Science.gov

Sample records for acid lb films

  1. J-aggregation of a water-soluble tetracationic porphyrin in mixed LB films with a calix[8]arene carboxylic acid derivative.

    PubMed

    Miguel, Gustavo de; Pérez-Morales, Marta; Martín-Romero, María T; Muñoz, Eulogia; Richardson, Tim H; Camacho, Luis

    2007-03-27

    The molecular organization of a mixed film, containing a water-soluble tetracationic porphyrin (TMPyP) and a p-tert-butyl calix[8]arene octacarboxylic acid derivative (C8A), at the air-water interface and on a solid support (LB film), has been investigated. Although the TMPyP aggregation was not detected at the air-water interface, TMPyP J-aggregates have been found in the LB films (Y-type). Unlike tetraanionic porphyrins, for example TSPP, the TMPyP J-aggregates are not induced by a zwitterion formation. The TMPyP J-aggregation is a result of a "double comb" configuration, where porphyrins from opposite layers are interwoven in a linear infinite J-aggregate. Our results confirm that TMPyP molecules tend to self-aggregate strongly, provided the electrostatic repulsions of their peripheral groups are cancelled by the anionic groups of the C8A matrix. PMID:17315895

  2. Study for Electrode Metals on Taste Sensor with LB film

    NASA Astrophysics Data System (ADS)

    Yokoya, Takahiro; Hirata, Takamichi; Akiya, Masahiro

    In this paper, sensor responses with only metal electrode as Au, Cr, Ti and more with LB film were described. LB film material was the Dioctadecyldimethylammonium bromide combined by PVSK as an underlayer. To detect five basic taste substances, sensor parameters were defined as maximum voltage change and response time. Response time for sourness and umami with Ti and Cr evaporated metal electrode was larger than that of usual Au electrode. LB film effect was finally found to increase response time for five basic taste materials.

  3. High-Quality LB Films of Artificial Dialkyl Lipid

    NASA Astrophysics Data System (ADS)

    Onoue, Yoichi; Moriizumi, Toyosaka; Okahata, Yoshio; Ariga, Katsuhiko

    1987-11-01

    LB films (4 monolayers) of artificial dialkyl lipid were deposited over Au evaporated films on glass substrates. The film quality was examined using the Cu decoration method and optical polarization microscopy. The defect density of the lipid film was much less than that of a monoalkyl film. Moreover, the defect density was so decreased after thermal annealing and rinsing in an alcohol solution that LB films which were almost defect-free were obtained. Microscopic observation revealed a snowflake crystalline pattern after the annealing and rinsing treatments.

  4. Comparison of transferred freely-suspended films and LB-films of liquid crystals

    SciTech Connect

    Decher, G.; Reibel, J.; Sohling, U.

    1993-12-31

    Amphiphilic liquid crystalline (LC) compounds offer the possibility to obtain similar layered structures such as LB mono- and multilayers, freely suspended and transferred freely-suspended films or bulk LC-phases from a single compound. This way a structural comparison of all types of assemblies can be achieved, combining the experience from both the LB-and the LC-fields. There is a remarkable similarity of the structures of the transferred freely-suspended (TFS) and LB-films. Nevertheless both types of multilayer assemblies, prepared from the same substance (ethyl-4`-n-octyloxybiphenyl-4-carboxylate), show a different thermal behavior. Whereas the TFS-films undergo reversible phase transitions and are stable up to the clearing point of the bulk material (110{degrees}C), the LB-films show only one irreversible phase transition and start to melt already 30{degrees}C below the clearing point of the bulk material.

  5. Langmuir-Blodgett (LB) films of tris(2-phenylpyridine)iridium(III)

    SciTech Connect

    Samha, H.A.; Martinez, T.J.; De Armond, M.K. ); Garces, F.O.; Watts, R.J. )

    1993-05-26

    Monolayer and multilayer Langmuir-Blodgett (LB) films of the neutral hydrophobic Ir(ppy)[sub 3] (1) (ppy = 2-Phenylpyridine) have been produced on the water surface when mixed with a fatty acid (stearic acid). The molecular area of the complex in the close-packed film is 55 [angstrom][sup 2]. The homogeneity of the films was verified by measuring the absorbance vs the number of layers on a substrate (quartz) and also by comparing the relative emission intensity of multilayer mixed LB films of different molar ratios. The films are stable and capable of being transferred from the water surface onto a substrate with a transfer ratio very close to unity. A blue shift in the maxima of the emission, as the complex concentration is decreased, occurs for both room-temperature fluid solution and a rigid matrix at 77 K. In-trough cyclic voltammetry (horizontal touch) of the mixed film is also reported and compared to the cyclic voltammetry of a film transferred to an indium-tin oxide plate (vertical dip).

  6. Characteristics of Intramolecular Charge Transfer by J-Aggregates in Merocyanine Dye LB Films.

    PubMed

    Yang, Chang Heon; Kwon, Young-Soo; Shin, Hoon-Kyu

    2016-06-01

    In this study, for the development of future molecular electronic devices, we have investigated the characteristics of the aggregates of Langmuir-Blodgett films. The characteristics of intramolecular charge transfer by J-aggregates in merocyanine dye LB films have been studied experimentally by using UV irradiation and heat treatment. In addition to intramolecular charge transfer, we also studied the conjugation and energy changes of the molecules. In case a dye is thinned by LB method, the alkyl chain is often displaced in order to form a mono-molecular film with ease. Since the molecular association form is often made by self-organization of molecules themselves, in case the dye and the alkyl chain are strongly bonded by the covalent bond, it may be said that the properties of the LB film to be built up are almost determined at the time of synthesis of film-forming molecules. Meanwhile, since, in case LB film is fabricated by the diffusion absorption method, the cohesive force between the water-soluble dye and the surface-active mono-molecular film is electrostatic, the dye molecule can move relatively freely on the air/water interface, which may be regarded as a two-dimensional crystal growth process. PMID:27427711

  7. Generation of disk-like domains with nanometer scale thickness in merocyanine dye LB film induced by hydrothermal treatment

    PubMed Central

    2013-01-01

    We have characterized the binary LB films of merocyanine dye (MS) and arachidic acid (C20) before and after hydrothermal treatment (HTT), which is defined as a heat treatment under relative humidity of 100%, focusing on the morphology studied by bright field (BF) microscopy and fluorescence (FL) microscopy. BF microscopy observation has revealed that the as-deposited MS-C20 binary LB film is found to emit intense red fluorescence over the whole film area by 540-nm excitation. Since the surface image is almost featureless, it is considered that the crystallite sizes of J-aggregate are less than 10 μm. Interestingly, after HTT, round-shaped domains are observed in the LB systems, and the sizes are reaching 100 μm in diameter. Crystallites of J-aggregate, which are bluish in color and emit intense red fluorescence, tend to be in the round domains. We have observed two different types of domains, i.e., blue-rimmed domains and white-rimmed domains, which are postulated to be confined in the inner layers and located at the outermost layer, respectively. The thickness of the domains is equal to or less than that of the double layer of the MS-C20 mixed LB film, which is ca. 5.52 nm. The molecular order of MS in the J-aggregate is improved by the HTT process leading to the significant sharpening of the band shape together with the further red shift of the band (from 590 to 594 nm up to 597 to 599 nm). The reorganized J-band is considered to be ‘apparently’ isotropic owing to the random growth of the J-aggregate in the film plane. We consider that the lubrication effect by the presence of water molecules predominates in the HTT process. PMID:24134673

  8. Generation of disk-like domains with nanometer scale thickness in merocyanine dye LB film induced by hydrothermal treatment

    NASA Astrophysics Data System (ADS)

    Miura, Yasuhiro F.; Sano, Motoaki; Sugimoto, Tsuneyoshi

    2013-10-01

    We have characterized the binary LB films of merocyanine dye (MS) and arachidic acid (C20) before and after hydrothermal treatment (HTT), which is defined as a heat treatment under relative humidity of 100%, focusing on the morphology studied by bright field (BF) microscopy and fluorescence (FL) microscopy. BF microscopy observation has revealed that the as-deposited MS-C20 binary LB film is found to emit intense red fluorescence over the whole film area by 540-nm excitation. Since the surface image is almost featureless, it is considered that the crystallite sizes of J-aggregate are less than 10 μm. Interestingly, after HTT, round-shaped domains are observed in the LB systems, and the sizes are reaching 100 μm in diameter. Crystallites of J-aggregate, which are bluish in color and emit intense red fluorescence, tend to be in the round domains. We have observed two different types of domains, i.e., blue-rimmed domains and white-rimmed domains, which are postulated to be confined in the inner layers and located at the outermost layer, respectively. The thickness of the domains is equal to or less than that of the double layer of the MS-C20 mixed LB film, which is ca. 5.52 nm. The molecular order of MS in the J-aggregate is improved by the HTT process leading to the significant sharpening of the band shape together with the further red shift of the band (from 590 to 594 nm up to 597 to 599 nm). The reorganized J-band is considered to be `apparently' isotropic owing to the random growth of the J-aggregate in the film plane. We consider that the lubrication effect by the presence of water molecules predominates in the HTT process.

  9. Zinc Oxide LB Films with Improved Antireflective, Photoactive and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Naszályi Nagy, Lívia; Ábrahám, Nóra; Kovács, Attila L.; van der Lee, Arie; Rouessac, Vincent; Cot, Didier; Ayral, André; Hórvölgyi, Z.

    Multifunctional Langmuir-Blodgett films were prepared using sol-gel derived ZnO and silica nanoparticles synthesized by the procedure of Seelig et al. [1] and Stöber et al. [2], respectively. High inherent porosity was observed for ZnO particles (30-40%) by pycnometry, scanning angle reflectometry, N2 adsorption-desorption and ellipsometric porosimetry methods. Water contact angle of ZnO nanoparticles was determined from the non-dissipative part of the obtained surface pressure-surface area isotherms, and by scanning angle reflectometry measurements in a Wilhelmy film balance. Antireflective and photocatalytically active coatings of ZnO particles were deposited on glass, conductive glass and silicon substrates. The antireflectivity of ZnO LB films was improved by the integration of silica nanoparticles in the LB film. The photocatalytic activity and the mechanical stability of the samples were enhanced by means of surface modification with 3-methacryloxypropyl(trimethoxy)silane.

  10. Study of polymorphism of ZnPc LB thin film on annealing

    NASA Astrophysics Data System (ADS)

    Roy, Dhrubojyoti; Das, Nayan Mani; Gupta, Mukul; Gupta, P. S.

    2016-05-01

    The average molecular orientation in the as-deposited Zinc Phthalocyanine (ZnPc) Langmuir-Blodgett (LB) film has been obtained to be 47° w.r.t to substrate surface from polarized Raman spectroscopy analysis. Absorption spectroscopy confirms the phase transition of ZnPc thin film from α-phase to β-phase on annealinghowever, such confirmation could not get established from Raman spectroscopy.

  11. The effect of polysaccharide types on adsorption properties of LbL assembled multilayer films.

    PubMed

    Xu, Jie; Yang, Lixing; Hu, Xiaoxia; Xu, Shimei; Wang, Jide; Feng, Shun

    2015-03-01

    Three types of biocompatible films were fabricated via electrostatic layer-by-layer (LbL) adsorption of oppositely charged cationic polyurethane and anionic polysaccharides with different primary structures, including sodium hyaluronate, sodium carboxymethyl cellulose and sodium alginate. The adsorption behaviors of films were investigated by using the cationic dye methylene blue (MB) as a model drug at various pH values and salt concentrations. The relationship between the type of polysaccharide and the adsorption behavior of LbL films was comparatively studied. It was found that the adsorption capacity increased with an increase of the initial concentration of MB in the concentration range of the experiment to all of the films, and the pH of environment ranged from 3.0 to 9.0. The Langmuir equation fit perfectly to the experiment data. In addition, a pseudo second-order adsorption model can well describe the adsorption behaviors of MB for three films. The results showed that the type of side chains and the charge density of the polysaccharides played key roles in the adsorption properties of the PU/polysaccharide multilayer films. PMID:25609027

  12. Electrochemistry of LB films of mixed MGDG:UQ on ITO.

    PubMed

    Hoyo, Javier; Guaus, Ester; Torrent-Burgués, Juan; Sanz, Fausto

    2015-08-01

    The electrochemical behaviour of biomimetic monolayers of monogalactosyldiacylglycerol (MGDG) incorporating ubiquinone-10 (UQ) has been investigated. MGDG is the principal component in the thylakoid membrane and UQ seems a good substitute for plastoquinone-9, involved in photosynthesis chain. The monolayers have been performed using the Langmuir and Langmuir-Blodgett (LB) techniques and the redox behaviour of the LB films, transferred at several surface pressures on a glass covered with indium-tin oxide (ITO), has been characterized by cyclic voltammetry. The cyclic voltammograms show that UQ molecules present two redox processes (I and II) at high UQ content and high surface pressures, and only one redox process (I) at low UQ content and low surface pressures. The apparent rate constants calculated for processes I and II indicate a different kinetic control for the reduction and the oxidation of UQ/UQH2 redox couple, being k(Rapp)(I) = 2.2 · 10(-5) s(-1), k(Rapp)(II) = 5.1 · 10(-14) k(Oapp)(I) = 3.3 · 10(-3) s(-1) and k(Oapp)(II) = 6.1 · 10(-6) s(-1), respectively. The correlation of the redox response with the physical states of the LB films allows determining the positions of the UQ molecules in the biomimetic monolayer, which change with the surface pressure and the UQ content. These positions are known as diving and swimming. PMID:25725477

  13. Spatio-temporal control of LbL films for biomedical applications: from 2D to 3D

    PubMed Central

    Monge, Claire; Almodóvar, Jorge; Boudou, Thomas; Picart, Catherine

    2015-01-01

    Introduced in the 90’s by Prof Moehwald, Lvov and Decher, the layer-by-layer (LbL) assembly of polyelectrolytes has become a popular technique to engineer various types of objects such as films, capsules and free standing membranes, with an unprecedented control at the nanometer and micrometer scales. The LbL technique allows to engineer biofunctional surface coatings, which may be dedicated to biomedical applications in vivo but also to fundamental studies and diagnosis in vitro. Initially mostly developed as 2D coatings and hollow capsules, the range of complex objects created by the LbL technique has greatly expanded in the past 10 years. In this review, our aim was to highlight the recent progress in the field of LbL films for biomedical applications and discuss the various ways to control spatially and temporally the biochemical and mechanical properties of multilayers. In particular, we will discuss three major developments of LbL films: 1) the new methods and templates to engineer LbL films and control cellular processes from adhesion to differentiation, 2) the major ways to achieve temporal control by chemical, biological and physical triggers and, 3) the combinations of LbL technique, cells and scaffolds for repairing 3D tissues, including cardio-vascular devices, bone implants and neuro-prosthetic devices. PMID:25627563

  14. Ordered and ultrathin reduced graphene oxide LB films as hole injection layers for organic light-emitting diode

    PubMed Central

    2014-01-01

    In this paper, we demonstrated the utilization of reduced graphene oxide (RGO) Langmuir-Blodgett (LB) films as high performance hole injection layer in organic light-emitting diode (OLED). By using LB technique, the well-ordered and thickness-controlled RGO sheets are incorporated between the organic active layer and the transparent conducting indium tin oxide (ITO), leading to an increase of recombination between electrons and holes. Due to the dramatic increase of hole carrier injection efficiency in RGO LB layer, the device luminance performance is greatly enhanced comparable to devices fabricated with spin-coating RGO and a commercial conducting polymer PEDOT:PSS as the hole transport layer. Furthermore, our results indicate that RGO LB films could be an excellent alternative to commercial PEDOT:PSS as the effective hole transport and electron blocking layer in light-emitting diode devices. PMID:25298757

  15. Ordered and ultrathin reduced graphene oxide LB films as hole injection layers for organic light-emitting diode.

    PubMed

    Yang, Yajie; Yang, Xiaojie; Yang, Wenyao; Li, Shibin; Xu, Jianhua; Jiang, Yadong

    2014-01-01

    In this paper, we demonstrated the utilization of reduced graphene oxide (RGO) Langmuir-Blodgett (LB) films as high performance hole injection layer in organic light-emitting diode (OLED). By using LB technique, the well-ordered and thickness-controlled RGO sheets are incorporated between the organic active layer and the transparent conducting indium tin oxide (ITO), leading to an increase of recombination between electrons and holes. Due to the dramatic increase of hole carrier injection efficiency in RGO LB layer, the device luminance performance is greatly enhanced comparable to devices fabricated with spin-coating RGO and a commercial conducting polymer PEDOT:PSS as the hole transport layer. Furthermore, our results indicate that RGO LB films could be an excellent alternative to commercial PEDOT:PSS as the effective hole transport and electron blocking layer in light-emitting diode devices. PMID:25298757

  16. Visible Absorption Properties of Retinoic Acid Controlled on Hydrogenated Amorphous Silicon Thin Film

    NASA Astrophysics Data System (ADS)

    Tsujiuchi, Yutaka; Masumoto, Hiroshi; Goto, Takashi

    2008-02-01

    Langmuir-Blodgett (LB) films of retinoic acid and LB films of retinoic acid mixed with a peptide that contains an alanine-lysine-valine (AKV) amino acid sequence deposited on a hydrogenated amorphous silicon (a-Si:H) film prepared by electron cyclotron resonance (ECR) plasma sputtering were fabricated, and their light absorption spectrums were compared. A specific visible light absorption at approximately 500 nm occurred in a film that had a film thickness of more than 80 nm and a hydrogen concentration of more than 20% in the sputtering process gas. Mixing the AKV sequence peptide with retinoic acid caused a 6 nm blueshift, from 363 to 357 nm, of the absorption maximum of the composite LB film on a SiO2 substrate. Using the same peptide, a large 30 nm blueshift, from 500 to 470 nm, was induced in the composite LB film on the a-Si:H film.

  17. Effect of annealing on the growth dynamics of ZnPc LB thin film and its surface morphology

    NASA Astrophysics Data System (ADS)

    Roy, Dhrubojyoti; Das, Nayan Mani; Gupta, P. S.

    2014-07-01

    The ZnPc molecules in the thin film prepared by Langmuir-Blodgett (LB) process in asdeposited state has been found to have an edge on orientation with average tilt angle of 64.3 ° as confirmed from the Pressure-Area (π-A) isotherm and X-ray diffraction (XRD) study. The ZnPc LB thin film has been observed to have abnormal growth mode at higher annealing temperature and it is mainly driven by minimization of surface free energy which lead to large increase in crystallinity of the film. Kinetically favored orientational and structural transitions of ZnPc thin film during annealing and their effect on the surface morphology of the thin film has been studied using scaling concepts. The scaling exponents 1) root mean square (RMS) roughness σ, 2) roughness exponent α and, 3) in plane correlation length ξ are calculated from the HDCF g(r) and ACF C(r). The RMS surface roughness σ is found to be dependent on the as defined short wavelength undulations (ρ) and long wavelength undulations (χ). Both ρ and χ are the function of all the three scaling exponents. σ has been observed to be maximum for the ZnPc thin film annealed at 290 °C, since the χ shoot to maximum value at this temperature due to the formation of small domains of ZnPc nanorods. The self affinity of the ZnPc thin film is found to decrease on annealing as obtained from both power spectral density (PSD) and HDCF g(R) & ACF C(R) study, which confirms that the dimension of surface morphology of the ZnPc LB thin film transform towards 2D with increase in annealing temperature.

  18. Effect of annealing on the growth dynamics of ZnPc LB thin film and its surface morphology

    SciTech Connect

    Roy, Dhrubojyoti Das, Nayan Mani; Gupta, P. S.

    2014-07-15

    The ZnPc molecules in the thin film prepared by Langmuir-Blodgett (LB) process in asdeposited state has been found to have an edge on orientation with average tilt angle of 64.3 ° as confirmed from the Pressure-Area (π-A) isotherm and X-ray diffraction (XRD) study. The ZnPc LB thin film has been observed to have abnormal growth mode at higher annealing temperature and it is mainly driven by minimization of surface free energy which lead to large increase in crystallinity of the film. Kinetically favored orientational and structural transitions of ZnPc thin film during annealing and their effect on the surface morphology of the thin film has been studied using scaling concepts. The scaling exponents 1) root mean square (RMS) roughness σ, 2) roughness exponent α and, 3) in plane correlation length ξ are calculated from the HDCF g(r) and ACF C(r). The RMS surface roughness σ is found to be dependent on the as defined short wavelength undulations (ρ) and long wavelength undulations (χ). Both ρ and χ are the function of all the three scaling exponents. σ has been observed to be maximum for the ZnPc thin film annealed at 290 °C, since the χ shoot to maximum value at this temperature due to the formation of small domains of ZnPc nanorods. The self affinity of the ZnPc thin film is found to decrease on annealing as obtained from both power spectral density (PSD) and HDCF g(R) and ACF C(R) study, which confirms that the dimension of surface morphology of the ZnPc LB thin film transform towards 2D with increase in annealing temperature.

  19. A study on the interactions of cationic porphyrin with nano clay platelets in Layer-by-Layer (LbL) self assembled films

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, J.; Banik, Soma; Hussain, S. A.; Bhattacharjee, D.

    2015-07-01

    In the present communication, interaction of tetracationic porphyrin, 5,10,15,10-tetrakis (1-methyl-4-pyrindino) porphyrin tetra (p-toluenesulfonate) (TMPyP) with anionic nano clay platelets laponite has been studied in aqueous clay dispersion and Layer-by-Layer (LbL) self assembled film. Electrostatic adsorption of TMPyP molecules on clay platelets resulted in the flattenening of meso-substituent groups which led to the development of a new adsorbed band in the UV-vis absorption spectra. J-band was also formed due to overlapped organizations of organo-clay hybrid molecules in the LbL film leading to J-aggregates. Atomic force microscopic (AFM) studies gave visual evidence of this favoured organization in the monolayer LbL film.

  20. Effects of Acid Vapor, Basic Vapor and Heat Treatments on the Properties of Langmuir-Blodgett Films of Divalent Metal Salts of Fatty Acids

    NASA Astrophysics Data System (ADS)

    Saito, Mitsuyoshi; Sugi, Michio; Ikegami, Keiichi; Yoneyama, Mitsuru; Iizima, Sigeru

    1986-06-01

    When LB films are exposed to the atmosphere vaporized from acid at room temperature, the X-ray diffraction peaks attributed to the lamellar structure disappear and new peaks appear depending on the metal ion species of the salt, whereas such noticeable change is not observed by basic vapor treatment and heat treatment. Diffraction patterns for LB films of free fatty acids are not influenced by these three treatments.

  1. pH-indicators doped polysaccharide LbL coatings for hazardous gases optical sensing.

    PubMed

    Mironenko, A Yu; Sergeev, A A; Voznesenskiy, S S; Marinin, D V; Bratskaya, S Yu

    2013-01-30

    Sensitive layer-by-layer (LbL) coatings for optical detection of gaseous NH(3) and HCl were prepared by self-assembly of oppositely charged polysaccharides (chitosan and λ-carrageenan) followed by doping LbLs with pH-sensitive dyes - bromothymol blue (BTB) and Congo red (CR). It has been shown that CR, being an amphoteric dye, diffuses into LbL films regardless of the charge of the outermost polyelectrolyte layer, and the dye loading increases linearly with the LbL film thickness, whereas BTB diffuses into LbL films only when the outermost layer is positively charged, and linearity between dye loading and film thickness holds only up to 8-12 double layers (DLs) deposited. Formation of dye-doped LbL coatings at the surface of K(+)/Na(+) ion-exchanged glass has allowed fabrication of composite optical waveguide (OWG) gas sensor for detection of ammonia and hydrochloric acid vapors. The response time of BTB-doped composite OWG for ammonia detection was below 1s, and the detection limit was below 1 ppm. CR-doped OWG sensors have shown high sensitivity to HCl vapor but slow relaxation time (up to several hours for 12 DL LbL films). PMID:23218366

  2. Acid diffusion through polymer films

    NASA Astrophysics Data System (ADS)

    Zhang, P. Linda; Eckert, Andrew R.; Willson, C. Grant; Webber, Stephen E.; Byers, Jeffrey D.

    1997-07-01

    In order to perform 0.2 micrometer processes, one needs to study the diffusion of photoacid generators within the photoresist system, since diffusion during post exposure bake time has an influence on the critical dimension (CD). We have developed a new method to study the diffusion of photoacid generators within a polymer film. This new method is based on monitoring the change of the fluorescence intensity of a pH- sensitive fluorescent dye caused by the reaction with photoacid. A simplified version of this experiment has been conducted by introducing acid vapor to quench the fluorescence intensity of this pH sensor. A thin polymer film is spin cast onto the sensor to create a barrier to the acid diffusion process. During the acid diffusion process, the fluorescence intensity of this pH sensor is measured in situ, using excitation and emission wavelengths at 466 nm and 516 nm, respectively. Fluoresceinamine, the pH sensitive fluorescent dye, is covalently bonded onto the treated quartz substrate to form a single dye layer. Poly(hydroxystyrene) (Mn equals 13k, Tg equals 180 degrees Celsius) in PGMEA (5% - 18% by weight) is spin cast onto this quartz substrate to form films with varying thickness. The soft bake time is 60 seconds at 90 degrees Celsius and a typical film has a thickness of 1.4 micrometers. Trifluoroacetic acid is introduced into a small chamber while the fluorescence from this quartz window is observed. Our study focuses on finding the diffusion constant of the vaporized acid (trifluoroacetic acid) in the poly(hydroxystyrene) polymer film. By applying the Fick's second law, (It - Io)/(I(infinity ) - Io) equals erfc [L/(Dt)1/2] is obtained. The change of fluorescence intensity with respect to the diffusion time is monitored. The above equation is used for the data analysis, where L represents the film thickness and t represents the average time for the acid to diffuse through the film. The diffusion constant is calculated to be at the order of 10

  3. Gas sensitivity measurements on NO{sub 2} sensors based on copper(II) tetrakis(n-butylaminocarbonyl)phthalocyanine LB films

    SciTech Connect

    Capone, S.; Rella, R.; Siciliano, P.; Mongelli, S.; Valli, L.

    1999-03-02

    The NO{sub 2} gas-sensing characteristics of chemiresistors in the form of multilayered Langmuir-Blodgett films of a symmetrically substituted phthalocyanine, containing on the periphery four amidic groups -CONH-, have been studied. Floating layers were spread onto the water surface from a chloroform solution and were transferred onto both hydrophilic and hydrophobic quartz substrates using the vertical lifting method. Response and recovery times have been measured for different working temperatures at a fixed NO{sub 2} concentration. Dynamic response characteristics of the electrical conductance of the LB films to different NO{sub 2} concentrations, carried out in dry air, have shown a high sensitivity to concentrations of nitrogen dioxide smaller than 20 ppm at room temperature. All measurements have been carried out using coplanar configurations of the devices.

  4. Characterization and nanoindentation testing of thin ZrO 2 films synthesized using layer-by-layer (LbL) deposited organic templates

    NASA Astrophysics Data System (ADS)

    Zlotnikov, I.; Gotman, I.; Gutmanas, E. Y.

    2008-12-01

    Thin organic LbL (layer-by-layer) films with negatively charged surface were used as templates for biomimetic deposition of ZrO 2 on Si wafers by hydrolysis of Zr(SO 4) 2 solution. The as-deposited ceramic layers were fully amorphous and were composed of the mixture of zirconia and zirconium sulfate. During transmission electron microscopy (TEM) examination, the amorphous ZrO 2 crystallized almost instantaneously to tetragonal (t) ZrO 2 under the electron beam. The ≤110 nm thick as-deposited layers were crack-free and adhered well to the LbL surface. Annealing at 500 °C led to complete crystallization of amorphous ZrO 2 to nanocrystalline t-ZrO 2. Further heating to 900 °C resulted in transformation to monoclinic ZrO 2, complete removal of sulfur and twofold shrinkage of the ceramic layer thickness. Both the nanohardness and elastic modulus of the deposited zirconia layers were significantly improved following the heat treatments.

  5. Bulk organisation and alignment in Langmuir and Langmuir-Blodgett films of tetrachloroperylene tetracarboxylic acid esters

    NASA Astrophysics Data System (ADS)

    Modlińska, Anna; Filipowicz, Marek; Martyński, Tomasz

    2016-12-01

    Perylene derivatives with chlorine atoms attached at the bay position to the dye core are expected to affect organisation and tendency to aggregation in Langmuir and Langmuir-Blodgett (LB) films. Therefore, newly synthesized core-twisted homologous series of tetrachloroperylene tetracarboxylic acid esters with n = 1,4,5,6,9 carbon atoms in terminal alkyl chains were studied. Phase transitions and crystalline structures were specified by differential scanning calorimetry (DSC) and single crystal X-ray diffraction (XRD), respectively. Intermolecular interactions and organisation of the dyes in monomolecular films were investigated by means of Brewster angle microscope (BAM), UV-Vis absorption and emission spectroscopy, fluorescence microscopy and atomic force microscopy (AFM). The dyes investigated do not form thermotropic mesogenic phases in bulk. The crystalline triclinic elementary cell with P-1 symmetry is revealed from X-ray experiments. In Langmuir and Langmuir-Blodgett films molecular tilted head-on alignment is postulated. Spectroscopic research confirmed by AFM texture images of the LB films show that in the Langmuir and LB films the dyes, depending on length of terminal chains, have a tendency to create H or I molecular aggregates. The impact of the twisted core on the molecular behavior in a bulk and thin films is discussed.

  6. Design and Synthesis of Aviram-Ratner-Type Dyads and Rectification Studies in Langmuir-Blodgett (LB) Films.

    PubMed

    Jayamurugan, Govindasamy; Gowri, Vijayendran; Hernández, David; Martin, Santiago; González-Orive, Alejandro; Dengiz, Cagatay; Dumele, Oliver; Pérez-Murano, Francesc; Gisselbrecht, Jean-Paul; Boudon, Corinne; Schweizer, W Bernd; Breiten, Benjamin; Finke, Aaron D; Jeschke, Gunnar; Bernet, Bruno; Ruhlmann, Laurent; Cea, Pilar; Diederich, François

    2016-07-18

    The design and synthesis of Aviram-Ratner-type molecular rectifiers, featuring an anilino-substituted extended tetracyanoquinodimethane (exTCNQ) acceptor, covalently linked by the σ-spacer bicyclo[2.2.2]octane (BCO) to a tetrathiafulvalene (TTF) donor moiety, are described. The rigid BCO spacer keeps the TTF donor and exTCNQ acceptor moieties apart, as demonstrated by X-ray analysis. The photophysical properties of the TTF-BCO-exTCNQ dyads were investigated by UV/Vis and EPR spectroscopy, electrochemical studies, and theoretical calculations. Langmuir-Blodgett films were prepared and used in the fabrication and electrical studies of junction devices. One dyad showed the asymmetric current-voltage (I-V) curve characteristic for rectification, unlike control compounds containing the TTF unit but not the exTCNQ moiety or comprising the exTCNQ acceptor moiety but lacking the donor TTF part, which both gave symmetric I-V curves. The direction of the observed rectification indicated that the preferred electron current flows from the exTCNQ acceptor to the TTF donor. PMID:27363287

  7. Studies on morphology of Langmuir-Blodgett films of stearic acid deposited with different orientation of substrates with respect to compression

    NASA Astrophysics Data System (ADS)

    Choudhary, Keerti; Manjuladevi, V.; Gupta, R. K.

    2016-05-01

    The Langmuir monolayer at an air-water interface shows remarkably different surface pressure - area isotherm, when measured with the surface normal of a Wilhemly plate parallel or perpendicular to the direction of compression of the monolayer. Such difference arises due to difference in stress exerted by the monolayer on the plate in different direction. In this article, we report the effect of changing the direction of substrate normal with respect to the compression of the monolayer during Langmuir-Blodgett (LB) film deposition on the morphology of the films. The morphology of the LB film of stearic acid was studied using an atomic force microscope (AFM). The morphology of the LB films was found to be different due to difference in the stress in different directions.

  8. Safety assessment of potential probiotic lactic acid bacterial strains Lactobacillus rhamnosus HN001, Lb. acidophilus HN017, and Bifidobacterium lactis HN019 in BALB/c mice.

    PubMed

    Zhou, J S; Shu, Q; Rutherfurd, K J; Prasad, J; Birtles, M J; Gopal, P K; Gill, H S

    2000-05-25

    The general safety of immune-enhancing lactic acid bacteria (LAB) strains Lactobacillus rhamnosus HN001 (DR20), Lb. acidophilus HN017, and Bifidobacterium lactis HN019 (DR10) was investigated in a feeding trial. Groups of BALB/c mice were orally administered test LAB strains or the commercial reference strain Lb. acidophilus LA-1 at 2.5 x 10(9), 5 x 10(10) or 2.5 x 10(12) colony forming units (CFU)/kg body weight/day for 4 weeks. Throughout this time, their feed intake, water intake, and live body weight were monitored. At the end of the 4 week observation period, samples of blood, liver, spleen, kidney, mesenteric lymph nodes, and gut tissues (ileum, caecum, and colon) were collected to determine: haematological parameters (red blood cell and platelet counts, haemoglobin concentration, mean corpuscular volume, mean corpuscular haemoglobin, and mean corpuscular haemoglobin concentration); differential leukocyte counts; blood biochemistry (plasma total protein, albumin, cholesterol, and glucose); mucosal histology (epithelial cell height, mucosal thickness, and villus height); and bacterial translocation to extra-gut tissues (blood, liver, spleen, kidney and mesenteric lymph nodes). DNA finger printing techniques were used to identify any viable bacterial strains recovered from these tissues. The results demonstrated that 4 weeks consumption of these LAB strains had no adverse effects on animals' general health status, haematology, blood biochemistry, gut mucosal histology parameters, or the incidence of bacterial translocation. A few viable LAB cells were recovered from the tissues of animals in both control and test groups, but DNA fingerprinting did not identify any of these as the inoculated strains. The results obtained in this study suggest that the potentially probiotic LAB strains HN001, HN017, and HN019 are non-toxic for mice and are therefore likely to be safe for human use. PMID:10857928

  9. Growth of nitric acid hydrates on thin sulfuric acid films

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-01-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1-3 x 10(exp -4) Torr H2O and 1-2.5 x 10(exp -6) Torr HNO3) and subjected to cooling and heating cycles. Fourier Transform Infrared (FTIR) spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.

  10. Growth of nitric acid hydrates on thin sulfuric acid films

    NASA Astrophysics Data System (ADS)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-05-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1 - 3 × 10-4 Torr H2O and 1 - 2.5 × 10-6 Torr HNO3) and subjected to cooling and heating cycles. FTIR spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.

  11. Preparation of porous monolayer film by immersing the stearic acid Langmuir-Blodgett monolayer on mica in salt solution

    NASA Astrophysics Data System (ADS)

    Wang, S.; Li, Y. L.; Zhao, H. L.; Liang, H.; Liu, B.; Pan, S.

    2012-11-01

    Porous materials have drawn attention from scientists in many fields such as life sciences, catalysis and photonics since they can be used to induce some materials growth as expected. Especially, porous Langmuir-Blodgett (LB) film is an ideal material with controlled thickness and flat surface. In this paper, stearic acid (SA), which has been extensively explored in LB film technique, is chosen as the template material with known parameters to prepare the LB film, and then the porous SA monolayer film is obtained by means of etching in salt solution. The main etching mechanism is suggested that the cations in the solution block the electrostatic interaction between the polar carboxyl group of SA and the electronegative mica surface. The influencing factors (such as concentration of salt solution, valence of cation and surface pressure) of the porous SA film are systematically studied in this work. The novel method proposed in this paper makes it convenient to prepare porous monolayer film for designed material growth or cell culture.

  12. Photoactive layer-by-layer films of cellulose phosphate and titanium dioxide containing phosphotungstic acid

    NASA Astrophysics Data System (ADS)

    Ullah, Sajjad; Acuña, José Javier Sáez; Pasa, André Avelino; Bilmes, Sara A.; Vela, Maria Elena; Benitez, Guillermo; Rodrigues-Filho, Ubirajara Pereira

    2013-07-01

    A versatile layer-by-layer (LbL) procedure for the preparation of highly dispersed, adherent and porous multilayer films of TiO2 nanoparticles (NPs) and phosphotungstic acid (HPW) on a variety of substrates at room temperature was developed based on the use of cellulose phosphate (CP) as an efficient and non-conventional polyelectrolyte. UV/vis absorption spectroscopy confirmed the linear and regular growth of the films with the number of immersion cycles and a strong adsorption ability of CP towards TiO2 NPs. FTIR spectroscopy showed that HPW binds to the surface of TiO2 through the oxygen atom at the corner of the Keggin structure. XPS results showed that the interaction between TiO2 and CP is through Ti-O-P linkage. A model is proposed for the TiO2-HPW interaction based on XPS and FTIR results. FEG/SEM study of the surface morphology revealed a porous film structure with a homogenous distribution of the TiO2 NPs induced by CP. HRTEM studies showed that the resulting composite films consist of crystalline anatase and rutile phases and poly-nano-crystalline HPW with a semi-crystalline TiO2-HPW interface. These CP/TiO2 and CP/TiO2/HPW LbL films showed good photoactivity against both saturated and unsaturated species, for instance, stearic acid (SA), crystal violet (CV) and methylene blue (MB) under UV irradiation. The CP/HPW films formed on bacterial cellulose (BC) showed good photochromic response which is enhanced in presence of TiO2 due to an interfacial electron transfer from TiO2 to HPW. This simple and environmentally safe method can be used to form coatings on a variety of surfaces with photoactive TiO2 and TiO2/HPW films.

  13. Explanation of the photocurrent quantum efficiency (Φ) enhancements through the CAN's model equation for the p-CuI sensitized methylviolet-C18 LB films in the photoelectrochemical cells (PECs) and Cu/n-Cu2O/M-C18/p-CuI solid-state photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Fernando, C. A. N.; Liyanaarachchi, U. S.; AARajapaksha, R. D.

    2013-04-01

    Photocurrent enhancements in a dye sensitized photoelectrochemical cell (PEC) with a Cu/p-CuI/M-C18 photoelectrode and a dye sensitized solid state photovoltaic cell (DSSC) with Cu/n-Cu2O/M-C18/p-CuI are studied by controlling the formation of dye aggregates of M-C18 Langmuir-Blodgett (LB) films on the p-CuI layer. LB films of M-C18 are deposited under biasing conditions during the LB deposition process on Cu/p-CuI, Cu/n-Cu2O/p-CuI and conductive glass plates with the three-electrode configuration setup coupling to the LB trough. LB films prepared under positive biasing conditions enhance the photocurrent quantum efficiencies for both PECs and DSSCs controlling and minimizing the formation of dye aggregates. The electrolyte used for LB deposition and photocurrent measurements is (10-2 M) Fe2+ + Fe3+ (10-2 M) and (10-2 M) NaH2PO4-Na2HPO4, pH = 6 buffer solution. Maximum photocurrent quantum efficiencies (Фmax%) obtained are ≈22% for PEC and ≈20% for DSSCs, where the M-C18 LB film deposition applied potentials +0.3 V versus Ag/AgCl. The mechanism of the photocurrent enhancement is discussed through the CAN's model equation, Ф = AD0-BD02, where A = k1k2/F, B = I k12 k2[2k6/F3 + k2k4/k32 X2F2], F = k2 + k5Y + k7 + k1 I [1 + k2/k3 X], presented from our previous study [1]. Experimental evidence for the formation of the aggregates of M-C18 LB films for the negative applied potentials and suppression of the aggregates with positive applied potentials are presented from absorption spectra, AFM pictures and fluorescence measurements of the samples. Conversion efficiency obtained is ≈2.5%, Voc ≈750 mV and Isc ≈ 5.8 mA cm-2 for DSSC fabricated with +0.3 V versus Ag/AgCl applied deposition potential of M-C18 LB films.

  14. Rhodanese incorporated in Langmuir and Langmuir-Blodgett films of dimyristoylphosphatidic acid: Physical chemical properties and improvement of the enzyme activity.

    PubMed

    de Araújo, Felipe Tejada; Caseli, Luciano

    2016-05-01

    Preserving the catalytic activity of enzymes immobilized in bioelectronics devices is essential for optimal performance in biosensors. Therefore, ultrathin films in which the architecture can be controlled at the molecular level are of interest. In this work, the enzyme rhodanese was adsorbed onto Langmuir monolayers of the phospholipid dimyristoylphosphatidic acid and characterized by surface pressure-area isotherms, polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). The incorporation of the enzyme (5% in mol) in the lipid monolayer expanded the film, providing small surface domains, as visualized by BAM. Also, amide bands could be identified in the PM-IRRAS spectra, confirming the presence of the enzyme at the air-water interface. Structuring of the enzyme into α-helices was identified in the mixed monolayer and was preserved when the film was transferred from the liquid interface to solids supports as Langmuir-Blodgett (LB) films. The enzyme-lipid LB films were then characterized by fluorescence spectroscopy, PM-IRRAS, and atomic force microscopy. Measurements of the catalytic activity towards cyanide showed that the enzyme accommodated in the LB films preserved more than 87% of the enzyme activity in relation to the homogeneous medium. After 1 month, the enzyme in the LB film maintained 85% of the activity in contrast to the homogeneous medium, which 24% of the enzyme activity was kept. The method presented in this work not only points to an enhanced catalytic activity toward cyanide, but also may explain why certain film architectures exhibit an improved performance. PMID:26836478

  15. Fabricating chiral polydiacetylene film by monolayer compression and circularly polarized ultra-violet light

    NASA Astrophysics Data System (ADS)

    Zou, Gang; Kohn, Hideki; Ohshima, Yuki; Manaka, Takaaki; Iwamoto, Mitsumasa

    2007-07-01

    We study polydiacetylene films that are pertinent to the problems of mirror symmetry breaking induced by the effects of compression and circularly polarized ultra-violet (UV) light. The subphase is only pure water. After polymerization, polymerized 10,12-tricosadiynoic acid (PTDA) LB films that deposited at the surface pressure of 20 mN m -1 showed obviously chiral properties, however, no obvious Cotton effect was obtained for PTDA LB films that deposited at the surface pressure of 10 mN m -1. In addition, TDA LB films could be polymerized to a designed chirality by using chiral circular polarized ultra-violet light (CPUL).

  16. Protein adsorption on polyanion/polycation layer-by-layer assembled polyelectrolyte films.

    PubMed

    Yang, Jen Ming; Tsai, Rong-Ze; Hsu, Chih-Chin

    2016-06-01

    As layer-by-layer self-assembly deposition (LbL) is a versatile technique for surface modification, protein adsorption on the LbL modified glass is evaluated in this study. At the beginning, glass slides was silanized by 3-aminopropyltriethoxysilane (APTES). Sodium alginate (Alg), poly(γ-glutamic acid) (PGA) and poly(aspartic acid) (PAsp) were selected as polyanion electrolytes and chitosan (CS) was used as the polycation electrolyte. Both polyanion and polycation electrolytes alternately deposited on the silanized glass slide surface by the LbL technique to get three different polyanion/chitosan series of LbL films ([Alg/CS], [PGA/CS], and [PAsp/CS]). Three kinds of kinetic model including pseudo-first-order, second-order kinetic and intraparticle diffusion model were used to evaluate the adsorption of albumin on the three different polyanion/chitosan series of LbL films. It is found that the adsorption of albumin on the polyanion/chitosan series of LbL films can be described well with the pseudo-second-order kinetic mechanism. To make sure if the pseudo-second-order kinetic mechanism of protein adsorbed on the other polyanion/polycation LbL films is also suitable, poly(allylamine hydrochloride) (PAH) and poly(L-lysine) (PLL) are used as two other polycations. The [polyanion/PAH] and [polyanion/PLL] series of LbL films were prepared with the same LbL technique for albumin, fibrinogen, and fibronectin adsorption. From the results, it is found that albumin, fibrinogen, and fibronectin adsorption on the various polyanion/polycation LbL films can be described well with the pseudo-second-order kinetic mechanism. The protein adsorbed at equilibrium and rate constant of protein adsorbed on the various LbL films can be determined. PMID:26938325

  17. Polybenzimidazole film containing phosphoric acid as proton exchange membrane (PEM)

    NASA Astrophysics Data System (ADS)

    Ameri, Roya

    Polybenzimidazole is a linear polymer with a very high glass transition temperature. It has exceptional properties at elevated temperature such as stability, retention of stiffness, and toughness. PBI containing phosphoric acid has high proton conductivity and low water vapor permeability. A new way of direct film casting of PBI containing phosphoric acid, has been found. The use of trifluoroacetic acid as a solvent resulted in a new and quick way to prepare PBI film containing phosphoric acid which showed about four times more conductivity at a given doping level than PBI doped with phosphoric acid from DMAc solution. Mechanical property studies of different molecular weight PBI films etasb{inh} = 0.91 to 142 dl/g) have shown that increasing molecular weight linearly improved mechanical properties of PBI films with pronounced effect on toughness. As PBI film was doped with sulfuric acid, mechanical properties decreased with very sharp drop in toughness. More reduction in mechanical properties was observed as the concentration of sulfuric acid in the film increased. Doping PBI film with low concentrations of phosphoric acid improved modulus and strength at break while lowering the toughness. Increasing the concentration of acid in these films lowered the strength and modulus of PBI film. However, toughness first increased up to concentration of 200-300M% phosphoric acid and then decreased. Comparison of phosphoric acid doped PBI film and PBI film cast from PBI/TFA/Hsb3POsb4 solution reveals that phosphoric acid doped PBI film has at least three times better mechanical properties: toughness, modulus, and strength. X-ray photographs of PBI film cast from PBI/TFA/Hsb3POsb4 solution shows a crystalline pattern with a monoclinic unit cell of dimensions: a = 15.8 A, b = 13.23 A, c = 16.83 A, and gamma = 79.1sp0. On the other hand, phosphoric acid doped PBI film has relatively low crystallinity. PBI can cocrystallize with some complexing agent like trifluoroacetic acid

  18. Investigation of a Langmuir Film Using a Current-Measuring Technique: Influence of the Behavior of Monolayers at the Edge of the LB Trough

    NASA Astrophysics Data System (ADS)

    Iwamoto, Mitsumasa; Majima, Yutaka

    1989-10-01

    Using a current-measuring technique, we investigated the abrupt change of a current observed at the liquid-to-solid phase transition in a current-area (I-A) isotherm of a fatty acid monolayer at the air/water interface. The change occurred when an electrode suspended in air was not electrically shielded. It was found both experimentally and theoretically that the behavior of the monolayer at the edge of the trough plays a very important role in the abrupt change described above.

  19. Self-healing multilayer polyelectrolyte composite film with chitosan and poly(acrylic acid).

    PubMed

    Zhu, Yanxi; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin

    2015-11-21

    If self-healing materials can be prepared via simple technology and methods using nontoxic materials, this would be a great step forward in the creation of environmentally friendly self-healing materials. In this paper, the specific structural parameters of the various hydrogen bonds between chitosan (CS) and polyacrylic acid (PAA) were calculated. Then, multilayer polyelectrolyte films were fabricated with CS and PAA based on layer-by-layer (LbL) self-assembly technology at different pH values. The possible influence of pH on the (CS/PAA) × 30 multilayer polyelectrolyte film was investigated. The results show that the interactions between CS and PAA, swelling capacity, microstructure, wettability, and self-healing ability are all governed by the pH of the CS solution. When the pH value of the CS solution is 3.0, the prepared multilayer polyelectrolyte film (CS3.0/PAA2.8) × 30 has fine-tuned interactions, a network-like structure, good swelling ability, good hydrophilicity, and excellent self-healing ability. This promises to greatly widen the future applications of environmentally friendly materials and bio-materials. PMID:26364567

  20. Spray-assisted layer-by-Layer (LbL) assembly of anisotropic materials

    NASA Astrophysics Data System (ADS)

    de, Souvik; Suarez Martinez, Pilar; Kavarthapu, Avanti; Lutkenhaus, Jodie

    2015-03-01

    Layer-by-layer (LbL) assembly has gained tremendous interest as it allows one to incorporate a large variety of molecules with nano-scale precision and very good reproducibility. In addition to charged polymers, the technique has become extremely popular to fabricate tailor-made thin films containing anisotropic nanomaterials (e.g., graphene oxide sheets). The challenge is that a standard protocol to fabricate ``all-polyelectrolyte'' LbL films may not necessarily give rise to satisfactory film growth when applied to LbL assembly where one of the adsorbing components is an anisotropic nanomaterial. Therefore, in this contribution, we combine polymers and anisotropic nanomaterials via dip- and spray-assisted LbL assembly and investigate the effect of charge density, exfoliation, concentration etc. of the components on the growth behavior and the film quality. The end result is a conformal, pin-hole free coating on model substrates (glass, silicon, metal) over a large area.

  1. Film fabrication of Fe or Fe3O4 nanoparticles mixed with palmitic acid for vertically aligned carbon nanotube growth using Langmuir-Blodgett technique

    NASA Astrophysics Data System (ADS)

    Nakamura, Kentaro; Kuriyama, Naoki; Takagiwa, Shota; Sato, Taiga; Kushida, Masahito

    2016-03-01

    Vertically aligned carbon nanotubes (VA-CNTs) were studied as a new catalyst support for polymer electrolyte fuel cells (PEFCs). Controlling the number density and the diameter of VA-CNTs may be necessary to optimize PEFC performance. As the catalyst for CNT growth, we fabricated Fe or Fe3O4 nanoparticle (NP) films by the Langmuir-Blodgett (LB) technique. The catalyst Fe or Fe3O4 NPs were widely separated by mixing with filler molecules [palmitic acid (C16)]. The number density of VA-CNTs was controlled by varying the ratio of catalyst NPs to C16 filler molecules. The VA-CNTs were synthesized from the catalyst NP-C16 LB films by thermal chemical vapor deposition (CVD) using acetylene gas as the carbon source. The developing solvents used in the LB technique and the hydrogen reduction conditions of CVD were optimized to improve the VA-CNT growth rate. We demonstrate that the proposed method can independently control both the density and the diameter of VA-CNTs.

  2. Study of Langmuir and Langmuir-Blodgett Thin films

    NASA Astrophysics Data System (ADS)

    Goodwin, Ross; Prayaga, Chandra; Wade, Aaron

    Arachidic Acid, Cholesterol, and Stearic Acid thin films were created and studied utilizing the Langmuir method in order to obtain a single molecule or monomolecular layer out of a desired substance at an air-water interface. The phase transitions are observed by measuring the surface pressure vs. area isotherms. Langmuir-Blodgett (LB) films were created on a prepared substrate. The LB film structures were then studied using X-ray Diffraction, and Raman Spectroscopy. UWF Office of Undergraduate Research Project Award, UWF ITEP-Technology Fee Project Award, UWF Quality Enhancement Plan Award.

  3. Lactic Acid and Biosurfactants Production from Residual Cellulose Films.

    PubMed

    Portilla Rivera, Oscar Manuel; Arzate Martínez, Guillermo; Jarquín Enríquez, Lorenzo; Vázquez Landaverde, Pedro Alberto; Domínguez González, José Manuel

    2015-11-01

    The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6% (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49% of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50% of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs. PMID:26293409

  4. Characterization and bacterial adhesion of chitosan-perfluorinated acid films.

    PubMed

    Bierbrauer, Karina L; Alasino, Roxana V; Muñoz, Adrián; Beltramo, Dante M; Strumia, Miriam C

    2014-02-01

    We reported herein the study and characterization of films obtained by casting of chitosan solutions in perfluorinated acids, trifluoroacetic (TFA), perfluoropropionic (PFPA), and perfluorooctanoic (PFOA). The films were characterized by FTIR, solid state (13)C NMR, X-ray, AFM, contact angle, thermogravimetric effluent analysis by mass spectrometry, and rheology. The results showed a marked influence of chain length of the perfluorinated acids on the hydrophobic/hydrophilic ratio of the modified chitosan films which was evidenced by the different characteristics observed. The material that showed greater surface stability was chitosan-PFOA. Chitosan film with the addition of PFOA modifier became more hydrophobic, thus water vapor permeability diminished compared to chitosan films alone, this new material also depicted bacterial adhesion which, together with the features already described, proves its potential in applications for bioreactor coating. PMID:24189195

  5. Self-lubricating boric acid films for tribological applications

    SciTech Connect

    Erdemir, A.; Fenske, G.R.; Nichols, F.A.; Erck, R.A.; Busch, D.E.

    1990-01-01

    Because of its layered crystal structure, boric acid, has been found to be lubricious. Its self-lubricating mechanism is related to the easy shear of atomic layers over one another. Moreover, laser-Raman spectroscopy and electron microscopy analyses have confirmed that thin boric acid films can form on surfaces containing boron and boric oxides. To study the lubricity and self lubricating mechanism of boric acid, pin-on-disk tests were performed on pairs of boric acid compacts and steel disks, boric oxide films and steel pins, boron films and steel pins, and boron-implanted steel disks and steel pins. The mean steady-state friction coefficients of these tribosystems ranged from 0.04 to 0.12. 22 refs., 4 figs., 4 tabs.

  6. ATR-IR spectroscopy as applied to nucleic acid films

    NASA Astrophysics Data System (ADS)

    Stepanyugin, Andriy V.; Samijlenko, Svitlana P.; Martynenko, Olena I.; Hovorun, Dmytro M.

    2005-07-01

    For the first time the ATR technique was applied to obtain IR absorption spectra of DNA and RNA dry films. There was worked out procedure of the nucleic acid removal from germanium plate, which obviously was a main obstacle to application of ATR-IR spectroscopy to nucleic acids. This technique of IR spectroscopy was applied to confirmation of RNA tropism of aurin tricarboxylic acid observed by molecular biological methods.

  7. Preparation of Lead Titanate Ultrathin Film Using Langmuir-Blodgett Film as Precursor

    NASA Astrophysics Data System (ADS)

    Sugai, Hiroshi; Iijima, Takashi; Masumoto, Hiroshi

    1999-09-01

    The Langmuir-Blodgett (LB) method is investigated as a process for the fabrication of ultrathin films of oxides such as lead titanate. LB film was fabricated by depositing a monolayer prepared from a fatty acid such as stearic acid (C17H35COOH) and a subphase containing lead chloride (PbCl2) and titanium potassium oxalate (K2TiO (C2O4)2). For converting from an LB film containing lead and titanium to an inorganic film, ultraviolet/ozone (UVO) treatment was applied. Subsequent thermal annealing resulted in a dense oxide ultrathin film. The crystallographic orientation of lead titanate thin films was controlled by conditions of precursor preparation such as the molecular ratio of lead and titanium, pH value and/or temperature in the subphase and the surface pressure. An X-ray diffraction pattern of the thin film indicating a well-defined perovskite structure was observed. Moreover, the results demonstrated the potential application of LB deposition for controlling the crystallographic orientation of lead titanate ultrathin films, particularly in the (111) or (101)(110) planes.

  8. The potential use of a layer-by-layer strategy to develop LDPE antimicrobial films coated with silver nanoparticles for packaging applications.

    PubMed

    Azlin-Hasim, Shafrina; Cruz-Romero, Malco C; Cummins, Enda; Kerry, Joseph P; Morris, Michael A

    2016-01-01

    Commercial low-density polyethylene (LDPE) films were UV/ozone treated and coated using a layer-by-layer (LbL) technique by alternating the deposition of polyethyleneimine (PEI) and poly(acrylic acid) (PAA) polymer solutions and antimicrobial silver (Ag). The effects of the initial pH of the PEI/PAA polymer solutions alternating layers (pH 10.5/4 or 9/6.5) on the antimicrobial activity of the developed LbL coatings combined with Ag against Gram-negative and Gram-positive bacteria were investigated. The results from fourier transform infrared spectroscopy and toluidine blue O assay showed that LDPE LbL coated using PEI/PAA polymer solutions with initial pH of 10.5/4 significantly increased the presence of carboxylic acid groups and after Ag attachment the coating had higher antimicrobial activity against both Gram-negative and Gram-positive bacteria compared to the LDPE LbL coated using PEI/PAA polymer solutions with initial pH of 9/6.5. The LDPE LbL coated films using non-modified pH PEI/PAA polymer solutions decreased the water contact-angle indicating an increased hydrophilicity of the film, also increased the tensile strength and roughness of LDPE LbL coated films compared to uncoated LbL samples. The LDPE LbL coated films attached with Ag(+) were UV/ozone treated for 20 min to oxidise Ag(+) to Ag(0). The presence of Ag(0) (Ag nanoparticles (NPs)) on the LDPE LbL coated films was confirmed by XRD, UV-vis spectrophotometer and colour changes. The overall results demonstrated that the LbL technique has the potential to be used as a coating method containing antimicrobial Ag NPs and that the manufactured films could potentially be applied as antimicrobial packaging. PMID:26402783

  9. The brain of LB1, Homo floresiensis.

    PubMed

    Falk, Dean; Hildebolt, Charles; Smith, Kirk; Morwood, M J; Sutikna, Thomas; Brown, Peter; Jatmiko; Saptomo, E Wayhu; Brunsden, Barry; Prior, Fred

    2005-04-01

    The brain of Homo floresiensis was assessed by comparing a virtual endocast from the type specimen (LB1) with endocasts from great apes, Homo erectus, Homo sapiens, a human pygmy, a human microcephalic, specimen number Sts 5 (Australopithecus africanus), and specimen number WT 17000 (Paranthropus aethiopicus). Morphometric, allometric, and shape data indicate that LB1 is not a microcephalic or pygmy. LB1's brain/body size ratio scales like that of an australopithecine, but its endocast shape resembles that of Homo erectus. LB1 has derived frontal and temporal lobes and a lunate sulcus in a derived position, which are consistent with capabilities for higher cognitive processing. PMID:15749690

  10. High-tech breakthrough DNA scanner for reading sequence and detecting gene mutation: A powerful 1 lb, 20 {mu}m resolution, 16-bit personal scanner (PS) that scans 17inch x 14inch x-ray film in 48 s, with laser, uv and white light sources

    SciTech Connect

    Zeineh, J.A.; Zeineh, M.M.; Zeineh, R.A.

    1993-06-01

    The 17inch x 14inch X-ray film, gels, and blots are widely used in DNA research. However, DNA laser scanners are costly and unaffordable for the majority of surveyed biotech scientists who need it. The high-tech breakthrough analytical personal scanner (PS) presented in this report is an inexpensive 1 lb hand-held scanner priced at 2-4% of the bulky and costly 30-95 lb conventional laser scanners. This PS scanner is affordable from an operation budget and biotechnologists, who originate most science breakthroughs, can acquire it to enhance their speed, accuracy, and productivity. Compared to conventional laser scanners that are currently available only through hard-to-get capital-equipment budgets, the new PS scanner offers improved spatial resolution of 20 {mu}m, higher speed (scan up to 17inch x 14inch molecular X-ray film in 48 s), 1-32,768 gray levels (16-bits), student routines, versatility, and, most important, affordability. Its programs image the film, read DNA sequences automatically, and detect gene mutation. In parallel to the wide laboratory use of PC computers instead of mainframes, this PS scanner might become an integral part of a PC-PS powerful and cost-effective system where the PS performs the digital imaging and the PC acts on the data.

  11. Bacterial cell surface properties: role of loosely bound extracellular polymeric substances (LB-EPS).

    PubMed

    Zhao, Wenqiang; Yang, Shanshan; Huang, Qiaoyun; Cai, Peng

    2015-04-01

    This study investigated the effect of loosely bound extracellular polymeric substances (LB-EPS) on the comprehensive surface properties of four bacteria (Bacillus subtilis, Streptococcus suis, Escherichia coli and Pseudomonas putida). The removal of LB-EPS from bacterial surfaces by high-speed centrifugation (12,000×g) was confirmed by SEM images. Viability tests showed that the percentages of viable cells ranged from 95.9% to 98.0%, and no significant difference was found after treatment (P>0.05). FTIR spectra revealed the presence of phosphodiester, carboxylic, phosphate, and amino functional groups on bacteria surfaces, and the removal of LB-EPS did not alter the types of cell surface functional groups. Potentiometric titration results suggested the total site concentrations on the intact bacteria were higher than those on LB-EPS free bacteria. Most of the acidity constants (pKa) were almost identical, except the increased pKa values of phosphodiester groups on LB-EPS free S. suis and E. coli surfaces. The electrophoretic mobilities and hydrodynamic diameters of the intact and LB-EPS free bacteria were statistically unchanged (P>0.05), indicating LB-EPS had no influence on the net surface charges and size distribution of bacteria. However, LB-ESP could enhance cell aggregation processes. The four LB-EPS free bacteria all exhibited fewer hydrophobicity values (26.1-65.0%) as compared to the intact cells (47.4-69.3%), suggesting the removal of uncharged nonpolar compounds (e.g., carbohydrates) in LB-EPS. These findings improve our understanding of the changes in cell surface characterizations induced by LB-EPS, and have important implications for assessing the role of LB-EPS in bacterial adhesion and transport behaviors. PMID:25805151

  12. Morphology and Composition of Structured, Phase-Separated Behenic Acid-Perfluorotetradecanoic Acid Monolayer Films.

    PubMed

    Rehman, Jeveria; Araghi, Hessamaddin Younesi; He, Anqiang; Paige, Matthew F

    2016-05-31

    The phase separation of immiscible surfactants in mixed monolayer films provides an approach to physically manipulate important properties of thin films, including surface morphology, microscale composition, and mechanical properties. In this work, we predict, based upon existing miscibility studies and their thermodynamic underpinnings described in the literature, the miscibility and film morphology of mixed monolayers comprised of behenic acid (C21H43COOH) and perfluorotetradecanoic acid (C13F27COOH) in various molar ratios. Predictions are tested using a combination of experimental surface characterization methods for probing miscibility and film morphology at the solid/air and air/water interfaces. Film components were immiscible and phase-separated into chemically well-defined domains under a variety of experimental conditions, with monolayer morphology consistent with initial predictions. The extensibility of these basic predictions to other systems is discussed in the context of using these works for different perfluorinated surfactant molecules. PMID:27163482

  13. Antibacterial Performance of Alginic Acid Coating on Polyethylene Film

    PubMed Central

    Karbassi, Elika; Asadinezhad, Ahmad; Lehocký, Marian; Humpolíček, Petr; Vesel, Alenka; Novák, Igor; Sáha, Petr

    2014-01-01

    Alginic acid coated polyethylene films were examined in terms of surface properties and bacteriostatic performance against two most representative bacterial strains, that is, Escherichia coli and Staphylococcus aureus. Microwave plasma treatment followed by brush formation in vapor state from three distinguished precursors (allylalcohol, allylamine, hydroxyethyl methacrylate) was carried out to deposit alginic acid on the substrate. Surface analyses via various techniques established that alginic acid was immobilized onto the surface where grafting (brush) chemistry influenced the amount of alginic acid coated. Moreover, alginic acid was found to be capable of bacterial growth inhibition which itself was significantly affected by the brush type. The polyanionic character of alginic acid as a carbohydrate polymer was assumed to play the pivotal role in antibacterial activity. The cell wall composition of two bacterial strains along with the substrates physicochemical properties accounted for different levels of bacteriostatic performance. PMID:25196604

  14. Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB.

