Science.gov

Sample records for acid labile subunit

  1. Acid-Labile Subunit Deficiency and Growth Failure: Description of Two Novel Cases

    PubMed Central

    David, A; Rose, S.J.; Miraki-Moud, F.; Metherell, L.A.; Savage, M.O.; Clark, A.J.L.; Camacho-Hübner, C.

    2010-01-01

    Background/Aims Mutations in the acid-labile subunit (ALS) gene (IGFALS) have been associated with circulating insulin-like growth factor I (IGF-I) deficiency and short stature. Whether severe pubertal delay is also part of the phenotype remains controversial due to the small number of cases reported. We report 2 children with a history of growth failure due to novel IGFALS mutations. Methods The growth hormone receptor gene (GHR) and IGFALS were analyzed by direct sequencing. Ternary complex formation was studied by size exclusion chromatography. Results Two boys of 13.3 and 10.6 years, with pubertal stages 2 and 1, had mild short stature (−3.2 and −2.8 SDS, respectively) and a biochemical profile suggestive of growth hormone resistance. No defects were identified in the GHR. Patient 1 was homozygous for the IGFALS missense mutation P73L. Patient 2 was a compound heterozygote for the missense mutation L134Q and a novel GGC to AG substitution at position 546–548 (546–548delGGCinsAG). The latter causes a frameshift and the appearance of a premature stop codon. Size exclusion chromatography showed no peaks corresponding to ternary and binary complexes in either patient. Conclusion Screening of the IGFALS is important in children with short stature associated with low serum IGF-I, IGFBP-3 and ALS. PMID:20389102

  2. A new structural model of the acid-labile subunit: pathogenetic mechanisms of short stature-causing mutations.

    PubMed

    David, Alessia; Kelley, Lawrence A; Sternberg, Michael J E

    2012-12-01

    The acid-labile subunit (ALS) is the main regulator of IGF1 and IGF2 bioavailability. ALS deficiency caused by mutations in the ALS (IGFALS) gene often results in mild short stature in adulthood. Little is known about the ALS structure-function relationship. A structural model built in 1999 suggested a doughnut shape, which has never been observed in the leucine-rich repeat (LRR) superfamily, to which ALS belongs. In this study, we built a new ALS structural model, analysed its glycosylation and charge distribution and studied mechanisms by which missense mutations affect protein structure. We used three structure prediction servers and integrated their results with information derived from ALS experimental studies. The ALS model was built at high confidence using Toll-like receptor protein templates and resembled a horseshoe with an extensively negatively charged concave surface. Enrichment in prolines and disulphide bonds was found at the ALS N- and C-termini. Moreover, seven N-glycosylation sites were identified and mapped. ALS mutations were predicted to affect protein structure by causing loss of hydrophobic interactions (p.Leu134Gln), alteration of the amino acid backbone (p.Leu241Pro, p.Leu172Phe and p.Leu244Phe), loss of disulphide bridges (p.Cys60Ser and p.Cys540Arg), change in structural constrains (p.Pro73Leu), creation of novel glycosylation sites (p.Asp440Asn) or alteration of LRRs (p.Asn276Ser). In conclusion, our ALS structural model was identified as a highly confident prediction by three independent methods and disagrees with the previously published ALS model. The new model allowed us to analyse the ALS core and its caps and to interpret the potential structural effects of ALS mutations. PMID:22991227

  3. Interaction between acid-labile subunit and insulin-like growth factor binding protein 3 expressed in Xenopus oocytes.

    PubMed

    Choi, Kyung-Yi; Lee, Dong-Hee

    2002-03-31

    The acid-labile subunit (ALS) associates with the insulinlike growth factor (IGF)-I or II, and the IGF binding protein-3 (IGFBP-3) in order to form a 150-kD complex in the circulation. This complex may regulate the serum IGFs by restricting them in the vascular system and promoting their endocrine actions. Little is known about how ALS binds to IGFBP3, which connects the IGFs to ALS. Xenopus oocyte was utilized to study the function of ALS in assembling IGFs into the ternary complexes. Xenopus oocyte was shown to correctly translate in vitro transcribed mRNAs of ALS and IGFBP3. IGFBP3 and ALS mRNAs were injected in a mixture, and their products were immunoprecipitated by antisera against ALS and IGFBP3. Contrary to traditional reports that ALS interacts only with IGF-bound IGFBP3, this study shows that ALS is capable of forming a binary complex with IGFBP3 in the absence of IGF. When cross-linked by disuccinimidyl suberate, the band that represents the ALSIGFBP3 complex was evident on the PAGE. IGFBP3 movement was monitored according to the distribution between the hemispheres. Following a localized translation in the vegetal hemisphere, IGFBP3 remained in the vegetal half in the presence of ALS. However, the mutant IGFBP3 freely diffused into the animal half, despite the presence of ALS, which is different from the wild type IGFBP3. This study, therefore, suggests that ALS may play an important role in sequestering IGFBP3 polypeptides via the intermolecular aggregation. Studies using this heterologous model will lead to a better understanding of the IGFBP3 and ALS that assemble into the ternary structure and circulate the IGF system. PMID:12297028

  4. Monoclonal anti-acid-labile subunit oligopeptide antibodies and their use in a two-site immunoassay for ALS measurement in humans.

    PubMed

    Stadler, S; Wu, Z; Dressendörfer, R A; Morrison, K M; Khare, A; Lee, P D; Strasburger, C J

    2001-06-01

    Quantification of the acid-labile subunit (ALS) has to date been restricted to immunoassays utilizing polyclonal antibodies. By immunization with N-terminal and C-terminal specific ALS oligopeptides, we generated monoclonal antibodies (mAbs) that target ALS-specific sequences outside the nonspecific leucine-rich repeats in the ALS molecule. For mAb selection, a special screening method was developed. Monoclonal antibody 5C9, which targets the N-terminus of ALS, is immobilized and the anti-ALS mAb 7H3, directed against the C-terminus, is biotinylated and used as tracer Ab. Due to the extreme pH-lability of ALS, changes in immunorecognition of ALS were investigated after acidification for protein unfolding in different pH ranges and in a time-dependent manner. It was determined that acidification of the serum samples to pH 2.7 for 30 min, followed by neutralization and dilution to 1:100 was the optimal acid-neutralization method. For standardization purposes, a serum pool derived from healthy volunteers was assigned the value 1 U/ml ALS. The sandwich assay has a working range with a linear dose-response curve in a log/log system between 0.005 and 10 U/ml. ALS levels in seven acromegalic patients ranged from 2.0 to 4.2 U/ml, and in 12 untreated growth hormone deficient patients from 0.036 to 0.986 U/ml (mean=0.45 U/ml). After 12 months of growth hormone therapy, ALS levels increased significantly to 1.18+/-0.45 U/ml (mean+/-SD; p<0.0006). The increase ranged from 0.48 to 1.4 U/ml. The change in ALS with growth hormone (GH) therapy correlated closer with the change in IGF-I (r=0.798, p=0.0057; Spearman rank correlation) than with the change in insulin-like growth factor binding protein (IGFBP3; r=0.549, p=0.057). This specific sandwich assay for the measurement of ALS provides a potentially valuable indicator of growth hormone secretory status. With this mAb-based immunofluorometric assay, the nonspecific detection of other proteins containing leucine-rich repeat

  5. Lability of copper bound to humic acid.

    PubMed

    Mao, Lingchen; Young, Scott D; Bailey, Elizabeth H

    2015-07-01

    Geochemical speciation models generally include the assumption that all metal bound to humic acid and fulvic acid (HA, FA) is labile. However, in the current study, we determined the presence of a soluble 'non-labile' Cu fraction bound to HA extracted from grassland and peat soils. This was quantified by determining isotopically-exchangeable Cu (E-value) and EDTA-extraction of HA-bound Cu, separated by size-exclusion chromatography (SEC) and assayed by coupled ICP-MS. Evidence of time-dependent Cu fixation by HA was found during the course of an incubation study (160 d); up to 50% of dissolved HA-bound Cu was not isotopically exchangeable. This result was supported by extraction with EDTA where approximately 40% of Cu remained bound to HA despite dissolution in 0.05 M Na2-EDTA. The presence of a substantial non-labile metal fraction held by HA challenges the assumption of wholly reversible equilibrium which is central to current geochemical models of metal binding to humic substances. PMID:25863164

  6. Effect of site-directed mutagenic alterations on ADP-ribosyltransferase activity of the A subunit of Escherichia coli heat-labile enterotoxin.

    PubMed Central

    Lobet, Y; Cluff, C W; Cieplak, W

    1991-01-01

    Previous studies of the S1 subunit of pertussis toxin, an NAD(+)-dependent ADP-ribosyltransferase, suggested that a small amino-terminal region of amino acid sequence similarity to the active fragments of both cholera toxin and Escherichia coli heat-labile enterotoxin represents a region containing critical active-site residues that might be involved in the binding of the substrate NAD+. Other studies of two other bacterial toxins possessing ADP-ribosyltransferase activity, diphtheria toxin and Pseudomonas exotoxin A, have revealed the presence of essential glutamic acid residues vicinal to the active site. To help determine the relevance of these observations to activities of the enterotoxins, the A-subunit gene of the E. coli heat-labile enterotoxin was subjected to site-specific mutagenesis in the region encoding the amino-terminal region of similarity to the S1 subunit of pertussis toxin delineated by residues 6 through 17 and at two glutamic acid residues, 110 and 112, that are conserved in the active domains of all of the heat-labile enterotoxin variants and in cholera toxin. Mutant proteins in which arginine 7 was either deleted or replaced with lysine exhibited undetectable levels of ADP-ribosyltransferase activity. However, limited trypsinolysis of the arginine 7 mutants yielded fragmentation kinetics that were different from that yielded by the wild-type recombinant subunit or the authentic A subunit. In contrast, mutant proteins in which glutamic acid residues at either position 110 or 112 were replaced with aspartic acid responded like the wild-type subunit upon limited trypsinolysis, while exhibiting severely depressed, but detectable, ADP-ribosyltransferase activity. The latter results may indicate that either glutamic acid 110 or glutamic acid 112 of the A subunit of heat-labile enterotoxin is analogous to those active-site glutamic acids identified in several other ADP-ribosylating toxins. Images PMID:1908825

  7. Evaluation of ascorbic acid in protecting labile folic acid derivatives.

    PubMed Central

    Wilson, S D; Horne, D W

    1983-01-01

    The use of ascorbic acid as a reducing agent to protect labile, reduced derivatives of folic acid has been evaluated by high-performance liquid chromatographic separations and Lactobacillus casei microbiological assay of eluate fractions. Upon heating for 10 min at 100 degrees C, solutions of tetrahydropteroylglutamic acid (H4PteGlu) in 2% sodium ascorbate gave rise to 5,10-methylene-H4PteGlu and 5-methyl-H4PteGlu. H2PteGlu acid gave rise to 5-methyl-H4PteGlu and PteGlu. 10-Formyl-H4PteGlu gave rise to 5-formyl-H4PteGlu and 10-formyl-PteGlu. 5-Formyl-H4-PteGlu gave rise to a small amount of 10-formyl-PteGlu. 5-Methyl-H4PteGlu and PteGlu appeared stable to these conditions. These interconversions were not seen when solutions of these folate derivatives were kept at 0 degrees C in 1% ascorbate. These observations indicate that elevated temperatures are necessary for the interconversions of folates in ascorbate solutions. Assays of ascorbic acid solutions indicated the presence of formaldehyde (approximately equal to 6 mM). This was confirmed by the identification of 3,5-diacetyl-1,4-dihydrolutidine by UV, visible, and fluorescence spectroscopy and by thin-layer chromatography of chloroform extracts of the reaction mixture of ascorbic acid solutions, acetylacetone, and ammonium acetate. These results indicate that solutions of sodium ascorbate used at elevated temperatures are not suitable for extracting tissue for the subsequent assay of the individual folic acid derivatives. PMID:6415653

  8. Production of Escherichia coli heat labile toxin (LT) B subunit in soybean seed and analysis of its immunogenicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Expression of the heat-labile toxin B subunit of enterotoxigenic Escherichia coli (LT) B was directed to the endoplasmic reticulum (ER) of soybean seed storage parenchyma cells for immunogen sequestration in de novo synthesized, ER-derived protein accretions in transgenic seed. Pentameric LTB accumu...

  9. Enantiomeric Excesses of Acid Labile Amino Acid Precursors of the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Pizzarello, Sandra

    1998-01-01

    Amino acids present in carbonaceous chondrite are extracted in water in part as free compounds and in approximately equal part as acid labile precursors. On the assumption that they would be free of contamination, the precursors of two Murchison amino acids that have terrestrial occurrence, alanine and glutamic acid, have been targeted for analysis of their enantiomeric ratios. Pyroglutamic acid, the precursor of glutamic acid, was found with an L-enantiomeric excess comparable to that of the free acid, while alanine's precursor, N-acetyl alanine, appears approximately racemic. Also alpha-imino propioacetic acid, a proposed end product of alanine synthesis in the meteorite, was analyzed and found racemic.

  10. Mass production of somatic embryos expressing Escherichia coli heat-labile enterotoxin B subunit in Siberian ginseng.

    PubMed

    Kang, Tae-Jin; Lee, Won-Seok; Choi, Eun-Gyung; Kim, Jae-Whune; Kim, Bang-Geul; Yang, Moon-Sik

    2006-01-24

    The B subunit of Escherichia coli heat-labile toxin (LTB) is a potent mucosal immunogen and immunoadjuvant for co-administered antigens. In order to produce large scale of LTB for the development of edible vaccine, we used transgenic somatic embryos of Siberian ginseng, which is known as medicinal plant. When transgenic somatic embryos were cultured in 130L air-lift type bioreactor, they were developed to mature somatic embryos through somatic embryogenesis and contained approximately 0.36% LTB of the total soluble protein. Enzyme-linked immunosorbent assay indicated that the somatic embryo-synthesized LTB protein bound specifically to GM1-ganglioside, suggesting the LTB subunits formed active pentamers. Therefore, the use of the bioreactor system for expression of LTB proteins in somatic embryos allows for continuous mass production in a short-term period. PMID:16174540

  11. Escherichia coli heat-labile enterotoxin B subunit is a more potent mucosal adjuvant than its vlosely related homologue, the B subunit of cholera toxin.

    PubMed

    Millar, D G; Hirst, T R; Snider, D P

    2001-05-01

    Although cholera toxin (Ctx) and Escherichia coli heat-labile enterotoxin (Etx) are known to be potent mucosal adjuvants, it remains controversial whether the adjuvanticity of the holotoxins extends to their nontoxic, receptor-binding B subunits. Here, we have systematically evaluated the comparative adjuvant properties of highly purified recombinant EtxB and CtxB. EtxB was found to be a more potent adjuvant than CtxB, stimulating responses to hen egg lysozyme when the two were coadministered to mice intranasally, as assessed by enhanced serum and secretory antibody titers as well as by stimulation of lymphocyte proliferation in spleen and draining lymph nodes. These results indicate that, although structurally very similar, EtxB and CtxB have strikingly different immunostimulatory properties and should not be considered equivalent as prospective vaccine adjuvants. PMID:11292779

  12. Preparation of biocompatible heat-labile enterotoxin subunit B-bovine serum albumin nanoparticles for improving tumor-targeted drug delivery via heat-labile enterotoxin subunit B mediation

    PubMed Central

    Zhao, Liang; Su, Rongjian; Cui, Wenyu; Shi, Yijie; Liu, Liwei; Su, Chang

    2014-01-01

    Heat-labile enterotoxin subunit B (LTB) is a non-catalytic protein from a pentameric subunit of Escherichia coli. Based on its function of binding specifically to ganglioside GM1 on the surface of cells, a novel nanoparticle (NP) composed of a mixture of bovine serum albumin (BSA) and LTB was designed for targeted delivery of 5-fluorouracil to tumor cells. BSA-LTB NPs were characterized by determination of their particle size, polydispersity, morphology, drug encapsulation efficiency, and drug release behavior in vitro. The internalization of fluorescein isothiocyanate-labeled BSA-LTB NPs into cells was observed using fluorescent imaging. Results showed that BSA-LTB NPs presented a narrow size distribution with an average hydrodynamic diameter of approximately 254±19 nm and a mean zeta potential of approximately −19.95±0.94 mV. In addition, approximately 80.1% of drug was encapsulated in NPs and released in the biphasic pattern. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that BSA-LTB NPs exhibited higher cytotoxic activity than non-targeted NPs (BSA NPs) in SMMC-7721 cells. Fluorescent imaging results proved that, compared with BSA NPs, BSA-LTB NPs could greatly enhance cellular uptake. Hence, the results indicate that BSA-LTB NPs could be a potential nanocarrier to improve targeted delivery of 5-fluorouracil to tumor cells via mediation of LTB. PMID:24851048

  13. Inhibition of Class II Major Histocompatibility Complex Antigen Processing by Escherichia coli Heat-Labile Enterotoxin Requires an Enzymatically Active A Subunit

    PubMed Central

    Matousek, Milita P.; Nedrud, John G.; Cieplak, Witold; Harding, Clifford V.

    1998-01-01

    Escherichia coli heat-labile enterotoxin (LT) and cholera toxin (CT) were found to inhibit intracellular antigen processing. Processing was not inhibited by mutant LT with attenuated ADP-ribosyltransferase activity, CT B or LT B subunit, which enhanced presentation of preexisting cell surface peptide-class II major histocompatibility complex complexes. Inhibition of antigen processing correlated with A subunit ADP-ribosyltransferase activity. PMID:9632629

  14. The acid lability of the glycosidic bonds of L-iduronic acid residues in glycosaminoglycans.

    PubMed Central

    Conrad, H E

    1980-01-01

    Heparan sulphate, heparin and dermatan sulphate were hydrolysed in 0.5M-H2SO4 at 100 degrees C. At intervals portions of the hydrolysate were removed and treated with HNO2 at pH 4.0 to cleave the glycosidic bonds of the N-unsubstituted hexosamine residues and to convert both free and combined hexosamines into anhydrohexoses. These hydrolysis/deamination mixtures were reduced with NaB3H4 and analysed by radiochromatography for alpha-L-iduronosylanhydrohexose, beta-D-glucuronosylanhydrohexose, and the free uronic acids and anhydrohexose. These data gave a kinetic profile of the cleavage of the alpha-L-iduronosyl and the beta-D-glucuronosyl bonds in these glycosaminoglycans. The beta-D-glucuronosyl bonds showed the expected resistance to acid hydrolysis, but the alpha-L-iduronosyl bonds were found to be as labile to acid as some neutral sugar glycosides. This unusual lability of alpha-D-iduronosyl-anhydromannitol and beta-D-glucuronosylanhydromannitol. The procedures used to follow the kinetics of glycosaminoglycan hydrolysis can also be sued to obtain quantitative analyses of L-iduronic acid, D-glucuronic acid and hexosamine in these polymers. PMID:6453583

  15. Mutations in the A subunit affect yield, stability, and protease sensitivity of nontoxic derivatives of heat-labile enterotoxin.

    PubMed

    Magagnoli, C; Manetti, R; Fontana, M R; Giannelli, V; Giuliani, M M; Rappuoli, R; Pizza, M

    1996-12-01

    Heat-labile toxin (LT) is a protein related to cholera toxin, produced by enterotoxigenic Escherichia coli strains, that is organized as an AB5 complex. A number of nontoxic derivatives of LT, useful for new or improved vaccines against diarrheal diseases or as mucosal adjuvants, have been constructed by site-directed mutagenesis. Here we have studied the biochemical properties of the nontoxic mutants LT-K7 (Arg-7-->Lys), LT-D53 (Val-53-->Asp), LT-K63 (Ser-63-->Lys), LT-K97 (Val-97-->Lys), LT-K104 (Tyr-104-->Lys), LT-K114 (Ser-114-->Lys), and LT-K7/K97 (Arg-7-->Lys and Val-97-->Lys). We have found that mutations in the A subunit may have profound effects on the ability to form the AB5 structure and on the stability and trypsin sensitivity of the purified proteins. Unstable mutants, during long-term storage at 4 degrees C, showed a decrease in the amount of the assembled protein in solution and a parallel appearance of soluble monomeric B subunit. This finding suggests that the stability of the B pentamer is influenced by the A subunit which is associated with it. Among the seven nontoxic mutants tested, LT-K63 was found to be efficient in AB5 production, extremely stable during storage, resistant to proteolytic attack, and very immunogenic. In conclusion, LT-K63 is a good candidate for the development of antidiarrheal vaccines and mucosal adjuvants. PMID:8945604

  16. Enzymatically- and Ultraviolet-labile Phosphorus in Humic Acid Fractions From Rice Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humic acid is an important soil component which can improve nutrient availability and impact other important chemical, biological, and physical properties of soils. We investigated the lability of phosphorus (P) in the mobile humic acid (MHA) and calcium humate (CaHA) fractions of four rice soils as...

  17. Quantitative Proteomic Analysis of Escherichia coli Heat-Labile Toxin B Subunit (LTB) with Enterovirus 71 (EV71) Subunit VP1.

    PubMed

    Liu, Lin; Ma, Yongping; Zhou, Huicong; Wu, Mingjun

    2016-01-01

    The nontoxic heat-labile toxin (LT) B subunit (LTB) was used as mucosal adjuvant experimentally. However, the mechanism of LTB adjuvant was still unclear. The LTB and enterovirus 71 (EV71) VP1 subunit (EVP1) were constructed in pET32 and expressed in E. coli BL21, respectively. The immunogenicity of purified EVP1 and the adjuvanticity of LTB were evaluated via intranasal immunization EVP1 plus LTB in Balb/c mice. In order to elucidate the proteome change triggered by the adjuvant of LTB, the proteomic profiles of LTB, EVP1, and LTB plus EVP1 were quantitatively analyzed by iTRAQ-LC-MS/MS (isobaric tags for relative and absolute quantitation; liquid chromatography-tandem mass spectrometry) in murine macrophage RAW264.7. The proteomic data were analyzed by bioinformatics and validated by western blot analysis. The predicted protein interactions were confirmed using LTB pull-down and the LTB processing pathway was validated by confocal microscopy. The results showed that LTB significantly boosted EVP1 specific systematic and mucosal antibodies. A total of 3666 differential proteins were identified in the three groups. Pathway enrichment of proteomic data predicted that LTB upregulated the specific and dominant MAPK (mitogen-activated protein kinase) signaling pathway and the protein processing in endoplasmic reticulum (PPER) pathway, whereas LTB or EVP1 did not significantly upregulate these two signaling pathways. Confocal microscopy and LTB pull-down assays confirmed that the LTB adjuvant was endocytosed and processed through endocytosis (ENS)-lysosomal-endoplasmic reticulum (ER) system. PMID:27618897

  18. Forms and Lability of Phosphorus in Humic Acid Fractions of Hord Silt Loam Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) has long been known to be present in soil humic fractions, but little is known about specific P forms in humic fractions, or their lability. We extracted the mobile humic acid (MHA) and recalcitrant calcium humate (CaHA) fractions from a Nebraska Hord silt loam soil under continuous c...

  19. The Arg7Lys mutant of heat-labile enterotoxin exhibits great flexibility of active site loop 47-56 of the A subunit.

    PubMed

    van den Akker, F; Merritt, E A; Pizza, M; Domenighini, M; Rappuoli, R; Hol, W G

    1995-09-01

    The heat-labile enterotoxin from Escherichia coli (LT) is a member of the cholera toxin family. These and other members of the larger class of AB5 bacterial toxins act through catalyzing the ADP-ribosylation of various intracellular targets including Gs alpha. The A subunit is responsible for this covalent modification, while the B pentamer is involved in receptor recognition. We report here the crystal structure of an inactive single-site mutant of LT in which arginine 7 of the A subunit has been replaced by a lysine residue. The final model contains 103 residues for each of the five B subunits, 175 residues for the A1 subunit, and 41 residues for the A2 subunit. In this Arg7Lys structure the active site cleft within the A subunit is wider by approximately 1 A than is seen in the wild-type LT. Furthermore, a loop near the active site consisting of residues 47-56 is disordered in the Arg7Lys structure, even though the new lysine residue at position 7 assumes a position which virtually coincides with that of Arg7 in the wild-type structure. The displacement of residues 47-56 as seen in the mutant structure is proposed to be necessary for allowing NAD access to the active site of the wild-type LT. On the basis of the differences observed between the wild-type and Arg7Lys structures, we propose a model for a coordinated sequence of conformational changes required for full activation of LT upon reduction of disulfide bridge 187-199 and cleavage of the peptide loop between the two cysteines in the A subunit.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7669757

  20. Acid-Labile Amphiphilic PEO-b-PPO-b-PEO Copolymers: Degradable Poloxamer Analogs.

    PubMed

    Worm, Matthias; Kang, Biao; Dingels, Carsten; Wurm, Frederik R; Frey, Holger

    2016-05-01

    Poly ((ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)) triblock copolymers commonly known as poloxamers or Pluronics constitute an important class of nonionic, biocompatible surfactants. Here, a method is reported to incorporate two acid-labile acetal moieties in the backbone of poloxamers to generate acid-cleavable nonionic surfactants. Poly(propylene oxide) is functionalized by means of an acetate-protected vinyl ether to introduce acetal units. Three cleavable PEO-PPO-PEO triblock copolymers (Mn,total = 6600, 8000, 9150 g·mol(-1) ; Mn,PEO = 2200, 3600, 4750 g·mol(-1) ) have been synthesized using anionic ring-opening polymerization. The amphiphilic copolymers exhibit narrow molecular weight distributions (Ð = 1.06-1.08). Surface tension measurements reveal surface-active behavior in aqueous solution comparable to established noncleavable poloxamers. Complete hydrolysis of the labile junctions after acidic treatment is verified by size exclusion chromatography. The block copolymers have been employed as surfactants in a miniemulsion polymerization to generate polystyrene (PS) nanoparticles with mean diameters of ≈200 nm and narrow size distribution, as determined by dynamic light scattering and scanning electron microscopy. Acid-triggered precipitation facilitates removal of surfactant fragments from the nanoparticles, which simplifies purification and enables nanoparticle precipitation "on demand." PMID:27000789

  1. A genetically detoxified derivative of heat-labile Escherichia coli enterotoxin induces neutralizing antibodies against the A subunit.

    PubMed

    Pizza, M; Fontana, M R; Giuliani, M M; Domenighini, M; Magagnoli, C; Giannelli, V; Nucci, D; Hol, W; Manetti, R; Rappuoli, R

    1994-12-01

    Escherichia coli enterotoxin (LT) and the homologous cholera toxin (CT) are A-B toxins that cause travelers' diarrhea and cholera, respectively. So far, experimental live and killed vaccines against these diseases have been developed using only the nontoxic B portion of these toxins. The enzymatically active A subunit has not been used because it is responsible for the toxicity and it is reported to induce a negligible titer of toxin neutralizing antibodies. We used site-directed mutagenesis to inactivate the ADP-ribosyltransferase activity of the A subunit and obtained nontoxic derivatives of LT that elicited a good titer of neutralizing antibodies recognizing the A subunit. These LT mutants and equivalent mutants of CT may be used to improve live and killed vaccines against cholera and enterotoxinogenic E. coli. PMID:7964489

  2. CD44 Binding to Hyaluronic Acid Is Redox Regulated by a Labile Disulfide Bond in the Hyaluronic Acid Binding Site

    PubMed Central

    Kellett-Clarke, Helena; Stegmann, Monika; Barclay, A. Neil; Metcalfe, Clive

    2015-01-01

    CD44 is the primary leukocyte cell surface receptor for hyaluronic acid (HA), a component of the extracellular matrix. Enzymatic post translational cleavage of labile disulfide bonds is a mechanism by which proteins are structurally regulated by imparting an allosteric change and altering activity. We have identified one such disulfide bond in CD44 formed by Cys77 and Cys97 that stabilises the HA binding groove. This bond is labile on the surface of leukocytes treated with chemical and enzymatic reducing agents. Analysis of CD44 crystal structures reveal the disulfide bond to be solvent accessible and in the–LH hook configuration characteristic of labile disulfide bonds. Kinetic trapping and binding experiments on CD44-Fc chimeric proteins show the bond is preferentially reduced over the other disulfide bonds in CD44 and reduction inhibits the CD44-HA interaction. Furthermore cells transfected with CD44 no longer adhere to HA coated surfaces after pre-treatment with reducing agents. The implications of CD44 redox regulation are discussed in the context of immune function, disease and therapeutic strategies. PMID:26379032

  3. Design and characterization of a chimeric multiepitope construct containing CfaB, heat-stable toxoid, CssA, CssB, and heat-labile toxin subunit B of enterotoxigenic Escherichia coli: a bioinformatic approach.

    PubMed

    Zeinalzadeh, Narges; Salmanian, Ali Hatef; Ahangari, Ghasem; Sadeghi, Mahdi; Amani, Jafar; Bathaie, S Zahra; Jafari, Mahyat

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains are the most common cause of bacterial diarrhea in children in developing countries and travelers to these areas. Enterotoxins and colonization factors (CFs) are two key virulence factors in ETEC pathogenesis, and the heterogeneity of the CFs is the bottleneck in reaching an effective vaccine. In this study, a candidate subunit vaccine, which is composed of CfaB, CssA and CssB, structural subunits of colonization factor antigen I and CS6 CFs, labile toxin subunit B, and the binding subunit of heat-labile and heat-stable toxoid, was designed to provide broad-spectrum protection against ETEC. The different features of chimeric gene, its mRNA stability, and chimeric protein properties were analyzed by using bioinformatic tools. The optimized chimeric gene was chemically synthesized and expressed successfully in a prokaryotic host. The purified protein was used for assessment of bioinformatic data by experimental methods. PMID:24372617

  4. Evaluating the A-Subunit of the Heat-Labile Toxin (LT) As an Immunogen and a Protective Antigen Against Enterotoxigenic Escherichia coli (ETEC).

    PubMed

    Norton, Elizabeth B; Branco, Luis M; Clements, John D

    2015-01-01

    Diarrheal illness contributes to malnutrition, stunted growth, impaired cognitive development, and high morbidity rates in children worldwide. Enterotoxigenic Escherichia coli (ETEC) is a major contributor to this diarrheal disease burden. ETEC cause disease in the small intestine by means of colonization factors and by production of a heat-labile enterotoxin (LT) and/or a small non-immunogenic heat-stable enterotoxin (ST). Overall, the majority of ETEC produce both ST and LT. LT induces secretion via an enzymatically active A-subunit (LT-A) and a pentameric, cell-binding B-subunit (LT-B). The importance of anti-LT antibodies has been demonstrated in multiple clinical and epidemiological studies, and a number of potential ETEC vaccine candidates have included LT-B as an important immunogen. However, there is limited information about the potential contribution of LT-A to development of protective immunity. In the current study, we evaluate the immune response against the A-subunit of LT as well as the A-subunit's potential as a protective antigen when administered alone or in combination with the B-subunit of LT. We evaluated human sera from individuals challenged with a prototypic wild-type ETEC strain as well as sera from individuals living in an ETEC endemic area for the presence of anti-LT, anti-LT-A and anti-LT-B antibodies. In both cases, a significant number of individuals intentionally or endemically infected with ETEC developed antibodies against both LT subunits. In addition, animals immunized with the recombinant proteins developed robust antibody responses that were able to neutralize the enterotoxic and cytotoxic effects of native LT by blocking binding and entry into cells (anti-LT-B) or the intracellular enzymatic activity of the toxin (anti-LT-A). Moreover, antibodies to both LT subunits acted synergistically to neutralize the holotoxin when combined. Taken together, these data support the inclusion of both LT-A and LT-B in prospective vaccines

  5. Evaluating the A-Subunit of the Heat-Labile Toxin (LT) As an Immunogen and a Protective Antigen Against Enterotoxigenic Escherichia coli (ETEC)

    PubMed Central

    Norton, Elizabeth B.; Branco, Luis M.; Clements, John D.

    2015-01-01

    Diarrheal illness contributes to malnutrition, stunted growth, impaired cognitive development, and high morbidity rates in children worldwide. Enterotoxigenic Escherichia coli (ETEC) is a major contributor to this diarrheal disease burden. ETEC cause disease in the small intestine by means of colonization factors and by production of a heat-labile enterotoxin (LT) and/or a small non-immunogenic heat-stable enterotoxin (ST). Overall, the majority of ETEC produce both ST and LT. LT induces secretion via an enzymatically active A-subunit (LT-A) and a pentameric, cell-binding B-subunit (LT-B). The importance of anti-LT antibodies has been demonstrated in multiple clinical and epidemiological studies, and a number of potential ETEC vaccine candidates have included LT-B as an important immunogen. However, there is limited information about the potential contribution of LT-A to development of protective immunity. In the current study, we evaluate the immune response against the A-subunit of LT as well as the A-subunit’s potential as a protective antigen when administered alone or in combination with the B-subunit of LT. We evaluated human sera from individuals challenged with a prototypic wild-type ETEC strain as well as sera from individuals living in an ETEC endemic area for the presence of anti-LT, anti-LT-A and anti-LT-B antibodies. In both cases, a significant number of individuals intentionally or endemically infected with ETEC developed antibodies against both LT subunits. In addition, animals immunized with the recombinant proteins developed robust antibody responses that were able to neutralize the enterotoxic and cytotoxic effects of native LT by blocking binding and entry into cells (anti-LT-B) or the intracellular enzymatic activity of the toxin (anti-LT-A). Moreover, antibodies to both LT subunits acted synergistically to neutralize the holotoxin when combined. Taken together, these data support the inclusion of both LT-A and LT-B in prospective vaccines

  6. Local and systemic immune responses induced by a recombinant chimeric protein containing Mycoplasma hyopneumoniae antigens fused to the B subunit of Escherichia coli heat-labile enterotoxin LTB.

    PubMed

    Marchioro, Silvana Beutinger; Fisch, Andressa; Gomes, Charles K; Jorge, Sérgio; Galli, Vanessa; Haesebrouck, Freddy; Maes, Dominiek; Dellagostin, Odir; Conceição, Fabricio R

    2014-09-17

    A multi-antigen chimera composed of three antigens of Mycoplasma hyopneumoniae (R1, P42, and NrdF) and the mucosal adjuvant Escherichia coli heat-labile enterotoxin B subunit (LTB) was constructed, and its antigenic and immunogenic properties were evaluated in mice and pigs. In addition, we compared the effect of the fusion and co-administration of these proteins in mice. Antibodies against each subunit recognized the chimeric protein. Intranasal and intramuscular immunization of mice with the chimeric protein significantly increased IgG and IgA levels in the serum and tracheobronchial lavages, respectively, against some of the antigens present in the chimeric. Swine immunized with the chimeric protein developed an immune response against all M. hyopneumoniae antigens present in the fusion with a statistically significant difference (P<0.05). The adjuvant rLTB enhanced the immune response in both fused and co-administered antigens; however, better results were obtained with the chimeric protein. This multi-antigen is a promising vaccine candidate that may help control M. hyopneumoniae infection. PMID:25091529

  7. Discovery of the cell-penetrating function of A2 domain derived from LTA subunit of Escherichia coli heat-labile enterotoxin.

    PubMed

    Liu, Di; Guo, Hua; Zheng, Wenyun; Zhang, Na; Wang, Tianwen; Wang, Ping; Ma, Xingyuan

    2016-06-01

    Heat-labile enterotoxin (LT) is a protein toxin produced by enterotoxigenic Escherichia coli (ETEC). As a bacterial toxin, LT holotoxin can enter intestinal epithelial cells and cause diarrhea. In addition, LT is also a powerful mucosal adjuvant capable of enhancing the strong immune responses to co-administered antigens. However, the LT immunological mechanism is still not clear in some aspects, especially with the respect to how the LTA subunit functions alone. Here, we discovered that the A2 domain of LTA could carry a fluorescent protein into cells, whose function is similar to a cell-penetrating peptide. The transmembrane-transporting ability of the A2 domain is non-specific in its cell-penetrating function, which was shown through testing with different cell types. Moreover, the LTA2 fusion protein penetrated a fluorescently labeled cell membrane that identified LTA2 internalization through membrane transport pathways, and showed it finally localized in the endoplasmic reticulum. Furthermore, low-temperature stress and pharmacological agent treatments showed that the LTA2 internalization route is a temperature-dependent process involving the clathrin-mediated endocytosis and the macropinocytosis pathways. These results could explain the internalization of the LTA subunit alone without the LTB pentamer, contributing to a better understanding of LTA working as a mucosal adjuvant; they also suggest that the A2 domain could be used as a novel transport vehicle for research and treatment of disease. PMID:26960316

  8. Facile synthesis of acid-labile polymers with pendent ortho esters.

    PubMed

    Cheng, Jing; Ji, Ran; Gao, Shi-Juan; Du, Fu-Sheng; Li, Zi-Chen

    2012-01-01

    This work presents a facile approach for preparation of acid-labile and biocompatible polymers with pendent cyclic ortho esters, which is based on the efficient and mild reactions between cyclic ketene acetal (CKA) and hydroxyl groups. Three CKAs, 2-ethylidene-1,3-dioxane (EDO), 2-ethylidene-1,3-dioxolane (EDL), and 2-ethylidene-4- methyl-1,3-dioxolane (EMD) were prepared from the corresponding cyclic vinyl acetals by catalytic isomerization of the double bond. The reaction of CKAs with different alcohols and diols was examined using trace of p-toluenesulfonic acid as a catalyst. For the monohydroxyl alcohols, cyclic ortho esters were formed by simple addition of the hydroxyl group toward CKAs with ethanol showing a much greater reactivity than iso-propanol. When 1,2- or 1,3-diols were used to react with the CKAs, we observed the isomerized cyclic ortho esters besides the simple addition products. Biocompatible polyols, that is, poly(2-hydroxyethyl acrylate) (PHEA) and poly(vinyl alcohol) (PVA) were then modified with CKAs, and the degree of substitution of the pendent ortho esters can be easily tuned by changing feed ratio. Both the small molecule ortho esters and the CKA-modified polymers demonstrate the pH-dependent hydrolysis profiles, which depend also on the chemical structure of the ortho esters as well as the polymer hydrophobicity. PMID:22176024

  9. Acid-Labile Poly(glycidyl methacrylate)-Based Star Gene Vectors.

    PubMed

    Yang, Yan-Yu; Hu, Hao; Wang, Xing; Yang, Fei; Shen, Hong; Xu, Fu-Jian; Wu, De-Cheng

    2015-06-10

    It was recently reported that ethanolamine-functionalized poly(glycidyl methacrylate) (PGEA) possesses great potential applications in gene therapy due to its good biocompatibility and high transfection efficiency. Importing responsivity into PGEA vectors would further improve their performances. Herein, a series of responsive star-shaped vectors, acetaled β-cyclodextrin-PGEAs (A-CD-PGEAs) consisting of a β-CD core and five PGEA arms linked by acid-labile acetal groups, were proposed and characterized as therapeutic pDNA vectors. The A-CD-PGEAs owned abundant hydroxyl groups to shield extra positive charges of A-CD-PGEAs/pDNA complexes, and the star structure could decrease charge density. The incorporation of acetal linkers endowed A-CD-PGEAs with pH responsivity and degradation. In weakly acidic endosome, the broken acetal linkers resulted in decomposition of A-CD-PGEAs and morphological transformation of A-CD-PGEAs/pDNA complexes, lowering cytotoxicity and accelerating release of pDNA. In comparison with control CD-PGEAs without acetal linkers, A-CD-PGEAs exhibited significantly better transfection performances. PMID:25993557

  10. Incorporation of membrane-anchored flagellin or Escherichia coli heat-labile enterotoxin B subunit enhances the immunogenicity of rabies virus-like particles in mice and dogs.

    PubMed

    Qi, Yinglin; Kang, Hongtao; Zheng, Xuexing; Wang, Hualei; Gao, Yuwei; Yang, Songtao; Xia, Xianzhu

    2015-01-01

    Rabies remains an important worldwide public health threat, so safe, effective, and affordable vaccines are still being sought. Virus-like particle-based vaccines targeting various viral pathogens have been successfully produced, licensed, and commercialized. Here, we designed and constructed two chimeric rabies virus-like particles (cRVLPs) containing rabies virus (RABV) glycoprotein (G), matrix (M) protein, and membrane-anchored flagellin (EVLP-F) or Escherichia coli heat-labile enterotoxin B subunit (EVLP-L) as molecular adjuvants to enhance the immune response against rabies. The immunogenicity and potential of cRVLPs as novel rabies vaccine were evaluated by intramuscular vaccination in mouse and dog models. Mouse studies demonstrated that both EVLP-F and EVLP-L induced faster and larger virus-neutralizing antibodies (VNAs) responses and elicited greater numbers of CD4(+) and CD8(+) T cells secreting IFN-γ or IL-4 compared with a standard rabies VLP (sRVLP) containing only G and M. Moreover, cRVLPs recruited and/or activated more B cells and dendritic cells in inguinal lymph nodes. EVLP-F induced a strong, specific IgG2a response but not an IgG1 response, suggesting the activation of Th1 class immunity; in contrast, Th2 class immunity was observed with EVLP-L. The significantly enhanced humoral and cellular immune responses induced by cRVLPs provided complete protection against lethal challenge with RABV. Most importantly, dogs vaccinated with EVLP-F or EVLP-L exhibited increased VNA titers in sera and enhanced IFN-γ and IL-4 secretion from peripheral blood mononuclear cells. Taken together, these results illustrate that when incorporated into sRVLP, membrane-anchored flagellin, and heat-labile enterotoxin B subunit possess strong adjuvant activity. EVLP-F and EVLP-L induce significantly enhanced RABV-specific humoral and cellular immune responses in both mouse and dog. Therefore, these cRVLPs may be developed as safe and more efficacious rabies vaccine

  11. Incorporation of membrane-anchored flagellin or Escherichia coli heat-labile enterotoxin B subunit enhances the immunogenicity of rabies virus-like particles in mice and dogs

    PubMed Central

    Qi, Yinglin; Kang, Hongtao; Zheng, Xuexing; Wang, Hualei; Gao, Yuwei; Yang, Songtao; Xia, Xianzhu

    2015-01-01

    Rabies remains an important worldwide public health threat, so safe, effective, and affordable vaccines are still being sought. Virus-like particle-based vaccines targeting various viral pathogens have been successfully produced, licensed, and commercialized. Here, we designed and constructed two chimeric rabies virus-like particles (cRVLPs) containing rabies virus (RABV) glycoprotein (G), matrix (M) protein, and membrane-anchored flagellin (EVLP-F) or Escherichia coli heat-labile enterotoxin B subunit (EVLP-L) as molecular adjuvants to enhance the immune response against rabies. The immunogenicity and potential of cRVLPs as novel rabies vaccine were evaluated by intramuscular vaccination in mouse and dog models. Mouse studies demonstrated that both EVLP-F and EVLP-L induced faster and larger virus-neutralizing antibodies (VNAs) responses and elicited greater numbers of CD4+ and CD8+ T cells secreting IFN-γ or IL-4 compared with a standard rabies VLP (sRVLP) containing only G and M. Moreover, cRVLPs recruited and/or activated more B cells and dendritic cells in inguinal lymph nodes. EVLP-F induced a strong, specific IgG2a response but not an IgG1 response, suggesting the activation of Th1 class immunity; in contrast, Th2 class immunity was observed with EVLP-L. The significantly enhanced humoral and cellular immune responses induced by cRVLPs provided complete protection against lethal challenge with RABV. Most importantly, dogs vaccinated with EVLP-F or EVLP-L exhibited increased VNA titers in sera and enhanced IFN-γ and IL-4 secretion from peripheral blood mononuclear cells. Taken together, these results illustrate that when incorporated into sRVLP, membrane-anchored flagellin, and heat-labile enterotoxin B subunit possess strong adjuvant activity. EVLP-F and EVLP-L induce significantly enhanced RABV-specific humoral and cellular immune responses in both mouse and dog. Therefore, these cRVLPs may be developed as safe and more efficacious rabies vaccine

  12. Construction of Bifidobacterium infantis as a live oral vaccine that expresses antigens of the major fimbrial subunit (CfaB) and the B subunit of heat-labile enterotoxin (LTB) from enterotoxigenic Escherichia coli.

    PubMed

    Ma, Yongping; Luo, Yaolin; Huang, Xueping; Song, Fangzhou; Liu, Geli

    2012-02-01

    We sought to develop Bifidobacterium infantis (BI) as a vehicle for the expression of heterologous antigens. Two proteins of enterotoxigenic Escherichia coli (ETEC) were expressed in BI: CfaB, a major fimbrial subunit protein, and LTB, the B subunit of heat-labile enterotoxin. The expression of CfaB and LTB in BI was verified by electrophoretic analysis. Sprague-Dawley rats were then subjected to intragastric immunization with BI-CfaB and BI-LTB systems both separately and together. ELISA was used to characterize the serum and mucosal immune responses against ETEC antigens. The immunized rats were intraperitoneally challenged with wild-type ETEC H10407 to study the immune response in vivo. The serum titres of IgG and faecal IgA antibodies in the BI-CfaB plus BI-LTB mixed vaccination group were significantly greater than those in the other two groups, which were immunized with a single vaccine (P<0.05). However, no significant difference was seen between the two groups that received a single immunization. These results suggest that expressing CfaB and LTB in BI provides a probiotic system with immunogenic properties. Furthermore, the expression of LTB in BI preserved its mucosal adjuvant effect. So this study confirms that BI can be used as a novel oral vaccine expression system for a heterologous antigen and BI-LTB can provide mucosal adjuvant properties. PMID:22053005

  13. Oral immunisation of mice with a recombinant rabies virus vaccine incorporating the heat-labile enterotoxin B subunit of Escherichia coli in an attenuated Salmonella strain.

    PubMed

    Wang, Xuelin; Liu, Juan; Wu, Xiuping; Yu, Lu; Chen, Haiying; Guo, Heng; Zhang, Maolin; Li, Huiping; Liu, Xue; Sun, Shumin; Zhao, Lijing; Zhang, Xinyue; Gao, Lifang; Liu, Mingyuan

    2012-10-01

    To investigate effective new rabies vaccines, a fusion protein consisting of the rabies virus (RV) glycoprotein and the heat-labile enterotoxin B subunit of Escherichia coli (LTB) was successfully constructed and delivered in a live attenuated Salmonella strain LH430. Mice were immunised with LH430 carrying pVAX1-G, pVAX1-G-LTB or pVAX1-ori-G-LTB. The antibody titres of mice immunised with oral LH430 carrying pVAX1-G-LTB or pVAX1-ori-G-LTB were significantly higher than those of pVAX1-G-immunised mice. The results of the challenge with the rabies virus standard strain (CVS-11) showed that the LH430 strain carrying the G-LTB gene induced immunity and elevated IL-2 levels in immunised mice ((∗∗)P<0.01), whereas LH430 carrying pVAX1-G did not contribute to protection. These results show that LH430 carrying recombinant G-LTB could provide overall immunity against challenge with CVS-11 and should be considered to be a potential rabies vaccine. PMID:22019192

  14. Intranasal immunization with live recombinant Lactococcus lactis combined with heat-labile toxin B subunit protects chickens from highly pathogenic avian influenza H5N1 virus.

    PubMed

    Lei, Han; Peng, Xiaojue; Shu, Handing; Zhao, Daxian

    2015-01-01

    Development of safe and effective vaccines to prevent highly pathogenic avian influenza H5N1 virus infection is a challenging goal. Lactococcus lactis (L. lactis) is an ideal delivery vector for vaccine development, and it has been shown previously that oral immunization of encapsulated secretory L. lactis-hemagglutinin (HA) could provide complete protection against homologous H5N1 virus challenge in the mice model. While intranasal immunization is an appealing approach, it is now reported that secretory L. lactis-HA combined with mucosal adjuvant heat-labile toxin B subunit (LTB) could provide protective immunity in the chicken model. As compared to intranasal immunization with L. lactis-HA alone, L. lactis-HA combined with LTB (L. lactis-HA + LTB) could elicit robust neutralizing antibody responses and mucosal IgA responses, as well as strong cellular immune responses in the vaccinated chickens. Importantly, intranasal immunization with L. lactis-HA + LTB could provide 100% protection against H5N1 virus challenge. Taken together, these results suggest that intranasal immunization with L. lactis-HA + LTB can be considered as an effective approach for preventing and controlling infection of H5N1 virus in poultry during an avian influenza A/H5N1 pandemic. PMID:24861477

  15. Acid-Labile Thermoresponsive Copolymers That Combine Fast pH-Triggered Hydrolysis and High Stability under Neutral Conditions.

    PubMed

    Zhang, Qilu; Hou, Zhanyao; Louage, Benoit; Zhou, Dingying; Vanparijs, Nane; De Geest, Bruno G; Hoogenboom, Richard

    2015-09-01

    Biodegradable polymeric materials are intensively used in biomedical applications. Of particular interest for drug-delivery applications are polymers that are stable at pH 7.4, that is, in the blood stream, but rapidly hydrolyze under acidic conditions, such as those encountered in the endo/lysosome or the tumor microenvironment. However, an increase in the acidic-degradation rate of acid-labile groups goes hand in hand with higher instability of the polymer at pH 7.4 or during storage, thus posing an intrinsic limitation on fast degradation under acidic conditions. Herein, we report that a combination of acid-labile dimethyldioxolane side chains and hydroxyethyl side chains leads to acid-degradable thermoresponsive polymers that are quickly hydrolyzed under slightly acidic conditions but stable at pH 7.4 or during storage. We ascribe these properties to high hydration of the hydroxy-containing collapsed polymer globules in conjunction with autocatalytic acceleration of the hydrolysis reactions by the hydroxy groups. PMID:26212481

  16. Protective Mucosal Immunity to Ocular Herpes Simplex Virus Type 1 Infection in Mice by Using Escherichia coli Heat-Labile Enterotoxin B Subunit as an Adjuvant

    PubMed Central

    Richards, C. M.; Aman, A. T.; Hirst, T. R.; Hill, T. J.; Williams, N. A.

    2001-01-01

    The potential of nontoxic recombinant B subunits of cholera toxin (rCtxB) and its close relative Escherichia coli heat-labile enterotoxin (rEtxB) to act as mucosal adjuvants for intranasal immunization with herpes simplex virus type 1 (HSV-1) glycoproteins was assessed. Doses of 10 μg of rEtxB or above with 10 μg of HSV-1 glycoproteins elicited high serum and mucosal anti-HSV-1 titers comparable with that obtained using CtxB (10 μg) with a trace (0.5 μg) of whole toxin (Ctx-CtxB). By contrast, doses of rCtxB up to 100 μg elicited only meager anti-HSV-1 responses. As for Ctx-CtxB, rEtxB resulted in a Th2-biased immune response with high immunoglobulin G1 (IgG1)/IgG2a antibody ratios and production of interleukin 4 (IL-4) and IL-10 as well as gamma interferon by proliferating T cells. The protective efficacy of the immune response induced using rEtxB as an adjuvant was assessed following ocular challenge of immunized and mock-immunized mice. Epithelial disease was observed in both groups, but the immunized mice recovered by day 6 whereas mock-immunized mice developed more severe corneal disease leading to stromal keratitis. In addition, a significant reduction in the incidence of lid disease and zosteriform spread was observed in immunized animals and there was no encephalitis compared with 95% encephalitis in mock-immunized mice. The potential of such mucosal adjuvants for use in human vaccines against pathogens such as HSV-1 is discussed. PMID:11160664

  17. Comparative study on characterization of recombinant B subunit of E. coli heat-labile enterotoxin (rLTB) prepared from E. coli and P. patoris.

    PubMed

    Ma, Xingyuan; Yao, Bi; Zheng, Wenyun; Li, Linfeng

    2010-03-01

    Escherichia coli (E. coli) heat-labile enterotoxin B subunit (LTB) was regarded as one of the most powerful mucosal immunoadjuvants eliciting strong immunoresponse to coadministered antigens. In the research, the high-level secretory expression of functional LTB was achieved in P. pastoris through high-density fermentation in a 5-l fermentor. Meanwhile, the protein was expressed in E. coli by the way of inclusion body, although the gene was cloned from E. coli. Some positive yeast and E. coli transformants were obtained respectively by a series of screenings and identifications. Fusion proteins LTB-6x His could be secreted into the supernatant of the medium after the recombinant P. pastoris was induced by 0.5% (v/v) methanol at 30 degrees C, whereas E. coli transformants expressed target protein in inclusion body after being induced by 1 mM IPTG at 37 degrees C. The expression level increased dramatically to 250- 300 mg/l supernatant of fermentation in the former and 80-100 mg/l in the latter. The LTB-6x His were purified to 95% purity by affinity chromatography and characterized by SDS-PAGE and Western blot. Adjuvant activity of target protein was analyzed by binding ability with GM1 gangliosides. The MW of LTB-6x His expressed in P. pastoris was greater than that in E. coli, which was equal to the expected 11 kDa, possibly resulted from glycosylation by P. pastoris that would enhance the immunogenicity of co-administered antigens. These data demonstrated that P. pastoris producing heterologous LTB has significant advantages in higher expression level and in adjuvant activity compared with the homologous E. coli system. PMID:20372026

  18. Salmonella enterica serovar enteritidis ghosts carrying the Escherichia coli heat-labile enterotoxin B subunit are capable of inducing enhanced protective immune responses.

    PubMed

    Jawale, Chetan V; Lee, John Hwa

    2014-06-01

    The Escherichia coli heat-labile enterotoxin B subunit (LTB) is a potent vaccine adjuvant. Salmonella enterica serovar Enteritidis ghosts carrying LTB (S. Enteritidis-LTB ghosts) were genetically constructed using a novel plasmid, pJHL187-LTB, designed for the coexpression of the LTB and E lysis proteins. S. Enteritidis-LTB ghosts were characterized using scanning electron microscopy to visualize their transmembrane tunnel structures. The expression of LTB in S. Enteritidis-LTB ghost preparations was confirmed by immunoblot and enzyme-linked immunosorbent assays. The parenteral adjuvant activity of LTB was demonstrated by immunizing chickens with either S. Enteritidis-LTB ghosts or S. Enteritidis ghosts. Chickens were intramuscularly primed at 5 weeks of age and subsequently boosted at 8 weeks of age. In total, 60 chickens were equally divided into three groups (n = 20 for each): group A, nonvaccinated control; group B, immunized with S. Enteritidis-LTB ghosts; and group C, immunized with S. Enteritidis ghosts. Compared with the nonimmunized chickens (group A), the immunized chickens (groups B and C) exhibited increased titers of plasma IgG and intestinal secretory IgA antibodies. The CD3(+) CD4(+) subpopulation of T cells was also significantly increased in both immunized groups. Among the immunized chickens, those in group B exhibited significantly increased titers of specific plasma IgG and intestinal secretory IgA (sIgA) antibodies compared with those in group C, indicating the immunomodulatory effects of the LTB adjuvant. Furthermore, both immunized groups exhibited decreased bacterial loads in their feces and internal organs. These results indicate that parenteral immunization with S. Enteritidis-LTB ghosts can stimulate superior induction of systemic and mucosal immune responses compared to immunization with S. Enteritidis ghosts alone, thus conferring efficient protection against salmonellosis. PMID:24671556

  19. Synthesis of Acid-Labile PEG and PEG-Doxorubicin-Conjugate Nanoparticles via Brush-First ROMP

    PubMed Central

    2015-01-01

    A panel of acid-labile bis-norbornene cross-linkers was synthesized and evaluated for the formation of acid-degradable brush-arm star polymers (BASPs) via the brush-first ring-opening metathesis polymerization (ROMP) method. An acetal-based cross-linker was identified that, when employed in conjunction with a poly(ethylene glycol) (PEG) macromonomer, provided highly controlled BASP formation reactions. A combination of this new cross-linker with a novel doxorubicin (DOX)-branch-PEG macromonomer provided BASPs that simultaneously degrade and release cytotoxic DOX in vitro. PMID:25243099

  20. Incorporation of Acid-Labile Masking Groups for the Traceless Synthesis of C-Terminal Peptide α-Ketoacids.

    PubMed

    Thuaud, Frédéric; Rohrbacher, Florian; Zwicky, André; Bode, Jeffrey W

    2016-08-01

    An optimized protocol for the masking of α-ketoacids with acid-labile cyclic acetal protecting groups is reported. Unlike prior approaches, these new conditions allow the synthesis of protected α-ketoacids bearing aromatic, hindered alkyl, and protected polar side chains. Attachment to a Wang-type linker and solid support provides a resin that delivers fully unprotected C-terminal peptide α-ketoacids upon resin cleavage. These peptides are the key starting materials for chemical protein synthesis using the α-ketoacid-hydroxylamine ligation. PMID:27439001

  1. Characterization of heat-labile toxin-subunit B from Escherichia coli by liquid chromatography-electrospray ionization-mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Sospedra, I; De Simone, C; Soriano, J M; Mañes, J; Ferranti, P; Ritieni, A

    2012-11-01

    The possibilities of characterizing the heat-labile enterotoxin (LT) of enterotoxigenic Escherichia coli (ETEC) by liquid chromatography electrospray mass spectrometry (LC/ESI-MS) and matrix-assisted laser desorption with time-of-flight mass spectrometry (MALDI-TOF-MS) were investigated. The B subunit from recombinant E. coli (expression in Pichia pastoris) can be detected by LC/ESI-MS expressed in P. pastoris and the charge envelope signals can be observed; LC/ESI-MS and MALDI-TOF-MS analysis allowed the acquisition of labile toxin subunit B (LTB) molecular weight and preliminary structural characterization of LTB toxin. MALDI-TOF analysis after reduction and alkylation of the protein evidenced the presence of one disulfide bond in the structure of the protein. Confirmatory analysis was carried out by detection of most of the tryptic fragments of the B subunit by MALDI-TOF-MS, obtaining total coverage of the protein sequence. Possible biovariations in the toxin can mostly be determined by sequencing, where an increase of molecular mass in the N-terminal side of the protein was identified. This modification may be due to an O-GlcNAc-1-phosphorylation. PMID:22921353

  2. Determination of enantiomers by FESI-sweeping with an acid-labile sweeper in nonaqueous capillary electrophoresis.

    PubMed

    Wang, Wei-feng; Zhang, Hui-ge; Qi, Sheng-da; Chen, Hong-li; Chen, Xing-guo

    2015-06-21

    In this work, a facile and highly efficient on-line concentration strategy based on a coupling of field enhanced sample injection (FESI) and sweeping was developed for the determination of trace enantiomers (propranolol, PL) by nonaqueous capillary electrophoresis (NACE). In this FESI-sweeping method, the use of a sample of high acidity and low conductivity (pH* = 2.5, 4.0 μS cm(-1)) allowed for a large amount of analyte injection. Then, the concentration of the analytes was carried out by sweeping based on the interaction of an acid-labile anionic selector, di-n-butyl L-tartrate-boric acid complex acid, and cationic analytes. Simultaneously, the concentrated analytes were released and focused at the boundary of the acid sample solution and separation buffer due to the decomposition of the selector in the acid sample solution. Under the optimum conditions, a 21,000-fold sensitivity enhancement upon normal capillary zone electrophoresis (CZE) was achieved for PL enantiomers. The detection limits of R-propranolol and S-propranolol were 0.26 ng mL(-1) and 0.31 ng mL(-1), respectively. Eventually, the FESI-sweeping method was applied to detect PL enantiomers in plasma, saliva, and urine. PMID:25923176

  3. A Simple and Efficient Synthesis of an Acid-labile Polyphosphoramidate by Organobase-catalyzed Ring-Opening Polymerization and Transformation to Polyphosphoester Ionomers by Acid Treatment

    PubMed Central

    Zhang, Shiyi; Wang, Hai; Shen, Yuefei; Zhang, Fuwu; Seetho, Kellie; Zou, Jiong; Taylor, John-Stephen A.; Dove, Andrew P.; Wooley, Karen L.

    2013-01-01

    The direct synthesis of an acid-labile polyphosphoramidate by organobase-catalyzed ring-opening polymerization and an overall two-step preparation of polyphosphodiester ionomers (PPEI) by acid-assisted cleavage of the phosphoramidate bonds along the backbone of the polyphosphoramidate were developed in this study. The ultrafast organobase-catalyzed ring-opening polymerization of a cyclic phospholane methoxyethyl amidate monomer initiated by benzyl alcohol allowed for the preparation of well-defined polyphosphoramidates (PPA) with predictable molecular weights, narrow molecular weight distributions (PDI<1.10), and well-defined chain ends. Cleavage of the acid-labile phosphoramidate bonds on the polyphosphoramidate repeat units was evaluated under acidic conditions over a pH range of 1–5, and the complete hydrolysis produced polyphosphodiesters. The thermal properties of the resulting polyphosphoester ionomer acid and polyphosphoester ionomer sodium salt exhibited significant thermal stability. The parent PPA and both forms of the PPEIs showed low cytotoxicities toward HeLa cells and RAW 264.7 mouse macrophage cells. The synthetic methodology developed here has enriched the family of water-soluble polymers prepared by rapid and convenient organobase-catalyzed ring-opening polymerizations and straightforward chemical medication reactions, which are designed to be hydrolytically degradable and have promise for numerous biomedical and other applications. PMID:23997276

  4. High desolvation temperature facilitates the ESI-source H/D exchange at non-labile sites of hydroxybenzoic acids and aromatic amino acids.

    PubMed

    Zherebker, Alexander; Kostyukevich, Yury; Kononikhin, Alexey; Roznyatovsky, Vitaliy A; Popov, Igor; Grishin, Yuri K; Perminova, Irina V; Nikolaev, Eugene

    2016-04-21

    Hydrogen/deuterium exchange coupled with high-resolution mass spectrometry has become a powerful analytical approach for structural investigations of complex organic matrices. Here we report the feasibility of the site-specific H/D exchange of non-labile hydrogens directly in the electrospray ionization (ESI) source, which was facilitated by an increase in the desolvation temperature from 200 °C up to 400 °C. We have found that the exchanges at non-labile sites were observed only for the model compounds capable of keto-enol tautomeric transformations (e.g., 2,3-, 2,4-dihydroxybenzoic acids, gallic acid, DOPA), and only when water was used as a solvent. We hypothesized that the detected additional exchanges were induced by the presence of hydroxyls in the sprayed water droplets generated in the negative ESI mode. It was indicative of the exchange reactions taking place in the sprayed droplets rather than in the gas phase. To support this hypothesis, the H/D exchange experiments were run in deuterated water under base-catalyzed conditions for three model compounds, which showed the most intensive exchanges in the MS experiments: DOPA, 2,4-DHB, and 5-acetylsalicylic acid. (2)H NMR spectroscopy has confirmed keto-enolic transformations of the model compounds leading to the specific labeling of the corresponding non-labile sites. We believe that the proposed technique will be useful for structural investigations of natural complex mixtures (e.g. proteins, humic substances) using site-specific H/D exchange. PMID:27002310

  5. Effect of oxalic acid treatment on sediment arsenic concentrations and lability under reducing conditions.

    PubMed

    Sun, Jing; Bostick, Benjamin C; Mailloux, Brian J; Ross, James M; Chillrud, Steven N

    2016-07-01

    Oxalic acid enhances arsenic (As) mobilization by dissolving As host minerals and competing for sorption sites. Oxalic acid amendments thus could potentially improve the efficiency of widely used pump-and-treat (P&T) remediation. This study investigates the effectiveness of oxalic acid on As mobilization from contaminated sediments with different As input sources and redox conditions, and examines whether residual sediment As after oxalic acid treatment can still be reductively mobilized. Batch extraction, column, and microcosm experiments were performed in the laboratory using sediments from the Dover Municipal Landfill and the Vineland Chemical Company Superfund sites. Oxalic acid mobilized As from both Dover and Vineland sediments, although the efficiency rates were different. The residual As in both Dover and Vineland sediments after oxalic acid treatment was less vulnerable to microbial reduction than before the treatment. Oxalic acid could thus improve the efficiency of P&T. X-ray absorption spectroscopy analysis indicated that the Vineland sediment samples still contained reactive Fe(III) minerals after oxalic acid treatment, and thus released more As into solution under reducing conditions than the treated Dover samples. Therefore, the efficacy of enhanced P&T must consider sediment Fe mineralogy when evaluating its overall potential for remediating groundwater As. PMID:26970042

  6. Ability of SPI2 mutant of S. typhi to effectively induce antibody responses to the mucosal antigen enterotoxigenic E. coli heat labile toxin B subunit after oral delivery to humans

    PubMed Central

    Khan, S.; Chatfield, S.; Stratford, R.; Bedwell, J.; Bentley, M.; Sulsh, S.; Giemza, R.; Smith, S.; Bongard, E.; Cosgrove, C.A.; Johnson, J.; Dougan, G.; Griffin, G.E.; Makin, J.; Lewis, D.J.M.

    2007-01-01

    We have evaluated an oral vaccine based on an Salmonella enteric serovar typhi (S. typhi) Ty2 derivative TSB7 harboring deletion mutations in ssaV (SPI-2) and aroC together with a chromosomally integrated copy of eltB encoding the B subunit of enterotoxigenic Escherichia coli heat labile toxin (LT-B) in volunteers. Two oral doses of 108 or 109 CFU were administered to two groups of volunteers and both doses were well tolerated, with no vaccinemia, and only transient stool shedding. Immune responses to LT-B and S. typhi lipopolysaccharide were demonstrated in 67 and 97% of subjects, respectively, without evidence of anti-carrier immunity preventing boosting of LT-B responses in many cases. Further development of this salmonella-based (spi-VEC) system for oral delivery of heterologous antigens appears warranted. PMID:17412462

  7. PEG-detachable and acid-labile cross-linked micelles based on orthoester linked graft copolymer for paclitaxel release

    NASA Astrophysics Data System (ADS)

    Yuan, Zhefan; Huang, Jingyi; Liu, Jing; Cheng, Sixue; Zhuo, Renxi; Li, Feng

    2011-08-01

    Polyethylene glycol detachable graft copolymer, mPEG-g-p(NAS-co-BMA), was synthesized by grafting 2-(ω-methoxy)PEGyl-1,3-dioxan-5-ylamine onto poly(N-(acryloyloxy)succinimide-co-butyl methacrylate). Pseudo in situ cross-linking of the mPEG-g-p(NAS-co-BMA) was performed in dimethylformamide phosphate buffer (v/v = 1/1) by an acid-labile diamine cross-linker bearing two symmetrical cyclic orthoesters. The cross-linked (CL) micelles with different contents of mPEG segments represented different morphologies. The CL micelles containing approximately one mPEG segment exhibited 'echini' morphology whereas the CL micelle with approximately three mPEG segments formed nanowires. The hydrolysis rate of the CL micelles is highly pH-dependent and much more rapid at mild acid than physiological conditions. Hydrolyzates of the CL micelles formed vesicles because new amphiphilic copolymers were formed. Paclitaxel (PTX) was successfully loaded into the CL micelles and a controlled and pH-dependent release behavior was observed. No obvious cytotoxicity was found for the CL micelles at concentration as high as 800 mg l - 1.

  8. Preparation and characterization of poly(lactic-co-glycolic acid) microspheres loaded with a labile antiparkinson prodrug.

    PubMed

    D'Aurizio, E; van Nostrum, C F; van Steenbergen, M J; Sozio, P; Siepmann, F; Siepmann, J; Hennink, W E; Di Stefano, A

    2011-05-16

    L-dopa-α-lipoic acid (LD-LA) is a new multifunctional prodrug for the treatment of Parkinson's disease. In human plasma, LD-LA catechol esters and amide bonds are chemically and enzymatically cleaved, respectively, resulting in a half-life time of about fifty minutes. In the present work, the unstable LD-LA was entrapped into biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres designed as depot systems to protect this prodrug against degradation and to obtain a sustained release of the intact compound. The microspheres were prepared by an oil-in-water emulsion/solvent evaporation technique and the effect of formulation and processing parameters (polymer concentration in the organic solvent, volumes ratio of the phases, rate of the organic solvent evaporation) on microspheres characteristics (size, loading, morphology, release) was investigated. Also emphasis was given on the stability of the drug before and after release as well as on the underlying mass transport mechanisms controlling LD-LA release. Interestingly, when encapsulated in appropriate conditions into PLGA microspheres, the labile prodrug was stabilized and released via Fickian diffusion up to more than one week. PMID:21356295

  9. Development of pH-sensitive self-nanoemulsifying drug delivery systems for acid-labile lipophilic drugs.

    PubMed

    Zhao, Tianjing; Maniglio, Devid; Chen, Jie; Chen, Bin; Migliaresi, Claudio

    2016-03-01

    Oral administration is the most convenient way of all the drug delivery routes. Orally administered bioactive compounds must resist the harsh acidic fluids or enzyme digestion in stomach, to reach their absorbed destination in small intestine. This is the case for silibinin, a drug used to protect liver cells against toxins that has also been demonstrated in vitro to possess anti-cancer effects. However, as many other drugs, silibinin can degrade in the stomach due to the action of the gastric fluid. The use of pH-sensitive self-nanoemulsifying drug delivery systems (pH-SNEDDS) could overcome the drawback due to degradation of the drug in the stomach while enhancing its solubility and dissolution rate. In this paper we have investigated pH-sensitive self-nanoemulsifying formulations containing silibinin as model drug. Pseudo-ternary phase diagrams have been constructed in order to identify the self-emulsification regions under different pH. Solubility of silibinin in selected formulations has been assessed and stability of the pure drug and of the silibinin loaded pH-SNEDDS formulations in simulated gastric fluid had been compared. Droplet size of the optimized pH-SNEDDS has been correlated to pH, volume of dilution medium and silibinin loading amount. TEM (transmission electron microscopy) studies have shown that emulsion droplets had spherical shape and narrow size distribution. In vitro drug release studies of the optimal pH-SNEDDS indicated substantial increase of the drug release and release rate in comparison to pure silibinin and to the commercial silibinin tablet. The results indicated that pH-SNEDDS have potential to improve the biopharmaceutics properties of acid-labile lipophilic drugs. PMID:26923270

  10. Peracetic acid: a practical agent for sterilizing heat-labile polymeric tissue-engineering scaffolds.

    PubMed

    Yoganarasimha, Suyog; Trahan, William R; Best, Al M; Bowlin, Gary L; Kitten, Todd O; Moon, Peter C; Madurantakam, Parthasarathy A

    2014-09-01

    Advanced biomaterials and sophisticated processing technologies aim at fabricating tissue-engineering scaffolds that can predictably interact within a biological environment at the cellular level. Sterilization of such scaffolds is at the core of patient safety and is an important regulatory issue that needs to be addressed before clinical translation. In addition, it is crucial that meticulously engineered micro- and nano- structures are preserved after sterilization. Conventional sterilization methods involving heat, steam, and radiation are not compatible with engineered polymeric systems because of scaffold degradation and loss of architecture. Using electrospun scaffolds made from polycaprolactone, a low melting polymer, and employing spores of Bacillus atrophaeus as biological indicators, we compared ethylene oxide, autoclaving and 80% ethanol to a known chemical sterilant, peracetic acid (PAA), for their ability to sterilize as well as their effects on scaffold properties. PAA diluted in 20% ethanol to 1000 ppm or above sterilized electrospun scaffolds in 15 min at room temperature while maintaining nano-architecture and mechanical properties. Scaffolds treated with PAA at 5000 ppm were rendered hydrophilic, with contact angles reduced to 0°. Therefore, PAA can provide economical, rapid, and effective sterilization of heat-sensitive polymeric electrospun scaffolds that are used in tissue engineering. PMID:24341350

  11. Peracetic Acid: A Practical Agent for Sterilizing Heat-Labile Polymeric Tissue-Engineering Scaffolds

    PubMed Central

    Yoganarasimha, Suyog; Trahan, William R.; Best, Al M.; Bowlin, Gary L.; Kitten, Todd O.; Moon, Peter C.

    2014-01-01

    Advanced biomaterials and sophisticated processing technologies aim at fabricating tissue-engineering scaffolds that can predictably interact within a biological environment at the cellular level. Sterilization of such scaffolds is at the core of patient safety and is an important regulatory issue that needs to be addressed before clinical translation. In addition, it is crucial that meticulously engineered micro- and nano- structures are preserved after sterilization. Conventional sterilization methods involving heat, steam, and radiation are not compatible with engineered polymeric systems because of scaffold degradation and loss of architecture. Using electrospun scaffolds made from polycaprolactone, a low melting polymer, and employing spores of Bacillus atrophaeus as biological indicators, we compared ethylene oxide, autoclaving and 80% ethanol to a known chemical sterilant, peracetic acid (PAA), for their ability to sterilize as well as their effects on scaffold properties. PAA diluted in 20% ethanol to 1000 ppm or above sterilized electrospun scaffolds in 15 min at room temperature while maintaining nano-architecture and mechanical properties. Scaffolds treated with PAA at 5000 ppm were rendered hydrophilic, with contact angles reduced to 0°. Therefore, PAA can provide economical, rapid, and effective sterilization of heat-sensitive polymeric electrospun scaffolds that are used in tissue engineering. PMID:24341350

  12. LT-IIb(T13I), a non-toxic type II heat-labile enterotoxin, augments the capacity of a ricin toxin subunit vaccine to evoke neutralizing antibodies and protective immunity.

    PubMed

    Greene, Christopher J; Chadwick, Chrystal M; Mandell, Lorrie M; Hu, John C; O'Hara, Joanne M; Brey, Robert N; Mantis, Nicholas J; Connell, Terry D

    2013-01-01

    Currently, there is a shortage of adjuvants that can be employed with protein subunit vaccines to enhance protection against biological threats. LT-IIb(T13I) is an engineered nontoxic derivative of LT-IIb, a member of the type II subfamily of heat labile enterotoxins expressed by Escherichia coli, that possesses potent mucosal adjuvant properties. In this study we evaluated the capacity of LT-IIb(T13I) to augment the potency of RiVax, a recombinant ricin toxin A subunit vaccine, when co-administered to mice via the intradermal (i.d.) and intranasal (i.n.) routes. We report that co-administration of RiVax with LT-IIb(T13I) by the i.d. route enhanced the levels of RiVax-specific serum IgG antibodies (Ab) and elevated the ratio of ricin-neutralizing to non-neutralizing Ab, as compared to RiVax alone. Protection against a lethal ricin challenge was also augmented by LT-IIb(T13I). While local inflammatory responses elicited by LT-IIb(T13I) were comparable to those elicited by aluminum salts (Imject®), LT-IIb(T13I) was more effective than aluminum salts at augmenting production of RiVax-specific serum IgG. Finally, i.n. administration of RiVax with LT-IIb(T13I) also increased levels of RiVax-specific serum and mucosal Ab and enhanced protection against ricin challenge. Collectively, these data highlight the potential of LT-IIb(T13I) as an effective next-generation i.d., or possibly i.n. adjuvant for enhancing the immunogenicity of subunit vaccines for biodefense. PMID:23936344

  13. A simple and inexpensive enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine*

    PubMed Central

    Miller, Darren S.; Parsons, Anne Michelle; Bresland, John; Herde, Paul; Pham, Duc Minh; Tan, Angel; Hsu, Hung-yao; Prestidge, Clive A.; Kuchel, Tim; Begg, Rezaul; Aziz, Syed Mahfuzul; Butler, Ross N.

    2015-01-01

    Understanding the ecology of the gastrointestinal tract and the impact of the contents on the host mucosa is emerging as an important area for defining both wellness and susceptibility to disease. Targeted delivery of drugs to treat specific small intestinal disorders such as small bowel bacterial overgrowth and targeting molecules to interrogate or to deliver vaccines to the remote regions of the small intestine has proven difficult. There is an unmet need for methodologies to release probes/drugs to remote regions of the gastrointestinal tract in furthering our understanding of gut health and pathogenesis. In order to address this concern, we need to know how the regional delivery of a surrogate labeled test compound is handled and in turn, if delivered locally as a liquid or powder, the dynamics of its subsequent handling and metabolism. In the studies we report on in this paper, we chose 13C sodium acetate (13C-acetate), which is a stable isotope probe that once absorbed in the small intestine can be readily measured non-invasively by collection and analysis of 13CO2 in the breath. This would provide information of gastric emptying rates and an indication of the site of release and absorptive capacity. In a series of in vitro and in vivo pig experiments, we assessed the enteric-protective properties of a commercially available polymer EUDRAGIT®L100-55 on gelatin capsules and also on DRcaps®. Test results demonstrated that DRcaps®coated with EUDRAGIT®L100-55 possessed enhanced enteric-protective properties, particularly in vivo. These studies add to the body of knowledge regarding gastric emptying in pigs and also begin the process of gathering specifications for the design of a simple and cost-effective enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine. PMID:26160716

  14. Comparison of a live attenuated Salmonella Enteritidis vaccine candidate secreting Escherichia coli heat-labile enterotoxin B subunit with a commercial vaccine for efficacy of protection against internal egg contamination by Salmonella in hens

    PubMed Central

    Nandre, Rahul M.; Eo, Seong Kug; Park, Sang Youel; Lee, John Hwa

    2015-01-01

    This study compared a new live attenuated Salmonella Enteritidis vaccine candidate secreting Escherichia coli heat-labile enterotoxin B subunit (SE-LTB) with a commercial Salmonella Enteritidis (SE) vaccine for efficacy of protection against SE infection in laying hens. Chickens were divided into 3 groups of 20 each. Group A chickens were inoculated orally with phosphate-buffered saline and served as controls, group B chickens were inoculated orally with the vaccine candidate, and group C chickens were inoculated intramuscularly with a commercial vaccine, the primary inoculation in groups B and C being at 10 wk of age and the booster at 16 wk. Groups B and C showed significantly higher titers of plasma immunoglobulin G, intestinal secretory immunoglobulin A, and egg yolk immunoglobulin Y antibodies compared with the control group, and both vaccinated groups showed a significantly elevated cellular immune response. After virulent challenge, group B had significantly lower production of thin-shelled and/or malformed eggs and a significantly lower rate of SE contamination of eggs compared with the control group. Furthermore, the challenge strain was detected significantly less in all of the examined organs of group B compared with the control group. Group C had lower gross lesion scores only in the spleen and had lower bacterial counts only in the spleen, ceca, and ovary. These findings indicate that vaccination with the SE-LTB vaccine candidate can efficiently reduce internal egg and internal organ contamination by Salmonella and has advantages over the commercial vaccine. PMID:26130857

  15. Development of ultrasonic-assisted closed in-syringe extraction and derivatization for the determination of labile abietic acid and dehydroabietic acid in cosmetics.

    PubMed

    Liu, Jianjun; Liu, Mengge; Li, Xiu; Lu, Xiaomin; Chen, Guang; Sun, Zhiwei; Li, Guoliang; Zhao, Xianen; Zhang, Shijuan; Song, Cuihua; Wang, Hua; Suo, Yourui; You, Jinmao

    2014-12-01

    Two resin acids, abietic acid (AA) and dehydroabietic acid (DHAA), in cosmetics may cause allergy or toxicoderma, but remain inaccurately investigated due to their lability. In this work, an accurate, sensitive, efficient and convenient method, utilizing the ultrasonic-assisted closed in-syringe extraction and derivatization (UCSED) prior to high performance liquid chromatography (HPLC) coupled with fluorescence detection (FLD) and on-line tandem mass spectra (MS/MS), has been developed. Analytes are extracted by acetonitrile (10/1, v/m) in a sealed syringe under safe condition (60°C; 15 min; nitrogen atmosphere) and then in-syringe derivatized by 2-(2-(anthracen-10-yl)-1H-naphtho[2,3-d]imidazol-1-yl) ethyl-p-toluenesulfonate (ANITS) (8-fold, 93°C, 30 min, DMF as co-solvent, K2CO3 as catalyst). In UCSED, derivatization contributes to increase both analytical sensitivity and stability of analytes. Excellent linearity (r2≥0.9991) is achieved in wide range (75-3000 ng/mL (AA); 150-4500 ng/mL (DHAA)). Quite low detection limits (AA: 8.2-10.8 ng/mL; DHAA: 19.4-24.3 ng/mL) and limits of analyte concentration (LOAC) (AA: 30.0-44.5 ng/mL; DHAA: 70.9-86.7 ng/mL) ensure the trace analysis. This method is applied to the analysis of cosmetic samples, including depilatory wax strip, liquid foundation, mascara, eyeliner, eyebrow pencil and lip balm. No additional purification is required and no matrix effect is observed, demonstrating obvious advantages over conventional pretreatment such as solid phase extraction (SPE). Accuracy (RE: -3.2% to 2.51%), precision (RSD: 1.29-2.84%), recovery (95.20-103.63%; 95.51-104.22%) and repeatability (<0.23%; <2.87%) are significantly improved. Furthermore, this work plays a guiding role in developing a reasonable method for labile analytes. PMID:25456583

  16. Acid-labile pHPMA modification of four-arm oligoaminoamide pDNA polyplexes balances shielding and gene transfer activity in vitro and in vivo.

    PubMed

    Beckert, Linda; Kostka, Libor; Kessel, Eva; Krhac Levacic, Ana; Kostkova, Hana; Etrych, Tomas; Lächelt, Ulrich; Wagner, Ernst

    2016-08-01

    We report novel pH-reversibly surface-shielded polyplexes with enhanced gene transfer activity upon systemic administration. A four-arm-structured sequence-defined cationic oligomer KK[HK[(H-Sph-K)3HC]2]2 was designed and synthesized on solid-phase, containing additional lysine residues not only for improved pDNA polyplex stability, but also providing attachment points for subsequent polyplex functionalization with amine-reactive shielding polymers. Herein, the surface of polyplexes was shielded with hydrophilic polymers, monovalent PEG or monovalent and multivalent pHPMA, optionally attached to the polyplex via the acid-labile linker AzMMMan. Overall, surface modification with PEG or pHPMA resulted in a decrease in the zeta potential of polyplexes, consistent with the degree of surface shielding. At pH 6.0, only polyplexes modified via the acid-labile linkage showed an increase in zeta potential, consistent with a "deshielding" in acidic environment, expected as beneficial for endosomal escape. Shielding was more efficient for multivalent pHPMA (20kDa, 30kDa) as compared to monovalent pHPMA (10kDa, 20kDa, 30kDa) or PEG (5kDa). In vitro transfection studies revealed higher gene expression by the polyplexes with the acid-labile shield as compared to their irreversibly shielded counterparts. Intravenous administration of AzMMMan-pHPMA modified polyplexes in an in vivo tumor mouse model mediated enhanced gene expression in the subcutaneous tumor and reduced undesirable expression in the liver. PMID:27235729

  17. Combination of acid labile detergent and C18 Empore™ disks for improved identification and sequence coverage of in-gel digested proteins.

