior to high performance liquid chromatography (HPLC) coupled with fluorescence detection (FLD) and on-line tandem mass spectra (MS/MS), has been developed. Analytes are extracted by acetonitrile (10/1, v/m) in a sealed syringe under safe condition (60°C; 15 min; nitrogen atmosphere) and then in-syringe derivatized by 2-(2-(anthracen-10-yl)-1H-naphtho[2,3-d]imidazol-1-yl) ethyl-p-toluenesulfonate (ANITS) (8-fold, 93°C, 30 min, DMF as co-solvent, K2CO3 as catalyst). In UCSED, derivatization contributes to increase both analytical sensitivity and stability of analytes. Excellent linearity (r2≥0.9991) is achieved in wide range (75-3000 ng/mL (AA); 150-4500 ng/mL (DHAA)). Quite low detection limits (AA: 8.2-10.8 ng/mL; DHAA: 19.4-24.3 ng/mL) and limits of analyte concentration (LOAC) (AA: 30.0-44.5 ng/mL; DHAA: 70.9-86.7 ng/mL) ensure the trace analysis. This method is applied to the analysis of cosmetic samples, including depilatory wax strip, liquid foundation, mascara, eyeliner, eyebrow pencil and lip balm. No additional purification is required and no matrix effect is observed, demonstrating obvious advantages over conventional pretreatment such as solid phase extraction (SPE). Accuracy (RE: -3.2% to 2.51%), precision (RSD: 1.29-2.84%), recovery (95.20-103.63%; 95.51-104.22%) and repeatability (<0.23%; <2.87%) are significantly improved. Furthermore, this work plays a guiding role in developing a reasonable method for labile analytes. PMID:25456583

  9. Development of ultrasonic-assisted closed in-syringe extraction and derivatization for the determination of labile abietic acid and dehydroabietic acid in cosmetics.

    PubMed

    Liu, Jianjun; Liu, Mengge; Li, Xiu; Lu, Xiaomin; Chen, Guang; Sun, Zhiwei; Li, Guoliang; Zhao, Xianen; Zhang, Shijuan; Song, Cuihua; Wang, Hua; Suo, Yourui; You, Jinmao

    2014-12-01

    Two resin acids, abietic acid (AA) and dehydroabietic acid (DHAA), in cosmetics may cause allergy or toxicoderma, but remain inaccurately investigated due to their lability. In this work, an accurate, sensitive, efficient and convenient method, utilizing the ultrasonic-assisted closed in-syringe extraction and derivatization (UCSED) prior to high performance liquid chromatography (HPLC) coupled with fluorescence detection (FLD) and on-line tandem mass spectra (MS/MS), has been developed. Analytes are extracted by acetonitrile (10/1, v/m) in a sealed syringe under safe condition (60°C; 15 min; nitrogen atmosphere) and then in-syringe derivatized by 2-(2-(anthracen-10-yl)-1H-naphtho[2,3-d]imidazol-1-yl) ethyl-p-toluenesulfonate (ANITS) (8-fold, 93°C, 30 min, DMF as co-solvent, K2CO3 as catalyst). In UCSED, derivatization contributes to increase both analytical sensitivity and stability of analytes. Excellent linearity (r2≥0.9991) is achieved in wide range (75-3000 ng/mL (AA); 150-4500 ng/mL (DHAA)). Quite low detection limits (AA: 8.2-10.8 ng/mL; DHAA: 19.4-24.3 ng/mL) and limits of analyte concentration (LOAC) (AA: 30.0-44.5 ng/mL; DHAA: 70.9-86.7 ng/mL) ensure the trace analysis. This method is applied to the analysis of cosmetic samples, including depilatory wax strip, liquid foundation, mascara, eyeliner, eyebrow pencil and lip balm. No additional purification is required and no matrix effect is observed, demonstrating obvious advantages over conventional pretreatment such as solid phase extraction (SPE). Accuracy (RE: -3.2% to 2.51%), precision (RSD: 1.29-2.84%), recovery (95.20-103.63%; 95.51-104.22%) and repeatability (<0.23%; <2.87%) are significantly improved. Furthermore, this work plays a guiding role in developing a reasonable method for labile analytes.

  10. Acid-labile pHPMA modification of four-arm oligoaminoamide pDNA polyplexes balances shielding and gene transfer activity in vitro and in vivo.

    PubMed

    Beckert, Linda; Kostka, Libor; Kessel, Eva; Krhac Levacic, Ana; Kostkova, Hana; Etrych, Tomas; Lächelt, Ulrich; Wagner, Ernst

    2016-08-01

    We report novel pH-reversibly surface-shielded polyplexes with enhanced gene transfer activity upon systemic administration. A four-arm-structured sequence-defined cationic oligomer KK[HK[(H-Sph-K)3HC]2]2 was designed and synthesized on solid-phase, containing additional lysine residues not only for improved pDNA polyplex stability, but also providing attachment points for subsequent polyplex functionalization with amine-reactive shielding polymers. Herein, the surface of polyplexes was shielded with hydrophilic polymers, monovalent PEG or monovalent and multivalent pHPMA, optionally attached to the polyplex via the acid-labile linker AzMMMan. Overall, surface modification with PEG or pHPMA resulted in a decrease in the zeta potential of polyplexes, consistent with the degree of surface shielding. At pH 6.0, only polyplexes modified via the acid-labile linkage showed an increase in zeta potential, consistent with a "deshielding" in acidic environment, expected as beneficial for endosomal escape. Shielding was more efficient for multivalent pHPMA (20kDa, 30kDa) as compared to monovalent pHPMA (10kDa, 20kDa, 30kDa) or PEG (5kDa). In vitro transfection studies revealed higher gene expression by the polyplexes with the acid-labile shield as compared to their irreversibly shielded counterparts. Intravenous administration of AzMMMan-pHPMA modified polyplexes in an in vivo tumor mouse model mediated enhanced gene expression in the subcutaneous tumor and reduced undesirable expression in the liver. PMID:27235729

  11. Acid-labile pHPMA modification of four-arm oligoaminoamide pDNA polyplexes balances shielding and gene transfer activity in vitro and in vivo.

    PubMed

    Beckert, Linda; Kostka, Libor; Kessel, Eva; Krhac Levacic, Ana; Kostkova, Hana; Etrych, Tomas; Lächelt, Ulrich; Wagner, Ernst

    2016-08-01

    We report novel pH-reversibly surface-shielded polyplexes with enhanced gene transfer activity upon systemic administration. A four-arm-structured sequence-defined cationic oligomer KK[HK[(H-Sph-K)3HC]2]2 was designed and synthesized on solid-phase, containing additional lysine residues not only for improved pDNA polyplex stability, but also providing attachment points for subsequent polyplex functionalization with amine-reactive shielding polymers. Herein, the surface of polyplexes was shielded with hydrophilic polymers, monovalent PEG or monovalent and multivalent pHPMA, optionally attached to the polyplex via the acid-labile linker AzMMMan. Overall, surface modification with PEG or pHPMA resulted in a decrease in the zeta potential of polyplexes, consistent with the degree of surface shielding. At pH 6.0, only polyplexes modified via the acid-labile linkage showed an increase in zeta potential, consistent with a "deshielding" in acidic environment, expected as beneficial for endosomal escape. Shielding was more efficient for multivalent pHPMA (20kDa, 30kDa) as compared to monovalent pHPMA (10kDa, 20kDa, 30kDa) or PEG (5kDa). In vitro transfection studies revealed higher gene expression by the polyplexes with the acid-labile shield as compared to their irreversibly shielded counterparts. Intravenous administration of AzMMMan-pHPMA modified polyplexes in an in vivo tumor mouse model mediated enhanced gene expression in the subcutaneous tumor and reduced undesirable expression in the liver.

  12. Synthesis and application of acid labile anchor groups for the synthesis of peptide amides by Fmoc-solid-phase peptide synthesis.

    PubMed

    Breipohl, G; Knolle, J; Stüber, W

    1989-10-01

    The preparation and application of a new linker for the synthesis of peptide amides using a modified Fmoc-method is described. The new anchor group was developed based on our experience with 4,4'-dimethoxybenzhydryl (Mbh)-protecting group for amides. Lability towards acid treatment was increased dramatically and results in an easy cleavage procedure for the preparation of peptide amides. The synthesis of N-9-fluorenylmethoxycarbonyl- ([5-carboxylatoethyl-2.4-dimethoxyphenyl)- 4'-methoxyphenyl]-methylamin is reported in detail. This linker was coupled to a commercially available aminomethyl polystyrene resin. Peptide synthesis proceeded smoothly using HOOBt esters of Fmoc-amino acids. Release of the peptide amide and final cleavage of the side chain protecting groups was accomplished by treatment with trifluoroacetic acid-dichloromethane mixtures in the presence of scavengers. The synthesis of peptide amides such as LHRH and C-terminal hexapeptide of secretin are given as examples.

  13. Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system.

    PubMed

    Isensee, Kirsten; Erez, Jonathan; Stoll, Heather M

    2014-02-01

    Accumulation of an intracellular pool of carbon (C(i) pool) is one strategy by which marine algae overcome the low abundance of dissolved CO2 (CO2 (aq) ) in modern seawater. To identify the environmental conditions under which algae accumulate an acid-labile C(i) pool, we applied a (14) C pulse-chase method, used originally in dinoflagellates, to two new classes of algae, coccolithophorids and diatoms. This method measures the carbon accumulation inside the cells without altering the medium carbon chemistry or culture cell density. We found that the diatom Thalassiosira weissflogii [(Grunow) G. Fryxell & Hasle] and a calcifying strain of the coccolithophorid Emiliania huxleyi [(Lohmann) W. W. Hay & H. P. Mohler] develop significant acid-labile C(i) pools. C(i) pools are measureable in cells cultured in media with 2-30 µmol l(-1) CO2 (aq), corresponding to a medium pH of 8.6-7.9. The absolute C(i) pool was greater for the larger celled diatoms. For both algal classes, the C(i) pool became a negligible contributor to photosynthesis once CO2 (aq) exceeded 30 µmol l(-1) . Combining the (14) C pulse-chase method and (14) C disequilibrium method enabled us to assess whether E. huxleyi and T. weissflogii exhibited thresholds for foregoing accumulation of DIC or reduced the reliance on bicarbonate uptake with increasing CO2 (aq) . We showed that the C(i) pool decreases with higher CO2 :HCO3 (-) uptake rates.

  14. Fmoc-Sec(Xan)-OH: synthesis and utility of Fmoc selenocysteine SPPS derivatives with acid-labile sidechain protection.

    PubMed

    Flemer, Stevenson

    2015-01-01

    We report here the synthesis of the first selenocysteine SPPS derivatives which bear TFA-labile sidechain protecting groups. New compounds Fmoc-Sec(Xan)-OH and Fmoc-Sec(Trt)-OH are presented as useful and practical alternatives to the traditional Fmoc-Sec-OH derivatives currently available to the peptide chemist. From a bis Fmoc-protected selenocystine precursor, multiple avenues of diselenide reduction were attempted to determine the most effective method for subsequent attachment of the protecting group electrophiles. Our previously reported one-pot reduction methodology was ultimately chosen as the optimal approach toward the synthesis of these novel building blocks, and both were easily obtained in high yield and purity. Fmoc-Sec(Xan)-OH was discovered to be bench-stable for extended timeframes while the corresponding Fmoc-Sec(Trt)-OH derivative appeared to detritylate slowly when not stored at -20 °C. Both Sec derivatives were incorporated into single- and multiple-Sec-containing test peptides in order to ascertain the peptides' deprotection behavior and final form upon TFA cleavage. Single-Sec-containing test peptides were always isolated as their corresponding diselenide dimers, while dual-Sec-containing peptide sequences were afforded exclusively as their intramolecular diselenides.

  15. Amino acid sequence of the alpha subunit and computer modelling of the alpha and beta subunits of echicetin from the venom of Echis carinatus (saw-scaled viper).

    PubMed

    Polgár, J; Magnenat, E M; Peitsch, M C; Wells, T N; Saqi, M S; Clemetson, K J

    1997-04-15

    Echicetin, a heterodimeric protein from the venom of Echis carinatus, binds to platelet glycoprotein Ib (GPIb) and so inhibits platelet aggregation or agglutination induced by various platelet agonists acting via GPIb. The amino acid sequence of the beta subunit of echicetin has been reported and found to belong to the recently identified snake venom subclass of the C-type lectin protein family. Echicetin alpha and beta subunits were purified. N-terminal sequence analysis provided direct evidence that the protein purified was echicetin. The paper presents the complete amino acid sequence of the alpha subunit and computer models of the alpha and beta subunits. The sequence of alpha echicetin is highly similar to the alpha and beta chains of various heterodimeric and homodimeric C-type lectins. Neither of the fully reduced and alkylated alpha or beta subunits of echicetin inhibited the platelet agglutination induced by von Willebrand factor-ristocetin or alpha-thrombin. Earlier reports about the inhibitory activity of reduced and alkylated echicetin beta subunit might have been due to partial reduction of the protein. PMID:9163349

  16. Amiloride inhibition of gamma-aminobutyric acid(A) receptors depends upon the alpha subunit subtype.

    PubMed

    Fisher, Janet L

    2002-06-01

    gamma-Aminobutyric acid(A) (GABA(A)) receptors (GABARs) are responsible for most fast inhibitory neurotransmission in the mammalian brain. The GABARs contain several allosteric modulatory sites, many of which are useful clinically. The activity of most of these modulators depends upon the subunit composition of the receptor. The diuretic amiloride was previously reported to inhibit GABARs in frog sensory neurons. We measured its effects on recombinant GABARs to determine its mechanism of action at mammalian receptors and to examine the effect of subunit composition. Amiloride acted primarily as a competitive antagonist, reducing the sensitivity of the receptor to GABA without affecting the maximal current amplitude. Receptors containing an alpha6 subunit were about 10-fold more sensitive to amiloride than those containing other alpha subunits. In contrast, the identity of the beta or gamma subtype had little effect on amiloride sensitivity. Although several other modulators have specific effects at alpha6-containing receptors, amiloride is the first inhibitor to be reported with no additional dependence on the identity of the beta or gamma subunit. Therefore, it probably represents a unique modulatory site on the GABAR, which could be useful for developing drugs targeting these receptors. The selective activity of amiloride could also be helpful for isolating the contribution of receptors composed of alpha6 subtypes in heterogeneous native GABAR populations.

  17. An intrinsically labile α-helix abutting the BCL9-binding site of β-catenin is required for its inhibition by carnosic acid

    PubMed Central

    de la Roche, Marc; Rutherford, Trevor J.; Gupta, Deepti; Veprintsev, Dmitry B.; Saxty, Barbara; Freund, Stefan M.; Bienz, Mariann

    2012-01-01

    Wnt/β-catenin signalling controls development and tissue homeostasis. Moreover, activated β-catenin can be oncogenic and, notably, drives colorectal cancer. Inhibiting oncogenic β-catenin has proven a formidable challenge. Here we design a screen for small-molecule inhibitors of β-catenin's binding to its cofactor BCL9, and discover five related natural compounds, including carnosic acid from rosemary, which attenuates transcriptional β-catenin outputs in colorectal cancer cells. Evidence from NMR and analytical ultracentrifugation demonstrates that the carnosic acid response requires an intrinsically labile α-helix (H1) amino-terminally abutting the BCL9-binding site in β-catenin. Similarly, in colorectal cancer cells with hyperactive β-catenin signalling, carnosic acid targets predominantly the transcriptionally active ('oncogenic') form of β-catenin for proteasomal degradation in an H1-dependent manner. Hence, H1 is an 'Achilles' Heel' of β-catenin, which can be exploited for destabilization of oncogenic β-catenin by small molecules, providing proof-of-principle for a new strategy for developing direct inhibitors of oncogenic β-catenin. PMID:22353711

  18. Escherichia coli Mutants Thermosensitive for Deoxyribonucleic Acid Gyrase Subunit A: Effects on Deoxyribonucleic Acid Replication, Transcription, and Bacteriophage Growth

    PubMed Central

    Kreuzer, Kenneth N.; Cozzarelli, Nicholas R.

    1979-01-01

    Temperature-sensitive nalA mutants of Escherichia coli have been used to investigate the structure and functions of deoxyribonucleic acid (DNA) gyrase. Extracts of one such mutant (nalA43) had thermosensitive DNA gyrase subunit A activity but normal gyrase subunit B activity, proving definitively that nalA is the structural gene for subunit A. Extracts of a second nalA (Ts) mutant (nalA45) had a 50-fold deficiency of gyrase subunit A activity. The residual DNA supertwisting was catalyzed by the mutant DNA gyrase rather than by a novel supertwisting enzyme. The nalA45(Ts) extract was also deficient in the nalidixic acid target, which is defined as the protein necessary to confer drug sensitivity to in vitro DNA replication directed by a nalidixic acid-resistant mutant extract. Thus, gyrase subunit A and the nalidixic acid target are one and the same protein, the nalA gene product. Shift of the nalA43(Ts) mutant to a nonpermissive temperature resulted in a precipitous decline in the rate of [3H]thymidine incorporation, demonstrating an obligatory role of the nalA gene product in DNA replication. The rates of incorporation of [3H]uridine pulses and continuously administered [3H]uracil were quickly reduced approximately twofold upon temperature shift of the nalA43(Ts) mutant, and therefore some but not all transcription requires the nalA gene product. The thermosensitive growth of bacteriophages φX174 and T4 in the nalA43(Ts) host shows that these phages depend on the host nalA gene product. In contrast, the growth of phage T7 was strongly inhibited by nalidixic acid but essentially unaffected by the nalA43(Ts) mutation. The inhibition of T7 growth by nalidixic acid was, however, eliminated by temperature inactivation of the nal43 gene product. Therefore, nalidixic acid may block T7 growth by a corruption rather than a simple elimination of the nalidixic acid target. Possible mechanisms for such a corruption are considered, and their relevance to the puzzling

  19. Escherichia coli mutants thermosensitive for deoxyribonucleic acid gyrase subunit A: effects on deoxyribonucleic acid replication, transcription, and bacteriophage growth.

    PubMed

    Kreuzer, K N; Cozzarelli, N R

    1979-11-01

    Temperature-sensitive nalA mutants of Escherichia coli have been used to investigate the structure and functions of deoxyribonucleic acid (DNA) gyrase. Extracts of one such mutant (nalA43) had thermosensitive DNA gyrase subunit A activity but normal gyrase subunit B activity, proving definitively that nalA is the structural gene for subunit A. Extracts of a second nalA (Ts) mutant (nalA45) had a 50-fold deficiency of gyrase subunit A activity. The residual DNA supertwisting was catalyzed by the mutant DNA gyrase rather than by a novel supertwisting enzyme. The nalA45(Ts) extract was also deficient in the nalidixic acid target, which is defined as the protein necessary to confer drug sensitivity to in vitro DNA replication directed by a nalidixic acid-resistant mutant extract. Thus, gyrase subunit A and the nalidixic acid target are one and the same protein, the nalA gene product. Shift of the nalA43(Ts) mutant to a nonpermissive temperature resulted in a precipitous decline in the rate of [(3)H]thymidine incorporation, demonstrating an obligatory role of the nalA gene product in DNA replication. The rates of incorporation of [(3)H]uridine pulses and continuously administered [(3)H]uracil were quickly reduced approximately twofold upon temperature shift of the nalA43(Ts) mutant, and therefore some but not all transcription requires the nalA gene product. The thermosensitive growth of bacteriophages phiX174 and T4 in the nalA43(Ts) host shows that these phages depend on the host nalA gene product. In contrast, the growth of phage T7 was strongly inhibited by nalidixic acid but essentially unaffected by the nalA43(Ts) mutation. The inhibition of T7 growth by nalidixic acid was, however, eliminated by temperature inactivation of the nal43 gene product. Therefore, nalidixic acid may block T7 growth by a corruption rather than a simple elimination of the nalidixic acid target. Possible mechanisms for such a corruption are considered, and their relevance to the puzzling

  20. Enrichment adsorption of a labile substance to the surface of particular mineral particles in river water as investigated by SEM-EDX and dilute-acid extraction/ICP-MS.

    PubMed

    Kyotani, Tomohiro; Koshimizu, Satoshi

    2003-06-01

    The selective enrichment behavior of a labile substance, such as hydroxides, to the surface of particular mineral particles in river water was clarified by scanning electron microscopy/energy dispersive X-ray microanalysis (SEM-EDX). Individual particles other than diatom collected on a 0.45 microm filter from the Fuji and Sagami rivers, central Japan, were analyzed by SEM-EDX and classified into seventeen groups according to the chemical composition and shape. Phosphorus, sulfur, chlorine, manganese and copper detected in each particle collected on the 0.45 microm filter could be successfully used as effective indicators of labile substance secondarily formed and adsorbed afresh in river water, because the detection frequencies of such elements are quite low, or negligible, in fresh mineral particles derived from igneous rocks. The labile substance adsorbed on mineral particles collected on the 0.45 microm filter was also evaluated by dilute-acid leaching, followed by inductively coupled plasma mass spectrometry (ICP-MS). Almost all parts of the manganese detected in individual particles were those adsorbed afresh as hydroxides together with iron and aluminum. Also, anionic elements, such as phosphorus, sulfur and chlorine, formed complexes with the hydroxides and/or were incorporated in them. Mg and/or Ca-rich aluminosilicate groups were the most effective adsorbers of such labile species. However, Si-rich and Na-, K- and Na-Ca rich aluminosilicates did not significantly adsorb the labile substance. Consequently, the remarkable selectivity was clarified in the adsorption process of labile substance to individual mineral particles in river water.

  1. Enrichment adsorption of a labile substance to the surface of particular mineral particles in river water as investigated by SEM-EDX and dilute-acid extraction/ICP-MS.

    PubMed

    Kyotani, Tomohiro; Koshimizu, Satoshi

    2003-06-01

    The selective enrichment behavior of a labile substance, such as hydroxides, to the surface of particular mineral particles in river water was clarified by scanning electron microscopy/energy dispersive X-ray microanalysis (SEM-EDX). Individual particles other than diatom collected on a 0.45 microm filter from the Fuji and Sagami rivers, central Japan, were analyzed by SEM-EDX and classified into seventeen groups according to the chemical composition and shape. Phosphorus, sulfur, chlorine, manganese and copper detected in each particle collected on the 0.45 microm filter could be successfully used as effective indicators of labile substance secondarily formed and adsorbed afresh in river water, because the detection frequencies of such elements are quite low, or negligible, in fresh mineral particles derived from igneous rocks. The labile substance adsorbed on mineral particles collected on the 0.45 microm filter was also evaluated by dilute-acid leaching, followed by inductively coupled plasma mass spectrometry (ICP-MS). Almost all parts of the manganese detected in individual particles were those adsorbed afresh as hydroxides together with iron and aluminum. Also, anionic elements, such as phosphorus, sulfur and chlorine, formed complexes with the hydroxides and/or were incorporated in them. Mg and/or Ca-rich aluminosilicate groups were the most effective adsorbers of such labile species. However, Si-rich and Na-, K- and Na-Ca rich aluminosilicates did not significantly adsorb the labile substance. Consequently, the remarkable selectivity was clarified in the adsorption process of labile substance to individual mineral particles in river water. PMID:12834221

  2. Labile aluminium chemistry downstream a limestone treated lake and an acid tributary: effects of warm winters and extreme rainstorms.

    PubMed

    Andersen, Dag O

    2006-08-01

    The outlet from the limestone treated Lake Terjevann consisted mainly of well-mixed lake water (mean pH 6.1) during the ice-free seasons including the unusually warm winters of 1992 and 1993. However, during the ice-covered period acidic water (mean pH 4.8, mean inorganic aluminium (Al(i)) about 160 microg/l) from the catchment draining under the lake ice dominated. A downstream tributary was generally acid and rich in aluminium (mean pH 4.6, Al(i) about 230 microg/l). After an extreme rainstorm loaded with sea-salts cation exchange in the soil resulted in more than a doubling of the Al(i) concentration (reaching about 500 microg/l). It took 3-4 months until the Al(i) concentration returned to pre-event levels. During the ice-covered period, the acidic outlet and tributary waters resulted in acidic conditions below the confluence (pH<4.8, Al(i) about 150 microg/l) while during the ice-free periods the more neutral outlet water resulted in higher pH and lower Al(i) concentrations (pH>5.2, Al(i) about 95 microg/l). However, during the latter climatic conditions the water was most probably more harmful to fish due to hydrolysing and polymerizing aluminium. After the sea-salt event, the increased Al(i) concentration in the tributary made the zone below the confluence potentially more toxic (pH approximately 5, Al(i) approximately 250 microg/l). Expected global warming resulting in winter mean temperatures above 0 degrees C may eliminate the seasonal acidification of the outlet from limestone-treated lakes creating permanent toxic mixing zones in the confluence below acidic aluminium-rich tributaries. Besides, more frequent rainstorms as a consequence of global warming may increase the frequency of sea-salt events and the Al(i) concentrations in the mixing zones.

  3. Labile aluminium chemistry downstream a limestone treated lake and an acid tributary: effects of warm winters and extreme rainstorms.

    PubMed

    Andersen, Dag O

    2006-08-01

    The outlet from the limestone treated Lake Terjevann consisted mainly of well-mixed lake water (mean pH 6.1) during the ice-free seasons including the unusually warm winters of 1992 and 1993. However, during the ice-covered period acidic water (mean pH 4.8, mean inorganic aluminium (Al(i)) about 160 microg/l) from the catchment draining under the lake ice dominated. A downstream tributary was generally acid and rich in aluminium (mean pH 4.6, Al(i) about 230 microg/l). After an extreme rainstorm loaded with sea-salts cation exchange in the soil resulted in more than a doubling of the Al(i) concentration (reaching about 500 microg/l). It took 3-4 months until the Al(i) concentration returned to pre-event levels. During the ice-covered period, the acidic outlet and tributary waters resulted in acidic conditions below the confluence (pH<4.8, Al(i) about 150 microg/l) while during the ice-free periods the more neutral outlet water resulted in higher pH and lower Al(i) concentrations (pH>5.2, Al(i) about 95 microg/l). However, during the latter climatic conditions the water was most probably more harmful to fish due to hydrolysing and polymerizing aluminium. After the sea-salt event, the increased Al(i) concentration in the tributary made the zone below the confluence potentially more toxic (pH approximately 5, Al(i) approximately 250 microg/l). Expected global warming resulting in winter mean temperatures above 0 degrees C may eliminate the seasonal acidification of the outlet from limestone-treated lakes creating permanent toxic mixing zones in the confluence below acidic aluminium-rich tributaries. Besides, more frequent rainstorms as a consequence of global warming may increase the frequency of sea-salt events and the Al(i) concentrations in the mixing zones. PMID:16269168

  4. Application of nanoparticles for oral delivery of acid-labile lansoprazole in the treatment of gastric ulcer: in vitro and in vivo evaluations.

    PubMed

    Alai, Milind; Lin, Wen Jen

    2015-01-01

    The aim of this study was to develop nanoparticles for oral delivery of an acid-labile drug, lansoprazole (LPZ), for gastric ulcer therapy. LPZ-loaded positively charged Eudragit(®) RS100 nanoparticles (ERSNPs-LPZ) and negatively charged poly(lactic-co-glycolic acid) nanoparticles (PLGANPs-LPZ) were prepared. The effect of charge on nanoparticle deposition in ulcerated and non-ulcerated regions of the stomach was investigated. The cellular uptake of nanoparticles in the intestine was evaluated in a Caco-2 cell model. The pharmacokinetic performance and ulcer healing response of LPZ-loaded nanoparticles following oral administration were evaluated in Wistar rats with induced ulcers. The prepared drug-loaded ERSNPs-LPZ and PLGANPs-LPZ possessed opposite surface charge (+38.5±0.3 mV versus -27.3±0.3 mV, respectively) and the particle size was around 200 nm with a narrow size distribution. The negatively charged PLGANPs adhered more readily to the ulcerated region (7.22%±1.21% per cm(2)), whereas the positively charged ERSNPs preferentially distributed in the non-ulcerated region (8.29%±0.35% per cm(2)). Both ERSNPs and PLGANPs were prominent uptake in Caco-2 cells, too. The nanoparticles sustained and prolonged LPZ concentrations up to 24 hours, and the half-life and mean residence time of LPZ were prolonged by 3.5-fold and 4.5-fold, respectively, as compared with LPZ solution. Oral administration of LPZ-loaded nanoparticles healed 92.6%-95.7% of gastric ulcers in Wistar rats within 7 days.

  5. Immunochemical demonstration that amino acids 360-377 of the acetylcholine receptor gamma-subunit are cytoplasmic

    PubMed Central

    1985-01-01

    Two monoclonal antibodies (mabs) previously prepared against Torpedo acetylcholine receptor are shown to recognize a synthetic nonadecapeptide corresponding to lys360-glu377 of the gamma subunit. The reaction was demonstrated by solid-phase enzyme-linked immunoabsorbent assays, by inhibition of binding of the mabs to receptor, and by immunoprecipitation of the peptide conjugated to bovine serum albumin. Immunogold electron microscopy on isolated postsynaptic membranes from Torpedo showed that both mabs bind to intracellular epitopes on the receptor. These results establish that amino acid residues 360-377 of the receptor gamma-subunit, and probably the analogous region of the delta-subunit, reside on the cytoplasmic side of the membrane. Since the primary structures of all four subunits suggest a common transmembrane arrangement, the corresponding domains of the alpha- and beta-subunits are probably also cytoplasmic. PMID:3972889

  6. Amino acid sequence of the alpha subunit of human leukocyte adhesion receptor Mo1 (complement receptor type 3)

    PubMed Central

    1988-01-01

    Mo1 (complement receptor type 3, CR3; CD11b/CD18) is an adhesion- promoting human leukocyte surface membrane heterodimer (alpha subunit 155 kD [CD11b] noncovalently linked to a beta subunit of 95 kD [CD18]). The complete amino acid sequence deduced from cDNA of the human alpha subunit is reported. The protein consists of 1,136 amino acids with a long amino-terminal extracytoplasmic domain, a 26-amino acid hydrophobic transmembrane segment, and a 19-carboxyl-terminal cytoplasmic domain. The extracytoplasmic region has three putative Ca2+- binding domains with good homology and one with weak homology to the "lock washer" Ca2+-binding consensus sequence. These metal-binding domains explain the divalent cation-dependent functions mediated by Mo1. The alpha subunit is highly homologous to the alpha subunit of leukocyte p150,95 and to a lesser extent, to the alpha subunit of other "integrin" receptors such as fibronectin, vitronectin, and platelet IIb/IIIa receptors in humans and position-specific antigen-2 (PS2) in Drosophila. Mo1 alpha, like p150, contains a unique 187-amino acid stretch NH2-terminal to the metal-binding domains. This region could be involved in some of the specific functions mediated by these leukocyte glycoproteins. PMID:2454931

  7. Identification of a nucleic acid-binding region within the largest subunit of Drosophila melanogaster RNA polymerase II.

    PubMed Central

    Kontermann, R. E.; Kobor, M.; Bautz, E. K.

    1993-01-01

    The largest and the second-largest subunit of the multisubunit eukaryotic RNA polymerases are involved in interaction with the DNA template and the nascent RNA chain. Using Southwestern DNA-binding techniques and nitrocellulose filter binding assays of bacterially expressed fusion proteins, we have identified a region of the largest, 215-kDa, subunit of Drosophila RNA polymerase II that has the potential to bind nucleic acids nonspecifically. This nucleic acid-binding region is located between amino acid residues 309-384 and is highly conserved within the largest subunits of eukaryotic and bacterial RNA polymerases. A homology to a region of the DNA-binding cleft of Escherichia coli DNA polymerase I involved in binding of the newly synthesized DNA duplex provides indirect evidence that the nucleic acid-binding region of the largest subunit participates in interaction with double-stranded nucleic acids during transcription. The nonspecific DNA-binding behavior of the region is similar to that observed for the native enzyme in nitrocellulose filter binding assays and that of the separated largest subunit in Southwestern assays. A high content of basic amino acid residues is consistent with the electrostatic nature of nonspecific DNA binding by RNA polymerases. PMID:8443600

  8. Single Amino Acid Polymorphisms of Pertussis Toxin Subunit S2 (PtxB) Affect Protein Function

    PubMed Central

    Millen, Scott H.; Watanabe, Mineo; Komatsu, Eiji; Yamaguchi, Fuminori; Nagasawa, Yuki; Suzuki, Eri; Monaco, Haleigh; Weiss, Alison A.

    2015-01-01

    Whooping cough due to Bordetella pertussis is increasing in incidence, in part due to accumulation of mutations which increase bacterial fitness in highly vaccinated populations. Polymorphisms in the pertussis toxin, ptxA and ptxB genes, and the pertactin, prn genes of clinical isolates of Bordetella pertussis collected in Cincinnati from 1989 through 2005 were examined. While the ptxA and prn genotypes were variable, all 48 strains had the ptxB2 genotype; ptxB1 encodes glycine at amino acid 18 of the S2 subunit of pertussis toxin, while ptxB2 encodes serine. We investigated antigenic and functional differences of PtxB1 and PtxB2. The S2 protein was not very immunogenic. Only a few vaccinated or individuals infected with B. pertussis developed antibody responses to the S2 subunit, and these sera recognized both polymorphic forms equally well. Amino acid 18 of S2 is in a glycan binding domain, and the PtxB forms displayed differences in receptor recognition and toxicity. PtxB1 bound better to the glycoprotein, fetuin, and Jurkat T cells in vitro, but the two forms were equally effective at promoting CHO cell clustering. To investigate in vivo activity of Ptx, one μg of Ptx was administered to DDY mice and blood was collected on 4 days after injection. PtxB2 was more effective at promoting lymphocytosis in mice. PMID:26375454

  9. Labile sulfide and sulfite in phytochelatin complexes

    SciTech Connect

    Eannetta, N.T.; Steffens, J.C. )

    1989-04-01

    Heavy metals such as cadmium induce tomato cell cultures to synthesize the metal binding polypeptides ({gamma}-Glu-Cys){sub 3} and ({gamma}-Glu-Cys){sub 4}-Gly (phytochelatins). Tomato cells selected for growth on normally lethal concentrations of CdCl{sub 2} synthesize higher quantities of these polypeptides. Cd{sup r} cells are not cross-resistant to other heavy metals, and recent work suggests that metal detoxification by these peptides may be Cd-specific. The occurrence of labile sulfur as a component of the metal complex raises questions concerning possible functions of phytochelatins besides that of Cd binding. The presence of acid-labile sulfide ion in phytochelatin complexes has been reported by several groups. We report the additional finding that labile sulfite is also present in these complexes and in higher amounts than sulfide. Sulfide and sulfite are both released from the metal binding complex by acidification or by treatment with EDTA.

  10. Sub-unit structure and specificity of methionyl-transfer-ribonucleic acid synthetase from Escherichia coli

    PubMed Central

    Bruton, C. J.; Hartley, B. S.

    1968-01-01

    1. The purification of methionyl-transfer-RNA synthetase from Escherichia coli by a modified technique gives a 16% yield of a protein that appears homogeneous by the criteria of disc gel electrophoresis, ultracentrifugation and end-group analysis. 2. The molecular weight is 96000 and the protein consists of two sub-units of 48000, which appear to be identical. The amino acid composition and thiol content are reported. 3. Kinetic data are reported for analogues of methionine and for pure t-RNAF and t-RNAM, which are respectively the methionine transfer RNA that can exist in the formylmethionyl form and the one that can exist only in the methionyl form. The enzyme binds and acylates both species of transfer RNA identically. PMID:4874971

  11. Stoichiometry of expressed alpha(4)beta(2)delta gamma-aminobutyric acid type A receptors depends on the ratio of subunit cDNA transfected.

    PubMed

    Wagoner, Kelly R; Czajkowski, Cynthia

    2010-05-01

    The gamma-aminobutyric acid type A receptor (GABA(A)R) is the target of many depressants, including benzodiazepines, anesthetics, and alcohol. Although the highly prevalent alphabetagamma GABA(A)R subtype mediates the majority of fast synaptic inhibition in the brain, receptors containing delta subunits also play a key role, mediating tonic inhibition and the actions of endogenous neurosteroids and alcohol. However, the fundamental properties of delta-containing GABA(A)Rs, such as subunit stoichiometry, are not well established. To determine subunit stoichiometry of expressed delta-containing GABA(A)Rs, we inserted the alpha-bungarotoxin binding site tag in the alpha(4), beta(2), and delta subunit N termini. An enhanced green fluorescent protein tag was also inserted into the beta(2) subunit to shift its molecular weight, allowing us to separate subunits using SDS-PAGE. Tagged alpha(4)beta(2)delta GABA(A)Rs were expressed in HEK293T cells using various ratios of subunit cDNA, and receptor subunit stoichiometry was determined by quantitating fluorescent alpha-bungarotoxin bound to each subunit on Western blots of surface immunopurified tagged GABA(A)Rs. The results demonstrate that the subunit stoichiometry of alpha(4)beta(2)delta GABA(A)Rs is regulated by the ratio of subunit cDNAs transfected. Increasing the ratio of delta subunit cDNA transfected increased delta subunit incorporation into surface receptors with a concomitant decrease in beta(2) subunit incorporation. Because receptor subunit stoichiometry can directly influence GABA(A)R pharmacological and functional properties, considering how the transfection protocols used affect subunit stoichiometry is essential when studying heterologously expressed alpha(4)beta(2)delta GABA(A)Rs. Successful bungarotoxin binding site tagging of GABA(A)R subunits is a novel tool with which to accurately quantitate subunit stoichiometry and will be useful for monitoring GABA(A)R trafficking in live cells.

  12. A case of orthologous sequences of hemocyanin subunits for an evolutionary study of horseshoe crabs: amino acid sequence comparison of immunologically identical subunits of Carcinoscorpius rotundicauda and Tachypleus tridentatus.

    PubMed

    Sugita, H; Shishikura, F

    1995-10-01

    About 83% of the amino acid sequence of hemocyanin subunit HR6 from the Southeast Asian horseshoe crab, Carcinoscorpius rotundicauda, has been determined. There is a difference of about 43% between HR6 and complete sequences of chelicerate hemocyanin subunits from the American horseshoe crab, Limulus polyphemus, and a tarantula, Eurypelma californicum. However, the immunologically identical subunits HR6 and HT6 from Tachypleus tridentatus (Japanese horseshoe crab) show 2.7% sequence difference. Based on the amino acid sequences of HR6 and HT6, the divergence between C. rotundicauda and T. tridentatus occurred about 9.6 million years ago. In the case of horseshoe crab hemocyanin subunits, it seems that the orthologous homologues in many homologous subunits between species are immunologically detectable.

  13. Topography and stoichiometry of acidic proteins in large ribosomal subunits from Artemia salina as determined by crosslinking

    SciTech Connect

    Uchiumi, T.; Wahba, A.J.; Traut, R.R.

    1987-08-01

    The 60S subunits isolated from Artemia salina ribosomes were treated with the crosslinking reagent 2-iminothiolane under mild conditions. Proteins were extracted and fractions containing crosslinked acidic proteins were obtained by stepwise elution from CM-cellulose. Each fraction was analyzed by diagonal (two-dimensional nonreducing-reducing) NaDodSO/sub 4//polyacrylamide gel electrophoresis. Crosslinked proteins below the diagonal were radioiodinated and identified by two-dimensional acidic urea-NaDodSO/sub 4/ gel electrophoresis. Each of the acidic proteins P1 and P2 was crosslinked individually to the same third protein, PO. The fractions containing acidic proteins were also analyzed by two-dimensional nonequilibrium isoelectric focusing-NaDodSO/sub 4//polyacrylamide gel electrophoresis. Two crosslinked complexes were observed that coincide in isoelectric positions with monomeric P1 and P2, respectively. Both P1 and P2 appear to form crosslinked homodimers. These results suggest the presence in the 60S subunit of (P1)/sub 2/ and (P2)/sub 2/ dimers, each of which is anchored to PO. Protein PO appears to play the same role as L10 in Escherichia coli ribosomes and may form a pentameric complex with the two dimers in the 60S subunits.

  14. Head-to-head coiled arrangement of the subunits of the animal fatty acid synthase.

    PubMed

    Witkowski, Andrzej; Ghosal, Alokesh; Joshi, Anil K; Witkowska, H Ewa; Asturias, Francisco J; Smith, Stuart

    2004-12-01

    The role of the beta-ketoacyl synthase domains in dimerization of the 2505 residue subunits of the multifunctional animal FAS has been evaluated by a combination of crosslinking and characterization of several truncated forms of the protein. Polypeptides containing only the N-terminal 971 residues can form dimers, but polypeptides lacking only the N-terminal 422 residue beta-ketoacyl synthase domain cannot. FAS subunits can be crosslinked with spacer lengths as short as 6 A, via cysteine residues engineered near the N terminus of the full-length polypeptides. The proximity of the N-terminal beta-ketoacyl synthase domains and their essential role in dimerization is consistent with a revised model for the FAS in which a head-to-head arrangement of two coiled subunits facilitates functional interactions between the dimeric beta-ketoacyl synthase and the acyl carrier protein domains of either subunit.

  15. Characteristics of the labile neurotoxin associated with nervous coccidiosis.

    PubMed Central

    Isler, C M; Bellamy, J E; Wobeser, G A

    1987-01-01

    Reported are the results of preliminary attempts to characterize the molecular weight, heat sensitivity and other features of a labile neurotoxin identified in the serum of calves exhibiting neurological signs in association with coccidial enteritis. The labile neurotoxin activity is heat labile (60 degrees C for 30 min) and is lost upon exposure to acidic pH (5.5) and cysteine (1.75 g/100 mL serum). Activity can be recovered from the precipitate of a 30% wt/vol solution of (NH4)2SO4 in serum. Ultrafiltration trials suggest that labile neurotoxin activity may be linked to a molecule of over 300,000 MW. PMID:2955866

  16. Sequence analysis of four acidic beta-crystallin subunits of amphibian lenses: phylogenetic comparison between beta- and gamma-crystallins.

    PubMed

    Lu, S F; Pan, F M; Chiou, S H

    1996-04-16

    beta-Crystallins composed of the most heterogeneous group of subunit chains among the three major crystallin families of vertebrates, i.e. alpha-, beta- and gamma-crystallins, are less well understood at the structural and functional levels than the other two. They comprise a multigene family with at least three basic (betaB1-3) and four acidic (betaA1-4) subunit polypeptides. In order to facilitate the determination of the primary sequences of all these ubiquitous crystallin subunits present in all vertebrate species, cDNA mixture was synthesized from the poly(A)+ mRNA isolated from bullfrog eye lenses. We report here a protocol of Rapid Amplification of cDNA Ends (RACE) was used to amplify cDNAs encoding beta-crystallin acidic subunit polypeptides by polymerase chain reaction (PCR). Four complete full-length reading frames with two each of 597 and 648 base pairs, which cover four deduced protein sequences of 198 (betaA1-1 and betaA1-2) and 215 (betaA3-1 and betaA3-2) amino acids including the universal initiating methionine, were revealed by nucleotide sequencing. They show about 96-98% sequence similarity among themselves and 76-80%, 80-83% to the homologous betaA1/A3 crystallins of bovine and human species respectively, revealing the close structural relationship among acidic subunits of all beta-crystallins even from remotely related species. In this study a phylogenetic comparison based on amino-acid sequences of various betaA1/A3 crystallins plus the major basic beta-crystallin (betaBp) and gamma-crystallin from different vertebrate species is made using a combination of distance matrix and approximate parsimony methods, which correctly groups these betaA crystallin chains together as one family distinct from basic beta-crystallins and gamma-crystallin and further corroborates the supposition that beta- and gamma-crystallins form a superfamily with a common ancestry.

  17. Compounds exhibiting selective efficacy for different beta subunits of human recombinant gamma-aminobutyric acid A receptors.

    PubMed

    Smith, Alison J; Oxley, Beth; Malpas, Sallie; Pillai, Gopalan V; Simpson, Peter B

    2004-11-01

    Inhibitory GABA(A) receptor modulators are widely used therapeutic agents for a variety of central nervous system disorders. Ltk(-) cells stably expressing human recombinant GABA(A) subunits (alpha1beta1-3gamma2s) were seeded into 96-well plates, loaded with chlorocoumarin-2-dimyristoyl phosphatidylethanolamine and bis(1,3-diethyl-2-thiobarbiturate)trimethineoxonol, and rapid fluorescence resonance energy transfer technique (FRET) measurements were made of GABA-evoked depolarizations in low-Cl(-) buffer using a voltage/ion probe reader. The influence of different betasubunits on the ability of agents to modulate and directly activate the ion channel was examined. GABA evoked concentration-dependent decreases in FRET, increasing fluorescence emission ratio (460/580 nm) at alpha1beta1gamma2, alpha1beta2gamma2, and alpha1beta3gamma2 receptors with similar maximal amplitude (P > 0.05, n = 17) and EC(50) values of 2.4 +/- 0.2, 2.5 +/- 0.2, and 1.3 +/- 0.1 microM, respectively. Piperidine-4-sulfonic acid and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol were less potent, with EC(50) values of 8.7 +/- 0.9, 9.2 +/- 0.5, and 11.7 +/- 1.2, and 43.7 +/- 6.4, 24.8 +/- 1.6, and 26.1 +/- 2.4 microM, respectively. Potency and maximal efficacy of propofol, methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate, pentobarbital, and steroids, 5alpha-pregnan-3alpha-ol-20-one and 5beta-pregnan-3alpha-ol-20-one, were unaffected by the beta isoform present in the receptor complex. However, several compounds displayed beta2/3 subunit selectivity, notably loreclezole, R(-)-etomidate, and a group of anti-inflammatory agents including mefenamic acid, flufenamic acid, meclofenamic acid, tolfenamic acid, niflumic acid, and diflunisal. The anti-inflammatories exhibited varying levels of efficacy at beta2/3 subunits, with micromolar potency, while having antagonist or weak inverse agonist profiles at alpha1beta1gamma2. Diflunisal was the most efficacious compound, eliciting greater

  18. Human N-benzoyl-L-tyrosyl-p-aminobenzoic acid hydrolase (human meprin): genomic structure of the alpha and beta subunits.

    PubMed Central

    Hahn, D; Illisson, R; Metspalu, A; Sterchi, E E

    2000-01-01

    N-Benzoyl-L-tyrosyl-p-aminobenzoic acid hydrolase (PPH, human meprin), a zinc-metalloendopeptidase of the astacin family, consists of two similar subunits. As well as in small-intestinal epithelial cells, the enzyme is found in lamina propria leucocytes, human cancer cells and colorectal cancer tissue, making it a potential candidate for a role in tumour formation and cancer progression. To elucidate the mechanisms that control PPH gene expression and to gain more insights into the evolutionary relationship of the two subunits, we analysed the complete exon-intron organization and searched for putative regulatory elements in 3 kb of the upstream region of both genes. The human gene for the alpha subunit is approx. 35 kb in size and contains 14 exons. The gene for the beta subunit is organized in 15 exons and spans approx. 27 kb. A comparison of both genes indicates strong structural similarities. The exons are almost identical in size, except exon 13 in PPHalpha, which codes for an additional I domain not present in PPHbeta. The locations of the respective exon-intron junctions and the intron phases are almost identical; five of them contain conserved split codons. The main variation is in the intron lengths. It can be concluded that PPHalpha and PPHbeta are derived from a common ancestor. Sequence analysis of the 5' flanking DNA with a computer search for promoter elements and different promoter constructs transfected into Caco-2 cells revealed a number of potential regulatory motifs and suggests that each of the two genes is regulated independently. PMID:10657243

  19. Analysis of β-Subunit-dependent GABAA Receptor Modulation and Behavioral Effects of Valerenic Acid Derivatives

    PubMed Central

    Hintersteiner, J.; Luger, D.; Haider, M.; Pototschnig, G.; Mihovilovic, M. D.; Schwarzer, C.; Hering, S.

    2016-01-01

    Valerenic acid (VA)—a β2/3-selective GABA type A (GABAA) receptor modulator—displays anxiolytic and anticonvulsive effects in mice devoid of sedation, making VA an interesting drug candidate. Here we analyzed β-subunit-dependent enhancement of GABA-induced chloride currents (IGABA) by a library of VA derivatives and studied their effects on pentylenetetrazole (PTZ)-induced seizure threshold and locomotion. Compound-induced IGABA enhancement was determined in oocytes expressing α1β1γ2S, α1β2γ2S, or α1β3γ2S receptors. Effects on seizure threshold and locomotion were studied using C57BL/6N mice and compared with saline-treated controls. β2/3-selective VA derivatives such as VA-amide (VA-A) modulating α1β3γ2S (VA-A: Emax = 972 ± 69%, n = 6, P < 0.05) and α1β2γ2S receptors (Emax = 1119 ± 72%, n = 6, P < 0.05) more efficaciously than VA (α1β3γ2S: VA: Emax = 632 ± 88%, n = 9 versus α1β2γ2S: VA: Emax = 721 ± 68%, n = 6) displayed significantly more pronounced seizure threshold elevation than VA (saline control: 40.4 ± 1.4 mg/kg PTZ versus VA 10 mg/kg: 49.0 ± 1.8 mg/kg PTZ versus VA-A 3 mg/kg: 57.9 ± 1.9 mg/kg PTZ, P < 0.05). Similarly, VA’s methylamide (VA-MA) enhancing IGABA through β3-containing receptors more efficaciously than VA (Emax = 1043 ± 57%, P < 0.01, n = 6) displayed stronger anticonvulsive effects. Increased potency of IGABA enhancement and anticonvulsive effects at lower doses compared with VA were observed for VA-tetrazole (α1β3γ2S: VA-TET: EC50 = 6.0 ± 1.0 μM, P < 0.05; VA-TET: 0.3 mg/kg: 47.3 ± 0.5 mg/kg PTZ versus VA: 10 mg/kg: 49.0 ± 1.8 mg/kg PTZ, P < 0.05). At higher doses (≥10 mg/kg), VA-A, VA-MA, and VA-TET reduced locomotion. In contrast, unselective VA derivatives induced anticonvulsive effects only at high doses (30 mg/kg) or did not display any behavioral effects. Our data indicate that the β2/3-selective compounds VA-A, VA-MA, and VA-TET induce anticonvulsive effects at low doses (≤10 mg

  20. Acid-labile sulfides in shallow marine bottom sediments: A review of the impact on ecosystems in the Azov Sea, the NE Black Sea shelf and NW Adriatic lagoons

    NASA Astrophysics Data System (ADS)

    Sorokin, Yu. I.; Zakuskina, O. Yu

    2012-02-01

    Acid-labile sulfides (LS) increase in bottom sediments at sites in the Azov Sea, at the NE Black Sea shelf and in the coastal lagoons of NW Adriatic Sea experiencing direct impacts of anthropogenic pollution. Fresh anthropogenic organic matter stimulates the bacterial sulfate reduction and here the rate of the LS production overcomes their loss during the oxidation and pyritization. This results in the expansion of reduced sediment layer up to the bottom surface. The LS concentration in the reduced sediments varies between 300 and 2000 mg S l -1 of wet silt depending on the size of pollution loading and on the rate of sedimentation. In the oxidized sediments away from the direct pollution impact, the LS concentration did not exceed 100-150 mg S l -1. Being a strong cytochrome toxin, the LS adversely affect the coastal ecosystems. The concentrations over 600 mg S l -1 result in quasi total benthic mortality whereas >300-400 mg S l -1 depletes the benthic faunal abundance and taxonomic diversity. Accumulation of the LS in sediments also induces nocturnal hypoxia and stimulates domination of toxic cyanobacteria in the pelagic phytocenoses.

  1. Disruption of HLA class II antigen presentation in Burkitt lymphoma: implication of a 47,000 MW acid labile protein in CD4+ T-cell recognition.

    PubMed

    God, Jason M; Zhao, Dan; Cameron, Christine A; Amria, Shereen; Bethard, Jennifer R; Haque, Azizul

    2014-07-01

    While Burkitt lymphoma (BL) has a well-known defect in HLA class I-mediated antigen presentation, the exact role of BL-associated HLA class II in generating a poor CD4(+) T-cell response remains unresolved. Here, we found that BL cells are deficient in their ability to optimally stimulate CD4(+) T cells via the HLA class II pathway. This defect in CD4(+) T-cell recognition was not associated with low levels of co-stimulatory molecules on BL cells, as addition of external co-stimulation failed to elicit CD4(+) T-cell activation by BL. Further, the defect was not caused by faulty antigen/class II interaction, because antigenic peptides bound with measurable affinity to BL-associated class II molecules. Interestingly, functional class II-peptide complexes were formed at acidic pH 5·5, which restored immune recognition. Acidic buffer (pH 5·5) eluate from BL cells contained molecules that impaired class II-mediated antigen presentation and CD4(+) T-cell recognition. Biochemical analysis showed that these molecules were greater than 30,000 molecular weight in size, and proteinaceous in nature. In addition, BL was found to have decreased expression of a 47,000 molecular weight enolase-like molecule that enhances class II-mediated antigen presentation in B cells, macrophages and dendritic cells, but not in BL cells. These findings demonstrate that BL likely has multiple defects in HLA class II-mediated antigen presentation and immune recognition, which may be exploited for future immunotherapies.

  2. Molecular cloning of the. alpha. -subunit of human prolyl 4-hydroxylase: The complete cDNA-derived amino acid sequence and evidence for alternative splicing of RNA transcripts

    SciTech Connect

    Helaakoski, T.; Vuori, K.; Myllylae, R.; Kivirikko, K.I.; Pihlajaniemi, T. )

    1989-06-01

    Prolyl 4-hydroxylase an {alpha}{sub 2}{beta}{sub 2} tetramer, catalyzes the formation of 4-hydroxyproline in collagens by the hydroxylation of proline residues in peptide linkages. The authors report here on the isolation of cDNA clones encoding the {alpha}-subunit of the enzyme from human tumor HT-1080, placenta, and fibroblast cDNA libraries. Eight overlapping clones covering almost all of the corresponding 3,000-nucleotide mRNA, including all the coding sequences, were characterized. These clones encode a polypeptide of 517 amino acid residues and a signal peptide of 17 amino acids. Previous characterization of cDNA clones for the {beta}-subunit of prolyl 4-hydroxylase has indicated that its C terminus has the amino acid sequence Lys-Asp-Gly-Leu, which, it has been suggested, is necessary for the retention of a polypeptide within the lumen of the endoplasmic reticulum. The {alpha}-subunit does not have this C-terminal sequence, and thus one function of the {beta}-subunit in the prolyl 4-hydroxylase tetramer appears to be to retain the enzyme within this cell organelle. Southern blot analyses of human genomic DNA with a cDNA probe for the {alpha}-subunit suggested the presence of only one gene encoding the two types of mRNA, which appear to result from mutually exclusive alternative splicing of primary transcripts of one gene.

  3. Estrogen dissociates Tau and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit in postischemic hippocampus.

    PubMed

    Cardona-Gómez, Gloria Patricia; Arango-Davila, Cesar; Gallego-Gómez, Juan Carlos; Barrera-Ocampo, Alvaro; Pimienta, Hernan; Garcia-Segura, Luis Miguel

    2006-08-21

    During cerebral ischemia, part of the damage associated with the hyperactivation of glutamate receptors results from the hyperphosphorylation of the microtubule-associated protein Tau. Previous studies have shown that estradiol treatment reduces neural damage after cerebral ischemia. Here, we show that transient occlusion of the middle cerebral artery results in the hyperphosphorylation of Tau and in a significant increase in the association of Tau with glycogen synthase kinase-3beta and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid type glutamate receptor subunits 2/3 in the hippocampus. Estradiol treatment decreased hippocampal injury, inhibited glycogen synthase kinase-3beta and decreased the hyperphosphorylation of Tau and the interaction of Tau with glycogen synthase kinase-3beta and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor. These findings suggest that ischemia produces a strong association between Tau and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor, and estradiol can exert at least part of its neuroprotective activity through inhibition of glycogen synthase kinase-3beta.

  4. Dual-therapy with αvβ3-targeted Sn2 lipase-labile fumagillin-prodrug nanoparticles and zoledronic acid in the Vx2 rabbit tumor model.

    PubMed

    Esser, Alison K; Schmieder, Anne H; Ross, Michael H; Xiang, Jingyu; Su, Xinming; Cui, Grace; Zhang, Huiying; Yang, Xiaoxia; Allen, John S; Williams, Todd; Wickline, Samuel A; Pan, Dipanjan; Lanza, Gregory M; Weilbaecher, Katherine N

    2016-01-01

    Fumagillin, an unstable anti-angiogenesis mycotoxin, was synthesized into a stable lipase-labile prodrug and incorporated into integrin-targeted lipid-encapsulated nanoparticles (αvβ3-Fum-PD NP). Dual anti-angiogenic therapy combining αvβ3-Fum-PD NP with zoledronic acid (ZA), a long-acting osteoclast inhibitor with proposed anti-angiogenic effects, was evaluated. In vitro, αvβ3-Fum-PD NP reduced (P<0.05) endothelial cell viability without impacting macrophage viability. ZA suppressed (P<0.05) macrophage viability at high dosages but not endothelial cell proliferation. 3D MR neovascular imaging of rabbit Vx2 tumors showed no effect with ZA, whereas αvβ3-Fum-PD NP alone and with ZA decreased angiogenesis (P<0.05). Immunohistochemistry revealed decreased (P<0.05) microvascularity with αvβ3-Fum-PD NP and ZA and further microvascular reduction (P<0.05) with dual-therapy. In vivo, ZA did not decrease tumor macrophage numbers nor cancer cell proliferation, whereas αvβ3-Fum-PD-NPs reduced both measures. Dual-therapy with ZA and αvβ3-Fum-PD-NP may provide enhanced neo-adjuvant utility if macrophage ZA uptake is increased. From the Clinical Editor: Although anti-angiogenesis is one of the treatment modalities in the fight against cancer, many cancers become resistant to VEGF pathway inhibitors. In this article, the authors investigated the use of dual therapy using fumagillin, integrin-targeted lipid-encapsulated nanoparticles (αvβ3- Fum-PD NP) and zoledronic acid (ZA), in both in-vitro and in-vivo experiments. This combination approach may provide an insight to the design of future drugs against cancers.

  5. Dual-therapy with αvβ3-targeted Sn2 lipase-labile fumagillin-prodrug nanoparticles and zoledronic acid in the Vx2 rabbit tumor model.

    PubMed

    Esser, Alison K; Schmieder, Anne H; Ross, Michael H; Xiang, Jingyu; Su, Xinming; Cui, Grace; Zhang, Huiying; Yang, Xiaoxia; Allen, John S; Williams, Todd; Wickline, Samuel A; Pan, Dipanjan; Lanza, Gregory M; Weilbaecher, Katherine N

    2016-01-01

    Fumagillin, an unstable anti-angiogenesis mycotoxin, was synthesized into a stable lipase-labile prodrug and incorporated into integrin-targeted lipid-encapsulated nanoparticles (αvβ3-Fum-PD NP). Dual anti-angiogenic therapy combining αvβ3-Fum-PD NP with zoledronic acid (ZA), a long-acting osteoclast inhibitor with proposed anti-angiogenic effects, was evaluated. In vitro, αvβ3-Fum-PD NP reduced (P<0.05) endothelial cell viability without impacting macrophage viability. ZA suppressed (P<0.05) macrophage viability at high dosages but not endothelial cell proliferation. 3D MR neovascular imaging of rabbit Vx2 tumors showed no effect with ZA, whereas αvβ3-Fum-PD NP alone and with ZA decreased angiogenesis (P<0.05). Immunohistochemistry revealed decreased (P<0.05) microvascularity with αvβ3-Fum-PD NP and ZA and further microvascular reduction (P<0.05) with dual-therapy. In vivo, ZA did not decrease tumor macrophage numbers nor cancer cell proliferation, whereas αvβ3-Fum-PD-NPs reduced both measures. Dual-therapy with ZA and αvβ3-Fum-PD-NP may provide enhanced neo-adjuvant utility if macrophage ZA uptake is increased. From the Clinical Editor: Although anti-angiogenesis is one of the treatment modalities in the fight against cancer, many cancers become resistant to VEGF pathway inhibitors. In this article, the authors investigated the use of dual therapy using fumagillin, integrin-targeted lipid-encapsulated nanoparticles (αvβ3- Fum-PD NP) and zoledronic acid (ZA), in both in-vitro and in-vivo experiments. This combination approach may provide an insight to the design of future drugs against cancers. PMID:26515754

  6. Characterization of the Subunit Structure of the Ribonucleic Acid Genome of Influenza Virus

    PubMed Central

    Lewandowski, L. J.; Content, J.; Leppla, S. H.

    1971-01-01

    Ribonucleic acid extracted from influenza virus was labeled at the 3′ termini with 3H and analyzed by polyacrylamide gel electrophoresis. Influenza virus was found to contain a minimum of seven and possibly as many as 10 polynucleotide chains, most of which appear to terminate at the 3′ end in uridine. PMID:4332140

  7. Cloning of the. gamma. -aminobutyric acid (GABA). rho. sub 1 cDNA: A GABA receptor subunit highly expressed in the retina

    SciTech Connect

    Cutting, G.R.; Lu, Luo; Kasch, L.M.; Montrose-Rafizadeh, C.; Antonarakis, S.E.; Guggino, W.B.; Kazazian, H.H. Jr. ); O'Hara, B.F.; Donovan, D.M.; Shimada, Shoichi ); Uhl, G.R. Johns Hopkins Univ. School of Medicine, Baltimore, MD )

    1991-04-01

    Type A {gamma}-aminobutyric acid (GABA{sub A}) receptors are a family of ligand-gated chloride channels that are the major inhibitory neurotransmitter receptors in the nervous system. Molecular cloning has revealed diversity in the subunits that compose this heterooligomeric receptor, but each previously elucidated subunit displays amino acid similarity in conserved structural elements. The authors have used these highly conserved regions to identify additional members of this family by using the polymerase chain reaction (PCR). One PCR product was used to isolate a full-length cDNA from a human retina cDNA library. The mature protein predicted from this cDNA sequence is 458 amino acids long and displays between 30 and 38% amino acid similarity to the previously identified GABA{sub A} subunits. This gene is expressed primarily in the retina but transcripts are also detected in the brain, lung, and thymus. Injection of Xenopus oocytes with RNA transcribed in vitro produces a GABA-responsive chloride conductance and expression of the cDNA in COS cells yields GABA-displaceable muscimol binding. These features are consistent with our identification of a GABA subunit, GABA {rho}{sub 1}, with prominent retinal expression that increases the diversity and tissue specificity of this ligand-gated ion-channel receptor family.

  8. Characterization of ERM transactivation domain binding to the ACID/PTOV domain of the Mediator subunit MED25.

    PubMed

    Landrieu, Isabelle; Verger, Alexis; Baert, Jean-Luc; Rucktooa, Prakash; Cantrelle, François-Xavier; Dewitte, Frédérique; Ferreira, Elisabeth; Lens, Zoé; Villeret, Vincent; Monté, Didier

    2015-08-18

    The N-terminal acidic transactivation domain (TAD) of ERM/ETV5 (ERM38-68), a PEA3 group member of Ets-related transcription factors, directly interacts with the ACID/PTOV domain of the Mediator complex subunit MED25. Molecular details of this interaction were investigated using nuclear magnetic resonance (NMR) spectroscopy. The TAD is disordered in solution but has a propensity to adopt local transient secondary structure. We show that it folds upon binding to MED25 and that the resulting ERM-MED25 complex displays characteristics of a fuzzy complex. Mutational analysis further reveals that two aromatic residues in the ERM TAD (F47 and W57) are involved in the binding to MED25 and participate in the ability of ERM TAD to activate transcription. Mutation of a key residue Q451 in the VP16 H1 binding pocket of MED25 affects the binding of ERM. Furthermore, competition experiments show that ERM and VP16 H1 share a common binding interface on MED25. NMR data confirms the occupancy of this binding pocket by ERM TAD. Based on these experimental data, a structural model of a functional interaction is proposed. This study provides mechanistic insights into the Mediator-transactivator interactions. PMID:26130716

  9. Characterization of ERM transactivation domain binding to the ACID/PTOV domain of the Mediator subunit MED25

    PubMed Central

    Landrieu, Isabelle; Verger, Alexis; Baert, Jean-Luc; Rucktooa, Prakash; Cantrelle, François-Xavier; Dewitte, Frédérique; Ferreira, Elisabeth; Lens, Zoé; Villeret, Vincent; Monté, Didier

    2015-01-01

    The N-terminal acidic transactivation domain (TAD) of ERM/ETV5 (ERM38–68), a PEA3 group member of Ets-related transcription factors, directly interacts with the ACID/PTOV domain of the Mediator complex subunit MED25. Molecular details of this interaction were investigated using nuclear magnetic resonance (NMR) spectroscopy. The TAD is disordered in solution but has a propensity to adopt local transient secondary structure. We show that it folds upon binding to MED25 and that the resulting ERM–MED25 complex displays characteristics of a fuzzy complex. Mutational analysis further reveals that two aromatic residues in the ERM TAD (F47 and W57) are involved in the binding to MED25 and participate in the ability of ERM TAD to activate transcription. Mutation of a key residue Q451 in the VP16 H1 binding pocket of MED25 affects the binding of ERM. Furthermore, competition experiments show that ERM and VP16 H1 share a common binding interface on MED25. NMR data confirms the occupancy of this binding pocket by ERM TAD. Based on these experimental data, a structural model of a functional interaction is proposed. This study provides mechanistic insights into the Mediator–transactivator interactions. PMID:26130716

  10. The effect of folic acid on GABA(A)-B 1 receptor subunit.

    PubMed

    Vasquez, Kizzy; Kuizon, Salomon; Junaid, Mohammed; Idrissi, Abdeslem El

    2013-01-01

    Autism contains a spectrum of behavioral and cognitive disturbances of childhood development that is manifested by deficits in social interaction, impaired communication, repetitive behavior, and/or restricted interest. Much research has been dedicated to finding the genes that are responsible for autism, but less than 10% of the cases can be attributed to one gene. Autism prevalence has increased in the last decade and there may be environmental components that are leading to this increase. There are reports of disruption of epigenetic mechanisms controlling the regulation of gene expression as probable cause for autism. Folic acid (FA) is prescribed to women during pregnancy, and can cause epigenetic changes. GABAergic pathway is involved in inhibitory neurotransmission in the central nervous system and plays a crucial role during early embryonic development. Autism may entail defect or deregulation of the GABAergic receptor pathway in the brain. Gamma-aminobutyric acid (type A) beta 1 receptor (GABRB1) disruption has been implicated in autism. In the present study, we investigated GABRB1 expression in response to FA supplementation in neuronal cells. Western blot analysis showed GABRB1 protein levels increased in the FA-treated cells in a concentration-dependent manner. FA-dependent increased expression of GABRB1 was further confirmed at the mRNA level using quantitative RT-PCR. These results suggest that epigenetic control of gene expression may affect the expression of GABRB1 and disrupt inhibitory synaptic transmission during embryonic development. PMID:23392927

  11. Evidence for messenger ribonucleic acid of an ammonium-inducible glutamate dehydrogenase and synthesis, covalent modification, and degradation of enzyme subunits in uninduced Chlorella sorokiniana cells.

    PubMed Central

    Turner, K J; Bascomb, N F; Lynch, J J; Molin, W T; Thurston, C F; Schmidt, R R

    1981-01-01

    The cells of Chlorella sorokiniana cultured in nitrate medium contain no detectable catalytic activity of an ammonium-inducible nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase (NADP-GDH). However, several lines of experimental evidence indicated that the NADP-GDH messenger ribonucleic acid was present at high levels and was being translated in uninduced cells. First, binding studies with 125I-labeled anti-NADP-GDH immunoglobulin G and total polysomes isolated from uninduced and induced cells showed that NADP-GDH subunits were being synthesized on polysomes from both types of cells. Second, when polyadenylic acid-containing ribonucleic acid was extracted from polysomes from uninduced and induced cells and placed into a messenger ribonucleic acid-dependent in vitro translation system, NADP-GDH subunits were synthesized from the ribonucleic acid from both sources. Third, when ammonia was added to uninduced cells, NADP-GDH antigen accumulated without an apparent induction lag. Fourth, by use of a specific immunoprecipitation procedure coupled to pulse-chase studies with [35S]sulfate, it was shown that the NADP-GDH subunits are rapidly synthesized, covalently modified, and then degraded in uninduced cells. PMID:7217012

  12. Benzodiazepine-insensitive mice generated by targeted disruption of the gamma 2 subunit gene of gamma-aminobutyric acid type A receptors.

    PubMed Central

    Günther, U; Benson, J; Benke, D; Fritschy, J M; Reyes, G; Knoflach, F; Crestani, F; Aguzzi, A; Arigoni, M; Lang, Y

    1995-01-01

    Vigilance, anxiety, epileptic activity, and muscle tone can be modulated by drugs acting at the benzodiazepine (BZ) site of gamma-aminobutyric acid type A (GABAA) receptors. In vivo, BZ sites are potential targets for endogenous ligands regulating the corresponding central nervous system states. To assess the physiological relevance of BZ sites, mice were generated containing GABAA receptors devoid of BZ sites. Following targeted disruption of the gamma 2 subunit gene, 94% of the BZ sites were absent in brain of neonatal mice, while the number of GABA sites was only slightly reduced. Except for the gamma 2 subunit, the level of expression and the regional and cellular distribution of the major GABAA receptor subunits were unaltered. The single channel main conductance level and the Hill coefficient were reduced to values consistent with recombinant GABAA receptors composed of alpha and beta subunits. The GABA response was potentiated by pentobarbital but not by flunitrazepam. Diazepam was inactive behaviorally. Thus, the gamma 2 subunit is dispensable for the assembly of functional GABAA receptors but is required for normal channel conductance and the formation of BZ sites in vivo. BZ sites are not essential for embryonic development, as suggested by the normal body weight and histology of newborn mice. Postnatally, however, the reduced GABAA receptor function is associated with retarded growth, sensorimotor dysfunction, and drastically reduced life-span. The lack of postnatal GABAA receptor regulation by endogenous ligands of BZ sites might contribute to this phenotype. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7644489

  13. 3, 4-dihydroxyl-phenyl lactic acid restores NADH dehydrogenase 1 α subunit 10 to ameliorate cardiac reperfusion injury.

    PubMed

    Yang, Xiao-Yuan; He, Ke; Pan, Chun-Shui; Li, Quan; Liu, Yu-Ying; Yan, Li; Wei, Xiao-Hong; Hu, Bai-He; Chang, Xin; Mao, Xiao-Wei; Huang, Dan-Dan; Wang, Li-Jun; Hu, Shui-Wang; Jiang, Yong; Wang, Guo-Cheng; Fan, Jing-Yu; Fan, Tai-Ping; Han, Jing-Yan

    2015-01-01

    The present study aimed to detect the role of 3, 4-dihydroxyl-phenyl lactic acid (DLA) during ischemia/reperfusion (I/R) induced myocardial injury with emphasis on the underlying mechanism of DLA antioxidant. Male Spragu-Dawley (SD) rats were subjected to left descending artery occlusion followed by reperfusion. Treatment with DLA ameliorated myocardial structure and function disorder, blunted the impairment of Complex I activity and mitochondrial function after I/R. The results of 2-D fluorescence difference gel electrophoresis revealed that DLA prevented the decrease in NDUFA10 expression, one of the subunits of Complex I. To find the target of DLA, the binding affinity of Sirtuin 1 (SIRT1) to DLA and DLA derivatives with replaced two phenolic hydroxyls was detected using surface plasmon resonance and bilayer interferometry. The results showed that DLA could activate SIRT1 after I/R probably by binding to this protein, depending on phenolic hydroxyl. Moreover, the importance of SIRT1 to DLA effectiveness was confirmed through siRNA transfection in vitro. These results demonstrated that DLA was able to prevent I/R induced decrease in NDUFA10 expression, improve Complex I activity and mitochondrial function, eventually attenuate cardiac structure and function injury after I/R, which was possibly related to its ability of binding to and activating SIRT1. PMID:26030156

  14. Non-recognition-of-BTH4, an Arabidopsis mediator subunit homolog, is necessary for development and response to salicylic acid.

    PubMed

    Canet, Juan Vicente; Dobón, Albor; Tornero, Pablo

    2012-10-01

    Salicylic acid (SA) signaling acts in defense and plant development. The only gene demonstrated to be required for the response to SA is Arabidopsis thaliana non-expresser of pathogenesis-related gene 1 (NPR1), and npr1 mutants are insensitive to SA. By focusing on the effect of analogs of SA on plant development, we identified mutants in additional genes acting in the SA response. In this work, we describe a gene necessary for the SA Non-Recognition-of-BTH4 (NRB4). Three nrb4 alleles recovered from the screen cause phenotypes similar to the wild type in the tested conditions, except for SA-related phenotypes. Plants with NRB4 null alleles express profound insensitivity to SA, even more than npr1. NRB4 null mutants are also sterile and their growth is compromised. Plants carrying weaker nrb4 alleles are also insensitive to SA, with some quantitative differences in some phenotypes, like systemic acquired resistance or pathogen growth restriction. When weak alleles are used, NPR1 and NRB4 mutations produce an additive phenotype, but we did not find evidence of a genetic interaction in F1 nor biochemical interaction in yeast or in planta. NRB4 is predicted to be a subunit of Mediator, the ortholog of MED15 in Arabidopsis. Mechanistically, NRB4 functions downstream of NPR1 to regulate the SA response. PMID:23064321

  15. Hot Stuff: Lability of Forest Floor DOM to Aerobic Degradation

    NASA Astrophysics Data System (ADS)

    Bourbonniere, R. A.; Creed, I. F.; Kapila, R.; Collins, J.