    PubMed Central

    Coconnier, M H; Liévin, V; Bernet-Camard, M F; Hudault, S; Servin, A L

    1997-01-01

    The spent culture supernatant of the human Lactobacillus acidophilus strain LB produces an antibacterial activity against a wide range of gram-negative and gram-positive pathogens. It decreased the in vitro viability of Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium, Shigella flexneri, Escherichia coli, Klebsiella pneumoniae, Bacillus cereus, Pseudomonas aeruginosa, and Enterobacter spp. In contrast, it did not inhibit lactobacilli and bifidobacteria. The activity was heat stable and relatively sensitive to enzymatic treatments and developed under acidic conditions. The antimicrobial activity was independent of lactic acid production. Activity against S. typhimurium SL1344 infecting human cultured intestinal Caco-2 cells was observed as it was in the conventional C3H/He/oujco mouse model with S. typhimurium C5 infection and oral treatment with the LB spent culture supernatant. PMID:9145867

  15. Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB.

    PubMed

    Coconnier, M H; Liévin, V; Bernet-Camard, M F; Hudault, S; Servin, A L

    1997-05-01

    The spent culture supernatant of the human Lactobacillus acidophilus strain LB produces an antibacterial activity against a wide range of gram-negative and gram-positive pathogens. It decreased the in vitro viability of Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium, Shigella flexneri, Escherichia coli, Klebsiella pneumoniae, Bacillus cereus, Pseudomonas aeruginosa, and Enterobacter spp. In contrast, it did not inhibit lactobacilli and bifidobacteria. The activity was heat stable and relatively sensitive to enzymatic treatments and developed under acidic conditions. The antimicrobial activity was independent of lactic acid production. Activity against S. typhimurium SL1344 infecting human cultured intestinal Caco-2 cells was observed as it was in the conventional C3H/He/oujco mouse model with S. typhimurium C5 infection and oral treatment with the LB spent culture supernatant. PMID:9145867

  16. Influence of the acid type in the production of chitosan films reinforced with bacterial nanocellulose.

    PubMed

    Velásquez-Cock, J; Ramírez, E; Betancourt, S; Putaux, J-L; Osorio, M; Castro, C; Gañán, P; Zuluaga, R

    2014-08-01

    Chitosan films reinforced with bacterial cellulose (BC) nanoribbons were studied to understand the influence of acid (acetic and lactic acids) on the reinforcing effect. For both acids, the maximum concentration of the reinforcing constituent was 5wt% with respect to the dry weight of chitosan. The infrared spectra, mechanical properties, morphology and antimicrobial activity of the films were analyzed. The results showed a difference between the acids in their behavior and effect on the reinforcement, with a tensile strength of 12.3MPa for the acetic acid films and 3.3MPa for the lactic acid films. Additionally, the bacterial inhibition tests were shown to be positive for the lactic acid films and negative for the acetic acid films. Therefore, exchanging the acid used in these films may be desirable for certain applications. PMID:24875317

  17. Morphology of nitric acid and water ice films

    NASA Technical Reports Server (NTRS)

    Keyser, Leon F.; Leu, Ming-Taun

    1993-01-01

    Ice films have been used to simulate stratospheric cloud surfaces in order to obtain laboratory data on solubilities and heterogeneous reaction rates. In the present study, environmental scanning electron microscopy (ESEM) is used to study thin films of both water ice and nitric acid ice near the composition of the trihydrate. The ices are formed by vapor deposition onto aluminum or borosilicate-glass substrates cooled to about 200 K. Micrographs are recorded during the deposition process and during subsequent annealing at higher temperatures. The results show that the ice films are composed of loosely consolidated granules, which range from about 1 to 20 microns in size at temperatures between 197 and 235 K. Cubic water ice is sometimes observed at 200 K, which converts to the hexagonal form at slightly higher temperatures. The loose packing of the granules confirms the high porosities of these films obtained from separate bulk porosity measurements. Average surface areas calculated from the observed granule sizes range from about 0.2 to 1 sq m/g and agree with surface areas obtained by gas-adsorption (BET) analysis of annealed ice films. For unannealed films, the BET areas are about an order of magnitude higher than the ESEM results, implying that the unannealed ices contain microporosity which is lost during the annealing process.

  18. Electropolymerized molecularly imprinted polypyrrole film for sensing of clofibric acid.

    PubMed

    Schweiger, Bianca; Kim, Jungtae; Kim, Young Jun; Ulbricht, Mathias

    2015-01-01

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP) and non-imprinted polymer (NIP) layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6-8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity. PMID:25730487

  19. Electropolymerized Molecularly Imprinted Polypyrrole Film for Sensing of Clofibric Acid

    PubMed Central

    Schweiger, Bianca; Kim, Jungtae; Kim, Young Jun; Ulbricht, Mathias

    2015-01-01

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP) and non-imprinted polymer (NIP) layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6–8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity. PMID:25730487

  20. Silver coated gold nanocolloids entrapped in organized Langmuir-Blodgett Film of stearic acid: Potential evidence of a new SERS active substrate

    NASA Astrophysics Data System (ADS)

    Saha, Somsubhra; Ghosh, Manash; Dutta, Bipan; Chowdhury, Joydeep

    2016-01-01

    SERS active substrate containing silver coated gold (Au@Ag) nanocolloids entrapped in the Langmuir-Blodgett (LB) film matrix of stearic acid (SA) has been reported. The SERS efficacy of the as prepared substrate has been tested with trace concentrations of Rhodamine 6G (R6G) molecules. Enhancement factors ranging from 104-1013 orders of magnitude have been estimated for the characteristic vibrational signatures of R6G molecule. The colossal enhancement factors also signify the superiority of the as prepared substrate in comparison to Au@Ag nanocolloids. The optical responses and the morphological features of the substrates are estimated with aid of UV-vis absorption spectra and FESEM, AFM images respectively. Correlations between the surface morphologies, fractal dimensions and roughness features of the as prepared substrates are also drawn. The electric field distributions around the aggregated nanocolloids entrapped in the SA matrix have been envisaged with the aid of three dimensional finite difference time domain (3D-FDTD) simulations. Tuning the interparticle localized surface plasmon (LSP) coupling between the aggregated nanocolloids may be achieved by lifting the LB film of SA at different surface pressures.

  1. Formation of linear polyenes in poly(vinyl alcohol) films catalyzed by phosphotungstic acid, aluminum chloride, and hydrochloric acid

    NASA Astrophysics Data System (ADS)

    Tretinnikov, O. N.; Sushko, N. I.; Malyi, A. B.

    2016-07-01

    Formation of linear polyenes-(CH=CH)n-via acid-catalyzed thermal dehydration of polyvinyl alcohol in 9- to 40-µm-thick films of this polymer containing hydrochloric acid, aluminum chloride, and phosphotungstic acid as dehydration catalysts was studied by electronic absorption spectroscopy. The concentration of long-chain ( n ≥ 8) polyenes in films containing phosphotungstic acid is found to monotonically increase with the duration of thermal treatment of films, although the kinetics of this process is independent of film thickness. In films containing hydrochloric acid and aluminum chloride, the formation rate of polyenes with n ≥ 8 rapidly drops as film thickness decreases and the annealing time increases. As a result, at a film thickness of less than 10-12 µm, long-chain polyenes are not formed at all in these films no matter how long thermal duration is. The reason for this behavior is that hydrochloric acid catalyzing polymer dehydration in these films evaporates from the films during thermal treatment, the evaporation rate inversely depending on film thickness.

  2. Polarized fluorescence microscopy analysis of patterned, polymerized perfluorotetradecanoic acid-pentacosadiynoic acid thin films

    NASA Astrophysics Data System (ADS)

    Araghi, Hessamaddin Younesi; Giri, Neeraj K.; Paige, Matthew F.

    2014-08-01

    Photoillumination of mixed films comprised of the photopolymerizable fatty acid 10,12 pentacosadiynoic acid and perfluorotetradecanoic acid deposited onto glass substrates gives rise to the formation of oriented polydiacetylene photopolymer fibers. The degree of polymer fiber orientation was investigated using dual-view, polarized fluorescence microscopy of the polydiacetylene, which allowed for characterization of individual fluorescent polymer fibers after photopolymerization, as well as comparison of the orientation of different fibers within the same sample. Measurements indicated that individual fibers consisted of multiple photopolymer strands with various orientations, and that there was a preferred orientation for fibers in the film as a whole. The fibers were preferentially oriented at an angle of approximately 60° to the direction of film compression during deposition from a Langmuir trough, with orientation being the result of mechanical stress exerted by the compression barriers coupled with rotation of the polymer fibers during film draining. These measurements were complemented with conventional “bulk” fluorescence polarization experiments, and compared with mixed film structures described previously for these systems at the air-water interface using Brewster angle microscopy.

  3. Polarized fluorescence microscopy analysis of patterned, polymerized perfluorotetradecanoic acid-pentacosadiynoic acid thin films.

    PubMed

    Araghi, Hessamaddin Younesi; Giri, Neeraj K; Paige, Matthew F

    2014-08-14

    Photoillumination of mixed films comprised of the photopolymerizable fatty acid 10,12 pentacosadiynoic acid and perfluorotetradecanoic acid deposited onto glass substrates gives rise to the formation of oriented polydiacetylene photopolymer fibers. The degree of polymer fiber orientation was investigated using dual-view, polarized fluorescence microscopy of the polydiacetylene, which allowed for characterization of individual fluorescent polymer fibers after photopolymerization, as well as comparison of the orientation of different fibers within the same sample. Measurements indicated that individual fibers consisted of multiple photopolymer strands with various orientations, and that there was a preferred orientation for fibers in the film as a whole. The fibers were preferentially oriented at an angle of approximately 60° to the direction of film compression during deposition from a Langmuir trough, with orientation being the result of mechanical stress exerted by the compression barriers coupled with rotation of the polymer fibers during film draining. These measurements were complemented with conventional "bulk" fluorescence polarization experiments, and compared with mixed film structures described previously for these systems at the air-water interface using Brewster angle microscopy. PMID:24747858

  4. Langmuir-Blodgett films of conjugated polymers and their applications on optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Tseng, Chin-Jen

    1998-11-01

    Langmuir-Blodgett technique has been well known to produce ultra-thin films with controlled thickness and preferred orientation. In this research, this technique was used to produce conjugated polymer films and apply these films on optoelectronic devices such as the alignment layers for twisted nematic liquid crystal displays (TNLCDs) and the luminescent materials for light emitting diodes (LEDs). In the twisted nematic liquid crystal displays, oriented Langmuir-Blodgett films behave as alignment layers and provide required pretilt orientation. Poly(para- phenylene) (PPP) ultra thin films prepared by Langmuir- Blodgett technique were applied as homogeneous alignment layers. 10,12-nonacosadiynoic acid (16-8 DA) Langmuir- Blodgett films were applied as homeotropic alignment layers. In the light emitting diode, oriented PPP LB films perform as charge transfer complexes and emit polarized light without external polarizer. A precursor method was developed for the preparation of these PPP LB films. A salt (briefed as PDCP-NIII) formed with poly(2,5-dicarboxyl-1,4-phenelene) (PDCP) and o,o',o' - Trihexadecanoyltriethanolamine (NIII) was used as the precursor materials and transformed into PPP LB films via pyrolysis. Pretilt angle of 0.2o was measured via crystal rotation method on the antiparallel liquid crystal cells with PPP LB films as the homogeneous alignment layers. 10,12-nonacosadiynoic acid was synthesized via Cadiot- chodkiewicz reaction developed by Steven Walsh. Lithium salts of 16-8DA LB films were polymerized by UV lamp and used to behave as homeotropic alignment layers. Thermodynamic properties of these Langmuir films at the air-water interface such as isotherms and creep test were studied. Surface morphology was studied with Brewster Angle Microscopy (BAM) and surface rheology was studied with the Surface Light Scattering Spectroscopy (SLSS). These LB films were characterized by UV-Visible Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR

  5. Electrodeposited Fe-Co films prepared from a citric-acid-based plating bath

    NASA Astrophysics Data System (ADS)

    Yanai, T.; Uto, H.; Shimokawa, T.; Nakano, M.; Fukunaga, H.; Suzuki, K.

    2013-06-01

    Electrodeposited Fe-Co films are commonly prepared in a boric-acid-based bath. In this research, we applied citric acid instead of boric acid for the plating of Fe-Co films because boron in the waste bath is restricted by environmental-protection regulations in Japan. We evaluated the effect of citric acid on the magnetic and structural properties of the films. The saturation magnetization of the Fe-Co films slightly increased while the Fe content in the Fe-Co films decreased with increasing citric acid concentration. The lowest coercivity value of 240 A/m was obtained at a citric acid concentration of 100 g/L. The plating bath with this citric acid concentration enabled us to obtain Fe-Co films with high saturation magnetizations and smooth surface morphologies.

  6. Development of pectin films with pomegranate juice and citric acid.

    PubMed

    Azeredo, Henriette M C; Morrugares-Carmona, Rosario; Wellner, Nikolaus; Cross, Kathryn; Bajka, Balazs; Waldron, Keith W

    2016-05-01

    The influence of pomegranate juice (PJ, replacing water as solvent) and citric acid (CA) on properties of pectin films was studied. PJ provided the films with a bright red color, and acted as a plasticizer. Increasing PJ/water ratio from 0/100 to 100/0 resulted in enhanced elongation (from 2% to 20%), decreased strength (from 10 to <2 MPa) and modulus (from 93 to <10 MPa), increased water vapor permeability (WVP, from 3 to 9 g.mm.kPa(-1).h(-1).m(-2)), and decreased insoluble matter (IM, from 35% to 24%). Although a crosslinking effect by CA was not confirmed, it has been suggested to occur from its effects on films. CA noticeably increased IM (from <10% to almost 40%); moreover, when measured on a dry film basis, the CA effects presented a noticeable tendency to increases strength and modulus, and to decrease WVP. The red color density was decreased by CA, suggesting a destabilization of anthocyanins. PMID:26769510

  7. Bioinspired lubricating films of cellulose nanofibrils and hyaluronic acid.

    PubMed

    Valle-Delgado, Juan José; Johansson, Leena-Sisko; Österberg, Monika

    2016-02-01

    The development of materials that combine the excellent mechanical strength of cellulose nanofibrils (CNF) with the lubricating properties of hyaluronic acid (HA) is a new, promising approach to cartilage implants not explored so far. A simple, solvent-free method to produce a very lubricating, strong cellulosic material by covalently attaching HA to the surface of CNF films is described in this work. A detailed analysis of the tribological properties of the CNF films with and without HA is also presented. Surface and friction forces at micro/nanoscale between model hard surfaces (glass microspheres) and the CNF thin films were measured using an atomic force microscope and the colloid probe technique. The effect of HA attachment, the pH and the ionic strength of the aqueous medium on the forces was examined. Excellent lubrication was observed for CNF films with HA attached in conditions where the HA layer was highly hydrated. These results pave the way for the development of new nanocellulose-based materials with good lubrication properties that could be used in biomedical applications. PMID:26674836

  8. Electrophoretic deposition of tannic acid-polypyrrolidone films and composites.

    PubMed

    Luo, Dan; Zhang, Tianshi; Zhitomirsky, Igor

    2016-05-01

    Thin films of polyvinylpyrrolidone (PVP)-tannic acid (TA) complexes were prepared by a conceptually new strategy, based on electrophoretic deposition (EPD). Proof of concept investigations involved the analysis of the deposition yield, FTIR and UV-vis spectroscopy of the deposited material, and electron microscopy studies. The analysis of the deposition mechanism indicated that the limitations of the EPD in the deposition of small phenolic molecules, such as TA, and electrically neutral polymers, similar to PVP, containing hydrogen-accepting carbonyl groups, can be avoided. The remarkable adsorption properties of TA and film forming properties of the PVP-TA complexes allowed for the EPD of materials of different types, such as huntite mineral platelets and hydrotalcite clay particles, TiO2 and MnO2 oxide nanoparticles, multiwalled carbon nanotubes, TiN and Pd nanoparticles. Moreover, PVP-TA complexes were used for the co-deposition of different materials and formation of composite films. In another approach, TA was used as a capping agent for the hydrothermal synthesis of ZnO nanorods, which were then deposited by EPD using PVP-TA complexes. The fundamental adsorption and interaction mechanisms of TA involved chelation of metal atoms on particle surfaces with galloyl groups, π-π interactions and hydrogen bonding. The films prepared by EPD can be used for various applications, utilizing functional properties of TA, PVP, inorganic and organic materials of different types and their composites. PMID:26878711

  9. Robust and tailored wet adhesion in biopolymer thin films.

    PubMed

    Pettersson, Torbjörn; Pendergraph, Samuel A; Utsel, Simon; Marais, Andrew; Gustafsson, Emil; Wågberg, Lars

    2014-12-01

    Model layer-by-layer (LbL) assemblies of poly(allylamine hydrochloride) (PAH) and hyaluronic acid (HA) were fabricated in order to study their wet adhesive behavior. The film characteristics were investigated to understand the inherent structures during the assembly process. Subsequently, the adhesion of these systems was evaluated to understand the correlation between the structure of the film and the energy required to separate these LbL assemblies. We describe how the conditions of the LbL fabrication can be utilized to control the adhesion between films. The characteristics of the film formation are examined in the absence and presence of salt during the film formation. The dependence on contact time and LbL film thickness on the critical pull-off force and work of adhesion are discussed. Specifically, by introducing sodium chloride (NaCl) in the assembly process, the pull-off forces can be increased by a factor of 10 and the work of adhesion by 2 orders of magnitude. Adjusting both the contact time and the film thickness enables control of the adhesive properties within these limits. Based on these results, we discuss how the fabrication procedure can create tailored adhesive interfaces with properties surpassing analogous systems found in nature. PMID:25333327

  10. Protection of NdFeB magnets by corrosion resistance phytic acid conversion film

    NASA Astrophysics Data System (ADS)

    Nan, Haiyang; Zhu, Liqun; Liu, Huicong; Li, Weiping

    2015-11-01

    Phytic acid conversion film was prepared on NdFeB magnets by dipping the NdFeB into phytic acid solution. The morphology, composition, structure and corrosion resistance of the film were systematically investigated. The results showed that the phytic acid film was effective in improving the corrosion resistance of NdFeB magnets. XRD, TEM and FT-IR analyses revealed that the film was amorphous and had a strong peak of phosphate radical (PO43-). The formation mechanism of the film was also explored by XPS and the potential of zero charge (Epzc) measurement at the solution-metal interface.

  11. Synthesis and characterization of acidic mesoporous borosilicate thin films.

    PubMed

    Xiu, Tongping; Liu, Qian; Wang, Jiacheng

    2009-02-01

    Work on the synthesis and characterization of acidic wormhole-like ordered mesoporous borosilicate thin films (MBSTFs) on silicon wafers is described in this paper. The MBSTFs coated by the dip-coating method were prepared through an evaporation-induced self-assembly (EISA) process using nonionic block copolymers as structure-directing agents. Fourier transform infrared (FT-IR) spectroscopy confirmed the formation of borosiloxane bonds (Si-O-B). High-resolution transmission electron microscopy (HRTEM) and N2 sorption evidenced a wormhole-like mesoporous structure in the MBSTFs obtained. Scanning electron microscopy (SEM) images of the cross sections and surfaces of the samples showed that MBSTFs on silicon wafers were continuous, homogeneous and did not crack. The acidic properties of the MBSTFs were characterized by FT-IR spectra of chemisorbed pyridine. The MBSTFs thus prepared may find their future applications in many fields including chemical sensors, catalysis, optical coating, molecule separation, etc. PMID:19441565

  12. Preparation of Lead Titanate Thin Films Using Langmuir-Blodgett Method

    NASA Astrophysics Data System (ADS)

    Sugai, Hiroshi; Hoshi, Nobuo; Iijima, Takashi; Masumoto, Hiroshi

    1998-09-01

    The Langmuir-Blodgett (LB) method is investigated as a process in thefabrication of ferroelectric thin films such as lead titanate. LB film was fabricated bydepositing a monolayer prepared by stearic acid (C17H35COOH), lead chlorides (PbCl2)and titanium bis(ammonium lactato)([CH3CH(O )CO2NH4]2Ti(OH)2). As a conversionprocess from the LB film containing lead and titanium to an inorganic film, ultraviolet/ozone (UVO) treatment was found to be extremely applicable at a rate of about 4 min per monolayer. Subsequent rapid thermal annealing (RTA) resulted in a dense oxidethin film. The thickness of an oxide thin film converted from the LB film consisting of301 layers was approximately 30 nm. Hence, it is considered that approximately 0.1 nmof the oxide layer is equivalent to the thickness of the film deposited by each cycle.From an X-ray diffraction pattern of the oxide specimen, a well-defined perovskitepeak structure was observed. These results demonstrate the potential application of LBdeposition for the preparation of an inorganic oxide film such as lead titanate.

  13. Packaging performance of organic acid incorporated chitosan films on dried anchovy (Stolephorus indicus).

    PubMed

    Vimaladevi, S; Panda, Satyen Kumar; Xavier, K A Martin; Bindu, J

    2015-01-01

    Antimicrobial chitosan films were prepared with acetic acid and propionic acid with glycerol as plasticizer and its efficiency was compared with polyester-polyethylene laminate (PEST/LDPE). The tensile strength of acetic acid/chitosan (ACS) films were higher than propionic acid/chitosan (PCS) films. The elongation percentage (6.43-11.3) and water vapour permeability (0.015-0.03 g/m(2)/day) were significantly lower (p<0.05) for chitosan films when compared to control. Oxygen transmission rate (OTR) of control and propionic acid/chitosan (PCS) films were significantly higher (p<0.05) than acetic acid/chitosan (ACS) films. Dried anchovy (Stolephorus indicus) wrapped in these films were stored at ambient temperature for three months. Quality indices like peroxide value (PV), thiobarbituric acid value (TBA) and microbiological parameters such as aerobic plate count (APC) and total fungal count (TFC) were periodically determined. In terms of microbial and chemical indices, anchovies wrapped in ACS and PCS films were superior to those wrapped with PEST/LDPE films during storage. Study revealed the suitability of chitosan film as wraps for increasing storage stability of dried fish. PMID:25965473

  14. Fabrication Of Nano-Silver Thin Films Using Self Assembly And Its Interaction With Proteins

    SciTech Connect

    Verma, Gunjan; Choudhury, Sipra; Hassan, P. A.

    2010-12-01

    The silver nanoparticle thin films were prepared with an aim to use them for sensing of biomolecules. The monolayers of arachidic acid were deposited on glass plates by Langmuir Blodgett (LB) technique and silver nanoparticles thin films were deposited within the arachidic acid films. Small angle XRD studies confirm the formation of ordered array of nanoparticles. These thin films were treated with a model protein, bovine serum albumin (BSA a natural protein). From the optical absorption spectra a shift in the intensity as well as lambda max ({lambda}max) could be observed when silver thin films were treated with BSA.

  15. Structure and friction of stearic acid and oleic acid films adsorbed on iron oxide surfaces in squalane.

    PubMed

    Doig, Michael; Warrens, Chris P; Camp, Philip J

    2014-01-14

    The structure and friction of fatty acid surfactant films adsorbed on iron oxide surfaces lubricated by squalane are examined using large-scale molecular dynamics simulations. The structures of stearic acid and oleic acid films under static and shear conditions, and at various surface coverages, are described in detail, and the effects of unsaturation in the tail group are highlighted. At high surface coverage, the measured properties of stearic acid and oleic acid films are seen to be very similar. At low and intermediate surface coverages, the presence of a double bond, as in oleic acid, is seen to give rise to less penetration of lubricant in to the surfactant film and less layering of the lubricant near to the film. The kinetic friction coefficient is measured as a function of shear rate within the hydrodynamic (high shear rate) lubrication regime. Lubricant penetration and layering are observed to be correlated with friction coefficient. The friction coefficient with oleic acid depends only weakly on surface coverage, while stearic acid admits more lubricant penetration, and its friction coefficient increases significantly with decreasing surface coverage. Connections between film structure and friction are discussed. PMID:24364665

  16. The Effects of plasticizers and palmitic acid toward the properties of the carrageenan Film

    NASA Astrophysics Data System (ADS)

    Heru Wibowo, Atmanto; Listiyawati, Oktaviana; Purnawan, Candra

    2016-02-01

    Varied plasticizers and palmitic acid additive have been added in the carrageenan film. The film was made by mixing of the carrageenan and plasticizers (glycerol, polyethylene glycol, polyvinyl alcohol) with composition of 92:3, 90:6, 87:9, 84:12, 81:15(%w/w) and in the presence of palmitic acid as additive with 1%, 2%, 3%, 4%, 5% of total weight. Casting method was used for the film molding and drying at 60oC with the oven for 12 hours. To investigate the effects of plasticizers and additive, some mechanical tests on film were performed. The test result concludes that plasticizers in the film decreased the tensile strength and increased the elongation break of the carrageenan film. The additive of palmitic acid decreased the tensile strength of the carrageenan film and also decreased the-the water absorbance of the film. The highest tensile strength of films made was with the formulation of carrageenan: PEG with composition of 92:3 (% w/w). The highest elongation break of the film was for carrageenan:PVA with the composition of 81: 15 (%w/w) and carrageenan:palmitic acid:PEG with the composition of 92: 3: 1 (%w/w). The lowest water absorption of the film was achieved for carrageenan:PVA:palmitic acid with the composition of 87: 3: 5 (%w/w).

  17. Antimicrobial activity of nisin incorporated in pectin and polylactic acid composite films against Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extruded composite films from 20% pectin and 80% polylactic acids (PLA) were developed and nisin was loaded into films by a diffusion post extrusion. Inhibitory activities of the films against Listeria monocytogenes were evaluated in brain heart infusion (BHI) broth, liquid egg white and orange juic...

  18. Facile method to prepare silk fibroin/hyaluronic acid films for vascular endothelial growth factor release.

    PubMed

    Zhou, Juan; Zhang, Bin; Liu, Xunwei; Shi, Lijun; Zhu, Jun; Wei, Daixu; Zhong, Jian; Sun, Gang; He, Dannong

    2016-06-01

    A facile approach was proposed to prepare silk fibroin (SF) and hyaluronic acid (HA) composite films from aqueous solution without crosslinking or any post treatment. Only by controlling the HA content and film formation temperature during the film casting, the HA/SF films with different composition were prepared. The films were then characterized by structural characteristics, thermal stability, morphology, water stability, water absorption, mechanical properties. After immersing in water for 24h, all of the films showed good structural integrity. The degradation rate of the HA/SF films in protease XIV can be controlled by changing the film formation temperature and HA content. Decreasing the temperature and adding HA resulted in the rapid release of VEGF (vascular endothelial growth factor) from the HA/SF films. Overall, the 5% HA/SF films formed at 37°C with more rapid VEGF release exhibited great potential in drug delivery, especially when the rapid vascularization was needed. PMID:27083373

  19. Electrochromism of phosphotungstic acid incorporated in titanium alkoxide xerogel films

    SciTech Connect

    Stangar, U.L.; Orel, B.; Hutchins, M.G.

    1994-12-31

    Electrochromic-ion conductive gels ({sigma} = 1.7 {times} 10{sup {minus}4} S/cm) and thin solid films composed of phosphotungstic acid (PWA) incorporated in titanium oxide xerogel (PWA/Ti = 0.07) were made via the as studied sol-gel route by the dip-coating technique. The electrochromism of the as - deposited film was studied with the help of cyclic voltammetric (CV) measurements in HClO{sub 4} electrolyte, in-situ UV-VIS spectroelectrochemical measurements and ex-situ Near-Grazing Incidence Angle (NGIA) reflection spectroscopy. It was demonstrated that the color change from transparent to blue in the electrolytic cell is about 40 % and is accompanied with effective inserted charges up to 35 mC/cm{sup 2}, giving rise to H{sub x}PW{sub 12}{sup y+}O{sub 40}{sup 3{minus}} species with x = 4.7 and y = 5.6. Ex-situ NGIA FT-IR reflection measurements revealed that proton injection decreases the intensity of the longitudinal optical (LO) modes corresponding to the intra {nu}W-O{sub c}-W and inter {nu}W-O{sub b}-W vibrations of the Keggin`s ions while the {nu}W-O{sub d} modes remain unaffected. An intensity decrease of the LO modes of Ti-O vibrations was also detected in the ex-situ NGIA reflection spectra of cathodically colored pure Ti-xerogel films. It was found that the proton insertion process is accompanied by the hydroxylation of titanate ions, while no such an effect was noted for PWA/Ti and Ti xerogel films aged in water and the corresponding electrolytes without the applied potential. Electrochromic-ionic conductive properties of mixed PWA/Ti gels were demonstrated in a semi-liquid electrochromic cell (EC) with reflectance modulation and electrochromism of PWA/Ti solid films was shown by the in-situ UV-VIS transmittance measurements of an all-solid state device with PWA/Ti/H{sub 3}PO{sub 4} doped polyvinyl alcohol (PVA)/Sb:SnO{sub 2} configuration.

  20. Electrochromism of phosphotungstic acid incorporated in titanium alkoxide xerogel films

    NASA Astrophysics Data System (ADS)

    Stangar, U. L.; Orel, Boris; Hutchins, Michael G.

    1994-09-01

    Electrochromic-ion conductive gels ((sigma) equals 1.7 X 10-4 S/cm) and thin solid films composed of phosphotungstic acid (PWA) incorporated in titanium oxide xerogel (PWA/Ti equals 0.07) were made via the sol-gel route by the dip-coating technique. The electrochromism of the as - deposited film was studied with the help of cyclic voltammetric (CV) measurements in HClO4 electrolyte, in-situ UV-VIS spectroelectrochemical measurements and ex-situ Near-Grazing Incidence Angle (NGIA) reflection spectroscopy. It was demonstrated that the color change from transparent to blue in the electrolytic cell is about 40% and is accompanied with effective inserted charges up to 35 mC/cm2, giving rise to HxPW12y+O403- species with x equals 4.7 and y equals 5.6. Ex-situ NGIA FT-IR reflection measurements revealed that proton injection decreases the intensity of the longitudinal optical (LO) modes corresponding to the intra vW-Oc-W and inter vW-Ob-W vibrations of the Keggin's ions while the vW-Od modes remain unaffected. An intensity decrease of the LO modes of Ti-O vibrations was also detected in the ex-situ NGIA reflection spectra of cathodically colored pure Ti-xerogel films. It was found that the proton insertion process is accompanied by the hydroxylation of titanate ions, while no such an effect was noted for PWA/Ti and Ti xerogel films aged in water and the corresponding electrolytes without the applied potential. Electrochromic-ionic conductive properties of mixed PSA/Ti gels were demonstrated in a semi-liquid electrochromic cell (EC) with reflectance modulation and electrochromism of PWA/Ti solid films was shown by the in- situ UV-VIS transmittance measurements of an all-solid state device with PWA/Ti / H3PO4 doped polyvinyl alcohol (PVA) / Sb:SnO2 configuration.

  1. A multivariant study of the absorption properties of poly(glutaric-acid-glycerol) films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The solvent absorption into the matrix of poly(glutaric acid-glycerol) films made with or without either iminodiacetic acid, sugarcane bagasse, pectin, corn fiber gum or microcrystalline cellulose have been evaluated. The films were incubated in various solvent systems for 24h. The amounts of solve...

  2. Effects of swelling on the viscoelastic properties of polyester films made from glycerol and glutaric acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Viscoelastic properties have been determined for poly(glycerol-co-glutaric acid) films synthesized from Lewis acid-catalyzed polyesterifications. The polymers were prepared by synthesizing polymer gels that were subsequently cured at 125 degrees C to form polymer films. The polymers were evaluated ...

  3. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films.

    PubMed

    Biduski, Bárbara; Silva, Francine Tavares da; Silva, Wyller Max da; Halal, Shanise Lisie de Mello El; Pinto, Vania Zanella; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    The objective of this study was to evaluate the effects of acid and oxidation modifications on sorghum starch, as well as the effect of dual modification of starch on the physical, morphological, mechanical, and barrier properties of biodegradable films. The acid modification was performed with 3% lactic acid and the oxidation was performed with 1.5% active chlorine. For dual modification, the acid modification was performed first, followed by oxidation under the same conditions as above. Both films of the oxidized starches, single and dual, had increased stiffness, providing a higher tensile strength and lower elongation when compared to films based on native and single acid modified starches. However, the dual modification increased the water vapor permeability of the films without changing their solubility. The increase in sorghum starch concentration in the filmogenic solution increased the thickness, water vapor permeability, and elongation of the films. PMID:27507447

  4. Anti-fogging and anti-frosting behaviors of layer-by-layer assembled cellulose derivative thin film

    NASA Astrophysics Data System (ADS)

    Shibraen, Mahmoud H. M. A.; Yagoub, Hajo; Zhang, Xuejian; Xu, Jian; Yang, Shuguang

    2016-05-01

    Two cellulose derivatives, quaternized cellulose (QC) and carboxymethyl cellulose (CMC), were layer-by-layer (LbL) assembled to prepare a thin film. QC was also LbL assembled with two synthetic polyelectrolytes, poly(acrylic acid) (PAA) and poly(styrene sulfonate) (PSS), separately. The anti-fogging and anti-frosting properties of the assembled films were studied. QC/CMC thin film exhibits anti-fogging and anti-frosting behaviors, whereas QC/PAA and QC/PSS films do not have capacity for anti-fogging and anti-frosting. The anti-fogging and anti-frosting properties of QC/CMC film are attributed to that water molecules can be quickly adsorbed into the matrix of the film. The water adsorption of QC/CMC film was illustrated by the optical thickness increment.

  5. Effects of heat treatment on chitosan nanocomposite film reinforced with nanocrystalline cellulose and tannic acid.

    PubMed

    Rubentheren, V; Ward, Thomas A; Chee, Ching Yern; Nair, Praveena; Salami, Erfan; Fearday, Christopher

    2016-04-20

    This article presents an analysis of the influence of heat treatment on chitosan nanocomposite film. A series of samples comprising: pure chitosan film, chitosan film embedded with nanocrystalline cellulose (NCC), chitosan film crosslinked with tannic acid and chitosan film with a blend of NCC and tannic acid were heat treated using a convection oven. Fourier-transform-infrared spectroscopy (FTIR) and X-ray diffraction test (XRD) shows the changes in chemical interaction of the heat treated films. The heat treated films show significant improvements in moisture absorption. Tensile strength and Young's Modulus were increased up to 7MPa and 259MPa, respectively when the samples were subjected to heat treatment. For the NCC particles, a transmission electron microscope (TEM) was used to inspect the structural properties of cellulose particle in suspension form. PMID:26876845

  6. Langmuir-Blodgett Films of the Metal-Organic Framework MIL-101(Cr): Preparation, Characterization, and CO2 Adsorption Study Using a QCM-Based Setup.

    PubMed

    Benito, Javier; Sorribas, Sara; Lucas, Irene; Coronas, Joaquin; Gascon, Ignacio

    2016-06-29

    This work reports the fabrication and characterization of Langmuir-Blodgett films of nanoparticles (size 51 ± 10 nm) of the metal organic framework MIL-101(Cr). LB film characterization by SEM, UV-vis, GIXRD, and QCM has shown that the addition of 1 wt % of behenic acid to MOF dispersion allows obtaining dense monolayers at the air-water interface that can be deposited onto solid substrates of different nature with transfer ratios close to 1. Moreover, a QCM-based setup has been built and used for the first time to measure CO2 adsorption isotherms at 303 K on MOF LB films, proving that LB films with MOF masses between 1.2 (1 layer) and 2.3 (2 layers) μg can be used to obtain accurate adsorption values at 100 kPa, similar to those obtained by conventional adsorption methods that require much larger MOF quantities (tens of milligrams). PMID:27268426

  7. Effects of free fatty acids on meibomian lipid films.

    PubMed

    Arciniega, Juan C; Nadji, Erfan J; Butovich, Igor A

    2011-10-01

    The purpose of this study was to evaluate the impact of free fatty acids (FFA), namely oleic (OA) and linoleic (LA) ones, on meibomian lipid films (MLF) using a Langmuir trough (LT) and a Brewster angle microscope (BAM). Human meibum was collected from healthy volunteers. A Tris-buffered saline (TBS, pH 7.4) was used as the control aqueous subphase for LT experiments. Then, varying amounts of OA and LA were dissolved in TBS to make FFA-containing subphases. Predetermined amounts of meibum were loaded onto the surface of the (TBS/±FFA) subphases to form MLF. Then, surface pressure-area (π/A) isotherms of MLF were recorded. Standard rheological parameters such as rigidity, elasticity, and hysteresis, were computed. In a separate experiment, OA and LA were pre-mixed with meibum at different weight ratios prior their spreading onto the control TBS subphase, and the (π/A) isotherms of the resulting mixed films of meibum and FFA were studied and analyzed in the same fashion as described above. When studied at the normal corneal temperature of 34 °C with the (TBS/-FFA) subphase, meibum formed stable films. When (TBS/+FFA) subphase was used, both FFA quickly disrupted the MLF, acting in a similar fashion. BAM revealed that the most dramatic changes in the structure of MLF occurred in the range of OA concentrations between 5 and 15 μM. However, this effect was apparent even with 2.5 μM OA. When OA was pre-mixed with meibum, but was absent from the subphase, it caused gradual concentration-dependent changes in the (π/A) isotherms, but the MLF did not disappear from the surface. Thus, tested FFA showed a remarkable ability to disrupt, and/or prevent the formation of, human MLF, which could contribute to the onset of those forms of dry eye disease that are associated with enhanced activity of lipolytic enzymes, such as chronic blepharitis. PMID:21718696

  8. Model for a surface film of fatty acids on rain water and aerosol particles

    NASA Astrophysics Data System (ADS)

    Seidl, Winfried

    Organic compounds with polar groups can form films on the water surface which lower the surface tension and may hinder the transport of water vapor and trace gases through the interface. A model is presented which describes in detail surface films formed by fatty acids. The model has been applied to measured concentrations of fatty acids on rain water and atmospheric aerosol particles. In most cases only a diluted film has been calculated which does not affect their physical and chemical properties. The exception was a clean region in the western USA, where the fatty acid concentrations are sufficiently high to form a dense film on atmospheric aerosol particles. An algorithm for the identification of the sources of fatty acids was developed. It showed leaf abrasion or biomass burning as a major source of fatty acids in the western USA.

  9. Monolayers and Langmuir-Blodgett films of luminescent 1,3,5-triazine derivatives containing naphthalene or anthracene chromophores

    NASA Astrophysics Data System (ADS)

    Cai, Ya-Qi; Wu, Wei; Wang, Hua; Miyake, Jun; Qian, Dong-Jin

    2011-02-01

    Monolayer behaviors and Langmuir-Blodgett (LB) films of three luminescent aryl triazines, 2,4,6-tri(naphthalen-1-yl)-1,3,5-triazine (TN 1Ta), 2,4,6-tri(naphthalen-2-yl)-1,3,5-triazine (TN 2Ta), and 2,4,6-tri(anthracen-9-yl)-1,3,5-triazine (TATa) have been investigated. Surface pressure-area isotherms indicated that pure aryl triazines were difficult to form stable monolayers, while their mixtures with arachidic acid (AA) could be stabilized at the air-water interface. The mixed LB films of triazine-AA were deposited on substrate surfaces and analyzed by using UV-vis and infrared absorption spectra, X-ray photoelectron spectra, as well as scanning electron microscopy. Morphologies of the LB films and molecular aggregates were closely dependent on the structure of triazines and the surface pressures of deposition. Under UV radiation, TN 1Ta and TN 2Ta emitted at 410-460 nm while TATa emitted at 500-510 nm, with the emission lifetime falling into the range of 0.29 to 10.8 ns. Compared with those in solutions, the emissions of aryl triazines were red shifted in the LB films, especially for the TN 1Ta-AA and TN 2Ta-AA, which was attributed to the closely packed arrangement for the molecules in the LB films.

  10. 70 Years of Built-Up Films: Katharine Blodgett's Scientific Legacy

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel

    2004-03-01

    While working at the General Electric Research Laboratories in 1934, Katharine Blodgett published a brief account (in JACS) of her success at transferring layers of fatty acids from the water surface to a glass plate layer-by-layer; creating what was arguably the first rationally-designed nanostructured material. These structures would come bear her name along with that of her mentor, Irving Langmuir. Although various commercial applications have been proposed, ranging from anti-reflection coatings to soft X-ray monochromators, Langmuir-Blodgett (LB) films have never truly found their way into the marketplace in a significant way. Nevertheless, the scientific interest in LB films remains strong after 70 years because the technique offers a controlled method for building supermolecular assemblies with well-defined molecular arrangement and orientation. LB films have proven extremely useful as a research tool in order to explore fundamental interactions of amphiphilic molecules, chemical reactions in confined geometries, and to create model systems to calibrate and challenge new experimental techniques. From a statistical physics standpoint, LB films offer the possibility of studying the evolution of structure and phase transitions as a molecular system evolves from two to three dimensions. LB methods are also frequently used to create model biological membranes of known composition as well as molecular (or nanoparticle) layers for studies of potential nanoscale optoelectronic devices.

  11. Layer-by-layer assembly of two temperature-responsive homopolymers at neutral pH and the temperature-dependent solubility of the multilayer film.

    PubMed

    Zhao, Zan; Yin, Liang; Yuan, Gang; Wang, Liyan

    2012-02-01

    We fabricated a layer-by-layer (LbL) film of temperature-responsive homopolymers at neutral pH and studied its temperature-dependent solubility. We first measured the cloud point of mixed solutions of temperature-responsive polymers. The significant decrease of cloud point suggested that the intermolecular interaction between two polymer chains of different kinds was stronger than that between two polymer chains of the same kind. Strong intermolecular interaction between two polymer chains of different kinds is a prerequisite for LbL assembly. On the basis of the decrease of cloud point of mixed solutions of temperature-responsive homopolymers, we selected poly(N-vinylcaprolactam) (PVCL) and poly(2-hydroxypropyl acrylate) (PHPA) for LbL assembly. LbL films of the two polymers were fabricated at neutral pH at a constant temperature. When the film was immersed in purified water at a temperature lower than the assembly temperature, it can be partially dissolved with a diffusion-limited dissolution process. The temperature-responsive solubility of the LbL film is closely connected to the phase behavior of mixed solutions of the two polymers. Additionally, as compared to multilayer films of neutral polymers and poly(carboxylic acid)s, the PVCL/PHPA multilayer film is relatively stable when it was immersed in buffer solutions near physiological pH at the assembly temperature. Such LbL films with temperature-responsive solubility might be used as a dissolvable film or a smart capsule. PMID:22204705

  12. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    NASA Astrophysics Data System (ADS)

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-12-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods.

  13. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    PubMed Central

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-01-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods. PMID:26640089

  14. Single-molecule studies of acidity distributions in mesoporous aluminosilicate thin films.

    PubMed

    Sun, Xiaojiao; Xie, Jingyi; Xu, Jiayi; Higgins, Daniel A; Hohn, Keith L

    2015-05-26

    Solid acid catalysts are important for many petrochemical processes. The ensemble methods most often employed to characterize acid site properties in catalyst materials provide limited insights into their heterogeneity. Single-molecule (SM) fluorescence spectroscopic methods provide a valuable route to probing the properties of individual microenvironments. In this work, dual-color SM methods are adopted to study acidity distributions in mesoporous aluminosilicate (Al-Si) films prepared by the sol-gel method. The highly fluorescent pH-sensitive dye C-SNARF-1 was employed as a probe. The ratio of C-SNARF-1 emission in two bands centered at 580 and 640 nm provides an effective means to sense the pH of bulk solutions. In mesoporous thin films, SM emission data provide a measure of the effective pH of the microenvironment in which each molecule resides. SM emission data were obtained from mesoporous Al-Si films as a function of Al2O3 content for films ranging from 0% to 30% alumina. Histograms of the emission ratio reveal a broad distribution of acidity properties, with the film microenvironments becoming more acidic, on average, as the alumina content of the films increases. This work provides new insights into the distribution of Brønsted acidity in solid acids that cannot be obtained by conventional means. PMID:25941900

  15. Antagonistic activity against Helicobacter infection in vitro and in vivo by the human Lactobacillus acidophilus strain LB.

    PubMed

    Coconnier, M H; Lievin, V; Hemery, E; Servin, A L

    1998-11-01

    The purpose of the present study was to examine the activity of the human Lactobacillus acidophilus strain LB, which secretes an antibacterial substance(s) against Helicobacter pylori in vitro and in vivo. The spent culture supernatant (SCS) of the strain LB (LB-SCS) dramatically decreased the viability of H. pylori in vitro independent of pH and lactic acid levels. Adhesion of H. pylori to the cultured human mucosecreting HT29-MTX cells decreased in parallel with the viability of H. pylori. In conventional mice, oral treatment with the LB-SCS protected against infection with Helicobacter felis. Indeed, at both 8 and 49 days post-LB-SCS treatment (29 and 70 days postinfection), inhibition of stomach colonization by H. felis was observed, and no evidence of gastric histopathological lesions was found. LB-SCS treatment inhibits the H. pylori urease activity in vitro and in H. pylori that remained associated with the cultured human mucosecreting HT29-MTX cells. Moreover, a decrease in urease activity was detected in the stomach of the mice infected with H. felis and treated with LB-SCS. PMID:9797324

  16. Preparation of poly(lactic acid) and pectin composite films intended for application in antimicrobial packaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Composite films of pectin and poly(lactic acid) (PLA) were compounded by extrusion. A model antimicrobial polypeptide, nisin, was loaded into the film by diffusion. The incorporation of pectin into PLA resulted in a heterogeneous biphasic structure as revealed by scanning electronic microscopy, co...

  17. Chemical modification of chitosan film via surface grafting of citric acid molecular to promote the biomineralization

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Shen, Xin; Zhou, Huan; Wang, Yingjun; Deng, Linhong

    2016-05-01

    We develop a novel chitosan-citric acid film (abbreviated as CS-CA) suitable for biomedical applications in this study. In this CS-CA film, the citric acid, which is a harmless organic acid has been extensively investigated as a modifying agent on carbohydrate polymers, was cross-linked by 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) onto the surface of chitosan (CS) film. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirms the graft copolymerization of the modified chitosan film (CS-CA). Surface wettability, moisturizing performance, the capacity of mineralization in vitro and biocompatibility of the films were characterized. After modification, this CS-CA film has good hydrophilicity. It is very evident that the citric acid grafting treatment significantly promotes the biomineralization of the chitosan based substrates. Cell experiments show that the MC3T3-E1 osteoblasts can adhere and proliferate well on the surface of CS-CA film. This CS-CA film, which can be prepared in large quantities and at low cost, should have potential application in bone tissue engineering.

  18. Dynamics of the layer-by-layer assembly of a poly(acrylic acid)-lanthanide complex colloid and poly(diallyldimethyl ammonium).

    PubMed

    Xu, Jiali; Wang, Zhiliang; Wen, Lingang; Zhou, Xianju; Xu, Jian; Yang, Shuguang

    2016-01-21

    Poly(acrylic acid) (PAA) and lanthanide (Ln) ions, such as Ce(3+), Eu(3+), and Tb(3+), were prepared as dispersed complex colloidal particles through three different protocols with rigorous control of the pH value and mixing ratio. The negatively charged PAA-Ln complex particles were layer-by-layer (LbL) assembled with positively charged poly(diallyldimethyl ammonium) (PDDA) to prepare a thin film. The film thickness growth is much quicker than PDDA/PAA film. Due to the incorporation of Ln(3+) ions, the film exhibits fluorescence. During LbL assembly, PDDA-PAA association based on electrostatic force and PAA-Ce association based on coordination are in competition, which leads to the LbL assembly of PDDA and PAA-Ln complex colloidal particles being a complicated dynamic process. PMID:26549538

  19. Electrical resistance response of polyaniline films to water, ethanol, and nitric acid solution

    NASA Astrophysics Data System (ADS)

    Yin, Hong-Xing; Li, Meng-Meng; Yang, H.; Long, Yun-Ze; Sun, Xin

    2010-08-01

    This paper reports on electrical resistance vs. aging time for the response of polyaniline films under exposure to water, ethanol and nitric acid (HNO3) solution. Camphor sulfonic acid-doped polyaniline films were prepared by a “doping-dedoping-redoping" method, the morphology and microstructures of the films were characterized by a scanning electron microscope and an x-ray diffractometer, the electrical resistance was measured by a four-probe method. It was found that a lower amount of water molecules infiltrating the film can decrease the film's resistance possibly due to an enhancement of charge carrier transfer between polyaniline chains, whereas excessive water molecules can swell inter-chain distances and result in a quick increase of resistance. The resistance of the film under exposure to ethanol increases and becomes much larger than the original value. However, HNO3 solution can decrease the film's resistance sharply possibly owing to doping effect of protonic acid. These results can help to understand the conduction mechanism in polyaniline films, and also indicate that the films have potential application in chemical sensors.

  20. Laboratory studies of the formation of polar stratospheric clouds: Nitric acid condensation on thin sulfuric acid films

    NASA Astrophysics Data System (ADS)

    Iraci, Laura T.; Middlebrook, Ann M.; Tolbert, Margaret A.

    1995-10-01

    Thin sulfuric acid films were exposed to 5 × 10-8 - 8 × 10-7 torr HNO3 and 2 - 3 × 10-4 torr H2O and cooled to temperatures near the ice frost point. Fourier transform infrared (FTIR) spectroscopy was used to probe the condensed-phase species during isothermal experiments, and gas pressures were monitored with mass spectrometry. Supercooled liquid sulfuric acid films exposed to HNO3 (6 ≤ SNAT ≤ 114) showed indications of HNO3 uptake to form ternary solutions of approximately 4 wt % HNO3, 38 wt % H2SO4, and 59 wt % H2O, followed by crystallization of nitric acid trihydrate (NAT). NAT crystallization did not initiate significant crystallization of the supercooled H2SO4, but the H2SO4 often crystallized to sulfuric acid tetrahydrate (SAT) upon warming. In contrast, when crystalline SAT films were exposed to HNO3 and water, NAT did not condense within several hours, even at HNO3 saturation ratios of 30 or higher. Calculations of the contact parameter from experimental data indicate that m <0.76 for NAT on SAT. Our film studies suggest that crystalline polar stratospheric cloud (PSC) growth is most easily accomplished when stratospheric sulfate aerosols (SSAs) remain liquid, absorb HNO3, and produce crystalline nitric acid trihydrate via heterogeneous nucleation. If SSAs crystallize to SAT at some point during the winter, nitric acid condensation is hindered, and PSC formation could become more difficult.

  1. Radiation-induced grafting of acrylic acid onto polypropylene film and its biodegradability

    NASA Astrophysics Data System (ADS)

    Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Chaudhari, C. V.; Dubey, K. A.; Varshney, L.

    2016-06-01

    Polypropylene based commodity polyolefins are widely used in packaging, manufacturing, electrical, pharmaceutical and other applications. The aim of the present work is to study the effect of grafting of acrylic acid on the biodegradability of acrylic acid grafted polypropylene. The effect of different conditions showed that grafting percentage increased with increase in monomer concentration, radiation dose and inhibitor concentration but decreased with increase in radiation dose rate. The maximum grafting of 159.4% could be achieved at optimum conditions. The structure of grafted polypropylene films at different degree of grafting was characterized by EDS, FTIR, TGA, DSC, SEM and XRD. EDS studies showed that the increase in acrylic acid grafting percentage increased the hydrophilicity of the grafted films. FTIR studies indicated the presence of acrylic acid on the surface of polypropylene film. TGA studies revealed that thermal stability decreased with increase in grafting percentage. DSC studies showed that melting temperature and crystallinity of the grafted polypropylene films lower than polypropylene film. SEM studies indicated that increase in acrylic acid grafting percentage increased the wrinkles in the grafted films. The maximum biodegradability could be achieved to 6.85% for 90.5% grafting. This suggested that microorganisms present in the compost could biodegrade acrylic acid grafted polypropylene.

  2. Langmuir-Blodgett films of self-assembled (alkylether-derivatized Zn phthalocyanine)-(C₆₀ imidazole adduct) dyad with controlled intermolecular distance for photoelectrochemical studies.

    PubMed

    Obraztsov, Ievgen; Noworyta, Krzysztof; Hart, Aaron; Gobeze, Habtom B; Kc, Chandra B; Kutner, Wlodzimierz; D'Souza, Francis

    2014-06-11

    A multilayer Langmuir-Blodgett (LB) film of the self-assembled electron donor-acceptor dyad of Zn phthalocyanine, appended with four long-chain aliphatic ether peripheral substituents, and an imidazole adduct of C60 was prepared and applied as a photoactive material in a photoelectrochemical cell. Changes in the simultaneously recorded surface pressure and surface potential vs area per molecule compression isotherms for Langmuir films of the dyad and, separately, of its components helped to identify phase transitions and mutual interactions of molecules in films. The Brewster angle microscopy (BAM) imaging of the Langmuir films showed circular condensed phase domains of the dyad molecules. The determined area per molecule was lower than that estimated for the dyad and its components, separately. The multilayer LB films of the dyad were transferred onto hydrophobized fluorine-doped tin oxide-coated (FTO) glass slides under different conditions. The presence of both components in the dyad LB films was confirmed with the UV-vis spectroscopy measurements. For the LB films transferred at different surface pressures, the PM-IRRAS measurements revealed that the phthalocyanine macrocycle planes and ether moieties in films were tilted with respect to the FTO surface. The AFM imaging of the LB films indicated formation of relatively uniform dyad LB films. Then, the femtosecond transient absorption spectral studies evidenced photoinduced electron transfer in the LB film. The obtained transient signals corresponding to both Zn(TPPE)(•+) and C60im(•-) confirmed the occurrence of intramolecular electron transfer. The determined rate constants of charge separation, kcs = 2.6 × 10(11) s(-1), and charge recombination, kcr = 9.7 × 10(9) s(-1), indicated quite efficient electron transfer within the film. In the photoelectrochemical studies, either photoanodic or photocathodic current was generated depending on the applied bias potential when the dyad LB film-coated FTO was used

  3. Antibacterial poly(lactic acid) (PLA) films grafting electrospun PLA/Ally isothioscyanate (AITC) fibers for food packaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poly(lactic acid) (PLA) fibers of submicron sizes encapsulating allyl isothiocyanate (AITC) (PfA) were made and electrospun onto the surfaces of PLA films (PfA-g-film). SEM examination confirmed that the fibers were grafted to the PLA film after the (PfA-g-film) underwent air blowing and water washi...

  4. Actuation Behavior of Polylactic Acid Fiber Films Prepared by Electrospinning.

    PubMed

    Nobeshima, Taiki; Ishii, Yuya; Sakai, Heisuke; Uemura, Sei; Yoshida, Manabu

    2016-04-01

    A poly-DL-lactide (PLA) fiber film was prepared using the electrospinning method. This film consisted of randomly oriented PLA nanofibers. Consequently, it had sponge-like structure and was quite soft compared to PLA films prepared by spin coating. The average diameter of the fibers and the density of the film were 730 nm and 20%, respectively. By applying a voltage, the PLA film was subjected to electric-field-induced strain: expansion and compression in the thickness direction. When a voltage of -200 V was applied to the film, its thickness shrank from 13.5 µm to 10.0 µm (a 26% reduction). Electric-field-induced strain can occur via two different mechanisms: The first is electrostrictive behavior. That. is, in a highly electric field region, a change of film thickness occurs (compression only) from the electrostatic force between electrodes. The second mechanism is piezoelectric-like behavior that occurs in racemic PLA, wherein a PLA nanofiber is expanded and compressed by applying positive and negative voltage. Such piezoelectric-like behavior was not observed in spin-coated PLA films. PMID:27451629

  5. Synthesis of CuFeS2 thin films from acidic chemical baths

    NASA Astrophysics Data System (ADS)

    Tonpe, Dipak; Gattu, Ketan; More, Ganesh; Upadhye, Deepak; Mahajan, Sandip; Sharma, Ramphal

    2016-05-01

    The growth of Copper iron sulfide nanocrystalline thin films onto glass substrates has been achieved by chemical bath deposition at acidic values of pH. The deposited thin films were characterized for their optoelectronic properties using Raman, UV-Vis spectroscopy. The Raman analysis confirms the formation of CuFeS2 thin film. The thin film with nanosized crystallites of CuFeS2 showed a bandgap of 0.7eV from UV-vis absorption spectroscopy.

  6. Controlled release properties of zein-fatty acid blend films for multiple bioactive compounds.

    PubMed

    Arcan, Iskender; Yemenicioğlu, Ahmet

    2014-08-13

    To develop edible films having controlled release properties for multiple bioactive compounds, hydrophobicity and morphology of zein films were modified by blending zein with oleic (C18:1)Δ⁹, linoleic (C18:2)Δ(9,12), or lauric (C₁₂) acids in the presence of lecithin. The blend zein films showed 2-8.5- and 1.6-2.9-fold lower initial release rates for the model active compounds, lysozyme (LYS) and (+)-catechin (CAT), than the zein control films, respectively. The change of fatty acid chain length affected both CAT and LYS release rates while the change of fatty acid double bond number affected only the CAT release rate. The film morphologies suggested that the blend films owe their controlled release properties mainly to the microspheres formed within their matrix and encapsulation of active compounds. The blend films showed antilisterial activity and antioxidant activity up to 81 μmol Trolox/cm². The controlled release of multiple bioactive compounds from a single film showed the possibility of combining application of active and bioactive packaging technologies and improving not only safety and quality but also health benefits of packed food. PMID:25025594

  7. Electrodeposited nanostructured lead dioxide as a thin film electrode for a lightweight lead-acid battery

    NASA Astrophysics Data System (ADS)

    Egan, D. R. P.; Low, C. T. J.; Walsh, F. C.

    Thin films of nanostructured lead dioxide are investigated as a positive electrode material for a lightweight lead-acid battery. The films are obtained by constant current deposition from electrolytes of lead methanesulfonate in methanesulfonic acid. The films are tested in two conditions namely (a) cyclic voltammetry and (b) constant current battery cycling in sulfuric acid. The charge and discharge current density, charge density and charge efficiency are measured as a function of cycle number. The effect of deposition conditions, such as solution temperature (295 and 333 K), type of substrate and electrolyte additive (hexadecyltrimethylammonium hydroxide), on the electrochemical performance of the PbO 2 in sulfuric acid is investigated. It is found that the as-deposited lead dioxide film is compact and nanostructured β-phase structure. Following successive cycling in sulfuric acid, the compact thin film gradually transforms into a porous microstructure consisting of positive active material (PbO 2 and PbSO 4), several tens of nanometres size. The charge density, discharge density and peak discharge current density of the PbO 2 improve with cycling of the thin film electrode.

  8. Thermally Driven Stability of Octadecylphosphonic Acid Thin Films Grown on SS316L

    PubMed Central

    Lim, Min Soo; Smiley, Katelyn J.; Gawalt, Ellen S.