    PubMed

    Koehn, Henning; Lau, Benjamin; Clerens, Stefan; Plowman, Jeffrey E; Dyer, Jolon M; Ramli, Umi Salamah; Deb-Choudhury, Santanu

    2011-04-01

    A protocol for improved extraction of peptides from in-gel protein digests, using a combination of the acid labile surfactant, sodium deoxycholate (SDC) and C18 Empore™ membranes, is presented. This approach results in better mass spectrum quality, higher numbers of identified peptide peaks and improved identification scores compared to standard tryptic digestion protocols, or protocols using only SDC or only C18 Empore™ disks. The advantages of the new protocol are demonstrated for two different types of samples: Merino wool intermediate filament proteins and Elaeis guineensis (oil palm) mesocarp proteins. PMID:21327873

  18. Oral immunization with an attenuated Salmonella Gallinarum mutant as a fowl typhoid vaccine with a live adjuvant strain secreting the B subunit of Escherichia coli heat-labile enterotoxin

    PubMed Central

    2013-01-01

    Background The Salmonella Gallinarum (SG) lon/cpxR deletion mutant JOL916 was developed as a live vaccine candidate for fowl typhoid (FT), and a SG mutant secreting an Escherichia coli heat-labile enterotoxin B subunit (LTB), designated JOL1229, was recently constructed as an adjuvant strain for oral vaccination against FT. In this study, we evaluated the immunogenicity and protective properties of the SG mutant JOL916 and the LTB adjuvant strain JOL1229 in order to establish a prime and boost immunization strategy for each strain. In addition, we compared the increase in body weight, the immunogenicity, the egg production rates, and the bacteriological egg contamination of these strains with those of SG 9R, a widely used commercial vaccine. Results Plasma IgG, intestinal secretory IgA (sIgA), and cell-mediated responses were significantly induced after a boost inoculation with a mixture of JOL916 and JOL1229, and significant reductions in the mortality of chickens challenged with a wild-type SG strain were observed in the immunized groups. There were no significant differences in increases in body weight, cell-mediated immune responses, or systemic IgG responses between our vaccine mixture and the SG 9R vaccine groups. However, there was a significant elevation in intestinal sIgA in chickens immunized with our mixture at 3 weeks post-prime-immunization and at 3 weeks post-boost-immunization, while sIgA levels in SG 9R-immunized chickens were not significantly elevated compared to the control. In addition, the SG strain was not detected in the eggs of chickens immunized with our mixture. Conclusion Our results suggest that immunization with the LTB-adjuvant strain JOL1229 can significantly increase the immune response, and provide efficient protection against FT with no side effects on body weight, egg production, or egg contamination. PMID:23647814

  19. Amino acid sequence of the alpha subunit and computer modelling of the alpha and beta subunits of echicetin from the venom of Echis carinatus (saw-scaled viper).

    PubMed

    Polgár, J; Magnenat, E M; Peitsch, M C; Wells, T N; Saqi, M S; Clemetson, K J

    1997-04-15

    Echicetin, a heterodimeric protein from the venom of Echis carinatus, binds to platelet glycoprotein Ib (GPIb) and so inhibits platelet aggregation or agglutination induced by various platelet agonists acting via GPIb. The amino acid sequence of the beta subunit of echicetin has been reported and found to belong to the recently identified snake venom subclass of the C-type lectin protein family. Echicetin alpha and beta subunits were purified. N-terminal sequence analysis provided direct evidence that the protein purified was echicetin. The paper presents the complete amino acid sequence of the alpha subunit and computer models of the alpha and beta subunits. The sequence of alpha echicetin is highly similar to the alpha and beta chains of various heterodimeric and homodimeric C-type lectins. Neither of the fully reduced and alkylated alpha or beta subunits of echicetin inhibited the platelet agglutination induced by von Willebrand factor-ristocetin or alpha-thrombin. Earlier reports about the inhibitory activity of reduced and alkylated echicetin beta subunit might have been due to partial reduction of the protein. PMID:9163349

  20. Fmoc-Sec(Xan)-OH: synthesis and utility of Fmoc selenocysteine SPPS derivatives with acid-labile sidechain protection.

    PubMed

    Flemer, Stevenson

    2015-01-01

    We report here the synthesis of the first selenocysteine SPPS derivatives which bear TFA-labile sidechain protecting groups. New compounds Fmoc-Sec(Xan)-OH and Fmoc-Sec(Trt)-OH are presented as useful and practical alternatives to the traditional Fmoc-Sec-OH derivatives currently available to the peptide chemist. From a bis Fmoc-protected selenocystine precursor, multiple avenues of diselenide reduction were attempted to determine the most effective method for subsequent attachment of the protecting group electrophiles. Our previously reported one-pot reduction methodology was ultimately chosen as the optimal approach toward the synthesis of these novel building blocks, and both were easily obtained in high yield and purity. Fmoc-Sec(Xan)-OH was discovered to be bench-stable for extended timeframes while the corresponding Fmoc-Sec(Trt)-OH derivative appeared to detritylate slowly when not stored at -20 °C. Both Sec derivatives were incorporated into single- and multiple-Sec-containing test peptides in order to ascertain the peptides' deprotection behavior and final form upon TFA cleavage. Single-Sec-containing test peptides were always isolated as their corresponding diselenide dimers, while dual-Sec-containing peptide sequences were afforded exclusively as their intramolecular diselenides. PMID:25504629

  1. Purification and properties of catalytic subunit of branched-chain -keto acid dehydrogenase phosphatase

    SciTech Connect

    Reed, L.J.; Damuni, Z.

    1987-05-01

    The catalytic subunit of the branched-chain -keto acid dehydrogenase (BCKDH) phosphatase has been purified over 50,000-fold from extracts of bovine kidney mitochondria. The apparently homogeneous protein consists of a single polypeptide chain with an apparent M/sub r/ of about 33,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. BCKDH phosphatase, with apparent M/sub r/ of 460,000 was dissociated to its catalytic subunit, with no apparent change in activity, at an early stage in the purification procedure by treatment with 6 M urea. The specific activity of the catalytic subunit was 1500-2500 units/mg. The catalytic subunit exhibited approx.10% maximal activity with TSP-labeled pyruvate dehydrogenase complex, but was inactive with phosphorylase a and with p-nitrophenyl phosphate. The catalytic subunit, like the M/sub r/ 460,000 species, was inhibited by nanomolar concentrations of BCKDH phosphatase inhibitor protein, was unaffected by protein phosphatase inhibitor 1 and inhibitor 2, and was inhibited by nucleoside tri- and diphosphates, but not by nucleoside monophosphates.

  2. Acid-labile protein-adducted heterocyclic aromatic amines in human blood are not viable biomarkers of dietary exposure: A systematic study.

    PubMed

    Cooper, Kevin M; Brennan, Sarah F; Woodside, Jayne V; Cantwell, Marie; Guo, Xiaoxiao; Mooney, Mark; Elliott, Christopher T; Cuskelly, Geraldine J

    2016-05-01

    Heterocyclic aromatic amines (HCA) are carcinogenic mutagens formed during cooking of protein-rich foods. HCA residues adducted to blood proteins have been postulated as biomarkers of HCA exposure. However, the viability of quantifying HCAs following hydrolytic release from adducts in vivo and correlation with dietary intake are unproven. To definitively assess the potential of labile HCA-protein adducts as biomarkers, a highly sensitive UPLC-MS/MS method was validated for four major HCAs: 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) and 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (7,8-DiMeIQx). Limits of detection were 1-5 pg/ml plasma and recoveries 91-115%. Efficacy of hydrolysis was demonstrated by HCA-protein adducts synthesised in vitro. Plasma and 7-day food diaries were collected from 122 fasting adults consuming their habitual diets. Estimated HCA intakes ranged from 0 to 2.5 mg/day. An extensive range of hydrolysis conditions was examined for release of adducted HCAs in plasma. HCA was detected in only one sample (PhIP, 9.7 pg/ml), demonstrating conclusively for the first time that acid-labile HCA adducts do not reflect dietary HCA intake and are present at such low concentrations that they are not feasible biomarkers of exposure. Identification of biomarkers remains important. The search should concentrate on stabilised HCA-peptide markers and use of untargeted proteomic and metabolomic approaches. PMID:26993956

  3. Synthesis and characterization of a PAMAM-OH derivative containing an acid-labile β-thiopropionate bond for gene delivery.

    PubMed

    Chen, Kang; Chen, Qing; Wang, Kuanglei; Zhu, Jia; Li, Weinan; Li, Wenpan; Qiu, Lipeng; Guan, Guannan; Qiao, Mingxi; Zhao, Xiuli; Hu, Haiyang; Chen, Dawei

    2016-07-25

    The present report describes the synthesis of a hydroxyl terminal PAMAM dendrimer (PAMAM-OH) derivative (PAMSPF). The hydroxyls of PAMAM-OH were attached to S-Methyl-l-cysteine (SMLC) via an acid-labile ester bond, named as β-thiopropionate bond, followed by modification with folic acid (FA) through a polyethylene glycol (PEG) linker. The degrees of attachment of SMLC and FA to the PAMAM-OH backbone were 83.9% and 12.8%, respectively. PAMSPF could condense DNA to form spherical nanoparticles with particle sizes of ∼200nm and remain stable in the presence of heparin and nuclease. The β-thiopropionate bond in PAMSPF was hydrolyzed completely and the DNA release rate was 95.8±3.3% after incubation under mildly acidic conditions at 37°C for 3h. PAMSPF/DNA was less cytotoxic to KB and HepG2 cells and exhibited a higher gene transfection efficiency than native PAMAM/DNA. The uptake assays showed that PAMSPF/DNA entered KB cells within 0.5h through folate receptor-mediated endocytosis and escaped from endosomes within 2h. In addition, PAMSPF/DNA displayed long circulation time along with excellent targeting of tumor sites in vivo. These findings demonstrate that PAMSPF is an excellent carrier for safe and effective gene delivery. PMID:27260132

  4. Block Copolymer Micelles with Acid-labile Ortho Ester Side-chains: Synthesis, Characterization, and Enhanced Drug Delivery to Human Glioma Cells

    PubMed Central

    Tang, Rupei; Ji, Weihang; Panus, David; Palumbo, R. Noelle; Wang, Chun

    2011-01-01

    A new type of block copolymer micelles for pH-triggered delivery of poorly water-soluble anticancer drugs has been synthesized and characterized. The micelles were formed by the self-assembly of an amphiphilic diblock copolymer consisting of a hydrophilic poly(ethylene glycol) (PEG) block and a hydrophobic polymethacrylate block (PEYM) bearing acid-labile ortho ester side-chains. The diblock copolymer was synthesized by atom transfer radical polymerization (ATRP) from a PEG macro-initiator to obtain well-defined polymer chain-length. The PEG-b-PEYM micelles assumed a stable core-shell structure in aqueous buffer at physiological pH with a low critical micelle concentration as determined by proton NMR and pyrene fluorescence spectroscopy. The hydrolysis of the ortho ester side-chain at physiological pH was minimal yet much accelerated at mildly acidic pHs. Doxorubicin (Dox) was successfully loaded into the micelles at pH 7.4 and was released at much higher rate in response to slight acidification to pH 5. Interestingly, the release of Dox at pH 5 followed apparently a biphasic profile, consisting of an initial fast phase of several hours followed by a sustained release period of several days. Dox loaded in the micelles was rapidly taken up by human glioma (T98G) cells in vitro, accumulating in the endolysosome and subsequently in the nucleus in a few hours, in contrast to the very low uptake of free drug at the same dose. The dose-dependent cytotoxicity of the Dox-loaded micelles was determined by the MTT assay and compared with that of the free Dox. While the empty micelles themselves were not toxic, the IC50 values of the Dox-loaded micelles were approximately ten-times (by 24 hours) and three-times (by 48 hours) lower than the free drug. The much enhanced potency in killing the multi-drug-resistant human glioma cells by Dox loaded in the micelles could be attributed to high intracellular drug concentration and the subsequent pH-triggered drug release. These

  5. Enrichment adsorption of a labile substance to the surface of particular mineral particles in river water as investigated by SEM-EDX and dilute-acid extraction/ICP-MS.

    PubMed

    Kyotani, Tomohiro; Koshimizu, Satoshi

    2003-06-01

    The selective enrichment behavior of a labile substance, such as hydroxides, to the surface of particular mineral particles in river water was clarified by scanning electron microscopy/energy dispersive X-ray microanalysis (SEM-EDX). Individual particles other than diatom collected on a 0.45 microm filter from the Fuji and Sagami rivers, central Japan, were analyzed by SEM-EDX and classified into seventeen groups according to the chemical composition and shape. Phosphorus, sulfur, chlorine, manganese and copper detected in each particle collected on the 0.45 microm filter could be successfully used as effective indicators of labile substance secondarily formed and adsorbed afresh in river water, because the detection frequencies of such elements are quite low, or negligible, in fresh mineral particles derived from igneous rocks. The labile substance adsorbed on mineral particles collected on the 0.45 microm filter was also evaluated by dilute-acid leaching, followed by inductively coupled plasma mass spectrometry (ICP-MS). Almost all parts of the manganese detected in individual particles were those adsorbed afresh as hydroxides together with iron and aluminum. Also, anionic elements, such as phosphorus, sulfur and chlorine, formed complexes with the hydroxides and/or were incorporated in them. Mg and/or Ca-rich aluminosilicate groups were the most effective adsorbers of such labile species. However, Si-rich and Na-, K- and Na-Ca rich aluminosilicates did not significantly adsorb the labile substance. Consequently, the remarkable selectivity was clarified in the adsorption process of labile substance to individual mineral particles in river water. PMID:12834221

  6. Cytoplasmic Delivery of Liposomal Contents Mediated by an Acid-Labile Cholesterol-Vinyl Ether-PEG Conjugate

    PubMed Central

    Boomer, Jeremy A.; Qualls, Marquita M.; Inerowicz, H. Dorota; Haynes, Robert H.; Patri, G.V. Srilaksmi; Kim, Jong-Mok; Thompson, David H.

    2009-01-01

    An acid-cleavable PEG lipid, 1′-(4′-cholesteryloxy-3′-butenyl)-ω-methoxy-polyethylene[112] glycolate (CVEP), has been developed that produces stable liposomes when dispersed as a minor component (0.5–5 mol%) in 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Cleavage of CVEP at mildly acidic pH’s results in dePEGylation of the latently fusogenic DOPE liposomes, thereby triggering the onset of contents release. This paper describes the synthesis of CVEP via a six step sequence starting from the readily available precursors 1,4-butanediol, cholesterol, and mPEG acid. The hydrolysis rates and release kinetics from CVEP:DOPE liposome dispersions as a function of CVEP loading, as well as the cryogenic transmission electron microscopy and pH-dependent monolayer properties of 9:91 CVEP:DOPE mixtures, also are reported. When folate-receptor positive KB cells were exposed to calcein-loaded 5:95 CVEP:DOPE liposomes containing 0.1 mol% folate-modified 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-polyethylene[76] glycolamide (folate-PEG-DSPE), efficient delivery of the calcein cargo to the cytoplasm of the cells was observed as determined by fluorescence microscopy and flow cytometry. Fluorescence resonance energy transfer analysis of lipid mixing in these cells was consistent with membrane-membrane fusion between the liposome and endosomal membranes. PMID:19072698

  7. Labile aluminium chemistry downstream a limestone treated lake and an acid tributary: effects of warm winters and extreme rainstorms.

    PubMed

    Andersen, Dag O

    2006-08-01

    The outlet from the limestone treated Lake Terjevann consisted mainly of well-mixed lake water (mean pH 6.1) during the ice-free seasons including the unusually warm winters of 1992 and 1993. However, during the ice-covered period acidic water (mean pH 4.8, mean inorganic aluminium (Al(i)) about 160 microg/l) from the catchment draining under the lake ice dominated. A downstream tributary was generally acid and rich in aluminium (mean pH 4.6, Al(i) about 230 microg/l). After an extreme rainstorm loaded with sea-salts cation exchange in the soil resulted in more than a doubling of the Al(i) concentration (reaching about 500 microg/l). It took 3-4 months until the Al(i) concentration returned to pre-event levels. During the ice-covered period, the acidic outlet and tributary waters resulted in acidic conditions below the confluence (pH<4.8, Al(i) about 150 microg/l) while during the ice-free periods the more neutral outlet water resulted in higher pH and lower Al(i) concentrations (pH>5.2, Al(i) about 95 microg/l). However, during the latter climatic conditions the water was most probably more harmful to fish due to hydrolysing and polymerizing aluminium. After the sea-salt event, the increased Al(i) concentration in the tributary made the zone below the confluence potentially more toxic (pH approximately 5, Al(i) approximately 250 microg/l). Expected global warming resulting in winter mean temperatures above 0 degrees C may eliminate the seasonal acidification of the outlet from limestone-treated lakes creating permanent toxic mixing zones in the confluence below acidic aluminium-rich tributaries. Besides, more frequent rainstorms as a consequence of global warming may increase the frequency of sea-salt events and the Al(i) concentrations in the mixing zones. PMID:16269168

  8. Regulation of c-myc mRNA stability in vitro by a labile destabilizer with an essential nucleic acid component.

    PubMed Central

    Brewer, G; Ross, J

    1989-01-01

    The turnover rates of some mRNAs vary by an order of magnitude or more when cells change their growth pattern or differentiate. To identify regulatory factors that might be responsible for this variability, we investigated how cytosolic fractions affect mRNA decay in an in vitro system. A 130,000 X g supernatant (S130) from the cytosol of exponentially growing erythroleukemia cells contains a destabilizer that accelerates the decay of polysome-bound c-myc mRNA by eightfold or more compared with reactions lacking S130. The destabilizer is deficient in or absent from the S130 of cycloheximide-treated cells, indicating that it is labile or is repressed when translation is blocked. It is not a generic RNase, because it does not affect the turnover of delta-globin, gamma-globin, or histone mRNA and does not destabilize a major portion of polysomal polyadenylated mRNA. The destabilizer accelerates the turnover of the c-myc mRNA 3' region, as well as subsequent 3'-to-5' degradation of the mRNA body. It is inactivated in vitro by mild heating and by micrococcal nuclease, suggesting that it contains a nucleic acid component. c-myb mRNA is also destabilized in S130-supplemented in vitro reactions. These results imply that the stability of some mRNAs is regulated by cytosolic factors that are not associated with polysomes. Images PMID:2747642

  9. Positioning of the α-subunit isoforms confers a functional signature to γ-aminobutyric acid type A receptors

    PubMed Central

    Minier, Frédéric; Sigel, Erwin

    2004-01-01

    Fast synaptic inhibitory transmission in the CNS is mediated by γ-aminobutyric acid type A (GABAA) receptors. They belong to the ligand-gated ion channel receptor superfamily, and are constituted of five subunits surrounding a chloride channel. Their clinical interest is highlighted by the number of therapeutic drugs that act on them. It is well established that the subunit composition of a receptor subtype determines its pharmacological properties. We have investigated positional effects of two different α-subunit isoforms, α1 and α6, in a single pentamer. For this purpose, we used concatenated subunit receptors in which subunit arrangement is predefined. The resulting receptors were expressed in Xenopus oocytes and analyzed by using the two-electrode voltage-clamp technique. Thus, we have characterized γ2β2α1β2α1, γ2β2α6β2α6, γ2β2α1β2α6, and γ2β2α6β2α1 GABAA receptors. We investigated their response to the agonist GABA, to the partial agonist piperidine-4-sulfonic acid, to the noncompetitive inhibitor furosemide and to the positive allosteric modulator diazepam. Each receptor isoform is characterized by a specific set of properties. In this case, subunit positioning provides a functional signature to the receptor. We furthermore show that a single α6-subunit is sufficient to confer high furosemide sensitivity, and that the diazepam efficacy is determined exclusively by the α-subunit neighboring the γ2-subunit. By using this diagnostic tool, it should become possible to determine the subunit arrangement of receptors expressed in vivo that contain α1- and α6-subunits. This method may also be applied to the study of other ion channels. PMID:15136735

  10. Application of nanoparticles for oral delivery of acid-labile lansoprazole in the treatment of gastric ulcer: in vitro and in vivo evaluations

    PubMed Central

    Alai, Milind; Lin, Wen Jen

    2015-01-01

    The aim of this study was to develop nanoparticles for oral delivery of an acid-labile drug, lansoprazole (LPZ), for gastric ulcer therapy. LPZ-loaded positively charged Eudragit® RS100 nanoparticles (ERSNPs-LPZ) and negatively charged poly(lactic-co-glycolic acid) nanoparticles (PLGANPs-LPZ) were prepared. The effect of charge on nanoparticle deposition in ulcerated and non-ulcerated regions of the stomach was investigated. The cellular uptake of nanoparticles in the intestine was evaluated in a Caco-2 cell model. The pharmacokinetic performance and ulcer healing response of LPZ-loaded nanoparticles following oral administration were evaluated in Wistar rats with induced ulcers. The prepared drug-loaded ERSNPs-LPZ and PLGANPs-LPZ possessed opposite surface charge (+38.5±0.3 mV versus −27.3±0.3 mV, respectively) and the particle size was around 200 nm with a narrow size distribution. The negatively charged PLGANPs adhered more readily to the ulcerated region (7.22%±1.21% per cm2), whereas the positively charged ERSNPs preferentially distributed in the non-ulcerated region (8.29%±0.35% per cm2). Both ERSNPs and PLGANPs were prominent uptake in Caco-2 cells, too. The nanoparticles sustained and prolonged LPZ concentrations up to 24 hours, and the half-life and mean residence time of LPZ were prolonged by 3.5-fold and 4.5-fold, respectively, as compared with LPZ solution. Oral administration of LPZ-loaded nanoparticles healed 92.6%–95.7% of gastric ulcers in Wistar rats within 7 days. PMID:26124659

  11. Poly(ethylene oxide)-block-polyphosphoester-graft-paclitaxel Conjugates with Acid-labile Linkages as a pH-Sensitive and Functional Nanoscopic Platform for Paclitaxel Delivery

    PubMed Central

    Zou, Jiong; Zhang, Fuwu; Zhang, Shiyi; Pollack, Stephanie F.; Elsabahy, Mahmoud; Fan, Jingwei; Wooley, Karen L.

    2013-01-01

    There has been an increasing interest to develop new types of stimuli-responsive drug delivery vehicles with high drug loading and controlled release properties for chemotherapeutics. An acid-labile, polyphosphoester-based degradable, polymeric paclitaxel (PTX) conjugate containing ultra-high levels of PTX loading has been improved significantly, in this second generation development, which involves connection of each PTX molecule to the polymer backbone via a pH-sensitive β-thiopropionate linkage. The results for this system indicate that it has great potential as an effective anti-cancer agent. Poly(ethylene oxide)-block-polyphosphoester-graft-PTX drug conjugate (PEO-b-PPE-g-PTX G2) was synthesized by organocatalyst-promoted ring-opening polymerization of 2-(but-3-en-1-yloxy)-1,3,2-dioxaphospholane-2-oxide from a PEO macroinitiator, followed by thermo-promoted thiolene click conjugation of a thiol-functionalized PTX prodrug to the pendant alkene groups of the block copolymer. The PEO-b-PPE-g-PTX G2 formed well-defined nanoparticles in aqueous solution, by direct dissolution into water, with a number-averaged hydrodynamic diameter of 114 ± 31 nm. The conjugate had PTX loading capacity as high as 53 wt%, and a maximum PTX concentration of 0.68 mg/mL in water (vs. 1.7 μg/mL for free PTX). Although the PTX concentration is ca. 10× less than for our first generation material, its accelerated release allowed for similar free PTX concentrations vs. time. The PEO-b-PPE-g-PTX G2 exhibited accelerated drug release under acidic conditions (~50 wt% PTX released in 8 d) compared to neutral conditions (~20 wt% PTX released in 8 d) and compared to the first generation analog that contained ester linkages between PTX and the polymer backbone (<5 wt% PTX released in 4 d), due to their acid-sensitive hydrolytically-labile β-thiopropionate linkages between PTX molecules and the polymer backbone. The positive cell-killing activity of PEO-b-PPE-g-PTX G2 against two cancer cell

  12. Identification of a nucleic acid-binding region within the largest subunit of Drosophila melanogaster RNA polymerase II.

    PubMed Central

    Kontermann, R. E.; Kobor, M.; Bautz, E. K.

    1993-01-01

    The largest and the second-largest subunit of the multisubunit eukaryotic RNA polymerases are involved in interaction with the DNA template and the nascent RNA chain. Using Southwestern DNA-binding techniques and nitrocellulose filter binding assays of bacterially expressed fusion proteins, we have identified a region of the largest, 215-kDa, subunit of Drosophila RNA polymerase II that has the potential to bind nucleic acids nonspecifically. This nucleic acid-binding region is located between amino acid residues 309-384 and is highly conserved within the largest subunits of eukaryotic and bacterial RNA polymerases. A homology to a region of the DNA-binding cleft of Escherichia coli DNA polymerase I involved in binding of the newly synthesized DNA duplex provides indirect evidence that the nucleic acid-binding region of the largest subunit participates in interaction with double-stranded nucleic acids during transcription. The nonspecific DNA-binding behavior of the region is similar to that observed for the native enzyme in nitrocellulose filter binding assays and that of the separated largest subunit in Southwestern assays. A high content of basic amino acid residues is consistent with the electrostatic nature of nonspecific DNA binding by RNA polymerases. PMID:8443600

  13. Single Amino Acid Polymorphisms of Pertussis Toxin Subunit S2 (PtxB) Affect Protein Function

    PubMed Central

    Millen, Scott H.; Watanabe, Mineo; Komatsu, Eiji; Yamaguchi, Fuminori; Nagasawa, Yuki; Suzuki, Eri; Monaco, Haleigh; Weiss, Alison A.

    2015-01-01

    Whooping cough due to Bordetella pertussis is increasing in incidence, in part due to accumulation of mutations which increase bacterial fitness in highly vaccinated populations. Polymorphisms in the pertussis toxin, ptxA and ptxB genes, and the pertactin, prn genes of clinical isolates of Bordetella pertussis collected in Cincinnati from 1989 through 2005 were examined. While the ptxA and prn genotypes were variable, all 48 strains had the ptxB2 genotype; ptxB1 encodes glycine at amino acid 18 of the S2 subunit of pertussis toxin, while ptxB2 encodes serine. We investigated antigenic and functional differences of PtxB1 and PtxB2. The S2 protein was not very immunogenic. Only a few vaccinated or individuals infected with B. pertussis developed antibody responses to the S2 subunit, and these sera recognized both polymorphic forms equally well. Amino acid 18 of S2 is in a glycan binding domain, and the PtxB forms displayed differences in receptor recognition and toxicity. PtxB1 bound better to the glycoprotein, fetuin, and Jurkat T cells in vitro, but the two forms were equally effective at promoting CHO cell clustering. To investigate in vivo activity of Ptx, one μg of Ptx was administered to DDY mice and blood was collected on 4 days after injection. PtxB2 was more effective at promoting lymphocytosis in mice. PMID:26375454

  14. Export of pre-aged, labile DOM from a central California coastal upwelling system: Insights from D/L amino acids and Δ14C signatures

    NASA Astrophysics Data System (ADS)

    Walker, B. D.; Shen, Y.; Benner, R. H.; Druffel, E. R. M.

    2014-12-01

    Coastal upwelling zones are among the most productive regions in the world and play a major role in global carbon and nitrogen cycles. Recent research suggests that a substantial fraction of newly fixed organic matter is exported offshore in the form of dissolved organic matter (DOM). However, to date only a few studies have examined DOM composition in the context of production and export from upwelling systems. The ultimate fate and geochemical impact of coastal DOM exported to offshore and mesopelagic ecosystems also remains largely unknown. Between 2007-2009 we conducted a high-resolution biogeochemical time series at the Granite Canyon Marine Pollution Studies Lab in part to evaluate the seasonal production and export of DOM from the Central CA coast. Our previous work demonstrated substantial, albeit disparate, seasonal production of dissolved organic carbon and nitrogen (DOC, DON) - with high DON (and low C:N ratios) produced during upwelling and high DOC produced during summer/fall water column stratification (Walker and McCarthy, 2012). Here we present new total dissolved D/L amino acid (TDAA) and UV-oxidizable DOC radiocarbon (Δ14C) data with the goal of determining the relative sources (heterotrophic vs. autotrophic), bioavailability, microbial processing and 14C-ages of C-rich vs. N-rich DOM exported from this upwelling system. Our results suggest that C-rich DOM produced during water column stratification carries a large microbial signature (i.e. high D/L AA ratios and non-protein AA abundance), whereas N-rich DOM produced during upwelling appears to be fresh, autotrophic DOM (i.e. lowest D/L AA ratios and highest TDAA abundance). DOM Δ14C signatures also did not approximate in situ dissolved inorganic carbon (DIC), and instead were far more negative and highly correlated to water mass density. Together our results indicate a previously unrecognized source of highly labile yet pre-aged DOM potentially impacting offshore and mesopelagic ecosystems.

  15. Labile sulfide and sulfite in phytochelatin complexes

    SciTech Connect

    Eannetta, N.T.; Steffens, J.C. )

    1989-04-01

    Heavy metals such as cadmium induce tomato cell cultures to synthesize the metal binding polypeptides ({gamma}-Glu-Cys){sub 3} and ({gamma}-Glu-Cys){sub 4}-Gly (phytochelatins). Tomato cells selected for growth on normally lethal concentrations of CdCl{sub 2} synthesize higher quantities of these polypeptides. Cd{sup r} cells are not cross-resistant to other heavy metals, and recent work suggests that metal detoxification by these peptides may be Cd-specific. The occurrence of labile sulfur as a component of the metal complex raises questions concerning possible functions of phytochelatins besides that of Cd binding. The presence of acid-labile sulfide ion in phytochelatin complexes has been reported by several groups. We report the additional finding that labile sulfite is also present in these complexes and in higher amounts than sulfide. Sulfide and sulfite are both released from the metal binding complex by acidification or by treatment with EDTA.

  16. Acid-sensing ion channels (ASICs) are differentially modulated by anions dependent on their subunit composition

    PubMed Central

    Kusama, Nobuyoshi; Gautam, Mamta; Harding, Anne Marie S.; Snyder, Peter M.

    2013-01-01

    Acid-sensing ion channels (ASICs) are sodium channels gated by extracellular protons. ASIC1a channels possess intersubunit Cl−-binding sites in the extracellular domain, which are highly conserved between ASIC subunits. We previously found that anions modulate ASIC1a gating via these sites. Here we investigated the effect of anion substitution on native ASICs in rat sensory neurons and heterologously expressed ASIC2a and ASIC3 channels by whole cell patch clamp. Similar to ASIC1a, anions modulated the kinetics of desensitization of other ASIC channels. However, unlike ASIC1a, anions also modulated the pH dependence of activation. Moreover, the order of efficacy of different anions to modulate ASIC2a and -3 was very different from that of ASIC1a. More surprising, mutations of conserved residues that form an intersubunit Cl−-binding site in ASIC1a only partially abrogated the effects of anion modulation of ASIC2a and had no effect on anion modulation of ASIC3. The effects of anions on native ASICs in rat dorsal root ganglion neurons mimicked those in heterologously expressed ASIC1a/3 heteromeric channels. Our data show that anions modulate a variety of ASIC properties and are dependent on the subunit composition, and the mechanism of modulation for ASIC2a and -3 is distinct from that of ASIC1a. We speculate that modulation of ASIC gating by Cl− is a novel mechanism to sense shifts in extracellular fluid composition. PMID:23135698

  17. Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids.

    PubMed Central

    Dynan, W S; Yoo, S

    1998-01-01

    The Ku protein-DNA-dependent protein kinase system is one of the major pathways by which cells of higher eukaryotes respond to double-strand DNA breaks. The components of the system are evolutionarily conserved and homologs are known from a number of organisms. The Ku protein component binds directly to DNA ends and may help align them for ligation. Binding of Ku protein to DNA also nucleates formation of an active enzyme complex containing the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The interaction between Ku protein, DNA-PKcs and nucleic acids has been extensively investigated. This review summarizes the results of these biochemical investigations and relates them to recent molecular genetic studies that reveal highly characteristic repair and recombination defects in mutant cells lacking Ku protein or DNA-PKcs. PMID:9512523

  18. The two AGPase subunits evolve at different rates in angiosperms, yet they are equally sensitive to activity-altering amino acid changes when expressed in bacteria.

    PubMed

    Georgelis, Nikolaos; Braun, Edward L; Shaw, Janine R; Hannah, L Curtis

    2007-05-01

    The rate of protein evolution is generally thought to reflect, at least in part, the proportion of amino acids within the protein that are needed for proper function. In the case of ADP-glucose pyrophosphorylase (AGPase), this premise led to the hypothesis that, because the AGPase small subunit is more conserved compared with the large subunit, a higher proportion of the amino acids of the small subunit are required for enzyme activity compared with the large subunit. Evolutionary analysis indicates that the AGPase small subunit has been subject to more intense purifying selection than the large subunit in the angiosperms. However, random mutagenesis and expression of the maize (Zea mays) endosperm AGPase in bacteria show that the two AGPase subunits are equally predisposed to enzyme activity-altering amino acid changes when expressed in one environment with a single complementary subunit. As an alternative hypothesis, we suggest that the small subunit exhibits more evolutionary constraints in planta than does the large subunit because it is less tissue specific and thus must form functional enzyme complexes with different large subunits. Independent approaches provide data consistent with this alternative hypothesis. PMID:17496118

  19. Receptor Binding by Cholera Toxin B-Subunit and Amino Acid Modification Improves Minimal Peptide Immunogenicity

    PubMed Central

    Boberg, Andreas; Stålnacke, Alexandra; Bråve, Andreas; Hinkula, Jorma; Wahren, Britta; Carlin, Nils

    2012-01-01

    We increase our understanding of augmenting a cellular immune response, by using an HIV-1 protease-derived epitope (PR75–84), and variants thereof, coupled to the C-terminal, of the B subunit of cholera toxin (CTB). Fusion proteins were used for immunizations of HLA-A0201 transgenic C57BL/6 mice. We observed different capacities to elicit a cellular immune response by peptides with additions of five to ten amino acids to the PR epitope. There was a positive correlation between the magnitude of the elicited cellular immune response and the capacity of the fusion protein to bind GM-1. This binding capacity is affected by its ability to form natural pentamers of CTB. Our results suggest that functional CTB pentamers containing a foreign amino acid-modified epitope is a novel way to overcome the limited cellular immunogenicity of minimal peptide antigens. This way of using a functional assay as readout for improved cellular immunogenicity might become highly valuable for difficult immunogens such as short peptides (epitopes).

  20. Isotope labelling of Rubisco subunits provides in vivo information on subcellular biosynthesis and exchange of amino acids between compartments

    PubMed Central

    Allen, Doug K; Laclair, Russell W; Ohlrogge, John B; Shachar-Hill, Yair

    2012-01-01

    The architecture of plant metabolism includes substantial duplication of metabolite pools and enzyme catalyzed reactions in different subcellular compartments. This poses challenges for understanding the regulation of metabolism particularly in primary metabolism and amino acid biosynthesis. To explore the extent to which amino acids are made in single compartments and to gain insight into the metabolic precursors from which they derive, we used steady state 13C labelling and analysed labelling in protein amino acids from plastid and cytosol. Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a major component of green tissues and its large and small subunits are synthesized from different pools of amino acids in the plastid and cytosol, respectively. Developing Brassica napus embryos were cultured in the presence of [U-13C]-sucrose, [U-13C]-glucose, [U-13C]-glutamine or [U-13C]-alanine to generate proteins. The large subunits (LSU) and small subunits (SSU) of Rubisco were isolated and the labelling in their constituent amino acids was analysed by gas chromatography-mass spectrometry. Amino acids including alanine, glycine and serine exhibited different 13C enrichment in the LSU and SSU, demonstrating that these pools have different metabolic origins and are not isotopically equilibrated between the plastid and cytosol on the time scale of cellular growth. Potential extensions of this novel approach to other macromolecules, organelles and cell types of eukaryotes are discussed. PMID:22292468

  1. Valerenic acid derivatives as novel subunit-selective GABAA receptor ligands –in vitro and in vivo characterization

    PubMed Central

    Khom, S; Strommer, B; Ramharter, J; Schwarz, T; Schwarzer, C; Erker, T; Ecker, GF; Mulzer, J; Hering, S

    2010-01-01

    BACKGROUND AND PURPOSE Subunit-specific modulators of γ-aminobutyric acid (GABA) type A (GABAA) receptors can help to assess the physiological function of receptors with different subunit composition and also provide the basis for the development of new drugs. Valerenic acid (VA) was recently identified as a β2/3 subunit-specific modulator of GABAA receptors with anxiolytic potential. The aim of the present study was to generate VA derivatives as novel GABAA receptor modulators and to gain insight into the structure–activity relation of this molecule. EXPERIMENTAL APPROACH The carboxyl group of VA was substituted by an uncharged amide or amides with different chain length. Modulation of GABAA receptors composed of different subunit compositions by the VA derivatives was studied in Xenopus oocytes by means of the two-microelectrode voltage-clamp technique. Half-maximal stimulation of GABA-induced chloride currents (IGABA) through GABAA receptors (EC50) and efficacies (maximal stimulation of IGABA) were estimated. Anxiolytic activity of the VA derivatives was studied in mice, applying the elevated plus maze test. KEY RESULTS Valerenic acid amide (VA-A) displayed the highest efficacy (more than twofold greater IGABA enhancement than VA) and highest potency (EC50= 13.7 ± 2.3 µM) on α1β3 receptors. Higher efficacy and potency of VA-A were also observed on α1β2γ2s and α3β3γ2s receptors. Anxiolytic effects were most pronounced for VA-A. CONCLUSIONS AND IMPLICATIONS Valerenic acid derivatives with higher efficacy and affinity can be generated. Greater in vitro action of the amide derivative correlated with a more pronounced anxiolytic effect in vivo. The data give further confidence in targeting β3 subunit containing GABAA receptors for development of anxiolytics. PMID:20718740

  2. Targeting the γ-Aminobutyric Acid A Receptor α4 Subunit in Airway Smooth Muscle to Alleviate Bronchoconstriction.

    PubMed

    Yocum, Gene T; Gallos, George; Zhang, Yi; Jahan, Rajwana; Stephen, Michael Rajesh; Varagic, Zdravko; Puthenkalam, Roshan; Ernst, Margot; Cook, James M; Emala, Charles W

    2016-04-01

    We previously demonstrated that airway smooth muscle (ASM) cells express γ-aminobutyric acid A receptors (GABAARs), and that GABAAR agonists acutely relax ASM. Among the GABAAR α subunits, human ASM cells express only α4 and α5, providing the opportunity for selective pharmacologic targeting. Novel GABAAR-positive allosteric modulators designed for enhanced α4/α6 subunit selectivity were synthesized using iterative computational analyses (CMD-45 and XHe-III-74). Studies using oocyte heterologous expression systems confirmed that CMD-45 and XHe-III-74 led to significantly greater augmentation of currents induced by a 3% maximal effective concentration (EC3) of GABA [EC3]-induced currents in oocytes expressing α4 or α6 subunits (along with β3 and γ2) compared with other α subunits. CMD-45 and XHe-III-74 also led to greater ex vivo relaxation of contracted wild-type mouse tracheal rings compared with tracheal rings from GABAAR α4 subunit (Gabra4) knockout mice. Furthermore, CMD-45 and XHe-III-74 significantly relaxed precontracted human ASM ex vivo, and, at a low concentration, both ligands led to a significant leftward shift in albuterol-mediated ASM relaxation. In vivo, inhaled XHe-III-74 reduced respiratory system resistance in an asthmatic mouse model. Pretreatment of human ASM cells with CMD-45 and XHe-III-74 inhibited histamine-induced increases in intracellular calcium concentrations in vitro, an effect that was lost when calcium was omitted from the extracellular buffer, suggesting that inhibition of calcium influx due to alterations in plasma membrane potential may play a role in the mechanism of ASM relaxation. Selective targeting of the GABAAR α4 subunit with inhaled ligands may be a novel therapeutic pathway to treat bronchoconstriction, while avoiding sedative central nervous system effects, which are largely mediated by α1-3 subunit-containing GABAARs in the brain. PMID:26405827

  3. Cholera Toxin B Subunit Linked to Glutamic Acid Decarboxylase Suppresses Dendritic Cell Maturation and Function

    PubMed Central

    Odumosu, Oludare; Nicholas, Dequina; Payne, Kimberly; Langridge, William

    2012-01-01

    Dendritic cells are the largest population of antigen presenting cells in the body. One of their main functions is to regulate the delicate balance between immunity and tolerance responsible for maintenance of immunological homeostasis. Disruption of this delicate balance often results in chronic inflammation responsible for initiation of organ specific autoimmune diseases such as rheumatoid arthritis, multiple sclerosis and type I diabetes. The cholera toxin B subunit (CTB) is a weak mucosal adjuvant known for its ability to stimulate immunity to antigenic proteins. However, conjugation of CTB to many autoantigens can induce immunological tolerance resulting in suppression of autoimmunity. In this study, we examined whether linkage of CTB to a 5 kDa C-terminal protein fragment of the major diabetes autoantigen glutamic acid decarboxylase (GAD35), can block dendritic cell (DC) functions such as biosynthesis of co-stimulatory factor proteins CD86, CD83, CD80 and CD40 and secretion of inflammatory cytokines. The results of human umbilical cord blood monocyte-derived DC - GAD35 autoantigen incubation experiments showed that inoculation of immature DCs (iDCs), with CTB-GAD35 protein dramatically suppressed levels of CD86, CD83, CD80 and CD40 co-stimulatory factor protein biosynthesis in comparison with GAD35 alone inoculated iDCs. Surprisingly, incubation of iDCs in the presence of the CTB-autoantigen and the strong immunostimulatory molecules PMA and Ionomycin revealed that CTB-GAD35 was capable of arresting PMA + Ionomycin induced DC maturation. Consistant with this finding, CTB-GAD35 mediated suppression of DC maturation was accompanied by a dramatic decrease in the secretion of the pro-inflammatory cytokines IL-12/23p40 and IL-6 and a significant increase in secretion of the immunosuppressive cytokine IL-10. Taken together, our experimental data suggest that linkage of the weak adjuvant CTB to the dominant type 1 diabetes autoantigen GAD strongly inhibits DC

  4. Topography and stoichiometry of acidic proteins in large ribosomal subunits from Artemia salina as determined by crosslinking

    SciTech Connect

    Uchiumi, T.; Wahba, A.J.; Traut, R.R.

    1987-08-01

    The 60S subunits isolated from Artemia salina ribosomes were treated with the crosslinking reagent 2-iminothiolane under mild conditions. Proteins were extracted and fractions containing crosslinked acidic proteins were obtained by stepwise elution from CM-cellulose. Each fraction was analyzed by diagonal (two-dimensional nonreducing-reducing) NaDodSO/sub 4//polyacrylamide gel electrophoresis. Crosslinked proteins below the diagonal were radioiodinated and identified by two-dimensional acidic urea-NaDodSO/sub 4/ gel electrophoresis. Each of the acidic proteins P1 and P2 was crosslinked individually to the same third protein, PO. The fractions containing acidic proteins were also analyzed by two-dimensional nonequilibrium isoelectric focusing-NaDodSO/sub 4//polyacrylamide gel electrophoresis. Two crosslinked complexes were observed that coincide in isoelectric positions with monomeric P1 and P2, respectively. Both P1 and P2 appear to form crosslinked homodimers. These results suggest the presence in the 60S subunit of (P1)/sub 2/ and (P2)/sub 2/ dimers, each of which is anchored to PO. Protein PO appears to play the same role as L10 in Escherichia coli ribosomes and may form a pentameric complex with the two dimers in the 60S subunits.

  5. Isolation of Labile Pseudohalogen NSO Species.

    PubMed

    Labbow, René; Michalik, Dirk; Reiß, Fabian; Schulz, Axel; Villinger, Alexander

    2016-06-27

    A new synthetic approach enabled the generation of highly labile thionylimide, H-NSO, which was trapped by adduct formation with the bulky Lewis acid B(C6 F5 )3 and fully characterized. For comparison, a series of different Me3 Si-NSO Lewis acid adducts were studied. Treatment of Me3 Si-NSO with the silylium ion [Me3 Si](+) led to the formation of the hitherto unknown iminosulfonium ion [Me3 Si-N=S-O-SiMe3 ](+) , which could be isolated and fully characterized as a salt in the presence of weakly coordinating carborate anions. PMID:27072533

  6. Felbamate is a subunit selective modulator of recombinant gamma-aminobutyric acid type A receptors expressed in Xenopus oocytes.

    PubMed

    Simeone, Timothy A; Otto, James F; Wilcox, Karen S; White, H Steve

    2006-12-15

    Felbamate (2-phenyl-1,3-propanediol dicarbamate) is clinically available for the treatment of refractory epileptic seizures, and is known to modulate several ion channels including gamma-aminobutyric acid type A (GABA(A)) receptors. To determine felbamate subunit selectivity for GABA(A) receptors we expressed 15 different GABA(A) receptor combinations in Xenopus laevis oocytes. Felbamate positively modulated GABA-currents of alpha(1)beta(2)gamma(2S), alpha(1)beta(3)gamma(2S), alpha(2)beta(2)gamma(2S) and alpha(2)beta(3)gamma(2S), whereas felbamate was either ineffective or negatively modulated the other 11 receptor combinations. Regional distributions of GABA(A) receptor subunits suggest that felbamate may differentially modulate distinct inhibitory circuits, a possibility that may have relevance to felbamate efficacy in refractory epilepsies. PMID:17056029

  7. Improved purification of brine-shrimp (Artemia saline) (Na+ + K+)-activated adenosine triphosphatase and amino-acid and carbohydrate analyses of the isolated subunits.

    PubMed

    Peterson, G L; Hokin, L E

    1980-10-15

    Purification of the (Na+ + K+)-activated ATPase has been improved 2-fold the respect to both purity and yield over the previous method [Peterson, Ewing, Hootman & Conte (1978) J. Biol. Chem. 253, 4762-4770] by using Lubrol WX and non-denaturing concentrations of sodium dodecyl sulphate (SDS). The enzyme was purified 200-fold over the homogenate. The preparation had a specific activity of about 600 mumol of Pi/h per mg of protein, and was about 60% pure according to quantification of Coomassie Blue-stained SDS/polyacrylamide gels. The yield of purified enzyme was about 10 mg of protein per 100g of dry brine-shrimp (Artemia salina) cysts. The method is highly suitable for purification either on a small scale (10-25g of dry cysts) or on a large scale (900g of dry cysts) and methods are described for both. The large (Na+ + K+)-activated ATPase subunit (alpha-subunit) was isolated in pure form by SDS-gel filtration on Bio-Gel A 1.5m. The small subunit (beta-subunit) was eluted with other contaminating proteins on the Bio-Gel column, but was isolated in pure form by extraction from SDS/polyacrylamide gels. The amino acid and carbohydrate compositions of both subunits are reported. The alpha-subunit contained 5.2% carbohydrate by weight, and the beta-subunit 9.2%. Sialic acid was absent from both subunits. PMID:6272692

  8. ASIC2 Subunits Target Acid-Sensing Ion Channels to the Synapse via an Association with PSD-95

    PubMed Central

    Zha, Xiang-ming; Costa, Vivian; Harding, Anne Marie S.; Reznikov, Leah; Benson, Christopher J.; Welsh, Michael J.

    2009-01-01

    Acid-sensing ion channel-1a (ASIC1a) mediates H+-gated current to influence normal brain physiology and impact several models of disease. Although ASIC2 subunits are widely expressed in brain and modulate ASIC1a current, their function remains poorly understood. We identified ASIC2a in dendrites, dendritic spines, and brain synaptosomes. This localization largely relied on ASIC2a binding to PSD-95 and matched that of ASIC1a, which does not co-immunoprecipitate with PSD-95. We found that ASIC2 and ASIC1a associated in brain, and through its interaction with PSD-95, ASIC2 increased ASIC1a localization in dendritic spines. Consistent with earlier work showing that acidic pH elevated spine [Ca2+]i by activating ASIC1a, loss of ASIC2 decreased the percentage of spines responding to acid. Moreover, like a reduction of ASIC1a, the number of spine synapses fell in ASIC2-/- neurons. These results indicate that ASIC2 facilitates ASIC1a localization and function in dendritic spines and suggest that the two subunits work in concert to regulate neuronal function. PMID:19571134

  9. Analysis of β-Subunit-dependent GABAA Receptor Modulation and Behavioral Effects of Valerenic Acid Derivatives.

    PubMed

    Khom, S; Hintersteiner, J; Luger, D; Haider, M; Pototschnig, G; Mihovilovic, M D; Schwarzer, C; Hering, S

    2016-06-01

    Valerenic acid (VA)-a β2/3-selective GABA type A (GABAA) receptor modulator-displays anxiolytic and anticonvulsive effects in mice devoid of sedation, making VA an interesting drug candidate. Here we analyzed β-subunit-dependent enhancement of GABA-induced chloride currents (IGABA) by a library of VA derivatives and studied their effects on pentylenetetrazole (PTZ)-induced seizure threshold and locomotion. Compound-induced IGABA enhancement was determined in oocytes expressing α1β1γ2S, α1β2γ2S, or α1β3γ2S receptors. Effects on seizure threshold and locomotion were studied using C57BL/6N mice and compared with saline-treated controls. β2/3-selective VA derivatives such as VA-amide (VA-A) modulating α1β3γ2S (VA-A: Emax = 972 ± 69%, n = 6, P < 0.05) and α1β2γ2S receptors (Emax = 1119 ± 72%, n = 6, P < 0.05) more efficaciously than VA (α1β3γ2S: VA: Emax = 632 ± 88%, n = 9 versus α1β2γ2S: VA: Emax = 721 ± 68%, n = 6) displayed significantly more pronounced seizure threshold elevation than VA (saline control: 40.4 ± 1.4 mg/kg PTZ versus VA 10 mg/kg: 49.0 ± 1.8 mg/kg PTZ versus VA-A 3 mg/kg: 57.9 ± 1.9 mg/kg PTZ, P < 0.05). Similarly, VA's methylamide (VA-MA) enhancing IGABA through β3-containing receptors more efficaciously than VA (Emax = 1043 ± 57%, P < 0.01, n = 6) displayed stronger anticonvulsive effects. Increased potency of IGABA enhancement and anticonvulsive effects at lower doses compared with VA were observed for VA-tetrazole (α1β3γ2S: VA-TET: EC50 = 6.0 ± 1.0 μM, P < 0.05; VA-TET: 0.3 mg/kg: 47.3 ± 0.5 mg/kg PTZ versus VA: 10 mg/kg: 49.0 ± 1.8 mg/kg PTZ, P < 0.05). At higher doses (≥10 mg/kg), VA-A, VA-MA, and VA-TET reduced locomotion. In contrast, unselective VA derivatives induced anticonvulsive effects only at high doses (30 mg/kg) or did not display any behavioral effects. Our data indicate that the β2/3-selective compounds VA-A, VA-MA, and VA-TET induce anticonvulsive effects at low doses (≤10 mg/kg), whereas

  10. Analysis of β-Subunit-dependent GABAA Receptor Modulation and Behavioral Effects of Valerenic Acid Derivatives

    PubMed Central

    Hintersteiner, J.; Luger, D.; Haider, M.; Pototschnig, G.; Mihovilovic, M. D.; Schwarzer, C.; Hering, S.

    2016-01-01

    Valerenic acid (VA)—a β2/3-selective GABA type A (GABAA) receptor modulator—displays anxiolytic and anticonvulsive effects in mice devoid of sedation, making VA an interesting drug candidate. Here we analyzed β-subunit-dependent enhancement of GABA-induced chloride currents (IGABA) by a library of VA derivatives and studied their effects on pentylenetetrazole (PTZ)-induced seizure threshold and locomotion. Compound-induced IGABA enhancement was determined in oocytes expressing α1β1γ2S, α1β2γ2S, or α1β3γ2S receptors. Effects on seizure threshold and locomotion were studied using C57BL/6N mice and compared with saline-treated controls. β2/3-selective VA derivatives such as VA-amide (VA-A) modulating α1β3γ2S (VA-A: Emax = 972 ± 69%, n = 6, P < 0.05) and α1β2γ2S receptors (Emax = 1119 ± 72%, n = 6, P < 0.05) more efficaciously than VA (α1β3γ2S: VA: Emax = 632 ± 88%, n = 9 versus α1β2γ2S: VA: Emax = 721 ± 68%, n = 6) displayed significantly more pronounced seizure threshold elevation than VA (saline control: 40.4 ± 1.4 mg/kg PTZ versus VA 10 mg/kg: 49.0 ± 1.8 mg/kg PTZ versus VA-A 3 mg/kg: 57.9 ± 1.9 mg/kg PTZ, P < 0.05). Similarly, VA’s methylamide (VA-MA) enhancing IGABA through β3-containing receptors more efficaciously than VA (Emax = 1043 ± 57%, P < 0.01, n = 6) displayed stronger anticonvulsive effects. Increased potency of IGABA enhancement and anticonvulsive effects at lower doses compared with VA were observed for VA-tetrazole (α1β3γ2S: VA-TET: EC50 = 6.0 ± 1.0 μM, P < 0.05; VA-TET: 0.3 mg/kg: 47.3 ± 0.5 mg/kg PTZ versus VA: 10 mg/kg: 49.0 ± 1.8 mg/kg PTZ, P < 0.05). At higher doses (≥10 mg/kg), VA-A, VA-MA, and VA-TET reduced locomotion. In contrast, unselective VA derivatives induced anticonvulsive effects only at high doses (30 mg/kg) or did not display any behavioral effects. Our data indicate that the β2/3-selective compounds VA-A, VA-MA, and VA-TET induce anticonvulsive effects at low doses (≤10 mg

  11. Roles of Amino Acids and Subunits in Determining the Inhibition of Nicotinic Acetylcholine Receptors by Competitive Antagonists

    PubMed Central

    Dilger, James P.; Vidal, Ana Maria; Liu, Man; Mettewie, Claire; Suzuki, Takahiro; Pham, Anh; Demazumder, Deeptankar

    2008-01-01

    Background Binding sites for agonists and competitive antagonists (nondepolarizing neuromuscular blocking agents) are located at the α–δ and α–ε subunit interfaces of adult nicotinic acetylcholine receptors. Most information about the amino acids that participate in antagonist binding comes from binding studies with (+)-tubocurarine and metocurine. These bind selectively to the α–ε interface but are differentially sensitive to mutations. To test the generality of this observation, the authors measured current inhibition by five competitive antagonists on wild-type and mutant acetylcholine receptors. Methods HEK293 cells were transfected with wild-type or mutant (αY198F, εD59A, εD59N, εD173A, εD173N, δD180K) mouse muscle acetylcholine receptor complementary DNA. Outside-out patches were excised and perfused with acetylcho-line in the absence and presence of antagonist. Concentration–response curves were constructed to determine antagonist IC50. An antagonist-removal protocol was used to determine dissociation and association rates. Results Effects of mutations were antagonist specific. αY198F decreased the IC50 of (+)-tubocurarine 10-fold, increased the IC50 of vecuronium 5-fold, and had smaller effects on other antagonists. (+)-Tubocurarine was the most sensitive antagonist to εD173 mutations. εD59 mutations had large effects on metocurine and cisatracurium. δD180K decreased inhibition by pancuronium, vecuronium, and cisatracurium. Inhibition by these antagonists was increased for receptors containing two δ subunits but no ε subunit. Differences in IC50 arose from differences in both dissociation and association rates. Conclusion Competitive antagonists exhibited different patterns of sensitivity to mutations. Except for pancuronium, the antagonists were sensitive to mutations at the α–ε interface. Pancuronium, vecuronium, and cisatracurium were selective for the α–δ interface. This suggests the possibility of synergistic

  12. Cost of a naturally occurring two-amino acid deletion in cytochrome c oxidase subunit 7A in Drosophila simulans.

    PubMed

    Ballard, J William O; Melvin, Richard G; Lazarou, Michael; Clissold, Fiona J; Simpson, Stephen J

    2010-10-01

    This study aimed to determine whether a naturally occurring (DeltaTrp85, DeltaVal86) deletion from a protein subunit of cytochrome c oxidase (complex IV) influenced cytochrome c oxidase activity, mRNA expression levels of electron transport chain genes, and aspects of adult female fitness in the fly Drosophila simulans. We modeled the tertiary structure of D. simulans cox7A containing the deletion by homology to the bovine cox7A structure and predicted that it would decrease the function of complex IV. This prediction led to the hypothesis that flies with the deletion would have lower cytochrome c oxidase activity and higher levels of mRNA expression from cox7A. This result was observed, but unexpectedly, elevated levels of mRNA expression were also observed in genes encoding subunits of complexes I, III, and IV. Together these data suggest that the deletion causes a high bioenergetic cost to the organism. To investigate the predicted cost at a physiological level, we assayed aspects of adult female fitness. Starvation sensitivity but not feeding rate was significantly influenced by the two-amino acid deletion. Further, we observed that carbohydrate and protein levels but not lipid levels were higher in the mutant flies. Together, these data show that quaternary structure modeling and biochemistry can be used to link the genotype with the organismal phenotype. PMID:20698788

  13. Identification of the amino acid region involved in the intercellular interaction between the β1 subunits of Na+/K+-ATPase

    PubMed Central

    Tokhtaeva, Elmira; Sachs, George; Sun, Haiying; Dada, Laura A.; Sznajder, Jacob I.; Vagin, Olga

    2012-01-01

    Epithelial junctions depend on intercellular interactions between β1 subunits of the Na+/K+-ATPase molecules of neighboring cells. The interaction between dog and rat subunits is less effective than the interaction between two dog β1 subunits, indicating the importance of species-specific regions for β1–β1 binding. To identify these regions, the species-specific amino acid residues were mapped on a high-resolution structure of the Na+/K+-ATPase β1 subunit to select those exposed towards the β1 subunit of the neighboring cell. These exposed residues were mutated in both dog and rat YFP-linked β1 subunits (YFP–β1) and also in the secreted extracellular domain of the dog β1 subunit. Five rat-like mutations in the amino acid region spanning residues 198–207 of the dog YFP–β1 expressed in Madin–Darby canine kidney (MDCK) cells decreased co-precipitation of the endogenous dog β1 subunit with YFP–β1 to the level observed between dog β1 and rat YFP–β1. In parallel, these mutations impaired the recognition of YFP–β1 by the dog-specific antibody that inhibits cell adhesion between MDCK cells. Accordingly, dog-like mutations in rat YFP–β1 increased both the (YFP–β1)–β1 interaction in MDCK cells and recognition by the antibody. Conversely, rat-like mutations in the secreted extracellular domain of the dog β1 subunit increased its interaction with rat YFP–β1 in vitro. In addition, these mutations resulted in a reduction of intercellular adhesion between rat lung epithelial cells following addition of the secreted extracellular domain of the dog β1 subunit to a cell suspension. Therefore, the amino acid region 198–207 is crucial for both trans-dimerization of the Na+/K+-ATPase β1 subunits and cell–cell adhesion. PMID:22328500

  14. Acid-labile sulfides in shallow marine bottom sediments: A review of the impact on ecosystems in the Azov Sea, the NE Black Sea shelf and NW Adriatic lagoons

    NASA Astrophysics Data System (ADS)

    Sorokin, Yu. I.; Zakuskina, O. Yu

    2012-02-01

    Acid-labile sulfides (LS) increase in bottom sediments at sites in the Azov Sea, at the NE Black Sea shelf and in the coastal lagoons of NW Adriatic Sea experiencing direct impacts of anthropogenic pollution. Fresh anthropogenic organic matter stimulates the bacterial sulfate reduction and here the rate of the LS production overcomes their loss during the oxidation and pyritization. This results in the expansion of reduced sediment layer up to the bottom surface. The LS concentration in the reduced sediments varies between 300 and 2000 mg S l -1 of wet silt depending on the size of pollution loading and on the rate of sedimentation. In the oxidized sediments away from the direct pollution impact, the LS concentration did not exceed 100-150 mg S l -1. Being a strong cytochrome toxin, the LS adversely affect the coastal ecosystems. The concentrations over 600 mg S l -1 result in quasi total benthic mortality whereas >300-400 mg S l -1 depletes the benthic faunal abundance and taxonomic diversity. Accumulation of the LS in sediments also induces nocturnal hypoxia and stimulates domination of toxic cyanobacteria in the pelagic phytocenoses.

  15. Labile (borderline) hypertension--new aspects of a common disorder.

    PubMed

    Kuchel, O; Cuche, J L; Hamet, P; Tolis, G; Messerli, F H; Barbeau, A; Boucher, R; Genest, J

    1975-09-01

    Labile hypertension in patients under 50 years of age (the non-atherosclerotic form) was found to be characterized by higher urinary excretion of catecholamines and particularly of homovanillic acid; when further analyzed it was shown to be a heterogeneous entity with two types of patients clinically and biochemically distinguishable from each other, from control subjects and from patients with stable hypertension. Reactivity to assuming an upright posture distinguishes one type of labile hypertension having a normal postural pulse rate response from another having an excessive postural increase in pulse rate. The first group also showed normal responses of plasma norepinephrine concentration and of urinary cyclic AMP to posture. The group with excessive pulse rate response, in contrast, showed a decrease in plasma norepinephrine and an excessive increase of urinary cyclic AMP excretion in response to upright posture. The results suggest that not only circulating catecholamines but also the reactivity of their target tissues (as probably reflected by cyclic AMP measurements) are important in bringing about signs of adrenergic excess. The hypothesis that cyclic AMP changes reflect beta-adrenergic receptor reactivity is strongly favoured by data indicating qualitative differences in cyclic AMP responses to beta-adrenergic stimulation or inhibition between control subjects and those labile hypertensive patients with clinical signs of excessive sympathetic reactivity. The study stresses the need for more precise definition of labile hypertension, for dynamic clinical and biochemical correlative studies, and for consideration not only of the circulating hormones but also of the "second messengers" (such as cyclic AMP and cyclic GMP) which reflect the cellular action of hormones. Blood pressure is a very labile parameter in health and disease. In one sense, therefore, hypertension can be considered "labile" in every hypertensive patient. Usually, however, labile (or

  16. Upregulation of capacity for glutathione synthesis in response to amino acid deprivation: regulation of glutamate-cysteine ligase subunits.

    PubMed

    Sikalidis, Angelos K; Mazor, Kevin M; Lee, Jeong-In; Roman, Heather B; Hirschberger, Lawrence L; Stipanuk, Martha H

    2014-05-01

    Using HepG2/C3A cells and MEFs, we investigated whether induction of GSH synthesis in response to sulfur amino acid deficiency is mediated by the decrease in cysteine levels or whether it requires a decrease in GSH levels per se. Both the glutamate-cysteine ligase catalytic (GCLC) and modifier (GCLM) subunit mRNA levels were upregulated in response to a lack of cysteine or other essential amino acids, independent of GSH levels. This upregulation did not occur in MEFs lacking GCN2 (general control non-derepressible 2, also known as eIF2α kinase 4) or in cells expressing mutant eIF2α lacking the eIF2α kinase Ser(51) phosphorylation site, indicating that expression of both GCLC and GCLM was mediated by the GCN2/ATF4 stress response pathway. Only the increase in GCLM mRNA level, however, was accompanied by a parallel increase in protein expression, suggesting that the enhanced capacity for GSH synthesis depended largely on increased association of GCLC with its regulatory subunit. Upregulation of both GCLC and GLCM mRNA levels in response to cysteine deprivation was dependent on new protein synthesis, which is consistent with expression of GCLC and GCLM being mediated by proteins whose synthesis depends on activation of the GCN2/ATF4 pathway. Our data suggest that the regulation of GCLC expression may be mediated by changes in the abundance of transcriptional regulators, whereas the regulation of GCLM expression may be mediated by changes in the abundance of mRNA stabilizing or destabilizing proteins. Upregulation of GCLM levels in response to low cysteine levels may serve to protect the cell in the face of a future stress requiring GSH as an antioxidant or conjugating/detoxifying agent. PMID:24557597

  17. Upregulation of capacity for glutathione synthesis in response to amino acid deprivation: regulation of glutamate-cysteine ligase subunits

    PubMed Central

    Sikalidis, Angelos K.; Mazor, Kevin M.; Lee, Jeong-In; Roman, Heather B.; Hirschberger, Lawrence L.; Stipanuk, Martha H.

    2014-01-01

    Using HepG2/C3A cells and MEFs, we investigated whether induction of GSH synthesis in response to sulfur amino acid deficiency is mediated by the decrease in cysteine levels or whether it requires a decrease in GSH levels per se. Both the glutamate-cysteine ligase catalytic (GCLC) and modifier (GCLM) subunit mRNA levels were upregulated in response to a lack of cysteine or other essential amino acids, independent of GSH levels. This upregulation did not occur in MEFs lacking GCN2 (general control non-derepressible 2, also known as eIF2α kinase 4) or in cells expressing mutant eIF2α lacking the eIF2α kinase Ser51 phosphorylation site, indicating that expression of both GCLC and GCLM was mediated by the GCN2/ATF4 stress response pathway. Only the increase in GCLM mRNA level, however, was accompanied by a parallel increase in protein expression, suggesting that the enhanced capacity for GSH synthesis depended largely on increased association of GCLC with its regulatory subunit. Upregulation of both GCLC and GLCM mRNA levels in response to cysteine deprivation was dependent on new protein synthesis, which is consistent with expression of GCLC and GCLM being mediated by proteins whose synthesis depends on activation of the GCN2/ATF4 pathway. Our data suggest that the regulation of GCLC expression may be mediated by changes in the abundance of transcriptional regulators, whereas the regulation of GCLM expression may be mediated by changes in the abundance of mRNA stabilizing or destabilizing proteins. Upregulation of GCLM levels in response to low cysteine levels may serve to protect the cell in the face of a future stress requiring GSH as an antioxidant or conjugating/detoxifying agent. PMID:24557597

  18. The NADH-binding subunit of the energy-transducing NADH-ubiquinone oxidoreductase of Paracoccus denitrificans: Gene cloning and deduced primary structure

    SciTech Connect

    Xu, Xuemin; Matsuno-Yagi, Akemi; Yagi, Takao )

    1991-07-02

    The NADH dehydrogenase complex isolated from Paracoccus denitrificans is composed of approximately 10 unlike polypeptides and contains noncovalently bound FMN, non-heme iron, and acid-labile sulfide. The NADH-binding subunit of this enzyme complex was identified by direct photoaffinity labeling with ({sup 32}P)NADH. primers were synthesized on the basis of the N-terminal amino acid sequency of this polypeptide, and these primers were used to synthesize an oligonucleotide probe by the polymerase chain reaction. This probe was utilized to isolate the gene encoding the NADH-binding subunit from a genomic library of P. denitrificans. The nucleotide sequence of the gene and the deduced amino acid sequence of the entire NADH-binding subunit were determined. The NADH-binding subunit has 431 amino acid residues and a calculated molecular weight of 47 191. The encoded protein contains a putative NAD(H)-binding and an iron-sulfur cluster-binding consensus sequence. The deduced amino acid sequence of the Paracoccus NADH-binding subunit shows remarkable similarity to the {alpha} subunit of the NAD-linked hydrogenase of Alcaligenes eutrophus H16. When partial DNA sequencing of the regions surrounding the gene encoding the NADH-binding subunit was carried out, sequences homologous to the 24-, 49-, and 75-kDa polypeptides of bovine complex 1 were detected, suggesting that the structural genes of the Paracoccus NADH dehydrogenase complex constitute a gene cluster.

  19. Molecular cloning of the. alpha. -subunit of human prolyl 4-hydroxylase: The complete cDNA-derived amino acid sequence and evidence for alternative splicing of RNA transcripts

    SciTech Connect

    Helaakoski, T.; Vuori, K.; Myllylae, R.; Kivirikko, K.I.; Pihlajaniemi, T. )

    1989-06-01

    Prolyl 4-hydroxylase an {alpha}{sub 2}{beta}{sub 2} tetramer, catalyzes the formation of 4-hydroxyproline in collagens by the hydroxylation of proline residues in peptide linkages. The authors report here on the isolation of cDNA clones encoding the {alpha}-subunit of the enzyme from human tumor HT-1080, placenta, and fibroblast cDNA libraries. Eight overlapping clones covering almost all of the corresponding 3,000-nucleotide mRNA, including all the coding sequences, were characterized. These clones encode a polypeptide of 517 amino acid residues and a signal peptide of 17 amino acids. Previous characterization of cDNA clones for the {beta}-subunit of prolyl 4-hydroxylase has indicated that its C terminus has the amino acid sequence Lys-Asp-Gly-Leu, which, it has been suggested, is necessary for the retention of a polypeptide within the lumen of the endoplasmic reticulum. The {alpha}-subunit does not have this C-terminal sequence, and thus one function of the {beta}-subunit in the prolyl 4-hydroxylase tetramer appears to be to retain the enzyme within this cell organelle. Southern blot analyses of human genomic DNA with a cDNA probe for the {alpha}-subunit suggested the presence of only one gene encoding the two types of mRNA, which appear to result from mutually exclusive alternative splicing of primary transcripts of one gene.

  20. pH-sensitive micelles based on acid-labile pluronic F68-curcumin conjugates for improved tumor intracellular drug delivery.

    PubMed

    Fang, Xiao-Bin; Zhang, Jin-Ming; Xie, Xi; Liu, Di; He, Cheng-Wei; Wan, Jian-Bo; Chen, Mei-Wan

    2016-04-11

    Curcumin (Cur) is a highly pleiotropic anticancer agent that inhibits cell proliferation and induces apoptosis in cancer cells. A variety of nano-systems constituted by polymer-drug conjugates have been designed to overcome its shortages on water solubility, chemical instability, and poor bioavailability. However, most of them suffer from ineffective release of Cur in cancer cells in vivo. This work developed a novel flexible acid-responsive micelle formulation by covalently conjugating Cur on the hydrophilic terminals of pluronic F68 chains via cis-aconitic anhydride linkers. The synthesized F68-Cis-Cur conjugates can readily precipitate to form homogeneous micelles with average size about 100nm in aqueous solution. In acid environments, F68-Cis-Cur conjugates would break down and subsequently release Cur rapidly, for the reason of pH-sensitive cleavage of cis-aconitic anhydride linkers. In vitro anticancer activity tests demonstrated that F68-Cis-Cur micelles induced higher cytotoxicity against both A2780 and SMMC 7721 cells than free Cur. It provided a larger decrease of mitochondrion membrane potential and induced cellular apoptosis. F68-Cis-Cur micelles remarkably increased cellular uptake of Cur than free Cur through caveolae-mediated endocytosis in an energy-dependent manner. This study demonstrates F68-Cis-Cur conjugation as a promising tool for improving intracellular drug delivery in cancer therapy. PMID:26784981

  1. Disruption of HLA class II antigen presentation in Burkitt lymphoma: implication of a 47 000 MW acid labile protein in CD4+ T-cell recognition

    PubMed Central

    God, Jason M; Zhao, Dan; Cameron, Christine A; Amria, Shereen; Bethard, Jennifer R; Haque, Azizul

    2014-01-01

    While Burkitt lymphoma (BL) has a well-known defect in HLA class I-mediated antigen presentation, the exact role of BL-associated HLA class II in generating a poor CD4+ T-cell response remains unresolved. Here, we found that BL cells are deficient in their ability to optimally stimulate CD4+ T cells via the HLA class II pathway. This defect in CD4+ T-cell recognition was not associated with low levels of co-stimulatory molecules on BL cells, as addition of external co-stimulation failed to elicit CD4+ T-cell activation by BL. Further, the defect was not caused by faulty antigen/class II interaction, because antigenic peptides bound with measurable affinity to BL-associated class II molecules. Interestingly, functional class II–peptide complexes were formed at acidic pH 5·5, which restored immune recognition. Acidic buffer (pH 5·5) eluate from BL cells contained molecules that impaired class II-mediated antigen presentation and CD4+ T-cell recognition. Biochemical analysis showed that these molecules were greater than 30 000 molecular weight in size, and proteinaceous in nature. In addition, BL was found to have decreased expression of a 47 000 molecular weight enolase-like molecule that enhances class II-mediated antigen presentation in B cells, macrophages and dendritic cells, but not in BL cells. These findings demonstrate that BL likely has multiple defects in HLA class II-mediated antigen presentation and immune recognition, which may be exploited for future immunotherapies. PMID:24628049

  2. Mapping of a conformational epitope on the cashew allergen Ana o 2: a discontinuous large subunit epitope dependent upon homologous or heterologous small subunit association.

    PubMed

    Xia, Lixin; Willison, LeAnna N; Porter, Lauren; Robotham, Jason M; Teuber, Suzanne S; Sathe, Shridhar K; Roux, Kenneth H

    2010-05-01

    The 11S globulins are members of the cupin protein superfamily and represent an important class of tree nut allergens for which a number of linear epitopes have been mapped. However, specific conformational epitopes for these allergens have yet to be described. We have recently reported a cashew Ana o 2 conformational epitope defined by murine mAb 2B5 and competitively inhibited by a subset of patient IgE antibodies. The 2B5 epitope appears to reside on the large (acidic) subunit, is dependent upon small (basic) subunit association for expression, and is highly susceptible to denaturation. Here we fine map the epitope using a combination of recombinant chimeric cashew Ana o 2-soybean Gly m 6 chimeras, deletion and point mutations, molecular modeling, and electron microscopy of 2B5-Ana o 2 immune complexes. Key residues appear confined to a 24 amino acid segment near the N-terminus of the large subunit peptide, a portion of which makes direct contact with the small subunit. These data provide an explanation for both the small subunit dependence and the structurally labile nature of the epitope. PMID:20362338

  3. Cloning of the gamma-aminobutyric acid (GABA) rho 1 cDNA: a GABA receptor subunit highly expressed in the retina.

    PubMed Central

    Cutting, G R; Lu, L; O'Hara, B F; Kasch, L M; Montrose-Rafizadeh, C; Donovan, D M; Shimada, S; Antonarakis, S E; Guggino, W B; Uhl, G R

    1991-01-01

    Type A gamma-aminobutyric acid (GABAA) receptors are a family of ligand-gated chloride channels that are the major inhibitory neurotransmitter receptors in the nervous system. Molecular cloning has revealed diversity in the subunits that compose this heterooligomeric receptor, but each previously elucidated subunit displays amino acid similarity in conserved structural elements. We have used these highly conserved regions to identify additional members of this family by using the polymerase chain reaction (PCR). One PCR product was used to isolate a full-length cDNA from a human retina cDNA library. The mature protein predicted from this cDNA sequence in 458 amino acids long and displays between 30 and 38% amino acid similarity to the previously identified GABAA subunits. This gene is expressed primarily in the retina but transcripts are also detected in the brain, lung, and thymus. Injection of Xenopus oocytes with RNA transcribed in vitro produces a GABA-responsive chloride conductance and expression of the cDNA in COS cells yields GABA-displaceable muscimol binding. These features are consistent with our identification of a GABA subunit, GABA rho 1, with prominent retinal expression that increases the diversity and tissue specificity of this ligand-gated ion-channel receptor family. Images PMID:1849271

  4. Protective immunogenicity of two synthetic peptides selected from the amino acid sequence of Bordetella pertussis toxin subunit S1.

    PubMed Central

    Askelöf, P; Rodmalm, K; Wrangsell, G; Larsson, U; Svenson, S B; Cowell, J L; Undén, A; Bartfai, T

    1990-01-01

    Two peptides, corresponding to amino acids 1-17 and 169-186 of the amino acid sequence of pertussis toxin (PT) subunit S1, were synthesized and coupled to the diphtheria toxin cross-reactive mutant protein CRM 197 and evaluated for immunogenicity and protective capacity against PT challenge in vivo. The peptide-CRM conjugates induced high antibody titers against native toxin in mice (BALB/c, C57/Black, and outbred NMRI) as measured by ELISA. Upon PT challenge (0.5 microgram of toxin) of the NMRI mice, the CRM conjugates of peptides 1-17 and 169-186 fully protected the mice from PT-induced leukocytosis. Immunization with the corresponding bovine serum albumin conjugates of these two peptides also fully protected mice. Rabbit antiserum to the peptide 1-17-CRM conjugate was highly efficient in inhibiting the ADP-ribosylating activity of PT but did not neutralize the clustering effect of PT on Chinese hamster ovary cells. In contrast, the rabbit antiserum raised against the peptide 169-186-CRM conjugate neutralized the clustering effect of PT on Chinese hamster ovary cells but did not inhibit the enzymatic activity of PT. Peptide 169-186-CRM conjugates mimic the immunoglobulin binding properties of PT and also cause clustering of Chinese hamster ovary cells. The CRM conjugates of these two peptides constitute a synthetic pertussis vaccine candidate with the ability to provide a chemically well-defined, safe, and efficient pertussis vaccine. Images PMID:2304902

  5. Characterization of ERM transactivation domain binding to the ACID/PTOV domain of the Mediator subunit MED25

    PubMed Central

    Landrieu, Isabelle; Verger, Alexis; Baert, Jean-Luc; Rucktooa, Prakash; Cantrelle, François-Xavier; Dewitte, Frédérique; Ferreira, Elisabeth; Lens, Zoé; Villeret, Vincent; Monté, Didier

    2015-01-01

    The N-terminal acidic transactivation domain (TAD) of ERM/ETV5 (ERM38–68), a PEA3 group member of Ets-related transcription factors, directly interacts with the ACID/PTOV domain of the Mediator complex subunit MED25. Molecular details of this interaction were investigated using nuclear magnetic resonance (NMR) spectroscopy. The TAD is disordered in solution but has a propensity to adopt local transient secondary structure. We show that it folds upon binding to MED25 and that the resulting ERM–MED25 complex displays characteristics of a fuzzy complex. Mutational analysis further reveals that two aromatic residues in the ERM TAD (F47 and W57) are involved in the binding to MED25 and participate in the ability of ERM TAD to activate transcription. Mutation of a key residue Q451 in the VP16 H1 binding pocket of MED25 affects the binding of ERM. Furthermore, competition experiments show that ERM and VP16 H1 share a common binding interface on MED25. NMR data confirms the occupancy of this binding pocket by ERM TAD. Based on these experimental data, a structural model of a functional interaction is proposed. This study provides mechanistic insights into the Mediator–transactivator interactions. PMID:26130716

  6. Amino acid replacements can selectively affect the interaction energy of autonomous folding units in the alpha subunit of tryptophan synthase.

    PubMed

    Chen, X; Rambo, R; Matthews, C R

    1992-03-01

    Amino acid replacements were made at the interface between two autonomous folding units in the alpha subunit of tryptophan synthase from Salmonella typhimurium to test their mutual interaction energy. The results of equilibrium studies of the urea-induced unfolding reaction of the wild-type and mutant proteins in which phenylalanine 22 is replaced by leucine, isoleucine, and valine can be understood in terms of a selective decrease in the interaction energy between the two folding units; the intrinsic stability of each folding unit is not significantly altered. Kinetic studies of the rate-limiting step in unfolding show that the interaction energy appears in the transition state preceding the native conformation. Comparisons of the individual effects of these nonpolar side chains show that both hydrophobic and steric effects play important roles in the interaction energy between the folding units. The implication of these results is that the high cooperativity observed in the folding of many globular proteins may be reduced by appropriate amino acid replacements. PMID:1540577

  7. Subunit and frequency-dependent inhibition of Acid Sensing Ion Channels by local anesthetic tetracaine

    PubMed Central

    2013-01-01

    Background Extracellular acidosis is a prominent feature of multiple pathological conditions, correlating with pain sensation. Acid-sensing ion channels (ASICs), a family of proton-gated cation channels, are distributed throughout the central and peripheral nervous systems. Activation of ASICs, particularly ASIC3 and ASIC1a channels, by acidic pH and the resultant depolarization of nociceptive primary sensory neurons, participates in nociception. Agents that inhibit the activation of ASICs are thus expected to be analgesic. Here, we studied the effect of local anesthetic tetracaine on ASIC currents. Results Tetracaine inhibited the peak ASIC3 current in a concentration-dependent manner with an IC50 of 9.96 ± 1.88 mM. The degree of inhibition by tetracaine was dependent on the extracellular pH but independent of the membrane potential. Furthermore, 3 mM tetracaine also inhibited 29.83% of the sustained ASIC3 current. In addition to ASIC3, tetracaine inhibited the ASIC1a and ASIC1β currents. The inhibition of the ASIC1a current was influenced by the frequency of channel activation. In contrast to ASIC3, ASIC1a, and ASIC1β currents, ASIC2a current was not inhibited by tetracaine. In cultured mouse dorsal root ganglion neurons, 1–3 mM tetracaine inhibited both the transient and sustained ASIC currents. At pH4.5, 3 mM tetracaine reduced the peak ASIC current to 60.06 ± 4.51%, and the sustained current to 48.24 ± 7.02% of the control values in dorsal root ganglion neurons. In contrast to ASICs, voltage-gated sodium channels were inhibited by acid, with 55.15% inhibition at pH6.0 and complete inhibition at pH5.0. Conclusions These findings disclose a potential new mechanism underlying the analgesic effects of local anesthetics, particularly in acidic conditions where their primary target (i.e. voltage-gated Na+ channel) has been suppressed by protons. PMID:23758830

  8. Structural Lability of Barley Stripe Mosaic Virus Virions

    PubMed Central

    Semenyuk, Pavel I.; Abashkin, Dmitry A.; Kalinina, Natalya O.; Arutyunyan, Alexsandr M.; Solovyev, Andrey G.; Dobrov, Eugeny N.

    2013-01-01

    Virions of Barley stripe mosaic virus (BSMV) were neglected for more than thirty years after their basic properties were determined. In this paper, the physicochemical characteristics of BSMV virions and virion-derived viral capsid protein (CP) were analyzed, namely, the absorption and intrinsic fluorescence spectra, circular dichroism spectra, differential scanning calorimetry curves, and size distributions by dynamic laser light scattering. The structural properties of BSMV virions proved to be intermediate between those of Tobacco mosaic virus (TMV), a well-characterized virus with rigid rod-shaped virions, and flexuous filamentous plant viruses. The BSMV virions were found to be considerably more labile than expected from their rod-like morphology and a distant sequence relation of the BSMV and TMV CPs. The circular dichroism spectra of BSMV CP subunits incorporated into the virions, but not subunits of free CP, demonstrated a significant proportion of beta-structure elements, which were proposed to be localized mostly in the protein regions exposed on the virion outer surface. These beta-structure elements likely formed during virion assembly can comprise the N- and C-terminal protein regions unstructured in the non-virion CP and can mediate inter-subunit interactions. Based on computer-assisted structure modeling, a model for BSMV CP subunit structural fold compliant with the available experimental data was proposed. PMID:23613760

  9. Subunit-specific inhibition of acid sensing ion channels by stomatin-like protein 1

    PubMed Central

    Kozlenkov, Alexey; Lapatsina, Liudmila; Lewin, Gary R; Smith, Ewan St John

    2014-01-01

    There are five mammalian stomatin-domain genes, all of which encode peripheral membrane proteins that can modulate ion channel function. Here we examined the ability of stomatin-like protein 1 (STOML1) to modulate the proton-sensitive members of the acid-sensing ion channel (ASIC) family. STOML1 profoundly inhibits ASIC1a, but has no effect on the splice variant ASIC1b. The inactivation time constant of ASIC3 is also accelerated by STOML1. We examined STOML1 null mutant mice with a β-galactosidase-neomycin cassette gene-trap reporter driven from the STOML1 gene locus, which indicated that STOML1 is expressed in at least 50% of dorsal root ganglion (DRG) neurones. Patch clamp recordings from mouse DRG neurones identified a trend for larger proton-gated currents in neurones lacking STOML1, which was due to a contribution of effects upon both transient and sustained currents, at different pH, a finding consistent with an endogenous inhibitory function for STOML1. PMID:24247984

  10. 3, 4-dihydroxyl-phenyl lactic acid restores NADH dehydrogenase 1 α subunit 10 to ameliorate cardiac reperfusion injury.