    2004-05-01

    The hypothesis that the lability of DOM to aerobic microbial degradation to CO2 is related to its age and character is tested in an incubation study conducted using an assemblage of soil bacteria in their natural state. Extracts (WF) of leaf and forest floor material characterized by different degrees of degradation: green leaves, fresh fallen leaves, litter (one year weathering), fibric matter, hemic matter and peat were used in this study. The working hypothesis is that these extracts represent a chronosequence of degradation and DOM extracted from them might also represent a similar lability sequence. As well aliquots of the WF extracts were processed to remove DOM fractions. Thus a fulvic acid (FA) fraction was made by precipitating and removing humic acid, and a hydrophilic fraction (HPI) by removing hydrophobics from the FA using XAD-8 resin. Incubations were carried out on all three DOM solutions from each extract to determine if there were differences in lability among the fractions. When comparing the WF solutions for CO2 production, the green leaves, litter, fibric and hemic extracts showed approximately the same CO2 yield, on an equal C basis, and the fresh fallen leaves and peat produced less. For five of the six extracts the respective WF and HPI solutions yielded nearly the same quantity of CO2 per mg C suggesting that the HPI component contributes almost all the lability. Furthermore the magnitudes of the C-normalized CO2 yield for these solutions are similar to that for glucose, which fractionates as HPI. For the same five extracts the FA solution yielded lower quantities of CO2, on an equal C basis, than WF and HPI suggesting that the hydrophobic content of the extracts may inhibit aerobic degradation. The peat extract solutions yielded a different CO2 production distribution with the HPI only slightly higher than the FA which in turn was much greater than WF. The material from which this extract was made is much older and contains significant HA

  16. γ-Aminobutyric acid type A (GABAA) receptor α subunits play a direct role in synaptic versus extrasynaptic targeting.

    PubMed

    Wu, Xia; Wu, Zheng; Ning, Gang; Guo, Yao; Ali, Rashid; Macdonald, Robert L; De Blas, Angel L; Luscher, Bernhard; Chen, Gong

    2012-08-10

    GABA(A) receptors (GABA(A)-Rs) are localized at both synaptic and extrasynaptic sites, mediating phasic and tonic inhibition, respectively. Previous studies suggest an important role of γ2 and δ subunits in synaptic versus extrasynaptic targeting of GABA(A)-Rs. Here, we demonstrate differential function of α2 and α6 subunits in guiding the localization of GABA(A)-Rs. To study the targeting of specific subtypes of GABA(A)-Rs, we used a molecularly engineered GABAergic synapse model to precisely control the GABA(A)-R subunit composition. We found that in neuron-HEK cell heterosynapses, GABAergic events mediated by α2β3γ2 receptors were very fast (rise time ∼2 ms), whereas events mediated by α6β3δ receptors were very slow (rise time ∼20 ms). Such an order of magnitude difference in rise time could not be attributed to the minute differences in receptor kinetics. Interestingly, synaptic events mediated by α6β3 or α6β3γ2 receptors were significantly slower than those mediated by α2β3 or α2β3γ2 receptors, suggesting a differential role of α subunit in receptor targeting. This was confirmed by differential targeting of the same δ-γ2 chimeric subunits to synaptic or extrasynaptic sites, depending on whether it was co-assembled with the α2 or α6 subunit. In addition, insertion of a gephyrin-binding site into the intracellular domain of α6 and δ subunits brought α6β3δ receptors closer to synaptic sites. Therefore, the α subunits, together with the γ2 and δ subunits, play a critical role in governing synaptic versus extrasynaptic targeting of GABA(A)-Rs, possibly through differential interactions with gephyrin.

  17. Importance of fatty acid substituents of chemically synthesized lipid A-subunit analogs in the expression of immunopharmacological activity.

    PubMed Central

    Kumazawa, Y; Nakatsuka, M; Takimoto, H; Furuya, T; Nagumo, T; Yamamoto, A; Homma, Y; Inada, K; Yoshida, M; Kiso, M

    1988-01-01

    The immunopharmacological activities of chemically synthesized lipid A-subunit analogs, 4-O-phosphono-D-glucosamine derivatives carrying different N- and 3-O-linked acyl groups, were investigated. None of the synthetic compounds tested exhibited any detectable pyrogenicity at a dose of 10 micrograms/kg. Weaker lethal toxicity in galactosamine-sensitized mice was detected at 1 microgram per mouse for all the synthetic compounds except GLA-58. Among (RS) stereoisomers of 4-O-phosphono-D-glucosamine derivatives carrying a 3-O-tetradecanoyl (C14) group with different N-linked acyloxyacyl groups, i.e., 3-dodecanoyloxytetradecanoyl [C14-O-(C12)], 3-tetradecanoyloxytetradecanoyl [C14-O-(C14)], and 3-hexadecanoyloxytetradecanoyl [C14-O-(C16)] groups (termed GLA-57, GLA-27, and GLA-58, respectively), GLA-27 exhibited significant colony-stimulating factor-inducing and tumor necrosis factor-inducing activities, mitogenicity, polyclonal B-cell activation activity, macrophage activation, and adjuvanticity. The activities of GLA-57, which had an N-linked C14-O-(C12) group, were equivalent to or somewhat weaker than those of GLA-27 with a C14-O-(C14) group. Significant immunopharmacological activities were not observed for GLA-58, carrying a C14-O-(C16) group bound to the amino group. GLA-59, carrying 3-O-linked 3-hydroxytetradecanoyl (C14OH) and N-linked C14-O-(C14) groups, showed much higher activities than GLA-27, GLA-60, a compound which possesses the same fatty acid substituents as GLA-59 but with reversed binding sites, showed the strongest B-cell activation and adjuvant activities among the synthetic compounds. Among stereoisomers of GLA-59 and GLA-60 composed of fatty acid substituents with the (RR) and (SS) configuration, compounds with the (RR) configuration elicited stronger activities than the (SS) stereoisomers. The importance of fatty acid substituents, including stereospecificity for the expression of immunopharmacological activities of 4-O

  18. Functional Role of N- and C-Terminal Amino Acids in the Structural Subunits of Colonization Factor CS6 Expressed by Enterotoxigenic Escherichia coli

    PubMed Central

    Debnath, Anusuya; Sabui, Subrata; Wajima, Takeaki; Hamabata, Takashi; Banerjee, Rajat

    2016-01-01

    ABSTRACT CS6 is a common colonization factor expressed by enterotoxigenic Escherichia coli. It is a two-subunit protein consisting of CssA and CssB in an equal stoichiometry, assembled via the chaperone-usher pathway into an afimbrial, oligomeric assembly on the bacterial cell surface. A recent structural study has predicted the involvement of the N- and C-terminal regions of the CS6 subunits in its assembly. Here, we identified the functionally important residues in the N- and C-terminal regions of the CssA and CssB subunits during CS6 assembly by alanine scanning mutagenesis. Bacteria expressing mutant proteins were tested for binding with Caco-2 cells, and the results were analyzed with respect to the surface expression of mutant CS6. In this assay, many mutant proteins were not expressed on the surface while some showed reduced expression. It appeared that some, but not all, of the residues in both the N and C termini of CssA and CssB played an important role in the intermolecular interactions between these two structural subunits, as well as chaperone protein CssC. Our results demonstrated that T20, K25, F27, S36, Y143, and V147 were important for the stability of CssA, probably through interaction of CssC. We also found that I22, V29, and I33 of CssA and G154, Y156, L160, V162, F164, and Y165 of CssB were responsible for CssA-CssB intermolecular interactions. In addition, some of the hydrophobic residues in the C terminus of CssA and the N terminus of CssB were involved in the stabilization of higher-order complex formation. Overall, the results presented here might help in understanding the pathway used to assemble CS6 and predict its structure. IMPORTANCE Unlike most other colonization factors, CS6 is nonfimbrial, and in a sense, its subunit composition and assembly are also unique. Here we report that both the N- and C-terminal amino acid residues of CssA and CssB play a critical role in the intermolecular interactions between them and assembly proteins

  19. Rice G-protein subunits qPE9-1 and RGB1 play distinct roles in abscisic acid responses and drought adaptation.

    PubMed

    Zhang, Dong-Ping; Zhou, Yong; Yin, Jian-Feng; Yan, Xue-Jiao; Lin, Sheng; Xu, Wei-Feng; Baluška, František; Wang, Yi-Ping; Xia, Yi-Ji; Liang, Guo-hua; Liang, Jian-Sheng

    2015-10-01

    Heterotrimeric GTP-binding protein (G-protein)-mediated abscisic acid (ABA) and drought-stress responses have been documented in numerous plant species. However, our understanding of the function of rice G-protein subunits in ABA signalling and drought tolerance is limited. In this study, the function of G-protein subunits in ABA response and drought resistance in rice plants was explored. It was found that the transcription level of qPE9-1 (rice Gγ subunit) gradually decreased with increasing ABA concentration and the lack of qPE9-1 showed an enhanced drought tolerance in rice plants. In contrast, mRNA levels of RGB1 (rice Gβ subunit) were significantly upregulated by ABA treatment and the lack of RGB1 led to reduced drought tolerance. Furthermore, the results suggested that qPE9-1 negatively regulates the ABA response by suppressing the expression of key transcription factors involved in ABA and stress responses, while RGB1 positively regulates ABA biosynthesis by upregulating NCED gene expression under both normal and drought stress conditions. Taken together, it is proposed that RGB1 is a positive regulator of the ABA response and drought adaption in rice plants, whereas qPE9-1 is modulated by RGB1 and functions as a negative regulator in the ABA-dependent drought-stress responses.

  20. Rice G-protein subunits qPE9-1 and RGB1 play distinct roles in abscisic acid responses and drought adaptation.

    PubMed

    Zhang, Dong-Ping; Zhou, Yong; Yin, Jian-Feng; Yan, Xue-Jiao; Lin, Sheng; Xu, Wei-Feng; Baluška, František; Wang, Yi-Ping; Xia, Yi-Ji; Liang, Guo-hua; Liang, Jian-Sheng

    2015-10-01

    Heterotrimeric GTP-binding protein (G-protein)-mediated abscisic acid (ABA) and drought-stress responses have been documented in numerous plant species. However, our understanding of the function of rice G-protein subunits in ABA signalling and drought tolerance is limited. In this study, the function of G-protein subunits in ABA response and drought resistance in rice plants was explored. It was found that the transcription level of qPE9-1 (rice Gγ subunit) gradually decreased with increasing ABA concentration and the lack of qPE9-1 showed an enhanced drought tolerance in rice plants. In contrast, mRNA levels of RGB1 (rice Gβ subunit) were significantly upregulated by ABA treatment and the lack of RGB1 led to reduced drought tolerance. Furthermore, the results suggested that qPE9-1 negatively regulates the ABA response by suppressing the expression of key transcription factors involved in ABA and stress responses, while RGB1 positively regulates ABA biosynthesis by upregulating NCED gene expression under both normal and drought stress conditions. Taken together, it is proposed that RGB1 is a positive regulator of the ABA response and drought adaption in rice plants, whereas qPE9-1 is modulated by RGB1 and functions as a negative regulator in the ABA-dependent drought-stress responses. PMID:26175353

  1. The complete amino-acid sequence of the alpha and beta subunits of B-phycoerythrin from the rhodophytan alga Porphyridium cruentum.

    PubMed

    Sidler, W; Kumpf, B; Suter, F; Klotz, A V; Glazer, A N; Zuber, H

    1989-02-01

    Determination of the complete amino-acid sequence of the subunits of B-phycoerythrin from Porphyridium cruentum has shown that the alpha subunit contains 164 amino-acid residues and the beta subunit contains 177 residues. When the sequences of B- and C-phycoerythrins are aligned with those of other phycobiliproteins, it is obvious that B-phycoerythrin lacks a deletion at beta-21-22 present in C-phycoerythrin. However, relative to C-phycoerythrin from Fremyella diplosiphon (Calothrix) (Sidler, W., Kumpf, B., Rüdiger, W. and Zuber, H. (1986) Biol. Chem. Hoppe-Seyler 367, 627-642), B-phycoerythrin has deletions at beta-141k-o, beta-142, beta-143, beta-147 and beta-148. The four singly-linked phycoerythrobilins at positions alpha-84, alpha-143a, beta-84 and beta-155, and the doubly-linked phycoerythrobilin at position beta-50/61 are at sites homologous to the attachment sites in C-phycoerythrin. The aspartyl residues (alpha-87, beta-87, and beta-39), that interact with the bilins at alpha-84, beta-84, and beta-155 in C-phycocyanin, are found in the homologous positions in B-phycoerythrin. B-Phycoerythrin, in common with other phycobiliproteins, contains a N gamma-methylasparagine residue at position beta-72.

  2. The C-terminal 165 amino acids of the plasma membrane Ca(2+)-ATPase confer Ca2+/calmodulin sensitivity on the Na+,K(+)-ATPase alpha-subunit.

    PubMed Central

    Ishii, T; Takeyasu, K

    1995-01-01

    The C-terminal 165 amino acids of the rat brain plasma membrane (PM) Ca(2+)-ATPase II containing the calmodulin binding auto-inhibitory domain was connected to the C-terminus of the ouabain sensitive chicken Na+,K(+)-ATPase alpha 1 subunit. Expression of this chimeric molecule in ouabain resistant mouse L cells was assured by the high-affinity binding of [3H]ouabain. In the presence of Ca2+/calmodulin, this chimeric molecule exhibited ouabain inhibitable Na+,K(+)-ATPase activity; the putative chimeric ATPase activity was absent in the absence of Ca2+/calmodulin and activated by Ca2+/calmodulin in a dose-dependent manner. Furthermore, this chimeric molecule could bind monoclonal IgG 5 specific to the chicken Na+,K(+)-ATPase alpha 1 subunit only in the presence of Ca2+/calmodulin, suggesting that the epitope for IgG 5 in this chimera is masked in the absence of Ca2+/calmodulin and uncovered in their presence. These results propose a direct interaction between the calmodulin binding auto-inhibitory domain of the PM Ca(2+)-ATPase and the specific regions of the Na+,K(+)-ATPase alpha 1 subunit that are structurally homologous to the PM Ca(2+)-ATPase. A comparison of the deduced amino acid sequences revealed several possible regions within the Na+,K(+)-ATPase that might interact with the auto-inhibitory domain of the PM Ca(2+)-ATPase. Images PMID:7828596

  3. Efficient autophosphorylation and phosphorylation of the beta-subunit by casein kinase-2 require the integrity of an acidic cluster 50 residues downstream from the phosphoacceptor site.

    PubMed

    Boldyreff, B; Meggio, F; Pinna, L A; Issinger, O G

    1994-02-18

    Various beta-mutants were investigated either as subunits or as substrates for casein kinase 2 (CK-2), in the absence of presence of polylysine. A total of 21 beta-mutants were characterized for their susceptibility to autophosphorylation, by combining them in equimolar amounts with the recombinant alpha-subunit. Six mutants, i.e. beta A5,6, beta A59-61,63,64, beta A55,57, beta 55-57, beta delta 171-215, and beta delta 150-215 exhibited a > 70% reduction in autophosphorylation. This strongly suggests that in addition to amino acid residues 5,6, distant amino acid residues within the sequence 55-64 are also involved in the process of autophosphorylation, possibly by means of a loop formation. The results obtained with the COOH-terminal-deleted mutants support the view that reconstitution of a functional holoenzyme must occur to allow efficient autophosphorylation. Polylysine prevents the autophosphorylation of beta wt (86% inhibition) inducing a parallel increase of the alpha-subunit autophosphorylation. The autophosphorylation of all mutants, with the exception of beta A55-57 and beta A59-61,63,64, is also inhibited by polylysine (>64%). The alpha-subunit autophosphorylation is increased with all mutants reconstituting a tetrameric holoenzyme. Only with the three largest COOH-terminal deletion mutants beta delta 150-215, beta delta 171-215, and beta delta 181-215 is no significant alpha-subunit autophosphorylation observed. The phosphorylation of the beta-subunit mutants added in large molar excess to CK-2 holoenzyme (either native or recombinant) is also severely impaired by Ala for Glu/Asp substitutions at position 5,6 and in the 55-64 region and by the deletion of the COOH-terminal segments 150-215 and 171-215. Such a phosphorylation is inhibited by polylysine, with the exception of mutants beta delta 171-215 and beta delta 150-215, whose phosphorylation is conversely stimulated by polylysine. The decreased phosphorylation efficiency of those mutants that are

  4. A Broad Anti-influenza Hybrid Small Molecule That Potently Disrupts the Interaction of Polymerase Acidic Protein-Basic Protein 1 (PA-PB1) Subunits.

    PubMed

    Massari, Serena; Nannetti, Giulio; Desantis, Jenny; Muratore, Giulia; Sabatini, Stefano; Manfroni, Giuseppe; Mercorelli, Beatrice; Cecchetti, Violetta; Palù, Giorgio; Cruciani, Gabriele; Loregian, Arianna; Goracci, Laura; Tabarrini, Oriana

    2015-05-14

    In continuing our efforts to identify small molecules able to disrupt the interaction of the polymerase acidic protein-basic protein 1 (PA-PB1) subunits of influenza virus (Flu) RNA-dependent RNA polymerase, this paper is devoted to the optimization of a dihydrotriazolopyrimidine derivative, previously identified through structure-based drug discovery. The structure modifications performed around the bicyclic core led to the identification of compounds endowed with both the ability to disrupt PA-PB1 subunits interaction and anti-Flu activity with no cytotoxicity. Very interesting results were obtained with the hybrid molecules 36 and 37, designed by merging some peculiar structural features known to impart PA-PB1 interaction inhibition, with compound 36 that emerged as the most potent PA-PB1 interaction inhibitor (IC50 = 1.1 μM) among all the small molecules reported so far. Calculations showed a very favored H-bonding between the 2-amidic carbonyl of 36 and Q408, which seems to justify its potent ability to interfere with the interaction of the polymerase subunits.

  5. Repeated ketamine administration alters N-methyl-D-aspartic acid receptor subunit gene expression: implication of genetic vulnerability for ketamine abuse and ketamine psychosis in humans.

    PubMed

    Xu, Ke; Lipsky, Robert H

    2015-02-01

    For more than 40 years following its approval by the Food and Drug Administration (FDA) as an anesthetic, ketamine, a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist, has been used as a tool of psychiatric research. As a psychedelic drug, ketamine induces psychotic symptoms, cognitive impairment, and mood elevation, which resemble some symptoms of schizophrenia. Recreational use of ketamine has been increasing in recent years. However, little is known of the underlying molecular mechanisms responsible for ketamine-associated psychosis. Recent animal studies have shown that repeated ketamine administration significantly increases NMDA receptor subunit gene expression, in particular subunit 1 (NR1 or GluN1) levels. This results in neurodegeneration, supporting a potential mechanism where up-regulation of NMDA receptors could produce cognitive deficits in chronic ketamine abuse patients. In other studies, NMDA receptor gene variants are associated with addictive behavior. Here, we focus on the roles of NMDA receptor gene subunits in ketamine abuse and ketamine psychosis and propose that full sequencing of NMDA receptor genes may help explain individual vulnerability to ketamine abuse and ketamine-associated psychosis.

  6. Identification of amino acid residues photolabeled with 2-azido(alpha-/sup 32/P)adenosine diphosphate in the beta subunit of beef heart mitochondrial F1-ATPase

    SciTech Connect

    Garin, J.; Boulay, F.; Issartel, J.P.; Lunardi, J.; Vignais, P.V.

    1986-07-29

    When beef heart mitochondrial F1-ATPase is photoirradiated in the presence of 2-azido(alpha-/sup 32/P)adenosine diphosphate, the beta subunit of the enzyme is preferentially photolabeled (Dalbon, P., Boulay, F., and Vignais, P. V. (1985) FEBS Lett. 180, 212-218). The site of photolabeling of the beta subunit has been explored. After cyanogen bromide cleavage of the photolabeled beta subunit, only the peptide fragment extending from Gln-293 to Met-358 was found to be labeled. This peptide was isolated and digested by trypsin or Staphylococcus aureus V8 protease. Digestion by trypsin yielded four peptides, one of which spanned residues Ala-338-Arg-356 and contained all the bound radioactivity. When trypsin was replaced by V8 protease, a single peptide spanning residues Leu-342-Met-358 was labeled. Edman degradation of the two labeled peptides showed that radioactivity was localized on the following four amino acids: Leu-342, Ile-344, Tyr-345, and Pro-346.

  7. Coordinated Regulation of the Neutral Amino Acid Transporter SNAT2 and the Protein Phosphatase Subunit GADD34 Promotes Adaptation to Increased Extracellular Osmolarity*

    PubMed Central

    Krokowski, Dawid; Jobava, Raul; Guan, Bo-Jhih; Farabaugh, Kenneth; Wu, Jing; Majumder, Mithu; Bianchi, Massimiliano G.; Snider, Martin D.; Bussolati, Ovidio; Hatzoglou, Maria

    2015-01-01

    Cells respond to shrinkage induced by increased extracellular osmolarity via programmed changes in gene transcription and mRNA translation. The immediate response to this stress includes the induction of expression of the neutral amino acid transporter SNAT2. Increased SNAT2-mediated uptake of neutral amino acids is an essential adaptive mechanism for restoring cell volume. In contrast, stress-induced phosphorylation of the α subunit of the translation initiation factor eIF2 (eIF2α) can promote apoptosis. Here we show that the response to mild hyperosmotic stress involves regulation of the phosphorylation of eIF2α by increased levels of GADD34, a regulatory subunit of protein phosphatase 1 (PP1). The induction of GADD34 was dependent on transcriptional control by the c-Jun-binding cAMP response element in the GADD34 gene promoter and posttranscriptional stabilization of its mRNA. This mechanism differs from the regulation of GADD34 expression by other stresses that involve activating transcription factor 4 (ATF4). ATF4 was not translated during hyperosmotic stress despite an increase in eIF2α phosphorylation. The SNAT2-mediated increase in amino acid uptake was enhanced by increased GADD34 levels in a manner involving decreased eIF2α phosphorylation. It is proposed that the induction of the SNAT2/GADD34 axis enhances cell survival by promoting the immediate adaptive response to stress. PMID:26041779

  8. Cerebral metabolic and circulatory effects of 1,1,1-trichloroethane, a neurotoxic industrial solvent. 2. Tissue concentrations of labile phosphates, glycolytic metabolites, citric acid cycle intermediates, amino acids, and cyclic nucleotides.

    PubMed

    Folbergrová, J; Hougaard, K; Westerberg, E; Siesjö, B K

    1984-01-01

    In order to obtain information on the mechanisms of neurotoxicity of 1,1,1-trichloroethane, rats maintained artificially ventilated on N2O:O2 (70:30) were exposed to a concentration of 1,1,1-trichloroethane of 8000 ppm, 43.7 mg L-1, that induces moderate ataxia in awake, spontaneously breathing animals. After 5 and 60 min of exposure, as well as after a 60-min recovery period following 60 min of exposure, the brain was frozen in situ and cortical tissue was assayed for phosphocreatine (PCr), + ATP, ADP, AMP, glycogen, glucose, pyruvate, lactate, citric acid cycle intermediates, associated amino acids, and cyclic nucleotides; in addition, purine nucleotides, nucleosides, and bases were assayed by HPLC techniques. Exposure of animals to 1,1,1-trichloroethane failed to alter blood glucose, lactate, and pyruvate concentrations. However, the solvent induced highly significant increases in tissue lactate and pyruvate concentrations that were also reflected in cisternal CSF. Associated with these changes were increases in all citric acid cycle intermediates except succinate, an increase in alanine concentration, and a rise in the glutamate/aspartate ratio. After 5 min, a small decrease in glycogen concentration also occurred. All these changes were reversed when the exposure was terminated. No changes were observed in tissue concentrations of purine nucleotides, nucleosides, and bases except for a small reduction of ATP concentration after 60 min of exposure, still noticeable after 60 min of recovery. Apart from a small reduction in cAMP concentration after 5 min of exposure, cyclic nucleotide concentrations did not change.

  9. Physicochemical properties and interactions of Escherichia coli ribonucleic acid polymerase holoenzyme, core enzyme, subunits, and subassembly alpha 2 beta.

    PubMed

    Levine, B J; Orphanos, P D; Fischmann, B S; Beychok, S

    1980-10-14

    We have investigated several physicochemical properties of Escherichia coli DNA-dependent RNa polymerase, its constituent subunits alpha, beta, beta', and sigma, and the subassembly alpha 2 beta. These included ultraviolet (UV) absorption, isoelectric points, sulfhydryl content, extinction coefficients, and circular dichroism (CD). Among the most notable results is the observation, based on CD measurements, that the sigma subunit, free and combined in holoenzyme, is a highly structured protein with approximately 75% of its residues folded in alpha-helical conformation and little or no detectable beta sheet. No secondary structure changes in either sigma or core accompany formation of holoenzyme. In contrast to the conformational independence of the subunits in assembly of holoenzyme, the protein and its components exhibit conformational flexibility as glycerol concentration is varied and in their interaction with DNA. The effect of glycerol on the conformation of sigma, core, and holoenzyme was monitored by circular dichroism measurements. In the far-ultraviolet, the residue ellipticity at 220 nm ([theta]220) increased approximately 15% from 0 to 10% glycerol for both core and holoenzyme. In the near-ultraviolet, the residue ellipticity at a peak near 280 nm also varied with glycerol concentration, decreasing in intensity by about 50% with holoenzyme, when glycerol was raised from 5 to 10%, then increasing at still higher glycerol contents. Electrophoretic and molecular sieve anaysis showed core and sigma to have greater affinity for each other in 50% glycerol than in 10% glycerol. The presence of 10% glycerol in the assay buffer increased the activity of the enzyme. The effect of various DNA templates on the conformations of core, holoenzyme, alpha 2 beta subassembly, and beta' subunit was also monitored by far-ultraviolet circular dichroism. All the protein samples showed between 10 and 20% decrease in secondary structure upon the addition of the DNA. PMID

  10. Subunit and amino acid interactions in the Escherichia coli mannitol permease: a functional complementation study of coexpressed mutant permease proteins.

    PubMed

    Saraceni-Richards, C A; Jacobson, G R

    1997-08-01

    Mannitol-specific enzyme II, or mannitol permease, of the phosphoenolpyruvate-dependent carbohydrate phosphotransferase system of Escherichia coli carries out the transport and phosphorylation of D-mannitol and is most active as a dimer in the membrane. We recently reported the importance of a glutamate residue at position 257 in the binding and transport of mannitol by this protein (C. Saraceni-Richards and G. R. Jacobson, J. Bacteriol. 179:1135-1142, 1997). Replacing Glu-257 with alanine (E257A) or glutamine (E257Q) eliminated detectable mannitol binding and transport by the permease. In contrast, an E257D mutant protein was able to bind and phosphorylate mannitol in a manner similar to that of the wild-type protein but was severely defective in mannitol uptake. In this study, we have coexpressed proteins containing mutations at position 257 with other inactive permeases containing mutations in each of the three domains of this protein. Activities of any active heterodimers resulting from this coexpression were measured. The results show that various inactive mutant permease proteins can complement proteins containing mutations at position 257. In addition, we show that both Glu at position 257 and His at position 195, both of which are in the membrane-bound C domain of the protein, must be on the same subunit of a permease dimer in order for efficient mannitol phosphorylation and uptake to occur. The results also suggest that mannitol bound to the opposite subunit within a permease heterodimer can be phosphorylated by the subunit containing the E257A mutation (which cannot bind mannitol) and support a model in which there are separate binding sites on each subunit within a permease dimer. Finally, we provide evidence from these studies that high-affinity mannitol binding is necessary for efficient transport by mannitol permease.

  11. The amino-terminal 200 amino acids of the plasma membrane Na+,K+-ATPase alpha subunit confer ouabain sensitivity on the sarcoplasmic reticulum Ca(2+)-ATPase.

    PubMed Central

    Ishii, T; Takeyasu, K

    1993-01-01

    Cardiac glycosides such as G-strophanthin (ouabain) bind to and inhibit the plasma membrane Na+,K(+)-ATPase but not the sarcoplasmic reticulum (SR) Ca(2+)-ATPase, whereas thapsigargin specifically blocks the SR Ca(2+)-ATPase. The chimera [n/c]CC, in which the amino-terminal amino acids Met1 to Asp162 of the SR Ca(2+)-ATPase (SERCA1) were replaced with the corresponding portion of the Na+,K(+)-ATPase alpha 1 subunit (Met1 to Asp200), retained thapsigargin- and Ca(2+)-sensitive ATPase activity, although the activity was lower than that of the wild-type SR Ca(2+)-ATPase. Moreover, this Ca(2+)-sensitive ATPase activity was inhibited by ouabain. The chimera NCC, in which Met1-Gly354 of the SR Ca(2+)-ATPase were replaced with the corresponding portion of the Na+,K(+)-ATPase, lost the thapsigargin-sensitive Ca(2+)-ATPase activity seen in CCC and [n/c]CC. [3H]Ouabain binding to [n/c]CC and NCC demonstrated that the affinity for this inhibitor seen in the wild-type chicken Na+,K(+)-ATPase was restored in these chimeric molecules. Thus, the ouabain-binding domains are distinct from the thapsigargin sites; ouabain binds to the amino-terminal portion (Met1 to Asp200) of the Na+,K(+)-ATPase alpha 1 subunit, whereas thapsigargin interacts with the regions after Asp162 of the Ca(2+)-ATPase. Moreover, the amino-terminal 200 amino acids of the Na+,K(+)-ATPase alpha 1 subunit are sufficient to exert ouabain-dependent inhibition even after incorporation into the corresponding portion of the Ca(2+)-ATPase, and the segment Ile163 to Gly354 of the SR Ca(2+)-ATPase is critical for thapsigargin- and Ca(2+)-sensitive ATPase activity. Images Fig. 5 PMID:8415625

  12. Conserved amino acids in each subunit of the heteroligomeric tRNA m1A58 Mtase from Saccharomyces cerevisiae contribute to tRNA binding

    PubMed Central

    Ozanick, Sarah G.; Bujnicki, Janusz M.; Sem, Daniel S.; Anderson, James T.

    2007-01-01

    In Saccharomyces cerevisiae, a two-subunit methyltransferase (Mtase) encoded by the essential genes TRM6 and TRM61 is responsible for the formation of 1-methyladenosine, a modified nucleoside found at position 58 in tRNA that is critical for the stability of tRNAiMet. The crystal structure of the homotetrameric m1A58 tRNA Mtase from Mycobacterium tuberculosis, TrmI, has been solved and was used as a template to build a model of the yeast m1A58 tRNA Mtase heterotetramer. We altered amino acids in TRM6 and TRM61 that were predicted to be important for the stability of the heteroligomer based on this model. Yeast strains expressing trm6 and trm61 mutants exhibited growth phenotypes indicative of reduced m1A formation. In addition, recombinant mutant enzymes had reduced in vitro Mtase activity. We demonstrate that the mutations introduced do not prevent heteroligomer formation and do not disrupt binding of the cofactor S-adenosyl-l-methionine. Instead, amino acid substitutions in either Trm6p or Trm61p destroy the ability of the yeast m1A58 tRNA Mtase to bind tRNAiMet, indicating that each subunit contributes to tRNA binding and suggesting a structural alteration of the substrate-binding pocket occurs when these mutations are present. PMID:17932071

  13. Amino acids of the Torpedo marmorata acetylcholine receptor. cap alpha. subunit labeled by a photoaffinity ligand for the acetylcholine binding site

    SciTech Connect

    Dennis, M.; Giraudat, J.; Kotzyba-Hibert, F.; Goeldner, M.; Hirth, C.; Chang, J.Y.; Lazure, C.; Chretien, M.; Changeux, J.P.

    1988-04-05

    The acetylcholine-binding sites on the native, membrane-bound acetylcholine receptor from Torpedo marmorata were covalently labeled with the photoaffinity reagent (/sup 3/H)-p-(dimethylamino)-benzenediazonium fluoroborate (DDF) in the presence of phencyclidine by employing an energy-transfer photolysis procedure. The ..cap alpha..-chains isolated from receptor-rich membranes photolabeled in the absence or presence of carbamoylcholine were cleaved with CNBr and the radiolabeled fragments purified by high-performance liquid chromatography. Amino acid and/or sequence analysis demonstrated that the ..cap alpha..-chain residues Trp-149, Tyr-190, Cys-192, and Cys-193 and an unidentified residue(s) in the segment ..cap alpha.. 31-105 were all labeled by the photoaffinity reagent in an agonist-protectable manner. The labeled amino acids are located within three distinct regions of the large amino-terminal hydrophilic domain of the ..cap alpha..-subunit primary structure and plausibly lie in proximity to one another at the level of the acetylcholine-binding sites in the native receptor. These findings are in accord with models proposed for the transmembrane topology of the ..cap alpha..-chain that assign the amino-terminal segment ..cap alpha.. 1-210 to the synaptic cleft. Furthermore, the results suggest that the four identified (/sup 3/H)DDF-labeled resides, which are conserved in muscle and neuronal ..cap alpha..-chains but not in the other subunits, may be directly involved in agonist binding.

  14. Conserved Amino Acid Sequence Features in the α Subunits of MoFe, VFe, and FeFe Nitrogenases

    PubMed Central

    Glazer, Alexander N.; Kechris, Katerina J.

    2009-01-01

    Background This study examines the structural features and phylogeny of the α subunits of 69 full-length NifD (MoFe subunit), VnfD (VFe subunit), and AnfD (FeFe subunit) sequences. Methodology/Principal Findings The analyses of this set of sequences included BLAST scores, multiple sequence alignment, examination of patterns of covariant residues, phylogenetic analysis and comparison of the sequences flanking the conserved Cys and His residues that attach the FeMo cofactor to NifD and that are also conserved in the alternative nitrogenases. The results show that NifD nitrogenases fall into two distinct groups. Group I includes NifD sequences from many genera within Bacteria, including all nitrogen-fixing aerobes examined, as well as strict anaerobes and some facultative anaerobes, but no archaeal sequences. In contrast, Group II NifD sequences were limited to a small number of archaeal and bacterial sequences from strict anaerobes. The VnfD and AnfD sequences fall into two separate groups, more closely related to Group II NifD than to Group I NifD. The pattern of perfectly conserved residues, distributed along the full length of the Group I and II NifD, VnfD, and AnfD, confirms unambiguously that these polypeptides are derived from a common ancestral sequence. Conclusions/Significance There is no indication of a relationship between the patterns of covariant residues specific to each of the four groups discussed above that would give indications of an evolutionary pathway leading from one type of nitrogenase to another. Rather the totality of the data, along with the phylogenetic analysis, is consistent with a radiation of Group I and II NifDs, VnfD and AnfD from a common ancestral sequence. All the data presented here strongly support the suggestion made by some earlier investigators that the nitrogenase family had already evolved in the last common ancestor of the Archaea and Bacteria. PMID:19578539

  15. Identification of key amino acid differences contributing to neonicotinoid sensitivity between two nAChR α subunits from Pardosa pseudoannulata.

    PubMed

    Meng, Xiangkun; Zhang, Yixi; Guo, Beina; Sun, Huahua; Liu, Chuanjun; Liu, Zewen

    2015-01-01

    Chemical insecticides are still primary methods to control rice planthoppers in China, which not only cause environmental pollution, insecticide residue and insecticide resistance, but also have negative effects on natural enemies, such as Pardosa pseudoannulata (the pond wolf spider), an important predatory enemy of rice planthoppers. Neonicotinoids insecticides, such as imidacloprid and thiacloprid, are insect-selective nAChRs agonists that are used extensively in the areas of crop protection and animal health, but have hypotoxicity to P. pseudoannulata. In the present study, two nAChR α subunits, Ppα1 or Ppα8, were found to be successfully expressed with rβ2 in Xenopus oocytes, but with much different sensitivity to imidacloprid and thiacloprid on two recombinant receptors Ppα1/rβ2 and Ppα8/rβ2. Key amino acid differences were found in and between the important loops for ligand binding. In order to well understand the relationship between the amino acid differences and neonicotinoid sensitivities, different segments in Ppα8 or Ppα1 with key amino acid differences were introduced into the corresponding regions of Ppα1 or Ppα8 to construct chimeras and then co-expressed with rβ2 subunit in Xenopus oocytes. The results from chimeras of both Ppα8 and Ppα1 showed that segments Δ5, Δ6, and Δ7 contributed to neonicotinoid sensitivities directly between two receptors. Although the segment Δ4 including all loop B region had no direct influences on neonicotinoid sensitivities, it could more remarkably influence neonicotinoid sensitivities when co-introductions with Δ5, Δ6 or Δ7. So, key amino acid differences in these four segments were important to neonicotinoid sensitivities, but the difference in Δ4 was likely ignored because of its indirect effects.

  16. Lungfish aestivating activities are locked in distinct encephalic γ-aminobutyric acid type A receptor α subunits.

    PubMed

    Giusi, Giuseppina; Crudo, Michele; Di Vito, Anna; Facciolo, Rosa Maria; Garofalo, Filippo; Chew, Shit Fun; Ip, Yuen Kwong; Canonaco, Marcello

    2011-03-01

    Ammonia in dipnoans plays a crucial role on neuronal homeostasis, especially for those brain areas that maintain torpor and awakening states in equilibrium. In the present study, specific α subunits of the major neuroreceptor inhibitory complex (GABA(A) R), which predominated during some phases of aestivation of the lungfish Protopterus annectens, turned out to be key adaptive factors of this species. From the isolation, for the first time, of the encoding sequence for GABA(A) R α₁, α₄ , and α₅ subunits in Protopterus annectens, qPCR and in situ hybridization levels of α₄ transcript in thalamic (P < 0.001) and mesencephalic (P < 0.01) areas proved to be significantly higher during long aestivating maintenance states. Very evident α₅ mRNA levels were detected in diencephalon during short inductive aestivating states, whereas an α₄ /α₁ turnover characterized the arousal state. Contextually, the recovery of physiological activities appeared to be tightly related to an evident up-regulation of α₁ transcripts in telencephalic and cerebellar sites. Surprisingly, TUNEL and amino cupric silver methods corroborated apoptotic and neurodegenerative cellular events, respectively, above all in telencephalon and cerebellum of lungfish exposed to long maintenance aestivating conditions. Overall, these results tend to underlie a novel GABAergic-related ON/OFF molecular switch operating during aestivation of the lungfish, which might have a bearing on sleeping disorders.

  17. Amino acid microsequencing of internal tryptic peptides of heme-regulated eukaryotic initiation factor 2 alpha subunit kinase: homology to protein kinases.

    PubMed Central

    Chen, J J; Pal, J K; Petryshyn, R; Kuo, I; Yang, J M; Throop, M S; Gehrke, L; London, I M

    1991-01-01

    We have purified the heme-regulated eukaryotic initiation factor 2 alpha subunit (eIF-2 alpha) kinase (HRI) from rabbit reticulocytes for amino acid microsequencing. This kinase is a single 92-kDa polypeptide and migrates in perfect alignment with 32P-labeled HRI on SDS/PAGE. Its functions of binding ATP and of autophosphorylation and eIF-2 alpha phosphorylation are inhibited by hemin. The amino acid sequences of three tryptic peptides of HRI have been obtained. A search of the data base of the National Biomedical Research Foundation reveals that these amino acid sequences are unique and that two of these three sequences show homology to protein kinases. HRI peptide P-52 contains Asp-Phe-Gly, which is the most highly conserved short stretch of amino acids in catalytic domain VII of protein kinases. HRI peptide P-74 contains the conserved amino acid residues Asp-(Met)-Tyr-Ser-(Val)-Gly-Val found in catalytic domain IX of protein kinases [Hanks, S. K., Quinn, A. M. & Hunter, T. (1988) Science 241, 42-52]. These findings are consistent with the autokinase and eIF-2 alpha kinase activities of HRI. Synthetic HRI peptide P-74 is a very potent inhibitor of eIF-2 alpha phosphorylation by HRI. Since little is known about the function of conserved domain IX, P-74 peptide may be useful in elucidating the role of this domain of protein kinases. Images PMID:1671169

  18. Differential expression of gamma-aminobutyric acid type B receptor subunit mRNAs in the developing nervous system and receptor coupling to adenylyl cyclase in embryonic neurons.

    PubMed

    Martin, Stella C; Steiger, Janine L; Gravielle, María Clara; Lyons, Helen R; Russek, Shelley J; Farb, David H

    2004-05-17

    gamma-Aminobutyric acid type B receptors (GABA(B)Rs) mediate both slow inhibitory synaptic activity in the adult nervous system and motility signals for migrating embryonic cortical cells. Previous papers have described the expression of GABA(B)Rs in the adult brain, but the expression and functional significance of these gene products in the embryo are largely unknown. Here we examine GABA(B)R expression from rat embryonic day 10 (E10) to E18 compared with adult and ask whether embryonic cortical neurons contain functional GABA(B)R. GABA(B)R1 transcript levels greatly exceed GABA(B)R2 levels in the developing neural tube at E11, and olfactory bulb and striatum at E17 but equalize in most regions of adult nervous tissue, except for the glomerular and granule cell layers of the main olfactory bulb and the striatum. Consistent with expression differences, the binding affinity of GABA for GABA(B)Rs is significantly lower in adult striatum compared with cerebellum. Multiple lines of evidence from in situ hybridization, RNase protection, and real-time PCR demonstrate that GABA(B)R1a, GABA(B)R1b, GABA(B)R1h (a subunit subtype, lacking a sushi domain, that we have identified in embryonic rat brain), GABA(B)R2, and GABA(B)L transcript levels are not coordinately regulated. Despite the functional requirement for a heterodimer of GABA(B)R subunits, the expression of each subunit mRNA is under independent control during embryonic development, and, by E18, GABA(B)Rs are negatively coupled to adenylyl cyclase in neocortical neurons. The presence of embryonic GABA(B)R transcripts and protein and functional receptor coupling indicates potentially important roles for GABA(B)Rs in modulation of synaptic transmission in the developing embryonic nervous system.

  19. Photo-lability of deep ocean dissolved black carbon

    NASA Astrophysics Data System (ADS)

    Stubbins, A.; Niggemann, J.; Dittmar, T.

    2012-05-01

    Dissolved black carbon (DBC), defined here as condensed aromatics isolated from seawater via PPL solid phase extraction and quantified as benzenepolycarboxylic acid (BPCA) oxidation products, is a significant component of the oceanic dissolved organic carbon (DOC) pool. These condensed aromatics are widely distributed in the open ocean and appear to be tens of thousands of years old. As such DBC is regarded as highly refractory. In the current study, the photo-lability of DBC, DOC and coloured dissolved organic matter (CDOM; ultraviolet-visible absorbance) were determined over the course of a 28 day irradiation of North Atlantic Deep Water under a solar simulator. During the irradiation DBC fell from 1044 ± 164 nM-C to 55 ± 15 nM-C, a 20-fold decrease in concentration. Dissolved black carbon photo-degradation was more rapid and more extensive than for bulk CDOM and DOC. The concentration of DBC correlated with CDOM absorbance and the quality of DBC indicated by the ratios of different BPCAs correlated with CDOM absorbance spectral slope, suggesting the optical properties of CDOM may provide a proxy for both DBC concentrations and quality in natural waters. Further, the photo-lability of components of the DBC pool increased with their degree of aromatic condensation. These trends indicate that a continuum of compounds of varying photo-lability exists within the marine DOC pool. In this continuum, photo-lability scales with aromatic character, specifically the degree of condensation. Scaling the rapid photo-degradation of DBC to rates of DOC photo-mineralisation for the global ocean leads to an estimated photo-chemical half-life for oceanic DBC of less than 800 years. This is more than an order of magnitude shorter than the apparent age of DBC in the ocean. Consequently, photo-degradation is posited as the primary sink for oceanic DBC and the apparent survival of DBC molecules in the oceans for millennia appears to be facilitated not by their inherent inertness but

  20. Soil Microbial and Enzymatic Responses to Complex and Labile Nutrient Inputs

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Vitousek, P. M.

    2003-12-01

    Microbial extracellular enzymes are essential for converting complex organic compounds into smaller molecules that are available for plant and microbial uptake. However, enzyme production represents a substantial resource cost for microbes, and microbes may be under selection to produce enzymes only when benefits exceed costs. We predicted that soil enzyme activities would be highest when complex substrates were abundant, but available nutrients were scarce (large potential benefit from enzyme production). We also predicted that rates of nutrient and carbon mineralization would correspond to observed shifts in enzyme activities. To test these predictions, we added insoluble and available carbon, nitrogen, and phosphorus substrates to soil incubations and measured enzyme activities, CO2 respiration, microbial biomass, and nutrient mineralization. Labile carbon additions increased respiration rates and microbial biomass, while labile nutrient additions were taken up by microbes but did not increase respiration rates. Labile carbon + nitrogen additions increased acid phosphatase activity, while labile nitrogen additions suppressed aminopeptidase activity. Insoluble nutrients caused major increases in enzyme and microbial activities only when added in combination with complementary labile nutrients (e.g. insoluble carbon + available nitrogen and phosphorus). These results indicate that microbes respond to soil nutrient status by changing patterns of extracellular enzyme production. Such changes can allow microbes to access nutrients in complex molecules, but may be limited by the availability of resources to build enzymes.

  1. A three amino acid deletion in the transmembrane domain of the nicotinic acetylcholine receptor α6 subunit confers high-level resistance to spinosad in Plutella xylostella

    PubMed Central

    Wang, Jing; Wang, Xingliang; Lansdell, Stuart J.; Zhang, Jianheng; Millar, Neil S.; Wu, Yidong

    2016-01-01

    Spinosad is a macrocyclic lactone insecticide that acts primarily at the nicotinic acetylcholine receptors (nAChRs) of target insects. Here we describe evidence that high levels of resistance to spinosad in the diamondback moth (Plutella xylostella) are associated with a three amino acid (3-aa) deletion in the fourth transmembrane domain (TM4) of the nAChR α6 subunit (Pxα6). Following laboratory selection with spinosad, the SZ-SpinR strain of P. xylostella exhibited 940-fold resistance to spinosad. In addition, the selected insect population had 1060-fold cross-resistance to spinetoram but, in contrast, no cross-resistance to abamectin was observed. Genetic analysis indicates that spinosad resistance in SZ-SpinR is inherited as a recessive and autosomal trait, and that the 3-aa deletion (IIA) in TM4 of Pxα6 is tightly linked to spinosad resistance. Because of well-established difficulties in functional expression of cloned insect nAChRs, the analogous resistance-associated deletion mutation was introduced into a prototype nAChR (the cloned human α7 subunit). Two-electrode voltage-clamp recording with wild-type and mutated nAChRs expressed in Xenopus laevis oocytes indicated that the mutation causes a complete loss of agonist activation. In addition, radioligand binding studies indicated that the 3-aa deletion resulted in significantly lower-affinity binding of the extracellular neurotransmitter-binding site. These findings are consistent with the 3-amino acid (IIA) deletion within the transmembrane domain of Pxα6 being responsible for target-site resistance to spinosad in the SZ-SpinR strain of P. xylostella. PMID:26855198

  2. Acetylation of Mitochondrial Trifunctional Protein α-Subunit Enhances Its Stability To Promote Fatty Acid Oxidation and Is Decreased in Nonalcoholic Fatty Liver Disease.

    PubMed

    Guo, Liang; Zhou, Shui-Rong; Wei, Xiang-Bo; Liu, Yuan; Chang, Xin-Xia; Liu, Yang; Ge, Xin; Dou, Xin; Huang, Hai-Yan; Qian, Shu-Wen; Li, Xi; Lei, Qun-Ying; Gao, Xin; Tang, Qi-Qun

    2016-10-15

    Nonalcoholic fatty liver disease (NAFLD) has become the most common liver disease, and decreased fatty acid oxidation is one of the important contributors to NAFLD. Mitochondrial trifunctional protein α-subunit (MTPα) functions as a critical enzyme for fatty acid β-oxidation, but whether dysregulation of MTPα is pathogenically connected to NAFLD is poorly understood. We show that MTPα is acetylated at lysine residues 350, 383, and 406 (MTPα-3K), which promotes its protein stability by antagonizing its ubiquitylation on the same three lysines (MTPα-3K) and blocking its subsequent degradation. Sirtuin 4 (SIRT4) has been identified as the deacetylase, deacetylating and destabilizing MTPα. Replacement of MTPα-3K with either MTPα-3KR or MTPα-3KQ inhibits cellular lipid accumulation both in free fatty acid (FFA)-treated alpha mouse liver 12 (AML12) cells and primary hepatocytes and in the livers of high-fat/high-sucrose (HF/HS) diet-fed mice. Moreover, knockdown of SIRT4 could phenocopy the effects of MTPα-3K mutant expression in mouse livers, and MTPα-3K mutants more efficiently attenuate SIRT4-mediated hepatic steatosis in HF/HS diet-fed mice. Importantly, acetylation of both MTPα and MTPα-3K is decreased while SIRT4 is increased in the livers of mice and humans with NAFLD. Our study reveals a novel mechanism of MTPα regulation by acetylation and ubiquitylation and a direct functional link of this regulation to NAFLD. PMID:27457618

  3. Allele variants of enterotoxigenic Escherichia coli heat-labile toxin are globally transmitted and associated with colonization factors.

    PubMed

    Joffré, Enrique; von Mentzer, Astrid; Abd El Ghany, Moataz; Oezguen, Numan; Savidge, Tor; Dougan, Gordon; Svennerholm, Ann-Mari; Sjöling, Åsa

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a significant cause of morbidity and mortality in the developing world. ETEC-mediated diarrhea is orchestrated by heat-labile toxin (LT) and heat-stable toxins (STp and STh), acting in concert with a repertoire of more than 25 colonization factors (CFs). LT, the major virulence factor, induces fluid secretion after delivery of a monomeric ADP-ribosylase (LTA) and its pentameric carrier B subunit (LTB). A study of ETEC isolates from humans in Brazil reported the existence of natural LT variants. In the present study, analysis of predicted amino acid sequences showed that the LT amino acid polymorphisms are associated with a geographically and temporally diverse set of 192 clinical ETEC strains and identified 12 novel LT variants. Twenty distinct LT amino acid variants were observed in the globally distributed strains, and phylogenetic analysis showed these to be associated with different CF profiles. Notably, the most prevalent LT1 allele variants were correlated with major ETEC lineages expressing CS1 + CS3 or CS2 + CS3, and the most prevalent LT2 allele variants were correlated with major ETEC lineages expressing CS5 + CS6 or CFA/I. LTB allele variants generally exhibited more-stringent amino acid sequence conservation (2 substitutions identified) than LTA allele variants (22 substitutions identified). The functional impact of LT1 and LT2 polymorphisms on virulence was investigated by measuring total-toxin production, secretion, and stability using GM1-enzyme-linked immunosorbent assays (GM1-ELISA) and in silico protein modeling. Our data show that LT2 strains produce 5-fold more toxin than LT1 strains (P < 0.001), which may suggest greater virulence potential for this genetic variant. Our data suggest that functionally distinct LT-CF variants with increased fitness have persisted during the evolution of ETEC and have spread globally. PMID:25404692

  4. Chemical leaching methods and measurements of marine labile particulate Fe

    NASA Astrophysics Data System (ADS)

    Revels, B. N.; John, S.

    2012-12-01

    Iron (Fe) is an essential nutrient for life. Yet its low solubility and concentration in the ocean limits marine phytoplankton productivity in many regions of the world. Dissolved phase Fe (<0.4μm) has traditionally been considered the most biologically accessible form, however, the particulate phase (>0.4μm) may contain an important, labile reservoir of Fe that may also be available to phytoplankton. However, concentration data alone cannot elucidate the sources of particulate Fe to the ocean and to what extent particulate iron may support phytoplankton growth. Isotopic analysis of natural particles may help to elucidate the biogeochemical cycling of Fe, though it is important to find a leaching method which accesses bioavailable Fe. Thirty-three different chemical leaches were performed on a marine sediment reference material, MESS-3. The combinations included four different acids (25% acetic acid, 0.01M HCl, 0.5M HCl, 0.1M H2SO4 at pH2), various redox conditions (0.02M hydroxylamine hydrochloride or 0.02M H2O2), three temperatures (25°C, 60°C, 90°C), and three time points (10 minutes, 2 hours, 24 hours). Leached Fe concentrations varied from 1mg/g to 35mg/g, with longer treatment times, stronger acids, and hotter temperatures generally associated with an increase in leached Fe. δ56Fe in these leaches varied from -1.0‰ to +0.2‰. Interestingly, regardless of leaching method used, there was a very similar relationship between the amount of Fe leached from the particles and the δ56Fe of this iron. Isotopically lighter δ56Fe values were associated with smaller amounts of leached Fe whereas isotopically heavier δ56Fe values were associated with larger amounts of leached Fe. Two alternate hypotheses could explain these data. Either, the particles may contain pools of isotopically light Fe that are easily accessed early in dissolution, or isotopically light Fe may be preferentially leached from the particle due to a kinetic isotope effect during dissolution

  5. Cloning, Expression Analysis, and Molecular Modeling of the Gamma-Aminobutyric Acid Receptor Alpha2 Subunit Gene from the Common Cutworm, Spodoptera litura

    PubMed Central

    Zuo, Hongliang; Gao, Lu; Hu, Zhen; Liu, Haiyuan; Zhong, Guohua

    2013-01-01

    Intensive research on the molecule structures of the gamma-nminobutyric acid (GABA) receptor in agricultural pests has great significance to the mechanism investigation, resistance prevention, and molecular design of novel pesticides. The GABA receptor a2 (SlGABARα2) subunit gene in Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) was cloned using the technologies of reverse transcription PCR and rapid amplification of cDNA ends. The gemonic DNA sequence of SlGABARα2 has 5164 bp with 8 exons and 7 introns that were in accordance with the GT-AG splicing formula. The complete mRNA sequence of SlGABARα2 was 1965 bp, with an open reading frame of 1500 bp encoding a protein of 499 amino acids. The GABA receptor is highly conserved among insects. The conserved regions include several N-glycosylation, Oglycosylation, and phosphorylation sites, as well as 4 transmembrane domains. The identities that SlGABARα2 shared with the GABA receptor a2 subunit of Spodoptera exigua, Heliothis virescens, Chilo suppressalis, Plutella xylostella, Bombyx mori ranged from 99.2% to 87.2% at the amino acid level. The comparative 3-dimensional model of SlGABARα2 showed that its tertiary structure was composed of 4 major α-helixes located at the 4 putative transmembrane domains on one side, with some β-sheets and 1 small α-helix on the other side. SlGABARα2 may be attached to the membrane by 4 α-helixes that bind ions in other conserved domains to transport them through the membrane. The results of quantitative real time PCR demonstrated that SlGABARα2 was expressed in all developmental stages of S. litura. The relative expression level of SlGABARα2 was the lowest in eggs and increased with larval growth, while it declined slightly in pupae and reached the peak in adults. The expressions of SlGABARα2 in larvae varied among different tissues; it was extremely high in the brain but was low in the midgut, epicuticle, Malpighian tube, and fat body. PMID:23909412

  6. Structural and functional characterization of a complex between the acidic transactivation domain of EBNA2 and the Tfb1/p62 subunit of TFIIH.

    PubMed

    Chabot, Philippe R; Raiola, Luca; Lussier-Price, Mathieu; Morse, Thomas; Arseneault, Genevieve; Archambault, Jacques; Omichinski, James G

    2014-03-01

    Infection with the Epstein-Barr virus (EBV) can lead to a number of human diseases including Hodgkin's and Burkitt's lymphomas. The development of these EBV-linked diseases is associated with the presence of nine viral latent proteins, including the nuclear antigen 2 (EBNA2). The EBNA2 protein plays a crucial role in EBV infection through its ability to activate transcription of both host and viral genes. As part of this function, EBNA2 associates with several host transcriptional regulatory proteins, including the Tfb1/p62 (yeast/human) subunit of the general transcription factor IIH (TFIIH) and the histone acetyltransferase CBP(CREB-binding protein)/p300, through interactions with its C-terminal transactivation domain (TAD). In this manuscript, we examine the interaction of the acidic TAD of EBNA2 (residues 431-487) with the Tfb1/p62 subunit of TFIIH and CBP/p300 using nuclear magnetic resonance (NMR) spectroscopy, isothermal titration calorimeter (ITC) and transactivation studies in yeast. NMR studies show that the TAD of EBNA2 binds to the pleckstrin homology (PH) domain of Tfb1 (Tfb1PH) and that residues 448-471 (EBNA2₄₄₈₋₄₇₁) are necessary and sufficient for this interaction. NMR structural characterization of a Tfb1PH-EBNA2₄₄₈₋₄₇₁ complex demonstrates that the intrinsically disordered TAD of EBNA2 forms a 9-residue α-helix in complex with Tfb1PH. Within this helix, three hydrophobic amino acids (Trp458, Ile461 and Phe462) make a series of important interactions with Tfb1PH and their importance is validated in ITC and transactivation studies using mutants of EBNA2. In addition, NMR studies indicate that the same region of EBNA2 is also required for binding to the KIX domain of CBP/p300. This study provides an atomic level description of interactions involving the TAD of EBNA2 with target host proteins. In addition, comparison of the Tfb1PH-EBNA2₄₄₈₋₄₇₁ complex with structures of the TAD of p53 and VP16 bound to Tfb1

  7. Structural and Functional Characterization of a Complex between the Acidic Transactivation Domain of EBNA2 and the Tfb1/p62 Subunit of TFIIH

    PubMed Central

    Lussier-Price, Mathieu; Morse, Thomas; Arseneault, Genevieve; Archambault, Jacques; Omichinski, James G.

    2014-01-01

    Infection with the Epstein-Barr virus (EBV) can lead to a number of human diseases including Hodgkin's and Burkitt's lymphomas. The development of these EBV-linked diseases is associated with the presence of nine viral latent proteins, including the nuclear antigen 2 (EBNA2). The EBNA2 protein plays a crucial role in EBV infection through its ability to activate transcription of both host and viral genes. As part of this function, EBNA2 associates with several host transcriptional regulatory proteins, including the Tfb1/p62 (yeast/human) subunit of the general transcription factor IIH (TFIIH) and the histone acetyltransferase CBP(CREB-binding protein)/p300, through interactions with its C-terminal transactivation domain (TAD). In this manuscript, we examine the interaction of the acidic TAD of EBNA2 (residues 431–487) with the Tfb1/p62 subunit of TFIIH and CBP/p300 using nuclear magnetic resonance (NMR) spectroscopy, isothermal titration calorimeter (ITC) and transactivation studies in yeast. NMR studies show that the TAD of EBNA2 binds to the pleckstrin homology (PH) domain of Tfb1 (Tfb1PH) and that residues 448–471 (EBNA2448–471) are necessary and sufficient for this interaction. NMR structural characterization of a Tfb1PH-EBNA2448–471 complex demonstrates that the intrinsically disordered TAD of EBNA2 forms a 9-residue α-helix in complex with Tfb1PH. Within this helix, three hydrophobic amino acids (Trp458, Ile461 and Phe462) make a series of important interactions with Tfb1PH and their importance is validated in ITC and transactivation studies using mutants of EBNA2. In addition, NMR studies indicate that the same region of EBNA2 is also required for binding to the KIX domain of CBP/p300. This study provides an atomic level description of interactions involving the TAD of EBNA2 with target host proteins. In addition, comparison of the Tfb1PH-EBNA2448–471 complex with structures of the TAD of p53 and VP16 bound to Tfb1PH highlights the versatility of

  8. Structural and functional characterization of a complex between the acidic transactivation domain of EBNA2 and the Tfb1/p62 subunit of TFIIH.

    PubMed

    Chabot, Philippe R; Raiola, Luca; Lussier-Price, Mathieu; Morse, Thomas; Arseneault, Genevieve; Archambault, Jacques; Omichinski, James G

    2014-03-01

    Infection with the Epstein-Barr virus (EBV) can lead to a number of human diseases including Hodgkin's and Burkitt's lymphomas. The development of these EBV-linked diseases is associated with the presence of nine viral latent proteins, including the nuclear antigen 2 (EBNA2). The EBNA2 protein plays a crucial role in EBV infection through its ability to activate transcription of both host and viral genes. As part of this function, EBNA2 associates with several host transcriptional regulatory proteins, including the Tfb1/p62 (yeast/human) subunit of the general transcription factor IIH (TFIIH) and the histone acetyltransferase CBP(CREB-binding protein)/p300, through interactions with its C-terminal transactivation domain (TAD). In this manuscript, we examine the interaction of the acidic TAD of EBNA2 (residues 431-487) with the Tfb1/p62 subunit of TFIIH and CBP/p300 using nuclear magnetic resonance (NMR) spectroscopy, isothermal titration calorimeter (ITC) and transactivation studies in yeast. NMR studies show that the TAD of EBNA2 binds to the pleckstrin homology (PH) domain of Tfb1 (Tfb1PH) and that residues 448-471 (EBNA2₄₄₈₋₄₇₁) are necessary and sufficient for this interaction. NMR structural characterization of a Tfb1PH-EBNA2₄₄₈₋₄₇₁ complex demonstrates that the intrinsically disordered TAD of EBNA2 forms a 9-residue α-helix in complex with Tfb1PH. Within this helix, three hydrophobic amino acids (Trp458, Ile461 and Phe462) make a series of important interactions with Tfb1PH and their importance is validated in ITC and transactivation studies using mutants of EBNA2. In addition, NMR studies indicate that the same region of EBNA2 is also required for binding to the KIX domain of CBP/p300. This study provides an atomic level description of interactions involving the TAD of EBNA2 with target host proteins. In addition, comparison of the Tfb1PH-EBNA2₄₄₈₋₄₇₁ complex with structures of the TAD of p53 and VP16 bound to Tfb1

  9. Cloning, expression analysis, and molecular modeling of the gamma-aminobutyric acid receptor alpha2 subunit gene from the common cutworm, Spodoptera litura.

    PubMed

    Zuo, Hongliang; Gao, Lu; Hu, Zhen; Liu, Haiyuan; Zhong, Guohua

    2013-01-01

    Intensive research on the molecule structures of the gamma-nminobutyric acid (GABA) receptor in agricultural pests has great significance to the mechanism investigation, resistance prevention, and molecular design of novel pesticides. The GABA receptor a2 (SlGABARα2) subunit gene in Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) was cloned using the technologies of reverse transcription PCR and rapid amplification of cDNA ends. The gemonic DNA sequence of SlGABARα2 has 5164 bp with 8 exons and 7 introns that were in accordance with the GT-AG splicing formula. The complete mRNA sequence of SlGABARα2 was 1965 bp, with an open reading frame of 1500 bp encoding a protein of 499 amino acids. The GABA receptor is highly conserved among insects. The conserved regions include several N-glycosylation, Oglycosylation, and phosphorylation sites, as well as 4 transmembrane domains. The identities that SlGABARα2 shared with the GABA receptor a2 subunit of Spodoptera exigua, Heliothis virescens, Chilo suppressalis, Plutella xylostella, Bombyx mori ranged from 99.2% to 87.2% at the amino acid level. The comparative 3-dimensional model of SlGABARα2 showed that its tertiary structure was composed of 4 major α-helixes located at the 4 putative transmembrane domains on one side, with some β-sheets and 1 small α-helix on the other side. SlGABARα2 may be attached to the membrane by 4 α-helixes that bind ions in other conserved domains to transport them through the membrane. The results of quantitative real time PCR demonstrated that SlGABARα2 was expressed in all developmental stages of S. litura. The relative expression level of SlGABARα2 was the lowest in eggs and increased with larval growth, while it declined slightly in pupae and reached the peak in adults. The expressions of SlGABARα2 in larvae varied among different tissues; it was extremely high in the brain but was low in the midgut, epicuticle, Malpighian tube, and fat body. PMID:23909412

  10. Amino acid sequence of the oligomycin sensitivity-conferring protein (OSCP) of beef-heart mitochondria and its homology with the delta-subunit of the F1-ATPase of Escherichia coli.

    PubMed

    Ovchinnikov, Y A; Modyanov, N N; Grinkevich, V A; Aldanova, N A; Trubetskaya, O E; Nazimov, I V; Hundal, T; Ernster, L

    1984-01-23

    The complete amino acid sequence of the oligomycin sensitivity-conferring protein (OSCP) of beef-heart mitochondria is reported. The protein contains 190 amino acids and has a molecular mass of 20 967. Its structure is characterized by a concentration of charged amino acids in the two terminal segments (N 1-77 and C 128-190) of the protein, whereas its central region is more hydrophobic. The earlier reported homology of the protein with the delta-subunit of E. coli F1, based on the terminal amino acid sequences of OSCP, is further substantiated.

  11. A single amino acid in the F2 subunit of respiratory syncytial virus fusion protein alters growth and fusogenicity

    PubMed Central

    Schickli, Jeanne H.; Tang, Roderick S.

    2013-01-01

    Respiratory syncytial virus (RSV) causes severe lower respiratory tract infection in children, especially in infants less than 1 year of age. There are currently no licensed vaccines against RSV. rA2ΔM2-2 is a promising live-attenuated vaccine candidate that is currently being evaluated in the clinic. Attenuation of rA2ΔM2-2 is achieved by a single deletion of the M2-2 gene, which disrupts the balance between viral transcription and replication. Whilst performing a manufacturing feasibility study in a serum-free adapted Vero cell line, differences in growth kinetics and cytopathic effect (CPE) were identified between two rA2ΔM2-2 vaccine candidates. Comparative sequence analysis identified four amino acid differences between the two vaccine viruses. Recombinant rA2ΔM2-2 viruses carrying each of the four amino acid differences identified a K66E mutation in the F2 fragment of the fusion (F) protein as the cause of the growth and CPE differences. Syncytium-formation experiments with RSV F protein carrying mutations at aa 66 suggested that a change in charge at this residue within the F2 fragment can have a significant impact on fusion. PMID:24092758

  12. The noncompetitive blocker ( sup 3 H)chlorpromazine labels three amino acids of the acetylcholine receptor gamma subunit: Implications for the alpha-helical organization of regions MII and for the structure of the ion channel

    SciTech Connect

    Revah, F.; Galzi, J.L.; Giraudat, J.; Haumont, P.Y.; Lederer, F.; Changeux, J.P. )

    1990-06-01

    Labeling studies of Torpedo marmorata nicotinic acetylcholine receptor with the noncompetitive channel blocker ({sup 3}H)chlorpromazine have led to the initial identification of amino acids plausibly participating to the walls of the ion channel on the alpha, beta, and delta subunits. We report here results obtained with the gamma subunit, which bring additional information on the structure of the channel. After photolabeling of the membrane-bound receptor under equilibrium conditions in the presence of agonist and with or without phencyclidine (a specific ligand for the high-affinity site for noncompetitive blockers), the purified labeled gamma subunit was digested with trypsin, and the resulting fragments were fractionated by HPLC. Sequence analysis of peptide mixtures containing various amounts of highly hydrophobic fragments showed that three amino acids are labeled by ({sup 3}H)chlorpromazine in a phencyclidine-sensitive manner: Thr-253, Ser-257, and Leu-260. These residues all belong to the hydrophobic and putative transmembrane region MII of the gamma subunit. Their distribution along the sequence is consistent with an alpha-helical organization of this segment. The ({sup 3}H)chlorpromazine-labeled amino acids are conserved at homologous positions in the known sequences of other ligand-gated ion channels and may, thus, play a critical role in ion-transport mechanisms.

  13. Role of trypsin-like cleavage at arginine 192 in the enzymatic and cytotonic activities of Escherichia coli heat-labile enterotoxin.

    PubMed Central

    Grant, C C; Messer, R J; Cieplak, W

    1994-01-01

    Previous studies of cholera toxin and Escherichia coli heat-labile enterotoxin have suggested that proteolytic cleavage plays an important role in the expression of ADP-ribosyltransferase activity and toxicity. Specifically, several studies have implicated a trypsin-like cleavage at arginine 192, which lies within an exposed region subtended by a disulfide bond in the intact A subunit, in toxicity. To investigate the role of this modification in the enzymatic and cytotonic properties of heat-labile enterotoxin, the response of purified, recombinant A subunit to tryptic activation and the effect of substituting arginine 192 with glycine on the activities of the holotoxin were examined. The recombinant A subunit of heat-labile enterotoxin exhibited significant levels of ADP-ribosyltransferase activity that were only nominally increased (approximately twofold) by prior limited trypsinolysis. The enzymatic activity also did not appear to be affected by auto-ADP-ribosylation that occurs during the high-level synthesis of the recombinant A subunit in E. coli. A mutant form of the holotoxin containing the arginine 192-to-glycine substitution exhibited levels of cytotonic activity for CHO cells that were similar to that of the untreated, wild-type holotoxin but exhibited a marked delay in the ability to increase intracellular levels of cyclic AMP in Caco-2 cells. The results indicate that trypsin-like cleavage of the A subunit of E. coli heat-labile enterotoxin at arginine 192 is not requisite to the expression of enzymatic activity by the A subunit and further reveal that this modification, although it enhances the biological and enzymatic activities of the toxin, is not absolutely required for the enterotoxin to elicit cytotonic effects. Images PMID:7927684

  14. Phenotypic consequences of deletion of the {gamma}{sub 3}, {alpha}{sub 5}, or {beta}{sub 3} subunit of the type A {gamma}-aminobutyric acid receptor in mice

    SciTech Connect

    Culia, C.T.; Stubbs, L.J.; Montgomery, C.S.; Russell, L.B.; Rinchik, E.M.

    1994-03-29

    Three genes (Gabrg3, Gabra5, and Gabrb3) encoding the {gamma}{sub 3}, {alpha}{sub 5}, and {beta}{sub 3} subunits of the type A {gamma}-aminobutyric acid receptor, respectively, are known to map near the pink-eyed dilution (p) locus in mouse chromosome 7. This region shares homology with a segment of human chromosome 15 that is implicated in Angelman syndrome, an inherited neurobehavioral disorder. By mapping Gabrg3-Gabra5-Gabrb3-telomere. Like Gabrb3, neither the Gabra5 nor Gabrg3 gene is functionally imprinted in adult mouse brain. Mice deleted for all three subunits die at birth with a cleft palate, although there are rare survivors ({approximately} 5%) that do not have a cleft palate but do exhibit a neurological abnormality characterized by tremor, jerky gait, and runtiness. The authors have previously suggested that deficiency of the {beta}{sub 3} subunit may be responsible for the clefting defect. Most notably, however, in this report they describe mice carrying two overlapping, complementing p deletions that fail to express the {gamma}{sub 3} transcript, as well as mice from another line that express neither the {gamma}{sub 3} nor {alpha}{sub 5} transcripts. Surprisingly, mice from both of these lines are phenotypically normal and do not exhibit any of the neurological symptoms characteristic of the rare survivors that are deleted for all three ({gamma}{sub 3}, {alpha}{sub 5}, and {beta}{sub 3}) subunits. These mice therefore provide a whole-organism type A {gamma}-aminobutyric-acid receptor background that is devoid of any receptor subtypes that normally contain the {gamma}{sub 3} and/or {alpha}{sub 5} subunits. The absence of an overt neurological phenotype in mice lacking the {gamma}{sub 3} and/or {alpha}{sub 5} subunits also suggests that mutations in these genes are unlikely to provide useful animal models for Angelman syndrome in humans.

  15. The pleiotropic role of the 26S proteasome subunit RPN10 in Arabidopsis growth and development supports a substrate-specific function in abscisic acid signaling.

    PubMed

    Smalle, Jan; Kurepa, Jasmina; Yang, Peizhen; Emborg, Thomas J; Babiychuk, Elena; Kushnir, Sergei; Vierstra, Richard D

    2003-04-01

    The 26S proteasome is an essential protease complex responsible for removing most short-lived intracellular proteins, especially those modified with polyubiquitin chains. We show here that an Arabidopsis mutant expressing an altered RPN10 subunit exhibited a pleiotropic phenotype consistent with specific changes in 26S proteasome function. rpn10-1 plants displayed reduced seed germination, growth rate, stamen number, genetic transmission through the male gamete, and hormone-induced cell division, which can be explained partially by a constitutive downregulation of the key cell cycle gene CDKA;1. rpn10-1 also was more sensitive to abscisic acid (ABA), salt, and sucrose stress and to DNA-damaging agents and had decreased sensitivity to cytokinin and auxin. Most of the phenotypes can be explained by a hypersensitivity to ABA, which is reflected at the molecular level by the selective stabilization of the short-lived ABA-signaling protein ABI5. Collectively, these results indicate that RPN10 affects a number of regulatory processes in Arabidopsis likely by directing specific proteins to the 26S proteasome for degradation. A particularly important role may be in regulating the responses to signals promulgated by ABA.

  16. Characterization of heme-deficient neuronal nitric-oxide synthase reveals a role for heme in subunit dimerization and binding of the amino acid substrate and tetrahydrobiopterin.

    PubMed

    Klatt, P; Pfeiffer, S; List, B M; Lehner, D; Glatter, O; Bächinger, H P; Werner, E R; Schmidt, K; Mayer, B

    1996-03-29

    Neuronal nitric-oxide (NO) synthase contains FAD, FMN, heme, and tetrahydrobiopterin as prosthetic groups and represents a multifunctional oxidoreductase catalyzing oxidation of L-arginine to L-citrulline and NO, reduction of molecular oxygen to superoxide, and electron transfer to cytochromes. To investigate how binding of the prosthetic heme moiety is related to enzyme activities, cofactor, and L-arginine binding, as well as to secondary and quaternary protein structure, we have purified and characterized heme-deficient neuronal NO synthase. The heme-deficient enzyme, which had preserved its cytochrome c reductase activity, contained FAD and FMN, but virtually no tetrahydrobiopterin, and exhibited only marginal NO synthase activity. By means of gel filtration and static light scattering, we demonstrate that the heme-deficient enzyme is a monomer and provide evidence that heme is the sole prosthetic group controlling the quaternary structure of neuronal NO synthase. CD spectroscopy showed that most of the structural elements found in the dimeric holoenzyme were conserved in heme-deficient monomeric NO synthase. However, in spite of being properly folded, the heme-deficient enzyme did bind neither tetrahydrobiopterin nor the substrate analog N(G)-nitro-L-arginine. Our results demonstrate that the prosthetic heme group of neuronal NO synthase is requisite for dimerization of enzyme subunits and for the binding of amino acid substrate and tetrahydrobiopterin.

  17. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing gamma-aminobutyric acid type A receptors.