    2010-01-01

    Stainless steel 316L is widely used as a biomedical implant material; however, there is concern about the corrosion of metallic implants in the physiological environment. The corrosion process can cause mechanical failure due to resulting cracks and cavities in the implant. Alkyl phosphonic acid forms a thin film by self-assembly on the stainless steel surface and this report conclusively shows that thermal treatment of the octadecylphosphonic acid (ODPA) film greatly enhances the stability of the ODPA molecules on the substrate surface. AFM images taken from the modified substrates revealed that thermally treated films remain intact after methanol, THF and water flushes while untreated films suffer substantial loss. Water contact angles also show that the hydrophobicity of thermally treated films does not diminish after being incubated in a dynamic flow of water for a three hour period while the untreated film becomes increasingly hydrophilic due to loss of ODPA. IR spectra taken of both treated and untreated films after water and THF flushes show that the remaining film retains its initial crystallinity. A model is suggested to explain the stability of ODPA film enhanced by thermal treatment. An ODPA molecule is physisorbed to the surface weakly by hydrogen bonding. Heating drives away water molecules leading to the formation of strong monodentate or mixed mono/bi-dentate bonds of ODPA molecule to the surface. PMID:20648546

  9. Thermally driven stability of octadecylphosphonic acid thin films grown on SS316L.

    PubMed

    Lim, Min Soo; Smiley, Katelyn J; Gawalt, Ellen S

    2010-01-01

    Stainless steel 316L is widely used as a biomedical implant material; however, there is concern about the corrosion of metallic implants in the physiological environment. The corrosion process can cause mechanical failure due to resulting cracks and cavities in the implant. Alkyl phosphonic acid forms a thin film by self-assembly on the stainless steel surface and this report conclusively shows that thermal treatment of the octadecylphosphonic acid (ODPA) film greatly enhances the stability of the ODPA molecules on the substrate surface. AFM images taken from the modified substrates revealed that thermally treated films remain intact after methanol, THF, and water flushes, whereas untreated films suffer substantial loss. Water contact angles also show that the hydrophobicity of thermally treated films does not diminish after being incubated in a dynamic flow of water for a 3-hour period, whereas the untreated film becomes increasingly hydrophilic due to loss of ODPA. IR spectra taken of both treated and untreated films after water and THF flushes show that the remaining film retains its initial crystallinity. A model is suggested to explain the stability of ODPA film enhanced by thermal treatment. An ODPA molecule is physisorbed to the surface weakly by hydrogen bonding. Heating drives away water molecules leading to the formation of strong monodentate or mixed mono/bi-dentate bonds of ODPA molecule to the surface. PMID:20648546

  10. Permeability of acetic acid through organic films at the air-aqueous interface.

    PubMed

    Gilman, Jessica B; Vaida, Veronica

    2006-06-22

    Recent field studies of collected aerosol particles, both marine and continental, show that the outermost layers contain long-chain (C >or= 18) organics. The presence of these long-chain organics could impede the transport of gases and other volatile species across the interface. This could effect the particle's composition, lifetime, and heterogeneous chemistry. In this study, the uptake rate of acetic acid vapor across a clean interface and through films of long-chain organics into an aqueous subphase solution containing an acid-base indicator (bromocresol green) was measured under ambient conditions using visible absorption spectroscopy. Acetic acid is a volatile organic compound (VOC) and is an atmospherically relevant organic acid. The uptake of acetic acid through single-component organic films of 1-octadecanol (C(18)H(38)O), 1-triacontanol (C(30)H(62)O), cis-9-octadecen-1-ol (C(18)H(36)O), and nonacosane (C(29)H(60)) in addition to two mixed films containing equimolar 1-triacontanol/nonacosane and equimolar 1-triacontanol/cis-9-octadecen-1-ol was determined. These species represent long-chain organic compounds that reside at the air-aqueous interface of atmospheric aerosols. The cis-9-octadecen-1-ol film had little effect on the net uptake rate of acetic acid vapor into solution; however, the uptake rate was reduced by almost one-half by an interfacial film of 1-triacontanol. The measured uptake rates were used to calculate the permeability of acetic acid through the various films which ranged from 1.5 x 10(-3) cm s(-1) for 1-triacontanol, the least permeable film, to 2.5 x 10(-2) cm s(-1) for cis-9-octadecen-1-ol, the most permeable film. Both mixed films had permeabilities that were between that of the single-component films comprising the mixture. This shows that the permeability of a mixed film may not be solely determined by the most permeable species in the mixture. The permeabilities of all the films studied here are discussed in relation to their

  11. Preparation of nanoparticulate Fe 2O 3—polymaleic monoester alternating Langmuir—Blodgett films with functional organic hydrophobic part

    NASA Astrophysics Data System (ADS)

    Peng, Xiao-Gang; Gao, Man-Lai; Zhao, Ying-Ying; Kang, Shi-Hai; Zhang, Yun-Hang; Zhang, Yan; Wang, De-Jun; Xiao, Liang-Zhi; Li, Tie-Jin; Chen, Hai-Yan

    1993-07-01

    An organic functional group was introduced into the inorganic nanoparticle—organic alternating LB films by the use of the polymaleic monoester with a functional lateral chain ? to replace a fatty acid. Using the polymer (PMANN), the distance between adjacent nanoparticles in the LB films is apparently decreased and the distribution of the nanoparticles in the monolayer is more homegeneous than that in the nanoparticulate Fe 2O 3—stearate monolayer. All these phenomena are ascribed to the carboxylate groups of a polymer molecule bound to two or more nanoparticles. The photovoltage response of n-type (p-type) silicon coated with a monolayer of nanoparticulate Fe 2O 3—PMANN LB films increases (decreases) for two orders.

  12. Correlates of the MMPI LB Scale in a College Population.

    ERIC Educational Resources Information Center

    Klein, Steven; Cross, Herbert J.

    1984-01-01

    Administered the Low Back Pain Scale (LB) of the Minnesota Multiphasic Personality Inventory and other measures to 123 college freshmen. Subjects with a psychosomatic disorder scored higher on LB. Females who reported problems with their mothers were more likely to have a psychosomatic disorder, suggesting different etiology between males and…

  13. Evaluation of biocompatibility and toxicity of biodegradable poly (DL-lactic acid) films

    PubMed Central

    Li, Rui-Yun; Liu, Zhi-Gang; Liu, Huan-Qiu; Chen, Lei; Liu, Jian-Feng; Pan, Yue-Hai

    2015-01-01

    Regeneration and functional recovery of nerves after peripheral nerve injury is the key to peripheral nerve repair. One of the putative therapeutic strategies is to use anti-adhesion polymer films, made of polymeric biomaterials. Recently, a novel biodegradable poly (DL-lactic acid) (PDLLA) film has been prepared using a method of phase transformation with biodegradable polylactic acid polymer as the substrate. This novel, anti-adhesion film has a porous structure, which provides better mechanical properties, better flexibility, more complete diffusion through the polymer of tissue biologic factors like growth factors, and more controllable degradation compared to traditional non-porous films. Little is known, however, about the in vitro and in vivo biocompatibility and cytotoxicity of this type of PDLLA film. Therefore, our aim was to evaluate the biocompatibility and cytotoxicity of this novel PDLLA film using various experimental methods, including a skin irritation test, MTT analysis, and the mouse bone marrow cell micronucleus test, as well as hematology or clinical chemistry measurements in rats after receiving sciatic nerve transection and anastomosis with wrapping of the anastomosis with DLLA films. We demonstrated that exposure to PDLLA film extracts did not generate apparent erythema or edema in rabbit skin and had no effect on the proliferation of Vero cells. Additionally, treatment with PDLLA film extracts did not alter the incidence of micronucleated polychromatic erythrocytes as compared with saline Treated group. Furthermore, implantation of PDLLA film did not alter liver or renal function as measured by serum levels of ALT, AST, TP, A/G, Cr, and BUN, and pathologic examinations showed that implantation of PDLLA film did not cause pathologic changes to the rat liver, kidney, pancreas, or spleen. Taken together, these results suggest that PDLLA films have excellent biocompatibility and no obvious toxicity in vivo, and may be used to prevent nerve

  14. Evaluation of biocompatibility and toxicity of biodegradable poly (DL-lactic acid) films.

    PubMed

    Li, Rui-Yun; Liu, Zhi-Gang; Liu, Huan-Qiu; Chen, Lei; Liu, Jian-Feng; Pan, Yue-Hai

    2015-01-01

    Regeneration and functional recovery of nerves after peripheral nerve injury is the key to peripheral nerve repair. One of the putative therapeutic strategies is to use anti-adhesion polymer films, made of polymeric biomaterials. Recently, a novel biodegradable poly (DL-lactic acid) (PDLLA) film has been prepared using a method of phase transformation with biodegradable polylactic acid polymer as the substrate. This novel, anti-adhesion film has a porous structure, which provides better mechanical properties, better flexibility, more complete diffusion through the polymer of tissue biologic factors like growth factors, and more controllable degradation compared to traditional non-porous films. Little is known, however, about the in vitro and in vivo biocompatibility and cytotoxicity of this type of PDLLA film. Therefore, our aim was to evaluate the biocompatibility and cytotoxicity of this novel PDLLA film using various experimental methods, including a skin irritation test, MTT analysis, and the mouse bone marrow cell micronucleus test, as well as hematology or clinical chemistry measurements in rats after receiving sciatic nerve transection and anastomosis with wrapping of the anastomosis with DLLA films. We demonstrated that exposure to PDLLA film extracts did not generate apparent erythema or edema in rabbit skin and had no effect on the proliferation of Vero cells. Additionally, treatment with PDLLA film extracts did not alter the incidence of micronucleated polychromatic erythrocytes as compared with saline Treated group. Furthermore, implantation of PDLLA film did not alter liver or renal function as measured by serum levels of ALT, AST, TP, A/G, Cr, and BUN, and pathologic examinations showed that implantation of PDLLA film did not cause pathologic changes to the rat liver, kidney, pancreas, or spleen. Taken together, these results suggest that PDLLA films have excellent biocompatibility and no obvious toxicity in vivo, and may be used to prevent nerve

  15. Fabrication of superhydrophobic surface of hierarchical ZnO thin films by using stearic acid

    NASA Astrophysics Data System (ADS)

    Wang, Yanfen; Li, Benxia; Xu, Chuyang

    2012-01-01

    Flower-like hierarchical ZnO microspheres were successfully synthesized by a simple, template-free, and low-temperature aqueous solution route. The morphology and microstructure of the ZnO microspheres were examined by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The bionic films with hydrophobicity were fabricated by the hierarchical ZnO microspheres modified by stearic acid. It was found that the hydrophobicity of the thin films was very sensitive to the added amount of stearic acid. The thin films modified with 8% stearic acid took on strong superhydrophobicity with a water contact angle (CA) almost to be 178° and weak adhersion. The remarkable superhydrophobicity could be attributed to the synergistic effect of micro/nano hierarchical structure of ZnO and low surface energy of stearic acid.

  16. Biodegradation of poly(hydroxy butanoic acid) copolymer mulch films in soil

    NASA Astrophysics Data System (ADS)

    Kukade, Pranav

    Agricultural mulch films that are used to cover soil of crop rows contribute to earlier maturation of crops and higher yield. Incineration and landfill disposals are the most common means of disposal of the incumbent polyethylene (PE) mulch films; however, these are not environment friendly options. Biodegradable mulch films that can be rototilled into the soil after crop harvest are a promising alternative to offset problems such as landfill disposal, film retrieval and disposal costs. In this study, an in-house laboratory scale test method was developed in which the rate of disintegration, as a result of biodegradation of films based on polyhydroxybutanoic acid (PHB) copolymers was investigated in a soil environment using the residual weight loss method. The influence of soil composition, moisture levels in the soil, and industry-standard anti-microbial additive in the film composition on the rate of disintegration of PHB copolymer films was investigated. The soil composition has significant effect on the disintegration kinetics of PHB copolymer films, since the increasing compost levels in the soil lowered the rate of disintegration of the film. Also, with the increase in moisture level up to a threshold limit, the microbial activity and, hence, the rate of disintegration increased. Lastly, the developed lab-scale test protocol was found to be sensitive to even small concentrations of industry-standard antimicrobial additive in the film composition.

  17. Characterization of Multiple-Substrate Utilization by Anthracene-Degrading Mycobacterium frederiksbergense LB501T

    PubMed Central

    Wick, Lukas Y.; Pasche, Natacha; Bernasconi, Stefano M.; Pelz, Oliver; Harms, Hauke

    2003-01-01

    Stable carbon isotope analysis of biomass and analyses of phospholipid fatty acids (PLFA), glycolipid fatty acids (GLFA), and mycolic acids were used to characterize mixed-substrate utilization by Mycobacterium frederiksbergense LB501T under various substrate regimens. The distinct 13C contents of anthracene and glucose as representatives of typical hydrophobic pollutants and naturally occurring organic compounds, respectively, were monitored during formation into biomass and used to quantify the relative contributions of the two carbon sources to biomass formation. Moreover, the influence of mixed-substrate utilization on PLFA, GLFA, and mycolic acid profiles and cell surface hydrophobicity was investigated. Results revealed that M. frederiksbergense LB501T degrades anthracene and forms biomass from it even in the presence of more readily available dissolved glucose. The relative ratios of straight-chain saturated PLFA to the corresponding unsaturated PLFA and the total fraction of saturated cyclopropyl-branched PLFA of M. frederiksbergense LB501T depended on the carbon source and the various rates of addition of mixed substrates, whereas no such trend was observed with GLFA. Higher proportions of anthracene in the carbon source mixture led to higher cell surface hydrophobicities and more-hydrophobic mycolic acids, which in turn appeared to be valuable indicators for substrate utilization by M. frederiksbergense LB501T. The capability of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria to utilize readily available substrates besides the poorly available PAHs favors the buildup of PAH-degrading biomass. Feeding of supplementary carbon substrates may therefore promote bioremediation, provided that it sustains the pollutant-degrading population rather than other members of the microbial community. PMID:14532072

  18. Comparative study of electroless nickel film on different organic acids modified cuprammonium fabric (CF)

    NASA Astrophysics Data System (ADS)

    Zhao, Hang; Lu, Yinxiang

    2016-01-01

    Nickel films were grown on citric acid (CA), malic acid (MA) and oxalic acid (OA) modified cuprammonium fabric (CF) substrates via electroless nickel deposition. The nickel films were examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Their individual deposition rate and electromagnetic interference (EMI) shielding effectiveness (SE) were also investigated to compare the properties of electroless nickel films. SEM images illustrated that the nickel film on MA modified CF substrate was smooth and uniform, and the density of nickel nuclei was much higher. Compared with that of CA modified CF, the coverage of nickel nuclei on OA and MA modified CF substrate was very limited and the nickel particles size was too big. XRD analysis showed that the nickel films deposited on the different modified CF substrates had a structure with Ni (1 1 1) preferred orientation. All the nickel coatings via different acid modification were firmly adhered to the CF substrates, as demonstrated by an ultrasonic washing test. The result of tensile test indicated that the electroless nickel plating on CF has ability to strengthen the CF substrate while causes limited effect on tensile elongation. Moreover, the nickel film deposited on MA modified CF substrate showed more predominant in EMI SE than that deposited on CA or OA modified CF.

  19. Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film

    SciTech Connect

    Harumoto, Takashi; Tamura, Yohei; Ishiguro, Takashi

    2015-01-15

    Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabrication method only requires aluminum alloy film and hot-water with chelating agent, the ultrafine nanoporous film can be prepared simply and environmentally friendly.

  20. Photoenhanced nitrous acid formation upon NO2 uptake on tannic and gentisic acid films

    NASA Astrophysics Data System (ADS)

    Sosedova, Yulia; Rouvière, Aurélie; Ammann, Markus

    2010-05-01

    The heterogeneous chemistry of nitrogen dioxide (NO2) is a potential source of nitrous acid (HONO). Hydroxy and methoxy substituted phenols may play a significant role in the aqueous-phase chemistry occurring on the ground or within aerosol particles in air masses affected by biomass burning. It is well established that electron transfer between phenols and NO2 in alkaline aqueous solutions is fast and could be a source of nitrite in the aqueous phase and HONO in the gas phase. However its kinetics is very slow under atmospheric conditions. The role of phenolic species as electron donors has also been suspected to be responsible for the photoenhanced transformation of NO2 to HONO over humic acids [1]. In this study we used tannic (TA) and gentisic (GA) as another proxy for atmospheric phenolic compounds. TA was shown to easily decompose under near UV light irradiation [2] resulting in oxidized products that might change the hygroscopic properties of the original material or have some potential photosensitizing effect. It was interesting to check the hypothesis that the presence of such products could lead to photoenhanced HONO formation upon NO2 uptake to aqueous surfaces containing TA. Experiments were performed in a horizontal coated wall flow tube (40 cm × 5.9 cm i.d.) circularly surrounded by 7 fluorescence lamps (UV: 300-420 nm, or visible: 400-750 nm), in an air cooled lamp housing. The inner surface coating was containing ~0.5 mg/cm-2 of either TA or GA, and was operated under RH 20-80%, 21-23 °C and ambient pressure. Concentration of HONO in the gas phase at the flow tube exit was measured with a LOPAP (Long Path Absorption Spectrometer). The uptake coefficient (γ) leading to NO2 to HONO conversion above aqueous films containing GA or TA in the dark was in the range 4×10-7 - 2×10-6. The photochemically enhanced HONO production was demonstrated by UV irradiation of the GA or TA coatings being in contact with gaseous NO2. In this case γ was 3-10 times

  1. Multicolor Layer-by-Layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Rivero, Pedro Jose; Goicoechea, Javier; Urrutia, Aitor; Matias, Ignacio Raul; Arregui, Francisco Javier

    2013-10-01

    In the present study, we show that silver nanoparticles (AgNPs) with different shape, aggregation state and color (violet, green, orange) have been successfully incorporated into polyelectrolyte multilayer thin films using the layer-by-layer (LbL) assembly. In order to obtain colored thin films based on AgNPs is necessary to maintain the aggregation state of the nanoparticles, a non-trivial aspect in which this work is focused on. The use of Poly(acrylic acid, sodium salt) (PAA) as a protective agent of the AgNPs is the key element to preserve the aggregation state and makes possible the presence of similar aggregates (shape and size) within the LbLcolored films. This approach based on electrostatic interactions of the polymeric chains and the immobilization of AgNPs with different shape and size into the thin films opens up a new interesting perspective to fabricate multicolornanocomposites based on AgNPs.

  2. Super hydrogen and helium barrier with polyelectolyte nanobrick wall thin film.

    PubMed

    Tzeng, Ping; Lugo, Elva L; Mai, Garret D; Wilhite, Benjamin A; Grunlan, Jaime C

    2015-01-01

    In an effort to impart light gas (i.e., H2 and He) barrier to polymer substrates, thin films of polyethylenimine (PEI), poly(acrylic acid) (PAA), and montmorrilonite (MMT) clay are deposited via layer-by-layer (LbL) assembly. A five "quadlayer" (122 nm) coating deposited on 51 μm polystyrene is shown to lower both hydrogen and helium permeability three orders of magnitude against bare polystyrene, demonstrating better performance than thick-laminated ethylene vinyl-alcohol (EVOH) copolymer film and even metallized polyolefin/polyester film. These excellent barrier properties are attributed to a "nanobrick wall" structure. This highly flexible coating represents the first demonstration of an LbL deposited film with low hydrogen and helium permeability and is an ideal candidate for several packaging and protection applications. PMID:25429915

  3. Multicolor Layer-by-Layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles

    PubMed Central

    2013-01-01

    In the present study, we show that silver nanoparticles (AgNPs) with different shape, aggregation state and color (violet, green, orange) have been successfully incorporated into polyelectrolyte multilayer thin films using the layer-by-layer (LbL) assembly. In order to obtain colored thin films based on AgNPs is necessary to maintain the aggregation state of the nanoparticles, a non-trivial aspect in which this work is focused on. The use of Poly(acrylic acid, sodium salt) (PAA) as a protective agent of the AgNPs is the key element to preserve the aggregation state and makes possible the presence of similar aggregates (shape and size) within the LbLcolored films. This approach based on electrostatic interactions of the polymeric chains and the immobilization of AgNPs with different shape and size into the thin films opens up a new interesting perspective to fabricate multicolornanocomposites based on AgNPs. PMID:24148227

  4. Application of Lemongrass Oil-Containing Polylactic Acid Films to the Packaging of Pork Sausages

    PubMed Central

    2016-01-01

    Polylactic acid (PLA) is a biodegradable and renewable polymer, which represents a valuable alternative to plastic packaging films, often associated with environmental problems. In this study, we tested the suitability of PLA as a biodegradable packaging film and assessed the antimicrobial activity of lemongrass oil (LO), incorporated into the PLA film in different concentrations. To obtain the optimal physical properties for PLA films, tensile strength, elongation at break, and water vapor permeability were measured under different preparation conditions. In addition, the antimicrobial activity of the LO contained in the PLA film against Listeria monocytogenes was investigated by disc diffusion and viable cell count. Among all concentrations tested, 2% LO was the most suitable in terms of antimicrobial activity and physical properties of the PLA film. Based on these results, we used the PLA film containing 2% LO to pack pork sausages; after 12 d of storage at 4℃, the population of inoculated L. monocytogenes in the sausage samples wrapped with the PLA film containing 2% LO was reduced by 1.47 Log CFU/g compared with the control samples. Our data indicate that PLA films containing 2% LO represent a valuable means for antimicrobial sausage packaging. PMID:27433114

  5. Application of Lemongrass Oil-Containing Polylactic Acid Films to the Packaging of Pork Sausages.

    PubMed

    Yang, Hyun-Ju; Song, Kyung Bin

    2016-01-01

    Polylactic acid (PLA) is a biodegradable and renewable polymer, which represents a valuable alternative to plastic packaging films, often associated with environmental problems. In this study, we tested the suitability of PLA as a biodegradable packaging film and assessed the antimicrobial activity of lemongrass oil (LO), incorporated into the PLA film in different concentrations. To obtain the optimal physical properties for PLA films, tensile strength, elongation at break, and water vapor permeability were measured under different preparation conditions. In addition, the antimicrobial activity of the LO contained in the PLA film against Listeria monocytogenes was investigated by disc diffusion and viable cell count. Among all concentrations tested, 2% LO was the most suitable in terms of antimicrobial activity and physical properties of the PLA film. Based on these results, we used the PLA film containing 2% LO to pack pork sausages; after 12 d of storage at 4℃, the population of inoculated L. monocytogenes in the sausage samples wrapped with the PLA film containing 2% LO was reduced by 1.47 Log CFU/g compared with the control samples. Our data indicate that PLA films containing 2% LO represent a valuable means for antimicrobial sausage packaging. PMID:27433114

  6. Formation of Electrically Conducting Polypyrrole Fine Lines in Arachidic Acid Langmuir-Blodgett Films

    NASA Astrophysics Data System (ADS)

    Sha, Seimei; Hirata, Nobuaki; Ikezaki, Kazuo; Kaihatu, Minoru; Moriizumi, Toyosaka

    1995-07-01

    A new method is proposed for preparing electrically conducting fine lines in Langmuir-Blodgett films: during transference of arachidic acid L film containing pyrrole monomers to an indium-tin-oxide (ITO)-coated glass substrate, a voltage was applied between the ITO and the platinum counterelectrode dipped in the water subphase. From microscopic observations and conductivity measurements, it was confirmed that conducting filaments of polypyrrole were formed by this new method along the contact line between the substrate and the water surface by electrochemical polymerization of pyrrole monomers in an arachidic L film.

  7. Comparative evaluation on fatty acid and Matricaria recutita essential oil incorporated into casein-based film.

    PubMed

    Aliheidari, Nahal; Fazaeli, Mahboubeh; Ahmadi, Reza; Ghasemlou, Mehran; Emam-Djomeh, Zahra

    2013-05-01

    Sodium caseinate composite films containing lipids-oleic acid (OA), stearic acid (SA), or Matricaria recutita essential oil (MEO) - were prepared through emulsification and their physical, thermal, mechanical, and barrier properties were evaluated and compared. Furthermore, their antimicrobial effectiveness against Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli was studied. Emulsified films were softer, less rigid, and more stretchable than pure films. The films' water vapor barrier properties were found to decrease upon the addition of lipid content; this effect was greatly reduced when MEO was added. The presence of OA/SA and MEO decreased tensile strength and elastic modulus but increased the elongation at break. Thermal analysis of all emulsified films showed two endothermic peaks; these results confirmed those obtained by SEM studies, where a partial separation of the two phases occurred. The films' antimicrobial activities were increased by incorporating lipids, particularly those containing MEO, which were more effective against the studied bacteria. This work showed that when taking all the studied variables into account, films formulated with MEO were found most suitable for various food applications. PMID:23415659

  8. Collagen-Based Films Containing Liposome-Loaded Usnic Acid as Dressing for Dermal Burn Healing

    PubMed Central

    Nunes, Paula S.; Albuquerque-Júnior, Ricardo L. C.; Cavalcante, Danielle R. R.; Dantas, Marx D. M.; Cardoso, Juliana C.; Bezerra, Marília S.; Souza, Jamille C. C.; Serafini, Mairim Russo; Quitans-Jr, Lucindo J.; Bonjardim, Leonardo R.; Araújo, Adriano A. S.

    2011-01-01

    The aim of this study was assess the effect of collagen-based films containing usnic acid as a wound dressing for dermal burn healing. Second-degree burn wounds were performed in forty-five Wistar rats, assigned into nine groups: COL—animals treated with collagen-based films; PHO—animals treated with collagen films containing empty liposomes; UAL—animals treated with collagen-based films containing usnic acid incorporated into liposomes. After 7, 14, and 21 days the animals were euthanized. On 7th day there was a moderate infiltration of neutrophils, in UAL, distributed throughout the burn wounds, whereas in COL and PHO, the severity of the reaction was slighter and still limited to the margins of the burn wounds. On the 14th day, the inflammatory reaction was less intense in UAL, with remarkable plasma cells infiltration. On the 21st day, there was reduction of the inflammation, which was predominantly composed of plasma cells in all groups, particularly in UAL. The use of the usnic acid provided more rapid substitution of type-III for type-I collagen on the 14th day, and improved the collagenization density on the 21st day. It was concluded that the use of reconstituted bovine type-I collagen-based films containing usnic acid improved burn healing process in rats. PMID:21274404

  9. Synthesis of nanoscale Fe-Ag alloy within thermally evaporated fatty acid films

    NASA Astrophysics Data System (ADS)

    Damle, Chinmay; Biswas, Kushan; Sastry, Murali

    2002-02-01

    The low-temperature alloying of Fe-Ag nanoparticles entrapped within thermally evaporated fatty acid films by a novel ion exchange technique is described. Nanoparticles of iron and silver were grown in thermally evaporated stearic acid (StA) films by sequential immersion of the film in solutions containing Fe2+ ions and Ag+ ions followed by their in situ reduction at each stage. Entrapment of Fe2+ and Ag+ ions in the StA film occurs by selective electrostatic binding with the carboxylate ions in the fatty acid matrix. Thereafter, the metal ions were reduced in situ to yield nanoparticles of Fe and Ag of ca. 35 nm diameter within the fatty acid matrix. Thermal treatment of the StA-(Fe + Ag) nanocomposite film at 200 °C resulted in the formation of an Fe-Ag alloy. Prolonged heat treatment at 250 °C resulted in the phase separation of the alloy and the re-formation of individual Fe and Ag nanoparticles. The process of Fe2+ and Ag+ ion incorporation in the StA matrix and synthesis of the Fe-Ag alloy were followed by quartz crystal microgravimetry, Fourier transform infrared spectroscopy, transmission electron microscopy and x-ray diffraction measurements.

  10. The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films

    NASA Astrophysics Data System (ADS)

    Ren, Jianjun; Zuo, Yu

    2012-11-01

    The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films were studied. The voltage-time response for galvanostatic anodization of aluminum in malonic acid solution exhibits a conventional three-stage feature but the formation voltage is much higher. With the increase of electrolyte concentration, the electrolyte viscosity increases simultaneously and the high viscosity decreases the film growth rate. With the concentration increase of the malonic acid electrolyte, the critical current density that initiates local "burning" on the sample surface decreases. For malonic acid anodization, the field-assisted dissolution on the oxide surface is relatively weak and the nucleation of pores is more difficult, which results in greater barrier layer thickness and larger cell dimension. The embryo of the porous structure of anodic film has been created within the linear region of the first transient stage, and the definite porous structure has been established before the end of the first transient stage. The self-ordering behavior of the porous film is influenced by the electrolyte concentration, film thickness and the applied current density. Great current density not only improves the cell arrangement order but also brings about larger cell dimension.

  11. Layer-by-layer fabrication of AgCl-PANI hybrid nanocomposite films for electronic tongues.

    PubMed

    Manzoli, Alexandra; Shimizu, Flavio M; Mercante, Luiza A; Paris, Elaine C; Oliveira, Osvaldo N; Correa, Daniel S; Mattoso, Luiz H C

    2014-11-28

    The fabrication of nanostructured films with tailored properties is essential for many applications, particularly with materials such as polyaniline (PANI) whose electrical characteristics may be easily tuned. In this study we report the one-step synthesis of AgCl-PANI nanocomposites that could form layer-by-layer (LbL) films with poly(sodium 4-styrenesulfonate) (PSS) and be used for electronic tongues (e-tongues). The first AgCl-PANI layer was adsorbed on a quartz substrate according to a nucleation-and-growth mechanism explained using the Johnson-Mehl-Avrami (JMA) model, revealing a 3D film growth confirmed by atomic force microscopy (AFM) measurements for the AgCl-PANI/PSS LbL films. In contrast to conventional PANI-containing films, the AgCl-PANI/PSS LbL films deposited on interdigitated electrodes exhibited electrical resistance that was practically unaffected by changes in pH from 4 to 9, and therefore these films can be used in e-tongues for both acidic and basic media. With a sensor array made of AgCl-PANI/PSS LbL films with different numbers of bilayers, we demonstrated the suitability of the AgCl-PANI nanocomposite for an e-tongue capable of clearly discriminating the basic tastes from salt, acid and umami solutions. Significantly, the hybrid AgCl-PANI nanocomposite is promising for any application in which PANI de-doping at high pH is to be avoided. PMID:25298297

  12. Refractive index modulation in polymer film doped with diazo Meldrum's acid

    NASA Astrophysics Data System (ADS)

    Zanutta, Alessio; Villa, Filippo; Bertarelli, Chiara; Bianco, Andrea

    2016-08-01

    Diazo Meldrum's acid undergoes a photoreaction induced by UV light and it is used as photosensitizer in photoresists. Upon photoreaction, a change in refractive index occurs, which makes this system interesting for volume holography. We report on the sublimation effect at room temperature and the effect of photoirradiation on the refractive index in thin films of CAB (Cellulose acetate butyrate) doped with different amount of diazo Meldrum's acid. A net modulation of the refractive index of 0.01 is achieved with 40% of doping ratio together with a reduction of the film thickness.

  13. Properties of whey protein-based films containing organic acids and nisin to control Listeria monocytogenes.

    PubMed

    Pintado, Cristina M B S; Ferreira, Maria A S S; Sousa, Isabel

    2009-09-01

    Whey protein isolate and glycerol were mixed to form a matrix to incorporate antimicrobial agents and produce edible films with antimicrobial activity against Listeria monocytogenes strains isolated from cheeses. Various organic acids were used to decrease pH down to approximately 3. In a preliminary assay without nisin, the effect of each organic acid was evaluated with respect to the rheological properties of the film solutions and the inhibitory and mechanical properties of the films. Lactic, malic, and citric acids (3%, wt/vol), which were used in a subsequent study of their combined inhibitory effect with nisin (50 IU/ml), had significantly higher antilisterial activity (P < 0.05) compared with the control (2 N HCl, 3% [wt/vol], with nisin). The largest mean zone of inhibition was 4.00 +/- 0.92 mm for malic acid with nisin. Under small-amplitude oscillatory stress, the protein-glycerol-acid film solutions exhibited a predominantly viscous behavior or a weak gel behavior, with the storage modulus (G') slightly higher than the loss modulus (G"). The malic acid-based solution was the only one whose viscosity was not influenced by the addition of nisin. The addition of nisin resulted in a nonsignificant (P > 0.05) increase in the percentage of elongation at break. Results from tensile and puncture stress were variable, but in general no significant differences were found after the incorporation of nisin. The overall results support the use of malic acid with nisin to produce effective antimicrobial films to control L. monocytogenes growth. PMID:19777891

  14. Boric/sulfuric acid anodizing of aluminum alloys 2024 and 7075: Film growth and corrosion resistance

    SciTech Connect

    Thompson, G.E.; Zhang, L.; Smith, C.J.E.; Skeldon, P.

    1999-11-01

    The influence of boric acid (H{sub 3}BO{sub 3}) additions to sulfuric acid (H{sub 2}SO{sub 4}) were examined for the anodizing of Al 2024-T3 (UNS A92024) and Al 7075-T6 (UNS A97075) alloys at constant voltage. Alloys were pretreated by electropolishing, by sodium dichromate (Na{sub 2}Cr{sub 2}O{sub 7})/H{sub 2}SO{sub 4} (CSA) etching, or by alkaline etching. Current-time responses revealed insignificant dependence on the concentration of H{sub 3}BO{sub 3} to 50 g/L. Pretreatments affected the initial film development prior to the establishment of the steady-state morphology of the porous film, which was related to the different compositions and morphologies of pretreated surfaces. More detailed studies of the Al 7075-T6 alloy indicated negligible effects of H{sub 3}BO{sub 3} on the coating weight, morphology of the anodic film, and thickening rate of the film, or corrosion resistance provided by the film. In salt spray tests, unsealed films formed in H{sub 2}SO{sub 4} or mixed acid yielded similar poor corrosion resistances, which were inferior to that provided by anodizing in chromic acid (H{sub 2}CrO{sub 4}). Sealing of films in deionized water, or preferably in chromate solution, improved corrosion resistance, although not matching the far superior performance provided by H{sub 2}CrO{sub 4} anodizing and sealing.

  15. Microscale and nanoscale hierarchical structured mesh films with superhydrophobic and superoleophilic properties induced by long-chain fatty acids

    NASA Astrophysics Data System (ADS)

    Wang, Shutao; Song, Yanlin; Jiang, Lei

    2007-01-01

    Inspired by the lotus effect, we fabricate new microscale and nanoscale hierarchical structured copper mesh films by a simple electrochemical deposition. After modification of the long-chain fatty acid monolayer, these films show superhydrophobic and superoleophilic properties, which could be used for the effective separation of oil and water. The length of the fatty acid chain strongly influences the surface wettability of as-prepared films. It is confirmed that the cooperative effect of the hierarchical structure of the copper film and the nature of the long-chain fatty acid contribute to this unique surface wettability.

  16. A growth mechanism of porous film formed on Al in 0.6 M oxalic acid electrolyte.

    PubMed

    Han, Seong Ho; Kim, Hyoung Chan

    2012-04-01

    Understanding of mechanism of porous film formation is of fundamental importance for anodizing in general because, the onset of pore initiation terminates the barrier film growth process over the macroscopic metal surface. Several mechanisms have been proposed to explain pore formation. They include direct injection of aluminum ions into electrolyte and a field-assisted dissolution mechanism. High-resolution scanning electron microscopy of anodized surfaces and direct TEM of ion beam thinned films and ultrarmicrotomed film sections have been employed to gain further insight into the mechanism of initial porous film growth in 0.6 M oxalic acid. From detailed examination of the behavior of the xenon-tagged layer in the film during pore initiation and development in oxalic acid, the film structure of the barrier layer is found to be unstable during pore initiation and the instability of the film structure is possibly related to the field-assisted structure modification process. PMID:22849190

  17. Enhanced charge transport in highly conducting PEDOT-PSS films after acid treatment

    NASA Astrophysics Data System (ADS)

    Shiva, V. Akshaya; Bhatia, Ravi; Menon, Reghu

    The high electrical conductivity, good stability, high strength, flexibility and good transparency of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS), make it useful for many applications including polymeric anodes for organic photovoltaics, light-emitting diodes, flexible electrodes, supercapacitors, electrochromic devices, field-effect transistors and antistatic-coatings. However, the electrical conductivity of PEDOT-PSS has to be increased significantly for replacement of indium tin oxide (ITO) as the transparent electrode in optoelectronic devices. The as prepared (pristine) PEDOT-PSS film prepared from the PEDOT-PSS aqueous solution usually has conductivity below 1Scm-1, remarkably lower than ITO. Significant conductivity enhancement has been observed on transparent and conductive PEDOT-PSS films after a treatment with inorganic acids. Our study investigates the charge transport in pristine and H2SO4, HNO3, HCl treated PEDOT-PSS films. We have treated the films with various concentrations of acids to probe the effect of the acid treatment on the conduction mechanism. The study includes the measurement of dc and electric field dependent conductivity of films in the temperature range of 4.2K-300K. We have also performed magneto-resistance measurements in the range of 0-5T. An enhancement by a factor of~103 has been observed in the room temperature conductivity. The detailed magneto-transport studies explain the various mechanisms for the conductivity enhancement observed.

  18. Exceptionally crystalline and conducting acid doped polyaniline films by level surface assisted solution casting approach

    NASA Astrophysics Data System (ADS)

    Puthirath, Anand B.; Methattel Raman, Shijeesh; Varma, Sreekanth J.; Jayalekshmi, S.

    2016-04-01

    Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra can be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.

  19. Preparation and characteristics of sodium alginate/Na(+)rectorite-g-itaconic acid/acrylamide hydrogel films.

    PubMed

    Yang, Lianli; Ma, Xiaoyan; Guo, Naini; Zhang, Yang

    2014-05-25

    Sodium alginate/Na(+)rectorite-graft-itaconic acid/acrylamide (SA/Na(+)REC-g-IA/AM) hydrogel film was prepared via solution polymerization. The effect of Na(+)REC, KPS, and NMBA content and the ratio of IA to AM on graft ratio, graft efficiency and absorption of liquids were investigated. The structure and morphology were analyzed by FTIR, XRD, TEM and SEM. Results revealed that the optimal Na(+)REC, KPS, and NMBA content and the ratio of IA to AM were 2wt%, 0.8wt%, 0.38wt% and 4, respectively. The hydrogel film was found to exhibit an intercalative structure and coarse surface. The mechanism of graft copolymerization was discussed. A slower and more continuous release of salicylic acid for SA/Na(+)REC-g-IA/AM composite hydrogel film was shown in vitro drug-controlled release studies, in comparison with SA film. The salicylic acid release mechanism of SA/Na(+)REC-g-IA/AM hydrogel film followed Fickian diffusion. PMID:24708990

  20. Complexations of polyoligothiophenes films with transition metals, and their use for electrocatalysis of ascorbic acid

    NASA Astrophysics Data System (ADS)

    Maouche, N.; Chelli, S.; Nessark, B.; Aeiyach, S.

    2009-11-01

    Chemically modified electrodes prepared by electropolymerization of oligothiophenes such as: 2,2'-bithiophene (BT), 2,2'-bithiophene-5-carboxylic acid (BTCA) and terthiophene aldehyde (TTCHO) on platinum (Pt) electrodes, in acetonitrile solution containing 0.1 M tetrabutylammonium perchlorate (TBAP) and 0.01 M of monomer, are characterized by cyclic volammetry (CV), and X-ray photoelectron spectroscopy (XPS) measurements. By immersing the prepared modified electrodes in transition metals (Cu2+, Co2+ and Ag+) solutions, the metal ions were complexed with films. The electrochemical response shows clearly, the presence of oxidation and reduction peaks corresponding to metallic couple redox. XPS technique reveal that the films complexed with metal ions and determine the mode of the connection with film's atoms. The obtained polyoligothiophenes-metal modified electrodes exhibited good electrocatalytic properties towards ascorbic acid (AA) oxidation after their complexation with metallic ions. The electrocatalytic response was evaluated by cyclic voltammetry with regard to the film nature, the metallic ion nature, immersion time, ascorbic acid concentration, and other variables. The results reveal that the catalytic activity of Ag+ complexed with BTCA thin-film is the best toward AA oxidation and it can be detected a very low concentration (∼1 μM), of AA in a solution which can be utilized as an efficient electrochemical sensor.

  1. Stretchability of Silver Films on Thin Acid-Etched Rough Polydimethylsiloxane Substrates Fabricated by Electrospray Deposition

    NASA Astrophysics Data System (ADS)

    Mehdi, S. M.; Cho, K. H.; Kang, C. N.; Choi, K. H.

    2015-07-01

    This paper investigates the fabrication of Ag films through the electrospray deposition (ESD) technique on sub-millimeter-thick acid-etched rough polydimethylsiloxane (PDMS) substrates having both low and high modulus of elasticity. The main focus of the study is on the stretchable behavior of ESD-deposited Ag nanoparticles-based thin films on these substrates when subjected to axial strains. Experimental results suggest that the as-fabricated films on thin acid-etched rough low modulus PDMS has an average stretchability of 5.6% with an average increase in the resistance that is 23 times that of the initial resistance at electrical failure (complete rupture of the films). Comparatively, the stretchability of Ag films on the high modulus PDMS was found to be 3 times higher with 4.65 times increase in the resistance at electrical failure. Also, a high positive value of the piezoresistive coefficient for these films suggests that the resistivity changes during stretching, and thus deviation from the simplified models is inevitable. Based on these results, new models are presented that quantify the changes in resistance with strain.

  2. Electrocatalytic Oxidation Properties of Ascorbic Acid at Poly(3, 4-ethylenedioxythiophene) Films Studied by Electrochemical-Surface Plasmon Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Baba, Akira; Sano, Yohsuke; Ohdaira, Yasuo; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao

    In this report, we demonstrate electrocatalytic oxidation properties of ascorbic acid at poly(3, 4-ethylenedioxythiophene) (PEDOT) thin films in view of their potential application for bio-sensing devices. PEDOT thin films were deposited on gold thin films by electropolymerization of EDOT monomer in acetonitrile solvent. In-situ electrochemical-surface plasmon resonance spectroscopy (EC-SPR) was used to detect both electrochemical and optical signals upon an injection of ascorbic acid.

  3. Low temperature crystalline Ag-Ni alloy formation from silver and nickel nanoparticles entrapped in a fatty acid composite film

    NASA Astrophysics Data System (ADS)

    Kumar, Ashavani; Damle, Chinmay; Sastry, Murali

    2001-11-01

    Nanoparticles of silver and nickel were grown in thermally evaporated fatty acid (stearic acid) films by immersion of the film sequentially in solutions containing Ag+ ions and Ni2+ ions. Attractive electrostatic interaction between the metal cations and the carboxylate ions in the fatty acid film leads to entrapment of the cations in the film. Thereafter, the metal ions were reduced in situ to yield nanoparticles of Ag and Ni of ˜30 nm diameter within the fatty acid matrix. Thermal treatment of the stearic acid-(silver+nickel) nanocomposite films led to the formation of a Ni-Ag alloy at ˜100 °C. Prolonged heat treatment at this temperature resulted in the phase separation of the alloy and the reformation of individual Ag and Ni nanoparticles.

  4. Friction reducing behavior of stearic acid film on a textured aluminum substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Quan; Wan, Yong; Li, Yang; Yang, Shuyan; Yao, Wenqing

    2013-09-01

    A simple two-step process was developed to render the aluminum hydrophobicity with lower friction. The textured aluminum substrate was firstly fabricated by immersed in a sodium hydroxide solution at 100 °C for 1 h. Stearic acid film was then deposited to acquire high hydrophobicity. Scanning electron microscopy, IR spectroscopy and water contact angle measurements were used to analyze the morphological features, chemical structure and hydrophobicity of prepared samples, respectively. Moreover, the friction reducing behavior of the organic-inorganic composite film on aluminum sliding against steel was evaluated in a ball-on-plate configuration. It was found that the stearic acid film on the textured aluminum led to decreased friction with significantly extended life.

  5. Photoconductivity study of acid on Zinc phthalocyanine pyridine thin films

    NASA Astrophysics Data System (ADS)

    Singh, Sukhwinder; Saini, G. S. S.; Tripathi, S. K.

    2016-05-01

    The Metal Phthalocyanine (MPc) have attracted much interest because of chemical and high thermal stability. Molecules forming a crystal of MPc are held together by weak attractive Vander Waals forces. Organic semiconductors have π conjugate bonds which allow electrons to move via π-electron cloud overlaps. Conduction mechanisms for organic semiconductor are mainly through tunneling; hopping between localized states, mobility gaps, and phonon assisted hopping. The photo conductivity of thin films of these complexes changes when exposed to oxidizing and reducing gases. Arrhenius plot is used to find the thermal activation energy in the intrinsic region and impurity scattering region. Arrhenius plotsare used to find the thermal activation energy.

  6. Formation of Porous Anodic Oxide Film on Titanium in Phosphoric Acid Electrolyte

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Thompson, G. E.

    2015-01-01

    A sequential breakdown anodizing conditions on cp-Ti in phosphoric acid has been investigated in the present study. Anodic oxide films were formed at 100, 150, and 200 V, examined by scanning electron microscopy, Raman spectroscopy, glow discharge optical emission spectrometry, and electrochemical impedance spectroscopy. A porous oxide texture was formed at each voltage. The thickness of anodic porous oxide increased with the increase of anodic voltage. Nano-particulates were formed around and within the pores, and the size of pores increased with increased voltage due to the expansion of particulates. The amorphous-to-crystalline transition was initiated during the film growth. The degree of crystallinity in the anodic oxide film fabricated at 200 V is more abundant than 150 and 100 V. Increased content of the phosphorus species was incorporated into the porous film with the increase of anodic voltage, stabilizing for the nanocrystals developed within the oxide.

  7. Thermoplastic starch/polyester films: effects of extrusion process and poly (lactic acid) addition.

    PubMed

    Shirai, Marianne Ayumi; Olivato, Juliana Bonametti; Garcia, Patrícia Salomão; Müller, Carmen Maria Olivera; Grossmann, Maria Victória Eiras; Yamashita, Fabio

    2013-10-01

    Biodegradable films were produced using the blown extrusion method from blends that contained cassava thermoplastic starch (TPS), poly(butylene adipate-co-terephthalate) (PBAT) and poly(lactic acid) (PLA) with two different extrusion processes. The choice of extrusion process did not have a significant effect on the mechanical properties, water vapor permeability (WVP) or viscoelasticity of the films, but the addition of PLA decreased the elongation, blow-up ratio (BUR) and opacity and increased the elastic modulus, tensile strength and viscoelastic parameters of the films. The films with 20% PLA exhibited a lower WVP due to the hydrophobic nature of this polymer. Morphological analyses revealed the incompatibility between the polymers used. PMID:23910321

  8. Formation of nanoscale aggregates of a coumarin derivative in Langmuir-Blodgett film

    NASA Astrophysics Data System (ADS)

    Chakraborty, Santanu; Bhattacharjee, D.; Hussain, Syed Arshad

    2013-06-01

    In the present communication, we report the formation of organized nanoscale aggregates of a coumarin derivative 7 Hydroxy-N-Octadecyl Coumarin-3-Carboxamide (7HNO3C) at the air-water interface and in Langmuir-Blodgett (LB) films in the presence and absence of stearic acid (SA). A pressure-area isotherm reveals that the 7HNO3C form stable monolayer at the air-water interface. However, the stability can be improved by mixing it with a fatty acid stearic acid (SA). The miscibility study shows that the nature of interaction is strongly dependent on the mixing ratio and surface pressure. At a mole fraction of 0.4 of 7HNO3C in SA, the attractive and repulsive interaction between these two molecules balance each other forming a stable film with nanoscale aggregates. UV-Vis absorption spectroscopic studies reveal the nature of the aggregates in LB films. Scanning electron microscopy gives compelling visual evidence of formation of nanoscale aggregates in the mixed LB films.

  9. Photochemical functionalization of diamond films using a short carbon chain acid

    NASA Astrophysics Data System (ADS)

    Wang, Chun; Huang, Nan; Zhuang, Hao; Yang, Bing; Zhai, Zhaofeng; Jiang, Xin

    2016-02-01

    Diamond is recognized as a promising semiconductor material for biological applications, because of its high chemical stability and biocompatibility. Here, we report an acid with only three carbon chain, acrylic acid (AA), for the functionalization of H-terminated diamond film via photochemical method. The successfully modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy and contact angle analyzer. Our functionalization approach was proven to be simple and facile, which shows a new potential opportunity for the photochemical modification of diamond surface with short carbon chain acid.

  10. Real refractive indices of infrared-characterized nitric-acid/ice films: Implications for optical measurements of polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Middlebrook, Ann M.; Berland, Brian S.; George, Steven M.; Tolbert, Margaret A.; Toon, Owen B.

    1994-01-01

    The infrared spectra of nitric-acid/ice films representative of polar stratospheric clouds (PSCs) were collected with simultaneous optical interference measurements to determine the real refractive indices at lambda = 632 nm. Ice and amphorous nitric-acid/ice films were prepared by condensation of water and nitric acid vapors onto a wedged Al2O3 substrate. The real refractive indices of these films were determined from the optical interference of a reflected helium-neon laser during film growth. The indices of the amphorous films varied smoothly from n = 1.30 for ice to n = 1.49 for nitric acid, similar to observations in previous work. We were unable to obtain the refractive index of crystlline films during adsorption because of optical scattering caused by surface roughness. Therefore crystlline nitric acid hydrate films were prepared by annealing amphorous nitric-acid/ice films. Further heating caused desorption of the crystalline hydrate films. During desorption, the refractive indices for ice, NAM (nitric acid monohydrate), alpha- and beta-NAT (nitric acid trihydrate) films were measured using the optical interference technique. In agreement with earlier data, the real refractive indices for ice and NAM determined in desorption were n = 1.30 +/- 0.01 and n = 1.53 +/- 0.03, respectively. The real refractive indices for alpha- and beta-NAT were found to be n = 1.51 +/- 0.01 and n greater than or equal to 1.46, respectively. Our measurements also suggest that the shape of crystalline nitric acid particles may depend on whether they nucleate from the liquid or by vapor deposition. If confirmed by future studies, this observation may provide a means of distinguishing the nucleation mechanism of crystalline PSCs.

  11. Suberin fatty acids isolated from outer birch bark improve moisture barrier properties of cellulose ether films intended for tablet coatings.

    PubMed

    Heinämäki, Jyrki; Halenius, Anna; Paavo, Maaja; Alakurtti, Sami; Pitkänen, Pauliina; Pirttimaa, Minni; Paaver, Urve; Kirsimäe, Kalle; Kogermann, Karin; Yliruusi, Jouko

    2015-07-15

    We showed that the addition of suberin fatty acids (SFAs) even at small concentrations significantly improves the water vapor barrier properties of hydroxypropyl methylcellulose (HPMC) films. SFAs were isolated from the outer birch bark using extractive hydrolysis. The effects of SFAs on the film formation of aqueous HPMC were investigated with free films plasticized with polyethylene glycol (PEG 400). Special attention was paid on the physical solid-state, moisture barrier and mechanical stress-strain properties of films intended for tablet film coatings. Topography and surface morphology, glass transition temperature (Tg), tensile strength, Young's modulus, and water vapor permeation (WVP) of films were studied. The addition of SFAs lowered the Tg of films suggesting partial enhancement in film plasticization. The WVP of films decreased with increasing SFAs concentration up to 15% (calculated as a % w/w from a polymer weight). The WVP value for a non-suberized reference film and suberized film plasticized with PEG 400 was 2.13×10(-6) and 0.69[×10(-6) g/(mm(2)×h)×mm/Pa], respectively. The addition of SFAs impaired the mechanical stress-strain properties of HPMC films by reducing the deformation capacity of film. In conclusion, the film properties and performance of aqueous HPMC can be modified by including SFAs in the films. PMID:25936623

  12. Preparation of ordered films containing a phenylene ethynylene oligomer by the Langmuir-Blodgett technique.

    PubMed

    Villares, Ana; Lydon, Donocadh P; Porrès, Laurent; Beeby, Andrew; Low, Paul J; Cea, Pilar; Royo, Fèlix M

    2007-06-28

    This paper reports the fabrication and characterization of Langmuir and Langmuir-Blodgett (LB) films incorporating an oligo(phenylene-ethynylene) (OPE) derivative, namely, 4-[4-(4-hexyloxyphenylethynyl)-phenylethynyl]-benzoic acid (HBPEB). Conditions appropriate for deposition of monolayers of HBPEB at the air-water interface have been established and the resulting Langmuir films characterized by a combination of surface pressure and surface potential versus area per molecule isotherms, Brewster angle microscopy, and ultraviolet reflection spectroscopy. The Langmuir films are readily transferred onto solid substrates, and one-layer LB films transferred at several surface pressures onto mica substrates have been analyzed by means of atomic force microscopy, from which it can be concluded that 14 mN/m is an optimum surface pressure of transference, giving well-ordered homogeneous films without three-dimensional defects and a low surface roughness. The optical and emissive properties of the LB films have been determined with significant blue-shifted absorption spectra indicating formation of two-dimensional H aggregates and a Stokes shift illustrating the effects of the solid-like environment on the molecular chromophore. PMID:17552562

  13. The contribution of acidulant to the antibacterial activity of acid soluble α- and β-chitosan solutions and their films.

    PubMed

    Jung, Jooyeoun; Cavender, George; Zhao, Yanyun

    2014-01-01

    This study evaluated individual contributions of dissolving acids (acetic acid, lactic acid, and hydrochloric acid) or acid solubilized chitosan to the antibacterial activity against Listeria innocua and Escherichia coli as solutions and dried films. Solutions containing chitosan showed significantly (P < 0.05) different inhibitory activity (measured as percentage of inhibition (PI), in percent) against L. innocua and E. coli, compared to equivalent acid solutions. This increase was calculated as additional inhibition (AI, in percent), which could be as high as 65% in solutions containing 300-320 kDa chitosan depending on the acid type, bacterial species, and the chitosan form (α or β). Solutions containing 4-5 kDa chitosan had lower AI and showed much greater variability among the different chitosan forms, acid types, and bacterial species. Higher molecular weight (Mw) chitosan also showed significantly higher levels of adsorption to bacterial cells than that of lower Mw samples, suggesting that the observed increase in inhibition was the result of surface phenomena. The contribution of acids to the antibacterial activity of chitosan films was assessed by comparing non-rinsed and rinsed films (rinsed in the appropriate broth to remove residual acids and active fragments formed on the dried film). Rinsing β-chitosan films has reduced PI by as much as 28% compared with non-rinsed films, indicating that part of the antibacterial activity of chitosan films is due to the presence of soluble acid compounds and/or other active fragments. Overall, both acidulant and chitosan were found to contribute to the antibacterial activity of acid solubilized α- and β-chitosan, with the exact antibacterial activity of chitosan varying based on the solution and film properties, suggesting a complex interaction. PMID:24196584

  14. Biodegradable honeycomb-patterned film composed of poly(lactic acid) and dioleoylphosphatidylethanolamine.

    PubMed

    Fukuhira, Yukako; Kitazono, Eiichi; Hayashi, Takami; Kaneko, Hiroaki; Tanaka, Masaru; Shimomura, Masatsugu; Sumi, Yoshihiko

    2006-03-01

    Honeycomb-patterned films have been reported to be useful for scaffolds of cell culture in tissue engineering. In the present study, we investigated a new compound, dioleoylphosphatidylethanolamine (DOPE), a naturally derived phospholipid having unsaturated fatty acid moieties, as a surfactant for fabricating honeycomb-patterned poly(d,l-lactide) (PLA) film. Only DOPE among commercially available phospholipids was useful as a surfactant, and it showed good solubility in PLA/chloroform solution and an excellent property for fabricating honeycomb-patterned film (the concentration of DOPE was from 0.2% to 20% by weight based on the weight of PLA). The pore size of the honeycomb was uniform, and all pores were interconnected with each other. The contact angle of water on the honeycomb-patterned film was affected by the amount of DOPE. Time-of-flight secondary ion mass spectrometer (TOF-SIMS) data suggested that DOPE was concentrated on the surface of the honeycomb-patterned film. To investigate cell proliferation and adhesion on the honeycomb-patterned film, NIH3T3 fibroblast cells were cultured on the film. The NIH3T3 cells adhered well on the honeycomb-patterned PLA film with DOPE (PLA-DOPE) and showed good cell proliferation compared to that on honeycomb-patterned PLA film fabricated with a copolymer (CAP) of dodecylacrylamide and omega-carboxyhexylacrylamide (PLA-CAP). These results suggest that the honeycomb-patterned PLA-DOPE can be applicable as a scaffold for cells with better profiles in comparison with PLA-CAP. PMID:16293301

  15. Silicon dioxide thin film mediated single cell nucleic acid isolation.

    PubMed

    Bogdanov, Evgeny; Dominova, Irina; Shusharina, Natalia; Botman, Stepan; Kasymov, Vitaliy; Patrushev, Maksim

    2013-01-01

    A limited amount of DNA extracted from single cells, and the development of single cell diagnostics make it necessary to create a new highly effective method for the single cells nucleic acids isolation. In this paper, we propose the DNA isolation method from biomaterials with limited DNA quantity in sample, and from samples with degradable DNA based on the use of solid-phase adsorbent silicon dioxide nanofilm deposited on the inner surface of PCR tube. PMID:23874571

  16. Silicon Dioxide Thin Film Mediated Single Cell Nucleic Acid Isolation

    PubMed Central

    Bogdanov, Evgeny; Dominova, Irina; Shusharina, Natalia; Botman, Stepan; Kasymov, Vitaliy; Patrushev, Maksim

    2013-01-01

    A limited amount of DNA extracted from single cells, and the development of single cell diagnostics make it necessary to create a new highly effective method for the single cells nucleic acids isolation. In this paper, we propose the DNA isolation method from biomaterials with limited DNA quantity in sample, and from samples with degradable DNA based on the use of solid-phase adsorbent silicon dioxide nanofilm deposited on the inner surface of PCR tube. PMID:23874571

  17. Photo-generated Acid Diffusion in Polymer Photoresist Thin Films

    NASA Astrophysics Data System (ADS)

    Lin, Eric; Soles, Christopher; Wu, Wen-Li; Lin, Qinghuang

    2000-03-01

    Advanced photoresist formulations make use of photosensitive molecules, photoacid generators (PAGs), which decompose to form acids after illumination with UV radiation. The photo-generated acids then catalytically alter the solubility of the resist polymer during a post-exposure bake so that the exposed areas of an image can be removed with an appropriate solvent. One of the limitations in resist performance is the diffusion of small molecules such as the photoacid generators (PAG), photo-generated acids (PGAs), solvents, and performance enhancing additives, in the photoresist formulation. We utilize the high spatial resolution of neutron reflectometry over length scales relevant to line width broadening (10 nm to 20 nm) to measure the diffusion rates of PAGs, PGAs, and polymers in model resist materials. In this study, the model polymer matrix material is monodisperse poly(hydroxystyrene)(PHS) and the photoacid generator is bis(p-tert-butylphenyl) iodonium perfluorooctanesulfonate (PFOS). By measuring the profiles of the PGAs in the PHS layer and into an overlaying poly(methyl methacrylate) layer as a function of post-exposure bake temperature and time, the initial rates of diffusion may be determined.

  18. Preliminary characterization of dexamethasone-loaded cross-linked hyaluronic acid films for topical ocular therapy.

    PubMed

    Calles, J A; López-García, A; Vallés, E M; Palma, S D; Diebold, Y

    2016-07-25

    The aim of this work was to design and characterize cross-linked hyaluronic acid (HA)-itaconic acid (IT) films loaded with dexamethasone sodium phosphate salt (DEX) for topical therapy of inflammatory ocular surface diseases. Films were chemically cross-linked with polyethylene glycol diglycidyl ether (PEGDE), then physical and mechanical characterization by stress-strain, X-ray diffraction, X-ray fluorescence spectrometry and swelling assays was conducted. A sequential in vitro therapeutic efficacy model was designed to assess changes in interleukin (IL)-6 production in an inflamed human corneal epithelial (HCE) cell line after film exposure. Changes in cell proliferation after film exposure were assessed using the alamarBlue(®) proliferation assay. Experimental findings showed desirable mechanical properties and in vitro efficacy to reduce cell inflammation. A moderately decreased proliferation rate was induced in HCE cells by DEX-loaded films, compared to commercial DEX eye drops. These results suggest that DEX and HA have opposite effects. The sequential in vitro therapeutic efficacy model arises as an efficient tool to study drug release from delivery systems by indirect measurement of a biological response. PMID:27242313

  19. Electrical and Optical Properties of Organic Thin Films

    NASA Astrophysics Data System (ADS)

    Buckner, Spencer Lewis

    The purpose of this research was to examine the applicability of organic thin films as electrical insulators in metal-insulator-semiconductor (MIS) and metal-insulator -metal (MIM) devices and an anti-reflective (A-R) coatings for solar cells. Films of anthracene, stearic acid and diacetylene alcohol were examined for their electrical and optical properties. Two techniques were used to deposit the films for these studies. Thermal evaporation in vacuum was used to deposit aluminum as electrodes and contacts in MIS and MIM devices. The organic films were deposited by either thermal evaporation or the Langmuir-Blodgett (L-B) dipping technique. Several vacuum systems and an L-B trough were fabricated for these studies and their design and construction are outlined. Several types of measurements were used to examine the properties of the organic films. Optical reflectance measurements of the diacetylene alcohol and stearic acid, both deposited by the L-B technique, on commercial silicon solar cells were used to study the potential use of these types of films as A-R and protective coatings. Electrical breakdown studies of the MIM devices were conducted to determine the maximum electric fields the insulators could withstand without destruction. Capacitance versus voltage (C-V) measurements of the organic films in MIS devices were used to determine surface defect densities at the semicondcutor/insulator interface. For each type of measurements made on the devices, theories are outlined to analyze the data obtained. The optical reflectance data are analyzed using standard electromagnetic theory. The electrical breakdown data are examined using the theories of Forlani and Minnaja (F-M) and Klein. The C-V data are examined using several different theories to determine charge and defect densities and to analyze the effects of thermal stressing and annealing. Finally, conclusions are drawn as to the applicability of these types of organic materials as insulators and coatings

  20. Improving the physical and moisture barrier properties of Lepidium perfoliatum seed gum biodegradable film with stearic and palmitic acids.