    PubMed

    Yang, Xiao-Yuan; He, Ke; Pan, Chun-Shui; Li, Quan; Liu, Yu-Ying; Yan, Li; Wei, Xiao-Hong; Hu, Bai-He; Chang, Xin; Mao, Xiao-Wei; Huang, Dan-Dan; Wang, Li-Jun; Hu, Shui-Wang; Jiang, Yong; Wang, Guo-Cheng; Fan, Jing-Yu; Fan, Tai-Ping; Han, Jing-Yan

    2015-01-01

    The present study aimed to detect the role of 3, 4-dihydroxyl-phenyl lactic acid (DLA) during ischemia/reperfusion (I/R) induced myocardial injury with emphasis on the underlying mechanism of DLA antioxidant. Male Spragu-Dawley (SD) rats were subjected to left descending artery occlusion followed by reperfusion. Treatment with DLA ameliorated myocardial structure and function disorder, blunted the impairment of Complex I activity and mitochondrial function after I/R. The results of 2-D fluorescence difference gel electrophoresis revealed that DLA prevented the decrease in NDUFA10 expression, one of the subunits of Complex I. To find the target of DLA, the binding affinity of Sirtuin 1 (SIRT1) to DLA and DLA derivatives with replaced two phenolic hydroxyls was detected using surface plasmon resonance and bilayer interferometry. The results showed that DLA could activate SIRT1 after I/R probably by binding to this protein, depending on phenolic hydroxyl. Moreover, the importance of SIRT1 to DLA effectiveness was confirmed through siRNA transfection in vitro. These results demonstrated that DLA was able to prevent I/R induced decrease in NDUFA10 expression, improve Complex I activity and mitochondrial function, eventually attenuate cardiac structure and function injury after I/R, which was possibly related to its ability of binding to and activating SIRT1. PMID:26030156

  11. Cationic liposome-hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens

    PubMed Central

    Ochyl, Lukasz J.; Akerberg, Jonathan; Moon, James J.

    2015-01-01

    Here we report the development of a new cationic liposome-hyaluronic acid (HA) hybrid nanoparticle (NP) system and present our characterization of these NPs as an intranasal vaccine platform using a model antigen and F1-V, a candidate recombinant antigen for Yersinia pestis, the causative agent of plague. Incubation of cationic liposomes composed of DOTAP and DOPE with anionic HA biopolymer led to efficient ionic complexation and formation of homogenous liposome-polymer hybrid NPs, as evidenced by fluorescence resonance energy transfer, dynamic light scattering, and nanoparticle tracking analyses. Incorporation of cationic liposomes with thiolated HA allowed for facile surface decoration of NPs with thiol-PEG, resulting in the formation of DOTAP/HA core-PEG shell nanostructures. These NPs, termed DOTAP-HA NPs, exhibited improved colloidal stability and prolonged antigen release. In addition, cytotoxicity associated with DOTAP liposomes (LC50 ~0.2 mg/ml) was significantly reduced by at least 20-fold with DOTAP-HA NPs (LC50 > 4 mg/ml), as measured with bone marrow dendritic cells (BMDCs). Furthermore, NPs co-loaded with ovalbumin (OVA) and a molecular adjuvant, monophosphoryl lipid A (MPLA) promoted BMDC maturation and upregulation of co-stimulatory markers, including CD40, CD86, and MHC-II, and C57BL/6 mice vaccinated with NPs via intranasal route generated robust OVA-specific CD8+ T cell and antibody responses. Importantly, intranasal vaccination with NPs co-loaded with F1-V and MPLA induced potent humoral immune responses with 11-, 23-, and 15-fold increases in F1-V-specific total IgG, IgG1, and IgG2c titers in immune sera by day 77, respectively, and induced balanced Th1/Th2 humoral immune responses, compared with the lack of sero-conversion in mice immunized with the equivalent doses of soluble F1-V vaccine. Overall, these results suggest that liposome-polymer hybrid NPs may serve as a promising vaccine delivery platform for intranasal vaccination against Y

  12. Cationic liposome-hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens.

    PubMed

    Fan, Yuchen; Sahdev, Preety; Ochyl, Lukasz J; J Akerberg, Jonathan; Moon, James J

    2015-06-28

    Here we report the development of a new cationic liposome-hyaluronic acid (HA) hybrid nanoparticle (NP) system and present our characterization of these NPs as an intranasal vaccine platform using a model antigen and F1-V, a candidate recombinant antigen for Yersinia pestis, the causative agent of plague. Incubation of cationic liposomes composed of DOTAP and DOPE with anionic HA biopolymer led to efficient ionic complexation and formation of homogenous liposome-polymer hybrid NPs, as evidenced by fluorescence resonance energy transfer, dynamic light scattering, and nanoparticle tracking analyses. Incorporation of cationic liposomes with thiolated HA allowed for facile surface decoration of NPs with thiol-PEG, resulting in the formation of DOTAP/HA core-PEG shell nanostructures. These NPs, termed DOTAP-HA NPs, exhibited improved colloidal stability and prolonged antigen release. In addition, cytotoxicity associated with DOTAP liposomes (LC50~0.2mg/ml) was significantly reduced by at least 20-fold with DOTAP-HA NPs (LC50>4mg/ml), as measured with bone marrow derived dendritic cells (BMDCs). Furthermore, NPs co-loaded with ovalbumin (OVA) and a molecular adjuvant, monophosphoryl lipid A (MPLA) promoted BMDC maturation and upregulation of co-stimulatory markers, including CD40, CD86, and MHC-II, and C57BL/6 mice vaccinated with NPs via intranasal route generated robust OVA-specific CD8(+) T cell and antibody responses. Importantly, intranasal vaccination with NPs co-loaded with F1-V and MPLA induced potent humoral immune responses with 11-, 23-, and 15-fold increases in F1-V-specific total IgG, IgG1, and IgG2c titers in immune sera by day 77, respectively, and induced balanced Th1/Th2 humoral immune responses, whereas mice immunized with the equivalent doses of soluble F1-V vaccine failed to achieve sero-conversion. Overall, these results suggest that liposome-polymer hybrid NPs may serve as a promising vaccine delivery platform for intranasal vaccination against Y

  13. Long-chain unsaturated fatty acids reduce the transcriptional activity of the rat follicle-stimulating hormone β-subunit gene

    PubMed Central

    MORIYAMA, Ryutaro; YAMAZAKI, Tsubasa; KATO, Takako; KATO, Yukio

    2016-01-01

    Here, we assessed the effects of long-chain fatty acids (LCFAs) and the LCFA receptor agonist GW9508 on the transcription of the gonadotropin subunit genes Cga, Lhb and Fshb because LCFA receptor GPR120 was observed in mouse gonadotropes in our recent study. A transcription assay using LβT2 cells demonstrated that LCFAs, oleic acid, α-linolenic acid, docosahexaenoic acid and palmitate, repressed the expression of Cga, Lhb, and Fshb at concentrations between 50 and 100 µM. On the other hand, treatment with 10 µM unsaturated LCFAs, oleic acid, α-linolenic acid and docosahexaenoic acid, repressed only Fshb expression, while the same dose of a saturated LCFA, palmitate, had no effect on the expression of gonadotropin subunit genes. Furthermore, GW9508 did not affect promoter activity. Next, we examined deletion mutants of the upstream region of Fshb and found that the upstream regulatory region (-2824 to -2343 bp) of Fshb was responsible for the notable repression by 10 µM unsaturated LCFAs. Our results suggest that the upstream region of Fshb is susceptible to unsaturated LCFAs. In addition, unsaturated LCFAs play a role in repressing Fshb expression through the distal -2824 to -2343 bp region, which might be independent of the LCFA receptor GPR120 pathway. PMID:26853521

  14. The C-terminal 165 amino acids of the plasma membrane Ca(2+)-ATPase confer Ca2+/calmodulin sensitivity on the Na+,K(+)-ATPase alpha-subunit.

    PubMed Central

    Ishii, T; Takeyasu, K

    1995-01-01

    The C-terminal 165 amino acids of the rat brain plasma membrane (PM) Ca(2+)-ATPase II containing the calmodulin binding auto-inhibitory domain was connected to the C-terminus of the ouabain sensitive chicken Na+,K(+)-ATPase alpha 1 subunit. Expression of this chimeric molecule in ouabain resistant mouse L cells was assured by the high-affinity binding of [3H]ouabain. In the presence of Ca2+/calmodulin, this chimeric molecule exhibited ouabain inhibitable Na+,K(+)-ATPase activity; the putative chimeric ATPase activity was absent in the absence of Ca2+/calmodulin and activated by Ca2+/calmodulin in a dose-dependent manner. Furthermore, this chimeric molecule could bind monoclonal IgG 5 specific to the chicken Na+,K(+)-ATPase alpha 1 subunit only in the presence of Ca2+/calmodulin, suggesting that the epitope for IgG 5 in this chimera is masked in the absence of Ca2+/calmodulin and uncovered in their presence. These results propose a direct interaction between the calmodulin binding auto-inhibitory domain of the PM Ca(2+)-ATPase and the specific regions of the Na+,K(+)-ATPase alpha 1 subunit that are structurally homologous to the PM Ca(2+)-ATPase. A comparison of the deduced amino acid sequences revealed several possible regions within the Na+,K(+)-ATPase that might interact with the auto-inhibitory domain of the PM Ca(2+)-ATPase. Images PMID:7828596

  15. Dihydropyrimidinone positive modulation of delta-subunit-containing gamma-aminobutyric acid type A receptors, including an epilepsy-linked mutant variant.

    PubMed

    Lewis, Ryan W; Mabry, John; Polisar, Jason G; Eagen, Kyle P; Ganem, Bruce; Hess, George P

    2010-06-15

    Gamma-aminobutyric acid type A receptors (GABA(A) receptors) are ligand-gated chloride channels that play a central role in signal transmission within the mammalian central nervous system. Compounds that modulate specific GABA(A) receptor subtypes containing the delta-subunit are scarce but would be valuable research tools and starting points for potential therapeutic agents. Here we report a class of dihydropyrimidinone (DHPM) heterocycles that preferentially potentiate peak currents of recombinant GABA(A) receptor subtypes containing the delta-subunit expressed in HEK293T cells. Using the three-component Biginelli reaction, 13 DHPMs with structural features similar to those of the barbiturate phenobarbital were synthesized; one DHPM used (monastrol) is commercially available. An up to approximately 3-fold increase in the current from recombinant alpha1beta2delta receptors was observed with the DHPM compound JM-II-43A or monastrol when co-applied with saturating GABA concentrations, similar to the current potentiation observed with the nonselective potentiating compounds phenobarbital and tracazolate. No agonist activity was observed for the DHPMs at the concentrations tested. A kinetic model was used in conjunction with dose-dependent measurements to calculate apparent dissociation constant values for JM-II-43A (400 muM) and monastrol (200 microM) at saturating GABA concentrations. We examined recombinant receptors composed of combinations of subunits alpha1, alpha4, alpha5, alpha6, beta2, beta3, gamma2L, and delta with JM-II-43A to demonstrate the preference for potentiation of delta-subunit-containing receptors. Lastly, reduced currents from receptors containing the mutated delta(E177A) subunit, described by Dibbens et al. [(2004) Hum. Mol. Genet. 13, 1315-1319] as a heritable susceptibility allele for generalized epilepsy with febrile seizures plus, are also potentiated by these DHPMs. PMID:20450160

  16. A transmembrane amino acid in the GABAA receptor β2 subunit critical for the actions of alcohols and anesthetics.

    PubMed

    McCracken, Mandy L; Borghese, Cecilia M; Trudell, James R; Harris, R Adron

    2010-12-01

    Alcohols and inhaled anesthetics enhance the function of GABA(A) receptors containing α, β, and γ subunits. Molecular analysis has focused on the role of the α subunits; however, there is evidence that the β subunits may also be important. The goal of our study was to determine whether Asn265, which is homologous to the site implicated in the α subunit (Ser270), contributes to an alcohol and volatile anesthetic binding site in the GABA(A) receptor β(2) subunit. We substituted cysteine for Asn265 and exposed the mutant to the sulfhydryl-specific reagent octyl methanethiosulfonate (OMTS). We used two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes and found that, after OMTS application, GABA-induced currents were irreversibly potentiated in mutant α(1)β(2)(N265C)γ(2S) receptors [but not α(1)β(2)(I264C)γ(2S)], presumably because of the covalent linking of octanethiol to the thiol group in the substituted cysteine. It is noteworthy that this effect was blocked when OMTS was applied in the presence of octanol. We found that potentiation by butanol, octanol, or isoflurane in the N265C mutant was nearly abolished after the application of OMTS, suggesting that an alcohol and volatile anesthetic binding site at position 265 of the β(2) subunit was irreversibly occupied by octanethiol and consequently prevented butanol or isoflurane from binding and producing their effects. OMTS did not affect modulation or direct activation by pentobarbital, but there was a partial reduction of allosteric modulation by flunitrazepam and alphaxalone in mutant α(1)β(2)(N265C)γ(2S) receptors after OMTS was applied. Our findings provide evidence that Asn265 may contribute to an alcohol and anesthetic binding site. PMID:20826568

  17. Photo-lability of deep ocean dissolved black carbon

    NASA Astrophysics Data System (ADS)

    Stubbins, A.; Niggemann, J.; Dittmar, T.

    2012-01-01

    Dissolved black carbon (DBC), defined here as condensed aromatics isolated from seawater via PPL solid phase extraction and quantified as benzene polycarboxylic acid oxidation products, is a significant component of the oceanic dissolved organic carbon (DOC) pool. These condensed aromatics are widely distributed in the open ocean and appear to be tens of thousands of years old. As such DBC is regarded as highly refractory. In the current study, the photo-lability of DBC, DOC and coloured dissolved organic matter (CDOM; ultraviolet-visible absorbance) were determined over the course of a 28 d irradiation of North Atlantic Deep Water under a solar simulator. During the irradiation DBC fell from 1044 ± 164 nM C to 55 ± 15 nM C, a 20-fold decrease in concentration. Dissolved black carbon photo-degradation was more rapid and more extensive than for bulk CDOM and DOC. Further, the photo-lability of components of the DBC pool increased with their degree of aromatic condensation. These trends indicate that a continuum of compounds of varying photo-lability exists within the marine DOC pool. In this continuum, photo-lability scales with aromatic character, specifically the degree of condensation. Scaling the rapid photo-degradation of DBC to rates of DOC photo-mineralisation for the global ocean leads to an estimated photo-chemical half-life for oceanic DBC of less than 800 yr. This is more than an order of magnitude shorter than the apparent age of DBC in the ocean. Photo-degradation is therefore posited as the primary sink for oceanic DBC and the survival of DBC molecules in the oceans for millennia appears to be facilitated not by their inherent inertness but by the rate at which they are cycled through the surface ocean's photic zone.

  18. Repeated ketamine administration alters N-methyl-D-aspartic acid receptor subunit gene expression: Implication of genetic vulnerability for ketamine abuse and ketamine psychosis in humans

    PubMed Central

    Xu, Ke; Lipsky, Robert H

    2015-01-01

    For more than 40 years following its approval by the Food and Drug Administration (FDA) as an anesthetic, ketamine, a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist, has been used as a tool of psychiatric research. As a psychedelic drug, ketamine induces psychotic symptoms, cognitive impairment, and mood elevation, which resemble some symptoms of schizophrenia. Recreational use of ketamine has been increasing in recent years. However, little is known of the underlying molecular mechanisms responsible for ketamine-associated psychosis. Recent animal studies have shown that repeated ketamine administration significantly increases NMDA receptor subunit gene expression, in particular subunit 1 (NR1 or GluN1) levels. This results in neurodegeneration, supporting a potential mechanism where up-regulation of NMDA receptors could produce cognitive deficits in chronic ketamine abuse patients. In other studies, NMDA receptor gene variants are associated with addictive behavior. Here, we focus on the roles of NMDA receptor gene subunits in ketamine abuse and ketamine psychosis and propose that full sequencing of NMDA receptor genes may help explain individual vulnerability to ketamine abuse and ketamine-associated psychosis. PMID:25245072

  19. Complete cDNA and deduced amino acid sequence of the chaperonin containing T-complex polypeptide 1 (CCT) delta subunit from Aedes triseriatus mosquitoes.

    PubMed

    Blitvich, B J; Rayms-Keller, A; Blair, C D; Beaty, B J

    2001-01-01

    The chaperonin containing t-complex polypeptide 1 (CCT) assists in the ATP-dependent folding and assembly of newly translated actin and tubulin in the eukaryotic cytosol. CCT is composed of eight different subunits, each encoded by an independent gene. In this report, we used RT-PCR amplification and 5'- and 3'-rapid amplification of cDNA ends (RACE) to determine the complete cDNA sequence of the CCT delta subunit from Aedes triseriatus mosquitoes. The CCT delta cDNA is 1936 nucleotides in length and encodes a putative 533 amino acid protein with a calculated molecular mass of 57,179 daltons and pI of 7.15. Hydrophobic residues comprise 39.8% of the amino acid sequence and putative motifs for ATP-binding and ATPase-activity are present. The amino acid sequence displays strong sequence similarity to Drosophila melanogaster (92%), human (85%), puffer fish (84%) and mouse (84%) counterparts. CCT delta mRNA was detected in both biosynthetically active (embryonating) and dormant (diapausing) Ae. triseriatus embryos by RT-PCR analysis. PMID:11762197

  20. Complementary DNA and derived amino acid sequence of the. beta. subunit of human complement protein C8: identification of a close structural and ancestral relationship to the. cap alpha. subunit and C9

    SciTech Connect

    Howard, O.M.Z.; Rao, A.G.; Sodetz, J.M.

    1987-06-16

    A cDNA clone encoding the ..beta.. subunit (M/sub r/ 64,000) of the eighth component of complement (C8) has been isolated from a human liver cDNA library. This clone has a cDNA insert of 1.95 kilobases (kb) and contains the entire ..beta.. sequence (1608 base pairs (bp)). Analysis of total cellular RNA isolated from the hepatoma cell line HepG2 revealed the mRNA for ..beta.. to be approx. 2.5 kb. This is similar to the message size for the ..cap alpha.. subunit of C8 and confirms the existence of different mRNAs for ..cap alpha.. and ..beta... This finding supports genetic evidence that ..cap alpha.. and ..beta.. are encoded at different loci. Analysis of the derived amino acid sequence revealed several membrane surface seeking segments that may facilitate ..beta.. interaction with target membranes during complement-mediated cytolysis. Determined of the carbohydrate composition indicated 1 or 2 asparagine-linked but no O-linked oligosaccharide chains. Comparison of the ..beta.. sequence to that reported earlier and to that of human C9 revealed a striking homology between all three proteins. For ..beta.. and ..cap alpha.., the overall homology is 33% on the basis of identity and 53% when conserved substitutions are allowed. For ..beta.. and C9, the values are 26% and 47/sup 5/, respectively. All three have a large internal domain that is nearly cysteine free and N- and C-termini that are cysteine-rich and homologous to the low-density lipoprotein receptor repeat and epidermal growth factor type sequences, respectively. The overall homology and similarities in size and structural organization are indicative of a close ancestral relationship. It is concluded that ..cap alpha.., ..beta.. and C9 are members of a family of structurally related proteins that are capable of interacting to produce a hydrophilic to amphiphilic transition and membrane association.

  1. Functional characterization of the conserved amino acids in Pop1p, the largest common protein subunit of yeast RNases P and MRP

    PubMed Central

    Xiao, Shaohua; Hsieh, John; Nugent, Rebecca L.; Coughlin, Daniel J.; Fierke, Carol A.; Engelke, David R.

    2006-01-01

    RNase P and RNase MRP are ribonucleoprotein enzymes required for 5′-end maturation of precursor tRNAs (pre-tRNAs) and processing of precursor ribosomal RNAs, respectively. In yeast, RNase P and MRP holoenzymes have eight protein subunits in common, with Pop1p being the largest at >100 kDa. Little is known about the functions of Pop1p, beyond the fact that it binds specifically to the RNase P RNA subunit, RPR1 RNA. In this study, we refined the previous Pop1 phylogenetic sequence alignment and found four conserved regions. Highly conserved amino acids in yeast Pop1p were mutagenized by randomization and conditionally defective mutations were obtained. Effects of the Pop1p mutations on pre-tRNA processing, pre-rRNA processing, and stability of the RNA subunits of RNase P and MRP were examined. In most cases, functional defects in RNase P and RNase MRP in vivo were consistent with assembly defects of the holoenzymes, although moderate kinetic defects in RNase P were also observed. Most mutations affected both pre-tRNA and pre-rRNA processing, but a few mutations preferentially interfered with only RNase P or only RNase MRP. In addition, one temperature-sensitive mutation had no effect on either tRNA or rRNA processing, consistent with an additional role for RNase P, RNase MRP, or Pop1p in some other form. This study shows that the Pop1p subunit plays multiple roles in the assembly and function of of RNases P and MRP, and that the functions can be differentiated through the mutations in conserved residues. PMID:16618965

  2. Proteomic Characterization of Inhibitory Synapses Using a Novel pHluorin-tagged γ-Aminobutyric Acid Receptor, Type A (GABAA), α2 Subunit Knock-in Mouse.

    PubMed

    Nakamura, Yasuko; Morrow, Danielle H; Modgil, Amit; Huyghe, Deborah; Deeb, Tarek Z; Lumb, Michael J; Davies, Paul A; Moss, Stephen J

    2016-06-01

    The accumulation of γ-aminobutyric acid receptors (GABAARs) at the appropriate postsynaptic sites is critical for determining the efficacy of fast inhibitory neurotransmission. Although we know that the majority of synaptic GABAAR subtypes are assembled from α1-3, β, and γ2 subunits, our understanding of how neurons facilitate their targeting to and stabilization at inhibitory synapses is rudimentary. To address these issues, we have created knock-in mice in which the pH-sensitive green fluorescent protein (GFP) and the Myc epitope were introduced to the extracellular domain of the mature receptor α2 subunit (pHα2). Using immunoaffinity purification and mass spectroscopy, we identified a stable complex of 174 proteins that were associated with pHα2, including other GABAAR subunits, and previously identified receptor-associated proteins such as gephyrin and collybistin. 149 of these proteins were novel GABAAR binding partners and included G-protein-coupled receptors and ion channel subunits, proteins that regulate trafficking and degradation, regulators of protein phosphorylation, GTPases, and a number of proteins that regulate their activity. Notably, members of the postsynaptic density family of proteins that are critical components of excitatory synapses were not associated with GABAARs. Crucially, we demonstrated for a subset of these novel proteins (including cullin1, ephexin, potassium channel tetramerization domain containing protein 12, mitofusin2, metabotropic glutamate receptor 5, p21-activated kinase 7, and Ras-related protein 5A) bind directly to the intracellular domains of GABAARs, validating our proteomic analysis. Thus, our experiments illustrate the complexity of the GABAAR proteome and enhance our understanding of the mechanisms neurons use to construct inhibitory synapses. PMID:27044742

  3. The amino-terminal 200 amino acids of the plasma membrane Na+,K+-ATPase alpha subunit confer ouabain sensitivity on the sarcoplasmic reticulum Ca(2+)-ATPase.

    PubMed Central

    Ishii, T; Takeyasu, K

    1993-01-01

    Cardiac glycosides such as G-strophanthin (ouabain) bind to and inhibit the plasma membrane Na+,K(+)-ATPase but not the sarcoplasmic reticulum (SR) Ca(2+)-ATPase, whereas thapsigargin specifically blocks the SR Ca(2+)-ATPase. The chimera [n/c]CC, in which the amino-terminal amino acids Met1 to Asp162 of the SR Ca(2+)-ATPase (SERCA1) were replaced with the corresponding portion of the Na+,K(+)-ATPase alpha 1 subunit (Met1 to Asp200), retained thapsigargin- and Ca(2+)-sensitive ATPase activity, although the activity was lower than that of the wild-type SR Ca(2+)-ATPase. Moreover, this Ca(2+)-sensitive ATPase activity was inhibited by ouabain. The chimera NCC, in which Met1-Gly354 of the SR Ca(2+)-ATPase were replaced with the corresponding portion of the Na+,K(+)-ATPase, lost the thapsigargin-sensitive Ca(2+)-ATPase activity seen in CCC and [n/c]CC. [3H]Ouabain binding to [n/c]CC and NCC demonstrated that the affinity for this inhibitor seen in the wild-type chicken Na+,K(+)-ATPase was restored in these chimeric molecules. Thus, the ouabain-binding domains are distinct from the thapsigargin sites; ouabain binds to the amino-terminal portion (Met1 to Asp200) of the Na+,K(+)-ATPase alpha 1 subunit, whereas thapsigargin interacts with the regions after Asp162 of the Ca(2+)-ATPase. Moreover, the amino-terminal 200 amino acids of the Na+,K(+)-ATPase alpha 1 subunit are sufficient to exert ouabain-dependent inhibition even after incorporation into the corresponding portion of the Ca(2+)-ATPase, and the segment Ile163 to Gly354 of the SR Ca(2+)-ATPase is critical for thapsigargin- and Ca(2+)-sensitive ATPase activity. Images Fig. 5 PMID:8415625

  4. Amino acids of the Torpedo marmorata acetylcholine receptor. cap alpha. subunit labeled by a photoaffinity ligand for the acetylcholine binding site

    SciTech Connect

    Dennis, M.; Giraudat, J.; Kotzyba-Hibert, F.; Goeldner, M.; Hirth, C.; Chang, J.Y.; Lazure, C.; Chretien, M.; Changeux, J.P.

    1988-04-05

    The acetylcholine-binding sites on the native, membrane-bound acetylcholine receptor from Torpedo marmorata were covalently labeled with the photoaffinity reagent (/sup 3/H)-p-(dimethylamino)-benzenediazonium fluoroborate (DDF) in the presence of phencyclidine by employing an energy-transfer photolysis procedure. The ..cap alpha..-chains isolated from receptor-rich membranes photolabeled in the absence or presence of carbamoylcholine were cleaved with CNBr and the radiolabeled fragments purified by high-performance liquid chromatography. Amino acid and/or sequence analysis demonstrated that the ..cap alpha..-chain residues Trp-149, Tyr-190, Cys-192, and Cys-193 and an unidentified residue(s) in the segment ..cap alpha.. 31-105 were all labeled by the photoaffinity reagent in an agonist-protectable manner. The labeled amino acids are located within three distinct regions of the large amino-terminal hydrophilic domain of the ..cap alpha..-subunit primary structure and plausibly lie in proximity to one another at the level of the acetylcholine-binding sites in the native receptor. These findings are in accord with models proposed for the transmembrane topology of the ..cap alpha..-chain that assign the amino-terminal segment ..cap alpha.. 1-210 to the synaptic cleft. Furthermore, the results suggest that the four identified (/sup 3/H)DDF-labeled resides, which are conserved in muscle and neuronal ..cap alpha..-chains but not in the other subunits, may be directly involved in agonist binding.

  5. Site-directed mutagenesis of conserved amino acids in the alpha subunit of toluene dioxygenase: potential mononuclear non-heme iron coordination sites.

    PubMed Central

    Jiang, H; Parales, R E; Lynch, N A; Gibson, D T

    1996-01-01

    The terminal oxygenase component of toluene dioxygenase from Pseudomonas putida F1 is an iron-sulfur protein (ISP(TOL)) that requires mononuclear iron for enzyme activity. Alignment of all available predicted amino acid sequences for the large (alpha) subunits of terminal oxygenases showed a conserved cluster of potential mononuclear iron-binding residues. These were between amino acids 210 and 230 in the alpha subunit (TodC1) of ISP(TOL). The conserved amino acids, Glu-214, Asp-219, Tyr-221, His-222, and His-228, were each independently replaced with an alanine residue by site-directed mutagenesis. Tyr-266 in TodC1, which has been suggested as an iron ligand, was treated in an identical manner. To assay toluene dioxygenase activity in the presence of TodC1 and its mutant forms, conditions for the reconstitution of wild-type ISP(TOL) activity from TodC1 and purified TodC2 (beta subunit) were developed and optimized. A mutation at Glu-214, Asp-219, His-222, or His-228 completely abolished toluene dioxygenase activity. TodC1 with an alanine substitution at either Tyr-221 or Tyr-266 retained partial enzyme activity (42 and 12%, respectively). In experiments with [14C]toluene, the two Tyr-->Ala mutations caused a reduction in the amount of Cis-[14C]-toluene dihydrodiol formed, whereas a mutation at Glu-214, Asp-219, His-222, or His-228 eliminated cis-toluene dihydrodiol formation. The expression level of all of the mutated TWO proteins was equivalent to that of wild-type TodC1 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot (immunoblot) analyses. These results, in conjunction with the predicted amino acid sequences of 22 oxygenase components, suggest that the conserved motif Glu-X3-4,-Asp-X2-His-X4-5-His is critical for catalytic function and the glutamate, aspartate, and histidine residues may act as mononuclear iron ligands at the site of oxygen activation. PMID:8655491

  6. Lungfish aestivating activities are locked in distinct encephalic γ-aminobutyric acid type A receptor α subunits.

    PubMed

    Giusi, Giuseppina; Crudo, Michele; Di Vito, Anna; Facciolo, Rosa Maria; Garofalo, Filippo; Chew, Shit Fun; Ip, Yuen Kwong; Canonaco, Marcello

    2011-03-01

    Ammonia in dipnoans plays a crucial role on neuronal homeostasis, especially for those brain areas that maintain torpor and awakening states in equilibrium. In the present study, specific α subunits of the major neuroreceptor inhibitory complex (GABA(A) R), which predominated during some phases of aestivation of the lungfish Protopterus annectens, turned out to be key adaptive factors of this species. From the isolation, for the first time, of the encoding sequence for GABA(A) R α₁, α₄ , and α₅ subunits in Protopterus annectens, qPCR and in situ hybridization levels of α₄ transcript in thalamic (P < 0.001) and mesencephalic (P < 0.01) areas proved to be significantly higher during long aestivating maintenance states. Very evident α₅ mRNA levels were detected in diencephalon during short inductive aestivating states, whereas an α₄ /α₁ turnover characterized the arousal state. Contextually, the recovery of physiological activities appeared to be tightly related to an evident up-regulation of α₁ transcripts in telencephalic and cerebellar sites. Surprisingly, TUNEL and amino cupric silver methods corroborated apoptotic and neurodegenerative cellular events, respectively, above all in telencephalon and cerebellum of lungfish exposed to long maintenance aestivating conditions. Overall, these results tend to underlie a novel GABAergic-related ON/OFF molecular switch operating during aestivation of the lungfish, which might have a bearing on sleeping disorders. PMID:21259328

  7. Identification of the NADH-binding subunit of NADH-ubiquinone oxidoreductase of Paracoccus denitrificans

    SciTech Connect

    Yagi, Takao; Dinh, T.M. )

    1990-06-12

    The NADH dehydrogenase complex isolated from Paracoccus denitrificans is composed of approximately 10 unlike polypeptides and contains noncovalently bound FMN, non-heme iron, and acid-labile sulfide. When the Paracoccus NADH dehydrogenase complex was irradiated by UV light in the presence of (adenylate-{sup 32}P)NAD, radioactivity was incorporated exclusively into one of three polypeptides of M{sub r} {approximately}50,000. Similar results were obtained when (adenylate-{sup 32}P)NADH was used. The labeling of the M{sub r} 50,000 polypeptide was diminished when UV irradiation of the enzyme with (adenylate-{sup 32}P)NAD was performed in the presence of NADH, but not in the presence of NADP(H). The labeled polypeptide was isolated by preparative sodium dodecyl sulfate gel electrophoresis and was shown to cross-react with antiserum to the NADH-binding subunit of bovine NADH-ubiquinone oxidoreductase. Its amino acid composition was also very similar to that of the bovine NADH-binding subunit. These chemical and immunological results indicate that the M{sub r} 50,000 polypeptide is an NADH-binding subunit of the Paracoccus NADH dehydrogenase complex.

  8. Photo-lability of deep ocean dissolved black carbon

    NASA Astrophysics Data System (ADS)

    Stubbins, A.; Niggemann, J.; Dittmar, T.

    2012-05-01

    Dissolved black carbon (DBC), defined here as condensed aromatics isolated from seawater via PPL solid phase extraction and quantified as benzenepolycarboxylic acid (BPCA) oxidation products, is a significant component of the oceanic dissolved organic carbon (DOC) pool. These condensed aromatics are widely distributed in the open ocean and appear to be tens of thousands of years old. As such DBC is regarded as highly refractory. In the current study, the photo-lability of DBC, DOC and coloured dissolved organic matter (CDOM; ultraviolet-visible absorbance) were determined over the course of a 28 day irradiation of North Atlantic Deep Water under a solar simulator. During the irradiation DBC fell from 1044 ± 164 nM-C to 55 ± 15 nM-C, a 20-fold decrease in concentration. Dissolved black carbon photo-degradation was more rapid and more extensive than for bulk CDOM and DOC. The concentration of DBC correlated with CDOM absorbance and the quality of DBC indicated by the ratios of different BPCAs correlated with CDOM absorbance spectral slope, suggesting the optical properties of CDOM may provide a proxy for both DBC concentrations and quality in natural waters. Further, the photo-lability of components of the DBC pool increased with their degree of aromatic condensation. These trends indicate that a continuum of compounds of varying photo-lability exists within the marine DOC pool. In this continuum, photo-lability scales with aromatic character, specifically the degree of condensation. Scaling the rapid photo-degradation of DBC to rates of DOC photo-mineralisation for the global ocean leads to an estimated photo-chemical half-life for oceanic DBC of less than 800 years. This is more than an order of magnitude shorter than the apparent age of DBC in the ocean. Consequently, photo-degradation is posited as the primary sink for oceanic DBC and the apparent survival of DBC molecules in the oceans for millennia appears to be facilitated not by their inherent inertness but

  9. The organization of the gene for the functionally dominant alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit GluR-B.

    PubMed

    Köhler, M; Kornau, H C; Seeburg, P H

    1994-07-01

    The murine gene encoding the GluR-B subunit of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors was characterized with respect to exon-intron organization, transcriptional start site, alternatively spliced transcripts, and adenosine to guanosine substitutions between gene and complementary DNA sequence. The GluR-B gene spans > 90 kilobase pairs and harbors 17 exons. Transcription appears to initiate approximately 430 nucleotides upstream of the translational start codon, with no intron in the 5'-untranslated region of the gene. Four alternatively spliced mRNAs are generated from the primary GluR-B transcript, two containing the modules Flip and Flop, and another two with alternate C-terminal coding sequence. The major GluR-B mRNAs in murine brain, 4 and 6 kilobase differ in the length of their 3'-untranslated region. PMID:7545935

  10. A mitochondrial DNA variant, identified in Leber hereditary optic neuropathy patients, which extends the amino acid sequence of cytochrome c oxidase subunit I.

    PubMed Central

    Brown, M D; Yang, C C; Trounce, I; Torroni, A; Lott, M T; Wallace, D C

    1992-01-01

    A G-to-A transition at nucleotide pair (np) 7444 in the mtDNA was found to correlate with Leber hereditary optic neuropathy (LHON). The mutation eliminates the termination codon of the cytochrome c oxidase subunit I (COI) gene, extending the COI polypeptide by three amino acids. The mutation was discovered as an XbaI restriction-endonuclease-site loss present in 2 (9.1%) of 22 LHON patients who lacked the np 11778 LHON mutation and in 6 (1.1%) of 545 unaffected controls. The mutant polypeptide has an altered mobility on SDS-PAGE, suggesting a structural alteration, and the cytochrome c oxidase enzyme activity of patient lymphocytes is reduced approximately 40% relative to that in controls. These data suggest that the np 7444 mutation results in partial respiratory deficiency and thus contributes to the onset of LHON. Images Figure 1 Figure 3 PMID:1322638

  11. Atmospheric deposition of metallic pollutants over the Ligurian Sea: labile and residual inputs.

    PubMed

    Sandroni, Valérie; Migon, Christophe

    2002-05-01

    Atmospheric fluxes of six trace metals (Cd, Cr, Cu, Ni, Pb and Zn) with Al as a crustal reference were measured at Cap Ferrat (French Riviera) between February 1997 and July 1998. An original sampling protocol enabled the separation of labile (seawater at pH 2) and residual fractions in the total atmospheric input. Median acid-labile fractions were 91%, 69%, 83%, 84%, 97% and 98% of the total for Cd, Cr, Cu, Ni, Pb and Zn, respectively. Under the conditions used, lability of individual metals is related to the anthropogenic component of the samples. Enrichment factors and anthropogenic fraction are estimated for each metal. Some interannual changes are investigated (Pb, Zn). The observed increase of Zn inputs may be linked to local input from the Nice district waste plant (commissioned in 1988), 6.5 km away. PMID:12079071

  12. A three amino acid deletion in the transmembrane domain of the nicotinic acetylcholine receptor α6 subunit confers high-level resistance to spinosad in Plutella xylostella

    PubMed Central

    Wang, Jing; Wang, Xingliang; Lansdell, Stuart J.; Zhang, Jianheng; Millar, Neil S.; Wu, Yidong

    2016-01-01

    Spinosad is a macrocyclic lactone insecticide that acts primarily at the nicotinic acetylcholine receptors (nAChRs) of target insects. Here we describe evidence that high levels of resistance to spinosad in the diamondback moth (Plutella xylostella) are associated with a three amino acid (3-aa) deletion in the fourth transmembrane domain (TM4) of the nAChR α6 subunit (Pxα6). Following laboratory selection with spinosad, the SZ-SpinR strain of P. xylostella exhibited 940-fold resistance to spinosad. In addition, the selected insect population had 1060-fold cross-resistance to spinetoram but, in contrast, no cross-resistance to abamectin was observed. Genetic analysis indicates that spinosad resistance in SZ-SpinR is inherited as a recessive and autosomal trait, and that the 3-aa deletion (IIA) in TM4 of Pxα6 is tightly linked to spinosad resistance. Because of well-established difficulties in functional expression of cloned insect nAChRs, the analogous resistance-associated deletion mutation was introduced into a prototype nAChR (the cloned human α7 subunit). Two-electrode voltage-clamp recording with wild-type and mutated nAChRs expressed in Xenopus laevis oocytes indicated that the mutation causes a complete loss of agonist activation. In addition, radioligand binding studies indicated that the 3-aa deletion resulted in significantly lower-affinity binding of the extracellular neurotransmitter-binding site. These findings are consistent with the 3-amino acid (IIA) deletion within the transmembrane domain of Pxα6 being responsible for target-site resistance to spinosad in the SZ-SpinR strain of P. xylostella. PMID:26855198

  13. A three amino acid deletion in the transmembrane domain of the nicotinic acetylcholine receptor α6 subunit confers high-level resistance to spinosad in Plutella xylostella.

    PubMed

    Wang, Jing; Wang, Xingliang; Lansdell, Stuart J; Zhang, Jianheng; Millar, Neil S; Wu, Yidong

    2016-04-01

    Spinosad is a macrocyclic lactone insecticide that acts primarily at the nicotinic acetylcholine receptors (nAChRs) of target insects. Here we describe evidence that high levels of resistance to spinosad in the diamondback moth (Plutella xylostella) are associated with a three amino acid (3-aa) deletion in the fourth transmembrane domain (TM4) of the nAChR α6 subunit (Pxα6). Following laboratory selection with spinosad, the SZ-SpinR strain of P. xylostella exhibited 940-fold resistance to spinosad. In addition, the selected insect population had 1060-fold cross-resistance to spinetoram but, in contrast, no cross-resistance to abamectin was observed. Genetic analysis indicates that spinosad resistance in SZ-SpinR is inherited as a recessive and autosomal trait, and that the 3-aa deletion (IIA) in TM4 of Pxα6 is tightly linked to spinosad resistance. Because of well-established difficulties in functional expression of cloned insect nAChRs, the analogous resistance-associated deletion mutation was introduced into a prototype nAChR (the cloned human α7 subunit). Two-electrode voltage-clamp recording with wild-type and mutated nAChRs expressed in Xenopus laevis oocytes indicated that the mutation causes a complete loss of agonist activation. In addition, radioligand binding studies indicated that the 3-aa deletion resulted in significantly lower-affinity binding of the extracellular neurotransmitter-binding site. These findings are consistent with the 3-amino acid (IIA) deletion within the transmembrane domain of Pxα6 being responsible for target-site resistance to spinosad in the SZ-SpinR strain of P. xylostella. PMID:26855198

  14. γ-Amino-butyric acid (GABA) receptor subunit and transporter expression in the gonad and liver of the fathead minnow (Pimephales promelas).

    PubMed

    Biggs, Katie; Seidel, Jason S; Wilson, Alex; Martyniuk, Christopher J

    2013-09-01

    γ-Amino-butyric acid (GABA) is the major inhibitory neurotransmitter in the vertebrate central nervous system. GABA receptors and synthesizing enzymes have also been localized to peripheral tissues including the liver, oviduct, uterus and ovary of mammals but the distribution and role of GABA in peripheral tissues of fish has not been fully investigated. The objectives of this study were to (1) determine if mRNA encoding GABA synthesizing enzymes (glutamic acid decarboxylase 65 and 67; gad65 and gad67), GABA transporters, and GABAA receptor subunits are localized to liver and gonad of fathead minnow (Pimephales promelas) (FHM) (2) investigate the effects of GABA on ovarian 17β-estradiol (E2) production, and (3) measure transcript responses in the ovary after in vitro incubation to GABA. Real-time PCR assays were developed for gad65, gad67, vesicular GABA transporter (vgat) and GABA transporter 1 (gat1), and select GABAA receptor subunits (gabra1, gabra5, gabrb1, gabrb2, gabrg1, gabrg2). All transcripts were localized to the brain as expected; however transcripts were also detected in the liver, ovary, and testis of FHMs. In the female liver, gad65 mRNA was significantly higher in expression compared to the male liver. Transcripts for gad67 were the highest in the brain>gonad>liver and in the gonads, gad67 was significantly higher in expression than gad65 mRNA. In the liver and gonad, the relative abundance of the subunits followed a general trend of gabrb1>gabrb2=gabrg1=gabrg2>gabra1=gabra5. To explore the effects of GABA in the ovary, tissue explants from reproductive female FHMs were treated with GABA (10(-10), 10(-8) and 10(-6)M) for 12h. GABA had no significant effect on 17β-estradiol production or on mRNA abundance for genes involved in ovarian steroidogenesis (e.g., 11βhsd, cyp17, cyp19a). There was a significant decrease in estrogen receptor 2a (esr2a) mRNA with 10(-10)M GABA. This study begins to investigate the GABA system in non-neural tissues of

  15. Isotope labeling of rubisco subunits provides in vivo information on subcellular biosynthesis and exchange of amino acids between compartments.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The architecture of plant metabolism includes substantial duplication of metabolite pools and enzyme catalyzed reactions in different subcellular compartments. This poses considerable challenges for understanding the regulation of metabolism particularly in primary metabolism and amino acid biosynth...

  16. Okadaic acid induces epileptic seizures and hyperphosphorylation of the NR2B subunit of the NMDA receptor in rat hippocampus in vivo.

    PubMed

    Arias, Clorinda; Montiel, Teresa; Peña, Fernando; Ferrera, Patricia; Tapia, Ricardo

    2002-09-01

    Overactivation of N-methyl-D-aspartate (NMDA) glutamate receptors is closely related to epilepsy and excitotoxicity, and the phosphorylation of these receptors may facilitate glutamate-mediated synaptic transmission. Here we show that in awake rats the microinjection into the hippocampus of okadaic acid, a potent inhibitor of protein phosphatases 1 and 2A, induces in about 20 min intense electroencephalographic and behavioral limbic-type seizures, which are suppressed by the systemic administration of the NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo-[a,d]cyclohepten-5,10-imine hydrogen maleate and by the intrahippocampal administration of 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, an inhibitor of protein kinases. Two hours after okadaic acid, when the EEG seizures were intense, an increased serine phosphorylation of some hippocampal proteins, including an enhancement of the serine phosphorylation of the NMDA receptor subunit NR2B, was detected by immunoblotting. Twenty-four hours after okadaic acid a marked destruction of hippocampal CA1 region was observed, which was not prevented by the receptor antagonists. These findings suggest that hyperphosphorylation of glutamate receptors in vivo may result in an increased sensitivity to the endogenous transmitter and therefore induce neuronal hyperexcitability and epilepsy. PMID:12429230

  17. Allele variants of enterotoxigenic Escherichia coli heat-labile toxin are globally transmitted and associated with colonization factors.

    PubMed

    Joffré, Enrique; von Mentzer, Astrid; Abd El Ghany, Moataz; Oezguen, Numan; Savidge, Tor; Dougan, Gordon; Svennerholm, Ann-Mari; Sjöling, Åsa

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a significant cause of morbidity and mortality in the developing world. ETEC-mediated diarrhea is orchestrated by heat-labile toxin (LT) and heat-stable toxins (STp and STh), acting in concert with a repertoire of more than 25 colonization factors (CFs). LT, the major virulence factor, induces fluid secretion after delivery of a monomeric ADP-ribosylase (LTA) and its pentameric carrier B subunit (LTB). A study of ETEC isolates from humans in Brazil reported the existence of natural LT variants. In the present study, analysis of predicted amino acid sequences showed that the LT amino acid polymorphisms are associated with a geographically and temporally diverse set of 192 clinical ETEC strains and identified 12 novel LT variants. Twenty distinct LT amino acid variants were observed in the globally distributed strains, and phylogenetic analysis showed these to be associated with different CF profiles. Notably, the most prevalent LT1 allele variants were correlated with major ETEC lineages expressing CS1 + CS3 or CS2 + CS3, and the most prevalent LT2 allele variants were correlated with major ETEC lineages expressing CS5 + CS6 or CFA/I. LTB allele variants generally exhibited more-stringent amino acid sequence conservation (2 substitutions identified) than LTA allele variants (22 substitutions identified). The functional impact of LT1 and LT2 polymorphisms on virulence was investigated by measuring total-toxin production, secretion, and stability using GM1-enzyme-linked immunosorbent assays (GM1-ELISA) and in silico protein modeling. Our data show that LT2 strains produce 5-fold more toxin than LT1 strains (P < 0.001), which may suggest greater virulence potential for this genetic variant. Our data suggest that functionally distinct LT-CF variants with increased fitness have persisted during the evolution of ETEC and have spread globally. PMID:25404692

  18. Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers

    PubMed Central

    Hansson, A.; Willows, R. D.; Roberts, T. H.; Hansson, M.

    2002-01-01

    Many enzymes of the bacteriochlorophyll and chlorophyll biosynthesis pathways have been conserved throughout evolution, but the molecular mechanisms of the key steps remain unclear. The magnesium chelatase reaction is one of these steps, and it requires the proteins BchI, BchD, and BchH to catalyze the insertion of Mg2+ into protoporphyrin IX upon ATP hydrolysis. Structural analyses have shown that BchI forms hexamers and belongs to the ATPases associated with various cellular activities (AAA+) family of proteins. AAA+ proteins are Mg2+-dependent ATPases that normally form oligomeric ring structures in the presence of ATP. By using ATPase-deficient BchI subunits, we demonstrate that binding of ATP is sufficient to form BchI oligomers. Further, ATPase-deficient BchI proteins can form mixed oligomers with WT BchI. The formation of BchI oligomers is not sufficient for magnesium chelatase activity when combined with BchD and BchH. Combining WT BchI with ATPase-deficient BchI in an assay disrupts the chelatase reaction, but the presence of deficient BchI does not inhibit ATPase activity of the WT BchI. Thus, the ATPase of every WT segment of the hexamer is autonomous, but all segments of the hexamer must be capable of ATP hydrolysis for magnesium chelatase activity. We suggest that ATP hydrolysis of each BchI within the hexamer causes a conformational change of the hexamer as a whole. However, hexamers containing ATPase-deficient BchI are unable to perform this ATP-dependent conformational change, and the magnesium chelatase reaction is stalled in an early stage. PMID:12357035

  19. Key Amino Acid Residues within the Third Membrane Domains of NR1 and NR2 Subunits Contribute to the Regulation of the Surface Delivery of N-methyl-d-aspartate Receptors*

    PubMed Central

    Kaniakova, Martina; Krausova, Barbora; Vyklicky, Vojtech; Korinek, Miloslav; Lichnerova, Katarina; Vyklicky, Ladislav; Horak, Martin

    2012-01-01

    N-methyl-d-aspartate (NMDA) receptors are glutamate ionotropic receptors that play critical roles in synaptic transmission, plasticity, and excitotoxicity. The functional NMDA receptors, heterotetramers composed mainly of two NR1 and two NR2 subunits, likely pass endoplasmic reticulum quality control before they are released from the endoplasmic reticulum and trafficked to the cell surface. However, the mechanism underlying this process is not clear. Using truncated and mutated NMDA receptor subunits expressed in heterologous cells, we found that the M3 domains of both NR1 and NR2 subunits contain key amino acid residues that contribute to the regulation of the number of surface functional NMDA receptors. These key residues are critical neither for the interaction between the NR1 and NR2 subunits nor for the formation of the functional receptors, but rather they regulate the early trafficking of the receptors. We also found that the identified key amino acid residues within both NR1 and NR2 M3 domains contribute to the regulation of the surface expression of unassembled NR1 and NR2 subunits. Thus, our data identify the unique role of the membrane domains in the regulation of the number of surface NMDA receptors. PMID:22711533

  20. Cloning, Expression Analysis, and Molecular Modeling of the Gamma-Aminobutyric Acid Receptor Alpha2 Subunit Gene from the Common Cutworm, Spodoptera litura

    PubMed Central

    Zuo, Hongliang; Gao, Lu; Hu, Zhen; Liu, Haiyuan; Zhong, Guohua

    2013-01-01

    Intensive research on the molecule structures of the gamma-nminobutyric acid (GABA) receptor in agricultural pests has great significance to the mechanism investigation, resistance prevention, and molecular design of novel pesticides. The GABA receptor a2 (SlGABARα2) subunit gene in Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) was cloned using the technologies of reverse transcription PCR and rapid amplification of cDNA ends. The gemonic DNA sequence of SlGABARα2 has 5164 bp with 8 exons and 7 introns that were in accordance with the GT-AG splicing formula. The complete mRNA sequence of SlGABARα2 was 1965 bp, with an open reading frame of 1500 bp encoding a protein of 499 amino acids. The GABA receptor is highly conserved among insects. The conserved regions include several N-glycosylation, Oglycosylation, and phosphorylation sites, as well as 4 transmembrane domains. The identities that SlGABARα2 shared with the GABA receptor a2 subunit of Spodoptera exigua, Heliothis virescens, Chilo suppressalis, Plutella xylostella, Bombyx mori ranged from 99.2% to 87.2% at the amino acid level. The comparative 3-dimensional model of SlGABARα2 showed that its tertiary structure was composed of 4 major α-helixes located at the 4 putative transmembrane domains on one side, with some β-sheets and 1 small α-helix on the other side. SlGABARα2 may be attached to the membrane by 4 α-helixes that bind ions in other conserved domains to transport them through the membrane. The results of quantitative real time PCR demonstrated that SlGABARα2 was expressed in all developmental stages of S. litura. The relative expression level of SlGABARα2 was the lowest in eggs and increased with larval growth, while it declined slightly in pupae and reached the peak in adults. The expressions of SlGABARα2 in larvae varied among different tissues; it was extremely high in the brain but was low in the midgut, epicuticle, Malpighian tube, and fat body. PMID:23909412

  1. Cloning, expression analysis, and molecular modeling of the gamma-aminobutyric acid receptor alpha2 subunit gene from the common cutworm, Spodoptera litura.

    PubMed

    Zuo, Hongliang; Gao, Lu; Hu, Zhen; Liu, Haiyuan; Zhong, Guohua

    2013-01-01

    Intensive research on the molecule structures of the gamma-nminobutyric acid (GABA) receptor in agricultural pests has great significance to the mechanism investigation, resistance prevention, and molecular design of novel pesticides. The GABA receptor a2 (SlGABARα2) subunit gene in Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) was cloned using the technologies of reverse transcription PCR and rapid amplification of cDNA ends. The gemonic DNA sequence of SlGABARα2 has 5164 bp with 8 exons and 7 introns that were in accordance with the GT-AG splicing formula. The complete mRNA sequence of SlGABARα2 was 1965 bp, with an open reading frame of 1500 bp encoding a protein of 499 amino acids. The GABA receptor is highly conserved among insects. The conserved regions include several N-glycosylation, Oglycosylation, and phosphorylation sites, as well as 4 transmembrane domains. The identities that SlGABARα2 shared with the GABA receptor a2 subunit of Spodoptera exigua, Heliothis virescens, Chilo suppressalis, Plutella xylostella, Bombyx mori ranged from 99.2% to 87.2% at the amino acid level. The comparative 3-dimensional model of SlGABARα2 showed that its tertiary structure was composed of 4 major α-helixes located at the 4 putative transmembrane domains on one side, with some β-sheets and 1 small α-helix on the other side. SlGABARα2 may be attached to the membrane by 4 α-helixes that bind ions in other conserved domains to transport them through the membrane. The results of quantitative real time PCR demonstrated that SlGABARα2 was expressed in all developmental stages of S. litura. The relative expression level of SlGABARα2 was the lowest in eggs and increased with larval growth, while it declined slightly in pupae and reached the peak in adults. The expressions of SlGABARα2 in larvae varied among different tissues; it was extremely high in the brain but was low in the midgut, epicuticle, Malpighian tube, and fat body. PMID:23909412

  2. Structural and Functional Characterization of a Complex between the Acidic Transactivation Domain of EBNA2 and the Tfb1/p62 Subunit of TFIIH

    PubMed Central

    Lussier-Price, Mathieu; Morse, Thomas; Arseneault, Genevieve; Archambault, Jacques; Omichinski, James G.

    2014-01-01

    Infection with the Epstein-Barr virus (EBV) can lead to a number of human diseases including Hodgkin's and Burkitt's lymphomas. The development of these EBV-linked diseases is associated with the presence of nine viral latent proteins, including the nuclear antigen 2 (EBNA2). The EBNA2 protein plays a crucial role in EBV infection through its ability to activate transcription of both host and viral genes. As part of this function, EBNA2 associates with several host transcriptional regulatory proteins, including the Tfb1/p62 (yeast/human) subunit of the general transcription factor IIH (TFIIH) and the histone acetyltransferase CBP(CREB-binding protein)/p300, through interactions with its C-terminal transactivation domain (TAD). In this manuscript, we examine the interaction of the acidic TAD of EBNA2 (residues 431–487) with the Tfb1/p62 subunit of TFIIH and CBP/p300 using nuclear magnetic resonance (NMR) spectroscopy, isothermal titration calorimeter (ITC) and transactivation studies in yeast. NMR studies show that the TAD of EBNA2 binds to the pleckstrin homology (PH) domain of Tfb1 (Tfb1PH) and that residues 448–471 (EBNA2448–471) are necessary and sufficient for this interaction. NMR structural characterization of a Tfb1PH-EBNA2448–471 complex demonstrates that the intrinsically disordered TAD of EBNA2 forms a 9-residue α-helix in complex with Tfb1PH. Within this helix, three hydrophobic amino acids (Trp458, Ile461 and Phe462) make a series of important interactions with Tfb1PH and their importance is validated in ITC and transactivation studies using mutants of EBNA2. In addition, NMR studies indicate that the same region of EBNA2 is also required for binding to the KIX domain of CBP/p300. This study provides an atomic level description of interactions involving the TAD of EBNA2 with target host proteins. In addition, comparison of the Tfb1PH-EBNA2448–471 complex with structures of the TAD of p53 and VP16 bound to Tfb1PH highlights the versatility of

  3. Structural and functional characterization of a complex between the acidic transactivation domain of EBNA2 and the Tfb1/p62 subunit of TFIIH.

    PubMed

    Chabot, Philippe R; Raiola, Luca; Lussier-Price, Mathieu; Morse, Thomas; Arseneault, Genevieve; Archambault, Jacques; Omichinski, James G

    2014-03-01

    Infection with the Epstein-Barr virus (EBV) can lead to a number of human diseases including Hodgkin's and Burkitt's lymphomas. The development of these EBV-linked diseases is associated with the presence of nine viral latent proteins, including the nuclear antigen 2 (EBNA2). The EBNA2 protein plays a crucial role in EBV infection through its ability to activate transcription of both host and viral genes. As part of this function, EBNA2 associates with several host transcriptional regulatory proteins, including the Tfb1/p62 (yeast/human) subunit of the general transcription factor IIH (TFIIH) and the histone acetyltransferase CBP(CREB-binding protein)/p300, through interactions with its C-terminal transactivation domain (TAD). In this manuscript, we examine the interaction of the acidic TAD of EBNA2 (residues 431-487) with the Tfb1/p62 subunit of TFIIH and CBP/p300 using nuclear magnetic resonance (NMR) spectroscopy, isothermal titration calorimeter (ITC) and transactivation studies in yeast. NMR studies show that the TAD of EBNA2 binds to the pleckstrin homology (PH) domain of Tfb1 (Tfb1PH) and that residues 448-471 (EBNA2₄₄₈₋₄₇₁) are necessary and sufficient for this interaction. NMR structural characterization of a Tfb1PH-EBNA2₄₄₈₋₄₇₁ complex demonstrates that the intrinsically disordered TAD of EBNA2 forms a 9-residue α-helix in complex with Tfb1PH. Within this helix, three hydrophobic amino acids (Trp458, Ile461 and Phe462) make a series of important interactions with Tfb1PH and their importance is validated in ITC and transactivation studies using mutants of EBNA2. In addition, NMR studies indicate that the same region of EBNA2 is also required for binding to the KIX domain of CBP/p300. This study provides an atomic level description of interactions involving the TAD of EBNA2 with target host proteins. In addition, comparison of the Tfb1PH-EBNA2₄₄₈₋₄₇₁ complex with structures of the TAD of p53 and VP16 bound to Tfb1

  4. Chemical leaching methods and measurements of marine labile particulate Fe

    NASA Astrophysics Data System (ADS)

    Revels, B. N.; John, S.

    2012-12-01

    Iron (Fe) is an essential nutrient for life. Yet its low solubility and concentration in the ocean limits marine phytoplankton productivity in many regions of the world. Dissolved phase Fe (<0.4μm) has traditionally been considered the most biologically accessible form, however, the particulate phase (>0.4μm) may contain an important, labile reservoir of Fe that may also be available to phytoplankton. However, concentration data alone cannot elucidate the sources of particulate Fe to the ocean and to what extent particulate iron may support phytoplankton growth. Isotopic analysis of natural particles may help to elucidate the biogeochemical cycling of Fe, though it is important to find a leaching method which accesses bioavailable Fe. Thirty-three different chemical leaches were performed on a marine sediment reference material, MESS-3. The combinations included four different acids (25% acetic acid, 0.01M HCl, 0.5M HCl, 0.1M H2SO4 at pH2), various redox conditions (0.02M hydroxylamine hydrochloride or 0.02M H2O2), three temperatures (25°C, 60°C, 90°C), and three time points (10 minutes, 2 hours, 24 hours). Leached Fe concentrations varied from 1mg/g to 35mg/g, with longer treatment times, stronger acids, and hotter temperatures generally associated with an increase in leached Fe. δ56Fe in these leaches varied from -1.0‰ to +0.2‰. Interestingly, regardless of leaching method used, there was a very similar relationship between the amount of Fe leached from the particles and the δ56Fe of this iron. Isotopically lighter δ56Fe values were associated with smaller amounts of leached Fe whereas isotopically heavier δ56Fe values were associated with larger amounts of leached Fe. Two alternate hypotheses could explain these data. Either, the particles may contain pools of isotopically light Fe that are easily accessed early in dissolution, or isotopically light Fe may be preferentially leached from the particle due to a kinetic isotope effect during dissolution

  5. Protective effect of marine mangrove Rhizophora apiculata on acetic acid induced experimental colitis by regulating anti-oxidant enzymes, inflammatory mediators and nuclear factor-kappa B subunits.

    PubMed

    V, Vinod Prabhu; C, Guruvayoorappan

    2014-01-01

    Ulcerative colitis is a disease that causes inflammation and ulcer in the lining of the large intestine. In this study we investigate the effect of Rhizophora apiculata (R. apiculata) on acetic acid induced colitis in mouse model. Experimental animals were randomized into four groups: normal untreated, colitis control, R. apiculata treated group and sulfasalazine treated group. R. apiculata significantly (p<0.01) decreased macroscopic score and wet weight of damaged colon compared to colitis control. This effect was confirmed biochemically by significant (p<0.01) reduction of colitis associated increase in myeloperoxidase activity. R. apiculata significantly (p<0.05) increased anti-oxidant enzymes such as superoxide dismutase (SOD) and glutathione (GSH) levels compared to colitis control. R. apiculata significantly (p<0.01) reduced lipid peroxides (LPO), nitric oxide (NO) and inflammatory mediators such as myeloperoxidase (MPO), lactate dehydrogenase (LDH), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and tumor necrosis factor-α (TNF-α) expressions compared to colitis control. R. apiculata treatment significantly (p<0.01) inhibits the translocation of NF-kB p65 and p50 subunits. Taken together these findings suggest that R. apiculata prevents acetic acid induced colitis in experimental mouse model and may serve as an excellent anti-oxidant and anti-inflammatory agent that could potentially be useful as a (natural) therapy for inflammatory bowel disease (IBD). PMID:24269623

  6. A polymorphic motif in the small subunit of ADP-glucose pyrophosphorylase modulates interactions between the small and large subunits.

    PubMed

    Cross, Joanna M; Clancy, Maureen; Shaw, Janine R; Boehlein, Susan K; Greene, Thomas W; Schmidt, Robert R; Okita, Thomas W; Hannah, L Curtis

    2005-02-01

    The heterotetrameric, allosterically regulated enzyme, adenosine-5'-diphosphoglucose pyrophosphorylase (AGPase) catalyzes the rate-limiting step in starch synthesis. Despite vast differences in allosteric properties and a long evolutionary separation, heterotetramers of potato small subunit and maize large subunit have activity comparable to either parent in an Escherichia coli expression system. In contrast, co-expression of maize small subunit with the potato large subunit produces little activity as judged by in vivo activity stain. To pinpoint the region responsible for differential activity, we expressed chimeric maize/potato small subunits in E. coli. This identified a 55-amino acid motif of the potato small subunit that is critical for glycogen production when expressed with the potato large subunit. Potato and maize small subunit sequences differ at five amino acids in this motif. Replacement experiments revealed that at least four amino acids of maize origin were required to reduce staining. An AGPase composed of a chimeric potato small subunit containing the 55-amino acid maize motif with the potato large subunit exhibited substantially less affinity for the substrates, glucose-1-phosphate and ATP and an increased Ka for the activator, 3-phosphoglyceric acid. Placement of the potato motif into the maize small subunit restored glycogen synthesis with the potato large subunit. Hence, a small polymorphic motif within the small subunit influences both catalytic and allosteric properties by modulating subunit interactions. PMID:15686515

  7. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits

    PubMed Central

    Gautam, Mamta; Benson, Christopher J.

    2013-01-01

    Acid-sensing ion channels (ASICs) are expressed in skeletal muscle afferents, in which they sense extracellular acidosis and other metabolites released during ischemia and exercise. ASICs are formed as homotrimers or heterotrimers of several isoforms (ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3), with each channel displaying distinct properties. To dissect the ASIC composition in muscle afferents, we used whole-cell patch-clamp recordings to study the properties of acid-evoked currents (amplitude, pH sensitivity, the kinetics of desensitization and recovery from desensitization, and pharmacological modulation) in isolated, labeled mouse muscle afferents from wild-type (C57BL/6J) and specific ASIC−/− mice. We found that ASIC-like currents in wild-type muscle afferents displayed fast desensitization, indicating that they are carried by heteromeric channels. Currents from ASIC1a−/− muscle afferents were less pH-sensitive and displayed faster recovery, currents from ASIC2−/− mice showed diminished potentiation by zinc, and currents from ASIC3−/− mice displayed slower desensitization than those from wild-type mice. Finally, ASIC-like currents were absent from triple-null mice lacking ASIC1a, ASIC2a, and ASIC3. We conclude that ASIC1a, ASIC2a, and ASIC3 heteromers are the principle channels in skeletal muscle afferents. These results will help us understand the role of ASICs in exercise physiology and provide a molecular target for potential drug therapies to treat muscle pain.—Gautam, M., Benson, C. J. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits. PMID:23109675

  8. A single amino acid in the F2 subunit of respiratory syncytial virus fusion protein alters growth and fusogenicity

    PubMed Central

    Schickli, Jeanne H.; Tang, Roderick S.

    2013-01-01

    Respiratory syncytial virus (RSV) causes severe lower respiratory tract infection in children, especially in infants less than 1 year of age. There are currently no licensed vaccines against RSV. rA2ΔM2-2 is a promising live-attenuated vaccine candidate that is currently being evaluated in the clinic. Attenuation of rA2ΔM2-2 is achieved by a single deletion of the M2-2 gene, which disrupts the balance between viral transcription and replication. Whilst performing a manufacturing feasibility study in a serum-free adapted Vero cell line, differences in growth kinetics and cytopathic effect (CPE) were identified between two rA2ΔM2-2 vaccine candidates. Comparative sequence analysis identified four amino acid differences between the two vaccine viruses. Recombinant rA2ΔM2-2 viruses carrying each of the four amino acid differences identified a K66E mutation in the F2 fragment of the fusion (F) protein as the cause of the growth and CPE differences. Syncytium-formation experiments with RSV F protein carrying mutations at aa 66 suggested that a change in charge at this residue within the F2 fragment can have a significant impact on fusion. PMID:24092758

  9. Labile carbon concentrations are strongly linked to plant production in Arctic tussock tundra soils

    NASA Astrophysics Data System (ADS)

    Darrouzet-Nardi, A.; Weintraub, M. N.; Euskirchen, E. S.; Steltzer, H.; Sullivan, P.

    2013-12-01

    The exchange of carbon and nutrients between plants and microbes is a key determinant of carbon balance in Arctic soils. Microbes rely on labile plant carbon for the energy they need to produce enzymes that can release nutrients and less energetically favorable carbon from soil organic matter. One of the main mechanisms of carbon transfer is rhizodeposition, the exudation of labile plant carbon such as sugars from roots into the rhizosphere. Despite the importance of this flow of energy and materials from plants to microbes, there have been few attempts to quantify labile carbon pools or fluxes in Arctic soils. To improve our knowledge of labile carbon dynamics in Arctic soils, we address two basic questions: (1) What are the seasonal patterns of labile carbon concentrations? and (2) How do seasonal patterns in labile carbon correlate with plant production, microbial biomass, and soil nutrients? We measured concentrations of total reducing sugars (TRS) in the soil solution of moist acidic tussock tundra on 28 dates during the 2012 growing season in 20 plots of an early snowmelt × warming experiment. We evaluated these total reducing sugar concentrations in the context of eddy flux carbon exchange data, plant NDVI, total dissolved carbon in soils, microbial biomass, and soil nutrients. Though we did not see treatment effects of the snowmelt × warming experiment, we did observe a clear seasonal pattern in TRS concentrations in which they started low at the time of thaw, then built to a maximum value around the time of peak plant physiology in July, followed by a decline as plants senesced. We observed a clear correlation between TRS and gross primary production (GPP). NDVI values also increased with TRS concentrations during the first half of the season and then leveled off as TRS began its decline. These relationships were in contrast to labile N concentrations, which remained at low concentrations all season. Our data suggest that rhizodeposition of labile carbon

  10. Role of trypsin-like cleavage at arginine 192 in the enzymatic and cytotonic activities of Escherichia coli heat-labile enterotoxin.

    PubMed Central

    Grant, C C; Messer, R J; Cieplak, W

    1994-01-01

    Previous studies of cholera toxin and Escherichia coli heat-labile enterotoxin have suggested that proteolytic cleavage plays an important role in the expression of ADP-ribosyltransferase activity and toxicity. Specifically, several studies have implicated a trypsin-like cleavage at arginine 192, which lies within an exposed region subtended by a disulfide bond in the intact A subunit, in toxicity. To investigate the role of this modification in the enzymatic and cytotonic properties of heat-labile enterotoxin, the response of purified, recombinant A subunit to tryptic activation and the effect of substituting arginine 192 with glycine on the activities of the holotoxin were examined. The recombinant A subunit of heat-labile enterotoxin exhibited significant levels of ADP-ribosyltransferase activity that were only nominally increased (approximately twofold) by prior limited trypsinolysis. The enzymatic activity also did not appear to be affected by auto-ADP-ribosylation that occurs during the high-level synthesis of the recombinant A subunit in E. coli. A mutant form of the holotoxin containing the arginine 192-to-glycine substitution exhibited levels of cytotonic activity for CHO cells that were similar to that of the untreated, wild-type holotoxin but exhibited a marked delay in the ability to increase intracellular levels of cyclic AMP in Caco-2 cells. The results indicate that trypsin-like cleavage of the A subunit of E. coli heat-labile enterotoxin at arginine 192 is not requisite to the expression of enzymatic activity by the A subunit and further reveal that this modification, although it enhances the biological and enzymatic activities of the toxin, is not absolutely required for the enterotoxin to elicit cytotonic effects. Images PMID:7927684

  11. Phenotypic consequences of deletion of the {gamma}{sub 3}, {alpha}{sub 5}, or {beta}{sub 3} subunit of the type A {gamma}-aminobutyric acid receptor in mice

    SciTech Connect

    Culia, C.T.; Stubbs, L.J.; Montgomery, C.S.; Russell, L.B.; Rinchik, E.M.

    1994-03-29

    Three genes (Gabrg3, Gabra5, and Gabrb3) encoding the {gamma}{sub 3}, {alpha}{sub 5}, and {beta}{sub 3} subunits of the type A {gamma}-aminobutyric acid receptor, respectively, are known to map near the pink-eyed dilution (p) locus in mouse chromosome 7. This region shares homology with a segment of human chromosome 15 that is implicated in Angelman syndrome, an inherited neurobehavioral disorder. By mapping Gabrg3-Gabra5-Gabrb3-telomere. Like Gabrb3, neither the Gabra5 nor Gabrg3 gene is functionally imprinted in adult mouse brain. Mice deleted for all three subunits die at birth with a cleft palate, although there are rare survivors ({approximately} 5%) that do not have a cleft palate but do exhibit a neurological abnormality characterized by tremor, jerky gait, and runtiness. The authors have previously suggested that deficiency of the {beta}{sub 3} subunit may be responsible for the clefting defect. Most notably, however, in this report they describe mice carrying two overlapping, complementing p deletions that fail to express the {gamma}{sub 3} transcript, as well as mice from another line that express neither the {gamma}{sub 3} nor {alpha}{sub 5} transcripts. Surprisingly, mice from both of these lines are phenotypically normal and do not exhibit any of the neurological symptoms characteristic of the rare survivors that are deleted for all three ({gamma}{sub 3}, {alpha}{sub 5}, and {beta}{sub 3}) subunits. These mice therefore provide a whole-organism type A {gamma}-aminobutyric-acid receptor background that is devoid of any receptor subtypes that normally contain the {gamma}{sub 3} and/or {alpha}{sub 5} subunits. The absence of an overt neurological phenotype in mice lacking the {gamma}{sub 3} and/or {alpha}{sub 5} subunits also suggests that mutations in these genes are unlikely to provide useful animal models for Angelman syndrome in humans.

  12. The acidic transcription activator Gcn4 binds the mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex.

    PubMed

    Brzovic, Peter S; Heikaus, Clemens C; Kisselev, Leonid; Vernon, Robert; Herbig, Eric; Pacheco, Derek; Warfield, Linda; Littlefield, Peter; Baker, David; Klevit, Rachel E; Hahn, Steven

    2011-12-23

    The structural basis for binding of the acidic transcription activator Gcn4 and one activator-binding domain of the Mediator subunit Gal11/Med15 was examined by NMR. Gal11 activator-binding domain 1 has a four-helix fold with a small shallow hydrophobic cleft at its center. In the bound complex, eight residues of Gcn4 adopt a helical conformation, allowing three Gcn4 aromatic/aliphatic residues to insert into the Gal11 cleft. The protein-protein interface is dynamic and surprisingly simple, involving only hydrophobic interactions. This allows Gcn4 to bind Gal11 in multiple conformations and orientations, an example of a "fuzzy" complex, where the Gcn4-Gal11 interface cannot be described by a single conformation. Gcn4 uses a similar mechanism to bind two other unrelated activator-binding domains. Functional studies in yeast show the importance of residues at the protein interface, define the minimal requirements for a functional activator, and suggest a mechanism by which activators bind to multiple unrelated targets. PMID:22195967

  13. Evaluation of structure, chaperone-like activity and protective ability of peroxynitrite modified human α-Crystallin subunits against copper-mediated ascorbic acid oxidation.

    PubMed

    Ghahramani, Maryam; Yousefi, Reza; Khoshaman, Kazem; Moghadam, Sogand Sasan; Kurganov, Boris I

    2016-06-01

    The copper-catalyzed oxidation of ascorbic acid (ASA) to dehydroascorbate (DHA) and hydrogen peroxide plays a central role in pathology of cataract diseases during ageing and in diabetic patients. In the current study, the structural feature, chaperone-like activity and protective ability of peroxynitrite (PON) modified αA- and αB-Crystallin (Cry) against copper-mediated ASA oxidation were studied using different spectroscopic measurements and gel mobility shift assay. Upon PON modification, additional to protein structural alteration, the contents of nitrotyrosine, nitrotryptophan, dityrosine and carbonyl groups were significantly increased. Moreover, αB-Cry demonstrates significantly larger capacity for PON modification than αA-Cry. Also, based on the extent of PON modification, these proteins may display an improved chaperone-like activity and enhanced protective ability against copper-mediated ASA oxidation. In the presence of copper ions, chaperone-like activity of both native and PON-modified α-Cry subunits were appreciably improved. Additionally, binding of copper ions to native and PON-modified proteins results in the significant reduction of their solvent exposed hydrophobic patches. Overall, the increase in chaperone-like activity/ASA protective ability of PON-modified α-Cry and additional enhancement of its chaperoning action with copper ions appear to be an important defense mechanism offered by this protein. PMID:26896727

  14. [Effects of straw application and earthworm inoculation on soil labile organic carbon].

    PubMed

    Yu, Jian-Guang; Li, Hui Xin; Chen, Xiao-Yun; Hu, Feng

    2007-04-01

    A six-year field plot experiment of rice-wheat rotation was conducted to study the effects of straw application and earthworm inoculation on cropland soil organic carbon and labile organic carbon. Five treatments were installed, i.e., CK, straw mulch (M), straw mulch plus earthworm inoculation (ME), incorporated straw with soil (I), and incorporated straw with soil plus earthworm inoculation (IE). The results showed that soil organic carbon content increased significantly after six years straw application, and treatment I was more efficient than treatment M. Earthworm inoculation under straw application had no significant effects on soil organic carbon content. Straw application, whether straw mulch or incorporated straw with soil, increased the content of soil labile organic carbon, and incorporated straw with soil was more beneficial to the increase of the contents of hot water-extractable carbon, potentially mineralizable carbon, acid-extractable carbon, readily oxidizable carbon, particulate organic carbon, and light fraction organic carbon. There was a little relationship between the quantitative variations of soil dissoluble organic carbon and microbial biomass carbon and the patterns of straw application. Among the treatments, the activity of soil organic carbon was decreased in the order of IF > I > M > ME > CK. Straw application pattern was the main factor affecting soil organic carbon and labile organic carbon, while earthworm inoculation was not universally significanfly effective to all kinds of soil labile organic carbon. PMID:17615878

  15. Two Distinctive Binding Modes of Endonuclease Inhibitors to the N-Terminal Region of Influenza Virus Polymerase Acidic Subunit.

    PubMed

    Fudo, Satoshi; Yamamoto, Norio; Nukaga, Michiyoshi; Odagiri, Takato; Tashiro, Masato; Hoshino, Tyuji

    2016-05-10

    Influenza viruses are global threat to humans, and the development of new antiviral agents are still demanded to prepare for pandemics and to overcome the emerging resistance to the current drugs. Influenza polymerase acidic protein N-terminal domain (PAN) has endonuclease activity and is one of the appropriate targets for novel antiviral agents. First, we performed X-ray cocrystal analysis on the complex structures of PAN with two endonuclease inhibitors. The protein crystallization and the inhibitor soaking were done at pH 5.8. The binding modes of the two inhibitors were different from a common binding mode previously reported for the other influenza virus endonuclease inhibitors. We additionally clarified the complex structures of PAN with the same two endonuclease inhibitors at pH 7.0. In one of the crystal structures, an additional inhibitor molecule, which chelated to the two metal ions in the active site, was observed. On the basis of the crystal structures at pH 7.0, we carried out 100 ns molecular dynamics (MD) simulations for both of the complexes. The analysis of simulation results suggested that the binding mode of each inhibitor to PAN was stable in spite of the partial deviation of the simulation structure from the crystal one. Furthermore, crystal structure analysis and MD simulation were performed for PAN in complex with an inhibitor, which was already reported to have a high compound potency for comparison. The findings on the presence of multiple binding sites at around the PAN substrate-binding pocket will provide a hint for enhancing the binding affinity of inhibitors. PMID:27088785

  16. AMP-activated Protein Kinase α2 Subunit Is Required for the Preservation of Hepatic Insulin Sensitivity by n-3 Polyunsaturated Fatty Acids

    PubMed Central

    Jelenik, Tomas; Rossmeisl, Martin; Kuda, Ondrej; Jilkova, Zuzana Macek; Medrikova, Dasa; Kus, Vladimir; Hensler, Michal; Janovska, Petra; Miksik, Ivan; Baranowski, Marcin; Gorski, Jan; Hébrard, Sophie; Jensen, Thomas E.; Flachs, Pavel; Hawley, Simon; Viollet, Benoit; Kopecky, Jan

    2010-01-01

    OBJECTIVE The induction of obesity, dyslipidemia, and insulin resistance by high-fat diet in rodents can be prevented by n-3 long-chain polyunsaturated fatty acids (LC-PUFAs). We tested a hypothesis whether AMP-activated protein kinase (AMPK) has a role in the beneficial effects of n-3 LC-PUFAs. RESEARCH DESIGN AND METHODS Mice with a whole-body deletion of the α2 catalytic subunit of AMPK (AMPKα2−/−) and their wild-type littermates were fed on either a low-fat chow, or a corn oil-based high-fat diet (cHF), or a cHF diet with 15% lipids replaced by n-3 LC-PUFA concentrate (cHF+F). RESULTS Feeding a cHF diet induced obesity, dyslipidemia, hepatic steatosis, and whole-body insulin resistance in mice of both genotypes. Although cHF+F feeding increased hepatic AMPKα2 activity, the body weight gain, dyslipidemia, and the accumulation of hepatic triglycerides were prevented by the cHF+F diet to a similar degree in both AMPKα2−/− and wild-type mice in ad libitum-fed state. However, preservation of hepatic insulin sensitivity by n-3 LC-PUFAs required functional AMPKα2 and correlated with the induction of adiponectin and reduction in liver diacylglycerol content. Under hyperinsulinemic-euglycemic conditions, AMPKα2 was essential for preserving low levels of both hepatic and plasma triglycerides, as well as plasma free fatty acids, in response to the n-3 LC-PUFA treatment. CONCLUSIONS Our results show that n-3 LC-PUFAs prevent hepatic insulin resistance in an AMPKα2-dependent manner and support the role of adiponectin and hepatic diacylglycerols in the regulation of insulin sensitivity. AMPKα2 is also essential for hypolipidemic and antisteatotic effects of n-3 LC-PUFA under insulin-stimulated conditions. PMID:20693347

  17. The human platelet alloantigens Br(a) and Brb are associated with a single amino acid polymorphism on glycoprotein Ia (integrin subunit alpha 2).

    PubMed Central

    Santoso, S; Kalb, R; Walka, M; Kiefel, V; Mueller-Eckhardt, C; Newman, P J

    1993-01-01

    The human GPIa/IIa complex, also known as integrin alpha 2 beta 1, serves as a major receptor for collagen in platelets and other cell types. In addition to its role in platelet adhesion to extracellular matrix, GPIa/IIa is also known to bear the clinically important Br(a) and Brb alloantigenic determinants, which can result in antibody-mediated platelet destruction. Immunochemical studies showed that the Br antigenic epitopes reside solely on the GP Ia subunit and do not depend on sialic acid residues. To define the polymorphism responsible for the Br alloantigen system platelet RNA PCR technique, was used to amplify GPIa mRNA transcripts. Nucleotide sequence analysis of the amplified platelet GPIa cDNA from Br(a/a) and Brb/b individuals revealed a single A<-->G polymorphism at base 1648. MnlI RFLP analysis of cDNA from serologically determined individuals confirmed that this polymorphism segregates with Br phenotype. This single base change results in a substitution of Lys (AAG) in Br(a) to Glu (GAG) in Brb at amino acid residue 505 In spite of the reversal in charge at this position, however, we found no difference in the ability of Bra and Brb homozygous platelets to adhere to collagens types I, III, or V, nor did anti-Bra or anti-Brb alloantibodies interfere with platelet adhesion to any of these fibrillar collagens. The identification of the nucleotide substitution that defines the Bra/Brb alloantigen system will now permit both pre- and postnatal diagnosis for Br phenotype. Images PMID:7901236

  18. Fate and lability of silver in soils: Effect of ageing

    EPA Science Inventory

    The fate and lability of added soluble Ag in soils over time was examined by measurement of labile metal (E-value) by isotopic dilution using the 110mAg radioactive isotope and the solid-phase speciation of Ag by X-ray absorption near edge structure (XANES) spectrosco...

  19. Labile hypertension and jogging: new diagnostic tool or spurious discovery?

    PubMed Central

    Fitzgerald, W

    1981-01-01

    A labile hypertensive black man reviews his own personal history of hypertension, based on intensive self-study. The evidence suggests that aerobic isotonic exercise (jogging) depresses labile pressure values, forcing them down to near basal levels and preventing a rise to previous blood pressure levels for several hours. PMID:6780119

  20. Mayolenes: labile defensive lipids from the glandular hairs of a caterpillar (Pieris rapae).

    PubMed

    Smedley, Scott R; Schroeder, Frank C; Weibel, Douglas B; Meinwald, Jerrold; Lafleur, Katie A; Renwick, J Alan; Rutowski, Ronald; Eisner, Thomas

    2002-05-14

    Larvae of the European cabbage butterfly, Pieris rapae (Pieridae), are beset with glandular hairs, bearing droplets of a clear oily secretion at their tip. The fluid consists primarily of a series of chemically labile, unsaturated lipids, the mayolenes, which are derived from 11-hydroxylinolenic acid. In bioassays with the ant Crematogaster lineolata, the secretion was shown to be potently deterrent, indicating that the fluid plays a defensive role in nature. PMID:11997469

  1. Acid-labile mPEG-Vinyl Ether-1,2-Dioleylglycerol Lipids with Tunable pH Sensitivity: Synthesis and Structural Effects on Hydrolysis Rates, DOPE Liposome Release Performance and Pharmacokinetics

    PubMed Central

    Shin, Junhwa; Shum, Pochi; Grey, Jessica; Fujiwara, Shin-ichi; Malhotra, Guarov S.; González-Bonet, Andres; Hyun, Seok-Hee; Moase, Elaine; Allen, Theresa M.; Thompson, David H.