    PubMed

    Caraiscos, Valerie B; Elliott, Erin M; You-Ten, Kong E; Cheng, Victor Y; Belelli, Delia; Newell, J Glen; Jackson, Michael F; Lambert, Jeremy J; Rosahl, Thomas W; Wafford, Keith A; MacDonald, John F; Orser, Beverley A

    2004-03-01

    The principal inhibitory neurotransmitter in the mammalian brain, gamma-aminobutyric acid (GABA), is thought to regulate memory processes by activating transient inhibitory postsynaptic currents. Here we describe a nonsynaptic, tonic form of inhibition in mouse CA1 pyramidal neurons that is generated by a distinct subpopulation of GABA type A receptors (GABA(A)Rs). This tonic inhibitory conductance is predominantly mediated by alpha5 subunit-containing GABA(A)Rs (alpha5GABA(A)Rs) that have different pharmacological and kinetic properties compared to postsynaptic receptors. GABA(A)Rs that mediate the tonic conductance are well suited to detect low, persistent, ambient concentrations of GABA in the extracellular space because they are highly sensitive to GABA and desensitize slowly. Moreover, the tonic current is highly sensitive to enhancement by amnestic drugs. Given the restricted expression of alpha5GABA(A)Rs to the hippocampus and the association between reduced alpha5GABA(A)R function and improved memory performance in behavioral studies, our results suggest that tonic inhibition mediated by alpha5GABA(A)Rs in hippocampal pyramidal neurons plays a key role in cognitive processes.

  18. Fate and lability of silver in soils: Effect of ageing

    EPA Science Inventory

    The fate and lability of added soluble Ag in soils over time was examined by measurement of labile metal (E-value) by isotopic dilution using the 110mAg radioactive isotope and the solid-phase speciation of Ag by X-ray absorption near edge structure (XANES) spectrosco...

  19. On the activation of bovine plasma factor XIII. Amino acid sequence of the peptide released by thrombin and the terminal residues of the subunit polypeptides.

    PubMed

    Nakamura, S; Iwanaga, S; Suzuki, T

    1975-12-01

    A blood coagulation factor, Factor XIII, was highly purified from bovine fresh plasma by a method similar to those used for human plasma Factor XIII. The isolated Factor XIII consisted of two subunit polypeptides, a and b chains, with molecular weights of 79,000 +/- 2,000 and 75,000 +/- 2,000, respectively. In the conversion of Factor XIII to the active enzyme, Factor XIIIa, by bovine thrombin [EC 3.4.21.5], a peptide was liberated. This peptide, designated tentatively as "activation peptide," was isolated by gel-filtration on a Sephadex G-75 column. It contained a total of 37 amino acid residues with a masked N-terminal residue and C-terminal arginine. The whole amino acid sequence of "Activation peptide" was established by the dansyl-Edman method and standard enzymatic techniques, and the masked N-terminal residue was identified as N-acetylserine by using a rat liver acylamino acid-releasing enzyme. This enzyme specifically cleaved the N-acetylserylglutamyl peptide bond serine and the remaining peptide, which was now reactive to 1-dimethylamino-naphthalene-5-sulfonyl chloride. A comparison of the sequences of human and bovine "Activation peptide" revealed five amino acids replacements, Ser-3 to Thr; Gly-5 to Arg; Ile-14 to Val; Thr-18 to Asn, and Pro-26 to Leu. Another difference was the deletion of Leu-34 in the human peptide. Adsorption chromatography on a hydroxylapatite column in the presence of 0.1% sodium dodecyl sulfate was developed as a preparative procedure for the resolution of the two subunit polypeptides, a or a' chain and b chain, constituting the protein molecule of Factor XIII or Factor XIIIa. End group analyses on the isolated pure chains revealed that the structural change of Factor XIII during activation with thrombin occurs only in the N-terminal portion of the a chain, not in the N-terminal end of the b chain or in the C-terminal ends of the a and b chains. From these results, it was concluded that the activation of bovine plasma Factor XIII

  20. AMP-activated Protein Kinase α2 Subunit Is Required for the Preservation of Hepatic Insulin Sensitivity by n-3 Polyunsaturated Fatty Acids

    PubMed Central

    Jelenik, Tomas; Rossmeisl, Martin; Kuda, Ondrej; Jilkova, Zuzana Macek; Medrikova, Dasa; Kus, Vladimir; Hensler, Michal; Janovska, Petra; Miksik, Ivan; Baranowski, Marcin; Gorski, Jan; Hébrard, Sophie; Jensen, Thomas E.; Flachs, Pavel; Hawley, Simon; Viollet, Benoit; Kopecky, Jan

    2010-01-01

    OBJECTIVE The induction of obesity, dyslipidemia, and insulin resistance by high-fat diet in rodents can be prevented by n-3 long-chain polyunsaturated fatty acids (LC-PUFAs). We tested a hypothesis whether AMP-activated protein kinase (AMPK) has a role in the beneficial effects of n-3 LC-PUFAs. RESEARCH DESIGN AND METHODS Mice with a whole-body deletion of the α2 catalytic subunit of AMPK (AMPKα2−/−) and their wild-type littermates were fed on either a low-fat chow, or a corn oil-based high-fat diet (cHF), or a cHF diet with 15% lipids replaced by n-3 LC-PUFA concentrate (cHF+F). RESULTS Feeding a cHF diet induced obesity, dyslipidemia, hepatic steatosis, and whole-body insulin resistance in mice of both genotypes. Although cHF+F feeding increased hepatic AMPKα2 activity, the body weight gain, dyslipidemia, and the accumulation of hepatic triglycerides were prevented by the cHF+F diet to a similar degree in both AMPKα2−/− and wild-type mice in ad libitum-fed state. However, preservation of hepatic insulin sensitivity by n-3 LC-PUFAs required functional AMPKα2 and correlated with the induction of adiponectin and reduction in liver diacylglycerol content. Under hyperinsulinemic-euglycemic conditions, AMPKα2 was essential for preserving low levels of both hepatic and plasma triglycerides, as well as plasma free fatty acids, in response to the n-3 LC-PUFA treatment. CONCLUSIONS Our results show that n-3 LC-PUFAs prevent hepatic insulin resistance in an AMPKα2-dependent manner and support the role of adiponectin and hepatic diacylglycerols in the regulation of insulin sensitivity. AMPKα2 is also essential for hypolipidemic and antisteatotic effects of n-3 LC-PUFA under insulin-stimulated conditions. PMID:20693347

  1. The human platelet alloantigens Br(a) and Brb are associated with a single amino acid polymorphism on glycoprotein Ia (integrin subunit alpha 2).

    PubMed Central

    Santoso, S; Kalb, R; Walka, M; Kiefel, V; Mueller-Eckhardt, C; Newman, P J

    1993-01-01

    The human GPIa/IIa complex, also known as integrin alpha 2 beta 1, serves as a major receptor for collagen in platelets and other cell types. In addition to its role in platelet adhesion to extracellular matrix, GPIa/IIa is also known to bear the clinically important Br(a) and Brb alloantigenic determinants, which can result in antibody-mediated platelet destruction. Immunochemical studies showed that the Br antigenic epitopes reside solely on the GP Ia subunit and do not depend on sialic acid residues. To define the polymorphism responsible for the Br alloantigen system platelet RNA PCR technique, was used to amplify GPIa mRNA transcripts. Nucleotide sequence analysis of the amplified platelet GPIa cDNA from Br(a/a) and Brb/b individuals revealed a single A<-->G polymorphism at base 1648. MnlI RFLP analysis of cDNA from serologically determined individuals confirmed that this polymorphism segregates with Br phenotype. This single base change results in a substitution of Lys (AAG) in Br(a) to Glu (GAG) in Brb at amino acid residue 505 In spite of the reversal in charge at this position, however, we found no difference in the ability of Bra and Brb homozygous platelets to adhere to collagens types I, III, or V, nor did anti-Bra or anti-Brb alloantibodies interfere with platelet adhesion to any of these fibrillar collagens. The identification of the nucleotide substitution that defines the Bra/Brb alloantigen system will now permit both pre- and postnatal diagnosis for Br phenotype. Images PMID:7901236

  2. Phylogenetic diversity of ultraplankton plastid small-subunit rRNA genes recovered in environmental nucleic acid samples from the Pacific and Atlantic coasts of the United States.

    PubMed

    Rappé, M S; Suzuki, M T; Vergin, K L; Giovannoni, S J

    1998-01-01

    The scope of marine phytoplankton diversity is uncertain in many respects because, like bacteria, these organisms sometimes lack defining morphological characteristics and can be a challenge to grow in culture. Here, we report the recovery of phylogenetically diverse plastid small-subunit (SSU) rRNA gene (rDNA) clones from natural plankton populations collected in the Pacific Ocean off the mouth of Yaquina Bay, Oreg. (OCS clones), and from the eastern continental shelf of the United States off Cape Hatteras, N.C. (OM clones). SSU rRNA gene clone libraries were prepared by amplifying rDNAs from nucleic acids isolated from plankton samples and cloning them into plasmid vectors. The PCR primers used for amplification reactions were designed to be specific for bacterial SSU rRNA genes; however, plastid genes have a common phylogenetic origin with bacteria and were common in both SSU rRNA gene clone libraries. A combination of restriction fragment length polymorphism analyses, nucleic acid sequencing, and taxon-specific oligonucleotide probe hybridizations revealed that 54 of the 116 OCS gene clones were of plastid origin. Collectively, clones from the OCS and OM libraries formed at least eight unique lineages within the plastid radiation, including gene lineages related to the classes Bacillariophyceae, Cryptophyceae, Prymnesiophyceae, Chrysophyceae, and Prasinophyceae; for a number of unique clones, no close phylogenetic neighbors could be identified with confidence. Only a group of two OCS rRNA gene clones showed close identity to the plastid SSU rRNA gene sequence of a cultured organism [Emiliania huxleyi (Lohmann) Hay and Mohler; 99.8% similar]. The remaining clones could not be identified to the genus or species level. Although cryptic species are not as prevalent among phytoplankton as they are among their bacterial counterparts, this genetic survey nonetheless uncovered significant new information about phytoplankton diversity. PMID:9435081

  3. Glycosylation efficiencies on different solid supports using a hydrogenolysis-labile linker

    PubMed Central

    Collot, Mayeul; Eller, Steffen; Weishaupt, Markus

    2013-01-01

    Summary Automated oligosaccharide assembly requires suitable linkers to connect the first monosaccharide to a solid support. A new hydrogenolysis-labile linker that is stable under both acidic and basic conditions was designed, synthesized and coupled to different resins. Glycosylation and cleavage efficiencies on these functionalized solid supports were investigated, and restrictions for the choice of solid support for oligosaccharide synthesis were found. PMID:23400514

  4. Acid-labile mPEG-vinyl ether-1,2-dioleylglycerol lipids with tunable pH sensitivity: synthesis and structural effects on hydrolysis rates, DOPE liposome release performance, and pharmacokinetics.

    PubMed

    Shin, Junhwa; Shum, Pochi; Grey, Jessica; Fujiwara, Shin-ichi; Malhotra, Guarov S; González-Bonet, Andres; Hyun, Seok-Hee; Moase, Elaine; Allen, Theresa M; Thompson, David H

    2012-11-01

    A family of 3-methoxypoly(ethylene glycol)-vinyl ether-1,2-dioleylglycerol (mPEG-VE-DOG) lipopolymer conjugates, designed on the basis of DFT calculations to possess a wide range of proton affinities, was synthesized and tested for their hydrolysis kinetics in neutral and acidic buffers. Extruded ∼100 nm liposomes containing these constructs in ≥90 mol % 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) produced dispersions that retained their calcein cargo for more than 2 days at pH 7.5, but released the encapsulated contents over a wide range of time scales as a function of the electronic properties of the vinyl ether linkage, the solution pH, and the mPEG-VE-DOG composition in the membrane. The in vivo performance of two different 90:10 DOPE:mPEG-VE-DOG compositions was also evaluated for blood circulation time and biodistribution in mice, using (125)I-tyraminylinulin as a label. The pharmacokinetic profiles gave a t(1/2) of 7 and 3 h for 90:10 DOPE:ST302 and 90:10 DOPE:ST502, respectively, with the liposomes being cleared predominantly by liver and spleen uptake. The behavior of these DOPE:mPEG-VE-DOG formulations is consistent with their relative rates of vinyl ether hydrolysis, i.e., the more acid-sensitive mPEG-VE-DOG derivatives produced faster leakage rates from DOPE:mPEG-VE-DOG liposomes, but decreased the blood circulation times in mice. These findings suggest that the vinyl ether-based PEG-lipid derivatives are promising agents for stabilizing acid-sensitive DOPE liposomes to produce formulations with a priori control over their pH responsiveness in vitro. Our data also suggest, however, that the same factors that contribute to enhanced acid sensitivity of the DOPE:mPEG-VE-DOG dispersions are also likely responsible for their reduced pharmacokinetic profiles. PMID:23030381

  5. Acid-labile mPEG-vinyl ether-1,2-dioleylglycerol lipids with tunable pH sensitivity: synthesis and structural effects on hydrolysis rates, DOPE liposome release performance, and pharmacokinetics.

    PubMed

    Shin, Junhwa; Shum, Pochi; Grey, Jessica; Fujiwara, Shin-ichi; Malhotra, Guarov S; González-Bonet, Andres; Hyun, Seok-Hee; Moase, Elaine; Allen, Theresa M; Thompson, David H

    2012-11-01

    A family of 3-methoxypoly(ethylene glycol)-vinyl ether-1,2-dioleylglycerol (mPEG-VE-DOG) lipopolymer conjugates, designed on the basis of DFT calculations to possess a wide range of proton affinities, was synthesized and tested for their hydrolysis kinetics in neutral and acidic buffers. Extruded ∼100 nm liposomes containing these constructs in ≥90 mol % 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) produced dispersions that retained their calcein cargo for more than 2 days at pH 7.5, but released the encapsulated contents over a wide range of time scales as a function of the electronic properties of the vinyl ether linkage, the solution pH, and the mPEG-VE-DOG composition in the membrane. The in vivo performance of two different 90:10 DOPE:mPEG-VE-DOG compositions was also evaluated for blood circulation time and biodistribution in mice, using (125)I-tyraminylinulin as a label. The pharmacokinetic profiles gave a t(1/2) of 7 and 3 h for 90:10 DOPE:ST302 and 90:10 DOPE:ST502, respectively, with the liposomes being cleared predominantly by liver and spleen uptake. The behavior of these DOPE:mPEG-VE-DOG formulations is consistent with their relative rates of vinyl ether hydrolysis, i.e., the more acid-sensitive mPEG-VE-DOG derivatives produced faster leakage rates from DOPE:mPEG-VE-DOG liposomes, but decreased the blood circulation times in mice. These findings suggest that the vinyl ether-based PEG-lipid derivatives are promising agents for stabilizing acid-sensitive DOPE liposomes to produce formulations with a priori control over their pH responsiveness in vitro. Our data also suggest, however, that the same factors that contribute to enhanced acid sensitivity of the DOPE:mPEG-VE-DOG dispersions are also likely responsible for their reduced pharmacokinetic profiles.

  6. Second Order Rate Constants of Donor-Strand Exchange Reveal Individual Amino Acid Residues Important in Determining the Subunit Specificity of Pilus Biogenesis

    NASA Astrophysics Data System (ADS)

    Leney, Aneika C.; Phan, Gilles; Allen, William; Verger, Denis; Waksman, Gabriel; Radford, Sheena E.; Ashcroft, Alison E.

    2011-07-01

    P pili are hair-like adhesive structures that are assembled on the outer membrane (OM) of uropathogenic Escherichia coli by the chaperone-usher pathway. In this pathway, chaperone-subunit complexes are formed in the periplasm and targeted to an OM assembly platform, the usher. Pilus subunits display a large groove caused by a missing β-strand which, in the chaperone-subunit complex, is provided by the chaperone. At the usher, pilus subunits are assembled in a mechanism termed "donor-strand exchange (DSE)" whereby the β-strand provided by the chaperone is exchanged by the incoming subunit's N-terminal extension (Nte). This occurs in a zip-in-zip-out fashion, starting with a defined residue, P5, in the Nte inserting into a defined site in the groove, the P5 pocket. Here, electrospray ionization-mass spectrometry (ESI-MS) has been used to measure DSE rates in vitro. Second order rate constants between the chaperone-subunit complex and a range of Nte peptides substituted at different residues confirmed the importance of the P5 residue of the Nte in determining the rate of DSE. In addition, residues either side of the P5 residue (P5 + 1 and P5 - 1), the side-chains of which are directed away from the subunit groove, also modulate the rates of DSE, most likely by aiding the docking of the Nte into the P5 pocket on the accepting subunit prior to DSE. The ESI-MS approach developed is applicable to the measurement of rates of DSE in pilus biogenesis in general and demonstrates the scope of ESI-MS in determining biomolecular processes in molecular detail.

  7. Dissolved organic carbon lability increases with water residence time in the alluvial aquifer of a river floodplain ecosystem

    NASA Astrophysics Data System (ADS)

    Helton, Ashley M.; Wright, Meredith S.; Bernhardt, Emily S.; Poole, Geoffrey C.; Cory, Rose M.; Stanford, Jack A.

    2015-04-01

    We assessed spatial and temporal patterns of dissolved organic carbon (DOC) lability and composition throughout the alluvial aquifer of the 16 km2 Nyack Floodplain in northwest Montana, USA. Water influx to the aquifer derives almost exclusively from the Middle Fork of the Flathead River, and water residence times within the aquifer range from days to months. Across seasons and channel discharge conditions, we measured DOC concentration, lability, and optical properties of aquifer water sampled from 12 wells, both near and ~3 m below the water table. Concentrations of DOC were typically low (542 ± 22.7 µg L-1; mean ± se), and the percentage of labile DOC averaged 18 ± 12% during 3 day laboratory assays. Parallel factor analysis of fluorescence excitation-emission matrices revealed two humic-like and two amino acid-like fluorescence groups. Total DOC, humic-like components, and specific UV absorbance decreased with water residence time, consistent with sorption to aquifer sediments. However, labile DOC (both concentration and fraction) increased with water residence time, suggesting a concurrent influx or production of labile DOC. Thus, although the carbon-poor, oxygen-rich aquifer is a net sink for DOC, recalcitrant DOC appears to be replaced with more labile DOC along aquifer flow paths. Our observation of DOC production in long flow paths contrasts with studies of hyporheic DOC consumption along short (centimeters to meters) flow paths and highlights the importance of understanding the role of labile organic matter production and/or influx in alluvial aquifer carbon cycling.

  8. Positive regulation by γ-aminobutyric acid B receptor subunit-1 of chondrogenesis through acceleration of nuclear translocation of activating transcription factor-4.

    PubMed

    Takahata, Yoshifumi; Hinoi, Eiichi; Takarada, Takeshi; Nakamura, Yukari; Ogawa, Shinya; Yoneda, Yukio

    2012-09-28

    A view that signaling machineries for the neurotransmitter γ-aminobutyric acid (GABA) are functionally expressed by cells outside the central nervous system is now prevailing. In this study, we attempted to demonstrate functional expression of GABAergic signaling molecules by chondrocytes. In cultured murine costal chondrocytes, mRNA was constitutively expressed for metabotropic GABA(B) receptor subunit-1 (GABA(B)R1), but not for GABA(B)R2. Immunohistochemical analysis revealed the predominant expression of GABA(B)R1 by prehypertrophic to hypertrophic chondrocytes in tibial sections of newborn mice. The GABA(B)R agonist baclofen failed to significantly affect chondrocytic differentiation determined by Alcian blue staining and alkaline phosphatase activity in cultured chondrocytes, whereas newborn mice knocked out of GABA(B)R1 (KO) showed a decreased body size and delayed calcification in hyoid bone and forelimb and hindlimb digits. Delayed calcification was also seen in cultured metatarsals from KO mice with a marked reduction of Indian hedgehog gene (Ihh) expression. Introduction of GABA(B)R1 led to synergistic promotion of the transcriptional activity of activating transcription factor-4 (ATF4) essential for normal chondrogenesis, in addition to facilitating ATF4-dependent Ihh promoter activation. Although immunoreactive ATF4 was negligibly detected in the nucleus of chondrocytes from KO mice, ATF4 expression was again seen in the nucleus and cytoplasm after the retroviral introduction of GABA(B)R1 into cultured chondrocytes from KO mice. In nuclear extracts of KO chondrocytes, a marked decrease was seen in ATF4 DNA binding. These results suggest that GABA(B)R1 positively regulates chondrogenesis through a mechanism relevant to the acceleration of nuclear translocation of ATF4 for Ihh expression in chondrocytes. PMID:22879594

  9. Prolonged Exposure of Primary Human Muscle Cells to Plasma Fatty Acids Associated with Obese Phenotype Induces Persistent Suppression of Muscle Mitochondrial ATP Synthase β Subunit.

    PubMed

    Tran, Lee; Hanavan, Paul D; Campbell, Latoya E; De Filippis, Elena; Lake, Douglas F; Coletta, Dawn K; Roust, Lori R; Mandarino, Lawrence J; Carroll, Chad C; Katsanos, Christos S

    2016-01-01

    Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = - 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish

  10. The catalytic subunit of the system L1 amino acid transporter (slc7a5) facilitates nutrient signalling in mouse skeletal muscle.

    PubMed

    Poncet, Nadège; Mitchell, Fiona E; Ibrahim, Adel F M; McGuire, Victoria A; English, Grant; Arthur, J Simon C; Shi, Yun-Bo; Taylor, Peter M

    2014-01-01

    The System L1-type amino acid transporter mediates transport of large neutral amino acids (LNAA) in many mammalian cell-types. LNAA such as leucine are required for full activation of the mTOR-S6K signalling pathway promoting protein synthesis and cell growth. The SLC7A5 (LAT1) catalytic subunit of high-affinity System L1 functions as a glycoprotein-associated heterodimer with the multifunctional protein SLC3A2 (CD98). We generated a floxed Slc7a5 mouse strain which, when crossed with mice expressing Cre driven by a global promoter, produced Slc7a5 heterozygous knockout (Slc7a5+/-) animals with no overt phenotype, although homozygous global knockout of Slc7a5 was embryonically lethal. Muscle-specific (MCK Cre-mediated) Slc7a5 knockout (MS-Slc7a5-KO) mice were used to study the role of intracellular LNAA delivery by the SLC7A5 transporter for mTOR-S6K pathway activation in skeletal muscle. Activation of muscle mTOR-S6K (Thr389 phosphorylation) in vivo by intraperitoneal leucine injection was blunted in homozygous MS-Slc7a5-KO mice relative to wild-type animals. Dietary intake and growth rate were similar for MS-Slc7a5-KO mice and wild-type littermates fed for 10 weeks (to age 120 days) with diets containing 10%, 20% or 30% of protein. In MS-Slc7a5-KO mice, Leu and Ile concentrations in gastrocnemius muscle were reduced by ∼40% as dietary protein content was reduced from 30 to 10%. These changes were associated with >50% decrease in S6K Thr389 phosphorylation in muscles from MS-Slc7a5-KO mice, indicating reduced mTOR-S6K pathway activation, despite no significant differences in lean tissue mass between groups on the same diet. MS-Slc7a5-KO mice on 30% protein diet exhibited mild insulin resistance (e.g. reduced glucose clearance, larger gonadal adipose depots) relative to control animals. Thus, SLC7A5 modulates LNAA-dependent muscle mTOR-S6K signalling in mice, although it appears non-essential (or is sufficiently compensated by e.g. SLC7A8 (LAT2)) for maintenance

  11. Prolonged Exposure of Primary Human Muscle Cells to Plasma Fatty Acids Associated with Obese Phenotype Induces Persistent Suppression of Muscle Mitochondrial ATP Synthase β Subunit

    PubMed Central

    Tran, Lee; Hanavan, Paul D.; Campbell, Latoya E.; De Filippis, Elena; Lake, Douglas F.; Coletta, Dawn K.; Roust, Lori R.; Mandarino, Lawrence J.; Carroll, Chad C.; Katsanos, Christos S.

    2016-01-01

    Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = – 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish

  12. γ-Aminobutyric Acid Type A (GABAA) Receptor Subunits Play a Direct Structural Role in Synaptic Contact Formation via Their N-terminal Extracellular Domains*

    PubMed Central

    Brown, Laura E.; Nicholson, Martin W.; Arama, Jessica E.; Thomson, Alex M.

    2016-01-01

    The establishment of cell-cell contacts between presynaptic GABAergic neurons and their postsynaptic targets initiates the process of GABAergic synapse formation. GABAA receptors (GABAARs), the main postsynaptic receptors for GABA, have been recently demonstrated to act as synaptogenic proteins that can single-handedly induce the formation and functional maturation of inhibitory synapses. To establish how the subunit composition of GABAARs influences their ability to induce synaptogenesis, a co-culture model system incorporating GABAergic medium spiny neurons and the HEK293 cells, stably expressing different combinations of receptor subunits, was developed. Analyses of HEK293 cell innervation by medium spiny neuron axons using immunocytochemistry, activity-dependent labeling, and electrophysiology have indicated that the γ2 subunit is required for the formation of active synapses and that its effects are influenced by the type of α/β subunits incorporated into the functional receptor. To further characterize this process, the large N-terminal extracellular domains (ECDs) of α1, α2, β2, and γ2 subunits were purified using the baculovirus/Sf9 cell system. When these proteins were applied to the co-cultures of MSNs and α1/β2/γ2-expressing HEK293 cells, the α1, β2, or γ2 ECD each caused a significant reduction in contact formation, in contrast to the α2 ECD, which had no effect. Together, our experiments indicate that the structural role of GABAARs in synaptic contact formation is determined by their subunit composition, with the N-terminal ECDs of each of the subunits directly participating in interactions between the presynaptic and postsynaptic elements, suggesting the these interactions are multivalent and specific. PMID:27129275

  13. The expression profile of acid-sensing ion channel (ASIC) subunits ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3 in the esophageal vagal afferent nerve subtypes

    PubMed Central

    Dusenkova, Svetlana; Ru, Fei; Surdenikova, Lenka; Nassenstein, Christina; Hatok, Jozef; Dusenka, Robert; Banovcin, Peter; Kliment, Jan; Tatar, Milos

    2014-01-01

    Acid-sensing ion channels (ASICs) have been implicated in esophageal acid sensing and mechanotransduction. However, insufficient knowledge of ASIC subunit expression profile in esophageal afferent nerves hampers the understanding of their role. This knowledge is essential because ASIC subunits form heteromultimeric channels with distinct functional properties. We hypothesized that the esophageal putative nociceptive C-fiber nerves (transient receptor potential vanilloid 1, TRPV1-positive) express multiple ASIC subunits and that the ASIC expression profile differs between the nodose TRPV1-positive subtype developmentally derived from placodes and the jugular TRPV1-positive subtype derived from neural crest. We performed single cell RT-PCR on the vagal afferent neurons retrogradely labeled from the esophagus. In the guinea pig, nearly all (90%–95%) nodose and jugular esophageal TRPV1-positive neurons expressed ASICs, most often in a combination (65–75%). ASIC1, ASIC2, and ASIC3 were expressed in 65–75%, 55–70%, and 70%, respectively, of both nodose and jugular TRPV1-positive neurons. The ASIC1 splice variants ASIC1a and ASIC1b and the ASIC2 splice variant ASIC2b were similarly expressed in both nodose and jugular TRPV1-positive neurons. However, ASIC2a was found exclusively in the nodose neurons. In contrast to guinea pig, ASIC3 was almost absent from the mouse vagal esophageal TRPV1-positive neurons. However, ASIC3 was similarly expressed in the nonnociceptive TRPV1-negative (tension mechanoreceptors) neurons in both species. We conclude that the majority of esophageal vagal nociceptive neurons express multiple ASIC subunits. The placode-derived nodose neurons selectively express ASIC2a, known to substantially reduce acid sensitivity of ASIC heteromultimers. ASIC3 is expressed in the guinea pig but not in the mouse vagal esophageal TRPV1-positive neurons, indicating species differences in ASIC expression. PMID:25190475

  14. Structure-function relationships in the Na,K-ATPase. cap alpha. subunit: site-directed mutagenesis of glutamine-111 to arginine and asparagine-122 to aspartic acid generates a ouabain-resistant enzyme

    SciTech Connect

    Price, E.M.; Lingrel, J.B.

    1988-11-01

    Na,K-ATPases from various species differ greatly in their sensitivity to cardiac glycosides such as ouabain. The sheep and human enzymes are a thousand times more sensitive than the corresponding ones from rat and mouse. To define the region of the ..cap alpha..1 subunit responsible for this differential sensitivity, chimeric cDNAs of sheep and rat were constructed and expressed in ouabain-sensitive HeLa cells. The construct containing the amino-terminal half of the rat ..cap alpha..1 subunit coding region and carboxyl-terminal half of the sheep conferred the ouabain-resistant phenotype to HeLa cells while the reverse construct did not. This indicates that the determinants involved in ouabain sensitivity are located in the amino-terminal half of the Na,K-ATPase ..cap alpha.. subunit. By use of site-directed mutagenesis, the amino acid sequence of the first extracellular domain (H1-H2) of the sheep ..cap alpha..1 subunit was changed to that of the rat. When expressed in HeLa cells, this mutated sheep ..cap alpha..1 construct, like the rat/sheep chimera, was able to confer ouabain resistance to these cells. Furthermore, similar results were observed when HeLa cells were transfected with a sheep ..cap alpha..1 cDNA containing only two amino acid substitutions. The resistant cells, whether transfected with the rat ..cap alpha..1 cDNA, the rat/sheep chimera, or the mutant sheep ..cap alpha..1 cDNAs, exhibited identical biochemical characteristics including ouabain-inhibitable cell growth, /sup 86/Rb/sup +/ uptake, and Na,K-ATPase activity. These results demonstrate that the presence of arginine and aspartic acid on the amino end and carboxyl end, respectively, of the H1-H2 extracellular domain of the Na,K-ATPase ..cap alpha.. subunit together is responsible for the ouabain-resistant character of the rat enzyme and the corresponding residues in the sheep ..cap alpha..1 subunit (glutamine and asparagine) are somehow involved in ouabain binding.

  15. Why is firefly oxyluciferin a notoriously labile substance?

    PubMed

    Maltsev, Oleg V; Nath, Naba K; Naumov, Panče; Hintermann, Lukas

    2014-01-13

    The chemistry of firefly bioluminescence is important for numerous applications in biochemistry and analytical chemistry. The emitter of this bioluminescent system, firefly oxyluciferin, is difficult to handle. The cause of its lability was clarified while its synthesis was reinvestigated. A side product was identified and characterized by NMR spectroscopy and X-ray crystallography. The reason for the lability of oxyluciferin is now ascribed to autodimerization of the coexisting enol and keto forms in a Mannich-type reaction.

  16. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin.

    PubMed Central

    Spangler, B D

    1992-01-01

    Cholera and the related Escherichia coli-associated diarrheal disease are important problems confronting Third World nations and any area where water supplies can become contaminated. The disease is extremely debilitating and may be fatal in the absence of treatment. Symptoms are caused by the action of cholera toxin, secreted by the bacterium Vibrio cholerae, or by a closely related heat-labile enterotoxin, produced by Escherichia coli, that causes a milder, more common traveler's diarrhea. Both toxins bind receptors in intestinal epithelial cells and insert an enzymatic subunit that modifies a G protein associated with the adenylate cyclase complex. The consequent stimulated production of cyclic AMP, or other factors such as increased synthesis of prostaglandins by intoxicated cells, initiates a metabolic cascade that results in the excessive secretion of fluid and electrolytes characteristic of the disease. The toxins have a very high degree of structural and functional homology and may be evolutionarily related. Several effective new vaccine formulations have been developed and tested, and a growing family of endogenous cofactors is being discovered in eukaryotic cells. The recent elucidation of the three-dimensional structure of the heat-labile enterotoxin has provided an opportunity to examine and compare the correlations between structure and function of the two toxins. This information may improve our understanding of the disease process itself, as well as illuminate the role of the toxin in studies of signal transduction and G-protein function. Images PMID:1480112

  17. Metal Atom Lability in Polynuclear Complexes

    PubMed Central

    Eames, Emily V.; Sánchez, Raúl Hernández

    2013-01-01

    The asymmetric oxidation product [(PhL)Fe3(µ-Cl)]2 [PhLH6 = MeC(CH2NHPh-o-NHPh)3], where each trinuclear core is comprised of an oxidized diiron unit [Fe2]5+ and an isolated trigonal pyramidal ferrous site, reacts with MCl2 salts to afford heptanuclear bridged structures of the type (PhL)2Fe6M(µ-Cl)4(thf)2, where M = Fe or Co. Zero-field, 57Fe Mössbauer analysis revealed the Co resides within the trinuclear core subunits, not at the octahedral, halide-bridged MCl4(thf)2 position indicating Co migration into the trinuclear subunits has occurred. Reaction of [(PhL)Fe3(µ-Cl)]2 with CoCl2 (2 or 5 equivalents) followed by precipitation via addition of acetonitrile afforded trinuclear products where one or two irons, respectively, can be substituted within the trinuclear core. Metal atom substitution was verified by 1H NMR, 57Fe Mossbauer, single crystal X-ray diffraction, X-ray fluorescence, and magnetometry analysis. Spectroscopic analysis revealed that the Co atom(s) substitute into the oxidized dimetal unit ([M2]5+), while the M2+ site remains iron-substituted. Magnetic data acquired for the series are consistent with this analysis revealing the oxidized dimetal unit comprises a strongly coupled S = 1 unit ([FeCo]5+) or S = ½ ([Co2]5+) that is weakly antiferromagnetically coupled to the high spin (S = 2) ferrous site. The kinetic pathway for metal substitution was probed via reaction of [(PhL)Fe3(µ-Cl)]2 with isotopically enriched 57FeCl2(thf)2, the results of which suggest rapid equilibration of 57Fe into both the M2+ site and oxidized diiron site, achieving a 1:1 mixture. PMID:23642178

  18. Ring Finger Protein 34 (RNF34) Interacts with and Promotes γ-Aminobutyric Acid Type-A Receptor Degradation via Ubiquitination of the γ2 Subunit*

    PubMed Central

    Jin, Hongbing; Chiou, Tzu-Ting; Serwanski, David R.; Miralles, Celia P.; Pinal, Noelia; De Blas, Angel L.

    2014-01-01

    We have found that the large intracellular loop of the γ2 GABAA receptor (R) subunit (γ2IL) interacts with RNF34 (an E3 ubiquitin ligase), as shown by yeast two-hybrid and in vitro pulldown assays. In brain extracts, RNF34 co-immunoprecipitates with assembled GABAARs. In co-transfected HEK293 cells, RNF34 reduces the expression of the γ2 GABAAR subunit by increasing the ratio of ubiquitinated/nonubiquitinated γ2. Mutating several lysines of the γ2IL into arginines makes the γ2 subunit resistant to RNF34-induced degradation. RNF34 also reduces the expression of the γ2 subunit when α1 and β3 subunits are co-assembled with γ2. This effect is partially reversed by leupeptin or MG132, indicating that both the lysosomal and proteasomal degradation pathways are involved. Immunofluorescence of cultured hippocampal neurons shows that RNF34 forms clusters and that a subset of these clusters is associated with GABAergic synapses. This association is also observed in the intact rat brain by electron microscopy immunocytochemistry. RNF34 is not expressed until the 2nd postnatal week of rat brain development, being highly expressed in some interneurons. Overexpression of RNF34 in hippocampal neurons decreases the density of γ2 GABAAR clusters and the number of GABAergic contacts that these neurons receive. Knocking down endogenous RNF34 with shRNA leads to increased γ2 GABAAR cluster density and GABAergic innervation. The results indicate that RNF34 regulates postsynaptic γ2-GABAAR clustering and GABAergic synaptic innervation by interacting with and ubiquitinating the γ2-GABAAR subunit promoting GABAAR degradation. PMID:25193658

  19. A Novel Bifunctional Alkylphenol Anesthetic Allows Characterization of γ-Aminobutyric Acid, Type A (GABAA), Receptor Subunit Binding Selectivity in Synaptosomes*

    PubMed Central

    Woll, Kellie A.; Murlidaran, Sruthi; Pinch, Benika J.; Hénin, Jérôme; Wang, Xiaoshi; Salari, Reza; Covarrubias, Manuel; Dailey, William P.; Brannigan, Grace; Garcia, Benjamin A.; Eckenhoff, Roderic G.

    2016-01-01

    Propofol, an intravenous anesthetic, is a positive modulator of the GABAA receptor, but the mechanistic details, including the relevant binding sites and alternative targets, remain disputed. Here we undertook an in-depth study of alkylphenol-based anesthetic binding to synaptic membranes. We designed, synthesized, and characterized a chemically active alkylphenol anesthetic (2-((prop-2-yn-1-yloxy)methyl)-5-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenol, AziPm-click (1)), for affinity-based protein profiling (ABPP) of propofol-binding proteins in their native state within mouse synaptosomes. The ABPP strategy captured ∼4% of the synaptosomal proteome, including the unbiased capture of five α or β GABAA receptor subunits. Lack of γ2 subunit capture was not due to low abundance. Consistent with this, independent molecular dynamics simulations with alchemical free energy perturbation calculations predicted selective propofol binding to interfacial sites, with higher affinities for α/β than γ-containing interfaces. The simulations indicated hydrogen bonding is a key component leading to propofol-selective binding within GABAA receptor subunit interfaces, with stable hydrogen bonds observed between propofol and α/β cavity residues but not γ cavity residues. We confirmed this by introducing a hydrogen bond-null propofol analogue as a protecting ligand for targeted-ABPP and observed a lack of GABAA receptor subunit protection. This investigation demonstrates striking interfacial GABAA receptor subunit selectivity in the native milieu, suggesting that asymmetric occupancy of heteropentameric ion channels by alkylphenol-based anesthetics is sufficient to induce modulation of activity. PMID:27462076

  20. A Novel Bifunctional Alkylphenol Anesthetic Allows Characterization of γ-Aminobutyric Acid, Type A (GABAA), Receptor Subunit Binding Selectivity in Synaptosomes.

    PubMed

    Woll, Kellie A; Murlidaran, Sruthi; Pinch, Benika J; Hénin, Jérôme; Wang, Xiaoshi; Salari, Reza; Covarrubias, Manuel; Dailey, William P; Brannigan, Grace; Garcia, Benjamin A; Eckenhoff, Roderic G

    2016-09-23

    Propofol, an intravenous anesthetic, is a positive modulator of the GABAA receptor, but the mechanistic details, including the relevant binding sites and alternative targets, remain disputed. Here we undertook an in-depth study of alkylphenol-based anesthetic binding to synaptic membranes. We designed, synthesized, and characterized a chemically active alkylphenol anesthetic (2-((prop-2-yn-1-yloxy)methyl)-5-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenol, AziPm-click (1)), for affinity-based protein profiling (ABPP) of propofol-binding proteins in their native state within mouse synaptosomes. The ABPP strategy captured ∼4% of the synaptosomal proteome, including the unbiased capture of five α or β GABAA receptor subunits. Lack of γ2 subunit capture was not due to low abundance. Consistent with this, independent molecular dynamics simulations with alchemical free energy perturbation calculations predicted selective propofol binding to interfacial sites, with higher affinities for α/β than γ-containing interfaces. The simulations indicated hydrogen bonding is a key component leading to propofol-selective binding within GABAA receptor subunit interfaces, with stable hydrogen bonds observed between propofol and α/β cavity residues but not γ cavity residues. We confirmed this by introducing a hydrogen bond-null propofol analogue as a protecting ligand for targeted-ABPP and observed a lack of GABAA receptor subunit protection. This investigation demonstrates striking interfacial GABAA receptor subunit selectivity in the native milieu, suggesting that asymmetric occupancy of heteropentameric ion channels by alkylphenol-based anesthetics is sufficient to induce modulation of activity. PMID:27462076

  1. Total Dissolved Cobalt and Labile Cobalt in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Saito, M. A.; Noble, A.

    2012-12-01

    This study presents the total and labile dissolved cobalt distributions from the North Atlantic GEOTRACES Zonal Transect expeditions of the fall of 2010 and 2011. Labile cobalt was detected in much of the water column below the euphotic zone, suggesting that strong cobalt binding ligands were not present in excess of the total cobalt concentration. Near complete complexation of cobalt was observed in surface waters, and linear relationships were observed when both total and labile cobalt were compared to phosphate in surface waters, indicative of a strong biological influence on cobalt cycling. Decoupling of cobalt and macronutrients in the surface waters was observed approaching the North American coast, and a relationship between cobalt and salinity was observed, suggesting that coastal inputs may dominate the distributions of cobalt there. In deep waters, both total and labile cobalt were generally lower in concentration than at intermediate depths, which is evidence of scavenging processes removing cobalt from the water column. Elevated concentrations of labile and total cobalt were observed in samples taken within the TAG hydrothermal plume, and a reverse relationship between cobalt and oxygen was observed in the western basin OMZ.

  2. Fate and lability of silver in soils: effect of ageing.

    PubMed

    Settimio, Lara; McLaughlin, Mike J; Kirby, Jason K; Langdon, Kate A; Lombi, Enzo; Donner, Erica; Scheckel, Kirk G

    2014-08-01

    The fate and lability of added soluble Ag in soils over time was examined by measurement of labile metal (E-value) by isotopic dilution using the (110m)Ag radioactive isotope and the solid-phase speciation of Ag by X-ray absorption near edge structure (XANES) spectroscopy. After two weeks of ageing the E-values for Ag decreased by 20-90% with a further decrease of 10-40% after six months. The overall decrease in labile Ag for all soils after the 6 month ageing period was 50-100%. The ageing was more rapid and pronounced in the alkaline soils. XANES results for Ag in soils indicated that for the majority of soils the added Ag(+) was reduced to metallic Ag over time, and associations with Fe-oxohydroxides and reduced S groups in organic matter also decreased Ag lability. Strong positive correlations were found between metallic Ag and non-labile Ag and between organic carbon and Ag bonded with S species.

  3. The complete amino acid sequence of R-phycocyanin-I alpha and beta subunits from the red alga Porphyridium cruentum. Structural and phylogenetic relationships of the phycocyanins within the phycobiliprotein families.

    PubMed

    Ducret, A; Sidler, W; Frank, G; Zuber, H

    1994-04-01

    We present here the complete primary structure of R-phycocyanin-I alpha and beta subunits from the red alga Porphyridium cruentum. The alpha chain is composed of 162 amino acid residues (18049 Da, calculated from sequence, including chromophore) and carries a phycocyanobilin pigment covalently linked to Cys84. The beta chain contains 172 amino acids (19344Da, calculated from sequence, including chromophores) and carries a phycocyanobilin pigment covalently linked at Cys82 and a phycoerythrobilin pigment at Cys153. A gamma-N-methyl asparagine residue was also characterised at position beta 72 similar to other phycobiliprotein beta subunits. R-phycocyanin-I from Porphyridium cruentum shares high sequence identity with C-phycocyanins (69-83%), R-phycocyanins (66-70%) and in a less extent with phycoerythrocyanins (57-65%) from various sources. The presented phylogenetic trees are based on a comparison of all phycobiliprotein amino acid sequences known so far and confirm the clear affiliation of the R-phycocyanins in the phycocyanin family. In spite of their particular phycobilin pattern, they do not represent intermediate forms between the phycocyanin and the phycoerythrin family. Phycoerythrocyanin, a phycocyanin-related phycobiliprotein adapted to green light harvesting, is also shown to belong to the phycocyanin family. However, the phycoerythrocyanins diverge from phycocyanins in their different function and it is suggested that they should be assigned to a separate group within the phycocyanin family.

  4. [Techniques of preparation and indications of labile blood products].

    PubMed

    Clément, S

    2011-04-01

    Labile blood products are obtained from samples of whole blood or aphaeresis. The techniques of preparation evolve with technological advances, which allow both an increasing automation and an intensification of the sanitary safety of the blood products. Over the last ten years, thanks to the availability of new technologies, several measures have been introduced in order to reduce the risk of transmission of pathogens and prevent the onset of transfusion-related acute lung injury (TRALI): leukoreduction, use of platelet storage solutions, inactivation of plasma and presumably of platelets in a very near future. The control of transfusion risk also depends on proper use of labile blood products. To assist the prescriber in his treatment options and to standardize practices, the French Agency for Sanitary Safety of Health Products has issued recommendations in terms of utilization of blood products that are detailed in this review of major labile blood products available.

  5. Repeated Labilization-Reconsolidation Processes Strengthen Declarative Memory in Humans

    PubMed Central

    Forcato, Cecilia; Rodríguez, María L. C.; Pedreira, María E.

    2011-01-01

    The idea that memories are immutable after consolidation has been challenged. Several reports have shown that after the presentation of a specific reminder, reactivated old memories become labile and again susceptible to amnesic agents. Such vulnerability diminishes with the progress of time and implies a re-stabilization phase, usually referred to as reconsolidation. To date, the main findings describe the mechanisms associated with the labilization-reconsolidation process, but little is known about its functionality from a biological standpoint. Indeed, two functions have been proposed. One suggests that destabilization of the original memory after the reminder allows the integration of new information into the background of the original memory (memory updating), and the other suggests that the labilization-reconsolidation process strengthens the original memory (memory strengthening). We have previously reported the reconsolidation of human declarative memories, demonstrating memory updating in the framework of reconsolidation. Here we deal with the strengthening function attributed to the reconsolidation process. We triggered labilization-reconsolidation processes successively by repeated presentations of the proper reminder. Participants learned an association between five cue-syllables and their respective response-syllables. Twenty-four hours later, the paired-associate verbal memory was labilized by exposing the subjects to one, two or four reminders. The List-memory was evaluated on Day 3 showing that the memory was improved when at least a second reminder was presented in the time window of the first labilization-reconsolidation process prompted by the earlier reminder. However, the improvement effect was revealed on Day 3, only when at least two reminders were presented on Day2 and not as a consequence of only retrieval. Therefore, we propose central concepts for the reconsolidation process, emphasizing its biological role and the parametrical constrains

  6. Repeated labilization-reconsolidation processes strengthen declarative memory in humans.

    PubMed

    Forcato, Cecilia; Rodríguez, María L C; Pedreira, María E

    2011-01-01

    The idea that memories are immutable after consolidation has been challenged. Several reports have shown that after the presentation of a specific reminder, reactivated old memories become labile and again susceptible to amnesic agents. Such vulnerability diminishes with the progress of time and implies a re-stabilization phase, usually referred to as reconsolidation. To date, the main findings describe the mechanisms associated with the labilization-reconsolidation process, but little is known about its functionality from a biological standpoint. Indeed, two functions have been proposed. One suggests that destabilization of the original memory after the reminder allows the integration of new information into the background of the original memory (memory updating), and the other suggests that the labilization-reconsolidation process strengthens the original memory (memory strengthening). We have previously reported the reconsolidation of human declarative memories, demonstrating memory updating in the framework of reconsolidation. Here we deal with the strengthening function attributed to the reconsolidation process. We triggered labilization-reconsolidation processes successively by repeated presentations of the proper reminder. Participants learned an association between five cue-syllables and their respective response-syllables. Twenty-four hours later, the paired-associate verbal memory was labilized by exposing the subjects to one, two or four reminders. The List-memory was evaluated on Day 3 showing that the memory was improved when at least a second reminder was presented in the time window of the first labilization-reconsolidation process prompted by the earlier reminder. However, the improvement effect was revealed on Day 3, only when at least two reminders were presented on Day 2 and not as a consequence of only retrieval. Therefore, we propose central concepts for the reconsolidation process, emphasizing its biological role and the parametrical

  7. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-08-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle. For our understanding of the kinetics of organic matter cycling in the ocean, it is crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids and transparent exopolymer particles (TEP) for 2 years. The molecular characterization of extracted DOM was performed by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) after 70 days and after ∼2 years of incubation. Although glucose quickly degraded, a non-labile DOC background (5-9% of the initial DOC) was generated in the glucose incubations. Only 20% of the organic carbon from the algal exudate degraded within the 2 years of incubation. The degradation rates for the non-labile DOC background in the different treatments varied between 1 and 11 μmol DOC L-1 year-1. Transparent exopolymer particles, which are released by microorganisms, were produced during glucose degradation but decreased back to half of the maximum concentration within less than 3 weeks (degradation rate: 25 μg xanthan gum equivalents L-1 d-1) and were below detection in all treatments after 2 years. Additional glucose was added after 2 years to test whether labile substrate can promote the degradation of background DOC (co-metabolism; priming effect). A priming effect was not observed but the glucose addition led to a slight increase of background DOC. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM transformed during the degradation of the algal exudates. Our

  8. Heterotrophic activity and biodegradation of labile and refractory compounds by groundwater and stream microbial populations.

    PubMed Central

    Ladd, T I; Ventullo, R M; Wallis, P M; Costerton, J W

    1982-01-01

    The bacteriology and heterotrophic activity of a stream and of nearby groundwater in Marmot Basin, Alberta, Canada, were studied. Acridine orange direct counts indicated that bacterial populations in the groundwater were greater than in the stream. Bacteria that were isolated from the groundwater were similar to species associated with soils. Utilization of labile dissolved organic material as measured by the heterotrophic potential technique with glutamic acid, phenylalanine, and glycolic acid as substrates was generally greater in the groundwater. In addition, specific activity indices for the populations suggested greater metabolic activity per bacterium in the groundwater. 14C-labeled lignocellulose, preferentially labeled in the lignin fraction by feeding Picea engelmannii [14C]phenylalanine, was mineralized by microorganisms in both the groundwater and the stream, but no more than 4% of the added radioactivity was lost as 14CO2 within 960 h. Up to 20% of [3'-14C]cinnamic acid was mineralized by microorganisms in both environments within 500 h. Both microbial populations appear to influence the levels of labile and recalcitrant dissolved organic material in mountain streams. PMID:7125651

  9. How to Compute Labile Metal-Ligand Equilibria

    ERIC Educational Resources Information Center

    de Levie, Robert

    2007-01-01

    The different methods used for computing labile metal-ligand complexes, which are suitable for an iterative computer solution, are illustrated. The ligand function has allowed students to relegate otherwise tedious iterations to a computer, while retaining complete control over what is calculated.

  10. Neuropsychological Correlates of Emotional Lability in Children with ADHD

    ERIC Educational Resources Information Center

    Banaschewski, Tobias; Jennen-Steinmetz, Christine; Brandeis, Daniel; Buitelaar, Jan K.; Kuntsi, Jonna; Poustka, Luise; Sergeant, Joseph A.; Sonuga-Barke, Edmund J.; Frazier-Wood, Alexis C.; Albrecht, Bjorn; Chen, Wai; Uebel, Henrik; Schlotz, Wolff; van der Meere, Jaap J.; Gill, Michael; Manor, Iris; Miranda, Ana; Mulas, Fernando; Oades, Robert D.; Roeyers, Herbert; Rothenberger, Aribert; Steinhausen, Hans-Christoph; Faraone, Stephen V.; Asherson, Philip

    2012-01-01

    Background: Emotional lability (EL) is commonly seen in patients with attention-deficit/hyperactivity disorder (ADHD). The reasons for this association remain currently unknown. To address this question, we examined the relationship between ADHD and EL symptoms, and performance on a range of neuropsychological tasks to clarify whether EL symptoms…

  11. Memory expression is independent of memory labilization/reconsolidation.

    PubMed

    Barreiro, Karina A; Suárez, Luis D; Lynch, Victoria M; Molina, Víctor A; Delorenzi, Alejandro

    2013-11-01

    There is growing evidence that certain reactivation conditions restrict the onset of both the destabilization phase and the restabilization process or reconsolidation. However, it is not yet clear how changes in memory expression during the retrieval experience can influence the emergence of the labilization/reconsolidation process. To address this issue, we used the context-signal memory model of Chasmagnathus. In this paradigm a short reminder that does not include reinforcement allows us to evaluate memory labilization and reconsolidation, whereas a short but reinforced reminder restricts the onset of such a process. The current study investigated the effects of the glutamate antagonists, APV (0.6 or 1.5 μg/g) and CNQX (1 μg/g), prior to the reminder session on both behavioral expression and the reconsolidation process. Under conditions where the reminder does not initiate the labilization/reconsolidation process, APV prevented memory expression without affecting long-term memory retention. In contrast, APV induced amnesic effects in the long-term when administered before a reminder session that triggers reconsolidation. Under the present parametric conditions, the administration of CNQX prior to the reminder that allows memory to enter reconsolidation impairs this process without disrupting memory expression. Overall, the present findings suggest that memory reactivation--but not memory expression--is necessary for labilization and reconsolidation. Retrieval and memory expression therefore appear not to be interchangeable concepts.

  12. Mapping the domain structure of the influenza A virus polymerase acidic protein (PA) and its interaction with the basic protein 1 (PB1) subunit

    SciTech Connect

    Guu, Tom S.Y.; Dong Liping; Wittung-Stafshede, Pernilla; Tao, Yizhi J.

    2008-09-15

    The influenza A virus polymerase consists of three subunits (PA, PB1, and PB2) necessary for viral RNA synthesis. The heterotrimeric polymerase complex forms through PA interacting with PB1 and PB1 interacting with PB2. PA has been shown to play critical roles in the assembly, catalysis, and nuclear localization of the polymerase. To probe the structure of PA, we isolated recombinant PA from insect cells. Limited proteolysis revealed that PA contained two domains connected by a 20-residue linker (residues 257-276). Far-UV circular dichroism established that the two domains folded into a mixed {alpha}/{beta} structure when separately expressed. In vitro pull-down assays showed that neither individually nor cooperatively expressed PA domains, without the linker, could assure PA-PB1 interaction. Protease treatment of PA-PB1 complex indicated that its PA subunit was significantly more stable than free PA, suggesting that the linker is protected and it constitutes an essential component of the PA-PB1 interface.

  13. Organic chemistry of basal ice - presence of labile, low molecular weight compounds available for microbial metabolism

    NASA Astrophysics Data System (ADS)

    Lis, Grzegorz P.; Wadham, Jemma L.; Lawson, Emily; Stibal, Marek; Telling, Jon

    2010-05-01

    Recent studies show that subglacial environments previously thought to be devoid of life contain a host of active microbial organisms. Presence of liquid water due to overburden pressure, the release of nutrients from chemical erosion of bedrock, and the potential carbon sources in overridden sediments facilitate life in this extreme environment. However, little is still known of concentrations and diversity of labile organic compounds essential for sustaining microbial metabolism in subglacial environments. Three subglacial ecosystems that considerably differ in range and amount of available organic compounds were selected for this study 1-Engabreen, northern Norway, overlying high-grade metamorphic rocks with low organic carbon content; 2-Finsterwalderbreen, Svalbard, overriding ancient black shales with a relatively high carbon content yet recalcitrant to microbiological consumption; and 3-Russell Glacier in western Greenland with recently overridden quaternary organic rich paleosols. Basal and pressure ridge ice samples were collected and subsequently analysed for low molecular weight organic compounds, with the emphasis on volatile fatty acids, carbohydrates and amino acids. The highest concentration of labile organic compounds in Greenland basal ice suggest that recently overridden paleosols have the greatest potential for sustaining microbial populations present within and underneath basal ice. The high concentration of "ancient" organic carbon in basal ice from Finsterwalderbreen, Svalbard, doesn't correlate with the presence of labile organic compounds. This indicates the inability of microbes to digest recalcitrant kerogen carbon in cold temperatures. In all three investigated environments, concentrations of labile organic compounds are elevated in basal ice with a high debris content. Until recently, most models of the global carbon cycle tend to neglect the pool of subglacial organic carbon as little is known about the range and concentrations of

  14. Developmental regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. I. Rodent cerebral white matter and cortex.

    PubMed

    Talos, Delia M; Fishman, Rachel E; Park, Hyunkyung; Folkerth, Rebecca D; Follett, Pamela L; Volpe, Joseph J; Jensen, Frances E

    2006-07-01

    This is the first part of a two-part study to investigate the cellular distribution and temporal regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) subunits in the developing white matter and cortex in rat (part I) and human (part II). Western blot and immunocytochemistry were used to evaluate the differential expression of AMPAR subunits on glial and neuronal subtypes during the first 3 postnatal weeks in the Long Evans and Sprague Dawley rat strains. In Long Evans rats during the first postnatal week, GluR2-lacking AMPARs were expressed predominantly on white matter cells, including radial glia, premyelinating oligodendrocytes, and subplate neurons, whereas, during the second postnatal week, these AMPARs were highly expressed on cortical neurons, coincident with decreased expression on white matter cells. Immunocytochemical analysis revealed that cell-specific developmental changes in AMPAR expression occurred 2-3 days earlier by chronological age in Sprague Dawley rats compared with Long Evans rats, despite overall similar temporal sequencing. In both white and gray matter, the periods of high GluR2 deficiency correspond to those of regional susceptibility to hypoxic/ischemic injury in each of the two rat strains, supporting prior studies suggesting a critical role for Ca2+-permeable AMPARs in excitotoxic cellular injury and epileptogenesis. The developmental regulation of these receptor subunits strongly suggests that Ca2+ influx through GluR2-lacking AMPARs may play an important role in neuronal and glial development and injury in the immature brain. Moreover, as demonstrated in part II, there are striking similarities between rat and human in the regional and temporal maturational regulation of neuronal and glial AMPAR expression.

  15. Quantification of Labile Soil Mercury by Stable Isotope Dilution Techniques

    NASA Astrophysics Data System (ADS)

    Shetaya, Waleed; Huang, Jen-How; Osterwalder, Stefan; Alewell, Christine

    2016-04-01

    Mercury (Hg) is a toxic element that can cause severe health problems to humans. Mercury is emitted to the atmosphere from both natural and anthropogenic sources and can be transported over long distances before it is deposited to aquatic and terrestrial environments. Aside from accumulation in soil solid phases, Hg deposited in soils may migrate to surface- and ground-water or enter the food chain, depending on its lability. There are many operationally-defined extraction methods proposed to quantify soil labile metals. However, these methods are by definition prone to inaccuracies such as non-selectivity, underestimation or overestimation of the labile metal pool. The isotopic dilution technique (ID) is currently the most promising method for discrimination between labile and non-labile metal fractions in soil with a minimum disturbance to soil-solid phases. ID assesses the reactive metal pool in soil by defining the fraction of metal both in solid and solution phases that is isotopically-exchangeable known as the 'E-value'. The 'E-value' represents the metal fraction in a dynamic equilibrium with the solution phase and is potentially accessible to plants. This is carried out by addition of an enriched metal isotope to soil suspensions and quantifying the fraction of metal that is able to freely exchange with the added isotope by measuring the equilibrium isotopic ratio by ICP-MS. E-value (mg kg‑1) is then calculated as follows: E-Value = (Msoil/ W) (CspikeVspike/ Mspike) (Iso1IAspike ‑Iso2IAspikeRss / Iso2IAsoil Rss - Iso1IAsoil) where M is the average atomic mass of the metal in the soil or the spike, W is the mass of soil (kg), Cspike is the concentration of the metal in the spike (mg L‑1), Vspike is the volume of spike (L), IA is isotopic abundance, and Rss is the equilibrium ratio of isotopic abundances (Iso1:Iso2). Isotopic dilution has been successfully applied to determine E-values for several elements. However, to our knowledge, this method has not

  16. Quantification of Labile Soil Mercury by Stable Isotope Dilution Techniques

    NASA Astrophysics Data System (ADS)

    Shetaya, Waleed; Huang, Jen-How; Osterwalder, Stefan; Alewell, Christine

    2016-04-01

    Mercury (Hg) is a toxic element that can cause severe health problems to humans. Mercury is emitted to the atmosphere from both natural and anthropogenic sources and can be transported over long distances before it is deposited to aquatic and terrestrial environments. Aside from accumulation in soil solid phases, Hg deposited in soils may migrate to surface- and ground-water or enter the food chain, depending on its lability. There are many operationally-defined extraction methods proposed to quantify soil labile metals. However, these methods are by definition prone to inaccuracies such as non-selectivity, underestimation or overestimation of the labile metal pool. The isotopic dilution technique (ID) is currently the most promising method for discrimination between labile and non-labile metal fractions in soil with a minimum disturbance to soil-solid phases. ID assesses the reactive metal pool in soil by defining the fraction of metal both in solid and solution phases that is isotopically-exchangeable known as the 'E-value'. The 'E-value' represents the metal fraction in a dynamic equilibrium with the solution phase and is potentially accessible to plants. This is carried out by addition of an enriched metal isotope to soil suspensions and quantifying the fraction of metal that is able to freely exchange with the added isotope by measuring the equilibrium isotopic ratio by ICP-MS. E-value (mg kg-1) is then calculated as follows: E-Value = (Msoil/ W) (CspikeVspike/ Mspike) (Iso1IAspike -Iso2IAspikeRss / Iso2IAsoil Rss - Iso1IAsoil) where M is the average atomic mass of the metal in the soil or the spike, W is the mass of soil (kg), Cspike is the concentration of the metal in the spike (mg L-1), Vspike is the volume of spike (L), IA is isotopic abundance, and Rss is the equilibrium ratio of isotopic abundances (Iso1:Iso2). Isotopic dilution has been successfully applied to determine E-values for several elements. However, to our knowledge, this method has not yet

  17. Concordance between isolated cleft palate in mice and alterations within a region including the gene encoding the [beta][sub 3] subunit of the type A [gamma]-aminobutyric acid receptor

    SciTech Connect

    Culiat, C.T.; Stubbs, L.; Nicholls, R.D.; Montgomery, C.S.; Russell, L.B.; Johnson, D.K. ); Rinchik, E.M. Univ. of Florida, Gainesville )

    1993-06-01

    Genetic and molecular analyses of a number of radiation-induced deletion mutations of the pink-eyed dilution (p) locus in mouse chromosome 7 have identified a specific interval on the genetic map associated with a neonatally lethal mutation that results in cleft palate. This interval, closely linked and distal to p, and bracketed by the genes encoding the [alpha][sub 5] and [beta][sub 3] subunits of the type A [gamma]-aminobutyric acid receptor (Gabra5 and Gabrb3, respectively), contains a gene(s) (cp1; cleft palate 1) necessary for normal palate development. The cp1 interval extends from the distal breakpoint of the prenatally lethal p[sup 83FBFo] deletion to the Gabrb3 locus. Among 20 p deletions tested, there was complete concordance between alterations at the Gabrb3 transcription unit and inability to complement the cleft-palate defect. These mapping data, along with previously described in vivo and in vitro teratological effects of [gamma]-aminobutyric acid or its agonists on palate development, suggest the possibility that a particular type A [gamma]-aminobutyric acid receptor that includes the [beta][sub 3] subunit may be necessary for normal palate development. The placement of the cp1 gene within a defined segment of the larger D15S12h (p)-D15S9h-1 interval in the mouse suggests that the highly homologous region of the human genome, 15q11-q13, be evaluated for a role(s) in human fetal facial development. 29 refs., 4 figs., 1 tab.

  18. A revised model for AMP-activated protein kinase structure: The alpha-subunit binds to both the beta- and gamma-subunits although there is no direct binding between the beta- and gamma-subunits.

    PubMed

    Wong, Kelly A; Lodish, Harvey F

    2006-11-24

    The 5'-AMP-activated protein kinase (AMPK) is a master sensor for cellular metabolic energy state. It is activated by a high AMP/ATP ratio and leads to metabolic changes that conserve energy and utilize alternative cellular fuel sources. The kinase is composed of a heterotrimeric protein complex containing a catalytic alpha-subunit, an AMP-binding gamma-subunit, and a scaffolding beta-subunit thought to bind directly both the alpha- and gamma-subunits. Here, we use coimmunoprecipitation of proteins in transiently transfected cells to show that the alpha2-subunit binds directly not only to the beta-subunit, confirming previous work, but also to the gamma1-subunit. Deletion analysis of the alpha2-subunit reveals that the C-terminal 386-552 residues are sufficient to bind to the beta-subunit. The gamma1-subunit binds directly to the alpha2-subunit at two interaction sites, one within the catalytic domain consisting of alpha2 amino acids 1-312 and a second within residues 386-552. Binding of the alpha2 and the gamma1-subunits was not affected by 400 mum AMP or ATP. Furthermore, we show that the beta-subunit C terminus is essential for binding to the alpha2-subunit but, in contrast to previous work, the beta-subunit does not bind directly to the gamma1-subunit. Taken together, this study presents a new model for AMPK heterotrimer structure where through its C terminus the beta-subunit binds to the alpha-subunit that, in turn, binds to the gamma-subunit. There is no direct interaction between the beta- and gamma-subunits.

  19. Core-Shell Hydrogel Particles Harvest, Concentrate and Preserve Labile Low Abundance Biomarkers

    PubMed Central

    Longo, Caterina; Patanarut, Alexis; George, Tony; Bishop, Barney; Zhou, Weidong; Fredolini, Claudia; Ross, Mark M.; Espina, Virginia; Pellacani, Giovanni; Petricoin, Emanuel F.; Liotta, Lance A.; Luchini, Alessandra

    2009-01-01

    Background The blood proteome is thought to represent a rich source of biomarkers for early stage disease detection. Nevertheless, three major challenges have hindered biomarker discovery: a) candidate biomarkers exist at extremely low concentrations in blood; b) high abundance resident proteins such as albumin mask the rare biomarkers; c) biomarkers are rapidly degraded by endogenous and exogenous proteinases. Methodology and Principal Findings Hydrogel nanoparticles created with a N-isopropylacrylamide based core (365 nm)-shell (167 nm) and functionalized with a charged based bait (acrylic acid) were studied as a technology for addressing all these biomarker discovery problems, in one step, in solution. These harvesting core-shell nanoparticles are designed to simultaneously conduct size exclusion and affinity chromatography in solution. Platelet derived growth factor (PDGF), a clinically relevant, highly labile, and very low abundance biomarker, was chosen as a model. PDGF, spiked in human serum, was completely sequestered from its carrier protein albumin, concentrated, and fully preserved, within minutes by the particles. Particle sequestered PDGF was fully protected from exogenously added tryptic degradation. When the nanoparticles were added to a 1 mL dilute solution of PDGF at non detectable levels (less than 20 picograms per mL) the concentration of the PDGF released from the polymeric matrix of the particles increased within the detection range of ELISA and mass spectrometry. Beyond PDGF, the sequestration and protection from degradation for a series of additional very low abundance and very labile cytokines were verified. Conclusions and Significance We envision the application of harvesting core-shell nanoparticles to whole blood for concentration and immediate preservation of low abundance and labile analytes at the time of venipuncture. PMID:19274087

  20. Subunit structure of the dihydrolipoyl transacylase component of branched-chain. cap alpha. -keto acid dehydrogenase complex from bovine liver: mapping of the lipoyl-bearing domain by limited proteolysis

    SciTech Connect

    Not Available

    1986-01-05

    To characterize the lipoyl-bearing domain of the dihydrolipoyl transacylase (E/sub 2/) component, purified branched-chain ..cap alpha..-keto acid dehydrogenase complex from bovine liver was reductively acylated with (U-/sup 14/C)..cap alpha..-ketoisovalerate in the presence of thiamin pyrophosphate and N-ethylmaleimide. Digestion of the modified complex with increasing concentrations of trypsin sequentially cleaved the E/sub 2/ polypeptide chain (M/sub r/ = 52,000) into five radiolabeled lipoyl-containing fragments, L/sub 1/-L/sub 5/. In addition, a lipoate-free inner E/sub 2/ core consisting of fragment A and fragment B was produced. Fragment A contains the active site for transacylation reaction and fragment B is the subunit-binding domain. Fragment L/sub 5/ and fragment B were stable and resistant to further tryptic digestion. Mouse antiserium against E/sub 2/ reacted only with fragments L/sub 1/, L/sub 2/, and L/sub 3/, and did not bind fragments L/sub 4/, L/sub 5/, A, and B as judged by immunoblotting analysis. The anti-E/sub 2/ serum-strongly inhibited the overall reaction catalyzed by the complex, but was without effect on the transacylation activity of E/sub 2/. Measurement of incorporation of (1-/sup 14/C)isobutyryl groups into the E/sub 2/ subunit indicated the presence of 1 lipoyl residue/E/sub 2/ chain.

  1. Orexin a phosphorylates the γ-Aminobutyric acid type A receptor β2 subunit on a serine residue and changes the surface expression of the receptor in SH-SY5Y cells exposed to propofol.

    PubMed

    Andersson, Henrik; Björnström, Karin; Eintrei, Christina; Sundqvist, Tommy

    2015-11-01

    Propofol activates the γ-aminobutyric acid type A receptor (GABAA R) and causes a reversible neurite retraction, leaving a thin, thread-like structure behind; it also reverses the transport of vesicles in rat cortical neurons. The awakening peptide orexin A (OA) inhibits this retraction via phospholipase D (PLD) and protein kinase Cɛ (PKCɛ). The human SH-SY5Y cells express both GABAA Rs and orexin 1 and 2 receptors. These cells are used to examine the interaction between OA and the GABAA R. The effects of OA are studied with flow cytometry and immunoblotting. This study shows that OA stimulates phosphorylation on the serine residues of the GABAA R β2 subunit and that the phosphorylation is caused by the activation of PLD and PKCɛ. OA administration followed by propofol reduces the cell surface expression of the GABAA R, whereas propofol stimulation before OA increases the surface expression. The GABAA R β2 subunit is important for receptor recirculation, and the effect of OA on propofol-stimulated cells may be due to a disturbed recirculation of the GABAA R.

  2. Epitopes from two soybean glycinin subunits antigenic in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Glycinin is a seed storage protein in soybean (Glycine max) that is allergenic in pigs. Glycinin is a hexamer composed of subunits consisting of a basic and acidic portion joined by disulfide bridges. There are 5 glycinin subunits designated Gy1-Gy5. Results: Twenty seven out of 30 pi...

  3. Oral administration of a fusion protein between the cholera toxin B subunit and the 42-amino acid isoform of amyloid-β peptide produced in silkworm pupae protects against Alzheimer's disease in mice.

    PubMed

    Li, Si; Wei, Zhen; Chen, Jian; Chen, Yanhong; Lv, Zhengbing; Yu, Wei; Meng, Qiaohong; Jin, Yongfeng

    2014-01-01

    A key molecule in the pathogenesis of Alzheimer's disease (AD) is a 42-amino acid isoform of the amyloid-β peptide (Aβ42), which is the most toxic element of senile plaques. In this study, to develop an edible, safe, low-cost vaccine for AD, a cholera toxin B subunit (CTB)-Aβ42 fusion protein was successfully expressed in silkworm pupae. We tested the silkworm pupae-derived oral vaccination containing CTB-Aβ42 in a transgenic mouse model of AD. Anti-Aβ42 antibodies were induced in these mice, leading to a decreased Aβ deposition in the brain. We also found that the oral administration of the silk worm pupae vaccine improved the memory and cognition of mice, as assessed using a water maze test. These results suggest that the new edible CTB-Aβ42 silkworm pupae-derived vaccine has potential clinical application in the prevention of AD.

  4. Labile methyl balances for normal humans on various dietary regimens.

    PubMed

    Mudd, S H; Poole, J R

    1975-06-01

    Normal young adult male and female subjects were maintained on fixed dietary regimens which were either essentially normal or were semisynthetic and curtailed in methionine and choline intakes and virtually free of cystine. The subjects maintained stable weights and remained in positive nitrogen balance or within the zone of sulfur equilibrium. Choline intakes were calculated, and urinary excretions of creatinine, creatine, and sacrosine were measured. Creatinine excretions of male subjects on essentially normal diets outweighed the total intakes of labile methyl groups. Taking into account the excretions of additional methylated compounds, as judged from published values, it appears that methyl neogenesis must normally play a role in both males and females. When labile methyl intake is curtailed, de novo formation of methyl groups is quantitatively more significant than ingestion of preformed methyl moieties. On the normal diets used in these experiments, the average homocysteinyl moiety in males cycled between methionine and homocysteine at least 1.9 times before being converted to cystathionine. For females, the average number of cycles was at least 1.5. When labile methyl intake was curtailed, the average number of cycles rose to 3.9 for males and 3.0 for females under the conditions employed.

  5. Labile disulfide bonds are common at the leucocyte cell surface

    PubMed Central

    Metcalfe, Clive; Cresswell, Peter; Ciaccia, Laura; Thomas, Benjamin; Barclay, A. Neil

    2011-01-01

    Redox conditions change in events such as immune and platelet activation, and during viral infection, but the biochemical consequences are not well characterized. There is evidence that some disulfide bonds in membrane proteins are labile while others that are probably structurally important are not exposed at the protein surface. We have developed a proteomic/mass spectrometry method to screen for and identify non-structural, redox-labile disulfide bonds in leucocyte cell-surface proteins. These labile disulfide bonds are common, with several classes of proteins being identified and around 30 membrane proteins regularly identified under different reducing conditions including using enzymes such as thioredoxin. The proteins identified include integrins, receptors, transporters and cell–cell recognition proteins. In many cases, at least one cysteine residue was identified by mass spectrometry as being modified by the reduction process. In some cases, functional changes are predicted (e.g. in integrins and cytokine receptors) but the scale of molecular changes in membrane proteins observed suggests that widespread effects are likely on many different types of proteins including enzymes, adhesion proteins and transporters. The results imply that membrane protein activity is being modulated by a ‘redox regulator’ mechanism. PMID:22645650

  6. Rhizosphere Environment and Labile Phosphorus Release from Organic Waste-Amended Soils.

    NASA Astrophysics Data System (ADS)

    Dao, Thanh H.

    2015-04-01

    Crop residues and biofertilizers are primary sources of nutrients for organic crop production. However, soils treated with large amounts of nutrient-enriched manure have elevated phosphorus (P) levels in regions of intensive animal agriculture. Surpluses occurred in these amended soils, resulting in large pools of exchangeable inorganic P (Pi) and enzyme-labile organic P (Po) that averaging 30.9 and 68.2 mg kg-1, respectively. Organic acids produced during crop residue decomposition can promote the complexation of counter-ions and decouple and release unbound Pi from metal and alkali metal phosphates. Animal manure and cover crop residues also contain large amounts of soluble organic matter, and likely generate similar ligands. However, a high degree of heterogeneity in P spatial distribution in such amended fields, arising from variances in substrate physical forms ranging from slurries to dried solids, composition, and diverse application methods and equipment. Distinct clusters of Pi and Po were observed, where accumulation of the latter forms was associated with high soil microbial biomass C and reduced phosphomonoesterases' activity. Accurate estimates of plant requirements and lability of soil P pools, and real-time plant and soil P sensing systems are critical considerations to optimally manage manure-derived nutrients in crop production systems. An in situ X-ray fluorescence-based approach to sensing canopy and soil XRFS-P was developed to improve the yield-soil P relationship for optimal nutrient recommendations in addition to allowing in-the-field verification of foliar P status.

  7. Fluxionality and lability in rhenium 4'-hydroxyterpyridine complexes: evidence for an associative mechanism and correlated fluxionality and lability.