    PubMed

    Seyedi, Samira; Koocheki, Arash; Mohebbi, Mohebbat; Zahedi, Younes

    2015-01-01

    Stearic and palmitic fatty acids (10%, 20% and 30%, W/W gum) were used to improve the barrier properties of Lepidium perfoliatum seed gum (LPSG) film. The impact of the incorporation of fatty acids into the film matrix was studied by investigating the physical, mechanical, and barrier properties of the films. Addition of stearic and palmitic fatty acids to LPSG films reduced their water vapor permeability (WVP), moisture content, water solubility and water adsorption. Increasing fatty acid concentration from 10% to 30%, reduced the elongation at break (EB). Lower values of tensile strength (TS) and elastic modulus (EM) were obtained in the presence of higher fatty acids concentrations. Incorporation of fatty acids led to production of opaque films and the opacity increased as function of fatty acids concentration. Results showed that moisture content, water solubility and WVP decreased as the chain length of fatty acid increased. Therefore, LPSG-fatty acids composite film could be used for packaging in which a low affinity toward water is needed. PMID:25795389

  1. Pressure-Sensitive Touch Panel Based on Piezoelectric Poly(L-lactic acid) Film

    NASA Astrophysics Data System (ADS)

    Ando, Masamichi; Kawamura, Hideki; Kitada, Hiroaki; Sekimoto, Yasuyuki; Inoue, Takafumi; Tajitsu, Yoshiro

    2013-09-01

    Poly(lactic acid) (PLA) is a widely used biomass-derived polymer. It is chiral because the lactic acid monomer has an asymmetric carbon. If the L-lactide is polymerized, then the PLA polymer is an L-type PLA or poly(L-lactic acid) (PLLA); if the D-lactide in PLA is polymerized, then the polymer is a D-type PLA (PDLA). When these polymers undergo drawing or elongation, they exhibit shear piezoelectricity. PLA films are highly transparent and do not exhibit pyroelectricity because of the lack of intrinsic polarization. Therefore, if a PLLA film is used for a touch panel, which is operated by pressure, there is no spurious signal due to heating from the fingers. This suggests that PLLA films may be suitable for touch panels using pressure detection. We used PLLA as the base film of a projected capacitive touch panel with multiple electrodes, and demonstrated a multitouch gesture screen that was sensitive to pressure applied on the screen. This touch panel technology has potential applications for smart phones and tablet personal computers.

  2. Formation of calcium carbonate films on chitosan substrates in the presence of polyacrylic acid

    SciTech Connect

    He, Linghao; Xue, Rui; Song, Rui

    2009-05-15

    In this investigation, chitosan membranes with different surface average degrees of deacetylation (DA) are prepared and then are employed as the support matrix to culture calcium carbonate (CaCO{sub 3}). In the presence of high concentration of polyacrylic acid (PAA), the CaCO{sub 3} films obtained on the surface of all chitosan films mainly consisted of vaterite, which suggests the presence of bulk PAA plays an overwhelming part in stabilizing the vaterite. As a comparison, the influences of active groups indicate that only in case of low concentration PAA the thin CaCO{sub 3} films grown on chitosan with 8% DA mainly consisted of vaterite owing to the strong nucleation ability of -NH{sub 2} group, whereas, for those grown on chitosan with 80% DA the CaCO{sub 3} films mainly consisted of aragonite. A more complex scenario revealed that in the case of intermediate concentration of PAA the formed polymorphs behave as mixtures of vaterite and aragonite. - Graphical abstract: Chitosan membranes with different degrees of deacetylation (DA) are employed as support to culture calcium carbonate (CaCO{sub 3}). In high concentration of polyacrylic acid (PAA), the CaCO{sub 3} films obtained consisted of vaterite. However, the CaCO{sub 3} film grown on chitosan with 8% DA mainly consisted of vaterite as opposed to aragonite for chitosan with 8% DA. The schematic presentation of the formation of calcium carbonate on chitosan films with different degrees of acetylation in the presence of PAA with low-, mid- and high concentrations.

  3. Hyaluronan-Itaconic Acid-Glutaraldehyde Films for Biomedical Applications: Preliminary Studies.

    PubMed

    Calles, Javier Adrián; Ressia, Jorge Aníbal; Llabot, Juan Manuel; Vallés, Enrique Marcelo; Palma, Santiago Daniel

    2016-01-01

    New hyaluronic acid-itaconic acid films were synthesized as potential materials with biomedical applications. In this work, we explored the homogeneous cross-linking reactions of hyaluronic acid using glutaraldehyde in the presence of itaconic acid and triacetin as plasticizers. Biomechanical properties were assessed in terms of stability by measuring swelling in aqueous environments, investigating wettability using contact angle tests, and evaluating bioadhesive performance. The ductility of the materials was evaluated through stress-strain measurements and the morphology was explored by scanning electron microscopy. The results show that the incorporation of itaconic acid improved most of the desirable properties, increasing adhesiveness and reducing wettability and swelling. The use of triacetin enhanced the strength, bioadhesiveness, and ductility of the material. PMID:27110498

  4. Poly(acrylic acid)-grafted fluoropolymer films for highly sensitive fluorescent bioassays.

    PubMed

    Jung, Chan-Hee; Hwang, In-Tae; Kuk, In-Seol; Choi, Jae-Hak; Oh, Byung-Keun; Lee, Young-Moo

    2013-03-01

    In this study, a facile and effective method for the surface functionalization of inert fluoropolymer substrates using surface grafting was demonstrated for the preparation of a new platform for fluorescence-based bioassays. The surface of perfluorinated poly(ethylene-co-propylene) (FEP) films was functionalized using a 150 keV ion implantation, followed by the graft polymerization of acrylic acid, to generate a high density of carboxylic acid groups on the implanted surface. The resulting functionalized surface was investigated in terms of the surface density of carboxylic acid, wettability, chemical structure, surface morphology, and surface chemical composition. These results revealed that poly(acrylic acid) (PAA) was successfully grafted onto the implanted FEP surface and its relative amount depended on the fluence. To demonstrate the usefulness of this method for the fabrication of bioassays, the PAA-grafted FEP films were utilized for the immobilization of probe DNA for anthrax toxin, followed by hybridization with Cy3-labeled target DNA. Liver cancer-specific α-feto-protein (AFP) antigen was also immobilized on the PAA-grafted FEP films. Texas Red-labeled secondary antibody was reacted with AFP-specific primary antibody prebound to the AFP antigen using an immunoassay method. The results revealed that the fluorescence intensity clearly depended on the concentration of the target DNA hybridized to the probe DNA and the AFP antigen immobilized on the FEP films. The lowest detectable concentrations of the target DNA and the AFP antigen were 10 fg/mL and 10 pg/mL, respectively, with the FEP films prepared at a fluence of 3 × 10(14) ions/cm(2). PMID:23452270

  5. Electrophoretic deposition of hyaluronic acid and composite films for biomedical applications

    NASA Astrophysics Data System (ADS)

    Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-06-01

    Hyaluronic acid (HYH) is a natural biopolymer, which has tremendous potential for various biomedical applications. Electrophoretic deposition (EPD) methods have been developed for the fabrication of HYH films and composites. New methods for the immobilization of drugs and proteins have been utilized for the fabrication of organic composites. Electrophoretic deposition enabled the fabrication of organic-inorganic composites containing bioceramics and bioglass in the HYH matrix. It was shown that the deposition yield, microstructure, and composition of the films can be controlled. Potential applications of EPD for the surface modification of biomedical implants and fabrication of biosensors are highlighted.

  6. Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphoric acid

    PubMed Central

    2012-01-01

    The photoluminescence emission of nanoporous anodic aluminum oxide films formed in phosphoric acid is studied in order to explore their defect-based subband electronic structure. Different excitation wavelengths are used to identify most of the details of the subband states. The films are produced under different anodizing conditions to optimize their emission in the visible range. Scanning electron microscopy investigations confirm pore formation in the produced layers. Gaussian analysis of the emission data indicates that subband states change with anodizing parameters, and various point defects can be formed both in the bulk and on the surface of these nanoporous layers during anodizing. PMID:23272786

  7. Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphoric acid.

    PubMed

    Nourmohammadi, Abolghasem; Asadabadi, Saeid Jalali; Yousefi, Mohammad Hasan; Ghasemzadeh, Majid

    2012-01-01

    The photoluminescence emission of nanoporous anodic aluminum oxide films formed in phosphoric acid is studied in order to explore their defect-based subband electronic structure. Different excitation wavelengths are used to identify most of the details of the subband states. The films are produced under different anodizing conditions to optimize their emission in the visible range. Scanning electron microscopy investigations confirm pore formation in the produced layers. Gaussian analysis of the emission data indicates that subband states change with anodizing parameters, and various point defects can be formed both in the bulk and on the surface of these nanoporous layers during anodizing. PMID:23272786

  8. Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphoric acid

    NASA Astrophysics Data System (ADS)

    Nourmohammadi, Abolghasem; Asadabadi, Saeid Jalali; Yousefi, Mohammad Hasan; Ghasemzadeh, Majid

    2012-12-01

    The photoluminescence emission of nanoporous anodic aluminum oxide films formed in phosphoric acid is studied in order to explore their defect-based subband electronic structure. Different excitation wavelengths are used to identify most of the details of the subband states. The films are produced under different anodizing conditions to optimize their emission in the visible range. Scanning electron microscopy investigations confirm pore formation in the produced layers. Gaussian analysis of the emission data indicates that subband states change with anodizing parameters, and various point defects can be formed both in the bulk and on the surface of these nanoporous layers during anodizing.

  9. Photoelectrocatalytic degradation of benzoic acid using Au doped TiO2 thin films.

    PubMed

    Mohite, V S; Mahadik, M A; Kumbhar, S S; Hunge, Y M; Kim, J H; Moholkar, A V; Rajpure, K Y; Bhosale, C H

    2015-01-01

    Highly transparent pure and Au doped TiO2 thin films are successfully deposited by using simple chemical spray pyrolysis technique. The effect of Au doping onto the structural and physicochemical properties has been investigated. The PEC study shows that, both short circuit current (Isc) and open circuit voltage (Voc) are (Isc=1.81mA and Voc=890mV) relatively higher at 3at.% Au doping percentage. XRD study shows that the films are nanocrystalline in nature with tetragonal crystal structure. FESEM images show that the film surface covered with a smooth, uniform, compact and rice shaped nanoparticles. The Au doped thin films exhibit indirect band gap, decreases from 3.23 to 3.09eV with increase in Au doping. The chemical composition and valence states of pure and Au doped TiO2 films are studied by using X-ray photoelectron spectroscopy. The photocatalytic degradation effect is 49% higher in case 3at.% Au doped TiO2 than the pure TiO2 thin film photoelectrodes in the degradation of benzoic acid. It is revealed that Au doped TiO2 can be reused for five cycles of experiments without a requirement of post-treatment while the degradation efficiency was retained. PMID:25550120

  10. Blend-modification of soy protein/lauric acid edible films using polysaccharides.

    PubMed

    Pan, Hongyang; Jiang, Bo; Chen, Jie; Jin, Zhengyu

    2014-05-15

    Different types of polysaccharides (propyleneglycol alginate (PGA), pectin, carrageenan and aloe polysaccharide) were incorporated into soy protein isolate (SPI)/lauric acid (La) films using a co-drying process or by direct addition to form biodegradable composite films with modified water vapour permeability (WVP) and mechanical properties. The WVP of SPI/La/polysaccharide films decreased when polysaccharides were added using the co-drying process, regardless of the type of polysaccharide. The tensile strength of SPI/La film was increased by the addition of polysaccharides, and the percentage elongation at break was increased by incorporating PGA using the co-drying process. Regarding oxygen-barrier performance, no notable differences were observed between the SPI/La and SPI/La/polysaccharide films. The most significant improvement was observed by blending PGA, with the co-dried preparation exhibiting better properties than the direct-addition preparation. Scanning electron microscopy (SEM) revealed that the microstructures of the films are the basis for the differences in the barrier and mechanical properties of the modified blends of SPI, polysaccharides and La. PMID:24423494

  11. Development and characterization of sugar palm starch and poly(lactic acid) bilayer films.

    PubMed

    Sanyang, M L; Sapuan, S M; Jawaid, M; Ishak, M R; Sahari, J

    2016-08-01

    The development and characterization of environmentally friendly bilayer films from sugar palm starch (SPS) and poly(lactic acid) (PLA) were conducted in this study. The SPS-PLA bilayer films and their individual components were characterized for their physical, mechanical, thermal and water barrier properties. Addition of 50% PLA layer onto 50% SPS layer (SPS50-PLA50) increased the tensile strength of neat SPS film from 7.74 to 13.65MPa but reduced their elongation at break from 46.66 to 15.53%. The incorporation of PLA layer significantly reduced the water vapor permeability as well as the water uptake and solubility of bilayer films which was attributed to the hydrophobic characteristic of the PLA layer. Furthermore, scanning electron microscopy (SEM) image of SPS50-PLA50 revealed lack of strong interfacial adhesion between the SPS and PLA. Overall, the incorporation of PLA layer onto SPS films enhances the suitability of SPS based films for food packaging. PMID:27112848

  12. Biodegradable polyester films from renewable aleuritic acid: surface modifications induced by melt-polycondensation in air

    NASA Astrophysics Data System (ADS)

    Jesús Benítez, José; Alejandro Heredia-Guerrero, José; Inmaculada de Vargas-Parody, María; Cruz-Carrillo, Miguel Antonio; Morales-Flórez, Victor; de la Rosa-Fox, Nicolás; Heredia, Antonio

    2016-05-01

    Good water barrier properties and biocompatibility of long-chain biopolyesters like cutin and suberin have inspired the design of synthetic mimetic materials. Most of these biopolymers are made from esterified mid-chain functionalized ω-long chain hydroxyacids. Aleuritic (9,10,16-trihydroxypalmitic) acid is such a polyhydroxylated fatty acid and is also the major constituent of natural lac resin, a relatively abundant and renewable resource. Insoluble and thermostable films have been prepared from aleuritic acid by melt-condensation polymerization in air without catalysts, an easy and attractive procedure for large scale production. Intended to be used as a protective coating, the barrier's performance is expected to be conditioned by physical and chemical modifications induced by oxygen on the air-exposed side. Hence, the chemical composition, texture, mechanical behavior, hydrophobicity, chemical resistance and biodegradation of the film surface have been studied by attenuated total reflection–Fourier transform infrared spectroscopy (ATR–FTIR), atomic force microscopy (AFM), nanoindentation and water contact angle (WCA). It has been demonstrated that the occurrence of side oxidation reactions conditions the surface physical and chemical properties of these polyhydroxyester films. Additionally, the addition of palmitic acid to reduce the presence of hydrophilic free hydroxyl groups was found to have a strong influence on these parameters.

  13. Optical and thermal properties of azo derivatives of salicylic acid thin films

    NASA Astrophysics Data System (ADS)

    Ghoneim, M. M.; El-Ghamaz, N. A.; El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Serag, L. S.

    2015-02-01

    N-acryloyl-4-aminosalicylic acid (4-AMSA), monomer (HL) and 5-(4‧-alkyl phenylazo)-N-acryloyl-4-aminosalicylic acid (HLn) are synthesized and characterized with various physico-chemical techniques. Thin films of 5-(4‧-alkyl phenylazo)-N-acryloyl-4-aminosalicylic acid (HLn) are prepared by spin coating technique. The X-ray diffraction (XRD) patterns of 4-aminosalicylic acid (4-ASA) and its derivatives are investigated in powder and thin film forms. Thermal properties of the compounds are investigated by thermogravemetric analysis (TGA). The optical energy gap and the type of optical transition are investigated in the wavelength range (200-2500 nm) for 4-ASA, HL and HLn. The values of fundamental energy gap (Eg) are in the range 3.60-3.69 eV for all compounds and the type of optical transition is found to be indirect allowed. The onset energy gap Eg∗ appeared only for azodye compounds is found to be in the range 0.95-1.55 eV depending on the substituent function groups. The refractive index, n, shows a normal dispersion in the wavelength range 650-2500 nm, while shows anomalous dispersion in the wavelength rang 200-650 nm. The dispersion parameters ε∞, εL, Ed, Eo and N /m∗ are calculated. The photoluminescence phenomena (PL) appear for thin films of 4-ASA and its derivatives show three main emission transitions.

  14. Biocatalyzed approach for the surface functionalization of poly(L-lactic acid) films using hydrolytic enzymes.

    PubMed

    Pellis, Alessandro; Acero, Enrique Herrero; Weber, Hansjoerg; Obersriebnig, Michael; Breinbauer, Rolf; Srebotnik, Ewald; Guebitz, Georg M

    2015-09-01

    Poly(lactic acid) as a biodegradable thermoplastic polyester has received increasing attention. This renewable polyester has found applications in a wide range of products such as food packaging, textiles and biomedical devices. Its major drawbacks are poor toughness, slow degradation rate and lack of reactive side-chain groups. An enzymatic process for the grafting of carboxylic acids onto the surface of poly(L-lactic acid) (PLLA) films was developed using Candida antarctica lipase B as a catalyst. Enzymatic hydrolysis of the PLLA film using Humicola insolens cutinase in order to increase the number of hydroxyl and carboxylic groups on the outer polymer chains for grafting was also assessed and showed a change of water contact angle from 74.6 to 33.1° while the roughness and waviness were an order of magnitude higher in comparison to the blank. Surface functionalization was demonstrated using two different techniques, (14) C-radiochemical analysis and X-ray photoelectron spectroscopy (XPS) using (14) C-butyric acid sodium salt and 4,4,4-trifluorobutyric acid as model molecules, respectively. XPS analysis showed that 4,4,4-trifluorobutyric acid was enzymatically coupled based on an increase of the fluor content from 0.19 to 0.40%. The presented (14) C-radiochemical analyses are consistent with the XPS data indicating the potential of enzymatic functionalization in different reaction conditions. PMID:25963883

  15. Fragmentation and dimerization of aliphatic amino acid films induced by vacuum ultraviolet irradiation

    NASA Astrophysics Data System (ADS)

    Tanaka, Masahito; Kaneko, Fusae; Koketsu, Toshiyuki; Nakagawa, Kazumichi; Yamada, Toru

    2008-10-01

    The chemical reaction of aliphatic amino acid, such as alanine (Ala) and leucine (Leu), in the solid phase induced by vacuum ultraviolet (VUV) irradiation was studied by high-performance liquid chromatography technique and mass spectroscopic method. Quantum efficiencies of dimerization of Ala in the solid phase obviously showed irradiated VUV wavelength dependence. The values of quantum efficiencies of formation of Ala dimer were determined to be 5.7×10-5, 1.3×10-3, and 2.4×10-4 for 208, 183, and 87 nm irradiation, respectively. VUV-induced fragment desorption from Ala and Leu films has also been examined by mass spectroscopic method. Observed mass spectra clearly indicated that both the deamination and decarboxylation reactions were common in both Ala and Leu films, and the dissociation of side chain occurred only in Leu film.

  16. Deoxyribonucleic acid-based hybrid thin films for potential application as high energy density capacitors

    NASA Astrophysics Data System (ADS)

    Joyce, Donna M.; Venkat, Narayanan; Ouchen, Fahima; Singh, Kristi M.; Smith, Steven R.; Grabowski, Christopher A.; Terry Murray, P.; Grote, James G.

    2014-03-01

    Deoxyribonucleic acid (DNA) based hybrid films incorporating sol-gel-derived ceramics have shown strong promise as insulating dielectrics for high voltage capacitor applications. Our studies of DNA-CTMA (cetyltrimethylammonium) complex/sol-gel ceramic hybrid thin film devices have demonstrated reproducibility and stability in temperature- and frequency-dependent dielectric properties with dielectric constant k ˜ 5.0 (1 kHz), as well as reliability in DC voltage breakdown measurements, attaining values consistently in the range of 300-350 V/μm. The electrical/dielectric characteristics of DNA-CTMA films with sol-gel-derived ceramics were examined to determine the critical energy storage parameters such as voltage breakdown and dielectric constant.

  17. Novel biocompatible and biodegradable ultrathin films of poly (L-Lactic acid) by plasma polymerization

    NASA Astrophysics Data System (ADS)

    Chang, Yi-Hsin; Chang, Chun-Chih; Chen, Ying-Chu; Yang, A. C.-M.; Liu, Y. C.

    2006-03-01

    Ultra-thin films (<= 50 nm) of biodegradable poly (L-lactic acid) were prepared through efficient RF plasma synthesis. The surface morphology of deposited films was amorphous and molecularly uniform (Ra = 0.7 nm). The chemical compositions as determined from FTIR and NMR demonstrated extraordinarily high retention of ester groups with a small fraction of chain cross-linking that could be controlled by process parameters. The chemical routes of the polymerization were described and discussed. This versatile thin film coating technique is very useful for surface engineering of general biomedical devices and implants for improved biocompatibility. In addition, PLLA polymerized in the liquid phase by plasma was also explored and will be presented. This work is supported by National Science Council of Taiwan.

  18. Growth characteristics of Ti-based fumaric acid hybrid thin films by molecular layer deposition.

    PubMed

    Cao, Yan-Qiang; Zhu, Lin; Li, Xin; Cao, Zheng-Yi; Wu, Di; Li, Ai-Dong

    2015-09-01

    Ti-based fumaric acid hybrid thin films were successfully prepared using inorganic TiCl4 and organic fumaric acid as precursors by molecular layer deposition (MLD). The effect of deposition temperature from 180 °C to 350 °C on the growth rate, composition, chemical state, and topology of hybrid films has been investigated systematically by means of a series of analytical tools such as spectroscopic ellipsometry, atomic force microscopy (AFM), high resolution X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The MLD process of the Ti-fumaric acid shows self-limiting surface reaction with a reasonable growth rate of ∼0.93 Å per cycle and small surface roughness of ∼0.59 nm in root-mean-square value at 200 °C. A temperature-dependent growth characteristic has been observed in the hybrid films. On increasing the temperature from 180 °C to 300 °C, the growth rate decreases from 1.10 to 0.49 Å per cycle and the XPS composition of the film's C : O : Ti ratio changes from 8.35 : 7.49 : 1.00 to 4.66 : 4.80 : 1.00. FTIR spectra indicate that the hybrid films show bridging bonding mode at a low deposition temperature of 200 °C and bridging/bidentate mixed bonding mode at elevated deposition temperatures of 250 and 300 °C. The higher C and O amounts deviating from the ideal composition may be ascribed to increased organic incorporation into the hybrid films at lower deposition temperature and temperature-dependent density of reactive sites (-OH). The composition of hybrid films grown at 350 °C shows a dramatic decrease in C and O elemental composition (C : O : Ti = 1.97 : 2.76 : 1.00) due to the thermal decomposition of the fumaric acid precursor. The produced by-product H2O changes the structure of the hybrid films, resulting in the formation of more Ti-O bonds at high temperatures. The stability of the hybrid films against chemical and thermal treatment, and long-term storage by

  19. Rapid thermal annealing of spin-coated phosphoric acid films for shallow junction formation

    NASA Astrophysics Data System (ADS)

    Sivoththaman, S.; Laureys, W.; Nijs, J.; Mertens, R.

    1997-07-01

    Rapid thermal annealing (RTA) of spin-coated phosphoric acid (H3PO4) films on silicon substrates has been studied for the formation of shallow junctions. The junctions are characterized by spreading resistance profiling. Device quality, shallow (<0.2 μm), n+p junctions are formed by the resulting phosphorous diffusion with the junction depth and surface concentration depending on the RTA conditions. The films have been studied by Fourier transform infrared spectroscopy after various RTA treatments. The presence of P=O bonds in the films becomes evident after the RTA treatment at elevated temperatures (>750 °C), below which absorption bands originating from water species are noted. More than 15% efficient, shallow emitter, large-area (10 cm×10 cm) n+pp+ silicon solar cells are fabricated with a short-time processing using this rapid thermal processing technique.

  20. A novel approach for structure quantification of fatty acids films on rain water

    NASA Astrophysics Data System (ADS)

    Mazurek, Adriana Z.; Pogorzelski, Stanisław J.; Kogut, Anna D.

    A complete compositional or structural description of naturally occurring surfactants on rainwater is not currently feasible. A main limitation of previous work has been the lack of means for correlating force-area characteristics with the chemical makeup of the films. Instead of analyzing the chemical composition of rain water film-forming organics, it is postulated here to introduce the novel scaling procedures (2D virial equation of state and 2D polymer film scaling theory) applied to the surface pressure-area ( π- A) isotherms and surface pressure-temperature ( π- T) isochors, and resulting from generalized physical formalisms modified to a multicomponent surfactant film. A set of the introduced structural film state parameters could become sensitive indicators for surface-active source-specific organic matter pathways tracing, where the measurement of surfactant concentration and chemical analyses are avoided. Performed comprehensive film studies on rain, marine and snow-melted water samples exhibited significant and differentiated film structural parameters variability. The developed procedure allows one to recover the film parameters ( π, Γ, Alim, Eisoth) present originally at the raindrop surface from the Langmuir trough data supplemented with the simultaneously taken rain event characteristics (rain rate and rain drop diameter distribution). It requires the partitioning effect of the surfactant molecules between the surface and bulk phases to be estimated where the entering quantities are: the partitioning coefficient Kp= Γ/ c and a degree of the rain water interfacial system area development Ar/ Vr evaluated here using the fatty acids concentrations as model input data. The latter parameter depends on the rain rate and the form of the drop size distribution function differing significantly from the Marshall-Palmer one at low Ir (<1 mm h -1). The partitioning factor Kp related to the physicochemical composition of the film-composing material exhibited

  1. (Thin films under chemical stress)

    SciTech Connect

    Not Available

    1990-01-01

    As stated above the purpose of this research is to enable workers in a variety of fields to understand the chemical and physical changes which take place when thin films (primarily organic films) are placed under chemical stress. This stress may occur because the film is being swelled by penetrant entrained in solvent, because interfacial reactions are occurring at one or more boundaries within the film structure, or because some component of the film is responding to an external stimulus (e.g. pH, temperature, electric field, or radiation). These questions are important within the context of our long-term goal of understanding the behavior of composite structures, composed of thin organic polymer films interspersed with Langmuir-Blodgett (LB) and self-assembled monolayers, which might have unique functional properties. In the past year we have concentrated on the following objectives: (1) understanding how the two possible diffusion mechanisms contribute to the swelling of thin films of organic polymers place in solution, (2) identifying systems which are appropriate polymer media for the construction of composite membranes for use in aqueous environments, and (3) understanding the self-assembly process for long chain fatty acids at model surfaces. Progress in meeting each of these objectives will be described in this report. 4 figs.

  2. Starch-based Antimicrobial Films Incorporated with Lauric Acid and Chitosan

    NASA Astrophysics Data System (ADS)

    Salleh, E.; Muhamad, I. I.

    2010-03-01

    Antimicrobial (AM) packaging is one of the most promising active packaging systems. Starch-based film is considered an economical material for antimicrobial packaging. This study aimed at the development of food packaging based on wheat starch incorporated with lauric acid and chitosan as antimicrobial agents. The purpose is to restrain or inhibit the growth of spoilage and/or pathogenic microorganisms that are contaminating foods. The antimicrobial effect was tested on B. substilis and E. coli. Inhibition of bacterial growth was examined using two methods, i.e. zone of inhibition test on solid media and liquid culture test (optical density measurements). The control and AM films (incorporated with chitosan and lauric acid) were produced by casting method. From the observations, AM films exhibited inhibitory zones. Interestingly, a wide clear zone on solid media was observed for B. substilis growth inhibition whereas inhibition for E. coli was not as effective as B. substilis. From the liquid culture test, the AM films clearly demonstrated a better inhibition against B. substilis than E. coli.

  3. Transport phenomena accompanying redox switching in polythionine films immersed in aqueous acetic acid solutions

    SciTech Connect

    Bruckenstein, S.; Wilde, C.P. ); Hillman, A.R. )

    1990-08-09

    The transport of neutral molecules in electroactive polymer films is a problem of considerable importance and is addressed here for thin (ca. 10 nm thick) polythionine films. In weak acid media, pH < pK{sub HA}, both solvent and undissociated weak acid are present in the polymer. Raising the pH above pK{sub HA} progressively removes HA. Using the quartz crystal microbalance, we determined the film weight changes accompanying the redox switching process. At all pH's studied, a mass decrease accompanies reduction. The magnitude of this change is consistent with the expulsion of one water molecule per redox site where, at low pH, HA within the film acts as the sole source of counterion, A{sup {minus}}. At higher pH, counterions must increasingly be supplied by the bathing solution, with the result that the mass change becomes less negative. These results are interpreted from a purely thermodynamic viewpoint, and then we discuss a coordination model as a relevant, special case.

  4. Characterization of thin-film deposition in a pulsed acrylic acid polymerizing discharge

    SciTech Connect

    Voronin, Sergey A.; Bradley, James W.; Fotea, Catalin; Zelzer, Mischa; Alexander, Morgan R.

    2007-07-15

    In this study, thin-film deposition in a pulsed rf polymerizing discharge (13.56 MHz) struck in acrylic acid has been investigated by mass spectrometry, x-ray photoelectron spectroscopy, and quartz crystal microbalance techniques. The experiment was conducted at a fixed acrylic acid pressure of 1.3 Pa and 'on' pulse duration of 0.1 ms, whereas the 'off' time was varied between 0 and 20 ms. The rf input power in the 'on' time and gas flow rate were varied between 10 and 50 W and 1.5 and 4.8 sccm (sccm denotes cubic centimeter per minute at STP), respectively. These changes of the discharge conditions resulted in large-scale progressive variations in film and gas-phase plasma composition. In particular, the -COOH functionality of the monomer was increasingly retained in the plasma-generated thin films as the duty cycle was lowered (i.e., with lowered time-averaged powers). The monomer retention reached its maximum value of 66% for 'off' times exceeding 5 ms, when the discharge was operating in the power-deficient regime. The results show that the film deposition rate is a strong function of the monomer flow rate, whereas -COOH retention is correlated to the amount of unfragmented monomer in the plasma, controlled by the applied power.

  5. Investigation of Carboxylic Acid-Neodymium Conversion Films on Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Cui, Xiufang; Liu, Zhe; Lin, Lili; Jin, Guo; Wang, Haidou; Xu, Binshi

    2015-01-01

    The new carboxylic acid-neodymium anhydrous conversion films were successfully prepared and applied on the AZ91D magnesium alloy surface by taking absolute ethyl alcohol as solvent and four kinds of soluble carboxylic acid as activators. The corrosion resistance of the coating was measured by potentiodynamic polarization test in 3.5 wt.% NaCl solution in pH 7.0. The morphology, structure, and constituents of the coating were observed by scanning electron microscope, energy dispersivespectrum, x-ray photoelectron spectrum, and Fourier infrared spectrometer. Results show that corrosion resistance properties of samples coated with four different anhydrous conversion films were improved obviously. The corrosion potential increased, corrosion current density decreased, and polarization resistance increased. Among these four kinds of conversion films the one added with phytic exhibits the best corrosion resistant property. The mechanism of anhydrous-neodymium conversion film formation is also analyzed in this paper. It reveals that the gadolinium conversion coating is mainly composed of stable Nd2O3, MgO, Mg(OH)2, and carboxylate of Nd. And that the sample surface is rich in organic functional groups.

  6. Reversible modification of structure and properties of cellulose nanofibril-based multilayered thin films induced by postassembly acid treatment.

    PubMed

    Azzam, Firas; Moreau, Céline; Cousin, Fabrice; Menelle, Alain; Bizot, Hervé; Cathala, Bernard

    2015-03-10

    A postassembly acid-treatment consisting of an immersion in 5 mM HCl solution was applied to carboxylated cellulose nanofibrils (CNF)-poly(allylamine) hydrochloride (PAH) multilayered thin films. Our results show that the treatment did not affect the overall thickness of the films without any loss of the components. However, a modification of the surface morphology was observed, as well as the swelling behavior. The process was perfectly reversible since the original structure was recovered when the thin films were rinsed by ultrapure water. Moreover, a more pronounced antireflective character was detected for the treated films. The origin of these reversible modifications was discussed. Notably, the scattering length density (SLD) profiles of the films before and after treatment support the idea of a structural reorganization of the components within the film driven by the change of their charge densities induced by the acid treatment. PMID:25706711

  7. Ruthenium oxide ion selective thin-film electrodes for engine oil acidity monitoring

    NASA Astrophysics Data System (ADS)

    Maurya, D. K.; Sardarinejad, A.; Alameh, K.

    2015-06-01

    We demonstrate the concept of a low-cost, rugged, miniaturized ion selective electrode (ISE) comprising a thin film RuO2 on platinum sensing electrode deposited using RF magnetron sputtered in conjunction with an integrated Ag/AgCl and Ag reference electrodes for engine oil acidity monitoring. Model oil samples are produced by adding nitric acid into fresh fully synthetic engine oil and used for sensor evaluation. Experimental results show a linear potential-versus-acid-concentration response for nitric acid concentration between 0 (fresh oil) to 400 ppm, which demonstrate the accuracy of the RuO2 sensor in real-time operation, making it attractive for use in cars and industrial engines.

  8. Thin-film sulfuric acid anodizing as a replacement for chromic acid anodizing

    NASA Technical Reports Server (NTRS)

    Kallenborn, K. J.; Emmons, J. R.

    1995-01-01

    Chromic acid has long been used to produce a thin, corrosion resistant (Type I) coating on aluminum. Following anodizing, the hardware was sealed using a sodium dichromate solution. Sealing closes up pores inherent in the anodized coating, thus improving corrosion resistance. The thinness of the brittle coating is desirable from a fatigue standpoint, and chromium was absorbed by the coating during the sealing process, further improving corrosion resistance. Unfortunately, both chromic acid and sodium dichromate contain carcinogenic hexavalent chromium. Sulfuric acid is being considered as a replacement for chromic acid. Sulfuric acid of 10-20 percent concentration has traditionally been used to produce relatively thick (Types II and III) or abrasion resistant (Type III) coatings. A more dilute, that is five weight percent, sulfuric acid anodizing process, which produces a thinner coating than Type II or III, with nickel acetate as the sealant has been developed. The process was evaluated in regard to corrosion resistance, throwing power, fatigue life, and processing variable sensitivity, and shows promise as a replacement for the chromic acid process.

  9. Cross-Linking Poly(lactic acid) Film Surface by Neutral Hyperthermal Hydrogen Molecule Bombardment.

    PubMed

    Du, Wangli; Shao, Hong; He, Zhoukun; Tang, Changyu; Liu, Yu; Shen, Tao; Zhu, Yan; Lau, Woon-ming; Hui, David

    2015-12-16

    Constructing a dense cross-linking layer on a polymer film surface is a good way to improve the water resistance of poly(lactic acid) (PLA). However, conventional plasma treatments have failed to achieve the aim as a result of the unavoidable surface damage arising from the charged species caused by the uncontrolled high energy coming from colliding ions and electrons. In this work, we report a modified plasma method called hyperthermal hydrogen-induced cross-linking (HHIC) technology to construct a dense cross-linking layer on PLA film surfaces. This method produces energy-controlled neutral hyperthermal hydrogen, which selectively cleaves C-H bonds by molecule collision from the PLA film without breaking other bonds (e.g., C-C bonds in the polymer backbone), and results in subsequent cross-linking of the carbon radicals generated from the organic molecules. The formation of a dense cross-linking layer can serve as a barrier layer to significantly improve both the hydrophobicity and water vapor barrier property of the PLA film. Because of the advantage of selective cleavage of C-H bonds by HHIC treatment, the original physical properties (e.g., mechanical strength and light transmittance) of the PLA films are well-preserved. PMID:26594874

  10. Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization

    NASA Astrophysics Data System (ADS)

    Seo, Hyun Suk; Ko, Yeong Mu; Shim, Jae Won; Lim, Yun Kyong; Kook, Joong-Ki; Cho, Dong-Lyun; Kim, Byung Hoon

    2010-11-01

    Plasma surface modification can be used to improve the surface properties of commercial pure Ti by creating functional groups to produce bioactive materials with different surface topography. In this study, a titanium surface was modified with acrylic acid (AA) using a plasma treatment and immobilized with bioactive arginine-glycine-aspartic acid (RGD) peptide, which may accelerate the tissue integration of bone implants. Both terminals containing the -NH2 of RGD peptide sequence and -COOH of poly(acrylic acid) (PAA) thin film were combined with a covalent bond in the presence of 1-ethyl-3-3-dimethylaminopropyl carbodiimide (EDC). The chemical structure and morphology of AA film and RGD immobilized surface were investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All chemical analysis showed full coverage of the Ti substrate with the PAA thin film containing COOH groups and the RGD peptide. The MC3T3-E1 cells were cultured on each specimen, and the cell alkaline phosphatase (ALP) activity were examined. The surface-immobilized RGD peptide has a significantly increased the ALP activity of MC3T3-E1 cells. These results suggest that the RGD peptide immobilization on the titanium surface has an effect on osteoblastic differentiation of MC3T3-E1 cells and potential use in osteo-conductive bone implants.

  11. Hydrolytic and oxidate stability of L-(+) -ascorbic acid supported in pectin films: Influence of the macromolecular structure and calcium presence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hydrolytic and oxidative stability of L-(+)-ascorbic acid (AA) into plasticized pectin films were separately studied in view of preserving vitamin C activity and/or to achieve localized antioxidant activity at pharmaceutical and food interfaces. Films were made with each one of the enzymatically...

  12. Biochemical applications of ultrathin films of enzymes, polyions and DNA

    PubMed Central

    Rusling, James F.; Hvastkovs, Eli G.; Hull, Dominic O.; Schenkman, John B.

    2012-01-01

    This feature article summarizes recent applications of ultrathin films of enzymes and DNA assembled layer-by-layer (LbL). Using examples mainly from our own research, we focus on systems developed for biocatalysis and biosensors for toxicity screening. Enzyme–poly(l-lysine) (PLL) films, especially when stabilized by crosslinking, can be used for biocatalysis at unprecedented high temperatures or in acidic or basic solutions on electrodes or sub-micron sized beads. Such films have bright prospects for chiral synthesis and biofuel cells. Excellent bioactivity and retention of enzyme structure in these films facilitates their use in detailed kinetic studies. Biosensors and arrays employing DNA–enzyme films show great promise in predicting genotoxicity of new drug and chemical product candidates. These devices combine metabolic biocatalysis, reactive metabolite–DNA reactions, and DNA damage detection. Catalytic voltammetry or electrochemiluminescence (ECL) can be used for high throughput arrays utilizing multiple LbL “spots” of DNA, enzyme and metallopolymer. DNA–enzyme films can also be used to produce nucleobase adduct toxicity biomarkers for detection by LC-MS. These approaches provide valuable high throughput tools for drug and chemical product development and toxicity prediction. PMID:18092072

  13. Controllable in situ synthesis of silver nanoparticles on multilayered film-coated silk fibers for antibacterial application.

    PubMed

    Meng, Mei; He, Huawei; Xiao, Jing; Zhao, Ping; Xie, Jiale; Lu, Zhisong

    2016-01-01

    Layer-by-layer (LbL) assembly is a versatile technique for the preparation of multilayered polymeric films. However, fabrication of LbL polymetic film on silk for the in situ growth of high-density silver nanoparticles (AgNPs) has not been realized. Herein poly(acrylic acid) (PAA)/poly(dimethyldiallylammonium chloride) (PDDA) multilayers are constructed on silk via the LbL approach, subsequently serving as a 3-dimensional matrix for in situ synthesis of AgNPs. After 8 rounds of LbL assembly, the silk is fully covered with a layer of polymeric film. AgNPs with good crystalline structures could be in-situ generated in the silk-coated multilayers and their amount could be tailored by adjusting the bilayer numbers. The as-prepared silk could effectively kill the existing bacteria and inhibit the bacterial growth, demonstrating the antimicrobial activity. Moreover, the release of Ag(+) from the modified silk can last for 120 h, rendering the modified silk sustainable antimicrobial activity. This work may provide a novel method to prepare AgNPs-functionalized antimicrobial silk for potential applications in textile industry. PMID:26414419

  14. Sandwich-Architectured Poly(lactic acid)-Graphene Composite Food Packaging Films.

    PubMed

    Goh, Kunli; Heising, Jenneke K; Yuan, Yang; Karahan, Huseyin E; Wei, Li; Zhai, Shengli; Koh, Jia-Xuan; Htin, Nanda M; Zhang, Feimo; Wang, Rong; Fane, Anthony G; Dekker, Matthijs; Dehghani, Fariba; Chen, Yuan

    2016-04-20

    Biodegradable food packaging promises a more sustainable future. Among the many different biopolymers used, poly(lactic acid) (PLA) possesses the good mechanical property and cost-effectiveness necessary of a biodegradable food packaging. However, PLA food packaging suffers from poor water vapor and oxygen barrier properties compared to many petroleum-derived ones. A key challenge is, therefore, to simultaneously enhance both the water vapor and oxygen barrier properties of the PLA food packaging. To address this issue, we design a sandwich-architectured PLA-graphene composite film, which utilizes an impermeable reduced graphene oxide (rGO) as the core barrier and commercial PLA films as the outer protective encapsulation. The synergy between the barrier and the protective encapsulation results in a significant 87.6% reduction in the water vapor permeability. At the same time, the oxygen permeability is reduced by two orders of magnitude when evaluated under both dry and humid conditions. The excellent barrier properties can be attributed to the compact lamellar microstructure and the hydrophobicity of the rGO core barrier. Mechanistic analysis shows that the large rGO lateral dimension and the small interlayer spacing between the rGO sheets have created an extensive and tortuous diffusion pathway, which is up to 1450-times the thickness of the rGO barrier. In addition, the sandwiched architecture has imbued the PLA-rGO composite film with good processability, which increases the manageability of the film and its competency to be tailored. Simulations using the PLA-rGO composite food packaging film for edible oil and potato chips also exhibit at least eight-fold extension in the shelf life of these oxygen and moisture sensitive food products. Overall, these qualities have demonstrated the high potential of a sandwich-architectured PLA-graphene composite film for food packaging applications. PMID:27028268

  15. Second-harmonic generation in mixed stilbazium salt/arachidic acid Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Liu, Liying; Zheng, Jiabiao; Wang, Wencheng; Zhang, Zhiming; Tao, Fenggang; Xu, Linxiao; Hu, Jiacong

    1992-10-01

    A stilbazium salt was synthesized and its second-order molecular polarizability was deduced to be 1.2×10 -27 esu. Measurements of second-harmonic generation and small-angle X-ray diffraction on Langmuir-Blodgett films of the stilbazium salt/arachide acid mixtures showed that the mixed compounds with molar ratios of 1:2 and 1:5 could form multilayers with large second- order optical nonlinearity. Second harmonic generation study on the alternate multilayers of stilbazium salt/arachide acid and arachidic acid showed that the second-harmonic signals were increasing monotonously up to 80 bilayers, but the increment was lower than the value predicted theoretically by the quadratic law. Possible reasons are discussed.

  16. Ferulic acid-coupled chitosan: thermal stability and utilization as an antioxidant for biodegradable active packaging film.

    PubMed

    Woranuch, Sarekha; Yoksan, Rangrong; Akashi, Mitsuru

    2015-01-22

    The aim of the present research was to study the thermal stability of ferulic acid after coupling onto chitosan, and the possibility of using ferulic acid-coupled chitosan (FA-CTS) as an antioxidant for biodegradable active packaging film. FA-CTS was incorporated into biodegradable film via a two-step process, i.e. compounding extrusion at temperatures up to 150°C followed by blown film extrusion at temperatures up to 175°C. Although incorporation of FA-CTS with a content of 0.02-0.16% (w/w) caused decreased water vapor barrier property and reduced extensibility, the biodegradable films possessed improved oxygen barrier property and antioxidant activity. Radical scavenging activity and reducing power of film containing FA-CTS were higher than those of film containing naked ferulic acid, by about 254% and 94%, respectively. Tensile strength and rigidity of the films were not significantly affected by the addition of FA-CTS with a content of 0.02-0.08% (w/w). The above results suggested that FA-CTS could potentially be used as an antioxidant for active packaging film. PMID:25439957

  17. The electroplated Pd-Co alloy film on 316 L stainless steel and the corrosion resistance in boiling acetic acid and formic acid mixture with stirring

    NASA Astrophysics Data System (ADS)

    Li, Sirui; Zuo, Yu; Tang, Yuming; Zhao, Xuhui

    2014-12-01

    Pd-Co alloy films were deposited on 316 L stainless steel by electroplating. Scanning electronic microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, weight loss test and polarization test were used to determine the properties of the Pd-Co alloy films. The Pd-Co films show fine grain size, low porosity and obviously high micro-hardness. The Co content in the film can be controlled in a large range from 21.9 at.% to 57.42 at.%. Pd is rich on the Pd-Co film surface, which is benefit to increase the corrosion resistance. In boiling 90% acetic acid plus 10% formic acid mixture with 0.005 M Br- under stirring, the Pd-Co plated stainless steel samples exhibit evidently better corrosion resistance in contrast to Pd plated samples. The good corrosion resistance of the Pd-Co alloy film is explained by the better compactness, the lower porosity, and the obviously higher micro-hardness of the alloy films, which increases the resistance to erosion and retards the development of micro-pores in the film.

  18. Mixture design applied for the study of the tartaric acid effect on starch/polyester films.

    PubMed

    Olivato, J B; Nobrega, M M; Müller, C M O; Shirai, M A; Yamashita, F; Grossmann, M V E

    2013-02-15

    Tartaric acid (TA), a dicarboxylic acid, can act as a compatibiliser in starch/polyester blends. A mixture design was proposed to evaluate the effect of TA on the properties of starch/poly (butylene adipate co-terephthalate) (PBAT) blown films plasticised with glycerol. The interaction between the starch/PBAT and the TA has a positive effect on the tensile strength and puncture force. Additionally, greater proportions of TA increased Young's modulus. The starch+PBAT/TA and Gly/TA interactions contributed to a reduction in the water vapour permeability of the films. The inclusion of TA did not change the crystallinity of the samples. Formulations with intermediate proportions of TA (0.8 g/100 g) were shown to produce the best compatibilising effect. This was observed by DMA analysis as a consequence of the perfect equilibrium between the contributions of TA as a compatibiliser and in the acidolysis of starch, resulting in films with a tensile strength of 5.93 MPa, a possible alternative to non-biodegradable packaging. PMID:23399209

  19. Novel bioadhesive hyaluronan-itaconic acid crosslinked films for ocular therapy.

    PubMed

    Calles, J A; Tártara, L I; Lopez-García, A; Diebold, Y; Palma, S D; Vallés, E M

    2013-10-15

    New hyaluronic acid (HA)-itaconic acid (IT) films have been previously synthesized and used as potential topical drug delivery systems (DDS) for ocular administration. In this study we explored homogeneous and heterogeneous crosslinking reactions of HA using glutaraldehyde (GTA) and polyethylene glycol diglycidyl ether (PEGDE) in the presence of IT, a naturally occurring compound that is non-toxic and readily biodegradable. We have studied the morphology, mechanical properties and in vitro biocompatibility between these new materials and ocular surface cells (human corneal epithelial cell line) and evaluated the biopharmaceutical performance of the designed formulations. Although all the synthesized materials exhibited good mechanical properties, the PEGDE modified films exhibited the best biocompatibility, with in vivo assays showing good adhesive performance and minimal irritation. PEGDE films were also tested for their effects in the treatment of intraocular pressure (IOP) in rabbits using timolol maleate (TM) as the model drug. These results may be useful for further design of novel bioadhesive matrix containing drugs by topical application in ophthalmology. PMID:23911915

  20. Polyene Formation Catalyzed by Phosphotungstic Acid and Aluminum Chloride in Thin Films of Poly(Vinyl Alcohol)

    NASA Astrophysics Data System (ADS)

    Tretinnikov, O. N.; Sushko, N. I.; Maly, A. B.

    2016-01-01

    Formation of linear polyenes -(CH=CH) n - during thermal dehydration of thin layers (9-20 μm) of poly(vinyl alcohol) containing phosphotungstic-acid and aluminum-chloride catalysts was investigated. It was found that the concentration of long-chain ( n ≥ 8) polyenes in films containing phosphotungstic acid increased smoothly with increasing annealing time although the kinetics of the dehydration were independent of the film thickness. The polyene ( n ≥ 8) formation rate in films containing aluminum chloride dropped quickly with decreasing film thickness and increasing annealing time. As a result, long-chain polyenes practically did not form regardless of the annealing time for a film thickness of 11 μm.

  1. Composite film formation on iron in sulfuric acid by bismuth(III) chloride and benzyl thiocyanate

    SciTech Connect

    Ohi, M.; Nishihara, H.; Aramaki, K. . Dept. of Chemistry)

    1994-03-01

    A synergistic inhibitory effect of bismuth(3) chloride and benzyl thiocyanate (C[sub 6]H[sub 5]CH[sub 2]SCN) on corrosion of iron (Fe) in 1 N sulfuric acid was investigated using polarization and impedance measurements. A composite protective film formed on the Fe surface by a combination of both compounds. The film was analyzed by x-ray photo-electron spectroscopy and electron probe microanalysis. Inhibition efficiency of > 99% was obtained by the formation of the protective film. The film comprised an inner layer of metallic bismuth (Bi) and an outer layer of metallic oxide containing a deposited oxidative-addition product of C[sub 6]h[sub 5]CH[sub 2]SCN. A small spot uncoated with the Bi layer was covered mostly with the product layer, suppressing the anodic process of Fe corrosion. The cathodic process was inhibited by the high hydrogen (H) overpotential of the metallic Bi deposited on most of the substrate surface.

  2. Release properties of tannic acid from hydrogen bond driven antioxidative cellulose nanofibrous films.

    PubMed

    Zhou, Bin; Hu, Xiaoqian; Zhu, Jinjin; Wang, Zhenzhen; Wang, Xichang; Wang, Mingfu

    2016-10-01

    Layer-by-layer (LBL) assembled films have been exploited for surface-mediated bioactive compound delivery. Here, an antioxidative hydrogen-bonded multilayer electrospun nanofibrous film was fabricated from tannic acid (TA), acting as a polyphenolic antioxidant, and poly(ethylene glycol) (PEG) via layer-by-layer assembly. It overcame the burst release behavior of nanofibrous carrier, due to the reversible/dynamic nature of hydrogen bond, which was responded to external stimuli. The PEG/TA nanofibrous films disassembled gradually and released TA to the media, when soaked in aqueous solutions. The release rate of TA increased with increasing bilayer number, pH and temperature, but decreased with enhancing ionic strength. The surface morphology of the nanofibrous mats was observed by scanning electron microscopy (SEM). The following antioxidant activity assay revealed that it could scavenge DPPH free radicals and ABTS(+) cation radicals, a major biological activity of polyphenols. This technology can be used to fabricate other phenolic-containing slowly releasing antioxidative nanofibrous films. PMID:27234492

  3. Ascorbic Acid and BSA Protein in Solution and Films: Interaction and Surface Morphological Structure

    PubMed Central

    Maciel, Rafael R. G.; de Almeida, Adriele A.; Godinho, Odin G. C.; Gorza, Filipe D. S.; Pedro, Graciela C.; Trescher, Tarquin F.; Silva, Josmary R.; de Souza, Nara C.

    2013-01-01

    This paper reports on the study of the interactions between ascorbic acid (AA) and bovine serum albumin (BSA) in aqueous solution as well as in films (BSA/AA films) prepared by the layer-by-layer technique. Regarding to solution studies, a hyperchromism (in the range of ultraviolet) was found as a function of AA concentration, which suggested the formation of aggregates from AA and BSA. Binding constant, K, determined for aggregates from BSA and AA was found to be about 102 M−1, which indicated low affinity of AA with BSA. For the BSA/AA films, it was also noted that the AA adsorption process and surface morphological structures depended on AA concentration. By changing the contact time between the AA and BSA, a hypochromism was revealed, which was associated to decrease of accessibility of solvent to tryptophan due to formation of aggregates. Furthermore, different morphological structures of aggregates were observed, which were attributed to the diffusion-limited aggregation. Since most of studies of interactions of drugs and proteins are performed in solution, the analysis of these processes by using films can be very valuable because this kind of system is able to employ several techniques of investigation in solid state. PMID:23984366

  4. Ascorbic acid and BSA protein in solution and films: interaction and surface morphological structure.

    PubMed

    Maciel, Rafael R G; de Almeida, Adriele A; Godinho, Odin G C; Gorza, Filipe D S; Pedro, Graciela C; Trescher, Tarquin F; Silva, Josmary R; de Souza, Nara C

    2013-01-01

    This paper reports on the study of the interactions between ascorbic acid (AA) and bovine serum albumin (BSA) in aqueous solution as well as in films (BSA/AA films) prepared by the layer-by-layer technique. Regarding to solution studies, a hyperchromism (in the range of ultraviolet) was found as a function of AA concentration, which suggested the formation of aggregates from AA and BSA. Binding constant, K, determined for aggregates from BSA and AA was found to be about 10(2) M(-1), which indicated low affinity of AA with BSA. For the BSA/AA films, it was also noted that the AA adsorption process and surface morphological structures depended on AA concentration. By changing the contact time between the AA and BSA, a hypochromism was revealed, which was associated to decrease of accessibility of solvent to tryptophan due to formation of aggregates. Furthermore, different morphological structures of aggregates were observed, which were attributed to the diffusion-limited aggregation. Since most of studies of interactions of drugs and proteins are performed in solution, the analysis of these processes by using films can be very valuable because this kind of system is able to employ several techniques of investigation in solid state. PMID:23984366

  5. Microbial biosensor for free fatty acids using an oxygen electrode based on thick film technology.

    PubMed

    Schmidt, A; Standfuss-Gabisch, C; Bilitewski, U

    1996-01-01

    A microbial biosensor based on thick film technology was developed. The microorganisms, Arthrobacter nicotianae, were immobilized in Ca-alginate directly on the electrode surface. For the stability of the calcium alginate gel the addition of 0.5 mM CaCl2 to the assay buffer was necessary. The respiratory activity of the microorganisms was monitored by oxygen consumption at -600 mV vs. Ag/AgCl reference electrode. The sensor was used in a batch system and was applied to the determination of free fatty acids in milk. Short-chain fatty acids (C4:0-C12:0) were the preferential substrates, with butyric acid being the main substrate. Consequently, the concentration of free short-chain fatty acids was represented as the butyric acid equivalent. The sensor showed linearity over the concentration range 9.5-165.5 microM (correlation coefficient, r = 0.99920). The response time of the sensor was approximately 3 min. No additional dialysis membrane was necessary, which led to a high sensitivity of the sensor and fast response times. Recovery rates of 98-113% were found for butyric acid in milk samples using the sensor without any additional membrane and a sample dilution of 200 by the assay. Two widespread disadvantages of microbial sensors, long response times and long times to return to the baseline signal after use, could be overcome. PMID:8828165

  6. Aldol Condensation Products and Polyacetals in Organic Films Formed from Reactions of Propanal in Sulfuric Acid at Upper Troposphere/Lower Stratosphere (UT/LS) Aerosol Acidities

    NASA Astrophysics Data System (ADS)

    Bui, J. V. H.; Perez-Montano, S.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.; Van Wyngarden, A. L.

    2015-12-01

    Aerosols in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt. %) which is highly reflective towards UV and visible radiation. However, airborne measurements have shown that these particles may also contain a significant amount of organic material. Experiments combining organics (propanal, glyoxal and/or methylglyoxal) with sulfuric acid at concentrations typical of UT/LS aerosols produced highly colored surface films (and solutions) that have the potential to impact chemical, optical and/or cloud-forming properties of aerosols. In order to assess the potential for such films to impact aerosol chemistry or climate properties, experiments were performed to identify the chemical processes responsible for film formation. Surface films were analyzed via Attenuated Total Reflectance-FTIR and Nuclear Magnetic Resonance spectroscopies and are shown to consist primarily of aldol condensation products and cyclic and linear polyacetals, the latter of which are likely responsible for separation from the aqueous phase.

  7. Surface Partitioning and Stability of Mixed Films of Fluorinated Alcohols and Acids at the Air- Water Interface

    NASA Astrophysics Data System (ADS)

    Rontu, N. A.; Vaida, V.

    2007-05-01

    The production of fluorinated compounds over the past 50 years has had numerous industrial applications. For example, perfluorinated carboxylic acids are used in the synthesis of polymers and fire retardants, perfluoroalkyl sulfonates act as surface protectors, and fluorotelomer alcohols are incorporated into products such as paints, coatings, polymers, and adhesives. Fluorotelomer alcohols (FTOHs) are linear polyfluorinated alcohols with the formula CF3(CF2)nCH2CH2OH (n=1,3,5,...). They have been suggested as possible precursors for perfluorinated carboxylic acids and detected in the troposphere over several North American sites. Perfluorocarboxylic acids have even been detected in the arctic food chain, human blood, tissues of animals and environmental waters. We report the surface activity of fluorotelomer alcohols and perfluorinated carboxylic acids at the air-water interface by using a Langmuir trough. Isotherms of the pure compounds along with mixed films with other organic carboxylic acids were collected. The main objective of these experiments was to understand their heterogeneous chemistry by characterizing the pure and mixed films, which serves as a representative model for organic films on atmospheric surfaces such as those found on oceans and aqueous aerosols. Film properties and behavior, notably stabilization, evaporation from the subphase, and miscibility in the single-component mixtures as well as in the mixed films will be discussed. An important consequence of FTOHs and perfluorocarboxylic acids being found to partition to the air-water interface is the possibility of their transport and widespread distribution and deposition using atmospheric aerosols.

  8. Modification of fish skin collagen film and absorption property of tannic acid.

    PubMed

    Liu, Haiying; Zhao, Lu; Guo, Shidong; Xia, Yu; Zhou, Peng

    2014-06-01

    Fish collagen is a biomacromolecule material and is usually used as a clarifying agent. However, fish collagen is not recyclable, and sedimentation usually occurs in the clarification process using fish collagen so that the filtration process is inevitable. This work aimed to provide a recyclable modified fish skin collagen film (MFCF) for adsorption of tannic acids. The collagen from channel catfish skin was extracted and used for preparation of the fish skin collagen film (FCF) and MFCF. The result indicated that the mechanical properties of MFCF were improved by addition of 2 ml/L glycerol, 6 ml/L polyvinyl alcohol (PVA) and 2 ml/L glutaraldehyde in 15 g/L collagen solution. As the most important property of adsorption material, the hydroscopicity of MFCF was only 54%, significantly lower than that of FCF (295%). Therefore, MFCF would not collapse in water. The infrared and thermal properties of MFCF were also investigated in this work. Results indicated that, in comparison to FCF, the physical and chemical properties of MFCF had been improved significantly. MFCF had higher shrink temperature (79.3 °C) and it did not collapse in distilled water at normal temperature. Furthermore, absorption and desorption properties of tannic acid were studied. MFCF showed good capability of absorption and desorption of tannic acid, which leaded to the suggestion that MFCF could have potential applications in adsorption material. PMID:24876642

  9. Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol.

    PubMed

    Luther, Joseph M; Law, Matt; Song, Qing; Perkins, Craig L; Beard, Matthew C; Nozik, Arthur J

    2008-02-01

    We describe the structural, optical, and electrical properties of high-quality films of PbSe nanocrystals fabricated by a layer-by-layer (LbL) dip-coating method that utilizes 1,2-ethanedithiol (EDT) as an insolubilizing agent. Comparative characterization of nanocrystal films made by spin-coating and by the LbL process shows that EDT quantitatively displaces oleic acid on the PbSe surface, causing a large volume loss that electronically couples the nanocrystals while severely degrading their positional and crystallographic order of the films. Field-effect transistors based on EDT-treated films are moderately conductive and ambipolar in the dark, becoming p-type and 30-60 times more conductive under 300 mW cm(-2) broadband illumination. The nanocrystal films oxidize rapidly in air to yield, after short air exposures, highly conductive p-type solids. The LbL process described here is a general strategy for producing uniform, conductive nanocrystal films for applications in optoelectronics and solar energy conversion. PMID:19206627

  10. Structural, Optical and Electrical Properties of Self-Assembled Films of PbSe Nanocrystals Treated with 1,2-Ethanedithiol

    SciTech Connect

    Luther, J. M.; Law, M.; Song, Q.; Perkins C. L.; Beard M. C.; Nozik, A. J.

    2008-01-01

    We describe the structural, optical, and electrical properties of high-quality films of PbSe nanocrystals fabricated by a layer-by-layer (LbL) dip-coating method that utilizes 1,2-ethanedithiol (EDT) as an insolubilizing agent. Comparative characterization of nanocrystal films made by spin-coating and by the LbL process shows that EDT quantitatively displaces oleic acid on the PbSe surface, causing a large volume loss that electronically couples the nanocrystals while severely degrading their positional and crystallographic order of the films. Field-effect transistors based on EDT-treated films are moderately conductive and ambipolar in the dark, becoming p-type and 30-60 times more conductive under 300 mW cm{sup -2} broadband illumination. The nanocrystal films oxidize rapidly in air to yield, after short air exposures, highly conductive p-type solids. The LbL process described here is a general strategy for producing uniform, conductive nanocrystal films for applications in optoelectronics and solar energy conversion.

  11. Guided bone regeneration by poly(lactic-co-glycolic acid) grafted hyaluronic acid bi-layer films for periodontal barrier applications.