    2012-01-01

    A family of 3-methoxypoly(ethylene glycol)-vinyl ether-1,2-dioleylglycerol (mPEG-VE-DOG) lipopolymer conjugates, designed on the basis of DFT calculations to possess a wide range of proton affinities, was synthesized and tested for their hydrolysis kinetics in neutral and acidic buffers. Extruded ~100 nm liposomes containing these constructs in ≥90 mol% 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) produced dispersions that retained their calcein cargo for more than 2 days at pH 7.5, but released the encapsulated contents over a wide range of timescales as a function of the electronic properties of the vinyl ether linkage, the solution pH and the mPEG-VE-DOG composition in the membrane. The in vivo performance of two different 90:10 DOPE:mPEG-VE-DOG compositions was also evaluated for blood circulation time and biodistribution in mice, using 125I-tyraminylinulin as a label. The pharmacokinetic profiles gave a T1/2 of 7 h and 3 h for 90:10 DOPE:ST302 and 90:10 DOPE:ST502, respectively, with the liposomes being cleared predominantly by liver and spleen uptake. The behavior of these DOPE:mPEG-VE-DOG formulations is consistent with their relative rates of vinyl ether hydrolysis, i.e., the more acid-sensitive mPEG-VE-DOG derivatives produce faster leakage rates from DOPE:mPEG-VE-DOG liposomes, but decreased the blood circulation times in mice. These findings suggest that the vinyl ether-based PEG-lipid derivatives are promising agents for stabilizing acid-sensitive DOPE liposomes to produce formulations with a priori control over their pH-responsiveness in vitro. Our data also suggest, however, that the same factors that contribute to enhanced acid-sensitivity of the DOPE:mPEG-VE-DOG dispersions are also likely responsible for their reduced pharmacokinetic profiles. PMID:23030381

  2. Acid-labile mPEG-vinyl ether-1,2-dioleylglycerol lipids with tunable pH sensitivity: synthesis and structural effects on hydrolysis rates, DOPE liposome release performance, and pharmacokinetics.

    PubMed

    Shin, Junhwa; Shum, Pochi; Grey, Jessica; Fujiwara, Shin-ichi; Malhotra, Guarov S; González-Bonet, Andres; Hyun, Seok-Hee; Moase, Elaine; Allen, Theresa M; Thompson, David H

    2012-11-01

    A family of 3-methoxypoly(ethylene glycol)-vinyl ether-1,2-dioleylglycerol (mPEG-VE-DOG) lipopolymer conjugates, designed on the basis of DFT calculations to possess a wide range of proton affinities, was synthesized and tested for their hydrolysis kinetics in neutral and acidic buffers. Extruded ∼100 nm liposomes containing these constructs in ≥90 mol % 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) produced dispersions that retained their calcein cargo for more than 2 days at pH 7.5, but released the encapsulated contents over a wide range of time scales as a function of the electronic properties of the vinyl ether linkage, the solution pH, and the mPEG-VE-DOG composition in the membrane. The in vivo performance of two different 90:10 DOPE:mPEG-VE-DOG compositions was also evaluated for blood circulation time and biodistribution in mice, using (125)I-tyraminylinulin as a label. The pharmacokinetic profiles gave a t(1/2) of 7 and 3 h for 90:10 DOPE:ST302 and 90:10 DOPE:ST502, respectively, with the liposomes being cleared predominantly by liver and spleen uptake. The behavior of these DOPE:mPEG-VE-DOG formulations is consistent with their relative rates of vinyl ether hydrolysis, i.e., the more acid-sensitive mPEG-VE-DOG derivatives produced faster leakage rates from DOPE:mPEG-VE-DOG liposomes, but decreased the blood circulation times in mice. These findings suggest that the vinyl ether-based PEG-lipid derivatives are promising agents for stabilizing acid-sensitive DOPE liposomes to produce formulations with a priori control over their pH responsiveness in vitro. Our data also suggest, however, that the same factors that contribute to enhanced acid sensitivity of the DOPE:mPEG-VE-DOG dispersions are also likely responsible for their reduced pharmacokinetic profiles. PMID:23030381

  3. Second Order Rate Constants of Donor-Strand Exchange Reveal Individual Amino Acid Residues Important in Determining the Subunit Specificity of Pilus Biogenesis

    NASA Astrophysics Data System (ADS)

    Leney, Aneika C.; Phan, Gilles; Allen, William; Verger, Denis; Waksman, Gabriel; Radford, Sheena E.; Ashcroft, Alison E.

    2011-07-01

    P pili are hair-like adhesive structures that are assembled on the outer membrane (OM) of uropathogenic Escherichia coli by the chaperone-usher pathway. In this pathway, chaperone-subunit complexes are formed in the periplasm and targeted to an OM assembly platform, the usher. Pilus subunits display a large groove caused by a missing β-strand which, in the chaperone-subunit complex, is provided by the chaperone. At the usher, pilus subunits are assembled in a mechanism termed "donor-strand exchange (DSE)" whereby the β-strand provided by the chaperone is exchanged by the incoming subunit's N-terminal extension (Nte). This occurs in a zip-in-zip-out fashion, starting with a defined residue, P5, in the Nte inserting into a defined site in the groove, the P5 pocket. Here, electrospray ionization-mass spectrometry (ESI-MS) has been used to measure DSE rates in vitro. Second order rate constants between the chaperone-subunit complex and a range of Nte peptides substituted at different residues confirmed the importance of the P5 residue of the Nte in determining the rate of DSE. In addition, residues either side of the P5 residue (P5 + 1 and P5 - 1), the side-chains of which are directed away from the subunit groove, also modulate the rates of DSE, most likely by aiding the docking of the Nte into the P5 pocket on the accepting subunit prior to DSE. The ESI-MS approach developed is applicable to the measurement of rates of DSE in pilus biogenesis in general and demonstrates the scope of ESI-MS in determining biomolecular processes in molecular detail.

  4. Mutants of Escherichia coli heat-labile toxin lacking ADP-ribosyltransferase activity act as nontoxic, mucosal adjuvants.

    PubMed

    Douce, G; Turcotte, C; Cropley, I; Roberts, M; Pizza, M; Domenghini, M; Rappuoli, R; Dougan, G

    1995-02-28

    A nontoxic mutant (LTK7) of the Escherichia coli heat-labile enterotoxin (LT) lacking ADP-ribosylating activity but retaining holotoxin formation was constructed. By using site-directed mutagenesis, the arginine at position 7 of the A subunit was replaced with lysine. This molecule, which was nontoxic in several assays, was able to bind to eukaryotic cells and acted as a mucosal adjuvant for co-administered proteins; BALB/c mice immunized intranasally with LTK7 and ovalbumin developed high levels of serum and local antibodies to ovalbumin and toxin. In addition, mice immunized intranasally with fragment C of tetanus toxin and LTK7 were protected against lethal challenge with tetanus toxin. Thus nontoxic mutants of heat-labile toxin can act as effective intranasal mucosal adjuvants. PMID:7878032

  5. Dissolved organic carbon lability increases with water residence time in the alluvial aquifer of a river floodplain ecosystem

    NASA Astrophysics Data System (ADS)

    Helton, Ashley M.; Wright, Meredith S.; Bernhardt, Emily S.; Poole, Geoffrey C.; Cory, Rose M.; Stanford, Jack A.

    2015-04-01

    We assessed spatial and temporal patterns of dissolved organic carbon (DOC) lability and composition throughout the alluvial aquifer of the 16 km2 Nyack Floodplain in northwest Montana, USA. Water influx to the aquifer derives almost exclusively from the Middle Fork of the Flathead River, and water residence times within the aquifer range from days to months. Across seasons and channel discharge conditions, we measured DOC concentration, lability, and optical properties of aquifer water sampled from 12 wells, both near and ~3 m below the water table. Concentrations of DOC were typically low (542 ± 22.7 µg L-1; mean ± se), and the percentage of labile DOC averaged 18 ± 12% during 3 day laboratory assays. Parallel factor analysis of fluorescence excitation-emission matrices revealed two humic-like and two amino acid-like fluorescence groups. Total DOC, humic-like components, and specific UV absorbance decreased with water residence time, consistent with sorption to aquifer sediments. However, labile DOC (both concentration and fraction) increased with water residence time, suggesting a concurrent influx or production of labile DOC. Thus, although the carbon-poor, oxygen-rich aquifer is a net sink for DOC, recalcitrant DOC appears to be replaced with more labile DOC along aquifer flow paths. Our observation of DOC production in long flow paths contrasts with studies of hyporheic DOC consumption along short (centimeters to meters) flow paths and highlights the importance of understanding the role of labile organic matter production and/or influx in alluvial aquifer carbon cycling.

  6. Prolonged Exposure of Primary Human Muscle Cells to Plasma Fatty Acids Associated with Obese Phenotype Induces Persistent Suppression of Muscle Mitochondrial ATP Synthase β Subunit.

    PubMed

    Tran, Lee; Hanavan, Paul D; Campbell, Latoya E; De Filippis, Elena; Lake, Douglas F; Coletta, Dawn K; Roust, Lori R; Mandarino, Lawrence J; Carroll, Chad C; Katsanos, Christos S

    2016-01-01

    Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = - 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish

  7. Prolonged Exposure of Primary Human Muscle Cells to Plasma Fatty Acids Associated with Obese Phenotype Induces Persistent Suppression of Muscle Mitochondrial ATP Synthase β Subunit

    PubMed Central

    Tran, Lee; Hanavan, Paul D.; Campbell, Latoya E.; De Filippis, Elena; Lake, Douglas F.; Coletta, Dawn K.; Roust, Lori R.; Mandarino, Lawrence J.; Carroll, Chad C.; Katsanos, Christos S.

    2016-01-01

    Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = – 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish

  8. Cystic fibrosis, atopy, and airways lability.

    PubMed Central

    Silverman, M; Hobbs, F D; Gordon, I R; Carswell, F

    1978-01-01

    In a survey of cystic fibrosis (CF) in the Avon area, 48 children with CF from 40 families together with 71 of their parents were studied by spirometry, exercise tests, and pinch tests. A control group of 42 young adults was similarly tested; control data for children were taken from previously published work. The prevalence of atopy (any positive prick test) in children with CF was 48%. Sensitivity to grass pollens and house dust mite was no more common in these children (29%) than in a normal population (34%). Hypersensitivity to Aspergillus fumigatus was found in 35% of children with CF and was associated with severe lung disease. The parents had a normal pattern and prevalence of atopy. Exercise-induced airways obstruction was present in only 22% of children with CF; its association with severe lung disease rendered interpretation difficult. The parents had a normal response to exercise. Both hypersensitivity to A. fumigatus and exercise-induced airways lability had the features of acquired characteristics. There was nothing in the present study to support the hypothesis that the possession of a CF gene predisposed to atopy. PMID:365112

  9. The expression profile of acid-sensing ion channel (ASIC) subunits ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3 in the esophageal vagal afferent nerve subtypes

    PubMed Central

    Dusenkova, Svetlana; Ru, Fei; Surdenikova, Lenka; Nassenstein, Christina; Hatok, Jozef; Dusenka, Robert; Banovcin, Peter; Kliment, Jan; Tatar, Milos

    2014-01-01

    Acid-sensing ion channels (ASICs) have been implicated in esophageal acid sensing and mechanotransduction. However, insufficient knowledge of ASIC subunit expression profile in esophageal afferent nerves hampers the understanding of their role. This knowledge is essential because ASIC subunits form heteromultimeric channels with distinct functional properties. We hypothesized that the esophageal putative nociceptive C-fiber nerves (transient receptor potential vanilloid 1, TRPV1-positive) express multiple ASIC subunits and that the ASIC expression profile differs between the nodose TRPV1-positive subtype developmentally derived from placodes and the jugular TRPV1-positive subtype derived from neural crest. We performed single cell RT-PCR on the vagal afferent neurons retrogradely labeled from the esophagus. In the guinea pig, nearly all (90%–95%) nodose and jugular esophageal TRPV1-positive neurons expressed ASICs, most often in a combination (65–75%). ASIC1, ASIC2, and ASIC3 were expressed in 65–75%, 55–70%, and 70%, respectively, of both nodose and jugular TRPV1-positive neurons. The ASIC1 splice variants ASIC1a and ASIC1b and the ASIC2 splice variant ASIC2b were similarly expressed in both nodose and jugular TRPV1-positive neurons. However, ASIC2a was found exclusively in the nodose neurons. In contrast to guinea pig, ASIC3 was almost absent from the mouse vagal esophageal TRPV1-positive neurons. However, ASIC3 was similarly expressed in the nonnociceptive TRPV1-negative (tension mechanoreceptors) neurons in both species. We conclude that the majority of esophageal vagal nociceptive neurons express multiple ASIC subunits. The placode-derived nodose neurons selectively express ASIC2a, known to substantially reduce acid sensitivity of ASIC heteromultimers. ASIC3 is expressed in the guinea pig but not in the mouse vagal esophageal TRPV1-positive neurons, indicating species differences in ASIC expression. PMID:25190475

  10. Structure-function relationships in the Na,K-ATPase. cap alpha. subunit: site-directed mutagenesis of glutamine-111 to arginine and asparagine-122 to aspartic acid generates a ouabain-resistant enzyme

    SciTech Connect

    Price, E.M.; Lingrel, J.B.

    1988-11-01

    Na,K-ATPases from various species differ greatly in their sensitivity to cardiac glycosides such as ouabain. The sheep and human enzymes are a thousand times more sensitive than the corresponding ones from rat and mouse. To define the region of the ..cap alpha..1 subunit responsible for this differential sensitivity, chimeric cDNAs of sheep and rat were constructed and expressed in ouabain-sensitive HeLa cells. The construct containing the amino-terminal half of the rat ..cap alpha..1 subunit coding region and carboxyl-terminal half of the sheep conferred the ouabain-resistant phenotype to HeLa cells while the reverse construct did not. This indicates that the determinants involved in ouabain sensitivity are located in the amino-terminal half of the Na,K-ATPase ..cap alpha.. subunit. By use of site-directed mutagenesis, the amino acid sequence of the first extracellular domain (H1-H2) of the sheep ..cap alpha..1 subunit was changed to that of the rat. When expressed in HeLa cells, this mutated sheep ..cap alpha..1 construct, like the rat/sheep chimera, was able to confer ouabain resistance to these cells. Furthermore, similar results were observed when HeLa cells were transfected with a sheep ..cap alpha..1 cDNA containing only two amino acid substitutions. The resistant cells, whether transfected with the rat ..cap alpha..1 cDNA, the rat/sheep chimera, or the mutant sheep ..cap alpha..1 cDNAs, exhibited identical biochemical characteristics including ouabain-inhibitable cell growth, /sup 86/Rb/sup +/ uptake, and Na,K-ATPase activity. These results demonstrate that the presence of arginine and aspartic acid on the amino end and carboxyl end, respectively, of the H1-H2 extracellular domain of the Na,K-ATPase ..cap alpha.. subunit together is responsible for the ouabain-resistant character of the rat enzyme and the corresponding residues in the sheep ..cap alpha..1 subunit (glutamine and asparagine) are somehow involved in ouabain binding.

  11. γ-Aminobutyric Acid Type A (GABAA) Receptor Subunits Play a Direct Structural Role in Synaptic Contact Formation via Their N-terminal Extracellular Domains.

    PubMed

    Brown, Laura E; Nicholson, Martin W; Arama, Jessica E; Mercer, Audrey; Thomson, Alex M; Jovanovic, Jasmina N

    2016-07-01

    The establishment of cell-cell contacts between presynaptic GABAergic neurons and their postsynaptic targets initiates the process of GABAergic synapse formation. GABAA receptors (GABAARs), the main postsynaptic receptors for GABA, have been recently demonstrated to act as synaptogenic proteins that can single-handedly induce the formation and functional maturation of inhibitory synapses. To establish how the subunit composition of GABAARs influences their ability to induce synaptogenesis, a co-culture model system incorporating GABAergic medium spiny neurons and the HEK293 cells, stably expressing different combinations of receptor subunits, was developed. Analyses of HEK293 cell innervation by medium spiny neuron axons using immunocytochemistry, activity-dependent labeling, and electrophysiology have indicated that the γ2 subunit is required for the formation of active synapses and that its effects are influenced by the type of α/β subunits incorporated into the functional receptor. To further characterize this process, the large N-terminal extracellular domains (ECDs) of α1, α2, β2, and γ2 subunits were purified using the baculovirus/Sf9 cell system. When these proteins were applied to the co-cultures of MSNs and α1/β2/γ2-expressing HEK293 cells, the α1, β2, or γ2 ECD each caused a significant reduction in contact formation, in contrast to the α2 ECD, which had no effect. Together, our experiments indicate that the structural role of GABAARs in synaptic contact formation is determined by their subunit composition, with the N-terminal ECDs of each of the subunits directly participating in interactions between the presynaptic and postsynaptic elements, suggesting the these interactions are multivalent and specific. PMID:27129275

  12. γ-Aminobutyric Acid Type A (GABAA) Receptor Subunits Play a Direct Structural Role in Synaptic Contact Formation via Their N-terminal Extracellular Domains*

    PubMed Central

    Brown, Laura E.; Nicholson, Martin W.; Arama, Jessica E.; Thomson, Alex M.

    2016-01-01

    The establishment of cell-cell contacts between presynaptic GABAergic neurons and their postsynaptic targets initiates the process of GABAergic synapse formation. GABAA receptors (GABAARs), the main postsynaptic receptors for GABA, have been recently demonstrated to act as synaptogenic proteins that can single-handedly induce the formation and functional maturation of inhibitory synapses. To establish how the subunit composition of GABAARs influences their ability to induce synaptogenesis, a co-culture model system incorporating GABAergic medium spiny neurons and the HEK293 cells, stably expressing different combinations of receptor subunits, was developed. Analyses of HEK293 cell innervation by medium spiny neuron axons using immunocytochemistry, activity-dependent labeling, and electrophysiology have indicated that the γ2 subunit is required for the formation of active synapses and that its effects are influenced by the type of α/β subunits incorporated into the functional receptor. To further characterize this process, the large N-terminal extracellular domains (ECDs) of α1, α2, β2, and γ2 subunits were purified using the baculovirus/Sf9 cell system. When these proteins were applied to the co-cultures of MSNs and α1/β2/γ2-expressing HEK293 cells, the α1, β2, or γ2 ECD each caused a significant reduction in contact formation, in contrast to the α2 ECD, which had no effect. Together, our experiments indicate that the structural role of GABAARs in synaptic contact formation is determined by their subunit composition, with the N-terminal ECDs of each of the subunits directly participating in interactions between the presynaptic and postsynaptic elements, suggesting the these interactions are multivalent and specific. PMID:27129275

  13. Cistrons encoding Escherichia coli heat-labile toxin.

    PubMed Central

    Dallas, W S; Gill, D M; Falkow, S

    1979-01-01

    The structure and products of the two cistrons encoding the Escherichia coli heat-labile toxin (LT) were studied. The LT deoxyribonucleic acid (DNA) region had been isolated as part of a DNA fragment from the plasmid P307, and this fragment was joined to the cloning vector pBR313. Deletion mutations of various lengths were introduced into the LT DNA region and into the adjacent DNA sequences. Analysis of the deletions indicated that the maximum size of the LT DNA region was 1.2 x 10(6) daltons. Two proteins of 11,500 daltons and 25,500 daltons had been shown to be encoded by the LT DNA region. The functions of these LT gene products were investigated. The 11,500-dalton protein had an adsorption activity for Y-1 adrenal cells, and this protein was shown to form aggregates of four or five monomers. The 25,500-dalton protein was shown to have an adenylate cyclase-activating activity. The two cistrons encoding for each of the LT proteins have been located on a genetic map of the LT DNA region. Both cistrons are probably transcribed from the same promoter. Images PMID:383697

  14. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin.

    PubMed Central

    Spangler, B D

    1992-01-01

    Cholera and the related Escherichia coli-associated diarrheal disease are important problems confronting Third World nations and any area where water supplies can become contaminated. The disease is extremely debilitating and may be fatal in the absence of treatment. Symptoms are caused by the action of cholera toxin, secreted by the bacterium Vibrio cholerae, or by a closely related heat-labile enterotoxin, produced by Escherichia coli, that causes a milder, more common traveler's diarrhea. Both toxins bind receptors in intestinal epithelial cells and insert an enzymatic subunit that modifies a G protein associated with the adenylate cyclase complex. The consequent stimulated production of cyclic AMP, or other factors such as increased synthesis of prostaglandins by intoxicated cells, initiates a metabolic cascade that results in the excessive secretion of fluid and electrolytes characteristic of the disease. The toxins have a very high degree of structural and functional homology and may be evolutionarily related. Several effective new vaccine formulations have been developed and tested, and a growing family of endogenous cofactors is being discovered in eukaryotic cells. The recent elucidation of the three-dimensional structure of the heat-labile enterotoxin has provided an opportunity to examine and compare the correlations between structure and function of the two toxins. This information may improve our understanding of the disease process itself, as well as illuminate the role of the toxin in studies of signal transduction and G-protein function. Images PMID:1480112

  15. Adjuvant effect of non-toxic mutants of E. coli heat-labile enterotoxin following intranasal, oral and intravaginal immunization.

    PubMed

    De Magistris, M T; Pizza, M; Douce, G; Ghiara, P; Dougan, G; Rappuoli, R

    1998-01-01

    Cholera toxin and Escherichia coli heat-labile enterotoxin (LT) are known to be very effective mucosal adjuvants, but their toxicity limits their use in humans. We genetically detoxified LT by substituting single residues in the active site of the enzymatic A subunit and obtained mutant molecules that retain mucosal adjuvant activity but are devoid of toxicity. These mutant LT molecules induce mucosal and systemic responses to antigens delivered intranasally, orally and intravaginally in mice. Furthermore, mucosal immunization with these molecules confers protection against systemic challenge with tetanus toxin (TT) and mucosal challenge with Helicobacter pylori. PMID:9554265

  16. Carbohydrate-to-carbohydrate interactions between α2,3-linked sialic acids on α2 integrin subunits and asialo-GM1 underlie the bone metastatic behaviour of LNCAP-derivative C4-2B prostate cancer cells

    PubMed Central

    Van Slambrouck, Séverine; Groux-Degroote, Sophie; Krzewinski-Recchi, Marie-Ange; Cazet, Aurélie; Delannoy, Philippe; Steelant, Wim F. A.

    2014-01-01

    Complex interplays among proteins, lipids and carbohydrates can alter the phenotype and are suggested to have a crucial role in tumour metastasis. Our previous studies indicated that a complex of the GSLs (glycosphingolipids), AsGM1 (asialo-GM1), which lacks α2,3-linked sialic acid, and α2β1 integrin receptors is responsible for the metastatic behaviour of C4-2B prostate cancer cells. Herein, we identified and addressed the functional significance of changes in sialylation during prostate cancer progression. We observed an increase in α2,3-linked sialic acid residues on α2 subunits of α2β1 integrin receptors, correlating with increased gene expression of α2,3-STs (sialyltransferases), particularly ST3GAL3. Cell surface α2,3-sialylation of α2 subunits was required for the integrin α2β1-dependent cell adhesion to collagen type I and the same α2,3-linked sialic acid residues on the integrin receptor were responsible for the interaction with the carbohydrate moiety of AsGM1, explaining the complex formation between AsGM1 and α2β1 integrin receptors. These results provide novel insights into the role of sialic acids in the organization and function of important membrane components in invasion and metastatic processes. PMID:25137483

  17. Amino Acid Substitutions in the Caenorhabditis elegans RNA Polymerase II Large Subunit AMA-1/RPB-1 that Result in α-Amanitin Resistance and/or Reduced Function.

    PubMed

    Bowman, Elizabeth Anne; Riddle, Donald L; Kelly, William

    2011-11-01

    Mutations in the Caenorhabditis elegans RNA polymerase II AMA-1/RPB-1 subunit that cause α-amanitin resistance and/or developmental defects were isolated previously. We identified 12 of these mutations and mapped them onto the Saccharomyces cerevisiae RPB1 structure to provide insight into AMA-1 regions that are essential for development in a multicellular organism. PMID:22384351

  18. Emotional lability and affective synchrony in borderline personality disorder.

    PubMed

    Schoenleber, Michelle; Berghoff, Christopher R; Tull, Matthew T; DiLillo, David; Messman-Moore, Terri; Gratz, Kim L

    2016-07-01

    Extant research on emotional lability in borderline personality disorder (BPD) has focused almost exclusively on lability of individual emotions or emotion types, with limited research considering how different types of emotions shift together over time. Thus, this study examined the temporal dynamics of emotion in BPD at the level of both individual emotions (i.e., self-conscious emotions [SCE], anger, and anxiety) and mixed emotions (i.e., synchrony between emotions). One hundred forty-four women from the community completed a diagnostic interview and laboratory study involving 5 emotion induction tasks (each of which was preceded and followed by a 5-min resting period or neutral task). State ratings of SCE, anger, and anxiety were provided at 14 time points (before and after each laboratory task and resting period). Hierarchical linear modeling results indicate that women with BPD reported greater mean levels of SCE and Anxiety (but not Anger), and greater lability of Anxiety. Women with BPD also exhibited greater variability in lability of all 3 emotions (suggestive of within-group differences in the relevance of lability to BPD). Results also revealed synchrony (i.e., positive relations) between each possible pair of emotions, regardless of BPD status. Follow-up regression analyses suggest the importance of accounting for lability when examining the role of synchrony in BPD, as the relation of SCE-Anger synchrony to BPD symptom severity was moderated by Anger and SCE lability. Specifically, synchronous changes in SCE and Anger were associated with greater BPD symptom severity when large shifts in SCE were paired with minor shifts in Anger. (PsycINFO Database Record PMID:27362623

  19. The bacterial signal transduction protein GlnB regulates the committed step in fatty acid biosynthesis by acting as a dissociable regulatory subunit of acetyl-CoA carboxylase.

    PubMed

    Gerhardt, Edileusa C M; Rodrigues, Thiago E; Müller-Santos, Marcelo; Pedrosa, Fabio O; Souza, Emanuel M; Forchhammer, Karl; Huergo, Luciano F

    2015-03-01

    Biosynthesis of fatty acids is one of the most fundamental biochemical pathways in nature. In bacteria and plant chloroplasts, the committed and rate-limiting step in fatty acid biosynthesis is catalyzed by a multi-subunit form of the acetyl-CoA carboxylase enzyme (ACC). This enzyme carboxylates acetyl-CoA to produce malonyl-CoA, which in turn acts as the building block for fatty acid elongation. In Escherichia coli, ACC is comprised of three functional modules: the biotin carboxylase (BC), the biotin carboxyl carrier protein (BCCP) and the carboxyl transferase (CT). Previous data showed that both bacterial and plant BCCP interact with signal transduction proteins belonging to the PII family. Here we show that the GlnB paralogues of the PII proteins from E. coli and Azospirillum brasiliense, but not the GlnK paralogues, can specifically form a ternary complex with the BC-BCCP components of ACC. This interaction results in ACC inhibition by decreasing the enzyme turnover number. Both the BC-BCCP-GlnB interaction and ACC inhibition were relieved by 2-oxoglutarate and by GlnB uridylylation. We propose that the GlnB protein acts as a 2-oxoglutarate-sensitive dissociable regulatory subunit of ACC in Bacteria. PMID:25557370

  20. Mutations affecting two adjacent amino acid residues in the alpha subunit of RNA polymerase block transcriptional activation by the bacteriophage P2 Ogr protein.

    PubMed Central

    Ayers, D J; Sunshine, M G; Six, E W; Christie, G E

    1994-01-01

    The bacteriophage P2 ogr gene product is a positive regulator of transcription from P2 late promoters. The ogr gene was originally defined by compensatory mutations that overcame the block to P2 growth imposed by a host mutation, rpoA109, in the gene encoding the alpha subunit of RNA polymerase. DNA sequence analysis has confirmed that this mutation affects the C-terminal region of the alpha subunit, changing a leucine residue at position 290 to a histidine (rpoAL290H). We have employed a reporter plasmid system to screen other, previously described, rpoA mutants for effects on activation of a P2 late promoter and have identified a second allele, rpoA155, that blocks P2 late transcription. This mutation lies just upstream of rpoAL290H, changing the leucine residue at position 289 to a phenylalanine (rpoAL289F). The effect of the rpoAL289F mutation is not suppressed by the rpoAL290H-compensatory P2 ogr mutation. P2 ogr mutants that overcome the block imposed by rpoAL289F were isolated and characterized. Our results are consistent with a direct interaction between Ogr and the alpha subunit of RNA polymerase and support a model in which transcription factor contact sites within the C terminus of alpha are discrete and tightly clustered. PMID:8002564

  1. Mutants of the Escherichia coli heat-labile enterotoxin as safe and strong adjuvants for intranasal delivery of vaccines.

    PubMed

    Peppoloni, Samuele; Ruggiero, Paolo; Contorni, Mario; Morandi, Maurizio; Pizza, Mariagrazia; Rappuoli, Rino; Podda, Audino; Del Giudice, Giuseppe

    2003-04-01

    Cholera toxin and Escherichia coli heat-labile enterotoxin are powerful mucosal adjuvants but their high toxicity hampers their use in humans. Site-directed mutagenesis has allowed the generation of several cholera toxin and E. coli heat-labile enterotoxin mutants with abolished or strongly reduced toxicity that still retain strong mucosal adjuvanticity. Among them, LTK63 (Ser to Lys substitution at position 63 in the A subunit) is completely nontoxic and LTR72 (Ala to Arg at position 72) retains a very low residual enzymatic activity. Both of them have been shown to be safe and effective in enhancing the immunogenicity of intranasally coadministered vaccines, also resulting in protective responses in several animal models. Clinical grade preparations of these mutants have now been produced, tested in animals and proven to be totally safe. Indeed, they did not induce any inflammatory event in the respiratory tract nor, more importantly, in the olfactory bulbs and in the meninges. The fully nontoxic LTK63 mutant has now been successfully tested in human volunteers with a trivalent subunit influenza vaccine. PMID:12899578

  2. Instability of toxin A subunit of AB5 toxins in the bacterial periplasm caused by deficiency of their cognate B subunits

    PubMed Central

    Kim, Sang-Hyun; Ryu, Su Hyang; Lee, Sang-Ho; Lee, Yong-Hoon; Lee, Sang-Rae; Huh, Jae-Won; Kim, Sun-Uk; Kim, Ekyune; Kim, Sunghyun; Jon, Sangyong; Bishop, Russell E.; Chang, Kyu-Tae

    2016-01-01

    Shiga toxin (STx) belongs to the AB5 toxin family and is transiently localized in the periplasm before secretion into the extracellular milieu. While producing outer membrane vesicles (OMVs) containing only A subunit of the toxin (STxA), we created specific STx1B- and STx2B-deficient mutants of E. coli O157:H7. Surprisingly, STxA subunit was absent in the OMVs and periplasm of the STxB-deficient mutants. In parallel, the A subunit of heat-labile toxin (LT) of enterotoxigenic E. coli (ETEC) was absent in the periplasm of the LT-B-deficient mutant, suggesting that instability of toxin A subunit in the absence of the B subunit is a common phenomenon in the AB5 bacterial toxins. Moreover, STx2A was barely detectable in the periplasm of E. coli JM109 when stx2A was overexpressed alone, while it was stably present when stxB was co-expressed. Compared with STx2 holotoxin, purified STx2A was degraded rapidly by periplasmic proteases when assessed for in vitro proteolytic susceptibility, suggesting that the B subunit contributes to stability of the toxin A subunit in the periplasm. We propose a novel role for toxin B subunits of AB5 toxins in protection of the A subunit from proteolysis during holotoxin assembly in the periplasm. PMID:21762677

  3. Amino Acid Residues 489–503 of Dihydropyridine Receptor (DHPR) β1a Subunit Are Critical for Structural Communication between the Skeletal Muscle DHPR Complex and Type 1 Ryanodine Receptor*

    PubMed Central

    Eltit, Jose M.; Franzini-Armstrong, Clara; Perez, Claudio F.

    2014-01-01

    The β1a subunit is a cytoplasmic component of the dihydropyridine receptor (DHPR) complex that plays an essential role in skeletal muscle excitation-contraction (EC) coupling. Here we investigate the role of the C-terminal end of this auxiliary subunit in the functional and structural communication between the DHPR and the Ca2+ release channel (RyR1). Progressive truncation of the β1a C terminus showed that deletion of amino acid residues Gln489 to Trp503 resulted in a loss of depolarization-induced Ca2+ release, a severe reduction of L-type Ca2+ currents, and a lack of tetrad formation as evaluated by freeze-fracture analysis. However, deletion of this domain did not affect expression/targeting or density (Qmax) of the DHPR-α1S subunit to the plasma membrane. Within this motif, triple alanine substitution of residues Leu496, Leu500, and Trp503, which are thought to mediate direct β1a-RyR1 interactions, weakened EC coupling but did not replicate the truncated phenotype. Therefore, these data demonstrate that an amino acid segment encompassing sequence 489QVQVLTSLRRNLSFW503 of β1a contains critical determinant(s) for the physical link of DHPR and RyR1, further confirming a direct correspondence between DHPR positioning and DHPR/RyR functional interactions. In addition, our data strongly suggest that the motif Leu496-Leu500-Trp503 within the β1a C-terminal tail plays a nonessential role in the bidirectional DHPR/RyR1 signaling that supports skeletal-type EC coupling. PMID:25384984

  4. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-08-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle. For our understanding of the kinetics of organic matter cycling in the ocean, it is crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids and transparent exopolymer particles (TEP) for 2 years. The molecular characterization of extracted DOM was performed by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) after 70 days and after ∼2 years of incubation. Although glucose quickly degraded, a non-labile DOC background (5-9% of the initial DOC) was generated in the glucose incubations. Only 20% of the organic carbon from the algal exudate degraded within the 2 years of incubation. The degradation rates for the non-labile DOC background in the different treatments varied between 1 and 11 μmol DOC L-1 year-1. Transparent exopolymer particles, which are released by microorganisms, were produced during glucose degradation but decreased back to half of the maximum concentration within less than 3 weeks (degradation rate: 25 μg xanthan gum equivalents L-1 d-1) and were below detection in all treatments after 2 years. Additional glucose was added after 2 years to test whether labile substrate can promote the degradation of background DOC (co-metabolism; priming effect). A priming effect was not observed but the glucose addition led to a slight increase of background DOC. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM transformed during the degradation of the algal exudates. Our

  5. Heterotrophic activity and biodegradation of labile and refractory compounds by groundwater and stream microbial populations.

    PubMed Central

    Ladd, T I; Ventullo, R M; Wallis, P M; Costerton, J W

    1982-01-01

    The bacteriology and heterotrophic activity of a stream and of nearby groundwater in Marmot Basin, Alberta, Canada, were studied. Acridine orange direct counts indicated that bacterial populations in the groundwater were greater than in the stream. Bacteria that were isolated from the groundwater were similar to species associated with soils. Utilization of labile dissolved organic material as measured by the heterotrophic potential technique with glutamic acid, phenylalanine, and glycolic acid as substrates was generally greater in the groundwater. In addition, specific activity indices for the populations suggested greater metabolic activity per bacterium in the groundwater. 14C-labeled lignocellulose, preferentially labeled in the lignin fraction by feeding Picea engelmannii [14C]phenylalanine, was mineralized by microorganisms in both the groundwater and the stream, but no more than 4% of the added radioactivity was lost as 14CO2 within 960 h. Up to 20% of [3'-14C]cinnamic acid was mineralized by microorganisms in both environments within 500 h. Both microbial populations appear to influence the levels of labile and recalcitrant dissolved organic material in mountain streams. PMID:7125651

  6. Using Stimulants to Treat ADHD-Related Emotional Lability

    PubMed Central

    Posner, Jonathan; Kass, Erica; Hulvershorn, Leslie

    2014-01-01

    Emotional lability, or sudden strong shifts in emotion, commonly occurs in youth with attention-deficit/hyperactivity disorder. Although these symptoms are impairing and disruptive, relatively little research has addressed their treatment, likely due to the difficulty of reliable and valid assessment. Promising signals for symptom improvement have come from recent studies using stimulants in adults, children and adolescents. Similarly, neuroimaging studies have begun to identify neurobiological mechanisms underlying stimulants’ impact on emotion regulation capacities. Here, we review these recent clinical and neuroimaging findings, as well as neurocognitive models for emotional lability in ADHD, issues of relevance to prescribers and the important role of psychiatric comorbidity with treatment choices. PMID:25135778

  7. Labile trace elements in carbonaceous chondrites - A survey

    NASA Technical Reports Server (NTRS)

    Xiao, Xiaoyue; Lipschutz, Michael E.

    1992-01-01

    Data are presented on 14 trace elements, including Co, Au, Ga, Rb, Sb, Ag, Se, Cs, Te, Zn, Cd, Bi, Tl, and In (nearly all of which are moderately or highly labile in meteorites), obtained by radiochemical neutron activation analyses of 42 C2-C6 chondrites, all but three from Antarctica. The data indicate that carbonaceous chondrites of petrographic types 2-6 define compositional continua. It is suggested that carbonaceous C2-C6 chondrites may reflect a mixture of material that formed at low temperatures and that contained cosmic levels of highly labile elements, with material that was devoid of them.

  8. Mapping the domain structure of the influenza A virus polymerase acidic protein (PA) and its interaction with the basic protein 1 (PB1) subunit

    SciTech Connect

    Guu, Tom S.Y.; Dong Liping; Wittung-Stafshede, Pernilla; Tao, Yizhi J.

    2008-09-15

    The influenza A virus polymerase consists of three subunits (PA, PB1, and PB2) necessary for viral RNA synthesis. The heterotrimeric polymerase complex forms through PA interacting with PB1 and PB1 interacting with PB2. PA has been shown to play critical roles in the assembly, catalysis, and nuclear localization of the polymerase. To probe the structure of PA, we isolated recombinant PA from insect cells. Limited proteolysis revealed that PA contained two domains connected by a 20-residue linker (residues 257-276). Far-UV circular dichroism established that the two domains folded into a mixed {alpha}/{beta} structure when separately expressed. In vitro pull-down assays showed that neither individually nor cooperatively expressed PA domains, without the linker, could assure PA-PB1 interaction. Protease treatment of PA-PB1 complex indicated that its PA subunit was significantly more stable than free PA, suggesting that the linker is protected and it constitutes an essential component of the PA-PB1 interface.

  9. International Union of Pharmacology. LXX. Subtypes of γ-Aminobutyric AcidA Receptors: Classification on the Basis of Subunit Composition, Pharmacology, and Function. Update

    PubMed Central

    Olsen, Richard W.; Sieghart, Werner

    2010-01-01

    In this review we attempt to summarize experimental evidence on the existence of defined native GABAA receptor subtypes and to produce a list of receptors that actually seem to exist according to current knowledge. This will serve to update the most recent classification of GABAA receptors (Pharmacol Rev 50:291–313, 1998) approved by the Nomenclature Committee of the International Union of Pharmacology. GABAA receptors are chloride channels that mediate the major form of fast inhibitory neurotransmission in the central nervous system. They are members of the Cys-loop pentameric ligand-gated ion channel (LGIC) superfamily and share structural and functional homology with other members of that family. GABAA receptors are assembled from a family of 19 homologous subunit gene products and form numerous, mostly hetero-oligomeric, pentamers. Such receptor subtypes with properties that depend on subunit composition vary in topography and ontogeny, in cellular and subcellular localization, in their role in brain circuits and behaviors, in their mechanisms of regulation, and in their pharmacology. We propose several criteria, which can be applied to all the members of the LGIC superfamily, for including a receptor subtype on a list of native hetero-oligomeric subtypes. With these criteria, we develop a working GABAA receptor list, which currently includes 26 members, but will undoubtedly be modified and grow as information expands. The list is divided into three categories of native receptor subtypes: “identified,” “existence with high probability,” and “tentative.” PMID:18790874

  10. Neuropsychological Correlates of Emotional Lability in Children with ADHD

    ERIC Educational Resources Information Center

    Banaschewski, Tobias; Jennen-Steinmetz, Christine; Brandeis, Daniel; Buitelaar, Jan K.; Kuntsi, Jonna; Poustka, Luise; Sergeant, Joseph A.; Sonuga-Barke, Edmund J.; Frazier-Wood, Alexis C.; Albrecht, Bjorn; Chen, Wai; Uebel, Henrik; Schlotz, Wolff; van der Meere, Jaap J.; Gill, Michael; Manor, Iris; Miranda, Ana; Mulas, Fernando; Oades, Robert D.; Roeyers, Herbert; Rothenberger, Aribert; Steinhausen, Hans-Christoph; Faraone, Stephen V.; Asherson, Philip

    2012-01-01

    Background: Emotional lability (EL) is commonly seen in patients with attention-deficit/hyperactivity disorder (ADHD). The reasons for this association remain currently unknown. To address this question, we examined the relationship between ADHD and EL symptoms, and performance on a range of neuropsychological tasks to clarify whether EL symptoms…

  11. Activation of the NLRP3 inflammasome by cellular labile iron.

    PubMed

    Nakamura, Kyohei; Kawakami, Toru; Yamamoto, Naoki; Tomizawa, Miyu; Fujiwara, Tohru; Ishii, Tomonori; Harigae, Hideo; Ogasawara, Kouetsu

    2016-02-01

    Cellular labile iron, which contains chelatable redox-active Fe(2+), has been implicated in iron-mediated cellular toxicity leading to multiple organ dysfunction. Iron homeostasis is controlled by monocytes/macrophages through their iron recycling and storage capacities. Furthermore, iron sequestration by monocytes/macrophages is regulated by pro-inflammatory cytokines including interleukin-1, highlighting the importance of these cells in the crosstalk between inflammation and iron homeostasis. However, a role for cellular labile iron in monocyte/macrophage-mediated inflammatory responses has not been defined. Here we describe how cellular labile iron activates the NLRP3 inflammasome in human monocytes. Stimulation of lipopolysaccharide-primed peripheral blood mononuclear cells with ferric ammonium citrate increases the level of cellular Fe(2+) levels in monocytes and induces production of interleukin-1β in a dose-dependent manner. This ferric ammonium citrate-induced interleukin-1β production is dependent on caspase-1 and is significantly inhibited by an Fe(2+)-specific chelator. Ferric ammonium citrate consistently induced interleukin-1β secretion in THP1 cells, but not in NLRP3-deficient THP1 cells, indicating a requirement for the NLRP3 inflammasome. Additionally, activation of the inflammasome is mediated by potassium efflux, reactive oxygen species-mediated mitochondrial dysfunction, and lysosomal membrane permeabilization. Thus, these results suggest that monocytes/macrophages not only sequestrate iron during inflammation, but also mediate inflammation in response to cellular labile iron, which provides novel insights into the role of iron in chronic inflammation. PMID:26577567

  12. How to Compute Labile Metal-Ligand Equilibria

    ERIC Educational Resources Information Center

    de Levie, Robert

    2007-01-01

    The different methods used for computing labile metal-ligand complexes, which are suitable for an iterative computer solution, are illustrated. The ligand function has allowed students to relegate otherwise tedious iterations to a computer, while retaining complete control over what is calculated.

  13. Memory expression is independent of memory labilization/reconsolidation.

    PubMed

    Barreiro, Karina A; Suárez, Luis D; Lynch, Victoria M; Molina, Víctor A; Delorenzi, Alejandro

    2013-11-01

    There is growing evidence that certain reactivation conditions restrict the onset of both the destabilization phase and the restabilization process or reconsolidation. However, it is not yet clear how changes in memory expression during the retrieval experience can influence the emergence of the labilization/reconsolidation process. To address this issue, we used the context-signal memory model of Chasmagnathus. In this paradigm a short reminder that does not include reinforcement allows us to evaluate memory labilization and reconsolidation, whereas a short but reinforced reminder restricts the onset of such a process. The current study investigated the effects of the glutamate antagonists, APV (0.6 or 1.5 μg/g) and CNQX (1 μg/g), prior to the reminder session on both behavioral expression and the reconsolidation process. Under conditions where the reminder does not initiate the labilization/reconsolidation process, APV prevented memory expression without affecting long-term memory retention. In contrast, APV induced amnesic effects in the long-term when administered before a reminder session that triggers reconsolidation. Under the present parametric conditions, the administration of CNQX prior to the reminder that allows memory to enter reconsolidation impairs this process without disrupting memory expression. Overall, the present findings suggest that memory reactivation--but not memory expression--is necessary for labilization and reconsolidation. Retrieval and memory expression therefore appear not to be interchangeable concepts. PMID:24149057

  14. Application of a chemical leach technique for estimating labile particulate aluminum, iron, and manganese in the Columbia River plume and coastal waters off Oregon and Washington

    NASA Astrophysics Data System (ADS)

    Berger, Carolyn J. M.; Lippiatt, Sherry M.; Lawrence, Michael G.; Bruland, Kenneth W.

    2008-02-01

    In order to determine the total concentration of bioavailable trace metals in seawater, measurement of both the dissolved and labile particulate fractions is necessary. Comparison of labile particulate metal concentrations from various researchers is limited because of differing definitions of the fraction that is potentially available to phytoplankton on a time frame of generations. A comparison experiment was conducted on coastal and riverine suspended particulate matter to determine the difference between several commonly used techniques that operationally define the labile particulate trace metal fraction. Furthermore, we compared two leach techniques for surface transect samples from within the Columbia River plume and water offshore of Oregon and Washington, United States. The particulate trace metal concentration in the leachate was determined by high-resolution inductively coupled plasma-mass spectrometry. From this comparison, one chemical leach was chosen to best define the labile particulate fraction of Al, Fe, and Mn: a weak acid leach (25% acetic acid at pH 2) with a mild reducing agent (0.02 M hydroxylamine hydrochloride) and a short heating step (10 min 90-95°C). This leach was applied to three surface transects within the Columbia River plume. These coastal waters were found to be rich in labile particulate trace metals that are directly delivered from the Columbia River and indirectly supplied via resuspension from upwelling over a broad continental shelf.

  15. Concordance between isolated cleft palate in mice and alterations within a region including the gene encoding the [beta][sub 3] subunit of the type A [gamma]-aminobutyric acid receptor

    SciTech Connect

    Culiat, C.T.; Stubbs, L.; Nicholls, R.D.; Montgomery, C.S.; Russell, L.B.; Johnson, D.K. ); Rinchik, E.M. Univ. of Florida, Gainesville )

    1993-06-01

    Genetic and molecular analyses of a number of radiation-induced deletion mutations of the pink-eyed dilution (p) locus in mouse chromosome 7 have identified a specific interval on the genetic map associated with a neonatally lethal mutation that results in cleft palate. This interval, closely linked and distal to p, and bracketed by the genes encoding the [alpha][sub 5] and [beta][sub 3] subunits of the type A [gamma]-aminobutyric acid receptor (Gabra5 and Gabrb3, respectively), contains a gene(s) (cp1; cleft palate 1) necessary for normal palate development. The cp1 interval extends from the distal breakpoint of the prenatally lethal p[sup 83FBFo] deletion to the Gabrb3 locus. Among 20 p deletions tested, there was complete concordance between alterations at the Gabrb3 transcription unit and inability to complement the cleft-palate defect. These mapping data, along with previously described in vivo and in vitro teratological effects of [gamma]-aminobutyric acid or its agonists on palate development, suggest the possibility that a particular type A [gamma]-aminobutyric acid receptor that includes the [beta][sub 3] subunit may be necessary for normal palate development. The placement of the cp1 gene within a defined segment of the larger D15S12h (p)-D15S9h-1 interval in the mouse suggests that the highly homologous region of the human genome, 15q11-q13, be evaluated for a role(s) in human fetal facial development. 29 refs., 4 figs., 1 tab.

  16. High-resolution mapping of the [gamma]-aminobutyric acid receptor subunit [beta]3 and [alpha]5 gene cluster on chromosome 15q11-q13, and localization of breakpoints in two Angelman syndrome patients

    SciTech Connect

    Sinnett, D.; Wagstaff, J.; Woolf, E. Harvard Medical School, Boston, MA ); Glatt, K. ); Kirkness, E.J. )Lalande, M. Harvard Medical School, Boston, MA Howard Hughes Medical Inst., Boston, MA )

    1993-06-01

    The [gamma]-aminobutyric acid (GABA[sub A]) receptors are a family of ligand-gated chloride channels constituting the major inhibitory neurotransmitter receptors in the nervous system. In order to determine the genomic organization of the GABA[sub A] receptor [beta]3 subunit gene (GABRB3) and [alpha]5 subunit gene (GABRA5) in chromosome 15q11-q13, the authors have constructed a high-resolution physical map using the combined techniques of field-inversion gel electrophoresis and phage genomic library screening. This map, which covers nearly 1.0 Mb, shows that GABRB3 and GABRA5 are separated by less than 100 kb and are arranged in a head-to-head configuration. GABRB3 encompasses approximately 250 kb, while GABRA5 is contained within 70 kb. This difference in size is due in large part to an intron of 150 kb within GABRB3. The authors have also identified seven putative CpG islands within a 600-kb interval. Chromosomal rearrangement breakpoints -- in one Angelman syndrome (AS) patient with an unbalanced translocation and in another patient with a submicroscopic deletion -- are located within the large GABRB3 intron. These findings will facilitate chromosomal walking strategies for cloning the regions disrupted by the DNA rearrangements in these AS patients and will be valuable for mapping new genes to the AS chromosomal region. 64 refs., 6 figs., 2 tabs.

  17. The asymmetric distribution of enzymic activity between the six subunits of bovine liver glutamate dehydrogenase. Use of D- and L-glutamyl alpha-chloromethyl ketones (4-amino-6-chloro-5-oxohexanoic acid.

    PubMed Central

    Rasool, C G; Nicolaidis, S; Akhtar, M

    1976-01-01

    A method for the preparation of D- and L-glutamyl alpha-chloromethyl ketones (4-amino-6-chloro-5-oxohexanoic acid) is described. These chloromethyl ketones irreversibly inactivated bovine glutamate dehydrogenase, whereas several other related compounds had no adverse effect on the activity of the enzyme. The inactivation process was shown to be due to the modification of lysine-126. The time-courses for the inactivation and the incorporation of radioactivity from tritiated L-glutamyl alpha-chloromethyl ketone into the glutamate dehydrogenase were biphasic. The results were interpreted to suggest the involvement of 'negative co-operative' interactions in the reactivity of lysine-126. From the cumulative evidence it is argued that the first subunit of the enzyme, which takes part in catalysis, makes the largest, and the last the smallest, contribution to the overall catalysis. It is emphasized that three of the six subunits of the enzyme may possess as much as 80% of the total activity of bovine glutamate dehydrogenase. PMID:10889

  18. Quantification of Labile Soil Mercury by Stable Isotope Dilution Techniques

    NASA Astrophysics Data System (ADS)

    Shetaya, Waleed; Huang, Jen-How; Osterwalder, Stefan; Alewell, Christine

    2016-04-01

    Mercury (Hg) is a toxic element that can cause severe health problems to humans. Mercury is emitted to the atmosphere from both natural and anthropogenic sources and can be transported over long distances before it is deposited to aquatic and terrestrial environments. Aside from accumulation in soil solid phases, Hg deposited in soils may migrate to surface- and ground-water or enter the food chain, depending on its lability. There are many operationally-defined extraction methods proposed to quantify soil labile metals. However, these methods are by definition prone to inaccuracies such as non-selectivity, underestimation or overestimation of the labile metal pool. The isotopic dilution technique (ID) is currently the most promising method for discrimination between labile and non-labile metal fractions in soil with a minimum disturbance to soil-solid phases. ID assesses the reactive metal pool in soil by defining the fraction of metal both in solid and solution phases that is isotopically-exchangeable known as the 'E-value'. The 'E-value' represents the metal fraction in a dynamic equilibrium with the solution phase and is potentially accessible to plants. This is carried out by addition of an enriched metal isotope to soil suspensions and quantifying the fraction of metal that is able to freely exchange with the added isotope by measuring the equilibrium isotopic ratio by ICP-MS. E-value (mg kg‑1) is then calculated as follows: E-Value = (Msoil/ W) (CspikeVspike/ Mspike) (Iso1IAspike ‑Iso2IAspikeRss / Iso2IAsoil Rss - Iso1IAsoil) where M is the average atomic mass of the metal in the soil or the spike, W is the mass of soil (kg), Cspike is the concentration of the metal in the spike (mg L‑1), Vspike is the volume of spike (L), IA is isotopic abundance, and Rss is the equilibrium ratio of isotopic abundances (Iso1:Iso2). Isotopic dilution has been successfully applied to determine E-values for several elements. However, to our knowledge, this method has not

  19. Effect of land use and longitudinal gradient on carbon quality and lability in the Vesdre River catchment, Belgium

    NASA Astrophysics Data System (ADS)

    Gettel, G. M.; Bravo-Palacios, L.; Gupta, S.

    2011-12-01

    related to PARAFAC Component 5, C5) in the upstream portion of the catchment were associated with forested and peat lands, whereas low DOC concentration and high intensity of fluorophore T (tryptophan-like fraction, C8) characterized agriculture and urban areas in downstream portion of the catchment. The labile, semi-labile, and refractory pools were related to both land use and DOM quality. Peat was positively correlated with the size of the refractory pool, whereas agriculture and urban land use were positively correlated with the semi-labile pool. The labile pool was positively correlated with C1, while the refractory pool was correlated with C5 and C9 (the humic acid portion). Denitrification rate was correlated with C8. Interestingly, degradation constants (k) from 3- pool model were not correlated with land use or with fluorescence characteristics. In conclusion, this study shows that land-use is important in determining DOM quality, and that in turn, DOM quality affects lability. While not all aspects of the fluorescence properties were important to the functional properties of DOM, fluorescence may be useful in river-network models that aim to relate processing to land use and longitudinal gradient.

  20. Oral Administration of a Fusion Protein between the Cholera Toxin B Subunit and the 42-Amino Acid Isoform of Amyloid-β Peptide Produced in Silkworm Pupae Protects against Alzheimer's Disease in Mice

    PubMed Central

    Li, Si; Wei, Zhen; Chen, Jian; Chen, Yanhong; Lv, Zhengbing; Yu, Wei; Meng, Qiaohong; Jin, Yongfeng

    2014-01-01

    A key molecule in the pathogenesis of Alzheimer's disease (AD) is a 42-amino acid isoform of the amyloid-β peptide (Aβ42), which is the most toxic element of senile plaques. In this study, to develop an edible, safe, low-cost vaccine for AD, a cholera toxin B subunit (CTB)-Aβ42 fusion protein was successfully expressed in silkworm pupae. We tested the silkworm pupae-derived oral vaccination containing CTB-Aβ42 in a transgenic mouse model of AD. Anti-Aβ42 antibodies were induced in these mice, leading to a decreased Aβ deposition in the brain. We also found that the oral administration of the silk worm pupae vaccine improved the memory and cognition of mice, as assessed using a water maze test. These results suggest that the new edible CTB-Aβ42 silkworm pupae-derived vaccine has potential clinical application in the prevention of AD. PMID:25469702

  1. Oral administration of a fusion protein between the cholera toxin B subunit and the 42-amino acid isoform of amyloid-β peptide produced in silkworm pupae protects against Alzheimer's disease in mice.

    PubMed

    Li, Si; Wei, Zhen; Chen, Jian; Chen, Yanhong; Lv, Zhengbing; Yu, Wei; Meng, Qiaohong; Jin, Yongfeng

    2014-01-01

    A key molecule in the pathogenesis of Alzheimer's disease (AD) is a 42-amino acid isoform of the amyloid-β peptide (Aβ42), which is the most toxic element of senile plaques. In this study, to develop an edible, safe, low-cost vaccine for AD, a cholera toxin B subunit (CTB)-Aβ42 fusion protein was successfully expressed in silkworm pupae. We tested the silkworm pupae-derived oral vaccination containing CTB-Aβ42 in a transgenic mouse model of AD. Anti-Aβ42 antibodies were induced in these mice, leading to a decreased Aβ deposition in the brain. We also found that the oral administration of the silk worm pupae vaccine improved the memory and cognition of mice, as assessed using a water maze test. These results suggest that the new edible CTB-Aβ42 silkworm pupae-derived vaccine has potential clinical application in the prevention of AD. PMID:25469702

  2. Epitopes from two soybean glycinin subunits antigenic in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Glycinin is a seed storage protein in soybean (Glycine max) that is allergenic in pigs. Glycinin is a hexamer composed of subunits consisting of a basic and acidic portion joined by disulfide bridges. There are 5 glycinin subunits designated Gy1-Gy5. Results: Twenty seven out of 30 pi...

  3. Enhanced stability of maize endosperm ADP-glucose pyrophosphorylase is gained through mutants that alter subunit interactions.

    PubMed

    Greene, T W; Hannah, L C

    1998-10-27

    Temperature lability of ADP-glucose pyrophosphorylase (AGP; glucose-1-phosphate adenylyltransferase; ADP: alpha-D-glucose-1-phosphate adenylyltransferase, EC 2.7.7.27), a key starch biosynthetic enzyme, may play a significant role in the heat-induced loss in maize seed weight and yield. Here we report the isolation and characterization of heat-stable variants of maize endosperm AGP. Escherichia coli cells expressing wild type (WT) Shrunken2 (Sh2), and Brittle2 (Bt2) exhibit a reduced capacity to produce glycogen when grown at 42 degreesC. Mutagenesis of Sh2 and coexpression with WT Bt2 led to the isolation of multiple mutants capable of synthesizing copious amounts of glycogen at this temperature. An increase in AGP stability was found in each of four mutants examined. Initial characterization revealed that the BT2 protein was elevated in two of these mutants. Yeast two-hybrid studies were conducted to determine whether the mutant SH2 proteins more efficiently recruit the BT2 subunit into tetramer assembly. These experiments showed that replacement of WT SH2 with the heat-stable SH2HS33 enhanced interaction between the SH2 and BT2 subunits. In agreement, density gradient centrifugation of heated and nonheated extracts from WT and one of the mutants, Sh2hs33, identified a greater propensity for heterotetramer dissociation in WT AGP. Sequencing of Sh2hs33 and several other mutants identified a His-to-Tyr mutation at amino acid position 333. Hence, a single point mutation in Sh2 can increase the stability of maize endosperm AGP through enhanced subunit interactions. PMID:9789090

  4. The selectivity of conantokin-G for ion channel inhibition of NR2B subunit-containing NMDA receptors is regulated by amino acid residues in the S2 region of NR2B.

    PubMed

    Sheng, Zhenyu; Liang, Zhong; Geiger, James H; Prorok, Mary; Castellino, Francis J

    2009-08-01

    The conantokins are short, naturally occurring peptides that inhibit ion flow through N-methyl-d-aspartate receptor (NMDAR) channels. One member of this peptide family, conantokin-G (con-G), shows high selectivity for antagonism of NR2B-containing NMDAR channels, whereas other known conantokins are less selective inhibitors with regard to the nature of the NR2 subunit of the NMDAR complex. In order to define the molecular determinants of NR2B that govern con-G selectivity, we evaluated the ability of con-G to inhibit NMDAR ion channels expressed in human embryonic kidney (HEK)293 cells transfected with NR1, in combination with various NR2A/2B chimeras and point mutants, by electrophysiology using cells voltage-clamped in the whole-cell configuration. We found that a variant of the con-G-insensitive subunit, NR2A, in which the 158 residues comprising the S2 peptide segment (E(657)-I(814)) were replaced by the corresponding S2 region of NR2B (E(658)-I(815)), results in receptors that are highly sensitive to inhibition by con-G. Of the 22 amino acids that are different between the NR2A-S2 and the NR2B-S2 regions, exchange of one of these, M(739) of NR2B for the equivalent K(738) of NR2A, was sufficient to completely import the inhibitory activity of con-G into NR1b/NR2A-containing NMDARs. Some reinforcement of this effect was found by substitution of a second amino acid, K(755) of NR2B for Y(754) of NR2A. The discovery of the molecular determinants of NR2B selectivity with con-G has implications for the design of subunit-selective neurobiological probes and drug therapies, in addition to advancing our understanding of NR2B- versus NR2A-mediated neurological processes. PMID:19427876

  5. Labile Zn ions on octacalcium phosphate-derived Zn-containing hydroxyapatite surfaces

    NASA Astrophysics Data System (ADS)

    Honda, Yoshitomo; Anada, Takahisa; Morimoto, Shinji; Suzuki, Osamu

    2013-05-01

    We previously synthesized and characterized zinc-containing octacalcium phosphate (OCP) and its hydrolyzed Ca-deficient hydroxyapatite (HA). In the present report, we attempted to define the state of Zn in the OCP-derived Zn-calcium phosphates (CaPs) in relation to the presence of specific amino acids. Zn-containing OCPs were prepared in solutions that included Zn ions up to a concentration of 3.5 mM, and their hydrolyzates [hydrolyzed (hy)-Zn-CaP] were obtained in hot water. The materials were characterized by x-ray diffraction and scanning electron microscopy. The concentration of Ca and Zn ions at room temperature was determined by analyzing the supernatant after incubating the materials in α-minimal essential medium (α-MEM) and HEPES buffer including cysteine, histidine, lysine, aspartic acid, and glutamic acid. Zn ions were more dissolved in α-MEM than HEPES buffer in the absence of amino acids. The inclusion of the amino acids enhanced Zn dissolution by several hundred fold, even in HEPES buffer. Among the amino acids, both cysteine and histidine enhanced the release of Zn. The effect was particularly remarkable with cysteine even in the presence of the other amino acids tested. These results indicate that Zn ions are present as a surface labile pool, which tends to be preferentially desorbed by cysteine, a ubiquitous molecule present in serum.

  6. Aspartic Acid 397 in Subunit B of the Na+-pumping NADH:Quinone Oxidoreductase from Vibrio cholerae Forms Part of a Sodium-binding Site, Is Involved in Cation Selectivity, and Affects Cation-binding Site Cooperativity

    PubMed Central

    Shea, Michael E.; Juárez, Oscar; Cho, Jonathan; Barquera, Blanca

    2013-01-01

    The Na+-pumping NADH:quinone complex is found in Vibrio cholerae and other marine and pathogenic bacteria. NADH:ubiquinone oxidoreductase oxidizes NADH and reduces ubiquinone, using the free energy released by this reaction to pump sodium ions across the cell membrane. In a previous report, a conserved aspartic acid residue in the NqrB subunit at position 397, located in the cytosolic face of this protein, was proposed to be involved in the capture of sodium. Here, we studied the role of this residue through the characterization of mutant enzymes in which this aspartic acid was substituted by other residues that change charge and size, such as arginine, serine, lysine, glutamic acid, and cysteine. Our results indicate that NqrB-Asp-397 forms part of one of the at least two sodium-binding sites and that both size and charge at this position are critical for the function of the enzyme. Moreover, we demonstrate that this residue is involved in cation selectivity, has a critical role in the communication between sodium-binding sites, by promoting cooperativity, and controls the electron transfer step involved in sodium uptake (2Fe-2S → FMNC). PMID:24030824

  7. Oxidant regulated inter-subunit disulfide bond formation between ASIC1a subunits

    PubMed Central

    Zha, Xiang-ming; Wang, Runping; Collier, Dan M.; Snyder, Peter M.; Wemmie, John A.; Welsh, Michael J.

    2009-01-01

    The acid-sensing ion channel-1a (ASIC1a) is composed of 3 subunits and is activated by a decrease in extracellular pH. It plays an important role in diseases associated with a reduced pH and production of oxidants. Previous work showed that oxidants reduce ASIC1a currents. However, the effects on channel structure and composition are unknown. We found that ASIC1a formed inter-subunit disulfide bonds and the oxidant H2O2 increased this link between subunits. Cys-495 in the ASIC1a C terminus was particularly important for inter-subunit disulfide bond formation, although other C-terminal cysteines contributed. Inter-subunit disulfide bonds also produced some ASIC1a complexes larger than trimers. Inter-subunit disulfide bond formation reduced the proportion of ASIC1a located on the cell surface and contributed to the H2O2-induced decrease in H+-gated current. These results indicate that channel function is controlled by disulfide bond formation between intracellular residues on distinct ASIC1a subunits. They also suggest a mechanism by which the redox state can dynamically regulate membrane protein activity by forming intracellular bridges. PMID:19218436

  8. Protease susceptibility and toxicity of heat-labile enterotoxins with a mutation in the active site or in the protease-sensitive loop.

    PubMed Central

    Giannelli, V; Fontana, M R; Giuliani, M M; Guangcai, D; Rappuoli, R; Pizza, M

    1997-01-01

    To generate nontoxic derivatives of Escherichia coli heat-labile enterotoxin (LT), site-directed mutagenesis has been used to change either the amino acid residues located in the catalytic site (M. Pizza, M. Domenighini, W. Hol, V. Giannelli, M. R. Fontana, M. M. Giuliani, C. Magagnoli, S. Peppoloni, R. Manetti, and R. Rappuoli, Mol. Microbiol. 14:51-60, 1994) or those located in the proteolytically sensitive loop that joins the A1 and A2 moieties of the A subunit (C. C. R. Grant, R. J. Messer, and W. J. Cieplack, Infect. Immun. 62:4270-4278, 1994; B. L. Dickinson and J. D. Clements, Infect. Immun. 63:1617-1623, 1995). In this work, we compared the in vitro and in vivo toxic properties and the resistance to protease digestion of the prototype molecules obtained by both approaches (LT-K63 and LT-R192G, respectively). As expected, LT-K63 was normally processed by proteases, while LT-R192G showed increased resistance to trypsin in vitro and was digested by trypsin only under denaturing conditions (3.5 M urea) or by intestinal proteases. No toxicity was detected with the LT-K63 mutant, even when 40 micrograms and 1 mg were used in the in vitro and in vivo assays, respectively. In marked contrast, LT-R192G showed only a modest (10-fold) reduction in toxicity in Y1 cells with a delay in the appearance of the toxic activity and had toxicity comparable to that of wild-type LT in the rabbit ileal loop assay. We conclude that mutagenesis of the active site generates molecules that are fully devoid of toxicity, while mutagenesis of the A1-A2 loop generates molecules that are resistant to trypsin in vitro but still susceptible to proteolytic activation by proteases other than trypsin, and therefore they may still be toxic in tissue culture and in vivo. PMID:8975934

  9. Rhizosphere Environment and Labile Phosphorus Release from Organic Waste-Amended Soils.

    NASA Astrophysics Data System (ADS)

    Dao, Thanh H.

    2015-04-01

    Crop residues and biofertilizers are primary sources of nutrients for organic crop production. However, soils treated with large amounts of nutrient-enriched manure have elevated phosphorus (P) levels in regions of intensive animal agriculture. Surpluses occurred in these amended soils, resulting in large pools of exchangeable inorganic P (Pi) and enzyme-labile organic P (Po) that averaging 30.9 and 68.2 mg kg-1, respectively. Organic acids produced during crop residue decomposition can promote the complexation of counter-ions and decouple and release unbound Pi from metal and alkali metal phosphates. Animal manure and cover crop residues also contain large amounts of soluble organic matter, and likely generate similar ligands. However, a high degree of heterogeneity in P spatial distribution in such amended fields, arising from variances in substrate physical forms ranging from slurries to dried solids, composition, and diverse application methods and equipment. Distinct clusters of Pi and Po were observed, where accumulation of the latter forms was associated with high soil microbial biomass C and reduced phosphomonoesterases' activity. Accurate estimates of plant requirements and lability of soil P pools, and real-time plant and soil P sensing systems are critical considerations to optimally manage manure-derived nutrients in crop production systems. An in situ X-ray fluorescence-based approach to sensing canopy and soil XRFS-P was developed to improve the yield-soil P relationship for optimal nutrient recommendations in addition to allowing in-the-field verification of foliar P status.

  10. Chemical trapping of labile aldehyde intermediates in the metabolism of propranolol and oxprenolol.

    PubMed

    Goldszer, F; Tindell, G L; Walle, U K; Walle, T

    1981-11-01

    Propranolol is N-dealkylated to N-desisopropylpropranolol (DIP) by microsomal enzymes. DIP was shown in this study to be rapidly deaminated by monoamine oxidase (MAO). Thus, incubation of DIP (10(-4) M) with rat liver mitochondria for 90 min demonstrated 74.8 +/- 4.1% metabolism which was almost completely blocked by the MAO inhibitor pargyline (10(-5) M). The end products of this deamination were 3-(alpha-naphthoxy)-1,2-propylene glycol (Glycol) and 3-(alpha-naphthoxy)lactic acid (NLA). In the presence of excess NADH the Glycol was the major product whereas NLA was the major product in the presence of excess NAD+. The intermediate aldehyde in this deamination reaction, 3-(alpha-naphthoxy)-2-hydroxypropanal (Ald), was extremely labile and decomposed quantitatively to alpha-naphthol when removed from the incubates. However, the addition of methoxyamine hydrochloride directly to the incubates made it possible to chemically trap the intact Ald as an O-methyloxime and prove its structure by gas chromatography-mass spectrometry. The deamination of the primary amine of oxprenolol also gave rise to a labile aldehyde which could be trapped and identified as its O-methyloxime. PMID:7335950

  11. Inhibition of T-cell Response by Escherichia coli Heat-Labile Enterotoxin-Treated Epithelial Cells

    PubMed Central

    Lopes, Luciene M.; Maroof, Asher; Dougan, Gordon; Chain, Benjamin M.

    2000-01-01

    Escherichia coli heat-labile enterotoxin (LT) is an extensively studied adjuvant of mucosal responses. Nevertheless, its mode of action as an adjuvant remains incompletely understood. In this study, we describe a simplified in vitro model with which to look at some aspects of immunoregulation by LT. The interaction of LT with the apical surface of a monolayer of CaCo-2 epithelial cells induces the release of a soluble factor which inhibits the antigen-induced release of interleukin-2 by T cells cultured at the basolateral side of the cells. The release of this factor requires the ADP-ribosylating activity of LT since the isolated B subunit, as well as an enzymatically silent LT mutant, loses biological activity in this model. The inhibitory activity is likely to be due to prostaglandin release, since it is blocked by indomethacin. The contribution of LT-induced prostaglandin release to the complex immunoregulatory activity of LT is discussed. PMID:11083810

  12. Effects of Site-Directed Mutagenesis of Escherichia coli Heat-Labile Enterotoxin on ADP-Ribosyltransferase Activity and Interaction with ADP-Ribosylation Factors

    PubMed Central

    A. Stevens, Linda; Moss, Joel; Vaughan, Martha; Pizza, Mariagrazia; Rappuoli, Rino

    1999-01-01

    Escherichia coli heat-labile enterotoxin (LT), an oligomeric protein with one A subunit (LTA) and five B subunits, exerts its effects via the ADP-ribosylation of Gsα, a guanine nucleotide-binding (G) protein that activates adenylyl cyclase. LTA also ADP-ribosylates simple guanidino compounds (e.g., arginine) and catalyzes its own auto-ADP-ribosylation. All LTA-catalyzed reactions are enhanced by ADP-ribosylation factors (ARFs), 20-kDa guanine nucleotide-binding proteins. Replacement of arginine-7 (R7K), valine-53 (V53D), serine-63 (S63K), valine 97 (V97K), or tyrosine-104 (Y104K) in LTA resulted in fully assembled but nontoxic proteins. S63K, V53D, and R7K are catalytic-site mutations, whereas V97K and Y104K are amino acid replacements adjacent to and outside of the catalytic site, respectively. The effects of mutagenesis were quantified by measuring ADP-ribosyltransferase activity (i.e., auto-ADP-ribosylation and ADP-ribosylagmatine synthesis) and interaction with ARF (i.e., inhibition of ARF-stimulated cholera toxin ADP-ribosyltransferase activity and effects of ARF on mutant auto-ADP-ribosylation). All mutants were inactive in the ADP-ribosyltransferase assay; however, auto-ADP-ribosylation in the presence of recombinant human ARF6 was detected, albeit much less than that of native LT (Y104K > V53D > V97K > R7K, S63K). Based on the lack of inhibition by free ADP-ribose, the observed auto-ADP-ribosylation activity was enzymatic and not due to the nonenzymatic addition of free ADP-ribose. V53D, S63K, and R7K were more effective than Y104K or V97K in blocking ARF stimulation of cholera toxin ADP-ribosyltransferase. Based on these data, it appears that ARF-binding and catalytic sites are not identical and that a region outside the NAD cleft may participate in the LTA-ARF interaction. PMID:9864224

  13. Effects of site-directed mutagenesis of Escherichia coli heat-labile enterotoxin on ADP-ribosyltransferase activity and interaction with ADP-ribosylation factors.

    PubMed

    Stevens, L A; Moss, J; Vaughan, M; Pizza, M; Rappuoli, R

    1999-01-01

    Escherichia coli heat-labile enterotoxin (LT), an oligomeric protein with one A subunit (LTA) and five B subunits, exerts its effects via the ADP-ribosylation of Gsalpha, a guanine nucleotide-binding (G) protein that activates adenylyl cyclase. LTA also ADP-ribosylates simple guanidino compounds (e.g., arginine) and catalyzes its own auto-ADP-ribosylation. All LTA-catalyzed reactions are enhanced by ADP-ribosylation factors (ARFs), 20-kDa guanine nucleotide-binding proteins. Replacement of arginine-7 (R7K), valine-53 (V53D), serine-63 (S63K), valine 97 (V97K), or tyrosine-104 (Y104K) in LTA resulted in fully assembled but nontoxic proteins. S63K, V53D, and R7K are catalytic-site mutations, whereas V97K and Y104K are amino acid replacements adjacent to and outside of the catalytic site, respectively. The effects of mutagenesis were quantified by measuring ADP-ribosyltransferase activity (i.e., auto-ADP-ribosylation and ADP-ribosylagmatine synthesis) and interaction with ARF (i.e., inhibition of ARF-stimulated cholera toxin ADP-ribosyltransferase activity and effects of ARF on mutant auto-ADP-ribosylation). All mutants were inactive in the ADP-ribosyltransferase assay; however, auto-ADP-ribosylation in the presence of recombinant human ARF6 was detected, albeit much less than that of native LT (Y104K > V53D > V97K > R7K, S63K). Based on the lack of inhibition by free ADP-ribose, the observed auto-ADP-ribosylation activity was enzymatic and not due to the nonenzymatic addition of free ADP-ribose. V53D, S63K, and R7K were more effective than Y104K or V97K in blocking ARF stimulation of cholera toxin ADP-ribosyltransferase. Based on these data, it appears that ARF-binding and catalytic sites are not identical and that a region outside the NAD cleft may participate in the LTA-ARF interaction. PMID:9864224

  14. Analysis of iron- and sulfur-oxidizing bacteria in a treatment plant of acid rock drainage from a Japanese pyrite mine by use of ribulose-1, 5-bisphosphate carboxylase/oxygenase large-subunit gene.

    PubMed

    Kamimura, Kazuo; Okabayashi, Ai; Kikumoto, Mei; Manchur, Mohammed Abul; Wakai, Satoshi; Kanao, Tadayoshi

    2010-03-01

    Iron- and sulfur-oxidizing bacteria in a treatment plant of acid rock drainage (ARD) from a pyrite mine in Yanahara, Okayama prefecture, Japan, were analyzed using the gene (cbbL) encoding the large subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO). Analyses of partial sequences of cbbL genes from Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Acidithiobacillus caldus strains revealed the diversity in their cbbL gene sequences. In contrast to the presence of two copies of form I cbbL genes (cbbL1 and cbbL2) in A. ferrooxidans genome, A. thiooxidans and A. caldus had a single copy of form I cbbL gene in their genomes. A phylogenetic analysis based on deduced amino acid sequences from cbbL genes detected in the ARD treatment plant and their close relatives revealed that 89% of the total clones were affiliated with A. ferrooxidans. Clones loosely affiliated with the cbbL from A. thiooxidans NB1-3 or Thiobacillus denitrificans was also detected in the treatment plant. cbbL gene sequences of iron- or sulfur-oxidizing bacteria isolated from the ARD and the ARD treatment plant were not detected in the cbbL libraries from the treatment plant, suggesting the low frequencies of isolates in the samples. PMID:20159572

  15. Do Vermont's Floodplains Constitute an Important Source of Labile Carbon?

    NASA Astrophysics Data System (ADS)

    Perdrial, J. N.; Dolan, A.; Kemsley, M.

    2014-12-01

    Floodplains are extremely heterogeneous landscapes with respect to soil and sediment composition and can present an important source of carbon (C) during floods. For example, stream bank soils and sediments are zones of active erosion and deposition of sediment associated C. Due to the presence of plants, riparian soils contain high amounts of C that is exchanged between stream waters and banks. Abandoned channels and meander wetlands that remain hydrologically connected to the main channel contain high amounts of organic matter that can be flushed into the stream during high discharge. This heterogeneity, result of floodplain geomorphology, land cover and use, can profoundly impact the amount and type of dissolved organic matter (DOM) introduced into streams. In order to assess DOM characteristics leached from heterogeneous floodplain soils, aqueous soil extracts were performed on soil samples representative of different land covers (n=20) at four depths. Extracts were analyzed for dissolved organic C and total dissolved nitrogen with a Shimadzu C analyzer. Colored dissolved organic matter characteristics was measured with the Aqualog Fluorescence Spectrometer and quantified with parallel factor analysis (PARAFAC). Preliminary data from three floodplains in Vermont (Connecticut, Missisquoi and Mad River) show a 3D variability of longitudinal, lateral, and vertical extents on water-extractable, mobile C. Dissolved organic carbon concentrations in meander swamp samples were found up to 9 times higher than in those of soils from agricultural field indicative of an important C source. Although C concentrations in adjacent fields were low, high abundance of labile C (indicated by tryptophan-like fluorescence) in water extracts from fields indicates recent biological production of C. This labile C is easily processed by microbes and transformed to the greenhouse gas CO2. These results provide important information on the contribution and lability of different floodplain

  16. Metal contents of phytoplankton and labile particulate material in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Twining, Benjamin S.; Rauschenberg, Sara; Morton, Peter L.; Vogt, Stefan

    2015-09-01

    Phytoplankton contribute significantly to global C cycling and serve as the base of ocean food webs. Phytoplankton require trace metals for growth and also mediate the vertical distributions of many metals in the ocean. We collected bulk particulate material and individual phytoplankton cells from the upper water column (<150 m) of the North Atlantic Ocean as part of the US GEOTRACES North Atlantic Zonal Transect cruise (GEOTRACES GA03). Particulate material was first leached to extract biogenic and potentially-bioavailable elements, and the remaining refractory material was digested in strong acids. The cruise track spanned several ocean biomes and geochemical regions. Particulate concentrations of metals associated primarily with lithogenic phases (Fe, Al, Ti) were elevated in surface waters nearest North America, Africa and Europe, and elements associated primarily with biogenic material (P, Cd, Zn, Ni) were also found at higher concentrations near the coasts. However metal/P ratios of labile particulate material were also elevated in the middle of the transect for Fe, Ni, Co, Cu, and V. P-normalized cellular metal quotas measured with synchrotron X-ray fluorescence (SXRF) were generally comparable to ratios in bulk labile particles but did not show mid-basin increases. Manganese and Fe ratios and cell quotas were higher in the western part of the section, nearest North America, and both elements were more enriched in bulk particles, relative to P, than in cells, suggesting the presence of labile oxyhydroxide particulate phases. Cellular Fe quotas thus did not increase in step with aeolian dust inputs, which are highest near Africa; these data suggest that the dust inputs have low bioavailability. Copper and Ni cell quotas were notably higher nearest the continental margins. Overall mean cellular metal quotas were similar to those measured in the Pacific and Southern Oceans except for Fe, which was approximately 3-fold higher in North Atlantic cells. Cellular Fe

  17. High Sensitivity Combined with Extended Structural Coverage of Labile Compounds via Nanoelectrospray Ionization at Subambient Pressures

    SciTech Connect

    Cox, Jonathan T.; Kronewitter, Scott R.; Shukla, Anil K.; Moore, Ronald J.; Smith, Richard D.; Tang, Keqi

    2014-10-07

    Subambient pressure ionization with nanoelectrospray (SPIN) has proven to be effective in producing ions with high efficiency and transmitting them to low pressures for high sensitivity mass spectrometry (MS) analysis. Here we present evidence that not only does the SPIN source improve MS sensitivity but also allows for gentler ionization conditions. The gentleness of a conventional heated capillary electrospray ionization (ESI) source and the SPIN source was compared by the liquid chromatography mass spectrometry (LC-MS) analysis of colominic acid. Colominic acid is a mixture of sialic acid polymers of different lengths containing labile glycosidic linkages between monomer units necessitating a gentle ion source. By coupling the SPIN source with high resolution mass spectrometry and using advanced data processing tools, we demonstrate much extended coverage of sialic acid polymer chains as compared to using the conventional ESI source. Additionally we show that SPIN-LC-MS is effective in elucidating polymer features with high efficiency and high sensitivity previously unattainable by the conventional ESI-LC-MS methods.

  18. An ultrahigh-resolution mass spectrometry index to estimate natural organic matter lability

    PubMed Central

    D'Andrilli, Juliana; Cooper, William T; Foreman, Christine M; Marshall, Alan G

    2015-01-01

    Rationale Determining the chemical constituents of natural organic matter (NOM) by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICRMS) remains the ultimate measure for probing its source material, evolution, and transport; however, lability and the fate of organic matter (OM) in the environment remain controversial. FTICRMS-derived elemental compositions are presented in this study to validate a new interpretative method to determine the extent of NOM lability from various environments. Methods FTICRMS data collected over the last decade from the same 9.4 tesla instrument using negative electrospray ionization at the National High Magnetic Field Laboratory in Tallahassee, Florida, was used to validate the application of a NOM lability index. Solid-phase extraction cartridges were used to isolate the NOM prior to FTICRMS; mass spectral peaks were calibrated internally by commonly identified NOM homologous series, and molecular formulae were determined for NOM composition and lability analysis. Results A molecular lability boundary (MLB) was developed from the FTICRMS molecular data, visualized from van Krevelen diagrams, dividing the data into more and less labile constituents. NOM constituents above the MLB at H/C ≥1.5 correspond to more labile material, whereas NOM constituents below the MLB, H/C <1.5, exhibit less labile, more recalcitrant character. Of all marine, freshwater, and glacial environments considered for this study, glacial ecosystems were calculated to contain the most labile OM. Conclusions The MLB extends our interpretation of FTICRMS NOM molecular data to include a metric of lability, and generally ranked the OM environments from most to least labile as glacial > marine > freshwater. Applying the MLB is useful not only for individual NOM FTICRMS studies, but also provides a lability threshold to compare and contrast molecular data with other FTICRMS instruments that survey NOM from around the world. Copyright © 2015

  19. [Universal implementation of pathogen inactivation in labile blood products is a major step towards transfusion safety].