    PubMed

    Fernández-Moreira, Vanesa; Thorp-Greenwood, Flora L; Arthur, Richard J; Kariuki, Benson M; Jenkins, Robert L; Coogan, Michael P

    2010-08-28

    The complexes [ReX(CO)(3)(N,N-eta(2)-4'-hydroxy-2-2',6'-2''-terpyridine)] (X = Cl,Br,I) have been synthesised and their ligand exchange reactions and fluxionality of the terpyridine unit studied. The halides are far more labile in these species than in analogous bipyridines, and it is proposed that the ligand fluxionality is involved in this reactivity. Structural studies of the family are reported along with spectroscopic studies including variable temperature NMR which is used to demonstrate a negative entropy of activation for the fluxional process. Synthesis of an analogue which is incapable of fluxional behaviour confirms the link between fluxionality and lability in these complexes.

  8. Comparison of γ-Aminobutyric Acid, Type A (GABAA), Receptor αβγ and αβδ Expression Using Flow Cytometry and Electrophysiology: EVIDENCE FOR ALTERNATIVE SUBUNIT STOICHIOMETRIES AND ARRANGEMENTS.

    PubMed

    Botzolakis, Emmanuel J; Gurba, Katharine N; Lagrange, Andre H; Feng, Hua-Jun; Stanic, Aleksandar K; Hu, Ningning; Macdonald, Robert L

    2016-09-23

    The subunit stoichiometry and arrangement of synaptic αβγ GABAA receptors are generally accepted as 2α:2β:1γ with a β-α-γ-β-α counterclockwise configuration, respectively. Whether extrasynaptic αβδ receptors adopt the analogous β-α-δ-β-α subunit configuration remains controversial. Using flow cytometry, we evaluated expression levels of human recombinant γ2 and δ subunits when co-transfected with α1 and/or β2 subunits in HEK293T cells. Nearly identical patterns of γ2 and δ subunit expression were observed as follows: both required co-transfection with α1 and β2 subunits for maximal expression; both were incorporated into receptors primarily at the expense of β2 subunits; and both yielded similar FRET profiles when probed for subunit adjacency, suggesting similar underlying subunit arrangements. However, because of a slower rate of δ subunit degradation, 10-fold less δ subunit cDNA was required to recapitulate γ2 subunit expression patterns and to eliminate the functional signature of α1β2 receptors. Interestingly, titrating γ2 or δ subunit cDNA levels progressively altered GABA-evoked currents, revealing more than one kinetic profile for both αβγ and αβδ receptors. This raised the possibility of alternative receptor isoforms, a hypothesis confirmed using concatameric constructs for αβγ receptors. Taken together, our results suggest a limited cohort of alternative subunit arrangements in addition to canonical β-α-γ/δ-β-α receptors, including β-α-γ/δ-α-α receptors at lower levels of γ2/δ expression and β-α-γ/δ-α-γ/δ receptors at higher levels of expression. These findings provide important insight into the role of GABAA receptor subunit under- or overexpression in disease states such as genetic epilepsies.

  9. Archael phosphoproteins. Identification of a hexosephosphate mutase and the alpha-subunit of succinyl-CoA synthetase in the extreme acidothermophile Sulfolobus solfataricus.

    PubMed Central

    Solow, B.; Bischoff, K. M.; Zylka, M. J.; Kennelly, P. J.

    1998-01-01

    When soluble extracts from the extreme acidophilic archaeon Sulfolobus solfataricus were incubated with [gamma-32P]ATP, several radiolabeled polypeptides were observed following SDS-PAGE. The most prominent of these migrated with apparent molecular masses of 14, 18, 35, 42, 46, 50, and 79 kDa. Phosphoamino acid analysis revealed that all of the proteins contained phosphoserine, with the exception of the 35-kDa one, whose protein-phosphate linkage proved labile to strong acid. The observed pattern of phosphorylation was influenced by the identity of the divalent metal ion cofactor used, Mg2+ versus Mn2+, and the choice of incubation temperature. The 35- and 50-kDa phosphoproteins were purified and their amino-terminal sequences determined. The former polypeptide's amino-terminal sequence closely matched a conserved portion of the alpha-subunit of succinyl-CoA synthetase, which forms an acid-labile phosphohistidyl enzyme intermediate during its catalytic cycle. This identification was confirmed by the ability of succinate or ADP to specifically remove the radiolabel. The 50-kDa polypeptide's sequence contained a heptapeptide motif, Phe/Pro-Gly-Thr-Asp/Ser-Gly-Val/Leu-Arg, found in a similar position in several hexosephosphate mutases. The catalytic mechanism of these mutases involves formation of a phosphoseryl enzyme intermediate. The identity of p50 as a hexosephosphate mutase was confirmed by (1) the ability of sugars and sugar phosphates to induce removal of the labeled phosphoryl group from the protein, and (2) the ability of [32P]glucose 6-phosphate to donate its phosphoryl group to the protein. PMID:9514265

  10. Developmental regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. II. Human cerebral white matter and cortex.

    PubMed

    Talos, Delia M; Follett, Pamela L; Folkerth, Rebecca D; Fishman, Rachel E; Trachtenberg, Felicia L; Volpe, Joseph J; Jensen, Frances E

    2006-07-01

    This report is the second of a two-part evaluation of developmental differences in alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) subunit expression in cell populations within white matter and cortex. In part I, we reported that, in rat, developmental expression of Ca2+-permeable (GluR2-lacking) AMPARs correlated at the regional and cellular level with increased susceptibility to hypoxia/ischemia (H/I), suggesting an age-specific role of these receptors in the pathogenesis of brain injury. Part II examines the regional and cellular progression of AMPAR subunits in human white matter and cortex from midgestation through early childhood. Similarly to the case in the rodent, there is a direct correlation between selective vulnerability to H/I and expression of GluR2-lacking AMPARs in human brain. For midgestational cases aged 20-24 postconceptional weeks (PCW) and for premature infants (25-37 PCW), we found that radial glia, premyelinating oligodendrocytes, and subplate neurons transiently expressed GluR2-lacking AMPARs. Notably, prematurity represents a developmental window of selective vulnerability for white matter injury, such as periventricular leukomalacia (PVL). During term (38-42 PCW) and postterm neonatal (43-46 PCW) periods, age windows characterized by increased susceptibility to cortical injury and seizures, GluR2 expression was low in the neocortex, specifically on cortical pyramidal and nonpyramidal neurons. This study indicates that Ca2+-permeable AMPAR blockade may represent an age-specific therapeutic strategy for potential use in humans. Furthermore, these data help to validate specific rodent maturational stages as appropriate models for evaluation of H/I pathophysiology.

  11. Role of the NR2A/2B subunits of the N-methyl-D-aspartate receptor in glutamate-induced glutamic acid decarboxylase alteration in cortical GABAergic neurons in vitro.

    PubMed

    Monnerie, H; Hsu, F-C; Coulter, D A; Le Roux, P D

    2010-12-29

    The vulnerability of brain neuronal cell subpopulations to neurologic insults varies greatly. Among cells that survive a pathological insult, for example ischemia or brain trauma, some may undergo morphological and/or biochemical changes that may compromise brain function. The present study is a follow-up of our previous studies that investigated the effect of glutamate-induced excitotoxicity on the GABA synthesizing enzyme glutamic acid decarboxylase (GAD65/67)'s expression in surviving DIV 11 cortical GABAergic neurons in vitro [Monnerie and Le Roux, (2007) Exp Neurol 205:367-382, (2008) Exp Neurol 213:145-153]. An N-methyl-D-aspartate receptor (NMDAR)-mediated decrease in GAD expression was found following glutamate exposure. Here we examined which NMDAR subtype(s) mediated the glutamate-induced change in GAD protein levels. Western blotting techniques on cortical neuron cultures showed that glutamate's effect on GAD proteins was not altered by NR2B-containing diheteromeric (NR1/NR2B) receptor blockade. By contrast, blockade of triheteromeric (NR1/NR2A/NR2B) receptors fully protected against a decrease in GAD protein levels following glutamate exposure. When receptor location on the postsynaptic membrane was examined, extrasynaptic NMDAR stimulation was observed to be sufficient to decrease GAD protein levels similar to that observed after glutamate bath application. Blocking diheteromeric receptors prevented glutamate's effect on GAD proteins after extrasynaptic NMDAR stimulation. Finally, NR2B subunit examination with site-specific antibodies demonstrated a glutamate-induced, calpain-mediated alteration in NR2B expression. These results suggest that glutamate-induced excitotoxic NMDAR stimulation in cultured GABAergic cortical neurons depends upon subunit composition and receptor location (synaptic vs. extrasynaptic) on the neuronal membrane. Biochemical alterations in surviving cortical GABAergic neurons in various disease states may contribute to the altered

  12. The Second Extracellular Loop of Pore-Forming Subunits of ATP-Binding Cassette Transporters for Basic Amino Acids Plays a Crucial Role in Interaction with the Cognate Solute Binding Protein(s)▿

    PubMed Central

    Eckey, Viola; Weidlich, Daniela; Landmesser, Heidi; Bergmann, Ulf; Schneider, Erwin

    2010-01-01

    In the thermophile Geobacillus stearothermophilus, the uptake of basic amino acids is mediated by an ABC transporter composed of the substrate binding protein (receptor) ArtJ and a homodimer each of the pore-forming subunit, ArtM, and the nucleotide-binding subunit, ArtP. We recently identified two putative binding sites in ArtJ that might interact with the Art(MP)2 complex, thereby initiating the transport cycle (A. Vahedi-Faridi et al., J. Mol. Biol. 375:448-459, 2008). Here we investigated the contribution of charged amino acid residues in the second extracellular loop of ArtM to contact with ArtJ. Our results demonstrate a crucial role for residues K177, R185, and E188, since mutations to oppositely charged amino acids or glutamine led to a complete loss of ArtJ-stimulated ATPase activity of the complex variants in proteoliposomes. The defects could not be suppressed by ArtJ variants carrying mutations in site I (K39E and K152E) or II (E163K and D170K), suggesting a more complex interplay than that by a single salt bridge. These findings were supported by cross-linking assays demonstrating physical proximity between ArtJ(N166C) and ArtM(E182C). The importance of positively charged residues for receptor-transporter interaction was underscored by mutational analysis of the closely related transporter HisJ/LAO-HisQMP2 of Salmonella enterica serovar Typhimurium. While transporter variants with mutated positively charged residues in HisQ displayed residual ATPase activities, corresponding mutants of HisM could no longer be stimulated by HisJ/LAO. Interestingly, the ATPase activity of the HisQM(K187E)P2 variant was inhibited by l- and d-histidine in detergent, suggesting a role of the residue in preventing free histidine from gaining access to the substrate binding site within HisQM. PMID:20154136

  13. The second extracellular loop of pore-forming subunits of ATP-binding cassette transporters for basic amino acids plays a crucial role in interaction with the cognate solute binding protein(s).

    PubMed

    Eckey, Viola; Weidlich, Daniela; Landmesser, Heidi; Bergmann, Ulf; Schneider, Erwin

    2010-04-01

    In the thermophile Geobacillus stearothermophilus, the uptake of basic amino acids is mediated by an ABC transporter composed of the substrate binding protein (receptor) ArtJ and a homodimer each of the pore-forming subunit, ArtM, and the nucleotide-binding subunit, ArtP. We recently identified two putative binding sites in ArtJ that might interact with the Art(MP)(2) complex, thereby initiating the transport cycle (A. Vahedi-Faridi et al., J. Mol. Biol. 375:448-459, 2008). Here we investigated the contribution of charged amino acid residues in the second extracellular loop of ArtM to contact with ArtJ. Our results demonstrate a crucial role for residues K177, R185, and E188, since mutations to oppositely charged amino acids or glutamine led to a complete loss of ArtJ-stimulated ATPase activity of the complex variants in proteoliposomes. The defects could not be suppressed by ArtJ variants carrying mutations in site I (K39E and K152E) or II (E163K and D170K), suggesting a more complex interplay than that by a single salt bridge. These findings were supported by cross-linking assays demonstrating physical proximity between ArtJ(N166C) and ArtM(E182C). The importance of positively charged residues for receptor-transporter interaction was underscored by mutational analysis of the closely related transporter HisJ/LAO-HisQMP(2) of Salmonella enterica serovar Typhimurium. While transporter variants with mutated positively charged residues in HisQ displayed residual ATPase activities, corresponding mutants of HisM could no longer be stimulated by HisJ/LAO. Interestingly, the ATPase activity of the HisQM(K187E)P(2) variant was inhibited by l- and d-histidine in detergent, suggesting a role of the residue in preventing free histidine from gaining access to the substrate binding site within HisQM. PMID:20154136

  14. Reactivation of fear memory renders consolidated amygdala synapses labile.

    PubMed

    Kim, Jeongyeon; Song, Beomjong; Hong, Ingie; Kim, Jihye; Lee, Junuk; Park, Sungmo; Eom, Jae Yong; Lee, C Justin; Lee, Sukwon; Choi, Sukwoo

    2010-07-14

    It is believed that memory reactivation transiently renders consolidated memory labile and that this labile or deconsolidated memory is reconsolidated in a protein synthesis-dependent manner. The synaptic correlate of memory deconsolidation upon reactivation, however, has not been fully characterized. Here, we show that 3,5-dihydroxyphenylglycine (DHPG), an agonist for group I metabotropic glutamate receptors (mGluRI), induces synaptic depotentiation only at thalamic input synapses onto the lateral amygdala (T-LA synapses) where synaptic potentiation is consolidated, but not at synapses where synaptic potentiation is not consolidated. Using this mGluRI-induced synaptic depotentiation (mGluRI-depotentiation) as a marker of consolidated synapses, we found that mGluRI-depotentiation correlated well with the state of memory deconsolidation and reconsolidation in a predictable manner. DHPG failed to induce mGluRI-depotentiation in slices prepared immediately after reactivation when the reactivated memory was deconsolidated. DHPG induced mGluRI-depotentiation 1 h after reactivation when the reactivated memory was reconsolidated, but it failed to do so when reconsolidation was blocked by a protein synthesis inhibitor. To test the memory-specificity of mGluRI-depotentiation, conditioned fear was acquired twice using two discriminative tones (2.8 and 20 kHz). Under this condition, mGluRI-depotentiation was fully impaired in slices prepared immediately after reactivation with both tones, whereas mGluRI-depotentiation was partially impaired immediately after reactivation with the 20 kHz tone. Consistently, microinjection of DHPG into the LA 1 h after reactivation reduced fear memory retention, whereas DHPG injection immediately after reactivation failed to do so. Our findings suggest that, upon memory reactivation, consolidated T-LA synapses enter a temporary labile state, displaying insensitivity to mGluRI-depotentiation.

  15. Do Vermont's Floodplains Constitute an Important Source of Labile Carbon?

    NASA Astrophysics Data System (ADS)

    Perdrial, J. N.; Dolan, A.; Kemsley, M.

    2014-12-01

    Floodplains are extremely heterogeneous landscapes with respect to soil and sediment composition and can present an important source of carbon (C) during floods. For example, stream bank soils and sediments are zones of active erosion and deposition of sediment associated C. Due to the presence of plants, riparian soils contain high amounts of C that is exchanged between stream waters and banks. Abandoned channels and meander wetlands that remain hydrologically connected to the main channel contain high amounts of organic matter that can be flushed into the stream during high discharge. This heterogeneity, result of floodplain geomorphology, land cover and use, can profoundly impact the amount and type of dissolved organic matter (DOM) introduced into streams. In order to assess DOM characteristics leached from heterogeneous floodplain soils, aqueous soil extracts were performed on soil samples representative of different land covers (n=20) at four depths. Extracts were analyzed for dissolved organic C and total dissolved nitrogen with a Shimadzu C analyzer. Colored dissolved organic matter characteristics was measured with the Aqualog Fluorescence Spectrometer and quantified with parallel factor analysis (PARAFAC). Preliminary data from three floodplains in Vermont (Connecticut, Missisquoi and Mad River) show a 3D variability of longitudinal, lateral, and vertical extents on water-extractable, mobile C. Dissolved organic carbon concentrations in meander swamp samples were found up to 9 times higher than in those of soils from agricultural field indicative of an important C source. Although C concentrations in adjacent fields were low, high abundance of labile C (indicated by tryptophan-like fluorescence) in water extracts from fields indicates recent biological production of C. This labile C is easily processed by microbes and transformed to the greenhouse gas CO2. These results provide important information on the contribution and lability of different floodplain

  16. Separation and characterization of alpha-chain subunits from tilapia (Tilapia zillii) skin gelatin using ultrafiltration.

    PubMed

    Chen, Shulin; Tang, Lanlan; Su, Wenjin; Weng, Wuyin; Osako, Kazufumi; Tanaka, Munehiko

    2015-12-01

    Alpha-chain subunits were separated from tilapia skin gelatin using ultrafiltration, and the physicochemical properties of obtained subunits were investigated. As a result, α1-subunit and α2-subunit could be successfully separated by 100 kDa MWCO regenerated cellulose membranes and 150 kDa MWCO polyethersulfone membranes, respectively. Glycine was the most dominant amino acid in both α1-subunit and α2-subunit. However, the tyrosine content was higher in α2-subunit than in α1-subunit, resulting in strong absorption near 280 nm observed in the UV absorption spectrum. Based on the DSC analysis, it was found that the glass transition temperatures of gelatin, α1-subunit and α2-subunit were 136.48 °C, 126.77 °C and 119.43 °C, respectively. Moreover, the reduced viscosity and denaturation temperature of α1-subunit were higher than those of α2-subunit, and the reduced viscosity reached the highest when α-subunits were mixed with α1/α2 ratio of approximately 2, suggesting that α1-subunit plays a more important role in the thermostability of gelatin than α2-subunit.

  17. Alkali lability of bacteriophage phi W-14 DNA.

    PubMed

    Lewis, H A; Miller, R C; Stone, J C; Warren, R A

    1975-12-01

    The molecular weight of bacteriophage phi W-14 DNA, determined by velocity sedimentation in neutral sucrose gradients, was 92 +/- 6 X 10(6). The DNA showed marked fragmentation in alkaline sucrose gradients. This fragmentation was not a consequence of preexisting single-strand interruptions in the DNA, since thermal denaturation of DNA yielded intact single strands. The alpha-putrescinylthymine groups in phi W-14 DNA appeared to be labile; some, or parts of some, of these groups were cleaved from the DNA in alkali. PMID:1202241

  18. Metal contents of phytoplankton and labile particulate material in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Twining, Benjamin S.; Rauschenberg, Sara; Morton, Peter L.; Vogt, Stefan

    2015-09-01

    Phytoplankton contribute significantly to global C cycling and serve as the base of ocean food webs. Phytoplankton require trace metals for growth and also mediate the vertical distributions of many metals in the ocean. We collected bulk particulate material and individual phytoplankton cells from the upper water column (<150 m) of the North Atlantic Ocean as part of the US GEOTRACES North Atlantic Zonal Transect cruise (GEOTRACES GA03). Particulate material was first leached to extract biogenic and potentially-bioavailable elements, and the remaining refractory material was digested in strong acids. The cruise track spanned several ocean biomes and geochemical regions. Particulate concentrations of metals associated primarily with lithogenic phases (Fe, Al, Ti) were elevated in surface waters nearest North America, Africa and Europe, and elements associated primarily with biogenic material (P, Cd, Zn, Ni) were also found at higher concentrations near the coasts. However metal/P ratios of labile particulate material were also elevated in the middle of the transect for Fe, Ni, Co, Cu, and V. P-normalized cellular metal quotas measured with synchrotron X-ray fluorescence (SXRF) were generally comparable to ratios in bulk labile particles but did not show mid-basin increases. Manganese and Fe ratios and cell quotas were higher in the western part of the section, nearest North America, and both elements were more enriched in bulk particles, relative to P, than in cells, suggesting the presence of labile oxyhydroxide particulate phases. Cellular Fe quotas thus did not increase in step with aeolian dust inputs, which are highest near Africa; these data suggest that the dust inputs have low bioavailability. Copper and Ni cell quotas were notably higher nearest the continental margins. Overall mean cellular metal quotas were similar to those measured in the Pacific and Southern Oceans except for Fe, which was approximately 3-fold higher in North Atlantic cells. Cellular Fe

  19. Specific inhibition of herpes virus replication by receptor-mediated entry of an antiviral peptide linked to Escherichia coli enterotoxin B subunit.

    PubMed Central

    Marcello, A; Loregian, A; Cross, A; Marsden, H; Hirst, T R; Palù, G

    1994-01-01

    Mimetic peptides capable of selectively disrupting protein-protein interactions represent potential therapeutic agents for inhibition of viral and cellular enzymes. This approach was first suggested by the observation that the peptide YAGAVVNDL, corresponding to the carboxyl-terminal 9 amino acids of the small subunit of ribonucleotide reductase of herpes simplex virus, specifically inhibited the viral enzyme in vitro. Evaluation and use of this peptide as a potential antiviral agent has, however, been thwarted by its failure to inhibit virus replication in vivo, presumably because the peptide is too large to enter eukaryotic cells unaided. Here, we show that the nontoxic B subunit of Escherichia coli heat-labile enterotoxin can be used as a recombinant carrier for the receptor-mediated delivery of YAGAVVNDL into virally infected cells. The resultant fusion protein specifically inhibited herpes simplex virus type 1 replication and ribonucleotide reductase activity in quiescent Vero cells. Preincubation of the fusion protein with soluble GM1 ganglioside abolished this antiviral effect, indicating that receptor-mediated binding to the target cell is necessary for its activity. This provides direct evidence of the usefulness of carrier-mediated delivery to evaluate the intracellular efficacy of a putative antiviral peptide. Images PMID:8090758

  20. Five glutamic acid residues in the C-terminal domain of the ChlD subunit play a major role in conferring Mg(2+) cooperativity upon magnesium chelatase.

    PubMed

    Brindley, Amanda A; Adams, Nathan B P; Hunter, C Neil; Reid, James D

    2015-11-10

    Magnesium chelatase catalyzes the first committed step in chlorophyll biosynthesis by inserting a Mg(2+) ion into protoporphyrin IX in an ATP-dependent manner. The cyanobacterial (Synechocystis) and higher-plant chelatases exhibit a complex cooperative response to free magnesium, while the chelatases from Thermosynechococcus elongatus and photosynthetic bacteria do not. To investigate the basis for this cooperativity, we constructed a series of chimeric ChlD proteins using N-terminal, central, and C-terminal domains from Synechocystis and Thermosynechococcus. We show that five glutamic acid residues in the C-terminal domain play a major role in this process.

  1. Labile neurotoxin in serum of calves with "nervous" coccidiosis.

    PubMed Central

    Isler, C M; Bellamy, J E; Wobeser, G A

    1987-01-01

    Mouse inoculation was used to test for the presence of a toxin in the serum, cerebrospinal fluid, and intestinal contents collected from cases of bovine enteric coccidiosis, with and without neurological signs, and from control calves. Intravenous inoculation of mice with 10 mL/kg of serum from calves showing nervous signs caused effects significantly different from those caused by the inoculation of serum from calves not showing nervous signs and from control calves. The effect was particularly evident in female mice. At this dosage severe neurological signs such as loss of righting reflex, seizures and death occurred only with serum from calves with "nervous coccidiosis". The results suggest that serum from the calves with neurological signs contains a neurotoxin. This toxin appears to be highly labile. It was not present in the cerebrospinal fluid at levels comparable to those in the serum. The significance of this labile neurotoxin with respect to the pathogenesis of the neurological signs associated with bovine enteric coccidiosis is unknown. PMID:2955865

  2. Abalone (Haliotis tuberculata) hemocyanin type 1 (HtH1). Organization of the approximately 400 kDa subunit, and amino acid sequence of its functional units f, g and h.

    PubMed

    Keller, H; Lieb Bp6; Altenhein, B; Gebauer, D; Richter, S; Stricker, S; Markl, J

    1999-08-01

    We have identified two separate hemocyanin types (HtH1 and HtH2) in the European abalone Haliotis tuberculata. HtH1/HtH2 hybrid molecules were not found. By selective dissociation of HtH2 we isolated HtH1 which, as revealed by electron microscopy and SDS/PAGE, is present as didecamers of a approximately 400 kDa subunit. Immunologically, HtH1 and HtH2 correspond to keyhole limpet hemocyanin (KLH)1 and KLH2, respectively, the two well-studied hemocyanin types of the closely related marine gastropod Megathura crenulata. On the basis of limited proteolytic cleavage, two-dimensional immunoelectrophoresis, SDS/PAGE and N-terminal sequencing, we identified eight different 40-60 kDa functional units in HtH1, termed HtH1-a to HtH1-h, and determined their linear arrangement within the elongated subunit. From Haliotis mantle tissue, rich in hemocyanin-producing pore cells, we isolated mRNA and constructed a cDNA library. By expression screening with HtH-specific rabbit antibodies, a cDNA clone was isolated and sequenced which codes for the three C-terminal functional units f, g and h of HtH1. Their sequences were aligned to those available from other molluscs, notably to functional unit f and functional unit g from the cephalopod Octopus dofleini. HtH1-f, which is the first sequenced functional unit of type f from a gastropod hemocyanin, corresponds to functional unit f from Octopus. Also functional unit g from Haliotis and Octopus correspond to each other. HtH1-h is a gastropod hemocyanin functional unit type which is absent in cephalopods and has not been sequenced previously. It exhibits a unique tail extension of approximately 95 amino acids, which is lacking in functional units a to g and aligns with a published peptide sequence of 48 amino acids from functional unit h of Helix pomatia hemocyanin. The new Haliotis sequences are discussed with respect to their counterparts in Octopus, the 15 A three-dimensional reconstruction of the KLH1 didecamer from electron

  3. An ultrahigh-resolution mass spectrometry index to estimate natural organic matter lability

    PubMed Central

    D'Andrilli, Juliana; Cooper, William T; Foreman, Christine M; Marshall, Alan G

    2015-01-01

    Rationale Determining the chemical constituents of natural organic matter (NOM) by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICRMS) remains the ultimate measure for probing its source material, evolution, and transport; however, lability and the fate of organic matter (OM) in the environment remain controversial. FTICRMS-derived elemental compositions are presented in this study to validate a new interpretative method to determine the extent of NOM lability from various environments. Methods FTICRMS data collected over the last decade from the same 9.4 tesla instrument using negative electrospray ionization at the National High Magnetic Field Laboratory in Tallahassee, Florida, was used to validate the application of a NOM lability index. Solid-phase extraction cartridges were used to isolate the NOM prior to FTICRMS; mass spectral peaks were calibrated internally by commonly identified NOM homologous series, and molecular formulae were determined for NOM composition and lability analysis. Results A molecular lability boundary (MLB) was developed from the FTICRMS molecular data, visualized from van Krevelen diagrams, dividing the data into more and less labile constituents. NOM constituents above the MLB at H/C ≥1.5 correspond to more labile material, whereas NOM constituents below the MLB, H/C <1.5, exhibit less labile, more recalcitrant character. Of all marine, freshwater, and glacial environments considered for this study, glacial ecosystems were calculated to contain the most labile OM. Conclusions The MLB extends our interpretation of FTICRMS NOM molecular data to include a metric of lability, and generally ranked the OM environments from most to least labile as glacial > marine > freshwater. Applying the MLB is useful not only for individual NOM FTICRMS studies, but also provides a lability threshold to compare and contrast molecular data with other FTICRMS instruments that survey NOM from around the world. Copyright © 2015

  4. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  5. Profiling of structurally labile oxylipins in plants by in situ derivatization with pentafluorobenzyl hydroxylamine.

    PubMed

    Schulze, Birgit; Lauchli, Ryan; Sonwa, Mesmin Mekem; Schmidt, Annika; Boland, Wilhelm

    2006-01-15

    A GC-MS-based method for the simultaneous quantification of common oxylipins along with labile and highly reactive compounds based on in situ derivatization with pentafluorobenzyl hydroxylamine to the corresponding O-2,3,4,5,6-pentafluorobenzyl oximes (PFB oximes) is presented. The approach covers oxo derivatives such as jasmonic acid (JA), 12-oxophytodienoic acid (OPDA), certain phytoprostanes, unsaturated oxo-acids, oxo-hydroxy acids, and aldehyde fragments from the polar head of fatty acids. In the positive electron impact-MS mode, the PFB oximes display characteristic fragment ions that greatly facilitate the identification of oxylipins in complex matrices. In addition, the fluorinated derivatives allow a highly selective and low-background analysis by negative chemical ionization. Besides showing the general value of the method for the identification of a broad range of oxylipins (18 examples), we also demonstrate sensitivity, linearity, and reproducibility for the quantification of JA, OPDA, 11-oxo-9-undecenoic acid, and 13-oxo-9,11-tridecadienoic acid. The efficiency of the method is demonstrated by differential profiling of these four oxylipins in lima bean leaves after mechanical wounding and feeding by the herbivore Spodoptera littoralis. Caterpillar feeding induced several oxylipins, whereas after wounding only the level of JA increased. The rapid in situ derivatization prevents the isomerization of cis-JA to trans-JA. The resting level of JA in lima beans showed an isomer ratio of 80:20 for trans/cis-JA. After wounding, de novo synthesis of JA alters the ratio to 20:80 in favor of the cis isomer.

  6. The Arabidopsis adaptor protein AP-3μ interacts with the G-protein β subunit AGB1 and is involved in abscisic acid regulation of germination and post-germination development.

    PubMed

    Kansup, Jeeraporn; Tsugama, Daisuke; Liu, Shenkui; Takano, Tetsuo

    2013-12-01

    Heterotrimeric G-proteins (G-proteins) have been implicated in ubiquitous signalling mechanisms in eukaryotes. In plants, G-proteins modulate hormonal and stress responses and regulate diverse developmental processes. However, the molecular mechanisms of their functions are largely unknown. A yeast two-hybrid screen was performed to identify interacting partners of the Arabidopsis G-protein β subunit AGB1. One of the identified AGB1-interacting proteins is the Arabidopsis adaptor protein AP-3µ. The interaction between AGB1 and AP-3µ was confirmed by an in vitro pull-down assay and bimolecular fluorescence complementation assay. Two ap-3µ T-DNA insertional mutants were found to be hyposensitive to abscisic acid (ABA) during germination and post-germination growth, whereas agb1 mutants were hypersensitive to ABA. During seed germination, agb1/ap-3µ double mutants were more sensitive to ABA than the wild type but less sensitive than agb1 mutants. However, in post-germination growth, the double mutants were as sensitive to ABA as agb1 mutants. These data suggest that AP-3µ positively regulates the ABA responses independently of AGB1 in seed germination, while AP-3µ does require AGB1 to regulate ABA responses during post-germination growth.

  7. The human [gamma]-aminobutyric acid receptor subunit [beta]3 and [alpha]5 gene cluster in chromosome 15q11-q13 is rich in highly polymorphic (CA)[sub n] repeats

    SciTech Connect

    Glatt, K.; Lalande, M. ); Sinnett, D. )

    1994-01-01

    The [gamma]-aminobutyric acid (GABA[sub A]) receptor [beta]33 (GABRB3) and [alpha]5 (GABRA5) subunit genes have been localized to the Angelman and Prader-Willi syndrome region of chromosome 15q11-q13. GABRB3, which encompasses 250 kb, is located 100 kb proximal of GABRA5, with the two genes arranged in head-to-head transcriptional orientation. In screening 135 kb of cloned DNA within a 260-kb interval extending from within GABRB3 to the 5[prime] end of GABRA5, 10 new (CA), repeats have been identified. Five of these have been analyzed in detail and found to be highly polymorphic, with the polymorphism information content (PIC) ranging from 0.7 to 0.85 and with heterozygosities of 67 to 94%. In the clones from GABRB3/GABRA5 region, therefore, the frequency of (CA)[sub n] with PICs [ge] 0.7 is 1 per 27 kb. Previous estimates of the density of (CA)[sub n] with PICs [ge] 0.7 in the human genome have been approximately 10-fold lower. The GABRB3/GABRA5 region appears, therefore, to be enriched for highly informative (CA)[sub n]. This set of closely spaced, short tandem repeat polymorphisms will be useful in the molecular analyses of Prader-Willi and Angelman syndromes and in high-resolution studies of genetic recombination within this region. 21 refs., 2 figs., 1 tab.

  8. Oxidative stress and labile plasmatic iron in anemic patients following blood therapy

    PubMed Central

    Fernandes, Marília Sabo; Rissi, Tatiana Tamborena; Zuravski, Luisa; Mezzomo, Juliana; Vargas, Carmen Regla; Folmer, Vanderlei; Soares, Félix Alexandre Antunes; Manfredini, Vanusa; Ahmed, Mushtaq; Puntel, Robson Luiz

    2014-01-01

    AIM: To determine the plasmatic iron content and evaluate the oxidative stress (OS) markers in subjects receiving blood therapy. METHODS: Thirty-nine individuals with unspecified anemia receiving blood transfusions and 15 healthy subjects were included in the study. Anemic subjects were divided into three subgrouP: (1) those that received up to five blood transfusions (n = 14); (2) those that received from five to ten transfusions (n = 11); and (3) those that received more than ten transfusions (n = 14). Blood samples were collected by venous arm puncture and stored in tubes containing heparin. The plasma and cells were separated by centrifugation and subsequently used for analyses. Statistical analyses were performed using Kruskal-Wallis analysis of variance followed by Dunn’s multiple comparison tests when appropriate. RESULTS: The eletrophoretic hemoglobin profiles of the subjects included in this study indicated that no patients presented with hemoglobinopathy. Labile plasmatic iron, ferritin, protein carbonyl, thiobarbituric acid-reactive substances (TBARS) and dichlorofluorescein diacetate oxidation were significantly higher (P < 0.05), whereas total thiol levels were significantly lower (P < 0.05) in transfused subjects compared to controls. Additionally, the activity of catalase, superoxide dismutase and glutathione peroxidase were significantly lower in the transfused subjects (P < 0.05). Antioxidant enzyme activities and total thiol levels were positively correlated (P < 0.05), and negatively correlated with the levels of protein carbonyl and TBARS (P < 0.05). In contrast, protein carbonyl and TBARS were positively correlated (P < 0.05). Altogether, these data confirm the involvement of OS in patients following therapy with repeated blood transfusions. CONCLUSION: Our data reveal that changes in OS markers are correlated with levels of labile plasmatic iron and ferritin and the number of transfusions. PMID:25254188

  9. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-02-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle and dependent on the DOM composition. For our understanding of the kinetics of organic matter cycling in the ocean, it is therefore crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids, and transparent exopolymer particles (TEP) for two years. Ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) allowed the molecular characterization of extracted DOM after 70 days and after ∼2 years of incubation. Although glucose was quickly degraded, a DOC background was generated in glucose incubations. Only 20% of the organic carbon from algal exudate was degraded within the 2 years of incubation. TEP, which are released by micro-organisms, were produced during glucose degradation but decreased within less than three weeks back to half of the maximum concentration and were below detection in all treatments after 2 years. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM produced during the degradation of the algal exudates. Our results led to several conclusions: (i) Higher substrate levels result in a higher level of non-labile DOC which is an important prerequisite for carbon sequestration in the ocean; (ii) TEP are generated by bacteria but are also degraded rapidly, thus limiting their potential contribution to carbon sequestration; (iii) The molecular signatures of DOM derived from algal exudates or glucose after 70 days of incubation differed strongly from refractory DOM. After 2 years

  10. Dog paw preference shows lability and sex differences.

    PubMed

    Poyser, Fay; Caldwell, Christine; Cobb, Matthew

    2006-09-01

    Paw preferences in domestic dogs were studied using three different behavioural tests, recording frequency, duration and latency of paw use. No overall population tendency to right- or left-paw preference was seen on any of the tests, nor could a sub-population of handed dogs be detected. This failure to replicate previous reports that male dogs tend to use their left paws while females use their right was counterbalanced by a significant tendency for male dogs to use their left paw when initially presented with one test, and for the latency of left paw use to be significantly shorter than that for right paw use on these initial presentations. This significant effect disappeared with repeated presentation of the test, and was not present in females. We conclude that behavioural lateralisation appears to be a labile category in dogs, and may be related to brain hemispheric effects in responding to novel stimuli.

  11. The role of labile sulfur compounds in thermochemical sulfate reduction

    NASA Astrophysics Data System (ADS)

    Amrani, Alon; Zhang, Tongwei; Ma, Qisheng; Ellis, Geoffrey S.; Tang, Yongchun

    2008-06-01

    The reduction of sulfate to sulfide coupled with the oxidation of hydrocarbons to carbon dioxide, commonly referred to as thermochemical sulfate reduction (TSR), is an important abiotic alteration process that most commonly occurs in hot carbonate petroleum reservoirs. In the present study we focus on the role that organic labile sulfur compounds play in increasing the rate of TSR. A series of gold-tube hydrous pyrolysis experiments were conducted with n-octane and CaSO4 in the presence of reduced sulfur (e.g. H2S, S°, organic S) at temperatures of 330 and 356 °C under a constant confining pressure. The in-situ pH was buffered to 3.5 (∼6.3 at room temperature) with talc and silica. For comparison, three types of oil with different total S and labile S contents were reacted under similar conditions. The results show that the initial presence of organic or inorganic sulfur compounds increases the rate of TSR. However, organic sulfur compounds, such as 1-pentanethiol or diethyldisulfide, were significantly more effective in increasing the rate of TSR than H2S or elemental sulfur (on a mole S basis). The increase in rate is achieved at relatively low concentrations of 1-pentanethiol, less than 1 wt% of the total n-octane, which is comparable to the concentration of organic S that is common in many oils (∼0.3 wt%). We examined several potential reaction mechanisms to explain the observed reactivity of organic LSC. First, the release of H2S from the thermal degradation of thiols was discounted as an important mechanism due to the significantly greater reactivity of thiol compared to an equivalent amount of H2S. Second, we considered the generation of olefines in association with the elimination of H2S during thermal degradation of thiols because olefines are much more reactive than n-alkanes during TSR. In our experiments, olefines increased the rate of TSR, but were less effective than 1-pentanethiol and other organic LSC. Third, the thermal decomposition of

  12. The role of labile sulfur compounds in thermochemical sulfate reduction

    USGS Publications Warehouse

    Amrani, A.; Zhang, T.; Ma, Q.; Ellis, G.S.; Tang, Y.

    2008-01-01

    The reduction of sulfate to sulfide coupled with the oxidation of hydrocarbons to carbon dioxide, commonly referred to as thermochemical sulfate reduction (TSR), is an important abiotic alteration process that most commonly occurs in hot carbonate petroleum reservoirs. In the present study we focus on the role that organic labile sulfur compounds play in increasing the rate of TSR. A series of gold-tube hydrous pyrolysis experiments were conducted with n-octane and CaSO4 in the presence of reduced sulfur (e.g. H2S, S??, organic S) at temperatures of 330 and 356 ??C under a constant confining pressure. The in-situ pH was buffered to 3.5 (???6.3 at room temperature) with talc and silica. For comparison, three types of oil with different total S and labile S contents were reacted under similar conditions. The results show that the initial presence of organic or inorganic sulfur compounds increases the rate of TSR. However, organic sulfur compounds, such as 1-pentanethiol or diethyldisulfide, were significantly more effective in increasing the rate of TSR than H2S or elemental sulfur (on a mole S basis). The increase in rate is achieved at relatively low concentrations of 1-pentanethiol, less than 1 wt% of the total n-octane, which is comparable to the concentration of organic S that is common in many oils (???0.3 wt%). We examined several potential reaction mechanisms to explain the observed reactivity of organic LSC. First, the release of H2S from the thermal degradation of thiols was discounted as an important mechanism due to the significantly greater reactivity of thiol compared to an equivalent amount of H2S. Second, we considered the generation of olefines in association with the elimination of H2S during thermal degradation of thiols because olefines are much more reactive than n-alkanes during TSR. In our experiments, olefines increased the rate of TSR, but were less effective than 1-pentanethiol and other organic LSC. Third, the thermal decomposition of

  13. Lability of renal papillary tissue composition in the rat.

    PubMed Central

    Atherton, J C

    1978-01-01

    1. The acute effects of (a) a minor operative procedure using ether as the anaesthetic, and (b) the administration of 0.9% saline as a single I.V. injection in the conscious rat, on renal tissue composition were studied in hydropenic and normally hydrated rats. 2. The operative procedure and anaesthesia induced a rapid and transient decrease in papillary osmolality in both hydropenic and normally hydrated animals, the important contributing factor being a significant decrease in urea content. 3. Administration of a small volume of saline caused a rapid decrease in urea content, and an increase in water content. 4. It is concluded that papillary composition is extremely labile, large changes being produced by relatively minor experimental procedures. PMID:624997

  14. Viral RNA modulates the acid sensitivity of foot-and-mouth disease virus capsids.

    PubMed Central

    Curry, S; Abrams, C C; Fry, E; Crowther, J C; Belsham, G J; Stuart, D I; King, A M

    1995-01-01

    Foot-and-mouth disease virus (FMDV) manifests an extreme sensitivity to acid, which is thought to be important for entry of the RNA genome into the cell. We have compared the low-pH-induced disassembly in vitro of virions and natural empty capsids of three subtypes of serotype A FMDV by enzyme-linked immunosorbent assay and sucrose gradient sedimentation analysis. For all three subtypes (A22 Iraq 24/64, A10(61), and A24 Cruzeiro), the empty capsid was more stable by 0.5 pH unit on average than the corresponding virion. Unexpectedly, in the natural empty capsids used in this study, the precursor capsid protein VP0 was found largely to be cleaved into VP2 and VP4. For picornaviruses the processing of VP0 is closely associated with encapsidation of viral RNA, which is considered likely to play a catalytic role in the cleavage. Investigation of the cleavage of VP0 in natural empty capsids failed to implicate the viral RNA. However, it remains possible that these particles arise from abortive attempts to encapsidate RNA. Empty capsids expressed from a vaccinia virus recombinant showed essentially the same acid lability as natural empty capsids, despite differing considerably in the extent of VP0 processing, with the synthetic particles containing almost exclusively uncleaved VP0. These results indicate that it is the viral RNA that modulates acid lability in FMDV. In all cases the capsids dissociate at low pH directly into pentameric subunits. Comparison of the three viruses indicates that FMDV A22 Iraq is about 0.5 pH unit more sensitive to low pH than types A10(61) and A24 Cruzeiro. Sequence analysis of the three subtypes identified several differences at the interface between pentamers and highlighted a His-alpha-helix dipole interaction which spans the pentamer interface and appears likely to influence the acid lability of the virus. PMID:7983739

  15. Nitrogenase-catalyzed ethane production and CO-sensitive hydrogen evolution from MoFe proteins having amino acid substitutions in an alpha-subunit FeMo cofactor-binding domain.

    PubMed

    Scott, D J; Dean, D R; Newton, W E

    1992-10-01

    Unlike wild type, certain Mo-dependent nitrogenases, which are expressed in non-N2-fixing mutant strains of Azotobacter vinelandii and have single amino acid substitutions within a region of the MoFe protein alpha-subunit proposed to encompass an FeMo cofactor-binding domain, are able to catalyze the reduction of acetylene by both two and four electrons to yield ethylene and ethane, respectively (Scott, D. J., May, H. D., Newton, W. E., Brigle, K. E., and Dean, D. R. (1990) Nature 343, 188-190). Although the V-dependent nitrogenase is also able to catalyze the reduction of acetylene to the same two- and four-electron products (Dilworth, M. J., Eady, R. R., Robson, R. L., and Miller, R. W. (1987) Nature 327, 167-168), we find that ethane formation from acetylene catalyzed by the altered Mo-dependent nitrogenases occurs by a different mechanism, which is distinguished by: (i) an increased sensitivity to CO; (ii) the absence of a lag; and (iii) no temperature dependence of product distribution among ethylene and ethane during acetylene reduction. An altered MoFe protein, which was purified from one such mutant strain having the alpha-subunit glutaminyl 191 residue substituted by lysyl, exhibited both a changed S = 3/2 EPR spectrum and changes in the distribution of electrons to various products when compared to wild type. Also, unlike wild type, this altered MoFe protein catalyzed proton reduction that is inhibited by carbon monoxide (CO). Because proton reduction catalyzed by a nitrogenase that has a FeMo cofactor with citrate rather than homocitrate as its organic constituent (Liang, J., Madden, M., Shah, V. K., and Burris, R. H. (1990) Biochemistry 29, 8577-8581) is also inhibited by CO, the possibility arose that changes in the polypeptide environment of FeMo cofactor might have caused a rearrangement in its molecular structure or composition. However, this possibility was ruled out by biochemical reconstitution studies (using FeMo cofactor isolated from both the

  16. Characterization of the RnfB and RnfG Subunits of the Rnf Complex from the Archaeon Methanosarcina acetivorans

    PubMed Central

    Suharti, Suharti; Wang, Mingyu; de Vries, Simon; Ferry, James G.

    2014-01-01

    Rnf complexes are redox-driven ion pumps identified in diverse species from the domains Bacteria and Archaea, biochemical characterizations of which are reported for two species from the domain Bacteria. Here, we present characterizations of the redox-active subunits RnfG and RnfB from the Rnf complex of Methanosarcina acetivorans, an acetate-utilizing methane-producing species from the domain Archaea. The purified RnfG subunit produced in Escherichia coli fluoresced in SDS-PAGE gels under UV illumination and showed a UV-visible spectrum typical of flavoproteins. The Thr166Gly variant of RnfG was colorless and failed to fluoresce under UV illumination confirming a role for Thr166 in binding FMN. Redox titration of holo-RnfG revealed a midpoint potential of −129 mV for FMN with n = 2. The overproduced RnfG was primarily localized to the membrane of E. coli and the sequence contained a transmembrane helix. A topological analysis combining reporter protein fusion and computer predictions indicated that the C-terminal domain containing FMN is located on the outer aspect of the cytoplasmic membrane. The purified RnfB subunit produced in E. coli showed a UV-visible spectrum typical of iron-sulfur proteins. The EPR spectra of reduced RnfB featured a broad spectral shape with g values (2.06, 1.94, 1.90, 1.88) characteristic of magnetically coupled 3Fe-4S and 4Fe-4S clusters in close agreement with the iron and acid-labile sulfur content. The ferredoxin specific to the aceticlastic pathway served as an electron donor to RnfB suggesting this subunit is the entry point of electrons to the Rnf complex. The results advance an understanding of the organization and biochemical properties of the Rnf complex and lay a foundation for further understanding the overall mechanism in the pathway of methane formation from acetate. PMID:24836163

  17. Parenteral Adjuvant Effects of an Enterotoxigenic Escherichia coli Natural Heat-Labile Toxin Variant.

    PubMed

    Braga, Catarina J M; Rodrigues, Juliana F; Medina-Armenteros, Yordanka; Farinha-Arcieri, Luís E; Ventura, Armando M; Boscardin, Silvia B; Sbrogio-Almeida, Maria E; Ferreira, Luís C S

    2014-01-01

    Native type I heat-labile toxins (LTs) produced by enterotoxigenic Escherichia coli (ETEC) strains exert strong adjuvant effects on both antibody and T cell responses to soluble and particulate antigens following co-administration via mucosal routes. However, inherent enterotoxicity and neurotoxicity (following intra-nasal delivery) had reduced the interest in the use of these toxins as mucosal adjuvants. LTs can also behave as powerful and safe adjuvants following delivery via parenteral routes, particularly for activation of cytotoxic lymphocytes. In the present study, we evaluated the adjuvant effects of a new natural LT polymorphic form (LT2), after delivery via intradermal (i.d.) and subcutaneous (s.c.) routes, with regard to both antibody and T cell responses. A recombinant HIV-1 p24 protein was employed as a model antigen for determination of antigen-specific immune responses while the reference LT (LT1), produced by the ETEC H10407 strain, and a non-toxigenic LT form (LTK63) were employed as previously characterized LT types. LT-treated mice submitted to a four dose-base immunization regimen elicited similar p24-specific serum IgG responses and CD4(+) T cell activation. Nonetheless, mice immunized with LT1 or LT2 induced higher numbers of antigen-specific CD8(+) T cells and in vivo cytotoxic responses compared to mice immunized with the non-toxic LT derivative. These effects were correlated with stronger activation of local dendritic cell populations. In addition, mice immunized with LT1 and LT2, but not with LTK63, via s.c. or i.d. routes developed local inflammatory reactions. Altogether, the present results confirmed that the two most prevalent natural polymorphic LT variants (LT1 or LT2) display similar and strong adjuvant effects for subunit vaccines administered via i.d. or s.c. routes.

  18. Ribitol dehydrogenase from Klebsiella aerogenes. Purification and subunit structure

    PubMed Central

    Taylor, Susan S.; Rigby, Peter W. J.; Hartley, Brian S.

    1974-01-01

    Ribitol dehydrogenase has been purified to homogeneity from several strains of Klebsiella aerogenes. One strain yields 3–6g of pure enzyme from 1kg of cells. The enzyme is a tetramer of four subunits, mol.wt. 27000. Preliminary studies of the activity of the enzyme are reported. Peptide `maps' together with the amino acid composition indicate that the subunits are identical. ImagesPLATE 2PLATE 1 PMID:4618776

  19. TM2 but not TM4 of subunit c'' interacts with TM7 of subunit a of the yeast V-ATPase as defined by disulfide-mediated cross-linking.

    PubMed

    Wang, Yanru; Inoue, Takao; Forgac, Michael

    2004-10-22

    The vacuolar (H+)-ATPase (or V-ATPase) is an ATP-dependent proton pump which couples the energy released upon ATP hydrolysis to rotational movement of a ring of proteolipid subunits (c, c', and c'') relative to the integral subunit a. The proteolipid subunits each contain a single buried acidic residue that is essential for proton transport, with this residue located in TM4 of subunits c and c' and TM2 of subunit c''. Subunit c'' contains an additional buried acidic residue in TM4 that is not required for proton transport. The buried acidic residues of the proteolipid subunits are believed to interact with an essential arginine residue (Arg735) in TM7 of subunit a during proton translocation. We have previously shown that the helical face of TM7 of subunit a containing Arg735 interacts with the helical face of TM4 of subunit c' bordered by Glu145 and Leu147 (Kawasaki-Nishi et al. (2003) J. Biol. Chem. 278, 41908-41913). We have now analyzed interaction of subunits a and c'' using disulfide-mediated cross-linking. The results indicate that the helical face of TM7 of subunit a containing Arg735 interacts with the helical face of TM2 of subunit c'' centered on Ile105, with the essential glutamic acid residue (Glu108) located near the opposite border of this face compared with TM4 of subunit c'. By contrast, TM4 of subunit c'' does not form strong cross-links with TM7 of subunit a, suggesting that these transmembrane segments are not normally in close proximity. These results are discussed in terms of a model involving rotation of interacting helices in subunit a and the proteolipid subunits relative to each other.

  20. Isolation of B subunit-specific monoclonal antibody clones that strongly neutralize the toxicity of Shiga toxin 2.

    PubMed

    Arimitsu, Hideyuki; Sasaki, Keiko; Iba, Yoshitaka; Kurosawa, Yoshikazu; Shimizu, Toshiyasu; Tsuji, Takao

    2015-02-01

    Shiga toxin 2 (Stx2)-specific mAb-producing hybridoma clones were generated from mice. Because mice tend to produce small amounts of B subunit (Stx2B)-specific antibodies at the polyclonal antibody level after immunization via the parenteral route, mice were immunized intranasally with Stx2 toxoids with a mutant heat-labile enterotoxin as a mucosal adjuvant; 11 different hybridoma clones were obtained in two trials. Six of them were A subunit (Stx2A)-specific whereas five were Stx2B-specific antibody-producing clones. The in vitro neutralization activity of Stx2B-specific mAbs against Stx2 was greater than that of Stx2A-specific mAbs on HeLa229 cells. Furthermore, even at low concentrations two of the Stx2B-specific mAbs (45 and 75D9) completely inhibited receptor binding and showed in vivo neutralization activity against a fivefold median lethal dose of Stx2 in mice. In western blot analysis, these Stx2B-specific neutralization antibodies did not react to three different mutant forms of Stx2, each amino acid residue of which was associated with receptor binding. Additionally, the nucleotide sequences of the VH and VL regions of clones 45 and 75D9 were determined. Our Stx2B-specific mAbs may be new candidates for the development of mouse-human chimeric Stx2-neutralizing antibodies which have fewer adverse effects than animal antibodies for enterohemorrhagic Escherichia coli infection.

  1. The 2.3 {angstrom} crystal structure of cholera toxin B subunit pentamer: Choleragenoid

    SciTech Connect

    Zhang, Rong-Guang; Westbrook, M.L.; Maulik, P.R.; Reed, R.A.; Shipley, G.; Westbrook, E.M. |; Scott, D.L.; Otwinowski, Z.

    1996-02-01

    Cholera toxin, a heterohexameric AB{sub 5} enterotoxin released by Vibrio cholera, induces a profuse secretory diarrhea in susceptible hosts. Choleragenoid, the B subunit pentamer of cholera toxin, directs the enzymatic A subunit to its target by binding to GM{sub 1} gangliosides exposed on the luminal surface of intestinal epithelial cells. We have solved the crystal structure of choleragenoid at 2.3 {Angstrom} resolution by combining single isomorphous replacement with non-crystallographic symmetry averaging. The structure of the B subunits, and their pentameric arrangement, closely resembles that reported for the intact holotoxin (choleragen), the heat-labile enterotoxin from E. coli, and for a choleragenoid-GM{sub 1} pentasaccharide complex. In the absence of the A subunit the central cavity of the B pentamer is a highly solvated channel. The binding of the A subunit or the receptor pentasaccharide to choleragenoid has only a modest effect on the local stereochemistry and does not perceptibly alter the subunit interface.

  2. Stabilization of the Escherichia coli DNA polymerase III ε subunit by the θ subunit favors in vivo assembly of the Pol III catalytic core.

    PubMed

    Conte, Emanuele; Vincelli, Gabriele; Schaaper, Roel M; Bressanin, Daniela; Stefan, Alessandra; Dal Piaz, Fabrizio; Hochkoeppler, Alejandro

    2012-07-15

    Escherichia coli DNA polymerase III holoenzyme (HE) contains a core polymerase consisting of three subunits: α (polymerase), ε (3'-5' exonuclease), and θ. Genetic experiments suggested that θ subunit stabilizes the intrinsically labile ε subunit and, furthermore, that θ might affect the cellular amounts of Pol III core and HE. Here, we provide biochemical evidence supporting this model by analyzing the amounts of the relevant proteins. First, we show that a ΔholE strain (lacking θ subunit) displays reduced amounts of free ε. We also demonstrate the existence of a dimer of ε, which may be involved in the stabilization of the protein. Second, θ, when overexpressed, dissociates the ε dimer and significantly increases the amount of Pol III core. The stability of ε also depends on cellular chaperones, including DnaK. Here, we report that: (i) temperature shift-up of ΔdnaK strains leads to rapid depletion of ε, and (ii) overproduction of θ overcomes both the depletion of ε and the temperature sensitivity of the strain. Overall, our data suggest that ε is a critical factor in the assembly of Pol III core, and that this is role is strongly influenced by the θ subunit through its prevention of ε degradation.

  3. 68Zn isotope exchange experiments reveal an unusual kinetic lability of the metal ions in the di-zinc form of IMP-1 metallo-beta-lactamase.

    PubMed

    Siemann, Stefan; Badiei, Hamid R; Karanassios, Vassili; Viswanatha, Thammaiah; Dmitrienko, Gary I

    2006-02-01

    The apparently paradoxical behaviour of facile exchange (kinetic lability) of tightly bound (thermodynamic stability) zinc ions in the enzyme IMP-1 metallo-beta-lactamase with Zn-68 and cadmium ions, as indicated by in-torch vaporization inductively-coupled plasma mass spectrometry (ITV-ICP-MS) and electrospray-ionization mass spectrometry (ESI-MS), is consistent with the involvement of a third metal ion in promoting Lewis acid/base type exchange processes.

  4. Stabilized liquid membrane device (SLMD) for the passive, integrative sampling of labile metals in water

    USGS Publications Warehouse

    Brumbaugh, W.G.; Petty, J.D.; Huckins, J.N.; Manahan, S.E.

    2002-01-01

    A stabilized liquid membrane device (SLMD) is described for potential use as an in situ, passive, integrative sampler for cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in natural waters. The SLMD (patent pending) consists of a 2.5-cm-wide by 15-cm-long strip of low-density polyethylene (LDPE) layflat tubing containing 1 mL of an equal mixture (v/v) of oleic acid (cis-9-octadecenoic acid) and EMO-8Q (7-[4-ethyl-1-methyloctyl]-8-quinolinol). The reagent mixture continuously diffuses to the exterior surface of the LDPE membrane, and provides for sequestration of several divalent metals for up to several weeks. Depending on sampler configuration, concentration factors of several thousand can be realized for these metal ions after just a few days. In addition to in situ deployment, the SLMD may be useful for laboratory determination of labile metal species in grab samples. Methods for minimizing the effects of water flow on the sampling rate are currently under investigation.

  5. Phospholipase C (heat-labile hemolysin) of Pseudomonas aeruginosa: purification and preliminary characterization.

    PubMed Central

    Berka, R M; Vasil, M L

    1982-01-01

    Phospholipase C (heat-labile hemolysin) was purified from Pseudomonas aeruginosa culture supernatants to near homogeneity by ammonium sulfate precipitation followed by a novel application of DEAE-Sephacel chromatography. Enzymatic activity remained associated with DEAE-Sephacel even in the presence of 1 M NaCl, but was eluted with a linear gradient of 0 to 5% tetradecyltrimethylammonium bromide. Elution from DEAE-Sephacel was also obtained with 2% lysophosphatidylcholine, and to a lesser extent with 2% phosphorylcholine, but not at all with choline. The enzyme was highly active toward phospholipids possessing substituted ammonium groups (e.g., phosphatidycholine, lysophosphatidylcholine, and sphingomyelin); however, it had little if any activity toward phospholipids lacking substituted ammonium groups (e.g., phosphatidylethanolamine, phosphatidylserine, and phosphaditylglycerol). Collectively, these data suggest that phospholipase C from P. aeruginosa exhibits high affinity for substituted ammonium groups, but requires an additional hydrophobic moiety for optimum binding. The specific activity of the purified enzyme preparation increased 1,900-fold compared with that of culture supernatants. The molecular weight of the phospholipase C was estimated to be 78,000 by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Sephacryl S-200 column chromatography and was 76,000 by high-performance size exclusion chromatography. The isoelectric point was 5.5. Amino acid analysis showed that phospholipase C was rich in glycine, serine, threonine, aspartyl, glutamyl, and aromatic amino acids, but was cystine free. Images PMID:6811552

  6. Actinomyces naeslundii Displays Variant fimP and fimA Fimbrial Subunit Genes Corresponding to Different Types of Acidic Proline-Rich Protein and β-Linked Galactosamine Binding Specificity

    PubMed Central

    Hallberg, K.; Holm, C.; Öhman, U.; Strömberg, N.

    1998-01-01

    Actinomyces naeslundii genospecies 1 and 2 bind to acidic proline-rich proteins (APRPs) and statherin via type 1 fimbriae and to β-linked galactosamine (GalNAcβ) structures via type 2 fimbriae. In addition, A. naeslundii displays two types of binding specificity for both APRPs-statherin and GalNAcβ, while Actinomyces odontolyticus binds to unknown structures. To study the molecular basis for these binding specificities, DNA fragments spanning the entire or central portions of fimP (type 1) and fimA (type 2) fimbrial subunit genes were amplified by PCR from strains of genospecies 1 and 2 and hybridized with DNA from two independent collections of oral Actinomyces isolates. Isolates of genospecies 1 and 2 and A. odontolyticus, but no other Actinomyces species, were positive for hybridization with fimP and fimA full-length probes irrespective of binding to APRPs and statherin, GalNAcβ, or unknown structures. Isolates of genospecies 1 and 2, with deviating patterns of GalNAcβ1-3Galα-O-ethyl-inhibitable coaggregation with Streptococcus oralis Ss34 and MPB1, were distinguished by a fimA central probe from genospecies 1 and 2, respectively. Furthermore, isolates of genospecies 1 and 2 displaying preferential binding to APRPs over statherin were positive with a fimP central probe, while a genospecies 2 strain with the opposite binding preference was not. The sequences of fimP and fimA central gene segments were highly conserved among isolates with the same, but diversified between those with a variant, binding specificity. In conclusion, A. naeslundii exhibits variant fimP and fimA genes corresponding to diverse APRP and GalNAcβ specificities, respectively, while A. odontolyticus has a genetically related but distinct adhesin binding specificity. PMID:9712794

  7. A link between magnesium-chelatase H subunit and sucrose nonfermenting 1 (SNF1)-related protein kinase SnRK2.6/OST1 in Arabidopsis guard cell signalling in response to abscisic acid.

    PubMed

    Liang, Shan; Lu, Kai; Wu, Zhen; Jiang, Shang-Chuan; Yu, Yong-Tao; Bi, Chao; Xin, Qi; Wang, Xiao-Fang; Zhang, Da-Peng

    2015-10-01

    Magnesium-chelatase H subunit [CHLH/putative abscisic acid (ABA) receptor ABAR] positively regulates guard cell signalling in response to ABA, but the molecular mechanism remains largely unknown. A member of the sucrose nonfermenting 1 (SNF1)-related protein kinase 2 family, SnRK2.6/open stomata 1 (OST1)/SRK2E, which plays a critical role in ABA signalling in Arabidopsis guard cells, interacts with ABAR/CHLH. Neither mutation nor over-expression of the ABAR gene affects significantly ABA-insensitive phenotypes of stomatal movement in the OST1 knockout mutant allele srk2e. However, OST1 over-expression suppresses ABA-insensitive phenotypes of the ABAR mutant allele cch in stomatal movement. These genetic data support that OST1 functions downstream of ABAR in ABA signalling in guard cells. Consistent with this, ABAR protein is phosphorylated, but independently of the OST1 protein kinase. Two ABAR mutant alleles, cch and rtl1, show ABA insensitivity in ABA-induced reactive oxygen species and nitric oxide production, as well as in ABA-activated phosphorylation of a K(+) inward channel KAT1 in guard cells, which is consistent with that observed in the pyr1 pyl1 pyl2 pyl4 quadruple mutant of the well-characterized ABA receptor PYR/PYL/RCAR family acting upstream of OST1. These findings suggest that ABAR shares, at least in part, downstream signalling components with PYR/PYL/RCAR receptors for ABA in guard cells; though cch and rtl1 show strong ABA-insensitive phenotypes in both ABA-induced stomatal closure and inhibition of stomatal opening, while the pyr1 pyl1 pyl2 pyl4 quadruple mutant shows strong ABA insensitivity only in ABA-induced stomatal closure. These data establish a link between ABAR/CHLH and SnRK2.6/OST1 in guard cell signalling in response to ABA.

  8. NH3-promoted ligand lability in eleven-vertex rhodathiaboranes.

    PubMed

    Calvo, Beatriz; Roy, Beatriz; Macías, Ramón; Artigas, Maria Jose; Lahoz, Fernando J; Oro, Luis A

    2014-12-01

    The reaction of the 11-vertex rhodathiaborane, [8,8-(PPh3)2-nido-8,7-RhSB9H10] (1), with NH3 affords inmediately the adduct, [8,8,8-(NH3)(PPh3)2-nido-8,7-RhSB9H10] (4). The NH3-Rh interaction induces the labilization of the PPh3 ligands leading to the dissociation product, [8,8-(NH3)(PPh3)-nido-8,7-RhSB9H10] (5), which can then react with another molecule of NH3 to give [8,8,8-(NH3)2(PPh3)-nido-8,7-RhSB9H10] (6). These clusters have been characterized in situ by multielement NMR spectroscopy at different temeperatures. The variable temperature behavior of the system demonstrates that the intermediates 4-6 are in equilibrium, involving ligand exchange processes. On the basis of low intensity signals present in the (1)H NMR spectra of the reaction mixture, some species are tentatively proposed to be the bis- and tris-NH3 ligated clusters, [8,8-(NH3)2-nido-8,7-RhSB9H10] (7) and [8,8,8-(NH3)3-nido-8,7-RhSB9H10] (8). After evaporation of the solvent and the excess of NH3, the system containing species 4-8 regenerates the starting reactant, 1, thus closing a stoichiometric cycle of ammonia addition and loss. After 40 h at room temperature, the reaction of 1 with NH3 gives the hydridorhodathiaborane, [8,8,8-(H)(PPh3)2-nido-8,7-RhSB9H9] (2), as a single product. The reported rhodathiaboranes show reversible H3N-promoted ligand lability, which implies weak Rh-N interactions, leading to a rare case of metal complexes that circumvent "classical" Werner chemistry.

  9. Molecular Evolution of Multi-subunit RNA Polymerases: Sequence Analysis

    PubMed Central

    Lane, William J.; Darst, Seth A.

    2009-01-01

    Transcription in all cellular organisms is performed by multi-subunit, DNA-dependent RNA polymerases that synthesize RNA from DNA templates. Previous sequence and structural studies have elucidated the importance of shared regions common to all multi-subunit RNA polymerases. In addition RNA polymerases contain multiple lineage-specific domain insertions involved in protein-protein and protein-nucleic acid interactions. We have created comprehensive multiple sequence alignments using all available sequence data for the multi-subunit RNA polymerase large subunits, including the bacterial β and β′ subunits and their homologues from archaebacterial RNA polymerases, the eukaryotic RNA polymerases I, II, and III, the nuclear-cytoplasmic large double-stranded DNA Virus RNA polymerases, and plant plastid RNA polymerases. In order to overcome technical difficulties inherent to the large subunit sequences, including large sequence length, small and large lineage-specific insertions, split subunits, and fused proteins, we created an automated and customizable sequence retrieval and processing system. In addition, we used our alignments to create a more expansive set of shared sequence regions and bacterial lineage-specific domain insertions. We also analyzed the intergenic gap between the bacterial β and β′ genes. PMID:19895820

  10. Evolutionarily labile responses to a signal of aggressive intent.

    PubMed Central

    Moretz, Jason A; Morris, Molly R

    2003-01-01

    Males of many swordtail species possess vertical bar pigment patterns that are used both in courtship and agonistic interactions. Expression of the bars may function as a conventional threat signal during conflicts with rival males; bars intensify at the onset of aggression and fade in the subordinate male at contest's end. We used mirror image stimulation and bar manipulations to compare the aggressive responses of the males of four swordtail species to their barred and barless images. We found that having a response to the bars is tightly linked to having genes for bars, while the nature of the response the bars evoked varied across species. Specifically, we report the first known instance where closely related species exhibited differing and contradictory responses to a signal of aggressive motivation. Demonstrating that a signal conveys the same information across species (aggressive intent) while the response to that information has changed among species suggests that the nature of the responses are more evolutionarily labile than the signal. PMID:14613614

  11. Wheat-germ aspartate transcarbamoylase. Purification and cold-lability.

    PubMed Central

    Grayson, J E; Yon, R J; Butterworth, P J

    1979-01-01

    1. Aspartate transcarbamoylase was purified approx. 3000-fold from wheat (Triticum vulgare) germ in 15-20% yield. The product has a specific activity of 14 mumol/min per mg of protein and is approx. 90% pure. The purification scheme includes the use of biospecific "imphilyte" chromatography as described by Yon [Biochem.J.(1977) 161, 233-237]. The enzyme was passed successively through columns of CPAD [N-(3-carboxypropionyl)aminodecyl]-Sepharose in the absence and presence respectively of the ligands UMP and L-aspartate. In the second passage the enzyme was specifically displaced away from impurities with which it co-migrated in the first passage. These two steps contributed a factor of 80 to the overall purification. 2. The enzyme is slowly inactivated on dilution at 0 degrees C and pH 7.0, the inactivation being partially reversible. A detailed investigation of the temperature- and pH-dependence of the cold-inactivation suggested that it was initiated by the perturbation of the pKa values of groups with a moderately high and positive heat of ionization, which were tentatively identified as histidine residues. These findings support a new concept of cold-lability proposed by Bock, Gilbert & Frieden [Biochem. Biophys. Res. Commun. (1975) 66, 564-569]. PMID:43131

  12. Effect of warming on the degradation and production of low-molecular-weight labile organic carbon in an Arctic tundra soil

    DOE PAGES

    Yang, Ziming; Wullschleger, Stan D.; Liang, Liyuan; Graham, David E.; Gu, Baohua

    2016-01-16

    The fate of soil organic carbon (SOC) stored in the Arctic permafrost is a key concern as temperatures continue to rise in the northern hemisphere. Studies and conceptual models suggest that SOC degradation is affected by the composition of SOC, but it is unclear exactly what portions of SOC are vulnerable to rapid breakdown and what mechanisms may be controlling SOC degradation upon permafrost thaw. Here, we examine the dynamic consumption and production of labile SOC in an anoxic incubation experiment using soil samples from the active layer at the Barrow Environmental Observatory, Barrow, Alaska, USA. Free-reducing sugars, alcohols, andmore » low-molecular-weight (LMW) organic acids were analyzed during incubation at either –2 or 8 °C for up to 240 days. Results show that simple sugar and alcohol SOC largely account for the initial rapid release of CO2 and CH4 through anaerobic fermentation, whereas the fermentation products, acetate and formate, are subsequently utilized as primary substrates for methanogenesis. Iron(III) reduction is correlated to acetate production and methanogenesis, suggesting its important role as an electron acceptor in tundra SOC respiration. These observations are further supported in a glucose addition experiment, in which rapid CO2 and CH4 production occurred concurrently with rapid production and consumption of labile organics such as acetate. However, addition of tannic acid, as a more complex organic substrate, showed little influence on the overall production of CO2 and CH4 and organic acids. Together our study shows that LMW labile organics in SOC control the initial rapid release of green-house gases upon warming. We thus present a conceptual framework for the labile SOC transformations and their relations to fermentation, iron reduction and methanogenesis, thereby providing the basis for improved model prediction of climate feedbacks in the Arctic.« less

  13. Comparison of Outcomes in Patients With Nonobstructive, Labile-Obstructive, and Chronically Obstructive Hypertrophic Cardiomyopathy.

    PubMed

    Pozios, Iraklis; Corona-Villalobos, Celia; Sorensen, Lars L; Bravo, Paco E; Canepa, Marco; Pisanello, Chiara; Pinheiro, Aurelio; Dimaano, Veronica L; Luo, Hongchang; Dardari, Zeina; Zhou, Xun; Kamel, Ihab; Zimmerman, Stefan L; Bluemke, David A; Abraham, M Roselle; Abraham, Theodore P

    2015-09-15

    Patients with nonobstructive hypertrophic cardiomyopathy (HC) are considered low risk, generally not requiring aggressive intervention. However, nonobstructive and labile-obstructive HC have been traditionally classified together, and it is unknown if these 2 subgroups have distinct risk profiles. We compared cardiovascular outcomes in 293 patients HC (96 nonobstructive, 114 labile-obstructive, and 83 obstructive) referred for exercise echocardiography and magnetic resonance imaging and followed for 3.3 ± 3.6 years. A subgroup (34 nonobstructive, 28 labile-obstructive, 21 obstructive) underwent positron emission tomography. The mean number of sudden cardiac death risk factors was similar among groups (nonobstructive: 1.4 vs labile-obstructive: 1.2 vs obstructive: 1.4 risk factors, p = 0.2). Prevalence of late gadolinium enhancement (LGE) was similar across groups but more non-obstructive patients had late gadolinium enhancement ≥20% of myocardial mass (23 [30%] vs 19 [18%] labile-obstructive and 8 [11%] obstructive, p = 0.01]. Fewer labile-obstructive patients had regional positron emission tomography perfusion abnormalities (12 [46%] vs nonobstructive 30 [81%] and obstructive 17 [85%], p = 0.003]. During follow-up, 60 events were recorded (36 ventricular tachycardia/ventricular fibrillation, including 30 defibrillator discharges, 12 heart failure worsening, and 2 deaths). Nonobstructive patients were at greater risk of VT/VF at follow-up, compared to labile obstructive (hazed ratio 0.18, 95% confidence interval 0.04 to 0.84, p = 0.03) and the risk persisted after adjusting for age, gender, syncope, family history of sudden cardiac death, abnormal blood pressure response, and septum ≥3 cm (p = 0.04). Appropriate defibrillator discharges were more frequent in nonobstructive (8 [18%]) compared to labile-obstructive (0 [0%], p = 0.02) patients. In conclusion, nonobstructive hemodynamics is associated with more pronounced fibrosis and ischemia than labile

  14. The light subunit of system bo,+ is fully functional in the absence of the heavy subunit

    PubMed Central

    Reig, Núria; Chillarón, Josep; Bartoccioni, Paola; Fernández, Esperanza; Bendahan, Annie; Zorzano, Antonio; Kanner, Baruch; Palacín, Manuel; Bertran, Joan

    2002-01-01

    The heteromeric amino acid transporters are composed of a type II glycoprotein and a non-glycosylated polytopic membrane protein. System bo,+ exchanges dibasic for neutral amino acids. It is composed of rBAT and bo,+AT, the latter being the polytopic membrane subunit. Mutations in either of them cause malfunction of the system, leading to cystinuria. bo,+AT-reconstituted systems from HeLa or MDCK cells catalysed transport of arginine that was totally dependent on the presence of one of the bo,+ substrates inside the liposomes. rBAT was essential for the cell surface expression of bo,+AT, but it was not required for reconstituted bo,+AT transport activity. No system bo,+ transport was detected in liposomes derived from cells expressing rBAT alone. The reconstituted bo,+AT showed kinetic asymmetry. Expressing the cystinuria-specific mutant A354T of bo,+AT in HeLa cells together with rBAT resulted in defective arginine uptake in whole cells, which was paralleled by the reconstituted bo,+AT activity. Thus, subunit bo,+AT by itself is sufficient to catalyse transmembrane amino acid exchange. The polytopic subunits may also be the catalytic part in other heteromeric transporters. PMID:12234930

  15. Arrangement of subunits in microribbons from Giardia.

    PubMed

    Holberton, D V

    1981-02-01

    Ultrasound has been used to disperse the cytoplasm of Giardia muris and Giardia duodenalis trophozoites, releasing disk cytoskeletons for negative staining and study by electron microscopy. Sonication also breaks down the corss-bridges uniting microribbons in disks. Individual ribbons and small bundles of these structures, are found in these preparations and have been imaged both from their edges and in flat face view. The outer layers of ribbons are 2 sheets of regularly arranged globular subunits, held apart by a fibrous inner core. The axial repeat of the microribbon is 15 nm, which is also the distance separating cross-bridge sites along ribbons. Pronounced striping at this interval is a feature of ribbon faces where they are joined in bundles. Subunits in the outer layer are arranged in vertical protofilaments that are set orthogonally to the long axis of the ribbon. Protofilaments bind tannic acid and are seen clearly in sectioned ribbons. Three protofilaments fit into the 15-nm longitudinal spacing. Optical diffraction patterns from ribbon images are dominated by orders of the 15-nm periodicity, including the third-order reflexions expected from protofilaments spacings. Fourth-order reflexions indicate that the ribbon core may also be structured. Ribbon face images give rise to a strong 4-nm layer line, corresponding to the vertical spacing of subunits in protofilaments. Neighbouring protofilaments are staggered by about 0.67 nm. The lattices found in ribbons are consistent with studies of cytoskeleton composition.