    PubMed

    Park, Jung Kyu; Yeom, Junseok; Oh, Eun Ju; Reddy, Mallikarjuna; Kim, Jong Young; Cho, Dong-Woo; Lim, Hyun Pil; Kim, Nam Sook; Park, Sang Won; Shin, Hong-In; Yang, Dong Jun; Park, Kwang Bum; Hahn, Sei Kwang

    2009-11-01

    A novel protocol for the synthesis of biocompatible and degradation controlled poly(lactic-co-glycolic acid) grafted hyaluronic acid (HA-PLGA) was successfully developed for periodontal barrier applications. HA was chemically modified with adipic acid dihydrazide (ADH) in the mixed solvent of water and ethanol, which resulted in a high degree of HA modification up to 85 mol.%. The stability of HA-ADH to enzymatic degradation by hyaluronidase increased with ADH content in HA-ADH. When the ADH content in HA-ADH was higher than 80 mol.%, HA-ADH became soluble in dimethyl sulfoxide and could be grafted to the activated PLGA with N,N'-dicyclohexyl carbodiimide and N-hydroxysuccinimide. The resulting HA-PLGA was used for the preparation of biphasic periodontal barrier membranes in chloroform. According to in vitro hydrolytic degradation tests in phosphate buffered saline, HA-PLGA/PLGA blend film with a weight ratio of 1/2 degraded relatively slowly compared to PLGA film and HA coated PLGA film. Four different samples of a control, OSSIX(TM) membrane, PLGA film, and HA-PLGA/PLGA film were assessed as periodontal barrier membranes for the calvarial critical size bone defects in SD rats. Histological and histomorphometric analyses revealed that HA-PLGA/PLGA film resulted in the most effective bone regeneration compared to other samples with a regenerated bone area of 63.1% covering the bone defect area. PMID:19477304

  12. Cold Oxygen Plasma Treatments for the Improvement of the Physicochemical and Biodegradable Properties of Polylactic Acid Films for Food Packaging.

    PubMed

    Song, Ah Young; Oh, Yoon Ah; Roh, Si Hyeon; Kim, Ji Hyeon; Min, Sea C

    2016-01-01

    The effects of cold plasma (CP) treatment on the physicochemical and biodegradable properties of polylactic acid (PLA) films were studied. The PLA films were exposed to CP for 40 min at 900 W and 667 Pa using oxygen as the plasma-forming gas. The tensile, optical, and dynamic mechanical thermal properties, surface morphology, printability, water contact angle, chemical structure, weight change, and biodegradability properties of the films were evaluated during storage for up to 56 d. The tensile and optical properties of the PLA films were not significantly affected by CP treatment (CPT; P > 0.05). The surface roughness and water contact angle of PLA films increased by CPT and further increased during storage for 56 d. The printability of the PLA films increased following CPT and remained stable throughout the storage period. CP-induced hydrophilicity was also sustained during the storage period. The PLA films lost 1.9% of their weight after CPT, but recovered 99.5% of this loss after 14 d in storage. Photodegradation, thermal, and microbial biodegradable properties of the films were significantly improved by CPT (P < 0.05). Accelerated biodegradation of CP-treated PLA sachets with and without cheese was observed in compost. These results demonstrate the potential of CPT for modifying the stiffness, water contact angle, and chemical structure of PLA films and improving the printability and biodegradability of the films for food packaging. PMID:26646616

  13. Chiroptical study of α-aliphatic amino acid films in the vacuum ultraviolet region.

    PubMed

    Tanaka, Masahito; Yagi-Watanabe, Kazutoshi; Kaneko, Fusae; Nakagawa, Kazumichi

    2010-11-11

    A series of natural circular dichroism (CD) and absorption spectra for films of α-aliphatic amino acids--such as alanine, aminobutyric acid, norvaline, norleucine, valine, leucine, and isoleucine--in the vacuum ultraviolet (VUV) region were observed with the absolute values of optical constants at the undulator-based CD beamline TERAS BL5. Preliminary predictions of some CD spectra were also performed, based on quantum-chemical calculations using the crystal structure. Although the absorption spectra show similar features to each other, significant differences between the CD spectra were found, especially in the 7-8 eV region. The CD spectra of aliphatic amino acids with branched alkyl groups in the side-chain--such as valine, leucine, and isoleucine--exhibit strong negative CD peaks in this energy region. In contrast, the corresponding CD peaks were weak or absent in the spectra of amino acids with straight alkyl groups. Our simple calculation, and the absorption spectra of alkanes, suggest that this difference partly originates from the contribution of the alkyl group. Clear discrepancies between the CD spectra of these amino acids in solutions and those in the solid state were also observed; this is probably caused by the different molecular structures in each state. Our results clearly indicated that CD spectra in the VUV region were very sensitive to the conformations of chiral molecules. PMID:20958008

  14. Nanoscale patterning of poly (L-lactic acid) films with nanoimprinting methods

    NASA Astrophysics Data System (ADS)

    Peer, Akshit; Dhakal, Rabin; Biswas, Rana; Kim, Jaeyoun

    2015-08-01

    Biological applications can benefit from nanoscale texturing of materials for biomedical functions. Texturing of biomaterials can increase the available surface area so that they can be coated with larger doses of therapeutic agents. We demonstrate nano-texturing of poly (L-lactic acid) (PLLA) - a prototypical material commonly used for drug-eluting coronary stents and as a template for cell growth. A master pattern consisting of a periodic array was transferred to a PDMS mold. Drop-casting PLLA achieves the best transfer of patterns, with nanoarrays of holes with pitch ~700 nm. Nanoimprinting the PLLA films results in shallower and less resolved features.

  15. Three-dimensional patterns from the thin-film drying of amino acid solutions.

    PubMed

    Zhang, Xuehua; Crivoi, Alexandru; Duan, Fei

    2015-01-01

    Experimental atomic force microscopy (AFM) images show the dried-in patterns from amino acid solutions which can be in the form of dots or networks. The three-dimensional lattice-gas Kinetic Monte Carlo (KMC) model is applied to simulate the formation of dot-like and network-like particle structures from the evaporating thin films of solutions. A sigmoidal jump in the chemical potential value is implemented to obtain dual-scale structures with the grain size distribution peaking at two distinctive values. The simulated and experimental results are qualitatively comparable. PMID:26039636

  16. Three-dimensional patterns from the thin-film drying of amino acid solutions

    PubMed Central

    Zhang, Xuehua; Crivoi, Alexandru; Duan, Fei

    2015-01-01

    Experimental atomic force microscopy (AFM) images show the dried-in patterns from amino acid solutions which can be in the form of dots or networks. The three-dimensional lattice-gas Kinetic Monte Carlo (KMC) model is applied to simulate the formation of dot-like and network-like particle structures from the evaporating thin films of solutions. A sigmoidal jump in the chemical potential value is implemented to obtain dual-scale structures with the grain size distribution peaking at two distinctive values. The simulated and experimental results are qualitatively comparable. PMID:26039636

  17. Structural organization of films based on polyaniline/polysulfonic acid complexes depending on the synthesis method

    SciTech Connect

    Simagina, L. V. Gaynutdinov, R. V.; Stepina, N. D.; Sorokina, K. L.; Morozova, O. V.; Shumakovich, G. P.; Yaropolov, A. I.; Tolstikhina, A. L.

    2010-07-15

    The optical properties and morphology of complexes based on polyaniline (PANI) and poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS), depending on their synthesis conditions, have been characterized by UV-visible spectroscopy and atomic force microscopy. The dependence of the electron absorption spectra of PANI/PAMPS complexes and the surface topography of their films on the initiation way of PANI formation (chemical and enzymatic) and the use of promoters of aniline polymerization has been investigated. The aniline polymerization kinetics with and without polymerization promoters has been studied. All PANI/PAMPS complexes are found to have a nanocomposite time-stable structure.

  18. Multilayer Films Assembled from Naturally-Derived Materials for Controlled Protein Release

    PubMed Central

    Hsu, Bryan B.; Hagerman, Samantha R; Jamieson, Kelsey; Veselinovic, Jovana; O’Neill, Nicholas; Holler, Eggehard; Ljubimova, Julia Y.; Hammond, Paula T.

    2014-01-01

    Herein we designed and characterized films composed of naturally derived materials for controlled release of proteins. Traditional drug delivery strategies rely on synthetic or semi-synthetic materials, or utilize potentially denaturing assembly conditions that are not optimal for sensitive biologics. Layer-by-Layer (LbL) assembly of films uses benign conditions and can generate films with various release mechanisms including hydrolysis-facilitated degradation. These use components such as synthetic polycations that degrade into non-natural products. Herein we report the use of a naturally-derived, biocompatible and degradable polyanion, poly(β-l-malic acid), alone and in combination with chitosan in an LbL film, whose degradation products of malic acid and chitosan are both generally recognized as safe (GRAS) by the FDA. We have found that films based on this polyanion have shown sustained release of a model protein, lysozyme that can be timed from tens of minutes to multiple days through different film architectures. We also report the incorporation and release of a clinically used biologic, basic fibroblast growth factor (bFGF), which demonstrates the use of this strategy as a platform for controlled release of various biologics. PMID:24825478

  19. Results of a Parametric Study on 10,000 lb. and 50,000 lb. Permanent Magnetic Actuators

    NASA Technical Reports Server (NTRS)

    Stekly, Z. J. J.; Gardner, C.; Domigan, P.; McDonald, C.; Farrell, R. A.

    1996-01-01

    The purpose of this study was to generate design data and complete dynamic performance estimates for a high performance permanent magnet actuator. The basic configuration selected for analysis is an axisymmetric Nd-B-Fe permanent magnet actuator capable of providing force in one direction along its major axis. The actuator consisted of two main axisymmetric components separated by an air gap. The design was optimized for each value of force, gap and magnetic field to yield minimum weight and maximum lift to weight ratio. The basic conclusion is that, within parameters considered, the 10,000 lb. and 50,000 lb. actuators are lightweight and compact. As expected for most permanent magnet devices, the smaller ones have higher lift to eight ratios.

  20. Structure and properties of moisture-resistant konjac glucomannan films coated with shellac/stearic acid coating.

    PubMed

    Wei, Xueqin; Pang, Jie; Zhang, Changfeng; Yu, Chengcheng; Chen, Han; Xie, Bingqing

    2015-03-15

    A series of moisture-resistant konjac glucomannan films were prepared by coating shellac/stearic acid emulsion on deacetylated konjac glucomannan films (dKGM). The effect of stearic acid content on structure and properties of the coated films were investigated by field emission scanning electron microscopy (FE SEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet spectroscopy (UV), water vapor permeability (WVP), water uptake, water contact angle, and tensile testing. The results revealed that shellac in the coating adhered intimately to the surface of dKGM film, and provided a substrate for the dispersion of stearic acid which played an important role in enhancement of the moisture barrier properties and mechanical properties of the coated films. The WVP of the coated films decreased from 2.63×10(-11) to 0.37×10(-11)g/(msPa) and the water contact angle increased from 68° to 101.2° when stearic acid content increased from 0wt% to 40wt%, showing the potential applications in food preservation. PMID:25542116

  1. Effect of processing parameters for electrocatalytic properties of SnO(2) thin film matrix for uric acid biosensor.

    PubMed

    Arora, Kashima; Tomar, Monika; Gupta, Vinay

    2014-02-21

    RF sputtered tin oxide (SnO2) thin film matrix has been efficiently exploited for the detection of uric acid. The deposition parameters for SnO2 thin film have been optimized to yield better electrocatalytic properties. A correlation between its electrocatalytic properties with the structural and electrical properties has been made. SnO2 thin film prepared under optimized growth parameter (70% argon in reactive gas ambient of Ar and O2) exhibits higher mobility of charge carrier and high carrier concentration thereby resulting in enhanced charge transfer characteristics. High surface coverage of uricase onto SnO2 thin films (4.28 × 10(-4) mole cm(-2)), low value of Michaelis-Menten constant (km) 0.18 mM, good linearity in detection of uric acid in the range 0.05-1.00 mM and a fast response of 5 s are attractive features of prepared SnO2 thin film based bioelectrodes for efficient detection of uric acid. The nanoporous and rough surface morphology of SnO2 thin film besides its high carrier mobility in comparison to that of ITO is responsible for the obtained enhanced sensitivity (∼700 μA mM(-1)) and improved sensing response characteristics towards uric acid. PMID:24396852

  2. Loading of myoglobin into multilayer films assembled by ZrO2 nanoparticles and phytic acid: electrochemistry and electrocatalysis.

    PubMed

    Yang, Lingzhu; Liu, Hongyun; Hu, Naifei

    2009-04-01

    Small-molecular phytic acid (PA) with its unique structure was successfully assembled with ZrO2 nanoparticles into {PA/ZrO2}n layer-by-layer films on solid surfaces, which was confirmed by quartz crystal microbalance (QCM) and cyclic voltammetry (CV) with K3Fe(CN)6 as the electroactive probe. Myoglobin (Mb) could be gradually "absorbed" or loaded into the films when the films were immersed into Mb solutions. The Mb-loaded films at pyrolytic graphite (PG) electrodes, designated as {PA/ZrO2}n-Mb, demonstrated well-defined and quasi-reversible CV responses for Mb Fe(III)/Fe(II) redox couple and good electrocatalytic properties toward oxygen and H2O2. The driving force of the film assembly and the interaction between Mb and {PA/ZrO2}n films were explored and discussed in detail. The coordination interaction between PA and ZrO2 is believed to be the main driving force for the assembly of {PA/ZrO2}n multilayer films, and the electrostatic attraction between oppositely charged Mb and the film components is the main interaction for Mb loading into the films. The loading behavior of the {PA/ZrO2}n films toward different proteins with different size indicates that while the porosity of the films is necessary for the protein loading, only those proteins with the size smaller than the average pore size of the films can be incorporated in the interior of films. PMID:19437988

  3. Element-Doped Polyacrylic Acid Thin Films as SIMS Standards for Organic Materials

    NASA Astrophysics Data System (ADS)

    Davisson, M.; Phinney, D. L.; Weber, P. K.

    2009-12-01

    To constrain relative sensitive factors for SIMS elemental analysis of organic materials, calibration standards are being developed by coordinating ppm quantities of Group I, Group II, and transition metals with polyacrylic acid resin and depositing them as thin films. Each element is prepared as an aqueous acetate, oxalate, or nitrate solution to avoid unwanted elements that compromise thin film uniformity or produce interfering masses. These are subsequently mixed proportionally with reagent grade resins (Mw ~2000 and ~50,000), and dried passively on an Al bullet or spin-coated for thin layering (~100nm). Initial results using an O- primary beam on a Cameca NanoSIMS demonstrate excellent lateral homogeneity for Na, K, Fe, Co, and Cd at nanometer scale and consistent ratios to 12C (stdev <10%) over multiple 10um raster areas, whereas Mg, Ca, Sr, and Cu show variable ratios to 12C over sputter depth (stdev >10%). Depth profiling over the entire film thickness using a Cameca 3f show high reproducibility of element trends at 250um raster areas. Additional measurements will incorporate multi-element suites of biologically-relevant species (e.g. Na, K, Ca, P) to facilitate quantitative analysis of sensitivity factors with compositional changes.

  4. Microstructural Models of Alumina Nanotubes and Anodic Porous Alumina Film Formed in Sulphuric Acid

    NASA Astrophysics Data System (ADS)

    Pu, Lin; Chen, Zhi-Qiang; Tan, Chao; Yang, Zheng; Zou, Jian-Ping; Bao, Xi-Mao; Feng, Duan; Shi, Yi; Zheng, You-Dou

    2002-03-01

    Electrochemical stepwise anodization of aluminium in dilute sulphuric acid results in the formation of alumina nanotubes (ANTs) due to the hexagonal split of the anodic porous alumina (APA) film along the cell boundaries containing many voids; that is, the ANTs are the completely detached cell of the APA film. The inner diameters of the ANTs are in the range of 10-20 nm, and the aspect ratio (inner diameter/length) of the ANTs can be about 80. The relations found for pore diameter, cell diameter and barrier layer thickness are around 1, 2.7 and 0.85 nm/V, respectively. Transmission electron microscopy (TEM) reveals that the ANT wall has a three-shell structure: an outer shell (metal/oxide interface) consisting of pure alumina oxide, a middle shell of the hydrated oxide or/and hydroxide and an inner shell (oxide/electrolyte interface) of anion incorporated oxide with the thickness ratio of 1:1:2. The structural change of ANTs induced by e-beam irradiation in TEM indicates that the thermal instability of the hydrated oxide or/and hydroxide within the cell wall might be an alternative origin contributing to the self-organization of the cells, leading to a densely packed triangular cell lattice of the APA film.

  5. Comparison of chondroitin sulfate and hyaluronic Acid doped conductive polypyrrole films for adipose stem cells.

    PubMed

    Björninen, Miina; Siljander, Aliisa; Pelto, Jani; Hyttinen, Jari; Kellomäki, Minna; Miettinen, Susanna; Seppänen, Riitta; Haimi, Suvi

    2014-09-01

    Polypyrrole (PPy) is a conductive polymer that has aroused interest due to its biocompatibility with several cell types and high tailorability as an electroconductive scaffold coating. This study compares the effect of hyaluronic acid (HA) and chondroitin sulfate (CS) doped PPy films on human adipose stem cells (hASCs) under electrical stimulation. The PPy films were synthetized electrochemically. The surface morphology of PPy-HA and PPy-CS was characterized by an atomic force microscope. A pulsed biphasic electric current (BEC) was applied via PPy films non-stimulated samples acting as controls. Viability, attachment, proliferation and osteogenic differentiation of hASCs were evaluated by live/dead staining, DNA content, Alkaline phosphatase activity and mineralization assays. Human ASCs grew as a homogenous cell sheet on PPy-CS surfaces, whereas on PPy-HA cells clustered into small spherical structures. PPy-CS supported hASC proliferation significantly better than PPy-HA at the 7 day time point. Both substrates equally triggered early osteogenic differentiation of hASCs, although mineralization was significantly induced on PPy-CS compared to PPy-HA under BEC. These differences may be due to different surface morphologies originating from the CS and HA dopants. Our results suggest that PPy-CS in particular is a potential osteogenic scaffold coating for bone tissue engineering. PMID:24823653

  6. Preparation, Characterization and Microelectronic Applications of Langmuir Blodgett Films.

    NASA Astrophysics Data System (ADS)

    Maccagno, Pierre Luigi

    This thesis evaluates the use of ultrathin Langmuir Blodgett (LB) films in semiconductor technology. Three different applications are explored: electron-beam resists, dielectric films, and tunneling dimension insulators. Deposition processes are established for LB films of cadmium brassidate, and Poly-Methyl-Methacrylate (PMMA). Film are characterized on the water subphase of the LB trough with a Wilhelmy balance and on various substrates with X-ray diffraction, Grazing Incidence Reflection Fourier Transform Infrared Spectroscopy (GIR FTIR), Scanning Electron Microscopy (SEM), Ellipsometry, Scanning Tunnelling Microscopy (STM) and electrical conduction and admittance measurements. Ultrathin PMMA LB films are shown to behave as excellent e-beam resists. PMMA LB films 10.5nm thick (13 monolayers) have pinhole densities (10/cm^2 ) three orders of magnitude smaller than those spin cast films of the same thickness. Furthermore, the same PMMA LB film thickness is able to protect a 50nm Cr underlayer for well over 13 minutes from chemical etchants. Low energy e-beam exposure of ultrathin PMMA LB films was demonstrated with the STM. The advantages of the STM as a lithography tool is that small diameter (<50nm) low energy (20eV to 100eV) e-beams may be used with LB resist films to obtain submicron resolution and reduced proximity effects due to less scattering of electrons within the ultrathin LB resist. Electrical conduction and admittance of metal/insulator/metal capacitors are studied for various thickness LB PMMA films, and electrode materials. Capacitors with Au electrodes were shorted due to pinholes in the LB film. Shorts were not observed with Al electrodes as a result of the native alumina. The thickness and dielectric constant of PMMA monolayers and Al_2O_3 are obtained. Diverse conduction mechanisms are proposed for Al electrode capacitors separated by no PMMA film; one monolayer; and three or more monolayers. Electrical properties of Au/PMMA/n-Si diodes with

  7. Data of thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid as crosslinking agent

    PubMed Central

    González Seligra, Paula; Medina Jaramillo, Carolina; Famá, Lucía; Goyanes, Silvia

    2016-01-01

    Interest in biodegradable edible films as packaging or coating has increased because their beneficial effects on foods. In particular, food products are highly dependents on thermal stability, integrity and transition process temperatures of the packaging. The present work describes a complete data of the thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid (CA) as crosslinking agent described in the article titled: “Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as crosslinking agent” González Seligra et al. (2016) [1]. Data describes thermogravimetric and dynamical mechanical experiences and provides the figures of weight loss and loss tangent of the films as a function of the temperature. PMID:27158645

  8. Data of thermal degradation and dynamic mechanical properties of starch-glycerol based films with citric acid as crosslinking agent.

    PubMed

    González Seligra, Paula; Medina Jaramillo, Carolina; Famá, Lucía; Goyanes, Silvia

    2016-06-01

    Interest in biodegradable edible films as packaging or coating has increased because their beneficial effects on foods. In particular, food products are highly dependents on thermal stability, integrity and transition process temperatures of the packaging. The present work describes a complete data of the thermal degradation and dynamic mechanical properties of starch-glycerol based films with citric acid (CA) as crosslinking agent described in the article titled: "Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent" González Seligra et al. (2016) [1]. Data describes thermogravimetric and dynamical mechanical experiences and provides the figures of weight loss and loss tangent of the films as a function of the temperature. PMID:27158645

  9. Preparation of AuPt alloy foam films and their superior electrocatalytic activity for the oxidation of formic acid.

    PubMed

    Liu, Jun; Cao, Ling; Huang, Wei; Li, Zelin

    2011-09-01

    AuPt alloy films with three-dimensional (3D) hierarchical pores consisting of interconnected dendrite walls were successfully fabricated by a strategy of cathodic codeposition utilizing the hydrogen bubble dynamic template. The foam films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Due to the special porous structure, the electronic property, and the assembly effect, the AuPt alloy foam films show superior electrocatalytic activity toward the electrooxidation of formic acid in acidic solution, and the prepared 3D porous AuPt alloy films also show high activity and long stability for the electrocatalytic oxidation of methanol, where synergistic effect plays an important role in addition to the electronic effect and assembly effect. These findings provide more insights into the AuPt bimetallic nanomaterials for electrocatalytic applications. PMID:21838240

  10. Anodic luminescence, structural, photoluminescent, and photocatalytic properties of anodic oxide films grown on niobium in phosphoric acid

    NASA Astrophysics Data System (ADS)

    Stojadinović, Stevan; Tadić, Nenad; Radić, Nenad; Stefanov, Plamen; Grbić, Boško; Vasilić, Rastko

    2015-11-01

    This article reports on properties of oxide films obtained by anodization of niobium in phosphoric acid before and after the dielectric breakdown. Weak anodic luminescence of barrier oxide films formed during the anodization of niobium is correlated to the existence of morphological defects in the oxide layer. Small sized sparks generated by dielectric breakdown of formed oxide film cause rapid increase of luminescence intensity. The luminescence spectrum of obtained films on niobium under spark discharging is composed of continuum radiation and spectral lines caused by electronic spark discharging transitions in oxygen and hydrogen atoms. Oxide films formed before the breakdown are amorphous, while after the breakdown oxide films are partly crystalline and mainly composed of Nb2O5 hexagonal phase. The photocatalytic activity of obtained oxide films after the breakdown was investigated by monitoring the degradation of methyl orange. Increase of the photocatalytic activity with time is related to an increase of oxygen vacancy defects in oxide films formed during the process. Also, higher concentration of oxygen vacancy defects in oxide films results in higher photoluminescence intensity.

  11. Controlled release of tyrosol and ferulic acid encapsulated in chitosan-gelatin films after electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Benbettaïeb, Nasreddine; Assifaoui, Ali; Karbowiak, Thomas; Debeaufort, Frédéric; Chambin, Odile

    2016-01-01

    This work deals with the study of the release kinetics of antioxidants (ferulic acid and tyrosol) incorporated into chitosan-gelatin edible films after irradiation processes. The aim was to determine the influence of electron beam irradiation (at 60 kGy) on the retention of antioxidants in the film, their release in water (pH=7) at 25 °C, in relation with the barrier and mechanical properties of biopolymer films. The film preparation process coupled to the irradiation induced a loss of about 20% of tyrosol but did not affect the ferulic acid content. However, 27% of the ferulic acid remained entrapped in the biopolymer network during the release experiments whereas all tyrosol was released. Irradiation induced a reduction of the release rate for both compounds, revealing that cross-linking occurred during irradiation. This was confirmed by the mechanical properties enhancement which tensile strength value significantly increased and by the reduction of permeabilities. Although molecular weights, molar volume and molecular radius of the two compounds are very similar, the effective diffusivity of tyrosol was 40 times greater than that of ferulic acid. The much lower effective diffusion coefficient of ferulic acid as determined from the release kinetics was explained by the interactions settled between ferulic acid molecules and the gelatin-chitosan matrix. As expected, the electron beam irradiation allowed modulating the retention and then the release of antioxidants encapsulated.

  12. Controllably local gene delivery mediated by polyelectrolyte multilayer films assembled from gene-loaded nanopolymersomes and hyaluronic acid

    PubMed Central

    Teng, Wei; Wang, Qinmei; Chen, Ying; Huang, Hongzhang

    2014-01-01

    To explore a spatiotemporally controllable gene delivery system with high efficiency and safety, polyelectrolyte multilayer (PEM) films were constructed on titanium or quartz substrates via layer-by-layer self-assembly technique by using plasmid deoxyribonucleic acid-loaded lipopolysaccharide–amine nanopolymersomes (pNPs) as polycations and hyaluronic acid (HA) as polyanions. pNPs were chosen because they have high transfection efficiency (>95%) in mesenchymal stem cells (MSCs) and induce significant angiogenesis in zebrafish in conventional bolus transfection. The assembly process of PEM films was confirmed by analyses of quartz crystal microbalance with dissipation, X-ray photoelectron spectroscopy, infrared, contact angle, and zeta potential along with atomic force microscopy observation. Quartz crystal microbalance with dissipation analysis reveals that this film grows in an exponential mode, pNPs are the main contributor to the film mass, and the film mass can be modulated in a relatively wide range (1.0–29 μg/cm2) by adjusting the deposition layer number. Atomic force microscopy observation shows that the assembly leads to the formation of a patterned film with three-dimensional tree-like nanostructure, where the branches are composed of beaded chains (pNP beads are strung on HA molecular chains), and the incorporated pNPs keep structure intact. In vitro release experiment shows that plasmid deoxyribonucleic acid can be gradually released from films over 14 days, and the released plasmid deoxyribonucleic acid exists in a complex form. In vitro cell experiments demonstrate that PEM films can enhance the adhesion and proliferation of MSCs and efficiently transfect MSCs in situ in vitro for at least 4 days. Our results suggest that a (pNPs/HA)n system can mediate efficient transfection in stem cells in a spatially and temporally controllable pattern, highlighting its huge potential in local gene therapy. PMID:25378927

  13. Application of ZnO films to glass substrates by the dipping-pyrolysis method using organic acid salt

    NASA Astrophysics Data System (ADS)

    Kondow, Takeshi; Ninomiya, Kanae

    1992-12-01

    Transparent ZnO films having more than 1 micrometers in thickness were prepared by one dipping-pyrolysis process. The starting solution, produced by dissolving zinc 2- ethylhexanoate, dehydrated caster oil fatty acid and dimethyl silicone oil as a leveling agent into an organic solvent, was coated on the plate glass and cured at 200 degree(s)C and heated up to 500 degree(s)C. The thick ZnO films covered with SiO2 films are very useful for UV cut-offs at about 380 nm and for high transparency in the visible region. The ZnO films with the durable films have a possible application to automobile windows and the like. Characterizations are also reported by scanning electron microscopy (SEM), X-ray diffraction (XRD), secondary ion mass spectrometry (SIMS), optical spectroscopy and Taber abrasion test.

  14. Humidity-dependent compression-induced glass transition of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA).

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung; Choi, Yun Hwa; Meron, Mati; Lin, Binhua; Bang, Joona; Won, You-Yeon

    2015-07-28

    Constant rate compression isotherms of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not fully understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air-water interface, using combined experimental techniques including the Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods. We observed that the mechanical and structural responses of the Langmuir PLGA films are significantly dependent on the rate of film compression; the glass transition was induced in the PLGA film only at fast compression rates. Surprisingly, we found that this deformation rate dependence is also dependent on the humidity of the environment. With water acting as a plasticizer for the PLGA material, the diffusion of water molecules through the PLGA film seems to be the key factor in the determination of the glass transformation properties and thus the mechanical response of the PLGA film against lateral compression. Based on our combined results, we hypothesize the following mechanism for the compression-induced glass transformation of the Langmuir PLGA film; (1) initially, a humidified/non-glassy PLGA film is formed in the full surface-coverage region (where the surface pressure shows a plateau) during compression; (2) further compression leads to the collapse of the PLGA chains and the formation of new surfaces on the air side of the film, and this newly formed top layer of the PLGA film is transiently glassy in character because the water evaporation rate

  15. Classification of the biphenyl- and polychlorinated biphenyl-degrading strain LB400T and relatives as Burkholderia xenovorans sp. nov.

    PubMed

    Goris, Johan; De Vos, Paul; Caballero-Mellado, Jesús; Park, Joonhong; Falsen, Enevold; Quensen, John F; Tiedje, James M; Vandamme, Peter

    2004-09-01

    Strain LB400T is the best-studied polychlorinated biphenyl (PCB) degrader. This organism has previously been allocated in the genus Burkholderia, since its 16S rRNA gene sequence shows 98.6 % sequence similarity to the type strains of Burkholderia graminis and Burkholderia terricola. A polyphasic study was undertaken to clarify the actual taxonomic position of this biotechnologically important organism and of two strains, one recovered from a blood culture vial and one from a coffee plant rhizosphere, both of which resembled strain LB400T in their whole-cell protein patterns. DNA-DNA hybridization experiments revealed that the three strains represented a single novel species, for which the name Burkholderia xenovorans sp. nov. is proposed. Strains of this novel species can be differentiated phenotypically from nearly all other Burkholderia species by their inability to assimilate L-arabinose. The whole-cell fatty acid profile of B. xenovorans strains is consistent with their classification in the genus Burkholderia, with 18 : 1omega7c, 16 : 1omega7c, 16 : 0, 14 : 0 3OH, 16 : 0 3OH, 17 : 0 cyclo and 14 : 0 being the most abundant fatty acids. The G + C content of the species varies between 62.4 and 62.9 mol%. The type strain of B. xenovorans is LB400T (= LMG 21463T = CCUG 46959T = NRRL B-18064T). PMID:15388727

  16. Synthesis of nanosilver loaded chitosan/poly(acrylamide-co-itaconic acid) based inter-polyelectrolyte complex films for antimicrobial applications.

    PubMed

    Bajpai, S K; Jyotishi, Pooja; Bajpai, M

    2016-12-10

    In the present work, AgNPs loaded chitosan/poly(acrylamide-co-itaconic acid) inter-polyelectrolyte complex (IPC) films have been prepared for antimicrobial applications. The AgNPs-loaded IPC films have been characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA) and Surface plasmon resonance (SPR). Particle size of synthesized AgNPs was found to be in the range 10-30nm. These films exhibited a remarkable antibacterial property against strong pathogen E.Coli, thus offering their candidature for antimicrobial applications. PMID:27577913

  17. Thin multicomponent films for functional enzyme devices and bioreactor particles

    PubMed Central

    Rusling, James F.; Wasalathanthri, Dhanuka P.; Schenkman, John B.

    2014-01-01

    Complex functional films containing enzymes and other biomolecules are easily fabricated in nm-scale thicknesses by using layer-by-layer (LbL) methodologies first popularized by Lvov and Decher. In this review, we highlight the high level functional capabilities possible with LbL films of biomolecules based on our own research experiences. We first describe the basics of enzyme film fabrication by LbL alternate electrostatic adsorption, then discuss how to make functional enzyme-polyion films of remarkably high stability. Focusing on cytochrome P450s, we discuss films developed to electrochemically activate the natural catalytic cycle of these key metabolic enzymes. We then describe multifunctional, multicomponent DNA/enzyme/polyion films on arrays and particle surfaces for high throughput metabolic toxicity screening using electrochemiluminescence and LC-MS/MS. Using multicomponent LbL films, complex functionality for bioanalytical and biochemical purposes can be achieved that is difficult or impossible using conventional approaches. PMID:25209428

  18. Fabrication and Protein Conjugation of Aligned Polypyrrole-Poly(L-lactic acid) Fibers Film with the Conductivity and Stability.

    PubMed

    Qin, Jiabang; Huang, Zhongbing; Yin, Guangfu; Yang, Anneng; Han, Wei

    2016-03-01

    The conducting composite scaffold, including fiber-cores of aligned poly(L-lactic acid) (PLLA) and shell-layer of polypyrrole (PPy), was fabricated, and then bovine serum albumin (BSA) was conjugated on the PPy shell-layer. Aligned PLLA fibers (about 300 nm diameter) were obtained by electrospinning and rotating drum collection, and then coated by PPy nanoparticles (NPs, about 50 nm diameter) via chemical oxidation. The surface resistivity of PPy-PLLA fibers film were 0.971, 0.874 kΩ. cm at the fiber's vertical and parallel directions, respectively. The results of PPy-PLLA fibers film immersed in phosphate buffer saline for 8 d indicated that the fibers morphology and the film conductivity were not significantly changed, and the fluorescent images showed that FITC-labeled BSA (FITC-BSA) were successfully conjugated in the fibers film with carbodiimide chemistry, and the largest amount of FITC-BSA conjugated in the fibers film from 100 μg/mL proteins solution was 31.31 μg/cm2 due to lots of poly(glutamic acid) in surface-nanogrooves of the fibers surface. Under electrical stimulation of 100 mV, the fibers film was accompanied the release of all conjugated FITC-BSA with the detachment of some PPy NPs. These results suggested that PPy-PLLA fibers film would be potentially applied in the construction of degradable tissue engineering scaffold with protein factors, especially neurotrophic factors for nerve tissue repair. PMID:27455643

  19. Characterization of Active Packaging Films Made from Poly(Lactic Acid)/Poly(Trimethylene Carbonate) Incorporated with Oregano Essential Oil.

    PubMed

    Liu, Dong; Li, Hongli; Jiang, Lin; Chuan, Yongming; Yuan, Minglong; Chen, Haiyun

    2016-01-01

    Antimicromial and antioxidant bioactive films based on poly(lactic acid)/poly(trimenthylene carbonate) films incorporated with different concentrations of oregano essential oil (OEO) were prepared by solvent casting. The antimicrobial, antioxidant, physical, thermal, microstructural, and mechanical properties of the resulting films were examined. Scanning electron microscopy analysis revealed that the cross-section of films became rougher when OEO was incorporated into PLA/PTMC blends. Differential scanning calorimetry analysis indicated that crystallinity of PLA phase decreased by the addition of OEO, but this did not affect the thermal stability of the films. Water vapor permeability of films slightly increased with increasing concentration of OEO. However, active PLA/PTMC/OEO composite films showed adequate barrier properties for food packaging application. The antimicrobial and antioxidant capacities were significantly improved with the incorporation of OEO (p < 0.05). The results demonstrated that an optimal balance between the mechanical, barrier, thermal, antioxidant, and antimicrobial properties of the films was achieved by the incorporation of 9 wt % OEO into PLA/PTMC blends. PMID:27240336

  20. Fabrication of a novel bone ash-reinforced gelatin/alginate/hyaluronic acid composite film for controlled drug delivery.

    PubMed

    Alemdar, Neslihan

    2016-10-20

    In this study, a novel pH-sensitive composite film with enhanced thermal and mechanical properties was prepared by the incorporation of bone ash at varying concentrations from 0 to 10v.% into gelatin/sodium alginate/hyaluronic acid (Gel/SA/HyA) polymeric structure for colon-specific drug delivery system. Films were characterized by FT-IR, SEM, and XRD analyses. Thermal and mechanical performances of films were determined by DSC, TGA and universal mechanical tester, respectively. Results proved that thermal stability and mechanical properties of bone ash-reinforced composite films improved significantly with respect to that of neat Gel/SA/HyA film. Cytotoxicity assay for composite films was carried out by using L929 cells. Water uptake capacity of films was determined by swelling test. Herein, release experiments of 5-Fluorouracil (5-FU) were performed in two different solutions (pH 2.1 and 7.4). The results assured that Gel/SA/HyA film containing BA could be considered as a potential biomaterial for controlled drug delivery systems. PMID:27474650

  1. Stability study of polyacrylic acid films plasma-polymerized on polypropylene substrates at medium pressure

    NASA Astrophysics Data System (ADS)

    Morent, Rino; De Geyter, Nathalie; Trentesaux, Martine; Gengembre, Léon; Dubruel, Peter; Leys, Christophe; Payen, Edmond

    2010-11-01

    Plasma polymerization of acrylic acid has become an interesting research subject, since these coatings are expected to be beneficial for biomedical applications due to their high surface density of carboxylic acid functional groups. However, the application of these monomers is counteracted by their low stability in humid environments, since a high stability is a required characteristic for almost any biological application. The present work investigates whether it is possible to obtain stable deposits with a high retention of carboxylic acid functions by performing plasma polymerization on polypropylene substrates with a dielectric barrier discharge operating at medium pressure. In order to obtain coatings with the desired properties, the plasma parameters need to be optimized. Therefore, in this paper, the influence of discharge power and location of the substrate in the discharge chamber is examined in detail. The properties of the deposited films are studied using contact angle measurements, X-ray photoelectron spectroscopy, atomic force microscopy and Fourier transform infrared spectroscopy. Moreover, to determine whether the obtained deposits are soluble in water, the coatings are once again analyzed after rinsing in water. This paper will clearly show that stable COOH-rich surfaces can be obtained at high discharge power and close to the monomer inlet, which might open perspectives for future biomedical applications.

  2. Polyaniline/poly acid acrylic thin film composites: a new gamma radiation detector

    SciTech Connect

    Lima Pacheco, Ana P.; Araujo, Elmo S.; Azevedo, Walter M. de

    2003-03-15

    In this paper, we present a new and straightforward route to prepare polyaniline/poly acid acrylic (PAA) thin film composites in large areas and on almost any surface. This method was developed to improve the mechanical and adherence properties of polyaniline devices used as ionization radiation sensors. The route consists of the combination of the metal oxidant with polymer acid to form a highly homogeneous and viscous paste, which can be easily spread over any surface. In the second step, an aniline acid solution is brought in contact with the dried paste where polymerization occurs, yielding a high homogeneous and conducting polymer composite. The UV-visible absorption and infrared analysis confirm that a polyaniline/PAA complex is obtained. The four-point conductivity measurements show that the composite conductivity {rho} is the order of 5 {omega}{sup -1} cm{sup -1}. Preliminary gamma radiation interaction with the composite shows that the doped composite exhibits a linear response that can be used in the development of real-time radiation sensors for the dose range from 0 to 5000 Gy.

  3. Electrocatalytic oxidation and voltammetric determination of ciprofloxacin employing poly(alizarin red)/graphene composite film in the presence of ascorbic acid, uric acid and dopamine.

    PubMed

    Zhang, Xin; Wei, Youli; Ding, Yaping

    2014-07-01

    A glassy carbon electrode modified with poly(alizarin red)/electrodeposited graphene (PAR/EGR) composite film was prepared and applied to detect ciprofloxacin (CPFX) in the presence of ascorbic, uric acid and dopamine. The morphology and interface property of PAR/EGR films were examined by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electrocatalytic oxidation of CPFX on AR/EGR was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The linearity ranged from 4 × 10(-8) to 1.2 × 10(-4) M with a detection limit (S/N=3) of 0.01 μM. The modified electrode could be applied to the individual determination of CPFX as well as the simultaneous determination of CPFX, ascorbic acid, uric acid and dopamine. This method proved to be a simple, selective and rapid way to determine CPFX in pharmaceutical preparation and biological media. PMID:24952626

  4. Formation and Properties of Protamine/Pectin LbL-Coatings

    NASA Astrophysics Data System (ADS)

    Hileuskaya, K.; Agabekov, V. E.

    The adsorption regularities of protamine sulfate and pectin on the surfaces from solution with different ionic strength were investigated in situ using quartz substrate via the quartz crystal microbalance technique. Both polymers were observed to absorb according to Langmuir's adsorption isotherm. The value of Langmuir adsorption constant (k) is equal to 74,48 and 1,12 sm3/μg for pectin and protamine respectively. Maximum amount of biopolymer (A∞) adsorbed on resonator is 0,87 μg/sm2 for Pect and 0,57 μg/sm2 for PtS. Ultrathin (<100 nm) multilayer (protamine/pectin)8 LbL films were formed and adsorption kinetics of both polyions were studied. The rate constant of protamine and pectin adsorption are (3,9 ± 0,9)·10-2 s-1 and (3,4 ± 0,3)·10-2 s-1 respectively. It was shown, that film thickness increases by 2.5 times with polymers concentration in solution increasing from 0.1 to 3.0 mg/ml.

  5. Preparation of Amperometric Glucose Biosensor Based on 4-Mercaptobenzoic Acid

    NASA Astrophysics Data System (ADS)

    Wang, Huihui; Ohnuki, Hitoshi; Endo, Hideaki; Izumi, Mitsuru

    A novel glucose biosensor was fabricated by a combination of a self-assembled monolayer (SAM) of 4-mercaptobenzoic acid and the Langmuir-Blodgett (LB) technique. Because of the catalysis of Prussian Blue contained in the LB film layers, the prepared amperometric biosensor worked at a very low potential range around 0.0 V vs. Ag/AgCl. The optimum operating conditions for glucose biosensor were investigated by varying the glucose oxidase immobilization time, the applied potential and the pH of buffer solution. The steady-state current responses of the glucose biosensor showed a good linear relationship to glucose concentrations from 0.1 mM to 154 mM.

  6. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells.

    PubMed

    Zhang, Wei; Pathak, Sandeep; Sakai, Nobuya; Stergiopoulos, Thomas; Nayak, Pabitra K; Noel, Nakita K; Haghighirad, Amir A; Burlakov, Victor M; deQuilettes, Dane W; Sadhanala, Aditya; Li, Wenzhe; Wang, Liduo; Ginger, David S; Friend, Richard H; Snaith, Henry J

    2015-01-01

    Solution-processed metal halide perovskite semiconductors, such as CH3NH3PbI3, have exhibited remarkable performance in solar cells, despite having non-negligible density of defect states. A likely candidate is halide vacancies within the perovskite crystals, or the presence of metallic lead, both generated due to the imbalanced I/Pb stoichiometry which could evolve during crystallization. Herein, we show that the addition of hypophosphorous acid (HPA) in the precursor solution can significantly improve the film quality, both electronically and topologically, and enhance the photoluminescence intensity, which leads to more efficient and reproducible photovoltaic devices. We demonstrate that the HPA can reduce the oxidized I2 back into I(-), and our results indicate that this facilitates an improved stoichiometry in the perovskite crystal and a reduced density of metallic lead. PMID:26615763

  7. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells

    DOE PAGESBeta

    Zhang, Wei; Pathak, Sandeep; Sakai, Nobuya; Stergiopoulos, Thomas; Nayak, Pabitra K.; Noel, Nakita K.; Haghighirad, Amir A.; Burlakov, Victor M.; deQuilettes, Dane W.; Sadhanala, Aditya; et al

    2015-11-30

    Solution-processed metal halide perovskite semiconductors, such as CH3NH3PbI3, have exhibited remarkable performance in solar cells, despite having non-negligible density of defect states. A likely candidate is halide vacancies within the perovskite crystals, or the presence of metallic lead, both generated due to the imbalanced I/Pb stoichiometry which could evolve during crystallization. Herein, we show that the addition of hypophosphorous acid (HPA) in the precursor solution can significantly improve the film quality, both electronically and topologically, and enhance the photoluminescence intensity, which leads to more efficient and reproducible photovoltaic devices. We demonstrate that the HPA can reduce the oxidized I2 backmore » into I-, and our results indicate that this facilitates an improved stoichiometry in the perovskite crystal and a reduced density of metallic lead.« less

  8. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells

    SciTech Connect

    Zhang, Wei; Pathak, Sandeep; Sakai, Nobuya; Stergiopoulos, Thomas; Nayak, Pabitra K.; Noel, Nakita K.; Haghighirad, Amir A.; Burlakov, Victor M.; deQuilettes, Dane W.; Sadhanala, Aditya; Li, Wenzhe; Wang, Liduo; Ginger, David S.; Friend, Richard H.; Snaith, Henry J.

    2015-11-30

    Solution-processed metal halide perovskite semiconductors, such as CH3NH3PbI3, have exhibited remarkable performance in solar cells, despite having non-negligible density of defect states. A likely candidate is halide vacancies within the perovskite crystals, or the presence of metallic lead, both generated due to the imbalanced I/Pb stoichiometry which could evolve during crystallization. Herein, we show that the addition of hypophosphorous acid (HPA) in the precursor solution can significantly improve the film quality, both electronically and topologically, and enhance the photoluminescence intensity, which leads to more efficient and reproducible photovoltaic devices. We demonstrate that the HPA can reduce the oxidized I2 back into I-, and our results indicate that this facilitates an improved stoichiometry in the perovskite crystal and a reduced density of metallic lead.

  9. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells

    PubMed Central

    Zhang, Wei; Pathak, Sandeep; Sakai, Nobuya; Stergiopoulos, Thomas; Nayak, Pabitra K.; Noel, Nakita K.; Haghighirad, Amir A.; Burlakov, Victor M.; deQuilettes, Dane W.; Sadhanala, Aditya; Li, Wenzhe; Wang, Liduo; Ginger, David S.; Friend, Richard H.; Snaith, Henry J.

    2015-01-01

    Solution-processed metal halide perovskite semiconductors, such as CH3NH3PbI3, have exhibited remarkable performance in solar cells, despite having non-negligible density of defect states. A likely candidate is halide vacancies within the perovskite crystals, or the presence of metallic lead, both generated due to the imbalanced I/Pb stoichiometry which could evolve during crystallization. Herein, we show that the addition of hypophosphorous acid (HPA) in the precursor solution can significantly improve the film quality, both electronically and topologically, and enhance the photoluminescence intensity, which leads to more efficient and reproducible photovoltaic devices. We demonstrate that the HPA can reduce the oxidized I2 back into I−, and our results indicate that this facilitates an improved stoichiometry in the perovskite crystal and a reduced density of metallic lead. PMID:26615763

  10. Holographic gratings recorded in poly(lactic acid)/azo-dye films

    NASA Astrophysics Data System (ADS)

    Cambiasso, Javier; Goyanes, Silvia; Ledesma, Silvia

    2015-09-01

    Diffraction gratings were recorded in biodegradable polymer films of poly(lactic acid) doped with the photoisomerisable azo-dye (Disperse Orange 3). It is shown that the diffraction efficiency of the recorded grating can be improved by 220% via an all-optical treatment. This all-optical treatment consists of a pre-irradiation of the sample with the writing laser beam at high power during a short period of time, preventing damage of the material, followed by a much longer inscription at relatively low power. Furthermore, it is shown that the addition of a small amount of 0.05 wt% of multi-walled carbon nanotubes to the photoresponsive polymer increases the maximum diffraction efficiency as well as the remanent efficiency by 20%. Finally, this last photoresponsive nano-composite is also sensitive to the pre-irradiation treatment.

  11. Supramolecular architecture in Langmuir and Langmuir-Blodgett films incorporating a chiral azobenzene.

    PubMed

    Haro, Marta; del Barrio, Jesús; Villares, Ana; Oriol, Luis; Cea, Pilar; López, M Carmen

    2008-09-16

    This article describes the synthesis and fabrication of Langmuir and Langmuir-Blodgett (LB) films incorporating a chiral azobenzene derivative, namely, ( S)-4- sec-butyloxy-4'-[5''-(methyloxycarbonyl)pentyl-1''-oxy]azobenzene, abbreviated as AZO-C4(S). Appropriate conditions for the fabrication of monolayers of AZO-C4(S) at the air-water interface have been established, and the resulting Langmuir films have been characterized by a combination of surface pressure and surface potential versus area per molecule isotherms, Brewster angle microscopy, and UV-vis reflection spectroscopy. The results indicate the formation of an ordered trilayer at the air-water interface with UV-vis reflection spectroscopy showing a new supramolecular architecture for multilayered films as well as the formation of J aggregates. Films were transferred onto solid substrates, with AFM revealing well-ordered multilayered films without 3D defects. Infrared and UV-vis absorption spectroscopy indicate that the supramolecular architecture may be favored by the formation of H bonds between acid groups in neighboring layers and pi-pi intermolecular interactions. Circular dichroism spectra reveal chiro-optical activity in multilayered LB films. PMID:18686982

  12. Transfer molding processes for nanoscale patterning of poly-L-lactic acid (PLLA) films

    NASA Astrophysics Data System (ADS)

    Dhakal, Rabin; Peer, Akshit; Biswas, Rana; Kim, Jaeyoun

    2016-03-01

    Nanoscale patterned structures composed of biomaterials exhibit great potential for the fabrication of functional biostructures. In this paper, we report cost-effective, rapid, and highly reproducible soft lithographic transfer-molding techniques for creating periodic micro- and nano-scale textures on poly (L-lactic acid) (PLLA) surface. These artificial textures can increase the overall surface area and change the release dynamics of the therapeutic agents coated on it. Specifically, we use the double replication technique in which the master pattern is first transferred to the PDMS mold and the pattern on PDMS is then transferred to the PLLA films through drop-casting as well as nano-imprinting. The ensuing comparison studies reveal that the drop-cast PLLA allows pattern transfer at higher levels of fidelity, enabling the realization of nano-hole and nano-cone arrays with pitch down to ~700 nm. The nano-patterned PLLA film was then coated with rapamycin to make it drug-eluting.

  13. Direct FTIR analysis of isolated trans fatty acids in edible oils using disposable polyethylene film.

    PubMed

    Xu, Lirong; Zhu, Xufei; Chen, Xiumei; Sun, Daijun; Yu, Xiuzhu

    2015-10-15

    A new transmission-based Fourier transform infrared (FTIR) spectroscopy method has been developed to determine trans fatty acids (TFA) content in edible oils using disposable polyethylene (PE) film as a spectral acquisition accessory. Calibration standards were devised by gravimetrically adding TFA to TFA-free oil. The response was measured at 990-945 cm(-1) against the baseline. A linear relationship between the areas in the spectral regions 1670-1625 cm(-1) and 990-945 cm(-1) in TFA-free oil samples was established to compensate for interference due to underlying triacylglycerol absorptions in the trans measurement region (990-945 cm(-1)). Subsequently, the area measured at 990-945 cm(-1) was corrected for interference, using the linear equation obtained, to determine TFA content. Results indicated that the PE film-based FTIR method for analyzing TFA content in edible oils was simple and rapid, and could be used effectively as an alternative to gas chromatography and mass spectrometry methods. PMID:25952899

  14. Antimicrobial Hyaluronic Acid-Cefoxitin Sodium Thin Films Produced by Electrospraying.

    PubMed

    Ahire, Jayesh J; Dicks, Leon M T

    2016-08-01

    The healing properties of hyaluronic acid (HA) in the recovery of wounds are well known. Cefoxitin (Cef), a cephalosporin antibiotic, is generally used to prevent and treat postoperative infections. In this study, we describe the incorporation of Cef in HA thin films (Cef-HAF) by using electrospraying. Scanning electron microscopy images showed that HA-containing thin films (HAF) were composed of numerous nanoparticles (255 ± 177 nm in diameter) with irregular surfaces, connected to each other with nanofibers of 50 ± 11 nm in diameter. Cef-HAF contained fewer, but larger, particles (551 ± 293 nm) with smooth surfaces and were interconnected with nanofibers of 61 ± 13 nm in diameter. Differences in surface morphology between HAF and Cef-HAF were confirmed by atomic force microscopy. Fourier transform infrared and X-ray diffraction analyses revealed that Cef was not modified when incorporated into Cef-HAF and remained active against Klebsiella pneumoniae Xen 39, Staphylococcus aureus Xen 36 and Listeria monocytogenes EDGe. Nanofiber scaffolds of HA-containing Cef may be used in dressings to control postoperative infections. PMID:27146506

  15. Structural study of very thin anodic alumina films on silicon by anodization in citric acid aqueous solution.

    PubMed

    Kokonou, M; Nassiopoulou, A G; Giannakopoulos, K P; Boukos, N; Travlos, A

    2005-03-01

    The formation of thin alumina films on a silicon substrate by anodization in a mild acid, specifically in 1% wt citric acid aqueous solution, is investigated by transmission electron microscopy (TEM). We present a comparative study between two cases of starting material: pure aluminum and an alloy of aluminum with 1% silicon. In both cases the thickness of the Al layer was less than 50 nm. It was observed that under exactly the same conditions, in the first case the anodization was stopping before anodizing the whole film and a remaining non-anodized Al layer was always present, while in the second case, the Al layer was fully anodized, resulting in an alumina matrix with a very high density of silicon nanocrystals of uniform sizes embedded in it. In both cases the alumina film was compact and amorphous. PMID:15913255

  16. A lead-film electrode on an aluminium substrate to serve as a lead-acid battery plate

    NASA Astrophysics Data System (ADS)

    Yolshina, L. A.; Kudyakov, V. Ya; Zyryanov, V. G.

    Compact lead layers have been deposited on the surfaces of aluminium and aluminium alloys. These coatings are uniform in thickness and have high porosity. The lead-film electrode produced on aluminium plate can be used as the positive electrode in a lead-acid battery.

  17. Nanometer-thick hyaluronic acid self-assemblies with strong adhesive properties.

    PubMed

    Marais, Andrew; Pendergraph, Samuel; Wågberg, Lars

    2015-07-22

    The adhesive characteristics of poly(allylamine hydrochloride) (PAH)/hyaluronic acid (HA) self-assemblies were investigated using contact adhesion testing. Poly(dimethylsiloxane) spheres and silicon wafers were coated with layer-by-layer (LbL) assemblies of PAH/HA. No increase in adhesion was observed when surfaces covered with dried LbL films were placed in contact. However, bringing the coated surfaces in contact while wet and separating them after drying resulted in an increase by a factor of 100 in the work of adhesion (from one to three bilayers). Herein we discuss the adhesion in PAH/HA and PAH/poly(acrylic acid) assemblies. PAH/HA assemblies have potential application as strong biomedical adhesives. PMID:26151110

  18. Properties of LaAlO Film after Waterless Process Using Organic Solvent Containing Anhydrous Hydrofluoric Acid

    NASA Astrophysics Data System (ADS)

    Masatomo Honjo,; Naoyoshi Komatsu,; Takuro Masuzumi,; Hidemitsu Aoki,; Daisuke Watanabe,; Chiharu Kimura,; Takashi Sugino,

    2010-04-01

    Lanthanum (La)-based oxide films have been studied as high-k (high dielectric constant) gate dielectrics. However, moisture absorption is a serious problem for oxide films containing La. We have attempted to use waterless solutions instead of water-based solutions to remove high-k films to suppress the moisture absorption of the lanthanum aluminate (LaAlO) film. We report the effect of an anhydrous hydrofluoric acid (AHF) and isopropyl alcohol (IPA) mixed solution as an etching solution and hydrofluoro-ether (HFE) as a rising solution on the properties of LaAlO films. We have succeeded in suppressing the moisture absorption of LaAlO films by using waterless solutions for a front end of line (FEOL) process. In addition, the selectivity (LaAlO/SiO2), the etching ratio of LaAlO to SiO2, was improved using this process. It is considered that this technology will be useful for the next-generation devices with lanthanum-based oxide films.

  19. Enhancement of Colorimetric Response of Enzymatic Reactions by Thermally Evaporated Plasmonic Thin Films: Application to Glial Fibrillary Acidic Protein

    PubMed Central

    Abel, Biebele; Kabir, Tabassum S.; Odukoya, Babatunde; Mohammed, Muzaffer; Aslan, Kadir

    2015-01-01

    We report the enhancement of the colorimetric response of horseradish peroxidase (HRP) and alkaline phosphatase (AP) in bioassays by thermally evaporated silver, gold, copper and nickel thin films. In this regard, a model bioassay based on biotin-avidin interactions was employed. Biotin groups and enzymes were introduced to all surfaces using a biotinylated linker molecule and avidin, respectively. The colorimetric response of HRP in the model bioassay carried out on the plasmonic thin films were up to 4.4-fold larger as compared to control samples (i.e., no plasmonic thin films), where the largest enhancement of colorimetric response was observed on silver thin films. The colorimetric response of AP on plasmonic thin films was found to be similar to those observed on control samples, which was attributed to the loss of enzymes from the surface during the bioassay steps. The extent of enzymes immobilized on to plasmonic thin films was found to affect the colorimetric response of the model bioassay. These findings allowed us to demonstrate the use of silver thin films for the detection of glial fibrillary acidic protein (GFAP), where the colorimetric response of the standard bioassays for GFAP was enhanced up to 67% as compared to bioassays on glass slides. PMID:25663850

  20. Effects of ultrasound treatment on lipid self-association and properties of methylcellulose/stearic acid blending films.

    PubMed

    Zhong, Tian; Huang, Ran; Sui, Siyao; Lian, Zixuan; Sun, Xiuxiu; Wan, Ajun; Li, Huili

    2015-10-20

    The effects of ultrasound treatment (UT) on the properties of methylcellulose (MC)/stearic acid (SA) blending films were studied. Film-forming emulsions were prepared with different UT conditions and characterized with respect to viscosity. The lipid aggregation and distribution in the blending dispersions were studied by the micrographs of Transmission Electron Microscopy (TEM). The micrographs of both surface and cross-section of the films were observed by scanning electron microscope (SEM) and the tensile strength (TS), elongation at break (E), water vapor permeability (WVP) and contact angles of the resulting films were determined as well. The intensification of the UT condition led to a decrease of viscosity of the MC-SA blending emulsions, a more homogeneous lipid distribution and a denser internal microstructure of the resulting films. UT exposure affected the mechanical, moisture barrier and surface hydrophobic properties. The optimal values of both TS and E was obtained from the sample treated for 10min and 180W power, while the sample treated for 10min and 270W presented the lowest value of WVP. However, an excessive exposure of UT led to a decrease of the mechanical and moisture barrier performance. By observing and analyzing the SEM graphs and the contact angles of the film surfaces, it was found that UT within the appropriate bounds had a notably positive effect on improving the surface hydrophobic property of the MC-SA blending films. PMID:26256202

  1. Extended chain conformational preference of solid films of poly(2,6-benzoxazole) processed from Lewis acid coordination complexes

    SciTech Connect

    Chen, X.L.; Jenekhe, S.A.

    1996-12-31

    Polybenzoxazoles such as poly(2,6-benzoxazole)(2,6-PBO), poly(2,6-benzothiazole)(2,6-PBT) and poly(2,5(6)-benzimidazole) are semi-flexible, high temperature, and high modulus polymers which have been of wide interest as the matrix components of molecular composites. These polymers and their rigid-rod relatives polybenzobisazoles(PBZT, PBO, etc) also exhibit interesting electroactive and photoactive properties. As previously shown for rigid-rod polybenzobisazoles, we have found that the semi-flexible polybenzoazoles are soluble in Lewis acid (e.g. GaCl{sub 3}, AlCl{sub 3})/nitromethane solvent systems from which films and fibers could be processed. Remarkably, 2,6-PBO films prepared by complexation mediated processing from Lewis acid/nitromethane solutions of the polymer exhibit the extended chain (trans) conformation as evidenced by optical absorption and photoluminescence spectroscopies. In contrast, 2,6-PBO films prepared from formic acid/methanesulfonic acid(FA/MSA) solvent am predominantly of cis-conformation. The origin of this extended chain conformation preference of 2,6-PBO films prepared from Lewis acid/nitromethane solutions lies in the stereochemical control exerted by Lewis(MX{sub 3}) coordination to the imine nitrogens of 2,6-PBO resulting in an all-trans conformation after film processing and decomplexation. Since the trans- and cis-(2,6-PBO) have dramatically different solid state properties such as optical absorption and luminescence, our results demonstrate how a high degree of control of solid state structure and properties can be achieved by novel polymer processing.

  2. Optical and surface morphology study of zinc phthalocyanine Langmuir Blodgett thin film

    NASA Astrophysics Data System (ADS)

    Roy, Dhrubojyoti; Das, Nayan Mani; Gupta, M.; Ganesan, V.; Gupta, P. S.

    2014-04-01

    The UV-Vis absorption spectroscopy analysis reveals that prominent J-aggregation of ZnPc molecules was observed in the LB films while no such aggregation was found in the solution. Change in fluorescence color of ZnPc LB film from its solution confirms the appearance of new aggregation.

  3. Thin films under chemical stress

    SciTech Connect

    Not Available

    1991-01-01

    The goal of work on this project has been develop a set of experimental tools to allow investigators interested in transport, binding, and segregation phenomena in composite thin film structures to study these phenomena in situ. Work to-date has focuses on combining novel spatially-directed optical excitation phenomena, e.g. waveguide eigenmodes in thin dielectric slabs, surface plasmon excitations at metal-dielectric interfaces, with standard spectroscopies to understand dynamic processes in thin films and at interfaces. There have been two main scientific thrusts in the work and an additional technical project. In one thrust we have sought to develop experimental tools which will allow us to understand the chemical and physical changes which take place when thin polymer films are placed under chemical stress. In principle this stress may occur because the film is being swelled by a penetrant entrained in solvent, because interfacial reactions are occurring at one or more boundaries within the film structure, or because some component of the film is responding to an external stimulus (e.g. pH, temperature, electric field, or radiation). However all work to-date has focused on obtaining a clearer understanding penetrant transport phenomena. The other thrust has addressed the kinetics of adsorption of model n-alkanoic acids from organic solvents. Both of these thrusts are important within the context of our long-term goal of understanding the behavior of composite structures, composed of thin organic polymer films interspersed with Langmuir-Blodgett (LB) and self-assembled monolayers. In addition there has been a good deal of work to develop the local technical capability to fabricate grating couplers for optical waveguide excitation. This work, which is subsidiary to the main scientific goals of the project, has been successfully completed and will be detailed as well. 41 refs., 10 figs.