    PubMed

    Cazenave, Jean-Pierre

    2010-12-01

    Transfusion of labile blood products (red cell concentrates, platelet concentrates and plasma) is vital in the absence of alternatives. Patients and doctors have always feared infections transmitted by blood, blood components and blood-derived drugs. It is potentially dangerous to delay implementation of pathogen inactivation in labile blood products pending a perfect process. Universal implementation of pathogen inactivation in labile blood products is a major step towards transfusion safety. PMID:22043595

  20. Structural basis for the hydrolysis of ATP by a nucleotide binding subunit of an amino acid ABC transporter from Thermus thermophilus.

    PubMed

    Devi, Seenivasan Karthiga; Chichili, Vishnu Priyanka Reddy; Jeyakanthan, J; Velmurugan, D; Sivaraman, J

    2015-06-01

    ATP-binding cassette (ABC) transporters are a major family of small molecule transporter proteins, and their deregulation is associated with several diseases, including cancer. Here, we report the crystal structure of the nucleotide binding domain (NBD) of an amino acid ABC transporter from Thermus thermophilus (TTHA1159) in its apo form and as a complex with ADP along with functional studies. TTHA1159 is a putative arginine ABC transporter. The apo-TTHA1159 was crystallized in dimeric form, a hitherto unreported form of an apo NBD. Structural comparison of the apo and ADP-Mg(2+) complexes revealed that Phe14 of TTHA1159 undergoes a significant conformational change to accommodate ADP, and that the bound ADP interacts with the P-loop (Gly40-Thr45). Modeling of ATP-Mg(2+):TTHA1159 complex revealed that Gln86 and Glu164 are involved in water-mediated hydrogen bonding contacts and Asp163 in Mg(2+) ion-mediated hydrogen bonding contacts with the γ-phosphate of ATP, consistent with the findings of other ABC transporters. Mutational studies confirmed the necessity of each of these residues, and a comparison of the apo/ADP Mg(2+):TTHA1159 with its ATP-complex model suggests the likelihood of a key conformational change to the Gln86 side chain for ATP hydrolysis. PMID:25916755

  1. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  2. Activation of the Nrf2 pathway, but decreased {gamma}-glutamylcysteine synthetase heavy subunit chain levels and caspase-3-dependent apoptosis during exposure of primary mouse hepatocytes to diphenylarsinic acid

    SciTech Connect

    Sumi, Daigo; Manji, Aiko; Shinkai, Yasuhiro; Toyama, Takashi; Kumagai, Yoshito

    2007-09-15

    Diphenylarsinic acid (DPAsV) is a degradation product of chemical warfare agents, over which there has been a public outcry in the Kamisu Area of Ibaraki Prefecture in Japan. In this study, we investigated the cytotoxicity of and cellular response to DPAsV in primary mouse hepatocytes. Exposure of the hepatocytes to DPAsV resulted in cell damage accompanied by cellular accumulation of DPAsV in a time-dependent manner. The cell death caused by DPAsV was attributable to apoptosis. DPAsV activated a basic leucine-zipper transcription factor Nrf2 as determined by the nuclear translocation of Nrf2, anti-oxidant response element (ARE)-dependent luciferase activity, and upregulation of downstream gene products. However, {gamma}-glutamylcysteine synthetase heavy subunit chain ({gamma}-GCS{sub H}), which is regulated by Nrf2, underwent cleavage by activated caspase-3 to a 17 kDa fragment, leading to a minimal level of constitutive {gamma}-GCS{sub H} expression 72 h following the exposure (25 {mu}M). Experiments with cycloheximide revealed that the DPAsV-mediated reduction in {gamma}-GCS{sub H} was due to a post-translational modification. The results suggest that DPAsV causes caspase-3-dependent cleavage of {gamma}-GCS{sub H} regardless of Nrf2 activation in primary mouse hepatocytes.

  3. The human [gamma]-aminobutyric acid receptor subunit [beta]3 and [alpha]5 gene cluster in chromosome 15q11-q13 is rich in highly polymorphic (CA)[sub n] repeats

    SciTech Connect

    Glatt, K.; Lalande, M. ); Sinnett, D. )

    1994-01-01

    The [gamma]-aminobutyric acid (GABA[sub A]) receptor [beta]33 (GABRB3) and [alpha]5 (GABRA5) subunit genes have been localized to the Angelman and Prader-Willi syndrome region of chromosome 15q11-q13. GABRB3, which encompasses 250 kb, is located 100 kb proximal of GABRA5, with the two genes arranged in head-to-head transcriptional orientation. In screening 135 kb of cloned DNA within a 260-kb interval extending from within GABRB3 to the 5[prime] end of GABRA5, 10 new (CA), repeats have been identified. Five of these have been analyzed in detail and found to be highly polymorphic, with the polymorphism information content (PIC) ranging from 0.7 to 0.85 and with heterozygosities of 67 to 94%. In the clones from GABRB3/GABRA5 region, therefore, the frequency of (CA)[sub n] with PICs [ge] 0.7 is 1 per 27 kb. Previous estimates of the density of (CA)[sub n] with PICs [ge] 0.7 in the human genome have been approximately 10-fold lower. The GABRB3/GABRA5 region appears, therefore, to be enriched for highly informative (CA)[sub n]. This set of closely spaced, short tandem repeat polymorphisms will be useful in the molecular analyses of Prader-Willi and Angelman syndromes and in high-resolution studies of genetic recombination within this region. 21 refs., 2 figs., 1 tab.

  4. Gambogic acid covalently modifies IκB-kinase-β subunit to mediate suppression of lipopolysaccharide-induced activation of NF-κB in macrophages*

    PubMed Central

    Palempalli, Umamaheshwari D.; Gandhi, Ujjawal; Kalantari, Parisa; Vunta, Hema; Arner, Ryan J.; Narayan, Vivek; Ravindran, Anand; Prabhu, K. Sandeep

    2009-01-01

    Synopsis Gambogic acid (GA) is a polyprenylated xanthone abundant in the resin of Garcinia morella and G. hanburyi with a long history of use as a complementary and alternative medicine. The anti-tumor activity of GA has been well demonstrated and is thought to arise partly from the associated anti-inflammatory activity. Recent studies have indicated that the anti-tumor activity of GA is mediated by its ligation of the transferrin receptor TfR1. Since the cellular expression of TfR1 is down-regulated by lipopolysaccharide (LPS), we hypothesized that an alternative pathway exists in immune cells, such as macrophages, where GA could mitigate the expression of pro-inflammatory genes. Here we demonstrate that GA inhibits the LPS-dependent expression of nuclear factor-κB (NF-κB) target pro-inflammatory genes in macrophages. Western immunoblot, NF-κB luciferase reporter, and gel shift analyses revealed that GA strongly blocked the activation of NF-κB induced by LPS; while 9,10-dihydroGA that lacks the reactive α,β-unsaturated carbonyl group was ineffective. Moreover, GA was able to decrease nuclear p65 levels in RAW264.7 macrophages, where the expression of TfR1 was down-regulated by RNA interference. In-vitro kinase assays coupled with interaction studies using biotinylated GA as well as proteomic analysis demonstrated that IKKβ, a key kinase of the NF-κB signaling axis, was covalently modified by GA at Cys179 causing significant inhibition of its kinase activity. Taken together, these data demonstrate the potent anti-inflammatory activity of GA. PMID:19140805

  5. Gambogic acid covalently modifies IkappaB kinase-beta subunit to mediate suppression of lipopolysaccharide-induced activation of NF-kappaB in macrophages.

    PubMed

    Palempalli, Umamaheshwari D; Gandhi, Ujjawal; Kalantari, Parisa; Vunta, Hema; Arner, Ryan J; Narayan, Vivek; Ravindran, Anand; Prabhu, K Sandeep

    2009-04-15

    GA (gambogic acid) is a polyprenylated xanthone abundant in the resin of Garcinia morella and Garcinia hanburyi with a long history of use as a complementary and alternative medicine. The antitumour activity of GA has been well demonstrated and is thought to arise partly from the associated anti-inflammatory activity. Recent studies have indicated that the antitumour activity of GA is mediated by its ligation of TfR1 (transferrin receptor-1). Since the cellular expression of TfR1 is down-regulated by LPS (lipopolysaccharide), we hypothesized that an alternative pathway exists in immune cells, such as macrophages, where GA could mitigate the expression of pro-inflammatory genes. Here we demonstrate that GA inhibits the LPS-dependent expression of NF-kappaB (nuclear factor kappaB) target pro-inflammatory genes in macrophages. Western immunoblot, NF-kappaB-luciferase reporter and gel-shift analyses revealed that GA strongly blocked the activation of NF-kappaB induced by LPS, whereas 9,10-dihydro-GA, which lacks the reactive alpha,beta-unsaturated carbonyl group, was ineffective. Moreover, GA was able to decrease nuclear p65 levels in RAW264.7 macrophages, where the expression of TfR1 was down-regulated by RNA interference. in vitro kinase assays coupled with interaction studies using biotinylated GA as well as proteomic analysis demonstrated that IKKbeta [IkappaB (inhibitory kappaB) kinase-beta], a key kinase of the NF-kappaB signalling axis, was covalently modified by GA at Cys-179, causing significant inhibition of its kinase activity. Taken together, these results demonstrate the potent anti-inflammatory activity of GA. PMID:19140805

  6. Following The Money: Characterizing the Dynamics of Microbial Ecosystems and Labile Organic Matter in Grassland Soils

    NASA Astrophysics Data System (ADS)

    Herbert, B. E.; McNeal, K. S.

    2006-12-01

    The dynamics of soil microbial ecosystems and labile fractions of soil organic matter in grasslands have important implications for the response of these critical ecosystems to perturbations. Organic, inorganic and genetic biomarkers in the solid (e.g. lipids, microbial DNA), liquid (e.g. porewater ions) or gaseous phases (e.g. carbon dioxide) have been used to characterize carbon cycling and soil microbial ecology. These proxies are generally limited in the amount of temporal information that they can provide (i.e., solid-phase proxies) or the amount of specific information they can provide about carbon sources or microbial community processes (e.g. inorganic gases). It is the aim of this research to validate the use of soil volatile organic carbon emissions (VOCs) as useful indicators of subsurface microbial community shifts and processes as a function of ecosystem perturbations. We present results of method validation using laboratory microcosm, where VOC metabolites as characterized by gas chromatography and mass spectrometry (GC-MS), were related to other proxies including carbon dioxide (CO2) via infra-red technology, and microbial community shifts as measured by Biolog© and fatty acid methyl ester (FAME) techniques. Experiments with soil collected from grasslands along the coastal margin region in southern Texas were preformed where environmental factors such as soil water content, soil type, and charcoal content are manipulated. Results indicate that over fifty identifiable VOC metabolites are produced from the soils, where many (~15) can be direct indicators of microbial ecology. Principle component analysis (PCA) evidences these trends through similar cluster patterns for the VOC results, the Biolog© results, and FAME. Regression analysis further shows that VOCs are significant (p < 0.05) indicators of microbial stress. Our results are encouraging that characterizing VOCs production in grassland soils are easy to measure, relatively inexpensive method

  7. Oxidative stress and labile plasmatic iron in anemic patients following blood therapy

    PubMed Central

    Fernandes, Marília Sabo; Rissi, Tatiana Tamborena; Zuravski, Luisa; Mezzomo, Juliana; Vargas, Carmen Regla; Folmer, Vanderlei; Soares, Félix Alexandre Antunes; Manfredini, Vanusa; Ahmed, Mushtaq; Puntel, Robson Luiz

    2014-01-01

    AIM: To determine the plasmatic iron content and evaluate the oxidative stress (OS) markers in subjects receiving blood therapy. METHODS: Thirty-nine individuals with unspecified anemia receiving blood transfusions and 15 healthy subjects were included in the study. Anemic subjects were divided into three subgrouP: (1) those that received up to five blood transfusions (n = 14); (2) those that received from five to ten transfusions (n = 11); and (3) those that received more than ten transfusions (n = 14). Blood samples were collected by venous arm puncture and stored in tubes containing heparin. The plasma and cells were separated by centrifugation and subsequently used for analyses. Statistical analyses were performed using Kruskal-Wallis analysis of variance followed by Dunn’s multiple comparison tests when appropriate. RESULTS: The eletrophoretic hemoglobin profiles of the subjects included in this study indicated that no patients presented with hemoglobinopathy. Labile plasmatic iron, ferritin, protein carbonyl, thiobarbituric acid-reactive substances (TBARS) and dichlorofluorescein diacetate oxidation were significantly higher (P < 0.05), whereas total thiol levels were significantly lower (P < 0.05) in transfused subjects compared to controls. Additionally, the activity of catalase, superoxide dismutase and glutathione peroxidase were significantly lower in the transfused subjects (P < 0.05). Antioxidant enzyme activities and total thiol levels were positively correlated (P < 0.05), and negatively correlated with the levels of protein carbonyl and TBARS (P < 0.05). In contrast, protein carbonyl and TBARS were positively correlated (P < 0.05). Altogether, these data confirm the involvement of OS in patients following therapy with repeated blood transfusions. CONCLUSION: Our data reveal that changes in OS markers are correlated with levels of labile plasmatic iron and ferritin and the number of transfusions. PMID:25254188

  8. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-02-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle and dependent on the DOM composition. For our understanding of the kinetics of organic matter cycling in the ocean, it is therefore crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids, and transparent exopolymer particles (TEP) for two years. Ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) allowed the molecular characterization of extracted DOM after 70 days and after ∼2 years of incubation. Although glucose was quickly degraded, a DOC background was generated in glucose incubations. Only 20% of the organic carbon from algal exudate was degraded within the 2 years of incubation. TEP, which are released by micro-organisms, were produced during glucose degradation but decreased within less than three weeks back to half of the maximum concentration and were below detection in all treatments after 2 years. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM produced during the degradation of the algal exudates. Our results led to several conclusions: (i) Higher substrate levels result in a higher level of non-labile DOC which is an important prerequisite for carbon sequestration in the ocean; (ii) TEP are generated by bacteria but are also degraded rapidly, thus limiting their potential contribution to carbon sequestration; (iii) The molecular signatures of DOM derived from algal exudates or glucose after 70 days of incubation differed strongly from refractory DOM. After 2 years

  9. Characterization of the RnfB and RnfG Subunits of the Rnf Complex from the Archaeon Methanosarcina acetivorans

    PubMed Central

    Suharti, Suharti; Wang, Mingyu; de Vries, Simon; Ferry, James G.

    2014-01-01

    Rnf complexes are redox-driven ion pumps identified in diverse species from the domains Bacteria and Archaea, biochemical characterizations of which are reported for two species from the domain Bacteria. Here, we present characterizations of the redox-active subunits RnfG and RnfB from the Rnf complex of Methanosarcina acetivorans, an acetate-utilizing methane-producing species from the domain Archaea. The purified RnfG subunit produced in Escherichia coli fluoresced in SDS-PAGE gels under UV illumination and showed a UV-visible spectrum typical of flavoproteins. The Thr166Gly variant of RnfG was colorless and failed to fluoresce under UV illumination confirming a role for Thr166 in binding FMN. Redox titration of holo-RnfG revealed a midpoint potential of −129 mV for FMN with n = 2. The overproduced RnfG was primarily localized to the membrane of E. coli and the sequence contained a transmembrane helix. A topological analysis combining reporter protein fusion and computer predictions indicated that the C-terminal domain containing FMN is located on the outer aspect of the cytoplasmic membrane. The purified RnfB subunit produced in E. coli showed a UV-visible spectrum typical of iron-sulfur proteins. The EPR spectra of reduced RnfB featured a broad spectral shape with g values (2.06, 1.94, 1.90, 1.88) characteristic of magnetically coupled 3Fe-4S and 4Fe-4S clusters in close agreement with the iron and acid-labile sulfur content. The ferredoxin specific to the aceticlastic pathway served as an electron donor to RnfB suggesting this subunit is the entry point of electrons to the Rnf complex. The results advance an understanding of the organization and biochemical properties of the Rnf complex and lay a foundation for further understanding the overall mechanism in the pathway of methane formation from acetate. PMID:24836163

  10. Cloning and characterization of GABAA α subunits and GABAB subunits in Xenopus laevis during development

    PubMed Central

    Kaeser, Gwendolyn E.; Rabe, Brian A.; Saha, Margaret S.

    2011-01-01

    Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the adult nervous system, acts via two classes of receptors, the ionotropic GABAA and metabotropic GABAB receptors. During the development of the nervous system GABA acts in a depolarizing, excitatory manner and plays an important role in various neural developmental processes including cell proliferation, migration, synapse formation and activity-dependent differentiation. Here we describe the spatial and temporal expression patterns of the GABAA and GABAB receptors during early development of Xenopus laevis. Using in situ hybridization and qRT-PCR, GABAA α2 was detected as a maternal mRNA. All other α-subunits were first detected by tailbud through hatching stages. Expression of the various subunits was seen in the brain, spinal cord, cranial ganglia, olfactory epithelium, pineal, and pituitary gland. Each receptor subunit showed a distinctive, unique expression pattern suggesting these receptors have specific functions and are regulated in a precise spatial and temporal manner. PMID:21384470

  11. The role of labile sulfur compounds in thermochemical sulfate reduction

    NASA Astrophysics Data System (ADS)

    Amrani, Alon; Zhang, Tongwei; Ma, Qisheng; Ellis, Geoffrey S.; Tang, Yongchun

    2008-06-01

    The reduction of sulfate to sulfide coupled with the oxidation of hydrocarbons to carbon dioxide, commonly referred to as thermochemical sulfate reduction (TSR), is an important abiotic alteration process that most commonly occurs in hot carbonate petroleum reservoirs. In the present study we focus on the role that organic labile sulfur compounds play in increasing the rate of TSR. A series of gold-tube hydrous pyrolysis experiments were conducted with n-octane and CaSO4 in the presence of reduced sulfur (e.g. H2S, S°, organic S) at temperatures of 330 and 356 °C under a constant confining pressure. The in-situ pH was buffered to 3.5 (∼6.3 at room temperature) with talc and silica. For comparison, three types of oil with different total S and labile S contents were reacted under similar conditions. The results show that the initial presence of organic or inorganic sulfur compounds increases the rate of TSR. However, organic sulfur compounds, such as 1-pentanethiol or diethyldisulfide, were significantly more effective in increasing the rate of TSR than H2S or elemental sulfur (on a mole S basis). The increase in rate is achieved at relatively low concentrations of 1-pentanethiol, less than 1 wt% of the total n-octane, which is comparable to the concentration of organic S that is common in many oils (∼0.3 wt%). We examined several potential reaction mechanisms to explain the observed reactivity of organic LSC. First, the release of H2S from the thermal degradation of thiols was discounted as an important mechanism due to the significantly greater reactivity of thiol compared to an equivalent amount of H2S. Second, we considered the generation of olefines in association with the elimination of H2S during thermal degradation of thiols because olefines are much more reactive than n-alkanes during TSR. In our experiments, olefines increased the rate of TSR, but were less effective than 1-pentanethiol and other organic LSC. Third, the thermal decomposition of

  12. Parenteral Adjuvant Effects of an Enterotoxigenic Escherichia coli Natural Heat-Labile Toxin Variant

    PubMed Central

    Braga, Catarina J. M.; Rodrigues, Juliana F.; Medina-Armenteros, Yordanka; Farinha-Arcieri, Luís E.; Ventura, Armando M.; Boscardin, Silvia B.; Sbrogio-Almeida, Maria E.; Ferreira, Luís C. S.

    2014-01-01

    Native type I heat-labile toxins (LTs) produced by enterotoxigenic Escherichia coli (ETEC) strains exert strong adjuvant effects on both antibody and T cell responses to soluble and particulate antigens following co-administration via mucosal routes. However, inherent enterotoxicity and neurotoxicity (following intra-nasal delivery) had reduced the interest in the use of these toxins as mucosal adjuvants. LTs can also behave as powerful and safe adjuvants following delivery via parenteral routes, particularly for activation of cytotoxic lymphocytes. In the present study, we evaluated the adjuvant effects of a new natural LT polymorphic form (LT2), after delivery via intradermal (i.d.) and subcutaneous (s.c.) routes, with regard to both antibody and T cell responses. A recombinant HIV-1 p24 protein was employed as a model antigen for determination of antigen-specific immune responses while the reference LT (LT1), produced by the ETEC H10407 strain, and a non-toxigenic LT form (LTK63) were employed as previously characterized LT types. LT-treated mice submitted to a four dose-base immunization regimen elicited similar p24-specific serum IgG responses and CD4+ T cell activation. Nonetheless, mice immunized with LT1 or LT2 induced higher numbers of antigen-specific CD8+ T cells and in vivo cytotoxic responses compared to mice immunized with the non-toxic LT derivative. These effects were correlated with stronger activation of local dendritic cell populations. In addition, mice immunized with LT1 and LT2, but not with LTK63, via s.c. or i.d. routes developed local inflammatory reactions. Altogether, the present results confirmed that the two most prevalent natural polymorphic LT variants (LT1 or LT2) display similar and strong adjuvant effects for subunit vaccines administered via i.d. or s.c. routes. PMID:24432018

  13. The 2.3 {angstrom} crystal structure of cholera toxin B subunit pentamer: Choleragenoid

    SciTech Connect

    Zhang, Rong-Guang; Westbrook, M.L.; Maulik, P.R.; Reed, R.A.; Shipley, G.; Westbrook, E.M. |; Scott, D.L.; Otwinowski, Z.

    1996-02-01

    Cholera toxin, a heterohexameric AB{sub 5} enterotoxin released by Vibrio cholera, induces a profuse secretory diarrhea in susceptible hosts. Choleragenoid, the B subunit pentamer of cholera toxin, directs the enzymatic A subunit to its target by binding to GM{sub 1} gangliosides exposed on the luminal surface of intestinal epithelial cells. We have solved the crystal structure of choleragenoid at 2.3 {Angstrom} resolution by combining single isomorphous replacement with non-crystallographic symmetry averaging. The structure of the B subunits, and their pentameric arrangement, closely resembles that reported for the intact holotoxin (choleragen), the heat-labile enterotoxin from E. coli, and for a choleragenoid-GM{sub 1} pentasaccharide complex. In the absence of the A subunit the central cavity of the B pentamer is a highly solvated channel. The binding of the A subunit or the receptor pentasaccharide to choleragenoid has only a modest effect on the local stereochemistry and does not perceptibly alter the subunit interface.

  14. Labile carbon and nitrogen from rhizoplane and surface soils of two perennial grasslands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In semiarid perennial grasslands biogeochemical processes that drive nutrient dynamics may be more closely related to the quantity of labile SOM than to total SOM. A small ephemeral pool of labile soluble organic matter becomes active after pulse precipitation events. Rhizoplane soil associated with...

  15. Prevalence and predictors of affective lability after pediatric traumatic brain injury

    PubMed Central

    Vasa, Roma A.; Suskauer, Stacy J.; Thorn, Julia M.; Kalb, Luther; Grados, Marco A.; Slomine, Beth S.; Salorio, Cynthia F.; Gerring, Joan P.

    2016-01-01

    Objective Paediatric severe traumatic brain injury (TBI) is associated with significant postinjury affective and behavioral problems. Few studies have examined the prevalence and characteristics of affective lability after paediatric TBI. Methods 97 children with severe TBI were evaluated one year postinjury for the presence of affective lability using the Children’s Affective Lability Scale (CALS). Demographic, clinical, and brain lesion characteristics were also assessed. Results Affective lability significantly increased after injury. Eighty-six children had a preinjury CALS score of 1SD or less from the group preinjury mean (M = 8.11, SD = 9.31) of which 35 and 15 children had a 1SD and 2SD increase in their CALS score from pre- to postinjury, respectively. A variety of affective shifts manifested postinjury including anxiety, silliness, dysphoria, and irritability. The most severe symptoms were irritability and unpredictable temper outbursts. Risk factors for affective lability included elevated preinjury affective lability and psychosocial adversity as well as greater damage to the orbitofrontal cortex. Postinjury affective lability was most frequently associated with a postinjury diagnosis of attention-deficit hyperactivity disorder. Conclusions Affective lability is common after paediatric TBI and frequently manifests as irritability and unpredictable outbursts. Early intervention is needed to improve psychiatric outcomes. PMID:25950263

  16. A link between magnesium-chelatase H subunit and sucrose nonfermenting 1 (SNF1)-related protein kinase SnRK2.6/OST1 in Arabidopsis guard cell signalling in response to abscisic acid

    PubMed Central

    Liang, Shan; Lu, Kai; Wu, Zhen; Jiang, Shang-Chuan; Yu, Yong-Tao; Bi, Chao; Xin, Qi; Wang, Xiao-Fang; Zhang, Da-Peng

    2015-01-01

    Magnesium-chelatase H subunit [CHLH/putative abscisic acid (ABA) receptor ABAR] positively regulates guard cell signalling in response to ABA, but the molecular mechanism remains largely unknown. A member of the sucrose nonfermenting 1 (SNF1)-related protein kinase 2 family, SnRK2.6/open stomata 1 (OST1)/SRK2E, which plays a critical role in ABA signalling in Arabidopsis guard cells, interacts with ABAR/CHLH. Neither mutation nor over-expression of the ABAR gene affects significantly ABA-insensitive phenotypes of stomatal movement in the OST1 knockout mutant allele srk2e. However, OST1 over-expression suppresses ABA-insensitive phenotypes of the ABAR mutant allele cch in stomatal movement. These genetic data support that OST1 functions downstream of ABAR in ABA signalling in guard cells. Consistent with this, ABAR protein is phosphorylated, but independently of the OST1 protein kinase. Two ABAR mutant alleles, cch and rtl1, show ABA insensitivity in ABA-induced reactive oxygen species and nitric oxide production, as well as in ABA-activated phosphorylation of a K+ inward channel KAT1 in guard cells, which is consistent with that observed in the pyr1 pyl1 pyl2 pyl4 quadruple mutant of the well-characterized ABA receptor PYR/PYL/RCAR family acting upstream of OST1. These findings suggest that ABAR shares, at least in part, downstream signalling components with PYR/PYL/RCAR receptors for ABA in guard cells; though cch and rtl1 show strong ABA-insensitive phenotypes in both ABA-induced stomatal closure and inhibition of stomatal opening, while the pyr1 pyl1 pyl2 pyl4 quadruple mutant shows strong ABA insensitivity only in ABA-induced stomatal closure. These data establish a link between ABAR/CHLH and SnRK2.6/OST1 in guard cell signalling in response to ABA. PMID:26175350

  17. A link between magnesium-chelatase H subunit and sucrose nonfermenting 1 (SNF1)-related protein kinase SnRK2.6/OST1 in Arabidopsis guard cell signalling in response to abscisic acid.

    PubMed

    Liang, Shan; Lu, Kai; Wu, Zhen; Jiang, Shang-Chuan; Yu, Yong-Tao; Bi, Chao; Xin, Qi; Wang, Xiao-Fang; Zhang, Da-Peng

    2015-10-01

    Magnesium-chelatase H subunit [CHLH/putative abscisic acid (ABA) receptor ABAR] positively regulates guard cell signalling in response to ABA, but the molecular mechanism remains largely unknown. A member of the sucrose nonfermenting 1 (SNF1)-related protein kinase 2 family, SnRK2.6/open stomata 1 (OST1)/SRK2E, which plays a critical role in ABA signalling in Arabidopsis guard cells, interacts with ABAR/CHLH. Neither mutation nor over-expression of the ABAR gene affects significantly ABA-insensitive phenotypes of stomatal movement in the OST1 knockout mutant allele srk2e. However, OST1 over-expression suppresses ABA-insensitive phenotypes of the ABAR mutant allele cch in stomatal movement. These genetic data support that OST1 functions downstream of ABAR in ABA signalling in guard cells. Consistent with this, ABAR protein is phosphorylated, but independently of the OST1 protein kinase. Two ABAR mutant alleles, cch and rtl1, show ABA insensitivity in ABA-induced reactive oxygen species and nitric oxide production, as well as in ABA-activated phosphorylation of a K(+) inward channel KAT1 in guard cells, which is consistent with that observed in the pyr1 pyl1 pyl2 pyl4 quadruple mutant of the well-characterized ABA receptor PYR/PYL/RCAR family acting upstream of OST1. These findings suggest that ABAR shares, at least in part, downstream signalling components with PYR/PYL/RCAR receptors for ABA in guard cells; though cch and rtl1 show strong ABA-insensitive phenotypes in both ABA-induced stomatal closure and inhibition of stomatal opening, while the pyr1 pyl1 pyl2 pyl4 quadruple mutant shows strong ABA insensitivity only in ABA-induced stomatal closure. These data establish a link between ABAR/CHLH and SnRK2.6/OST1 in guard cell signalling in response to ABA. PMID:26175350

  18. In situ, high-resolution imaging of labile phosphorus in sediments of a large eutrophic lake.

    PubMed

    Ding, Shiming; Han, Chao; Wang, Yanping; Yao, Lei; Wang, Yan; Xu, Di; Sun, Qin; Williams, Paul N; Zhang, Chaosheng

    2015-05-01

    Understanding the labile status of phosphorus (P) in sediments is crucial for managing a eutrophic lake, but it is hindered by lacking in situ data particularly on a catchment scale. In this study, we for the first time characterized in situ labile P in sediments with the Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) technique at a two-dimensional (2D), submillimeter resolution in a large eutrophic lake (Lake Taihu, China, with an area of 2338 km(2)). The concentration of DGT-labile P in the sediment profiles showed strong variation mostly ranging from 0.01 to 0.35 mg L(-1) with a considerable number of hotspots. The horizontal heterogeneity index of labile P varied from 0.04 to 4.5. High values appeared at the depths of 0-30 mm, likely reflecting an active layer of labile P under the sediment-water interface (SWI). Concentration gradients of labile P were observed from the high-resolution 1D DGT profiles in both the sediment and overlying water layers close to the SWI. The apparent diffusion flux of P across the SWI was calculated between -21 and 65 ng cm(-2) d(-1), which showed that the sediments tended to be a source and sink of overlying water P in the algal- and macrophyte-dominated regions, respectively. The DGT-labile P in the 0-30 mm active layer showed a better correlation with overlying water P than the labile P measured by ex situ chemical extraction methods. It implies that in situ, high-resolution profiling of labile P with DGT is a more reliable approach and will significantly extend our ability in in situ monitoring of the labile status of P in sediments in the field. PMID:25720671

  19. Stabilized liquid membrane device (SLMD) for the passive, integrative sampling of labile metals in water

    USGS Publications Warehouse

    Brumbaugh, W.G.; Petty, J.D.; Huckins, J.N.; Manahan, S.E.

    2002-01-01

    A stabilized liquid membrane device (SLMD) is described for potential use as an in situ, passive, integrative sampler for cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in natural waters. The SLMD (patent pending) consists of a 2.5-cm-wide by 15-cm-long strip of low-density polyethylene (LDPE) layflat tubing containing 1 mL of an equal mixture (v/v) of oleic acid (cis-9-octadecenoic acid) and EMO-8Q (7-[4-ethyl-1-methyloctyl]-8-quinolinol). The reagent mixture continuously diffuses to the exterior surface of the LDPE membrane, and provides for sequestration of several divalent metals for up to several weeks. Depending on sampler configuration, concentration factors of several thousand can be realized for these metal ions after just a few days. In addition to in situ deployment, the SLMD may be useful for laboratory determination of labile metal species in grab samples. Methods for minimizing the effects of water flow on the sampling rate are currently under investigation.

  20. Reversible lability by in situ reaction of self-assembled monolayers.

    PubMed

    Saavedra, Héctor M; Thompson, Christopher M; Hohman, J Nathan; Crespi, Vincent H; Weiss, Paul S

    2009-02-18

    We describe a new methodology for the fabrication of controllably displaceable monolayers using a carboxyl-functionalized self-assembled monolayer and in situ Fischer esterification, a simple and reversible chemical reaction. Using an 11-mercaptoundecanoic acid monolayer as a model system, we show that in situ esterification results in the creation of subtle chemical and structural defects. These defects promote molecular exchange reactions with n-dodecanethiol molecules, leading to the complete and rapid displacement of the exposed areas. Displacement results in well-ordered crystalline n-dodecanethiolate monolayer films. We also show that the complementary hydrolysis reaction can be employed to quench the reacted monolayer, significantly hindering further displacement. The generality of reversible lability was tested by applying the in situ esterification reaction to the structurally distinct carboxyl-functionalized molecule 3-mercapto-1-adamantanecarboxylic acid. Beyond its applicability to create mixed-composition monolayers, this methodology could be combined with chemical patterning techniques, such as microdisplacement printing, to fabricate complex functional surfaces. PMID:19170497

  1. Loss of Complex I activity in the Escherichia coli enzyme results from truncating the C-terminus of subunit K, but not from cross-linking it to subunits N or L.

    PubMed

    Zhu, Shaotong; Canales, Alejandra; Bedair, Mai; Vik, Steven B

    2016-06-01

    Complex I is a multi-subunit enzyme of the respiratory chain with seven core subunits in its membrane arm (A, H, J, K, L, M, and N). In the enzyme from Escherichia coli the C-terminal ten amino acids of subunit K lie along the lateral helix of subunit L, and contribute to a junction of subunits K, L and N on the cytoplasmic surface. Using double cysteine mutagenesis, the cross-linking of subunit K (R99C) to either subunit L (K581C) or subunit N (T292C) was attempted. A partial yield of cross-linked product had no effect on the activity of the enzyme, or on proton translocation, suggesting that the C-terminus of subunit K has no dynamic role in function. To further elucidate the role of subunit K genetic deletions were constructed at the C-terminus. Upon the serial deletion of the last 4 residues of the C-terminus of subunit K, various results were obtained. Deletion of one amino acid had little effect on the activity of Complex I, but deletions of 2 or more amino acids led to total loss of enzyme activity and diminished levels of subunits L, M, and N in preparations of membrane vesicles. Together these results suggest that while the C-terminus of subunit K has no dynamic role in energy transduction by Complex I, it is vital for the correct assembly of the enzyme. PMID:26931547

  2. Caco-2 intestinal epithelial cells absorb soybean ferritin by μ2 subunit (AP2)-dependent endocytosis

    PubMed Central

    San Martin, Carol D.; Garri, Carolina; Pizarro, Fernando; Walter, Tomas; Theil, Elizabeth C.; Núñez, Marco T.

    2011-01-01

    Iron deficiency anemia affects ∼3 billion people in the 21st century, despite >500 years of medical treatment. Studies show that soybean ferritin, the protein nanocage encasing mineralized iron is a source of nutritional iron but the cellular mechanisms of absorption are unknown. The absorption of iron from soybeans with ferritin in the presence of the endogenous soybean iron chelator phytate, suggests that the mechanism could be different than for reduced ferric or ferrous ions. Here, we investigate a cellular mechanism of iron absorption using recombinant soybean ferritin (SBFn&) and Caco-2 cells grown in bicameral inserts as a model for intestinal cells. Binding, internalization and degradation of exogenous, iron-mineralized SBFn, studied with confocal microscopy and binding of 131I-labeled, iron-mineralized ferritin revealed that: 1- SBFn binds on the apical surface. 2- Binding is saturable, Kd = 7.71 ± 0.88 nmol/L. 3- Internalization of SBFn depended on temperature, concentration and time. 4- Iron inside SBFn rapidly entered the labile iron pool (calcein quenching), and 5- SbFn protein was degraded during the same period that iron entered to the cytosol. SBFn crossed the apical membrane by endocytosis dependent on assembly peptide 2 (AP2) based on sensitivity of 131I-SBFn uptake to hyperosmolarity, acidity and siRNA targeted to the μ2 subunit of AP2, as well as resistance to filipin, a caveolar endocytosis inhibitor. The results support a model of iron absorption from gut ferritin distinct from ion transport and dependent on apical endocytosis followed by mineral dissolution/protein degradation and iron delivery to the cytosolic pool that can function, in part at least to absorb/resorb iron from dietary ferritin/sloughed enterocytes. PMID:18356317

  3. Aspects of Subunit Interactions in the Chloroplast ATP Synthase (I. Isolation of a Chloroplast Coupling Factor 1-Subunit III Complex from Spinach Thylakoids).

    PubMed Central

    Wetzel, C. M.; McCarty, R. E.

    1993-01-01

    A chloroplast ATP synthase complex (CF1 [chloroplast-coupling factor 1]-CF0 [membrane-spanning portion of chloroplast ATP synthase]) depleted of all CF0 subunits except subunit III (also known as the proteolipid subunit) was purified to study the interaction between CF1 and subunit III. Subunit III has a putative role in proton translocation across the thylakoid membrane during photophosphorylation; therefore, an accurate model of subunit inter-actions involving subunit III will be valuable for elucidating the mechanism and regulation of energy coupling. Purification of the complex from a crude CF1-CF0 preparation from spinach (Spinacia oleracea) thylakoids was accomplished by detergent treatment during anion-exchange chromatography. Subunit III in the complex was positively identified by amino acid analysis and N-terminal sequencing. The association of subunit III with CF1 was verified by linear sucrose gradient centrifugation, immunoprecipitation, and incorporation of the complex into asolectin liposomes. After incorporation into liposomes, CF1 was removed from the CF1-III complex by ethylenediaminetetracetate treatment. The subunit III-proteoliposomes were competent to rebind purified CF1. These results indicate that subunit III directly interacts with CF1 in spinach thylakoids. PMID:12231815

  4. Both subunits of ADP-glucose pyrophosphorylase are regulatory.

    PubMed

    Cross, Joanna M; Clancy, Maureen; Shaw, Janine R; Greene, Thomas W; Schmidt, Robert R; Okita, Thomas W; Hannah, L Curtis

    2004-05-01

    The allosteric enzyme ADP-Glc pyrophosphorylase (AGPase) catalyzes the synthesis of ADP-Glc, a rate-limiting step in starch synthesis. Plant AGPases are heterotetramers, most of which are activated by 3-phosphoglyceric acid (3-PGA) and inhibited by phosphate. The objectives of these studies were to test a hypothesis concerning the relative roles of the two subunits and to identify regions in the subunits important in allosteric regulation. We exploited an Escherichia coli expression system and mosaic AGPases composed of potato (Solanum tuberosum) tuber and maize (Zea mays) endosperm subunit fragments to pursue this objective. Whereas potato and maize subunits have long been separated by speciation and evolution, they are sufficiently similar to form active mosaic enzymes. Potato tuber and maize endosperm AGPases exhibit radically different allosteric properties. Hence, comparing the kinetic properties of the mosaics to those of the maize endosperm and potato tuber AGPases has enabled us to identify regions important in regulation. The data herein conclusively show that both subunits are involved in the allosteric regulation of AGPase. Alterations in the small subunit condition drastically different allosteric properties. In addition, extent of 3-PGA activation and extent of 3-PGA affinity were found to be separate entities, mapping to different regions in both subunits. PMID:15122037

  5. Effect of warming on the degradation and production of low-molecular-weight labile organic carbon in an Arctic tundra soil

    DOE PAGESBeta

    Yang, Ziming; Wullschleger, Stan D.; Liang, Liyuan; Graham, David E.; Gu, Baohua

    2016-01-16

    The fate of soil organic carbon (SOC) stored in the Arctic permafrost is a key concern as temperatures continue to rise in the northern hemisphere. Studies and conceptual models suggest that SOC degradation is affected by the composition of SOC, but it is unclear exactly what portions of SOC are vulnerable to rapid breakdown and what mechanisms may be controlling SOC degradation upon permafrost thaw. Here, we examine the dynamic consumption and production of labile SOC in an anoxic incubation experiment using soil samples from the active layer at the Barrow Environmental Observatory, Barrow, Alaska, USA. Free-reducing sugars, alcohols, andmore » low-molecular-weight (LMW) organic acids were analyzed during incubation at either –2 or 8 °C for up to 240 days. Results show that simple sugar and alcohol SOC largely account for the initial rapid release of CO2 and CH4 through anaerobic fermentation, whereas the fermentation products, acetate and formate, are subsequently utilized as primary substrates for methanogenesis. Iron(III) reduction is correlated to acetate production and methanogenesis, suggesting its important role as an electron acceptor in tundra SOC respiration. These observations are further supported in a glucose addition experiment, in which rapid CO2 and CH4 production occurred concurrently with rapid production and consumption of labile organics such as acetate. However, addition of tannic acid, as a more complex organic substrate, showed little influence on the overall production of CO2 and CH4 and organic acids. Together our study shows that LMW labile organics in SOC control the initial rapid release of green-house gases upon warming. We thus present a conceptual framework for the labile SOC transformations and their relations to fermentation, iron reduction and methanogenesis, thereby providing the basis for improved model prediction of climate feedbacks in the Arctic.« less

  6. Primary structure of the ovine pituitary follitropin beta-subunit.

    PubMed Central

    Sairam, M R; Seidah, N G; Chrétien, M

    1981-01-01

    The complete amino acids sequence of the ovine pituitary follitropin beta-subunit was established by studying the tryptic, chymotryptic and thermolytic peptides. The N-terminal sequence of the subunit was confirmed by subjecting the oxidated protein to Edman degradation in an automated sequenator. Automated Edman degradation of the reduced and alkylated (with iodo [14C]acetamide) beta-subunit indicated that most of the molecules used in the sequence studies had lost the N-terminal serine residue. This also confirmed the location of the first five half-cystine residues in the sequence. The proposed structure shows the presence of 111 amino acid residues with the two oligosaccharide moieties linked to asparagine residues located at positions 6 and 23. Heterogeneity occurs at both the termini of the polypeptide chain. Comparison of the sequence of beta-subunit of the ovine hormone with that proposed for human follitropin beta-subunit shows the absence of any deletions in the middle of the peptide chain. Of the 13 replacements, 11 residues can be explained on the basis of a single base change in the codon. The single tryptophan residue of the follitropin occupies an identical position in all the four species that have been studied. The region corresponding to residues 63-105 of the ovine beta-subunit is highly conserved in all the species. PMID:6798969

  7. Identification of a region in the S1 subunit of pertussis toxin that is required for enzymatic activity and that contributes to the formation of a neutralizing antigenic determinant.

    PubMed Central

    Cieplak, W; Burnette, W N; Mar, V L; Kaljot, K T; Morris, C F; Chen, K K; Sato, H; Keith, J M

    1988-01-01

    The S1 subunit of pertussis toxin possesses two regions (homology boxes), each spanning 8 residues, that are nearly identical in sequence to similarly located regions in the enzymatically active A fragments of two other ADP-ribosylating toxins: cholera toxin and Escherichia coli heat-labile toxin. This observation suggests a functional role for one or both of these regions in enzymatic activity. We have examined the role of one of these regions, located near the amino terminus of the S1 subunit, by using a high-level recombinant expression system and progressive truncation of the gene sequence encoding the amino terminus of the molecule. A series of six truncated, recombinant proteins were produced at high levels in E. coli and examined for their enzymatic and antigenic properties. The three molecules that lacked most or all of the homology box delimited by amino acid residues 8 and 15 lacked detectable enzymatic activity. All of the three molecules in which the box was retained exhibited detectable activity. Only those recombinant molecules that possessed the homology box reacted with a neutralizing and passively protective monoclonal anti-S1 antibody. These findings identify the region of homology located near the amino terminus of S1 as an apparent enzymatic subsite and a potentially important antigenic determinant. Images PMID:2455296

  8. Comparison of Outcomes in Patients With Nonobstructive, Labile-Obstructive, and Chronically Obstructive Hypertrophic Cardiomyopathy.

    PubMed

    Pozios, Iraklis; Corona-Villalobos, Celia; Sorensen, Lars L; Bravo, Paco E; Canepa, Marco; Pisanello, Chiara; Pinheiro, Aurelio; Dimaano, Veronica L; Luo, Hongchang; Dardari, Zeina; Zhou, Xun; Kamel, Ihab; Zimmerman, Stefan L; Bluemke, David A; Abraham, M Roselle; Abraham, Theodore P

    2015-09-15

    Patients with nonobstructive hypertrophic cardiomyopathy (HC) are considered low risk, generally not requiring aggressive intervention. However, nonobstructive and labile-obstructive HC have been traditionally classified together, and it is unknown if these 2 subgroups have distinct risk profiles. We compared cardiovascular outcomes in 293 patients HC (96 nonobstructive, 114 labile-obstructive, and 83 obstructive) referred for exercise echocardiography and magnetic resonance imaging and followed for 3.3 ± 3.6 years. A subgroup (34 nonobstructive, 28 labile-obstructive, 21 obstructive) underwent positron emission tomography. The mean number of sudden cardiac death risk factors was similar among groups (nonobstructive: 1.4 vs labile-obstructive: 1.2 vs obstructive: 1.4 risk factors, p = 0.2). Prevalence of late gadolinium enhancement (LGE) was similar across groups but more non-obstructive patients had late gadolinium enhancement ≥20% of myocardial mass (23 [30%] vs 19 [18%] labile-obstructive and 8 [11%] obstructive, p = 0.01]. Fewer labile-obstructive patients had regional positron emission tomography perfusion abnormalities (12 [46%] vs nonobstructive 30 [81%] and obstructive 17 [85%], p = 0.003]. During follow-up, 60 events were recorded (36 ventricular tachycardia/ventricular fibrillation, including 30 defibrillator discharges, 12 heart failure worsening, and 2 deaths). Nonobstructive patients were at greater risk of VT/VF at follow-up, compared to labile obstructive (hazed ratio 0.18, 95% confidence interval 0.04 to 0.84, p = 0.03) and the risk persisted after adjusting for age, gender, syncope, family history of sudden cardiac death, abnormal blood pressure response, and septum ≥3 cm (p = 0.04). Appropriate defibrillator discharges were more frequent in nonobstructive (8 [18%]) compared to labile-obstructive (0 [0%], p = 0.02) patients. In conclusion, nonobstructive hemodynamics is associated with more pronounced fibrosis and ischemia than labile

  9. The light subunit of system bo,+ is fully functional in the absence of the heavy subunit

    PubMed Central

    Reig, Núria; Chillarón, Josep; Bartoccioni, Paola; Fernández, Esperanza; Bendahan, Annie; Zorzano, Antonio; Kanner, Baruch; Palacín, Manuel; Bertran, Joan

    2002-01-01

    The heteromeric amino acid transporters are composed of a type II glycoprotein and a non-glycosylated polytopic membrane protein. System bo,+ exchanges dibasic for neutral amino acids. It is composed of rBAT and bo,+AT, the latter being the polytopic membrane subunit. Mutations in either of them cause malfunction of the system, leading to cystinuria. bo,+AT-reconstituted systems from HeLa or MDCK cells catalysed transport of arginine that was totally dependent on the presence of one of the bo,+ substrates inside the liposomes. rBAT was essential for the cell surface expression of bo,+AT, but it was not required for reconstituted bo,+AT transport activity. No system bo,+ transport was detected in liposomes derived from cells expressing rBAT alone. The reconstituted bo,+AT showed kinetic asymmetry. Expressing the cystinuria-specific mutant A354T of bo,+AT in HeLa cells together with rBAT resulted in defective arginine uptake in whole cells, which was paralleled by the reconstituted bo,+AT activity. Thus, subunit bo,+AT by itself is sufficient to catalyse transmembrane amino acid exchange. The polytopic subunits may also be the catalytic part in other heteromeric transporters. PMID:12234930

  10. Inactivation of viruses in labile blood derivatives. II. Physical methods

    SciTech Connect

    Horowitz, B.; Wiebe, M.E.; Lippin, A.; Vandersande, J.; Stryker, M.H.

    1985-11-01

    The thermal inactivation of viruses in labile blood derivatives was evaluated by addition of marker viruses (VSV, Sindbis, Sendai, EMC) to anti-hemophilic factor (AHF) concentrates. The rate of virus inactivation at 60 degrees C was decreased by at least 100- to 700-fold by inclusion of 2.75 M glycine and 50 percent sucrose, or 3.0 M potassium citrate, additives which contribute to retention of protein biologic activity. Nonetheless, at least 10(4) infectious units of each virus was inactivated within 10 hours. Increasing the temperature from 60 to 70 or 80 degrees C caused a 90 percent or greater loss in AHF activity. An even greater decline in the rate of virus inactivation was observed on heating AHF in the lyophilized state, although no loss in AHF activity was observed after 72 hours of heating at 60 degrees C. Several of the proteins present in lyophilized AHF concentrates displayed an altered electrophoretic mobility as a result of exposure to 60 degrees C for 24 hours. Exposure of lyophilized AHF to irradiation from a cobalt 60 source resulted in an acceptable yield of AHF at 1.0, but not at 2.0, megarads. At 1 megarad, greater than or equal to 6.0 logs of VSV and 3.3 logs of Sindbis virus were inactivated.

  11. Evolutionarily labile responses to a signal of aggressive intent.

    PubMed Central

    Moretz, Jason A; Morris, Molly R

    2003-01-01

    Males of many swordtail species possess vertical bar pigment patterns that are used both in courtship and agonistic interactions. Expression of the bars may function as a conventional threat signal during conflicts with rival males; bars intensify at the onset of aggression and fade in the subordinate male at contest's end. We used mirror image stimulation and bar manipulations to compare the aggressive responses of the males of four swordtail species to their barred and barless images. We found that having a response to the bars is tightly linked to having genes for bars, while the nature of the response the bars evoked varied across species. Specifically, we report the first known instance where closely related species exhibited differing and contradictory responses to a signal of aggressive motivation. Demonstrating that a signal conveys the same information across species (aggressive intent) while the response to that information has changed among species suggests that the nature of the responses are more evolutionarily labile than the signal. PMID:14613614

  12. Anticariogenic and phytochemical evaluation of Eucalyptus globules Labill.

    PubMed Central

    Ishnava, Kalpesh B.; Chauhan, Jenabhai B.; Barad, Mahesh B.

    2012-01-01

    In the present study, in vitro anticariogenic potential of ethyl acetate, hexane and methanol and aqueous extracts of plant leaves of Eucalyptus globules Labill. were evaluated by using four cariogenic bacteria, Lactobacillus acidophilus, Lactobacillus casei, Staphylococcus aureus and Streptococcus mutans. Agar well diffusion method and minimum inhibitory concentration (MIC) were used for this purpose. The ethyl acetate extracted fraction of plant leaves showed good inhibitory effects against all selected bacteria. In Eucalyptus globules, hexane and ethyl acetate extracts found highly effective against, Lactobacillus acidophilus with MIC value of 0.031 and 0.062 mg/mL, respectively. Qualitative phytochemical investigation of above extracts showed the presence of alkaloids, phenolic compounds, steroids, cardiac glycosides and terpenes. Based on the MIC value and bioautography, ethyl acetate of plant leaf was selected for further study. Further investigation on the structure elucidation of the bioactive compound using IR, GC-MS and NMR techniques revealed the presence of alpha-farnesene, a sesquiterpene. Eucalyptus globules plant leaf extracts have great potential as anticariogenic agents that may be useful in the treatment of oral disease. PMID:23961222

  13. Antiangiogenic nanotherapy with lipase-labile Sn-2 fumagillin prodrug

    PubMed Central

    Pan, Dipanjan; Sanyal, Nibedita; Schmieder, Anne H; Senpan, Angana; Kim, Benjamin; Yang, Xiaoxia; Hu, Grace; Allen, John S; Gross, Richard W; Wickline, Samuel A; Lanza, Gregory M

    2012-01-01

    Background The chemical instability of antiangiogenic fumagillin, combined with its poor retention during intravascular transit, requires an innovative solution for clinical translation. We hypothesized that an Sn-2 lipase-labile fumagillin prodrug in combination with a contact-facilitated drug delivery mechanism, could be used to address these problems. Methods αvβ3-targeted and nontargeted nanoparticles with and without fumagillin in the prodrug or native forms were evaluated in vitro and in vivo in the Matrigel™ (BD Biosciences, CA, USA) plug model of angiogenesis in mice. Results In vitro experiments demonstrated that the new fumagillin prodrug decreased viability at least as efficacious as the parent compound, on an equimolar basis. In the Matrigel mouse angiogenesis model, αvβ3-fumagillin prodrug decreased angiogenesis as measured by MRI (3T), while the neovasculature was unaffected with the control nanoparticles. Conclusion The present approach resolved the previously intractable problems of drug instability and premature release in transit to target sites. PMID:22709347

  14. Staggering of subunits in NMDAR channels.

    PubMed Central

    Sobolevsky, Alexander I; Rooney, LeeAnn; Wollmuth, Lonnie P

    2002-01-01

    Functional N-methyl-D-aspartate receptors (NMDARs) are heteromultimers formed by NR1 and NR2 subunits. The M3 segment, as contributed by NR1, forms the core of the extracellular vestibule, including binding sites for channel blockers, and represents a critical molecular link between ligand binding and channel opening. Taking advantage of the substituted cysteine accessibility method along with channel block and multivalent coordination, we studied the contribution of the M3 segment in NR2C to the extracellular vestibule. We find that the M3 segment in NR2C, like that in NR1, contributes to the core of the extracellular vestibule. However, the M3 segments from the two subunits are staggered relative to each other in the vertical axis of the channel. Compared to NR1, homologous positions in NR2C, including those in the highly conserved SYTANLAAF motif, are located about four amino acids more externally. The staggering of subunits may represent a key structural feature underlying the distinct functional properties of NMDARs. PMID:12496098

  15. Field method for rapid quantification of labile organic carbon in hyper-arid desert soils validated by two thermal methods

    NASA Astrophysics Data System (ADS)

    Fletcher, Lauren E.; Valdivia-Silva, Julio E.; Perez-Montaño, Saul; Condori-Apaza, Renee M.; Conley, Catharine A.; Navarro-Gonzalez, Rafael; McKay, Christopher P.

    2014-03-01

    The objective of this work was to develop a field method for the determination of labile organic carbon in hyper-arid desert soils. Industry standard methods rely on expensive analytical equipment that are not possible to take into the field, while scientific challenges require fast turn-around of large numbers of samples in order to characterize the soils throughout this region. Here we present a method utilizing acid-hydrolysis extraction of the labile fraction of organic carbon followed by potassium permanganate oxidation, which provides a quick and inexpensive approach to investigate samples in the field. Strict reagent standardization and calibration steps within this method allowed the determination of very low levels of organic carbon in hyper-arid soils, in particular, with results similar to those determined by the alternative methods of Calcination and Pyrolysis-Gas Chromatography-Mass Spectrometry. Field testing of this protocol increased the understanding of the role of organic materials in hyper-arid environments and allowed real-time, strategic decision making for planning for more detailed laboratory-based analysis.

  16. Capturing Labile Sulfenamide and Sulfinamide Serum Albumin Adducts of Carcinogenic Arylamines by Chemical Oxidation

    PubMed Central

    Peng, Lijuan; Turesky, Robert J.

    2013-01-01

    Aromatic amines and heterocyclic aromatic amines (HAAs) are a class of structurally related carcinogens that are formed during the combustion of tobacco or during the high temperature cooking of meats. These procarcinogens undergo metabolic activation by N-oxidation of the exocyclic amine group to produce N-hydroxylated metabolites, which are critical intermediates implicated in toxicity and DNA damage. The arylhydroxylamines and their oxidized arylnitroso derivatives can also react with cysteine (Cys) residues of glutathione or proteins to form, respectively, sulfenamide and sulfinamide adducts. However, sulfur-nitrogen linked adducted proteins are often difficult to detect because they are unstable and undergo hydrolysis during proteolytic digestion. Synthetic N-oxidized intermediates of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a carcinogenic HAA produced in cooked meats, and 4-aminobiphenyl, a carcinogenic aromatic amine present in tobacco smoke were reacted with human serum albumin (SA) and formed labile sulfenamide or sulfinamide adducts at the Cys34 residue. Oxidation of the carcinogen-modified SA with m-chloroperoxybenzoic acid (m-CPBA) produced the arylsulfonamide adducts, which were stable to heat and the chemical reduction conditions employed to denature SA. The sulfonamide adducts of PhIP and 4-ABP were identified, by liquid chromatography/mass spectrometry, in proteolytic digests of denatured SA. Thus, selective oxidation of arylamine-modified SA produces stable arylsulfonamide-SA adducts, which may serve as biomarkers of these tobacco and dietary carcinogens. PMID:23240913

  17. Determination of labile copper, cobalt, and chromium in textile mill wastewater

    SciTech Connect

    Crain, J.S.; Essling, A.M.; Kiely, J.T.

    1997-01-01

    Copper, chromium, and cobalt species present in filtered wastewater effluent were separated by cation exchange and reverse phase chromatography. Three sample fractions were obtained: one containing metal cations (i.e., trivalent Cr, divalent Cu, and divalent Co), one containing organic species (including metallized dyes), and one containing other unretained species. The metal content of each fraction was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The sum of the corrected data was compared to the metal content of a filtered effluent aliquot digested totally with fuming sulfuric acid. Other aliquots of the filtered effluent were spiked with the metals of interest and digested to confirm chemical yield and accuracy. Method detection limits were consistently below 20 {mu}g L{sup -1} for Cu, 30 {mu}g L{sup -1} for Co, and 10 {mu}g L{sup -1} for Cr. Spike recoveries for undifferentiated Cu and Cr were statistically indistinguishable from unity; although Co spike recoveries were slightly low ({approximately}95%), its chemical yield was 98%. Copper retention on the sodium sulfonate cation exchange resin was closely correlated with the [EDTA]/[Cu] ratio, suggesting that metals retained upon the cation exchange column were assignable to labile metal species; however, mass balances for all three elements, though reasonable ({approximately}90%), were significantly different from unity. Mechanical factors may have contributed to the material loss, but other data suggest that some metal species reacted irreversibly with the reverse phase column. 3 refs., 2 figs., 4 tabs.

  18. Phylogenetic analysis of ADP-glucose pyrophosphorylase subunits reveals a role of subunit interfaces in the allosteric properties of the enzyme.

    PubMed

    Georgelis, Nikolaos; Shaw, Janine R; Hannah, L Curtis

    2009-09-01

    ADP-glucose pyrophosphorylase (AGPase) catalyzes a rate-limiting step in glycogen and starch synthesis in bacteria and plants, respectively. Plant AGPase consists of two large and two small subunits that were derived by gene duplication. AGPase large subunits have functionally diverged, leading to different kinetic and allosteric properties. Amino acid changes that could account for these differences were identified previously by evolutionary analysis. In this study, these large subunit residues were mapped onto a modeled structure of the maize (Zea mays) endosperm enzyme. Surprisingly, of 29 amino acids identified via evolutionary considerations, 17 were located at subunit interfaces. Fourteen of the 29 amino acids were mutagenized in the maize endosperm large subunit (SHRUNKEN-2 [SH2]), and resulting variants were expressed in Escherichia coli with the maize endosperm small subunit (BT2). Comparisons of the amount of glycogen produced in E. coli, and the kinetic and allosteric properties of the variants with wild-type SH2/BT2, indicate that 11 variants differ from the wild type in enzyme properties or in vivo glycogen level. More interestingly, six of nine residues located at subunit interfaces exhibit altered allosteric properties. These results indicate that the interfaces between the large and small subunits are important for the allosteric properties of AGPase, and changes at these interfaces contribute to AGPase functional specialization. Our results also demonstrate that evolutionary analysis can greatly facilitate enzyme structure-function analyses. PMID:19625637

  19. Comparative Adjuvant Effects of Type II Heat-Labile Enterotoxins in Combination with Two Different Candidate Ricin Toxin Vaccine Antigens

    PubMed Central

    Vance, David J.; Greene, Christopher J.; Rong, Yinghui; Mandell, Lorrie M.; Connell, Terry D.

    2015-01-01

    Type II heat-labile enterotoxins (HLTs) constitute a promising set of adjuvants that have been shown to enhance humoral and cellular immune responses when coadministered with an array of different proteins, including several pathogen-associated antigens. However, the adjuvant activities of the four best-studied HLTs, LT-IIa, LT-IIb, LT-IIbT13I, and LT-IIc, have never been compared side by side. We therefore conducted immunization studies in which LT-IIa, LT-IIb, LT-IIbT13I, and LT-IIc were coadministered by the intradermal route to mice with two clinically relevant protein subunit vaccine antigens derived from the enzymatic A subunit (RTA) of ricin toxin, RiVax and RVEc. The HLTs were tested with low and high doses of antigen and were assessed for their abilities to stimulate antigen-specific serum IgG titers, ricin toxin-neutralizing activity (TNA), and protective immunity. We found that all four HLTs tested were effective adjuvants when coadministered with RiVax or RVEc. LT-IIa was of particular interest because as little as 0.03 μg when coadministered with RiVax or RVEc proved effective at augmenting ricin toxin-specific serum antibody titers with nominal evidence of local inflammation. Collectively, these results justify the need for further studies into the mechanism(s) underlying LT-IIa adjuvant activity, with the long-term goal of evaluating LT-IIa's activity in humans. PMID:26491037

  20. DETERMINATION OF APPARENT QUANTUM YIELD SPECTRA FOR THE FORMATION OF BIOLOGICALLY LABILE PHOTOPRODUCTS

    EPA Science Inventory

    Quantum yield spectra for the photochemical formation of biologically labile photoproducts from dissolved organic matter (DOM) have not been available previously, although they would greatly facilitate attempts to model photoproduct formation rates across latitudinal, seasonal, a...

  1. Neuropsychological correlates of emotional lability in children with ADHD

    PubMed Central

    Banaschewski, Tobias; Jennen-Steinmetz, Christine; Brandeis, Daniel; Buitelaar, Jan K.; Kuntsi, Jonna; Poustka, Luise; Sergeant, Joseph A.; Sonuga-Barke, Edmund J.; Frazier-Wood, Alexis C.; Albrecht, Björn; Chen, Wai; Uebel, Henrik; Schlotz, Wolff; van der Meere, Jaap J.; Gill, Michael; Manor, Iris; Miranda, Ana; Mulas, Fernando; Oades, Robert D.; Roeyers, Herbert; Rothenberger, Aribert; Steinhausen, Hans-Christoph; Faraone, Stephen V.; Asherson, Philip

    2012-01-01

    Background Emotional lability (EL) is commonly seen in patients with Attention Deficit/Hyperactivity Disorder (ADHD). The reasons for this association are currently unknown. To address this question we examined the relationship between ADHD and EL symptoms, and performance on a range of neuropsychological tasks to clarify whether EL symptoms are predicted by particular cognitive and/or motivational dysfunctions and whether these associations are mediated by the presence of ADHD symptoms. Methods A large multi-site sample of 424 carefully diagnosed ADHD cases and 564 unaffected siblings and controls aged 6 to 18 years performed a broad neuropsychological test battery, including a Go/No-Go Task, a warned 4-choice Reaction Time task, the Maudsley Index of Childhood Delay Aversion, and Digit span backwards. Neuropsychological variables were aggregated as indices of processing speed, response variability, executive functions, choice impulsivity and the influence of energetic and/or motivational factors. EL and ADHD symptoms were regressed on each neuropsychological variable in separate analyses controlling for age, gender and IQ, and, in subsequent regression analyses, for ADHD and EL symptoms respectively. Results Neuropsychological variables significantly predicted ADHD and EL symptoms with moderate to low regression coefficients. However, the association between neuropsychological parameters on EL disappeared entirely when the effect of ADHD symptoms was taken into account, revealing that the association between the neuropsychological performance measures and EL is completely mediated statistically by variations in ADHD symptoms. Conversely, neuropsychological effects on ADHD symptoms remained after EL symptom severity was taken into account. Conclusions The neuropsychological parameters examined here predict ADHD more strongly than EL. They cannot explain EL symptoms beyond what is already accounted for by ADHD symptom severity. The association between EL and ADHD

  2. ENSO Related Variations in the Flux and Labile Composition of Settling Particles in the Western Equatorial Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Gupta, L. P.; Kawahata, H.; Kawahata, H.

    2001-12-01

    Sediment trap moorings deployed in three distinct oceanographic zones along the equator in the western Pacific Ocean during 1991-93, 1994-95 and 1999 provided time series data on total mass and amino acid fluxes and composition of settling particulate organic matter (POM). The traps were deployed at shallow (970-1769 m) and deep (2060-4574 m) water depths, where seafloor depth ranged from 3181 to 4888 m, to collect settling particles over an interval of about 12-16 days. An intercomparison of annual averages of various parameters revealed discrete patterns in flux and composition of POM under the El Nino (1991-93, 1994-95) and La Nina (1999) conditions which prevailed over the equatorial Pacific during this experiment. In the hemipelagic zone of the far western equatorial Pacific, average total mass and amino acid fluxes were relatively higher during El Nino than during La Nina. However, in the oligotrophic warm pool and upwelling sites, total mass and amino acid fluxes were higher during La Nina. Influence of ENSO-related changes in the settling particle flux was much clearer in the hemipelagic zone compared to that in the warm pool. Average values of biogeochemical parameters such as mole ratios of Glucosamine/Galactosamine and amino acid/hexosamine, and bulk parameters like amino acid carbon and nitrogen contents relative to organic carbon and total nitrogen (THAA-C% and THAA-N%, respectively), and organic carbon normalized amino acid concentrations indicated that settling POM was more labile during La Nina at all the sites. The mole ratios Aspartic acid/beta-Alanine, Glutamic acid/gama-Aminobutyric acid, and relative mole concentration of non-protein amino acids (beta-Alanine + gama-Aminobutyric acid) suggested that POM degradation was enhanced during La Nina than during El Nino conditions at all sites.

  3. The alpha subunit of nitrile hydratase is sufficient for catalytic activity and post-translational modification.

    PubMed

    Nelp, Micah T; Astashkin, Andrei V; Breci, Linda A; McCarty, Reid M; Bandarian, Vahe

    2014-06-24

    Nitrile hydratases (NHases) possess a mononuclear iron or cobalt cofactor whose coordination environment includes rare post-translationally oxidized cysteine sulfenic and sulfinic acid ligands. This cofactor is located in the α-subunit at the interfacial active site of the heterodimeric enzyme. Unlike canonical NHases, toyocamycin nitrile hydratase (TNHase) from Streptomyces rimosus is a unique three-subunit member of this family involved in the biosynthesis of pyrrolopyrimidine antibiotics. The subunits of TNHase are homologous to the α- and β-subunits of prototypical NHases. Herein we report the expression, purification, and characterization of the α-subunit of TNHase. The UV-visible, EPR, and mass spectra of the α-subunit TNHase provide evidence that this subunit alone is capable of synthesizing the active site complex with full post-translational modifications. Remarkably, the isolated post-translationally modified α-subunit is also catalytically active with the natural substrate, toyocamycin, as well as the niacin precursor 3-cyanopyridine. Comparisons of the steady state kinetic parameters of the single subunit variant to the heterotrimeric protein clearly show that the additional subunits impart substrate specificity and catalytic efficiency. We conclude that the α-subunit is the minimal sequence needed for nitrile hydration providing a simplified scaffold to study the mechanism and post-translational modification of this important class of catalysts. PMID:24914472

  4. Structural determinants of alpha-bungarotoxin binding to the sequence segment 181-200 of the muscle nicotinic acetylcholine receptor. alpha. subunit: Effects of cysteine/cystine modification and species-specific amino acid substitution

    SciTech Connect

    McLane, K.E.; Wu, Xiadong; Diethelm, B.; Conti-Tronconi, B.M. )

    1991-05-21

    The sequence segment 181-200 of the Torpedo nicotinic acetylcholine receptor (nAChR) {alpha}subunit forms a binding site for {alpha}-bungarotoxin ({alpha}-BTX). Synthetic peptides corresponding to the homologous sequences of human, calf, mouse, chicken, frog, and cobra muscle nAChR {alpha}1 subunits were tested for their ability to bind {sup 125}I-{alpha}-BTX, and differences in {alpha}-BTX affinity were determined by using solution (IC{sub 50}s) and solid-phase (K{sub d}s) assays. Panels of overlapping peptides corresponding to the complete {alpha}1 subunit of mouse and human were also tested for {alpha}-BTX binding, but other sequence segments forming the {alpha}-BTX site were not consistently detectable. The role of a putative vicinal disulfide bound between Cys-192 and -193, relative to the Torpedo sequence, was determined by modifying the peptides with sulfhydryl reagents. Reduction and alkylation of the peptides decreased {alpha}-BTX binding, whereas oxidation of the peptides had little effect. These results indicate that while the adjacent cysteines are likely to be involved in forming the toxin/{alpha}1-subunit interface a vicinal disulfide bound was not required for {alpha}-BTX binding.

  5. Interaction of factor XIII subunits.

    PubMed

    Katona, Eva; Pénzes, Krisztina; Csapó, Andrea; Fazakas, Ferenc; Udvardy, Miklós L; Bagoly, Zsuzsa; Orosz, Zsuzsanna Z; Muszbek, László

    2014-03-13

    Coagulation factor XIII (FXIII) is a heterotetramer consisting of 2 catalytic A subunits (FXIII-A2) and 2 protective/inhibitory B subunits (FXIII-B2). FXIII-B, a mosaic protein consisting of 10 sushi domains, significantly prolongs the lifespan of catalytic subunits in the circulation and prevents their slow progressive activation in plasmatic conditions. In this study, the biochemistry of the interaction between the 2 FXIII subunits was investigated. Using a surface plasmon resonance technique and an enzyme-linked immunosorbent assay-type binding assay, the equilibrium dissociation constant (Kd) for the interaction was established in the range of 10(-10) M. Based on the measured Kd, it was calculated that in plasma approximately 1% of FXIII-A2 should be in free form. This value was confirmed experimentally by measuring FXIII-A2 in plasma samples immunodepleted of FXIII-A2B2. Free plasma FXIII-A2 is functionally active, and when activated by thrombin and Ca(2+), it can cross-link fibrin. In cerebrospinal fluid and tears with much lower FXIII subunit concentrations, >80% of FXIII-A2 existed in free form. A monoclonal anti-FXIII-B antibody that prevented the interaction between the 2 subunits reacted with the recombinant combined first and second sushi domains of FXIII-B, and its epitope was localized to the peptide spanning positions 96 to 103 in the second sushi domain. PMID:24408323

  6. Participation of ABH glycoconjugates in the secretory response to Escherichia coli heat-labile toxin in rabbit intestine.

    PubMed

    Galván, E M; Roth, G A; Monferran, C G

    1999-08-01

    The ability of membrane ABH blood group-active glycoconjugates to act as receptors of the heat-labile enterotoxin of Escherichia coli (LTh) was studied in vitro and in vivo when GM1 was blocked by the cholera toxin B subunit. Rabbits were classified as AB or H based on intestinal ABH-antigenic activities. Brush border membranes from AB rabbits contained 4 times more LTh binding sites than the H ones. LTh interaction could be inhibited by lectins that recognize ABH determinants. LTh induced a similar dose-dependent secretory response in ligated ileal loops of both types of animals. Anti-AB antibodies and Ulex europaeus I lectin could significantly reduce the fluid accumulation in AB and H rabbits, respectively. LTh caused adenylate cyclase activation even when GM1 was blocked, and this effect was abolished by the addition of specific ABH ligands. These results suggest that ABH glycoconjugates are involved in the host secretory response to LTh in rabbit intestine. PMID:10395858

  7. Maternal emotion socialization differentially predicts third-grade children's emotion regulation and lability.

    PubMed

    Rogers, Megan L; Halberstadt, Amy G; Castro, Vanessa L; MacCormack, Jennifer K; Garrett-Peters, Patricia

    2016-03-01

    Numerous parental emotion socialization factors have been implicated as direct and indirect contributors to the development of children's emotional competence. To date, however, no study has combined parents' emotion-related beliefs, behaviors, and regulation strategies in one model to assess their cumulative-as well as unique-contributions to children's emotion regulation. We considered the 2 components that have recently been distinguished: emotion regulation and emotional lability. We predicted that mothers' beliefs about the value of and contempt for children's emotions, mothers' supportive and nonsupportive reactions to their children's emotions, as well as mothers' use of cognitive reappraisal and suppression of their own emotions would each contribute unique variance to their children's emotion regulation and lability, as assessed by children's teachers. The study sample consisted of an ethnically and socioeconomically diverse group of 165 mothers and their third-grade children. Different patterns emerged for regulation and lability: Controlling for family income, child gender, and ethnicity, only mothers' lack of suppression as a regulatory strategy predicted greater emotion regulation in children, whereas mothers' valuing of children's emotions, mothers' lack of contempt for children's emotions, mothers' use of cognitive reappraisal to reinterpret events, and mothers' lack of emotional suppression predicted less lability in children. These findings support the divergence of emotion regulation and lability as constructs and indicate that, during middle childhood, children's lability may be substantially and uniquely affected by multiple forms of parental socialization. PMID:26641269

  8. Carboxymethylation of methionine residues in bovine pituitary luteinizing hormone and its subunits. Effects on the binding activity with receptor sites and interactions between subunits.

    PubMed Central

    Cheng, K W

    1976-01-01

    The reaction of iodoacetic acid with bovine lutropin (luteinizing hormone) at pH 3.0 was specific for methionine residues; it was slow and reached its equilibrium after 12 h at 37 degrees C. The number of modified methionine residues increased proportionately with the amount of the alkylating reagent in the reaction mixture. In the presence of a 20-fold molar excess of iodoacetic acid with respect to methionine, essentially all methionine residues in both subunits of bovine lutropin were carboxymethylated. Studies of various recombinations of modified and native alpha and beta subunits showed that methionine residues in bovine lutropin were not essential for interactions between subunits. Various recombinants were characterized by polyacrylamide-gel electrophoresis and gel filtration of Sephadex G-100. Immunological cross-reactivity by radioimmunoassay of the recombinants of modified alpha and beta subunits was relatively similar to that of the native subunits. However, the biological activity measured by receptor-site binding of the recombinants of alpha and beta chains with a total of three alkylated methionine residues was less than 5% of the activity of native lutropin. It is noteworthy that recombinants of a modified subunit and a native counterpart subunit regenerated 20-30 % of biological activity. These findings suggested that at least 1-2 methionine residues in each subunit are involved in the hormone-receptor interaction for bovine lutropin. Images PLATE 1 PMID:187169

  9. Subunits of the Schizosaccharomyces pombe RNA polymerase II: enzyme purification and structure of the subunit 3 gene.

    PubMed Central

    Azuma, Y; Yamagishi, M; Ishihama, A

    1993-01-01

    To improve our understanding of the structure and function of eukaryotic RNA polymerase II, we purified the enzyme from the fission yeast Schizosaccharomyces pombe. The highly purified RNA polymerase II contained more than eleven polypeptides. The sizes of the largest the second-, and the third-largest polypeptides as measured by SDS-polyacrylamide gel electrophoresis were about 210, 150, and 40 kilodaltons (kDa), respectively, and are similar to those of RPB1, 2, and 3 subunits of Saccharomyces cerevisiae RNA polymerase II. Using the degenerated primers designed after amino acid micro-sequencing of the 40 kDa third-largest polypeptide (subunit 3), we cloned the subunit 3 gene (rpb3) and determined its DNA sequence. Taken together with the sequence of parts of PCR-amplified cDNA, the predicted coding sequence of rpb3, interrupted by two introns, was found to encode a polypeptide of 297 amino acid residues in length with a molecular weight of 34 kDa. The S. pombe subunit 3 contains four structural domains conserved for the alpha-subunit family of RNA polymerase from both eukaryotes and prokaryotes. A putative leucine zipper motif was found to exist in the C-terminal proximal conserved region (domain D). Possible functions of the conserved domains are discussed. Images PMID:8367291

  10. Tomato Fruit Polygalacturonase Isozyme 1 (Characterization of the [beta] Subunit and Its State of Assembly in Vivo).

    PubMed Central

    Moore, T.; Bennett, A. B.

    1994-01-01

    Polygalacturonase isozyme 1 (PG1) is a heterodimer comprising a catalytic and noncatalytic or [beta] subunit, whereas polygalacturonase isozyme 2 (PG2) comprises only the catalytic subunit. To assess the state of assembly of PG1 in vivo, both subunits were purified to homogeneity and used to study assembly of the heterodimer. PG1 could be reconstituted in vitro from purified [beta] subunit and purified PG2 under a wide range of salt and pH conditions, and PG1 reconstituted in vitro was indistinguishable from PG1 isolated from tomato (Lycopersicon esculentum) fruit. Specific antibodies indicated that the [beta] subunit was present in fruit of all developmental stages, but absent in vegetative tissue. The state of assembly of PG1 in vivo was tested based on the differential thermal stability of PG1 and PG2 by heating segments of ripe fruit pericarp tissue. Temperatures well below those required to inactivate PG1 in vitro caused the loss of activity of both PG1 and PG2, suggesting that only heat-labile PG2 is present in vivo. In addition, when extracts of ripe fruit were rigorously maintained and analyzed at 4[deg]C, PG1 was absent or barely detectable. These results are consistent with the hypothesis that PG1 can assemble spontaneously and is essentially absent in intact tomato fruit but forms artifactually from PG2 and the [beta] subunit during the extraction of tomato fruit tissue when low temperatures are not rigorously maintained. PMID:12232422

  11. In Situ, High-Resolution Profiles of Labile Metals in Sediments of Lake Taihu.

    PubMed

    Wang, Dan; Gong, Mengdan; Li, Yangyang; Xu, Lv; Wang, Yan; Jing, Rui; Ding, Shiming; Zhang, Chaosheng

    2016-01-01

    Characterizing labile metal distribution and biogeochemical behavior in sediments is crucial for understanding their contamination characteristics in lakes, for which in situ, high-resolution data is scare. The diffusive gradient in thin films (DGT) technique was used in-situ at five sites across Lake Taihu in the Yangtze River delta in China to characterize the distribution and mobility of eight labile metals (Fe, Mn, Zn, Ni, Cu, Pb, Co and Cd) in sediments at a 3 mm spatial resolution. The results showed a great spatial heterogeneity in the distributions of redox-sensitive labile Fe, Mn and Co in sediments, while other metals had much less marked structure, except for downward decreases of labile Pb, Ni, Zn and Cu in the surface sediment layers. Similar distributions were found between labile Mn and Co and among labile Ni, Cu and Zn, reflecting a close link between their geochemical behaviors. The relative mobility, defined as the ratio of metals accumulated by DGT to the total contents in a volume of sediments with a thickness of 10 mm close to the surface of DGT probe, was the greatest for Mn and Cd, followed by Zn, Ni, Cu and Co, while Pb and Fe had the lowest mobility; this order generally agreed with that defined by the modified BCR approach. Further analyses showed that the downward increases of pH values in surface sediment layer may decrease the lability of Pb, Ni, Zn and Cu as detected by DGT, while the remobilization of redox-insensitive metals in deep sediment layer may relate to Mn cycling through sulphide coprecipitation, reflected by several corresponding minima between these metals and Mn. These in situ data provided the possibility for a deep insight into the mechanisms involved in the remobilization of metals in freshwater sediments. PMID:27608033

  12. Whole-Ecosystem Labile Carbon Production in a North Temperate Deciduous Forest

    NASA Astrophysics Data System (ADS)

    Gough, C. M.; Flower, C. E.; Vogel, C. S.; Dragoni, D.; Curtis, P. S.

    2008-12-01

    Management for forest carbon (C) sequestration requires knowledge of the fate of photosynthetic C. Labile C is an essential intermediary between C assimilation and growth in deciduous forests, accumulating when photosynthetic C supply exceeds demand and later depleting when reallocated to growth during periods of depressed photosynthesis. We developed a new approach that combined meteorological and biometric C cycling data for a mixed deciduous forest in Michigan, USA, to provide novel estimates of whole-ecosystem labile C production (PLC) and reallocation to growth inferred from the temporal imbalance between carbon supply from canopy net C assimilation (Ac) and C demand for net primary production (NPP). We substantiated these estimates with measurements of Populus grandidentata and Quercus rubra wood non-structural carbohydrate (NSC) concentration and mass over two years. Our analysis showed that half of annual Ac was allocated to PLC rather than to immediate growth. Labile C produced during the latter half of summer later supported dormant-season growth and respiration, with 35% of NPP in a given year requiring labile C stored during previous years. Seasonal changes in wood NSC concentration and mass generally corroborated patterns of labile C production and reallocation to growth. We observed a negative relationship between current-year PLC and NPP, indicating that disparities between same-year meteorological and biometric net ecosystem production (NEP) estimates can arise when C assimilated via photosynthesis, a flux incorporated into meteorological NEP estimates, is diverted away from NPP, a flux included in biometric NEP estimates, and instead allocated to PLC. A large, annually recharging pool of labile C also may buffer growth from climate conditions that immediately affect Ac. We conclude that a broader understanding of labile C production and reallocation across ecosystems may be important to interpreting lagged canopy C cycling and growth processes.