  16. The effect of flood events on the partitioning of labile and refractory carbon in the Missouri-Mississippi River system

    NASA Astrophysics Data System (ADS)

    Roe, K. M.; Rosenheim, B. E.; Kolker, A.; Allison, M. A.; Nittrouer, J. A.; Duncan, D. D.; Nyman, J. A.; Butcher, K. A.; Adamic, J. F.

    2009-12-01

    The Missouri-Mississippi River system (MMRS) transports over 40% (4.0 x 109 kg) of the United States's annual input of total organic carbon (OC) from land to the marine environment, yet it is challenging to assess the MMRS’s exact role in the global carbon cycle because of the system’s complexity and temporal variability (i.e. high discharge events and low flow regimes). Determining the relative proportion of labile OC to refractory OC entrained in the MMRS during high and mean flow conditions would lend to the understanding of the MMRS’s role in the flux of carbon between the biospheric and atmospheric reservoirs, which is central to determining the role of anthropogenic CO2 in the global carbon cycle and in climate change. In this study, we investigate the relative proportion of labile OC to refractory OC in the lower MMRS during high and near-mean flow conditions in the springs of 2008 and 2009, respectively. The 2008 spring flood discharged 105 km3 of water, the maximum amount of water ever allowed out of the main channel, at a maximum rate of 4.3 x 104 m3s-1. Events of this scale have occurred only nine times in the past 80 years. Additionally, during the spring 2008 flood, bedload sand and large particulate OC transport rates were observed to increase exponentially. The following spring, high discharge rates returned to near-mean values with a peak discharge of 3.6 x 103 m3s-1. Using radiocarbon age and the thermal stability of organic matter (OM) as a proxy for lability, we evaluate the spectra of ages of particulate OM transported in the lower MMRS during these two flow regimes using a programmed-temperature pyrolysis/combustion system (PTP/CS) coupled with 14C determination. The PTP/CS utilizes the differences in thermal stability of acid insoluble particulate organic matter (AIPOM) to separate different components from the bulk. Employing PTP/CS on bulk AIPOM can complement experiments measuring small proportions of total OM such as compound

  17. Interaction between environmental factors affects the accumulation of root proteins in hydroponically grown Eucalyptus globulus (Labill.).

    PubMed

    Bedon, Frank; Majada, Juan; Feito, Isabel; Chaumeil, Philippe; Dupuy, Jean-William; Lomenech, Anne-Marie; Barre, Aurélien; Gion, Jean-Marc; Plomion, Christophe

    2011-01-01

    Eucalyptus globulus (Labill.) is used for pulp and paper production worldwide. In this report we studied changes in protein expression in one osmotically stressed elite clone widely used in industrial plantations in Spain. High molecular weight polyethylene glycol (PEG) was used as an osmoticum in the growing medium. Roots of rooted cuttings were sampled after 3 and 36 h of treatment. Water potential and abscissic acid content were measured in shoot and root apices to characterize the physiological states of the plants. Total soluble proteins from roots were extracted and separated using two-dimensional gel electrophoresis (2-DE). Gels were stained with Coomassie brillant blue for quantitative analysis of protein accumulation. From a total of 406 reproducible spots, 34 were found to be differentially expressed depending on treatment (osmotic versus control condition) and/or stress duration (3 h versus 36 h), and were further characterized by tandem mass spectrometry. Several proteins were reliably identified including adenosine kinase, actin, stress-related proteins as well as proteins associated to cellular processes, among which some residents of the endoplasmic reticulum. This study constitutes the first investigation of the root proteome in this important forest tree genus. PMID:20974537

  18. Lability of GABAA receptor function in human partial epilepsy: possible relationship to hypometabolism.

    PubMed

    Pumain, René; Ahmed, Mounia Sid; Kurcewicz, Irène; Trottier, Suzanne; Louvel, Jacques; Turak, Baris; Devaux, Bertrand; Laschet, Jacques

    2008-11-01

    The function of the gamma-aminobutyric acid type A receptor (GABA(A)R) is maintained by endogenous phosphorylation. We have shown that the corresponding kinase is the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), using the locally produced glycolytic ATP. In addition, using cerebral tissue obtained during curative surgery for epilepsy, we showed that both the endogenous phosphorylation and the GABA(A)R function are significantly reduced in the "epileptogenic" cerebral cortex when compared to "control" tissue. This dysfunction likely contributes to seizure generation and/or transition from the interictal to the ictal state. Glucose utilization is decreased in the epileptogenic cortex of patients with partial epilepsy in the interictal state, but the relationship to the disorder remains unclear. We propose that this hypometabolism is related to the deficiency in the endogenous phosphorylation of GABA(A)R and the resulting greater lability of GABAergic inhibition. Several lines of evidences indeed suggest that GABAergic inhibition is costly in terms of metabolic consumption. The deficiency of this glycolysis-dependent mechanism may thus link epileptogenicity to glucose hypometabolism. The antiepileptic effect of ketogenic diets may be mediated by the subsequent rise in the NADH/NAD(+) index, which favors GABA(A)R endogenous phosphorylation and should contribute to restoration of GABAergic inhibition in the epileptogenic zone.

  19. Interaction between environmental factors affects the accumulation of root proteins in hydroponically grown Eucalyptus globulus (Labill.).

    PubMed

    Bedon, Frank; Majada, Juan; Feito, Isabel; Chaumeil, Philippe; Dupuy, Jean-William; Lomenech, Anne-Marie; Barre, Aurélien; Gion, Jean-Marc; Plomion, Christophe

    2011-01-01

    Eucalyptus globulus (Labill.) is used for pulp and paper production worldwide. In this report we studied changes in protein expression in one osmotically stressed elite clone widely used in industrial plantations in Spain. High molecular weight polyethylene glycol (PEG) was used as an osmoticum in the growing medium. Roots of rooted cuttings were sampled after 3 and 36 h of treatment. Water potential and abscissic acid content were measured in shoot and root apices to characterize the physiological states of the plants. Total soluble proteins from roots were extracted and separated using two-dimensional gel electrophoresis (2-DE). Gels were stained with Coomassie brillant blue for quantitative analysis of protein accumulation. From a total of 406 reproducible spots, 34 were found to be differentially expressed depending on treatment (osmotic versus control condition) and/or stress duration (3 h versus 36 h), and were further characterized by tandem mass spectrometry. Several proteins were reliably identified including adenosine kinase, actin, stress-related proteins as well as proteins associated to cellular processes, among which some residents of the endoplasmic reticulum. This study constitutes the first investigation of the root proteome in this important forest tree genus.

  20. Effect of pH on Metal Lability in Drinking Water Treatment Residuals.

    PubMed

    Wang, Changhui; Yuan, Nannan; Pei, Yuansheng

    2014-01-01

    Drinking water treatment residuals (WTRs), by-products generated during treatment of drinking water, can be reused as environmental amendments to remediate contamination. However, this beneficial reuse may be hampered by the potential release of toxic contaminants (e.g., metals) in the WTRs. In present study, batch tests and then fractionation, in vitro digestion, and the toxicity characteristic leaching procedure were used to investigate the release and extractability of metals in the Fe/Al hydroxides comprised WTRs under differing pH. The results demonstrated that significant release from WTRs for Ba, Be, Ca, Cd, Co, Cr, Fe, Mg, Mn, Pb, Sr, and Zn occurred under low pH (acid condition); for As, Mo, and V under high pH (alkaline condition); and for Al, Cu, and Ni under both conditions. In comparison, most metals in the WTRs were more easily released under low pH, but the release was stable at a relatively low level between pH 6 and 9, especially under alkaline conditions. Further analysis indicated that the chemical extractability and bioaccessibility of many metals was found to increase in the WTRs after being leached, even though the leached WTRs could still be considered nonhazardous. These results demonstrated that pH had a substantial effect on the lability of metals in WTRs. Overall, caution should be used when considering pH conditions during WTRs reuse to avoid potential metal pollution.

  1. Determination of labile copper, cobalt, and chromium in textile mill wastewater

    SciTech Connect

    Crain, J.S.; Essling, A.M.; Kiely, J.T.

    1997-01-01

    Copper, chromium, and cobalt species present in filtered wastewater effluent were separated by cation exchange and reverse phase chromatography. Three sample fractions were obtained: one containing metal cations (i.e., trivalent Cr, divalent Cu, and divalent Co), one containing organic species (including metallized dyes), and one containing other unretained species. The metal content of each fraction was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The sum of the corrected data was compared to the metal content of a filtered effluent aliquot digested totally with fuming sulfuric acid. Other aliquots of the filtered effluent were spiked with the metals of interest and digested to confirm chemical yield and accuracy. Method detection limits were consistently below 20 {mu}g L{sup -1} for Cu, 30 {mu}g L{sup -1} for Co, and 10 {mu}g L{sup -1} for Cr. Spike recoveries for undifferentiated Cu and Cr were statistically indistinguishable from unity; although Co spike recoveries were slightly low ({approximately}95%), its chemical yield was 98%. Copper retention on the sodium sulfonate cation exchange resin was closely correlated with the [EDTA]/[Cu] ratio, suggesting that metals retained upon the cation exchange column were assignable to labile metal species; however, mass balances for all three elements, though reasonable ({approximately}90%), were significantly different from unity. Mechanical factors may have contributed to the material loss, but other data suggest that some metal species reacted irreversibly with the reverse phase column. 3 refs., 2 figs., 4 tabs.

  2. The alpha and beta subunits of phosphorylase kinase are homologous: cDNA cloning and primary structure of the beta subunit.

    PubMed Central

    Kilimann, M W; Zander, N F; Kuhn, C C; Crabb, J W; Meyer, H E; Heilmeyer, L M

    1988-01-01

    We have cloned cDNA molecules encoding the beta subunit of phosphorylase kinase (ATP:phosphorylase-b phosphotransferase; EC 2.7.1.38) from rabbit fast-twitch skeletal muscle and have determined the complete primary structure of the polypeptide by a combination of peptide and DNA sequencing. In the mature beta subunit, the initial methionine is replaced by an acetyl group. The subunit is composed of 1092 amino acids and has a calculated molecular mass of 125,205 Da. Alignment of its sequence with the alpha subunit of phosphorylase kinase reveals extensive regions of homology, but each molecule also possesses unique sequences. Two of the three phosphorylation sites known for the beta subunit and all seven phosphorylation sites known for the alpha subunit are located in these unique domains. Images PMID:3200826

  3. DETERMINATION OF APPARENT QUANTUM YIELD SPECTRA FOR THE FORMATION OF BIOLOGICALLY LABILE PHOTOPRODUCTS

    EPA Science Inventory

    Quantum yield spectra for the photochemical formation of biologically labile photoproducts from dissolved organic matter (DOM) have not been available previously, although they would greatly facilitate attempts to model photoproduct formation rates across latitudinal, seasonal, a...

  4. Comparative Adjuvant Effects of Type II Heat-Labile Enterotoxins in Combination with Two Different Candidate Ricin Toxin Vaccine Antigens

    PubMed Central

    Greene, Christopher J.; Rong, Yinghui; Mandell, Lorrie M.; Connell, Terry D.

    2015-01-01

    Type II heat-labile enterotoxins (HLTs) constitute a promising set of adjuvants that have been shown to enhance humoral and cellular immune responses when coadministered with an array of different proteins, including several pathogen-associated antigens. However, the adjuvant activities of the four best-studied HLTs, LT-IIa, LT-IIb, LT-IIbT13I, and LT-IIc, have never been compared side by side. We therefore conducted immunization studies in which LT-IIa, LT-IIb, LT-IIbT13I, and LT-IIc were coadministered by the intradermal route to mice with two clinically relevant protein subunit vaccine antigens derived from the enzymatic A subunit (RTA) of ricin toxin, RiVax and RVEc. The HLTs were tested with low and high doses of antigen and were assessed for their abilities to stimulate antigen-specific serum IgG titers, ricin toxin-neutralizing activity (TNA), and protective immunity. We found that all four HLTs tested were effective adjuvants when coadministered with RiVax or RVEc. LT-IIa was of particular interest because as little as 0.03 μg when coadministered with RiVax or RVEc proved effective at augmenting ricin toxin-specific serum antibody titers with nominal evidence of local inflammation. Collectively, these results justify the need for further studies into the mechanism(s) underlying LT-IIa adjuvant activity, with the long-term goal of evaluating LT-IIa's activity in humans. PMID:26491037

  5. Interaction of factor XIII subunits.

    PubMed

    Katona, Eva; Pénzes, Krisztina; Csapó, Andrea; Fazakas, Ferenc; Udvardy, Miklós L; Bagoly, Zsuzsa; Orosz, Zsuzsanna Z; Muszbek, László

    2014-03-13

    Coagulation factor XIII (FXIII) is a heterotetramer consisting of 2 catalytic A subunits (FXIII-A2) and 2 protective/inhibitory B subunits (FXIII-B2). FXIII-B, a mosaic protein consisting of 10 sushi domains, significantly prolongs the lifespan of catalytic subunits in the circulation and prevents their slow progressive activation in plasmatic conditions. In this study, the biochemistry of the interaction between the 2 FXIII subunits was investigated. Using a surface plasmon resonance technique and an enzyme-linked immunosorbent assay-type binding assay, the equilibrium dissociation constant (Kd) for the interaction was established in the range of 10(-10) M. Based on the measured Kd, it was calculated that in plasma approximately 1% of FXIII-A2 should be in free form. This value was confirmed experimentally by measuring FXIII-A2 in plasma samples immunodepleted of FXIII-A2B2. Free plasma FXIII-A2 is functionally active, and when activated by thrombin and Ca(2+), it can cross-link fibrin. In cerebrospinal fluid and tears with much lower FXIII subunit concentrations, >80% of FXIII-A2 existed in free form. A monoclonal anti-FXIII-B antibody that prevented the interaction between the 2 subunits reacted with the recombinant combined first and second sushi domains of FXIII-B, and its epitope was localized to the peptide spanning positions 96 to 103 in the second sushi domain. PMID:24408323

  6. Maternal emotion socialization differentially predicts third-grade children's emotion regulation and lability.

    PubMed

    Rogers, Megan L; Halberstadt, Amy G; Castro, Vanessa L; MacCormack, Jennifer K; Garrett-Peters, Patricia

    2016-03-01

    Numerous parental emotion socialization factors have been implicated as direct and indirect contributors to the development of children's emotional competence. To date, however, no study has combined parents' emotion-related beliefs, behaviors, and regulation strategies in one model to assess their cumulative-as well as unique-contributions to children's emotion regulation. We considered the 2 components that have recently been distinguished: emotion regulation and emotional lability. We predicted that mothers' beliefs about the value of and contempt for children's emotions, mothers' supportive and nonsupportive reactions to their children's emotions, as well as mothers' use of cognitive reappraisal and suppression of their own emotions would each contribute unique variance to their children's emotion regulation and lability, as assessed by children's teachers. The study sample consisted of an ethnically and socioeconomically diverse group of 165 mothers and their third-grade children. Different patterns emerged for regulation and lability: Controlling for family income, child gender, and ethnicity, only mothers' lack of suppression as a regulatory strategy predicted greater emotion regulation in children, whereas mothers' valuing of children's emotions, mothers' lack of contempt for children's emotions, mothers' use of cognitive reappraisal to reinterpret events, and mothers' lack of emotional suppression predicted less lability in children. These findings support the divergence of emotion regulation and lability as constructs and indicate that, during middle childhood, children's lability may be substantially and uniquely affected by multiple forms of parental socialization.

  7. The suppressive activities of six sources of medicinal ferns known as gusuibu on heat-labile enterotoxin-induced diarrhea.

    PubMed

    Chang, Hung-Chi; Chen, Jaw-Chyun; Yang, Jiun-Long; Tsay, Hsin-Sheng; Hsiang, Chien-Yun; Ho, Tin-Yun

    2014-02-18

    Diarrheal disease is one of the most important worldwide health problems. Enterotoxigenic Escherichia coli (ETEC) is the most frequently isolated enteropathogen in diarrheal diseases. In developing countries, a very large number of people, especially children, suffer from diarrhea. To combat this problem, World Health Organization has constituted the Diarrhea Diseases Control Program which guides studies on traditional medicinal practices and preventive measures. Gusuibu, a traditional folk medicine, has been claimed to heal certain types of diarrhea. However, so far no scientific study has been carried out on the anti-diarrheal mechanism of Gusiubu. The present study was performed to examine the suppressive activities of ethanol extracts of six sources of folk medicinal ferns used as Gusuibu on heat-labile enterotoxin (LT)-induced diarrhea. Inhibitory effects of six sources were evaluated on the ETEC LT subunit B (LTB) and monosialotetrahexosylganglioside (GMI) interaction by GM1-enzyme linked immunosorbent assay and patent mouse gut assay. Our results indicated that Drynaria fortunei had no anti-diarrheal effect, while, among the remaining five folk medicinal ferns, four belonging to family Davalliaceae had significant abilities on both the blocking of LTB and GM1 interaction and the inhibition of LT-induced diarrhea. In conclusion, these findings suggested the potential application of Gusuibu as an anti-diarrheal remedy.

  8. Structural determinants of alpha-bungarotoxin binding to the sequence segment 181-200 of the muscle nicotinic acetylcholine receptor. alpha. subunit: Effects of cysteine/cystine modification and species-specific amino acid substitution

    SciTech Connect

    McLane, K.E.; Wu, Xiadong; Diethelm, B.; Conti-Tronconi, B.M. )

    1991-05-21

    The sequence segment 181-200 of the Torpedo nicotinic acetylcholine receptor (nAChR) {alpha}subunit forms a binding site for {alpha}-bungarotoxin ({alpha}-BTX). Synthetic peptides corresponding to the homologous sequences of human, calf, mouse, chicken, frog, and cobra muscle nAChR {alpha}1 subunits were tested for their ability to bind {sup 125}I-{alpha}-BTX, and differences in {alpha}-BTX affinity were determined by using solution (IC{sub 50}s) and solid-phase (K{sub d}s) assays. Panels of overlapping peptides corresponding to the complete {alpha}1 subunit of mouse and human were also tested for {alpha}-BTX binding, but other sequence segments forming the {alpha}-BTX site were not consistently detectable. The role of a putative vicinal disulfide bound between Cys-192 and -193, relative to the Torpedo sequence, was determined by modifying the peptides with sulfhydryl reagents. Reduction and alkylation of the peptides decreased {alpha}-BTX binding, whereas oxidation of the peptides had little effect. These results indicate that while the adjacent cysteines are likely to be involved in forming the toxin/{alpha}1-subunit interface a vicinal disulfide bound was not required for {alpha}-BTX binding.

  9. Properties of the subunits of wheat germ initiation factor 3.

    PubMed

    Heufler, C; Browning, K S; Ravel, J M

    1988-11-10

    Wheat germ initiation factor 3 (eukaryotic initiation factor 3, eIF-3) contains ten non-identical subunits (p116, p107, p87, p83, p56, p45, p41, p36, p34 and p28). Monoclonal antibodies to all except two of the subunits (p41 and p28) were obtained. None of the monoclonal antibodies react with more than one subunit, and only monoclonal antibodies to p36 inhibit the ability of eIF-3 to support initiation of polypeptide synthesis. Two of the subunits (p116 and p107) are highly basic polypeptides (pI greater than or equal to 8); five (p87, p56, p45, p34 and p28) are acidic polypeptides (pI = 5.4-6.1); and three (p83, p41 and p36) appear to exist in more than one isoelectric form. Eight of the subunits of eIF-3 are iodinated rapidly in vitro; the highest incorporation is into p56 and the lowest incorporation is into p28. No incorporation into p41 or p28 is observed. When eIF-3 is treated with N-[3H]ethylmaleimide, approx. 30 alkyl groups per eIF-3 are incorporated, and the eIF-3 is inactivated. No incorporation into p83 or p28 is observed; incorporation of the alkyl groups into the other eight subunits occurs at different rates. The rate of inactivation of eIF-3 by N-ethylmaleimide is slower than the overall rate of incorporation of alkyl groups. eIF-3 is stable between pH 5.5 and 10. Below pH 5.5, eIF-3 is inactivated and precipitation of protein occurs. Partial dissociation of the subunits and inactivation of eIF-3 is obtained by treatment with 2 M urea. Attempts to reassociate the subunits into an active particle were unsuccessful.

  10. In Situ, High-Resolution Profiles of Labile Metals in Sediments of Lake Taihu.

    PubMed

    Wang, Dan; Gong, Mengdan; Li, Yangyang; Xu, Lv; Wang, Yan; Jing, Rui; Ding, Shiming; Zhang, Chaosheng

    2016-01-01

    Characterizing labile metal distribution and biogeochemical behavior in sediments is crucial for understanding their contamination characteristics in lakes, for which in situ, high-resolution data is scare. The diffusive gradient in thin films (DGT) technique was used in-situ at five sites across Lake Taihu in the Yangtze River delta in China to characterize the distribution and mobility of eight labile metals (Fe, Mn, Zn, Ni, Cu, Pb, Co and Cd) in sediments at a 3 mm spatial resolution. The results showed a great spatial heterogeneity in the distributions of redox-sensitive labile Fe, Mn and Co in sediments, while other metals had much less marked structure, except for downward decreases of labile Pb, Ni, Zn and Cu in the surface sediment layers. Similar distributions were found between labile Mn and Co and among labile Ni, Cu and Zn, reflecting a close link between their geochemical behaviors. The relative mobility, defined as the ratio of metals accumulated by DGT to the total contents in a volume of sediments with a thickness of 10 mm close to the surface of DGT probe, was the greatest for Mn and Cd, followed by Zn, Ni, Cu and Co, while Pb and Fe had the lowest mobility; this order generally agreed with that defined by the modified BCR approach. Further analyses showed that the downward increases of pH values in surface sediment layer may decrease the lability of Pb, Ni, Zn and Cu as detected by DGT, while the remobilization of redox-insensitive metals in deep sediment layer may relate to Mn cycling through sulphide coprecipitation, reflected by several corresponding minima between these metals and Mn. These in situ data provided the possibility for a deep insight into the mechanisms involved in the remobilization of metals in freshwater sediments. PMID:27608033

  11. In Situ, High-Resolution Profiles of Labile Metals in Sediments of Lake Taihu

    PubMed Central

    Wang, Dan; Gong, Mengdan; Li, Yangyang; Xu, Lv; Wang, Yan; Jing, Rui; Ding, Shiming; Zhang, Chaosheng

    2016-01-01

    Characterizing labile metal distribution and biogeochemical behavior in sediments is crucial for understanding their contamination characteristics in lakes, for which in situ, high-resolution data is scare. The diffusive gradient in thin films (DGT) technique was used in-situ at five sites across Lake Taihu in the Yangtze River delta in China to characterize the distribution and mobility of eight labile metals (Fe, Mn, Zn, Ni, Cu, Pb, Co and Cd) in sediments at a 3 mm spatial resolution. The results showed a great spatial heterogeneity in the distributions of redox-sensitive labile Fe, Mn and Co in sediments, while other metals had much less marked structure, except for downward decreases of labile Pb, Ni, Zn and Cu in the surface sediment layers. Similar distributions were found between labile Mn and Co and among labile Ni, Cu and Zn, reflecting a close link between their geochemical behaviors. The relative mobility, defined as the ratio of metals accumulated by DGT to the total contents in a volume of sediments with a thickness of 10 mm close to the surface of DGT probe, was the greatest for Mn and Cd, followed by Zn, Ni, Cu and Co, while Pb and Fe had the lowest mobility; this order generally agreed with that defined by the modified BCR approach. Further analyses showed that the downward increases of pH values in surface sediment layer may decrease the lability of Pb, Ni, Zn and Cu as detected by DGT, while the remobilization of redox-insensitive metals in deep sediment layer may relate to Mn cycling through sulphide coprecipitation, reflected by several corresponding minima between these metals and Mn. These in situ data provided the possibility for a deep insight into the mechanisms involved in the remobilization of metals in freshwater sediments. PMID:27608033

  12. Subunits of the Schizosaccharomyces pombe RNA polymerase II: enzyme purification and structure of the subunit 3 gene.

    PubMed Central

    Azuma, Y; Yamagishi, M; Ishihama, A

    1993-01-01

    To improve our understanding of the structure and function of eukaryotic RNA polymerase II, we purified the enzyme from the fission yeast Schizosaccharomyces pombe. The highly purified RNA polymerase II contained more than eleven polypeptides. The sizes of the largest the second-, and the third-largest polypeptides as measured by SDS-polyacrylamide gel electrophoresis were about 210, 150, and 40 kilodaltons (kDa), respectively, and are similar to those of RPB1, 2, and 3 subunits of Saccharomyces cerevisiae RNA polymerase II. Using the degenerated primers designed after amino acid micro-sequencing of the 40 kDa third-largest polypeptide (subunit 3), we cloned the subunit 3 gene (rpb3) and determined its DNA sequence. Taken together with the sequence of parts of PCR-amplified cDNA, the predicted coding sequence of rpb3, interrupted by two introns, was found to encode a polypeptide of 297 amino acid residues in length with a molecular weight of 34 kDa. The S. pombe subunit 3 contains four structural domains conserved for the alpha-subunit family of RNA polymerase from both eukaryotes and prokaryotes. A putative leucine zipper motif was found to exist in the C-terminal proximal conserved region (domain D). Possible functions of the conserved domains are discussed. Images PMID:8367291

  13. G alpha 12 and G alpha 13 subunits define a fourth class of G protein alpha subunits.

    PubMed Central

    Strathmann, M P; Simon, M I

    1991-01-01

    Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) are central to the signaling processes of multicellular organisms. We have explored the diversity of the G protein subunits in mammals and found evidence for a large family of genes that encode the alpha subunits. Amino acid sequence comparisons show that the different alpha subunits fall into at least three classes. These classes have been conserved in animals separated by considerable evolutionary distances; they are present in mammals, Drosophila, and nematodes. We have now obtained cDNA clones encoding two murine alpha subunits, G alpha 12 and G alpha 13, that define a fourth class. The translation products are predicted to have molecular masses of 44 kDa and to be insensitive to ADP-ribosylation by pertussis toxin. They share 67% amino acid sequence identity with each other and less than 45% identity with other alpha subunits. Their transcripts can be detected in every tissue examined, although the relative levels of the G alpha 13 message appear somewhat variable. Images PMID:1905812

  14. Carbohydrate binding specificities and crystal structure of the cholera toxin-like B-subunit from Citrobacter freundii.

    PubMed

    Jansson, Lena; Angström, Jonas; Lebens, Michael; Imberty, Anne; Varrot, Annabelle; Teneberg, Susann

    2010-05-01

    Enterotoxigenic Escherichia coli and Vibrio cholerae are well known causative agents of severe diarrheal diseases. Both pathogens produce AB(5) toxins, with one enzymatically active A-subunit and a pentamer of receptor-binding B-subunits. The primary receptor for both B-subunits is the GM1 ganglioside (Galbeta3GalNAcbeta4(NeuAcalpha3)Galbeta4GlcbetaCer), but the B-subunits from porcine isolates of E. coli also bind neolacto-(Galbeta4GlcNAcbeta-)terminated glycoconjugates and the B-subunits from human isolates of E. coli (hLTB) have affinity for blood group A type 2-(GalNAcalpha3(Fucalpha2)Galbeta4GlcNAcbeta-)terminated glycoconjugates. A B-subunit with 73% sequence identity to the B-subunits of cholera toxin and the heat-labile toxin of E. coli is produced by certain strains of enteropathogenic E. coli and by Citrobacter freundii. This C. freundii B-subunit (CFXB) has now been expressed in V. cholerae, and isolated in high yields. Glycosphingolipid binding studies show that CFXB binds to the GM1 ganglioside with high affinity. In addition, CFXB has high affinity for both neolacto-terminated and blood group A type 2-terminated glycoconjugates. The crystal structure of the pentameric arrangement of C. freundii B-subunits display high structural similarity with related proteins from E. coli and V. cholerae and oligosaccharide binding sites can be identified on the protein surface. Small changes in the 88-95 loop connecting the GM1 and blood group A binding sites explains the minor changes in affinity seen for these two ligands. However, the enhanced affinity of CFXB for neolacto-terminated structures can be sought in the Lys34Tyr substitution affording additional hydrogen bond interactions between the tyrosyl side chain and the GlcNAcbeta3Galb4Glcbeta1 segment of neolactotetraosylceramide via bridging water molecules.

  15. The G protein alpha o subunit alters morphology, growth kinetics, and phospholipid metabolism of somatic cells.

    PubMed Central

    Bloch, D B; Bonventre, J V; Neer, E J; Seidman, J G

    1989-01-01

    The physiological role of the alpha o subunit of guanine nucleotide-binding (G) protein was investigated with a murine adrenal cell line (Y1) transfected with a rat alpha o cDNA cloned in a retroviral expression vector. The parental cell line lacked detectable alpha o subunit. Expression of the alpha o cDNA in transfected cell lines was confirmed by Western blot (immunoblot) analysis. The rat alpha o subunit interacted with murine beta and gamma subunits and associated with cell membranes. Y1 cells containing large amounts of alpha o subunit had altered cellular morphology and reduced rate of cell division. In addition, GTP-gamma S-stimulated release of arachidonic acid from these cells was significantly increased compared with that in control cells. The alpha o subunit appears directly or indirectly to regulate cellular proliferation, morphology, and phospholipid metabolism. Images PMID:2511433

  16. Hard Exercise, Affect Lability, and Personality Among Individuals with Bulimia Nervosa

    PubMed Central

    Brownstone, Lisa M.; Fitzsimmons-Craft, Ellen E.; Wonderlich, Stephen A.; Joiner, Thomas E.; Le Grange, Daniel; Mitchell, James E.; Crow, Scott J.; Peterson, Carol B.; Crosby, Ross D.; Klein, Marjorie H.; Bardone-Cone, Anna M.

    2013-01-01

    The current study explores the personality traits of compulsivity (e.g., sense of orderliness and duty to perform tasks completely) and restricted expression (e.g., emotion expression difficulties) as potential moderators of the relation between affect lability and frequency of hard exercise episodes in a sample of individuals with bulimic pathology. Participants were 204 adult females recruited in five Midwestern cities who met criteria for threshold or subthreshold bulimia nervosa (BN). Compulsivity was found to significantly moderate the relation between affect lability and number of hard exercise episodes over the past 28 days, such that among those with high compulsivity, level of affect lability was associated with the number of hard exercise episodes; whereas, among those with low compulsivity, affect lability was not associated with the number of hard exercise episodes. The same pattern of findings emerged for restricted expression; however, this finding approached, but did not reach statistical significance. As such, it appears that affect lability is differentially related to hard exercise among individuals with BN depending upon the level of compulsivity and, to a more limited extent, restricted expression. These results suggest that, for individuals with BN with either compulsivity or restricted expression, focusing treatment on increasing flexibility and/or verbal expression of emotions may help them in the context of intense, fluctuating affect. PMID:24183126

  17. Effects of carbon substrate lability on carbon mineralization dynamics of tropical peat

    NASA Astrophysics Data System (ADS)

    Jauhiainen, Jyrki; Silvennoinen, Hanna; Könönen, Mari; Limin, Suwido; Vasander, Harri

    2016-04-01

    Extensive draining at tropical ombrotrophic peatlands in Southeast Asia has made them global 'hot spots' for greenhouse gas emissions. Management practises and fires have led to changed substrate status, which affects microbial processes. Here, we present the first data on how management practises affect carbon (C) mineralization processes at these soils. We compared the carbon mineralization potentials of pristine forest soils to those of drained fire affected soils at various depths, with and without additional labile substrates (glucose, glutamate and NO3-N) and in oxic and anoxic conditions by dedicated ex situ experiments. Carbon mineralization (CO2 and CH4 production) rates were higher in the pristine site peat, which contains more labile carbon due to higher input via vegetation. Production rates decreased with depth together with decreasing availability of labile carbon. Consequently, the increase in production rates after labile substrate addition was relatively modest from pristine site as compared to the managed site and from the top layers as compared to deeper layers. Methanogenesis had little importance in total carbon mineralization. Adding labile C and N enhanced heterotrophic CO2 production more than the sole addition of N. Surprisingly, oxygen availability was not an ultimate requirement for substantial CO2 production rates, but anoxic respiration yielded comparable rates, especially at the pristine soils. Flooding of these sites will therefore reduce, but not completely cease, peat carbon loss. Reintroduced substantial vegetation and fertilization in degraded peatlands can enrich recalcitrant peat with simple C and N compounds and thus increase microbiological activity.

  18. Folding, stability, and physical properties of the alpha subunit of bacterial luciferase.

    PubMed

    Noland, B W; Dangott, L J; Baldwin, T O

    1999-12-01

    Bacterial luciferase is a heterodimeric (alphabeta) enzyme composed of homologous subunits. When the Vibrio harveyi luxA gene is expressed in Escherichia coli, the alpha subunit accumulates to high levels. The alpha subunit has a well-defined near-UV circular dichroism spectrum and a higher intrinsic fluorescence than the heterodimer, demonstrating fluorescence quenching in the enzyme which is reduced in the free subunit [Sinclair, J. F., Waddle, J. J., Waddill, W. F., and Baldwin, T. O. (1993) Biochemistry 32, 5036-5044]. Analytical ultracentrifugation of the alpha subunit has revealed a reversible monomer to dimer equilibrium with a dissociation constant of 14.9 +/- 4.0 microM at 18 degrees C in 50 mM phosphate and 100 mM NaCl, pH 7.0. The alpha subunit unfolded and refolded reversibly in urea-containing buffers by a three-state mechanism. The first transition occurred over the range of 0-2 M urea with an associated free-energy change of 2.24 +/- 0.25 kcal/mol at 18 degrees C in 50 mM phosphate buffer, pH 7.0. The second, occurring between 2.5 and 3.5 M urea, comprised a cooperative transition with a free-energy change of 6.50 +/- 0.75 kcal/mol. The intermediate species, populated maximally at ca. 2 M urea, has defined near-UV circular dichroism spectral properties distinct from either the native or the denatured states. The intrinsic fluorescence of the intermediate suggested that, although the quantum yield had decreased, the tryptophanyl residues remained largely buried. The far-UV circular dichroism spectrum of the intermediate indicated that it had lost ca. 40% of its native secondary structure. N-Terminal sequencing of the products of limited proteolysis of the intermediate showed that the C-terminal region of the alpha subunit became protease labile over the urea concentration range at which the intermediate was maximally populated. These observations have led us to propose an unfolding model in which the first transition is the unfolding of a C

  19. The ribosomal subunit assembly line

    PubMed Central

    Dlakić, Mensur

    2005-01-01

    Recent proteomic studies in Saccharomyces cerevisiae have identified nearly 200 proteins, other than the structural ribosomal proteins, that participate in the assembly of ribosomal subunits and their transport from the nucleus. In a separate line of research, proteomic studies of mature plant ribosomes have revealed considerable variability in the protein composition of individual ribosomes. PMID:16207363

  20. Molecular cloning and characterization of cDNAs for the gamma- and epsilon-subunits of mitochondrial F1F0 ATP synthase from the sweet potato.

    PubMed

    Morikami, A; Ehara, G; Yuuki, K; Nakamura, K

    1993-08-15

    Mitochondrial F1F0 ATP synthases purified from dicotyledonous plants contain six different subunits named alpha, beta, gamma, delta, delta', and epsilon. Our previous N-terminal amino acid sequence analyses indicated that the gamma- and epsilon-subunits of the sweet potato mitochondrial F1 correspond to the gamma- and epsilon-subunits of animal mitochondrial F1, respectively (Kimura, T., Nakamura, K., Kajiura, H., Hattori, H., Nelson, N., and Asahi, T. (1989) J. Biol. Chem. 264, 3183-3186). A cDNA clone for the gamma-subunit of the sweet potato mitochondrial F1 was identified by oligonucleotide hybridization selection of a cDNA library, and a cDNA clone for the epsilon-subunit was isolated by reverse polymerase chain reaction and hybridization selection of a cDNA library by the polymerase chain reaction product. The 1.4-kilobase long cDNA for the gamma-subunit contained a 978-base pair open reading frame coding for a precursor for the gamma-subunit. The mature gamma-subunit is composed of 281 amino acids, and its sequence showed significantly higher similarities with the gamma-subunit of animal mitochondrial F1 and bacterial F1 compared with the gamma-subunit of chloroplast CF1 from plants. The precursor for the gamma-subunit contained N-terminal presequence of 45 amino acid residues. By contrast, the 0.46-kilobase long cDNA for the epsilon-subunit contained a coding sequence of 207-base pairs for the mature epsilon-subunit of 69 amino acid residues that is preceded by an ATG codon suggesting that the epsilon-subunit is synthesized without the cleavable presequence for mitochondrial import. The amino acid sequence of the epsilon-subunit of sweet potato mitochondrial F1 showed similarities of 25 and 36% amino acid positional identity with the epsilon-subunits of mitochondrial F1 from yeast and bovine, respectively.

  1. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    PubMed Central

    Tandrup Schmidt, Signe; Foged, Camilla; Smith Korsholm, Karen; Rades, Thomas; Christensen, Dennis

    2016-01-01

    The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs) concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI). Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs), which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the specific PRR

  2. Comparison of metal lability in air-dried and fresh dewatered drinking water treatment residuals.

    PubMed

    Wang, Changhui; Pei, Yuansheng; Zhao, Yaqian

    2015-01-01

    In this work, the labilities of Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sr, V and Zn in air-dried (for 60 days) and fresh dewatered WTRs were compared using the Toxicity Characteristic Leaching Procedure (TCLP), fractionation, in vitro digestion and a plant enrichment test. The results showed that the air-dried and fresh dewatered WTRs had different properties, e.g., organic matter composition and available nutrients. The air-dried and fresh dewatered WTRs were non-haf zardous according to the TCLP assessment method used in the United States; however, the metals in the two types of WTRs had different lability. Compared with the metals in the fresh dewatered WTRs, those in the air-dried WTRs tended to be in more stable fractions and also exhibited lower bioaccessibility and bioavailability. Therefore, air-drying can decrease the metal lability and thereby reduce the potential metal pollution risk of WTRs.

  3. GABA receptor subunit composition relative to insecticide potency and selectivity.

    PubMed

    Ratra, G S; Casida, J E

    2001-07-01

    Three observations on the 4-[(3)H]propyl-4'-ethynylbicycloorthobenzoate ([(3)H]EBOB) binding site in the gamma-aminobutyric acid (GABA) receptor indicate the specific target for insecticide action in human brain and a possible mechanism for selectivity. First, from published data, alpha-endosulfan, lindane and fipronil compete for the [(3)H]EBOB binding site with affinities of 0.3--7 nM in both human recombinant homooligomeric beta 3 receptors and housefly head membranes. Second, from structure-activity studies, including new data, GABAergic insecticide binding potency on the pentameric receptor formed from the beta 3 subunit correlates well with that on the housefly receptor (r=0.88, n=20). This conserved inhibitor specificity is consistent with known sequence homologies in the housefly GABA receptor and the human GABA(A) receptor beta 3 subunit. Third, as mostly new findings, various combinations of alpha 1, alpha 6, and gamma 2 subunits coexpressed with a beta 1 or beta 3 subunit confer differential insecticide binding sensitivity, particularly to fipronil, indicating that subunit composition is a major factor in insecticide selectivity.

  4. Radiation-induced heat-labile sites that convert into DNA double-strand breaks

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    2000-01-01

    The yield of DNA double-strand breaks (DSBs) in SV40 DNA irradiated in aqueous solution was found to increase by more than a factor of two as a result of postirradiation incubation of the DNA at 50 degrees C and pH 8.0 for 24 h. This is in agreement with data from studies performed at 37 degrees C that were published previously. Importantly, similar results were also obtained from irradiation of mammalian DNA in agarose plugs. These results suggest that heat-labile sites within locally multiply damaged sites are produced by radiation and are subsequently transformed into DSBs. Since incubation at 50 degrees C is typically employed for lysis of cells in commonly used pulsed-field gel assays for detection of DSBs in mammalian cells, the possibility that heat-labile sites are present in irradiated cells was also studied. An increase in the apparent number of DSBs as a function of lysis time at 50 degrees C was found with kinetics that was similar to that for irradiated DNA, although the magnitude of the increase was smaller. This suggests that heat-labile sites are also formed in the cell. If this is the case, a proportion of DSBs measured by the pulsed-field gel assays may occur during the lysis step and may not be present in the cell as breaks but as heat-labile sites. It is suggested that such sites consist mainly of heat-labile sugar lesions within locally multiply damaged sites. Comparing rejoining of DSBs measured with short and long lysis procedure indicates that the heat-labile sites are repaired with fast kinetics in comparison with repair of the bulk of DSBs.

  5. Biotic and abiotic controls on diurnal fluctuations in labile soil phosphorus of a wet tropical forest.

    PubMed

    Vandecar, Karen L; Lawrence, Deborah; Wood, Tana; Oberbauer, Steven F; Das, Rishiraj; Tully, Katherine; Schwendenmann, Luitgard

    2009-09-01

    The productivity of many tropical wet forests is generally limited by bioavailable phosphorus (P). Microbial activity is a key regulator of P availability in that it determines both the supply of P through organic matter decomposition and the depletion of bioavailable P through microbial uptake. Both microbial uptake and mineralization occur rapidly, and their net effect on P availability varies with soil moisture, temperature, and soil organic matter quantity and quality. Exploring the mechanisms driving P availability at fine temporal scales can provide insight into the coupling of carbon, water, and nutrient cycles, and ultimately, the response of tropical forests to climate change. Despite the recognized importance of P cycling to the dynamics of wet tropical forests and their potential sensitivity to short-term fluctuations in bioavailable P, the diurnal pattern of P remains poorly understood. This study quantifies diurnal fluctuations in labile soil P and evaluates the importance of biotic and abiotic factors in driving these patterns. To this end, measurements of labile P were made every other hour in a Costa Rican wet tropical forest oxisol. Spatial and temporal variation in Bray-extractable P were investigated in relation to ecosystem carbon flux, soil CO2 efflux, soil moisture, soil temperature, solar radiation, and sap-flow velocity. Spatially averaged bi-hourly (every two hours) labile P ranged from 0.88 to 2.48 microg/g across days. The amplitude in labile P throughout the day was 0.61-0.82 microg/g (41-54% of mean P concentrations) and was characterized by a bimodal pattern with a decrease at midday. Labile P increased with soil CO2 efflux and soil temperature and declined with increasing sap flow and solar radiation. Together, soil CO2 efflux, soil temperature, and sap flow explained 86% of variation in labile P.

  6. Enhanced factor VIIIa stability of A2 domain interface variants results from an increased apparent affinity for the A2 subunit. Results from an increased apparent affinity for the A2 subunit.

    PubMed

    Monaghan, M; Wakabayashi, H; Griffiths, A; Wintermute, J; Fay, P J

    2014-09-01

    Factor (F)VIIIa, a heterotrimer comprised of A1, A2, and A3C1C2 subunits, is labile due to the tendency of the A2 subunit to dissociate from the A1/A3C1C2 dimer. As dissociation of the A2 subunit inactivates FVIIIa activity, retention of A2 defines FVIIIa stability and thus, FXase activity. Earlier results showed that replacing residues D519, E665, and E1984 at the A2 domain interface with Ala or Val reduced rates of FVIIIa decay, increasing FXa and thrombin generation. We now show the enhanced FVIIIa stability of these variants results from increases in inter-A2 subunit affinity. Using a FVIIIa reconstitution assay to monitor inter-subunit affinity by activity regeneration, the apparent Kd value for the interaction of wild-type (WT) A2 subunit with WT A1/A3C1C2 dimer (43 ± 2 nM) was significantly higher than values observed for the A2 point mutants D519A/V, E665A/V, and E1984A/V which ranged from ~5 to ~19 nM. Val was determined to be the optimal hydrophobic residue at position 665 (apparent Kd = 5.1 ± 0.7 nM) as substitutions with Ile or Leu at this position increased the apparent Kd value by ~3- and ~7-fold, respectively. Furthermore, the double mutant (D519V/E665V) showed an ~47-fold lower apparent Kd value (0.9 ± 0.6 nM) than WT. Thus these hydrophobic mutations at the A2 subunit interfaces result in high binding affinities for the A2 subunit and correlate well with previously observed reductions in rates in FVIIIa decay. PMID:24899227

  7. Effect of inorganic and organic copper fertilizers on copper nutrition in Spinacia oleracea and on labile copper in soil.

    PubMed

    Obrador, Ana; Gonzalez, Demetrio; Alvarez, Jose M

    2013-05-22

    To ensure an optimal concentration of Cu in food crops, the effectiveness of eight liquid Cu fertilizers was studied in a spinach ( Spinacia oleracea L.) crop grown on Cu-deficient soil under greenhouse conditions. Plant dry matter yields, Cu concentrations in spinach plants (total and morpholino acid (MES)- and ethylenediaminedisuccinic acid (EDDS)-extractable), and Cu uptakes were studied. The behavior of Cu in soil was evaluated by both single and sequential extraction procedures. The highest quantities of Cu in labile forms in the soil, total uptakes, and Cu concentrations in the plants were associated with the application of the two sources that contained Cu chelated by EDTA and/or DTPA. The fertilizers containing these Cu chelates represent a promising approach to achieve high levels of agronomic biofortification. The stronger correlations obtained between low-molecular-weight organic acid-extractable Cu in soil and the Cu concentrations and Cu uptakes by the plants show the suitability of this soil extraction method for predicting Cu available to spinach plants.

  8. Lifelong ethanol consumption and brain regional GABAA receptor subunit mRNA expression in alcohol-preferring rats.

    PubMed

    Sarviharju, Maija; Hyytiä, Petri; Hervonen, Antti; Jaatinen, Pia; Kiianmaa, Kalervo; Korpi, Esa R

    2006-11-01

    Brain regional gamma-aminobutyric acid type A (GABAA) receptor subunit mRNA expression was studied in ethanol-preferring AA (Alko, Alcohol) rats after moderate ethanol drinking for up to 2 years of age. In situ hybridization with oligonucleotide probes specific for 13 different subunits was used with coronal cryostat sections of the brains. Selective alterations were observed by ethanol exposure and/or aging in signals for several subunits. Most interestingly, the putative highly ethanol-sensitive alpha4 and beta3 subunit mRNAs were significantly decreased in several brain regions. The age-related alterations in alpha4 subunit expression were parallel to those caused by lifelong ethanol drinking, whereas aging had no significant effect on beta3 subunit expression. The results suggest that prolonged ethanol consumption leading to blood concentrations of about 10 mM may downregulate the mRNA expression of selected GABAA receptor subunits and that aging might have partly similar effects.

  9. The NMDA receptor NR2A subunit regulates proliferation of MKN45 human gastric cancer cells

    SciTech Connect

    Watanabe, Kanako; Kanno, Takeshi; Oshima, Tadayuki; Miwa, Hiroto; Tashiro, Chikara; Nishizaki, Tomoyuki

    2008-03-07

    The present study investigated proliferation of MKN28 and MKN45 human gastric cancer cells regulated by the N-methyl-D-aspartate (NMDA) receptor subunit. The NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP5) inhibited proliferation of MKN45 cells, but not MKN28 cells. Of the NMDA subunits such as NR1, NR2 (2A, 2B, 2C, and 2D), and NR3 (3A and 3B), all the NMDA subunit mRNAs except for the NR2B subunit mRNA were expressed in both MKN28 and MKN45 cells. MKN45 cells were characterized by higher expression of the NR2A subunit mRNA and lower expression of the NR1 subunit mRNA, but MKN28 otherwise by higher expression of the NR1 subunit mRNA and lower expression of the NR2A subunit mRNA. MKN45 cell proliferation was also inhibited by silencing the NR2A subunit-targeted gene. For MKN45 cells, AP5 or knocking-down the NR2A subunit increased the proportion of cells in the G{sub 1} phase of cell cycling and decreased the proportion in the S/G{sub 2} phase. The results of the present study, thus, suggest that blockage of NMDA receptors including the NR2A subunit suppresses MKN45 cell proliferation due to cell cycle arrest at the G{sub 1} phase; in other words, the NR2A subunit promotes MKN45 cell proliferation by accelerating cell cycling.

  10. Non-labile silver species in biosolids remain stable throughout 50 years of weathering and ageing.

    EPA Science Inventory

    Increasing commercial use of nanosilver has focussed attention on the fate of silver (Ag) in the wastewater release pathway. This paper reports the speciation and lability of Ag in archived, stockpiled, and contemporary biosolids from the UK, USA and Australia, and indicates that...

  11. Measurement of labile copper in wine by medium exchange stripping potentiometry utilising screen printed carbon electrodes.

    PubMed

    Clark, Andrew C; Kontoudakis, Nikolaos; Barril, Celia; Schmidtke, Leigh M; Scollary, Geoffrey R

    2016-07-01

    The presence of copper in wine is known to impact the reductive, oxidative and colloidal stability of wine, and techniques enabling measurement of different forms of copper in wine are of particular interest in understanding these spoilage processes. Electrochemical stripping techniques developed to date require significant pretreatment of wine, potentially disturbing the copper binding equilibria. A thin mercury film on a screen printed carbon electrode was utilised in a flow system for the direct analysis of labile copper in red and white wine by constant current stripping potentiometry with medium exchange. Under the optimised conditions, including an enrichment time of 500s and constant current of 1.0μA, the response range was linear from 0.015 to 0.200mg/L. The analysis of 52 red and white wines showed that this technique generally provided lower labile copper concentrations than reported for batch measurement by related techniques. Studies in a model system and in finished wines showed that the copper sulfide was not measured as labile copper, and that loss of hydrogen sulfide via volatilisation induced an increase in labile copper within the model wine system.

  12. Occurrence and abundance of carbohydrates and amino compounds in sequentially extracted labile soil organic matter fractions.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aimed to investigate the content of carbohydrates and amino compounds in three labile fraction of soil organic matter (SOM). Soil samples were collected from two agricultural fields in southern Italy and the light fraction (LF), the 500–53-µm particulate organic matter (POM) and the mobil...

  13. Non-labile silver species in biosolids remain stable throughout 50 years of weathering and ageing.

    PubMed

    Donner, E; Scheckel, K; Sekine, R; Popelka-Filcoff, R S; Bennett, J W; Brunetti, G; Naidu, R; McGrath, S P; Lombi, E

    2015-10-01

    Increasing commercial use of nanosilver has focussed attention on the fate of silver (Ag) in the wastewater release pathway. This paper reports the speciation and lability of Ag in archived, stockpiled, and contemporary biosolids from the UK, USA and Australia, and indicates that biosolids Ag concentrations have decreased significantly over recent decades. XANES revealed the importance of reduced-sulfur binding environments for Ag speciation in materials ranging from freshly produced sludge to biosolids weathered under ambient environmental conditions for more than 50 years. Isotopic dilution with (110 m)Ag showed that Ag was predominantly non-labile in both fresh and aged biosolids (13.7% mean lability), with E-values ranging from 0.3 to 60 mg/kg and 5 mM CaNO3 extractable Ag from 1.2 to 609 μg/kg (0.002-3.4% of the total Ag). This study indicates that at the time of soil application, biosolids Ag will be predominantly Ag-sulfides and characterised by low isotopic lability.

  14. Labile compounds in plant litter reduce the sensitivity of decomposition to warming and altered precipitation.

    PubMed

    Suseela, Vidya; Tharayil, Nishanth; Xing, Baoshan; Dukes, Jeffrey S

    2013-10-01

    Together, climate and litter quality strongly regulate decomposition rates. Although these two factors and their interaction have been studied across species in continent-scale experiments, few researchers have studied how labile and recalcitrant compounds interact to influence decomposition, or the climate sensitivity of decomposition, within a litter type. Over a period of 3 yr, we studied the effects of warming and altered precipitation on mass loss and compound-specific decomposition using two litter types that possessed similar heteropolymer chemistry, but different proportions of labile and recalcitrant compounds. Climate treatments immediately affected the mass loss of the more recalcitrant litter, but affected the more labile litter only after 2 yr. After 3 yr, although both litter types had lost similar amounts of mass, warming (c. 4°C) and supplemental precipitation (150% of ambient) together accelerated the degradation of alkyl-carbon and lignin only in the more recalcitrant litter, highlighting the role of initial litter quality in determining whether the chemistry of litter residues converges or diverges under different climates. Our finding that labile compounds in litter reduce the climate sensitivity of mass loss and the decomposition of recalcitrant matrix is novel. Our results highlight the potential for litter quality to regulate the effect of climatic changes on the sequestration of litter-derived carbon. PMID:23822593

  15. Topology of subunits of the mammalian cytochrome c oxidase: Relationship to the assembly of the enzyme complex

    SciTech Connect

    Yu-Zhong Zhang; Ewart, G.; Capaldi, R.A. )

    1991-04-16

    The arrangement of three subunits of beef heart cytochrome c oxidase, subunits Va, VIa, and VIII, has been explored by chemical labeling and protease digestion studies. Subunit Va is an extrinsic protein located on the C side of the mitochondrial inner membrane. This subunit was found to label with N-(4-azido-2-nitrophenyl)-2-aminoethane({sup 35}S)sulfonate and sodium methyl 4-({sup 3}H)formylphenyl phosphate in reconstituted vesicles in which 90% of cytochrome c oxidase complexes were oriented with the C domain outermost. Subunit VIa was cleaved by trypsin both in these reconstituted vesicles and in submitochondrial particles, indicating a transmembrane orientation. The epitope for a monoclonal antibody (mAb) to subunit VIa was lost or destroyed when cleavage occurred in reconstituted vesicles. This epitope was localized to the C-terminal part of the subunit by antibody binding to a fusion protein consisting of glutathione S-transferase (G-ST) and the C-terminal amino acids 55-85 of subunit VIa. No antibody binding was obtained with a fusion protein containing G-ST and the N-terminal amino acids 1-55. The mAb reaction orients subunit VIa with its C-terminus in the C-domain. Subunit VIII was cleaved by trypsin in submitochondrial particles but not in reconstituted vesicles. N-Terminal sequencing of the subunit VIII cleavage produce from submitochondrial particles gave the same sequence as the untreated subunit, i.e., ITA, indicating that it is the C-terminus which is cleaved from the M side. Subunits Va and VIII each contain N-terminal extensions or leader sequences in the precursor polypeptides; subunit VIa is made without an N-terminal extension.

  16. Cloning, sequencing, and characterization of the gene encoding the smallest subunit of the three-component membrane-bound alcohol dehydrogenase from Acetobacter pasteurianus.

    PubMed

    Kondo, K; Beppu, T; Horinouchi, S

    1995-09-01

    The membrane-bound alcohol dehydrogenase (ADH) of Acetobacter pasteurianus NCI1452 consists of three different subunits, a 78-kDa dehydrogenase subunit, a 48-kDa cytochrome c subunit, and a 20-kDa subunit of unknown function. For elucidation of the function of the smallest subunit, this gene was cloned from this strain by the oligonucleotide-probing method, and its nucleotide sequence was determined. Comparison of the deduced amino acid sequence and the NH2-terminal sequence determined for the purified protein indicated that the smallest subunit contained a typical signal peptide of 28 amino acids, as did the larger two subunits. This gene complemented the ADH activity of a mutant strain which had lost the smallest subunit. Disruption of this gene on the chromosome resulted in loss of ADH activity in Acetobacter aceti, indicating that the smallest subunit was essential for ADH activity. Immunoblot analyses of cell lysates prepared from various ADH mutants suggested that the smallest subunit was concerned with the stability of the 78-kDa subunit and functioned as a molecular coupler of the 78-kDa subunit to the 48-kDa subunit on the cytoplasmic membrane.

  17. Glaciers as a source of ancient and labile organic matter to the marine environment.

    PubMed

    Hood, Eran; Fellman, Jason; Spencer, Robert G M; Hernes, Peter J; Edwards, Rick; D'Amore, David; Scott, Durelle

    2009-12-24

    Riverine organic matter supports of the order of one-fifth of estuarine metabolism. Coastal ecosystems are therefore sensitive to alteration of both the quantity and lability of terrigenous dissolved organic matter (DOM) delivered by rivers. The lability of DOM is thought to vary with age, with younger, relatively unaltered organic matter being more easily metabolized by aquatic heterotrophs than older, heavily modified material. This view is developed exclusively from work in watersheds where terrestrial plant and soil sources dominate streamwater DOM. Here we characterize streamwater DOM from 11 coastal watersheds on the Gulf of Alaska that vary widely in glacier coverage (0-64 per cent). In contrast to non-glacial rivers, we find that the bioavailability of DOM to marine microorganisms is significantly correlated with increasing (14)C age. Moreover, the most heavily glaciated watersheds are the source of the oldest ( approximately 4 kyr (14)C age) and most labile (66 per cent bioavailable) DOM. These glacial watersheds have extreme runoff rates, in part because they are subject to some of the highest rates of glacier volume loss on Earth. We estimate the cumulative flux of dissolved organic carbon derived from glaciers contributing runoff to the Gulf of Alaska at 0.13 +/- 0.01 Tg yr(-1) (1 Tg = 10(12) g), of which approximately 0.10 Tg is highly labile. This indicates that glacial runoff is a quantitatively important source of labile reduced carbon to marine ecosystems. Moreover, because glaciers and ice sheets represent the second largest reservoir of water in the global hydrologic system, our findings indicate that climatically driven changes in glacier volume could alter the age, quantity and reactivity of DOM entering coastal oceans.

  18. Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature: A model analysis

    NASA Astrophysics Data System (ADS)

    Gu, Lianhong; Post, Wilfred M.; King, Anthony W.

    2004-03-01

    Labile carbon, although often a small fraction of soil organic carbon (SOC), significantly affects heterotrophic respiration at short timescales because of its rapid decomposition. However, in the current literature, most soil respiration measurements are interpreted without simultaneous information on labile carbon pool dynamics. Sensitivity of soil respiration to temperature is routinely derived directly from field observations, and such relationships have been used to extrapolate effects of global change (e.g., warming) on carbon emission from SOC. Here we use a multipool SOC model to demonstrate the impacts of seasonal fluctuations of labile carbon pools on interpretation of soil respiration measurements. We find that labile carbon pool sizes vary widely in response to seasonal changes in representative plant material inputs and temperature even though the model is operating at equilibrium in terms of annual means. Convolution of the dynamics of fast turnover carbon pools and temporal progression in temperature lead to misrepresentation and misinterpretation of the heterotrophic respiration-temperature relationships estimated from bulk soil CO2 exchanges. Temperature sensitivity is overestimated when the variations of labile carbon pools and temperature are in phase and underestimated when they are out of phase. Furthermore, with normally used observation time windows (weeks to a year), temperature sensitivity is more likely to be underestimated. A distortion of temperature sensitivity (Q10) from 2 (actual, sensitive dependence on temperature) to nearly 1 (false, no dependence on temperature) is shown. Applying estimated temperature sensitivity parameter back into the model considerably overestimates soil carbon storage at equilibrium. Our findings indicate that caution must be taken when soil respiration-temperature relationships are evaluated based on bulk soil observations and when sensitivity of soil respiration to temperature estimated directly under field

  19. Valine 904, tyrosine 898, and cysteine 908 in Na,K-ATPase alpha subunits are important for assembly with beta subunits.

    PubMed

    Wang, S G; Farley, R A

    1998-11-01

    A 26-amino acid sequence in an extracellular loop of the Na,K-ATPase alpha subunit between membrane-spanning segments 7 and 8 has been shown to bind to the beta subunit of Na,K-ATPase and to promote alphabeta assembly (Lemas, M. V., Hamrick, M., Takeyasu, K., and Fambrough, D. M. (1994) J. Biol. Chem. 269, 8255-8259) When this 26-amino acid sequence of the rat Na,K-ATPase alpha3 subunit was replaced by the corresponding sequence of the rat gastric H,K-ATPase alpha subunit, the chimeric alpha subunit assembled preferentially with the rat gastric H,K-ATPase beta subunit (Wang, S.-G., Eakle, K. A., Levenson, R., and Farley, R. A. (1997) Am. J. Physiol. 272, C923-C930). In the present study, these 26 amino acids (Asn886-Ala911) of rat Na,K-ATPase alpha3 were replaced by the corresponding amino acids Asn908-Ala933 of rat distal colon H, K-ATPase. Site-directed mutagenesis of the chimeric alpha subunits and Na,K-ATPase alpha3 showed that Val904, Tyr898, and Cys908 in the Na,K-ATPase alpha3 subunit are key residues in alphabeta subunit interactions. The V904Q mutation in Na,K-ATPase alpha3 reduced the Bmax for ouabain binding and the ATPase activity of alpha3beta1 complexes by approximately 95%, and Y898R reduced the Bmax and ATPase activity by approximately 60%. The complementary mutations Q904V and R898Y increased the amount of ouabain bound by yeast membranes expressing the chimera with the colon H,K-ATPase sequence. The amount of ouabain bound by complexes assembled between Na, K-ATPase alpha3 containing the Y898R,C908G mutations and gastric H, K-ATPase beta was less than 10% of wild type Na,K-ATPase alpha3 expressed with the same beta subunit. The R898Y,G908C mutations in the chimeric alpha subunits also increased ouabain binding. PMID:9792642

  20. DNA photoreacts by nucleobase ring cleavage to form labile isocyanates.

    PubMed

    Buschhaus, Laura; Rolf, Josefin; Kleinermanns, Karl

    2013-11-14

    Differential infrared absorption spectroscopy was used to study the formation of isocyanates and further photo-products in the oligonucleotides dG10, dC10 and dT10 and in their mononucleosides by ultraviolet light at 266 nm. We find that α-cleavage takes place in oligonucleotides and mononucleosides both in films and in solution. The very intense and spectrally isolated isocyanate (N=C=O) asymmetric stretch vibration at 2277 cm(-1) is used as a spectroscopic marker for detection of the photo-product. The band disappears upon reaction with small amounts of water vapour as expected for isocyanates. Quantum yields for isocyanate formation by nucleobase ring cleavage in the α-position to the carbonyl group are ∼5 × 10(-5) in the mononucleosides and up to 5 × 10(-4) in the oligonucleotides. In the mixed oligonucleotides dG10/dC10 and dA10/dT10 the quantum yield of α-cleavage drops by a factor of 10 compared to the single oligonucleotides. Implications for DNA repair and photo-induced DNA-protein cross-linking via isocyanate reaction with NH2 groups of amino acids are discussed.

  1. Speciation and lability of Ag-, AgCl-, and Ag2S-nanoparticles in soil determined by X-ray absorption spectroscopy and diffusive gradients in thin films.

    PubMed

    Sekine, R; Brunetti, G; Donner, E; Khaksar, M; Vasilev, K; Jämting, Å K; Scheckel, K G; Kappen, P; Zhang, H; Lombi, E

    2015-01-20

    Long-term speciation and lability of silver (Ag-), silver chloride (AgCl-), and silver sulfide nanoparticles (Ag2S-NPs) in soil were studied by X-ray absorption spectroscopy (XAS), and newly developed “nano” Diffusive Gradients in Thin Films (DGT) devices. These nano-DGT devices were designed specifically to avoid confounding effects when measuring element lability in the presence of nanoparticles. The aging profile and stabilities of the three nanoparticles and AgNO3 (ionic Ag) in soil were examined at three different soil pH values over a period of up to 7 months. Transformation of ionic Ag, Ag-NP and AgCl-NPs were dependent on pH. AgCl formation and persistence was observed under acidic conditions, whereas sulfur-bound forms of Ag dominated in neutral to alkaline soils. Ag2S-NPs were found to be very stable under all conditions tested and remained sulfur bound after 7 months of incubation. Ag lability was characteristically low in soils containing Ag2S-NPs. Other forms of Ag were linked to higher DGT-determined lability, and this varied as a function of aging and related speciation changes as determined by XAS. These results clearly indicate that Ag2S-NPs, which are the most environmentally relevant form of Ag that enter soils, are chemically stable and have profoundly low Ag lability over extended periods. This may minimize the long-term risks of Ag toxicity in the soil environment. PMID:25436975

  2. Stabilization of labile organic C along a chronosequence of soil development: mineralogical vs. biological controls

    NASA Astrophysics Data System (ADS)

    McFarland, J. W.; Waldrop, M. P.; Strawn, D.; Harden, J. W.

    2010-12-01

    Soil organic matter (SOM) represents an important reservoir for carbon (C), nitrogen (N), and other essential nutrients. Consequently, variation in SOM turnover rates regulates resource availability for soil microbial activity and plant growth. Long-term SOM stabilization generally involves restricted microbial access to SOM through a variety of processes including complexation with soil minerals. These organo-mineral interactions are influenced by mineral composition and texture, often related to soil age. Soil microorganisms also influence the stabilization of C inputs to the pedosphere through the production of refractory residues controlled in part by C allocation patterns during metabolism. In this study we examined, simultaneously, the contribution of these two C stabilizing mechanisms by ‘tracing’ the fate of two 13C-labeled substrates (glucose and p-hydroxybenzoic acid) along a 1600Kya chronosequence of soil development along the Cowlitz River in southwest Washington. Our objective was to evaluate the relationship between mineralogical and biological controls over C sequestration in soils. Mineralogical analyses were done using the selective dissolutions ammonium oxalate (AOD), and dithionite-citrate extraction (CBD). In this cool, humid environment, intermediate aged soils derived from the late Wisconsin Evans Creek drift (24ka) had the highest AOD extractable Al, Fe, and Si, indicating a higher concentration of poorly crystalline minerals relative to other terraces. Correspondingly, CBD extractable Fe increases with soil age, further supporting the idea that crystalline iron oxides are also more prevalent with weathering. Turnover of both 13C-labeled substrates was rapid (< 12.5 hrs) However, the proportion of substrate mineralized to CO2 varied among terraces. Mineralization to CO2 was significantly lower at 24ka than that for the other three age classes (0.25k, 220k, and 1,600k years bp), corresponding to higher recovery of 13C in bulk soil for this

  3. Primary structure of the 5 S subunit of transcarboxylase as deduced from the genomic DNA sequence.

    PubMed

    Thornton, C G; Kumar, G K; Shenoy, B C; Haase, F C; Phillips, N F; Park, V M; Magner, W J; Hejlik, D P; Wood, H G; Samols, D

    1993-09-13

    Transcarboxylase from Propionibacterium shermanii is a complex biotin-containing enzyme composed of 30 polypeptides of three different types. It is composed of six dimeric outer subunits associated with a central cylindrical hexameric subunit through 12 biotinyl subunits; three outer subunits on each face of the central hexamer. Each outer dimer is termed a 5 S subunit which associates with two biotinyl subunits. The enzyme catalyzes a two-step reaction in which methylmalonyl-CoA and pyruvate form propionyl-CoA and oxalacetate, the 5 S subunit specifically catalyzing one of these reactions. We report here the cloning, sequencing and expression of the monomer of the 5 S subunit. The gene was identified by matching amino acid sequences derived from isolated authentic 5 S peptides with the deduced sequence of an open reading frame present on a cloned P. shermanii genomic fragment known to contain the gene encoding the 1.3 S biotinyl subunit. The cloned 5 S gene encodes a protein of 519 amino acids, M(r) 57,793. The deduced sequence shows regions of extensive homology with that of pyruvate carboxylase and oxalacetate decarboxylase, two enzymes which catalyze the same or reverse reaction. A fragment was subcloned into pUC19 in an orientation such that the 5 S open reading frame could be expressed from the lac promoter of the vector. Crude extracts prepared from these cells contained an immunoreactive band on Western blots which co-migrated with authentic 5 S and were fully active in catalyzing the 5 S partial reaction. We conclude that we have cloned, sequenced and expressed the monomer of the 5 S subunit and that the expressed product is catalytically active. PMID:8365490

  4. Exchangeability of the b subunit of the Cl(-)-translocating ATPase of Acetabularia acetabulum with the beta subunit of E. coli F1-ATPase: construction of the chimeric beta subunits and complementation studies.

    PubMed

    Ikeda, M; Kadowaki, H; Ikeda, H; Moritani, C; Kanazawa, H

    1997-11-10

    The gene encoding the b subunit of the Cl(-)-translocating ATPase (aclB) was isolated from total RNA and poly(A)+ RNA of Acetabularia acetabulum and sequenced (total nucleotides of 3038 bp and an open reading frame with 478 amino acids). The deduced amino acid sequence showed high similarity to the beta subunit of the F type ATPases, but was different in the N-terminal 120 amino acids. The role of the N-terminal region was investigated using an F -ATPase beta-less mutant of E. coli, JP17. The JP17 strain expressing the aclB could not grow under conditions permitting oxidative phosphorylation, although ACLB was detected in the membrane fraction. The beta subunit was divided into three portions: amino acid position from 1 to 95 (portion A), 96 to 161 (portion B) and 162 to the C-terminus (portion C). The corresponding regions of ACLB were designated as portions A' (from 1 to 106), B' (from 107 to 172) and C' (from 173 to 478). Chimeric proteins with combinations of A-B'-C', A-B-C' and A'-B-C restored the function as the beta subunit in E. coli F0F1-complex, but those with combinations of A'-B'-C and A-B'-C had no function as the beta subunit. These findings suggested that portion B plays an important role in the assembly and function of the beta subunit in the F0F1-complex, while portion B' of ACLB exhibited inhibitory effects on assembly and function. In addition, portion A was also important for interaction of the beta subunit with the alpha subunit in E. coli F0F1-complex. These findings also suggested that the b subunit of the Cl(-)-translocating ATPase of A. acetabulum has a different function in the Cl(-)-translocating ATPase complex, although the primary structure resembled to the beta subunit of the F1-ATPase.

  5. Molecular cloning of pituitary glycoprotein alpha-subunit and follicle stimulating hormone and chorionic gonadotropin beta-subunits from New World squirrel monkey and owl monkey.

    PubMed

    Scammell, Jonathan G; Funkhouser, Jane D; Moyer, Felricia S; Gibson, Susan V; Willis, Donna L

    2008-02-01

    The goal of this study was to characterize the gonadotropins expressed in pituitary glands of the New World squirrel monkey (Saimiri sp.) and owl monkey (Aotus sp.). The various subunits were amplified from total RNA from squirrel monkey and owl monkey pituitary glands by reverse transcription-polymerase chain reaction and the deduced amino acid sequences compared to those of other species. Mature squirrel monkey and owl monkey glycoprotein hormone alpha-polypeptides (96 amino acids in length) were determined to be 80% homologous to the human sequence. The sequences of mature beta subunits of follicle stimulating hormone (FSHbeta) from squirrel monkey and owl monkey (111 amino acids in length) are 92% homologous to human FSHbeta. New World primate glycoprotein hormone alpha-polypeptides and FSHbeta subunits showed conservation of all cysteine residues and consensus N-linked glycosylation sites. Attempts to amplify the beta-subunit of luteinizing hormone from squirrel monkey and owl monkey pituitary glands were unsuccessful. Rather, the beta-subunit of chorionic gonadotropin (CG) was amplified from pituitaries of both New World primates. Squirrel monkey and owl monkey CGbeta are 143 and 144 amino acids in length and 77% homologous with human CGbeta. The greatest divergence is in the C terminus, where all four sites for O-linked glycosylation in human CGbeta, responsible for delayed metabolic clearance, are predicted to be absent in New World primate CGbetas. It is likely that CG secreted from pituitary of New World primates exhibits a relatively short half-life compared to human CG.

  6. RNA polymerase II subunit RPB4 is essential for high- and low-temperature yeast cell growth.

    PubMed Central

    Woychik, N A; Young, R A

    1989-01-01

    RPB4 encodes the fourth-largest RNA polymerase II subunit in Saccharomyces cerevisiae. The RPB4 gene was cloned and sequenced, and its identity was confirmed by amino acid sequence analysis of tryptic peptides from the purified subunit. The RPB4 DNA sequence predicted a protein of 221 amino acids with a molecular mass of 25,414 daltons. The central 100 amino acids of the RPB4 protein were found to be similar to a segment of the major sigma subunit in Escherichia coli RNA polymerase. Deletion of RPB4 produced cells that were heat and cold sensitive but could grow, albeit slowly, at intermediate temperatures. RNA polymerase II lacking the RPB4 subunit exhibited markedly reduced activity in crude extracts in vitro. The RPB4 subunit, although not essential for mRNA synthesis or enzyme assembly, was essential for normal levels of RNA polymerase II activity and indispensable for cell viability over a wide temperature range. Images PMID:2674672

  7. Differential regulation of thyrotropin subunit apoprotein and carbohydrate biosynthesis by thyroid hormone

    SciTech Connect

    Taylor, T.; Weintraub, B.D.

    1985-04-01

    The regulation of TSH apoprotein and carbohydrate biosynthesis by thyroid hormone was studied by incubating pituitaries from normal and hypothyroid (3 weeks post-thyroidectomy) rats in medium containing (/sup 14/C)alanine and (/sup 3/H) glucosamine. After 6 h, samples were sequentially treated with anti-TSH beta to precipitate TSH and free TSH beta, anti-LH beta to clear the sample of LH and free LH beta, then anti-LH alpha to precipitate free alpha-subunit. Total proteins were acid precipitated. All precipitates were subjected to electrophoresis on sodium dodecyl sulfate-polyacrylamide gels, which were then sliced and assayed by scintillation spectrometry. In hypothyroid pituitaries plus medium, (/sup 14/C)alanine incorporation in combined and free beta-subunits was 26 times normal and considerably greater than the 3.4-fold increase seen in total protein; combined and free alpha-subunits showed no specific increase in apoprotein synthesis. (/sup 3/H)Glucosamine incorporation in combined alpha- and beta-subunits in hypothyroid samples was 13 and 21 times normal, respectively, and was greater than the 1.9-fold increase in total protein; free alpha-subunit showed no specific increase in carbohydrate synthesis. The glucosamine to alanine ratio, reflecting relative glycosylation of newly synthesized molecules, was increased in hypothyroidism for combined alpha-subunits, but not for combined beta-subunits, free alpha-subunits, or total proteins. In summary, short term hypothyroidism selectively stimulated TSH beta apoprotein synthesis and carbohydrate synthesis of combined alpha- and beta-subunits. Hypothyroidism also increased the relative glycosylation of combined alpha-subunit. Thus, thyroid hormone deficiency appears to alter the rate-limiting step in TSH assembly (i.e. beta-subunit synthesis) as well as the carbohydrate structure of TSH, which may play important roles in its biological function.