  4. Effect of lauric acid and nisin-impregnated soy-based films on the growth of Listeria monocytogenes on turkey bologna.

    PubMed

    Dawson, P L; Carl, G D; Acton, J C; Han, I Y

    2002-05-01

    Research in development of antimicrobial packaging applications for further processed meats has become more common with recent outbreaks of contamination of these products. In this present study, lauric acid (8%, wt/wt) and 2.5% pure nisin (4%, wt/wt) were incorporated singly and together into thermally compacted soy films. Biocide-impregnated films were compared to control films containing no biocide for inhibition of Listeria monocytogenes in liquid medium and on turkey bologna surface. L. monocytogenes suspended in 1% peptone medium exposed to control films increased from 106 to 10(9) after 48 h exposure at 22 C. Films with nisin alone suppressed cell numbers 1 log cfu/mL after 2 h but cell numbers increased to 10(8) after 24 and 48 h at 22 C. Films containing lauric acid and nisin completely eliminated detectable cells from a 10(6) culture after 8 h of exposure to the liquid medium (22 C). Refrigerated bologna exposed to control films increased by 0.5 log from 10(6) after 21 d at 4 C. Nisin films reduced cell numbers on turkey bologna from 10(6) to 10(5) after 21 d, as did films containing nisin and lauric acid. Films with lauric acid alone reduced L. monocytogenes culture from 10(6) to < 102 after 48 h and by 1 log on turkey bologna after 21 d. PMID:12033424

  5. Diazeniumdiolate-Doped Poly(lactic-co-glycolic acid)-Based Nitric Oxide Releasing Films as Antibiofilm Coatings

    PubMed Central

    Cai, Wenyi; Wu, Jianfeng; Xi, Chuanwu; Meyerhoff, Mark, E.

    2012-01-01

    Nitric oxide (NO) releasing films with a bilayer configuration are fabricated by doping dibutyhexyldiamine diazeniumdiolate (DBHD/N2O2) in a poly(lactic-co-glycolic acid) (PLGA) layer and further encapsulating this base layer with a silicone rubber top coating. By incorporating pH sensitive dyes within the films, pH changes in the PLGA layer are visualized and correlated with the NO release profiles (flux vs. time). It is demonstrated that PLGA acts as both a promoter and controller of NO release from the coating by providing protons through its intrinsic acid residues (both end-groups and monomeric acid impurities) and hydrolysis products (lactic acid and glycolic acid). Control of the pH changes within the PLGA layer can be achieved by adjusting the ratio of DBHD/N2O2 and utilizing PLGAs with different hydrolysis rates. Coatings with a variety of NO release profiles are prepared with lifetimes of up to 15 d at room temperature (23 °C) and 10 d at 37 °C. When incubated in a CDC flow bioreactor for a one-week period at RT or 37 °C, all the NO releasing films exhibit considerable antibiofilm properties against gram-positive S. aureus and gram-negative E. coli. In particular, compared to the silicone rubber surface alone, an NO releasing film with a base layer of 30 wt% DBHD/N2O2 mixed with poly(lactic acid) exhibits an ~98.4% reduction in biofilm biomass of S. aureus and ~ 99.9% reduction for E. coli at 37 °C. The new diazeniumdiolate-doped PLGA-based NO releasing coatings are expected to be useful antibiofilm coatings for a variety of indwelling biomedical devices (e.g., catheters). PMID:22841918

  6. Uptake measurements of acetic acid on ice and nitric acid-doped thin ice films over upper troposphere/lower stratosphere temperatures.

    PubMed

    Romanias, Manolis N; Zogka, Antonia G; Papadimitriou, Vassileios C; Papagiannakopoulos, Panos

    2012-03-01

    The adsorption of gaseous acetic acid (CH(3)C(O)OH) on thin ice films and on ice doped with nitric acid (1.96 and 7.69 wt %) was investigated over upper troposphere and lower stratosphere (UT/LS) temperatures (198-208 K), and at low gas concentrations. Experiments were performed in a Knudsen flow reactor coupled to a quadrupole mass spectrometer. The initial uptake coefficients, γ(0), on thin ice films or HNO(3)-doped ice films were measured at low surface coverage. In all cases, γ(0) showed an inverse temperature dependence, and for pure thin ice films, it was given by the expression γ(0)(T) = (4.73 ± 1.13) × 10(-17) exp[(6496 ± 1798)/T]; the quoted errors are the 2σ precision of the linear fit, and the estimated systematic uncertainties are included in the pre-exponential factor. The inverse temperature dependence suggests that the adsorption process occurs via the formation of an intermediate precursor state. Uptakes were well represented by the Langmuir adsorption model, and the saturation surface coverage, N(max), on pure thin ice films was (2.11 ± 0.16) × 10(14) molecules cm(-2), independent of temperature in the range 198-206 K. Light nitration (1.96 and 7.69 wt %) of ice films resulted in more efficient CH(3)C(O)OH uptakes and larger N(max) values that may be attributed to in-bulk diffusion or change in nature of the gas-ice surface interaction. Finally, it was estimated that the rate of adsorption of acetic acid on high-density cirrus clouds in the UT/LS is fast, and this is reflected in the short atmospheric lifetimes (2-8 min) of acetic acid; however, the extent of this uptake is minor resulting in at most a 5% removal of acetic acid in UT/LS cirrus clouds. PMID:22313232

  7. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2014-11-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, Attenuated Total Reflectance-Fourier Transform Infrared and 1H Nuclear Magnetic Resonance spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene, which was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence for products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and methylglyoxal

  8. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2015-04-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt%) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  9. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    PubMed Central

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2016-01-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40–80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance–Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  10. Catalytic Reduction of Noble Metal Salts by Sodium Hypophosphite Promoted by the Film Poly-(p-Allyl Ether Benzenesulfonic Acid).

    PubMed

    Costa, M I C F; Steter, J R; Purgato, F L S; Romero, J R

    2011-01-01

    Glassy carbon electrodes were coated with the film poly-(p-allyl ether benzenesulfonic acid) by an anodic procedure. Nickel, platinum, and palladium ions were introduced into the film by ion exchange of H(+) with the corresponding salts. These ions were catalytically reduced to their corresponding metals using the known electroless reducing agent sodium hypophosphite. Scanning electron microcopy and energy dispersive X-ray spectroscopy were carried out to demonstrate the occurrence of the catalytic process. To compare this method with another one carried out in our laboratory, the electrocatalytic reduction of H(+) was studied using the same modified electrodes. A suggested mechanism for the catalysis is proposed. PMID:24052832

  11. Catalytic Reduction of Noble Metal Salts by Sodium Hypophosphite Promoted by the Film Poly-(p-Allyl Ether Benzenesulfonic Acid)

    PubMed Central

    Costa, M. I. C. F.; Steter, J. R.; Purgato, F. L. S.; Romero, J. R.

    2011-01-01

    Glassy carbon electrodes were coated with the film poly-(p-allyl ether benzenesulfonic acid) by an anodic procedure. Nickel, platinum, and palladium ions were introduced into the film by ion exchange of H+ with the corresponding salts. These ions were catalytically reduced to their corresponding metals using the known electroless reducing agent sodium hypophosphite. Scanning electron microcopy and energy dispersive X-ray spectroscopy were carried out to demonstrate the occurrence of the catalytic process. To compare this method with another one carried out in our laboratory, the electrocatalytic reduction of H+ was studied using the same modified electrodes. A suggested mechanism for the catalysis is proposed. PMID:24052832

  12. Compostability assessment of nano-reinforced poly(lactic acid) films.

    PubMed

    Balaguer, M P; Aliaga, C; Fito, C; Hortal, M

    2016-02-01

    Nanomaterials can provide plastics with great advantages on mechanical and active properties (i.e. release and capture of specific substances). Therefore, packaging is expected to become one of the leading applications for these substances by 2020. There are some applications already in the market. Nevertheless, there is still some areas under development. A key issue to be analyzed is the end-of-life of these materials once they become waste, and specifically when nanomaterials are used in biodegradable products. The present study evaluated the disintegration, biodegradability, and ecotoxicity of poly(lactic acid) films reinforced with the three following nanomaterials: (1) montmorillonite modified with an ammonium quaternary salt, (2) calcium carbonate and (3) silicon dioxide. Results on disintegration showed that films completely disintegrated into visually indistinguishable residues after 6-7weeks of incubation in composting environment. Moreover, no differences were observed in the evolution of the bioresidue with respect to color, aspect, and odor in comparison with the control. It was also observed that nanomaterials did not significantly reduce the level of biodegradability of PLA (p>0.05). In fact, biodegradation was higher, without finding significant differences (p>0.05), in all the nano-reinforced samples with respect to PLA after 130days in composting (9.4% in PLA+Nano-SiO2; 34.0% in PLA+Clay1; 48.0% in PLA+Nano-CaCO3). Finally, no significant differences (p>0.05) in ecotoxicity in plants were observed as a result of the incorporation of nanoparticles in the PLA matrix. PMID:26589869

  13. Depth profiling of 4-acetamindophenol-doped poly(lactic acid) films using cluster secondary ion mass spectrometry.

    PubMed

    Mahoney, Christine M; Roberson, Sonya V; Gillen, Greg

    2004-06-01

    The feasibility of using cluster secondary ion mass spectrometry for depth profiling of drug delivery systems is explored. The behavior of various biodegradable polymer films under dynamic SF(5)(+) primary ion bombardment was investigated, including several films doped with model drugs. The SF(5)(+) depth profiles obtained from these biodegradable polymer films showed very little degradation in secondary ion signal as a function of increasing primary ion dose, and it was discovered that the characteristic ion signals for the polymers remained constant for ion doses up to approximately 5 x 10(15) ions/cm(2). These results suggest that the polyester structure of the biodegradable polymers studied here allows for a greater ability to depth profile due to ease of main chain scission. Attempts were also made to depth profile through a series of poly(lactic acid) (PLA) films containing varying concentrations of the drug 4-acetamidophenol. The depth profiles obtained from these films show very little decrease in both the 4-acetamidophenol molecular ion and PLA fragment ion signals as a function of increasing SF(5)(+) primary ion dose. Similar results were obtained with theophylline-doped PLA films. These results show that, in some drug delivery devices, it is possible to monitor the distribution of a drug as a function of depth by using cluster primary ion beams. PMID:15167802

  14. J-aggregation and its characterization in Langmuir-Blodgett films of merocyanine dyes.

    PubMed

    Kuroda, Shin-ichi

    2004-12-13

    Langmuir-Blodgett (LB) films are constructed by successively transferring monomolecular layers formed at the air-water interface onto solid substrates. One of the advantages of the LB technique in fabricating molecular aggregates lies in the fact that it can employ various kinds of molecules by mixing them at the air-water interface. The mixed system may exhibit new properties that are not observed for individual components. This method would be useful, for example, in the studies of the formation and control of the J-aggregates of functional dyes that attract attention both in science and technology. In this paper, I review this subject mainly based on our recent results in merocyanines. LB films of merocyanine dyes, mixed with arachidic acid (C(20)), exhibit J-aggregate formation and have been serving as typical systems in revealing the physical and structural aspects of nanosized molecular aggregates constructed as monolayers. In the case of LB films of a merocyanine dye having benzothiazole as donor nucleus (abbreviated as DS), electron spin resonance (ESR) spectroscopy has been successful in determining the characteristic in-plane orientation of dye molecules with respect to the dipping direction, which led to the discovery of the flow orientation effect during the dipping process of LB films as the origin of optical dichroism often observed in LB films. In this article, after an introduction of ESR spectroscopy, three major topics on the merocyanine J-aggregation and its characterization in mixed films are discussed. The first topic is the observation and control of the size of J-aggregates in the dilution limit of dyes in arachidic acid matrix for a methyl-substituted DS (6-Me-DS). Dependence of atomic force microscopy (AFM) patterns on the molar ratio allows the identification of dye domains. J-band optical peak analysis based on the Kuhn's extended dipole model, supplemented by a novel application of femtosecond pump-probe optical spectroscopy, yields the

  15. Free radical grafting of gallic acid (GA) on cellulose nanocrystals (CNCS) and evaluation of antioxidant reinforced gellan gum films

    NASA Astrophysics Data System (ADS)

    Criado, P.; Fraschini, C.; Salmieri, S.; Becher, D.; Safrany, A.; Lacroix, M.

    2016-01-01

    Antiradical properties were introduced on cellulose nanocrystals (CNCs) by redox pair (RP) initiator and γ-radiation treatments. Different procedures were tested on CNC, first a 2 h reaction of hydrogen peroxide (H2O2)/ascorbic acid (AA) was performed on CNC solution. γ-Radiation treatment at 20 kGy dose was then applied and immediately after GA was reacted during 24 h with the pretreated CNCs, giving CNC-H2O2-AA-γ-GA. The formation of new carboxylic acids and carbonyl groups were characterized by FT-IR at 1650 and 1730 cm-1 respectively. Carboxylic acid functionalities were also analyzed by conductometric titration where an increase from 49 to 134 mmol COOH kg-1 was found from native to irradiated CNCs. A similar increase in the carboxylic acid content (132 mmol kg-1) was observed for CNC-H2O2-AA-γ-GA, showing the highest radical scavenging properties (8 mM Trolox eq/mg CNC). Thermogravimetric analysis confirmed the structural changes onto CNC. Film packaging containing 20% of CNC-H2O2-AA-γ-GA was then added to a gellan-based film packaging. A significant improvement (p<0.05) of the tensile strength (TS), the tensile modulus (TM) and the elongation at break (EB) and water vapor permeability reduction was observed when CNC-H2O2-AA-γ-GA was added to the film packaging formulation.

  16. Nature-Inspired One-Step Green Procedure for Enhancing the Antibacterial and Antioxidant Behavior of a Chitin Film: Controlled Interfacial Assembly of Tannic Acid onto a Chitin Film.

    PubMed

    Wang, Yuntao; Li, Jing; Li, Bin

    2016-07-20

    The final goal of this study was to develop antimicrobial food-contact materials based on a natural phenolic compound (tannic acid) and chitin, which is the second most abundant polysaccharide on earth, using an interfacial assembly approach. Chitin film has poor antibacterial and antioxidant ability, which limits its application in industrial fields such as active packaging. Therefore, in this study, a novel one-step green procedure was applied to introduce antibacterial and antioxidant properties into a chitin film simultaneously by incorporation of tannic acid into the chitin film through interfacial assembly. The antibacterial and antioxidant behavior of chitin film has been greatly enhanced. Hydrogen bonds and hydrophobic interaction were found to be the main driving forces for interfacial assembly. Therefore, controlled interfacial assembly of tannic acid onto a chitin film demonstrated a good way to develop functional materials that can be potentially applied in industry. PMID:27378105

  17. Effects of acid catalyst type on structural, morphological, and optoelectrical properties of spin-coated TiO2 thin film

    NASA Astrophysics Data System (ADS)

    Golobostanfard, Mohammad Reza; Abdizadeh, Hossein

    2013-03-01

    The effects of different acid catalysts of nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, boric acid, acetic acid, and citric acid on structural, morphological, and optoelectrical properties of nanocrystalline spin-coated TiO2 thin films synthesized via alkoxide sol-gel route were investigated. It was found that only the sols with HNO3 and HCl are suitable for film preparation. The X-ray diffractometry and Raman analysis showed that crystalline phases could be controlled by the type of acid catalyst. Although the H2SO4 sol shows good stability, it causes extremely different morphology to form due to its different sol nature and high contact angle. Fourier transformed infrared spectra confirmed the presence of acid anion species in all samples even after calcination. Furthermore, it was inferred from UV-visable absorption spectra that although the band gap and thickness of the films are independent of acid catalyst type, the refractive index and porosity of the films are strongly affected by the type of acids.

  18. The influence of nanotexturing of poly(lactic-co-glycolic acid) films upon human ovarian cancer cell attachment.

    PubMed

    Yaşayan, Gökçen; Xue, Xuan; Collier, Pamela; Clarke, Philip; Alexander, Morgan R; Marlow, Maria

    2016-06-24

    In this study, we have produced nanotextured poly(lactic-co-glycolic acid) (PLGA) films by using polystyrene (PS) particles as a template to make a polydimethylsiloxane mould against which PLGA is solvent cast. Biocompatible, biodegradable and nanotextured PLGA films were prepared with PS particles of diameter of 57, 99, 210, and 280 nm that produced domes of the same dimension in the PLGA surface. The effect of the particulate monolayer templating method was investigated to enable preparation of the films with uniformly ordered surface nanodomes. Cell attachment of a human ovarian cancer cell line (OVCAR3) alone and co-cultured with mesenchymal stem cells (MSCs) was evaluated on flat and topographically nano-patterned surfaces. Cell numbers were observed to increase on the nanotextured surfaces compared to non-textured surfaces both with OVCAR3 cultures and OVCAR3-MSC co-cultures at 24 and 48 h time points. PMID:27184195

  19. The influence of nanotexturing of poly(lactic-co-glycolic acid) films upon human ovarian cancer cell attachment

    NASA Astrophysics Data System (ADS)

    Yaşayan, Gökçen; Xue, Xuan; Collier, Pamela; Clarke, Philip; Alexander, Morgan R.; Marlow, Maria

    2016-06-01

    In this study, we have produced nanotextured poly(lactic-co-glycolic acid) (PLGA) films by using polystyrene (PS) particles as a template to make a polydimethylsiloxane mould against which PLGA is solvent cast. Biocompatible, biodegradable and nanotextured PLGA films were prepared with PS particles of diameter of 57, 99, 210, and 280 nm that produced domes of the same dimension in the PLGA surface. The effect of the particulate monolayer templating method was investigated to enable preparation of the films with uniformly ordered surface nanodomes. Cell attachment of a human ovarian cancer cell line (OVCAR3) alone and co-cultured with mesenchymal stem cells (MSCs) was evaluated on flat and topographically nano-patterned surfaces. Cell numbers were observed to increase on the nanotextured surfaces compared to non-textured surfaces both with OVCAR3 cultures and OVCAR3-MSC co-cultures at 24 and 48 h time points.

  20. MOA-2013-BLG-605Lb: The Neptune analog

    NASA Astrophysics Data System (ADS)

    Sumi, Takahiro

    2015-08-01

    We present the discovery and mass measurement of the first Neptune analog exoplanet, MOA-2013-BLG-605Lb. This planet has a mass similar to that of Neptune and it orbits at a distance of 11 times the expected position of the snow-line, which is the same position as Neptune in our Solar System. This is the first sub-Jupiter-mass exoplanet found at such a large distance from its host star, although planets at similar separations have been found by direct imaging. There are two degenerate physical solutions due to a new type of degeneracy in the microlensing parallax parameters, known as the wide degeneracy. The slightly favored model has a Neptune-mass planet orbiting a low-mass M-dwarf. The alternative model implies a mini-Neptune orbiting a brown dwarf host. The 3-D planet-host separations are 11 times or 16 times greater than the expected positions of the snow-line for these models, respectively, which are close to Neptune's separation of 11 snow-line from the Sun. This discovery suggests that Neptune-like planets orbiting at 11 snow-line are quite common, so the process that formed Uranus and Neptune in our own Solar System may be quite common in other solar systems.

  1. A nitrilo-tri-acetic-acid/acetic acid route for the deposition of epitaxial cerium oxide films as high temperature superconductor buffer layers

    SciTech Connect

    Thuy, T.T.; Lommens, P.; Narayanan, V.; Van de Velde, N.; De Buysser, K.; Herman, G.G.; Cloet, V.; Van Driessche, I.

    2010-09-15

    A water based cerium oxide precursor solution using nitrilo-tri-acetic-acid (NTA) and acetic acid as complexing agents is described in detail. This precursor solution is used for the deposition of epitaxial CeO{sub 2} layers on Ni-5at%W substrates by dip-coating. The influence of the complexation behavior on the formation of transparent, homogeneous solutions and gels has been studied. It is found that ethylenediamine plays an important role in the gelification. The growth conditions for cerium oxide films were Ar-5% gas processing atmosphere, a solution concentration level of 0.25 M, a dwell time of 60 min at 900 {sup o}C and 5-30 min at 1050 {sup o}C. X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), pole figures and spectroscopic ellipsometry were used to characterize the CeO{sub 2} films with different thicknesses. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) was used to determine the carbon residue level in the surface of the cerium oxide film, which was found to be lower than 0.01%. Textured films with a thickness of 50 nm were obtained. - Graphical abstract: Study of the complexation and hydrolysis behavior of Ce{sup 4+} ions in the presence of nitrilo-tri-acetic acid and the subsequent development of an aqueous chemical solution deposition route suited for the processing of textured CeO{sub 2} buffer layers on Ni-W tapes.

  2. Titania nanotubes from weak organic acid electrolyte: fabrication, characterization and oxide film properties.

    PubMed

    Munirathinam, Balakrishnan; Neelakantan, Lakshman

    2015-04-01

    In this study, TiO2 nanotubes were fabricated using anodic oxidation in fluoride containing weak organic acid for different durations (0.5h, 1h, 2h and 3h). Scanning electron microscope (SEM) micrographs reveal that the morphology of titanium oxide varies with anodization time. Raman spectroscopy and X-ray diffraction (XRD) results indicate that the as-formed oxide nanotubes were amorphous in nature, yet transform into crystalline phases (anatase and rutile) upon annealing at 600°C. Wettability measurements show that both as-formed and annealed nanotubes exhibited hydrophilic behavior. The electrochemical behavior was ascertained by DC polarization and AC electrochemical impedance spectroscopy (EIS) measurements in 0.9% NaCl solution. The results suggest that the annealed nanotubes showed higher impedance (10(5)-10(6)Ωcm(2)) and lower passive current density (10(-7)Acm(-2)) than the as-formed nanotubes. In addition, we investigated the influence of post heat treatment on the semiconducting properties of the oxides by capacitance measurements. In vitro bioactivity test in simulated body fluid (SBF) showed that precipitation of Ca/P is easier in crystallized nanotubes than the amorphous structure. Our study uses a simple strategy to prepare nano-structured titania films and hints the feasibility of tailoring the oxide properties by thermal treatment, producing surfaces with better bioactivity. PMID:25686985

  3. Formic acid oxidation on antimony-covered platinum films with a preferential (100) orientation

    NASA Astrophysics Data System (ADS)

    Bertin, Erwan; Garbarino, Sébastien; Guay, Daniel

    2015-12-01

    The spontaneous adsorption of Sb onto nanostructured platinum electrodeposited films with a preferential (100) surface orientation, hereafter denoted Pt100 pref, was studied by means of electrochemical quartz microbalance (EQCM) and X-ray photoelectron spectroscopy. EQCM results indicated the formation of a Sb monolayer, while XPS analyses confirmed that a fraction of the as-adsorbed Sb adatoms were in a metallic state, while the others were in an oxidized state. After cycling, all of the Sb adatoms were in a metallic state. The electrocatalytic performances towards formic acid oxidation were assessed through cyclic voltammetry and chronoamperometry. On Pt100 pref, the presence of Sb markedly increased the current on the forward scan up to the potential value (typically 0.20 V) corresponding to a redox reaction occurring on the adatom. After one hour of electrolysis, the current on the Pt100 pref electrode covered with 75% Sb was ca. 15 mA cm-2geometric at 0.14 V vs SCE, which is 100 times higher than on the bare Pt100 pref electrode. The short- and long-term activities of the Pt100 pref electrode were maintained even when the electrode was disoriented through potential cycling in the Pt oxide formation and reduction region.

  4. Corrosion behavior and characteristics of the product film of API X100 steel in acidic simulated soil solution

    NASA Astrophysics Data System (ADS)

    Du, Cui-wei; Zhao, Tian-liang; Liu, Zhi-yong; Li, Xiao-gang; Zhang, Da-wei

    2016-02-01

    The short-term corrosion behavior of API X100 steel in an acidic simulated soil was investigated by electrochemical measurements and soaking experiments, followed by corrosion morphology observations and X-ray photoelectron spectroscopy analyses. The results show that X100 steel exhibits an obvious pitting susceptibility in an acidic soil environment. Pits nucleate after approximately 10 h of immersion. Along with the nucleation and growth of the pits, the charge-transfer resistance and open-circuit potential first increase sharply, then decrease slowly, and eventually reach a steady state. The maxima of the charge-transfer resistance and open-circuit potential are attained at approximately 10 h. The evolution of the electrochemical process is confirmed by the analysis of the product film. The product film exhibits a porous and loose structure and could not protect the substrate well. The product film is primarily composed of ferrous carbonate and ferrous hydroxide (Fe(OH)2). The concentration of Fe(OH)2 in the product film increases from the inside to the outside layer.

  5. Effect of heat treatment on the structure of incorporated oxalate species and photoluminescent properties of porous alumina films formed in oxalic acid

    NASA Astrophysics Data System (ADS)

    Vrublevsky, I.; Jagminas, A.; Hemeltjen, S.; Goedel, W. A.

    2008-09-01

    The present work focuses on the use of IR spectroscopy and photoluminescence spectral measurements for studying the treatment temperature effect on the compositional and luminescent properties of oxalic acid alumina films. In line with the recent researches we have also found that heat treatment of porous alumina films formed in oxalic acid leads to considerable changes in their photoluminescence properties: upon annealing the intensity of photoluminescence (PL) increases reaching a maximum at the temperature of around 500 °C and then decreases. IR spectra of as-grown and heat-treated films have proved that PL emission in the anodic alumina films is related with the state of 'structural' oxalate species incorporated in the oxide lattice. These results allowed us to conclude that PL behavior of oxalic acid alumina films can be explained through the concept of variations in the bonding molecular orbitals of incorporated oxalate species including σ- and π-bonds.

  6. Preparation and properties of films cast from mixtures of poly(vinyl alcohol) and submicron particles prepared from amylose-palmitic acid inclusion complexes.

    PubMed

    Fanta, George F; Selling, Gordon W; Felker, Frederick C; Kenar, James A

    2015-05-01

    The use of starch in polymer composites for film production has been studied for increasing biodegradability, improving film properties and reducing cost. In this study, submicron particles were prepared from amylose-sodium palmitate complexes both by rapidly cooling jet-cooked starch-palmitic acid mixtures and by acidifying solutions of starch-sodium palmitate complexes. Films were cast containing poly(vinyl alcohol) (PVOH) with up to 50% starch particles. Tensile strength decreased and Young's modulus increased with starch concentration, but percent elongations remained similar to controls regardless of preparation method or starch content. Microscopy showed particulate starch distribution in films made with rapidly cooled starch-palmitic acid particles but smooth, diffuse starch staining with acidified sodium palmitate complexes. The mild effects on tensile properties suggest that submicron starch particles prepared from amylose-palmitic acid complexes provide a useful, commercially viable approach for PVOH film modification. PMID:25659717

  7. PL and FT-IR characterization of novel polymer thin films: PVCz mixed with perylene and fatty acids

    NASA Astrophysics Data System (ADS)

    Kusano, Hiroyuki; Kuruma, Ichiro; Kitagawa, Masahiko; Ichino, Kunio; Kobayashi, Hiroshi

    1997-04-01

    We have investigated the effect of addition of stearic acid in poly( N-vinylcarbazole) (PVCz) films doped with perylene. Samples were prepared by spin coating technique and characterized by photoluminescence (PL) and Fourier transform-infrared (FT-IR) absorption. It was elucidated that PL emission due to perylene at 450 nm and 480 nm was enhanced and the concentration quenching of the perylene emission was reduced by the addition of stearic acid. Orientation ordering of carbazole base plane and/or perylene ring plane was suggested from IR measurement.

  8. Correlation of film density and wet etch rate in hydrofluoric acid of plasma enhanced atomic layer deposited silicon nitride

    NASA Astrophysics Data System (ADS)

    Provine, J.; Schindler, Peter; Kim, Yongmin; Walch, Steve P.; Kim, Hyo Jin; Kim, Ki-Hyun; Prinz, Fritz B.

    2016-06-01

    The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposition (ALD) of silicon nitride (SiNx), particularly for use a low k dielectric spacer. One of the key material properties needed for SiNx films is a low wet etch rate (WER) in hydrofluoric (HF) acid. In this work, we report on the evaluation of multiple precursors for plasma enhanced atomic layer deposition (PEALD) of SiNx and evaluate the film's WER in 100:1 dilutions of HF in H2O. The remote plasma capability available in PEALD, enabled controlling the density of the SiNx film. Namely, prolonged plasma exposure made films denser which corresponded to lower WER in a systematic fashion. We determined that there is a strong correlation between WER and the density of the film that extends across multiple precursors, PEALD reactors, and a variety of process conditions. Limiting all steps in the deposition to a maximum temperature of 350 °C, it was shown to be possible to achieve a WER in PEALD SiNx of 6.1 Å/min, which is similar to WER of SiNx from LPCVD reactions at 850 °C.

  9. Quantitative XPS depth profiling of codeine loaded poly(l-lactic acid) films using a coronene ion sputter source.

    PubMed

    Rafati, Ali; Davies, Martyn C; Shard, Alexander G; Hutton, Simon; Mishra, Gautam; Alexander, Morgan R

    2009-08-19

    The controlled release of active pharmaceutical ingredients from polymers over prolonged periods of time is vital for the function of drug eluting stents and other drug loaded delivery devices. Characterisation of the drug distribution in polymers allows the in vitro and in vivo performance to be rationalised. We present the first X-ray photoelectron spectroscopy (XPS) depth profiling study of such a drug eluting stent system for which we employ a novel coronene ion sputter source. The rationale for this is to ascertain quantitative atomic concentration data through the thickness of flat films containing codeine and poly(l-lactic acid) (PLA) as a model of a drug loaded polymer device. A range of films of thickness of up to 96 nm are spun cast from chloroform onto Piranha cleaned silicon wafers. Ellipsometry of the films is undertaken prior to depth profiling to determine the total film thickness and provide a measure of the relative loading of drug within the PLA matrix through spectroscopic analysis. Progressive XPS analysis of the bottom of the sputter crater with sputter time indicated codeine to be depleted from the surface and segregated to the bulk of the polymer films by comparison with a uniform distribution calculated from the bulk loading. This serves to illustrate that surface depletion of drug occurs, which poses important implications for drug loaded polymer delivery systems. PMID:19427343

  10. Efficacy of two acidic sanitizers for microbial reduction on metal cans and low-density polyethylene film surfaces.

    PubMed

    Lee, J; Gupta, M J; Lopes, J; Pascall, M A

    2007-10-01

    This study investigated 2 sanitizer formulations and compared them with hydrogen peroxide (H(2)O(2)). Formulation number 1 contained citric acid and sodium dodecylbenzene sulfonate (SDBS). Formulation number 2 contained SDBS, citric, lactic, phosphoric acids, and benzoic acid. Low concentration levels of the sanitizers (1.0% for formulation 1 and 0.5% for formulation 2) were compared with 35% H(2)O(2) for their efficacies on Escherichia coli, Listeria innocua, and Saccharomyces cerevisiae inoculated onto low-density polyethylene (LDPE) films and metal cans at room temperature (23 +/- 1 degrees C) and 40 degrees C. The results showed that both formulations 1 and 2 required >120 s to sanitize both materials from microbial populations at room temperature, while <15 s was needed for the H(2)O(2). Except for formulation 1 on the E. coli inoculated LDPE film surface, the sanitizers completely eliminated the bacterial populations on both materials in 60 s at 40 degrees C. In general, the formulations were more effective for reduction of the microbial numbers on the can material when compared with the LDPE film. The E. coli showed greater tolerance for the sanitizers when exposed to the process conditions in this study. All sanitizers completely eliminated the test organisms in

  11. Fabrication of ZnFe2O4 films and its application in photoelectrocatalytic degradation of salicylic acid.

    PubMed

    Kumbhar, S S; Mahadik, M A; Shinde, S S; Rajpure, K Y; Bhosale, C H

    2015-01-01

    ZnFe2O4 thin films are successfully deposited onto bare and fluorine doped tin oxide (FTO) coated quartz substrate using the spray pyrolysis method. The structure and morphology of ZnFe2O4 photoelectrodes were studied by X-ray diffraction (XRD) and atomic force microscopy (AFM). The X-ray diffraction pattern confirms the polycrystalline nature of films with a spinel cubic crystal structure. The AFM micrographs shows the granular nature of the films. The dielectric constant and dielectric loss shows dispersion behavior as a function of frequency measured in the range from 20Hz to 1MHz. Photoelectrocatalysis degradation of salicylic acid using ZnFe2O4 photoelectrode under sunlight illumination has been investigated. The result shows that the degradation percentage of salicylic acid on ZnFe2O4 photoelectrodes is reached 49% under neutral conditions after 320min illumination. The decrease in values of COD from 19.4mg/L to 6.4mg/L indicates there is mineralization of salicylic acid with time. PMID:25528302

  12. The effects of solvent polarity and pKa on the absorption of solvents into poly(glutaric acid-glycerol) films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, solvent absorption into the matrices of poly(glutaric acid-glycerol) films has been evaluated. It was determined that the combined effects of polarity and the size and shape of the solvent molecule, rather than pKa, have the most significant influence on absorption into the films. P...

  13. Preparation and properties of films cast from mixtures of poly(vinyl alcohol) and submicron particles prepared from amylose-palmitic acid inclusion complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of starch in polymer composites for film production has been studied extensively for increasing biodegradability, improving film properties and reducing cost. Starch nanoparticles have received much attention, primarily those obtained by acid hydrolysis of starch granules. In this study, nan...

  14. Stimuli-responsive weak polyelectrolyte multilayer films: A thin film platform for self triggered multi-drug delivery.

    PubMed

    Anandhakumar, S; Gokul, P; Raichur, A M

    2016-01-01

    Polyelectrolyte multilayer (PEM) thin film composed of weak polyelectrolytes was designed by layer-by-layer (LbL) assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) for multi-drug delivery applications. Environmental stimuli such as pH and ionic strength showed significant influence in changing the film morphology from pore-free smooth structure to porous structure and favored triggered release of loaded molecules. The film was successfully loaded with bovine serum albumin (BSA) and ciprofloxacin hydrochloride (CH) by modulating the porous polymeric network of the film. Release studies showed that the amount of release could be easily controlled by changing the environmental conditions such as pH and ionic strength. Sustained release of loaded molecules was observed up to 8h. The fabricated films were found to be biocompatible with epithelial cells during in-vitro cell culture studies. PEM film reported here not only has the potential to be used as self-responding thin film platform for transdermal drug delivery, but also has the potential for further development in antimicrobial or anti-inflammatory coatings on implants and drug-releasing coatings for stents. PMID:26478353

  15. Acid Rain: A Teaching Focus for the Intermediate Grades.

    ERIC Educational Resources Information Center

    Adams, Renee B.; Adams, Neil D.

    1992-01-01

    The study of acid rain provides ample opportunities for active, interdisciplinary learning. This article describes 12 hands-on activities designed to expand students' understanding of acid rain. Background information on acid rain is included. (LB)

  16. Physicochemical, antimicrobial, and cytotoxic characteristics of a chitosan film cross-linked by a naturally occurring cross-linking agent, aglycone geniposidic acid.

    PubMed

    Mi, Fwu-Long; Huang, Chin-Tsung; Liang, Hsiang-Fa; Chen, Mei-Chin; Chiu, Ya-Ling; Chen, Chun-Hung; Sung, Hsing-Wen

    2006-05-01

    The purpose of this study was to evaluate the characteristics of a chitosan film cross-linked by a naturally occurring compound, aglycone geniposidic acid (aGSA). This newly developed aGSA-cross-linked chitosan film may be used as an edible film. The chitosan film without cross-linking (fresh) and the glutaraldehyde-cross-linked chitosan film were used as controls. The characteristics of test chitosan films evaluated were their degree of cross-linking, swelling ratio, mechanical properties, water vapor permeability, antimicrobial capability, cytotoxicity, and enzymatic degradability. It was found that cross-linking of chitosan films by aGSA (at a concentration up to 0.8 mM) significantly increased its ultimate tensile strength but reduced its strain at fracture and swelling ratio. There was no significant difference in the antimicrobial capability between the cross-linked chitosan films and their fresh counterpart. However, the aGSA-cross-linked chitosan film had a lower cytotoxicity, a slower degradation rate, and a relatively lower water vapor permeability as compared to the glutaraldehyde-cross-linked film. These results suggested that the aGSA-cross-linked chitosan film may be a promising material as an edible film. PMID:16637687

  17. Second-harmonic generation from Z-type Langmuir-Blodgett films of a transparent dye and a comparison of the properties when the layers are interleaved with poly(t-butyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Ashwell, Geoffrey J.; Ranjan, Rakesh

    1998-10-01

    The Langmuir-Blodgett (LB) film structure of E-4-[(N- octadecyl-6,7,8-trihydro-5-isoquinolylidene)methyl]-N,N- dibutylaniline octadecylsulfate is non-centrosymmetric when the dye is deposited on the up-stroke (Z-type) and when the layers are interleaved with poly(t-butyl methacrylate). The second-harmonic intensity increases as I(N)2(omega ) equals I(1)2(omega )N2, where N is the number of active layers, and the intensity is further enhanced when the dye is mixed in a 1 to 1 ratio with octadecanoic acid. The second-order susceptibility and repeat lattice spacing of the mixed LB films are as follows: (chi) zzz(2) equals 76 pm V-1 at 1.064 micrometers and l equals 3.15 nm layer-1 when Z-type; (chi) zzz(2) equals 52 pm V-1 and l equals 4.13 nm bilayer-1 when interleaved. The films are transparent at the fundamental wavelength and have a slight absorbance of ca. 5 X 10-4 per dye layer at 532 nm. The second-harmonic intensity is the strongest to date from such a weakly absorbing LB film and this is attributed to the close proximity of the charge-transfer band and to an optimized packing arrangement.

  18. Effect of pirfenidone delivered using layer-by-layer thin film on excisional wound healing.

    PubMed

    Mandapalli, Praveen Kumar; Labala, Suman; Bojja, Jagadeesh; Venuganti, Venkata Vamsi Krishna

    2016-02-15

    The aim of this study was to evaluate the effect of a new anti-fibrotic agent, pirfenidone (PFD), delivered using polyelectrolyte multilayer films on excisional wound healing. Polyelectrolyte multilayer films were prepared by layer-by-layer (LbL) sequential adsorption of chitosan and sodium alginate. The UV-spectrophotometer, FTIR and differential scanning calorimeter were used to characterize the LbL thin films. The PFD was entrapped within the LbL thin films and its effect on excisional wound healing was studied in C57BL/6. The total protein, collagen content and TGF-β expression within the wound tissue were determined after application of PFD using LbL thin films, chitosan hydrogel and polyethylene glycol hydrogel. UV-spectrophotometer and FTIR studies showed a sequential adsorption of chitosan and alginate polymer layers to form LbL thin films. The thickness of LbL thin films with 15 bilayers was found to be 15 ± 2 μm. HPLC analysis showed a PFD loading efficiency of 1.0 ± 0.1mg in 1cm(2) area of LbL thin film. In vivo wound healing studies in C57BL/6 mice showed an accelerated (<9 days) wound contraction after treatment with the PFD compared with blank LbL thin film and commercial povidone-iodine gel (12 days). The collagen content within the wound tissue was significantly (p<0.05) less after treatment with PFD compared with blank film application. Western blot analysis showed gradual decrease in TGF-β expression within the wound tissue after treatment with PFD. This study for the first time demonstrated that new anti-fibrotic agent PFD loaded in LbL thin films can be utilized for excisional wound healing. PMID:26723907

  19. A study of the formation and self-lubrication mechanisms of boric acid films on boric oxide coatings

    SciTech Connect

    Erdemir, A.; Fenske, G.R.; Erck, R.A.

    1990-01-01

    An investigation was made of the formation and self-lubrication mechanisms of boric acid films on boric oxide coatings prepared by vacuum evaporation. Measured friction coefficients of a steel ball sliding on a boric-oxide-coated-steel disk and a sapphire ball sliding on a boric-oxide-coated-alumina disk were 0.025 to 0.05 at steady state, depending on load and substrate material. This low friction was correlated with the formation of a lubricious boric acid film on boric oxide coatings exposed to open air. For the mechanism of self-lubrication, the layered-triclinic-crystal structure of boric acid was proposed. The atoms constituting each boric acid molecule are arrayed in closely packed and strongly bonded layers that are 0.318 nm apart and held together by weak forces, such as van der Waals. It is hypothesized that during sliding, these layers can align themselves parallel to the direction of relative motion, and once so aligned,, can slide over one another with relative ease to provide low friction. Structural and chemical findings were included to substantiate the proposed solid lubrication mechanism. 15 refs., 5 figs.

  20. Modification of poly(L-lactic acid) electrospun fibers and films with poly(propylene imine) dendrimer

    NASA Astrophysics Data System (ADS)

    Khaliliazar, Sh.; Akbari, S.; Kish, M. H.

    2016-02-01

    Poly(L-lactic acid) (PLLA) electrospun fibers and films were modified with the second generation of poly(propylene imine) dendrimer (PPI-G2) by three different approaches, namely, sodium hydroxide hydrolysis, plasma treatment and direct application of PPI-G2. For the first and the second approaches, PLLA was modified by sodium hydroxide hydrolysis or plasma treatment to produce carboxylic acid groups. Then, the carboxylic acid groups were activated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) and N,N‧-dicyclohexyl carbodiimide (DCC) as a hetero bi-functional cross-linker. The cross-linkers promoted the grafting of carboxylic acid groups on the modified PLLA with NH2 groups of PPI-G2. In the third approach, the PPI-G2 dendrimer was directly used as an aminolysis agent for the functionalization of PLLA in a one step process. FTIR analysis confirmed the presence of sbnd NH2 groups of PPI-G2 on the modified PLLA samples, resulting from each one of the three modification methods. Studies by SEM shows bead free electrospun fibers. Also, FE-SEM shows nano-cracks on the surface of films after modification. Contact angle, drug release tests, antibacterial effects and the dying results confirmed that these functionalization methods increased hydrophilicity and reactive side-chains of PLLA in the wet chemical process resulted in providing host-guest properties on the PLLA surface for adsorbing various kinds of guest molecules.

  1. Recycling acetic acid from polarizing film of waste liquid crystal display panels by sub/supercritical water treatments.

    PubMed

    Wang, Ruixue; Chen, Ya; Xu, Zhenming

    2015-05-19

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate) and organic materials (polarizing film and liquid crystal). The organic materials should be removed first since containing polarizing film and liquid crystal is to the disadvantage of the indium recycling process. In the present study, an efficient and environmentally friendly process to obtain acetic acid from waste LCD panels by sub/supercritical water treatments is investigated. Furthermore, a well-founded reaction mechanism is proposed. Several highlights of this study are summarized as follows: (i) 99.77% of organic matters are removed, which means the present technology is quite efficient to recycle the organic matters; (ii) a yield of 78.23% acetic acid, a quite important fossil energy based chemical product is obtained, which can reduce the consumption of fossil energy for producing acetic acid; (iii) supercritical water acts as an ideal solvent, a requisite reactant as well as an efficient acid-base catalyst, and this is quite significant in accordance with the "Principles of Green Chemistry". In a word, the organic matters of waste LCD panels are recycled without environmental pollution. Meanwhile, this study provides new opportunities for alternating fossil-based chemical products for sustainable development, converting "waste" into "fossil-based chemicals". PMID:25915068

  2. Characterization of the log lithology of cores LB-07A and LB-08A of the Bosumtwi impact structure by using the anisotropy of magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Schell, Christina; Schleifer, Norbert; Elbra, Tiiu

    Petrophysical data are commonly used for the discrimination of different lithologies, as the variation in mineralogy, texture, and porosity is accompanied by varying physical properties. A special field of investigation is the analysis of the directional dependence (anisotropy) of the petrophysical properties, which can provide further information on the characteristics of the lithologies, due to the fact that this parameter is different in the various rock-forming and rockchanging processes, e.g., deformation or sedimentation. To characterize the rocks in drill cores LB-07A and LB-08A, which were drilled into the deep crater moat and central uplift of the Bosumtwi impact structure, Ghana, samples were taken for the study of petrophysical properties. In the present work the magnetic properties of these samples were determined in the laboratory. The results are discussed in relation to the various lithologies represented by this sample suite. The shape and degree of magnetic anisotropy, in combination with the magnetic susceptibility, proved useful in distinguishing between the different lithologies present in the drill cores (polymict lithic breccia, suevite, shale component, and meta-graywacke). It was possible to correlate layers of high (shale component), ntermediate (graywacke, polymict lithic breccia), and low (suevite) anisotropy degree with the lithostratigraphic sequences determined for cores LB-07A and LB-08A. The shape of the anisotropy showed that foliation is most dominant within the shale component, whereas lineation is more pronounced in the meta-graywacke and polymict lithic breccia. An overall increase of the anisotropy degree was observed from core LB-07A towards core LB-08A. Thus magnetic anisotropy data provide a useful contribution towards an improved petrophysical characterization of the lithostratigraphic sequences in drillcores from the Bosumtwi impact structure.

  3. An investigation of the likely role of (O-acyl) ω-hydroxy fatty acids in meibomian lipid films using (O-oleyl) ω-hydroxy palmitic acid as a model.

    PubMed

    Schuett, Burkhardt S; Millar, Thomas J

    2013-10-01

    (O-acyl) ω-hydroxy fatty acids (OAHFAs) are a recently found group of polar lipids in meibum. Since these lipids can potentially serve as a surfactant in the tear film lipid layer, the surface properties of a molecule of this lipid class was investigated and compared with a structurally related wax ester and a fatty acid. (O-oleyl) ω-hydroxy palmitic acid was synthesized and used as the model OAHFA. It was spread either alone or mixed with human meibum on an artificial tear buffer in a Langmuir trough, and pressure-area isocycle profiles were recorded at different temperatures and compared with those of palmityl oleate and oleic acid. These measurements were accompanied by fluorescence microscopy of meibum mixed films during pressure-area isocycles. The pressure area curves indicated that pure films of the model OAHFA are as surface active as oleic acid films, cover a much larger surface area than either palmityl oleate or oleic acid and show a distinct biphasic pressure-area isocycle profile. The OAHFAs appeared to remain on the aqueous surface and show only a minor re-arrangement into multi-layered structures during repetitive pressure area isocycles. All these properties can be explained by OAHFAs binding weakly to the aqueous surface via an ester group and strongly via a carboxyl group. By contrast, the pressure area profiles of palmityl oleate films indicate that they form multi-layers and oleic acid presumably forms micelles and desorbs into the subphase. When mixed with meibum, similar features as for pure films were observed. In addition, meibum-OAHFA films appeared very homogeneous; a feature not seen with other mixtures. In conclusion these data support the notion that the tested OAHFA is a very potent surfactant which is important in spreading and stabilising meibomian lipid films. PMID:23792170

  4. Synthesis of iridescent Ni-containing anodic aluminum oxide films by anodization in oxalic acid

    NASA Astrophysics Data System (ADS)

    Xu, Qin; Ma, Hong-Mei; Zhang, Yan-Jun; Li, Ru-Song; Sun, Hui-Yuan

    2016-02-01

    Ni-containing anodic aluminum oxide films with highly saturated colors were synthesized using an ac electrodeposition method, and the optical and magnetic characteristics of the films were characterized. Precisely controllable color tuning could be obtained using wet-chemical etching to thin and widen the anodic aluminum oxide films pores isotropically before Ni deposition. Magnetic measurements indicate that such colored composite films not exhibit obvious easy magnetization direction. The resulted short (200 nm in length) and wide (50 nm in diameter) Ni nanowires present only fcc phase. The magnetization reversal mechanism is in good agreement with the symmetric fanning reversal mode which is discussed in detail. Such films may find applications in decoration, display and multifunctional anti-counterfeiting applications.

  5. Acid-free sol-gel fabrication of glass thin films embedded with II-VI colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Jani, Hemang; Duan, Lingze

    2015-01-01

    II-VI colloidal quantum dots (QDs) are ideal for optical sensors thanks to their high fluorescent brightness and good size uniformity. However, embedding colloidal QDs into a glass matrix with the standard sol-gel process leads to the QDs being damaged by the acid catalyst. Here, we report an acid-free sol-gel technique, which proves to be both simple and effective in fabricating silica glass thin films embedded with commercial II-VI colloidal QDs. Octadecylamine ligands are used as a bifunctional aid to not only stabilize the QDs in solution, but also assist the formation of the SiO2 gel. We demonstrate that high-quality QD-embedded glass thin films can be developed with this technique, and our fluorescent tests indicate that, except for a small blueshift in the emission spectrum, the QDs are very well preserved through the sol-gel process. This method offers a fast and low-cost path towards thin-film QD sensors with good mechanical and thermal stabilities, which are desirable for applications involving highly focused laser beams, such as ultrafast nanophotonics.

  6. Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent.

    PubMed

    Seligra, Paula González; Medina Jaramillo, Carolina; Famá, Lucía; Goyanes, Silvia

    2016-03-15

    Biodegradable and non-retrogradable starch-glycerol based films were obtained using citric acid (CA) as crosslinking agent at 75°C. This material allowed decreasing water vapor permeability (WVP) more than 35%, remained amorphous for at least 45 days as a result of the network formed by the CA that avoided starch retrogradation and maintained the degradability in compost, occurring only six days after the films without citric acid. A simulation of the gelatinization process of starch-glycerol with and without CA, using a differential thermal analysis device, showed that the system with CA completed the gelatinization 5°C before than the other and, CA first reacted with glycerol and then starch-glycerol-CA reaction occurred. The temperature at which the gelatinization process was carried out was critical to obtain the best results. An increase of gelatinization process temperature at 85°C in system with CA, led to a worsening on WVP and its integrity after a swelling process with dimethylsulphoxide (DMSO), compared to the films processed at 75°C. PMID:26794739

  7. Layer-by-layer assembly of electroactive dye/inorganic matrix film and its application as sensor for ascorbic acid.

    PubMed

    Kong, Xianggui; Shi, Wenying; Zhao, Jingwen; Wei, Min; Duan, Xue

    2011-07-15

    A novel inorganic-organic composite ultrathin film was fabricated by layer-by-layer assembly of naphthol green B (NGB) and layered double hydroxides (LDHs) nanoplatelets, which shows remarkable electrocatalytic behavior for oxidation of ascorbic acid. LDHs nanoplatelets were prepared using a method involving separate nucleation and aging steps (particle size: 25±5 nm; aspect ratio: 2-4) and used as building blocks for alternate deposition with NGB on indium tin oxide (ITO) substrates. UV-vis absorption spectroscopy and XRD display regular and uniform growth of the NGB/LDHs ultrathin film with extremely c-orientation of LDHs nanoplatelets (ab plane of microcrystals parallel to substrates). A continuous and uniform surface morphology was observed by SEM and AFM image. The film modified electrode displays a couple of well-defined reversible redox peaks attributed to Fe(2+)/Fe(3+) in NGB (ΔE(p)=68 mV and I(a)/I(c)=1.1). Moreover, the modified electrode shows a high electrocatalytic activity towards ascorbic acid in the range 1.2-55.2 μM with a detection limit of 0.51 μM (S/N=3). The Michaelis-Menten constant was calculated to be K(M)(app)=67.5 μM. PMID:21645731

  8. Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films.

    PubMed

    Shankar, Shiv; Rhim, Jong-Whan

    2015-10-01

    Silver nanoparticles (AgNPs) were synthesized using amino acids (tyrosine and tryptophan) as reducing and capping agents, and they were incorporated into the agar to prepare antimicrobial composite films. The AgNPs solutions exhibited characteristic absorption peak at 420 nm that showed a red shift to ∼434 nm after forming composite with agar. XRD data demonstrated the crystalline structure of AgNPs with dominant (111) facet. Apparent surface color and transmittance of agar films were greatly influenced by the AgNPs. The incorporation of AgNPs into agar did not exhibit any change in chemical structure, thermal stability, moisture content, and water vapor permeability. The water contact angle, tensile strength, and modulus decreased slightly, but elongation at break increased after AgNPs incorporation. The agar/AgNPs nanocomposite films possessed strong antibacterial activity against Listeria monocytogenes and Escherichia coli. The agar/AgNPs film could be applied to the active food packaging by controlling the food-borne pathogens. PMID:26076636

  9. Highly hydrophilic ultra-high molecular weight polyethylene powder and film prepared by radiation grafting of acrylic acid

    NASA Astrophysics Data System (ADS)

    Wang, Honglong.; Xu, Lu.; Li, Rong.; Pang, Lijuan.; Hu, Jiangtao.; Wang, Mouhua.; Wu, Guozhong.

    2016-09-01

    The surface properties of ultra-high molecular weight polyethylene (UHMWPE) are very important for its use in engineering or composites. In this work, hydrophilic UHMWPE powder and film were prepared by γ-ray pre-irradiation grafting of acrylic acid (AA) and further neutralization with sodium hydroxide solution. Variations in the chemical structure, grafting yield and hydrophilicity were investigated and compared. FT-IR and XPS analysis results showed that AA was successfully grafted onto UHMWPE powder and film; the powder was more suitable for the grafting reaction in 1 wt% AA solution than the film. Given a dose of 300 kGy, the grafting yield of AA was ∼5.7% for the powder but ∼0.8% for the film under identical conditions. Radiation grafting of a small amount of AA significantly improved the hydrophilicity of UHMWPE. The water contact angle of the UHMWPE-g-PAA powder with a grafting yield of AA at ∼5.7% decreased from 110.2° to 68.2°. Moreover, the grafting powder (UHMWPE-g-PAA) exhibited good dispersion ability in water.

  10. Development of a mechanical mover device by compositing hydrogen storage alloy thin films with a perfluorosulfonic acid layer

    NASA Astrophysics Data System (ADS)

    Ogasawara, Takashi; Uchida, Haru-Hisa; Nishi, Yoshitake

    2007-01-01

    Perfluorosulfonic Acid (PFSA) film, commonly used in the Polymer Electrolyte Fuel Cells (PEFC), indicates conductance of proton and permeability of H IIO. In this study a mechanical composite mover device with this PFSA and hydrogen storage alloy (HSA) thin films was made up for expecting the movement driven by volume change in the course of hydrogen migration between PFSA and HSA layers. Hydrogen storage alloy, such as LaNi 5 indicates as much as 25% of volume change in the course of H II absorption in gas phase. Using this characteristics, a mechanical mover device was made of PFSA film of an electrolyte polymer sandwiched by hydrogen storage alloy thin films with Au-Pd intermediate layers. The mover device was operated by migrating hydrogen ions from the PFSA layer to the HSA layer, which were generated by electrolysis of H IIO in a PFSA layer. Electrical potential was given from the outsides lead wires. All experiments were carried out in the water. We confirmed large interesting movement generated by migration of hydrogen ion by applying electric potentials.

  11. Enhanced photocatalytic activity of sprayed Au doped ferric oxide thin films for salicylic acid degradation in aqueous medium.

    PubMed

    Mahadik, M A; Shinde, S S; Kumbhar, S S; Pathan, H M; Rajpure, K Y; Bhosale, C H

    2015-01-01

    Various doping percentage of Au were successfully introduced into the Fe2O3 photocatalysts via a spray pyrolysis method different. The effect of Au doping on photoelectrochemical, structural, optical and morphological properties of these deposited thin films is studied. The PEC characterization shows that, the photocurrent increases gradually with increasing Au content initially up to 2at.% indicating the maximum values of short circuit current (Isc) and open circuit voltage (Voc) are (Isc=90μA and Voc=220.5mV) and then decreases after exceeding the optimal Au doping content. Therefore, the photocurrent of Au doped Fe2O3 photocatalysts can be adjusted by the Au content. Deposited films are polycrystalline with a rhombohedral crystal structure having (104) preferred orientation. SEM and AFM images show deposited thin films are compact and uniform. The photocatalytic activities of the Fe2O3 and Au:Fe2O3 photocatalyst were evaluated by photoelectrocatalytic degradation of salicylic acid under sunlight irradiation. The results show that the Au:Fe2O3 thin film photocatalyst exhibited about 45% more degradation of pollutants than the pure Fe2O3. Thus, in Au doped Fe2O3 photocatalysts, the interaction between Au and Fe2O3 reduces the recombination of photogenerated charge carriers and improve the photocatalytic activity. PMID:25496876

  12. Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development

    NASA Astrophysics Data System (ADS)

    Gartner, Hunter; Li, Yana; Almenar, Eva

    2015-03-01

    The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41-35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228-303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film.

  13. pH dependent growth of poly( L-lysine)/poly( L-glutamic) acid multilayer films and their cell adhesion properties

    NASA Astrophysics Data System (ADS)

    Richert, Ludovic; Arntz, Youri; Schaaf, Pierre; Voegel, Jean-Claude; Picart, Catherine

    2004-10-01

    The short-term interaction of chondrosarcoma cells with (PGA/PLL) polyelectrolyte multilayers was investigated in a serum-containing medium for films built at different pHs and subsequently exposed to the culture medium. The buildup of the films and their stability was first investigated by means of optical waveguide lightmode spectroscopy, quartz crystal microbalance, streaming potential measurements and atomic force microscopy. While film growth is linear at all pHs, after a few layers have been deposited the growth is much larger for the films built at basic pH and even more pronounced for those built at acidic pH. However, these latter films remain stable in the culture medium only if they have been crosslinked prior to the ionic strength and pH jumps. The films built at acidic pH were found to swell in water by about 200% whereas those built at other pHs did not swell in a physiological buffer. For thin films (≈20 nm) built at pH = 7.4, the detachment forces were dependent on the outermost layer, the forces being significantly higher on PLL-ending films than on PGA-ending ones. In contrast, for the thick films built at pH = 4.4 and at pH = 10.4 (thickness of the order of few hundred of nanometers), the detachment forces were independent of the outermost layer of the film. The films built at pH = 10.4, which shrink in contact with salt containing solutions, were highly cell adhesive whereas those built at acidic pH were highly cell resistant. Protein adsorption and film roughness (as measured by AFM) could not explain these striking differences. The high adhesion observed on the film built at pH 10.4 may rather be related to the secondary structure of the film and to its relatively low swellability in water, whereas the cell resistance of the films built at pH 4.4 may be linked to their high swellability. Therefore, for the PGA/PLL films, the cell adhesion properties can be tuned depending on the deposition pH of the polyelectrolyte solutions. This study

  14. 75 FR 79394 - United States v. L.B. Foster Company and Portec Rail Products, Inc.; Proposed Final Judgment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-20

    ... Antitrust Division United States v. L.B. Foster Company and Portec Rail Products, Inc.; Proposed Final... Columbia in United States v. L.B. Foster Company and Portec Rail Products, Inc., Civil Action No. 1:10-cv... by L.B. Foster Company (``Foster'') of Portec Rail Products, Inc. (``Portec'') would violate...

  15. High melt strength, tear resistant blown film based on poly(lactic acid)

    NASA Astrophysics Data System (ADS)

    Edmonds, Neil R.; Plimmer, Peter N.; Tanner, Chris

    2015-05-01

    A major problem associated with the commercial manufacture of thin films from PLA is inferior processing characteristics on blown film lines compared to low density polyethylene. PLA has poor melt strength (leading to bubble instability) and develops a permanent crease in the flattened film as it exits the tower of the film line. In addition, the thin film product has poor tear strength and an unacceptable `noise' level when converted into flexible packaging. Furthermore, fabricated articles based on PLA are known to show an unattractive tendency toward dimensional instability. This behaviour is associated with `cold crystallization', a phenomenon which also causes exudation of any plasticizer added for improving flexibility. Blow moulded articles based on PLA also exhibit dimensional sensitivity above 60°C. All of these issues have been overcome by the technology described in this paper. This has been accomplished without loss of the valuable compostability characteristic of PLA; this was confirmed by evaluation of film in a commercial composting operation. These results have been achieved through novel reactive compounding technology which: (a) Creates a PLA-rich structure containing long chain crosslinks, (b) generates a low glass transition temperature phase covalently bonded to the PLA structure, and (c) provides a material which performs like LDPE in a blown film manufacturing operation. The technology developed is covered by NZ Patent 580231 (3). The patent is held by UniServices Ltd, The University of Auckland, New Zealand.