  13. Photolabelling of mutant forms of the S1 subunit of pertussis toxin with NAD+.

    PubMed Central

    Cieplak, W; Locht, C; Mar, V L; Burnette, W N; Keith, J M

    1990-01-01

    The S1 subunit of pertussis toxin catalyses the hydrolysis of NAD+ (NAD+ glycohydrolysis) and the NAD(+)-dependent ADP-ribosylation of guanine-nucleotide-binding proteins. Recently, the S1 subunit of pertussis toxin was shown to be photolabelled by using radiolabelled NAD+ and u.v.; the primary labelled residue was Glu-129, thereby implicating this residue in the binding of NAD+. Studies from various laboratories have shown that the N-terminal portion of the S1 subunit, which shows sequence similarity to cholera toxin and Escherichia coli heat-labile toxin, is important to the maintenance of both glycohydrolase and transferase activity. In the present study the photolabelling technique was applied to the analysis of a series of recombinant-derived S1 molecules that possessed deletions or substitutions near the N-terminus of the S1 molecule. The results revealed a positive correlation between the extent of photolabelling with NAD+ and the magnitude of specific NAD+ glycohydrolase activity exhibited by the mutants. Enzyme kinetic analyses of the N-terminal mutants also identified a mutant with substantially reduced activity, a depressed photolabelling efficiency and a markedly increased Km for NAD+. The results support a direct role for the N-terminal region of the S1 subunit in the binding of NAD+, thereby providing a rationale for the effect of mutations in this region on enzymic activity. Images Fig. 1. PMID:2363691

  14. Role of intracellular labile iron, ferritin, and antioxidant defence in resistance of chronically adapted Jurkat T cells to hydrogen peroxide

    PubMed Central

    Al-Qenaei, Abdullah; Yiakouvaki, Anthie; Reelfs, Olivier; Santambrogio, Paolo; Levi, Sonia; Hall, Nick D.; Tyrrell, Rex M.; Pourzand, Charareh

    2014-01-01

    To examine the role of intracellular labile iron pool (LIP), ferritin (Ft), and antioxidant defence in cellular resistance to oxidative stress on chronic adaptation, a new H2O2-resistant Jurkat T cell line “HJ16” was developed by gradual adaptation of parental “J16” cells to high concentrations of H2O2. Compared to J16 cells, HJ16 cells exhibited much higher resistance to H2O2-induced oxidative damage and necrotic cell death (up to 3 mM) and had enhanced antioxidant defence in the form of significantly higher intracellular glutathione and mitochondrial ferritin (FtMt) levels as well as higher glutathione-peroxidase (GPx) activity. In contrast, the level of the Ft H-subunit (FtH) in the H2O2-adapted cell line was found to be 7-fold lower than in the parental J16 cell line. While H2O2 concentrations higher than 0.1 mM fully depleted the glutathione content of J16 cells, in HJ16 cells the same treatments decreased the cellular glutathione content to only half of the original value. In HJ16 cells, H2O2 concentrations higher than 0.1 mM increased the level of FtMt up to 4-fold of their control values but had no effect on the FtMt levels in J16 cells. Furthermore, while the basal cytosolic level of LIP was similar in both cell lines, H2O2 treatment substantially increased the cytosolic LIP levels in J16 but not in HJ16 cells. H2O2 treatment also substantially decreased the FtH levels in J16 cells (up to 70% of the control value). In contrast in HJ16 cells, FtH levels were not affected by H2O2 treatment. These results indicate that chronic adaptation of J16 cells to high concentrations of H2O2 has provoked a series of novel and specific cellular adaptive responses that contribute to higher resistance of HJ16 cells to oxidative damage and cell death. These include increased cellular antioxidant defence in the form of higher glutathione and FtMt levels, higher GPx activity, and lower FtH levels. Further adaptive responses include the significantly reduced

  15. Effects of carbon substrate lability on carbon mineralization dynamics of tropical peat

    NASA Astrophysics Data System (ADS)

    Jauhiainen, Jyrki; Silvennoinen, Hanna; Könönen, Mari; Limin, Suwido; Vasander, Harri

    2016-04-01

    Extensive draining at tropical ombrotrophic peatlands in Southeast Asia has made them global 'hot spots' for greenhouse gas emissions. Management practises and fires have led to changed substrate status, which affects microbial processes. Here, we present the first data on how management practises affect carbon (C) mineralization processes at these soils. We compared the carbon mineralization potentials of pristine forest soils to those of drained fire affected soils at various depths, with and without additional labile substrates (glucose, glutamate and NO3-N) and in oxic and anoxic conditions by dedicated ex situ experiments. Carbon mineralization (CO2 and CH4 production) rates were higher in the pristine site peat, which contains more labile carbon due to higher input via vegetation. Production rates decreased with depth together with decreasing availability of labile carbon. Consequently, the increase in production rates after labile substrate addition was relatively modest from pristine site as compared to the managed site and from the top layers as compared to deeper layers. Methanogenesis had little importance in total carbon mineralization. Adding labile C and N enhanced heterotrophic CO2 production more than the sole addition of N. Surprisingly, oxygen availability was not an ultimate requirement for substantial CO2 production rates, but anoxic respiration yielded comparable rates, especially at the pristine soils. Flooding of these sites will therefore reduce, but not completely cease, peat carbon loss. Reintroduced substantial vegetation and fertilization in degraded peatlands can enrich recalcitrant peat with simple C and N compounds and thus increase microbiological activity.

  16. A thermally responsive injectable hydrogel incorporating methacrylate-polylactide for hydrolytic lability

    PubMed Central

    Ma, Zuwei; Nelson, Devin M.; Hong, Yi; Wagner, William R.

    2011-01-01

    Injectable thermoresponsive hydrogels are of interest for a variety of biomedical applications, including regional tissue mechanical support as well as drug and cell delivery. Within this class of materials there is a need to provide options for gels with stronger mechanical properties as well as variable degradation profiles. To address this need, the hydrolytically labile monomer, methacrylate-polylactide (MAPLA), with an average 2.8 lactic acid units, was synthesized and copolymerized with N-isopropylacrylamide (NIPAAm) and 2-hydroxyethyl methacrylate (HEMA) to obtain bioabsorbable thermally responsive hydrogels. Poly(NIPAAm-co-HEMA-co-MAPLA) with three monomer feed ratios (84/10/6, 82/10/8 and 80/10/10) was synthesized and characterized with NMR, FTIR and GPC. The copolymers were soluble in saline at reduced temperature (<10°C), forming clear solutions that increased in viscosity with the MAPLA feed ratio. The copolymers underwent sol-gel transition at lower critical solution temperatures of 12.4, 14.0 and 16.2°C respectively and solidified immediately upon being placed in a 37°C water bath. The warmed hydrogels gradually excluded water to reach final water contents of ~45%. The hydrogels as formed were mechanically strong, with tensile strengths as high as 100 kPa and shear moduli of 60 kPa. All three hydrogels were completely degraded (solubilized) in PBS over a 6–8 month period at 37°C, with a higher MAPLA feed ratio resulting in a faster degradation period. Culture of primary vascular smooth muscle cells with degradation solutions demonstrated a lack of cytotoxicity. The synthesized hydrogels provide new options for biomaterial injection therapy where increased mechanical strength and relatively slow resorption rates would be attractive. PMID:20575552

  17. Biological and Biochemical Characterization of Variant A Subunits of Cholera Toxin Constructed by Site-Directed Mutagenesis

    PubMed Central

    Jobling, Michael G.; Holmes, Randall K.

    2001-01-01

    Cholera toxin (CT) is the prototype for the Vibrio cholerae-Escherichia coli family of heat-labile enterotoxins having an AB5 structure. By substituting amino acids in the enzymatic A subunit that are highly conserved in all members of this family, we constructed 23 variants of CT that exhibited decreased or undetectable toxicity and we characterized their biological and biochemical properties. Many variants exhibited previously undescribed temperature-sensitive assembly of holotoxin and/or increased sensitivity to proteolysis, which in all cases correlated with exposure of epitopes of CT-A that are normally hidden in native CT holotoxin. Substitutions within and deletion of the entire active-site-occluding loop demonstrated a prominent role for His-44 and this loop in the structure and activity of CT. Several novel variants with wild-type assembly and stability showed significantly decreased toxicity and enzymatic activity (e.g., variants at positions R11, I16, R25, E29, and S68+V72). In most variants the reduction in toxicity was proportional to the decrease in enzymatic activity. For substitutions or insertions at E29 and Y30 the decrease in toxicity was 10- and 5-fold more than the reduction in enzymatic activity, but for variants with R25G, E110D, or E112D substitutions the decrease in enzymatic activity was 12- to 50-fold more than the reduction in toxicity. These variants may be useful as tools for additional studies on the cell biology of toxin action and/or as attenuated toxins for adjuvant or vaccine use. PMID:11395467

  18. The ribosomal subunit assembly line

    PubMed Central

    Dlakić, Mensur

    2005-01-01

    Recent proteomic studies in Saccharomyces cerevisiae have identified nearly 200 proteins, other than the structural ribosomal proteins, that participate in the assembly of ribosomal subunits and their transport from the nucleus. In a separate line of research, proteomic studies of mature plant ribosomes have revealed considerable variability in the protein composition of individual ribosomes. PMID:16207363

  19. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    PubMed Central

    Tandrup Schmidt, Signe; Foged, Camilla; Smith Korsholm, Karen; Rades, Thomas; Christensen, Dennis

    2016-01-01

    The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs) concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI). Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs), which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the specific PRR

  20. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators.

    PubMed

    Tandrup Schmidt, Signe; Foged, Camilla; Korsholm, Karen Smith; Rades, Thomas; Christensen, Dennis

    2016-01-01

    The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs) concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI). Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs), which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the specific PRR

  1. MspA Nanopores from Subunit Dimers

    PubMed Central

    Pavlenok, Mikhail; Derrington, Ian M.; Gundlach, Jens H.; Niederweis, Michael

    2012-01-01

    Mycobacterium smegmatis porin A (MspA) forms an octameric channel and represents the founding member of a new family of pore proteins. Control of subunit stoichiometry is important to tailor MspA for nanotechnological applications. In this study, two MspA monomers were connected by linkers ranging from 17 to 62 amino acids in length. The oligomeric pore proteins were purified from M. smegmatis and were shown to form functional channels in lipid bilayer experiments. These results indicated that the peptide linkers did not prohibit correct folding and localization of MspA. However, expression levels were reduced by 10-fold compared to wild-type MspA. MspA is ideal for nanopore sequencing due to its unique pore geometry and its robustness. To assess the usefulness of MspA made from dimeric subunits for DNA sequencing, we linked two M1-MspA monomers, whose constriction zones were modified to enable DNA translocation. Lipid bilayer experiments demonstrated that this construct also formed functional channels. Voltage gating of MspA pores made from M1 monomers and M1-M1 dimers was identical indicating similar structural and dynamic channel properties. Glucose uptake in M. smegmatis cells lacking porins was restored by expressing the dimeric mspA M1 gene indicating correct folding and localization of M1-M1 pores in their native membrane. Single-stranded DNA hairpins produced identical ionic current blockades in pores made from monomers and subunit dimers demonstrating that M1-M1 pores are suitable for DNA sequencing. This study provides the proof of principle that production of single-chain MspA pores in M. smegmatis is feasible and paves the way for generating MspA pores with altered stoichiometries. Subunit dimers enable better control of the chemical and physical properties of the constriction zone of MspA. This approach will be valuable both in understanding transport across the outer membrane in mycobacteria and in tailoring MspA for nanopore sequencing of DNA. PMID

  2. MspA nanopores from subunit dimers.

    PubMed

    Pavlenok, Mikhail; Derrington, Ian M; Gundlach, Jens H; Niederweis, Michael

    2012-01-01

    Mycobacterium smegmatis porin A (MspA) forms an octameric channel and represents the founding member of a new family of pore proteins. Control of subunit stoichiometry is important to tailor MspA for nanotechnological applications. In this study, two MspA monomers were connected by linkers ranging from 17 to 62 amino acids in length. The oligomeric pore proteins were purified from M. smegmatis and were shown to form functional channels in lipid bilayer experiments. These results indicated that the peptide linkers did not prohibit correct folding and localization of MspA. However, expression levels were reduced by 10-fold compared to wild-type MspA. MspA is ideal for nanopore sequencing due to its unique pore geometry and its robustness. To assess the usefulness of MspA made from dimeric subunits for DNA sequencing, we linked two M1-MspA monomers, whose constriction zones were modified to enable DNA translocation. Lipid bilayer experiments demonstrated that this construct also formed functional channels. Voltage gating of MspA pores made from M1 monomers and M1-M1 dimers was identical indicating similar structural and dynamic channel properties. Glucose uptake in M. smegmatis cells lacking porins was restored by expressing the dimeric mspA M1 gene indicating correct folding and localization of M1-M1 pores in their native membrane. Single-stranded DNA hairpins produced identical ionic current blockades in pores made from monomers and subunit dimers demonstrating that M1-M1 pores are suitable for DNA sequencing. This study provides the proof of principle that production of single-chain MspA pores in M. smegmatis is feasible and paves the way for generating MspA pores with altered stoichiometries. Subunit dimers enable better control of the chemical and physical properties of the constriction zone of MspA. This approach will be valuable both in understanding transport across the outer membrane in mycobacteria and in tailoring MspA for nanopore sequencing of DNA. PMID

  3. Harnessing Labile Bonds between Nanogels Particles to Create Self-Healing Materials

    NASA Astrophysics Data System (ADS)

    Kolmakov, German; Matyjaszewski, Krzysztof; Balazs, Anna

    2009-03-01

    Using computational modeling, we demonstrate the self-healing behavior of novel materials composed of nanoscopic gel particles that are interconnected into a macroscopic network by both stable and labile bonds. Under mechanical stress, the labile bonds between the nanogels can break and readily reform with reactive groups on neighboring units. This breaking and reforming allows the units in the network to undergo a structural rearrangement that preserves the mechanical integrity of the sample. The stable bonds between the nanogels play an essential role by forming a backbone that provides a mechanical strength to the material. The simulations show that just a relatively small fraction of such labile bonds (roughly 15%) are needed to prevent the catastrophic failure of the sample. The findings provide guidelines for creating high-strength, self-healing materials.

  4. A reactivity-based probe of the intracellular labile ferrous iron pool.

    PubMed

    Spangler, Benjamin; Morgan, Charles W; Fontaine, Shaun D; Vander Wal, Mark N; Chang, Christopher J; Wells, James A; Renslo, Adam R

    2016-09-01

    Improved methods for studying intracellular reactive Fe(II) are of significant interest for studies of iron metabolism and disease-relevant changes in iron homeostasis. Here we describe a highly selective reactivity-based probe in which a Fenton-type reaction with intracellular labile Fe(II) leads to unmasking of the aminonucleoside puromycin. Puromycin leaves a permanent and dose-dependent mark on treated cells that can be detected with high sensitivity and precision using a high-content, plate-based immunofluorescence assay. Using this new probe and screening approach, we detected alteration of cellular labile Fe(II) in response extracellular iron conditioning, overexpression of iron storage and/or export proteins, and post-translational regulation of iron export. We also used this new tool to demonstrate that labile Fe(II) pools are larger in cancer cells than in nontumorigenic cells. PMID:27376690

  5. Labile and Paroxysmal Hypertension: Common Clinical Dilemmas in Need of Treatment Studies.

    PubMed

    Mann, Samuel J

    2015-11-01

    Although "labile hypertension" is regularly encountered by clinicians, there is a paucity of information available to guide therapeutic decisions. This review discusses its clinical relevance, the limitations of current knowledge, and possible directions for future research and clinical management. Results of studies that assessed measures of blood pressure variability or reactivity are reviewed. The limited information about effects of antihypertensive drugs on blood pressure variability is discussed. Two different clinical presentations are differentiated: labile hypertension and paroxysmal hypertension. Labile hypertension remains a clinical impression without defined criteria or treatment guidance. Paroxysmal hypertension, also called pseudopheochromocytoma, presents as dramatic episodes of abrupt and severe blood pressure elevation. The disorder can be disabling. Although it regularly raises suspicion of a pheochromocytoma, such a tumor is found in <2 % of patients. The cause, which involves both emotional factors and the sympathetic nervous system, and treatment approaches, are presented. PMID:26370555

  6. The polychaete worm Nereis diversicolor increases mercury lability and methylation in intertidal mudflats.

    PubMed

    Sizmur, Tom; Canário, João; Edmonds, Samuel; Godfrey, Adam; O'Driscoll, Nelson J

    2013-08-01

    The polychaete worm Nereis diversicolor engineers its environment by creating oxygenated burrows in anoxic intertidal sediments. The authors carried out a laboratory microcosm experiment to test the impact of polychaete burrowing and feeding activity on the lability and methylation of mercury in sediments from the Bay of Fundy, Canada. The concentration of labile inorganic mercury and methylmercury in burrow walls was elevated compared to worm-free sediments. Mucus secretions and organic detritus in worm burrows increased labile mercury concentrations. Worms decreased sulfide concentrations, which increased Hg bioavailability to sulfate-reducing bacteria and increased methylmercury concentrations in burrow linings. Because the walls of polychaete burrows have a greater interaction with organisms, and the overlying water, the concentrations of mercury and methylmercury they contain is more toxicologically relevant to the base of a coastal food web than bulk samples. The authors recommend that researchers examining Hg in marine environments account for sediment dwelling invertebrate activity to more fully assess mercury bioavailability. PMID:23633443

  7. Labile iron in cells and body fluids: physiology, pathology, and pharmacology

    PubMed Central

    Cabantchik, Zvi Ioav

    2014-01-01

    In living systems iron appears predominantly associated with proteins, but can also be detected in forms referred as labile iron, which denotes the combined redox properties of iron and its amenability to exchange between ligands, including chelators. The labile cell iron (LCI) composition varies with metal concentration and substances with chelating groups but also with pH and the medium redox potential. Although physiologically in the lower μM range, LCI plays a key role in cell iron economy as cross-roads of metabolic pathways. LCI levels are continually regulated by an iron-responsive machinery that balances iron uptake versus deposition into ferritin. However, LCI rises aberrantly in some cell types due to faulty cell utilization pathways or infiltration by pathological iron forms that are found in hemosiderotic plasma. As LCI attains pathological levels, it can catalyze reactive O species (ROS) formation that, at particular threshold, can surpass cellular anti-oxidant capacities and seriously damage its constituents. While in normal plasma and interstitial fluids, virtually all iron is securely carried by circulating transferrin (Tf; that renders iron essentially non-labile), in systemic iron overload (IO), the total plasma iron binding capacity is often surpassed by a massive iron influx from hyperabsorptive gut or from erythrocyte overburdened spleen and/or liver. As plasma Tf approaches iron saturation, labile plasma iron (LPI) emerges in forms that can infiltrate cells by unregulated routes and raise LCI to toxic levels. Despite the limited knowledge available on LPI speciation in different types and degrees of IO, LPI measurements can be and are in fact used for identifying systemic IO and for initiating/adjusting chelation regimens to attain full-day LPI protection. A recent application of labile iron assay is the detection of labile components in intravenous iron formulations per se as well as in plasma (LPI) following parenteral iron administration

  8. Radiation-induced heat-labile sites that convert into DNA double-strand breaks

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    2000-01-01

    The yield of DNA double-strand breaks (DSBs) in SV40 DNA irradiated in aqueous solution was found to increase by more than a factor of two as a result of postirradiation incubation of the DNA at 50 degrees C and pH 8.0 for 24 h. This is in agreement with data from studies performed at 37 degrees C that were published previously. Importantly, similar results were also obtained from irradiation of mammalian DNA in agarose plugs. These results suggest that heat-labile sites within locally multiply damaged sites are produced by radiation and are subsequently transformed into DSBs. Since incubation at 50 degrees C is typically employed for lysis of cells in commonly used pulsed-field gel assays for detection of DSBs in mammalian cells, the possibility that heat-labile sites are present in irradiated cells was also studied. An increase in the apparent number of DSBs as a function of lysis time at 50 degrees C was found with kinetics that was similar to that for irradiated DNA, although the magnitude of the increase was smaller. This suggests that heat-labile sites are also formed in the cell. If this is the case, a proportion of DSBs measured by the pulsed-field gel assays may occur during the lysis step and may not be present in the cell as breaks but as heat-labile sites. It is suggested that such sites consist mainly of heat-labile sugar lesions within locally multiply damaged sites. Comparing rejoining of DSBs measured with short and long lysis procedure indicates that the heat-labile sites are repaired with fast kinetics in comparison with repair of the bulk of DSBs.

  9. Mood lability among offspring of parents with bipolar disorder and community controls

    PubMed Central

    Birmaher, Boris; Goldstein, Benjamin I; Axelson, David A; Monk, Kelly; Hickey, Mary Beth; Fan, Jieyu; Iyengar, Satish; Ha, Wonho; Diler, Rasim S; Goldstein, Tina; Brent, David; Ladouceur, Cecile D; Sakolsky, Dara; Kupfer, David J

    2013-01-01

    Objectives Early identification of bipolar disorder (BP) symptomatology is crucial for improving the prognosis of this illness. Increased mood lability has been reported in BP. However, mood lability is ubiquitous across psychiatric disorders and may be a marker of severe psychopathology and not specific to BP. To clarify this issue, this study examined the prevalence of mood lability and its components in offspring of BP parents and offspring of community control parents recruited through the Pittsburgh Bipolar Offspring Study. Methods Forty-one school-age BP offspring of 38 BP parents, 257 healthy or non-BP offspring of 174 BP parents, and 192 offspring of 117 control parents completed a scale that was developed to evaluate mood lability in youth, i.e., the Children’s Affective Lability Scale (CALS). Results A factor analysis of the parental CALS, and in part the child CALS, revealed Irritability, Mania, and Anxiety/Depression factors, with most of the variance explained by the Irritability factor. After adjusting for confounding factors (e.g., parental and offspring non-BP psychopathology), BP offspring of BP parents showed the highest parental and child total and factor scores, followed by the non-BP offspring of BP parents, and then the offspring of the controls. Conclusions Mood lability overall and mania-like, anxious/depressed, and particularly irritability symptoms may be a prodromal phenotype of BP among offspring of parents with BP. Prospective studies are warranted to clarify whether these symptoms will predict the development of BP and/or other psychopathology. If confirmed, these symptoms may become a target of treatment and biological studies before BP develops. PMID:23551755

  10. The NMDA receptor NR2A subunit regulates proliferation of MKN45 human gastric cancer cells

    SciTech Connect

    Watanabe, Kanako; Kanno, Takeshi; Oshima, Tadayuki; Miwa, Hiroto; Tashiro, Chikara; Nishizaki, Tomoyuki

    2008-03-07

    The present study investigated proliferation of MKN28 and MKN45 human gastric cancer cells regulated by the N-methyl-D-aspartate (NMDA) receptor subunit. The NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP5) inhibited proliferation of MKN45 cells, but not MKN28 cells. Of the NMDA subunits such as NR1, NR2 (2A, 2B, 2C, and 2D), and NR3 (3A and 3B), all the NMDA subunit mRNAs except for the NR2B subunit mRNA were expressed in both MKN28 and MKN45 cells. MKN45 cells were characterized by higher expression of the NR2A subunit mRNA and lower expression of the NR1 subunit mRNA, but MKN28 otherwise by higher expression of the NR1 subunit mRNA and lower expression of the NR2A subunit mRNA. MKN45 cell proliferation was also inhibited by silencing the NR2A subunit-targeted gene. For MKN45 cells, AP5 or knocking-down the NR2A subunit increased the proportion of cells in the G{sub 1} phase of cell cycling and decreased the proportion in the S/G{sub 2} phase. The results of the present study, thus, suggest that blockage of NMDA receptors including the NR2A subunit suppresses MKN45 cell proliferation due to cell cycle arrest at the G{sub 1} phase; in other words, the NR2A subunit promotes MKN45 cell proliferation by accelerating cell cycling.

  11. Crystal structure of a non-toxic mutant of heat-labile enterotoxin, which is a potent mucosal adjuvant.

    PubMed

    van den Akker, F; Pizza, M; Rappuoli, R; Hol, W G

    1997-12-01

    Two closely related bacterial toxins, heat-labile enterotoxin (LT-I) and cholera toxin (CT), not only invoke a toxic activity that affects many victims worldwide but also contain a beneficial mucosal adjuvant activity that significantly enhances the potency of vaccines in general. For the purpose of vaccine design it is most interesting that the undesirable toxic activity of these toxins can be eliminated by the single-site mutation Ser63Lys in the A subunit while the mucosal adjuvant activity is still present. The crystal structure of the Ser63Lys mutant of LT-I is determined at 2.0 A resolution. Its structure appears to be essentially the same as the wild-type LT-I structure. The substitution Ser63Lys was designed, based on the wild-type LT-I crystal structure, to decrease toxicity by interfering with NAD binding and/or catalysis. In the mutant crystal structure, the newly introduced lysine side chain is indeed positioned such that it could potentially obstruct the productive binding mode of the substrate NAD while at the same time its positive charge could possibly interfere with the critical function of nearby charged groups in the active site of LT-I. The fact that the Ser63Lys mutant of LT-I does not disrupt the wild-type LT-I structure makes the non-toxic mutant potentially suitable, from a structural point of view, to be used as a vaccine to prevent enterotoxigenic E. coli infections. The structural similarity of mutant and wild-type toxin might also be the reason why the inactive Ser63Lys variant retains its adjuvant activity. PMID:9416617

  12. Pepsin treatment of avian skin collagen. Effects on solubility, subunit composition and aggregation properties

    PubMed Central

    Bannister, D. W.; Burns, Anne B.

    1972-01-01

    1. Collagen was extracted from chick skin with dilute acetic acid followed by dilute acetic acid containing pepsin. 2. The solubilized collagens were purified and portions subjected to further digestion by pepsin. 3. This treatment decreased the aldehyde content but contamination by hexosamine was not diminished. 4. Pepsin treatment converted practically all the acid-soluble collagen into monomeric subunits (α-chains), but the pepsinsolubilized material retained a significant amount of higher subunits (β- and γ-chains). 5. Treatment lowered the rate of fibrillogenesis by acid-soluble collagen, but was without effect on pepsin-solubilized collagen. PMID:4572795

  13. Non-labile silver species in biosolids remain stable throughout 50 years of weathering and ageing.

    PubMed

    Donner, E; Scheckel, K; Sekine, R; Popelka-Filcoff, R S; Bennett, J W; Brunetti, G; Naidu, R; McGrath, S P; Lombi, E

    2015-10-01

    Increasing commercial use of nanosilver has focussed attention on the fate of silver (Ag) in the wastewater release pathway. This paper reports the speciation and lability of Ag in archived, stockpiled, and contemporary biosolids from the UK, USA and Australia, and indicates that biosolids Ag concentrations have decreased significantly over recent decades. XANES revealed the importance of reduced-sulfur binding environments for Ag speciation in materials ranging from freshly produced sludge to biosolids weathered under ambient environmental conditions for more than 50 years. Isotopic dilution with (110 m)Ag showed that Ag was predominantly non-labile in both fresh and aged biosolids (13.7% mean lability), with E-values ranging from 0.3 to 60 mg/kg and 5 mM CaNO3 extractable Ag from 1.2 to 609 μg/kg (0.002-3.4% of the total Ag). This study indicates that at the time of soil application, biosolids Ag will be predominantly Ag-sulfides and characterised by low isotopic lability. PMID:26021819

  14. Non-labile silver species in biosolids remain stable throughout 50 years of weathering and ageing.

    EPA Science Inventory

    Increasing commercial use of nanosilver has focussed attention on the fate of silver (Ag) in the wastewater release pathway. This paper reports the speciation and lability of Ag in archived, stockpiled, and contemporary biosolids from the UK, USA and Australia, and indicates that...

  15. Occurrence and abundance of carbohydrates and amino compounds in sequentially extracted labile soil organic matter fractions.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aimed to investigate the content of carbohydrates and amino compounds in three labile fraction of soil organic matter (SOM). Soil samples were collected from two agricultural fields in southern Italy and the light fraction (LF), the 500–53-µm particulate organic matter (POM) and the mobil...

  16. Labile compounds in plant litter reduce the sensitivity of decomposition to warming and altered precipitation.

    PubMed

    Suseela, Vidya; Tharayil, Nishanth; Xing, Baoshan; Dukes, Jeffrey S

    2013-10-01

    Together, climate and litter quality strongly regulate decomposition rates. Although these two factors and their interaction have been studied across species in continent-scale experiments, few researchers have studied how labile and recalcitrant compounds interact to influence decomposition, or the climate sensitivity of decomposition, within a litter type. Over a period of 3 yr, we studied the effects of warming and altered precipitation on mass loss and compound-specific decomposition using two litter types that possessed similar heteropolymer chemistry, but different proportions of labile and recalcitrant compounds. Climate treatments immediately affected the mass loss of the more recalcitrant litter, but affected the more labile litter only after 2 yr. After 3 yr, although both litter types had lost similar amounts of mass, warming (c. 4°C) and supplemental precipitation (150% of ambient) together accelerated the degradation of alkyl-carbon and lignin only in the more recalcitrant litter, highlighting the role of initial litter quality in determining whether the chemistry of litter residues converges or diverges under different climates. Our finding that labile compounds in litter reduce the climate sensitivity of mass loss and the decomposition of recalcitrant matrix is novel. Our results highlight the potential for litter quality to regulate the effect of climatic changes on the sequestration of litter-derived carbon. PMID:23822593

  17. Similarity of Monozygotic and Dizygotic Twins in Level and Lability of Subclinically Depressed Mood.

    ERIC Educational Resources Information Center

    Wierzbicki, Michael

    1986-01-01

    Ninety-two adult twin-pairs were recruited. Twin zygosity was determined by self-report inventory. Monozygotic twins resembled one another more than dizygotic twins in most measures of both level and lability of mood, which provides modest evidence for a genetic influence on subclinical levels of depression. (Author/ABB)

  18. Measurement of labile copper in wine by medium exchange stripping potentiometry utilising screen printed carbon electrodes.

    PubMed

    Clark, Andrew C; Kontoudakis, Nikolaos; Barril, Celia; Schmidtke, Leigh M; Scollary, Geoffrey R

    2016-07-01

    The presence of copper in wine is known to impact the reductive, oxidative and colloidal stability of wine, and techniques enabling measurement of different forms of copper in wine are of particular interest in understanding these spoilage processes. Electrochemical stripping techniques developed to date require significant pretreatment of wine, potentially disturbing the copper binding equilibria. A thin mercury film on a screen printed carbon electrode was utilised in a flow system for the direct analysis of labile copper in red and white wine by constant current stripping potentiometry with medium exchange. Under the optimised conditions, including an enrichment time of 500s and constant current of 1.0μA, the response range was linear from 0.015 to 0.200mg/L. The analysis of 52 red and white wines showed that this technique generally provided lower labile copper concentrations than reported for batch measurement by related techniques. Studies in a model system and in finished wines showed that the copper sulfide was not measured as labile copper, and that loss of hydrogen sulfide via volatilisation induced an increase in labile copper within the model wine system. PMID:27154696

  19. A Longitudinal Study of Emotion Regulation, Emotion Lability/Negativity, and Internalizing Symptomatology in Maltreated and Nonmaltreated Children

    PubMed Central

    Kim-Spoon, Jungmeen; Cicchetti, Dante; Rogosch, Fred A.

    2013-01-01

    The longitudinal contributions of emotion regulation and emotion lability/negativity to internalizing symptomatology were examined in a low-income sample (171 maltreated and 151 nonmaltreated children, from age 7 to 10 years). Latent difference score models indicated that, for both maltreated and nonmaltreated children, emotion regulation was a mediator between emotion lability/negativity and internalizing symptomatology, whereas emotion lability/negativity was not a mediator between emotion regulation and internalizing symptomatology. Early maltreatment was associated with high emotion lability/negativity (age 7) that contributed to poor emotion regulation (age 8), which in turn was predictive of increases in internalizing symptomatology (from age 8 to 9). The results imply important roles of emotion regulation in the development of internalizing symptomatology, especially for children with high emotion lability/negativity. PMID:23034132

  20. Oxygen consumption and labile dissolved organic carbon uptake by benthic biofilms

    NASA Astrophysics Data System (ADS)

    de Falco, Natalie; Boano, Fulvio; Arnon, Shai

    2015-04-01

    Biogeochemical activity in streams is often magnified at interfaces, such as in the case of biofilm growth near the surface of the stream sediments. The objective of this study was to evaluate the relative importance of surficial biofilms versus the biofilm in the hyporheic zone to the processes of biodegradation of a labile dissolved organic carbon (DOC) and to oxygen consumption. Experiments were conducted in a recirculating flume, equipped with a drainage system that enables the control on losing and gaining fluxes. A surficial biofilm was developed over a sandy streambed with dune-shaped bed forms, by providing labile DOC (sodium benzoate) and nitrate. Homogeneously distributed biofilm was obtained by the same feeding strategy but with mixing the sediments manually on a daily basis. After the biofilm growth period, transformation of the labile DOC under different overlying velocities and losing or gaining fluxes was studied after spiking with sodium benzoate and by monitoring the decrease in DOC concentration in the bulk water over time using an online UV/Vis spectrophotometer. In addition, oxygen profiles across the water-streambed interface were measured at different locations along the bed form using oxygen microelectrodes. Preliminary results showed that the rate of labile DOC degradation increased exponentially with increasing overlying water velocity, regardless of the type of biofilm. Gaining and losing conditions did not play a critical role in the DOC degradation regardless of the type of biofilm, because the labile DOC was quickly utilized close to the surface. Under losing conditions, complete depletion of oxygen was observed within the top 5 millimeters, regardless of the biofilm type. In contrast, oxygen profiles under gaining condition showed an incomplete consumption of oxygen followed by an increase in the concentration of oxygen deeper in the sediments due to the upward flow of oxygenated groundwater. The results suggest that the transformation

  1. Activities of complete and truncated forms of pertussis toxin subunits S1 and S2 synthesized by Escherichia coli.

    PubMed Central

    Locht, C; Cieplak, W; Marchitto, K S; Sato, H; Keith, J M

    1987-01-01

    The genes encoding the S1 and S2 subunits of pertussis toxin were expressed in Escherichia coli under lac operon transcription and translation control with pUC8 and pUC18 as the expression vectors. Various versions of the subunits were detected with anti-S1 or anti-S2 monoclonal antibodies. Recombinant S1, but not S2, subunit contained the enzymatic NAD-glycohydrolase and NAD:Gi ADP-ribosyltransferase activities. Both activities were also expressed by a truncated version of the S1 subunit in which the 48 carboxy-terminal amino acid residues, including a predicted Rossman structure and one of the two cysteines, had been deleted. The epitope for an anti-S2 monoclonal antibody was localized to the N-terminal 40-amino-acid region of the S2 subunit. Both the S1 and S2 subunits expressed in E. coli reacted with human hyperimmune serum. The full length and the truncated recombinant S1 subunit also reacted in Western blots with a neutralizing and protective monoclonal anti-S1 antibody. The different versions of S1 and S2 subunits expressed in E. coli are useful for mapping active sites, epitopes, and regions that interact with receptors or the other subunits in the holotoxin. These recombinant subunits will also facilitate the development of a safer, new-generation vaccine against whooping cough. Images PMID:3117686

  2. Using isotopic dilution to assess chemical extraction of labile Ni, Cu, Zn, Cd and Pb in soils.

    PubMed

    Garforth, J M; Bailey, E H; Tye, A M; Young, S D; Lofts, S

    2016-07-01

    Chemical extractants used to measure labile soil metal must ideally select for and solubilise the labile fraction, with minimal solubilisation of non-labile metal. We assessed four extractants (0.43 M HNO3, 0.43 M CH3COOH, 0.05 M Na2H2EDTA and 1 M CaCl2) against these requirements. For soils contaminated by contrasting sources, we compared isotopically exchangeable Ni, Cu, Zn, Cd and Pb (EValue, mg kg(-1)), with the concentrations of metal solubilised by the chemical extractants (MExt, mg kg(-1)). Crucially, we also determined isotopically exchangeable metal in the soil-extractant systems (EExt, mg kg(-1)). Thus 'EExt - EValue' quantifies the concentration of mobilised non-labile metal, while 'EExt - MExt' represents adsorbed labile metal in the presence of the extractant. Extraction with CaCl2 consistently underestimated EValue for Ni, Cu, Zn and Pb, while providing a reasonable estimate of EValue for Cd. In contrast, extraction with HNO3 both consistently mobilised non-labile metal and overestimated the EValue. Extraction with CH3COOH appeared to provide a good estimate of EValue for Cd; however, this was the net outcome of incomplete solubilisation of labile metal, and concurrent mobilisation of non-labile metal by the extractant (MExtEValue). The Na2H2EDTA extractant mobilised some non-labile metal in three of the four soils, but consistently solubilised the entire labile fraction for all soil-metal combinations (MExt ≈ EExt). Comparison of EValue, MExt and EExt provides a rigorous means of assessing the underlying action of soil chemical extraction methods and could be used to refine long-standing soil extraction methodologies. PMID:27153236

  3. Valine 904, tyrosine 898, and cysteine 908 in Na,K-ATPase alpha subunits are important for assembly with beta subunits.

    PubMed

    Wang, S G; Farley, R A

    1998-11-01

    A 26-amino acid sequence in an extracellular loop of the Na,K-ATPase alpha subunit between membrane-spanning segments 7 and 8 has been shown to bind to the beta subunit of Na,K-ATPase and to promote alphabeta assembly (Lemas, M. V., Hamrick, M., Takeyasu, K., and Fambrough, D. M. (1994) J. Biol. Chem. 269, 8255-8259) When this 26-amino acid sequence of the rat Na,K-ATPase alpha3 subunit was replaced by the corresponding sequence of the rat gastric H,K-ATPase alpha subunit, the chimeric alpha subunit assembled preferentially with the rat gastric H,K-ATPase beta subunit (Wang, S.-G., Eakle, K. A., Levenson, R., and Farley, R. A. (1997) Am. J. Physiol. 272, C923-C930). In the present study, these 26 amino acids (Asn886-Ala911) of rat Na,K-ATPase alpha3 were replaced by the corresponding amino acids Asn908-Ala933 of rat distal colon H, K-ATPase. Site-directed mutagenesis of the chimeric alpha subunits and Na,K-ATPase alpha3 showed that Val904, Tyr898, and Cys908 in the Na,K-ATPase alpha3 subunit are key residues in alphabeta subunit interactions. The V904Q mutation in Na,K-ATPase alpha3 reduced the Bmax for ouabain binding and the ATPase activity of alpha3beta1 complexes by approximately 95%, and Y898R reduced the Bmax and ATPase activity by approximately 60%. The complementary mutations Q904V and R898Y increased the amount of ouabain bound by yeast membranes expressing the chimera with the colon H,K-ATPase sequence. The amount of ouabain bound by complexes assembled between Na, K-ATPase alpha3 containing the Y898R,C908G mutations and gastric H, K-ATPase beta was less than 10% of wild type Na,K-ATPase alpha3 expressed with the same beta subunit. The R898Y,G908C mutations in the chimeric alpha subunits also increased ouabain binding. PMID:9792642

  4. Glaciers as a source of ancient and labile organic matter to the marine environment.

    PubMed

    Hood, Eran; Fellman, Jason; Spencer, Robert G M; Hernes, Peter J; Edwards, Rick; D'Amore, David; Scott, Durelle

    2009-12-24

    Riverine organic matter supports of the order of one-fifth of estuarine metabolism. Coastal ecosystems are therefore sensitive to alteration of both the quantity and lability of terrigenous dissolved organic matter (DOM) delivered by rivers. The lability of DOM is thought to vary with age, with younger, relatively unaltered organic matter being more easily metabolized by aquatic heterotrophs than older, heavily modified material. This view is developed exclusively from work in watersheds where terrestrial plant and soil sources dominate streamwater DOM. Here we characterize streamwater DOM from 11 coastal watersheds on the Gulf of Alaska that vary widely in glacier coverage (0-64 per cent). In contrast to non-glacial rivers, we find that the bioavailability of DOM to marine microorganisms is significantly correlated with increasing (14)C age. Moreover, the most heavily glaciated watersheds are the source of the oldest ( approximately 4 kyr (14)C age) and most labile (66 per cent bioavailable) DOM. These glacial watersheds have extreme runoff rates, in part because they are subject to some of the highest rates of glacier volume loss on Earth. We estimate the cumulative flux of dissolved organic carbon derived from glaciers contributing runoff to the Gulf of Alaska at 0.13 +/- 0.01 Tg yr(-1) (1 Tg = 10(12) g), of which approximately 0.10 Tg is highly labile. This indicates that glacial runoff is a quantitatively important source of labile reduced carbon to marine ecosystems. Moreover, because glaciers and ice sheets represent the second largest reservoir of water in the global hydrologic system, our findings indicate that climatically driven changes in glacier volume could alter the age, quantity and reactivity of DOM entering coastal oceans. PMID:20033045

  5. Enrichment of GABAA Receptor α-Subunits on the Axonal Initial Segment Shows Regional Differences

    PubMed Central

    Gao, Yudong; Heldt, Scott A.

    2016-01-01

    Although it is generally recognized that certain α-subunits of γ-aminobutyric acid type A receptors (GABAARs) form enriched clusters on the axonal initial segment (AIS), the degree to which these clusters vary in different brain areas is not well known. In the current study, we quantified the density, size, and enrichment ratio of fluorescently labeled α1-, α2-, or α3-subunits aggregates co-localized with the AIS-marker ankyrin G and compared them to aggregates in non-AIS locations among different brain areas including hippocampal subfields, basal lateral amygdala (BLA), prefrontal cortex (PFC), and sensory cortex (CTX). We found regional differences in the enrichment of GABAAR α-subunits on the AIS. Significant enrichment was identified in the CA3 of hippocampus for α1-subunits, in the CA1, CA3, and BLA for α2-subunits, and in the BLA for α3-subunits. Using α-subunit knock-out (KO) mice, we found that BLA enrichment of α2- and α3-subunits were physiologically independent of each other, as the enrichment of one subunit was unaffected by the genomic deletion of the other. To further investigate the unique pattern of α-subunit enrichment in the BLA, we examined the association of α2- and α3-subunits with the presynaptic vesicular GABA transporter (vGAT) and the anchoring protein gephyrin (Geph). As expected, both α2- and α3-subunits on the AIS within the BLA received prominent GABAergic innervation from vGAT-positive terminals. Further, we found that the association of α2- and α3-subunits with Geph was weaker in AIS versus non-AIS locations, suggesting that Geph might be playing a lesser role in the enrichment of α2- and α3-subunits on the AIS. Overall, these observations suggest that GABAARs on the AIS differ in subunit composition across brain regions. As with somatodendritic GABAARs, the distinctive expression pattern of AIS-located GABAAR α-subunits in the BLA, and other brain areas, likely contribute to unique forms of GABAergic inhibitory

  6. Myristoylated. cap alpha. subunits of guanine nucleotide-binding regulatory proteins

    SciTech Connect

    Buss, J.E.; Mumby, S.M.; Casey, P.J.; Gilman, A.G.; Sefton, B.M.

    1987-11-01

    Antisera directed against specific subunits of guanine nucleotide-binding regulatory proteins (G proteins) were used to immunoprecipitate these polypeptides from metabolically labeled cells. This technique detects, in extracts of a human astrocytoma cell line, the ..cap alpha.. subunits of G/sub s/ (stimulatory) (..cap alpha../sub 45/ and ..cap alpha../sub 52/), a 41-kDa subunit of G/sub i/ (inhibitory) (..cap alpha../sub 41/), a 40-kDa protein (..cap alpha../sub 40/), and the 36-kDa ..beta.. subunit. No protein that comigrated with the ..cap alpha.. subunit of G/sup 0/ (unknown function) (..cap alpha../sub 39/) was detected. In cells grown in the presence of (/sup 3/H)myristic acid, ..cap alpha../sub 41/ and ..cap alpha../sub 40/ contained /sup 3/H label, while the ..beta.. subunit did not. Chemical analysis of lipids attached covalently to purified ..cap alpha../sub 41/ and ..cap alpha../sub 39/ from bovine brain also revealed myristic acid. Similar analysis of brain G protein ..beta.. and ..gamma.. subunits and of G/sub t/ (Transducin) subunits (..cap alpha.., ..beta.., and ..gamma..) failed to reveal fatty acids. The fatty acid associated with ..cap alpha../sub 41/ , ..cap alpha../sub 40/, and ..cap alpha../sub 39/ was stable to treatment with base, suggesting that the lipid is linked to the polypeptide via an amide bond. These GTP binding proteins are thus identified as members of a select group of proteins that contains myristic acid covalently attached to the peptide backbone. Myristate may play an important role in stabilizing interactions of G proteins with phospholipid or with membrane-bound proteins.

  7. Stabilization of labile organic C along a chronosequence of soil development: mineralogical vs. biological controls

    NASA Astrophysics Data System (ADS)

    McFarland, J. W.; Waldrop, M. P.; Strawn, D.; Harden, J. W.

    2010-12-01

    Soil organic matter (SOM) represents an important reservoir for carbon (C), nitrogen (N), and other essential nutrients. Consequently, variation in SOM turnover rates regulates resource availability for soil microbial activity and plant growth. Long-term SOM stabilization generally involves restricted microbial access to SOM through a variety of processes including complexation with soil minerals. These organo-mineral interactions are influenced by mineral composition and texture, often related to soil age. Soil microorganisms also influence the stabilization of C inputs to the pedosphere through the production of refractory residues controlled in part by C allocation patterns during metabolism. In this study we examined, simultaneously, the contribution of these two C stabilizing mechanisms by ‘tracing’ the fate of two 13C-labeled substrates (glucose and p-hydroxybenzoic acid) along a 1600Kya chronosequence of soil development along the Cowlitz River in southwest Washington. Our objective was to evaluate the relationship between mineralogical and biological controls over C sequestration in soils. Mineralogical analyses were done using the selective dissolutions ammonium oxalate (AOD), and dithionite-citrate extraction (CBD). In this cool, humid environment, intermediate aged soils derived from the late Wisconsin Evans Creek drift (24ka) had the highest AOD extractable Al, Fe, and Si, indicating a higher concentration of poorly crystalline minerals relative to other terraces. Correspondingly, CBD extractable Fe increases with soil age, further supporting the idea that crystalline iron oxides are also more prevalent with weathering. Turnover of both 13C-labeled substrates was rapid (< 12.5 hrs) However, the proportion of substrate mineralized to CO2 varied among terraces. Mineralization to CO2 was significantly lower at 24ka than that for the other three age classes (0.25k, 220k, and 1,600k years bp), corresponding to higher recovery of 13C in bulk soil for this

  8. Differential regulation of thyrotropin subunit apoprotein and carbohydrate biosynthesis by thyroid hormone

    SciTech Connect

    Taylor, T.; Weintraub, B.D.

    1985-04-01

    The regulation of TSH apoprotein and carbohydrate biosynthesis by thyroid hormone was studied by incubating pituitaries from normal and hypothyroid (3 weeks post-thyroidectomy) rats in medium containing (/sup 14/C)alanine and (/sup 3/H) glucosamine. After 6 h, samples were sequentially treated with anti-TSH beta to precipitate TSH and free TSH beta, anti-LH beta to clear the sample of LH and free LH beta, then anti-LH alpha to precipitate free alpha-subunit. Total proteins were acid precipitated. All precipitates were subjected to electrophoresis on sodium dodecyl sulfate-polyacrylamide gels, which were then sliced and assayed by scintillation spectrometry. In hypothyroid pituitaries plus medium, (/sup 14/C)alanine incorporation in combined and free beta-subunits was 26 times normal and considerably greater than the 3.4-fold increase seen in total protein; combined and free alpha-subunits showed no specific increase in apoprotein synthesis. (/sup 3/H)Glucosamine incorporation in combined alpha- and beta-subunits in hypothyroid samples was 13 and 21 times normal, respectively, and was greater than the 1.9-fold increase in total protein; free alpha-subunit showed no specific increase in carbohydrate synthesis. The glucosamine to alanine ratio, reflecting relative glycosylation of newly synthesized molecules, was increased in hypothyroidism for combined alpha-subunits, but not for combined beta-subunits, free alpha-subunits, or total proteins. In summary, short term hypothyroidism selectively stimulated TSH beta apoprotein synthesis and carbohydrate synthesis of combined alpha- and beta-subunits. Hypothyroidism also increased the relative glycosylation of combined alpha-subunit. Thus, thyroid hormone deficiency appears to alter the rate-limiting step in TSH assembly (i.e. beta-subunit synthesis) as well as the carbohydrate structure of TSH, which may play important roles in its biological function.

  9. The contents of labile sulfides in the bottom sediments of the central part of the Sea of Azov: Impact on benthic communities

    NASA Astrophysics Data System (ADS)

    Sorokin, Yu. I.; Burkatskii, O. N.

    2007-10-01

    At 17 stations in the central part of the Sea of Azov, the contents of labile (acid-soluble) sulfides were determined in the upper layer (0-3 cm) of the bottom sediments. At 14 of these stations, the contents of sulfides in the oozy silts were over 300 mg S/dm3 of wet sediment; at seven of the stations, the contents of sulfide were as high as 420-720 mg S/dm3 of wet ooze, or 0.1-0.2% of dry weight. At the other three stations, where neutral matter such as shells and sand prevailed in the samples, the contents of sulfides varied from 80 to 110 mg S/dm3. At these stations, a high density and species diversity of the benthic fauna was retained. At other stations with labile sulfide contents over 200-300 mg S/dm3, the benthos biomass decreased by one or two orders of magnitude. At most of them, it was below 3 g/m2 and the small gastropod Hydrobia tolerant to sulfides dominated. The data obtained show that, in the central part of the Sea of Azov, reduced sediments with high contents of labile sulfides migrate towards the bottom surface, which conforms to the high intensity of the hydrogen sulfide formation process caused by the bacterial sulfate reduction. The study considers the environmental effects of the sulfide contamination of the upper layer of the bottom sediments in the Sea of Azov as a key factor causing the recurrent hypoxy in the near-bottom layers of the water, the suffocation occurrence, and the progressive depletion of the benthic and pelagic fauna.

  10. Spectroscopic properties of Carcinus aestuarii hemocyanin and its structural subunits

    NASA Astrophysics Data System (ADS)

    Dolashka-Angelova, Pavlina; Hristova, Rumiyana; Stoeva, Stanka; Voelter, Wolfgang

    1999-12-01

    Hemocyanin (Hc) of Carcinus aestuarii contains three major and one minor electrophoretically separable polypeptide chains which were purified by fast protein liquid chromatography (FPLC) ion exchange chromatography. N-terminal amino acid sequences of four structural subunits (SSs) from C. aestuarii were compared with known N-terminal sequences from other arthropodan hemocyanins. The conformational changes, induced by various treatments, were monitored by far UV, CD and fluorescence spectroscopy. The critical temperatures for the structural subunits, Tc, determined by fluorescence spectroscopy, are in the region of 52-59°C and coincide with the melting temperatures, Tm (49-55°C), determined by CD spectroscopy. The free energy of stabilization in water, Δ GDH 2O , toward guanidinium hydrochloride is about 1.3 times higher for the dodecameric Hc as compared to the isolated subunits and about one time higher for Ca1, comparing with other SSs. The studies reveal that the conformational stability of the native dodecamer towards various denaturants (temperature and guanidinium hydrochloride) indicate that the quaternary structure is stabilized by oligomerization between structural subunits, and the possibility of a structural role of the sugar mojeties cannot be excluded.

  11. Hybrid rotors in F1F(o) ATP synthases: subunit composition, distribution, and physiological significance.

    PubMed

    Brandt, Karsten; Müller, Volker

    2015-09-01

    The c ring of the Na+ F1F(o) ATP synthase from the anaerobic acetogenic bacterium Acetobacterium woodii is encoded by three different genes: atpE1, atpE2 and atpE3. Subunit c1 is similar to typical V-type c subunits and has four transmembrane helices with one ion binding site. Subunit c2 and c3 are identical at the amino acid level and are typical F-type c subunits with one ion binding site in two transmembrane helices. All three constitute a hybrid F(o)V(o) c ring, the first found in nature. To analyze whether other species may have similar hybrid rotors, we searched every genome sequence publicly available as of 23 February 2015 for F1F(o) ATPase operons that have more than one gene encoding the c subunit. This revealed no other species that has three different c subunit encoding genes but twelve species that encode one F(o)- and one V(o)-type c subunit in one operon. Their c subunits have the conserved binding motif for Na+. The organisms are all anaerobic. The advantage of hybrid c rings for the organisms in their environments is discussed. PMID:25838297

  12. The cyclope gene of Drosophila encodes a cytochrome c oxidase subunit VIc homolog.

    PubMed

    Szuplewski, S; Terracol, R

    2001-08-01

    Cytochrome c oxidase is the terminal enzyme of the mitochondrial electron transfer chain. In eukaryotes, the enzyme is composed of 3 mitochondrial DNA-encoded subunits and 7-10 (in mammals) nuclear DNA-encoded subunits. This enzyme has been extensively studied in mammals and yeast but, in Drosophila, very little is known and no mutant has been described so far. Here we report the genetic and molecular characterization of mutations in cyclope (cype) and the cloning of the gene encoding a cytochrome c oxidase subunit VIc homolog. cype is an essential gene whose mutations are lethal and show pleiotropic phenotypes. The 77-amino acid peptide encoded by cype is 46% identical and 59% similar to the human subunit (75 amino acids). The transcripts are expressed maternally and throughout development in localized regions. They are found predominantly in the central nervous system of the embryo; in the central region of imaginal discs; in the germarium, follicular, and nurse cells of the ovary; and in testis. A search in the Genome Annotation Database of Drosophila revealed the absence of subunit VIIb and the presence of 9 putative nuclear cytochrome c oxidase subunits with high identity scores when compared to the 10 human subunits. PMID:11514451

  13. The cyclope gene of Drosophila encodes a cytochrome c oxidase subunit VIc homolog.

    PubMed Central

    Szuplewski, S; Terracol, R

    2001-01-01

    Cytochrome c oxidase is the terminal enzyme of the mitochondrial electron transfer chain. In eukaryotes, the enzyme is composed of 3 mitochondrial DNA-encoded subunits and 7-10 (in mammals) nuclear DNA-encoded subunits. This enzyme has been extensively studied in mammals and yeast but, in Drosophila, very little is known and no mutant has been described so far. Here we report the genetic and molecular characterization of mutations in cyclope (cype) and the cloning of the gene encoding a cytochrome c oxidase subunit VIc homolog. cype is an essential gene whose mutations are lethal and show pleiotropic phenotypes. The 77-amino acid peptide encoded by cype is 46% identical and 59% similar to the human subunit (75 amino acids). The transcripts are expressed maternally and throughout development in localized regions. They are found predominantly in the central nervous system of the embryo; in the central region of imaginal discs; in the germarium, follicular, and nurse cells of the ovary; and in testis. A search in the Genome Annotation Database of Drosophila revealed the absence of subunit VIIb and the presence of 9 putative nuclear cytochrome c oxidase subunits with high identity scores when compared to the 10 human subunits. PMID:11514451

  14. Single subunit type of ferritin from visceral mass of Saccostrea cucullata: cloning, expression and cisplatin-subunit analysis.

    PubMed

    Zhu, Bo; Lin, Qing; Ke, Cai-Huan; Huang, He-Qing

    2011-09-01

    Ferritin, the iron storage protein, plays a key role in iron metabolism. Here, we have cloned an inducible ferritin cDNA with 516 bp within the open reading frame fragment from the visceral mass of Saccostrea cucullata. The subunit sequence of the ferritin was predicted to be a polypeptide of 171 amino acids with a molecular weight (MW) of 19.9182 kDa and an isoelectric point of 5.24. The cDNA sequence of S. cucullata ferritin was constructed into a pET-32a expression system for expressing its relative protein efficiently in the Escherichia coli BL21 strain under isopropyl-β-D-thiogalactoside (IPTG) induction. The recombinant ferritin, which was further purified on a Ni-NTA resin column and digested with enterokinase, was detected as a single subunit of approximately MW 20 kDa using both SDS-PAGE and mass spectrometry. S. cucullata ferritin (ScFer) showed 98% identity with Crassostrea gigas ferritin at the amino acid level. The secondary structure and phosphorylation sites of deduced amino acids were predicted with ExPASy proteomics tools and the NetPhos 2.0 server, respectively, and the subunit space structure of recombinant S. cucullata ferritin (rScFer) was built using the molecular operating environmental software system. The results of both in-gel digestion and identification using MALDI-TOF MS/MS showed that the recombinant protein was ScFer. ICP-MS indicated that rScFer subunit can directly bind to cisplatin[cis-Diaminedichloroplatinum(CDDP)], giving approximately 22.9 CDDP/ferritin subunit for forming a novel complex of CDDP-subunit, which suggests that it constructs a nanometer CDDP core-ferritin for developing a new drug of anti-cancer. The results of both the real-time PCR and Western blotting showed that the expression of ScFer mRNA was up-regulated in the oyster under the stress of Cd(2+). In addition, the expression increment of ScFer mRNA under bacterial challenge indicated that ferritin participated in the immune response of S. cucullata. The

  15. Accessory subunit of mitochondrial DNA polymerase from Drosophila embryos. Cloning, molecular analysis, and association in the native enzyme.

    PubMed

    Wang, Y; Farr, C L; Kaguni, L S

    1997-05-23

    A full-length cDNA of the accessory (beta) subunit of mitochondrial DNA polymerase from Drosophila embryos has been obtained, and its nucleotide sequence was determined. The cDNA clone encodes a polypeptide with a deduced amino acid sequence of 361 residues and a predicted molecular mass of 41 kDa. The gene encoding the beta subunit lies within 4 kilobase pairs of that for the catalytic subunit in the Drosophila genome, on the left arm of chromosome 2. The two genes have similar structural features and share several common DNA sequence elements in their upstream regions, suggesting the possibility of coordinate regulation. A human cDNA homolog of the accessory subunit was identified, and its nucleotide sequence was determined. The human sequence encodes a polypeptide with a predicted molecular mass of 43 kDa that shows a high degree of amino acid sequence similarity to the Drosophila beta subunit. Subunit-specific rabbit antisera, directed against the recombinant catalytic and accessory subunit polypeptides overexpressed and purified from Escherichia coli, recognize specifically and immunoprecipitate the native enzyme from Drosophila embryos. Demonstration of the physical association of the two subunits in the Drosophila enzyme and identification of a human accessory subunit homolog provide evidence for a common heterodimeric structure for animal mitochondrial DNA polymerases. PMID:9153213

  16. Flocculated meltwater particles control Arctic land-sea fluxes of labile iron

    NASA Astrophysics Data System (ADS)

    Markussen, Thor Nygaard; Elberling, Bo; Winter, Christian; Andersen, Thorbjørn Joest

    2016-04-01

    Glacial meltwater systems supply the Arctic coastal ocean with large volumes of sediment and potentially bioavailable forms of iron, nitrogen and carbon. The particulate fraction of this supply is significant but estuarine losses have been thought to limit the iron supply from land. Here, our results reveal how flocculation (particle aggregation) involving labile iron may increase horizontal transport rather than enhance deposition close to the source. This is shown by combining field observations in Disko Fjord, West Greenland, and laboratory experiments. Our data show how labile iron affects floc sizes, shapes and densities and consequently yields low settling velocities and extended sediment plumes. We highlight the importance of understanding the flocculation mechanisms when examining fluxes of meltwater transported iron in polar regions today and in the future, and we underline the influence of terrestrial hotspots on the nutrient and solute cycles in Arctic coastal waters.

  17. The Effect of Multiple Parallel Bonds on the Self-healing of Labile Crosslinked Nanogel Networks

    NASA Astrophysics Data System (ADS)

    Salib, Isaac G.; Kolmakov, German V.; Gnegy, Chet N.; Matyjaszewski, Krzysztof; Balazs, Anna C.

    2011-03-01

    We develop a hybrid computational approach to examine the mechanical properties and self-healing behavior of nanogel particles that are crosslinked primarily by highly reactive bonds that can break and readily remake (labile bonds). The individual nanogels are modeled via the lattice spring model (LSM). The crosslinks between the nanogels are simulated via a modified Hierarchical Bell Model (HBM), which allows us to capture both the rupturing and reforming of multiple, parallel bonds due to an applied force. Using our hybrid HBM/LSM, we simulate the behavior of the crosslinked nanogels under a tensile deformation. In these simulations, each labile linkage between the nanogels contains at most N parallel bonds. We reveal that while numerous parallel bonds within a linkage enhance the strength of the material, these bonds diminish the ductility and the ability of the material to undergo the structural rearrangements that are necessary for self-repair.

  18. Flocculated meltwater particles control Arctic land-sea fluxes of labile iron.

    PubMed

    Markussen, Thor Nygaard; Elberling, Bo; Winter, Christian; Andersen, Thorbjørn Joest

    2016-01-01

    Glacial meltwater systems supply the Arctic coastal ocean with large volumes of sediment and potentially bioavailable forms of iron, nitrogen and carbon. The particulate fraction of this supply is significant but estuarine losses have been thought to limit the iron supply from land. Here, our results reveal how flocculation (particle aggregation) involving labile iron may increase horizontal transport rather than enhance deposition close to the source. This is shown by combining field observations in Disko Fjord, West Greenland, and laboratory experiments. Our data show how labile iron affects floc sizes, shapes and densities and consequently yields low settling velocities and extended sediment plumes. We highlight the importance of understanding the flocculation mechanisms when examining fluxes of meltwater transported iron in polar regions today and in the future, and we underline the influence of terrestrial hotspots on the nutrient and solute cycles in Arctic coastal waters. PMID:27050673

  19. Flocculated meltwater particles control Arctic land-sea fluxes of labile iron

    PubMed Central

    Markussen, Thor Nygaard; Elberling, Bo; Winter, Christian; Andersen, Thorbjørn Joest

    2016-01-01

    Glacial meltwater systems supply the Arctic coastal ocean with large volumes of sediment and potentially bioavailable forms of iron, nitrogen and carbon. The particulate fraction of this supply is significant but estuarine losses have been thought to limit the iron supply from land. Here, our results reveal how flocculation (particle aggregation) involving labile iron may increase horizontal transport rather than enhance deposition close to the source. This is shown by combining field observations in Disko Fjord, West Greenland, and laboratory experiments. Our data show how labile iron affects floc sizes, shapes and densities and consequently yields low settling velocities and extended sediment plumes. We highlight the importance of understanding the flocculation mechanisms when examining fluxes of meltwater transported iron in polar regions today and in the future, and we underline the influence of terrestrial hotspots on the nutrient and solute cycles in Arctic coastal waters. PMID:27050673

  20. Adhesin degradation accelerates delivery of heat-labile toxin by enterotoxigenic Escherichia coli.

    PubMed

    Roy, Koushik; Kansal, Rita; Bartels, Scott R; Hamilton, David J; Shaaban, Salwa; Fleckenstein, James M

    2011-08-26

    Many enteric pathogens, including enterotoxigenic Escherichia coli (ETEC), produce one or more serine proteases that are secreted via the autotransporter (or type V) bacterial secretion pathway. These molecules have collectively been referred to as SPATE proteins (serine protease autotransporter of the Enterobacteriaceae). EatA, an autotransporter previously identified in ETEC, possesses a functional serine protease motif within its secreted amino-terminal passenger domain. Although this protein is expressed by many ETEC strains and is highly immunogenic, its precise function is unknown. Here, we demonstrate that EatA degrades a recently characterized adhesin, EtpA, resulting in modulation of bacterial adhesion and accelerated delivery of the heat-labile toxin, a principal ETEC virulence determinant. Antibodies raised against the passenger domain of EatA impair ETEC delivery of labile toxin to epithelial cells suggesting that EatA may be an effective target for vaccine development. PMID:21757737

  1. Novel Regulation of the Synthesis of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Subunit GluA1 by Carnitine Palmitoyltransferase 1C (CPT1C) in the Hippocampus.

    PubMed

    Fadó, Rut; Soto, David; Miñano-Molina, Alfredo J; Pozo, Macarena; Carrasco, Patricia; Yefimenko, Natalia; Rodríguez-Álvarez, José; Casals, Núria

    2015-10-16

    The regulation of AMPA-type receptor (AMPAR) abundance in the postsynaptic membrane is an important mechanism involved in learning and memory formation. Recent data suggest that one of the constituents of the AMPAR complex is carnitine palmitoyltransferase 1C (CPT1C), a brain-specific isoform located in the endoplasmic reticulum of neurons. Previous results had demonstrated that CPT1C deficiency disrupted spine maturation in hippocampal neurons and impaired spatial learning, but the role of CPT1C in AMPAR physiology had remained mostly unknown. In the present study, we show that CPT1C binds GluA1 and GluA2 and that the three proteins have the same expression profile during neuronal maturation. Moreover, in hippocampal neurons of CPT1C KO mice, AMPAR-mediated miniature excitatory postsynaptic currents and synaptic levels of AMPAR subunits GluA1 and GluA2 are significantly reduced. We show that AMPAR expression is dependent on CPT1C levels because total protein levels of GluA1 and GluA2 are decreased in CPT1C KO neurons and are increased in CPT1C-overexpressing neurons, whereas other synaptic proteins remain unaltered. Notably, mRNA levels of AMPARs remained unchanged in those cultures, indicating that CPT1C is post-transcriptionally involved. We demonstrate that CPT1C is directly involved in the de novo synthesis of GluA1 and not in protein degradation. Moreover, in CPT1C KO cultured neurons, GluA1 synthesis after chemical long term depression was clearly diminished, and brain-derived neurotrophic factor treatment was unable to phosphorylate the mammalian target of rapamycin (mTOR) and stimulate GluA1 protein synthesis. These data newly identify CPT1C as a regulator of AMPAR translation efficiency and therefore also synaptic function in the hippocampus. PMID:26338711

  2. Antibodies to GABAA receptor α1 and γ2 subunits

    PubMed Central

    Pettingill, Philippa; Kramer, Holger B.; Coebergh, Jan Adriaan; Pettingill, Rosie; Maxwell, Susan; Nibber, Anjan; Malaspina, Andrea; Jacob, Anu; Irani, Sarosh R.; Buckley, Camilla; Beeson, David; Lang, Bethan; Waters, Patrick

    2015-01-01

    Objective: To search for antibodies against neuronal cell surface proteins. Methods: Using immunoprecipitation from neuronal cultures and tandem mass spectrometry, we identified antibodies against the α1 subunit of the γ-aminobutyric acid A receptor (GABAAR) in a patient whose immunoglobulin G (IgG) antibodies bound to hippocampal neurons. We searched 2,548 sera for antibodies binding to GABAAR α, β, and γ subunits on live HEK293 cells and identified the class, subclass, and GABAAR subunit specificities of the positive samples. Results: GABAAR-Abs were identified in 40 of 2,046 (2%) referred sera previously found negative for neuronal antibodies, in 5/502 (1%) previously positive for other neuronal surface antibodies, but not in 92 healthy individuals. The antibodies in 40% bound to either the α1 (9/45, 20%) or the γ2 subunits (9/45, 20%) and were of IgG1 (94%) or IgG3 (6%) subclass. The remaining 60% had lower antibody titers (p = 0.0005), which were mainly immunoglobulin M (IgM) (p = 0.0025), and showed no defined subunit specificity. Incubation of primary hippocampal neurons with GABAAR IgG1 sera reduced surface GABAAR membrane expression. The clinical features of 15 patients (GABAAR α1 n = 6, γ2 n = 5, undefined n = 4) included seizures (47%), memory impairment (47%), hallucinations (33%), or anxiety (20%). Most patients had not been given immunotherapies, but one with new-onset treatment-resistant catatonia made substantial improvement after plasma exchange. Conclusions: The GABAAR α1 and γ2 are new targets for antibodies in autoimmune neurologic disease. The full spectrum of clinical features, treatment responses, correlation with antibody specificity, and in particular the role of the IgM antibodies will need to be assessed in future studies. PMID:25636713

  3. A Solvent-Free Thermosponge Nanoparticle Platform for Efficient Delivery of Labile Proteins

    PubMed Central

    2015-01-01

    Protein therapeutics have gained attention recently for treatment of a myriad of human diseases due to their high potency and unique mechanisms of action. We present the development of a novel polymeric thermosponge nanoparticle for efficient delivery of labile proteins using a solvent-free polymer thermo-expansion mechanism with clinical potential, capable of effectively delivering a range of therapeutic proteins in a sustained manner with no loss of bioactivity, with improved biological half-lives and efficacy in vivo. PMID:25333768

  4. Protein degradation by ubiquitin–proteasome system in formation and labilization of contextual conditioning memory

    PubMed Central

    Sol Fustiñana, María; de la Fuente, Verónica; Federman, Noel; Freudenthal, Ramiro

    2014-01-01

    The ubiquitin–proteasome system (UPS) of protein degradation has been evaluated in different forms of neural plasticity and memory. The role of UPS in such processes is controversial. Several results support the idea that the activation of this system in memory consolidation is necessary to overcome negative constrains for plasticity. In this case, the inhibition of the UPS during consolidation impairs memory. Similar results were reported for memory reconsolidation. However, in other cases, the inhibition of UPS had no effect on memory consolidation and reconsolidation but impedes the amnesic action of protein synthesis inhibition after retrieval. The last finding suggests a specific action of the UPS inhibitor on memory labilization. However, another interpretation is possible in terms of the synthesis/degradation balance of positive and negative elements in neural plasticity, as was found in the case of long-term potentiation. To evaluate these alternative interpretations, other reconsolidation-interfering drugs than translation inhibitors should be tested. Here we analyzed initially the UPS inhibitor effect in contextual conditioning in crabs. We found that UPS inhibition during consolidation impaired long-term memory. In contrast, UPS inhibition did not affect memory reconsolidation after contextual retrieval but, in fact, impeded memory labilization, blocking the action of drugs that does not affect directly the protein synthesis. To extend these finding to vertebrates, we performed similar experiments in contextual fear memory in mice. We found that the UPS inhibitor in hippocampus affected memory consolidation and blocked memory labilization after retrieval. These findings exclude alternative interpretations to the requirement of UPS in memory labilization and give evidence of this mechanism in both vertebrates and invertebrates. PMID:25135196

  5. Protein degradation by ubiquitin-proteasome system in formation and labilization of contextual conditioning memory.

    PubMed

    Sol Fustiñana, María; de la Fuente, Verónica; Federman, Noel; Freudenthal, Ramiro; Romano, Arturo

    2014-09-01

    The ubiquitin-proteasome system (UPS) of protein degradation has been evaluated in different forms of neural plasticity and memory. The role of UPS in such processes is controversial. Several results support the idea that the activation of this system in memory consolidation is necessary to overcome negative constrains for plasticity. In this case, the inhibition of the UPS during consolidation impairs memory. Similar results were reported for memory reconsolidation. However, in other cases, the inhibition of UPS had no effect on memory consolidation and reconsolidation but impedes the amnesic action of protein synthesis inhibition after retrieval. The last finding suggests a specific action of the UPS inhibitor on memory labilization. However, another interpretation is possible in terms of the synthesis/degradation balance of positive and negative elements in neural plasticity, as was found in the case of long-term potentiation. To evaluate these alternative interpretations, other reconsolidation-interfering drugs than translation inhibitors should be tested. Here we analyzed initially the UPS inhibitor effect in contextual conditioning in crabs. We found that UPS inhibition during consolidation impaired long-term memory. In contrast, UPS inhibition did not affect memory reconsolidation after contextual retrieval but, in fact, impeded memory labilization, blocking the action of drugs that does not affect directly the protein synthesis. To extend these finding to vertebrates, we performed similar experiments in contextual fear memory in mice. We found that the UPS inhibitor in hippocampus affected memory consolidation and blocked memory labilization after retrieval. These findings exclude alternative interpretations to the requirement of UPS in memory labilization and give evidence of this mechanism in both vertebrates and invertebrates. PMID:25135196

  6. Labile and stabilised fractions of soil organic carbon in some intensively cultivated alluvial soils.

    PubMed

    Verma, B C; Datta, S P; Rattan, R K; Singh, A K

    2013-11-01

    The present investigation was undertaken in view of the limited information on the relative proportion of labile and stabilized fractions of soil organic carbon (SOC) in intensively cultivated lands, particularly under tropics. The specific objectives were i) to study the comparative recovery of SOC by different methods of labile carbon estimation under intensively cultivated lands and ii) to evaluate the impact of agricultural practices on carbon management index. For this purpose, in all, 105 surface soil samples were collected from intensively cultivated tube well and sewage irrigated agricultural lands. These samples were analysed for total as well as labile pools of SOC. Results indicated that Walkley and Black, KMnO4-oxidizable and microbial biomass carbon constituted the total SOC to the extent of 10.2 to 47.4, 1.66 to 23.2 and 0.30 to 5.49%, respectively with the corresponding mean values of 26.2, 9.16 and 2.15%. Lability of SOC was considerably higher in sewage irrigated soils than tube well irrigated soils under intensive cropping. Under soybean-wheat, the higher values of carbon management index (CMI) (279 and 286) were associated with the treatments where entire amount of nitrogen was supplied through FYM. Similar results were obtained under rice-wheat, whereas in case of maize-wheat the highest value of CMI was recorded under treatment receiving NPK through chemical fertilizer along with green manure. There was also a significant improvement in CMI under integrated (chemical fertilizer + organics) and chemical fertilizer-treated plots. The values of CMI ranged from 220 to 272 under cultivated lands receiving irrigation through sewage and industrial effluents. PMID:24555339

  7. Bis(haloBODIPYs) with Labile Helicity: Valuable Simple Organic Molecules That Enable Circularly Polarized Luminescence.

    PubMed

    Ray, César; Sánchez-Carnerero, Esther M; Moreno, Florencio; Maroto, Beatriz L; Agarrabeitia, Antonia R; Ortiz, María J; López-Arbeloa, Íñigo; Bañuelos, Jorge; Cohovi, Komlan D; Lunkley, Jamie L; Muller, Gilles; de la Moya, Santiago

    2016-06-20

    Simple organic molecules (SOM) based on bis(haloBODIPY) are shown to enable circularly polarized luminescence (CPL), giving rise to a new structural design for technologically valuable CPL-SOMs. The established design comprises together synthetic accessibility, labile helicity, possibility of reversing the handedness of the circularly polarized emission, and reactive functional groups, making it unique and attractive as advantageous platform for the development of smart CPL-SOMs. PMID:27123965

  8. Calcium oscillations and T-wave lability precede ventricular arrhythmias in acquired long QT type 2

    PubMed Central

    Němec, Jan; Kim, Jong J.; Gabris, Beth; Salama, Guy

    2010-01-01

    Background Alternans of intracellular Ca2+ (Cai) underlies T-wave alternans, a predictor of cardiac arrhythmias. A related phenomenon, T-Wave Lability (TWL), precedes Torsade de Pointes (TdP) in patients and animal models with impaired repolarization. However, the role of Cai in TWL remains unexplored. Methods Action potentials (APs) and Cai transients, (CaTs) were mapped optically from paced Langendorff female rabbit hearts (n=8) at 1.2s cycle length, after AV node ablation. Hearts were perfused with normal Tyrode's solution then with dofetilide (0.5 μM) and reduced [K+] (2 mM) and [Mg2+] (0.5 mM) to elicit long QT type 2 (LQT2). Lability of EKG, voltage and Cai signals were evaluated during regular paced rhythm, before and after dofetilide perfusion. Results In LQT2, lability of Cai, voltage and EKG signals increased during paced rhythm, before the appearance of early afterdepolarizations (EADs). LQT2 resulted in AP prolongation and multiple (1-3) additional Cai upstrokes, while APs remained monophasic. When EADs appeared, Cai rose before voltage upstrokes at the origins of propagating EADs. Interventions (i.e. ryanodine and thapsigargin, n=3 or low [Ca]o and nifedipine, n=4) that suppressed Cai oscillations also abolished EADs. Conclusions In LQT2, Cai oscillations (CaiO) precede EADs by minutes, indicating that they result from spontaneous sarcoplasmic reticulum Ca2+ release rather than spontaneous ICaL reactivation. CaiO likely produce oscillations of Na/Ca exchange current, INCX. Depolarizing INCX during the AP plateau contributes to the generation of EADs by re-activating Ca2+-channels that have recovered from inactivation. TWL reflects CaTs and APs lability that occur before EADs and TdP. PMID:20599524

  9. Bacillithiol is a major buffer of the labile zinc pool in Bacillus subtilis

    PubMed Central

    Ma, Zhen; Chandrangsu, Pete; Helmann, Tyler C.; Romsang, Adisak; Gaballa, Ahmed; Helmann, John D.

    2014-01-01

    Intracellular zinc levels are tightly regulated since zinc is an essential cofactor for numerous enzymes, yet can be toxic when present in excess. The majority of intracellular zinc is tightly associated with proteins and is incorporated during synthesis from a poorly defined pool of kinetically labile zinc. In Bacillus subtilis, this labile pool is sensed by equilibration with the metalloregulator Zur, as an indication of zinc sufficiency, and by CzrA, as an indication of zinc excess. Here, we demonstrate that the low molecular weight thiol bacillithiol (BSH) serves as a major buffer of the labile zinc pool. Upon shift to conditions of zinc excess, cells transiently accumulate zinc in a low molecular weight pool, and this accumulation is largely dependent on BSH. Cells lacking BSH are more sensitive to zinc stress, and they induce zinc efflux at lower external zinc concentrations. Thiol reactive agents such as diamide and cadmium induce zinc efflux by interfering with the Zn-buffering function of BSH. Our data provide new insights into intracellular zinc buffering and may have broad relevance given the presence of BSH in pathogens and the proposed role of zinc sequestration in innate immunity. PMID:25213752

  10. Comparison of metal lability in air-dried and fresh dewatered drinking water treatment residuals.

    PubMed

    Wang, Changhui; Pei, Yuansheng; Zhao, Yaqian

    2015-01-01

    In this work, the labilities of Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sr, V and Zn in air-dried (for 60 days) and fresh dewatered WTRs were compared using the Toxicity Characteristic Leaching Procedure (TCLP), fractionation, in vitro digestion and a plant enrichment test. The results showed that the air-dried and fresh dewatered WTRs had different properties, e.g., organic matter composition and available nutrients. The air-dried and fresh dewatered WTRs were non-haf zardous according to the TCLP assessment method used in the United States; however, the metals in the two types of WTRs had different lability. Compared with the metals in the fresh dewatered WTRs, those in the air-dried WTRs tended to be in more stable fractions and also exhibited lower bioaccessibility and bioavailability. Therefore, air-drying can decrease the metal lability and thereby reduce the potential metal pollution risk of WTRs. PMID:25560259

  11. Substrate lability and plant activity controls greenhouse gas release from Neotropical peatland

    NASA Astrophysics Data System (ADS)

    Sjogersten, Sofie; Hoyos, Jorge; Lomax, Barry; Turner, Ben; Wright, Emma

    2014-05-01

    Almost one third of global CO2 emissions resulting from land use change and substantial CH4 emissions originate from tropical peatlands. However, our understanding of the controls of CO2 and CH4 release from tropical peatlands are limited. The aim of this study was to investigate the role of peat lability and the activity of the vegetation on gas release using a combination of field and laboratory experiments. We demonstrated that peat lability constrained CH4 production to the surface peat under anaerobic conditions. The presence of plants shifted the C balance from a C source to a C sink with respect to CO2 while the activity of the root system strongly influenced CH4 emissions through its impact on soil O2 inputs. Both field and laboratory data suggest a coupling between the photosynthetic activity of the vegetation and the release of both CO2 and CH4 following the circadian rhythm of the dominant plant functional types. Forest clearance for agriculture resulted in elevated CH4 release, which we attribute in part to the cessation of root O2 inputs to the peat. We conclude that high emissions of CO2 and CH4 from forested tropical peatlands are likely driven by labile C inputs from the vegetation but that root O2 release may limit CH4 emissions.

  12. Evolution of phenotypic plasticity and environmental tolerance of a labile quantitative character in a fluctuating environment.

    PubMed

    Lande, R

    2014-05-01

    Quantitative genetic models of evolution of phenotypic plasticity are used to derive environmental tolerance curves for a population in a changing environment, providing a theoretical foundation for integrating physiological and community ecology with evolutionary genetics of plasticity and norms of reaction. Plasticity is modelled for a labile quantitative character undergoing continuous reversible development and selection in a fluctuating environment. If there is no cost of plasticity, a labile character evolves expected plasticity equalling the slope of the optimal phenotype as a function of the environment. This contrasts with previous theory for plasticity influenced by the environment at a critical stage of early development determining a constant adult phenotype on which selection acts, for which the expected plasticity is reduced by the environmental predictability over the discrete time lag between development and selection. With a cost of plasticity in a labile character, the expected plasticity depends on the cost and on the environmental variance and predictability averaged over the continuous developmental time lag. Environmental tolerance curves derived from this model confirm traditional assumptions in physiological ecology and provide new insights. Tolerance curve width increases with larger environmental variance, but can only evolve within a limited range. The strength of the trade-off between tolerance curve height and width depends on the cost of plasticity. Asymmetric tolerance curves caused by male sterility at high temperature are illustrated. A simple condition is given for a large transient increase in plasticity and tolerance curve width following a sudden change in average environment. PMID:24724972

  13. Labile synthetic cadmium complexes are not bioavailable to Pseudokirchneriella subcapitata in resin buffered solutions.

    PubMed

    Verheyen, L; Merckx, R; Smolders, E

    2012-11-15

    The Free Ion Activity Model (FIAM) predicts that cadmium (Cd) uptake by organisms is identical for solutions with the same free Cd(2+) concentration and inorganic composition. Clear exceptions to the FIAM have been shown for Cd uptake by plant roots, periphyton and human cells where labile Cd complexes increase bioavailability and which has been attributed to their role in enhancing Cd diffusion towards the uptake cells. Here, we assessed the role of labile Cd complexes on Cd uptake by algae, for which diffusion limitations should be less pronounced due to their smaller size. Long-term (3 days) Cd uptake by the green algae Pseudokirchneriella subcapitata was measured in resin buffered solutions with or without synthetic ligands and at three Cd(2+) ion activities (pCd 8.2-5.7). The free Cd(2+) activity was maintained during the test using a metal-selective resin located in the algal bottles. Total dissolved Cd increased up to 35-fold by adding the synthetic ligands at constant Cd(2+) activity. In contrast, Cd uptake by algae increased maximally 2.8 fold with increasing concentration of the synthetic ligands and the availability of the complexes were maximally 5.2% relative to Cd(2+) for NTA and CDTA complexes. It is concluded that labile Cd complexes do not greatly enhance Cd bioavailability to the unicellular algae and calculations suggest that Cd transport from solution to these small cells is not rate limiting. PMID:22903064

  14. Are more diverse parts of the mammalian skull more labile?

    PubMed

    Linde-Medina, Marta; Boughner, Julia C; Santana, Sharlene E; Diogo, Rui

    2016-04-01

    Morphological variation is unevenly distributed within the mammalian skull; some of its parts have diversified more than others. It is commonly thought that this pattern of variation is mainly the result of the structural organization of the skull, as defined by the pattern and magnitude of trait covariation. Patterns of trait covariation can facilitate morphological diversification if they are aligned in the direction of selection, or these patterns can constrain diversification if oriented in a different direction. Within this theoretical framework, it is thought that more variable parts possess patterns of trait covariation that made them more capable of evolutionary change, that is, are more labile. However, differences in the degree of morphological variation among skull traits could arise despite variation in trait lability if, for example, some traits have evolved at a different rate and/or undergone stabilizing selection. Here, we test these hypotheses in the mammalian skull using 2D geometric morphometrics to quantify skull shape and estimating constraint, rates of evolution, and lability. Contrary to the expectations, more variable parts of the skull across mammalian species are less capable of evolutionary change than are less variable skull parts. Our results suggest that patterns of morphological variation in the skull could result from differences in rate of evolution and stabilizing selection. PMID:27069580

  15. Involvement of vasodilator mechanisms in arterial pressure lability after sino-aortic baroreceptor denervation in rat.

    PubMed Central

    Zhang, Z Q; Barrès, C; Julien, C

    1995-01-01

    1. To examine the regional haemodynamic basis of arterial pressure lability seen after sino-aortic baroreceptor denervation (SAD), simultaneous beat-to-beat recordings of arterial pressure and indices of regional blood flows (Doppler probes around the subdiaphragmatic and lower abdominal aortae and the superior mesenteric artery) were performed in the same conscious rats (n = 7) before, 1 and 14 days after SAD. 2. Acute SAD increased arterial pressure, decreased regional blood flows and vascular conductances, and potentiated the depressor and vasodilator effects of ganglionic blockade with trimethaphan, suggesting sympathetic overactivity. All parameters chronically returned to or near normal. 3. Both acute and chronic SAD increased the variability of arterial pressure and of regional conductances. Arterial pressure lability was characterized by a mixture of depressor and pressor events which were associated with regional vasodilatations and vasoconstrictions, respectively. This haemodynamic pattern was not affected by acute beta-adrenoceptor blockade with propranolol. 4. In conscious rats, the baroreceptor reflex acts to buffer the spontaneous variability of regional vascular conductances and thereby stabilizes arterial pressure. Sino-aortic baroreceptor denervation-induced arterial pressure lability does not depend on the level of sympathetic activation, and is determined by the relative contribution of depressor and pressor events accompanied by extensive vasodilatations and vasoconstrictions, respectively. Vasodilatations are not caused by the stimulation of vascular beta 2-adrenoceptors. PMID:7714834

  16. Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates

    SciTech Connect

    De Graaff, Marie-Anne; Classen, Aimee T; Castro Gonzalez, Hector F; Schadt, Christopher Warren

    2010-01-01

    Root carbon (C) inputs may regulate decomposition rates in soil, and in this study we ask: how do labile C inputs regulate decomposition of plant residues, and soil microbial communities? In a 14 d laboratory incubation, we added C compounds often found in root exudates in seven different concentrations (0, 0.7, 1.4, 3.6, 7.2, 14.4 and 21.7 mg C g{sup -1} soil) to soils amended with and without {sup 13}C-labeled plant residue. We measured CO{sub 2} respiration and shifts in relative fungal and bacterial rRNA gene copy numbers using quantitative polymerase chain reaction (qPCR). Increased labile C input enhanced total C respiration, but only addition of C at low concentrations (0.7 mg C g{sup -1}) stimulated plant residue decomposition (+2%). Intermediate concentrations (1.4, 3.6 mg C g{sup -1}) had no impact on plant residue decomposition, while greater concentrations of C (> 7.2 mg C g{sup -1}) reduced decomposition (-50%). Concurrently, high exudate concentrations (> 3.6 mg C g{sup -1}) increased fungal and bacterial gene copy numbers, whereas low exudate concentrations (< 3.6 mg C g{sup -1}) increased metabolic activity rather than gene copy numbers. These results underscore that labile soil C inputs can regulate decomposition of more recalcitrant soil C by controlling the activity and relative abundance of fungi and bacteria.