  8. Molecular and pharmacological properties of GABA-rho subunits from white perch retina.

    PubMed

    Qian, H; Dowling, J E; Ripps, H

    1998-11-01

    Five gamma-aminobutyric acid (GABA)-rho subunits were cloned from a white perch retinal cDNA library and expressed in Xenopus oocytes. The deduced amino acid sequences indicated that all are highly homologous to the GABA-rho subunits cloned from mammalian retinas; two clones (perch-rho 1A and perch-rho 1B) were in the rho 1 family, two (perch-rho 2A and perch-rho 2B) were in the rho 2 family, and one clone has been tentatively identified as a perch-rho 3 subunit. When expressed in Xenopus oocytes, all but one of the subunits (rho 3) formed functional homooligomeric receptors. However, the receptors expressed by each of the GABA-rho subunits displayed unique response properties that distinguished one from the other. For example, receptors formed by perch-rho 1B subunits were more sensitive to GABA than the receptors formed by other GABA-rho subunits, the dose-response curves for the various receptors revealed different Hill coefficients, and there were differences in the kinetics of the GABA-induced currents. In addition, the GABA-mediated current-voltage curve for rho 2 receptors was approximately linear, whereas the responses from rho 1 receptors showed outward rectification. A further division in the properties of the GABA-rho subunits was revealed in their responses to imidazole-4-acetic acid (I4AA); the drug behaved as an antagonist on A-type rho receptors and a partial agonist on the B-type rho receptors. These results suggest that there is a large diversity of GABAC receptors in the vertebrate retina, probably formed by homooligomeric and heterooligomeric combinations of GABA rho subunits, that exhibit different functional properties. PMID:9805275

  9. The cyclope gene of Drosophila encodes a cytochrome c oxidase subunit VIc homolog.

    PubMed

    Szuplewski, S; Terracol, R

    2001-08-01

    Cytochrome c oxidase is the terminal enzyme of the mitochondrial electron transfer chain. In eukaryotes, the enzyme is composed of 3 mitochondrial DNA-encoded subunits and 7-10 (in mammals) nuclear DNA-encoded subunits. This enzyme has been extensively studied in mammals and yeast but, in Drosophila, very little is known and no mutant has been described so far. Here we report the genetic and molecular characterization of mutations in cyclope (cype) and the cloning of the gene encoding a cytochrome c oxidase subunit VIc homolog. cype is an essential gene whose mutations are lethal and show pleiotropic phenotypes. The 77-amino acid peptide encoded by cype is 46% identical and 59% similar to the human subunit (75 amino acids). The transcripts are expressed maternally and throughout development in localized regions. They are found predominantly in the central nervous system of the embryo; in the central region of imaginal discs; in the germarium, follicular, and nurse cells of the ovary; and in testis. A search in the Genome Annotation Database of Drosophila revealed the absence of subunit VIIb and the presence of 9 putative nuclear cytochrome c oxidase subunits with high identity scores when compared to the 10 human subunits. PMID:11514451

  10. The cyclope gene of Drosophila encodes a cytochrome c oxidase subunit VIc homolog.

    PubMed Central

    Szuplewski, S; Terracol, R

    2001-01-01

    Cytochrome c oxidase is the terminal enzyme of the mitochondrial electron transfer chain. In eukaryotes, the enzyme is composed of 3 mitochondrial DNA-encoded subunits and 7-10 (in mammals) nuclear DNA-encoded subunits. This enzyme has been extensively studied in mammals and yeast but, in Drosophila, very little is known and no mutant has been described so far. Here we report the genetic and molecular characterization of mutations in cyclope (cype) and the cloning of the gene encoding a cytochrome c oxidase subunit VIc homolog. cype is an essential gene whose mutations are lethal and show pleiotropic phenotypes. The 77-amino acid peptide encoded by cype is 46% identical and 59% similar to the human subunit (75 amino acids). The transcripts are expressed maternally and throughout development in localized regions. They are found predominantly in the central nervous system of the embryo; in the central region of imaginal discs; in the germarium, follicular, and nurse cells of the ovary; and in testis. A search in the Genome Annotation Database of Drosophila revealed the absence of subunit VIIb and the presence of 9 putative nuclear cytochrome c oxidase subunits with high identity scores when compared to the 10 human subunits. PMID:11514451

  11. Subunit gamma of the oxaloacetate decarboxylase Na(+) pump: interaction with other subunits/domains of the complex and binding site for the Zn(2+) metal ion.

    PubMed

    Schmid, Markus; Wild, Markus R; Dahinden, Pius; Dimroth, Peter

    2002-01-29

    The oxaloacetate decarboxylase Na(+) pump of Klebsiella pneumoniae is an enzyme complex composed of the peripheral alpha subunit and the two integral membrane-bound subunits beta and gamma. The alpha subunit consists of the N-terminal carboxyltransferase domain and the C-terminal biotin domain, which are connected by a flexible proline/alanine-rich linker peptide. To probe interactions between the two domains of the alpha subunit and between alpha-subunit domains and the gamma subunit, the relevant polypeptides were synthesized in Escherichia coli and subjected to copurification studies. The two alpha-subunit domains had no distinct affinity toward each other and could, therefore, not be purified as a unit on avidin-sepharose. The two domains reacted together catalytically, however, performing the carboxyl transfer from oxaloacetate to protein-bound biotin. This reaction was enhanced up to 6-fold in the presence of the Zn(2+)-containing gamma subunit. On the basis of copurification with different tagged proteins, the C-terminal biotin domain but not the N-terminal carboxyltransferase domain of the alpha subunit formed a strong complex with the gamma subunit. Upon the mutation of gamma H78 to alanine, the binding affinity to subunit alpha was lost, indicating that this amino acid may be essential for formation of the oxaloacetate decarboxylase enzyme complex. The binding residues for the Zn(2+) metal ion were identified by site-directed and deletion mutagenesis. In the gamma D62A or gamma H77A mutant, the Zn(2+) content of the decarboxylase decreased to 35% or 10% of the wild-type enzyme, respectively. Less than 5% of the Zn(2+) present in the wild-type enzyme was found if the two C-terminal gamma-subunit residues H82 and P83 were deleted. Corresponding with the reduced Zn(2+) contents in these mutants, the oxaloacetate decarboxylase activities were diminished. These results indicate that aspartate 62, histidine 77, and histidine 82 of the gamma subunit are ligands

  12. Role of the small subunit processome in the maintenance of pluripotent stem cells.

    PubMed

    You, Kwon Tae; Park, Joha; Kim, V Narry

    2015-10-01

    RNA-binding proteins (RBPs) play integral roles in gene regulation, yet only a small fraction of RBPs has been studied in the context of stem cells. Here we applied an RNAi screen for RBPs in mouse embryonic stem cells (ESCs) and identified 16 RBPs involved in pluripotency maintenance. Interestingly, six identified RBPs, including Krr1 and Ddx47, are part of a complex called small subunit processome (SSUP) that mediates 18S rRNA biogenesis. The SSUP components are preferentially expressed in stem cells and enhance the global translational rate, which is critical to sustain the protein levels of labile pluripotency factors such as Nanog and Esrrb. Furthermore, the SSUP proteins are required for efficient reprogramming of induced pluripotent stem cells. Our study uncovers the role of the SSUP and the importance of translational control in stem cell fate decision.

  13. Identification of bovine heart cytochrome c oxidase subunits modified by the lipid peroxidation product 4-hydroxy-2-nonenal.

    PubMed

    Musatov, Andrej; Carroll, Christopher A; Liu, Yuan-Chao; Henderson, George I; Weintraub, Susan T; Robinson, Neal C

    2002-06-25

    Bovine heart cytochrome c oxidase (CcO) was inactivated by the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) in a time- and concentration-dependent manner with pseudo-first-order kinetics. Cytochrome c oxidase electron transport activity decreased by as much as 50% when the enzyme was incubated for 2 h at room temperature with excess HNE (300-500 microM). HNE-modified CcO subunits were identified by two mass spectrometric methods: electrospray ionization mass spectrometry (ESI/MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). All of the experimentally determined molecular masses were in excellent agreement with published sequence values with an accuracy of approximately 1 part per 10000 mass units for subunits smaller than 20 kDa and approximately 1 part per 1000 mass units for the three subunits larger than 20 kDa. Both MS methods detected six CcO subunits with an increased mass of 156 Da after reaction with HNE (subunits II, IV, Vb, VIIa, VIIc, and VIII); this result indicates a single Michael-type reaction site on either a lysine or histidine residue within each subunit. Reaction of HNE with either subunit VIIc or subunit VIII (modified approximately 30% and 50-75%, respectively) must be responsible for CcO inhibition. None of the other subunits were modified more than 5% and could not account for the observed loss of activity. Reaction of HNE with His-36 of subunit VIII is most consistent with the approximately 50% inhibition of CcO: (1) subunit VIII is modified more than any other subunit by HNE; (2) the time dependence of subunit VIII modification is consistent with the percent inhibition of CcO; (3) His-36 was identified as the HNE-modified amino acid residue within subunit VIII by tandem MS analysis. PMID:12069614

  14. Flocculated meltwater particles control Arctic land-sea fluxes of labile iron.

    PubMed

    Markussen, Thor Nygaard; Elberling, Bo; Winter, Christian; Andersen, Thorbjørn Joest

    2016-01-01

    Glacial meltwater systems supply the Arctic coastal ocean with large volumes of sediment and potentially bioavailable forms of iron, nitrogen and carbon. The particulate fraction of this supply is significant but estuarine losses have been thought to limit the iron supply from land. Here, our results reveal how flocculation (particle aggregation) involving labile iron may increase horizontal transport rather than enhance deposition close to the source. This is shown by combining field observations in Disko Fjord, West Greenland, and laboratory experiments. Our data show how labile iron affects floc sizes, shapes and densities and consequently yields low settling velocities and extended sediment plumes. We highlight the importance of understanding the flocculation mechanisms when examining fluxes of meltwater transported iron in polar regions today and in the future, and we underline the influence of terrestrial hotspots on the nutrient and solute cycles in Arctic coastal waters. PMID:27050673

  15. Flocculated meltwater particles control Arctic land-sea fluxes of labile iron

    PubMed Central

    Markussen, Thor Nygaard; Elberling, Bo; Winter, Christian; Andersen, Thorbjørn Joest

    2016-01-01

    Glacial meltwater systems supply the Arctic coastal ocean with large volumes of sediment and potentially bioavailable forms of iron, nitrogen and carbon. The particulate fraction of this supply is significant but estuarine losses have been thought to limit the iron supply from land. Here, our results reveal how flocculation (particle aggregation) involving labile iron may increase horizontal transport rather than enhance deposition close to the source. This is shown by combining field observations in Disko Fjord, West Greenland, and laboratory experiments. Our data show how labile iron affects floc sizes, shapes and densities and consequently yields low settling velocities and extended sediment plumes. We highlight the importance of understanding the flocculation mechanisms when examining fluxes of meltwater transported iron in polar regions today and in the future, and we underline the influence of terrestrial hotspots on the nutrient and solute cycles in Arctic coastal waters. PMID:27050673

  16. Effect of hydrogen sulfide on phosphorus lability in lake sediments amended with drinking water treatment residuals.

    PubMed

    Wang, Changhui; Liu, Juanfeng; Pei, Yuansheng

    2013-05-01

    The use of drinking water treatment residuals (WTRs) to immobilize P in sediments is a novel approach for lake restoration. However, the lability of P in WTRs-amended sediments may vary with many factors, e.g., hydrogen sulfide content. Earlier works in our laboratory have demonstrated that WTRs are effective sorbents for hydrogen sulfide in water. Thus, we hypothesized that the lability of P in WTRs-amended sediments would not be increased by hydrogen sulfide. The results of this work suggested that this hypothesis was tenable. Compared to the raw sediments, the amended sediments had significantly lower P desorption potential in the presence of hydrogen sulfide at different times, pH and concentrations. Moreover, the amended sediments were also better able to adsorb hydrogen sulfide. In the amended sediments, the P, which was easily desorbed due to the effect of hydrogen sulfide, was transformed into the Fe/Al bound P.

  17. Lability of potentially toxic elements in soils affected by smelting activities.

    PubMed

    Popescu, I; Biasioli, M; Ajmone-Marsan, F; Stănescu, R

    2013-01-01

    Determination of total concentration of potentially toxic elements (PTEs) in soil is not a reliable tool for evaluating potential exposure risk for humans. PTE lability (EDTA, SBET and solution extraction) and chemical speciation (BCR sequential extraction) were investigated for Pb, Cd, Cu, and Zn, as well as how these could be affected by flooding in soils polluted by smelting activities. The flooding experiment was performed in pots from which soil solution was extracted at different time intervals using Rhizon Moisture Samplers. After experiments, the soil was again subjected to the previous extractions (EDTA, SBET, and BCR) in order to reveal the changes which occurred during anoxia. From the results we can conclude that PTE lability is very high and flooding caused the increase in their mobility up to 100% (for bioaccessible Pb). The experiment demonstrated that temporary reducing conditions can increase the risk of contaminants passing to other environmental compartments and the food chain.

  18. Lability of potentially toxic elements in soils affected by smelting activities.

    PubMed

    Popescu, I; Biasioli, M; Ajmone-Marsan, F; Stănescu, R

    2013-01-01

    Determination of total concentration of potentially toxic elements (PTEs) in soil is not a reliable tool for evaluating potential exposure risk for humans. PTE lability (EDTA, SBET and solution extraction) and chemical speciation (BCR sequential extraction) were investigated for Pb, Cd, Cu, and Zn, as well as how these could be affected by flooding in soils polluted by smelting activities. The flooding experiment was performed in pots from which soil solution was extracted at different time intervals using Rhizon Moisture Samplers. After experiments, the soil was again subjected to the previous extractions (EDTA, SBET, and BCR) in order to reveal the changes which occurred during anoxia. From the results we can conclude that PTE lability is very high and flooding caused the increase in their mobility up to 100% (for bioaccessible Pb). The experiment demonstrated that temporary reducing conditions can increase the risk of contaminants passing to other environmental compartments and the food chain. PMID:23127724

  19. Flocculated meltwater particles control Arctic land-sea fluxes of labile iron

    NASA Astrophysics Data System (ADS)

    Markussen, Thor Nygaard; Elberling, Bo; Winter, Christian; Andersen, Thorbjørn Joest

    2016-04-01

    Glacial meltwater systems supply the Arctic coastal ocean with large volumes of sediment and potentially bioavailable forms of iron, nitrogen and carbon. The particulate fraction of this supply is significant but estuarine losses have been thought to limit the iron supply from land. Here, our results reveal how flocculation (particle aggregation) involving labile iron may increase horizontal transport rather than enhance deposition close to the source. This is shown by combining field observations in Disko Fjord, West Greenland, and laboratory experiments. Our data show how labile iron affects floc sizes, shapes and densities and consequently yields low settling velocities and extended sediment plumes. We highlight the importance of understanding the flocculation mechanisms when examining fluxes of meltwater transported iron in polar regions today and in the future, and we underline the influence of terrestrial hotspots on the nutrient and solute cycles in Arctic coastal waters.

  20. Biosolids-amended soils: Part II. Chemical lability as a measure of contaminant bioaccessability.

    PubMed

    Schwab, A P; Lewis, K; Banks, M K

    2006-10-01

    Biosolids recycling by amending agricultural soils has increased significantly over the last few decades. The presence of contaminants in small, bioavailable quantities has generated concerns about health threats resulting from accumulation of potential toxins in the food chain. In this study, land application of biosolids was evaluated for environmental risk. Chemical lability tests for metals were used for the test soils and included analyses for water soluble, exchangeable, and metals extractable by the physiologically based extraction test. Chemical extractions detected slight increases in labile metal concentrations for many of the treated soils, particularly those receiving long-term applications of 5 years or more. Significantly higher metal concentrations were observed in the soils that had been exposed to biosolids before the U.S. Environmental Protection Agency (Washington, D.C.) 503 Rule (U.S. EPA, 2004) was implemented. PMID:17120442

  1. Adhesin degradation accelerates delivery of heat-labile toxin by enterotoxigenic Escherichia coli.

    PubMed

    Roy, Koushik; Kansal, Rita; Bartels, Scott R; Hamilton, David J; Shaaban, Salwa; Fleckenstein, James M

    2011-08-26

    Many enteric pathogens, including enterotoxigenic Escherichia coli (ETEC), produce one or more serine proteases that are secreted via the autotransporter (or type V) bacterial secretion pathway. These molecules have collectively been referred to as SPATE proteins (serine protease autotransporter of the Enterobacteriaceae). EatA, an autotransporter previously identified in ETEC, possesses a functional serine protease motif within its secreted amino-terminal passenger domain. Although this protein is expressed by many ETEC strains and is highly immunogenic, its precise function is unknown. Here, we demonstrate that EatA degrades a recently characterized adhesin, EtpA, resulting in modulation of bacterial adhesion and accelerated delivery of the heat-labile toxin, a principal ETEC virulence determinant. Antibodies raised against the passenger domain of EatA impair ETEC delivery of labile toxin to epithelial cells suggesting that EatA may be an effective target for vaccine development. PMID:21757737

  2. Relationship between the lability of sediment-bound Cd and its bioaccumulation in edible oyster.

    PubMed

    Chakraborty, Parthasarathi; Ramteke, Darwin; Chakraborty, Sucharita; Chennuri, Kartheek; Bardhan, Pratirupa

    2015-11-15

    A linkage between Cd speciation in sediments and its bioaccumulation in edible oyster (Crassostrea sp.) from a tropical estuarine system was established. Bioaccumulation of Cd in edible oyster increased with the increasing lability and dissociation rate constants of Cd-sediment complexes in the bottom sediments. Total Cd concentration in sediment was not a good indicator of Cd-bioavailability. Increasing trace metal competition in sediments increased lability and bioavailability of Cd in the tropical estuarine sediment. Low thermodynamic stability and high bioavailability of Cd in the estuarine sediment were responsible for high bioaccumulation of Cd in edible oysters (3.2-12.2mgkg(-1)) even though the total concentration of Cd in the bottom sediment was low (0.17-0.49mgkg(-1)).

  3. Protein degradation by ubiquitin–proteasome system in formation and labilization of contextual conditioning memory

    PubMed Central

    Sol Fustiñana, María; de la Fuente, Verónica; Federman, Noel; Freudenthal, Ramiro

    2014-01-01

    The ubiquitin–proteasome system (UPS) of protein degradation has been evaluated in different forms of neural plasticity and memory. The role of UPS in such processes is controversial. Several results support the idea that the activation of this system in memory consolidation is necessary to overcome negative constrains for plasticity. In this case, the inhibition of the UPS during consolidation impairs memory. Similar results were reported for memory reconsolidation. However, in other cases, the inhibition of UPS had no effect on memory consolidation and reconsolidation but impedes the amnesic action of protein synthesis inhibition after retrieval. The last finding suggests a specific action of the UPS inhibitor on memory labilization. However, another interpretation is possible in terms of the synthesis/degradation balance of positive and negative elements in neural plasticity, as was found in the case of long-term potentiation. To evaluate these alternative interpretations, other reconsolidation-interfering drugs than translation inhibitors should be tested. Here we analyzed initially the UPS inhibitor effect in contextual conditioning in crabs. We found that UPS inhibition during consolidation impaired long-term memory. In contrast, UPS inhibition did not affect memory reconsolidation after contextual retrieval but, in fact, impeded memory labilization, blocking the action of drugs that does not affect directly the protein synthesis. To extend these finding to vertebrates, we performed similar experiments in contextual fear memory in mice. We found that the UPS inhibitor in hippocampus affected memory consolidation and blocked memory labilization after retrieval. These findings exclude alternative interpretations to the requirement of UPS in memory labilization and give evidence of this mechanism in both vertebrates and invertebrates. PMID:25135196

  4. Labile and stabilised fractions of soil organic carbon in some intensively cultivated alluvial soils.

    PubMed

    Verma, B C; Datta, S P; Rattan, R K; Singh, A K

    2013-11-01

    The present investigation was undertaken in view of the limited information on the relative proportion of labile and stabilized fractions of soil organic carbon (SOC) in intensively cultivated lands, particularly under tropics. The specific objectives were i) to study the comparative recovery of SOC by different methods of labile carbon estimation under intensively cultivated lands and ii) to evaluate the impact of agricultural practices on carbon management index. For this purpose, in all, 105 surface soil samples were collected from intensively cultivated tube well and sewage irrigated agricultural lands. These samples were analysed for total as well as labile pools of SOC. Results indicated that Walkley and Black, KMnO4-oxidizable and microbial biomass carbon constituted the total SOC to the extent of 10.2 to 47.4, 1.66 to 23.2 and 0.30 to 5.49%, respectively with the corresponding mean values of 26.2, 9.16 and 2.15%. Lability of SOC was considerably higher in sewage irrigated soils than tube well irrigated soils under intensive cropping. Under soybean-wheat, the higher values of carbon management index (CMI) (279 and 286) were associated with the treatments where entire amount of nitrogen was supplied through FYM. Similar results were obtained under rice-wheat, whereas in case of maize-wheat the highest value of CMI was recorded under treatment receiving NPK through chemical fertilizer along with green manure. There was also a significant improvement in CMI under integrated (chemical fertilizer + organics) and chemical fertilizer-treated plots. The values of CMI ranged from 220 to 272 under cultivated lands receiving irrigation through sewage and industrial effluents. PMID:24555339

  5. Bis(haloBODIPYs) with Labile Helicity: Valuable Simple Organic Molecules That Enable Circularly Polarized Luminescence.

    PubMed

    Ray, César; Sánchez-Carnerero, Esther M; Moreno, Florencio; Maroto, Beatriz L; Agarrabeitia, Antonia R; Ortiz, María J; López-Arbeloa, Íñigo; Bañuelos, Jorge; Cohovi, Komlan D; Lunkley, Jamie L; Muller, Gilles; de la Moya, Santiago

    2016-06-20

    Simple organic molecules (SOM) based on bis(haloBODIPY) are shown to enable circularly polarized luminescence (CPL), giving rise to a new structural design for technologically valuable CPL-SOMs. The established design comprises together synthetic accessibility, labile helicity, possibility of reversing the handedness of the circularly polarized emission, and reactive functional groups, making it unique and attractive as advantageous platform for the development of smart CPL-SOMs.

  6. Protein degradation by ubiquitin-proteasome system in formation and labilization of contextual conditioning memory.

    PubMed

    Sol Fustiñana, María; de la Fuente, Verónica; Federman, Noel; Freudenthal, Ramiro; Romano, Arturo

    2014-09-01

    The ubiquitin-proteasome system (UPS) of protein degradation has been evaluated in different forms of neural plasticity and memory. The role of UPS in such processes is controversial. Several results support the idea that the activation of this system in memory consolidation is necessary to overcome negative constrains for plasticity. In this case, the inhibition of the UPS during consolidation impairs memory. Similar results were reported for memory reconsolidation. However, in other cases, the inhibition of UPS had no effect on memory consolidation and reconsolidation but impedes the amnesic action of protein synthesis inhibition after retrieval. The last finding suggests a specific action of the UPS inhibitor on memory labilization. However, another interpretation is possible in terms of the synthesis/degradation balance of positive and negative elements in neural plasticity, as was found in the case of long-term potentiation. To evaluate these alternative interpretations, other reconsolidation-interfering drugs than translation inhibitors should be tested. Here we analyzed initially the UPS inhibitor effect in contextual conditioning in crabs. We found that UPS inhibition during consolidation impaired long-term memory. In contrast, UPS inhibition did not affect memory reconsolidation after contextual retrieval but, in fact, impeded memory labilization, blocking the action of drugs that does not affect directly the protein synthesis. To extend these finding to vertebrates, we performed similar experiments in contextual fear memory in mice. We found that the UPS inhibitor in hippocampus affected memory consolidation and blocked memory labilization after retrieval. These findings exclude alternative interpretations to the requirement of UPS in memory labilization and give evidence of this mechanism in both vertebrates and invertebrates.

  7. Single subunit type of ferritin from visceral mass of Saccostrea cucullata: cloning, expression and cisplatin-subunit analysis.

    PubMed

    Zhu, Bo; Lin, Qing; Ke, Cai-Huan; Huang, He-Qing

    2011-09-01

    Ferritin, the iron storage protein, plays a key role in iron metabolism. Here, we have cloned an inducible ferritin cDNA with 516 bp within the open reading frame fragment from the visceral mass of Saccostrea cucullata. The subunit sequence of the ferritin was predicted to be a polypeptide of 171 amino acids with a molecular weight (MW) of 19.9182 kDa and an isoelectric point of 5.24. The cDNA sequence of S. cucullata ferritin was constructed into a pET-32a expression system for expressing its relative protein efficiently in the Escherichia coli BL21 strain under isopropyl-β-D-thiogalactoside (IPTG) induction. The recombinant ferritin, which was further purified on a Ni-NTA resin column and digested with enterokinase, was detected as a single subunit of approximately MW 20 kDa using both SDS-PAGE and mass spectrometry. S. cucullata ferritin (ScFer) showed 98% identity with Crassostrea gigas ferritin at the amino acid level. The secondary structure and phosphorylation sites of deduced amino acids were predicted with ExPASy proteomics tools and the NetPhos 2.0 server, respectively, and the subunit space structure of recombinant S. cucullata ferritin (rScFer) was built using the molecular operating environmental software system. The results of both in-gel digestion and identification using MALDI-TOF MS/MS showed that the recombinant protein was ScFer. ICP-MS indicated that rScFer subunit can directly bind to cisplatin[cis-Diaminedichloroplatinum(CDDP)], giving approximately 22.9 CDDP/ferritin subunit for forming a novel complex of CDDP-subunit, which suggests that it constructs a nanometer CDDP core-ferritin for developing a new drug of anti-cancer. The results of both the real-time PCR and Western blotting showed that the expression of ScFer mRNA was up-regulated in the oyster under the stress of Cd(2+). In addition, the expression increment of ScFer mRNA under bacterial challenge indicated that ferritin participated in the immune response of S. cucullata. The

  8. Enumeration of non-labile oxygen atoms in dissolved organic matter by use of ¹⁶O/ ¹⁸O exchange and Fourier transform ion-cyclotron resonance mass spectrometry.

    PubMed

    Kostyukevich, Yury; Kononikhin, Alexey; Zherebker, Alexander; Popov, Igor; Perminova, Irina; Nikolaev, Eugene

    2014-10-01

    We report a simple approach for enumeration of non-labile oxygen atoms in individual molecules of dissolved organic matter (DOM), using acid-catalyzed (16)O/(18)O exchange and ultrahigh-resolution Fourier-transform ion-cyclotron-resonance mass spectrometry (FTICR-MS). We found that by dissolving DOM in H2 (18)O at 95 °C for 20 days it is possible to replace all oxygen atoms of DOM molecules (excluding oxygen from ether groups) with (18)O. The number of exchanges in each molecule can be determined using high-resolution FTICR. Using the proposed method we identified the number of non-labile oxygen atoms in 231 molecules composing DOM. Also, using a previously developed hydrogen-deuterium (H/D)-exchange approach we identified the number of labile hydrogen atoms in 450 individual molecular formulas. In addition, we observed that several backbone hydrogen atoms can be exchanged for deuterium under acidic conditions. The method can be used for structural and chemical characterization of individual DOM molecules, comparing different DOM samples, and investigation of biological pathways of DOM in the environment.

  9. Consolidated and labile odor memory are separately encoded within the Drosophila brain.

    PubMed

    Scheunemann, Lisa; Jost, Eva; Richlitzki, Antje; Day, Jonathan P; Sebastian, Sujith; Thum, Andreas S; Efetova, Marina; Davies, Shireen-A; Schwärzel, Martin

    2012-11-28

    Memories are classified as consolidated (stable) or labile according to whether they withstand amnestic treatment, or not. In contrast to the general prevalence of this classification, its neuronal and molecular basis is poorly understood. Here, we focused on consolidated and labile memories induced after a single cycle training in the Drosophila aversive olfactory conditioning paradigm and we used mutants to define the impact of cAMP signals. At the biochemical level we report that cAMP signals misrelated in either rutabaga (rut) or dunce (dnc) mutants separate between consolidated anesthesia-resistant memory (ARM) and labile anesthesia-sensitive memory (ASM). Those functionally distinct cAMP signals act within different neuronal populations: while rut-dependent cAMP signals act within Kenyon cells (KCs) of the mushroom bodies to support ASM, dnc-sensitive cAMP signals support ARM within antennal lobe local neurons (LNs) and KCs. Collectively, different key positions along the olfactory circuitry seem to get modified during storage of ARM or ASM independently. A precise separation between those functionally distinct cAMP signals seems mandatory to allocate how they support appropriate memories.

  10. Effects of chemical amendments on the lability and speciation of metals in anaerobically digested biosolids.

    PubMed

    Donner, Erica; Brunetti, Gianluca; Zarcinas, Bernie; Harris, Paul; Tavakkoli, Ehsan; Naidu, Ravi; Lombi, Enzo

    2013-10-01

    The interaction of inorganic contaminants present in biosolids with iron, aluminum, and manganese oxy/hydroxides has been advocated as a key mechanism limiting their bioavailability. In this study, we investigated whether this is indeed the case, and further, whether it can be exploited to produce optimized biosolids products through the addition of chemical additives during sewage sludge processing. Experiments were conducted to investigate whether the addition of iron- and aluminum-based amendments (at 5 different rates) during the anaerobic digestion phase of wastewater treatment can effectively change the speciation or lability of contaminant metals (copper, zinc and cadmium) in biosolids destined for use in agriculture. The performance of the bioreactors was monitored throughout and the speciation and lability were determined in both fresh and 3-month aged biosolids using X-ray absorption spectroscopy (Cu, Zn) and isotopic dilution ((65)Cu, (65)Zn, (109)Cd). The tested amendments (FeCl3, Al2(SO4)3, and Al-rich water treatment residual) did not cause significant changes in metal speciation and were of limited use for reducing the lability of contaminant metals in good quality biosolids (suitable for use in agriculture), suggesting that high affinity binding sites were already in excess in these materials. However, the use of chemical amendments may offer advantages in terms of treatment process optimization and may also be beneficial when biosolids are used for contaminated site remediation. PMID:23981056

  11. Substrate lability and plant activity controls greenhouse gas release from Neotropical peatland

    NASA Astrophysics Data System (ADS)

    Sjogersten, Sofie; Hoyos, Jorge; Lomax, Barry; Turner, Ben; Wright, Emma

    2014-05-01

    Almost one third of global CO2 emissions resulting from land use change and substantial CH4 emissions originate from tropical peatlands. However, our understanding of the controls of CO2 and CH4 release from tropical peatlands are limited. The aim of this study was to investigate the role of peat lability and the activity of the vegetation on gas release using a combination of field and laboratory experiments. We demonstrated that peat lability constrained CH4 production to the surface peat under anaerobic conditions. The presence of plants shifted the C balance from a C source to a C sink with respect to CO2 while the activity of the root system strongly influenced CH4 emissions through its impact on soil O2 inputs. Both field and laboratory data suggest a coupling between the photosynthetic activity of the vegetation and the release of both CO2 and CH4 following the circadian rhythm of the dominant plant functional types. Forest clearance for agriculture resulted in elevated CH4 release, which we attribute in part to the cessation of root O2 inputs to the peat. We conclude that high emissions of CO2 and CH4 from forested tropical peatlands are likely driven by labile C inputs from the vegetation but that root O2 release may limit CH4 emissions.

  12. Evolution of phenotypic plasticity and environmental tolerance of a labile quantitative character in a fluctuating environment.

    PubMed

    Lande, R

    2014-05-01

    Quantitative genetic models of evolution of phenotypic plasticity are used to derive environmental tolerance curves for a population in a changing environment, providing a theoretical foundation for integrating physiological and community ecology with evolutionary genetics of plasticity and norms of reaction. Plasticity is modelled for a labile quantitative character undergoing continuous reversible development and selection in a fluctuating environment. If there is no cost of plasticity, a labile character evolves expected plasticity equalling the slope of the optimal phenotype as a function of the environment. This contrasts with previous theory for plasticity influenced by the environment at a critical stage of early development determining a constant adult phenotype on which selection acts, for which the expected plasticity is reduced by the environmental predictability over the discrete time lag between development and selection. With a cost of plasticity in a labile character, the expected plasticity depends on the cost and on the environmental variance and predictability averaged over the continuous developmental time lag. Environmental tolerance curves derived from this model confirm traditional assumptions in physiological ecology and provide new insights. Tolerance curve width increases with larger environmental variance, but can only evolve within a limited range. The strength of the trade-off between tolerance curve height and width depends on the cost of plasticity. Asymmetric tolerance curves caused by male sterility at high temperature are illustrated. A simple condition is given for a large transient increase in plasticity and tolerance curve width following a sudden change in average environment.

  13. Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates

    SciTech Connect

    De Graaff, Marie-Anne; Classen, Aimee T; Castro Gonzalez, Hector F; Schadt, Christopher Warren

    2010-01-01

    Root carbon (C) inputs may regulate decomposition rates in soil, and in this study we ask: how do labile C inputs regulate decomposition of plant residues, and soil microbial communities? In a 14 d laboratory incubation, we added C compounds often found in root exudates in seven different concentrations (0, 0.7, 1.4, 3.6, 7.2, 14.4 and 21.7 mg C g{sup -1} soil) to soils amended with and without {sup 13}C-labeled plant residue. We measured CO{sub 2} respiration and shifts in relative fungal and bacterial rRNA gene copy numbers using quantitative polymerase chain reaction (qPCR). Increased labile C input enhanced total C respiration, but only addition of C at low concentrations (0.7 mg C g{sup -1}) stimulated plant residue decomposition (+2%). Intermediate concentrations (1.4, 3.6 mg C g{sup -1}) had no impact on plant residue decomposition, while greater concentrations of C (> 7.2 mg C g{sup -1}) reduced decomposition (-50%). Concurrently, high exudate concentrations (> 3.6 mg C g{sup -1}) increased fungal and bacterial gene copy numbers, whereas low exudate concentrations (< 3.6 mg C g{sup -1}) increased metabolic activity rather than gene copy numbers. These results underscore that labile soil C inputs can regulate decomposition of more recalcitrant soil C by controlling the activity and relative abundance of fungi and bacteria.

  14. Molecular cloning and sequence analysis of striped bass (Morone saxatilis) gonadotrophin-I and -II subunits.

    PubMed

    Hassin, S; Elizur, A; Zohar, Y

    1995-08-01

    Two types of cDNA, each encoding a different beta-subunit of striped bass (Morone saxatilis, Teleostei) gonadotrophins (GTH-I beta and GTH-II beta), as well as the glycoprotein alpha-subunit, were cloned by screening a striped bass pituitary cDNA library. The probes used for screening the library were cloned cDNA fragments, generated by PCR amplification of reverse-transcribed mRNA obtained from two pituitaries. The nucleotide sequences of the alpha-subunit, GTH-I beta and GTH-II beta are 626, 524 and 580 bases long, encoding peptides of 117, 120 and 147 amino acids respectively. Striped bass GTH-I beta and GTH-II beta share a sequence identity of 48% at the nucleic acid level, and 30% at the amino acid level. A cluster analysis of vertebrate pituitary glycoprotein beta-subunits suggests that teleost GTH-II beta is more closely related to tetrapod LH than to FSH. Administration of gonadotrophin-releasing hormone analogue ([D-Ala6,Pro9Net]-LHRH) to juvenile striped resulted in ten-, two- and fivefold increases in the expression of the alpha-subunit, GTH-I beta and GTH-II beta respectively. These results suggest that each of the GTH subunits is differentially regulated, and further corroborate the functional duality of teleost gonadotrophins.

  15. N-terminal region of the large subunit of Leishmania donovani bisubunit topoisomerase I is involved in DNA relaxation and interaction with the smaller subunit.

    PubMed

    Das, Benu Brata; Sen, Nilkantha; Dasgupta, Somdeb Bose; Ganguly, Agneyo; Majumder, Hemanta K

    2005-04-22

    Leishmania donovani topoisomerase I is an unusual bisubunit enzyme. We have demonstrated earlier that the large and small subunit could be reconstituted in vitro to show topoisomerase I activity. We extend our biochemical study to evaluate the role of the large subunit in topoisomerase activity. The large subunit (LdTOP1L) shows a substantial degree of homology with the core DNA binding domain of the topoisomerase IB family. Two N-terminal truncation constructs, LdTOP1Delta39L (lacking amino acids 1-39) and LdTOP1Delta99L (lacking amino acids 1-99) of the large subunit were generated and mixed with intact small subunit (LdTOP1S). Our observations reveal that residues within amino acids 1-39 of the large subunit have significant roles in modulating topoisomerase I activity (i.e. in vitro DNA relaxation, camptothecin sensitivity, cleavage activity, and DNA binding affinity). Interestingly, the mutant LdTOP1Delta99LS was unable to show topoisomerase I activity. Investigation of the loss of activity indicates that LdTOP1Delta99L was unable to pull down glutathione S-transferase-LdTOP1S in an Ni(2+)-nitrilotriacetic acid co-immobilization experiment. For further analysis, we co-expressed LdTOP1L and LdTOP1S in Escherichia coli BL21(DE3)pLysS cells. The lysate shows topoisomerase I activity. Immunoprecipitation revealed that LdTOP1L could interact with LdTOP1S, indicating the subunit interaction in bacterial cells, whereas immunoprecipitation of bacterial lysate co-expressing LdTOP1Delta99L and LdTOP1S reveals that LdTOP1Delta99L was significantly deficient at interacting with LdTOP1S to reconstitute topoisomerase I activity. This study demonstrates that heterodimerization between the large and small subunits of the bisubunit enzyme appears to be an absolute requirement for topoisomerase activity. The residue within amino acids 1-39 from the N-terminal end of the large subunit regulates DNA topology during relaxation by controlling noncovalent DNA binding or by

  16. Persistent inflammation-induced up-regulation of brain-derived neurotrophic factor (BDNF) promotes synaptic delivery of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA1 subunits in descending pain modulatory circuits.

    PubMed

    Tao, Wenjuan; Chen, Quan; Zhou, Wenjie; Wang, Yunping; Wang, Lu; Zhang, Zhi

    2014-08-01

    The enhanced AMPA receptor phosphorylation at GluA1 serine 831 sites in the central pain-modulating system plays a pivotal role in descending pain facilitation after inflammation, but the underlying mechanisms remain unclear. We show here that, in the rat brain stem, in the nucleus raphe magnus, which is a critical relay in the descending pain-modulating system of the brain, persistent inflammatory pain induced by complete Freund adjuvant (CFA) can enhance AMPA receptor-mediated excitatory postsynaptic currents and the GluA2-lacking AMPA receptor-mediated rectification index. Western blot analysis showed an increase in GluA1 phosphorylation at Ser-831 but not at Ser-845. This was accompanied by an increase in distribution of the synaptic GluA1 subunit. In parallel, the level of histone H3 acetylation at bdnf gene promoter regions was reduced significantly 3 days after CFA injection, as indicated by ChIP assays. This was correlated with an increase in BDNF mRNA levels and BDNF protein levels. Sequestering endogenous extracellular BDNF with TrkB-IgG in the nucleus raphe magnus decreased AMPA receptor-mediated synaptic transmission and GluA1 phosphorylation at Ser-831 3 days after CFA injection. Under the same conditions, blockade of TrkB receptor functions, phospholipase C, or PKC impaired GluA1 phosphorylation at Ser-831 and decreased excitatory postsynaptic currents mediated by GluA2-lacking AMPA receptors. Taken together, these results suggest that epigenetic up-regulation of BDNF by peripheral inflammation induces GluR1 phosphorylation at Ser-831 sites through activation of the phospholipase C-PKC signaling cascade, leading to the trafficking of GluA1 to pain-modulating neuronal synapses.

  17. Inhibitory Interactions between Phosphorylation Sites in the C Terminus of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid-type Glutamate Receptor GluA1 Subunits*

    PubMed Central

    Gray, Erin E.; Guglietta, Ryan; Khakh, Baljit S.; O'Dell, Thomas J.

    2014-01-01

    The C terminus of AMPA-type glutamate receptor (AMPAR) GluA1 subunits contains several phosphorylation sites that regulate AMPAR activity and trafficking at excitatory synapses. Although many of these sites have been extensively studied, little is known about the signaling mechanisms regulating GluA1 phosphorylation at Thr-840. Here, we report that neuronal depolarization in hippocampal slices induces a calcium and protein phosphatase 1/2A-dependent dephosphorylation of GluA1 at Thr-840 and a nearby site at Ser-845. Despite these similarities, inhibitors of NMDA-type glutamate receptors and protein phosphatase 2B prevented depolarization-induced Ser-845 dephosphorylation but had no effect on Thr-840 dephosphorylation. Instead, depolarization-induced Thr-840 dephosphorylation was prevented by blocking voltage-gated calcium channels, indicating that distinct Ca2+ sources converge to regulate GluA1 dephosphorylation at Thr-840 and Ser-845 in separable ways. Results from immunoprecipitation/depletion assays indicate that Thr-840 phosphorylation inhibits protein kinase A (PKA)-mediated increases in Ser-845 phosphorylation. Consistent with this, PKA-mediated increases in AMPAR currents, which are dependent on Ser-845 phosphorylation, were inhibited in HEK-293 cells expressing a Thr-840 phosphomimetic version of GluA1. Conversely, mimicking Ser-845 phosphorylation inhibited protein kinase C phosphorylation of Thr-840 in vitro, and PKA activation inhibited Thr-840 phosphorylation in hippocampal slices. Together, the regulation of Thr-840 and Ser-845 phosphorylation by distinct sources of Ca2+ influx and the presence of inhibitory interactions between these sites highlight a novel mechanism for conditional regulation of AMPAR phosphorylation and function. PMID:24706758

  18. Complexation of labile aluminium species by chelating resins Iontosorb--a new method for Al environmental risk assessment.

    PubMed

    Matús, Peter; Kubová, Jana

    2005-09-01

    The utilization of chelating ion-exchange by the method based on binding strength and kinetic discrimination for aluminium fractionation was studied. Two chelating cellulose resins, Iontosorb Oxin (IO) and Iontosorb Salicyl (IS), were used for the determination of quickly reacting labile aluminium species. The possibilities of aluminium fractionation on these chelating resins were investigated by a solid phase extraction technique. The study of the pH (2.5-6.0) influence on the Al complexation by both resins indicates that at low pH the IS has lower sorption capacity but better adsorptive kinetic properties than IO. The optimal resin complexation time for reactive Al species was experimentally found after aluminium sorption study at pH 4.0 in synthetic solutions containing some inorganic and organic ligands, which simulate the composition of analysed acid soil and water samples. The negative influence of sulphate and iron on the Al complexation by IS resin was found and investigated. The flame atomic absorption spectrometry was used for the aluminium quantification.

  19. Metal Fluxes from Porewaters and Labile Sediment Phases for Predicting Metal Exposure and Bioaccumulation in Benthic Invertebrates.

    PubMed

    Amato, Elvio D; Simpson, Stuart L; Belzunce-Segarra, Maria J; Jarolimek, Chad V; Jolley, Dianne F

    2015-12-15

    The use of diffusive gradients in thin films (DGT) for predicting metal bioavailability was investigated by exposing the bivalve Tellina deltoidalis to an identical series of metal-contaminated sediments deployed simultaneously in the field and laboratory. To understand the differences in metal exposure occurring between laboratory- and field-based bioassays, we investigated changes in metal fluxes to DGT probes in sediments and in metal concentrations and partitioning to porewaters and overlying waters. DGT-metal fluxes (Cu, Pb, and Zn) were lower in the overlying waters of most field bioassays compared to the laboratory, causing differences in Pb and Zn bioaccumulation between bivalves exposed to laboratory and field conditions. Overall, DGT-metal fluxes provided predictions of metal bioaccumulation similar to those obtained using dilute-acid extractable metal measurements. This study demonstrates that, irrespective of the physicochemical properties of the sediment and type of exposure (laboratory or field), sediments pose a significant risk of bioaccumulation by T. deltoidalis when the Cu, Pb, and Zn DGT flux exceeds 3.5, 1.3, and 156 μg/h/m(2), respectively. The results presented here support the use of the DGT technique for sediment quality assessment and the hypothesis that DGT-metal fluxes may potentially be useful surrogates for the lability of metals for all exposure routes.

  20. Photodissociation/gas diffusion/ion chromatography system for determination of total and labile cyanide in waters

    SciTech Connect

    Liu, Yan; Rocklin, R.D.; Joyce, R.J.; Doyle, M.J. )

    1990-04-01

    An automated system for determination of total and labile cyanide in water samples has been developed. The stable metal-cyanide complexes such as Fe(CN){sub 6}{sup 3{minus}} are photodissociated in an acidic medium with an on-line pyrex glass reaction coil irradiated by an intense Hg lamp. The released cyanide (HCN) is separated from most interferences in the sample matrix and is collected in a dilute NaOH solution by gas diffusion using a hydrophobic porous membrane separator. The cyanide ion is then separated from remaining interferences such as sulfide by ion exchange chromatography and is detected by an amperometric detector. The characteristics of the automated system were studied with solutions of free cyanide and metal-cyanide complexes. The results of cyanide determination for a number of wastewater samples obtained with the new method were compared with those obtained with the standard method. The sample throughput of the system is eight samples per hour and the detection limit for total cyanide is 0.1 {mu}g/L.

  1. Cytochrome oxidase subunit V gene of Neurospora crassa: DNA sequences, chromosomal mapping, and evidence that the cya-4 locus specifies the structural gene for subunit V.

    PubMed Central

    Sachs, M S; Bertrand, H; Metzenberg, R L; RajBhandary, U L

    1989-01-01

    The sequences of cDNA and genomic DNA clones for Neurospora cytochrome oxidase subunit V show that the protein is synthesized as a 171-amino-acid precursor containing a 27-amino-acid N-terminal extension. The subunit V protein sequence is 34% identical to that of Saccharomyces cerevisiae subunit V; these proteins, as well as the corresponding bovine subunit, subunit IV, contain a single hydrophobic domain which most likely spans the inner mitochondrial membrane. The Neurospora crassa subunit V gene (cox5) contains two introns, 398 and 68 nucleotides long, which share the conserved intron boundaries 5'GTRNGT...CAG3' and the internal consensus sequence ACTRACA. Two short sequences, YGCCAG and YCCGTTY, are repeated four times each in the cox5 gene upstream of the mRNA 5' termini. The cox5 mRNA 5' ends are heterogeneous, with the major mRNA 5' end located 144 to 147 nucleotides upstream from the translational start site. The mRNA contains a 3'-untranslated region of 186 to 187 nucleotides. Using restriction-fragment-length polymorphism, we mapped the cox5 gene to linkage group IIR, close to the arg-5 locus. Since one of the mutations causing cytochrome oxidase deficiency in N. crassa, cya-4-23, also maps there, we transformed the cya-4-23 strain with the wild-type cox5 gene. In contrast to cya-4-23 cells, which grow slowly, cox5 transformants grew quickly, contained cytochrome oxidase, and had 8- to 11-fold-higher levels of subunit V in their mitochondria. These data suggest (i) that the cya-4 locus in N. crassa specifies structural information for cytochrome oxidase subunit V and (ii) that, in N. crassa, as in S. cerevisiae, deficiencies in the production of nuclearly encoded cytochrome oxidase subunits result in deficiency in cytochrome oxidase activity. Finally, we show that the lower levels of subunit V in cya-4-23 cells are most likely due to substantially reduced levels of translatable subunit V mRNA. Images PMID:2540423

  2. Structure, subunit composition, and molecular weight of RD-114 RNA.

    PubMed Central

    Kung, H J; Bailey, J M; Davidson, N; Nicolson, M O; McAllister, R M

    1975-01-01

    The properties and subunit composition of the RNA extracted from RD-114 virions have been studied. The RNA extracted from the virion has a sedimentation coefficient of 52S in a nondenaturing aqueous electrolyte. The estimated molecular weight by sedimentation in nondenaturing and weakly denaturing media is in the range 5.7 X 10(6) to 7.0 X 10(6). By electron microscopy, under moderately denaturing conditions, the 52S molecule is seen to be an extended single strand with a contour length of about 4.0 mum corresponding to a molecular weight of 5.74 X 10(6). It contains two characteristic secondary structure features: (i) a central Y- or T-shaped structure (the rabbit ears) with a molecular weight of 0.3 X 10(6), (ii) two symmetreically disposed loops on each side of and at equal distance from the center. The 52S molecule consists of two half-size molecules, with molecular weight 2.8 X 10(6), joined together within the central rabbit ears feature. Melting of the rabbit ears with concomitant dissociation of the 52S molecule into subunits, has been caused by either one of two strongly denaturing treatments: incubation in a mixture of CH3HgOH and glyoxal at room temperature, or thermal dissociation in a urea-formamide solvent. When half-size molecules are quenched from denaturing temperatures, a new off-center secondary structure feature termed the branch-like structure is seen. The dissociation behavior of the 52S complex and the molecular weight of the subunits have been confirmed by gel electrophoresis studies. The loop structures melt at fairly low temperatures; the dissociation of the 52S molecule into its two subunits occurs at a higher temperature corresponding to a base composition of about 63% guanosine plus cytosine. Polyadenylic acid mapping by electron microscopy shows that the 52S molecule contains two polyadenylic acid segments, one at each end. It thus appears that 52S RD-114 RNA consists of two 2.8 X 10(6) dalton subunits, each with a characteristic

  3. Assessing the Selectivity of Extractant Solutions for Recovering Labile Arsenic Associated with Iron (Hydr)oxides and Sulfides in Sediments

    EPA Science Inventory

    Sequential extractions can provide analytical constraints on the identification of mineral phases that control arsenic speciation in sediments. Model solids were used in this study to evaluate different solutions designed to extract arsenic from relatively labile solid phases. ...

  4. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  5. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  6. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  7. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  8. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  9. Subunit dissociations in natural and recombinant hemoglobins.

    PubMed

    Manning, L R; Jenkins, W T; Hess, J R; Vandegriff, K; Winslow, R M; Manning, J M

    1996-04-01

    A precise and rapid procedure employing gel filtration on Superose-12 to measure the tetramer-dimer dissociation constants of some natural and recombinant hemoglobins in the oxy conformation is described. Natural sickle hemoglobin was chosen to verify the validity of the results by comparing the values with those reported using an independent method not based on gel filtration. Recombinant sickle hemoglobin, as well as a sickle double mutant with a substitution at the Val-6(beta) receptor site, had approximately the same dissociation constant as natural sickle hemoglobin. Of the two recombinant hemoglobins with amino acid replacements in the alpha 1 beta 2 subunit interface, one was found to be extensively dissociated and the other completely dissociated. In addition, the absence of an effect of the allosteric regulators DPG and IHP on the dissociation constant was demonstrated. Thus, a tetramer dissociation constant can now be determined readily and used together with other criteria for characterization of hemoglobins and their interaction with small regulatory molecules. PMID:8845768

  10. Reduced contribution of thermally-labile sugar lesions to DNA double-strand break formation after exposure to neutrons.

    PubMed

    Singh, Satyendra K; Wu, Wenqi; Stuschke, Martin; Bockisch, Andreas; Iliakis, George

    2012-12-01

    In cells exposed to ionizing radiation, double-strand breaks (DSBs) form within clustered damage sites from lesions disrupting the DNA sugar-phosphate backbone. It is commonly assumed that DSBs form promptly and are immediately detected and processed by the cellular DNA damage response apparatus. However, DSBs also form by delayed chemical conversion of thermally-labile sugar lesions (TLSL) to breaks. We recently reported that conversion of thermally-labile sugar lesions to breaks occurs in cells maintained at physiological temperatures. Here, we investigate the influence of radiation quality on the formation of thermally-labile sugar lesions dependent DSBs. We show that, although the yields of total DSBs are very similar after exposure to neutrons and X rays, the yields of thermally-labile sugar lesions dependent DSBs from neutrons are decreased in comparison to that from X rays. Thus, the yields of prompt DSBs for neutrons are greater than for X rays. Notably, after neutron irradiation the decreased yield of thermally-labile sugar lesion dependent DSBs is strongly cell line dependent, likely reflecting subtle differences in DNA organization. We propose that the higher ionization density of neutrons generates with higher probability prompt DSBs within ionization clusters and renders the ensuing chemical evolution of thermally-labile sugar lesions inconsequential to DNA integrity. Modification of thermally-labile sugar lesion evolution may define novel radiation protection strategies aiming at decreasing DSB formation by chemically preserving thermally-labile sugar lesions until other DSB contributing lesions within the clustered damage site are removed by non-DSB repair pathways. PMID:23088767

  11. Reduced contribution of thermally-labile sugar lesions to DNA double-strand break formation after exposure to neutrons.

    PubMed

    Singh, Satyendra K; Wu, Wenqi; Stuschke, Martin; Bockisch, Andreas; Iliakis, George

    2012-12-01

    In cells exposed to ionizing radiation, double-strand breaks (DSBs) form within clustered damage sites from lesions disrupting the DNA sugar-phosphate backbone. It is commonly assumed that DSBs form promptly and are immediately detected and processed by the cellular DNA damage response apparatus. However, DSBs also form by delayed chemical conversion of thermally-labile sugar lesions (TLSL) to breaks. We recently reported that conversion of thermally-labile sugar lesions to breaks occurs in cells maintained at physiological temperatures. Here, we investigate the influence of radiation quality on the formation of thermally-labile sugar lesions dependent DSBs. We show that, although the yields of total DSBs are very similar after exposure to neutrons and X rays, the yields of thermally-labile sugar lesions dependent DSBs from neutrons are decreased in comparison to that from X rays. Thus, the yields of prompt DSBs for neutrons are greater than for X rays. Notably, after neutron irradiation the decreased yield of thermally-labile sugar lesion dependent DSBs is strongly cell line dependent, likely reflecting subtle differences in DNA organization. We propose that the higher ionization density of neutrons generates with higher probability prompt DSBs within ionization clusters and renders the ensuing chemical evolution of thermally-labile sugar lesions inconsequential to DNA integrity. Modification of thermally-labile sugar lesion evolution may define novel radiation protection strategies aiming at decreasing DSB formation by chemically preserving thermally-labile sugar lesions until other DSB contributing lesions within the clustered damage site are removed by non-DSB repair pathways.

  12. Secretory IgA-mediated protection against V. cholerae and heat-labile enterotoxin-producing enterotoxigenic Escherichia coli by rice-based vaccine.

    PubMed

    Tokuhara, Daisuke; Yuki, Yoshikazu; Nochi, Tomonori; Kodama, Toshio; Mejima, Mio; Kurokawa, Shiho; Takahashi, Yuko; Nanno, Masanobu; Nakanishi, Ushio; Takaiwa, Fumio; Honda, Takeshi; Kiyono, Hiroshi

    2010-05-11

    Cholera and enterotoxigenic Escherichia coli (ETEC) are among the most common causes of acute infantile gastroenteritis globally. We previously developed a rice-based vaccine that expressed cholera toxin B subunit (MucoRice-CTB) and had the advantages of being cold chain-free and providing protection against cholera toxin (CT)-induced diarrhea. To advance the development of MucoRice-CTB for human clinical application, we investigated whether the CTB-specific secretory IgA (SIgA) induced by MucoRice-CTB gives longstanding protection against diarrhea induced by Vibrio cholerae and heat-labile enterotoxin (LT)-producing ETEC (LT-ETEC) in mice. Oral immunization with MucoRice-CTB stored at room temperature for more than 3 y provided effective SIgA-mediated protection against CT- or LT-induced diarrhea, but the protection was impaired in polymeric Ig receptor-deficient mice lacking SIgA. The vaccine gave longstanding protection against CT- or LT-induced diarrhea (for > or = 6 months after primary immunization), and a single booster immunization extended the duration of protective immunity by at least 4 months. Furthermore, MucoRice-CTB vaccination prevented diarrhea in the event of V. cholerae and LT-ETEC challenges. Thus, MucoRice-CTB is an effective long-term cold chain-free oral vaccine that induces CTB-specific SIgA-mediated longstanding protection against V. cholerae- or LT-ETEC-induced diarrhea.

  13. Cooperative role of antibodies against heat-labile toxin and the EtpA Adhesin in preventing toxin delivery and intestinal colonization by enterotoxigenic Escherichia coli.

    PubMed

    Roy, Koushik; Hamilton, David J; Fleckenstein, James M

    2012-10-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrheal disease in developing countries, where it is responsible for hundreds of thousands of deaths each year. Vaccine development for ETEC has been hindered by the heterogeneity of known molecular targets and the lack of broad-based sustained protection afforded by existing vaccine strategies. In an effort to explore the potential role of novel antigens in ETEC vaccines, we examined the ability of antibodies directed against the ETEC heat-labile toxin (LT) and the recently described EtpA adhesin to prevent intestinal colonization in vivo and toxin delivery to epithelial cells in vitro. We demonstrate that EtpA is required for the optimal delivery of LT and that antibodies against this adhesin play at least an additive role in preventing delivery of LT to target intestinal cells when combined with antibodies against either the A or B subunits of the toxin. Moreover, vaccination with a combination of LT and EtpA significantly impaired intestinal colonization. Together, these results suggest that the incorporation of recently identified molecules such as EtpA could be used to enhance current approaches to ETEC vaccine development. PMID:22875600

  14. A molecular biology-based approach to resolve the subunit orientation of lipoprotein lipase

    PubMed Central

    Wong, Howard; Yang, Dawn; Hill, John S.; Davis, Richard C.; Nikazy, Judith; Schotz, Michael C.

    1997-01-01

    The subunit orientation of a dimeric enzyme influences the mechanism of action and function. To determine the subunit arrangement of lipoprotein lipase (LPL), a molecular biology-based approach was initiated. An eight amino acid linker region was engineered between two LPL monomers and expressed in COS-7 cells. The resultant tandem-repeat molecule (LPLTR) was lipolytically active and had kinetic parameters, salt inhibition, cofactor-dependent activity, heparin-binding characteristics, and a functional unit size very similar to the expressed native human enzyme. By these criteria, LPLTR was the functional equivalent of native LPL. Considering the length of the linker peptide (no more than 24 Å), monomers in the tethered molecule were restricted to a head-to-tail subunit arrangement. Since LPLTR demonstrated native enzyme-like properties while constrained to this subunit arrangement, these results provide the first compelling evidence that native LPL monomers are arranged in a head-to-tail subunit orientation within the active dimer. Thus, LPL function in physiology, lipolysis, and binding to cell-surface components must now be addressed with this subunit orientation in mind. The utility of the tandem-repeat approach to resolve the subunit arrangement of an obligate dimer has been demonstrated with LPL and could be generalized for use with other oligomeric enzymes. PMID:9159117

  15. Antigenicity and immunogenicity of fused B-subunit of heat labile toxin of Escherichia coli and colonization factor antigen I polyepitopes.

    PubMed

    Savar, Nastaran Sadat; Dashti, Amir; Darzi Eslam, Elham; Jahanian-Najafabadi, Ali; Jafari, Anis

    2014-11-01

    Linear B-cell epitopes ((93)AKEFEAAAL(101) and (66)PQLTDVLN(73)) of CfaB were genetically fused to ltb-(gly)5-cfaB(1-25). Sera of rabbits immunized with fusion proteins reacted strongly with solid-phase bound ETEC bacteria bearing CFA/I fimbriae. Sera failed to agglutinate or inhibit hemagglutination promoted by CFA/I-positive strain which may be due to solvent inaccessibility of epitope residues on intact fimbriae. PMID:25108290

  16. Chemoselective Conversion from α-Hydroxy Acids to α-Keto Acids Enabled by Nitroxyl-Radical-Catalyzed Aerobic Oxidation.

    PubMed

    Furukawa, Keisuke; Inada, Haruki; Shibuya, Masatoshi; Yamamoto, Yoshihiko

    2016-09-01

    The chemoselective oxidation of α-hydroxy acids to α-keto acids catalyzed by 2-azaadamantane N-oxyl (AZADO), a nitroxyl radical catalyst, is described. Although α-keto acids are labile and can easily release CO2 under oxidation conditions, the use of molecular oxygen as a cooxidant enables the desired chemoselective oxidation. PMID:27533283

  17. Subunit arrangement in beef heart complex III

    SciTech Connect

    Gonzalez-Halphen, D.; Lindorfer, M.A.; Capaldi, R.A.

    1988-09-06

    Beef heart mitochondrial complex III was separated into 12 polypeptide bands representing 11 different subunits by using the electrophoresis conditions described previously. Eight of the 12 polypeptide bands were identified from their NH/sub 2/-terminal sequences as obtained by electroblotting directly from the NaDodSO/sub 4/-polyacrylamide gel onto a solid support. The topology of the subunits in complex III was explored by three different approaches. (1) Protease digestion experiments of submitochrondial particles in the presence and absence of detergent showed that subunits II and VI are on the M side of the inner membrane and subunits V and XI on the C side. (2) Labeling experiments with the membrane-intercalated probes (/sup 125/I)TID and arylazidoPE indicated that cytochrome b is the predominant bilayer embedded subunit of complex III, while the non-heme iron protein appears to be peripherally located. (3) Cross-linking studies with carbodiimides and homobifunctional cleavable reagents demonstrated that near-neighbor pairs include subunits I+II, II+VI, III+VI, IV+V, V+X, and V+VII. The cytochrome c binding site was found to include subunits IV, VII, and X. The combined data are used to provide an updated model of the topology of beef heart complex III.

  18. A pH-dependent conformational change in the coat protein subunits from potato virus X.

    PubMed

    Homer, R B; Dalton, D I

    1976-10-28

    Both the circular dichroism and fluorescence spectra of the dissociated coat protein subunits from potato virus X changed substantially over the pH range 8 to 4, irreversible changes resulted below pH 4, with tyrosyl and tryptophanyl residues affected most. The titration curves show a pKa of about 5.6 and do not require cooperative interactions between the coat protein subunits, thus they are in marked contrast to titrations of tobacco mosaic virus A-protein. The spectra of the intact virus were little changed between pH 8 and 4 and suggested that the coat protein was locked into a conformation similar to that of the subunits in solution at pH 7. It is proposed that the pH induced conformational change is responsible for determining the acidic branch of the pH profile for reconstitution of potato virus X from its dissociated coat protein subunits and RNA.

  19. Labile Low-Molecular-Mass Metal Complexes in Mitochondria: Trials and Tribulations of a Burgeoning Field.

    PubMed

    Lindahl, Paul A; Moore, Michael J

    2016-08-01

    Iron, copper, zinc, manganese, cobalt, and molybdenum play important roles in mitochondrial biochemistry, serving to help catalyze reactions in numerous metalloenzymes. These metals are also found in labile "pools" within mitochondria. Although the composition and cellular function of these pools are largely unknown, they are thought to be comprised of nonproteinaceous low-molecular-mass (LMM) metal complexes. Many problems must be solved before these pools can be fully defined, especially problems stemming from the lability of such complexes. This lability arises from inherently weak coordinate bonds between ligands and metals. This is an advantage for catalysis and trafficking, but it makes characterization difficult. The most popular strategy for investigating such pools is to detect them using chelator probes with fluorescent properties that change upon metal coordination. Characterization is limited because of the inevitable destruction of the complexes during their detection. Moreover, probes likely react with more than one type of metal complex, confusing analyses. An alternative approach is to use liquid chromatography (LC) coupled with inductively coupled plasma mass spectrometry (ICP-MS). With help from a previous lab member, the authors recently developed an LC-ICP-MS approach to analyze LMM extracts from yeast and mammalian mitochondria. They detected several metal complexes, including Fe580, Fe1100, Fe1500, Cu5000, Zn1200, Zn1500, Mn1100, Mn2000, Co1200, Co1500, and Mo780 (numbers refer to approximate masses in daltons). Many of these may be used to metalate apo-metalloproteins as they fold inside the organelle. The LC-based approach also has challenges, e.g., in distinguishing artifactual metal complexes from endogenous ones, due to the fact that cells must be disrupted to form extracts before they are passed through chromatography columns prior to analysis. Ultimately, both approaches will be needed to characterize these intriguing complexes and to

  20. Interactions between recalcitrant and labile organic carbon in streams - Can stream biofilms mediate a priming effect?

    NASA Astrophysics Data System (ADS)

    Bengtsson, M. M.; Wagner, K.; Herberg, E. R.; Burns, N. R.; Wanek, W.; Battin, T. J.

    2012-04-01

    Inland waters - such as streams, rivers and lakes - are increasingly recognized as important components in the global carbon cycle. Dissolved organic carbon (DOC) in these systems is diverse in structure, origin and reactivity, and a fraction of it is regarded as recalcitrant to microbial degradation. In soils, degradation of recalcitrant carbon is often controlled by the availability of labile carbon sources. This is linked to the priming effect (PE). Mounting evidence suggests that PE is also important in aquatic ecosystems but there are so far very few studies addressing this topic. Biofilms are vital components of aquatic ecosystems. In stream biofilms, heterotrophic bacteria and algae coexist in close proximity, exposing the bacteria to both recalcitrant DOC of terrestrial origin and labile organic carbon from the algae. We hypothesize that this makes stream biofilms hotspots for PE. We used plug-flow bioreactors inoculated with natural stream biofilm bacterial communities to test the potential of a priming effect in aquatic ecosystems. The bioreactors were amended with an isotope-labeled plant extract serving as a model of recalcitrant DOC in streams. Labile carbon sources, in the form of glucose and an algal extract were added to induce PE. Nitrate and phosphate were also added to assess the role of these inorganic nutrients on carbon uptake. Microbial uptake of the different carbon sources was monitored by measuring the concentrations and isotopic ratios of respired CO2, biomass and DOC. Our results suggest that the priming effect plays a role in stream carbon cycling and that it is potentially an important process in other aquatic ecosystems.

  1. Total and Labile Phosphorus Concentrations as Influenced by Riparian Buffer Soil Properties.

    PubMed

    Young, Eric O; Ross, Donald S

    2016-01-01

    Riparian buffers can act as a phosphorus (P) source under active stream bank erosion. Using soil and landscape variables (soil series, drainage class, organic matter, and pH) to index P concentrations could improve P loss risk tools for buffers. The objectives of this study were (i) to determine if soil properties could predict total and labile P concentrations within a 10-ha riparian buffer and (ii) to quantify the degree of spatial dependence of P and related properties. Soil samples were taken in 15-cm increments to a depth of 60 cm using a grid ( = 71) from an established riparian buffer along the Rock River in Vermont. Total soil P (TP), plant-available P determined by Modified Morgan extraction (MM-P), pH, soil organic matter (SOM), soil texture, and select cations were measured. We found that TP (152-1536 mg P kg) and MM-P (0.4-14.6 mg kg) ranged widely, with distinct differences between soil series. Mean TP and MM-P were greater in alluvial and glaciolacustrine soils compared with glacial till. Across all samples, MM-P was weakly related to soil properties; however, total labile P (orthophosphate + organic P measured by ICP) and unreactive labile P (ICP-P - colorimetric-P) could both be predicted by SOM ( = 0.59 and 0.73, respectively). Strong spatial dependence was found for P and related properties as revealed by geospatial analyses. Results show that P availability in the buffer was strongly related to soil genesis and support site-specific approaches for P loss risk evaluation in buffers.

  2. Cleft Lip Repair: The Hybrid Subunit Method.

    PubMed

    Tollefson, Travis T

    2016-04-01

    The unilateral cleft lip repair is one of the most rewarding and challenging of plastic surgery procedures. Surgeons have introduced a variety of straight line, geometric, and rotation-advancement designs, while in practice the majority of North American surgeons have been using hybrids of the rotation-advancement techniques. The anatomic subunit approach was introduced in 2005 by Fisher and has gained popularity, with early adopters of the design touting its simplicity and effectiveness. The objectives of this article are to summarize the basic tenets of respecting the philtral subunit, accurate measurement and planning, and tips for transitioning to this subunit approach.

  3. Cleft Lip Repair: The Hybrid Subunit Method.

    PubMed

    Tollefson, Travis T

    2016-04-01

    The unilateral cleft lip repair is one of the most rewarding and challenging of plastic surgery procedures. Surgeons have introduced a variety of straight line, geometric, and rotation-advancement designs, while in practice the majority of North American surgeons have been using hybrids of the rotation-advancement techniques. The anatomic subunit approach was introduced in 2005 by Fisher and has gained popularity, with early adopters of the design touting its simplicity and effectiveness. The objectives of this article are to summarize the basic tenets of respecting the philtral subunit, accurate measurement and planning, and tips for transitioning to this subunit approach. PMID:27097136

  4. Sulfhydryl groups of the F1 adenosine triphosphatase of Escherichia coli and the stoichiometry of the subunits.

    PubMed

    Stan-Lotter, H; Bragg, P D

    1984-02-15

    The distribution and total number of sulfhydryl groups present in the F1 adenosine triphosphatase of Escherichia coli were used to calculate the stoichiometry of the alpha-delta subunits. Titration with 5,5'-dithiobis (2-nitrobenzoate) gave 19.1 +/- 2.2 sulfhydryl groups/mol ATPase. Labeling with [14C]iodoacetamide and [14C]N-ethylmaleimide showed that 11.9, 3.1, 1.9, and 1.8 sulfhydryl groups per molecule of ATPase were associated with the alpha, beta, gamma, and delta subunits, respectively. The epsilon subunit was not labeled. Application of the method of Creighton [Nature (London) (1980) 284, 487-489] showed that 4, 1, and 2 sulfhydryl groups were present in the alpha, beta, and gamma subunits, respectively. This, together with published data for the delta subunit, allowed a subunit stoichiometry of alpha 3 beta 3 gamma delta to be calculated. The presence of four cysteinyl residues in the alpha subunit, as shown by several different methods, does not agree with the results of DNA sequencing of the ATPase genes [H. Kanazawa, T. Kayano, K. Mabuchi, and M. Futai (1981) Biochem. Biophys. Res. Commun. 103, 604-612; N. J. Gay and J. E. Walker (1981) Nucl. Acids Res. 9, 2187-2194] where three cysteinyl residues/alpha subunit have been found. It is suggested that post-translational modification of the alpha subunit to add a fourth cysteinyl residue might occur.

  5. Subunit Stabilization and Polyethylene Glycolation of Cocaine Esterase Improves In Vivo Residence TimeS⃞

    PubMed Central

    Narasimhan, Diwahar; Collins, Gregory T.; Nance, Mark R.; Nichols, Joseph; Edwald, Elin; Chan, Jimmy; Ko, Mei-Chuan; Woods, James H.; Tesmer, John J. G.

    2011-01-01

    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37°C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newly modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37°C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo. PMID:21890748

  6. Subunit Stabilization and Polyethylene Glycolation of Cocaine Esterase Improves In Vivo Residence Time

    SciTech Connect

    Narasimhan, Diwahar; Collins, Gregory T.; Nance, Mark R.; Nichols, Joseph; Edwald, Elin; Chan, Jimmy; Ko, Mei-Chuan; Woods, James H.; Tesmer, John J.G.; Sunahara, Roger K.

    2012-03-15

    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37 C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newly modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37 C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo.

  7. Subunit stabilization and polyethylene glycolation of cocaine esterase improves in vivo residence time.

    PubMed

    Narasimhan, Diwahar; Collins, Gregory T; Nance, Mark R; Nichols, Joseph; Edwald, Elin; Chan, Jimmy; Ko, Mei-Chuan; Woods, James H; Tesmer, John J G; Sunahara, Roger K

    2011-12-01

    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37°C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newly modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37°C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo. PMID:21890748

  8. Cloning and sequencing of the gene cluster encoding two subunits of membrane-bound alcohol dehydrogenase from Acetobacter polyoxogenes.

    PubMed

    Tamaki, T; Fukaya, M; Takemura, H; Tayama, K; Okumura, H; Kawamura, Y; Nishiyama, M; Horinouchi, S; Beppu, T

    1991-02-16

    The membrane-bound alcohol dehydrogenase (ADH) from Acetobacter polyoxogenes NBI1028 is composed of a 72 kDa subunit and a 44 kDa cytochrome c subunit. The amino acid sequences of the two regions of the 72 kDa subunit were determined to prepare oligonucleotides for the purpose of amplification of a DNA fragment corresponding to the intermediate region by the polymerase chain reaction. A 0.5 kb DNA fragment thus amplified was used as the probe to clone a 7.0 kb PstI fragment coding for the whole 72 kDa subunit. Nucleotide sequencing and immunoblot analysis revealed that the cloned fragment contained the full structural genes for the 72 kDa and the 44 kDa subunits and they were clustered with the same transcription polarity. The predicted amino acid sequence of the gene for the 72 kDa subunit showed homology with that of the 72 kDa subunit from ADH of A. aceti and those of methanol dehydrogenase from methylotrophic bacteria. The 72 and 44 kDa subunits contained one and three typical haem binding sequences, respectively.

  9. Labile Compounds in Plant Litter Reduce the Sensitivity of Decomposition to Warming and Altered Precipitation

    NASA Astrophysics Data System (ADS)

    Suseela, V.; Tharayil, N.; Xing, B.; Dukes, J. S.