  16. Water absorption and moisture permeation properties of chitosan/poly(acrylamide-co-itaconic acid) IPC films.

    PubMed

    Bajpai, M; Bajpai, S K; Jyotishi, Pooja

    2016-03-01

    In this work, aqueous solutions of chitosan (Ch) and [poly(acrylamide(AAm)-co-itaconicacid(IA)] have been mixed to yield Ch/poly(AAm-co-IA) Inter-polyelectrolyte complex (IPC) films. The films were characterized by FTIR, X-ray diffraction (XRD) and thermo gravimetric analysis (TGA). There was remarkable increase in the crystalline nature of IPC films. The films were investigated for their water absorption capacity in the physiological fluid (PF) of pH 7.4 at 37 °C. The amount of IA present in the film forming solutions affected the water absorption behavior of the resulting films. The dynamic water uptake data were interpreted by various kinetic models. The effect of pH on the swelling ratio (SR) indicated that the films showed highest swelling in lower as well as higher pH media. The water vapor transmission rates (WVTR) were obtained in the range of 6000-6645 g/m(2)/day. PMID:26658228

  17. Highly Sensitive Bisphenol-A Electrochemical Aptasensor Based on Poly(Pyrrole-Nitrilotriacetic Acid)-Aptamer Film.

    PubMed

    Kazane, Imen; Gorgy, Karine; Gondran, Chantal; Spinelli, Nicolas; Zazoua, Ali; Defrancq, E; Cosnier, Serge

    2016-07-19

    An electrochemical highly sensitive aptasensor was developed based on electropolymerized poly(pyrrole-nitrilotriacetic) acid film and a new aptamer functionalized by a pentahistidine peptide for the quantification of bisphenol A. A surface coverage of antibisphenol A aptamer of 1.84 × 10(-10) mol cm(-2) was estimated from the electrochemical signal of the [Ru(III)(NH3)6](3+) complex bound by electrostatic interactions onto the aptamer-modified electrode. The binding of bisphenol A onto the polymer film was successfully characterized by electrochemical methods as square wave voltammetry and electrochemical impedance spectroscopy measurements. The designed label-free impedimetric aptasensor displayed a wide linear range from 10(-11) to 10(-6) mol L(-1) with a sensitivity of 372 Ω per unit of log of concentration and an excellent specificity toward interfering agents such as 4,4'-dihydroxybiphenyl and bisphenol P. PMID:27332710

  18. Incorporation of preservatives in polylactic acid films for inactivating E. coli O157:H7 and extending microbiological shelf-life of strawberry puree

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antimicrobial films of polylactic acid polymer incorporated with nisin, Ethylenediaminetetraacetic acid (EDTA), sodium benzoate (SB), potassium sorbate (PS) and their combination were developed and their antimicrobial effects on the inactivation of Escherichia coli O157:H7 and natural background mic...

  19. 42. VIEW SHOWING A GROUP OF TRAINEES DURING 50LB PRESSURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. VIEW SHOWING A GROUP OF TRAINEES DURING 50-LB PRESSURE TEST IN RECOMPRESSION CHAMBER IN EQUIPMENT HOUSE No date - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  20. STIRLING BOILER BY BABCOCK & WILCOX CO. (45,000 LB/HR CAPACITY), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STIRLING BOILER BY BABCOCK & WILCOX CO. (45,000 LB/HR CAPACITY), INSIDE BOILER HOUSE NO. 2. - Pittsburgh Steel Company, Monessen Works, Open Hearth Plant, Donner Avenue, Monessen, Westmoreland County, PA

  1. Electrical and physicochemical properties of atomic-layer-deposited HfO2 film on Si substrate with interfacial layer grown by nitric acid oxidation

    NASA Astrophysics Data System (ADS)

    Kim, Seung Hyun; Seok, Tae Jun; Jin, Hyun Soo; Kim, Woo-Byoung; Park, Tae Joo

    2016-03-01

    The ultrathin SiO2 interfacial layer (IL) was adopted at the interface between atomic-layer-deposited HfO2 gate dielectric film and a Si substrate, which was grown using nitric acid oxidation (NAO) and O3 oxidation (OZO) prior to HfO2 film deposition. X-ray photoelectron spectroscopy result revealed that Si diffusion from the substrate into the film was suppressed for the film with NAO compared to that with OZO, which was attributed to the higher physical density of IL. The electrical measurement using metal-insulator-semiconductor devices showed that the film with NAO exhibited higher effective permittivity and lower densities of fixed charge and slow state at the interface. Furthermore, the leakage current density at an equivalent electrical thickness was lower for the film with NAO than OZO.

  2. Single molecular detection of a perylene dye dispersed in a Langmuir-Blodgett fatty acid monolayer using surface-enhanced resonance Raman scattering

    NASA Astrophysics Data System (ADS)

    Constantino, C. J. L.; Lemma, T.; Antunes, P. A.; Aroca, R.

    2002-02-01

    The Langmuir-Blodgett (LB) monolayer technique was used to fabricate single molecule LB monolayer containing bis(phenethylimido)perylene (PhPTCD), a red dye dispersed in arachidic acid (AA) with an average doping of 1 molecule per μm 2. The monolayer was transferred onto Ag island films to obtain spatially resolved surface-enhanced resonance Raman scattering (SERRS) spectra. The mixed LB monolayers were fabricated with a concentration, on average, of 1, 6, 19 and 118 PhPTCD molecules per μm 2 in AA. The AA provides a two-dimensional host matrix whose background signal does not interfere with the detection of the probe molecule's SERRS signal. The properties of the single molecule detection were investigated using micro-Raman with a 514.5-nm laser line. The Ag island surfaces coated with the LB monolayer were mapped with spatial steps of 3 μm and global chemical imaging of the most intense SERRS band in the spectrum was also recorded. The SERRS and surface-enhanced fluorescence (SEF) of the neat and single molecule LB monolayer were recorded in a temperature range from liquid nitrogen to +200°C. Neat PhPTCD LB monolayer spectra served as reference for the identification of characteristic signatures of the single molecule behavior. The spatial resolution of Raman-microscopy experiments, the multiplicative effect of resonance Raman and SERRS, and the high sensitivity of the new dispersive Raman instruments, allow SERRS to be part of the family of single molecular spectroscopies.

  3. A Critical Evaluation of the Down Syndrome Diagnosis for LB1, Type Specimen of Homo floresiensis.

    PubMed

    Baab, Karen L; Brown, Peter; Falk, Dean; Richtsmeier, Joan T; Hildebolt, Charles F; Smith, Kirk; Jungers, William

    2016-01-01

    The Liang Bua hominins from Flores, Indonesia, have been the subject of intense scrutiny and debate since their initial description and classification in 2004. These remains have been assigned to a new species, Homo floresiensis, with the partial skeleton LB1 as the type specimen. The Liang Bua hominins are notable for their short stature, small endocranial volume, and many features that appear phylogenetically primitive relative to modern humans, despite their late Pleistocene age. Recently, some workers suggested that the remains represent members of a small-bodied island population of modern Austro-Melanesian humans, with LB1 exhibiting clinical signs of Down syndrome. Many classic Down syndrome signs are soft tissue features that could not be assessed in skeletal remains. Moreover, a definitive diagnosis of Down syndrome can only be made by genetic analysis as the phenotypes associated with Down syndrome are variable. Most features that contribute to the Down syndrome phenotype are not restricted to Down syndrome but are seen in other chromosomal disorders and in the general population. Nevertheless, we re-evaluated the presence of those phenotypic features used to support this classification by comparing LB1 to samples of modern humans diagnosed with Down syndrome and euploid modern humans using comparative morphometric analyses. We present new data regarding neurocranial, brain, and symphyseal shape in Down syndrome, additional estimates of stature for LB1, and analyses of inter- and intralimb proportions. The presence of cranial sinuses is addressed using CT images of LB1. We found minimal congruence between the LB1 phenotype and clinical descriptions of Down syndrome. We present important differences between the phenotypes of LB1 and individuals with Down syndrome, and quantitative data that characterize LB1 as an outlier compared with Down syndrome and non-Down syndrome groups. Homo floresiensis remains a phenotypically unique, valid species with its roots

  4. A Critical Evaluation of the Down Syndrome Diagnosis for LB1, Type Specimen of Homo floresiensis

    PubMed Central

    Baab, Karen L.; Brown, Peter; Falk, Dean; Richtsmeier, Joan T.; Hildebolt, Charles F.; Smith, Kirk; Jungers, William

    2016-01-01

    The Liang Bua hominins from Flores, Indonesia, have been the subject of intense scrutiny and debate since their initial description and classification in 2004. These remains have been assigned to a new species, Homo floresiensis, with the partial skeleton LB1 as the type specimen. The Liang Bua hominins are notable for their short stature, small endocranial volume, and many features that appear phylogenetically primitive relative to modern humans, despite their late Pleistocene age. Recently, some workers suggested that the remains represent members of a small-bodied island population of modern Austro-Melanesian humans, with LB1 exhibiting clinical signs of Down syndrome. Many classic Down syndrome signs are soft tissue features that could not be assessed in skeletal remains. Moreover, a definitive diagnosis of Down syndrome can only be made by genetic analysis as the phenotypes associated with Down syndrome are variable. Most features that contribute to the Down syndrome phenotype are not restricted to Down syndrome but are seen in other chromosomal disorders and in the general population. Nevertheless, we re-evaluated the presence of those phenotypic features used to support this classification by comparing LB1 to samples of modern humans diagnosed with Down syndrome and euploid modern humans using comparative morphometric analyses. We present new data regarding neurocranial, brain, and symphyseal shape in Down syndrome, additional estimates of stature for LB1, and analyses of inter- and intralimb proportions. The presence of cranial sinuses is addressed using CT images of LB1. We found minimal congruence between the LB1 phenotype and clinical descriptions of Down syndrome. We present important differences between the phenotypes of LB1 and individuals with Down syndrome, and quantitative data that characterize LB1 as an outlier compared with Down syndrome and non-Down syndrome groups. Homo floresiensis remains a phenotypically unique, valid species with its roots

  5. Who Is LB1? Discriminant Analysis for the Classification of Specimens

    PubMed Central

    Martinez, Aleix M.; Hamsici, Onur C.

    2008-01-01

    Many problems in paleontology reduce to finding those features that best discriminate among a set of classes. A clear example is the classification of new specimens. However, these classifications are generally challenging because the number of discriminant features and the number of samples are limited. This has been the fate of LB1, a new specimen found in the Liang Bua Cave of Flores. Several authors have attributed LB1 to a new species of Homo, H. floresiensis. According to this hypothesis, LB1 is either a member of the early Homo group or a descendent of an ancestor of the Asian H. erectus. Detractors have put forward an alternate hypothesis, which stipulates that LB1 is in fact a microcephalic modern human. In this paper, we show how we can employ a new Bayes optimal discriminant feature extraction technique to help resolve this type of issues. In this process, we present three types of experiments. First, we use this Bayes optimal discriminant technique to develop a model of morphological (shape) evolution from Australopiths to H. sapiens. LB1 fits perfectly in this model as a member of the early Homo group. Second, we build a classifier based on the available cranial and mandibular data appropriately normalized for size and volume. Again, LB1 is most similar to early Homo. Third, we build a brain endocast classifier to show that LB1 is not within the normal range of variation in H. sapiens. These results combined support the hypothesis of a very early shared ancestor for LB1 and H. erectus, and illustrate how discriminant analysis approaches can be successfully used to help classify newly discovered specimens. PMID:19884951

  6. pH- and sugar-sensitive multilayer films composed of phenylboronic acid (PBA)-modified poly(allylamine hydrochloride) (PBA-PAH) and poly(vinyl alcohol) (PVA): A significant effect of PBA content on the film stability.

    PubMed

    Seno, Masaru; Yoshida, Kentaro; Sato, Katsuhiko; Anzai, Jun-Ichi

    2016-05-01

    Multilayer thin films composed of phenylboronic acid (PBA)-modified poly(allylamine hydrochloride) (PAH), PBA-PAH, with different PBA contents were prepared to study the effect of PBA content on the stability of the films. An alternate deposition of PBA-PAH and poly(vinyl alcohol) (PVA) on the surface of a quartz slide afforded multilayer films through forming boronate ester bonds between PBA-PAH and PVA. The 10-layered (PBA-PAH/PVA)10 films constructed using PBA-PAHs containing 16% and 26% PBA residues were stable in aqueous solutions over the range of pH4.0-10.0, whereas the multilayer films composed of PBA-PAHs with 5.9% and 8.3% PBA decomposed at pH8.0 or lower. The pH-sensitive decomposition of the films was rationalized based on the destabilization of the boronate ester bonds in neutral and acidic solutions. In addition, the (PBA-PAH/PVA)10 films decomposed in glucose and fructose solutions as a result of competitive binding of sugars to PBA-PAH in the films. The sugar response of the films depended on the PBA content in PBA-PAH. The (PBA-PAH/PVA)10 films consisting of 16% and 26% PBA-substituted PBA-PAHs are sensitive to physiological relevant level of glucose at pH7.4 while stable in glucose-free solution, suggesting a potential use of the films in constructing glucose-induced delivery systems. PMID:26952449

  7. Tribological properties of boric acid and boric-acid-forming surfaces: Part 2, Formation and self-lubrication mechanisms of boric acid films on boron- and boric-oxide-containing surfaces

    SciTech Connect

    Erdemir, A.; Fenske, G.R.; Erck, R.A.; Nichols, F.A.; Busch, D.

    1990-01-01

    This paper describes the formation and self-lubricating mechanisms of boric acid films on boron- and boric oxide-containing surfaces. As reported in part I, boric acid, owing to a layered triclinic crystal structure and weak interlayer bonds, enjoys an unusual lubrication capability. RF-magnetron sputtering and vacuum evaporation techniques were used to produce thin coatings of boron and boric oxides on steel substrates. The results of tribological experiments indicate that the room temperature friction coefficient of tribosystems that include boron and/or boric oxide coatings ranges from 0.05 to 0.07, depending on the coating type. Laser-Raman spectroscopy of these surfaces revealed that this low friction is associated with a thin boric acid film that forms on the surfaces of these coatings. The fabrication and potential importance of boric acid and boric acid-forming surfaces for practical applications are enumerated. Surface engineering of tribomaterials, such as these demonstrated in this paper, is suggested as a new lubrication concept for use in present and future tribological industries. 16 refs.

  8. Nanoamphiphilic Chitosan Dispersed Poly(lactic acid) Bionanocomposite Films with Improved Thermal, Mechanical, and Gas Barrier Properties.

    PubMed

    Pal, Akhilesh Kumar; Katiyar, Vimal

    2016-08-01

    This article demonstrates the synthesis of lactic acid oligomer-grafted-chitosan (OLLA-g-CH), a nanoamphiphilic molecule, by in situ condensation polymerization and its effective use as a nanofiller for improvement in multiple properties of poly(lactic acid) (PLA) films, essential for stringent food packaging applications. Fourier transform infrared spectroscopy (FTIR) analysis shows the presence of amide-ester bond at 1539 cm(-1), which confirms the structural grafting of OLLA chains with chitosan molecules. This nanoamphiphilic OLLA-g-CH molecule act as surfactant containing hydrophilic chitosan head and hydrophobic OLLA tails with average size in the range of ∼2-4 nm. Prepared PLA/OLLA-g-CH bionanocomposite films appear with uniform dispersion of nanoamphiphilic OLLA-g-CH molecules with self-assembled micelles having size as low as ∼20 nm and as high as ∼150 nm with core-shell morphology in PLA matrix. This nanofiller is found very effective toward significant reduction in oxygen permeability (OP) by ∼10-fold due to the reduction in solubility of oxygen molecules and improvement in crystal nucleation density due to availability of nanonucleating sites. Ultimate tensile strength (UTS) of PLA/OLLA-g-CH bionanocomposite films are relatively comparable to that of PLA, however, elongation at break is improved significantly. The onset of thermal degradation of PLA/(OLLA-g-CH) films is also found comparable to that of PLA film. The glass transition temperature (Tg) of bionanocomposites is decreased by more than 18 °C with increase in OLLA-g-CH loading, which indicates the improved plasticization characteristics of PLA matrix. The crystallization kinetics suggest nonthree dimensional truncated spherical structures, which is controlled by the combination of thermal and athermal instantaneous nucleations. POM analysis suggested that the spherulite growth of PLA is improved significantly with the addition of OLLA-g-CH. The reduction in Tg of PLA with improvement

  9. chr genes from adaptive replicons are responsible for chromate resistance by Burkholderia xenovorans LB400.

    PubMed

    Reyes-Gallegos, Rosa I; Ramírez-Díaz, Martha I; Cervantes, Carlos

    2016-03-01

    The chromate ion transporter (CHR) superfamily includes proteins that confer chromate resistance by extruding toxic chromate ions from cytoplasm. Burkholderia xenovorans strain LB400 encodes six CHR homologues in its multireplicon genome and has been reported as highly chromate-resistant. The objective of this work was to analyze the involvement of chr redundant genes in chromate resistance by LB400. It was found that B. xenovorans plant rhizosphere strains lacking the megaplasmid are chromate-sensitive, suggesting that the chr gene present in this replicon is responsible for the chromate-resistance phenotype of the LB400 strain. Transformation of a chromate-sensitive B. xenovorans strain with each of the six cloned LB400 chr genes showed that genes from 'adaptive replicons' (chrA1b and chr1NCb from chromosome 2 and chrA2 from the megaplasmid) conferred higher chromate resistance levels than chr genes from 'central' chromosome 1 (chrA1a, chrA6, and chr1NCa). An LB400 insertion mutant affected in the chrA2 gene displayed a chromate-sensitive phenotype, which was fully reverted by transferring the chrA2 wild-type gene, and partially reverted by chrA1b or chr1NCb genes. These data indicate that chr genes from adaptive replicons, mainly chrA2 from the megaplasmid, are responsible for the B. xenovorans LB400 chromate-resistance phenotype. PMID:26873556

  10. Activation of the biochemical processes in an oil-contaminated soil using a light-correcting film and humic acids

    NASA Astrophysics Data System (ADS)

    Filatov, D. A.; Ivanov, A. A.; Svarovskaya, L. I.; Yudina, N. V.

    2011-02-01

    It was shown that the use of a light-correcting film as a covering material for an oil-contaminated soil in combination with humic acids increased the number of the main physiological groups of the soil microorganisms responsible for the development of the soil's fertility (heterotrophic bacteria, actinomycetes, and micromycetes) by 60-100 times. The activity of the soil enzymes (catalase, dehydrogenase, polyphenoloxidase, peroxidase, and urease) increased by 3-6 times. The biochemical oxidation of oil hydrocarbons in the soil became significantly more intense.

  11. Comparison of acid generation in EUV lithography films of poly(4-hydroxystyrene) (PHS) and noria adamantyl ester (Noria-AD(50)).

    PubMed

    Wu, Weiqiang; Nuzhdin, Kirill; Vyushkova, Mariya; Janik, Ireneusz; Bartels, David

    2012-05-31

    The mechanism for acid production in phenolic extreme ultraviolet (EUV) lithography films containing triphenylsulfonium triflate (Ph(3)S(+)TfO(-)) acid generator has been investigated by electron paramagnetic resonance (EPR) spectroscopy and by use of the acid indicator coumarin 6 (C6). Gamma radiolysis was substituted for the EUV radiation with the assumption that the chemistry generated by ionization of the matrix does not depend on the ionization source. Poly(4-hydroxystyrene) (PHS) was first investigated as a well-studied standard, after which the water-wheel-like cyclic oligomer derivative containing pendant adamantyl ester groups, noria-AD(50), was investigated. EPR measurements confirm that the dominant free radical product is a phenoxyl derivative (PHS-O(•) or noria-O(•)) that exhibits quite slow stretched exponential recombination kinetics at room temperature. Also observed at 77 K was the presence of a significant hydrogen atom product of radiolysis. The G value or yield of acid production in thin lithography films was measured with the C6 indicator on a fused silica substrate. It was found that a significant amount of acid is generated via energy transfer from the irradiated fused-silica substrate to the Ph(3)S(+)TfO(-) in the films. By varying the film thickness on the substrates, the substrate effect on the acid yield was quantitatively determined. After subtraction of the contribution from the substrates, the acid yield G value in the PHS film with 10 wt % Ph(3)S(+)TfO(-) and 5 wt % C6 was determined to be 2.5 ± 0.3 protons per 100 eV of radiation. The acid yield of noria-AD(50) films was found to be 3.2 ± 0.3 protons per 100 eV. PMID:22607084

  12. Corrosion resistance of siloxane-poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition

    NASA Astrophysics Data System (ADS)

    Kunst, S. R.; Cardoso, H. R. P.; Oliveira, C. T.; Santana, J. A.; Sarmento, V. H. V.; Muller, I. L.; Malfatti, C. F.

    2014-04-01

    The aim of this paper is to study the corrosion resistance of hybrid films. Tin plate was coated with a siloxane-poly (methyl methacrylate) (PMMA) hybrid film prepared by sol-gel route with covalent bonds between the organic (PMMA) and inorganic (siloxane) phases obtained by hydrolysis and polycondensation of 3-(trimethoxysilylpropyl) methacrylate (TMSM) and polymerization of methyl methacrylate (MMA) using benzoyl peroxide (BPO) as a thermic initiator. Hydrolysis reactions were catalyzed by acetic acid solution avoiding the use of chlorine or stronger acids in the film preparation. The effect of the addition of tetraethoxysilane (TEOS) on the protective properties of the film was evaluated. The hydrophobicity of the film was determined by contact angle measurements, and the morphology was evaluated by scanning electron microscopy (SEM) and profilometry. The local nanostructure was investigated by Fourier transform infrared spectroscopy (FT-IR). The electrochemical behavior of the films was assessed by open circuit potential monitoring, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements in a 0.05 M NaCl solution. The mechanical behavior was evaluated by tribology. The results highlighted that the siloxane-PMMA hybrid films modified with acetic acid are promising anti-corrosive coatings that acts as an efficient diffusion barrier, protecting tin plates against corrosion. However, the coating properties were affected by the TEOS addition, which contributed for the thickness increase and irregular surface coverage.

  13. Effect of Layer-by-Layer (LbL) Encapsulation of Nano-Emulsified Fish Oil on Their Digestibility Ex Vivo and Skin Permeability In Vitro

    PubMed Central

    Jung, Eun Young; Hong, Ki Bae; Son, Heung Soo; Suh, Hyung Joo; Park, Yooheon

    2016-01-01

    Omega-3 rich fish oils are extremely labile, thus requiring control of oxidation and off flavor development. A recently proposed emulsification method, layer-by-layer (LbL) deposition, was found to be a plausible method to enhance the characteristics of bioactive ingredients, especially lipids. The present work was designed to test the possibility of enhancing the uptake and utilization of omega-3 fatty acids present in fish oil. The bioavailability of nano-emulsified fish oil was monitored in terms of intestinal absorption as well as skin permeability by using the everted intestinal sac model and Franz cell model. The skin permeability and intestinal absorption characteristics was significantly improved by LbL emulsification with lecithin/chitosan/low methoxypectin. Multilayer encapsulation along with nano-emulsification can be a useful method to deliver biologically active lipids and related components, such as fish oil. The protective effect of this tool from lipid oxidation still needs to be verified. PMID:27390723

  14. Highly ordered thin films prepared with octabutoxy copper phthalocyanine complexes.

    PubMed

    Stevenson, Kelly; Miyashita, Naoko; Smieja, Joanne; Mazur, Ursula

    2003-01-01

    Langmuir-Blodgett (LB) films of copper (II) 1,4,8,11,15,18,22,25-octabutoxyphthalocyanine, nCuPc(OBu)(8), (non-peripheral substitution) and copper (II) 2,3,9,10,16,17,23,24-octabutoxyphthalocyanine, pCuPc(OBu)(8), (peripheral substitution), were fabricated and characterized by optical spectroscopy and scanning probe microscopy. The LB films were transferred onto hydrophilic substrates by vertical dipping. Although they posses relatively short polar substituents both compounds form smooth, uniform, dense, and highly stable LB monolayers composed of linear arrays of cofacial oligomers. The long range discotic assemblies of LB and spun cast films of pCuPc(OBu)(8) and nCuPc(OBu)(8) posses physical and chemical properties favorable for molecular electronic device application. PMID:12801680

  15. Permeability of water and oleic acid in composite films of phase separated polypropylene and cellulose stearate blends.

    PubMed

    Krasnou, Illia; Gårdebjer, Sofie; Tarasova, Elvira; Larsson, Anette; Westman, Gunnar; Krumme, Andres

    2016-11-01

    Cellulose esters with long carbon side chains (e.g. stearate) were produced via a homogenous reaction in ionic liquids. The degree of substitution was calculated to approximately 2. The melt rheology was studied for the pure cellulose esters but also combinations of the esters and polypropylene to study the processability of a blended composite material. It was shown that the compatibility between the two components was weak, which resulted in a phase-separated composite material. The morphology and permeability of water and oleic acid of the composite films were studied and it was shown that the water permeability decreased upon addition of the cellulose ester to the polymer. The permeability of oleic acid was however unchanged, which is most probable a result of high solubility in the cellulose ester rich domains of the composites. Also, the following hypothesis is stated: cellulose stearate influence the polypropylene crystallization process by decreasing the size of spherulites. PMID:27516292

  16. Polylactic acid/zinc oxide biocomposite films for food packaging application.

    PubMed

    Marra, Antonella; Silvestre, Clara; Duraccio, Donatella; Cimmino, Sossio

    2016-07-01

    Although PLA is much more expensive than polyolefins, such as PP and PE, there is a great interest to propose PLA based material as alternative films for food packaging being PLA derivable from natural source, compostable and biodegradable. For this purpose the research has the task to investigate and propose PLA materials with enhanced properties to be effectively and efficiently alternative to polyolefin films for food packaging application. In this contribution, biocomposite films of PLA with 1, 3 and 5wt% of ZnO have been investigated to determine mechanical, barrier and antimicrobial (against Escherichia coli) properties. It is found that the biocomposite films are characterized by a good dispersion of the ZnO particles in PLA matrix, although no previous treatment was performed on ZnO particles, such as silanization, to decrease its incompatibility with the polymer. The biocomposite films have shown good mechanical properties, decrease of permeability to CO2 and O2, and only a slight increase to water vapour. Particularly important is that, for the biocomposite with 5wt% of ZnO, the % Reduction for E. Coli test reached the value of 99.99 already after 24h. PMID:27012896

  17. Spectra of Surface-Enhanced Raman Scattering of 1-Propanethiol and 3-Mercaptopropionic Acid Chemisorbed on Thin Silver Films

    NASA Astrophysics Data System (ADS)

    Strekal', N. D.; German, A. E.; Gachko, G. A.; Maskevich, S. A.

    2000-12-01

    The influence of chemisorption and intermolecular Van der Waals interactions on the formation of surface-enhanced Raman spectra of 1-propanethiol and 3-mercaptopropionic acid coated as self-organized monolayers on vacuum-deposited thin silver films and thin silver films annealed at high temperatures is studied. Optical properties of films of both types are found to be strongly affected by the chemical modification, which is associated with peculiarities of the monolayer formation. It is shown that the reorganization of the substrate surface can be associated with intense repulsion between alkane chains of thiol when the distance between them decreases in comparison with the distance typical of crystalline paraffins. Conclusions on the presence and the nature of packing defects of short-chain thiols on the substrate surface are made on the basis of the analysis of Raman and surface-enhanced Raman spectra. It is shown that the interaction between the first (propanethiol) and the second (pyruvate) monolayers near the silver surface in the water phase results in the reorganization of the first monolayer, in which conformers of propanethiol in the gauche-conformation with respect to the C(1)-C(2) bond prevail.

  18. Optical storage in azobenzene-containing epoxy polymers processed as Langmuir Blodgett films.

    PubMed

    Fernández, Raquel; Mondragon, Iñaki; Sanfelice, Rafaela C; Pavinatto, Felippe J; Oliveira, Osvaldo N; Oyanguren, Patricia; Galante, María J

    2013-04-01

    In this study, azocopolymers containing different main-chain segments have been synthesized with diglycidyl ether of bisphenol A (DGEBA, DER 332, n=0.03) and the azochromophore Disperse Orange 3 (DO3) cured with two monoamines, viz. benzylamine (BA) and m-toluidine (MT). The photoinduced birefringence was investigated in films produced with these azopolymers using the spin coating (SC) and Langmuir Blodgett (LB) techniques. In the LB films, birefringence increased with the content of azochromophore and the film thickness, as expected. The nanostructured nature of the LB films led to an enhanced birefringence and faster dynamics in the writing process, compared to the SC films. In summary, the combination of azocopolymers and the LB method may allow materials with tuned properties for various optical applications, including in biological systems were photoisomerization may be used to trigger actions such as drug delivery. PMID:23827588

  19. Contribution of light scattering to the circular dichroism of deoxyribonucleic acid films, deoxyribonucleic acid-polylysine complexes, and deoxyribonucleic acid particles in ethanolic buffers

    SciTech Connect

    Maestre, M.F.; Reich, C.

    1980-01-01

    The contribution of scattering to the circular dichroism (CD) of DNA films with twisted structures, DNA-polylysine complexes, and condensed DNA aggregates in ethanolic buffers of defined salt concentrations has been studied by the use of novel measuring techniques. These techniques include fluorscat cuvettes, fluorescence-detected circular dichroism (FDCD) methods, backscattering capturing devices, and beam-mounted goniometer detectors. The result of the experimental measurement is that DNA films can be made which have very large ellipticities or CD at sharp specific wavelengths. The sign of these ellipticities is related to the handedness of the twists, with a right-handed twist producing large positive rotations and a left-handed one producing negative rotations. The film shows nodal angles at which the interaction with light is minimal. The scattering patterns of both films, DNA-polylysine particles and DNA-EtOH condensates, show that the main interaction is light scattering produced by a resonance phenomenon similar to that produced in cholestric liquid crystals and twisted-nematic liquid crystals. It is proposed that the so-called psi-type CD spectrum is a manifestation of a side-by-side packing of DNA molecules with a long-range twisting order whose helical parameters match the helical parameter of circularly polarized light at specific resonance or critical wavelengths. Application of the Bragg law for cholesteric liquid crystals gives the periodicity of the long-range ordered structures. 9 figures.

  20. Chitosan-based mucoadhesive films containing 5-aminolevulinic acid for buccal cancer's treatment.

    PubMed

    Costa, Irina dos Santos Miranda; Abranches, Renata Pereira; Garcia, Maria Teresa Junqueira; Pierre, Maria Bernadete Riemma

    2014-11-01

    Photodynamic therapy (PDT) is a relatively new method to treat various kinds of tumors, including those of the oral cavity. The topical 5-ALA-PDT treatment for tumors of the oral mucosa is preferred, since when administered systemically, there is a general photosensitization drawback in the patient. However, 5-ALA is a hydrophilic molecule and its penetration and retention is limited by topical route, including oral mucosa. We propose a topical delivery system of chitosan-based mucoadhesive film, aiming to promote greater retention of 5-ALA in tissue. The chitosan (CHT) films (4% w/w) were prepared using the solvent evaporation/casting technique. They were tested without 5-ALA resulting in permeability to water vapor (W.V.P=2.15-8.54 g mm/(h cm(2)Pa) swelling ∼300.0% (±10.5) at 4 h or 24 h and in vitro residence time >24 h for all tests. CHT films containing 10.0% (w/w) 5-ALA have resulted in average weight of 0.22 g and thickness of 0.608 mm as suitable characteristics for oral application. In the presence of CHT films both in vitro permeation and retention of 5-ALA (1.0% or 10.0%) were increased. However, 10.0% 5-ALA presented highest values of permeation and retention (∼4 and 17 times respectively, compared to propylene glycol vehicle). On the other hand, in vitro mucoadhesion of CHT films was decreased (18.2-fold and 3.1-fold) by 5-ALA addition (1.0% or 10.0% respectively). However, CHT film containing 10.0% of 5-ALA can be a potential delivery system for topical use in the treatment of tumors of the oral cavity using PDT because it favored the retention of 5-ALA in this tissue and has shown convenient mucoadhesion. PMID:25190225

  1. Poly(pyrrole-co-pyrrole propylic acid) film and its application in label-free surface plasmon resonance immunosensors.

    PubMed

    Hu, Weihua; Li, Chang Ming; Dong, Hua

    2008-12-01

    In this work, surface plasmon resonance (SPR) was used to study protein immobilization on poly(pyrrole-co-pyrrole propylic acid) (PPy/PPa) for immunosensing applications. SPR was employed to in situ monitor the electropolymerization process and to control thickness of the PPy/PPa copolymer film. Goat IgG as a model protein was covalently immobilized on the carboxyl-containing film through EDC/NHS as the coupling reagents. The effect of pyrrole propylic acid (Pa) proportion in the deposition solution on the protein immobilization capability was systemically investigated. The immobilization efficiency was demonstrated by a label-free SPR immunosensor. The heterogeneous kinetics of the immune reaction was discussed. This work could provide a facile method to immobilize proteins on an electrode surface by electropolymerized copolymer, and renders a universal approach to in situ study the protein immobilization process and sensing kinetics for scientific insights of the heteroimmunosensing scheme particularly in surface chemistry and molecular biology for further improvement of immunosensors. PMID:19068327

  2. Collagen based film with well epithelial and stromal regeneration as corneal repair materials: Improving mechanical property by crosslinking with citric acid.

    PubMed

    Zhao, Xuan; Liu, Yang; Li, Weichang; Long, Kai; Wang, Lin; Liu, Sa; Wang, Yingjun; Ren, Li

    2015-10-01

    Corneal disease can lead to vision loss. It has become the second greatest cause of blindness in the world, and keratoplasty is considered as an effective treatment method. This paper presents the crosslinked collagen (Col)-citric acid (CA) films developed by making use of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The results showed that the Col-CA films had necessary optical performance, water content. The collagenase resistance of CA crosslinked films was superior to that of EDC crosslinked films. And CA5 film (Col:CA:EDC:NHS=60:3:10:10) had the best mechanical properties. Cell experiments showed that CA5 film was non-cytotoxic and human corneal epithelial cells could proliferate well on the films. Lamellar keratoplasty showed that the CA5 film could be sutured in the rabbit eyes and was epithelialized completely in about 10 days, and the transparency was restored quickly in 30±5 days. No inflammation and corneal neovascularization were observed at 6 months. Corneal stroma had been repaired; stromal cells and neo-stroma could be seen in the area of operation from the hematoxylin-eosin stained histologic sections and anterior segment optical coherence tomography images. These results indicated that Col-CA films were highly promising biomaterials that could be used in corneal tissue engineering and a variety of other tissue engineering applications. PMID:26117756

  3. Effect of Substrate Temperature on the Properties of Sprayed WO3 Thin Films Using Peroxotungstic Acid and Ammonium Tungstate: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Ganbavle, V. V.; Kim, J. H.; Rajpure, K. Y.

    2015-03-01

    A comparative study on the physicochemical properties of tungsten oxide (WO3) thin films synthesized using peroxotungstic acid (PTA) and ammonium tungstate (AT) by simple spray pyrolysis technique is reported. X-ray diffraction patterns show that the films deposited using both the precursors are polycrystalline with monoclinic crystal structure. The x-ray photoelectron spectroscopy studies confirm that the films are sub-stoichiometric with O/W ratios of 2.93 and 2.87, respectively, for typical PTA and AT films. Tungsten (W) exists in two chemical states, 5+ and 6+. Scanning electron microscopy images show the uniform and dense network of wires in PTA films, while the films deposited using AT possess a porous structure with small grains. Electrical and dielectric studies show that films are highly resistive and possess high dielectric constant. The near ultra-violet, blue, green and weak red emissions due to defects were observed in the photoluminescence studies. Properties of the WO3 thin films reported here are suitable for gas sensor applications. Films deposited using PTA are more functional than those deposited using AT.

  4. Photonic crystal fiber for layer-by-layer assembly and measurements of polyelectrolyte thin films.

    PubMed

    Tian, Fei; Kanka, Jiri; Sukhishvili, Svetlana A; Du, Henry

    2012-10-15

    The cladding air channels of an endlessly single-mode photonic crystal fiber (PCF) and the high-index sensitivity of its long-period gratings (LPG) inscribed by CO(2) laser have been exploited to deposit poly(vinyl pyrrolidone) (PVPON)/poly(methacrylic acid) (PMAA) polyelectrolyte thin films via layer-by-layer assembly (LbL) and to measure the deposition process. We show that LbL can be controllably carried out within the axially aligned air channels. PCF-LPG is highly sensitive to the LbL process as reflected by ~1.625 nm shift in the resonance wavelength per polyelectrolyte layer incorporated. PCF-LPG is also very robust for in situ monitoring of the release of PVPON from cross-linked polyelectrolytes, which results in the formation of pH-responsive PMAA hydrogel. PCF-LPG containing the hydrogel exhibits well-behaved response to changes in solution pH over 2 to 7.5. We demonstrate that PCF-LPG is 2 orders of magnitude more sensitive than its traditional all-solid counterpart through parallel investigation. PMID:23073443

  5. Humidity-dependent compression-induced glass transition of the air–water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA)

    SciTech Connect

    Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung; Choi, Yun -Hwa; Meron, Mati; Lin, Binhua; Bang, Joona; Won, You -Yeon

    2015-08-26

    Constant rate compression isotherms of the air–water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA)show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air–water interface, using combined experimental techniques including the Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods.

  6. pH-sensing properties of cascaded long- and short-period fiber grating with poly acrylic acid/poly allylamine hydrochloride thin-film overlays

    NASA Astrophysics Data System (ADS)

    Yang, Ying

    2014-11-01

    Based on coupled-mode theory and transfer matrix method, the mode coupling mechanism and the reflection spectral properties of coated cascaded long- and short-period gratings (CLBG) are discussed. The effects of the thin-film parameters (film refractive index and film thickness) on the reflection spectra of the coated CLBG are simulated. By using electrostatic self-assembly method, poly acrylic acid (PAA) and poly allylamine hydrochloride (PAH) multilayer molecular pH-sensitive thin-films are assembled on the surface of the partial corroded CLBG. When the CLBG coated with PAA/PAH films are used to sense pH values, the resonant wavelengths of the CLBG have almost no shift, whereas the resonance peak reflectivities change with pH values. In addition, the sensitivities of the resonance peak reflectivities responding to pH values are improved by an order of magnitude.

  7. Electrochemical mineralization of perfluorocarboxylic acids (PFCAs) by ce-doped modified porous nanocrystalline PbO2 film electrode.

    PubMed

    Niu, Junfeng; Lin, Hui; Xu, Jiale; Wu, Hao; Li, Yangyang

    2012-09-18

    The Ce-doped modified porous nanocrystalline PbO(2) film electrode prepared by electrodeposition technology was used for electrochemical mineralization of environmentally persistent perfluorinated carboxylic acids (PFCAs) (~C(4)-C(8)), i.e., perfluorobutanoic acid (PFBA), perfluopentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluoheptanoic acid (PFHpA), and perfluorooctanoic acid (PFOA) in aqueous solution (100 mL of 100 mg L(-1)). The degradation of PFCAs follows pseudo-first-order kinetics, and the values of the relative rate constant (k) depend upon chain length k(PFHpA) (4.1 × 10(-2) min(-1); corresponding half-life 16.8 min) ≈ 1.1k(PFOA) ≈ 2.5k(PFHxA)≈ 6.9k(PFPeA) ≈ 9.7k(PFBA). The carbon mineralization indices [i.e., 1 - (TOC(insolution)/TOC(inPFCA,degraded))] were 0.49, 0.70, 0.84, 0.91, and 0.95 for PFBA, PFPeA, PFHxA, PFHpA, and PFOA, respectively, after 90 min electrolysis. The major mineralization product, F(-), as well as low amount of intermediate PFCAs with shortened chain lengths were detected in aqueous solution. By observing the intermediates and tracking the concentration change, a possible pathway of electrochemical mineralization is proposed as follows: Kolbe decarboxylation reaction occurs first at the anode to form the perfluoroalkyl radical, followed by reaction with hydroxyl radicals to form the perfluoroalkyl alcohol which then undergoes intramolecular rearrangement to form the perfluoroalkyl fluoride. After this, the perfluoroalkyl fluoride reforms perfluorinated carboxylic with shorter chain length than its origin by hydrolysis. This electrochemical technique could be employed to treat PFCAs (~C(4)-C(8)) in contaminated wastewater. PMID:22913426

  8. Insulin particles as building blocks for controlled insulin release multilayer nano-films.

    PubMed

    Lin, Xiangde; Choi, Daheui; Hong, Jinkee

    2015-09-01

    Insulin nanoparticles (NPs) were prepared by pH-shift precipitation and a newly developed disassembly method at room temperature. Then, an electrostatic interaction-based, layer-by-layer (LbL) multilayer film incorporating insulin NPs was fabricated with poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH), which is described herein as Si/(PAH/PAA)5(PAH/PAA-insulin NPs)n. The positively charged insulin NPs were introduced into the LbL film in the form of biocompatible PAA-insulin NP aggregates at a pH of 4.5 and were released in phosphate-buffered saline (pH7.4), triggered by changes in the charges of the insulin molecules. In addition, the insulin-incorporated multilayer was swollen because of the different ionic environment, leading also to insulin release. Eighty percent of the insulin was released from the LBL film in the first stage of 3h, and sustained release could be maintained in the second stage for up to 7 days in vitro, which is very critical for specific diabetic patients. These striking findings could offer novel directions to researchers in establishing insulin delivery systems for diabetic therapy and fabricating other protein nanoparticles applied to various biomedical platforms. PMID:26046287

  9. Optical properties and electrochemical dealloying of Gold-Silver alloy nanoparticles immobilized on composite thin-film electrodes

    NASA Astrophysics Data System (ADS)

    Starr, Christopher A.

    Gold-silver alloy nanoparticles (NPs) capped with adenosine 5'-triphosphate were synthesized by borohydride reduction of dilute aqueous metal precursors. High-resolution transmission electron microscopy showed the as-synthesized particles to be spherical with average diameters ~4 nm. Optical properties were measured by UV-Visible spectroscopy (UV-Vis), and the formation of alloy NPs was verified across all gold:silver ratios by a linear shift in the plasmon band maxima against alloy composition. The molar absorptivities of the NPs decreased non-linearly with increasing gold content from 2.0 x 108 M-1 cm-1 (lambdamax = 404 nm) for pure silver to 4.1 x 107 M-1 cm -1 (lambdamax = 511 nm) for pure gold. The NPs were immobilized onto transparent indium-tin oxide composite electrodes using layer-by-layer (LbL) deposition with poly(diallyldimethylammonium) acting as a cationic binder. The UV-Vis absorbance of the LbL film was used to calculate the surface coverage of alloy NPs on the electrode. Typical preparations had average NP surface coverages of 2.8 x 10-13 mol NPs/cm2 (~5% of cubic closest packing) with saturated films reaching ~20% of ccp for single-layer preparations (1.0 ~ 10-12 mol NPs/cm2). X-ray photoelectron spectroscopy confirmed the presence of alloy NPs in the LbL film and showed silver enrichment of the NP surfaces by ~9%. Irreversible oxidative dissolution (dealloying) of the less noble silver atoms from the NPs on LbL electrodes was performed by cyclic voltammetry (CV) in sulfuric acid. Alloy NPs with higher gold content required larger overpotentials for silver dealloying. Dealloying of the more-noble gold atoms from the alloy NPs was also achieved by CV in sodium chloride. The silver was oxidized first to cohesive silver chloride, and then gold dealloyed to soluble HAuCl 4- at higher potentials. Silver oxidation was inhibited during the first oxidative scan, but subsequent cycles showed typical, reversible silver-to-silver chloride voltammetry. The

  10. The Acid Horizon Cruise: Expanding scientific outreach by crowd-funding a film project

    NASA Astrophysics Data System (ADS)

    Cordes, E. E.

    2014-12-01

    During a cruise in April - May, 2014 on the R/V Atlantis with the DSV Alvin to study ocean acidification in the Gulf of Mexico, we carried out a number of outreach efforts, the most significant of which was filming a documentary. The documentary is about the impact of ocean acidification, but is told as a personal story and extends well beyond the cruise itself. This documentary was an independent effort supported entirely by a Kickstarter crowd-funding campaign that ran from Nov - Dec, 2013. The campaign attracted over 200 donors and was ultimately successful in raising the funds necessary to bring the film crew on board. By involving so many people in the funding of the project, we attracted a core audience for the outreach efforts during the cruise. These efforts included daily posts on various social media sites, both personal and scientific, as well as exclusive "sneak peeks" of the film for the Kickstarter backers. In addition, live interactions from the cruise included an interview with public radio from the submersible, and a public seminar from the back deck of the ship. All of these efforts resulted in the development of an audience that remains engaged in the progress of the science and the film, long after the cruise has concluded.

  11. Evolution of insoluble eutectic Si particles in anodic oxidation films during adipic-sulfuric acid anodizing processes of ZL114A aluminum alloys

    NASA Astrophysics Data System (ADS)

    Hua, Lei; Liu, Jian-hua; Li, Song-mei; Yu, Mei; Wang, Lei; Cui, Yong-xin

    2015-03-01

    The effects of insoluble eutectic Si particles on the growth of anodic oxide films on ZL114A aluminum alloy substrates were investigated by optical microscopy (OM) and scanning electron microscopy (SEM). The anodic oxidation was performed at 25°C and a constant voltage of 15 V in a solution containing 50 g/L sulfuric acid and 10 g/L adipic acid. The thickness of the formed anodic oxidation film was approximately 7.13 μm. The interpore distance and the diameters of the major pores in the porous layer of the film were within the approximate ranges of 10-20 nm and 5-10 nm, respectively. Insoluble eutectic Si particles strongly influenced the morphology of the anodic oxidation films. The anodic oxidation films exhibited minimal defects and a uniform thickness on the ZL114A substrates; in contrast, when the front of the oxide oxidation films encountered eutectic Si particles, defects such as pits and non-uniform thickness were observed, and pits were observed in the films.

  12. Solution-processed poly(3,4-ethylenedioxythiophene) thin films as transparent conductors: effect of p-toluenesulfonic acid in dimethyl sulfoxide.

    PubMed

    Mukherjee, Smita; Singh, Rekha; Gopinathan, Sreelekha; Murugan, Sengottaiyan; Gawali, Suhas; Saha, Biswajit; Biswas, Jayeeta; Lodha, Saurabh; Kumar, Anil

    2014-10-22

    Conductivity enhancement of thin transparent films based on poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) by a solution-processed route involving mixture of an organic acid and organic solvent is reported. The combined effect of p-toluenesulfonic acid and dimethyl sulfoxide on spin-coated films of PEDOT-PSS on glass substrates, prepared from its commercially available aqueous dispersion, was found to increase the conductivity of the PEDOT-PSS film to ∼3500 S·cm(-1) with a high transparency of at least 94%. Apart from conductivity and transparency measurements, the films were characterized by Raman, infrared, and X-ray photoelectron spectroscopy along with atomic force microscopy and secondary ion mass spectrometry. Combined results showed that the conductivity enhancement was due to doping, rearrangement of PEDOT particles owing to phase separation, and removal of PSS matrix throughout the depth of the film. The temperature dependence of the resistance for the treated films was found to be in accordance with one-dimensional variable range hopping, showing that treatment is effective in reducing energy barrier for interchain and interdomain charge hopping. Moreover, the treatment was found to be compatible with flexible poly(ethylene terephthalate) (PET) substrates as well. Apart from being potential candidates to replace inorganic transparent conducting oxide materials, the films exhibited stand-alone catalytic activity toward I(-)/I3(-) redox couple as well and successfully replaced platinum and fluorinated tin oxide as counter electrode in dye-sensitized solar cells. PMID:25230160

  13. Measurement of optical anisotropy in ultrathin films using surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Devanarayanan, V. P.; Manjuladevi, V.; Poonia, Monika; Gupta, R. K.; Gupta, Sanjeev K.; Akhtar, Jamil

    2016-01-01

    The optical phenomenon, surface plasmon resonance (SPR) is employed for the measurement of optical anisotropy in the ultrathin films fabricated through Langmuir-Blodgett (LB) and self-assembled monolayer (SAM) techniques onto 50 nm gold film supported on BK7 glass substrates. The resonance angle (RA) is measured using a home built setup in Kretschmann configuration. The LB films and SAM can provide a single layer of highly ordered and organized molecules on the two dimensional surface. If the film forming molecules are anisotropic, their organization in the LB films and SAM can yield an anisotropic film due to tilt of the molecules with respect to the surface normal. The SPR spectra are recorded for the two orthogonal directions of the film with respect to the plane of incidence. The spectra are simulated by modeling the Fresnel's reflection from 4-layers viz., prism, gold, ultrathin films and air; and the real and imaginary parts of refractive index are estimated. Our study shows the metallic and dielectric nature of the LB films of bundles of single walled carbon nanotubes (SWCNTs) when the long axis of SWCNTs are aligned parallel and perpendicular to plane of incidence, respectively. The optical anisotropy was estimated from the change in real part of refractive index (Δnr) of the ultrathin films measured in the orthogonal directions. In addition, we have also studied such optical anisotropy in the LB film of cadmium-stearate and self-assembled monolayer of octadecanethiol.

  14. Craniometric ratios of microcephaly and LB1, Homo floresiensis, using MRI and endocasts

    PubMed Central

    Vannucci, Robert C.; Barron, Todd F.; Holloway, Ralph L.

    2011-01-01

    The designation of Homo floresiensis as a new species derived from an ancient population is controversial, because the type specimen, LB1, might represent a pathological microcephalic modern Homo sapiens. Accordingly, two specific craniometric ratios (relative frontal breadth and cerebellar protrusion) were ascertained in 21 microcephalic infants and children by using MRI. Data on 118 age-equivalent control (normocephalic) subjects were collected for comparative purposes. In addition, the same craniometric ratios were determined on the endocasts of 10 microcephalic individuals, 79 normal controls (anatomically modern humans), and 17 Homo erectus specimens. These ratios were then compared with those of two LB1 endocasts. The findings showed that the calculated cerebral/cerebellar ratios of the LB1 endocast [Falk D, et al. (2007) Proc Natl Acad Sci USA 104:2513–2518] fall outside the range of living normocephalic individuals. The ratios derived from two LB1 endocasts also fall largely outside the range of modern normal human and H. erectus endocasts and within the range of microcephalic endocasts. The findings support but do not prove the contention that LB1 represents a pathological microcephalic Homo sapiens rather than a new species, (i.e., H. floresiensis). PMID:21825126

  15. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests.

    PubMed

    Argyri, Anthoula A; Zoumpopoulou, Georgia; Karatzas, Kimon-Andreas G; Tsakalidou, Effie; Nychas, George-John E; Panagou, Efstathios Z; Tassou, Chrysoula C

    2013-04-01

    The present study aims to evaluate the probiotic potential of lactic acid bacteria (LAB) isolated from naturally fermented olives and select candidates to be used as probiotic starters for the improvement of the traditional fermentation process and the production of newly added value functional foods. Seventy one (71) lactic acid bacterial strains (17 Leuconostoc mesenteroides, 1 Ln. pseudomesenteroides, 13 Lactobacillus plantarum, 37 Lb. pentosus, 1 Lb. paraplantarum, and 2 Lb. paracasei subsp. paracasei) isolated from table olives were screened for their probiotic potential. Lb. rhamnosus GG and Lb. casei Shirota were used as reference strains. The in vitro tests included survival in simulated gastrointestinal tract conditions, antimicrobial activity (against Listeria monocytogenes, Salmonella Enteritidis, Escherichia coli O157:H7), Caco-2 surface adhesion, resistance to 9 antibiotics and haemolytic activity. Three (3) Lb. pentosus, 4 Lb. plantarum and 2 Lb. paracasei subsp. paracasei strains demonstrated the highest final population (>8 log cfu/ml) after 3 h of exposure at low pH. The majority of the tested strains were resistant to bile salts even after 4 h of exposure, while 5 Lb. plantarum and 7 Lb. pentosus strains exhibited partial bile salt hydrolase activity. None of the strains inhibited the growth of the pathogens tested. Variable efficiency to adhere to Caco-2 cells was observed. This was the same regarding strains' susceptibility towards different antibiotics. None of the strains exhibited β-haemolytic activity. As a whole, 4 strains of Lb. pentosus, 3 strains of Lb. plantarum and 2 strains of Lb. paracasei subsp. paracasei were found to possess desirable in vitro probiotic properties similar to or even better than the reference probiotic strains Lb. casei Shirota and Lb. rhamnosus GG. These strains are good candidates for further investigation both with in vivo studies to elucidate their potential health benefits and in olive fermentation processes

  16. Isolation and characterization of xanthan-degrading Enterobacter sp. nov. LB37 for reducing the viscosity of xanthan in petroleum industry.

    PubMed

    Chen, Xiaoyi; Wang, Mi; Yang, Fan; Tang, Wenzhu; Li, Xianzhen

    2014-05-01

    A Gram-negative, straight rod and facultative anaerobic bacterium was isolated from soil sample. It exhibits the phenotypic characteristics consistent with its classification in the genus Enterobacter. The isolate ferment glucose to acid and gas. Arginine dihydrolase, ornithin decarboxylase and gelatinase but not deoxyribonuclease was produced by this isolate. There was no hydrogen sulfide production. On the basis of the phenotypic data, together with phylogenetic analysis based on 16S rDNA gene sequences, this strain should represent a novel species of the genus Enterobacter and was designated as LB37. The strain LB37 could degrade xanthan molecules resulting in the rapid decrease of the viscosity of xanthan solution used in oil drilling process. Endoxanthanase activity was also detected in the culture supernatant. To our knowledge, it is the first report on the microbes being involved in the xanthan degradation for oil industry. The isolate LB37 would be useful for potential application in enhanced oil recovery and oil drilling field. PMID:24326911

  17. A gastrointestinal anti-infectious biotherapeutic agent: the heat-treated Lactobacillus LB.

    PubMed

    Liévin-Le Moal, Vanessa

    2016-01-01

    Experimental in vitro and in vivo studies support the hypothesis that heat-treated, lyophilized Lactobacillus acidophilus LB cells and concentrated, neutralized spent culture medium conserve the variety of pharmacological, antimicrobial activities of the live probiotic strain against several infectious agents involved in well-established acute and persistent watery diarrhoea and gastritis. Heat-treated cells and heat-stable secreted molecules trigger multiple strain-specific activities explaining the therapeutic efficacy of L. acidophilus LB. This review discusses the current body of knowledge on the antimicrobial mechanisms of action exerted by L. acidophilus LB demonstrated in in vitro and in vivo experimental studies, and the evidence for the therapeutic efficacy of this anti-infectious biotherapeutic agent proved in randomized clinical trials for the treatment of acute and persistent watery diarrhoea associated with several intestinal infectious diseases in humans. PMID:26770268

  18. A gastrointestinal anti-infectious biotherapeutic agent: the heat-treated Lactobacillus LB

    PubMed Central

    Liévin-Le Moal, Vanessa

    2016-01-01

    Experimental in vitro and in vivo studies support the hypothesis that heat-treated, lyophilized Lactobacillus acidophilus LB cells and concentrated, neutralized spent culture medium conserve the variety of pharmacological, antimicrobial activities of the live probiotic strain against several infectious agents involved in well-established acute and persistent watery diarrhoea and gastritis. Heat-treated cells and heat-stable secreted molecules trigger multiple strain-specific activities explaining the therapeutic efficacy of L. acidophilus LB. This review discusses the current body of knowledge on the antimicrobial mechanisms of action exerted by L. acidophilus LB demonstrated in in vitro and in vivo experimental studies, and the evidence for the therapeutic efficacy of this anti-infectious biotherapeutic agent proved in randomized clinical trials for the treatment of acute and persistent watery diarrhoea associated with several intestinal infectious diseases in humans. PMID:26770268

  19. Molecular diversity of lactic acid bacteria from cassava sour starch (Colombia).

    PubMed

    Omar, N B; Ampe, F; Raimbault, M; Guyot, J P; Tailliez, P

    2000-06-01

    Lactic acid bacteria and more particularly lactobacilli and Leuconostoc, are widely found in a wide variety of traditional fermented foods of tropical countries, made with cereals, tubers, meat or fish. These products represent a source of bacterial diversity that cannot be accurately analysed using classical phenotypic and biochemical tests. In the present work, the identification and the molecular diversity of lactic acid bacteria isolated from cassava sour starch fermentation were assessed by using a combination of complementary molecular methods: Randomly Amplified Polymorphic DNA fingerprinting (RAPD), plasmid profiling, hybridization using rRNA phylogenetic probes and partial 16S rDNA sequencing. The results revealed a large diversity of bacterial species (Lb. manihotivorans, Lb. plantarum, Lb. casei, Lb. hilgardii, Lb. buchneri, Lb. fermentum, Ln. mesenteroides and Pediococcus sp.). However, the most frequently isolated species were Lb. plantarum and Lb. manihotivorans. The RAPD analysis revealed a large molecular diversity between Lb. manihotivorans or Lb. plantarum strains. These results, observed on a rather limited number of samples, reveal that significant bacterial diversity is generated in traditional cassava sour starch fermentations. We propose that the presence of the amylolytic Lb. manihotivorans strains could have a role in sour starch processing. PMID:10930082

  20. Structural and optical study of spin-coated camphorsulfonic acid-doped polyaniline/titanium-di-oxide nanoparticles hybrid thin films

    NASA Astrophysics Data System (ADS)

    Geethalakshmi, D.; Muthukumarasamy, N.; Balasundaraprabhu, R.

    2015-06-01

    Polyaniline (PANI) doped with Camphorsulfonic acid (CSA) has been prepared by chemical oxidative polymerization and blend with titanium-di-oxide (TiO2) nanoparticles prepared by sol-gel method to form CSA-doped PANI/TiO2 hybrid thin films. The properties of as-deposited and heat-treated (100 °C) hybrid thin films having different PANI:TiO2 weight ratios (1:0.5, 1:1, and 1:2) have been compared. FTIR study indicated that chemical bonding between CSA-doped PANI and TiO2 has been formed. XRD studies reveal that the as-deposited hybrid thin films are of amorphous nature and heat-treatment of such films initiates crystallization. SEM study shows that as-deposited hybrid films are rough; increase in TiO2 ratio and heat-treatment increased the roughness due to coalescing and agglomeration. UV-visible absorbance of hybrid films shows its characteristic peak in the visible region along with a peak in UV range and its intensity increased with TiO2 ratio and heat-treatment due to agglomeration of TiO2 particles. Photoluminescence spectra revealed that emission occurs in visible region (495 nm) for as-deposited hybrid thin film and this emission increased with TiO2 ratio and heat-treatment of hybrid films.

  1. Raman spectroscopic investigation of the single-monolayer Langmuir-Blodgett film of C16NaphOH and C10AzoNaphC4N-SDS.

    PubMed

    Wu, Yuqing; Zhao, Bing; Xu, Weiqing; Li, Guowen; Li, Bofu

    2003-04-01

    Raman spectra were measured for Langmuir-Blodgett (LB) films of C(16)NaphOH and C(10)AzoNaphC(4)N-SDS on Calcium Fluorite substrate for the first time. In order to find out favorable excitation condition, Raman spectra of the single and multi-monolayer LB films excited at different lines at 244, 514, 633 and 778 nm are recorded and compared in the present study. Raman spectrum of the monolayer LB film of C(16)NaphOH excited by 244 nm demonstrate that excellent signal to noise is achieved even for one monolayer LB film with an extremely short integrating time as 60 s because of being resonantly enhanced, while no meaningful spectra were recorded under the same condition for the monolayer LB film of C(10)AzoNaphC(4)N-SDS because of burning. Using a HeNe 633 nm excitation the problem with strong substrate fluorescence was partially solved, since under these conditions this fluorescence is mainly outside the fingerprint region of the LB film molecules (1000-2000 cm(-1)). Therefore by using the HeNe laser excitation, Raman spectra with high signal to noise ratio of LB films of C(16)NaphOH were collected and shown in this paper. These findings stress again the necessity to define an appropriate Raman system for this special application of LB film diagnosis. PMID:12659885

  2. PP2A inhibition with LB100 enhances cisplatin cytotoxicity and overcomes cisplatin resistance in medulloblastoma cells

    PubMed Central

    Maric, Dragan; Amable, Lauren; Hall, Matthew D.; Feldman, Gerald M.; Ray-Chaudhury, Abhik; Lizak, Martin J.; Vera, Juan-Carlos; Robison, R. Aaron; Zhuang, Zhengping; Heiss, John D.

    2016-01-01

    The protein phosphatase 2A (PP2A) inhibitor, LB100, has been shown in pre-clinical studies to be an effective chemo- and radio-sensitizer for treatment of various cancers. We investigated effects associated with LB100 treatment alone and in combination with cisplatin for medulloblastoma (MB) in vitro and in vivo in an intracranial xenograft model. We demonstrated that LB100 had a potent effect on MB cells. By itself, LB100 inhibited proliferation and induced significant apoptosis in a range of pediatric MB cell lines. It also attenuated MB cell migration, a pre-requirement for invasion. When used in combination, LB100 enhanced cisplatin-mediated cytotoxic effects. Cell viability in the presence of 1 uM cisplatin alone was 61% (DAOY), 100% (D341), and 58% (D283), but decreased with the addition of 2 μM of LB100 to 26% (DAOY), 67% (D341), and 27% (D283), (p < 0.005). LB100 suppressed phosphorylation of the STAT3 protein and several STAT3 downstream targets. Also, LB100 directly increased cisplatin uptake and overcame cisplatin-resistance in vitro. Finally, LB100 exhibited potent in vivo anti-neoplastic activity in combination with cisplatin in an intracranial xenograft model. PMID:26799670

  3. The surface structure matters: thermal stability of phthalic acid anchored to atomically-defined cobalt oxide films.

    PubMed

    Xu, Tao; Schwarz, Matthias; Werner, Kristin; Mohr, Susanne; Amende, Max; Libuda, Jörg

    2016-04-21

    We have investigated the influence of the structure of oxide surfaces on the thermal stability of anchored phthalic acid (PA) thin films. Specifically, we have performed temperature programmed infrared reflection absorption spectroscopy (TP-IRAS) of PA films deposited by physical vapor deposition (PVD) in ultra-high vacuum (UVH) onto three well-ordered surfaces: Co3O4(111), CoO(111) and CoO(100), all grown on Ir(100). Restructuring and desorption of PA were monitored in situ by TP-IRAS. Upon annealing of PA multilayers, co-adsorbed phthalic anhydride (PAA) desorbs at 200 K and a structural transition to a flat-lying adsorption geometry occurs at 250 K, before the PA multilayer desorbs at 300 K. At temperatures up to 400 K co-adsorbed mono-carboxylates partially desorb and partially convert to bis-carboxylates. Pronounced structure dependencies are observed regarding the thermal stability of the anchored bis-carboxylate monolayers. From Co3O4(111) the anchored PA desorbs over a wide range of temperatures centered at around 540 K. Weaker binding is observed for CoO(111) with desorption temperatures centered around 490 K. The strongest binding occurs on CoO(100), where the anchored PA films are found to be perfectly stable up to 510 K, before desorption starts and centers at around 580 K. The differences in binding strength are rationalized based on the density and the accessibility of the surface Co(2+) ions. The findings show that the atomic structure of the oxide surface plays an important role in the stability of organic hybrid interfaces. PMID:27030374

  4. Amaranthus cruentus flour edible films: influence of stearic acid addition, plasticizer concentration, and emulsion stirring speed on water vapor permeability and mechanical properties.