  17. Photodissociation/gas diffusion/ion chromatography system for determination of total and labile cyanide in waters

    SciTech Connect

    Liu, Yan; Rocklin, R.D.; Joyce, R.J.; Doyle, M.J. )

    1990-04-01

    An automated system for determination of total and labile cyanide in water samples has been developed. The stable metal-cyanide complexes such as Fe(CN){sub 6}{sup 3{minus}} are photodissociated in an acidic medium with an on-line pyrex glass reaction coil irradiated by an intense Hg lamp. The released cyanide (HCN) is separated from most interferences in the sample matrix and is collected in a dilute NaOH solution by gas diffusion using a hydrophobic porous membrane separator. The cyanide ion is then separated from remaining interferences such as sulfide by ion exchange chromatography and is detected by an amperometric detector. The characteristics of the automated system were studied with solutions of free cyanide and metal-cyanide complexes. The results of cyanide determination for a number of wastewater samples obtained with the new method were compared with those obtained with the standard method. The sample throughput of the system is eight samples per hour and the detection limit for total cyanide is 0.1 {mu}g/L.

  18. Modulation of dendritic cell endocytosis and antigen processing pathways by Escherichia coli heat-labile enterotoxin and mutant derivatives.

    PubMed

    Petrovska, Liljana; Lopes, Luciene; Simmons, Cameron P; Pizza, Mariagrazia; Dougan, Gordon; Chain, Benjamin M

    2003-03-28

    Escherichia coli heat-labile enterotoxin (LT) is known to be a potent adjuvant of both the mucosal and systemic immune systems but the mechanism of action leading to adjuvant activity remains incompletely understood. This study investigates the action of LT and LT mutants with impaired enzymatic activity, on the function of dendritic cells. Wild-type LT and LTR72, which retains some ADP ribosyltransferase activity, induced a selective increase in cell surface expression of B7.1, and a selective decrease of CD40 expression on mouse bone marrow derived dendritic cells. LTK63 and LT-B had no obvious effect on the expression of these antigens on similar dendritic cells. LT-treated dendritic cells also showed a profoundly impaired ability to present protein antigen (ovalbumin) to cognate T cells, although this effect was not observed with non-toxic LT mutants. LT and LTR72-treated cells showed a slower rate of receptor-mediated endocytosis as measured by flow cytometric analysis of uptake of fluorescently labelled dextran. Furthermore, confocal microscopy showed changes in the intracellular distribution of endocytosed molecules, and of the class II containing acidic antigen processing compartments. This response of dendritic cells to toxin is likely to play an important role in determining the adjuvant activity of these molecules. PMID:12615441

  19. Cytochrome oxidase subunit V gene of Neurospora crassa: DNA sequences, chromosomal mapping, and evidence that the cya-4 locus specifies the structural gene for subunit V.

    PubMed Central

    Sachs, M S; Bertrand, H; Metzenberg, R L; RajBhandary, U L

    1989-01-01

    The sequences of cDNA and genomic DNA clones for Neurospora cytochrome oxidase subunit V show that the protein is synthesized as a 171-amino-acid precursor containing a 27-amino-acid N-terminal extension. The subunit V protein sequence is 34% identical to that of Saccharomyces cerevisiae subunit V; these proteins, as well as the corresponding bovine subunit, subunit IV, contain a single hydrophobic domain which most likely spans the inner mitochondrial membrane. The Neurospora crassa subunit V gene (cox5) contains two introns, 398 and 68 nucleotides long, which share the conserved intron boundaries 5'GTRNGT...CAG3' and the internal consensus sequence ACTRACA. Two short sequences, YGCCAG and YCCGTTY, are repeated four times each in the cox5 gene upstream of the mRNA 5' termini. The cox5 mRNA 5' ends are heterogeneous, with the major mRNA 5' end located 144 to 147 nucleotides upstream from the translational start site. The mRNA contains a 3'-untranslated region of 186 to 187 nucleotides. Using restriction-fragment-length polymorphism, we mapped the cox5 gene to linkage group IIR, close to the arg-5 locus. Since one of the mutations causing cytochrome oxidase deficiency in N. crassa, cya-4-23, also maps there, we transformed the cya-4-23 strain with the wild-type cox5 gene. In contrast to cya-4-23 cells, which grow slowly, cox5 transformants grew quickly, contained cytochrome oxidase, and had 8- to 11-fold-higher levels of subunit V in their mitochondria. These data suggest (i) that the cya-4 locus in N. crassa specifies structural information for cytochrome oxidase subunit V and (ii) that, in N. crassa, as in S. cerevisiae, deficiencies in the production of nuclearly encoded cytochrome oxidase subunits result in deficiency in cytochrome oxidase activity. Finally, we show that the lower levels of subunit V in cya-4-23 cells are most likely due to substantially reduced levels of translatable subunit V mRNA. Images PMID:2540423

  20. Abnormal subcellular localization of GABAA receptor subunits in schizophrenia brain.

    PubMed

    Mueller, T M; Remedies, C E; Haroutunian, V; Meador-Woodruff, J H

    2015-01-01

    Inhibitory neurotransmission is primarily mediated by γ-aminobutyric acid (GABA) activating synaptic GABA type A receptors (GABA(A)R). In schizophrenia, presynaptic GABAergic signaling deficits are among the most replicated findings; however, postsynaptic GABAergic deficits are less well characterized. Our lab has previously demonstrated that although there is no difference in total protein expression of the α1-6, β1-3 or γ2 GABA(A)R subunits in the superior temporal gyrus (STG) in schizophrenia, the α1, β1 and β2 GABA(A)R subunits are abnormally N-glycosylated. N-glycosylation is a posttranslational modification that has important functional roles in protein folding, multimer assembly and forward trafficking. To investigate the impact that altered N-glycosylation has on the assembly and trafficking of GABA(A)Rs in schizophrenia, this study used western blot analysis to measure the expression of α1, α2, β1, β2 and γ2 GABA(A)R subunits in subcellular fractions enriched for endoplasmic reticulum (ER) and synapses (SYN) from STG of schizophrenia (N = 16) and comparison (N = 14) subjects and found evidence of abnormal localization of the β1 and β2 GABA(A)R subunits and subunit isoforms in schizophrenia. The β2 subunit is expressed as three isoforms at 52 kDa (β2(52 kDa)), 50 kDa (β2(50 kDa)) and 48 kDa (β2(48 kDa)). In the ER, we found increased total β2 GABA(A)R subunit (β2(ALL)) expression driven by increased β2(50 kDa), a decreased ratio of β(248 kDa):β2(ALL) and an increased ratio of β2(50 kDa):β2(48 kDa). Decreased ratios of β1:β2(ALL) and β1:β2(50 kDa) in both the ER and SYN fractions and an increased ratio of β2(52 kDa):β(248 kDa) at the synapse were also identified in schizophrenia. Taken together, these findings provide evidence that alterations of N-glycosylation may contribute to GABAergic signaling deficits in schizophrenia by disrupting the assembly and trafficking of GABA(A)Rs. PMID:26241350

  1. Abnormal subcellular localization of GABAA receptor subunits in schizophrenia brain

    PubMed Central

    Mueller, T M; Remedies, C E; Haroutunian, V; Meador-Woodruff, J H

    2015-01-01

    Inhibitory neurotransmission is primarily mediated by γ-aminobutyric acid (GABA) activating synaptic GABA type A receptors (GABAAR). In schizophrenia, presynaptic GABAergic signaling deficits are among the most replicated findings; however, postsynaptic GABAergic deficits are less well characterized. Our lab has previously demonstrated that although there is no difference in total protein expression of the α1–6, β1–3 or γ2 GABAAR subunits in the superior temporal gyrus (STG) in schizophrenia, the α1, β1 and β2 GABAAR subunits are abnormally N-glycosylated. N-glycosylation is a posttranslational modification that has important functional roles in protein folding, multimer assembly and forward trafficking. To investigate the impact that altered N-glycosylation has on the assembly and trafficking of GABAARs in schizophrenia, this study used western blot analysis to measure the expression of α1, α2, β1, β2 and γ2 GABAAR subunits in subcellular fractions enriched for endoplasmic reticulum (ER) and synapses (SYN) from STG of schizophrenia (N=16) and comparison (N=14) subjects and found evidence of abnormal localization of the β1 and β2 GABAAR subunits and subunit isoforms in schizophrenia. The β2 subunit is expressed as three isoforms at 52 kDa (β252 kDa), 50 kDa (β250 kDa) and 48 kDa (β248 kDa). In the ER, we found increased total β2 GABAAR subunit (β2ALL) expression driven by increased β250 kDa, a decreased ratio of β248 kDa:β2ALL and an increased ratio of β250 kDa:β248 kDa. Decreased ratios of β1:β2ALL and β1:β250 kDa in both the ER and SYN fractions and an increased ratio of β252 kDa:β248 kDa at the synapse were also identified in schizophrenia. Taken together, these findings provide evidence that alterations of N-glycosylation may contribute to GABAergic signaling deficits in schizophrenia by disrupting the assembly and trafficking of GABAARs. PMID:26241350

  2. Mucosal immunization of mice using CpG DNA and/or mutants of the heat-labile enterotoxin of Escherichia coli as adjuvants.

    PubMed

    McCluskie, M J; Weeratna, R D; Clements, J D; Davis, H L

    2001-06-14

    Cholera toxin (CT) and the Escherichia coli heat-labile enterotoxin (LT) are potent mucosal adjuvants in animals associated, at least in part, with their ability to induce cAMP. While toxicity generally precludes their use in humans, a number of different subunit or genetically detoxified mutants of CT and LT have been developed. Another type of adjuvant that has been shown to be effective at mucosal surfaces comprises synthetic oligodeoxynucleotides (ODN) containing immunostimulatory CpG motifs (CpG ODN). We have previously demonstrated a synergy between CpG ODN and native toxins after intranasal (IN) administration to mice, and herein have examined whether this synergy is linked to the cAMP activity. The adjuvanticity of CpG ODN was evaluated with IN and oral delivery of tetanus toxoid or the hepatitis B surface antigen, relative to and in combination with native LT holotoxin (LTh), three active site mutants (LTS61F, LTA69G, LTE112K), a protease site mutant (LTR192G), and the B subunit of LT (LTB). At an equivalent dose, the adjuvants could generally be divided into two groups: one that included CpG ODN, LTh, LTR192G, and LTA69G which acted as strong adjuvants; and the second which comprised LTB, LTS61F, and LTE112K, which produced significantly weaker immune responses. When CpG ODN was co-administered with bacterial toxin-derivatives, in most cases, no synergy between CpG and the LT derivatives was found for strength of the humoral response. Nevertheless, for both routes and antigens, CpG ODN combined with any LT derivative induced a more Type 1-like response than LT derivative alone. These results suggest that while the synergy seen previously with native toxins may have been due in part to inherent cAMP activity, it may have also depended on the particular antigen used and the route of immunization. PMID:11395211

  3. Mucosal adjuvanticity and immunogenicity of LTR72, a novel mutant of Escherichia coli heat-labile enterotoxin with partial knockout of ADP-ribosyltransferase activity.

    PubMed

    Giuliani, M M; Del Giudice, G; Giannelli, V; Dougan, G; Douce, G; Rappuoli, R; Pizza, M

    1998-04-01

    Heat-labile Escherichia coli enterotoxin (LT) has the innate property of being a strong mucosal immunogen and adjuvant. In the attempt to reduce toxicity and maintain the useful immunological properties, several LT mutants have been produced. Some of these are promising mucosal adjuvants. However, so far, only those that were still toxic maintained full adjuvanticity. In this paper we describe a novel LT mutant with greatly reduced toxicity that maintains most of the adjuvanticity. The new mutant (LTR72), that contains a substitution Ala --> Arg in position 72 of the A subunit, showed only 0.6% of the LT enzymatic activity, was 100,000-fold less toxic than wild-type LT in Y1 cells in vitro, and was at least 20 times less effective than wild-type LT in the rabbit ileal loop assay in vivo. At a dose of 1 microg, LTR72 exhibited a mucosal adjuvanticity, similar to that observed with wild-type LT, better than that induced by the nontoxic, enzymatically inactive LTK63 mutant, and much greater than that of the recombinant B subunit. This trend was consistent for both the amounts and kinetics of the antibody induced, and priming of antigen-specific T lymphocytes. The data suggest that the innate high adjuvanticity of LT derives from the independent contribution of the nontoxic AB complex and the enzymatic activity. LTR72 optimizes the use of both properties: the enzymatic activity for which traces are enough, and the nontoxic AB complex, the effect of which is dose dependent. In fact, in dose-response experiments in mice, 20 microg of LTR72 were a stronger mucosal adjuvant than wild-type LT. This suggests that LTR72 may be an excellent candidate to be tested in clinical trials. PMID:9529328

  4. Assessing the Selectivity of Extractant Solutions for Recovering Labile Arsenic Associated with Iron (Hydr)oxides and Sulfides in Sediments

    EPA Science Inventory

    Sequential extractions can provide analytical constraints on the identification of mineral phases that control arsenic speciation in sediments. Model solids were used in this study to evaluate different solutions designed to extract arsenic from relatively labile solid phases. ...

  5. The evolution of labile traits in sex- and age-structured populations.

    PubMed

    Childs, Dylan Z; Sheldon, Ben C; Rees, Mark

    2016-03-01

    Many quantitative traits are labile (e.g. somatic growth rate, reproductive timing and investment), varying over the life cycle as a result of behavioural adaptation, developmental processes and plastic responses to the environment. At the population level, selection can alter the distribution of such traits across age classes and among generations. Despite a growing body of theoretical research exploring the evolutionary dynamics of labile traits, a data-driven framework for incorporating such traits into demographic models has not yet been developed. Integral projection models (IPMs) are increasingly being used to understand the interplay between changes in labile characters, life histories and population dynamics. One limitation of the IPM approach is that it relies on phenotypic associations between parents and offspring traits to capture inheritance. However, it is well-established that many different processes may drive these associations, and currently, no clear consensus has emerged on how to model micro-evolutionary dynamics in an IPM framework. We show how to embed quantitative genetic models of inheritance of labile traits into age-structured, two-sex models that resemble standard IPMs. Commonly used statistical tools such as GLMs and their mixed model counterparts can then be used for model parameterization. We illustrate the methodology through development of a simple model of egg-laying date evolution, parameterized using data from a population of Great tits (Parus major). We demonstrate how our framework can be used to project the joint dynamics of species' traits and population density. We then develop a simple extension of the age-structured Price equation (ASPE) for two-sex populations, and apply this to examine the age-specific contributions of different processes to change in the mean phenotype and breeding value. The data-driven framework we outline here has the potential to facilitate greater insight into the nature of selection and its

  6. Stargazin is an AMPA receptor auxiliary subunit.

    PubMed

    Vandenberghe, Wim; Nicoll, Roger A; Bredt, David S

    2005-01-11

    AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors mediate fast excitatory synaptic transmission in brain and underlie aspects of synaptic plasticity. Numerous AMPA receptor-binding proteins have been implicated in AMPA receptor trafficking and anchoring. However, the relative contributions of these proteins to the composition of native AMPA receptor complexes in brain remain uncertain. Here, we use blue native gel electrophoresis to analyze the composition of native AMPA receptor complexes in cerebellar extracts. We identify two receptor populations: a functional form that contains the transmembrane AMPA receptor-regulatory protein stargazin and an apo-form that lacks stargazin. Limited proteolysis confirms assembly of stargazin with a large proportion of native AMPA receptors. In contrast, other AMPA receptor-interacting proteins, such as synapse-associated protein 97, glutamate receptor-interacting protein 1, protein kinase Calpha binding protein, N-ethylmaleimide-sensitive fusion protein, AP2, and protein 4.1N, do not show significant association with AMPA receptor complexes on native gels. These data identify stargazin as an auxiliary subunit for a neurotransmitter-gated ion channel. PMID:15630087

  7. Reduced contribution of thermally-labile sugar lesions to DNA double-strand break formation after exposure to neutrons.

    PubMed

    Singh, Satyendra K; Wu, Wenqi; Stuschke, Martin; Bockisch, Andreas; Iliakis, George

    2012-12-01

    In cells exposed to ionizing radiation, double-strand breaks (DSBs) form within clustered damage sites from lesions disrupting the DNA sugar-phosphate backbone. It is commonly assumed that DSBs form promptly and are immediately detected and processed by the cellular DNA damage response apparatus. However, DSBs also form by delayed chemical conversion of thermally-labile sugar lesions (TLSL) to breaks. We recently reported that conversion of thermally-labile sugar lesions to breaks occurs in cells maintained at physiological temperatures. Here, we investigate the influence of radiation quality on the formation of thermally-labile sugar lesions dependent DSBs. We show that, although the yields of total DSBs are very similar after exposure to neutrons and X rays, the yields of thermally-labile sugar lesions dependent DSBs from neutrons are decreased in comparison to that from X rays. Thus, the yields of prompt DSBs for neutrons are greater than for X rays. Notably, after neutron irradiation the decreased yield of thermally-labile sugar lesion dependent DSBs is strongly cell line dependent, likely reflecting subtle differences in DNA organization. We propose that the higher ionization density of neutrons generates with higher probability prompt DSBs within ionization clusters and renders the ensuing chemical evolution of thermally-labile sugar lesions inconsequential to DNA integrity. Modification of thermally-labile sugar lesion evolution may define novel radiation protection strategies aiming at decreasing DSB formation by chemically preserving thermally-labile sugar lesions until other DSB contributing lesions within the clustered damage site are removed by non-DSB repair pathways. PMID:23088767

  8. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  9. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  10. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  11. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  12. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  13. Enhancement of humoral immunity by the type II heat-labile enterotoxin LT-IIb is dependent upon IL-6 and neutrophils.

    PubMed

    Greene, Christopher J; Hu, John C; Vance, David J; Rong, Yinghui; Mandell, Lorrie; King-Lyons, Natalie; Masso-Welch, Patricia; Mantis, Nicholas J; Connell, Terry D

    2016-08-01

    LT-IIb, a type II heat-labile enterotoxin produced by Escherichia coli, is a potent intradermal adjuvant that enhances immune responses to coadministered antigens. Although the immune mechanisms that promote this augmented immune response have not been well defined, prior intradermal immunization experiments suggested that early cellular and immunomodulatory events at the site of immunization modulated the augmentation of antigen-specific immune responses by LT-IIb. To investigate that hypothesis, mice were intradermally immunized with a recombinant ricin vaccine, a prospective toxin subunit antigen, in the presence and absence of LT-IIb. Analysis of tissue-fluid collection, coupled with histologic sections from the site of intradermal immunization, revealed that a single dose of LT-IIb induced local production of interleukin 6 and promoted a regional infiltration of neutrophils. The adjuvant effects of LT-IIb were abrogated in interleukin 6-deficient mice and when mice were depleted of neutrophils by pretreatment with anti-Ly6G. Overall, these data firmly demonstrated that LT-IIb, when used as an intradermal adjuvant, recruits neutrophils and is a potent rapid inducer of interleukin 6. PMID:27059843

  14. Cooperative role of antibodies against heat-labile toxin and the EtpA Adhesin in preventing toxin delivery and intestinal colonization by enterotoxigenic Escherichia coli.

    PubMed

    Roy, Koushik; Hamilton, David J; Fleckenstein, James M

    2012-10-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrheal disease in developing countries, where it is responsible for hundreds of thousands of deaths each year. Vaccine development for ETEC has been hindered by the heterogeneity of known molecular targets and the lack of broad-based sustained protection afforded by existing vaccine strategies. In an effort to explore the potential role of novel antigens in ETEC vaccines, we examined the ability of antibodies directed against the ETEC heat-labile toxin (LT) and the recently described EtpA adhesin to prevent intestinal colonization in vivo and toxin delivery to epithelial cells in vitro. We demonstrate that EtpA is required for the optimal delivery of LT and that antibodies against this adhesin play at least an additive role in preventing delivery of LT to target intestinal cells when combined with antibodies against either the A or B subunits of the toxin. Moreover, vaccination with a combination of LT and EtpA significantly impaired intestinal colonization. Together, these results suggest that the incorporation of recently identified molecules such as EtpA could be used to enhance current approaches to ETEC vaccine development. PMID:22875600

  15. Effects of subunit types of the recombinant GABAA receptor on the response to a neurosteroid.

    PubMed

    Zaman, S H; Shingai, R; Harvey, R J; Darlison, M G; Barnard, E A

    1992-04-10

    When vertebrate brain poly(A)+ RNA is expressed in Xenopus oocytes the response of the GABA receptors formed is found to be inhibited allosterically by a neurosteroid, pregnenolone sulphate (PS). This negative modulation was reproduced after expressing RNAs encoding bovine GABAA receptor subunits in the combinations alpha i + beta 1, or alpha i + beta 1 + gamma 2 (where i = 1, 2 or 3). The characteristics of this inhibition vary significantly with the type of the alpha subunit (alpha 1, alpha 2, or alpha 3) used. When the bovine gamma 2L alternate form of the gamma 2 subunit was replaced by the human gamma 2S subunit, the behaviour was unchanged: the human gamma 2S subunit used is a newly-cloned form, which encodes a polypeptide with two amino acid differences from the human gamma 2 subunit previously described. The results of co-application of PS and 3 alpha-hydroxy-5 alpha-pregnan-ol-20-one, a neurosteroid which is a positive modulator of the GABAA receptor, indicate that these act at different sites on the receptor. PS also increases the desensitisation of the receptor by GABA. This effect, also, is alpha-subunit-type dependent and occurs by an acceleration of the fast phase of desensitisation. PMID:1323476

  16. Hybridization of glutamate aspartate transaminase. Investigation of subunit interaction.

    PubMed

    Boettcher, B; Martinez-Carrion, M

    1975-10-01

    Glutamate aspartate transaminase (EC 2.6.1.1) is a dimeric enzyme with identical subunits with each active site containing pyridoxal 5'-phosphate linked via an internal Shiff's base to a lysine residue. It is not known if these sites interact during catalysis but negative cooperativity has been reported for binding of the coenzyme (Arrio-Dupont, M. (1972), Eur. J. Biochem. 30, 307). Also nonequivalence of its subunits in binding 8-anilinonaphthalene-1-sulfonate (Harris, H.E., and Bayley, P. M. (1975), Biochem. J. 145, 125), in modification of only a single tyrosine with full loss of activity (Christen, P., and Riordan, J.F. (1970), Biochemistry 9, 3025), and following modification with 5,5'-dithiobis(2-nitrobenzoic acid) (Cournil, I., and Arrio-Dupont, M. (1973), Biochemie 55, 103) has been reported. However, steady-state and transient kinetic methods as well as direct titration of the active site chromophore with substrates and substrate analogs have not revealed any cooperative phenomena (Braunstein, A. E. (1973), Enzymes, 3rd Ed. 9, 379). It was therefore decided that a more direct approach should be used to clarify the quistion of subunit interaction during the covalent phase of catalysis. To this end a hybrid method was devised in which a hybrid transaminase was prepared which contained one subunit with a functional active site while the other subunit has the internal Shiff's base reduced with NaBH4. The specific activities and amount of "actively bound" pyridoxal 5'-phosphate are both in a 2:1 ratio for the native and hybrid forms. Comparison of the steady-state kinetic properties of the hybrid and native enzyme forms shows that both forms gave parallel double reciprocal plots which is characteristic of the Ping-Pong Bi-Bi mechanism of transamination. The Km values for the substrates L-aspartic acid and alpha-ketoglutaric acid are nearly identical while the Vmax value for the hybrid is one-half the value of the native transaminase. It therefore appears that

  17. Roles of the {beta} subunit hinge domain in ATP synthase F{sub 1} sector: Hydrophobic network formed by introduced {beta}Phe174 inhibits subunit rotation

    SciTech Connect

    Nakanishi-Matsui, Mayumi; Kashiwagi, Sachiko; Kojima, Masaki; Nonaka, Takamasa; Futai, Masamitsu

    2010-04-30

    The ATP synthase {beta} subunit hinge domain ({beta}Phe148 {approx} {beta}Gly186, P-loop/{alpha}-helixB/loop/{beta}-sheet4, Escherichia coli residue numbering) dramatically changes in conformation upon nucleotide binding. We previously reported that F{sub 1} with the {beta}Ser174 to Phe mutation in the domain lowered the {gamma} subunit rotation speed, and thus decreased the ATPase activity [M. Nakanishi-Matsui, S. Kashiwagi, T. Ubukata, A. Iwamoto-Kihara, Y. Wada, M. Futai, Rotational catalysis of Escherichia coli ATP synthase F{sub 1} sector. Stochastic fluctuation and a key domain of the {beta} subunit, J. Biol. Chem. 282 (2007) 20698-20704.]. Homology modeling indicates that the amino acid replacement induces a hydrophobic network, in which the {beta}Met159, {beta}Ile163, and {beta}Ala167 residues of the {beta} subunit are involved together with the mutant {beta}Phe174. The network is expected to stabilize the conformation of {beta}{sub DP} (nucleotide-bound form of the {beta} subunit), resulting in increased activation energy for transition to {beta}{sub E} (empty {beta} subunit). The modeling further predicts that replacement of {beta}Met159 with Ala or Ile weakens the hydrophobic network. As expected, these two mutations experimentally suppressed the ATPase activities as well as subunit rotation of {beta}S174F. Furthermore, the rotation rate decreased with the increase of the strength in the hydrophobic network. These results indicate that the smooth conformational change of the {beta} subunit hinge domain is pertinent for the rotational catalysis.

  18. Characterization of the Helicobacter pylori urease and purification of its subunits.

    PubMed

    Evans, D J; Evans, D G; Kirkpatrick, S S; Graham, D Y

    1991-01-01

    Helicobacter pylori (formerly Campylobacter pylori) is the causative agent of gastritis in man. Helicobacter pylori cells contain a large amount of an extremely active urease (E.C.3.5.1.5). This enzyme is suspected to be a virulence factor since the ammonium ion produced from urea may be responsible for tissue injury and/or survival of H. pylori in the gastric environment. Helicobacter pylori urease, native relative molecular mass approximately 600,000, was purified by agarose gel filtration and ion exchange chromatography. DEAE-purified urease is highly active and has a Km of 0.48 mM for urea. The enzyme has a pI of 5.93 and is active from pH 4.0 to 10.0, with an optimum at pH 8.0. The purified urease contains nickel and is composed of two protein subunits, with relative molecular masses of 66,000 and 31,000. The subunits were separated and purified and the first 30 N-terminal amino acid residues were determined. A remarkably close relationship was found between both H. pylori urease subunits and jack bean (Canavalia ensiformis) urease, the subunit of which is a single 840 amino acid polypeptide. This subunit is also largely identical to the high molecular mass subunits of the ureases of Klebsiella aerogenes and Proteus mirabilis, evidence that these four ureases are derived from a common ancestral protein. PMID:1857197

  19. Impact of Ancillary Subunits on Ventricular Repolarization

    PubMed Central

    Abbott, Geoffrey W.; Xu, Xianghua; Roepke, Torsten K.

    2007-01-01

    Voltage-gated potassium (Kv) channels generate the outward K+ ion currents that constitute the primary force in ventricular repolarization. Kv channels comprise tetramers of pore-forming α subunits and, in probably the majority of cases in vivo, ancillary or β subunits that help define the properties of the Kv current generated. Ancillary subunits can be broadly categorized as cytoplasmic or transmembrane, and can modify Kv channel trafficking, conductance, gating, ion selectivity, regulation and pharmacology. Because of their often profound effects on Kv channel function, studies of the molecular correlates of ventricular repolarization must take into account ancillary subunits as well as α subunits. Cytoplasmic ancillary subunits include the Kvβ subunits, which regulate a range of Kv channels and may link channel gating to redox potential; and the KChIPs, which appear most often associated with Kv4 subfamily channels that generate the ventricular Ito current. Transmembrane ancillary subunits include the MinK-related proteins (MiRPs) encoded by KCNE genes, which modulate members of most Kv α subunit subfamilies; and the putative 12-transmembrane domain KCR1 protein which modulates hERG. In some cases, such as the ventricular IKs channel complex, it is well-established that the KCNQ1 α subunit must co-assemble with the MinK (KCNE1) single transmembrane domain ancillary subunit for recapitulation of the characteristic, unusually slowly-activating IKs current. In other cases it is not so clear-cut, and in particular the roles of the other MinK-related proteins (MiRPs 1–4) in regulating cardiac Kv channels such as KCNQ1 and hERG in vivo are under debate. MiRP1 alters hERG function and pharmacology, and inherited MiRP1 mutations are associated with inherited and acquired arrhythmias, but controversy exists over the native role of MiRP1 in regulating hERG (and therefore ventricular IKr) in vivo. Some ancillary subunits may exhibit varied expression to shape

  20. Molecular basis of fast inactivation in voltage and Ca2+-activated K+ channels: a transmembrane beta-subunit homolog.

    PubMed

    Wallner, M; Meera, P; Toro, L

    1999-03-30

    Voltage-dependent and calcium-sensitive K+ (MaxiK) channels are key regulators of neuronal excitability, secretion, and vascular tone because of their ability to sense transmembrane voltage and intracellular Ca2+. In most tissues, their stimulation results in a noninactivating hyperpolarizing K+ current that reduces excitability. In addition to noninactivating MaxiK currents, an inactivating MaxiK channel phenotype is found in cells like chromaffin cells and hippocampal neurons. The molecular determinants underlying inactivating MaxiK channels remain unknown. Herein, we report a transmembrane beta subunit (beta2) that yields inactivating MaxiK currents on coexpression with the pore-forming alpha subunit of MaxiK channels. Intracellular application of trypsin as well as deletion of 19 N-terminal amino acids of the beta2 subunit abolished inactivation of the alpha subunit. Conversely, fusion of these N-terminal amino acids to the noninactivating smooth muscle beta1 subunit leads to an inactivating phenotype of MaxiK channels. Furthermore, addition of a synthetic N-terminal peptide of the beta2 subunit causes inactivation of the MaxiK channel alpha subunit by occluding its K+-conducting pore resembling the inactivation caused by the "ball" peptide in voltage-dependent K+ channels. Thus, the inactivating phenotype of MaxiK channels in native tissues can result from the association with different beta subunits. PMID:10097176

  1. Molecular basis of fast inactivation in voltage and Ca2+-activated K+ channels: A transmembrane β-subunit homolog

    PubMed Central

    Wallner, Martin; Meera, Pratap; Toro, Ligia

    1999-01-01

    Voltage-dependent and calcium-sensitive K+ (MaxiK) channels are key regulators of neuronal excitability, secretion, and vascular tone because of their ability to sense transmembrane voltage and intracellular Ca2+. In most tissues, their stimulation results in a noninactivating hyperpolarizing K+ current that reduces excitability. In addition to noninactivating MaxiK currents, an inactivating MaxiK channel phenotype is found in cells like chromaffin cells and hippocampal neurons. The molecular determinants underlying inactivating MaxiK channels remain unknown. Herein, we report a transmembrane β subunit (β2) that yields inactivating MaxiK currents on coexpression with the pore-forming α subunit of MaxiK channels. Intracellular application of trypsin as well as deletion of 19 N-terminal amino acids of the β2 subunit abolished inactivation of the α subunit. Conversely, fusion of these N-terminal amino acids to the noninactivating smooth muscle β1 subunit leads to an inactivating phenotype of MaxiK channels. Furthermore, addition of a synthetic N-terminal peptide of the β2 subunit causes inactivation of the MaxiK channel α subunit by occluding its K+-conducting pore resembling the inactivation caused by the “ball” peptide in voltage-dependent K+ channels. Thus, the inactivating phenotype of MaxiK channels in native tissues can result from the association with different β subunits. PMID:10097176

  2. Conopeptide Vt3.1 Preferentially Inhibits BK Potassium Channels Containing β4 Subunits via Electrostatic Interactions*

    PubMed Central

    Li, Min; Chang, Shan; Yang, Longjin; Shi, Jingyi; McFarland, Kelli; Yang, Xiao; Moller, Alyssa; Wang, Chunguang; Zou, Xiaoqin; Chi, Chengwu; Cui, Jianmin

    2014-01-01

    BK channel β subunits (β1–β4) modulate the function of channels formed by slo1 subunits to produce tissue-specific phenotypes. The molecular mechanism of how the homologous β subunits differentially alter BK channel functions and the role of different BK channel functions in various physiologic processes remain unclear. By studying channels expressed in Xenopus laevis oocytes, we show a novel disulfide-cross-linked dimer conopeptide, Vt3.1 that preferentially inhibits BK channels containing the β4 subunit, which is most abundantly expressed in brain and important for neuronal functions. Vt3.1 inhibits the currents by a maximum of 71%, shifts the G-V relation by 45 mV approximately half-saturation concentrations, and alters both open and closed time of single channel activities, indicating that the toxin alters voltage dependence of the channel. Vt3.1 contains basic residues and inhibits voltage-dependent activation by electrostatic interactions with acidic residues in the extracellular loops of the slo1 and β4 subunits. These results suggest a large interaction surface between the slo1 subunit of BK channels and the β4 subunit, providing structural insight into the molecular interactions between slo1 and β4 subunits. The results also suggest that Vt3.1 is an excellent tool for studying β subunit modulation of BK channels and for understanding the physiological roles of BK channels in neurophysiology. PMID:24398688

  3. Antigenicity and immunogenicity of fused B-subunit of heat labile toxin of Escherichia coli and colonization factor antigen I polyepitopes.

    PubMed

    Savar, Nastaran Sadat; Dashti, Amir; Darzi Eslam, Elham; Jahanian-Najafabadi, Ali; Jafari, Anis

    2014-11-01

    Linear B-cell epitopes ((93)AKEFEAAAL(101) and (66)PQLTDVLN(73)) of CfaB were genetically fused to ltb-(gly)5-cfaB(1-25). Sera of rabbits immunized with fusion proteins reacted strongly with solid-phase bound ETEC bacteria bearing CFA/I fimbriae. Sera failed to agglutinate or inhibit hemagglutination promoted by CFA/I-positive strain which may be due to solvent inaccessibility of epitope residues on intact fimbriae. PMID:25108290

  4. Subunit Stabilization and Polyethylene Glycolation of Cocaine Esterase Improves In Vivo Residence Time

    SciTech Connect

    Narasimhan, Diwahar; Collins, Gregory T.; Nance, Mark R.; Nichols, Joseph; Edwald, Elin; Chan, Jimmy; Ko, Mei-Chuan; Woods, James H.; Tesmer, John J.G.; Sunahara, Roger K.

    2012-03-15

    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37 C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newly modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37 C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo.

  5. Thiostrepton interacts covalently with Rpt subunits of the 19S proteasome and proteasome substrates

    PubMed Central

    Sandu, Cristinel; Chandramouli, Nagaranjan; Glickman, Joseph Fraser; Molina, Henrik; Kuo, Chueh-Ling; Kukushkin, Nikolay; Goldberg, Alfred L; Steller, Hermann

    2015-01-01

    Here, we report a novel mechanism of proteasome inhibition mediated by Thiostrepton (Thsp), which interacts covalently with Rpt subunits of the 19S proteasome and proteasome substrates. We identified Thsp in a cell-based high-throughput screen using a fluorescent reporter sensitive to degradation by the ubiquitin–proteasome pathway. Thiostrepton behaves as a proteasome inhibitor in several paradigms, including cell-based reporters, detection of global ubiquitination status, and proteasome-mediated labile protein degradation. In vitro, Thsp does not block the chymotrypsin activity of the 26S proteasome. In a cell-based IκBα degradation assay, Thsp is a slow inhibitor and 4 hrs of treatment achieves the same effects as MG-132 at 30 min. We show that Thsp forms covalent adducts with proteins in human cells and demonstrate their nature by mass spectrometry. Furthermore, the ability of Thsp to interact covalently with the cysteine residues is essential for its proteasome inhibitory function. We further show that a Thsp modified peptide cannot be degraded by proteasomes in vitro. Importantly, we demonstrate that Thsp binds covalently to Rpt subunits of the 19S regulatory particle and forms bridges with a proteasome substrate. Taken together, our results uncover an important role of Thsp in 19S proteasome inhibition. PMID:26033448

  6. Subunit Stabilization and Polyethylene Glycolation of Cocaine Esterase Improves In Vivo Residence TimeS⃞

    PubMed Central

    Narasimhan, Diwahar; Collins, Gregory T.; Nance, Mark R.; Nichols, Joseph; Edwald, Elin; Chan, Jimmy; Ko, Mei-Chuan; Woods, James H.; Tesmer, John J. G.

    2011-01-01

    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37°C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newly modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37°C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo. PMID:21890748

  7. Subunit stabilization and polyethylene glycolation of cocaine esterase improves in vivo residence time.

    PubMed

    Narasimhan, Diwahar; Collins, Gregory T; Nance, Mark R; Nichols, Joseph; Edwald, Elin; Chan, Jimmy; Ko, Mei-Chuan; Woods, James H; Tesmer, John J G; Sunahara, Roger K

    2011-12-01

    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37°C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newly modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37°C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo. PMID:21890748

  8. Mutant GABA(A) receptor subunits in genetic (idiopathic) epilepsy.

    PubMed

    Hirose, Shinichi

    2014-01-01

    The γ-aminobutyric acid receptor type A (GABAA receptor) is a ligand-gated chloride channel that mediates major inhibitory functions in the central nervous system. GABAA receptors function mainly as pentamers containing α, β, and either γ or δ subunits. A number of antiepileptic drugs have agonistic effects on GABAA receptors. Hence, dysfunctions of GABAA receptors have been postulated to play important roles in the etiology of epilepsy. In fact, mutations or genetic variations of the genes encoding the α1, α6, β2, β3, γ2, or δ subunits (GABRA1, GABRA6, GABRB2, GABRB3, GABRG2, and GABRD, respectively) have been associated with human epilepsy, both with and without febrile seizures. Epilepsy resulting from mutations is commonly one of following, genetic (idiopathic) generalized epilepsy (e.g., juvenile myoclonic epilepsy), childhood absence epilepsy, genetic epilepsy with febrile seizures, or Dravet syndrome. Recently, mutations of GABRA1, GABRB2, and GABRB3 were associated with infantile spasms and Lennox-Gastaut syndrome. These mutations compromise hyperpolarization through GABAA receptors, which is believed to cause seizures. Interestingly, most of the insufficiencies are not caused by receptor gating abnormalities, but by complex mechanisms, including endoplasmic reticulum (ER)-associated degradation, nonsense-mediated mRNA decay, intracellular trafficking defects, and ER stress. Thus, GABAA receptor subunit mutations are now thought to participate in the pathomechanisms of epilepsy, and an improved understanding of these mutations should facilitate our understanding of epilepsy and the development of new therapies. PMID:25194483

  9. Interactions between recalcitrant and labile organic carbon in streams - Can stream biofilms mediate a priming effect?

    NASA Astrophysics Data System (ADS)

    Bengtsson, M. M.; Wagner, K.; Herberg, E. R.; Burns, N. R.; Wanek, W.; Battin, T. J.

    2012-04-01

    Inland waters - such as streams, rivers and lakes - are increasingly recognized as important components in the global carbon cycle. Dissolved organic carbon (DOC) in these systems is diverse in structure, origin and reactivity, and a fraction of it is regarded as recalcitrant to microbial degradation. In soils, degradation of recalcitrant carbon is often controlled by the availability of labile carbon sources. This is linked to the priming effect (PE). Mounting evidence suggests that PE is also important in aquatic ecosystems but there are so far very few studies addressing this topic. Biofilms are vital components of aquatic ecosystems. In stream biofilms, heterotrophic bacteria and algae coexist in close proximity, exposing the bacteria to both recalcitrant DOC of terrestrial origin and labile organic carbon from the algae. We hypothesize that this makes stream biofilms hotspots for PE. We used plug-flow bioreactors inoculated with natural stream biofilm bacterial communities to test the potential of a priming effect in aquatic ecosystems. The bioreactors were amended with an isotope-labeled plant extract serving as a model of recalcitrant DOC in streams. Labile carbon sources, in the form of glucose and an algal extract were added to induce PE. Nitrate and phosphate were also added to assess the role of these inorganic nutrients on carbon uptake. Microbial uptake of the different carbon sources was monitored by measuring the concentrations and isotopic ratios of respired CO2, biomass and DOC. Our results suggest that the priming effect plays a role in stream carbon cycling and that it is potentially an important process in other aquatic ecosystems.

  10. Total and Labile Phosphorus Concentrations as Influenced by Riparian Buffer Soil Properties.

    PubMed

    Young, Eric O; Ross, Donald S

    2016-01-01

    Riparian buffers can act as a phosphorus (P) source under active stream bank erosion. Using soil and landscape variables (soil series, drainage class, organic matter, and pH) to index P concentrations could improve P loss risk tools for buffers. The objectives of this study were (i) to determine if soil properties could predict total and labile P concentrations within a 10-ha riparian buffer and (ii) to quantify the degree of spatial dependence of P and related properties. Soil samples were taken in 15-cm increments to a depth of 60 cm using a grid ( = 71) from an established riparian buffer along the Rock River in Vermont. Total soil P (TP), plant-available P determined by Modified Morgan extraction (MM-P), pH, soil organic matter (SOM), soil texture, and select cations were measured. We found that TP (152-1536 mg P kg) and MM-P (0.4-14.6 mg kg) ranged widely, with distinct differences between soil series. Mean TP and MM-P were greater in alluvial and glaciolacustrine soils compared with glacial till. Across all samples, MM-P was weakly related to soil properties; however, total labile P (orthophosphate + organic P measured by ICP) and unreactive labile P (ICP-P - colorimetric-P) could both be predicted by SOM ( = 0.59 and 0.73, respectively). Strong spatial dependence was found for P and related properties as revealed by geospatial analyses. Results show that P availability in the buffer was strongly related to soil genesis and support site-specific approaches for P loss risk evaluation in buffers. PMID:26828185

  11. Labile Low-Molecular-Mass Metal Complexes in Mitochondria: Trials and Tribulations of a Burgeoning Field.

    PubMed

    Lindahl, Paul A; Moore, Michael J

    2016-08-01

    Iron, copper, zinc, manganese, cobalt, and molybdenum play important roles in mitochondrial biochemistry, serving to help catalyze reactions in numerous metalloenzymes. These metals are also found in labile "pools" within mitochondria. Although the composition and cellular function of these pools are largely unknown, they are thought to be comprised of nonproteinaceous low-molecular-mass (LMM) metal complexes. Many problems must be solved before these pools can be fully defined, especially problems stemming from the lability of such complexes. This lability arises from inherently weak coordinate bonds between ligands and metals. This is an advantage for catalysis and trafficking, but it makes characterization difficult. The most popular strategy for investigating such pools is to detect them using chelator probes with fluorescent properties that change upon metal coordination. Characterization is limited because of the inevitable destruction of the complexes during their detection. Moreover, probes likely react with more than one type of metal complex, confusing analyses. An alternative approach is to use liquid chromatography (LC) coupled with inductively coupled plasma mass spectrometry (ICP-MS). With help from a previous lab member, the authors recently developed an LC-ICP-MS approach to analyze LMM extracts from yeast and mammalian mitochondria. They detected several metal complexes, including Fe580, Fe1100, Fe1500, Cu5000, Zn1200, Zn1500, Mn1100, Mn2000, Co1200, Co1500, and Mo780 (numbers refer to approximate masses in daltons). Many of these may be used to metalate apo-metalloproteins as they fold inside the organelle. The LC-based approach also has challenges, e.g., in distinguishing artifactual metal complexes from endogenous ones, due to the fact that cells must be disrupted to form extracts before they are passed through chromatography columns prior to analysis. Ultimately, both approaches will be needed to characterize these intriguing complexes and to

  12. Cleft Lip Repair: The Hybrid Subunit Method.

    PubMed

    Tollefson, Travis T

    2016-04-01

    The unilateral cleft lip repair is one of the most rewarding and challenging of plastic surgery procedures. Surgeons have introduced a variety of straight line, geometric, and rotation-advancement designs, while in practice the majority of North American surgeons have been using hybrids of the rotation-advancement techniques. The anatomic subunit approach was introduced in 2005 by Fisher and has gained popularity, with early adopters of the design touting its simplicity and effectiveness. The objectives of this article are to summarize the basic tenets of respecting the philtral subunit, accurate measurement and planning, and tips for transitioning to this subunit approach. PMID:27097136

  13. Mouse muscle nicotinic acetylcholine receptor gamma subunit: cDNA sequence and gene expression.

    PubMed Central

    Yu, L; LaPolla, R J; Davidson, N

    1986-01-01

    Clones coding for the mouse nicotinic acetylcholine receptor (AChR) gamma subunit precursor have been selected from a cDNA library derived from a mouse myogenic cell line and sequenced. The deduced protein sequence consists of a signal peptide of 22 amino acid residues and a mature gamma subunit of 497 amino acid residues. There is a high degree of sequence conservation between this mouse sequence and published human and calf AChR gamma subunits and, after allowing for functional amino acid substitutions, also to the more distantly related chicken and Torpedo AChR gamma subunits. The degree of sequence conservation is especially high in the four putative hydrophobic membrane spanning regions, supporting the assignment of these domains. RNA blot hybridization showed that the mRNA level of the gamma subunit increases by 30 fold or more upon differentiation of the two mouse myogenic cell lines, BC3H-1 and C2C12, suggesting that the primary controls for changes in gene expression during differentiation are at the level of transcription. One cDNA clone was found to correspond to a partially processed nuclear transcript containing two as yet unspliced intervening sequences. Images PMID:3010242

  14. Characterization of the gene encoding the largest subunit of Plasmodium falciparum RNA polymerase III.

    PubMed

    Li, W B; Bzik, D J; Tanaka, M; Gu, H M; Fox, B A; Inselburg, J

    1991-06-01

    We report here the isolation, sequence analysis, structure, and expression of the gene encoding the largest subunit of RNA polymerase III (RPIII) from Plasmodium falciparum. The P. falciparum RPIII gene consists of 5 exons and 4 introns, is expressed in all of the asexual erythrocytic stages of the parasite as a 8.5-kb mRNA, and is present in a single copy on chromosome 13. The predicted 2339 amino acid residue RPIII subunit contained 5 regions that were conserved between different eukaryotic RPIII subunits, and 4 variable regions that separated the conserved regions. Three of the variable regions were greatly enlarged in comparison to the corresponding variable regions in other RPIII subunits. Variable region C' represented nearly one-third of the P. falciparum RPIII subunit (750 amino acid residues), included a unique repeated decapeptide sequence, and had some homology with yeast DNA topoisomerase II. Noteworthy amino acid sequences and structures were identified in both the conserved regions and in the enlarged variable regions, and their possible role(s) as domains that regulate RPIII enzyme activity is discussed. PMID:1656254

  15. Labile Compounds in Plant Litter Reduce the Sensitivity of Decomposition to Warming and Altered Precipitation

    NASA Astrophysics Data System (ADS)

    Suseela, V.; Tharayil, N.; Xing, B.; Dukes, J. S.

    2013-12-01

    Together, climate and litter quality strongly regulate decomposition rates. While these two factors and their interaction have been studied across species in continent-scale experiments, few researchers have studied how labile and recalcitrant compounds interact to influence decomposition, or the climate sensitivity of decomposition, within a litter type. Over a period of three years, we studied the effects climate change on mass loss and compound-specific decomposition using two litter types that differed in the relative proportions of labile and recalcitrant compounds, but that had heteropolymers with similar molecular structure. We examined how warming and altered precipitation affected the decomposition of two types of Polygonum cuspidatum (Japanese knotweed) litter (stem litter that was either newly senesced or one year old), at the Boston-Area Climate Experiment (BACE), in Massachusetts, USA. We placed litter bags in an old-field ecosystem exposed to four levels of warming (up to 4oC) and three levels of precipitation (ambient, drought (-50%) and wet (+50%) treatments. The compound-specific degradation of litter was assessed using Diffuse Reflectance Infrared Fourier Transform Spectroscopy and 13C Nuclear Magnetic Resonance Spectroscopy. Climate treatments immediately affected mass loss of the more recalcitrant litter, but affected the more labile litter only after two years. After three years, although both litter types had lost similar amounts of mass, warming (~4oC) and supplemental precipitation (150% of ambient) together accelerated degradation of alkyl-carbon and lignin only in the more recalcitrant litter, highlighting the role of initial litter quality in determining whether the chemistry of litter residues converges or diverges under different climates. The results from this study indicate that the effect of climate on litter decomposition depends on the quality of litter; litter with a greater initial proportion of labile compounds was less

  16. Inhibition of heat-labile cholera and Escherichia coli enterotoxins by brefeldin A.

    PubMed

    Donta, S T; Beristain, S; Tomicic, T K

    1993-08-01

    Cholera enterotoxin and the related heat-labile enterotoxins of Escherichia coli enter their target cells through noncoated vesicles, but how the toxins are processed intracellularly and how they get to their targeted enzyme, adenylate cyclase, remain to be defined. Brefeldin A, an inhibitor of the trans-Golgi network, is shown herein to transiently block the morphologic and enzymatic effects of the toxin at a step distal to the initial binding process but prior to activation of adenylate cyclase by the toxin. It is likely, therefore, that these toxins are processed by the Golgi apparatus before trafficking to the membrane adenylate cyclase. PMID:8392970

  17. Inhibition of heat-labile cholera and Escherichia coli enterotoxins by brefeldin A.

    PubMed Central

    Donta, S T; Beristain, S; Tomicic, T K

    1993-01-01

    Cholera enterotoxin and the related heat-labile enterotoxins of Escherichia coli enter their target cells through noncoated vesicles, but how the toxins are processed intracellularly and how they get to their targeted enzyme, adenylate cyclase, remain to be defined. Brefeldin A, an inhibitor of the trans-Golgi network, is shown herein to transiently block the morphologic and enzymatic effects of the toxin at a step distal to the initial binding process but prior to activation of adenylate cyclase by the toxin. It is likely, therefore, that these toxins are processed by the Golgi apparatus before trafficking to the membrane adenylate cyclase. Images PMID:8392970

  18. Epithelial to mesenchymal transition-the roles of cell morphology, labile adhesion and junctional coupling.

    PubMed

    Abdulla, Tariq; Luna-Zurita, Luis; de la Pompa, José Luis; Schleich, Jean-Marc; Summers, Ron

    2013-08-01

    Epithelial to mesenchymal transition (EMT) is a fundamental process during development and disease, including development of the heart valves and tumour metastases. An extended cellular Potts model was implemented to represent the behaviour emerging from autonomous cell morphology, labile adhesion, junctional coupling and cell motility. Computer simulations normally focus on these functional changes independently whereas this model facilitates exploration of the interplay between cell shape changes, adhesion and migration. The simulation model is fitted to an in vitro model of endocardial EMT, and agrees with the finding that Notch signalling increases cell-matrix adhesion in addition to modulating cell-cell adhesion. PMID:23787029

  19. Subunit compositions of Arabidopsis RNA polymerases I and III reveal Pol I- and Pol III-specific forms of the AC40 subunit and alternative forms of the C53 subunit

    SciTech Connect

    Ream, Thomas S.; Haag, Jeremy R.; Pontvianne, Frederic; Nicora, Carrie D.; Norbeck, Angela D.; Pasa-Tolic, Ljiljana; Pikaard, Craig S.

    2015-05-02

    Using affinity purification and mass spectrometry, we identified the subunits of Arabidopsis thaliana multisubunit RNA Polymerases I and III (abbreviated as Pol I and Pol III), providing the first description of their physical compositions in plants. AC40 and AC19 subunits are typically common to Pol I (a.k.a. Pol A) and Pol III (a.k.a. Pol C) and are encoded by single genes whose mutation, in humans, is a cause of the craniofacial disorder, Treacher-Collins Syndrome. Surprisingly, A. thaliana, and related species, express two distinct AC40 paralogs, one of which assembles into Pol I and the other of which assembles into Pol III. Changes at eight amino acid positions correlate with this functional divergence of Pol I and Pol III-specific AC40 paralogs. Two genes encode homologs of the yeast C53 subunit, and either variant can assemble into Pol III. By contrast, only one of two potential C17 variants, and one of two potential C31 variants were detected in Pol III. We introduce a new nomenclature system for plant Pol I and Pol III subunits in which the twelve subunits that are structurally and functionally homologous among Pols I through V are assigned equivalent numbers.

  20. Subunit compositions of Arabidopsis RNA polymerases I and III reveal Pol I- and Pol III-specific forms of the AC40 subunit and alternative forms of the C53 subunit

    DOE PAGESBeta

    Ream, Thomas S.; Haag, Jeremy R.; Pontvianne, Frederic; Nicora, Carrie D.; Norbeck, Angela D.; Pasa-Tolic, Ljiljana; Pikaard, Craig S.

    2015-05-02

    Using affinity purification and mass spectrometry, we identified the subunits of Arabidopsis thaliana multisubunit RNA Polymerases I and III (abbreviated as Pol I and Pol III), providing the first description of their physical compositions in plants. AC40 and AC19 subunits are typically common to Pol I (a.k.a. Pol A) and Pol III (a.k.a. Pol C) and are encoded by single genes whose mutation, in humans, is a cause of the craniofacial disorder, Treacher-Collins Syndrome. Surprisingly, A. thaliana, and related species, express two distinct AC40 paralogs, one of which assembles into Pol I and the other of which assembles into Polmore » III. Changes at eight amino acid positions correlate with this functional divergence of Pol I and Pol III-specific AC40 paralogs. Two genes encode homologs of the yeast C53 subunit, and either variant can assemble into Pol III. By contrast, only one of two potential C17 variants, and one of two potential C31 variants were detected in Pol III. We introduce a new nomenclature system for plant Pol I and Pol III subunits in which the twelve subunits that are structurally and functionally homologous among Pols I through V are assigned equivalent numbers.« less

  1. Subunit compositions of Arabidopsis RNA polymerases I and III reveal Pol I- and Pol III-specific forms of the AC40 subunit and alternative forms of the C53 subunit

    PubMed Central

    Ream, Thomas S.; Haag, Jeremy R.; Pontvianne, Frederic; Nicora, Carrie D.; Norbeck, Angela D.; Paša-Tolić, Ljiljana; Pikaard, Craig S.

    2015-01-01

    Using affinity purification and mass spectrometry, we identified the subunits of Arabidopsis thaliana multisubunit RNA polymerases I and III (abbreviated as Pol I and Pol III), the first analysis of their physical compositions in plants. In all eukaryotes examined to date, AC40 and AC19 subunits are common to Pol I (a.k.a. Pol A) and Pol III (a.k.a. Pol C) and are encoded by single genes. Surprisingly, A. thaliana and related species express two distinct AC40 paralogs, one of which assembles into Pol I and the other of which assembles into Pol III. Changes at eight amino acid positions correlate with the functional divergence of Pol I- and Pol III-specific AC40 paralogs. Two genes encode homologs of the yeast C53 subunit and either protein can assemble into Pol III. By contrast, only one of two potential C17 variants, and one of two potential C31 variants were detected in Pol III. We introduce a new nomenclature system for plant Pol I and Pol III subunits in which the 12 subunits that are structurally and functionally homologous among Pols I through V are assigned equivalent numbers. PMID:25813043

  2. Agonist and antagonist effects of nicotine on chick neuronal nicotinic receptors are defined by alpha and beta subunits.

    PubMed

    Hussy, N; Ballivet, M; Bertrand, D

    1994-09-01

    1. Functional neuronal nicotinic receptors were reconstituted in Xenopus oocytes by the nuclear injection of different combinations of chick and rat cDNAs encoding alpha and beta subunits. The pharmacology of these nicotinic receptors was investigated using two-electrode voltage clamp. 2. The sensitivity of the chick alpha 3/beta 2, alpha 3/beta 4, and alpha 4/beta 2 receptors to acetylcholine (ACh) and neuronal bungarotoxin differed markedly, indicating that both subunits contribute to the pharmacological properties of the receptors. 3. Nicotine acted as an agonist on the chick alpha 3/beta 4 and alpha 4/beta 2 receptors and rat alpha 3/beta 2 receptor. In contrast, nicotine (at concentrations > 3 microM) was only a weak partial agonist of the chick alpha 3/beta 2 receptor. Moreover, nicotine coapplied with 3 microM ACh on the chick alpha 3/beta 2 receptor acted as a potent competitive antagonist, with an IC50 of 0.43 microM. No antagonist effect of nicotine could be revealed on the other nicotinic receptors. 4. The effect of nicotine was tested on hybrid receptors obtained by coinjection of chick and rat cDNAs encoding the alpha 3 and beta 2 subunits (yielding the rat alpha 3/chick beta 2 and chick alpha 3/rat beta 2 receptors). Nicotine (10 microM) strongly inhibited both hybrid receptors. 5. Chimeric subunits were constructed by exchanging a segment located in the extracellular N-termini of chick alpha 3 and alpha 4 subunits and chick alpha 3 and rat alpha 3 subunits. These subunits were coexpressed in oocytes with chick or rat beta 2 subunits. The effect of nicotine on these receptors pointed to the importance of a 15 amino acid stretch located 3' of the first transmembrane segment in the determination of the agonist and antagonist action of nicotine. 6. Within this 15 amino acid segment, a single residue differs in chick and rat alpha 3 subunits, at position 198, within the ligand binding site of alpha subunits. Gln198 of the rat alpha 3 subunit was replaced

  3. Combined 3D-QSAR, Molecular Docking and Molecular Dynamics Study on Derivatives of Peptide Epoxyketone and Tyropeptin-Boronic Acid as Inhibitors Against the β5 Subunit of Human 20S Proteasome

    PubMed Central

    Liu, Jianling; Zhang, Hong; Xiao, Zhengtao; Wang, Fangfang; Wang, Xia; Wang, Yonghua

    2011-01-01

    An abnormal ubiquitin-proteasome is found in many human diseases, especially in cancer, and has received extensive attention as a promising therapeutic target in recent years. In this work, several in silico models have been built with two classes of proteasome inhibitors (PIs) by using 3D-QSAR, homology modeling, molecular docking and molecular dynamics (MD) simulations. The study resulted in two types of satisfactory 3D-QSAR models, i.e., the CoMFA model (Q2 = 0.462, R2pred = 0.820) for epoxyketone inhibitors (EPK) and the CoMSIA model (Q2 = 0.622, R2pred = 0.821) for tyropeptin-boronic acid derivatives (TBA). From the contour maps, some key structural factors responsible for the activity of these two series of PIs are revealed. For EPK inhibitors, the N-cap part should have higher electropositivity; a large substituent such as a benzene ring is favored at the C6-position. In terms of TBA inhibitors, hydrophobic substituents with a larger size anisole group are preferential at the C8-position; higher electropositive substituents like a naphthalene group at the C3-position can enhance the activity of the drug by providing hydrogen bond interaction with the protein target. Molecular docking disclosed that residues Thr60, Thr80, Gly106 and Ser189 play a pivotal role in maintaining the drug-target interactions, which are consistent with the contour maps. MD simulations further indicated that the binding modes of each conformation derived from docking is stable and in accord with the corresponding structure extracted from MD simulation overall. These results can offer useful theoretical references for designing more potent PIs. PMID:21673924

  4. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95.

    PubMed

    Kornau, H C; Schenker, L T; Kennedy, M B; Seeburg, P H

    1995-09-22

    The N-methyl-D-aspartate (NMDA) receptor subserves synaptic glutamate-induced transmission and plasticity in central neurons. The yeast two-hybrid system was used to show that the cytoplasmic tails of NMDA receptor subunits interact with a prominent postsynaptic density protein PSD-95. The second PDZ domain in PSD-95 binds to the seven-amino acid, COOH-terminal domain containing the terminal tSXV motif (where S is serine, X is any amino acid, and V is valine) common to NR2 subunits and certain NR1 splice forms. Transcripts encoding PSD-95 are expressed in a pattern similar to that of NMDA receptors, and the NR2B subunit co-localizes with PSD-95 in cultured rat hippocampal neurons. The interaction of these proteins may affect the plasticity of excitatory synapses. PMID:7569905

  5. Relationship between the lability of sediment-bound metals (Cd, Cu, Zn) and their bioaccumulation in benthic invertebrates

    NASA Astrophysics Data System (ADS)

    Amiard, J.-C.; Geffard, A.; Amiard-Triquet, C.; Crouzet, C.

    2007-04-01

    The present study has investigated metal contamination at nine sites (10 sampling stations) from the English Channel to the Mediterranean Sea, including low level and highly contaminated sediments. Both total and labile concentrations of metals were determined in superficial sediments. The influence of different pHs was tested and metal lability at pHs encountered in the gut of invertebrates (the ragworm Nereis diversicolor, the blue mussel Mytilus edulis, the Japanese oyster Crassostrea gigas) was compared with the distribution of metals in various operationally defined geochemical fractions. Cd showed the highest lability and Cu the lowest, whereas Zn lability was intermediate. Metal concentrations were determined in bivalves at six sites and in worms at three sites. Cd in living organisms and labile Cd in sediments increased in proportion over the gradient of contamination. This relationship did not always hold for Cu and Zn and these exceptions are discussed. Even if sediments are not the only source of metal contamination in marine invertebrates, the procedure proposed here to assess metal bioavailability by remobilising sediment-bound metals at physiological pHs, seems a significant improvement of the existing methodologies of risk assessment.

  6. Current Progress in Developing Subunit Vaccines against Enterotoxigenic Escherichia coli-Associated Diarrhea.

    PubMed

    Zhang, Weiping; Sack, David A

    2015-09-01

    Diarrhea continues to be a leading cause of death in children <5 years of age, and enterotoxigenic Escherichia coli (ETEC) is the most common bacterial cause of children's diarrhea. Currently, there are no available vaccines against ETEC-associated diarrhea. Whole-cell vaccine candidates have been under development but require further improvements because they provide inadequate protection and produce unwanted adverse effects. Meanwhile, a newer approach using polypeptide or subunit vaccine candidates focusing on ETEC colonization factor antigens (CFAs) and enterotoxins, the major virulence determinants of ETEC diarrhea, shows substantial promise. A conservative CFA/I adhesin tip antigen and a CFA MEFA (multiepitope fusion antigen) were shown to induce cross-reactive antiadhesin antibodies that protected against adherence by multiple important CFAs. Genetic fusion of toxoids derived from ETEC heat-labile toxin (LT) and heat-stable toxin (STa) induced antibodies neutralizing both enterotoxins. Moreover, CFA-toxoid MEFA polypeptides, generated by fusing CFA MEFA to an STa-LT toxoid fusion, induced antiadhesin antibodies that broadly inhibited adherence of the seven most important ETEC CFAs associated with about 80% of the diarrhea cases caused by ETEC strains with known CFAs. This same antigen preparation also induced antitoxin antibodies that neutralized both toxins that are associated with all cases of ETEC diarrhea. Results from these studies suggest that polypeptide or subunit vaccines have the potential to effectively protect against ETEC diarrhea. In addition, novel adhesins and mucin proteases have been investigated as potential alternatives or, more likely, additional antigens for ETEC subunit vaccine development. PMID:26135975

  7. Current Progress in Developing Subunit Vaccines against Enterotoxigenic Escherichia coli-Associated Diarrhea

    PubMed Central

    Sack, David A.

    2015-01-01

    Diarrhea continues to be a leading cause of death in children <5 years of age, and enterotoxigenic Escherichia coli (ETEC) is the most common bacterial cause of children's diarrhea. Currently, there are no available vaccines against ETEC-associated diarrhea. Whole-cell vaccine candidates have been under development but require further improvements because they provide inadequate protection and produce unwanted adverse effects. Meanwhile, a newer approach using polypeptide or subunit vaccine candidates focusing on ETEC colonization factor antigens (CFAs) and enterotoxins, the major virulence determinants of ETEC diarrhea, shows substantial promise. A conservative CFA/I adhesin tip antigen and a CFA MEFA (multiepitope fusion antigen) were shown to induce cross-reactive antiadhesin antibodies that protected against adherence by multiple important CFAs. Genetic fusion of toxoids derived from ETEC heat-labile toxin (LT) and heat-stable toxin (STa) induced antibodies neutralizing both enterotoxins. Moreover, CFA-toxoid MEFA polypeptides, generated by fusing CFA MEFA to an STa-LT toxoid fusion, induced antiadhesin antibodies that broadly inhibited adherence of the seven most important ETEC CFAs associated with about 80% of the diarrhea cases caused by ETEC strains with known CFAs. This same antigen preparation also induced antitoxin antibodies that neutralized both toxins that are associated with all cases of ETEC diarrhea. Results from these studies suggest that polypeptide or subunit vaccines have the potential to effectively protect against ETEC diarrhea. In addition, novel adhesins and mucin proteases have been investigated as potential alternatives or, more likely, additional antigens for ETEC subunit vaccine development. PMID:26135975

  8. Immunogenicity of IMS 1113 plus soluble subunit and chimeric proteins containing Mycoplasma hyopneumoniae P97 C-terminal repeat regions.

    PubMed

    Barate, Abhijit K; Cho, Youngjae; Truong, Quang Lam; Hahn, Tae-Wook

    2014-03-01

    The surface adhesin P97 mediates the adherence of Mycoplasma hyopneumoniae to swine cilia. Two reiterated repeats R1 and R2 are located at the C-terminus of P97. The purpose of this study was to evaluate the immunogenicity of Montanide adjuvant IMS 1113 plus soluble subunit proteins rR1, rR1R2 and their chimeric forms coupled with B subunit of the heat-labile enterotoxin of Escherichia coli (LTB). Each recombinant protein in this study was capable of eliciting anti-R1 specific humoral antibodies (IgG), mucosal antibodies (IgG and IgA) and IFN-γ production. The chimeric protein rLTBR1R2 elicited the quickest humoral antibody response among the recombinant proteins. Serum and bronchoalveolar lavage analysis revealed that each recombinant protein was capable of inducing both Th1 and Th2 responses. Importantly, all of the proteins induced an anti-R1-specific Th2-biased response in both humoral and mucosal compartments, similar to the response observed in a natural infection or vaccination process. These observations indicate that rR1, rR1R2, rLTBR1 and rLTBR1R2 with IMS 1113 might represent a promising subunit vaccine strategy against porcine enzootic pneumonia in pigs. PMID:24461070

  9. The Pertussis Toxin S1 Subunit Is a Thermally Unstable Protein Susceptible to Degradation by the 20S Proteasome†

    PubMed Central

    Pande, Abhay H.; Moe, David; Jamnadas, Maneesha; Tatulian, Suren A.; Teter, Ken

    2008-01-01

    Pertussis toxin (PT) is an AB-type protein toxin that consists of a catalytic A subunit (PT S1) and an oligomeric, cell-binding B subunit. It belongs to a subset of AB toxins that move from the cell surface to the endoplasmic reticulum (ER) before A chain passage into the cytosol. Toxin translocation is thought to involve A chain unfolding in the ER and the quality control mechanism of ER-associated degradation (ERAD). The absence of lysine residues in PT S1 may allow the translocated toxin to avoid ubiquitin-dependent degradation by the 26S proteasome, which is the usual fate of exported ERAD substrates. As the conformation of PT S1 appears to play an important role in toxin translocation, we used biophysical and biochemical methods to examine the structural properties of PT S1. Our in vitro studies found that the isolated PT S1 subunit is a thermally unstable protein that can be degraded in a ubiquitin-independent fashion by the core 20S proteasome. The thermal denaturation of PT S1 was inhibited by its interaction with NAD, a donor molecule used by PT S1 for the ADP-ribosylation of target G proteins. These observations support a model of intoxication in which toxin translocation, degradation, and activity are all influenced by the heat-labile nature of the isolated toxin A chain. PMID:17105192

  10. Heat-Labile Enterotoxin IIa, a Platform To Deliver Heterologous Proteins into Neurons

    PubMed Central

    Chen, Chen; Przedpelski, Amanda; Tepp, William H.; Pellett, Sabine; Johnson, Eric A.

    2015-01-01

    ABSTRACT Cholera toxin (CT) and the related heat-labile enterotoxins (LT) of Escherichia coli have been implicated as adjuvants in human therapies, but reactivity upon intranasal delivery dampened efforts to develop other clinical applications. However, each CT family member variant has unique biological properties that may warrant development as therapeutic platforms. In the current study, a nontoxic variant of the heat-labile enterotoxin IIa (LTIIa) was engineered to deliver heterologous, functional proteins into the cytosol of neurons. As proof of principle, the LTIIa variant delivered two cargos into neurons. LTIIa delivered β-lactamase efficiently into cells containing complex gangliosides, such as GD1b, as host receptors. LTIIa delivery of β-lactamase was sensitive to brefeldin A, an inhibitor that collapses the Golgi compartment into the endoplasmic reticulum, but not sensitive to treatment with botulinum neurotoxin D (BoNT/D), an inhibitor of synaptic vesicle cycling. LTIIa delivered a single-chain, anti-BoNT/A camelid antibody that inhibited SNAP25 cleavage during post-BoNT/A exposure of neurons. Delivery of functional, heterologous protein cargos into neurons demonstrates the potential of LTII variants as platforms to deliver therapies to inactivate toxins and microbial infections and to reverse the pathology of human neurodegenerative diseases. PMID:26265718

  11. Evaluation of commercial antisera for serotyping heat-labile antigens of Campylobacter jejuni and Campylobacter coli.

    PubMed Central

    Nicholson, M A; Patton, C M

    1993-01-01

    Commercial antisera for serotyping 22 heat-labile antigens of Campylobacter jejuni and Campylobacter coli were evaluated by using 66 isolates from human and nonhuman sources. Test results were compared with results of tests using antisera produced at the Centers for Disease Control (CDC), Atlanta, Ga. All strains (three isolates of each of the 22 serotypes) were typeable with the CDC antisera. Of 66 test strains, 39 (59%) were typed as the same serotype with both sets of antisera. Twenty-four strains (36%), including two heat-labile serotype reference strains, were nonreactive with the commercial antisera, and three strains (4.5%) were typed as serotypes different from those obtained with CDC antisera. Five of the 22 commercial antisera correctly serotyped all homologous strains. Our study indicated that two polyvalent antiserum pools, 7 unabsorbed antisera, and 16 absorbed monovalent antisera are weak and need modification to enhance their antibody titers. Further studies are necessary to explain the antigenic change to a different serotype in three strains. PMID:8463402

  12. Novel diffusive gradients in thin films technique to assess labile sulfate in soil.

    PubMed

    Hanousek, Ondrej; Mason, Sean; Santner, Jakob; Chowdhury, Md Mobaroqul Ahsan; Berger, Torsten W; Prohaska, Thomas

    2016-09-01

    A novel diffusive gradients in thin films (DGT) technique for sampling labile soil sulfate was developed, based on a strong basic anion exchange resin (Amberlite IRA-400) for sulfate immobilization on the binding gel. For reducing the sulfate background on the resin gels, photopolymerization was applied instead of ammonium persulfate-induced polymerization. Agarose cross-linked polyacrylamide (APA) hydrogels were used as diffusive layer. The sulfate diffusion coefficient in APA gel was determined as 9.83 × 10(-6) ± 0.35 × 10(-6) cm(2) s(-1) at 25 °C. The accumulated sulfate was eluted in 1 mol L(-1) HNO3 with a recovery of 90.9 ± 1.6 %. The developed method was tested against two standard extraction methods for soil sulfate measurement. The obtained low correlation coefficients indicate that DGT and conventional soil test methods assess differential soil sulfate pools, rendering DGT a potentially important tool for measuring labile soil sulfate. PMID:27491301

  13. Constraints on Transport and Emplacement Mechanisms of Labile Fractions in Lunar Cold Traps

    NASA Technical Reports Server (NTRS)

    Rickman, D.; Gertsch, L.

    2014-01-01

    Sustaining the scientific exploration of the Solar System will require a significant proportion of the necessary fuels and propellants, as well as other bulk commodities, to be produced from local raw materials [1]. The viability of mineral production depends on the ability to locate and characterize mineable deposits of the necessary feedstocks. This requires, among other things, a workable understanding of the mechanisms by which such deposits form, which is the subject of Economic Geology. Multiple deposition scenarios are possible for labile materials on the Moon. This paper suggests labile fractions moved diffusely through space; deposits may grow richer with depth until low porosity rock; lateral transport is likely to have occurred with the regolith, at least for short distances; crystalline ice may not exist; the constituent phases could be extremely complex. At present we can constrain the sources only mildly; once on the Moon, the transport mechanisms inherently mix and therefore obscure the origins. However, the importance of expanding our understanding of ore-forming processes on the Moon behooves us to make the attempt. Thus begins a time of new inquiry for Economic Geology.

  14. [Effects of land use change on soil labile organic carbon in Central Jiangxi of China].

    PubMed

    Du, Man-Yi; Fan, Shao-Hui; Liu, Guang-Lu; Qi, Liang-Hua; Guo, Bao-Hu; Tang, Xiao-Lu; Xiao, Fu-Ming

    2013-10-01

    Selecting the 15-year abandoned land (AL) and three forest lands [Phyllostachys edulis plantation (PE), Schima superba secondary forest (SS), and Cunninghamia Lanceolata plantation (CL)] in Anfu County of Jiangxi Province as test objects, this paper studied the effects of land use change on the soil organic carbon (SOC) pool and soil labile organic carbon (SLOC) contents. The soil organic carbon (SOC), microbial biomass carbon (MBC), hot- water extractable carbon (HWC), and readily oxidizable carbon (ROC) contents in the test lands were all in the order of PE>CL>SS>AL. As compared with those in AL, the SOC content, soil carbon stock, and soil labile organic carbon (SLOC) contents in the three forest lands all decreased with increasing soil depth, and had an obvious accumulation in surface soil. The proportions of different kinds of SLOC to soil total organic carbon differed markedly, among which, ROC had the highest proportion, while MBC had the smallest one. There existed significant relationships between SOC, MBC, HWC, and ROC. The MBC, HWC, and ROC contained higher content of active carbon, and were more sensitive to the land use change, being able to be used as the indicators for evaluating the soil quality and fertility in central Jiangxi Province. PMID:24483085

  15. Novel diffusive gradients in thin films technique to assess labile sulfate in soil

    PubMed Central

    Ahsan Chowdhury, Md Mobaroqul; Berger, Torsten W.; Prohaska, Thomas

    2016-01-01

    A novel diffusive gradients in thin films (DGT) technique for sampling labile soil sulfate was developed, based on a strong basic anion exchange resin (Amberlite IRA-400) for sulfate immobilization on the binding gel. For reducing the sulfate background on the resin gels, photopolymerization was applied instead of ammonium persulfate-induced polymerization. Agarose cross-linked polyacrylamide (APA) hydrogels were used as diffusive layer. The sulfate diffusion coefficient in APA gel was determined as 9.83 × 10−6 ± 0.35 × 10-6 cm2 s−1 at 25 °C. The accumulated sulfate was eluted in 1 mol L−1 HNO3 with a recovery of 90.9 ± 1.6 %. The developed method was tested against two standard extraction methods for soil sulfate measurement. The obtained low correlation coefficients indicate that DGT and conventional soil test methods assess differential soil sulfate pools, rendering DGT a potentially important tool for measuring labile soil sulfate. PMID:27491301

  16. Interaction of macrophage migration inhibitory factor with ceruloplasmin: role of labile copper ions.

    PubMed

    Kostevich, Valeria A; Sokolov, Alexey V; Grudinina, Natalia A; Zakharova, Elena T; Samygina, Valeria R; Vasilyev, Vadim B

    2015-10-01

    Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine, is a target for pharmacological treatment of sepsis and malignant tumors. Inhibition of tautomerase activity of MIF in reaction with p-hydroxyphenylpyruvate (HPP) was observed in the presence of ceruloplasmin (CP), a copper-containing plasma protein. Binding labile copper ions to CP (CP+Cu(II)) is a prerequisite for MIF inhibiting. CP+Cu(II) is shown to be an uncompetitive inhibitor of MIF (Ki ~ 37 nM), which suggests formation of a complex 'MIF-HPP-CP-Cu(II)'. Filtration of CP+Cu(II) on a column with Chelex-100, otherwise the presence of high concentrations of histidine, cysteine or methionine abrogated the inhibitory effect of CP. Adding salts of Co(II) and Ni(II) that replace copper ions in the labile sites prevented the inhibitory effect of CP+Cu(II). Limited proteolysis of CP by thrombin diminished its oxidase activity in reaction with p-phenylenediamine, but endowed it with the capacity of inhibiting MIF. Covalent modification of MIF by phenylmethylsulfonyl fluoride (PMSF) resulted in binding of MIF-PMSF to CP immobilized on CM5 chip, the dissociation constant being 4.2 μM. In D-galactosamine-sensitized mice CP+Cu(II) increased the LPS-induced lethality from 54 to 100%, while administration of antibodies against MIF prevented the lethal effect. The enhancement by CP+Cu(II) of the pro-inflammatory signal of MIF is discussed. PMID:26091949

  17. Variable effects of labile carbon on the carbon use of different microbial groups in black slate degradation

    NASA Astrophysics Data System (ADS)

    Seifert, Anne-Gret; Trumbore, Susan; Xu, Xiaomei; Zhang, Dachung; Kothe, Erika; Gleixner, Gerd

    2011-05-01

    Weathering of ancient organic matter contributes significantly to biogeochemical carbon cycles over geological times. The principle role of microorganisms in this process is well recognized. However, information is lacking on the contribution of individual groups of microorganisms and on the effect of labile carbon sources to the degradation process. Therefore, we investigated the contribution of fungi, Gram-positive and Gram-negative bacteria in the degradation process using a column experiment. Investigations were performed on low metamorphic black slates. All columns contained freshly crushed, sieved (0.63-2 mm), not autoclaved black slates. Two columns were inoculated with the lignite-degrading fungus Schizophyllum commune and received a culture medium containing 13C labeled glucose, two columns received only this culture medium and two control columns received only water. The total mass balance was calculated from all carbon added to the slate and the CO 2 and DOC losses. Phospholipid fatty acids (PLFA) were extracted to investigate microbial communities. We used both the compound specific 14C and 13C signal of the PLFA to quantify carbon uptake from black slates and the glucose of the culture medium, respectively. The total carbon loss in these columns exceeded the amount of added carbon by approximately 60%, indicating that black slate carbon has been used. PLFA associated with Gram-positive bacteria dominated the indigenous community and took up 22% of carbon from black slate carbon, whereas PLFA of Gram-negative bacteria used only 8% of carbon from the slates. PLFA of Gram-negative bacteria and fungi were both mostly activated by the glucose addition. The added Schizophyllum did not establish well in the columns and was overgrown by the indigenous microbial community. Our results suggest that especially Gram-positive bacteria are able to live on and degrade black slate material. They also benefit from easy degradable carbon from the nutrient broth. In

  18. Accelerated evolution and coevolution drove the evolutionary history of AGPase sub-units during angiosperm radiation

    PubMed Central

    Corbi, Jonathan; Dutheil, Julien Y.; Damerval, Catherine; Tenaillon, Maud I.; Manicacci, Domenica

    2012-01-01

    Background and Aims ADP-glucose pyrophosphorylase (AGPase) is a key enzyme of starch biosynthesis. In the green plant lineage, it is composed of two large (LSU) and two small (SSU) sub-units encoded by paralogous genes, as a consequence of several rounds of duplication. First, our aim was to detect specific patterns of molecular evolution following duplication events and the divergence between monocotyledons and dicotyledons. Secondly, we investigated coevolution between amino acids both within and between sub-units. Methods A phylogeny of each AGPase sub-unit was built using all gymnosperm and angiosperm sequences available in databases. Accelerated evolution along specific branches was tested using the ratio of the non-synonymous to the synonymous substitution rate. Coevolution between amino acids was investigated taking into account compensatory changes between co-substitutions. Key Results We showed that SSU paralogues evolved under high functional constraints during angiosperm radiation, with a significant level of coevolution between amino acids that participate in SSU major functions. In contrast, in the LSU paralogues, we identified residues under positive selection (1) following the first LSU duplication that gave rise to two paralogues mainly expressed in angiosperm source and sink tissues, respectively; and (2) following the emergence of grass-specific paralogues expressed in the endosperm. Finally, we found coevolution between residues that belong to the interaction domains of both sub-units. Conclusions Our results support the view that coevolution among amino acid residues, especially those lying in the interaction domain of each sub-unit, played an important role in AGPase evolution. First, within SSU, coevolution allowed compensating mutations in a highly constrained context. Secondly, the LSU paralogues probably acquired tissue-specific expression and regulatory properties via the coevolution between sub-unit interacting domains. Finally, the

  19. Cu lability and bioavailability in an urban stream during baseflow versus stormflow

    NASA Astrophysics Data System (ADS)

    Vadas, T.; Luan, H.