    2013-12-01

    Together, climate and litter quality strongly regulate decomposition rates. While these two factors and their interaction have been studied across species in continent-scale experiments, few researchers have studied how labile and recalcitrant compounds interact to influence decomposition, or the climate sensitivity of decomposition, within a litter type. Over a period of three years, we studied the effects climate change on mass loss and compound-specific decomposition using two litter types that differed in the relative proportions of labile and recalcitrant compounds, but that had heteropolymers with similar molecular structure. We examined how warming and altered precipitation affected the decomposition of two types of Polygonum cuspidatum (Japanese knotweed) litter (stem litter that was either newly senesced or one year old), at the Boston-Area Climate Experiment (BACE), in Massachusetts, USA. We placed litter bags in an old-field ecosystem exposed to four levels of warming (up to 4oC) and three levels of precipitation (ambient, drought (-50%) and wet (+50%) treatments. The compound-specific degradation of litter was assessed using Diffuse Reflectance Infrared Fourier Transform Spectroscopy and 13C Nuclear Magnetic Resonance Spectroscopy. Climate treatments immediately affected mass loss of the more recalcitrant litter, but affected the more labile litter only after two years. After three years, although both litter types had lost similar amounts of mass, warming (~4oC) and supplemental precipitation (150% of ambient) together accelerated degradation of alkyl-carbon and lignin only in the more recalcitrant litter, highlighting the role of initial litter quality in determining whether the chemistry of litter residues converges or diverges under different climates. The results from this study indicate that the effect of climate on litter decomposition depends on the quality of litter; litter with a greater initial proportion of labile compounds was less

  10. Molecular cloning of the. cap alpha. subunit of human and guinea pig leukocyte adhesion glycoprotein Mo1: Chromosomal localization and homology to the. cap alpha. subunits of integrins

    SciTech Connect

    Arnaout, M.A.; Remold-O'Donnell, E.; Pierce, M.W.; Harris, P.; Tenen, D.G.

    1988-04-01

    The cell surface-glycoprotein Mo1 is a member of the family of leukocyte cell adhesion molecules (Leu-CAMs) that includes lymphocyte function-associated antigen 1 (LFA-1) and p150,95. Each Leu-CAM is a heterodimer with a distinct ..cap alpha.. subunit noncovalently associated with a common ..beta.. subunit. The authors describe the isolation and analysis of two partial cDNA clones encoding the ..cap alpha.. subunit of the Leu-CAM Mo1 in humans and guinea pigs. A monoclonal antibody directed against an epitope in the carboxyl-terminal portion of the guinea pig ..cap alpha.. chain was used for immunoscreening a lambdagt11 expression library. The sequence of a 378-base-pair insert from one immunoreactive clone revealed a single continuous open reading frame encoding 126 amino acids including a 26-amino acid tryptic peptide isolated from the purified guinea pig ..cap alpha.. subunit. A cDNA clone of identical size was isolated from a human monocyte/lymphocyte cDNA library by using the guinea pig clone as a probe. The human clone also encoded a 126-amino acid peptide including the sequence of an additional tryptic peptide present in purified human Mo1..cap alpha.. chain. Southern analysis of DNA from hamster-human hybrids localized the human Mo1..cap alpha.. chain to chromosome 16, which has been shown to contain the gene for the ..cap alpha.. chain of lymphocyte function-associated antigen 1. These data suggest that the ..cap alpha.. subunits of Leu-CAMs evolved by gene duplication from a common ancestral gene and strengthen the hypothesis that the ..cap alpha.. subunits of these heterodimeric cell adhesion molecules on myeloid and lymphoid cells, platelets, and fibroblasts are evolutionary related.

  11. Methodology to probe subunit interactions in ribonucleotide reductases†

    PubMed Central

    Hassan, A Quamrul; Wang, Yongting; Plate, Lars; Stubbe, JoAnne

    2009-01-01

    Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides, providing the monomeric precursors required for DNA replication and repair. E. coli RNR is a 1:1 complex of two homodimeric subunits: α2 and β2. The interactions between α2 and β2 are thought to be largely associated with the C-terminal 20 amino acids (residues 356-375) of β2. To study subunit interactions, a single reactive cysteine has been introduced into each of fifteen positions along the C-terminal tail of β2. Each cysteine has been modified with the photo cross-linker benzophenone (BP) and the environmentally sensitive fluorophore, dimethylaminonaphthalene (DAN). Each construct has been purified to homogeneity and characterized by SDS PAGE and ESI-MS. Each BP-β2 has been incubated with 1 equivalent of α2, photolyzed, and the results analyzed quantitatively by SDS-PAGE. Each DAN-β2 was incubated with 50-fold excess of α2 and the emission maximum and intensity measured. A comparison of the results from the two sets of probes reveals that sites with most extensive cross-linking are also associated with the greatest changes in fluorescence. Titration of four different DAN-β2 variants (351, 356, 365 and 367) with α2 gave a Kd of ∼0.4 μM for subunit interaction. Disruption of the interaction of α2DAN-β2 complex is accompanied by a decrease in fluorescence intensity and can serve as a high throughput screen for inhibitors of subunit interactions. PMID:19012414

  12. Mouse muscle nicotinic acetylcholine receptor gamma subunit: cDNA sequence and gene expression.

    PubMed Central

    Yu, L; LaPolla, R J; Davidson, N

    1986-01-01

    Clones coding for the mouse nicotinic acetylcholine receptor (AChR) gamma subunit precursor have been selected from a cDNA library derived from a mouse myogenic cell line and sequenced. The deduced protein sequence consists of a signal peptide of 22 amino acid residues and a mature gamma subunit of 497 amino acid residues. There is a high degree of sequence conservation between this mouse sequence and published human and calf AChR gamma subunits and, after allowing for functional amino acid substitutions, also to the more distantly related chicken and Torpedo AChR gamma subunits. The degree of sequence conservation is especially high in the four putative hydrophobic membrane spanning regions, supporting the assignment of these domains. RNA blot hybridization showed that the mRNA level of the gamma subunit increases by 30 fold or more upon differentiation of the two mouse myogenic cell lines, BC3H-1 and C2C12, suggesting that the primary controls for changes in gene expression during differentiation are at the level of transcription. One cDNA clone was found to correspond to a partially processed nuclear transcript containing two as yet unspliced intervening sequences. Images PMID:3010242

  13. Purification of glucagon by subunit exchange chromatography.

    PubMed

    Carrea, G; Pasta, P; Antonini, E

    1985-05-01

    Glucagon was immobilized onto Sepharose matrices activated with CNBr or tresyl chloride, as a function of several parameters including pH of coupling, concentration of added polypeptide, and presence or absence of urea. The hormone was linked to the matrix through a single point per molecule, namely, the epsilon -amino group of Lys(12) when the coupling was carried out at alkaline pH, or the imidazole group of His(1) when the coupling was carried out at acidic pH. Glucagon immobilized at alkaline pH interacted specifically with soluble glucogon. The extent of self-association was similar to that of free glucagon, which exists in solution in a monomer-trimer equilibrium whose association constant is highly dependent on the characteristics of the buffer (pH, ionic strength, and nature of anions). The immobilized hormone proved to be suitable for the purification of the free one from a pancreatic extract. After a preliminary treatment with charcoal-dextran, the extract was percolated on a glucagon-Sepharose column under associating conditions (high concentrations of salting out anions and alkaline pH) and then, following a washing to remove extraneous compounds, the specifically bound hormone was eluted under dissociating conditions (low ionic strength). The subunit exchange chromatography of the extract gave a ca. 90% pure product. The overall recovery of the process was ca. 66%. The leakage of immobilized hormone was 40% in the case of CNBr activation of Sepharose and 15% in the case of tresyl chloride activation, after an eight-day treatment under working conditions.

  14. Subunit compositions of Arabidopsis RNA polymerases I and III reveal Pol I- and Pol III-specific forms of the AC40 subunit and alternative forms of the C53 subunit

    SciTech Connect

    Ream, Thomas S.; Haag, Jeremy R.; Pontvianne, Frederic; Nicora, Carrie D.; Norbeck, Angela D.; Pasa-Tolic, Ljiljana; Pikaard, Craig S.

    2015-05-02

    Using affinity purification and mass spectrometry, we identified the subunits of Arabidopsis thaliana multisubunit RNA Polymerases I and III (abbreviated as Pol I and Pol III), providing the first description of their physical compositions in plants. AC40 and AC19 subunits are typically common to Pol I (a.k.a. Pol A) and Pol III (a.k.a. Pol C) and are encoded by single genes whose mutation, in humans, is a cause of the craniofacial disorder, Treacher-Collins Syndrome. Surprisingly, A. thaliana, and related species, express two distinct AC40 paralogs, one of which assembles into Pol I and the other of which assembles into Pol III. Changes at eight amino acid positions correlate with this functional divergence of Pol I and Pol III-specific AC40 paralogs. Two genes encode homologs of the yeast C53 subunit, and either variant can assemble into Pol III. By contrast, only one of two potential C17 variants, and one of two potential C31 variants were detected in Pol III. We introduce a new nomenclature system for plant Pol I and Pol III subunits in which the twelve subunits that are structurally and functionally homologous among Pols I through V are assigned equivalent numbers.

  15. Subunit compositions of Arabidopsis RNA polymerases I and III reveal Pol I- and Pol III-specific forms of the AC40 subunit and alternative forms of the C53 subunit

    DOE PAGES

    Ream, Thomas S.; Haag, Jeremy R.; Pontvianne, Frederic; Nicora, Carrie D.; Norbeck, Angela D.; Pasa-Tolic, Ljiljana; Pikaard, Craig S.

    2015-05-02

    Using affinity purification and mass spectrometry, we identified the subunits of Arabidopsis thaliana multisubunit RNA Polymerases I and III (abbreviated as Pol I and Pol III), providing the first description of their physical compositions in plants. AC40 and AC19 subunits are typically common to Pol I (a.k.a. Pol A) and Pol III (a.k.a. Pol C) and are encoded by single genes whose mutation, in humans, is a cause of the craniofacial disorder, Treacher-Collins Syndrome. Surprisingly, A. thaliana, and related species, express two distinct AC40 paralogs, one of which assembles into Pol I and the other of which assembles into Polmore » III. Changes at eight amino acid positions correlate with this functional divergence of Pol I and Pol III-specific AC40 paralogs. Two genes encode homologs of the yeast C53 subunit, and either variant can assemble into Pol III. By contrast, only one of two potential C17 variants, and one of two potential C31 variants were detected in Pol III. We introduce a new nomenclature system for plant Pol I and Pol III subunits in which the twelve subunits that are structurally and functionally homologous among Pols I through V are assigned equivalent numbers.« less

  16. The Drosophila 110-kDa transcription factor TFIID subunit directly interacts with the N-terminal region of the 230-kDa subunit.

    PubMed Central

    Kokubo, T; Gong, D W; Roeder, R G; Horikoshi, M; Nakatani, Y

    1993-01-01

    Transcription initiation factor TFIID is a multimeric protein complex that plays a central role in transcriptional regulation by facilitating promoter responses to various activators. cDNAs encoding the 110-kDa subunit of Drosophila TFIID (p110) were isolated with a degenerate oligodeoxynucleotide probe based on an amino acid sequence of the purified protein. The entire cDNA sequence contains an open reading frame encoding a 921-amino acid polypeptide with a calculated molecular mass of 99,337 Da. The recombinant protein expressed in Sf9 cells via a baculovirus vector interacts directly with the 230-kDa subunit of TFIID (p230). Together with the previous observation that the TATA box-binding subunit of TFIID (TFIID tau or TBP) interacts directly with only p230 among the TFIID subunits, this result suggests that p110 forms a complex with TFIID tau via p230. A binding study using various p230 mutants indicated that both p110 and TFIID tau interact with the N-terminal 352-amino acid portion of p230, suggesting a functional communication between p110 and TFIID tau via p230 interactions. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8327460

  17. Novel diffusive gradients in thin films technique to assess labile sulfate in soil.

    PubMed

    Hanousek, Ondrej; Mason, Sean; Santner, Jakob; Chowdhury, Md Mobaroqul Ahsan; Berger, Torsten W; Prohaska, Thomas

    2016-09-01

    A novel diffusive gradients in thin films (DGT) technique for sampling labile soil sulfate was developed, based on a strong basic anion exchange resin (Amberlite IRA-400) for sulfate immobilization on the binding gel. For reducing the sulfate background on the resin gels, photopolymerization was applied instead of ammonium persulfate-induced polymerization. Agarose cross-linked polyacrylamide (APA) hydrogels were used as diffusive layer. The sulfate diffusion coefficient in APA gel was determined as 9.83 × 10(-6) ± 0.35 × 10(-6) cm(2) s(-1) at 25 °C. The accumulated sulfate was eluted in 1 mol L(-1) HNO3 with a recovery of 90.9 ± 1.6 %. The developed method was tested against two standard extraction methods for soil sulfate measurement. The obtained low correlation coefficients indicate that DGT and conventional soil test methods assess differential soil sulfate pools, rendering DGT a potentially important tool for measuring labile soil sulfate.

  18. Effects of lability of metal complex on free ion measurement using DMT.

    PubMed

    Weng, Liping; Van Riemsdijk, Willem H; Temminghoff, Erwin J M

    2010-04-01

    Very low concentrations of free metal ion in natural samples can be measured using the Donnan membrane technique (DMT) based on ion transport kinetics. In this paper, the possible effects of slow dissociation of metal complexes on the interpretation of kinetic DMT are investigated both theoretically and experimentally. The expressions of the lability parameter, Lgrangian , were derived for DMT. Analysis of new experimental studies using synthetic solution containing NTA as the ligand and Cu(2+) ions shows that when the ionic strength is low (labile species measured using other dynamic sensors (DGT, GIME) in several freshwaters, it is concluded that in most waters ion transport in DMT is controlled by diffusion in the membrane. Only in very soft waters (<0.7 mM Ca+Mg), the dissociation rate of natural metal complex may influence ion transport in DMT. In this case, neglecting this effect may lead to an underestimation of the free metal ion concentration measured.

  19. Novel diffusive gradients in thin films technique to assess labile sulfate in soil.

    PubMed

    Hanousek, Ondrej; Mason, Sean; Santner, Jakob; Chowdhury, Md Mobaroqul Ahsan; Berger, Torsten W; Prohaska, Thomas

    2016-09-01

    A novel diffusive gradients in thin films (DGT) technique for sampling labile soil sulfate was developed, based on a strong basic anion exchange resin (Amberlite IRA-400) for sulfate immobilization on the binding gel. For reducing the sulfate background on the resin gels, photopolymerization was applied instead of ammonium persulfate-induced polymerization. Agarose cross-linked polyacrylamide (APA) hydrogels were used as diffusive layer. The sulfate diffusion coefficient in APA gel was determined as 9.83 × 10(-6) ± 0.35 × 10(-6) cm(2) s(-1) at 25 °C. The accumulated sulfate was eluted in 1 mol L(-1) HNO3 with a recovery of 90.9 ± 1.6 %. The developed method was tested against two standard extraction methods for soil sulfate measurement. The obtained low correlation coefficients indicate that DGT and conventional soil test methods assess differential soil sulfate pools, rendering DGT a potentially important tool for measuring labile soil sulfate. PMID:27491301

  20. Windows of embryonic sexual lability in two lizard species with environmental sex determination.

    PubMed

    Shine, Richard; Warner, Daniel A; Radder, Rajkumar

    2007-07-01

    Temperature-dependent sex determination (TSD) occurs in all major reptile lineages, but the selective forces and physiological mechanisms that link sex to incubation temperature may differ among and within those groups. Different models for TSD evolution make different predictions about when offspring sex will respond to environmental cues. Although TSD has evolved in several lizard lineages, there is less detailed information on these taxa than in turtles and crocodilians with TSD. We incubated eggs of an agamid lizard (Amphibolurus muricatus) and a scincid lizard (Bassiana duperreyi), two species with TSD. Rather than manipulate incubation temperature to identify periods of sexual lability (as in most previous studies of this topic), we topically applied the aromatase inhibitor fadrozole to eggs at a variety of times through the incubation period. Fadrozole application sex-reversed the resultant hatchlings if applied from the time of oviposition until at least 60% of the way through incubation. In all of the TSD lizard species studied so far, offspring sex is determined either while the eggs are held inside the mother's body or soon after oviposition, providing substantial maternal control over incubation temperatures at this critical period. Hence, the hypothesis that TSD evolves because it enables offspring sex to be matched to conditions that are unpredictable at the time of laying is less likely to apply to squamates than to turtles, sphenodontians, and (especially) crocodiles, in which the period of sexual lability is delayed until long after oviposition.

  1. [Effects of land use change on soil labile organic carbon in Central Jiangxi of China].

    PubMed

    Du, Man-Yi; Fan, Shao-Hui; Liu, Guang-Lu; Qi, Liang-Hua; Guo, Bao-Hu; Tang, Xiao-Lu; Xiao, Fu-Ming

    2013-10-01

    Selecting the 15-year abandoned land (AL) and three forest lands [Phyllostachys edulis plantation (PE), Schima superba secondary forest (SS), and Cunninghamia Lanceolata plantation (CL)] in Anfu County of Jiangxi Province as test objects, this paper studied the effects of land use change on the soil organic carbon (SOC) pool and soil labile organic carbon (SLOC) contents. The soil organic carbon (SOC), microbial biomass carbon (MBC), hot- water extractable carbon (HWC), and readily oxidizable carbon (ROC) contents in the test lands were all in the order of PE>CL>SS>AL. As compared with those in AL, the SOC content, soil carbon stock, and soil labile organic carbon (SLOC) contents in the three forest lands all decreased with increasing soil depth, and had an obvious accumulation in surface soil. The proportions of different kinds of SLOC to soil total organic carbon differed markedly, among which, ROC had the highest proportion, while MBC had the smallest one. There existed significant relationships between SOC, MBC, HWC, and ROC. The MBC, HWC, and ROC contained higher content of active carbon, and were more sensitive to the land use change, being able to be used as the indicators for evaluating the soil quality and fertility in central Jiangxi Province. PMID:24483085

  2. [Effects of land use change on soil labile organic carbon in Central Jiangxi of China].

    PubMed

    Du, Man-Yi; Fan, Shao-Hui; Liu, Guang-Lu; Qi, Liang-Hua; Guo, Bao-Hu; Tang, Xiao-Lu; Xiao, Fu-Ming

    2013-10-01

    Selecting the 15-year abandoned land (AL) and three forest lands [Phyllostachys edulis plantation (PE), Schima superba secondary forest (SS), and Cunninghamia Lanceolata plantation (CL)] in Anfu County of Jiangxi Province as test objects, this paper studied the effects of land use change on the soil organic carbon (SOC) pool and soil labile organic carbon (SLOC) contents. The soil organic carbon (SOC), microbial biomass carbon (MBC), hot- water extractable carbon (HWC), and readily oxidizable carbon (ROC) contents in the test lands were all in the order of PE>CL>SS>AL. As compared with those in AL, the SOC content, soil carbon stock, and soil labile organic carbon (SLOC) contents in the three forest lands all decreased with increasing soil depth, and had an obvious accumulation in surface soil. The proportions of different kinds of SLOC to soil total organic carbon differed markedly, among which, ROC had the highest proportion, while MBC had the smallest one. There existed significant relationships between SOC, MBC, HWC, and ROC. The MBC, HWC, and ROC contained higher content of active carbon, and were more sensitive to the land use change, being able to be used as the indicators for evaluating the soil quality and fertility in central Jiangxi Province.

  3. [Effects of stand structure regulation on soil labile organic carbon in Pinus elliottii plantation].

    PubMed

    Tan, Gui-Xia; Liu, Yuan-Qiu; Li, Lian-Lian; Liu, Wu; Zan, Yu-Ting; Huo, Bing-Nan; He, Mu-Jiao

    2014-05-01

    Taking 21-year-old Pinus elliottii pure plantation as the control, effects of enrichment planting with broadleaf trees (Liquidambar fornosana) after thinning the conifer trees (P. elliottii) on soil labile organic carbon of different plantations, including 3-year-old, 6-year-old, 9-year-old P. elliottii and 21-year-old P. elliottii-L. fornosana mixed plantations, were investigated. The results showed that the contents of soil dissolved organic carbon (DOC), readily oxidizable organic carbon (ROC), and microbial biomass carbon (MBC) significantly increased in the 6-year-old and 9-year-old plantations compared with those in the 21-year-old P. elliottii pure plantation. Soil labile organic carbon contents in the 21-year-old P. elliottii-L. fornosana mixed plantation increased significantly than those in 3-year-old, 6-year-old, 9-year-old stands, and the DOC, ROC and MBC contents increased by 113.1%, 53.3% and 54.6%, respectively, compared with those in the 21-year-old P. elliottii pure plantation. The results suggested that replanting with broadleaf trees are an effective measure to improve the soil ecological function in pure P. elliottii plantation.

  4. Total spontaneous resolution of chiral covalent networks from stereochemically labile metal complexes.

    PubMed

    Johansson, Anna; Håkansson, Mikael; Jagner, Susan

    2005-09-01

    Stereochemically labile copper and zinc complexes with the N,N'-dimethylethylenediamine ligand (dmeda) have been shown to be promising precursors for the total spontaneous resolution of chiral covalent networks. (N,N')-[Cu(NO3)2(dmeda)]infinity crystallises as a conglomerate and yields either enantiopure (R,R)-1 or enantiopure (S,S)-1. A mixed-valence copper(I/II) complex, [{Cu(II)Br2(dmeda)}3(Cu(I)Br)2]infinity (2), which crystallises as a pair of interpenetrating chiral (10,3)-a nets, is formed from CuBr, CuBr2 and dmeda. One net contains ligands with solely (R,R) configuration and exhibits helices with (P) configuration while the other has solely (S,S)-dmeda ligands and gives rise to a net in which the helices have (M) configuration. The whole crystalline arrangement is racemic, because the interpenetrating chiral nets are of opposite handedness. With zinc chloride (R,S)-[ZnCl(dmeda)2]2[ZnCl4] (3) is obtained, which is a network structure, although not chiral. Total spontaneous resolution of stereochemically labile metal complexes formed from achiral or racemic building blocks is suggested as a viable route for the preparation of covalent chiral networks. Once the absolute structure of the compound has been determined by X-ray crystallography, a quantitative determination of the enantiomeric excess of the bulk product can be undertaken by means of solid-state CD spectroscopy.

  5. Novel diffusive gradients in thin films technique to assess labile sulfate in soil

    PubMed Central

    Ahsan Chowdhury, Md Mobaroqul; Berger, Torsten W.; Prohaska, Thomas

    2016-01-01

    A novel diffusive gradients in thin films (DGT) technique for sampling labile soil sulfate was developed, based on a strong basic anion exchange resin (Amberlite IRA-400) for sulfate immobilization on the binding gel. For reducing the sulfate background on the resin gels, photopolymerization was applied instead of ammonium persulfate-induced polymerization. Agarose cross-linked polyacrylamide (APA) hydrogels were used as diffusive layer. The sulfate diffusion coefficient in APA gel was determined as 9.83 × 10−6 ± 0.35 × 10-6 cm2 s−1 at 25 °C. The accumulated sulfate was eluted in 1 mol L−1 HNO3 with a recovery of 90.9 ± 1.6 %. The developed method was tested against two standard extraction methods for soil sulfate measurement. The obtained low correlation coefficients indicate that DGT and conventional soil test methods assess differential soil sulfate pools, rendering DGT a potentially important tool for measuring labile soil sulfate. PMID:27491301

  6. Constraints on Transport and Emplacement Mechanisms of Labile Fractions in Lunar Cold Traps

    NASA Technical Reports Server (NTRS)

    Rickman, D.; Gertsch, L.

    2014-01-01

    Sustaining the scientific exploration of the Solar System will require a significant proportion of the necessary fuels and propellants, as well as other bulk commodities, to be produced from local raw materials [1]. The viability of mineral production depends on the ability to locate and characterize mineable deposits of the necessary feedstocks. This requires, among other things, a workable understanding of the mechanisms by which such deposits form, which is the subject of Economic Geology. Multiple deposition scenarios are possible for labile materials on the Moon. This paper suggests labile fractions moved diffusely through space; deposits may grow richer with depth until low porosity rock; lateral transport is likely to have occurred with the regolith, at least for short distances; crystalline ice may not exist; the constituent phases could be extremely complex. At present we can constrain the sources only mildly; once on the Moon, the transport mechanisms inherently mix and therefore obscure the origins. However, the importance of expanding our understanding of ore-forming processes on the Moon behooves us to make the attempt. Thus begins a time of new inquiry for Economic Geology.

  7. Cu lability and bioavailability in an urban stream during baseflow versus stormflow

    NASA Astrophysics Data System (ADS)

    Vadas, T.; Luan, H.

    2012-12-01

    Urban streams are dynamic systems with many anthropogenic inputs and stressors. Existing contaminant inputs are regulated through total maximum daily loads. Techniques for assessing that load are based on a combination of acute and chronic water quality criteria, biotic ligand models, and physical, chemical and biological assessments. In addition, the apportionment of reduction in load to different sources is based on total mass and not, for example, on bioavailable fraction. Our understanding of the impact of different metal inputs to stream impairment is limited. Free metal ions are understood to play a role in direct cellular uptake, but metal speciation (e.g. free metal, labile metals, or size fractionated) is relevant to more complex stream food webs. As part of an ongoing study, this work examines dissolved and particulate Cu concentrations in the Hockanum River, Vernon, CT situated in a developed watershed. Stream samples were taken during baseflow as well as stormflow upstream and downstream of wastewater treatment plant and stormwater runoff inputs. In addition, diffusive gradient in thin-film (DGT) devices which measure labile metal concentrations and cultured periphyton were used to examine bioavailable fractions. Total and filtered Cu concentrations ranged from about 1.3 to 10.7 μg/L, and 0.9 to 5.1 μg/L, respectively. Cu concentrations always increased downstream of the wastewater treatment plant by about 1.1-2 times, and effluent accounted for about 30% of baseflow. Generally, small increases (<10%) in concentration were observed in metals directly downstream of stormwater inlets, likely due to low volumes of runoff contributed from stormwater outfalls during these sampling periods. However, Cu concentrations were elevated (about 2-5 times higher) at all sites downstream from the wastewater treatment plant downstream sampling point, suggesting contributions from sediment resuspension. DGT measured concentrations represented 30 to 70% of dissolved Cu

  8. Current Progress in Developing Subunit Vaccines against Enterotoxigenic Escherichia coli-Associated Diarrhea

    PubMed Central

    Sack, David A.

    2015-01-01

    Diarrhea continues to be a leading cause of death in children <5 years of age, and enterotoxigenic Escherichia coli (ETEC) is the most common bacterial cause of children's diarrhea. Currently, there are no available vaccines against ETEC-associated diarrhea. Whole-cell vaccine candidates have been under development but require further improvements because they provide inadequate protection and produce unwanted adverse effects. Meanwhile, a newer approach using polypeptide or subunit vaccine candidates focusing on ETEC colonization factor antigens (CFAs) and enterotoxins, the major virulence determinants of ETEC diarrhea, shows substantial promise. A conservative CFA/I adhesin tip antigen and a CFA MEFA (multiepitope fusion antigen) were shown to induce cross-reactive antiadhesin antibodies that protected against adherence by multiple important CFAs. Genetic fusion of toxoids derived from ETEC heat-labile toxin (LT) and heat-stable toxin (STa) induced antibodies neutralizing both enterotoxins. Moreover, CFA-toxoid MEFA polypeptides, generated by fusing CFA MEFA to an STa-LT toxoid fusion, induced antiadhesin antibodies that broadly inhibited adherence of the seven most important ETEC CFAs associated with about 80% of the diarrhea cases caused by ETEC strains with known CFAs. This same antigen preparation also induced antitoxin antibodies that neutralized both toxins that are associated with all cases of ETEC diarrhea. Results from these studies suggest that polypeptide or subunit vaccines have the potential to effectively protect against ETEC diarrhea. In addition, novel adhesins and mucin proteases have been investigated as potential alternatives or, more likely, additional antigens for ETEC subunit vaccine development. PMID:26135975

  9. Current Progress in Developing Subunit Vaccines against Enterotoxigenic Escherichia coli-Associated Diarrhea.

    PubMed

    Zhang, Weiping; Sack, David A

    2015-09-01

    Diarrhea continues to be a leading cause of death in children <5 years of age, and enterotoxigenic Escherichia coli (ETEC) is the most common bacterial cause of children's diarrhea. Currently, there are no available vaccines against ETEC-associated diarrhea. Whole-cell vaccine candidates have been under development but require further improvements because they provide inadequate protection and produce unwanted adverse effects. Meanwhile, a newer approach using polypeptide or subunit vaccine candidates focusing on ETEC colonization factor antigens (CFAs) and enterotoxins, the major virulence determinants of ETEC diarrhea, shows substantial promise. A conservative CFA/I adhesin tip antigen and a CFA MEFA (multiepitope fusion antigen) were shown to induce cross-reactive antiadhesin antibodies that protected against adherence by multiple important CFAs. Genetic fusion of toxoids derived from ETEC heat-labile toxin (LT) and heat-stable toxin (STa) induced antibodies neutralizing both enterotoxins. Moreover, CFA-toxoid MEFA polypeptides, generated by fusing CFA MEFA to an STa-LT toxoid fusion, induced antiadhesin antibodies that broadly inhibited adherence of the seven most important ETEC CFAs associated with about 80% of the diarrhea cases caused by ETEC strains with known CFAs. This same antigen preparation also induced antitoxin antibodies that neutralized both toxins that are associated with all cases of ETEC diarrhea. Results from these studies suggest that polypeptide or subunit vaccines have the potential to effectively protect against ETEC diarrhea. In addition, novel adhesins and mucin proteases have been investigated as potential alternatives or, more likely, additional antigens for ETEC subunit vaccine development. PMID:26135975

  10. Current Progress in Developing Subunit Vaccines against Enterotoxigenic Escherichia coli-Associated Diarrhea.

    PubMed

    Zhang, Weiping; Sack, David A

    2015-09-01

    Diarrhea continues to be a leading cause of death in children <5 years of age, and enterotoxigenic Escherichia coli (ETEC) is the most common bacterial cause of children's diarrhea. Currently, there are no available vaccines against ETEC-associated diarrhea. Whole-cell vaccine candidates have been under development but require further improvements because they provide inadequate protection and produce unwanted adverse effects. Meanwhile, a newer approach using polypeptide or subunit vaccine candidates focusing on ETEC colonization factor antigens (CFAs) and enterotoxins, the major virulence determinants of ETEC diarrhea, shows substantial promise. A conservative CFA/I adhesin tip antigen and a CFA MEFA (multiepitope fusion antigen) were shown to induce cross-reactive antiadhesin antibodies that protected against adherence by multiple important CFAs. Genetic fusion of toxoids derived from ETEC heat-labile toxin (LT) and heat-stable toxin (STa) induced antibodies neutralizing both enterotoxins. Moreover, CFA-toxoid MEFA polypeptides, generated by fusing CFA MEFA to an STa-LT toxoid fusion, induced antiadhesin antibodies that broadly inhibited adherence of the seven most important ETEC CFAs associated with about 80% of the diarrhea cases caused by ETEC strains with known CFAs. This same antigen preparation also induced antitoxin antibodies that neutralized both toxins that are associated with all cases of ETEC diarrhea. Results from these studies suggest that polypeptide or subunit vaccines have the potential to effectively protect against ETEC diarrhea. In addition, novel adhesins and mucin proteases have been investigated as potential alternatives or, more likely, additional antigens for ETEC subunit vaccine development.

  11. Functional substitution of an essential yeast RNA polymerase subunit by a highly conserved mammalian counterpart.

    PubMed Central

    McKune, K; Woychik, N A

    1994-01-01

    We isolated the cDNA encoding the homolog of the Saccharomyces cerevisiae nuclear RNA polymerase common subunit RPB6 from hamster CHO cells. Alignment of yeast RPB6 with its mammalian counterpart revealed that the subunits have nearly identical carboxy-terminal halves and a short acidic region at the amino terminus. Remarkably, the length and amino acid sequence of the hamster RPB6 are identical to those of the human RPB6 subunit. The conservation in sequence from lower to higher eukaryotes also reflects conservation of function in vivo, since hamster RPB6 supports normal wild-type yeast cell growth in the absence of the essential gene encoding RPB6. Images PMID:8196653

  12. Variable effects of labile carbon on the carbon use of different microbial groups in black slate degradation

    NASA Astrophysics Data System (ADS)

    Seifert, Anne-Gret; Trumbore, Susan; Xu, Xiaomei; Zhang, Dachung; Kothe, Erika; Gleixner, Gerd

    2011-05-01

    Weathering of ancient organic matter contributes significantly to biogeochemical carbon cycles over geological times. The principle role of microorganisms in this process is well recognized. However, information is lacking on the contribution of individual groups of microorganisms and on the effect of labile carbon sources to the degradation process. Therefore, we investigated the contribution of fungi, Gram-positive and Gram-negative bacteria in the degradation process using a column experiment. Investigations were performed on low metamorphic black slates. All columns contained freshly crushed, sieved (0.63-2 mm), not autoclaved black slates. Two columns were inoculated with the lignite-degrading fungus Schizophyllum commune and received a culture medium containing 13C labeled glucose, two columns received only this culture medium and two control columns received only water. The total mass balance was calculated from all carbon added to the slate and the CO 2 and DOC losses. Phospholipid fatty acids (PLFA) were extracted to investigate microbial communities. We used both the compound specific 14C and 13C signal of the PLFA to quantify carbon uptake from black slates and the glucose of the culture medium, respectively. The total carbon loss in these columns exceeded the amount of added carbon by approximately 60%, indicating that black slate carbon has been used. PLFA associated with Gram-positive bacteria dominated the indigenous community and took up 22% of carbon from black slate carbon, whereas PLFA of Gram-negative bacteria used only 8% of carbon from the slates. PLFA of Gram-negative bacteria and fungi were both mostly activated by the glucose addition. The added Schizophyllum did not establish well in the columns and was overgrown by the indigenous microbial community. Our results suggest that especially Gram-positive bacteria are able to live on and degrade black slate material. They also benefit from easy degradable carbon from the nutrient broth. In

  13. The Pertussis Toxin S1 Subunit Is a Thermally Unstable Protein Susceptible to Degradation by the 20S Proteasome†

    PubMed Central

    Pande, Abhay H.; Moe, David; Jamnadas, Maneesha; Tatulian, Suren A.; Teter, Ken

    2008-01-01

    Pertussis toxin (PT) is an AB-type protein toxin that consists of a catalytic A subunit (PT S1) and an oligomeric, cell-binding B subunit. It belongs to a subset of AB toxins that move from the cell surface to the endoplasmic reticulum (ER) before A chain passage into the cytosol. Toxin translocation is thought to involve A chain unfolding in the ER and the quality control mechanism of ER-associated degradation (ERAD). The absence of lysine residues in PT S1 may allow the translocated toxin to avoid ubiquitin-dependent degradation by the 26S proteasome, which is the usual fate of exported ERAD substrates. As the conformation of PT S1 appears to play an important role in toxin translocation, we used biophysical and biochemical methods to examine the structural properties of PT S1. Our in vitro studies found that the isolated PT S1 subunit is a thermally unstable protein that can be degraded in a ubiquitin-independent fashion by the core 20S proteasome. The thermal denaturation of PT S1 was inhibited by its interaction with NAD, a donor molecule used by PT S1 for the ADP-ribosylation of target G proteins. These observations support a model of intoxication in which toxin translocation, degradation, and activity are all influenced by the heat-labile nature of the isolated toxin A chain. PMID:17105192

  14. Development and Lability in the Parent-Child Relationship During Adolescence: Associations With Pubertal Timing and Tempo

    PubMed Central

    Marceau, Kristine; Ram, Nilam; Susman, Elizabeth

    2014-01-01

    Adolescents' and parents' reactions to pubertal development are hypothesized to contribute to changes in family dynamics. Using 7-year longitudinal data from the NICHD-SECCYD (488 boys, 475 girls) we examined relations between pubertal development (timing, tempo) and trajectories (developmental change and year-to-year lability) of parent-child conflict and closeness from age 8.5 to 15.5 years. Changes were mostly characterized by year-to-year fluctuations – lability. Parent-child conflict increased and closeness decreased some with age. Pubertal timing and tempo were more consistently associated with lability in parent-child relationships than with long-term trends, although faster tempo was associated with steeper decreases in parent-child closeness. Findings provide a platform for examining how puberty contributes to both long-term and transient changes in adolescents' relationships and adjustment. PMID:26321856

  15. Protein synthesis by ribosomes with tethered subunits.

    PubMed

    Orelle, Cédric; Carlson, Erik D; Szal, Teresa; Florin, Tanja; Jewett, Michael C; Mankin, Alexander S

    2015-08-01

    The ribosome is a ribonucleoprotein machine responsible for protein synthesis. In all kingdoms of life it is composed of two subunits, each built on its own ribosomal RNA (rRNA) scaffold. The independent but coordinated functions of the subunits, including their ability to associate at initiation, rotate during elongation, and dissociate after protein release, are an established model of protein synthesis. Furthermore, the bipartite nature of the ribosome is presumed to be essential for biogenesis, since dedicated assembly factors keep immature ribosomal subunits apart and prevent them from translation initiation. Free exchange of the subunits limits the development of specialized orthogonal genetic systems that could be evolved for novel functions without interfering with native translation. Here we show that ribosomes with tethered and thus inseparable subunits (termed Ribo-T) are capable of successfully carrying out protein synthesis. By engineering a hybrid rRNA composed of both small and large subunit rRNA sequences, we produced a functional ribosome in which the subunits are covalently linked into a single entity by short RNA linkers. Notably, Ribo-T was not only functional in vitro, but was also able to support the growth of Escherichia coli cells even in the absence of wild-type ribosomes. We used Ribo-T to create the first fully orthogonal ribosome-messenger RNA system, and demonstrate its evolvability by selecting otherwise dominantly lethal rRNA mutations in the peptidyl transferase centre that facilitate the translation of a problematic protein sequence. Ribo-T can be used for exploring poorly understood functions of the ribosome, enabling orthogonal genetic systems, and engineering ribosomes with new functions.

  16. Escherichia coli K88ac fimbriae expressing heat-labile and heat-stable (STa) toxin epitopes elicit antibodies that neutralize cholera toxin and STa toxin and inhibit adherence of K88ac fimbrial E. coli.

    PubMed

    Zhang, Chengxian; Zhang, Weiping

    2010-12-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of diarrheal disease in humans and animals. Bacterial adhesins and heat-labile (LT) and heat-stable (ST) enterotoxins are the virulence determinants in ETEC diarrhea. It is believed that vaccines inducing anti-adhesin immunity to inhibit bacterial adherence and anti-toxin immunity to eliminate toxin activity would provide broad-spectrum protection against ETEC. In this study, an ETEC fimbrial adhesin was used as a platform to express LT and STa for adhesin-toxin fusion antigens to induce anti-toxin and anti-adhesin immunity. An epitope from the B subunit of LT toxin (LTP1, (8)LCSEYRNTQIYTIN(21)) and an STa toxoid epitope ((5)CCELCCNPQCAGCY(18)) were embedded in the FaeG major subunit of E. coli K88ac fimbriae. Constructed K88ac-toxin chimeric fimbriae were harvested and used for rabbit immunization. Immunized rabbits developed anti-K88ac, anti-LT, and anti-STa antibodies. Moreover, induced antibodies not only inhibited adherence of K88ac fimbrial E. coli to porcine small intestinal enterocytes but also neutralized cholera toxin and STa toxin. Data from this study demonstrated that K88ac fimbriae expressing LT and STa epitope antigens elicited neutralizing anti-toxin antibodies and anti-adhesin antibodies and suggested that E. coli fimbriae could serve as a platform for the development of broad-spectrum vaccines against ETEC. PMID:20980482

  17. Labile trace elements in basaltic achondrites: Can they distinguish between meteorites from the Moon, Mars, and V-type asteroids?

    NASA Astrophysics Data System (ADS)

    Wolf, Stephen F.; Wang, Ming-Sheng; Lipschutz, Michael E.

    2009-06-01

    We report data for 14 mainly labile trace elements (Ag, Au, Bi, Cd, Cs, Ga, In, Rb, Sb, Se, Te, Tl, U, and Zn) in eight whole-rock lunar meteorites (Asuka [A-] 881757, Dar al Gani [DaG] 262, Elephant Moraine [EET] 87521, Queen Alexandra Range [QUE] 93069, QUE 94269, QUE 94281, Yamato [Y-] 793169, and Y-981031), and Martian meteorite (DaG 476) and incorporate these into a comparative study of basaltic meteorites from the Moon, Mars, and V-type asteroids. Multivariate cluster analysis of data for these elements in 14 lunar, 13 Martian, and 34 howardite, eucrite, and diogenite (HED) meteorites demonstrate that materials from these three parents are distinguishable using these markers of late, low-temperature episodes. This distinguishability is essentially as complete as that based on markers of high-temperature igneous processes. Concentrations of these elements in 14 lunar meteorites are essentially lognormally distributed and generally more homogeneous than in Martian and HED meteorites. Mean siderophile and labile element concentrations in the 14 lunar meteorites indicate the presence of a CI-equivalent micrometeorite admixture of 2.6% When only feldspathic samples are considered, our data show a slightly higher value of 3.4% consistent with an increasing micrometeorite content in regolith samples of higher maturity. Concentrations of labile elements in the 8 feldspathic samples hint at the presence of a fractionated highly labile element component, possibly volcanic in origin, at a level comparable to the micrometeorite component. Apparently, the process(es) that contributed to establishing lunar meteorite siderophile and labile trace element contents occurred in a system open to highly labile element transport.

  18. In situ high-resolution evaluation of labile arsenic and mercury in sediment of a large shallow lake.

    PubMed

    Wang, Chao; Yao, Yu; Wang, Peifang; Hou, Jun; Qian, Jin; Yuan, Ye; Fan, Xiulei

    2016-01-15

    The precise evaluation of arsenic (As) and mercury (Hg) bioavailability in sediment is crucial to controlling As and Hg contamination, but traditional ex situ measurements hamper comprehensive analysis of labile As and Hg in sediment. In this study, we characterized in situ labile As and Hg in sediment of Lake Hongze using the zirconium (Zr) oxide diffusive gradients in thin films (DGT) technique and 3-mercaptopropyl functionalized silica gel DGT, respectively. The concentrations of DGT-labile As and Hg in the sediment profiles were found to exhibit considerable variation, ranging from 0.15 to 4.15 μg L(-1) for As and from 0.04 to 1.35 μg L(-1) for Hg. As and Hg flux values, calculated based on the concentration gradients measured from the DGT profiles for both the overlying water and sediment close to the sediment-water interface, were used to determine the contamination status of As and Hg. Flux values of As and Hg were between -0.066 and 0.067 ng cm(-2)d(-1) and between -0.0187 and 0.0181 ng cm(-2)d(-1), respectively. The GNU's Not Unix R (GNU R) programming language was used to identify outliers of As and Hg at various depths at the sampling sites. The results indicate that the sites with the most outliers were all located in the regions that were seriously affected by contaminants from the Huai River. The DGT-labile As and Hg concentrations in the 0-30 mm layer were found to be significantly correlated with concentrations of labile As and Hg, total dissolved As and Hg, and total As and Hg in the overlying water, as indicated by ex situ measurements. Results show that DGT is a reliable and high-resolution technique that can be used for in situ monitoring of the labile fractions of As and Hg in sediment in fresh water bodies. PMID:26398454

  19. In situ high-resolution evaluation of labile arsenic and mercury in sediment of a large shallow lake.

    PubMed

    Wang, Chao; Yao, Yu; Wang, Peifang; Hou, Jun; Qian, Jin; Yuan, Ye; Fan, Xiulei

    2016-01-15

    The precise evaluation of arsenic (As) and mercury (Hg) bioavailability in sediment is crucial to controlling As and Hg contamination, but traditional ex situ measurements hamper comprehensive analysis of labile As and Hg in sediment. In this study, we characterized in situ labile As and Hg in sediment of Lake Hongze using the zirconium (Zr) oxide diffusive gradients in thin films (DGT) technique and 3-mercaptopropyl functionalized silica gel DGT, respectively. The concentrations of DGT-labile As and Hg in the sediment profiles were found to exhibit considerable variation, ranging from 0.15 to 4.15 μg L(-1) for As and from 0.04 to 1.35 μg L(-1) for Hg. As and Hg flux values, calculated based on the concentration gradients measured from the DGT profiles for both the overlying water and sediment close to the sediment-water interface, were used to determine the contamination status of As and Hg. Flux values of As and Hg were between -0.066 and 0.067 ng cm(-2)d(-1) and between -0.0187 and 0.0181 ng cm(-2)d(-1), respectively. The GNU's Not Unix R (GNU R) programming language was used to identify outliers of As and Hg at various depths at the sampling sites. The results indicate that the sites with the most outliers were all located in the regions that were seriously affected by contaminants from the Huai River. The DGT-labile As and Hg concentrations in the 0-30 mm layer were found to be significantly correlated with concentrations of labile As and Hg, total dissolved As and Hg, and total As and Hg in the overlying water, as indicated by ex situ measurements. Results show that DGT is a reliable and high-resolution technique that can be used for in situ monitoring of the labile fractions of As and Hg in sediment in fresh water bodies.

  20. L-type calcium channel β subunit modulates angiotensin II responses in cardiomyocytes.

    PubMed

    Hermosilla, Tamara; Moreno, Cristian; Itfinca, Mircea; Altier, Christophe; Armisén, Ricardo; Stutzin, Andres; Zamponi, Gerald W; Varela, Diego

    2011-01-01

    Angiotensin II regulation of L-type calcium currents in cardiac muscle is controversial and the underlying signaling events are not completely understood. Moreover, the possible role of auxiliary subunit composition of the channels in Angiotensin II modulation of L-type calcium channels has not yet been explored. In this work we study the role of Ca(v)β subunits and the intracellular signaling responsible for L-type calcium current modulation by Angiotensin II. In cardiomyocytes, Angiotensin II exposure induces rapid inhibition of L-type current with a magnitude that is correlated with the rate of current inactivation. Semi-quantitative PCR of cardiomyocytes at different days of culture reveals changes in the Ca(v)β subunits expression pattern that are correlated with the rate of current inactivation and with Angiotensin II effect. Over-expression of individual b subunits in heterologous systems reveals that the magnitude of Angiotensin II inhibition is dependent on the Ca(v)β subunit isoform, with Ca(v)β(1b) containing channels being more strongly regulated. Ca(v)β(2a) containing channels were insensitive to modulation and this effect was partially due to the N-terminal palmitoylation sites of this subunit. Moreover, PLC or diacylglycerol lipase inhibition prevents the Angiotensin II effect on L-type calcium channels, while PKC inhibition with chelerythrine does not, suggesting a role of arachidonic acid in this process. Finally, we show that in intact cardiomyocytes the magnitude of calcium transients on spontaneous beating cells is modulated by Angiotensin II in a Ca(v)β subunit-dependent manner. These data demonstrate that Ca(v)β subunits alter the magnitude of inhibition of L-type current by Angiotensin II. PMID:21525790

  1. Missense mutation in the Chlamydomonas chloroplast gene that encodes the Rubisco large subunit

    SciTech Connect

    Spreitzer, R.J.; Brown, T.; Chen, Zhixiang; Zhang, Donghong; Al-Abed, S.R. )

    1988-04-01

    The 69-12Q mutant of Chlamydomonas reinhardtii lacks ribulose-1,5-bisphosphate carboxylase activity, but retains holoenzyme protein. It results from a mutation in the chloroplast large-subunit gene that causes an isoleucine-for-threonine substitution at amino-acid residue 173. Considering that lysine-175 is involved in catalysis, it appears that mutations cluster at the active site.

  2. Development and use of domain-specific antibodies in a characterization of the large subunits of soybean photosystem 1

    NASA Technical Reports Server (NTRS)

    Henry, R. L.; Takemoto, L. J.; Murphy, J.; Gallegos, G. L.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The molecular architecture of the soybean photosystem 1 reaction center complex was examined using a combination of surface labeling and immunological methodology on isolated thylakoid membranes. Synthetic peptides (12 to 14 amino acids in length) were prepared which correspond to the N-terminal regions of the 83 and 82.4 kDa subunits of photosystem 1 (the PsaA and PsaB proteins, respectively). Similarly, a synthetic peptide was prepared corresponding to the C-terminal region of the PsaB subunit. These peptides were conjugated to a carrier protein, and were used for the production of polyclonal antibodies in rabbits. The resulting sera could distinguish between the PsaA and PsaB photosystem 1 subunits by Western blot analysis, and could identify appropriate size classes of cyanogen bromide cleavage fragments as predicted from the primary sequences of these two subunits. When soybean thylakoid membranes were surface-labeled with N-hydroxysuccinimidobiotin, several subunits of the complete photosystem 1 lipid/protein complex incorporated label. These included the light harvesting chlorophyll proteins of photosystem 1, and peptides thought to aid in the docking of ferredoxin to the complex during photosynthetic electron transport. However, the PsaA and PsaB subunits showed very little biotinylation. When these subunits were examined for the domains to which biotin did attach, most of the observed label was associated with the N-terminal domain of the PsaA subunit, as identified using a domain-specific polyclonal antisera.

  3. Downregulation of GABA[Subscript A] Receptor Protein Subunits a6, ß2, d, e, ?2, ?, and ?2 in Superior Frontal Cortex of Subjects with Autism

    ERIC Educational Resources Information Center

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rustan, Oyvind G.; Rooney, Robert J.; Thuras, Paul D.

    2014-01-01

    We measured protein and mRNA levels for nine gamma-aminobutyric acid A (GABA[subscript A]) receptor subunits in three brain regions (cerebellum, superior frontal cortex, and parietal cortex) in subjects with autism versus matched controls. We observed changes in mRNA for a number of GABA[subscript A] and GABA[subscript B] subunits and overall…

  4. The novel component Kgd4 recruits the E3 subunit to the mitochondrial α-ketoglutarate dehydrogenase.

    PubMed

    Heublein, Manfred; Burguillos, Miguel A; Vögtle, F Nora; Teixeira, Pedro F; Imhof, Axel; Meisinger, Chris; Ott, Martin

    2014-11-01

    The mitochondrial citric acid cycle is a central hub of cellular metabolism, providing intermediates for biosynthetic pathways and channeling electrons to the respiratory chain complexes. In this study, we elucidated the composition and organization of the multienzyme complex α-ketoglutarate dehydrogenase (α-KGDH). In addition to the three classical E1-E3 subunits, we identified a novel component, Kgd4 (Ymr31/MRPS36), which was previously assigned to be a subunit of the mitochondrial ribosome. Biochemical analyses demonstrate that this protein plays an evolutionarily conserved role in the organization of mitochondrial α-KGDH complexes of fungi and animals. By binding to both the E1-E2 core and the E3 subunit, Kgd4 acts as a molecular adaptor that is necessary to a form a stable α-KGDH enzyme complex. Our work thus reveals a novel subunit of a key citric acid-cycle enzyme and shows how this large complex is organized.

  5. The NH2-terminal php domain of the alpha subunit of the Escherichia coli replicase binds the epsilon proofreading subunit.

    PubMed

    Wieczorek, Anna; McHenry, Charles S

    2006-05-01

    The alpha subunit of the replicase of all bacteria contains a php domain, initially identified by its similarity to histidinol phosphatase but of otherwise unknown function (Aravind, L., and Koonin, E. V. (1998) Nucleic Acids Res. 26, 3746-3752). Deletion of 60 residues from the NH2 terminus of the alpha php domain destroys epsilon binding. The minimal 255-residue php domain, estimated by sequence alignment with homolog YcdX, is insufficient for epsilon binding. However, a 320-residue segment including sequences that immediately precede the polymerase domain binds epsilon with the same affinity as the 1160-residue full-length alpha subunit. A subset of mutations of a conserved acidic residue (Asp43 in Escherichia coli alpha) present in the php domain of all bacterial replicases resulted in defects in epsilon binding. Using sequence alignments, we show that the prototypical gram+ Pol C, which contains the polymerase and proofreading activities within the same polypeptide chain, has an epsilon-like sequence inserted in a surface loop near the center of the homologous YcdX protein. These findings suggest that the php domain serves as a platform to enable coordination of proofreading and polymerase activities during chromosomal replication.

  6. Hereditary heat-labile hexosaminidase B: its implication for recognizing Tay-Sachs genotypes.

    PubMed

    Navon, R; Nutman, J; Kopel, R; Gaber, L; Gadoth, N; Goldman, B; Nitzan, M

    1981-11-01

    Two pairs of alleles, at the two loci of hexosaminidase (HEX), were found to segregate in an Arab inbred family: the normal and the mutant Tay-Sachs (TSD) alleles of HEX A, and the normal and a mutant allele of HEX B. Since the mutant HEX B is heat labile, no reliable identification of TSD genotypes can be obtained in its presence, as long as the proportions of HEX A and B are estimated by the routinely used heat-inactivation method. The genotypes may be correctly identified in such cases by separation of the two isoenzymes on ion-exchange chromatography, estimating their individual activities, and calculating the ratio between them. Of the nine genotype combinations possible with these two pairs of alleles, five have been identified in the reported family by this procedure. PMID:6459736

  7. Heat-labile enterotoxigenic Escherichia coli and intestinal protozoa in asymptomatic travellers.

    PubMed

    Echeverria, P; Cross, J H

    1977-12-01

    Thirty-two asymptomatic travellers who had recently journeyed in the Near, Middle, and Far East and had experienced a high incidence of diarrhoeal disease were screened for heat-labile enterotoxigenic Escherichia coli (ent+ E. coli) and other bacterial and parasitic pathogens. Six percent were colonized with ent+ E. coli and while other bacterial pathogens were not found, the intestinal protozoa Giardia lamblia (13%), Entamoeba histolytica (6%), Entamoeba coli (6%), Endolimax nana (6%), and Entamoeba hartmanni (3%) were detected in the stools. Ent+ E. coli, G. lamblia and E. histolytica should be considered in the differential diagnosis of gastrointestinal disease in travellers returning from the Orient. Furthermore, these travellers may be a potential source for the introduction of ent+ E. coli into communities where such organisms are relatively rare. PMID:351820

  8. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    SciTech Connect

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  9. Effect of temperature on the decomposition rate of labile and stable organic matter in an agrochernozem

    NASA Astrophysics Data System (ADS)

    Larionova, A. A.; Kvitkina, A. K.; Yevdokimov, I. V.; Bykhovets, S. S.; Stulin, A. F.

    2014-05-01

    An hypothesis about the different temperature dependences of the decomposition of the labile and stable organic carbon pools has been tested using an agrochernozem sampled from an experimental plot of 42-year-old continuous corn in Voronezh oblast. The partitioning of the CO2 loss during the decomposition of the labile and stable soil organic matter (SOM) at 2, 12, and 22°C in a long-term incubation experiment was performed using the method of 13C natural abundance by C3-C4 transition. On the basis of the determined decomposition constants, the SOM pools have been arranged in an order according to their increasing stability: plant residues < new (C4) SOM < old (C3) SOM. The tested hypothesis has been found valid only for a limited temperature interval. The temperature coefficient Q 10 increases in the stability order from 1.2 to 4.3 in the interval of 12-22°C. At low temperatures (2-12°C), the values of Q 10 insignificantly vary among the SOM pools and lie in the range of 2.2-2.8. Along with the decomposition constants of the SOM, the new-to-old carbon ratio in the CO2 efflux from the soil and the magnitude of the negative priming effect for the old SOM caused by the input of new organic matter depend on the temperature. In the soil under continuous corn fertilized with NPK, the increased decomposition of C3 SOM is observed compared to the unfertilized control; the temperature dependences of the SOM decomposition are similar in both agrochernozem treatments.

  10. Labile and recalcitrant organic matter utilization by river biofilm under increasing water temperature.

    PubMed

    Ylla, Irene; Romaní, Anna M; Sabater, Sergi

    2012-10-01

    Microbial biofilms in rivers contribute to the decomposition of the available organic matter which typically shows changes in composition and bioavailability due to their origin, seasonality, and watershed characteristics. In the context of global warming, enhanced biofilm organic matter decomposition would be expected but this effect could be specific when either a labile or a recalcitrant organic matter source would be available. A laboratory experiment was performed to mimic the effect of the predicted increase in river water temperature (+4 °C above an ambient temperature) on the microbial biofilm under differential organic matter sources. The biofilm microbial community responded to higher water temperature by increasing bacterial cell number, respiratory activity (electron transport system) and microbial extracellular enzymes (extracellular enzyme activity). At higher temperature, the phenol oxidase enzyme explained a large fraction of respiratory activity variation suggesting an enhanced microbial use of degradation products from humic substances. The decomposition of hemicellulose (β-xylosidase activity) seemed to be also favored by warmer conditions. However, at ambient temperature, the enzymes highly responsible for respiration activity variation were β-glucosidase and leu-aminopeptidase, suggesting an enhanced microbial use of polysaccharides and peptides degradation products. The addition of labile dissolved organic carbon (DOC; dipeptide plus cellobiose) caused a further augmentation of heterotrophic biomass and respiratory activity. The changes in the fluorescence index and the ratio Abs(250)/total DOC indicated that higher temperature accelerated the rates of DOC degradation. The experiment showed that the more bioavailable organic matter was rapidly cycled irrespective of higher temperature while degradation of recalcitrant substances was enhanced by warming. Thus, pulses of carbon at higher water temperature might have consequences for DOC

  11. Labile and recalcitrant organic matter utilization by river biofilm under increasing water temperature.

    PubMed

    Ylla, Irene; Romaní, Anna M; Sabater, Sergi

    2012-10-01

    Microbial biofilms in rivers contribute to the decomposition of the available organic matter which typically shows changes in composition and bioavailability due to their origin, seasonality, and watershed characteristics. In the context of global warming, enhanced biofilm organic matter decomposition would be expected but this effect could be specific when either a labile or a recalcitrant organic matter source would be available. A laboratory experiment was performed to mimic the effect of the predicted increase in river water temperature (+4 °C above an ambient temperature) on the microbial biofilm under differential organic matter sources. The biofilm microbial community responded to higher water temperature by increasing bacterial cell number, respiratory activity (electron transport system) and microbial extracellular enzymes (extracellular enzyme activity). At higher temperature, the phenol oxidase enzyme explained a large fraction of respiratory activity variation suggesting an enhanced microbial use of degradation products from humic substances. The decomposition of hemicellulose (β-xylosidase activity) seemed to be also favored by warmer conditions. However, at ambient temperature, the enzymes highly responsible for respiration activity variation were β-glucosidase and leu-aminopeptidase, suggesting an enhanced microbial use of polysaccharides and peptides degradation products. The addition of labile dissolved organic carbon (DOC; dipeptide plus cellobiose) caused a further augmentation of heterotrophic biomass and respiratory activity. The changes in the fluorescence index and the ratio Abs(250)/total DOC indicated that higher temperature accelerated the rates of DOC degradation. The experiment showed that the more bioavailable organic matter was rapidly cycled irrespective of higher temperature while degradation of recalcitrant substances was enhanced by warming. Thus, pulses of carbon at higher water temperature might have consequences for DOC

  12. Temporal Changes in Photochemically Labile DOM and Implications for Carbon Budgets in Peatland Aquatic Systems

    NASA Astrophysics Data System (ADS)

    Pickard, A.

    2015-12-01

    Aquatic systems in peatland catchments are subject to high loading of dissolved organic matter (DOM) from surrounding terrestrial environments. However the significance of photochemical transformation of DOM in peatland carbon budgets remains poorly constrained. In this study UV irradiation experiments were conducted on water samples collected over one year from two contrasting systems in Scotland: a stream draining a peatland with high levels of DOM and a reservoir draining a peat catchment with low levels of DOM. Further samples were collected from the high DOM system during two storm events. After experimental exposure, optical and chemical analyses were employed to determine photochemical lability of the DOM pool. At both sites irradiation-induced decreases in dissolved organic carbon (DOC) as a percentage of the total carbon pool were greatest in winter, suggesting that DOM was depleted in photo-reactive molecules in summer. Seasonal variability in DOC was high at the stream site and was positively correlated with CO₂ and CO photoproduction (r2 = 0.81 and 0.83, respectively; p<0.05). Lignin phenol analyses indicate considerable contribution of peat to the DOM pool at the stream site, particularly during summer. Whilst DOC concentrations did not vary greatly during storm events, UV-Vis absorbance indicators did, signifying changing DOM source material from activation of different hydrological pathways. The most photo-reactive DOM occurred 5-10 hours after peak discharge, suggesting that storms replenish photochemically labile DOM in headwater streams. Conservative estimates using data from this study suggest that up to 7% of the DOM pool of peatland streams can be lost (primarily as CO₂ and CO) upon exposure to 8 hours of environmentally representative UV irradiation. Further investigation in field campaigns under natural UV exposure are underway to assess the importance of photodegradation of DOM as a loss pathway of carbon based gases from aquatic systems.

  13. Molecular cloning and expression of a GABA receptor subunit from the crayfish Procambarus clarkii.

    PubMed

    Jiménez-Vázquez, Eric N; Díaz-Velásquez, Clara E; Uribe, R M; Arias, Juan M; García, Ubaldo

    2016-02-01

    Molecular cloning has introduced an unexpected, large diversity of neurotransmitter hetero- oligomeric receptors. Extensive research on the molecular structure of the γ-aminobutyric acid receptor (GABAR) has been of great significance for understanding how the nervous system works in both vertebrates and invertebrates. However, only two examples of functional homo-oligomeric GABA-activated Cl(-) channels have been reported. In the vertebrate retina, the GABAρ1 subunit of various species forms homo-oligomeric receptors; in invertebrates, a cDNA encoding a functional GABA-activated Cl(-) channel has been isolated from a Drosophila melanogaster head cDNA library. When expressed in Xenopus laevis oocytes, these subunits function efficiently as a homo-oligomeric complex. To investigate the structure-function of GABA channels from the crayfish Procambarus clarkii, we cloned a subunit and expressed it in human embryonic kidney cells. Electrophysiological recordings show that this subunit forms a homo-oligomeric ionotropic GABAR that gates a bicuculline-insensitive Cl(-) current. The order of potency of the agonists was GABA > trans-4-amino-crotonic acid = cis-4-aminocrotonic acid > muscimol. These data support the notion that X-organ sinus gland neurons express at least two GABA subunits responsible for the formation of hetero-oligomeric and homo-oligomeric receptors. In addition, by in situ hybridization studies we demonstrate that most X-organ neurons from crayfish eyestalk express the isolated pcGABAA β subunit. This study increases the knowledge of the genetics of the crayfish, furthers the understanding of this important neurotransmitter receptor family, and provides insight into the evolution of these genes among vertebrates and invertebrates.

  14. A live attenuated Salmonella Enteritidis secreting detoxified heat labile toxin enhances mucosal immunity and confers protection against wild-type challenge in chickens.

    PubMed

    Lalsiamthara, Jonathan; Kamble, Nitin Machindra; Lee, John Hwa

    2016-01-01

    A live attenuated Salmonella Enteritidis (SE) capable of constitutively secreting detoxified double mutant Escherichia coli heat labile toxin (dmLT) was developed. The biologically adjuvanted strain was generated via transformation of a highly immunogenic SE JOL1087 with a plasmid encoding dmLT gene cassette; the resultant strain was designated JOL1641. A balanced-lethal host-vector system stably maintained the plasmid via auxotrophic host complementation with a plasmid encoded aspartate semialdehyde dehydrogenase (asd) gene. Characterization by western blot assay revealed the dmLT subunit proteins in culture supernatants of JOL1641. For the investigation of adjuvanticity and protective efficacy, chickens were immunized via oral or intramuscular routes with PBS, JOL1087 and JOL1641. Birds immunized with JOL1641 showed significant (P ≤ 0.05) increases in intestinal SIgA production at the 1(st) and 2(nd) weeks post-immunization via oral and intramuscular routes, respectively. Interestingly, while both strains showed significant splenic protection via intramuscular immunization, JOL1641 outperformed JOL1087 upon oral immunization. Oral immunization of birds with JOL1641 significantly reduced splenic bacterial counts. The reduction in bacterial counts may be correlated with an adjuvant effect of dmLT that increases SIgA secretion in the intestines of immunized birds. The inclusion of detoxified dmLT in the strain did not cause adverse reactions to birds, nor did it extend the period of bacterial fecal shedding. In conclusion, we report here that dmLT could be biologically incorporated in the secretion system of a live attenuated Salmonella-based vaccine, and that this construction is safe and could enhance mucosal immunity, and protect immunized birds against wild-type challenge. PMID:27262338

  15. Protection of piglets against enteric colibacillosis by intranasal immunization with K88ac (F4ac) fimbriae and heat labile enterotoxin of Escherichia coli.

    PubMed

    Lin, Jun; Mateo, Kristina S; Zhao, Mojun; Erickson, Alan K; Garcia, Nuria; He, Dong; Moxley, Rodney A; Francis, David H

    2013-03-23

    Enterotoxigenic Escherichia coli (ETEC) is an important diarrheal agent of young domestic animals. Currently, there are no commercially available non-living vaccines to protect weaned pigs from the disease and no major veterinary biologics company markets a postweaning ETEC vaccine of any kind. While efforts have been made to develop a non-living postweaning ETEC vaccine for pigs, studies have been limited to the assessment of immune responses to experimental immunogens. In the present study, we describe a reproducible gnotobiotic piglet model of post-weaning ETEC diarrhea and efficacy tests in that model of subunit vaccines consisting of K88 (F4) fimbriae and/or heat labile enterotoxin (LT) delivered by the intranasal route. We also report antibody responses to the vaccine antigens. Piglets vaccinated with both antigens mounted a substantial immune response with serum and cecal antibody titers to K88 antigen significantly greater than those of controls. Serum anti-LT antibody titers were also significantly greater than those of controls. Piglets vaccinated with both antigens remained healthy following challenge with ETEC. At least some pigs vaccinated with either antigen alone, and most of the control piglets developed dehydrating diarrhea and suffered significant weight loss. The results of this study suggest that an intranasal vaccine consisting of both antigens is highly protective against a vigorous experimental challenge of pigs with K88+ ETEC, while that against either antigen alone is not. The current study provides a system whereby various ETEC antigens and/or combinations of antigens can be tested in exploring strategies for the development of vaccines for ETEC. PMID:23089483

  16. Heat-labile- and heat-stable-toxoid fusions (LTR₁₉₂G-STaP₁₃F) of human enterotoxigenic Escherichia coli elicit neutralizing antitoxin antibodies.

    PubMed

    Liu, Mei; Ruan, Xiaosai; Zhang, Chengxian; Lawson, Steve R; Knudsen, David E; Nataro, James P; Robertson, Donald C; Zhang, Weiping

    2011-10-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of diarrheal disease in humans and animals. Adhesins and enterotoxins, including heat-labile (LT) and heat-stable (STa) toxins, are the key virulence factors. Antigenic adhesin and LT antigens have been used in developing vaccines against ETEC diarrhea. However, STa has not been included because of its poor immunogenicity and potent toxicity. Our recent study showed that porcine-type STa toxoids became immunogenic and elicited neutralizing anti-STa antibodies after being genetically fused to a full-length porcine-type LT toxoid, LT(R₁₉₂G) (W. Zhang et al., Infect. Immun. 78:316-325, 2010). In this study, we mutated human-type LT and STa genes, which are highly homologous to porcine-type toxin genes, for a full-length LT toxoid (LT(R₁₉₂)) and a full-length STa toxoid (STa(P₁₃F)) and genetically fused them to produce LT₁₉₂-STa₁₃ toxoid fusions. Mice immunized with LT₁₉₂-STa₁₃ fusion antigens developed anti-LT and anti-STa IgG (in serum and feces) and IgA antibodies (in feces). Moreover, secretory IgA antibodies from immunized mice were shown to neutralize STa and cholera toxins in T-84 cells. In addition, we fused the STa₁₃ toxoid at the N terminus and C terminus, between the A1 and A2 peptides, and between the A and B subunits of LT₁₉₂ to obtain different fusions in order to explore strategies for enhancing STa immunogenicity. This study demonstrated that human-type LT₁₉₂-STa₁₃ fusions induce neutralizing antitoxin antibodies and provided important information for developing toxoid vaccines against human ETEC diarrhea. PMID:21788385

  17. Characterization of Receptor-Mediated Signal Transduction by Escherichia coli Type IIa Heat-Labile Enterotoxin in the Polarized Human Intestinal Cell Line T84

    PubMed Central

    Wimer-Mackin, Susan; Holmes, Randall K.; Wolf, Anne A.; Lencer, Wayne I.; Jobling, Michael G.

    2001-01-01

    Escherichia coli type IIa heat-labile enterotoxin (LTIIa) binds in vitro with highest affinity to ganglioside GD1b. It also binds in vitro with lower affinity to several other oligosialogangliosides and to ganglioside GM1, the functional receptor for cholera toxin (CT). In the present study, we characterized receptor-mediated signal transduction by LTIIa in the cultured T84 cell model of human intestinal epithelium. Wild-type LTIIa bound tightly to the apical surface of polarized T84 cell monolayers and elicited a Cl− secretory response. LTIIa activity, unlike CT activity, was not blocked by the B subunit of CT. Furthermore, an LTIIa variant with a T14I substitution in its B subunit, which binds in vitro to ganglioside GM1 but not to ganglioside GD1b, was unable to bind to intact T84 cells and did not elicit a Cl− secretory response. These findings show that ganglioside GM1 on T84 cells is not a functional receptor for LTIIa. The LTIIa receptor on T84 cells was inactivated by treatment with neuraminidase. Furthermore, LTIIa binding was blocked by tetanus toxin C fragment, which binds to gangliosides GD1b and GT1b. These findings support the hypothesis that ganglioside GD1b, or possibly a glycoconjugate with a GD1b-like oligosaccharide, is the functional receptor for LTIIa on T84 cells. The LTIIa-receptor complexes from T84 cells were associated with detergent-insoluble membrane microdomains (lipid rafts), extending the correlation between toxin binding to lipid rafts and toxin function that was previously established for CT. However, the extent of association with lipid rafts and the magnitude of the Cl− secretory response in T84 cells were less for LTIIa than for CT. These properties of LTIIa and the previous finding that enterotoxin LTIIb binds to T84 cells but does not associate with lipid rafts or elicit a Cl− secretory response may explain the low pathogenicity for humans of type II enterotoxin-producing isolates of E. coli. PMID:11705889

  18. Studies on ribosomal proteins in the cellular slime mold Dictyostelium discoideum. Resolution, nomenclature and molecular weights of proteins in the 40-S and 60-S ribosomal subunits.

    PubMed

    Ramagopal, S; Ennis, H L

    1980-04-01

    This study is concerned with the identification and subunit localization of ribosomal proteins in Dictyostelium discoideum. The characterization is based on the resolution of ribosomal proteins by various methods of electrophoresis. 34 and 42 unique proteins were identified in the 40-S and 60-S ribosomal subunits respectively. The total mass of proteins in the 40-S subunit was 746,100 daltons and 981,900 daltons in the 60-S subunit. The molecular weights of individual proteins in the 40-S subunit ranged from 13,200 to 40,900 with a number-average molecular weight of 21,900. The molecular weight range for the 60-S subunit was 13,800--51,100 with a number-average molecular weight of 23,400. The 80-S ribosome contained 78 proteins, two of which were lost upon its dissociation into subunits. All the proteins of the 40-S and 60-S subunits could be identified individually in a 80-S map as well as in unfractionated proteins from whole cells. Purification of ribosomes in high-ionic-strength buffers resulted in non-specific loss of the various proteins from the 40-S and 60-S subunits. In addition, the undissociated ribosomes contained about 10 acidic proteins in the molecular weight range 50,000--100,000, which were retained after washing the ribosomes in high-salt buffers. They were found in polysomes, run-off ribosomes and could also be identified in the 40-S subunit after dissociation.

  19. Tillage and rotational effects on exchangeable and enzyme-labile phosphorus forms in conventional and organic cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transformations of crop residues and bio-fertilizers used as primary sources of nutrients for organic grain and forage production are influenced by soil management practices. The effects of management of the near-surface zone on labile phosphorus (P) forms were studied in soil under three organ...

  20. Plant-Soil Relationships of Bromus tectorum L.: Interactions among Labile Carbon Additions, Soil Invasion Status, and Fertilizer.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasion of western North America by the annual exotic grass Bromus tectorum L. (cheatgrass) has been an ecological disaster. High soil bioavailability of nitrogen is a contributing factor in the invasive potential of B. tectorum. Application of labile carbon sources to the soil can immobilize soil ...

  1. On the Labile Memory Buffer in the Attentional Blink: Masking the T2 Representation by Onset Transients Mediates the AB

    ERIC Educational Resources Information Center

    Jannati, Ali; Spalek, Thomas M.; Di Lollo, Vincent

    2011-01-01

    Report of a second target (T2) is impaired when presented within 500 ms of the first (T1). This attentional blink (AB) is known to cause a delay in T2 processing during which T2 must be stored in a labile memory buffer. We explored the buffer's characteristics using different types of masks after T2. These characteristics were inferred by…

  2. Thermal Analysis of Labile Trace Elements in CM and CV Carbonaceous Chondrites Using Inductively Coupled Plasma-Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.; Klaue, B.; Blum, J. D.; Buseck, P. R.

    2001-01-01

    We developed a technique to measure the thermal release profiles of a suite of labile elements (Zn, As, Se, Cd, In, Sn, Sb, Te, Pt, Hg, Au, Tl, Pb, Bi). Conclusions are reached about the behavior of each element during parent-body alteration. Additional information is contained in the original extended abstract.

  3. A Longitudinal Study of Emotion Regulation, Emotion Lability-Negativity, and Internalizing Symptomatology in Maltreated and Nonmaltreated Children

    ERIC Educational Resources Information Center

    Kim-Spoon, Jungmeen; Cicchetti, Dante; Rogosch, Fred A.

    2013-01-01

    The longitudinal contributions of emotion regulation and emotion lability-negativity to internalizing symptomatology were examined in a low-income sample (171 maltreated and 151 nonmaltreated children, from age 7 to 10 years). Latent difference score models indicated that for both maltreated and nonmaltreated children, emotion regulation was a…

  4. An anaerobic incubation study of metal lability in drinking water treatment residue with implications for practical reuse.

    PubMed

    Wang, Changhui; Yuan, Nannan; Pei, Yuansheng

    2014-06-15

    Drinking water treatment residue (WTR) is an inevitable by-product generated during the treatment of drinking water with coagulating agents. The beneficial reuse of WTR as an amendment for environmental remediation has attracted growing interest. In this work, we investigated the lability of Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sr, V and Zn in Fe/Al hydroxide-comprised WTR based on a 180-day anaerobic incubation test using fractionation, in vitro digestion and a toxicity characteristic leaching procedure. The results indicated that most metals in the WTR were stable during anaerobic incubation and that the WTR before and after incubation could be considered non-hazardous in terms of leachable metal contents according to US EPA Method 1311. However, the lability of certain metals in the WTR after incubation increased substantially, especially Mn, which may be due to the reduction effect. Therefore, although there is no evidence presented to restrict the use of WTR in the field, the lability of metals (especially Mn) in WTR requires further assessment prior to field application. In addition, fractionation (e.g., BCR) is recommended for use to determine the potential lability of metals under various conditions.