    2012-12-01

    Urban streams are dynamic systems with many anthropogenic inputs and stressors. Existing contaminant inputs are regulated through total maximum daily loads. Techniques for assessing that load are based on a combination of acute and chronic water quality criteria, biotic ligand models, and physical, chemical and biological assessments. In addition, the apportionment of reduction in load to different sources is based on total mass and not, for example, on bioavailable fraction. Our understanding of the impact of different metal inputs to stream impairment is limited. Free metal ions are understood to play a role in direct cellular uptake, but metal speciation (e.g. free metal, labile metals, or size fractionated) is relevant to more complex stream food webs. As part of an ongoing study, this work examines dissolved and particulate Cu concentrations in the Hockanum River, Vernon, CT situated in a developed watershed. Stream samples were taken during baseflow as well as stormflow upstream and downstream of wastewater treatment plant and stormwater runoff inputs. In addition, diffusive gradient in thin-film (DGT) devices which measure labile metal concentrations and cultured periphyton were used to examine bioavailable fractions. Total and filtered Cu concentrations ranged from about 1.3 to 10.7 μg/L, and 0.9 to 5.1 μg/L, respectively. Cu concentrations always increased downstream of the wastewater treatment plant by about 1.1-2 times, and effluent accounted for about 30% of baseflow. Generally, small increases (<10%) in concentration were observed in metals directly downstream of stormwater inlets, likely due to low volumes of runoff contributed from stormwater outfalls during these sampling periods. However, Cu concentrations were elevated (about 2-5 times higher) at all sites downstream from the wastewater treatment plant downstream sampling point, suggesting contributions from sediment resuspension. DGT measured concentrations represented 30 to 70% of dissolved Cu

  20. A mutation in the C31 subunit of Saccharomyces cerevisiae RNA polymerase III affects transcription initiation.

    PubMed Central

    Thuillier, V; Stettler, S; Sentenac, A; Thuriaux, P; Werner, M

    1995-01-01

    The C31 subunit belongs to a complex of three subunits (C31, C34 and C82) specific to RNA polymerase (pol) III that have no counterparts in other RNA polymerases. This complex is thought to play a role in transcription initiation since it interacts with the general initiation factor TFIIIB via subunit C34. We have obtained a conditional mutation of pol III by partially deleting the acidic C-terminus of the C31 subunit. A Saccharomyces cerevisiae strain carrying this truncated C31 subunit is impaired in in vivo transcription of tRNAs and failed to grow at 37 degrees C. This conditional growth phenotype was suppressed by overexpression of the gene coding for the largest subunit of pol III (C160), suggesting an interaction between C160 and C31. The mutant pol III enzyme transcribed non-specific templates at wild-type rates in vitro, but was impaired in its capacity to transcribe tRNA genes in the presence of general initiation factors. Transcription initiation, but not termination or recycling of the enzyme, was affected in the mutant, suggesting that it could be altered on interaction with initiation factors or on the formation of the open complex. Interestingly, the C-terminal deletion was also suppressed by a high gene dosage of the DED1 gene encoding a putative helicase. Images PMID:7835345

  1. Escherichia coli K88ac Fimbriae Expressing Heat-Labile and Heat-Stable (STa) Toxin Epitopes Elicit Antibodies That Neutralize Cholera Toxin and STa Toxin and Inhibit Adherence of K88ac Fimbrial E. coli▿

    PubMed Central

    Zhang, Chengxian; Zhang, Weiping

    2010-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of diarrheal disease in humans and animals. Bacterial adhesins and heat-labile (LT) and heat-stable (ST) enterotoxins are the virulence determinants in ETEC diarrhea. It is believed that vaccines inducing anti-adhesin immunity to inhibit bacterial adherence and anti-toxin immunity to eliminate toxin activity would provide broad-spectrum protection against ETEC. In this study, an ETEC fimbrial adhesin was used as a platform to express LT and STa for adhesin-toxin fusion antigens to induce anti-toxin and anti-adhesin immunity. An epitope from the B subunit of LT toxin (LTP1, 8LCSEYRNTQIYTIN21) and an STa toxoid epitope (5CCELCCNPQCAGCY18) were embedded in the FaeG major subunit of E. coli K88ac fimbriae. Constructed K88ac-toxin chimeric fimbriae were harvested and used for rabbit immunization. Immunized rabbits developed anti-K88ac, anti-LT, and anti-STa antibodies. Moreover, induced antibodies not only inhibited adherence of K88ac fimbrial E. coli to porcine small intestinal enterocytes but also neutralized cholera toxin and STa toxin. Data from this study demonstrated that K88ac fimbriae expressing LT and STa epitope antigens elicited neutralizing anti-toxin antibodies and anti-adhesin antibodies and suggested that E. coli fimbriae could serve as a platform for the development of broad-spectrum vaccines against ETEC. PMID:20980482

  2. Escherichia coli K88ac fimbriae expressing heat-labile and heat-stable (STa) toxin epitopes elicit antibodies that neutralize cholera toxin and STa toxin and inhibit adherence of K88ac fimbrial E. coli.

    PubMed

    Zhang, Chengxian; Zhang, Weiping

    2010-12-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of diarrheal disease in humans and animals. Bacterial adhesins and heat-labile (LT) and heat-stable (ST) enterotoxins are the virulence determinants in ETEC diarrhea. It is believed that vaccines inducing anti-adhesin immunity to inhibit bacterial adherence and anti-toxin immunity to eliminate toxin activity would provide broad-spectrum protection against ETEC. In this study, an ETEC fimbrial adhesin was used as a platform to express LT and STa for adhesin-toxin fusion antigens to induce anti-toxin and anti-adhesin immunity. An epitope from the B subunit of LT toxin (LTP1, (8)LCSEYRNTQIYTIN(21)) and an STa toxoid epitope ((5)CCELCCNPQCAGCY(18)) were embedded in the FaeG major subunit of E. coli K88ac fimbriae. Constructed K88ac-toxin chimeric fimbriae were harvested and used for rabbit immunization. Immunized rabbits developed anti-K88ac, anti-LT, and anti-STa antibodies. Moreover, induced antibodies not only inhibited adherence of K88ac fimbrial E. coli to porcine small intestinal enterocytes but also neutralized cholera toxin and STa toxin. Data from this study demonstrated that K88ac fimbriae expressing LT and STa epitope antigens elicited neutralizing anti-toxin antibodies and anti-adhesin antibodies and suggested that E. coli fimbriae could serve as a platform for the development of broad-spectrum vaccines against ETEC. PMID:20980482

  3. Missense mutation in the Chlamydomonas chloroplast gene that encodes the Rubisco large subunit

    SciTech Connect

    Spreitzer, R.J.; Brown, T.; Chen, Zhixiang; Zhang, Donghong; Al-Abed, S.R. )

    1988-04-01

    The 69-12Q mutant of Chlamydomonas reinhardtii lacks ribulose-1,5-bisphosphate carboxylase activity, but retains holoenzyme protein. It results from a mutation in the chloroplast large-subunit gene that causes an isoleucine-for-threonine substitution at amino-acid residue 173. Considering that lysine-175 is involved in catalysis, it appears that mutations cluster at the active site.

  4. L-type calcium channel β subunit modulates angiotensin II responses in cardiomyocytes.

    PubMed

    Hermosilla, Tamara; Moreno, Cristian; Itfinca, Mircea; Altier, Christophe; Armisén, Ricardo; Stutzin, Andres; Zamponi, Gerald W; Varela, Diego

    2011-01-01

    Angiotensin II regulation of L-type calcium currents in cardiac muscle is controversial and the underlying signaling events are not completely understood. Moreover, the possible role of auxiliary subunit composition of the channels in Angiotensin II modulation of L-type calcium channels has not yet been explored. In this work we study the role of Ca(v)β subunits and the intracellular signaling responsible for L-type calcium current modulation by Angiotensin II. In cardiomyocytes, Angiotensin II exposure induces rapid inhibition of L-type current with a magnitude that is correlated with the rate of current inactivation. Semi-quantitative PCR of cardiomyocytes at different days of culture reveals changes in the Ca(v)β subunits expression pattern that are correlated with the rate of current inactivation and with Angiotensin II effect. Over-expression of individual b subunits in heterologous systems reveals that the magnitude of Angiotensin II inhibition is dependent on the Ca(v)β subunit isoform, with Ca(v)β(1b) containing channels being more strongly regulated. Ca(v)β(2a) containing channels were insensitive to modulation and this effect was partially due to the N-terminal palmitoylation sites of this subunit. Moreover, PLC or diacylglycerol lipase inhibition prevents the Angiotensin II effect on L-type calcium channels, while PKC inhibition with chelerythrine does not, suggesting a role of arachidonic acid in this process. Finally, we show that in intact cardiomyocytes the magnitude of calcium transients on spontaneous beating cells is modulated by Angiotensin II in a Ca(v)β subunit-dependent manner. These data demonstrate that Ca(v)β subunits alter the magnitude of inhibition of L-type current by Angiotensin II. PMID:21525790

  5. Type B Heterotrimeric G Protein γ-Subunit Regulates Auxin and ABA Signaling in Tomato.

    PubMed

    Subramaniam, Gayathery; Trusov, Yuri; Lopez-Encina, Carlos; Hayashi, Satomi; Batley, Jacqueline; Botella, José Ramón

    2016-02-01

    Heterotrimeric G proteins composed of α, β, and γ subunits are central signal transducers mediating the cellular response to multiple stimuli in most eukaryotes. Gγ subunits provide proper cellular localization and functional specificity to the heterotrimer complex. Plant Gγ subunits, divided into three structurally distinct types, are more diverse than their animal counterparts. Type B Gγ subunits, lacking a carboxyl-terminal isoprenylation motif, are found only in flowering plants. We present the functional characterization of type B Gγ subunit (SlGGB1) in tomato (Solanum lycopersicum). We show that SlGGB1 is the most abundant Gγ subunit in tomato and strongly interacts with the Gβ subunit. Importantly, the green fluorescent protein-SlGGB1 fusion protein as well as the carboxyl-terminal yellow fluorescent protein-SlGGB1/amino-terminal yellow fluorescent protein-Gβ heterodimer were localized in the plasma membrane, nucleus, and cytoplasm. RNA interference-mediated silencing of SlGGB1 resulted in smaller seeds, higher number of lateral roots, and pointy fruits. The silenced lines were hypersensitive to exogenous auxin, while levels of endogenous auxins were lower or similar to those of the wild type. SlGGB1-silenced plants also showed strong hyposensitivity to abscisic acid (ABA) during seed germination but not in other related assays. Transcriptome analysis of the transgenic seeds revealed abnormal expression of genes involved in ABA sensing, signaling, and response. We conclude that the type B Gγ subunit SlGGB1 mediates auxin and ABA signaling in tomato. PMID:26668332

  6. Downregulation of GABA[Subscript A] Receptor Protein Subunits a6, ß2, d, e, ?2, ?, and ?2 in Superior Frontal Cortex of Subjects with Autism

    ERIC Educational Resources Information Center

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rustan, Oyvind G.; Rooney, Robert J.; Thuras, Paul D.

    2014-01-01

    We measured protein and mRNA levels for nine gamma-aminobutyric acid A (GABA[subscript A]) receptor subunits in three brain regions (cerebellum, superior frontal cortex, and parietal cortex) in subjects with autism versus matched controls. We observed changes in mRNA for a number of GABA[subscript A] and GABA[subscript B] subunits and overall…

  7. Investigation of the interaction between the large and small subunits of potato ADP-glucose pyrophosphorylase.

    PubMed

    Baris, Ibrahim; Tuncel, Aytug; Ozber, Natali; Keskin, Ozlem; Kavakli, Ibrahim Halil

    2009-10-01

    ADP-glucose pyrophosphorylase (AGPase), a key allosteric enzyme involved in higher plant starch biosynthesis, is composed of pairs of large (LS) and small subunits (SS). Current evidence indicates that the two subunit types play distinct roles in enzyme function. Recently the heterotetrameric structure of potato AGPase has been modeled. In the current study, we have applied the molecular mechanics generalized born surface area (MM-GBSA) method and identified critical amino acids of the potato AGPase LS and SS subunits that interact with each other during the native heterotetrameric structure formation. We have further shown the role of the LS amino acids in subunit-subunit interaction by yeast two-hybrid, bacterial complementation assay and native gel. Comparison of the computational results with the experiments has indicated that the backbone energy contribution (rather than the side chain energies) of the interface residues is more important in identifying critical residues. We have found that lateral interaction of the LS-SS is much stronger than the longitudinal one, and it is mainly mediated by hydrophobic interactions. This study will not only enhance our understanding of the interaction between the SS and the LS of AGPase, but will also enable us to engineer proteins to obtain better assembled variants of AGPase which can be used for the improvement of plant yield. PMID:19876371

  8. Development and use of domain-specific antibodies in a characterization of the large subunits of soybean photosystem 1

    NASA Technical Reports Server (NTRS)

    Henry, R. L.; Takemoto, L. J.; Murphy, J.; Gallegos, G. L.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The molecular architecture of the soybean photosystem 1 reaction center complex was examined using a combination of surface labeling and immunological methodology on isolated thylakoid membranes. Synthetic peptides (12 to 14 amino acids in length) were prepared which correspond to the N-terminal regions of the 83 and 82.4 kDa subunits of photosystem 1 (the PsaA and PsaB proteins, respectively). Similarly, a synthetic peptide was prepared corresponding to the C-terminal region of the PsaB subunit. These peptides were conjugated to a carrier protein, and were used for the production of polyclonal antibodies in rabbits. The resulting sera could distinguish between the PsaA and PsaB photosystem 1 subunits by Western blot analysis, and could identify appropriate size classes of cyanogen bromide cleavage fragments as predicted from the primary sequences of these two subunits. When soybean thylakoid membranes were surface-labeled with N-hydroxysuccinimidobiotin, several subunits of the complete photosystem 1 lipid/protein complex incorporated label. These included the light harvesting chlorophyll proteins of photosystem 1, and peptides thought to aid in the docking of ferredoxin to the complex during photosynthetic electron transport. However, the PsaA and PsaB subunits showed very little biotinylation. When these subunits were examined for the domains to which biotin did attach, most of the observed label was associated with the N-terminal domain of the PsaA subunit, as identified using a domain-specific polyclonal antisera.

  9. The variable subunit associated with protein phosphatase 2A0 defines a novel multimember family of regulatory subunits.

    PubMed Central

    Zolnierowicz, S; Van Hoof, C; Andjelković, N; Cron, P; Stevens, I; Merlevede, W; Goris, J; Hemmings, B A

    1996-01-01

    Two protein phosphatase 2A (PP2A) holoenzymes were isolated from rabbit skeletal muscle containing, in addition to the catalytic and PR65 regulatory subunits, proteins of apparent molecular masses of 61 and 56 kDa respectively. Both holoenzymes displayed low basal phosphorylase phosphatase activity, which could be stimulated by protamine to an extent similar to that of previously characterized PP2A holoenzymes. Protein micro-sequencing of tryptic peptides derived from the 61 kDa protein, termed PR61, yielded 117 residues of amino acid sequence. Molecular cloning by enrichment of specific mRNAs, followed by reverse transcription-PCR and cDNA library screening, revealed that this protein exists in multiple isoforms encoded by at least three genes, one of which gives rise to several splicing variants. Comparisons of these sequences with the available databases identified one more human gene and predicted another based on a rabbit cDNA-derived sequence, thus bringing the number of genes encoding PR61 family members to five. Peptide sequences derived from PR61 corresponded to the deduced amino acid sequences of either alpha or beta isoforms, indicating that the purified PP2A preparation was a mixture of at least two trimers. In contrast, the 56 kDa subunit (termed PR56) seems to correspond to the epsilon isoform of PR61. Several regulatory subunits of PP2A belonging to the PR61 family contain consensus sequences for nuclear localization and might therefore target PP2A to nuclear substrates. PMID:8694763

  10. In situ high-resolution evaluation of labile arsenic and mercury in sediment of a large shallow lake.

    PubMed

    Wang, Chao; Yao, Yu; Wang, Peifang; Hou, Jun; Qian, Jin; Yuan, Ye; Fan, Xiulei

    2016-01-15

    The precise evaluation of arsenic (As) and mercury (Hg) bioavailability in sediment is crucial to controlling As and Hg contamination, but traditional ex situ measurements hamper comprehensive analysis of labile As and Hg in sediment. In this study, we characterized in situ labile As and Hg in sediment of Lake Hongze using the zirconium (Zr) oxide diffusive gradients in thin films (DGT) technique and 3-mercaptopropyl functionalized silica gel DGT, respectively. The concentrations of DGT-labile As and Hg in the sediment profiles were found to exhibit considerable variation, ranging from 0.15 to 4.15 μg L(-1) for As and from 0.04 to 1.35 μg L(-1) for Hg. As and Hg flux values, calculated based on the concentration gradients measured from the DGT profiles for both the overlying water and sediment close to the sediment-water interface, were used to determine the contamination status of As and Hg. Flux values of As and Hg were between -0.066 and 0.067 ng cm(-2)d(-1) and between -0.0187 and 0.0181 ng cm(-2)d(-1), respectively. The GNU's Not Unix R (GNU R) programming language was used to identify outliers of As and Hg at various depths at the sampling sites. The results indicate that the sites with the most outliers were all located in the regions that were seriously affected by contaminants from the Huai River. The DGT-labile As and Hg concentrations in the 0-30 mm layer were found to be significantly correlated with concentrations of labile As and Hg, total dissolved As and Hg, and total As and Hg in the overlying water, as indicated by ex situ measurements. Results show that DGT is a reliable and high-resolution technique that can be used for in situ monitoring of the labile fractions of As and Hg in sediment in fresh water bodies. PMID:26398454

  11. Heat stability of maize endosperm ADP-glucose pyrophosphorylase is enhanced by insertion of a cysteine in the N terminus of the small subunit.

    PubMed

    Linebarger, Carla R Lyerly; Boehlein, Susan K; Sewell, Aileen K; Shaw, Janine; Hannah, L Curtis

    2005-12-01

    ADP-glucose pyrophosphorylase (AGPase) is a key regulatory enzyme in starch biosynthesis. However, plant AGPases differ in several parameters, including spatial and temporal expression, allosteric regulation, and heat stability. AGPases of cereal endosperms are heat labile, while those in other tissues, such as the potato (Solanum tuberosum) tuber, are heat stable. Sequence comparisons of heat-stable and heat-labile AGPases identified an N-terminal motif unique to heat-stable enzymes. Insertion of this motif into recombinant maize (Zea mays) endosperm AGPase increased the half-life at 58 degrees C more than 70-fold. Km values for physiological substrates were unaffected, although Kcat was doubled. A cysteine within the inserted motif gives rise to small subunit homodimers not found in the wild-type maize enzyme. Placement of this N-terminal motif into a mosaic small subunit containing the N terminus from maize endosperm and the C terminus from potato tuber AGPase increases heat stability more than 300-fold. PMID:16299180

  12. Bacteria obtained from a sequencing batch reactor that are capable of growth on dehydroabietic acid.

    PubMed Central

    Mohn, W W

    1995-01-01

    Eleven isolates capable of growth on the resin acid dehydroabietic acid (DhA) were obtained from a sequencing batch reactor designed to treat a high-strength process stream from a paper mill. The isolates belonged to two groups, represented by strains DhA-33 and DhA-35, which were characterized. In the bioreactor, bacteria like DhA-35 were more abundant than those like DhA-33. The population in the bioreactor of organisms capable of growth on DhA was estimated to be 1.1 x 10(6) propagules per ml, based on a most-probable-number determination. Analysis of small-subunit rRNA partial sequences indicated that DhA-33 was most closely related to Sphingomonas yanoikuyae (Sab = 0.875) and that DhA-35 was most closely related to Zoogloea ramigera (Sab = 0.849). Both isolates additionally grew on other abietanes, i.e., abietic and palustric acids, but not on the pimaranes, pimaric and isopimaric acids. For DhA-33 and DhA-35 with DhA as the sole organic substrate, doubling times were 2.7 and 2.2 h, respectively, and growth yields were 0.30 and 0.25 g of protein per g of DhA, respectively. Glucose as a cosubstrate stimulated growth of DhA-33 on DhA and stimulated DhA degradation by the culture. Pyruvate as a cosubstrate did not stimulate growth of DhA-35 on DhA and reduced the specific rate of DhA degradation of the culture. DhA induced DhA and abietic acid degradation activities in both strains, and these activities were heat labile. Cell suspensions of both strains consumed DhA at a rate of 6 mumol mg of protein-1 h-1.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7793937

  13. Nucleotide sequence of the cDNA encoding the precursor of the beta subunit of rat lutropin.

    PubMed Central

    Chin, W W; Godine, J E; Klein, D R; Chang, A S; Tan, L K; Habener, J F

    1983-01-01

    We have determined the nucleotide sequences of cDNAs encoding the precursor of the beta subunit of rat lutropin, a polypeptide hormone that regulates gonadal function, including the development of gametes and the production of steroid sex hormones. The cDNAs were prepared from poly(A)+ RNA derived from the pituitary glands of rats 4 weeks after ovariectomy and were cloned in bacterial plasmids. Bacterial colonies containing transfected plasmids were screened by hybridization with a 32P-labeled cDNA encoding the beta subunit of human chorionic gonadotropin, a protein that is related in structure to lutropin. Several recombinant plasmids were detected that by nucleotide sequence analyses contained coding sequences for the precursor of the beta subunit of lutropin. Complete determination of the nucleotide sequences of these cDNAs, as well as of cDNA reverse-transcribed from pituitary poly(A)+ RNA by using a synthetic pentadecanucleotide as a primer of RNA, provided the entire 141-codon sequence of the precursor of the beta subunit of rat lutropin. The precursor consists of a 20 amino acid leader (signal) peptide and an apoprotein of 121 amino acids. The amino acid sequence of the rat lutropin beta subunit shows similarity to the beta subunits of the ovine/bovine, porcine, and human lutropins (81, 86, and 74% of amino acids identical, respectively). Blot hybridization of pituitary RNAs separated by electrophoresis on agarose gels showed that the mRNA encoding the lutropin beta subunit consists of approximately 700 bases. The availability of cDNAs for both the alpha and beta subunits of lutropin will facilitate studies of the regulation of lutropin expression. Images PMID:6192440

  14. Amaranth (Amaranthus hypochondriacus) vicilin subunit structure.

    PubMed

    Quiroga, Alejandra; Martínez, E Nora; Rogniaux, Hélène; Geairon, Audrey; Añón, M Cristina

    2010-12-22

    The 7S-globulin fraction is a minor component of the amaranth storage proteins. The present work provides new information about this protein. The amaranth 7S-globulin or vicilin presented a sedimentation coefficient of 8.6 ± 0.6 S and was composed of main subunits of 66, 52, 38, and 16 kDa. On the basis of mass spectrometry (MS) analysis of tryptic fragments, the 52, 38, and 16 kDa subunits presented sequence homology with sesame vicilin, whereas the 66 kDa subunit showed sequence similarity with a putative vicilin. Several characteristics of the 66 kDa subunit were similar to members of the convicilin family. Results support the hypothesis that the 7S-globulin molecules are composed of subunits coming from at least two gene families with primary products of 66 and 52 kDa, respectively. According to the present information, amaranth vicilin may be classified into the vicilin group that includes pea, broad bean, and sesame vicilins, among others. PMID:21117690

  15. Modulation of the skeletal muscle sodium channel alpha-subunit by the beta 1-subunit.

    PubMed

    Wallner, M; Weigl, L; Meera, P; Lotan, I

    1993-12-28

    Co-expression of cloned sodium channel beta 1-subunit with the rat skeletal muscle-subunit (alpha microI) accelerated the macroscopic current decay, enhanced the current amplitude, shifted the steady state inactivation curve to more negative potentials and decreased the time required for complete recovery from inactivation. Sodium channels expressed from skeletal muscle mRNA showed a similar behaviour to that observed from alpha microI/beta 1, indicating that beta 1 restores 'physiological' behaviour. Northern blot analysis revealed that the Na+ channel beta 1-subunit is present in high abundance (about 0.1%) in rat heart, brain and skeletal muscle, and the hybridization with untranslated region of the 'brain' beta 1 cDNA to skeletal muscle and heart mRNA indicated that the different Na+ channel alpha-subunits in brain, skeletal muscle and heart may share a common beta 1-subunit. PMID:8282123

  16. Molecular cloning and expression of a GABA receptor subunit from the crayfish Procambarus clarkii.

    PubMed

    Jiménez-Vázquez, Eric N; Díaz-Velásquez, Clara E; Uribe, R M; Arias, Juan M; García, Ubaldo

    2016-02-01

    Molecular cloning has introduced an unexpected, large diversity of neurotransmitter hetero- oligomeric receptors. Extensive research on the molecular structure of the γ-aminobutyric acid receptor (GABAR) has been of great significance for understanding how the nervous system works in both vertebrates and invertebrates. However, only two examples of functional homo-oligomeric GABA-activated Cl(-) channels have been reported. In the vertebrate retina, the GABAρ1 subunit of various species forms homo-oligomeric receptors; in invertebrates, a cDNA encoding a functional GABA-activated Cl(-) channel has been isolated from a Drosophila melanogaster head cDNA library. When expressed in Xenopus laevis oocytes, these subunits function efficiently as a homo-oligomeric complex. To investigate the structure-function of GABA channels from the crayfish Procambarus clarkii, we cloned a subunit and expressed it in human embryonic kidney cells. Electrophysiological recordings show that this subunit forms a homo-oligomeric ionotropic GABAR that gates a bicuculline-insensitive Cl(-) current. The order of potency of the agonists was GABA > trans-4-amino-crotonic acid = cis-4-aminocrotonic acid > muscimol. These data support the notion that X-organ sinus gland neurons express at least two GABA subunits responsible for the formation of hetero-oligomeric and homo-oligomeric receptors. In addition, by in situ hybridization studies we demonstrate that most X-organ neurons from crayfish eyestalk express the isolated pcGABAA β subunit. This study increases the knowledge of the genetics of the crayfish, furthers the understanding of this important neurotransmitter receptor family, and provides insight into the evolution of these genes among vertebrates and invertebrates. PMID:26577600

  17. Cohesin-Dockerin Interactions of Cellulosomal Subunits of Clostridium cellulovorans

    PubMed Central

    Park, Jae-Seon; Matano, Yutaka; Doi, Roy H.

    2001-01-01

    The cellulosome of Clostridium cellulovorans consists of three major subunits: CbpA, EngE, and ExgS. The C. cellulovorans scaffolding protein (CbpA) contains nine hydrophobic repeated domains (cohesins) for the binding of enzymatic subunits. Cohesin domains are quite homologous, but there are some questions regarding their binding specificity because some of the domains have regions of low-level sequence similarity. Two cohesins which exhibit 60% sequence similarity were investigated for their ability to bind cellulosomal enzymes. Cohesin 1 (Coh1) was found to contain amino acid residues corresponding to amino acids 312 to 453 of CbpA, which contains a total of 1,848 amino acid residues. Coh6 was determined to contain amino acid residues corresponding to residues 1113 to 1254 of CbpA. By genetic construction, these two cohesins were each fused to MalE, producing MalE-Coh1 and MalE-Coh6. The abilities of two fusion proteins to bind to EngE, ExgS, and CbpA were compared. Although MalE-Coh6 could bind EngE and ExgS, little or no binding of the enzymatic subunits was observed with MalE-Coh1. Significantly, the abilities of the two fusion proteins to bind CbpA were similar. The binding of dockerin-containing enzymes to cohesin-containing proteins was suggested as a model for assembly of cellulosomes. In our examination of the role of dockerins, it was also shown that the binding of endoglucanase B (EngB) to CbpA was dependent on the presence of EngB's dockerin. These results suggest that different cohesins may function with differing efficiency and specificity, that cohesins may play some role in the formation of polycellulosomes through Coh-CbpA interactions, and that dockerins play an important role during the interaction of cellulosomal enzymes and cohesins present in CbpA. PMID:11514529

  18. Hereditary heat-labile hexosaminidase B: its implication for recognizing Tay-Sachs genotypes.

    PubMed

    Navon, R; Nutman, J; Kopel, R; Gaber, L; Gadoth, N; Goldman, B; Nitzan, M

    1981-11-01

    Two pairs of alleles, at the two loci of hexosaminidase (HEX), were found to segregate in an Arab inbred family: the normal and the mutant Tay-Sachs (TSD) alleles of HEX A, and the normal and a mutant allele of HEX B. Since the mutant HEX B is heat labile, no reliable identification of TSD genotypes can be obtained in its presence, as long as the proportions of HEX A and B are estimated by the routinely used heat-inactivation method. The genotypes may be correctly identified in such cases by separation of the two isoenzymes on ion-exchange chromatography, estimating their individual activities, and calculating the ratio between them. Of the nine genotype combinations possible with these two pairs of alleles, five have been identified in the reported family by this procedure. PMID:6459736

  19. Developmental Change and Intraindividual Variability: Relating Cognitive Aging to Cognitive Plasticity, Cardiovascular Lability, and Emotional Diversity

    PubMed Central

    Ram, Nilam; Gerstorf, Denis; Lindenberger, Ulman; Smith, Jacqui

    2010-01-01

    Repeated assessments obtained over years can be used to measure individuals’ developmental change, whereas repeated assessments obtained over a few weeks can be used to measure individuals’ dynamic characteristics. Using data from a burst of measurement embedded in the Berlin Aging Study (BASE: Baltes & Mayer, 1999), we illustrate and examine how long-term changes in cognitive ability are related to short-term changes in cognitive performance, cardiovascular function, and emotional experience. Our findings suggest that “better” cognitive aging over approximately13 years was associated with greater cognitive plasticity, less cardiovascular lability, and less emotional diversity over approximately 2 weeks at age 90 years. The study highlights the potential benefits of multi-time scale longitudinal designs for the study of individual function and development. PMID:21443355

  20. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    SciTech Connect

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  1. Heat-labile enterotoxigenic Escherichia coli and intestinal protozoa in asymptomatic travellers.

    PubMed

    Echeverria, P; Cross, J H

    1977-12-01

    Thirty-two asymptomatic travellers who had recently journeyed in the Near, Middle, and Far East and had experienced a high incidence of diarrhoeal disease were screened for heat-labile enterotoxigenic Escherichia coli (ent+ E. coli) and other bacterial and parasitic pathogens. Six percent were colonized with ent+ E. coli and while other bacterial pathogens were not found, the intestinal protozoa Giardia lamblia (13%), Entamoeba histolytica (6%), Entamoeba coli (6%), Endolimax nana (6%), and Entamoeba hartmanni (3%) were detected in the stools. Ent+ E. coli, G. lamblia and E. histolytica should be considered in the differential diagnosis of gastrointestinal disease in travellers returning from the Orient. Furthermore, these travellers may be a potential source for the introduction of ent+ E. coli into communities where such organisms are relatively rare. PMID:351820

  2. Subunit architecture of general transcription factor TFIIH.

    PubMed

    Gibbons, Brian J; Brignole, Edward J; Azubel, Maia; Murakami, Kenji; Voss, Neil R; Bushnell, David A; Asturias, Francisco J; Kornberg, Roger D

    2012-02-01

    Structures of complete 10-subunit yeast TFIIH and of a nested set of subcomplexes, containing 5, 6, and 7 subunits, have been determined by electron microscopy (EM) and 3D reconstruction. Consistency among all the structures establishes the location of the "minimal core" subunits (Ssl1, Tfb1, Tfb2, Tfb4, and Tfb5), and additional densities can be specifically attributed to Rad3, Ssl2, and the TFIIK trimer. These results can be further interpreted by placement of previous X-ray structures into the additional densities to give a preliminary picture of the RNA polymerase II preinitiation complex. In this picture, the key catalytic components of TFIIH, the Ssl2 ATPase/helicase and the Kin28 protein kinase are in proximity to their targets, downstream promoter DNA and the RNA polymerase C-terminal domain. PMID:22308316

  3. A live attenuated Salmonella Enteritidis secreting detoxified heat labile toxin enhances mucosal immunity and confers protection against wild-type challenge in chickens.

    PubMed

    Lalsiamthara, Jonathan; Kamble, Nitin Machindra; Lee, John Hwa

    2016-01-01

    A live attenuated Salmonella Enteritidis (SE) capable of constitutively secreting detoxified double mutant Escherichia coli heat labile toxin (dmLT) was developed. The biologically adjuvanted strain was generated via transformation of a highly immunogenic SE JOL1087 with a plasmid encoding dmLT gene cassette; the resultant strain was designated JOL1641. A balanced-lethal host-vector system stably maintained the plasmid via auxotrophic host complementation with a plasmid encoded aspartate semialdehyde dehydrogenase (asd) gene. Characterization by western blot assay revealed the dmLT subunit proteins in culture supernatants of JOL1641. For the investigation of adjuvanticity and protective efficacy, chickens were immunized via oral or intramuscular routes with PBS, JOL1087 and JOL1641. Birds immunized with JOL1641 showed significant (P ≤ 0.05) increases in intestinal SIgA production at the 1(st) and 2(nd) weeks post-immunization via oral and intramuscular routes, respectively. Interestingly, while both strains showed significant splenic protection via intramuscular immunization, JOL1641 outperformed JOL1087 upon oral immunization. Oral immunization of birds with JOL1641 significantly reduced splenic bacterial counts. The reduction in bacterial counts may be correlated with an adjuvant effect of dmLT that increases SIgA secretion in the intestines of immunized birds. The inclusion of detoxified dmLT in the strain did not cause adverse reactions to birds, nor did it extend the period of bacterial fecal shedding. In conclusion, we report here that dmLT could be biologically incorporated in the secretion system of a live attenuated Salmonella-based vaccine, and that this construction is safe and could enhance mucosal immunity, and protect immunized birds against wild-type challenge. PMID:27262338

  4. Protection of piglets against enteric colibacillosis by intranasal immunization with K88ac (F4ac) fimbriae and heat labile enterotoxin of Escherichia coli.

    PubMed

    Lin, Jun; Mateo, Kristina S; Zhao, Mojun; Erickson, Alan K; Garcia, Nuria; He, Dong; Moxley, Rodney A; Francis, David H

    2013-03-23

    Enterotoxigenic Escherichia coli (ETEC) is an important diarrheal agent of young domestic animals. Currently, there are no commercially available non-living vaccines to protect weaned pigs from the disease and no major veterinary biologics company markets a postweaning ETEC vaccine of any kind. While efforts have been made to develop a non-living postweaning ETEC vaccine for pigs, studies have been limited to the assessment of immune responses to experimental immunogens. In the present study, we describe a reproducible gnotobiotic piglet model of post-weaning ETEC diarrhea and efficacy tests in that model of subunit vaccines consisting of K88 (F4) fimbriae and/or heat labile enterotoxin (LT) delivered by the intranasal route. We also report antibody responses to the vaccine antigens. Piglets vaccinated with both antigens mounted a substantial immune response with serum and cecal antibody titers to K88 antigen significantly greater than those of controls. Serum anti-LT antibody titers were also significantly greater than those of controls. Piglets vaccinated with both antigens remained healthy following challenge with ETEC. At least some pigs vaccinated with either antigen alone, and most of the control piglets developed dehydrating diarrhea and suffered significant weight loss. The results of this study suggest that an intranasal vaccine consisting of both antigens is highly protective against a vigorous experimental challenge of pigs with K88+ ETEC, while that against either antigen alone is not. The current study provides a system whereby various ETEC antigens and/or combinations of antigens can be tested in exploring strategies for the development of vaccines for ETEC. PMID:23089483

  5. Heat-labile- and heat-stable-toxoid fusions (LTR₁₉₂G-STaP₁₃F) of human enterotoxigenic Escherichia coli elicit neutralizing antitoxin antibodies.

    PubMed

    Liu, Mei; Ruan, Xiaosai; Zhang, Chengxian; Lawson, Steve R; Knudsen, David E; Nataro, James P; Robertson, Donald C; Zhang, Weiping

    2011-10-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of diarrheal disease in humans and animals. Adhesins and enterotoxins, including heat-labile (LT) and heat-stable (STa) toxins, are the key virulence factors. Antigenic adhesin and LT antigens have been used in developing vaccines against ETEC diarrhea. However, STa has not been included because of its poor immunogenicity and potent toxicity. Our recent study showed that porcine-type STa toxoids became immunogenic and elicited neutralizing anti-STa antibodies after being genetically fused to a full-length porcine-type LT toxoid, LT(R₁₉₂G) (W. Zhang et al., Infect. Immun. 78:316-325, 2010). In this study, we mutated human-type LT and STa genes, which are highly homologous to porcine-type toxin genes, for a full-length LT toxoid (LT(R₁₉₂)) and a full-length STa toxoid (STa(P₁₃F)) and genetically fused them to produce LT₁₉₂-STa₁₃ toxoid fusions. Mice immunized with LT₁₉₂-STa₁₃ fusion antigens developed anti-LT and anti-STa IgG (in serum and feces) and IgA antibodies (in feces). Moreover, secretory IgA antibodies from immunized mice were shown to neutralize STa and cholera toxins in T-84 cells. In addition, we fused the STa₁₃ toxoid at the N terminus and C terminus, between the A1 and A2 peptides, and between the A and B subunits of LT₁₉₂ to obtain different fusions in order to explore strategies for enhancing STa immunogenicity. This study demonstrated that human-type LT₁₉₂-STa₁₃ fusions induce neutralizing antitoxin antibodies and provided important information for developing toxoid vaccines against human ETEC diarrhea. PMID:21788385

  6. High lability of sexual system over 250 million years of evolution in morphologically conservative tadpole shrimps

    PubMed Central

    2013-01-01

    Background Sexual system is a key factor affecting the genetic diversity, population structure, genome structure and the evolutionary potential of species. The sexual system androdioecy – where males and hermaphrodites coexist in populations – is extremely rare, yet is found in three crustacean groups, barnacles, a genus of clam shrimps Eulimnadia, and in the order Notostraca, the tadpole shrimps. In the ancient crustacean order Notostraca, high morphological conservatism contrasts with a wide diversity of sexual systems, including androdioecy. An understanding of the evolution of sexual systems in this group has been hampered by poor phylogenetic resolution and confounded by the widespread occurrence of cryptic species. Here we use a multigene supermatrix for 30 taxa to produce a comprehensive phylogenetic reconstruction of Notostraca. Based on this phylogenetic reconstruction we use character mapping techniques to investigate the evolution of sexual systems. We also tested the hypothesis that reproductive assurance has driven the evolution of androdioecy in Notostraca. Results Character mapping analysis showed that sexual system is an extremely flexible trait within Notostraca, with repeated shifts between gonochorism and androdioecy, the latter having evolved a minimum of five times. In agreement with the reproductive assurance hypothesis androdioecious notostracans are found at significantly higher latitudes than gonochoric ones indicating that post glacial re-colonisation may have selected for the higher colonisation ability conferred by androdioecy. Conclusions In contrast to their conserved morphology, sexual system in Notostraca is highly labile and the rare reproductive mode androdioecy has evolved repeatedly within the order. Furthermore, we conclude that this lability of sexual system has been maintained for at least 250 million years and may have contributed to the long term evolutionary persistence of Notostraca. Our results further our

  7. Temporal Changes in Photochemically Labile DOM and Implications for Carbon Budgets in Peatland Aquatic Systems

    NASA Astrophysics Data System (ADS)

    Pickard, A.

    2015-12-01

    Aquatic systems in peatland catchments are subject to high loading of dissolved organic matter (DOM) from surrounding terrestrial environments. However the significance of photochemical transformation of DOM in peatland carbon budgets remains poorly constrained. In this study UV irradiation experiments were conducted on water samples collected over one year from two contrasting systems in Scotland: a stream draining a peatland with high levels of DOM and a reservoir draining a peat catchment with low levels of DOM. Further samples were collected from the high DOM system during two storm events. After experimental exposure, optical and chemical analyses were employed to determine photochemical lability of the DOM pool. At both sites irradiation-induced decreases in dissolved organic carbon (DOC) as a percentage of the total carbon pool were greatest in winter, suggesting that DOM was depleted in photo-reactive molecules in summer. Seasonal variability in DOC was high at the stream site and was positively correlated with CO₂ and CO photoproduction (r2 = 0.81 and 0.83, respectively; p<0.05). Lignin phenol analyses indicate considerable contribution of peat to the DOM pool at the stream site, particularly during summer. Whilst DOC concentrations did not vary greatly during storm events, UV-Vis absorbance indicators did, signifying changing DOM source material from activation of different hydrological pathways. The most photo-reactive DOM occurred 5-10 hours after peak discharge, suggesting that storms replenish photochemically labile DOM in headwater streams. Conservative estimates using data from this study suggest that up to 7% of the DOM pool of peatland streams can be lost (primarily as CO₂ and CO) upon exposure to 8 hours of environmentally representative UV irradiation. Further investigation in field campaigns under natural UV exposure are underway to assess the importance of photodegradation of DOM as a loss pathway of carbon based gases from aquatic systems.

  8. Labile and recalcitrant organic matter utilization by river biofilm under increasing water temperature.

    PubMed

    Ylla, Irene; Romaní, Anna M; Sabater, Sergi

    2012-10-01

    Microbial biofilms in rivers contribute to the decomposition of the available organic matter which typically shows changes in composition and bioavailability due to their origin, seasonality, and watershed characteristics. In the context of global warming, enhanced biofilm organic matter decomposition would be expected but this effect could be specific when either a labile or a recalcitrant organic matter source would be available. A laboratory experiment was performed to mimic the effect of the predicted increase in river water temperature (+4 °C above an ambient temperature) on the microbial biofilm under differential organic matter sources. The biofilm microbial community responded to higher water temperature by increasing bacterial cell number, respiratory activity (electron transport system) and microbial extracellular enzymes (extracellular enzyme activity). At higher temperature, the phenol oxidase enzyme explained a large fraction of respiratory activity variation suggesting an enhanced microbial use of degradation products from humic substances. The decomposition of hemicellulose (β-xylosidase activity) seemed to be also favored by warmer conditions. However, at ambient temperature, the enzymes highly responsible for respiration activity variation were β-glucosidase and leu-aminopeptidase, suggesting an enhanced microbial use of polysaccharides and peptides degradation products. The addition of labile dissolved organic carbon (DOC; dipeptide plus cellobiose) caused a further augmentation of heterotrophic biomass and respiratory activity. The changes in the fluorescence index and the ratio Abs(250)/total DOC indicated that higher temperature accelerated the rates of DOC degradation. The experiment showed that the more bioavailable organic matter was rapidly cycled irrespective of higher temperature while degradation of recalcitrant substances was enhanced by warming. Thus, pulses of carbon at higher water temperature might have consequences for DOC

  9. Collagenase-labile polyurethane urea synthesis and processing into hollow fiber membranes.

    PubMed

    Fu, Hui-Li; Hong, Yi; Little, Steven R; Wagner, William R

    2014-08-11

    As a means to stimulate wound healing, a hollow fiber membrane system might be placed within a wound bed to provide local and externally regulated controlled delivery of regenerative factors. After sufficient healing, it would be desirable to triggerably degrade these fibers as opposed to pulling them out. Accordingly, a series of enzymatically degradable thermoplastic elastomers was developed as potential hollow fiber base material. Polyurethane ureas (PUUs) were synthesized based on 1, 4-diisocyanatobutane, polycaprolactone (PCL) diol and polyethylene glycol (PEG) at different molar fractions as soft segments, and collagenase-sensitive peptide GGGLGPAGGK-NH2 as a chain extender (defined as PUU-CLxEGy-peptide, where x and y are the respective molar percents). In these polymers, PEG in the polymer backbone decreased tensile strengths and initial moduli of solvent-cast films in the wet state, while increasing water absorption. Collagenase degradation was observed at 75% relative PEG content in the soft segment. Control PUUs with putrescine or nonsense peptide chain extenders did not degrade acutely in collagenase. Conduits electrospun from PUU-CL25EG75-peptide and PUU-CL50EG50-peptide exhibited appropriate mechanical strength and sustained release of a model protein from the tube lumen for 7 days. Collapse of PUU-CL25EG75-peptide tubes occurred after collagenase degradation for 3 days. In conclusion, through molecular design, synthesis and characterization, a collagenase-labile PUU-CL25EG75-peptide polymer was identified that exhibited the desired traits of triggerable lability, processability, and the capacity to act as a membrane to facilitate controlled protein release. PMID:25003560

  10. The priming effect: Investigating the role of labile C quantity on subsoil C losses

    NASA Astrophysics Data System (ADS)

    Diochon, Amanda; Kellman, Lisa; Beltrami, Hugo

    2010-05-01

    In a study examining changes in soil organic carbon storage after clearcut harvesting, we previously reported a 50% decline in soil C stocks approximately 30 years after harvesting, with the greatest losses reported below 20 cm in the mineral soil. Physical and biological separation of organic matter indicated that the decline was greatest in the fractions of organic matter that are conceptually thought to be stable. Stable isotope analyses were consistent with increased mineralization post-harvest and we speculated that the deeper stores of C might have been primed by a flush of labile C post harvest. A recent review (Blagodatskyaya and Kuzyakov, 2008) reported that the direction (positive, negative, neutral) of the priming effect may be dependent not only upon the energy content of the added substrate, but the quantity of C added relative to microbial biomass carbon (MBC). In this study we test this hypothesis using a lab-based incubation of soils collected from the surface (0-10 cm) and subsoil (35-50 cm) of an 80 year old red spruce forest. We added 10, 100 and 1000 % C (glucose) relative to MBC and measured the rate of decomposition (microbial respiration) every 5 h for the first week, every 24 h for the second week, weekly for a month and biweekly for two months. After flushing the headspace with CO2 free air, we measured the rate of microbial respiration and the δ13C of the respired C using a Multiflow prep system with a Gilson autosampler coupled to an Isoprime mass spectrometer. We used an isotope-mixing model to partition the sources of respired C and determine the direction of priming. Our findings suggest that the quantity of added C can affect the direction of priming and that the relative priming effect differs between depths, suggesting that soil organic carbon stores in the subsoil are more sensitive to labile C additions.

  11. Heteromeric assembly of P2X subunits

    PubMed Central

    Saul, Anika; Hausmann, Ralf; Kless, Achim; Nicke, Annette

    2013-01-01

    Transcripts and/or proteins of P2X receptor (P2XR) subunits have been found in virtually all mammalian tissues. Generally more than one of the seven known P2X subunits have been identified in a given cell type. Six of the seven cloned P2X subunits can efficiently form functional homotrimeric ion channels in recombinant expression systems. This is in contrast to other ligand-gated ion channel families, such as the Cys-loop or glutamate receptors, where homomeric assemblies seem to represent the exception rather than the rule. P2XR mediated responses recorded from native tissues rarely match exactly the biophysical and pharmacological properties of heterologously expressed homomeric P2XRs. Heterotrimerization of P2X subunits is likely to account for this observed diversity. While the existence of heterotrimeric P2X2/3Rs and their role in physiological processes is well established, the composition of most other P2XR heteromers and/or the interplay between distinct trimeric receptor complexes in native tissues is not clear. After a description of P2XR assembly and the structure of the intersubunit ATP-binding site, this review summarizes the distribution of P2XR subunits in selected mammalian cell types and the biochemically and/or functionally characterized heteromeric P2XRs that have been observed upon heterologous co-expression of P2XR subunits. We further provide examples where the postulated heteromeric P2XRs have been suggested to occur in native tissues and an overview of the currently available pharmacological tools that have been used to discriminate between homo- and heteromeric P2XRs. PMID:24391538

  12. A comparison of retrospective self-report versus ecological momentary assessment measures of affective lability in the examination of its relationship with bulimic symptomatology

    PubMed Central

    Anestis, Michael D.; Selby, Edward A.; Crosby, Ross D.; Wonderlich, Stephen A.; Engel, Scott G.; Joiner, Thomas E.

    2010-01-01

    Affective lability has been linked to several maladaptive behaviors (Anestis et al., 2009; Coccaro, 1991). Methodology for measuring affective lability varies and includes retrospective self-report and ecological momentary assessment (EMA). In this study, we sought to test these methodologies by examining which better predicted binge eating episodes and general eating disorder symptoms in a sample (n = 131) of women diagnosed with bulimia nervosa (BN). We hypothesized that, while the two forms of measurement would be correlated with one another and predict binge eating episodes, EMA affective lability would be the stronger predictor. Results supported several hypotheses. Specifically, both EMA affective lability and retrospective self-report affective lability significantly predicted global eating disorder symptoms, even when controlling for depression, age, body mass index, and level of education, EMA affective lability exhibited a significantly stronger correlation with binge eating episodes than did retrospective self-report affective lability, and EMA affective lability predicted number of binge eating episodes on any given day controlling for the same list of covariates. Limitations include the use of a clinical sample that may limit the generalizability of our findings. Findings highlight the importance of affect in such behavior. PMID:20392437

  13. A comparison of retrospective self-report versus ecological momentary assessment measures of affective lability in the examination of its relationship with bulimic symptomatology.

    PubMed

    Anestis, Michael D; Selby, Edward A; Crosby, Ross D; Wonderlich, Stephen A; Engel, Scott G; Joiner, Thomas E

    2010-07-01

    Affective lability has been linked to several maladaptive behaviors (Anestis et al., 2009; Coccaro, 1991). Methodology for measuring affective lability varies and includes retrospective self-report and ecological momentary assessment (EMA). In this study, we sought to test these methodologies by examining which better predicted binge eating episodes and general eating disorder symptoms in a sample (n = 131) of women diagnosed with bulimia nervosa (BN). We hypothesized that, while the two forms of measurement would be correlated with one another and predict binge eating episodes, EMA affective lability would be the stronger predictor. Results supported several hypotheses. Specifically, both EMA affective lability and retrospective self-report affective lability significantly predicted global eating disorder symptoms, even when controlling for depression, age, body mass index, and level of education, EMA affective lability exhibited a significantly stronger correlation with binge eating episodes than did retrospective self-report affective lability, and EMA affective lability predicted number of binge eating episodes on any given day controlling for the same list of covariates. Limitations include the use of a clinical sample that may limit the generalizability of our findings. Findings highlight the importance of affect in such behavior. PMID:20392437

  14. Expression of the type I regulatory subunit of cAMP-dependent protein kinase in Escherichia coli

    SciTech Connect

    Saraswat, L.D.; Filutowicz, M.

    1986-05-01

    The cDNA for the bovine type I regulatory subunit of cAMP-dependent protein kinase has been inserted into the expression vector pUC7. When E. coli JM105 was transformed with this plasmid, R-subunit was expressed in amounts that approached 2-4 mg/liter. The expressed protein was visualized in total cell extracts by photolabeling with 8-N/sub 3/-(/sup 32/P)-cAMP following transfer from SDS polyacrylamide gels to nitrocellulose. Expression of R-subunit was independent of IPTG. R-subunit accumulated in large amounts only in the stationary phase of growth. The addition of IPTG during the log phase of growth actually blocked the accumulation of R-subunit. The soluble, dimeric R-subunit was purifided to homogeneity by affinity chromatography. This R-subunit bound 2 mol cAMP/mol R monomer, reassociated with C-subunit to form cAMP-dependent holoenzyme, and migrated as a dimer on SDS polyacrylamide gels in the absence of reducing agents. The expressed protein was also susceptible to limited proteolysis yielding a monomeric cAMP-binding fragment having a molecular weight of 35,000. In all of these properties the expressed protein was indistinguishable from R/sup I/ purified from bovine tissue even though the R-subunit expressed in E. coli represents a fusion protein that contains 10 additional amino acids at the amino terminus that are provided by the lac Z gene of the vector. The NH/sub 2/-terminal sequence was confirmed by amino acid sequencing.

  15. Expression of specific ionotropic glutamate and GABA-A receptor subunits is decreased in central amygdala of alcoholics

    PubMed Central

    Jin, Zhe; Bhandage, Amol K.; Bazov, Igor; Kononenko, Olga; Bakalkin, Georgy; Korpi, Esa R.; Birnir, Bryndis

    2014-01-01

    The central amygdala (CeA) has a role for mediating fear and anxiety responses. It is also involved in emotional imbalance caused by alcohol abuse and dependence and in regulating relapse to alcohol abuse. Growing evidences suggest that excitatory glutamatergic and inhibitory γ-aminobutyric acid-ergic (GABAergic) transmissions in the CeA are affected by chronic alcohol exposure. Human post-mortem CeA samples from male alcoholics (n = 9) and matched controls (n = 9) were assayed for the expression level of ionotropic glutamate and GABA-A receptors subunit mRNAs using quantitative real-time reverse transcription-PCR (RT-qPCR). Our data revealed that out of the 16 ionotropic glutamate receptor subunits, mRNAs encoding two AMPA [2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid] receptor subunits GluA1 and GluA4; one kainate receptor subunit GluK2; one NMDA (N-methyl-D-aspartate) receptor subunit GluN2D and one delta receptor subunit GluD2 were significantly decreased in the CeA of alcoholics. In contrast, of the 19 GABA-A receptor subunits, only the mRNA encoding the α2 subunit was significantly down-regulated in the CeA of the alcoholics as compared with control subjects. Our findings imply that the down-regulation of specific ionotropic glutamate and GABA-A receptor subunits in the CeA of alcoholics may represent one of the molecular substrates underlying the new balance between excitatory and inhibitory neurotransmission in alcohol dependence. PMID:25278838

  16. Purification and characterization of the glycoprotein hormone. cap alpha. -subunit-like material secreted by HeLa cells

    SciTech Connect

    Cox, G.S.; Rimerman, R.A.

    1988-08-23

    The protein secreted by HeLa cells that cross-reacts with antiserum developed against the ..cap alpha..-subunit of human chorionic gonadotropin (hCG) has been purified approximately 30,000-fold from concentrated culture medium by organic solvent fractionation followed by ion exchange, gel filtration, and lectin affinity chromatography. The final preparation had a specific activity (by RIA) of 6.8 x 10/sup 5/ ng of ..cap alpha../mg of protein and appeared homogeneous by electrophoresis on reducing/denaturing polyacrylamide gels (SDS-PAGE). Amino acid analysis indicated that HeLa-..cap alpha.. had a composition very similar to that of the urinary hCG ..cap alpha..-subunit. However, comparison of hCG-..cap alpha.. and HeLa-..cap alpha.. demonstrated that the tumor-associated subunit was not identical with its normal counterpart. The purified tumor protein had an apparent molecular weight greater than that of the urinary ..cap alpha..-subunit when analyzed by SDS-PAGE, and this difference was even greater when a partially purified preparation was examined by an immunoblot technique (Western). Isoelectric focusing of the HeLa and hCG subunits demonstrated that the tumor protein had a lower pI. Immunoprecipitation and electrophoresis of ..cap alpha..-subunit from HeLa cultures labeled with (/sup 3/H)fucose indicated that the tumor subunit was fucosylated, whereas analysis of hCG-..cap alpha.. hydrosylates by HPLC confirmed previous reports that the placental subunit does not contain fucose. The results indicate that, regardless of whether or not a single ..cap alpha..-subunit gene is being expressed in both normal and neoplastic tissues, posttranslational modifications lead to a highly altered subunit in the tumor. The differences observed may be useful in diagnosing neoplastic vs hyperplastic conditions and may lend insight into the mechanism of ectopic hormone production by tumors.

  17. Thermal Analysis of Labile Trace Elements in CM and CV Carbonaceous Chondrites Using Inductively Coupled Plasma-Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.; Klaue, B.; Blum, J. D.; Buseck, P. R.

    2001-01-01

    We developed a technique to measure the thermal release profiles of a suite of labile elements (Zn, As, Se, Cd, In, Sn, Sb, Te, Pt, Hg, Au, Tl, Pb, Bi). Conclusions are reached about the behavior of each element during parent-body alteration. Additional information is contained in the original extended abstract.

  18. ReCLIP (Reversible Cross-Link Immuno-Precipitation): An Efficient Method for Interrogation of Labile Protein Complexes

    PubMed Central

    Smith, Andrew L.; Friedman, David B.; Yu, Huapeng; Carnahan, Robert H.; Reynolds, Albert B.

    2011-01-01

    The difficulty of maintaining intact protein complexes while minimizing non-specific background remains a significant limitation in proteomic studies. Labile interactions, such as the interaction between p120-catenin and the E-cadherin complex, are particularly challenging. Using the cadherin complex as a model-system, we have developed a procedure for efficient recovery of otherwise labile protein-protein interactions. We have named the procedure “ReCLIP” (Reversible Cross-Link Immuno-Precipitation) to reflect the primary elements of the method. Using cell-permeable, thiol-cleavable crosslinkers, normally labile interactions (i.e. p120 and E-cadherin) are stabilized in situ prior to isolation. After immunoprecipitation, crosslinked binding partners are selectively released and all other components of the procedure (i.e. beads, antibody, and p120 itself) are discarded. The end result is extremely efficient recovery with exceptionally low background. ReCLIP therefore appears to provide an excellent alternative to currently available affinity-purification approaches, particularly for studies of labile complexes. PMID:21283770

  19. Plant-Soil Relationships of Bromus tectorum L.: Interactions among Labile Carbon Additions, Soil Invasion Status, and Fertilizer.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasion of western North America by the annual exotic grass Bromus tectorum L. (cheatgrass) has been an ecological disaster. High soil bioavailability of nitrogen is a contributing factor in the invasive potential of B. tectorum. Application of labile carbon sources to the soil can immobilize soil ...

  20. Dynamics of labile and recalcitrant soil carbon pools in a sorghum Free-Air Co2 Enrichment (FACE) agroecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experimentation with dynamics of soil carbon pools as affected by elevated CO2 can better define the ability of terrestrial ecosystems to sequester global carbon. In the present study, 6 N HCl hydrolysis and stable-carbon isotopic analysis ('13C) were used to investigate the labile and recalcitrant ...

  1. Emotional Lability in Children and Adolescents with Attention Deficit/Hyperactivity Disorder (ADHD): Clinical Correlates and Familial Prevalence

    ERIC Educational Resources Information Center

    Sobanski, Esther; Banaschewski, Tobias; Asherson, Philip; Buitelaar, Jan; Chen, Wai; Franke, Barbara; Holtmann, Martin; Krumm, Bertram; Sergeant, Joseph; Sonuga-Barke, Edmund; Stringaris, Argyris; Taylor, Eric; Anney, Richard; Ebstein, Richard P.; Gill, Michael; Miranda, Ana; Mulas, Fernando; Oades, Robert D.; Roeyers, Herbert; Rothenberger, Aribert; Steinhausen, Hans-Christoph; Faraone, Stephen V.

    2010-01-01

    Background: The goal of this study was to investigate the occurrence, severity and clinical correlates of emotional lability (EL) in children with attention deficit/hyperactivity disorder (ADHD), and to examine factors contributing to EL and familiality of EL in youth with ADHD. Methods: One thousand, one hundred and eighty-six children with ADHD…

  2. Tillage and rotational effects on exchangeable and enzyme-labile phosphorus forms in conventional and organic cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transformations of crop residues and bio-fertilizers used as primary sources of nutrients for organic grain and forage production are influenced by soil management practices. The effects of management of the near-surface zone on labile phosphorus (P) forms were studied in soil under three organ...

  3. Affective lability and difficulties with regulation are differentially associated with amygdala and prefrontal response in women with Borderline Personality Disorder.

    PubMed

    Silvers, Jennifer A; Hubbard, Alexa D; Biggs, Emily; Shu, Jocelyn; Fertuck, Eric; Chaudhury, Sadia; Grunebaum, Michael F; Weber, Jochen; Kober, Hedy; Chesin, Megan; Brodsky, Beth S; Koenigsberg, Harold; Ochsner, Kevin N; Stanley, Barbara

    2016-08-30

    The present neuroimaging study investigated two aspects of difficulties with emotion associated with Borderline Personality Disorder (BPD): affective lability and difficulty regulating emotion. While these two characteristics have been previously linked to BPD symptomology, it remains unknown whether individual differences in affective lability and emotion regulation difficulties are subserved by distinct neural substrates within a BPD sample. To address this issue, sixty women diagnosed with BPD were scanned while completing a task that assessed baseline emotional reactivity as well as top-down emotion regulation. More affective instability, as measured by the Affective Lability Scale (ALS), positively correlated with greater amygdala responses on trials assessing emotional reactivity. Greater difficulties with regulating emotion, as measured by the Difficulties with Emotion Regulation Scale (DERS), was negatively correlated with left Inferior Frontal Gyrus (IFG) recruitment on trials assessing regulatory ability. These findings suggest that, within a sample of individuals with BPD, greater bottom-up amygdala activity is associated with heightened affective lability. By contrast, difficulties with emotion regulation are related to reduced IFG recruitment during emotion regulation. These results point to distinct neural mechanisms for different aspects of BPD symptomology. PMID:27379614

  4. A Longitudinal Study of Emotion Regulation, Emotion Lability-Negativity, and Internalizing Symptomatology in Maltreated and Nonmaltreated Children

    ERIC Educational Resources Information Center

    Kim-Spoon, Jungmeen; Cicchetti, Dante; Rogosch, Fred A.

    2013-01-01

    The longitudinal contributions of emotion regulation and emotion lability-negativity to internalizing symptomatology were examined in a low-income sample (171 maltreated and 151 nonmaltreated children, from age 7 to 10 years). Latent difference score models indicated that for both maltreated and nonmaltreated children, emotion regulation was a…

  5. On the Labile Memory Buffer in the Attentional Blink: Masking the T2 Representation by Onset Transients Mediates the AB

    ERIC Educational Resources Information Center

    Jannati, Ali; Spalek, Thomas M.; Di Lollo, Vincent

    2011-01-01

    Report of a second target (T2) is impaired when presented within 500 ms of the first (T1). This attentional blink (AB) is known to cause a delay in T2 processing during which T2 must be stored in a labile memory buffer. We explored the buffer's characteristics using different types of masks after T2. These characteristics were inferred by…

  6. Lincomycin-induced over-expression of mature recombinant cholera toxin B subunit and the holotoxin in Escherichia coli.

    PubMed

    Arimitsu, Hideyuki; Tsukamoto, Kentaro; Ochi, Sadayuki; Sasaki, Keiko; Kato, Michio; Taniguchi, Koki; Oguma, Keiji; Tsuji, Takao

    2009-10-01

    Cholera toxin (CT) B subunit (CTB) was overproduced using a novel expression system in Escherichia coli. An expression plasmid was constructed by inserting the gene encoding the full-length CTB and the Shine-Dalgarno (SD) sequence derived from CTB or from the heat-labile enterotoxin B subunit (LTB) of enterotoxigenic E. coli into the lacZalpha gene fragment in the pBluescript SK(+) vector. The E. coli strain MV1184 was transformed with each plasmid and then cultured in CAYE broth containing lincomycin. Recombinant CTB (rCTB) was purified from each cell extract. rCTB was overproduced in both transformants without obvious toxicity and was structurally and biologically identical to that of CT purified from Vibrio cholerae, indicating that the original SD and CTB signal sequences were also sufficient to express rCTB in E. coli. Lincomycin-induced rCTB expression was inhibited by mutating the lac promoter, suggesting that lincomycin affects the lactose operon. Based on these findings, we constructed a plasmid that contained the wild-type CT operon and successfully overproduced CT (rCT) using the same procedure for rCTB. Although rCT had an intact A subunit, the amino-terminal modifications and biological properties of the A and B subunits of rCT were identical to those of CT. These results suggest that this novel rCTB over-expression system would also be useful to generate both wild-type and mutant CT proteins that will facilitate further studies on the characteristics of CT, such as mucosal adjuvant activity. PMID:19410003

  7. Construction of nontoxic derivatives of cholera toxin and characterization of the immunological response against the A subunit.

    PubMed

    Fontana, M R; Manetti, R; Giannelli, V; Magagnoli, C; Marchini, A; Olivieri, R; Domenighini, M; Rappuoli, R; Pizza, M

    1995-06-01

    Using computer modelling, we have identified some of the residues of the A subunit of cholera toxin (CT) and heat-labile toxin that are involved in NAD binding, catalysis, and toxicity. Here we describe the site-directed mutagenesis of the CT gene and the construction of CT mutants. Nine mutations of the A subunit gene were generated. Six of them encoded proteins that were fully assembled in the AB5 structure and were nontoxic; these proteins were CT-D53 (Val-53-->Asp), CT-K63 (Ser-63-->Lys), CT-K97 (Val-97-->Lys), CT-K104 (Tyr-104-->Lys), CT-S106 (Pro-106-->Ser), and the double mutant CT-D53/K63 (Val-53-->Asp, Ser-63-->Lys). Two of the mutations encoded proteins that were assembled into the AB5 structure but were still toxic; these proteins were CT-H54 (Arg-54-->His) and CT-N107 (His-107-->Asn). Finally, one of the mutant proteins, CT-E114 (Ser-114-->Glu), was unable to assemble the A and the B subunits and produced only the B oligomer. The six nontoxic mutants were purified from the culture supernatants of recombinant Vibrio cholerae strains and further characterized. The CT-K63 mutant, which was the most efficient in assembly of the AB5 structure, was used to immunize rabbits and was shown to be able to induce neutralizing antibodies against both the A and B subunits. This molecule may be useful for the construction of improved vaccines against cholera. PMID:7768621

  8. Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-κB–regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-κBα kinase, leading to potentiation of apoptosis

    PubMed Central

    Sung, Bokyung; Pandey, Manoj K.; Ahn, Kwang Seok; Yi, Tingfang; Chaturvedi, Madan M.; Liu, Mingyao

    2008-01-01

    Anacardic acid (6-pentadecylsalicylic acid) is derived from traditional medicinal plants, such as cashew nuts, and has been linked to anticancer, anti-inflammatory, and radiosensitization activities through a mechanism that is not yet fully understood. Because of the role of nuclear factor-κB (NF-κB) activation in these cellular responses, we postulated that anacardic acid might interfere with this pathway. We found that this salicylic acid potentiated the apoptosis induced by cytokine and chemotherapeutic agents, which correlated with the down-regulation of various gene products that mediate proliferation (cyclin D1 and cyclooxygenase-2), survival (Bcl-2, Bcl-xL, cFLIP, cIAP-1, and survivin), invasion (matrix metalloproteinase-9 and intercellular adhesion molecule-1), and angiogenesis (vascular endothelial growth factor), all known to be regulated by the NF-κB. We found that anacardic acid inhibited both inducible and constitutive NF-κB activation; suppressed the activation of IκBα kinase that led to abrogation of phosphorylation and degradation of IκBα; inhibited acetylation and nuclear translocation of p65; and suppressed NF-κB–dependent reporter gene expression. Down-regulation of the p300 histone acetyltransferase gene by RNA interference abrogated the effect of anacardic acid on NF-κB suppression, suggesting the critical role of this enzyme. Overall, our results demonstrate a novel role for anacardic acid in potentially preventing or treating cancer through modulation of NF-κB signaling pathway. PMID:18349320

  9. Snake acetylcholine receptor: cloning of the domain containing the four extracellular cysteines of the alpha subunit.

    PubMed

    Neumann, D; Barchan, D; Horowitz, M; Kochva, E; Fuchs, S

    1989-09-01

    The acetylcholine receptor (AcChoR) at the neuromuscular junction of elapid snakes binds cholinergic ligands but unlike other muscle AcChoRs does not bind alpha-bungarotoxin. Numerous studies indicate that the ligand-binding site of the AcChoR includes cysteine residues at positions 192 and 193 of the alpha subunit. We have previously shown that a synthetic dodecapeptide corresponding to residues 185-196 of the Torpedo AcChoR alpha subunit contains the essential elements of the ligand-binding site. In an attempt to elucidate the structural basis for the precise binding properties of snake AcChoR, we sequenced a portion of the snake AcChoR alpha subunit. First, a mouse AcChoR alpha-subunit cDNA probe was used to screen a size-selected snake (Natrix tessellata) genomic library. A genomic clone was isolated and was found to contain sequences homologous to the exon including the first two cysteines (Cys-128 and -142) of AcChoR alpha subunit. The domain of the alpha subunit from Natrix and cobra AcChoR (amino acid residues 119-222), which contains the four extracellular cysteines (128, 142, 192, and 193), was amplified by reverse transcription of mRNA and the polymerase chain reaction and then sequenced. The deduced amino acid sequence showed that the snake alpha subunit contains the two tandem cysteines at positions 192 and 193, resembling all other AcChoR alpha subunits. Sequence comparison revealed that the cloned region of the snake alpha subunit is highly homologous (75-80%) to other muscle AcChoRs and not to neuronal AcChoR, which also does not bind alpha-bungarotoxin. In the presumed ligand-binding site, in the vicinity of Cys-192 and Cys-193, four major substitutions occur in the snake sequence--at positions 184 (Trp----Phe), 185 (Lys----Trp), 187 (Trp----Ser), and 194 (Pro----Leu). In addition, Asn-189 is a putative N-glycosylation site, present only in the snake. These changes, or part of them, may explain the lack of alpha-bungarotoxin-binding to snake Ac

  10. Snake acetylcholine receptor: cloning of the domain containing the four extracellular cysteines of the alpha subunit.

    PubMed Central

    Neumann, D; Barchan, D; Horowitz, M; Kochva, E; Fuchs, S

    1989-01-01

    The acetylcholine receptor (AcChoR) at the neuromuscular junction of elapid snakes binds cholinergic ligands but unlike other muscle AcChoRs does not bind alpha-bungarotoxin. Numerous studies indicate that the ligand-binding site of the AcChoR includes cysteine residues at positions 192 and 193 of the alpha subunit. We have previously shown that a synthetic dodecapeptide corresponding to residues 185-196 of the Torpedo AcChoR alpha subunit contains the essential elements of the ligand-binding site. In an attempt to elucidate the structural basis for the precise binding properties of snake AcChoR, we sequenced a portion of the snake AcChoR alpha subunit. First, a mouse AcChoR alpha-subunit cDNA probe was used to screen a size-selected snake (Natrix tessellata) genomic library. A genomic clone was isolated and was found to contain sequences homologous to the exon including the first two cysteines (Cys-128 and -142) of AcChoR alpha subunit. The domain of the alpha subunit from Natrix and cobra AcChoR (amino acid residues 119-222), which contains the four extracellular cysteines (128, 142, 192, and 193), was amplified by reverse transcription of mRNA and the polymerase chain reaction and then sequenced. The deduced amino acid sequence showed that the snake alpha subunit contains the two tandem cysteines at positions 192 and 193, resembling all other AcChoR alpha subunits. Sequence comparison revealed that the cloned region of the snake alpha subunit is highly homologous (75-80%) to other muscle AcChoRs and not to neuronal AcChoR, which also does not bind alpha-bungarotoxin. In the presumed ligand-binding site, in the vicinity of Cys-192 and Cys-193, four major substitutions occur in the snake sequence--at positions 184 (Trp----Phe), 185 (Lys----Trp), 187 (Trp----Ser), and 194 (Pro----Leu). In addition, Asn-189 is a putative N-glycosylation site, present only in the snake. These changes, or part of them, may explain the lack of alpha-bungarotoxin-binding to snake Ac

  11. Further characterization of the subunits of the receptor with high affinity for immunoglobulin E

    SciTech Connect

    Alcaraz, G.; Kinet, J.P.; Liu, T.Y.; Metzger, H.

    1987-05-05

    The ..cap alpha.., ..beta.., ..gamma.. subunits of the receptor with high affinity for immunoglobulin E were isolated and their compositions assessed by direct amino acid analysis and by incorporation of radioactive precursors. The compositions show no unusual features other than a rather high content of tryptophan in the ..cap alpha.. chain as assessed from the incorporation studies. The results combined with future sequence data will permit unambiguous determination of the multiplicity of the chains in the receptor. Chymotryptic peptide maps of the extrinsically iodinated subunits show several similar peptides, particularly for ..cap alpha.. and ..beta... However, these putative homologies were not apparent when tryptic maps of the biosynthetically ((/sup 3/H)leucine) labeled subunits were analyzed.

  12. Chronic Intermittent Ethanol Regulates Hippocampal GABA(A) Receptor Delta Subunit Gene Expression

    PubMed Central

    Follesa, Paolo; Floris, Gabriele; Asuni, Gino P.; Ibba, Antonio; Tocco, Maria G.; Zicca, Luca; Mercante, Beniamina; Deriu, Franca; Gorini, Giorgio

    2015-01-01

    Chronic ethanol consumption causes structural and functional reorganization in the hippocampus and induces alterations in the gene expression of gamma-aminobutyric acid type A receptors (GABAARs). Distinct forced intermittent exposure models have been used previously to investigate changes in GABAAR expression, with contrasting results. Here, we used repeated cycles of a Chronic Intermittent Ethanol paradigm to examine the relationship between voluntary, dependence-associated ethanol consumption, and GABAAR gene expression in mouse hippocampus. Adult male C57BL/6J mice were exposed to four 16-h ethanol vapor (or air) cycles in inhalation chambers alternated with limited-access two-bottle choice between ethanol (15%) and water consumption. The mice exposed to ethanol vapor showed significant increases in ethanol consumption compared to their air-matched controls. GABAAR alpha4 and delta subunit gene expression were measured by qRT-PCR at different stages. There were significant changes in GABAAR delta subunit transcript levels at different time points in ethanol-vapor exposed mice, while the alpha4 subunit levels remained unchanged. Correlated concurrent blood ethanol concentrations suggested that GABAAR delta subunit mRNA levels fluctuate depending on ethanol intoxication, dependence, and withdrawal state. Using a vapor-based Chronic Intermittent Ethanol procedure with combined two-bottle choice consumption, we corroborated previous evidences showing that discontinuous ethanol exposure affects GABAAR delta subunit expression but we did not observe changes in alpha4 subunit. These findings indicate that hippocampal GABAAR delta subunit expression changes transiently over the course of a Chronic Intermittent Ethanol paradigm associated with voluntary intake, in response to ethanol-mediated disturbance of GABAergic neurotransmission. PMID:26617492

  13. Evolution of the primate cytochrome c oxidase subunit II gene.

    PubMed

    Adkins, R M; Honeycutt, R L

    1994-03-01

    We examined the nucleotide and amino acid sequence variation of the cytochrome c oxidase subunit II (COII) gene from 25 primates (4 hominoids, 8 Old World monkeys, 2 New World monkeys, 2 tarsiers, 7 lemuriforms, 2 lorisiforms). Marginal support was found for three phylogenetic conclusions: (1) sister-group relationship between tarsiers and a monkey/ape clade, (2) placement of the aye-aye (Daubentonia) sister to all other strepsirhine primates, and (3) rejection of a sister-group relationship of dwarf lemurs (i.e., Cheirogaleus) with lorisiform primates. Stronger support was found for a sister-group relationship between the ring-tail lemur (Lemur catta) and the gentle lemurs (Hapalemur). In congruence with previous studies on COII, we found that the monkeys and apes have undergone a nearly two-fold increase in the rate of amino acid replacement relative to other primates. Although functionally important amino acids are generally conserved among all primates, the acceleration in amino acid replacements in higher primates is associated with increased variation in the amino terminal end of the protein. Additionally, the replacement of two carboxyl-bearing residues (glutamate and aspartate) at positions 114 and 115 may provide a partial explanation for the poor enzyme kinetics in cross-reactions between the cytochromes c and cytochrome c oxidases of higher primates and other mammals. PMID:8006990

  14. Thermostable cross-protective subunit vaccine against Brucella species.

    PubMed

    Cherwonogrodzky, John W; Barabé, Nicole D; Grigat, Michelle L; Lee, William E; Poirier, Robert T; Jager, Scott J; Berger, Bradley J

    2014-12-01

    A subunit vaccine candidate was produced from Brucella suis 145 (biovar 4; expressing both the A antigen of Brucella abortus and the M antigen of Brucella melitensis). The preparation consisted mostly of polysaccharide (PS; >90% [wt/wt]; both cell-associated PS and exo-PS were combined) and a small amount of protein (1 to 3%) with no apparent nucleic acids. Vaccinated mice were protected (these had a statistically significant reduction in bacterial colonization compared to that of unvaccinated controls) when challenged with representative strains of three Brucella species most pathogenic for humans, i.e., B. abortus, B. melitensis, and B. suis. As little as 1 ng of the vaccine, without added adjuvant, protected mice against B. suis 145 infection (5 × 10(5) CFU), and a single injection of 1 μg of this subunit vaccine protected mice from B. suis 145 challenge for at least 14 months. A single immunization induced a serum IgG response to Brucella antigens that remained elevated for up to 9 weeks. The use of heat (i.e., boiling-water bath, autoclaving) in the vaccine preparation showed that it was thermostable. This method also ensured safety and security. The vaccine produced was immunogenic and highly protective against multiple strains of Brucella and represents a promising candidate for further evaluation. PMID:25320267

  15. Thermostable Cross-Protective Subunit Vaccine against Brucella Species

    PubMed Central

    Barabé, Nicole D.; Grigat, Michelle L.; Lee, William E.; Poirier, Robert T.; Jager, Scott J.; Berger, Bradley J.

    2014-01-01

    A subunit vaccine candidate was produced from Brucella suis 145 (biovar 4; expressing both the A antigen of Brucella abortus and the M antigen of Brucella melitensis). The preparation consisted mostly of polysaccharide (PS; >90% [wt/wt]; both cell-associated PS and exo-PS were combined) and a small amount of protein (1 to 3%) with no apparent nucleic acids. Vaccinated mice were protected (these had a statistically significant reduction in bacterial colonization compared to that of unvaccinated controls) when challenged with representative strains of three Brucella species most pathogenic for humans, i.e., B. abortus, B. melitensis, and B. suis. As little as 1 ng of the vaccine, without added adjuvant, protected mice against B. suis 145 infection (5 × 105 CFU), and a single injection of 1 μg of this subunit vaccine protected mice from B. suis 145 challenge for at least 14 months. A single immunization induced a serum IgG response to Brucella antigens that remained elevated for up to 9 weeks. The use of heat (i.e., boiling-water bath, autoclaving) in the vaccine preparation showed that it was thermostable. This method also ensured safety and security. The vaccine produced was immunogenic and highly protective against multiple strains of Brucella and represents a promising candidate for further evaluation. PMID:25320267

  16. ParC subunit of DNA topoisomerase IV of Streptococcus pneumoniae is a primary target of fluoroquinolones and cooperates with DNA gyrase A subunit in forming resistance phenotype.

    PubMed Central

    Muñoz, R; De La Campa, A G

    1996-01-01

    The genes encoding the ParC and ParE subunits of topoisomerase IV of Streptococcus pneumoniae, together with the region encoding amino acids 46 to 172 (residue numbers are as in Escherichia coli) of the pneumococcal GyrA subunit, were partially characterized. The gyrA gene maps to a physical location distant from the gyrB and parC loci on the chromosome, whereas parC is closely linked to parE. Ciprofloxacin-resistant (Cpr) clinical isolates of S. pneumoniae had mutations affecting amino acid residues of the quinolone resistance-determining region of ParC (low-level Cpr) or in both quinolone resistance-determining regions of ParC and GyrA (high-level Cpr). Mutations were found in residue positions equivalent to the serine at position 83 and the aspartic acid at position 87 of the E. coli GyrA subunit. Transformation experiments suggest that ParC is the primary target of ciprofloxacin. Mutation in parC appears to be a prerequisite before mutations in gyrA can influence resistance levels. PMID:8891124

  17. Characterization of a Low-Molecular-Weight Glutenin Subunit Gene from Bread Wheat and the Corresponding Protein That Represents a Major Subunit of the Glutenin Polymer1

    PubMed Central

    Masci, Stefania; D'Ovidio, Renato; Lafiandra, Domenico; Kasarda, Donald D.

    1998-01-01

    Both high- and low-molecular-weight glutenin subunits (LMW-GS) play the major role in determining the viscoelastic properties of wheat (Triticum aestivum L.) flour. To date there has been no clear correspondence between the amino acid sequences of LMW-GS derived from DNA sequencing and those of actual LMW-GS present in the endosperm. We have characterized a particular LMW-GS from hexaploid bread wheat, a major component of the glutenin polymer, which we call the 42K LMW-GS, and have isolated and sequenced the putative corresponding gene. Extensive amino acid sequences obtained directly for this 42K LMW-GS indicate correspondence between this protein and the putative corresponding gene. This subunit did not show a cysteine (Cys) at position 5, in contrast to what has frequently been reported for nucleotide-based sequences of LMW-GS. This Cys has been replaced by one occurring in the repeated-sequence domain, leaving the total number of Cys residues in the molecule the same as in various other LMW-GS. On the basis of the deduced amino acid sequence and literature-based assignment of disulfide linkages, a computer-generated molecular model of the 42K subunit was constructed. PMID:9847089

  18. Inferring the Ancient History of the Translation Machinery and Genetic Code via Recapitulation of Ribosomal Subunit Assembly Orders

    PubMed Central

    Fournier, Gregory P.; Neumann, Justin E.; Gogarten, J. Peter

    2010-01-01

    Universally conserved positions in ribosomal proteins have significant biases in amino acid usage, likely indicating the expansion of the genetic code at the time leading up to the most recent common ancestor(s) (MRCA). Here, we apply this principle to the evolutionary history of the ribosome before the MRCA. It has been proposed that the experimentally determined order of assembly for ribosomal subunits recapitulates their evolutionary chronology. Given this model, we produce a probabilistic evolutionary ordering of the universally conserved small subunit (SSU) and large subunit (LSU) ribosomal proteins. Optimizing the relative ordering of SSU and LSU evolutionary chronologies with respect to minimizing differences in amino acid usage bias, we find strong compositional evidence for a more ancient origin for early LSU proteins. Furthermore, we find that this ordering produces several trends in specific amino acid usages compatible with models of genetic code evolution. PMID:20208990

  19. Multivariate Statistical Analysis of Labile Trace Elements in H Chondrites: Evidence for Meteoroid Streams

    NASA Astrophysics Data System (ADS)

    Wolf, S. F.; Lipschutz, M. E.

    1992-07-01

    Differences have been observed between meteorite populations with vastly different terrestrial ages, i.e. Antarctic and non-Antarctic meteorite populations (Koeberl and Cassidy, 1991 and references therein). Comparisons of labile trace element contents (Wolf and Lipschutz, 1992) and induced TL parameters (Benoit and Sears, 1992) in samples from Victoria Land and Queen Maud Land, populations which also differ in mean terrestrial age (Nishiizumi et al, 1989), show significant differences consistent with different average thermal histories. These differences are consistent with the proposition that the flux of meteoritic material to Earth varied temporally. Variations in the flux of meteoritic material over time scales of 10^5 10^6 y require the existence of undispersed streams of meteoroids of asteroidal origin which were initially disputed by Wetherill ( 1986) but have since been observed (Olsson-Steele, 1988; Oberst, 1989; Halliday et al. 1990). Orbital evidence for meteoroid and asteroid streams has been independently obtained by others, particularly Halliday et al.(1990) and Drummond (1991). A group of H chondrites of various petrographic types and diverse CRE ages that yielded 16 falls from 1855 until 1895 in the month of May has been proposed to be two co-orbital meteoroid streams with a common source (R. T. Dodd, personal communication). Compositional evidence of a preterrestrial association of the proposed stream members, if it exists, might be observed in the most sensitive indicators of genetic thermal history, the labile trace elements. We report RNAA data for the concentrations of 14 trace elements, mostly labile ones, (Ag, Au, Bi, Cd, Cs, Co, Ga, In, Rb, Sb, Se, Te, Tl, and Zn) in H4-6 ordinary chondrites. Variance of elemental concentrations within a subpopulation, the members of a proposed co-orbital meteorite stream for example, could be expected to be smaller than the variance for the entire population. We utilize multivariate linear regression and

  20. Immunochemical characterization of two thyroid-stimulating hormone beta-subunit epitopes.

    PubMed Central

    Fairlie, W D; Stanton, P G; Hearn, M T

    1995-01-01

    The epitopes of human thyroid-stimulating hormone (hTSH) recognized by two murine monoclonal antibodies (MAbs), designated MAb 279 and MAb 299, have been characterized. These MAbs are highly specific for the beta-subunit of TSH. The epitope recognized by MAb 279 appears to be completely conserved between bovine and human TSH and partially conserved in the porcine species. The TSH beta-subunit epitope recognized by MAb 299 is only partially conserved between the human, bovine and porcine species. Both MAbs are capable of inhibiting the binding of TSH to its receptor in a TSH radioreceptor assay, indicating that the epitopes either coincide or are located close to the TSH beta-subunit receptor-binding sites. The carbohydrate moieties of the TSH beta-subunit appear to play little or no role in the epitope recognition by MAb 279 or MAb 299 whil