  5. Emotional Lability in Children and Adolescents with Attention Deficit/Hyperactivity Disorder (ADHD): Clinical Correlates and Familial Prevalence

    ERIC Educational Resources Information Center

    Sobanski, Esther; Banaschewski, Tobias; Asherson, Philip; Buitelaar, Jan; Chen, Wai; Franke, Barbara; Holtmann, Martin; Krumm, Bertram; Sergeant, Joseph; Sonuga-Barke, Edmund; Stringaris, Argyris; Taylor, Eric; Anney, Richard; Ebstein, Richard P.; Gill, Michael; Miranda, Ana; Mulas, Fernando; Oades, Robert D.; Roeyers, Herbert; Rothenberger, Aribert; Steinhausen, Hans-Christoph; Faraone, Stephen V.

    2010-01-01

    Background: The goal of this study was to investigate the occurrence, severity and clinical correlates of emotional lability (EL) in children with attention deficit/hyperactivity disorder (ADHD), and to examine factors contributing to EL and familiality of EL in youth with ADHD. Methods: One thousand, one hundred and eighty-six children with ADHD…

  6. Expression of specific ionotropic glutamate and GABA-A receptor subunits is decreased in central amygdala of alcoholics.

    PubMed

    Jin, Zhe; Bhandage, Amol K; Bazov, Igor; Kononenko, Olga; Bakalkin, Georgy; Korpi, Esa R; Birnir, Bryndis

    2014-01-01

    The central amygdala (CeA) has a role for mediating fear and anxiety responses. It is also involved in emotional imbalance caused by alcohol abuse and dependence and in regulating relapse to alcohol abuse. Growing evidences suggest that excitatory glutamatergic and inhibitory γ-aminobutyric acid-ergic (GABAergic) transmissions in the CeA are affected by chronic alcohol exposure. Human post-mortem CeA samples from male alcoholics (n = 9) and matched controls (n = 9) were assayed for the expression level of ionotropic glutamate and GABA-A receptors subunit mRNAs using quantitative real-time reverse transcription-PCR (RT-qPCR). Our data revealed that out of the 16 ionotropic glutamate receptor subunits, mRNAs encoding two AMPA [2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid] receptor subunits GluA1 and GluA4; one kainate receptor subunit GluK2; one NMDA (N-methyl-D-aspartate) receptor subunit GluN2D and one delta receptor subunit GluD2 were significantly decreased in the CeA of alcoholics. In contrast, of the 19 GABA-A receptor subunits, only the mRNA encoding the α2 subunit was significantly down-regulated in the CeA of the alcoholics as compared with control subjects. Our findings imply that the down-regulation of specific ionotropic glutamate and GABA-A receptor subunits in the CeA of alcoholics may represent one of the molecular substrates underlying the new balance between excitatory and inhibitory neurotransmission in alcohol dependence. PMID:25278838

  7. Lincomycin-induced over-expression of mature recombinant cholera toxin B subunit and the holotoxin in Escherichia coli.

    PubMed

    Arimitsu, Hideyuki; Tsukamoto, Kentaro; Ochi, Sadayuki; Sasaki, Keiko; Kato, Michio; Taniguchi, Koki; Oguma, Keiji; Tsuji, Takao

    2009-10-01

    Cholera toxin (CT) B subunit (CTB) was overproduced using a novel expression system in Escherichia coli. An expression plasmid was constructed by inserting the gene encoding the full-length CTB and the Shine-Dalgarno (SD) sequence derived from CTB or from the heat-labile enterotoxin B subunit (LTB) of enterotoxigenic E. coli into the lacZalpha gene fragment in the pBluescript SK(+) vector. The E. coli strain MV1184 was transformed with each plasmid and then cultured in CAYE broth containing lincomycin. Recombinant CTB (rCTB) was purified from each cell extract. rCTB was overproduced in both transformants without obvious toxicity and was structurally and biologically identical to that of CT purified from Vibrio cholerae, indicating that the original SD and CTB signal sequences were also sufficient to express rCTB in E. coli. Lincomycin-induced rCTB expression was inhibited by mutating the lac promoter, suggesting that lincomycin affects the lactose operon. Based on these findings, we constructed a plasmid that contained the wild-type CT operon and successfully overproduced CT (rCT) using the same procedure for rCTB. Although rCT had an intact A subunit, the amino-terminal modifications and biological properties of the A and B subunits of rCT were identical to those of CT. These results suggest that this novel rCTB over-expression system would also be useful to generate both wild-type and mutant CT proteins that will facilitate further studies on the characteristics of CT, such as mucosal adjuvant activity. PMID:19410003

  8. Purification and characterization of the glycoprotein hormone. cap alpha. -subunit-like material secreted by HeLa cells

    SciTech Connect

    Cox, G.S.; Rimerman, R.A.

    1988-08-23

    The protein secreted by HeLa cells that cross-reacts with antiserum developed against the ..cap alpha..-subunit of human chorionic gonadotropin (hCG) has been purified approximately 30,000-fold from concentrated culture medium by organic solvent fractionation followed by ion exchange, gel filtration, and lectin affinity chromatography. The final preparation had a specific activity (by RIA) of 6.8 x 10/sup 5/ ng of ..cap alpha../mg of protein and appeared homogeneous by electrophoresis on reducing/denaturing polyacrylamide gels (SDS-PAGE). Amino acid analysis indicated that HeLa-..cap alpha.. had a composition very similar to that of the urinary hCG ..cap alpha..-subunit. However, comparison of hCG-..cap alpha.. and HeLa-..cap alpha.. demonstrated that the tumor-associated subunit was not identical with its normal counterpart. The purified tumor protein had an apparent molecular weight greater than that of the urinary ..cap alpha..-subunit when analyzed by SDS-PAGE, and this difference was even greater when a partially purified preparation was examined by an immunoblot technique (Western). Isoelectric focusing of the HeLa and hCG subunits demonstrated that the tumor protein had a lower pI. Immunoprecipitation and electrophoresis of ..cap alpha..-subunit from HeLa cultures labeled with (/sup 3/H)fucose indicated that the tumor subunit was fucosylated, whereas analysis of hCG-..cap alpha.. hydrosylates by HPLC confirmed previous reports that the placental subunit does not contain fucose. The results indicate that, regardless of whether or not a single ..cap alpha..-subunit gene is being expressed in both normal and neoplastic tissues, posttranslational modifications lead to a highly altered subunit in the tumor. The differences observed may be useful in diagnosing neoplastic vs hyperplastic conditions and may lend insight into the mechanism of ectopic hormone production by tumors.

  9. Novel subunit-subunit interactions in the structure of glutamine synthetase.

    PubMed

    Almassy, R J; Janson, C A; Hamlin, R; Xuong, N H; Eisenberg, D

    We present an atomic model for glutamine synthetase, an enzyme of central importance in bacterial nitrogen metabolism, from X-ray crystallography. The 12 identical subunits are arranged as the carbon atoms in two face-to-face benzene rings, with unusual subunit contacts. Our model, which places the active sites at the subunit interfaces, suggests a mechanism for the main functional role of glutamine synthetase: how the enzyme regulates the rate of synthesis of glutamine in response to covalent modification and feedback inhibition. PMID:2876389

  10. Characterization of a 7-kilodalton subunit of vaccinia virus DNA-dependent RNA polymerase with structural similarities to the smallest subunit of eukaryotic RNA polymerase II.

    PubMed

    Amegadzie, B Y; Ahn, B Y; Moss, B

    1992-05-01

    A previously unrecognized 7-kDa polypeptide copurified with the DNA-dependent RNA polymerase of vaccinia virus virions. Internal amino acid sequences of the small protein matched a viral genomic open reading frame of 63 codons. Antipeptide antiserum was used to confirm the specific and complete association of the 7-kDa protein with RNA polymerase. The amino acid sequence predicted from the viral gene, named rpo7, was 23% identical to that of the smallest subunit of Saccharomyces cerevisiae RNA polymerase II, and a metal-binding motif, Cys-X-X-Cys-Gly, was located at precisely the same location near the N terminus in the two proteins. RNA analyses demonstrated early transcriptional initiation and termination signals in the rpo7 gene sequence. The viral RNA polymerase subunit was synthesized during the early phase of infection and continued to accumulate during the late phase.

  11. Rapid decomposition of labile soil organic matter inputs obscures sensitivity of heterotrophic respiration to temperature: A model analysis.

    NASA Astrophysics Data System (ADS)

    Post, W. M.; Gu, L.; King, A. W.

    2003-12-01

    Labile carbon, although often a small fraction of soil organic matter (SOM), significantly affects heterotrophic respiration at short time scales because of its rapid decomposition. However, in the current literature, most soil respiration measurements are interpreted without simultaneous information on labile carbon pool dynamics. Sensitivity of soil respiration to temperature is routinely derived directly from field observations and such relationships have been used to extrapolate effects of global change (e.g. warming) on the carbon emission from SOM. Here we used a multi-pool SOM model to demonstrate the impacts of seasonal fluctuations in labile carbon pools. Labile carbon pool sizes varied widely in response to seasonal changes in representative plant material inputs and temperature even though the model was operating at an equilibrium state (in terms of annual means). Convolution of the dynamics of fast turnover carbon pools and temporal progression in temperature led to misrepresentation and misinterpretation of the heterotrophic respiration - temperature relationships estimated from bulk soil CO2 exchanges. Temperature sensitivity was overestimated when the variations of labile carbon pools and temperature were in phase and underestimated when they were out of phase. Furthermore, with normally used observation time windows (weeks to a year), temperature sensitivity was more likely to be underestimated. A distortion of temperature sensitivity (Q10) from 2 (actual, sensitive dependence on temperature) to nearly 1 (false, no dependence on temperature) was shown. Our analysis indicates that cautions must be taken when soil respiration - temperature relationships are evaluated based on bulk soil observations and that sensitivity of soil respiration to temperature estimated directly under field conditions should not be used to predict future carbon cycle climate feedbacks.

  12. Bacteria obtained from a sequencing batch reactor that are capable of growth on dehydroabietic acid.

    PubMed

    Mohn, W W

    1995-06-01

    Eleven isolates capable of growth on the resin acid dehydroabietic acid (DhA) were obtained from a sequencing batch reactor designed to treat a high-strength process stream from a paper mill. The isolates belonged to two groups, represented by strains DhA-33 and DhA-35, which were characterized. In the bioreactor, bacteria like DhA-35 were more abundant than those like DhA-33. The population in the bioreactor of organisms capable of growth on DhA was estimated to be 1.1 x 10(6) propagules per ml, based on a most-probable-number determination. Analysis of small-subunit rRNA partial sequences indicated that DhA-33 was most closely related to Sphingomonas yanoikuyae (Sab = 0.875) and that DhA-35 was most closely related to Zoogloea ramigera (Sab = 0.849). Both isolates additionally grew on other abietanes, i.e., abietic and palustric acids, but not on the pimaranes, pimaric and isopimaric acids. For DhA-33 and DhA-35 with DhA as the sole organic substrate, doubling times were 2.7 and 2.2 h, respectively, and growth yields were 0.30 and 0.25 g of protein per g of DhA, respectively. Glucose as a cosubstrate stimulated growth of DhA-33 on DhA and stimulated DhA degradation by the culture. Pyruvate as a cosubstrate did not stimulate growth of DhA-35 on DhA and reduced the specific rate of DhA degradation of the culture. DhA induced DhA and abietic acid degradation activities in both strains, and these activities were heat labile. Cell suspensions of both strains consumed DhA at a rate of 6 mumol mg of protein-1 h-1.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Multivariate Statistical Analysis of Labile Trace Elements in H Chondrites: Evidence for Meteoroid Streams

    NASA Astrophysics Data System (ADS)

    Wolf, S. F.; Lipschutz, M. E.

    1992-07-01

    Differences have been observed between meteorite populations with vastly different terrestrial ages, i.e. Antarctic and non-Antarctic meteorite populations (Koeberl and Cassidy, 1991 and references therein). Comparisons of labile trace element contents (Wolf and Lipschutz, 1992) and induced TL parameters (Benoit and Sears, 1992) in samples from Victoria Land and Queen Maud Land, populations which also differ in mean terrestrial age (Nishiizumi et al, 1989), show significant differences consistent with different average thermal histories. These differences are consistent with the proposition that the flux of meteoritic material to Earth varied temporally. Variations in the flux of meteoritic material over time scales of 10^5 10^6 y require the existence of undispersed streams of meteoroids of asteroidal origin which were initially disputed by Wetherill ( 1986) but have since been observed (Olsson-Steele, 1988; Oberst, 1989; Halliday et al. 1990). Orbital evidence for meteoroid and asteroid streams has been independently obtained by others, particularly Halliday et al.(1990) and Drummond (1991). A group of H chondrites of various petrographic types and diverse CRE ages that yielded 16 falls from 1855 until 1895 in the month of May has been proposed to be two co-orbital meteoroid streams with a common source (R. T. Dodd, personal communication). Compositional evidence of a preterrestrial association of the proposed stream members, if it exists, might be observed in the most sensitive indicators of genetic thermal history, the labile trace elements. We report RNAA data for the concentrations of 14 trace elements, mostly labile ones, (Ag, Au, Bi, Cd, Cs, Co, Ga, In, Rb, Sb, Se, Te, Tl, and Zn) in H4-6 ordinary chondrites. Variance of elemental concentrations within a subpopulation, the members of a proposed co-orbital meteorite stream for example, could be expected to be smaller than the variance for the entire population. We utilize multivariate linear regression and

  14. cDNA cloning of luteinizing hormone subunits from brushtail possum and red kangaroo.

    PubMed

    Harrison, G A; Deane, E M; Cooper, D W

    1998-08-01

    Luteinizing hormone (LH) plays an important role in the reproductive cycles of all mammals. There is a large amount of both nucleotide and amino acid sequence data available for LH from eutherian mammals, but little is known about the primary structure of LH in marsupials. We have used consensus PCR primers to generate specific probes for screening pituitary cDNA libraries and report the cloning of the cDNAs encoding the alpha-subunit of LH (also shared by a number of other glycoprotein hormones) and the LH-specific beta-subunit, from the common brushtail possum, Trichosurus vulpecula, and the red kangaroo, Macropus rufus. Southern blotting experiments indicated that both genes are probably present as single copies. Comparison of the deduced marsupial protein sequences with homologous sequences from other vertebrates revealed a high degree of conservation, especially for the alpha-subunit. These sequences represent the first complete primary structures for a marsupial glycoprotein hormone to have been elucidated.

  15. Further characterization of the subunits of the receptor with high affinity for immunoglobulin E

    SciTech Connect

    Alcaraz, G.; Kinet, J.P.; Liu, T.Y.; Metzger, H.

    1987-05-05

    The ..cap alpha.., ..beta.., ..gamma.. subunits of the receptor with high affinity for immunoglobulin E were isolated and their compositions assessed by direct amino acid analysis and by incorporation of radioactive precursors. The compositions show no unusual features other than a rather high content of tryptophan in the ..cap alpha.. chain as assessed from the incorporation studies. The results combined with future sequence data will permit unambiguous determination of the multiplicity of the chains in the receptor. Chymotryptic peptide maps of the extrinsically iodinated subunits show several similar peptides, particularly for ..cap alpha.. and ..beta... However, these putative homologies were not apparent when tryptic maps of the biosynthetically ((/sup 3/H)leucine) labeled subunits were analyzed.

  16. Identification and Characterization of High-Molecular-Weight Glutenin Subunits from Agropyron intermedium

    PubMed Central

    Cao, Shuanghe; Li, Zhixin; Gong, Caiyan; Xu, Hong; Yang, Ran; Hao, Shanting; Wang, Xianping; Wang, Daowen; Zhang, Xiangqi

    2014-01-01

    High-molecular-weight glutenin subunit (HMW-GS) is a primary determinant of processing quality of wheat. Considerable progress has been made in understanding the structure, function and genetic regulation of HMW-GS in wheat and some of its related species, but less is known about their orthologs in Agropyron intermedium, a useful related species for wheat improvement. Here seven HMW-GSs in Ag. intermedium were identified using SDS-PAGE and Western blotting experiments. Subsequently, the seven genes (Glu-1Aix1∼4 and Glu-1Aiy1∼3) encoding the seven HMW-GSs were isolated using PCR technique with degenerate primers, and confirmed by bacterial expression and Western blotting. Sequence analysis indicated that the seven Ag. intermedium HMW-GSs shared high similarity in primary structure to those of wheat, but four of the seven subunits were unusually small compared to the representatives of HMW-GS from wheat and two of them possessed extra cysteine residues. The alignment and clustering analysis of deduced amino acid sequences revealed that 1Aix1 and 1Aiy1 subunits had special molecular structure, belonging to the hybrid type compounding between typical x- and y-type subunit. The xy-type subunit 1Aix1 is composed of the N-terminal of x-type and C-terminal of y-type, whereas yx-type subunit 1Aiy1 comprises the N-terminal of y-type and C-terminal of x-type. This result strongly supported the hypothesis of unequal crossover mechanism that might generate the novel coding sequence for the hybrid type of HMW-GSs. In addition to the aforementioned, the other novel characteristics of the seven subunits were also discussed. Finally, phylogenetic analysis based on HMW-GS genes was carried out and provided new insights into the evolutionary biology of Ag. intermedium. PMID:24503781

  17. Chronic Intermittent Ethanol Regulates Hippocampal GABA(A) Receptor Delta Subunit Gene Expression

    PubMed Central

    Follesa, Paolo; Floris, Gabriele; Asuni, Gino P.; Ibba, Antonio; Tocco, Maria G.; Zicca, Luca; Mercante, Beniamina; Deriu, Franca; Gorini, Giorgio

    2015-01-01

    Chronic ethanol consumption causes structural and functional reorganization in the hippocampus and induces alterations in the gene expression of gamma-aminobutyric acid type A receptors (GABAARs). Distinct forced intermittent exposure models have been used previously to investigate changes in GABAAR expression, with contrasting results. Here, we used repeated cycles of a Chronic Intermittent Ethanol paradigm to examine the relationship between voluntary, dependence-associated ethanol consumption, and GABAAR gene expression in mouse hippocampus. Adult male C57BL/6J mice were exposed to four 16-h ethanol vapor (or air) cycles in inhalation chambers alternated with limited-access two-bottle choice between ethanol (15%) and water consumption. The mice exposed to ethanol vapor showed significant increases in ethanol consumption compared to their air-matched controls. GABAAR alpha4 and delta subunit gene expression were measured by qRT-PCR at different stages. There were significant changes in GABAAR delta subunit transcript levels at different time points in ethanol-vapor exposed mice, while the alpha4 subunit levels remained unchanged. Correlated concurrent blood ethanol concentrations suggested that GABAAR delta subunit mRNA levels fluctuate depending on ethanol intoxication, dependence, and withdrawal state. Using a vapor-based Chronic Intermittent Ethanol procedure with combined two-bottle choice consumption, we corroborated previous evidences showing that discontinuous ethanol exposure affects GABAAR delta subunit expression but we did not observe changes in alpha4 subunit. These findings indicate that hippocampal GABAAR delta subunit expression changes transiently over the course of a Chronic Intermittent Ethanol paradigm associated with voluntary intake, in response to ethanol-mediated disturbance of GABAergic neurotransmission. PMID:26617492

  18. Identification and characterization of high-molecular-weight glutenin subunits from Agropyron intermedium.

    PubMed

    Cao, Shuanghe; Li, Zhixin; Gong, Caiyan; Xu, Hong; Yang, Ran; Hao, Shanting; Wang, Xianping; Wang, Daowen; Zhang, Xiangqi

    2014-01-01

    High-molecular-weight glutenin subunit (HMW-GS) is a primary determinant of processing quality of wheat. Considerable progress has been made in understanding the structure, function and genetic regulation of HMW-GS in wheat and some of its related species, but less is known about their orthologs in Agropyron intermedium, a useful related species for wheat improvement. Here seven HMW-GSs in Ag. intermedium were identified using SDS-PAGE and Western blotting experiments. Subsequently, the seven genes (Glu-1Aix1 ∼ 4 and Glu-1Aiy1 ∼ 3) encoding the seven HMW-GSs were isolated using PCR technique with degenerate primers, and confirmed by bacterial expression and Western blotting. Sequence analysis indicated that the seven Ag. intermedium HMW-GSs shared high similarity in primary structure to those of wheat, but four of the seven subunits were unusually small compared to the representatives of HMW-GS from wheat and two of them possessed extra cysteine residues. The alignment and clustering analysis of deduced amino acid sequences revealed that 1Aix1 and 1Aiy1 subunits had special molecular structure, belonging to the hybrid type compounding between typical x- and y-type subunit. The xy-type subunit 1Aix1 is composed of the N-terminal of x-type and C-terminal of y-type, whereas yx-type subunit 1Aiy1 comprises the N-terminal of y-type and C-terminal of x-type. This result strongly supported the hypothesis of unequal crossover mechanism that might generate the novel coding sequence for the hybrid type of HMW-GSs. In addition to the aforementioned, the other novel characteristics of the seven subunits were also discussed. Finally, phylogenetic analysis based on HMW-GS genes was carried out and provided new insights into the evolutionary biology of Ag. intermedium. PMID:24503781

  19. Thermostable Cross-Protective Subunit Vaccine against Brucella Species

    PubMed Central

    Barabé, Nicole D.; Grigat, Michelle L.; Lee, William E.; Poirier, Robert T.; Jager, Scott J.; Berger, Bradley J.

    2014-01-01

    A subunit vaccine candidate was produced from Brucella suis 145 (biovar 4; expressing both the A antigen of Brucella abortus and the M antigen of Brucella melitensis). The preparation consisted mostly of polysaccharide (PS; >90% [wt/wt]; both cell-associated PS and exo-PS were combined) and a small amount of protein (1 to 3%) with no apparent nucleic acids. Vaccinated mice were protected (these had a statistically significant reduction in bacterial colonization compared to that of unvaccinated controls) when challenged with representative strains of three Brucella species most pathogenic for humans, i.e., B. abortus, B. melitensis, and B. suis. As little as 1 ng of the vaccine, without added adjuvant, protected mice against B. suis 145 infection (5 × 105 CFU), and a single injection of 1 μg of this subunit vaccine protected mice from B. suis 145 challenge for at least 14 months. A single immunization induced a serum IgG response to Brucella antigens that remained elevated for up to 9 weeks. The use of heat (i.e., boiling-water bath, autoclaving) in the vaccine preparation showed that it was thermostable. This method also ensured safety and security. The vaccine produced was immunogenic and highly protective against multiple strains of Brucella and represents a promising candidate for further evaluation. PMID:25320267

  20. Evolution of the primate cytochrome c oxidase subunit II gene.

    PubMed

    Adkins, R M; Honeycutt, R L

    1994-03-01

    We examined the nucleotide and amino acid sequence variation of the cytochrome c oxidase subunit II (COII) gene from 25 primates (4 hominoids, 8 Old World monkeys, 2 New World monkeys, 2 tarsiers, 7 lemuriforms, 2 lorisiforms). Marginal support was found for three phylogenetic conclusions: (1) sister-group relationship between tarsiers and a monkey/ape clade, (2) placement of the aye-aye (Daubentonia) sister to all other strepsirhine primates, and (3) rejection of a sister-group relationship of dwarf lemurs (i.e., Cheirogaleus) with lorisiform primates. Stronger support was found for a sister-group relationship between the ring-tail lemur (Lemur catta) and the gentle lemurs (Hapalemur). In congruence with previous studies on COII, we found that the monkeys and apes have undergone a nearly two-fold increase in the rate of amino acid replacement relative to other primates. Although functionally important amino acids are generally conserved among all primates, the acceleration in amino acid replacements in higher primates is associated with increased variation in the amino terminal end of the protein. Additionally, the replacement of two carboxyl-bearing residues (glutamate and aspartate) at positions 114 and 115 may provide a partial explanation for the poor enzyme kinetics in cross-reactions between the cytochromes c and cytochrome c oxidases of higher primates and other mammals. PMID:8006990

  1. Amyloid-β peptide binds to cytochrome C oxidase subunit 1.

    PubMed

    Hernandez-Zimbron, Luis Fernando; Luna-Muñoz, Jose; Mena, Raul; Vazquez-Ramirez, Ricardo; Kubli-Garfias, Carlos; Cribbs, David H; Manoutcharian, Karen; Gevorkian, Goar

    2012-01-01

    Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD). However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1-42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1-42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1-42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1-42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1-42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD.

  2. Immunochemical characterization of two thyroid-stimulating hormone beta-subunit epitopes.

    PubMed Central

    Fairlie, W D; Stanton, P G; Hearn, M T

    1995-01-01

    The epitopes of human thyroid-stimulating hormone (hTSH) recognized by two murine monoclonal antibodies (MAbs), designated MAb 279 and MAb 299, have been characterized. These MAbs are highly specific for the beta-subunit of TSH. The epitope recognized by MAb 279 appears to be completely conserved between bovine and human TSH and partially conserved in the porcine species. The TSH beta-subunit epitope recognized by MAb 299 is only partially conserved between the human, bovine and porcine species. Both MAbs are capable of inhibiting the binding of TSH to its receptor in a TSH radioreceptor assay, indicating that the epitopes either coincide or are located close to the TSH beta-subunit receptor-binding sites. The carbohydrate moieties of the TSH beta-subunit appear to play little or no role in the epitope recognition by MAb 279 or MAb 299 while the integrity of the disulphide bonds are essential. The epitopic recognition may also involve lysine residues, as determined by the immunoreactivity with both MAbs following citraconylation of TSH. In addition, the amino acid sequence region between residues bTSH beta 34-44 could be excised by trypsin digestion of bovine TSH beta (bTSH beta) without eliminating epitopic recognition by either MAb. These results provide further insight into the relationship between the structure of the TSH beta-subunit epitopes and location of the receptor-binding sites. Images Figure 2 PMID:7538754

  3. Molecular characterization and expression of the (Na+ + K+)-ATPase alpha-subunit in Drosophila melanogaster.

    PubMed Central

    Lebovitz, R M; Takeyasu, K; Fambrough, D M

    1989-01-01

    The (Na+ + K+)-ATPase (sodium pump) is an ouabain-sensitive, electrogenic ion pump responsible for maintaining the balance of sodium and potassium ions in almost all animal cells. Robust, ouabain-sensitive rubidium uptake, indicative of the sodium pump, was found in tissue-cultured Drosophila cells, and both larvae and adults die when fed a diet containing ouabain. A monoclonal antibody to the avian sodium pump alpha-subunit was found to cross-react with the Drosophila sodium pump alpha-subunit. Immunofluorescence microscopy was used to obtain a semi-quantitative view of the expression of the sodium pump in Drosophila tissues: high levels of the sodium pump were detected in malpighian tubules, indirect flight muscles and tubular muscles, and throughout the nervous system. The cDNA encoding this sodium pump alpha-subunit in Drosophila melanogaster was cloned, sequenced and expressed in mouse L cells. At the amino acid level, its deduced sequence of 1038 residues (the first such sequence for an invertebrate) is approximately 80% similar to alpha-subunit sequences reported for vertebrates. Only one gene was found in Drosophila, located on the third chromosome at position 93B. A restriction site polymorphism has been found, and several mutations exist that may involve the alpha-subunit gene. Images PMID:2540956

  4. Genetically encoding a light switch in an ionotropic glutamate receptor reveals subunit-specific interfaces.

    PubMed

    Zhu, Shujia; Riou, Morgane; Yao, C Andrea; Carvalho, Stéphanie; Rodriguez, Pamela C; Bensaude, Olivier; Paoletti, Pierre; Ye, Shixin

    2014-04-22

    Reprogramming receptors to artificially respond to light has strong potential for molecular studies and interrogation of biological functions. Here, we design a light-controlled ionotropic glutamate receptor by genetically encoding a photoreactive unnatural amino acid (UAA). The photo-cross-linker p-azido-L-phenylalanine (AzF) was encoded in NMDA receptors (NMDARs), a class of glutamate-gated ion channels that play key roles in neuronal development and plasticity. AzF incorporation in the obligatory GluN1 subunit at the GluN1/GluN2B N-terminal domain (NTD) upper lobe dimer interface leads to an irreversible allosteric inhibition of channel activity upon UV illumination. In contrast, when pairing the UAA-containing GluN1 subunit with the GluN2A subunit, light-dependent inactivation is completely absent. By combining electrophysiological and biochemical analyses, we identify subunit-specific structural determinants at the GluN1/GluN2 NTD dimer interfaces that critically dictate UV-controlled inactivation. Our work reveals that the two major NMDAR subtypes differ in their ectodomain-subunit interactions, in particular their electrostatic contacts, resulting in GluN1 NTD coupling more tightly to the GluN2B NTD than to the GluN2A NTD. It also paves the way for engineering light-sensitive ligand-gated ion channels with subtype specificity through the genetic code expansion. PMID:24715733

  5. Progesterone receptor subunits are high-affinity substrates for phosphorylation by epidermal growth factor receptor.

    PubMed Central

    Ghosh-Dastidar, P; Coty, W A; Griest, R E; Woo, D D; Fox, C F

    1984-01-01

    Purified preparations of epidermal growth factor (EGF) receptor were used to test hen oviduct progesterone receptor subunits as substrates for phosphorylation catalyzed by EGF receptor. Both the 80-kilodalton (kDa) (A) and the 105-kDa (B) progesterone receptor subunits were phosphorylated in a reaction that required EGF and EGF receptor. No phosphorylation of progesterone receptor subunits was observed in the absence of EGF receptor, even when Ca2+ was substituted for Mg2+ and Mn2+. Phospho amino acid analysis revealed phosphorylation at tyrosine residues, with no phosphorylation detectable at serine or threonine residues. Two-dimensional maps of phosphopeptides generated from phosphorylated 80- or 105-kDa subunits by tryptic digestion revealed similar patterns, with resolution of two major, several minor, and a number of very minor phosphopeptides. The Km of progesterone receptor for phosphorylation by EGF-activated EGF receptor was 100 nM and the Vmax was 2.5 nmol/min per mg of EGF receptor protein at 0 degrees C. The stoichiometry of phosphorylation/hormone binding for progesterone receptor subunits was 0.31 at ice-bath temperature and approximately 1.0 at 22 degrees C. Images PMID:6200881

  6. Subunit Movements in Single Membrane-bound H+-ATP Synthases from Chloroplasts during ATP Synthesis

    PubMed Central

    Bienert, Roland; Rombach-Riegraf, Verena; Diez, Manuel; Gräber, Peter

    2009-01-01

    Subunit movements within the H+-ATP synthase from chloroplasts (CF0F1) are investigated during ATP synthesis. The γ-subunit (γCys-322) is covalently labeled with a fluorescence donor (ATTO532). A fluorescence acceptor (adenosine 5′-(β,γ-imino)triphosphate (AMPPNP)-ATTO665) is noncovalently bound to a noncatalytic site at one α-subunit. The labeled CF0F1 is integrated into liposomes, and a transmembrane pH difference is generated by an acid base transition. Single-pair fluorescence resonance energy transfer is measured in freely diffusing proteoliposomes with a confocal two-channel microscope. The fluorescence time traces reveal a repetitive three-step rotation of the γ-subunit relative to the α-subunit during ATP synthesis. Some traces show splitting into sublevels with fluctuations between the sublevels. During catalysis the central stalk interacts, with equal probability, with each αβ-pair. Without catalysis the central stalk interacts with only one specific αβ-pair, and no stepping between FRET levels is observed. Two inactive states of the enzyme are identified: one in the presence of AMPPNP and one in the presence of ADP. PMID:19864418

  7. Subunit movements in single membrane-bound H+-ATP synthases from chloroplasts during ATP synthesis.

    PubMed

    Bienert, Roland; Rombach-Riegraf, Verena; Diez, Manuel; Gräber, Peter

    2009-12-25

    Subunit movements within the H(+)-ATP synthase from chloroplasts (CF(0)F(1)) are investigated during ATP synthesis. The gamma-subunit (gammaCys-322) is covalently labeled with a fluorescence donor (ATTO532). A fluorescence acceptor (adenosine 5'-(beta,gamma-imino)triphosphate (AMPPNP)-ATTO665) is noncovalently bound to a noncatalytic site at one alpha-subunit. The labeled CF(0)F(1) is integrated into liposomes, and a transmembrane pH difference is generated by an acid base transition. Single-pair fluorescence resonance energy transfer is measured in freely diffusing proteoliposomes with a confocal two-channel microscope. The fluorescence time traces reveal a repetitive three-step rotation of the gamma-subunit relative to the alpha-subunit during ATP synthesis. Some traces show splitting into sublevels with fluctuations between the sublevels. During catalysis the central stalk interacts, with equal probability, with each alphabeta-pair. Without catalysis the central stalk interacts with only one specific alphabeta-pair, and no stepping between FRET levels is observed. Two inactive states of the enzyme are identified: one in the presence of AMPPNP and one in the presence of ADP.

  8. Amyloid-β Peptide Binds to Cytochrome C Oxidase Subunit 1

    PubMed Central

    Hernandez-Zimbron, Luis Fernando; Luna-Muñoz, Jose; Mena, Raul; Vazquez-Ramirez, Ricardo; Kubli-Garfias, Carlos; Cribbs, David H.; Manoutcharian, Karen; Gevorkian, Goar

    2012-01-01

    Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD). However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1–42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1–42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1–42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1–42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1–42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD. PMID:22927926

  9. Localization of the regulatory particle subunit Sem1 in the 26S proteasome

    SciTech Connect

    Bohn, Stefan; Sakata, Eri; Beck, Florian; Pathare, Ganesh R.; Schnitger, Jérôme; Nágy, Istvan; Baumeister, Wolfgang Förster, Friedrich

    2013-05-31

    Highlights: •26S proteasome subunit Sem1 was mapped using cryo-EM and cross-linking data. •C-terminal helix of Sem1 located near winged helix motif of Rpn7. •N-terminal part of Sem1 tethers Rpn7, Rpn3 and lid helical bundle. •Sem1 binds differently to PCI-domains of proteasome subunit Rpn7 and TREX-2 subunit Thp1. -- Abstract: The ubiquitin–proteasome system is responsible for regulated protein degradation in the cell with the 26S proteasome acting as its executive arm. The molecular architecture of this 2.5 MDa complex has been established recently, with the notable exception of the small acidic subunit Sem1. Here, we localize the C-terminal helix of Sem1 binding to the PCI domain of the subunit Rpn7 using cryo-electron microscopy single particle reconstruction of proteasomes purified from yeast cells with sem1 deletion. The approximate position of the N-terminal region of Sem1 bridging the cleft between Rpn7 and Rpn3 was inferred based on site-specific cross-linking data of the 26S proteasome. Our structural studies indicate that Sem1 can assume different conformations in different contexts, which supports the idea that Sem1 functions as a molecular glue stabilizing the Rpn3/Rpn7 heterodimer.

  10. Genetically encoding a light switch in an ionotropic glutamate receptor reveals subunit-specific interfaces

    PubMed Central

    Zhu, Shujia; Riou, Morgane; Yao, C. Andrea; Carvalho, Stéphanie; Rodriguez, Pamela C.; Bensaude, Olivier; Paoletti, Pierre; Ye, Shixin

    2014-01-01

    Reprogramming receptors to artificially respond to light has strong potential for molecular studies and interrogation of biological functions. Here, we design a light-controlled ionotropic glutamate receptor by genetically encoding a photoreactive unnatural amino acid (UAA). The photo–cross-linker p-azido-l-phenylalanine (AzF) was encoded in NMDA receptors (NMDARs), a class of glutamate-gated ion channels that play key roles in neuronal development and plasticity. AzF incorporation in the obligatory GluN1 subunit at the GluN1/GluN2B N-terminal domain (NTD) upper lobe dimer interface leads to an irreversible allosteric inhibition of channel activity upon UV illumination. In contrast, when pairing the UAA-containing GluN1 subunit with the GluN2A subunit, light-dependent inactivation is completely absent. By combining electrophysiological and biochemical analyses, we identify subunit-specific structural determinants at the GluN1/GluN2 NTD dimer interfaces that critically dictate UV-controlled inactivation. Our work reveals that the two major NMDAR subtypes differ in their ectodomain-subunit interactions, in particular their electrostatic contacts, resulting in GluN1 NTD coupling more tightly to the GluN2B NTD than to the GluN2A NTD. It also paves the way for engineering light-sensitive ligand-gated ion channels with subtype specificity through the genetic code expansion. PMID:24715733

  11. Warming Alters the Routing of Labile and Slower-Turnover Carbon Through Distinct Microbial Groups in Boreal Forest Organic Soils

    NASA Astrophysics Data System (ADS)

    Ziegler, S. E.; Billings, S. A.; Lane, C. S.; Li, J.; Fogel, M. L.

    2012-12-01

    Increased temperature has been linked to greater losses of soil organic carbon (SOC) via microbial respiration and potentially greater relative increases in mineralization of more complex, slow-turnover SOC pools. Though critical for predicting climate feedbacks, our mechanistic understanding of these temperature responses remains limited. Here we report results from a warming experiment using organic horizon soils from two mesic, boreal forest sites with contrasting climate regimes. We replaced extant Oi soil sub-horizons with another coniferous Oi possessing a distinct δ13C signature, and tracked incorporation of the replaced Oi-C and, by difference, the more humified Oea sub-horizon C into microbial phospholipid fatty acids (PLFA) following 120 day incubations at 15C and 20C. We demonstrate how regional climate (site effects) and experimental warming (temperature effects) influence microbial incorporation of Oi versus slower-turnover Oea SOC pools. Congruent with increased mineralization in these soils, the quantity of total PLFA, a proxy for microbial biomass, increased by 32-60% with experimental warming and was 20-42% higher within soils from the warmer versus cooler site. The proportion of Gram-positive bacterial PLFA-C derived from Oi-C more than doubled and coincided with a reduction in the incorporation of Oi-C into fungal relative to bacterial PLFA with laboratory warming and in soils from the warmer site. In conjunction with the relative decrease in fungal incorporation of Oi-C, warming led to an increase of 22-31% in the proportion of fungal PLFA-C derived from the Oea-C. This is consistent with site effects and an increased incorporation of this slower-turnover SOC pool in soils from the warmer site. The increase in microbial biomass and shift in routing of Oi and Oea pools through PLFA indicate that warming increases fungal mineralization of more slow-turnover C pools in these boreal organic soils. This increased exploitation of low C:N Oea by fungi

  12. Regulatory subunit B'gamma of protein phosphatase 2A prevents unnecessary defense reactions under low light in Arabidopsis.

    PubMed

    Trotta, Andrea; Wrzaczek, Michael; Scharte, Judith; Tikkanen, Mikko; Konert, Grzegorz; Rahikainen, Moona; Holmström, Maija; Hiltunen, Hanna-Maija; Rips, Stephan; Sipari, Nina; Mulo, Paula; Weis, Engelbert; von Schaewen, Antje; Aro, Eva-Mari; Kangasjärvi, Saijaliisa

    2011-07-01

    Light is an important environmental factor that modulates acclimation strategies and defense responses in plants. We explored the functional role of the regulatory subunit B'γ (B'γ) of protein phosphatase 2A (PP2A) in light-dependent stress responses of Arabidopsis (Arabidopsis thaliana). The predominant form of PP2A consists of catalytic subunit C, scaffold subunit A, and highly variable regulatory subunit B, which determines the substrate specificity of PP2A holoenzymes. Mutant leaves of knockdown pp2a-b'γ plants show disintegration of chloroplasts and premature yellowing conditionally under moderate light intensity. The cell-death phenotype is accompanied by the accumulation of hydrogen peroxide through a pathway that requires CONSTITUTIVE EXPRESSION OF PR GENES5 (CPR5). Moreover, the pp2a-b'γ cpr5 double mutant additionally displays growth suppression and malformed trichomes. Similar to cpr5, the pp2a-b'γ mutant shows constitutive activation of both salicylic acid- and jasmonic acid-dependent defense pathways. In contrast to cpr5, however, pp2a-b'γ leaves do not contain increased levels of salicylic acid or jasmonic acid. Rather, the constitutive defense response associates with hypomethylation of DNA and increased levels of methionine-salvage pathway components in pp2a-b'γ leaves. We suggest that the specific B'γ subunit of PP2A is functionally connected to CPR5 and operates in the basal repression of defense responses under low irradiance.

  13. Preservation of labile organic matter in soils of drained thaw lakes in Northern Alaska

    NASA Astrophysics Data System (ADS)

    Mueller, Carsten W.; Rethemeyer, Janet; Kao-Kniffin, Jenny; Löppmann, Sebastian; Hinkel, Kenneth; Bockheim, James

    2014-05-01

    A large number of studies predict changing organic matter (OM) dynamics in arctic soils due to global warming. In contrast to rather slowly altering bulk soil properties, single soil organic matter (SOM) fractions can provide a more detailed picture of the dynamics of differently preserved SOM pools in climate sensitive arctic regions. By the study of the chemical composition of such distinctive SOM fractions using nuclear magnetic resonance spectroscopy (NMR) together with radiocarbon analyses it is possible to evaluate the stability of the major OM pools. Approximately 50-75% of Alaska's Arctic Coastal Plain is covered with thaw lakes and drained thaw lakes that follow a 5,000 yr cycle of development (between creation and final drainage), thus forming a natural soil chronosequence. The drained thaw lakes offer the possibility to study SOM dynamics affected by permafrost processes over millennial timescales. In April 2010 we sampled 16 soil cores (including the active and permanent layer) reaching from young drained lakes (0-50 years since drainage) to ancient drained lakes (3000-5500 years since drainage). Air dried soil samples from soil horizons of the active and permanent layer were subjected to density fractionation in order to differentiate particulate OM and mineral associated OM. The chemical composition of the SOM fractions was analyzed by 13C CPMAS NMR spectroscopy. For a soil core of a young and an ancient drained thaw lake basin we also analyzed the 14C content. For the studied soils we can show that up to over 25 kg OC per square meter are stored mostly as labile, easily degradable organic matter rich in carbohydrates. In contrast only 10 kg OC per square meter were sequestered as presumably more stable mineral associated OC dominated by aliphatic compounds. Comparable to soils of temperate regions, we found small POM (< 20 µm) occluded in aggregated soil structures which differed in the chemical composition from larger organic particles. This was

  14. Fluxes of phytopigments and labile organic matter to the deep ocean in the NE Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Fabiano, M.; Pusceddu, A.; Dell'Anno, A.; Armeni, M.; Vanucci, S.; Lampitt, R. S.; Wolff, G. A.; Danovaro, R.

    Downward fluxes of labile organic matter (phytopigments, proteins and carbohydrates) were measured between September 1996 and August 1998 at three depths 1000 m, 3000 m and 4700 m (c. 100 mab) over the Porcupine Abyssal Plain (PAP, NE Atlantic), to provide detailed information on the biochemical characteristics of organic inputs to the deep sea. Temporal changes in the carbohydrate and protein fluxes were compared to carbohydrate and protein contents of the surficial sediment on the seabed beneath the traps at 4850 m depth. Fluxes of carbohydrate, protein and phytopigments (chlorophylls-a and -b, and phaeophytins-a and -b) displayed strong seasonal variations, but limited interannual variability between the two years of measurement. Fluxes of labile organic matter were characterised by strong pulses which occurred in spring and early summer, suggesting that the deep PAP area experiences relatively predictable patterns of vertical fluxes. No major quantitative differences in organic matter fluxes were observed between traps at different depths, but highest carbohydrate fluxes (time-weighted mean 2.4 mg m -2 d -1) were observed at 4700 m, whereas highest protein fluxes were observed at 1000 m (time-weighted mean 2.1 mg m -2 d -1). Carbohydrate, protein and phytopigment fluxes were correlated significantly, suggesting that settling material was associated with primary organic matter (i.e., phytodetritus) inputs from the photic layer. The contributions of chlorophyll-a and -b, and of phaeophytin-a and -b did not change significantly with increasing depth. Nor did the ratio of total phaeopigments to total chlorophylls did change greatly with depth (0.3-0.4 at both 3000 m and 4700 m depth) suggesting that degradation rates in the sinking particles were low. Protein and carbohydrate concentrations in the sediments at 4850 m depth (collected during 6 cruises between 1996 and 1998) and vertical fluxes at 3000 m depth followed inverse temporal patterns; peak concentrations

  15. Studies of double-labeled mouse thyrotropin and free alpha-subunits to estimate relative fucose content

    SciTech Connect

    Magner, J.; Papagiannes, E.

    1986-11-01

    The composition and structure of the complex oligosaccharides of thyrotropin (TSH) and free alpha-subunits are not well established, but are believed to be important determinants of the biological properties of these glycoproteins. We employed a simple double-label technique to learn the relative fucose content of mouse thyrotropin and free alpha-subunits. Thyrotropic tumor minces were incubated simultaneously with (/sup 35/S)methionine and (/sup 3/H)fucose. Thyrotropin and free alpha-subunits were labeled with both isotopes, and the ratio of /sup 3/H//sup 35/S was higher in free alpha-subunits than in thyrotropin; free alpha-subunits were approximately fivefold richer in fucose than was thyrotropin. The /sup 3/H//sup 35/S ratio was not substantially altered in TSH or free alpha-subunits secreted after a brief incubation with 10(-7) M thyrotropin-releasing hormone. Species which incorporated (/sup 3/H)fucose were resistant to endoglycosidase H. Thus, mouse free alpha-subunits secreted by thyrotropic tumor are relatively rich in fucose. Double-isotope labeling using an amino acid and a sugar appears to be a useful technique for studies of the glycoprotein hormones.

  16. Involvement of proteasomal subunits zeta and iota in RNA degradation.

    PubMed Central

    Petit, F; Jarrousse, A S; Dahlmann, B; Sobek, A; Hendil, K B; Buri, J; Briand, Y; Schmid, H P

    1997-01-01

    We have identified two distinct subunits of 20 S proteasomes that are associated with RNase activity. Proteasome subunits zeta and iota, eluted from two-dimensional Western blots, hydrolysed tobacco mosaic virus RNA, whereas none of the other subunits degraded this substrate under the same conditions. Additionally, proteasomes were dissociated by 6 M urea, and subunit zeta, containing the highest RNase activity, was isolated by anion-exchange chromatography and gel filtration. Purified subunit zeta migrated as a single spot on two-dimensional PAGE with a molecular mass of approx. 28 kDa. Addition of anti-(subunit zeta) antibodies led to the co-precipitation of this proteasome subunit and nuclease activity. This is the first evidence that proteasomal alpha-type subunits are associated with an enzymic activity, and our results provide further evidence that proteasomes may be involved in cellular RNA metabolism. PMID:9337855

  17. Molecular characterization and mutational analysis of the human B17 subunit of the mitochondrial respiratory chain complex I.

    PubMed

    Smeitink, J; Loeffen, J; Smeets, R; Triepels, R; Ruitenbeek, W; Trijbels, F; van den Heuvel, L

    1998-08-01

    Bovine NADH:ubiquinone oxidoreductase (complex 1) of the mitochondrial respiratory chain consists of about 36 nuclear-encoded subunits. We review the current knowledge of the 15 human complex I subunits cloned so far, and report the 598-bp cDNA sequence, the chromosomal localization and the tissue expression of an additional subunit, the B17 subunit. The cDNA open reading frame of B17 comprises 387 bp and encodes a protein of 128 amino acids (calculated Mr 15.5 kDa). There is 82.7% and 78.1% homology, respectively, at the cDNA and amino acid level with the bovine counterpart. The gene of the B17 subunit has been mapped to chromosome 2. Multiple-tissue dot-blots showed ubiquitous expression of the mRNA with relatively higher expression in tissues known for their high energy demand. Of these, kidney showed the highest expression. Mutational analysis of the subunit revealed no mutations or polymorphisms in 20 patients with isolated enzymatic complex I deficiency in cultured skin fibroblasts. PMID:9760212

  18. Molecular characterization and mutational analysis of the human B17 subunit of the mitochondrial respiratory chain complex I.

    PubMed

    Smeitink, J; Loeffen, J; Smeets, R; Triepels, R; Ruitenbeek, W; Trijbels, F; van den Heuvel, L

    1998-08-01

    Bovine NADH:ubiquinone oxidoreductase (complex 1) of the mitochondrial respiratory chain consists of about 36 nuclear-encoded subunits. We review the current knowledge of the 15 human complex I subunits cloned so far, and report the 598-bp cDNA sequence, the chromosomal localization and the tissue expression of an additional subunit, the B17 subunit. The cDNA open reading frame of B17 comprises 387 bp and encodes a protein of 128 amino acids (calculated Mr 15.5 kDa). There is 82.7% and 78.1% homology, respectively, at the cDNA and amino acid level with the bovine counterpart. The gene of the B17 subunit has been mapped to chromosome 2. Multiple-tissue dot-blots showed ubiquitous expression of the mRNA with relatively higher expression in tissues known for their high energy demand. Of these, kidney showed the highest expression. Mutational analysis of the subunit revealed no mutations or polymorphisms in 20 patients with isolated enzymatic complex I deficiency in cultured skin fibroblasts.

  19. Isolation of the alpha subunits of GTP-binding regulatory proteins by affinity chromatography with immobilized beta gamma subunits.

    PubMed Central

    Pang, I H; Sternweis, P C

    1989-01-01

    Immobilized beta gamma subunits of GTP-binding regulatory proteins (G proteins) were used to isolate alpha subunits from solubilized membranes of bovine tissues and to separate specific alpha subunits based on their differential affinities for beta gamma subunits. The beta gamma subunits were cross-linked to omega-aminobutyl agarose. Up to 7 nmol of alpha subunit could bind to each milliliter of beta gamma-agarose and be recovered by elution with AIF4-. This affinity resin effectively separated the alpha subunits of Gi1 and Gi2 from "contaminating" alpha subunits of Go, the most abundant G protein in bovine brain, by taking advantage of the apparent lower affinity of the alpha subunits of Go for beta gamma subunits. The beta gamma-agarose was also used to isolate mixtures of alpha subunits from cholate extracts of membranes from different bovine tissues. alpha subunits of 39-41 kDa (in various ratios) as well as the alpha subunits of Gs were purified. The yields from extracts exceeded 60% for all alpha subunits examined and apparently represented the relative content of alpha subunits in the tissues. This technique can rapidly isolate and identify, from a small amount of sample, the endogenous G proteins in various tissues and cells. So far, only polypeptides in the range of 39-52 kDa have been detected with this approach. If other GTP-binding proteins interact with these beta gamma subunits, the interaction is either of low affinity or mechanistically unique from the alpha subunits isolated in this study. Images PMID:2510152

  20. Persistent Associative Plasticity at an Identified Synapse Underlying Classical Conditioning Becomes Labile with Short-Term Homosynaptic Activation

    PubMed Central

    Schacher, Samuel

    2015-01-01

    Synapses express different forms of plasticity that contribute to different forms of memory, and both memory and plasticity can become labile after reactivation. We previously reported that a persistent form of nonassociative long-term facilitation (PNA-LTF) of the sensorimotor synapses in Aplysia californica, a cellular analog of long-term sensitization, became labile with short-term heterosynaptic reactivation and reversed when the reactivation was followed by incubation with the protein synthesis inhibitor rapamycin. Here we examined the reciprocal impact of different forms of short-term plasticity (reactivations) on a persistent form of associative long-term facilitation (PA-LTF), a cellular analog of classical conditioning, which was expressed at Aplysia sensorimotor synapses when a tetanic stimulation of the sensory neurons was paired with a brief application of serotonin on 2 consecutive days. The expression of short-term homosynaptic plasticity [post-tetanic potentiation or homosynaptic depression (HSD)], or short-term heterosynaptic plasticity [serotonin-induced facilitation or neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFa)-induced depression], at synapses expressing PA-LTF did not affect the maintenance of PA-LTF. The kinetics of HSD was attenuated at synapses expressing PA-LTF, which required activation of protein kinase C (PKC). Both PA-LTF and the attenuated kinetics of HSD were reversed by either a transient blockade of PKC activity or a homosynaptic, but not heterosynaptic, reactivation when paired with rapamycin. These results indicate that two different forms of persistent synaptic plasticity, PA-LTF and PNA-LTF, expressed at the same synapse become labile when reactivated by different stimuli. SIGNIFICANCE STATEMENT Activity-dependent changes in neural circuits mediate long-term memories. Some forms of long-term memories become labile and can be reversed with specific types of reactivations, but the mechanism is complex. At the cellular level

  1. Dissociation of ribosomes into large and small subunits.

    PubMed

    Rivera, Maria C; Maguire, Bruce; Lake, James A

    2015-04-01

    Structural and functional studies of ribosomal subunits require the dissociation of intact ribosomes into individual small and large ribosomal subunits. The dissociation of the prokaryotic 70S ribosomes into the 50S and 30S subunits is achieved by dialysis against a buffer containing a lower Mg(2+) concentration. Eukaryotic 80S ribosomes are dissociated into 60S and 40S subunits by incubation in a buffer containing puromycin and higher KCl and Mg(2+) concentrations.

  2. The novel component Kgd4 recruits the E3 subunit to the mitochondrial α-ketoglutarate dehydrogenase

    PubMed Central

    Heublein, Manfred; Burguillos, Miguel A.; Vögtle, F. Nora; Teixeira, Pedro F.; Imhof, Axel; Meisinger, Chris; Ott, Martin

    2014-01-01

    The mitochondrial citric acid cycle is a central hub of cellular metabolism, providing intermediates for biosynthetic pathways and channeling electrons to the respiratory chain complexes. In this study, we elucidated the composition and organization of the multienzyme complex α-ketoglutarate dehydrogenase (α-KGDH). In addition to the three classical E1-E3 subunits, we identified a novel component, Kgd4 (Ymr31/MRPS36), which was previously assigned to be a subunit of the mitochondrial ribosome. Biochemical analyses demonstrate that this protein plays an evolutionarily conserved role in the organization of mitochondrial α-KGDH complexes of fungi and animals. By binding to both the E1-E2 core and the E3 subunit, Kgd4 acts as a molecular adaptor that is necessary to a form a stable α-KGDH enzyme complex. Our work thus reveals a novel subunit of a key citric acid–cycle enzyme and shows how this large complex is organized. PMID:25165143

  3. Dissolved organic carbon lability and stable isotope shifts during microbial decomposition in a tropical river system

    NASA Astrophysics Data System (ADS)

    Geeraert, N.; Omengo, F. O.; Govers, G.; Bouillon, S.

    2016-01-01

    A significant amount of carbon is transported to the ocean as dissolved organic carbon (DOC) in rivers. During transport, it can be transformed through microbial consumption and photochemical oxidation. In dark incubation experiments with water from the Tana River, Kenya, we examined the consumption of DOC through microbial decomposition and the associated change in its carbon stable isotope composition (δ13C). In 15 of the 18 incubations, DOC concentrations decreased significantly by 10 to 60 %, with most of the decomposition taking place within the first 24-48 h. After 8 days, the remaining DOC was up to 3 ‰ more depleted in 13C compared with the initial pool, and the change in δ13C correlated strongly with the fraction of DOC remaining. We hypothesize that the shift in δ13C is consistent with greater microbial lability of DOC originating from herbaceous C4 vegetation than DOC derived from woody C3 vegetation in the semi-arid lower Tana. The results complement earlier findings that the stable isotope concentration of riverine DOC does not necessarily reflect the proportion of C3 and C4-derived DOC in the catchment: besides spatial distribution patterns of different vegetation types, processing within the river can further influence the δ13C of riverine OC.

  4. An improved high pressure freezing and freeze substitution method to preserve the labile vaccinia virus nucleocapsid.

    PubMed

    Jesus, Desyree Murta; Moussatche, Nissin; Condit, Richard C

    2016-07-01

    In recent years, high pressure freezing and freeze substitution have been widely used for electron microscopy to reveal viral and cellular structures that are difficult to preserve. Vaccinia virus, a member of the Poxviridae family, presents one of the most complex viral structures. The classical view of vaccinia virus structure consists of an envelope surrounding a biconcave core, with a lateral body in each concavity of the core. This classical view was challenged by Peters and Muller (1963), who demonstrated the presence of a folded tubular structure inside the virus core and stated the difficulty in visualizing this structure, possibly because it is labile and cannot be preserved by conventional sample preparation. Therefore, this tubular structure, now called the nucleocapsid, has been mostly neglected over the years. Earlier studies were able to preserve the nucleocapsid, but with low efficiency. In this study, we report the protocol (and troubleshooting) that resulted in preservation of the highest numbers of nucleocapsids in several independent preparations. Using this protocol, we were able to demonstrate an interdependence between the formation of the virus core wall and the nucleocapsid, leading to the hypothesis that an interaction exists between the major protein constituents of these compartments, A3 (core wall) and L4 (nucleocapsid). Our results show that high pressure freezing and freeze substitution can be used in more in-depth studies concerning the nucleocapsid structure and function.

  5. Labile male morphology and intraspecific male polymorphism in the Philotrypesis fig wasps.

    PubMed

    Jousselin, Emmanuelle; van Noort, Simon; Greeff, Jaco M

    2004-12-01

    We investigate the evolution of male morphology in the fig wasps belonging to the genus Philotrypesis (Chalcidoidea, Sycorectinae). We first reconstruct the phylogenetic relationships of Philotrypesis associated with African figs using nuclear and mitochondrial DNA. We then determine male morphotypes in the species included in our phylogeny and show that intraspecific polymorphism is common. Most species present two types of males and some species have up to three types. These morphotypes are believed to represent alternative mating tactics: some males show morphological adaptations to fighting, others are winged dispersers and others are small sneakers. Mapping out these variations onto our phylogeny reveals that the combination of morphs changes randomly along the branches of the tree. Both parsimony and likelihood approaches indicate that there has been at least one transition from dimorphism to trimorphism, several gains and losses of the small morph and two independent acquisitions of the winged morph. Using maximum likelihood analyses of character evolution, we estimate transition rates for each morph and show that the evolution of each type of morph are not correlated and that forward and backward transition rates are not significantly different. Our results altogether suggest that male morphology is evolutionary labile, it responds quickly to selection imposed by the mating environment. This study, also suggests that seemingly complex phenotypes, such as winged males, can evolve several times and can even be recreated after having been lost.

  6. Evaluation of a ganglioside immunosorbent assay for detection of Escherichia coli heat-labile enterotoxin.

    PubMed

    Bäck, E; Svennerholm, A M; Holmgren, J; Möllby, R

    1979-12-01

    The GM1 ganglioside enzyme-linked immunosorbent assay (GM1-ELISA), an immunological method for detection of Escherichia coli heat-labile enterotoxin (LT), was quantitatively and qualitatively compared with the conventional adrenal cell test for the identification of LT-producing strains. A micromodification model of the assay was developed. Enterotoxin preparations from 120 E. coli isolates from individuals with diarrhea, which had been previously shown to be enterotoxigenic by the adrenal cell test, and from 44 control strains of E. coli were compared in parallel by the two methods. Quantitatively the covariation of the enterotoxin titers was highly significant (RS = 0.98, P less than 0.001), the GM1-ELISA being somewhat more sensitive than the adrenal cell test. The methodological error was less than 5% in both tests. Qualitatively the overall agreement for positive and negative reactions for the two methods was 89%. The GM1-ELISA is practical for routine use in the diagnosis of enterotoxigenic E. coli, especially in laboratories without facilities for cell culture.

  7. Uncaria tomentosa (Willd. ex. Roem. & Schult.) DC. and Eucalyptus globulus Labill. interactions when administered with diazepam.

    PubMed

    Quílez, A M; Saenz, M T; García, M D

    2012-03-01

    The safety of natural drugs is defined by their side effects and toxicity as well as any interactions that may occur if taken together with other drugs. In particular, it is essential to identify synergies, antagonisms and other types of interference with other drugs so that the correct choice can be made from the range of phytomedicines available. The aim of this work was to investigate changes in the pharmacological effect of diazepam (2 mg/kg) on the CNS when administered together with a medicinal plant: Eucalyptus globulus Labill. (eucalyptus 6 mg/kg and 3.25 mg/kg) or Uncaria tomentosa (Willd. ex Roem. & Schult). DC. (cat's claw, 7.14 mg/kg and 3.54 mg/kg). Various different psychopharmacological effects were evaluated through assessing exploratory behavior, muscle relaxation and spontaneous motor activity. Both phytodrugs interacted with the benzodiazepine. Eucalyptus had an inhibitory effect at both doses and could be useful at the highest dose in cases where the desired effect of the depressant is moderate anxiolytic activity without marked muscle relaxation. Cat's claw, at both doses, enhanced the action of diazepam on spontaneous motor activity and, at the lowest dose, exploratory ability. These herbal drugs could be useful for their antiinflammatory activity in musculoskeletal pathologies treated with benzodiazepines.

  8. Labile phases and the ocean's strontium cycle: A method of sediment trap sampling for acantharians

    NASA Astrophysics Data System (ADS)

    Bernstein, Renate E.; Betzer, Peter R.

    Acantharians are abundant marine planktonic protists and are the only marine organisms that use strontium as a major structural component. These organisms incorporate Sr in the form of celestite (SrSO4) into their skeletons and cysts [Odum, 1951]. Because the ocean is undersaturated with respect to SrSO4 [North, 1974], settling skeletons of dead acantharians and acantharian cysts are readily dissolved. After an initial burst of activity following their discovery in the mid-nineteenth century [Haeckel, 1887; Popofsky, 1909; Schewiakoff, 1926], the study of acantharians lagged during the mid-twentieth century. In part, this hiatus was related to the fact that acantharians are not preserved in the sedimentary record. Another contributing factor was the evolution in sampling and preservation techniques that mitigated against the preservation of these labile phases [Beers and Stewart, 1970; Michaels, 1988]. On the other hand, their susceptibility to dissolution implicates them as important mediators of the ocean's Sr budget [Bernstein et al., 1987]. Our short-term and relatively shallow sediment trap deployments, lack of preservatives, and rapid sample processing permitted the collection of the often elusive acantharian specimens.

  9. Assessing the labile arsenic pool in contaminated paddy soils by isotopic dilution techniques and simple extractions.

    PubMed

    Stroud, Jacqueline L; Khan, M Asaduzzman; Norton, Gareth J; Islam, M Rafiqul; Dasgupta, Tapash; Zhu, Yong-Guan; Price, Adam H; Meharg, Andrew A; McGrath, Steve P; Zhao, Fang-Jie

    2011-05-15

    Arsenic (As) contamination of paddy soils threatens rice cultivation and the health of populations relying on rice as a staple crop. In the present study, isotopic dilution techniques were used to determine the chemically labile (E value) and phytoavailable (L value) pools of As in a range of paddy soils from Bangladesh, India, and China and two arable soils from the UK varying in the degree and sources of As contamination. The E value accounted for 6.2-21.4% of the total As, suggesting that a large proportion of soil As is chemically nonlabile. L values measured with rice grown under anaerobic conditions were generally larger than those under aerobic conditions, indicating increased potentially phytoavailable pool of As in flooded soils. In an incubation study, As was mobilized into soil pore water mainly as arsenite under flooded conditions, with Bangladeshi soils contaminated by irrigation of groundwater showing a greater potential of As mobilization than other soils. Arsenic mobilization was best predicted by phosphate-extractable As in the soils. PMID:21504212

  10. Energy evaluation of forest residues originated from Eucalyptus globulus Labill in Galicia.

    PubMed

    Núñez-Regueira, L; Proupín-Castiñeiras, J; Rodríguez-Añón, J A

    2002-03-01

    The possibility of retrieving the energy contained in forest residues originating from wood exploitation in Galicia (Spain) is evaluated. This study was made on Eucalyptus globulus Labill occupying a forest surface of 240000 ha. This species plays an important role in the economical development of Galicia, as it is the main forest species for production of pulp. Sampling was made over 1999 in seven different zones, three main stations plus four selected for comparison, situated in Galicia. The residues originating from cutting were sorted into three different groups and their calorific values were measured by static bomb calorimetry. These calorific values, close to 7200 kJ kg(-1), make possible the use of this residual biomass as an energy source. Calorific values were measured by static bomb calorimeter in an oxygen atmosphere. Flammability was determined using a standard epiradiator. Simultaneously, some other parameters, elementary chemical composition, heavy metal contents, moisture, density, ash percentage after combustion in the bomb, and main bioclimatic characteristics, were also determined. PMID:11848377

  11. Development and bioorthogonal activation of palladium-labile prodrugs of gemcitabine.

    PubMed

    Weiss, Jason T; Dawson, John C; Fraser, Craig; Rybski, Witold; Torres-Sánchez, Carmen; Bradley, Mark; Patton, E Elizabeth; Carragher, Neil O; Unciti-Broceta, Asier

    2014-06-26

    Bioorthogonal chemistry has become one of the main driving forces in current chemical biology, inspiring the search for novel biocompatible chemospecific reactions for the past decade. Alongside the well-established labeling strategies that originated the bioorthogonal paradigm, we have recently proposed the use of heterogeneous palladium chemistry and bioorthogonal Pd(0)-labile prodrugs to develop spatially targeted therapies. Herein, we report the generation of biologically inert precursors of cytotoxic gemcitabine by introducing Pd(0)-cleavable groups in positions that are mechanistically relevant for gemcitabine's pharmacological activity. Cell viability studies in pancreatic cancer cells showed that carbamate functionalization of the 4-amino group of gemcitabine significantly reduced (>23-fold) the prodrugs' cytotoxicity. The N-propargyloxycarbonyl (N-Poc) promoiety displayed the highest sensitivity to heterogeneous palladium catalysis under biocompatible conditions, with a reaction half-life of less than 6 h. Zebrafish studies with allyl, propargyl, and benzyl carbamate-protected rhodamines confirmed N-Poc as the most suitable masking group for implementing in vivo bioorthogonal organometallic chemistry. PMID:24867590

  12. Nitric oxide is necessary for labilization of a consolidated context memory during reconsolidation in terrestrial snails.

    PubMed

    Balaban, Pavel M; Roshchin, Matvey; Timoshenko, Alia K; Gainutdinov, Khalil L; Bogodvid, Tatiana K; Muranova, Lyudmila N; Zuzina, Alena B; Korshunova, Tatiana A

    2014-09-01

    Nitric oxide (NO) is known to be involved in associative memory formation. We investigated the influence of blocking NO function on the reconsolidation of context memory in terrestrial snails (Helix lucorum L.). After a 10 day session of electric shocks in one context only, context memory in snails was observed in test sessions as the significant difference of amplitudes of withdrawal responses to tactile stimuli in two different contexts. After a 1 day rest, a session of 'reminding' was performed, preceded by injection in different groups of the snails with either vehicle or combination of the protein synthesis blocker anisomycin (ANI) with one of the following drugs: the NO scavenger carboxy-PTIO, the NO-synthase inhibitors N-omega-nitro-L-arginin, nitroindazole and NG-nitro-L-arginine methyl ester hydrochloride, or the NO donor S-nitroso-N-acetyl-DL-penicillamine. Testing the context memory at different time intervals after the reminder under ANI injection showed that the context memory was impaired at 24 h and later, whereas the reminder under combined injection of ANI and each of the NO-synthase inhibitors used or the NO scavenger showed no impairment of long-term context memory. Injection of the NO donor S-nitroso-N-acetyl-DL-penicillamine with or without reminder had no effect on context memory. The results obtained demonstrated that NO is necessary for labilization of a consolidated context memory.

  13. An intermetallic Au24Ag20 superatom nanocluster stabilized by labile ligands.

    PubMed

    Wang, Yu; Su, Haifeng; Xu, Chaofa; Li, Gang; Gell, Lars; Lin, Shuichao; Tang, Zichao; Häkkinen, Hannu; Zheng, Nanfeng

    2015-04-01

    An intermetallic nanocluster containing 44 metal atoms, Au24Ag20(2-SPy)4(PhC≡C)20Cl2, was successfully synthesized and structurally characterized by single-crystal analysis and density funtional theory computations. The 44 metal atoms in the cluster are arranged as a concentric three-shell Au12@Ag20@Au12 Keplerate structure having a high symmetry. For the first time, the co-presence of three different types of anionic ligands (i.e., phenylalkynyl, 2-pyridylthiolate, and chloride) was revealed on the surface of metal nanoclusters. Similar to thiolates, alkynyls bind linearly to surface Au atoms using their σ-bonds, leading to the formation of two types of surface staple units (PhC≡C-Au-L, L = PhC≡C(-) or 2-pyridylthiolate) on the cluster. The co-presence of three different surface ligands allows the site-specific surface and functional modification of the cluster. The lability of PhC≡C(-) ligands on the cluster was demonstrated, making it possible to keep the metal core intact while removing partial surface capping. Moreover, it was found that ligand exchange on the cluster occurs easily to offer various derivatives with the same metal core but different surface functionality and thus different solubility. PMID:25803406

  14. Heat-labile enterotoxin of Escherichia coli promotes intestinal colonization of Salmonella enterica.

    PubMed

    Verbrugghe, Elin; Van Parys, Alexander; Leyman, Bregje; Boyen, Filip; Arnouts, Sven; Lundberg, Urban; Ducatelle, Richard; Van den Broeck, Wim; Yekta, Maryam Atef; Cox, Eric; Haesebrouck, Freddy; Pasmans, Frank

    2015-12-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of infantile and travellers' diarrhoea, which poses a serious health burden, especially in developing countries. In addition, ETEC bacteria are a major cause of illness and death in neonatal and recently weaned pigs. The production of a heat-labile enterotoxin (LT) promotes the colonization and pathogenicity of ETEC and may exacerbate co-infections with other enteric pathogens such as Salmonella enterica. We showed that the intraintestinal presence of LT dramatically increased the intestinal Salmonella Typhimurium load in experimentally inoculated pigs. This could not be explained by direct alteration of the invasion or survival capacity of Salmonella in enterocytes, in vitro. However, we demonstrated that LT affects the enteric mucus layer composition in a mucus-secreting goblet cell line by significantly decreasing the expression of mucin 4. The current results show that LT alters the intestinal mucus composition and aggravates a Salmonella Typhimurium infection, which may result in the exacerbation of the diarrhoeal illness. PMID:26616654

  15. Membrane Transport Behavior and the Lability of Chloride on Polyphosphazenes Bearing Bulky Substituents

    SciTech Connect

    Frederick F. Stewart; John R. Klaehn; Christopher J. Orme

    2007-08-01

    Polyphosphazenes are an intriguing class of inorganic polymers where much of their functionality is derived from pendant groups attached to phosphorus. The backbone of the polymer consists of alternating phosphorus and nitrogen atoms where the bonding is conventionally drawn as alternating double and single bonds. Orbital nodes are located at each phosphorus atom resulting in electron delocalization between phosphorus atoms, but not through them. Thus, the polymer backbone has a high degree of flexibility where halogens or other leaving groups can be effectively displaced with nucleophiles. In this paper, the first known example of a polyphosphazene with large quantities of non-labile chloride substituents induced by neighboring group steric effects will be discussed. This example is the result of the substitution of poly[bis-chlorophosphazene] with the sodium salt of 3,5-di-tert-butylphenol where only 60% of the chlorines were displaced. This contrasts with the 100% substitution observed with other phenols (phenol, 4-tert-butylphenol, 3-methylphenol, etc.).

  16. Assessing the labile arsenic pool in contaminated paddy soils by isotopic dilution techniques and simple extractions.

    PubMed

    Stroud, Jacqueline L; Khan, M Asaduzzman; Norton, Gareth J; Islam, M Rafiqul; Dasgupta, Tapash; Zhu, Yong-Guan; Price, Adam H; Meharg, Andrew A; McGrath, Steve P; Zhao, Fang-Jie

    2011-05-15

    Arsenic (As) contamination of paddy soils threatens rice cultivation and the health of populations relying on rice as a staple crop. In the present study, isotopic dilution techniques were used to determine the chemically labile (E value) and phytoavailable (L value) pools of As in a range of paddy soils from Bangladesh, India, and China and two arable soils from the UK varying in the degree and sources of As contamination. The E value accounted for 6.2-21.4% of the total As, suggesting that a large proportion of soil As is chemically nonlabile. L values measured with rice grown under anaerobic conditions were generally larger than those under aerobic conditions, indicating increased potentially phytoavailable pool of As in flooded soils. In an incubation study, As was mobilized into soil pore water mainly as arsenite under flooded conditions, with Bangladeshi soils contaminated by irrigation of groundwater showing a greater potential of As mobilization than other soils. Arsenic mobilization was best predicted by phosphate-extractable As in the soils.

  17. Chemical reactivity of labile sulfur of iron-sulfur proteins. The reaction of triphenyl phosphine.

    PubMed

    Manabe, T; Goda, K; Kimura, T

    1976-04-23

    The reaction of triphenyl phosphine to iron-sulfur proteins from adrenal cortex mitochondria, spinach chloroplasts, and Clostridium pasteurianum was investigated. As ethanol concentrations in the reaction mixture increased, the rate of the reaction decreased. In the simultaneous presence of 1 M KC1 and 5 M urea, the reaction rate reached at maximum. Under these conditions the initial rates of the decolorization reaction by the phosphine were found to be 8.7, 0.88, and 1.8 nmol of ferredoxin per min at 25 degrees C for adrenal, spinach, and clostridial ferredoxins, respectively. The kinetic curves for the reaction of the phosphine sulfide formation, the loss of labile sulfur, and the deterioriation of visible absorption showed a similar pattern with a comparable rate. During this reaction, the complete reduction of ferric ions present in ferredoxin was observed with a fast rate under either aerobic or anaerobic conditions. These results suggest that the iron atoms in ferredoxin are first reduced by the intramolecular reductants in the presence of triphenyl phosphine with the concomitant formation of S2-2, which then reacts with triphenyl phosphine resulting in the formation of triphenyl phosphine sulfide.

  18. Isolation and evolution of labile sulfur allotropes via kinetic encapsulation in interactive porous networks

    PubMed Central

    Kitagawa, Hakuba; Ohtsu, Hiroyoshi; Cruz-Cabeza, Aurora J.; Kawano, Masaki

    2016-01-01

    The isolation and characterization of small sulfur allotropes have long remained unachievable because of their extreme lability. This study reports the first direct observation of disulfur (S2) with X-ray crystallography. Sulfur gas was kinetically trapped and frozen into the pores of two Cu-based porous coordination networks co