    PubMed

    Colla, Eliane; do Amaral Sobral, Paulo J; Menegalli, Florencia Cecília

    2006-09-01

    Films forming solutions composed of Amaranth (Amaranthus cruentus) flour (4.0 g/100 mL), stearic acid (5-15 g/100 g of flour), and glycerol (25-35 g/100 g of flour) were prepared by an emulsification process, with varying stirring speed values (6640-13360 rpm). The influence of these parameters (stearic acid and glycerol concentrations and stirring speed) on the water vapor barrier and mechanical properties of films was evaluated using the response surface methodology (RSM). Other characterizations, including microstructure, water solubility, and oxygen permeability, were performed in optimized films. According to statistical analysis results, the optimized conditions corresponded to 10 g of stearic acid/100 g of flour, 26 g of glycerol/100 g of flour, and a stirring speed of 12 000 rpm. The films produced under these conditions exhibited superior mechanical properties (2.5 N puncture force, 2.6 MPa tensile strength, and 148% elongation at break) in comparison to those of other protein and polysaccharide composite films, low solubility (15.2%), and optimal barrier properties (WVP of 8.9 x 10(- 11) g m(- 1) s(- 1) Pa(- 1) and oxygen permeability of 2.36 x 10(- 13) cm3 m(-1) s(-1) Pa(-1)). PMID:16939322

  5. Effect of pH on Semiconducting Property of Passive Film Formed on Ultra-High-Strength Corrosion-Resistant Steel in Sulfuric Acid Solution

    NASA Astrophysics Data System (ADS)

    Sun, Min; Xiao, Kui; Dong, Chaofang; Li, Xiaogang; Zhong, Ping

    2013-10-01

    Because Cr9Ni5MoCo14 is a new ultra-high-strength corrosion-resistant steel, it is important to study its corrosion behavior in sulfuric acid solution, which is used to simulate the aggressive environment. The effect of pH on the electrochemical and semiconducting properties of passive films formed on ultra-high-strength corrosion-resistant steel in sulfuric acid solution was investigated by means of the potentiodynamic polarization technique, electrochemical impedance spectroscopy (EIS), Mott-Schottky analysis, and X-ray photoelectron spectroscopy (XPS). The results indicated that Cr9Ni5MoCo14 steel showed a passive state in acid solutions. The corrosion behavior of this Cr9Ni5MoCo14 alloy was influenced by the passive film formed on the surface, including thickness, stability, and partitioning of elements of the passive film. The passive current density decreases with increasing pH, and the corrosion resistance was enhanced by the increasing thickness and depletion of the defects within the passive film. Moreover, an enrichment of chromium (primarily the oxides of Cr) and depletion of iron in the passive film led to improved corrosion resistance. These results can provide a theoretical basis for use of this alloy and further development of ultra-high-strength corrosion-resistant steel in today's society.

  6. Catalytic performance comparison of shape-dependent nanocrystals and oriented ultra thin films of Pt4Cu alloy in the formic acid oxidation process

    NASA Astrophysics Data System (ADS)

    Bromberg, Lori Ana

    Research efforts continue to focus on the development of viable and cost effective fuel cell catalysts with minimized Pt content. This work presents a comparison study between Pt4Cu nanocubes and nano-octahedra as well as Pt4Cu (100) and (111) thin films used as catalysts for formic acid oxidation. The paper introduces a novel synthetic method for Pt 4Cu nano-octahedra and it also demonstrates for the first time the use of surface limited redox replacement of Pb underpotentially deposited layer for epitaxial growth of thin alloy films. Overall, the nanoparticle catalysts exhibit superior performance in terms of durability when compared to their thin film counterparts, but feature nearly five-fold lower activity. As a result it was determined that both types of catalysts accumulate nearly equal charge density in their lifespan. In terms of crystallographic orientation, the results indicate that the nanocubes and Pt4Cu (100) thin films outperform the nano-octahedra and Pt4Cu (111) thin films in terms of durability but feature equal to slightly lower activity. This significant difference in durability of catalysts with different crystallographic orientation is attributed to interplay of passivation (from CO poisoning and Pt oxidation) and dissolution of Pt. When compared to pure Pt catalysts (nanoparticles and thin films), all of the Pt4Cu catalysts in this work exhibit superior performance towards formic acid oxidation in terms of activity and durability.

  7. CuIn(S,Se)(2) thin films prepared from a novel thioacetic acid-based solution and their photovoltaic application.

    PubMed

    Xie, Yian; Liu, Yufeng; Wang, Yaoming; Zhu, Xiaolong; Li, Aimin; Zhang, Lei; Qin, Mingsheng; Lü, Xujie; Huang, Fuqiang

    2014-04-28

    Low-cost and high-yield preparation of CuInSe2 films is the bottleneck for promising CuInSe2-based thin film solar cells. Here, we developed a simple, safe and cost-effective method using thioacetic acid to fabricate the absorber films of CuIn(S,Se)2 (CISSe). Dissolution of Cu2O and In(OH)3 in thioacetic acid was attributed to the strong coordination ability of S. The adhesive precursor solution can be prepared without any heating, centrifugation and inert gas protection, superior to the previously reported methods. The precursor CISSe layer was easily deposited in air by spin coating to ensure low cost. Uniform and compact CISSe thin films with well-crystallized and pure-phased CISSe grains were obtained after one step annealing. The as-prepared CISSe thin films were successfully applied to solar cells and a energy conversion efficiency of 6.75% was achieved. This facile preparation provides a low-cost and easy method to fabricate Cu-based thin film solar cells. PMID:24632726

  8. Synthesis of perm-selective membranes by grafting acrylic acid into air-irradiated Teflon-FEP films

    NASA Astrophysics Data System (ADS)

    Bozzi, Annick; Chapiro, Adolphe

    Grafting acrylic acid into air-irradiated Teflon-FEP films was investigated. Pre-irradiation doses ranged from 0.5 to 10 kGy. Grafting occurred at 45 or 60°C. Homopolymerization inhibitors, ferrous ions or methylene blue, were added to the system. It was found that after completion of the reaction, within 40-100 min, membranes were obtained with very low electric resistivities. The influence of added inhibitors, pre-irradiation dose and grafting temperature was studied. From the results it is concluded that the initiating centers in air-irradiated Teflon-FEP are, on the one hand, peroxides of structure POOP', in which P is a polymeric radical and Pprime; a small fragment, and on the other trapped PO .2 radicals. The latter only react after losing their oxygen. In the presence of polymerization inhibitors, initiation involves a redox process which reduces the overall activation energy.

  9. Construction of antibacterial poly(ethylene terephthalate) films via layer by layer assembly of chitosan and hyaluronic acid.

    PubMed

    Del Hoyo-Gallego, Sara; Pérez-Álvarez, Leyre; Gómez-Galván, Flor; Lizundia, Erlantz; Kuritka, Ivo; Sedlarik, Vladimir; Laza, Jose Manuel; Vila-Vilela, Jose Luis

    2016-06-01

    Polyelectrolytic multilayers (PEMs) with enhanced antibacterial properties were built up onto commercial poly(ethylene terephthalate) (PET) films based on the layer by layer assembling of bacterial contact killing chitosan and bacterial repelling highly hydrated hyaluronic acid. The optimization of the aminolysis modification reaction of PET was carried out by the study of the mechanical properties and the surface characterization of the modified polymers. The layer by layer assembly was successfully monitored by TEM microscopy, surface zeta-potential, contact angle measurements and, after labeling with fluorescein isothiocyanate (FTIC) by absorption spectroscopy and confocal fluorescent microscopy. Beside, the stability of the PEMs was studied at physiological conditions in absence and in the presence of lysozyme and hyaluronidase enzymes. Antibacterial properties of the obtained PEMs against Escherichia coli were compared with original commercial PET. PMID:27083341

  10. Effect of stearic acid-grafted starch compatibilizer on properties of linear low density polyethylene/thermoplastic starch blown film.

    PubMed

    Khanoonkon, Nattaporn; Yoksan, Rangrong; Ogale, Amod A

    2016-02-10

    The present work aims to investigate the effect of stearic acid-grafted starch (ST-SA) on the rheological, thermal, optical, dynamic mechanical thermal, and tensile properties of linear low density polyethylene/thermoplastic starch (LLDPE/TPS) blends, as well as on their water vapor and oxygen barrier properties. Blends consisting of LLDPE and TPS in a weight ratio of 60:40 and ST-SA at different concentrations, i.e. 1, 3 and 5%, were prepared using a twin-screw extruder. The obtained resins were subsequently converted into films via blown film extrusion. Incorporation of ST-SA resulted in a decreased degree of shear thinning, reduced ambient temperature elasticity, and improved tensile strength, secant modulus, extensibility, and UV absorption, as well as diminished water vapor and oxygen permeabilities of the LLDPE/TPS blend. These effects are attributed to the enhanced interfacial adhesion between LLDPE and TPS phases through the compatibilizing effect induced by ST-SA, and the good dispersion of the TPS phase in the LLDPE matrix. The results confirmed that ST-SA could potentially be used as a compatibilizer for the LLDPE/TPS blend system. PMID:26686117

  11. Optical and structural characterization of oleic acid-stabilized CdTe nanocrystals for solution thin film processing

    PubMed Central

    Gutiérrez-Lazos, Claudio Davet; Ortega-López, Mauricio; Pérez-Guzmán, Manuel A; Espinoza-Rivas, A Mauricio; Solís-Pomar, Francisco; Ortega-Amaya, Rebeca; Silva-Vidaurri, L Gerardo; Castro-Peña, Virginia C

    2014-01-01

    Summary This work presents results of the optical and structural characterization of oleic acid-stabilized cadmium telluride nanocrystals (CdTe-NC) synthesized by an organometallic route. After being cleaned, the CdTe-NC were dispersed in toluene to obtain an ink-like dispersion, which was drop-cast on glass substrate to deposit a thin film. The CdTe-NC colloidal dispersion as well as the CdTe drop-cast thin films were characterized with regard to the optical and structural properties. TEM analysis indicates that the CdTe-NC have a nearly spherical shape (3.5 nm as mean size). Electron diffraction and XRD diffraction analyses indicated the bulk-CdTe face-centered cubic structure for CdTe-NC. An additional diffraction line corresponding to the octahedral Cd3P2 was also detected as a secondary phase, which probably originates by reacting free cadmium ions with trioctylphosphine (the tellurium reducing agent). The Raman spectrum exhibits two broad bands centered at 141.6 and 162.3 cm−1, which could be associated to the TO and LO modes of cubic CdTe nanocrystals, respectively. Additional peaks located in the 222 to 324 cm−1 range, agree fairly well with the wavenumbers reported for TO modes of octahedral Cd3P2. PMID:24991525

  12. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    NASA Astrophysics Data System (ADS)

    Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei

    2015-10-01

    Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  13. Lead dioxide film sonoelectrodeposition in acidic media: Preparation and performance of stable practical anodes.

    PubMed

    Sáez, V; Esclapez, M D; Frías-Ferrer, A J; Bonete, P; Tudela, I; Díez-García, M I; González-García, J

    2011-07-01

    Practical lead dioxide anodes have been obtained by electrodeposition on glassy carbon and titanium substrates in the presence and in the absence of an ultrasound field. The films obtained by mechanical agitation on glassy carbon are strongly improved when the electrodeposition process is carried out with the ultrasound field, providing adherent deposits free from nodules and stress, but with pores appearing occasionally. These enhanced properties were not achieved by mechanical conditions, even when optimization of temperature, current density, additives and geometrical aspects was attempted. The best practical anodes were obtained by sonoelectrodeposition using specially treated titanium as substrate, providing comparable behavior to commercial electrodes. PMID:21195010

  14. Highly Anisotropic Thermal Expansion in Molecular Films of Dicarboxylic Fatty Acids

    SciTech Connect

    Tamam L.; Ocko B.; Kraack, H.; Sloutskin, E.; Deutsch, M.

    2012-05-25

    Angstrom-resolution x-ray measurements reveal the existence of two-dimensional (2D) crystalline order in molecularly thin films of surface-parallel-oriented fatty diacid molecules supported on a liquid mercury surface. The thermal expansion coefficients along the two unit cell vectors are found to differ 17-fold. The high anisotropy of the 2D thermal expansion and the crystalline coherence length are traced to the different bonding in the two directions: van der Waals normal to, and covalent plus hydrogen bonding along the molecular backbone axis. Similarities with, and differences from, negative thermal expansion materials are discussed.

  15. Films prepared from poly(vinyl alcohol) and amylose-fatty acid salt inclusion complexes with increased surface hydrophobicity and high elongation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, water-soluble amylose-inclusion complexes were prepared from high amylose corn starch and sodium salts of lauric, palmitic, and stearic acid by steam jet cooking. Cast films were prepared by combining the amylose complexes with poly(vinyl alcohol)(PVOH) solution at ratios varying from...

  16. Rapid (<3 min) microwave synthesis of block copolymer templated ordered mesoporous metal oxide and carbonate films using nitrate-citric acid systems.

    PubMed

    Zhang, Yuanzhong; Bhaway, Sarang M; Wang, Yi; Cavicchi, Kevin A; Becker, Matthew L; Vogt, Bryan D

    2015-03-25

    Rapid chemical transformation from micelle templated precursors (metal nitrate and citric acid) to ordered mesoporous metal carbonates and oxides is demonstrated using microwave heating for cobalt, copper, manganese and zinc. Without aging requirements, <3 min of microwave processing yields highly ordered mesoporous films. PMID:25714045

  17. Optical nonlinearity of pure bacteriorhodopsin Langmuir-Blodgett films derived from multi-wave mixing

    NASA Astrophysics Data System (ADS)

    Liu, S. H.; Du, Weichong

    1993-10-01

    We report an observation of optical phase conjugate and high-order diffractions from degenerate multi-wave mixing in LB films of pure purple membrane for the first time. The saturated absorption intensity and the saturated nonlinear refractive index of the LB films have been estimated to be 0.42 W/cm2, and 5×10-2 cm2/W, respectively. The typical response time of its nonlinearity is about several milliseconds.

  18. Amino acid chiral recognition using X-ray diffraction of thin films

    NASA Technical Reports Server (NTRS)

    Dragoi, D.; Kulleck, J.; Kanik, I.; Beegle, L. W.

    2003-01-01

    The astrobiological search for life, both extinct and extant, on other solar system bodies will take place via several planned lander missions to Mars, Europa and Titan. The detection and identification of organic molecules that have been associated with life is a major technical achievement. Terrestrial life utilizes organic molecules, such as amino acids, as its basic building block. Detection of an entometeric excess of L over D forms of amino acids would be a powerful sign that life had existed on Mars at one time.

  19. Reduction of the pro-inflammatory response by tetrandrine-loading poly(L-lactic acid) films in vitro and in vivo.

    PubMed

    Wang, Qiang-Song; Cui, Yuan-Lu; Gao, Li-Na; Guo, Yong; Li, Rui-Xin; Zhang, Xi-Zheng

    2014-11-01

    Inflammatory response of implantable biomaterials and drug delivery vehicles, driven by the reaction of macrophages to foreign body particles released from the implant, is an urgent problem to resolve. Despite this, little is known about the inflammatory molecular mechanism following the implantation of biomaterials and the evaluation of anti-inflammatory biomaterials. In this study, tetrandrine (TET) was loaded into poly (l-lactic acid) (PLLA) films to assess the anti-inflammatory effects in vitro and in vivo. The water contact angle measurement indicated the variation of hydrophilicity and the electron spectroscopy for chemical analysis (ESCA) data suggested that TET was loaded into PLLA films, which were marked as enriched with nitrogen atoms. TET-loading PLLA films had satisfactory sustained releasing behavior in salicylic acid solution with accelerating release. RAW 264.7 macrophages cultured in TET-loading PLLA films maintained lower levels of chemokines, cytokines, and enzymes involved in the inflammatory process, such as NO, TNF-α, IL-6, iNOS, COX-2 than control PLLA films, suggesting that TET-loading PLLA films could regulate the mRNA expression and protein expression to reduce the inflammatory response in macrophages. The degree of inflammatory reaction for the implant with the TET-loading PLLA films was significantly less severe than that close to control PLLA films in 4, 12 weeks after operation in rats. The present study will provide a new method to evaluate and treat the biocompatibility related to inflammatory response for implanted biomaterials and drug delivery system. PMID:24442958

  20. Interior of large xray room with 16,000 lb. crane showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of large x-ray room with 16,000 lb. crane showing sliding door and tracks, view facing east-northeast - U.S. Naval Base, Pearl Harbor, Industrial X-Ray Building, Off Sixth Street, adjacent to and south of Facility No. 11, Pearl City, Honolulu County, HI

  1. Tank Applied Testing of Load-Bearing Multilayer Insulation (LB-MLI)

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Valenzuela, Juan G.; Feller, Jerr; Plachta, Dave

    2014-01-01

    The development of long duration orbital cryogenic storage systems will require the reduction of heat loads into the storage tank. In the case of liquid hydrogen, complete elimination of the heat load at 20 K is currently impractical due to the limitations in lift available on flight cryocoolers. In order to reduce the heat load, without having to remove heat at 20 K, the concept of Reduced Boil-Off uses cooled shields within the insulation system at approximately 90 K. The development of Load-Bearing Multilayer Insulation (LB-MLI) allowed the 90 K shield with tubing and cryocooler attachments to be suspended within the MLI and still be structurally stable. Coupon testing both thermally and structurally were performed to verify that the LB-MLI should work at the tank applied level. Then tank applied thermal and structural (acoustic) testing was performed to demonstrate the functionality of the LB-MLI as a structural insulation system. The LB-MLI showed no degradation of thermal performance due to the acoustic testing and showed excellent thermal performance when integrated with a 90 K class cryocooler on a liquid hydrogen tank.

  2. Tank Applied Testing of Load-Bearing Multilayer Insulation (LB-MLI)

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Valenzuela, Juan G.; Feller, Jeffrey R.; Plachta, David W.

    2014-01-01

    The development of long duration orbital cryogenic storage systems will require the reduction of heat loads into the storage tank. In the case of liquid hydrogen, complete elimination of the heat load at 20 K is currently impractical due to the limitations in lift available on flight cryocoolers. In order to reduce the heat load, without having to remove heat at 20 K, the concept of Reduced Boil-Off uses cooled shields within the insulation system at approximately 90 K. The development of Load-Bearing Multilayer Insulation (LB-MLI) allowed the 90 K shield with tubing and cryocooler attachments to be suspended within the MLI and still be structurally stable. Coupon testing, both thermal and structural was performed to verify that the LB-MLI should work at the tank applied level. Then tank applied thermal and structural (acoustic) testing was performed to demonstrate the functionality of the LB-MLI as a structural insulation system. The LB-MLI showed no degradation of thermal performance due to the acoustic testing and showed excellent thermal performance when integrated with a 90 K class cryocooler on a liquid hydrogen tank.

  3. 5. Love, L.B. W. & A. Fletcher Co. 'North River ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Love, L.B. W. & A. Fletcher Co. 'North River Iron Works'. 1919. On file, The Applied Companies, Hoboken, New Jersey. MAP OF THE W. & A. FLETCHER SHIPYARD IN 1919. - Bethlehem Steel Company Shipyard, 1201-1321 Hudson Street, Hoboken, Hudson County, NJ

  4. OXIDATION OF POLYCHLORINATED BIPHENYLS BY PSEUDOMONAS SP. STRAIN LB400 AND PSEUDOMONAS PSEUDOALCALIGENES KF707

    EPA Science Inventory

    Biphenyl-grown cells and cell extracts prepared from biphenyl-grown cells of Pseudomonas sp. strain LB400 oxidize a much wider range of chlorinated biphenyls than do analogous preparations from Pseudomonas pseudoalcaligenes KF707. These results are attributed to differences in th...

  5. OXIDATION OF BIPHENYL BY A MULTICOMPONENT ENZYME SYSTEM FROM PSEUDOMONAS SP. STRAIN LB400

    EPA Science Inventory

    Pseudomonas sp. strain LB400 grows on biphenyl as the sole carbon and energy source. This organism also cooxidizes several chlorinated biphenyl congeners. Biphenyl dioxygenase activity in cell extract required addition of NAD(P)H as an electron donor for the conversion of bipheny...

  6. Bimodal Tumor-Targeting from Microenvironment Responsive Hyaluronan Layer-by-Layer (LbL) Nanoparticles

    PubMed Central

    2015-01-01

    Active targeting of nanoscale drug carriers can improve tumor-specific delivery; however, cellular heterogeneity both within and among tumor sites is a fundamental barrier to their success. Here, we describe a tumor microenvironment-responsive layer-by-layer (LbL) polymer drug carrier that actively targets tumors based on two independent mechanisms: pH-dependent cellular uptake at hypoxic tumor pH and hyaluronan-directed targeting of cell-surface CD44 receptor, a well-characterized biomarker for breast and ovarian cancer stem cells. Hypoxic pH-induced structural reorganization of hyaluronan-LbL nanoparticles was a direct result of the nature of the LbL electrostatic complex, and led to targeted cellular delivery in vitro and in vivo, with effective tumor penetration and uptake. The nanoscale drug carriers selectively bound CD44 and diminished cancer cell migration in vitro, while co-localizing with the CD44 receptor in vivo. Multimodal targeting of LbL nanoparticles is a powerful strategy for tumor-specific cancer diagnostics and therapy that can be accomplished using a single bilayer of polyamine and hyaluronan that, when assembled, produce a dynamic and responsive cell–particle interface. PMID:25100313

  7. Gas and oil fired package boilers 20,000 - 50,000 lb/hr

    SciTech Connect

    Day, L.K.

    1996-11-01

    Gas and oil fired package boilers rated at 20,000-50,000 lb/hr are discussed. The fleet consists of approximately 75 units, divided into two basic groups: (1) mobile boiler rooms - these consist of van mounted firetube boilers from 100-350 hp, complete with feedwater systems and water treatment equipment; and (2) trailer-mounted boilers - these consist of {open_quotes}O{close_quotes} type watertube boilers from 24,000 - 120,000 lb/hr, specially designed and mounted on highway legal lowboy trailers for mobility. Other products include new and reconditioned skid-mounted package boilers up to 150,000 lb/hr, turnkey {open_quotes}fast track{close_quotes} steam plants, and custom designed mobile or transportable steam plants for sale or lease. One of the earlier introductions into low NOx technology was a new equipment sale to Union Oil in Arroyo Grande, CA in 1983. A 100,000 lb/hr custom designed boiler with side wall NOx ports and low excess air burner to meet 80 ppm on natural gas was supplied. With the enactment of 40ppm low NOx mandates in Southern California in 2987, it was necessary to quickly retrofit the rental fleet and to work closely with boiler and burner manufacturers to meet the new standards.

  8. OXIDATION OF BIPHENYL BY A MULTICOMPONENT ENZYME SYSTEM FROM PSEUDOMONAS SP. STRAIN LB400

    EPA Science Inventory

    Pseudomonas sp. strain LB400 grows on biphenyl as the sole carbon and energy source. his organism also cooxidizes several chlorinated biphenyl congeners. iphenyl dioxygenase activity in cell extract required addition of NAD(P)H as an electron donor for the conversion of biphenyl ...

  9. Enhanced Polychlorinated Biphenyl Removal in a Switchgrass Rhizosphere by Bioaugmentation with Burkholderia xenovorans LB400

    PubMed Central

    Liang, Yi; Meggo, Richard; Hu, Dingfei; Schnoor, Jerald L.; Mattes, Timothy E.

    2014-01-01

    Phytoremediation makes use of plants and associated microorganisms to clean up soils and sediments contaminated with inorganic and organic pollutants. In this study, switchgrass (Panicum virgatum) was used to test for its efficiency in improving the removal of three specific polychlorinated biphenyl (PCB) congeners (PCB 52, 77 and 153) in soil microcosms. The congeners were chosen for their ubiquity, toxicity, and recalcitrance. After 24 weeks of incubation, loss of 39.9 ± 0.41% of total PCB molar mass was observed in switchgrass treated soil, significantly higher than in unplanted soil (29.5 ± 3.4%) (p<0.05). The improved PCB removal in switchgrass treated soils could be explained by phytoextraction processes and enhanced microbial activity in the rhizosphere. Bioaugmentation with Burkholderia xenovorans LB400 was performed to further enhance aerobic PCB degradation. The presence of LB400 was associated with improved degradation of PCB 52, but not PCB 77 or PCB 153. Increased abundances of bphA (a functional gene that codes for a subunit of PCB-degrading biphenyl dioxygenase in bacteria) and its transcript were observed after bioaugmentation. The highest total PCB removal was observed in switchgrass treated soil with LB400 bioaugmentation (47.3 ± 1.22 %), and the presence of switchgrass facilitated LB400 survival in the soil. Overall, our results suggest the combined use of phytoremediation and bioaugmentation could be an efficient and sustainable strategy to eliminate recalcitrant PCB congeners and remediate PCB-contaminated soil. PMID:25246731

  10. Photoswitched Cell Adhesion on Azobenzene-Containing Self-Assembled Films.

    PubMed

    Bian, Qing; Wang, Wenshuo; Han, Guoxiang; Chen, Yupeng; Wang, Shutao; Wang, Guojie

    2016-08-18

    Stimuli-responsive surfaces that can regulate and control cell adhesion have attracted much attention for their great potential in diverse biomedical applications. Unlike for pH- and temperature-responsive surfaces, the process of photoswitching requires no additional input of chemicals or thermal energy. In this work, two different photoresponsive azobenzene films are synthesized by chemisorption and electrostatic layer-by-layer (LbL) assembly techniques. The LbL film exhibits a relatively loose packing of azobenzene chromophores compared with the chemisorbed film. The changes in trans/cis isomer ratio of the azobenzene moiety and the corresponding wettability of the LbL films are larger than those of the chemisorbed films under UV light irradiation. The tendency for cell adhesion on the LbL films decreases markedly after UV light irradiation, whereas adhesion on the chemisorbed films decreases only slightly, because the azobenzene chromophores stay densely packed. Interestingly, the tendency for cell adhesion can be considerably increased on rough substrates, the roughness being introduced by use of photolithography and inductively coupled plasma deep etching techniques. For the chemisorbed films on rough substrates, the amount of cells that adhere also changes slightly after UV light irradiation, whereas, the amount of cells that adhere to LbL films on rough substrates decreases significantly. PMID:27146320

  11. Time-resolved grazing-incidence diffraction studies of thin films using an imaging-plate camera and focusing monochromator.

    PubMed

    Foran, G J; Gentle, I R; Garrett, R F; Creagh, D C; Peng, J B; Barnes, G T

    1998-03-01

    A multiple imaging-plate (IP) detector system and focusing monochromator have been developed and successfully applied to the time-resolved study of phase transitions in Langmuir-Blodgett (LB) films by grazing-incidence X-ray diffraction (GIXD). The first reported application of imaging plates to a GIXD study was carried out by our group and proved to be very successful in the determination of thin-film structure [Foran, Peng, Steitz, Barnes & Gentle (1996). Langmuir, 12, 774-777]. To extend the capabilities of this system, an IP camera was designed and built which can accommodate up to 13 IPs (40 x 20 cm) inside the vacuum chamber of the main diffractometer at the Australian Beamline at the Photon Factory. The camera allows the enclosed IPs to be successively exposed and stored inside the diffractometer for later scanning. The focusing monochromator employed in this technique combines fixed exit-beam height with sagittal focusing of the second crystal and delivers a gain in flux of >/=20 times when measured through a 0.1 x 0.1 mm aperture. The utility of the system incorporating the IP camera and the focusing monochromator has been demonstrated through the study of temperature-dependent phase transitions in LB films of metal fatty acids. PMID:16687811

  12. An improved layer-by-layer self-assembly technique to generate biointerfaces for platelet adhesion studies: Dynamic LbL

    NASA Astrophysics Data System (ADS)

    Lopez, Juan Manuel

    Layer-by-layer self-assembly (LbL) is a technique that generates engineered nano-scale films, coatings, and particles. These nanoscale films have recently been used in multiple biomedical applications. Concurrently, microfabrication methods and advances in microfluidics are being developed and combined to create "Lab-on-a-Chip" technologies. The potential to perform complex biological assays in vitro as a first-line screening technique before moving on to animal models has made the concept of lab on a chip a valuable research tool. Prior studies in the Biofluids Laboratory at Louisiana Tech have used layer-by-layer and in vitro biological assays to study thrombogenesis in a controlled, repeatable, engineered environment. The reliability of these previously established techniques was unsatisfactory for more complex cases such as chemical and shear stress interactions. The work presented in this dissertation was performed to test the principal assumptions behind the established laboratory methodologies, suggest improvements where needed, and test the impact of these improvements on accuracy and repeatability. The assumptions to be tested were: (1) The fluorescence microscopy (FM) images of acridine orange-tagged platelets accurately provide a measure of percent area of surface covered by platelets; (2) fibrinogen coatings can be accurately controlled, interact with platelets, and do not interfere with the ability to quantify platelet adhesion; and (3) the dependence of platelet adhesion on chemical agents, as measured with the modified methods, generally agrees with results obtained from our previous methods and with known responses of platelets that have been documented in the literature. The distribution of fibrinogen on the final LbL surface generated with the standard, static process (s-LbL) was imaged by tagging the fibrinogen with an anti-fibrinogen antibody bound to fluorescein isothiocyanate (FITC). FITC FM images and acridine orange FM images were taken

  13. Spray Deposition of Multilayer Gas Barrier Thin Films

    NASA Astrophysics Data System (ADS)

    Givens, Tara; Xiang, Fangming; Grunlan, Jaime

    2015-03-01

    Dip-assisted assembly is the norm for making multilayer thin films (also known as layer-by-layer [LbL] assembly). Spray-based deposition possesses several advantages over dipping, but has not been studied in great detail, especially for gas barrier layers. In this study, polyethylenimine [PEI]/poly(acylic acid) [PAA] bilayers were deposited with varying spray parameters. Spraying time was found to be the most influential parameter to control the roughness, thickness, and gas barrier of the PEI/PAA assembly. A spray-coated sample was prepared using optimized parameters and compared to a dip-coated sample using the same deposition time (5s). The sprayed sample was better in terms of thickness, roughness, and gas barrier. This study is the first report showing that a sprayed multilayer assembly has better properties than its dipped counterpart. These findings could revolutionize the multilayer deposition process, making it more commercially-friendly.

  14. Electrodeposited platinum thin films with preferential (100) orientation: Characterization and electrocatalytic properties for ammonia and formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Bertin, Erwan; Garbarino, Sébastien; Guay, Daniel; Solla-Gullón, José; Vidal-Iglesias, Francisco J.; Feliu, Juan M.

    2013-03-01

    The electrocatalytic activity of preferentially oriented {100} Pt electrodes for the electro-oxidation of ammonia (0.2 M NaOH + 0.1 M NH3) and formic acid (0.5 M HCOOH + 0.5 M H2SO4) was assessed. They were prepared without using any surfactant through potentiostatic deposition (Ed = -0.10 V vs RHE, [HCl] = 10 mM and [Na2PtCl6·6H2O] = 0.5 mM) and by varying the deposition charge. For comparison, polycrystalline Pt thin films were prepared using the same solution but with Ed = +0.10 V vs RHE. Quantification of the fraction of (111) and (100) sites was performed by bismuth irreversible adsorption and deconvolution of the hydrogen region, respectively. Samples with as much as 47% of (100) surface sites were obtained. The preferential orientation was further confirmed by CO stripping voltammetry that exhibits similar characteristic features, as well as a similar potential of zero total charge than those expected for a preferential (100) surface. As compared to polycrystalline Pt, the occurrence of Pt (100) surface sites leads to an electrocatalytic activity enhancement by a factor of 4.8 and 2.6 (expressed as μA cmPt-2) for the oxidation of ammonia and formic acid, respectively.

  15. Application of a nanostructured platform and imprinted sol-gel film for determination of chlorogenic acid in food samples.

    PubMed

    Ribeiro, Carla M; Miguel, Eliane M; Silva, Jonadab Dos S; Silva, Cristian B da; Goulart, Marília O F; Kubota, Lauro T; Gonzaga, Fabiano B; Santos, Wilney J R; Lima, Phabyanno R

    2016-08-15

    Chlorogenic acid (CGA) is a polyphenol derivative that widely exists in higher plants like fruits, vegetables, black teas, and some traditional Chinese medicines. In this work, we have proposed a sensitive and selective electrochemical sensor for detection of CGA. The sensor was based on a glassy carbon electrode (GCE) modified with a functional platform by grafting vinyltrimethoxysilane (VTMS) in multi-walled carbon nanotubes (MWCNTs) and covered by a molecularly imprinted siloxane (MIS) film prepared using the sol-gel process. The VTMS was grafted onto the surface of the MWCNTs via in situ free radical polymerization. The MIS was obtained from the acid-catalyzed hydrolysis/condensation of a solution consisting of tetraethoxysilane (TEOS), phenyltriethoxysilane (PTEOS), (3-aminopropyl)trimethoxysilane (APTMS), and CGA as a template molecule. The modification procedure was evaluated by differential pulse voltammetry (DPV) and scanning electron microscopy (SEM). Under optimized operational conditions, a linear response was obtained covering a concentration ranging from 0.08μmolL(-1) to 500μmolL(-1) with a detection limit (LOD) of 0.032μmolL(-1). The proposed sensor was applied to CGA determination in coffee, tomato, and apple samples with recoveries ranging from 99.3% to 108.6%, showing a promising potential application in food samples. Additionally, the imprinted sensor showed a significantly higher affinity for target CGA than the non-imprinted siloxane (NIS) sensor. PMID:27260443

  16. Chemical Synthesis and Optical Properties of CdS Poly(Lactic Acid) Nanocomposites and Their Transparent Fluorescent Films

    SciTech Connect

    Wang, Cai-Feng; Cheng, Yu-Peng; Xie, He-Yi; Chen, Li; Hu, Michael Z.; Chen, Su

    2011-01-01

    This paper describes the chemical synthesis of cadmium sulfide (CdS) polymer nanocomposites by covalently grafting poly(lactic acid) (PLA) onto the surfaces of CdS nanocrystals (NCs). Synthesis of the nanocomposites involved two steps. Lactic acid (LA) capped CdS NCs were first prepared by reacting cadmium chloride (CdCl2) with sodium sulfide (Na2S) using LA as the organic ligand in H2O/N,N-dimethylformamide (DMF) solution. Next CdS PLA nanocomposites were formed by in situ ring-opening polymerization of lactide on the surface of modified CdS NCs. Transparent fluorescent films were then successfully prepared by blending as-prepared CdS PLA nanocomposites with high-molecular-weight PLA. The as-prepared CdS NCs and their nanocomposites were studied by transmission electron microscopic imaging, thermogravimetric analyses, and spectroscopic measurements (ultraviolet-visible absorption and photoluminescence). The spectroscopic studies revealed that the CdS polymer nanocomposites exhibited good optical properties in terms of their photoluminescence and transparency.

  17. The Homo floresiensis cranium (LB1): Size, scaling, and early Homo affinities

    PubMed Central

    Gordon, Adam D.; Nevell, Lisa; Wood, Bernard

    2008-01-01

    The skeletal remains of a diminutive small-brained hominin found in Late Pleistocene cave deposits on the island of Flores, Indonesia were assigned to a new species, Homo floresiensis [Brown P, et al. (2004) A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia. Nature 431: 1055–1061]. A dramatically different interpretation is that this material belongs not to a novel hominin taxon but to a population of small-bodied modern humans affected, or unaffected, by microcephaly. The debate has primarily focused on the size and shape of the endocranial cavity of the type specimen, LB1, with less attention being paid to the morphological evidence provided by the rest of the LB1 cranium and postcranium, and no study thus far has addressed the problem of how scaling would affect shape comparisons between a diminutive cranium like LB1 and the much larger crania of modern humans. We show that whether or not the effects of its small cranial size are accounted for, the external cranial morphology of the LB1 cranium cannot be accommodated within a large global sample of normal modern human crania. Instead, the shape of LB1, which is shown by multivariate analysis to differ significantly from that of modern humans, is similar to that of Homo erectus sensu lato, and, to a lesser extent, Homo habilis. Our results are consistent with hypotheses that suggest the Liang Bua specimens represent a diminutive population closely related to either early H. erectus s. l. from East Africa and/or Dmanisi or to H. habilis. PMID:18356300

  18. What do cranial bones of LB1 tell us about Homo floresiensis?

    PubMed

    Balzeau, Antoine; Charlier, Philippe

    2016-04-01

    Cranial vault thickness (CVT) of Liang Bua 1, the specimen that is proposed to be the holotype of Homo floresiensis, has not yet been described in detail and compared with samples of fossil hominins, anatomically modern humans or microcephalic skulls. In addition, a complete description from a forensic and pathological point of view has not yet been carried out. It is important to evaluate scientifically if features related to CVT bring new information concerning the possible pathological status of LB1, and if it helps to recognize affinities with any hominin species and particularly if the specimen could belong to the species Homo sapiens. Medical examination of the skull based on a micro-CT examination clearly brings to light the presence of a sincipital T (a non-metrical variant of normal anatomy), a scar from an old frontal trauma without any evident functional consequence, and a severe bilateral hyperostosis frontalis interna that may have modified the anterior morphology of the endocranium of LB1. We also show that LB1 displays characteristics, related to the distribution of bone thickness and arrangements of cranial structures, that are plesiomorphic traits for hominins, at least for Homo erectus s.l. relative to Homo neanderthalensis and H. sapiens. All the microcephalic skulls analyzed here share the derived condition of anatomically modern H. sapiens. Cranial vault thickness does not help to clarify the definition of the species H. floresiensis but it also does not support an attribution of LB1 to H. sapiens. We conclude that there is no support for the attribution of LB1 to H. sapiens as there is no evidence of systemic pathology and because it does not have any of the apomorphic traits of our species. PMID:27086053

  19. The Homo floresiensis cranium (LB1): size, scaling, and early Homo affinities.

    PubMed

    Gordon, Adam D; Nevell, Lisa; Wood, Bernard

    2008-03-25

    The skeletal remains of a diminutive small-brained hominin found in Late Pleistocene cave deposits on the island of Flores, Indonesia were assigned to a new species, Homo floresiensis [Brown P, et al. (2004) A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia. Nature 431: 1055-1061]. A dramatically different interpretation is that this material belongs not to a novel hominin taxon but to a population of small-bodied modern humans affected, or unaffected, by microcephaly. The debate has primarily focused on the size and shape of the endocranial cavity of the type specimen, LB1, with less attention being paid to the morphological evidence provided by the rest of the LB1 cranium and postcranium, and no study thus far has addressed the problem of how scaling would affect shape comparisons between a diminutive cranium like LB1 and the much larger crania of modern humans. We show that whether or not the effects of its small cranial size are accounted for, the external cranial morphology of the LB1 cranium cannot be accommodated within a large global sample of normal modern human crania. Instead, the shape of LB1, which is shown by multivariate analysis to differ significantly from that of modern humans, is similar to that of Homo erectus sensu lato, and, to a lesser extent, Homo habilis. Our results are consistent with hypotheses that suggest the Liang Bua specimens represent a diminutive population closely related to either early H. erectus s. l. from East Africa and/or Dmanisi or to H. habilis. PMID:18356300

  20. Enhanced conductivity of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film by acid treatment for indium tin oxide-free organic solar cells

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Chiao; Huang, Chih-Kuo; Hung, Yu-Chieh; Chang, Mei-Ying

    2016-08-01

    An acid treatment is used in the enhancement of the conductivity of the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) thin film, which is often used as the anode in organic solar cells. There are three types of acid treatment for PEDOT:PSS thin film: hydrochloric, sulfuric, and phosphoric acid treatments. In this study, we examine and compare these three ways with each other for differences in conductivity. Hydrochloric acid results in the highest conductivity enhancement, from 0.3 to 1109 S/cm. We also discuss the optical transmittance, conductivity, surface roughness, surface morphology, and stability, as well as the factors that can influence device efficiency. The devices are fabricated using an acid-treated PEDOT:PSS thin film as the anode. The highest power conversion efficiency was 1.32%, which is a large improvement over that of the unmodified organic solar cell (0.21%). It is comparable to that obtained when using indium tin oxide (ITO) as an electrode, ca. 1.46%.

  1. Simultaneous voltammetric determination of paracetamol and ascorbic acid using a boron-doped diamond electrode modified with Nafion and lead films.

    PubMed

    Tyszczuk-Rotko, Katarzyna; Bęczkowska, Ilona; Wójciak-Kosior, Magdalena; Sowa, Ireneusz

    2014-11-01

    The paper describes the fabrication and application of a novel sensor (a boron-doped diamond electrode modified with Nafion and lead films) for the simultaneous determination of paracetamol and ascorbic acid by differential pulse voltammetry. The main advantage of the lead film and polymer covered boron-doped diamond electrode is that the sensitivity of the stripping responses is increased and the separation of paracetamol and ascorbic acid signals is improved due to the modification of the boron-doped diamond surface by the lead layer. Additionally, the repeatability of paracetamol and ascorbic acid signals is improved by the application of the Nafion film coating. In the presence of oxygen, linear calibration curves were obtained in a wide concentration range from 5×10(-7) to 2×10(-4) mol L(-1) for paracetamol and from 1×10(-6) to 5×10(-4) mol L(-1) for ascorbic acid. The analytical utility of the differential pulse voltammetric method elaborated was tested in the assay of paracetamol and ascorbic acid in commercially available pharmaceutical formulations and the method was validated by high performance liquid chromatography coupled with diode array detector. PMID:25127609

  2. Super stretchy polymer multilayer thin films with tunable gas barrier

    NASA Astrophysics Data System (ADS)

    Xiang, Fangming; Ward, Sarah; Givens, Tara; Grunlan, Jaime

    2015-03-01

    Super stretchy multilayer thin film assemblies with tunable gas barrier were fabricated using layer-by-layer (LbL) assembly. Unlike ionically-bonded gas barrier coatings that exhibit mud-cracking after 10% strain, hydrogen-bonded polyethylene oxide (PEO) and polyacrylic acid (PAA) multilayer thin films show no cracking after 100% strain due to low modulus. It is believed that the exceptional elasticity of this thin film originates from the intrinsic elasticity of PEO and the moderate hydrogen bond strength between PEO and PAA. The oxygen transmission rate (OTR) of a 1.58 mm thick natural rubber sheet can be reduced 10 times with a 367-nm-thick PAA/PEO nanocoating. This gas barrier improvement is largely retained after 100% strain. The modulus and oxygen permeability of PAA/PEO assembly can be tailored through altering the assembling pH. By setting the assembling pH to 2.75, a 50% reduction in permeability can be achieved, while maintaining the elasticity of the assembly. These findings mark the first super stretchy gas barrier thin film, which is useful for elastomeric substrates designed to hold air pressure.

  3. Physical structure characterization of theophylline in some acidic film-forming polymers.

    PubMed

    Sarisuta, N; Kumpugdee, M; Lawanprasert, P

    2000-06-01

    The physical structure and drug-polymer interactions of theophylline in Eudragit L100, shellac, polyvinyl acetate phthalate (PVAP), cellulose acetate phthalate (CAP), hydroxypropylmethylcellulose acetate phthalate (HPMCP), and hydroxypropylmethylcellulose (HPMC) were studied. The drug-polymer films were prepared by casting and were characterized using powder X-ray diffractometry (PXRD), nuclear magnetic resonance (NMR) spectroscopy, and thin-layer chromatography (TLC). Theophylline was found to recrystallize in the modification II form in all kinds of polymers, which was the same as that recrystallized solely from the solvent system and the original powder. The PXRD and NMR results indicated a superficial drug-polymer interaction between theophylline and Eudragit L100, while there was no evidence of interaction for the others. No drug decomposition was observed by TLC for all drug-polymer mixtures. PMID:10826118

  4. Dissolution behaviour of magnetite film formed over carbon steel in dilute organic acid media

    NASA Astrophysics Data System (ADS)

    Prince, A. A. M.; Velmurugan, S.; Narasimhan, S. V.; Ramesh, C.; Murugesan, N.; Raghavan, P. S.; Gopalan, R.

    2001-03-01

    Magnetite is the major corrosion product formed over the carbon steel in the primary heat transport system of the pressurized heavy water reactor (PHWR). This magnetite usually accumulates radioactivity during reactor operation. The dissolution of the host magnetite is achieved by chemical formulations in order to get rid of the radioactivity trapped in the oxide; the underlying base metal also participates in the process by contributing electron to reduce the ferric ion or by undergoing corrosion. In the present study, the role of base metal in the dissolution of magnetite in various chelating agents has been investigated. The liberated hydrogen was measured by using an amperometric hydrogen sensor. The magnetite dissolution rate and the corrosion rate of carbon steel in the formulations were calculated. The effect of temperature, pH and concentration of the chelating agents on the magnetite film dissolution was studied in detail. The mechanism of base metal aided magnetite dissolution is discussed.

  5. Electrochemistry of ferroelectric thin film lead zirconate titanate in sulfuric acid

    NASA Astrophysics Data System (ADS)

    Small, Leo J.

    Remote sensing applications in harsh environments require sensor materials appropriately matched to the environment. PbZr0.52Ti0.48O 3 (PZT) is a candidate for remote sensing applications, where it could be used as both a sensor and power source. In this light, the evolution of the PZT-H2SO4 interface is explored at low pHs. A robotic microdroplet cell is developed to differentiate the electrochemical response of the cracks and pores inherent to the PZT film from that of continuous PZT. Accelerated chemical attack is observed at the pores, while the continuous PZT displays electrochemical hysteresis; the ferroelectric-solution interface can be switched between two different charge states at a given potential. As time progresses, electrochemical impedance spectroscopy reveals a change in the structure of the PZT-H2SO4 interface. Development of equivalent circuits to model the competing processes of pore growth, interfacial layer formation, and uniform chemical attack are guided by the evolution of film structure and chemistry as observed ex-situ with scanning electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction. The Point Defect Model for the passive state is used to explain the dissolution processes observed in the complex oxide. Application of this model to PbZrxTi1- xO3 for x = 0.25, 0.52, and 0.95 points to the role of titanium in the creation of an ionically insulating layer that impedes further chemical attack.

  6. Modifying Randles circuit for analysis of polyoxometalate layer-by-layer films.

    PubMed

    Vyas, Ritesh N; Li, Kuyen; Wang, Bin

    2010-12-01

    Multilayer films with anionic phosphomolybidic acid (PMo(12)) clusters have been fabricated via the electrostatic layer-by-layer (LbL) method. The charged mass transport phenomena of these thin films have been studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) with [Fe(CN)(6)](3-/4-) and [Ru(NH(3))(6)](3+/2+) as the redox probes. By adding a film resistance and a film capacitance to the conventional Randles equivalent circuit, we can calculate the diffusion coefficient values that help understand the microscopic nature of the thin films. When the negatively charged probe [Fe(CN)(6)](3-/4-) was used, lower diffusion coefficients were obtained for multilayers deposited from higher ionic strength solutions. This relationship was less obvious when the positively charged probe [Ru(NH(3))(6)](3+/2+) was used, in which the electrostatic attraction between PMo(12) clusters and the probe ions complicates the mass-transfer process. It is believed that the addition of salt to dipping solutions increases the tortuosity of the films so the mass transport takes longer paths, inducing lower diffusion coefficients. Higher PMo(12) loading causes lower diffusion coefficients due to the polyoxometalate clusters blocking the paths for charged probe ions. PMID:21077668

  7. Enhancement of mechanical properties, microstructure, and antimicrobial activities of zein films cross-linked using succinic anhydride, eugenol, and citric Acid.

    PubMed

    Khalil, Ashraf A; Deraz, Sahar F; Elrahman, Somia Abd; El-Fawal, Gomaa

    2015-08-18

    Zein constitutes about half of the endosperm proteins in corn. Recently, attempts have been made to utilize zein for food coatings and biodegradable materials, which require better physical properties, using chemical modification of zein. In this study, zein proteins were modified using citric acid, succinic anhydride, and eugenol as natural cross-linking agents in the wet state. The cross-linkers were added either separately or combined in increment concentrations (0.1, 0.2, 0.3, and 0.4%). The effects of those agents on the mechanical properties, microstructure, optical properties, infrared (IR) spectroscopy, and antibacterial activities of zein were investigated. The addition of cross-linking agents promoted changes in the arrangement of groups in zein film-forming particles. Regarding the film properties, incorporation of cross-linking agents into zein films prepared in ethanol resulted in two- to three-fold increases in tensile strength (TS) values. According to the Fourier-transform infrared (FTIR) spectra and Hunter parameters there were no remarkable changes in the structure and color of zein films. Transparency of zein films was decreased differentially according to the type and cross-linker concentration. The mechanical and optical properties of zein films were closely related to their microstructure. All cross-linked films showed remarkable antibacterial activities against Bacillus cereus ATCC 49064 and Salmonella enterica ATCC 25566. Food spoilage and pathogenic bacteria were affected in a film-dependent manner. Our experimental results show that even with partial cross-linking the mechanical properties and antipathogen activities of zein films were significantly improved, which would be useful for various industrial applications. PMID:25036665

  8. Protein adsorption on piezoelectric poly(L-lactic) acid thin films by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Barroca, Nathalie; Vilarinho, Paula M.; Daniel-da-Silva, Ana Luisa; Wu, Aiying; Fernandes, Maria Helena; Gruverman, Alexei

    2011-03-01

    Up until now, no direct evidence of protein adsorption processes associated with polar activity of a piezoelectric has been reported. This work presents the experimental evidence of the protein adsorption process' dependence on the surface polarization of a piezoelectric by showing at the local scale that the process of protein adsorption is highly favored in the poled areas of a piezoelectric polymer such as poly(L-lactic) acid.

  9. Chiral Determination of Amino Acids Using X-Ray Diffraction of Thin Films

    NASA Technical Reports Server (NTRS)

    Dragoi, D.; Kulleck, J.; Kanik, I.; Beegle, L. W.

    2003-01-01

    The astrobiological search for life, both extinct and extant, on other solar system bodies will take place via several planned lander missions to Mars Europa and Titan. The detection and identification of organic molecules that have been associated with life is a major technical challenge. Terrestrial life utilizes organic molecules, such as amino acids, as its basic building block. Amino acids can be synthesized by natural processes as is demonstrated by their detection in meteoritic material. In this process, the organic molecules are produced roughly in a even mixture of D and L forms. Biological process, however, can utilize almost uniquely one form or the other. In terrestrial biology, only the L-amino acids is common in biological processes. If signature of life existed elsewhere in the D form it then be concluded that life had evolutionary beginning on that body. Detection of an enantiomeric excess of L over D would also be a powerful sign that life had existed on that body at one time.

  10. Identification of salicylic acid using surface modified polyurethane film using an imprinted layer of polyaniline.

    PubMed

    Sreenivasan, K

    2007-02-01

    The surface of polyurethane (PU) was modified by coating a thin layer of polyaniline (PAN) by oxidizing aniline using ammonium persulfate. Affinity sites for salicylic acid (SA) were created in the coated layer by non-covalent imprinting method. The imprinted layer adsorbed SA five times more compared to the nonimprinted surface reflecting the creation of affinity sites specific to SA on the surface. The equilibrium was attained relatively faster indicating that a material of this kind is suitable for sensing applications. The selectivity in recognizing the print molecule by the imprinted surface was assessed by comparing the extent of uptake of other structurally resembling molecules namely O-amino benzoic acid and acetyl salicylic acid. The selectivity factor was found to be 22 and 16.5. The adsorbed SA was detected using the technique of Fourier transform attenuated total internal reflection infrared spectroscopy (FT-ATR-IR). The results show that molecularly imprinted surface in combination with FT-IR is a useful approach for the sensing applications. PMID:17386557

  11. Mechanical properties and water vapour permeability of film from Haruan (Channa striatus) and fusidic acid spray for wound dressing and wound healing.

    PubMed

    Febriyenti; Noor, Azmin Mohd; Bai, Saringat Bin

    2010-04-01

    Aerosol is a new dosage form for wound dressing and wound healing. Concentrate of aerosols which were prepared for wound dressing and wound healing will produced films after sprayed onto the surface of wounds. The aim of this study is to evaluate the mechanical and water vapour permeability properties of the films from the aerosol concentrates. Film forming dispersions contained Haruan extract and Fusidic acid as the active ingredients, hydroxypropyl methylcellulose (HPMC) as polymer and polyethylene glycol (PEG) 400, glycerin and propylene glycol as plasticizers. Haruan extract is used to promote healing and Fusidic acid is added in formula as antibiotic to prevent the infections. The films were prepared by using casting technique. Based on the results, it is concluded that films produced from Formula E1, E2 and F4 possessed good elongation at break but low tensile strength. All Formula E, Formula F4 and F5 were permeable but Formula F5 was brittle and would peel off by themselves from the Petri dish. PMID:20363692

  12. Cation profiling of passive films on stainless steel formed in sulphuric and acetic acid by deconvolution of angle-resolved X-ray photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Högström, Jonas; Fredriksson, Wendy; Edstrom, Kristina; Björefors, Fredrik; Nyholm, Leif; Olsson, Claes-Olof A.

    2013-11-01

    An approach for determining depth gradients of metal-ion concentrations in passive films on stainless steel using angle-resolved X-ray photoelectron spectroscopy (ARXPS) is described. The iterative method, which is based on analyses of the oxidised metal peaks, provides increased precision and hence allows faster ARXPS measurements to be carried out. The method was used to determine the concentration depth profiles for molybdenum, iron and chromium in passive films on 316L/EN 1.4432 stainless steel samples oxidised in 0.5 M H2SO4 and acetic acid diluted with 0.02 M Na2B4O7 · 10H2O and 1 M H2O, respectively. The molybdenum concentration in the film is pin-pointed to the oxide/metal interface and the films also contained an iron-ion-enriched surface layer and a chromium-ion-dominated middle layer. Although films of similar composition and thickness (i.e., about 2 nm) were formed in the two electrolytes, the corrosion currents were found to be three orders of magnitude larger in the acetic acid solution. The differences in the layer composition, found for the two electrolytes as well as different oxidation conditions, can be explained based on the oxidation potentials of the metals and the dissolution rates of the different metal ions.

  13. Heparin-mimicking multilayer coating on polymeric membrane via LbL assembly of cyclodextrin-based supramolecules.

    PubMed

    Deng, Jie; Liu, Xinyue; Ma, Lang; Cheng, Chong; Shi, Wenbin; Nie, Chuanxiong; Zhao, Changsheng

    2014-12-10

    In this study, multifunctional and heparin-mimicking star-shaped supramolecules-deposited 3D porous multilayer films with improved biocompatibility were fabricated via a layer-by-layer (LbL) self-assembly method on polymeric membrane substrates. Star-shaped heparin-mimicking polyanions (including poly(styrenesulfonate-co-sodium acrylate; Star-PSS-AANa) and poly(styrenesulfonate-co-poly(ethylene glycol)methyl ether methacrylate; Star-PSS-EGMA)) and polycations (poly(methyl chloride-quaternized 2-(dimethylamino)ethyl methacrylate; Star-PMeDMA) were first synthesized by atom transfer radical polymerization (ATRP) from β-cyclodextrin (β-CD) based cores. Then assembly of 3D porous multilayers onto polymeric membrane surfaces was carried out by alternating deposition of the polyanions and polycations via electrostatic interaction. The surface morphology and composition, water contact angle, blood activation, and thrombotic potential as well as cell viability for the coated heparin-mimicking films were systematically investigated. The results of surface ATR-FTIR spectra and XPS spectra verified successful deposition of the star-shaped supramolecules onto the biomedical membrane surfaces; scanning electron microscopy (SEM) and atomic force microscopy (AFM) observations revealed that the modified substrate had 3D porous surface morphology, which might have a great biological influence on the biointerface. Furthermore, systematic in vitro investigation of protein adsorption, platelet adhesion, human platelet factor 4 (PF4, indicates platelet activation), activate partial thromboplastin time (APTT), thrombin time (TT), coagulation activation (thrombin-antithrombin III complex (TAT, indicates blood coagulant)), and blood-related complement activation (C3a and C5a, indicates inflammation potential) confirmed that the heparin-mimicking multilayer coated membranes exhibited ultralow blood component activations and excellent hemocompatibility. Meanwhile, after surface coating

  14. Gamma-cyclodextrin/usnic acid thin film fabricated by MAPLE for improving the resistance of medical surfaces to Staphylococcus aureus colonization

    NASA Astrophysics Data System (ADS)

    Iordache, Florin; Grumezescu, Valentina; Grumezescu, Alexandru Mihai; Curuţiu, Carmen; Diţu, Lia Mara; Socol, Gabriel; Ficai, Anton; Truşcă, Roxana; Holban, Alina Maria

    2015-05-01

    This study reports on the successful deposition of γ-cyclodextrin/usnic acid (γCD/UA) thin film by Matrix Assisted Pulsed Laser Evaporation (MAPLE) as anti-adherent coating on medical surfaces against microbial colonization. The obtained results demonstrate that these bioactive thin films inhibit Staphylococcus aureus biofilm formation at all stages, starting with their initiation. The antibiofilm effect was constant along the bacterial incubation time. Furthermore, the γCD/UA coatings show a great biocompatibility which means that this material is suitable for the development of modern medical devices with antimicrobial properties.

  15. Fabrication of graphene thin films based on layer-by-layer self-assembly of functionalized graphene nanosheets.

    PubMed

    Park, Je Seob; Cho, Sung Min; Kim, Woo-Jae; Park, Juhyun; Yoo, Pil J

    2011-02-01

    In this study, we present a facile means of fabricating graphene thin films via layer-by-layer (LbL) assembly of charged graphene nanosheets (GS) based on electrostatic interactions. To this end, graphite oxide (GO) obtained from graphite powder using Hummers method is chemically reduced to carboxylic acid-functionalized GS and amine-functionalized GS to perform an alternate LbL deposition between oppositely charged GSs. Specifically, for successful preparation of positively charged GS, GOs are treated with an intermediate acyl-chlorination reaction by thionyl chloride and a subsequent amidation reaction in pyridine, whereby a stable GO dispersibility can be maintained within the polar reaction solvent. As a result, without the aid of additional hybridization with charged nanomaterials or polyelectrolytes, the oppositely charged graphene nanosheets can be electrostatically assembled to form graphene thin films in an aqueous environment, while obtaining controllability over film thickness and transparency. Finally, the electrical property of the assembled graphene thin films can be enhanced through a thermal treatment process. Notably, the introduction of chloride functions during the acyl-chlorination reaction provides the p-doping effect for the assembled graphene thin films, yielding a sheet resistance of 1.4 kΩ/sq with a light transmittance of 80% after thermal treatment. Since the proposed method allows for large-scale production as well as elaborate manipulation of the physical properties of the graphene thin films, it can be potentially utilized in various applications, such as transparent electrodes, flexible displays and highly sensitive biosensors. PMID:21207942

  16. Fabrication of honeycomb-structured poly(ethylene glycol)-block-poly(lactic acid) porous films and biomedical applications for cell growth

    NASA Astrophysics Data System (ADS)

    Yao, Bingjian; Zhu, Qingzeng; Yao, Linli; Hao, Jingcheng

    2015-03-01

    A series of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) copolymers with a hydrophobic PLA block of different molecular weights and a fixed length hydrophilic PEG were synthesized successfully and characterized. These amphiphilic block copolymers were used to fabricate honeycomb-structured porous films using the breath figure (BF) templating technique. The surface topology and composition of the highly ordered pattern film were further characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. The results indicated that the PEG-to-PLA block molecular weight ratio influenced the BF film surface topology. The film with the best ordered pores was obtained with a PEG-to-PLA ratio of 2.0 × 103:3.0 × 104. The self-organization of the hydrophilic PEG chains within the pores was confirmed by XPS and fluorescence labeled PEG. A model is proposed to elucidate the stabilization process of the amphiphilic PEG-PLA aggregated architecture on the water droplet-based templates. In addition, GFP-U87 cell viability has been investigated by MTS test and the cell morphology on the honeycomb-structured PEG-PLA porous film has been evaluated using phase-contrast microscope. This porous film is shown to be suitable as a matrix for cell growth.

  17. Hydrolytic and oxidative stability of L-(+)-ascorbic acid supported in pectin films: influence of the macromolecular structure and calcium presence.

    PubMed

    Pérez, Carolina D; Fissore, Eliana N; Gerschenson, Lia N; Cameron, Randall G; Rojas, Ana M

    2012-05-30

    The hydrolytic and oxidative stability of L-(+)-ascorbic acid (AA) into plasticized pectin films were separately studied in view of preserving vitamin C activity and/or to achieve localized antioxidant activity at pharmaceutical and food interfaces. Films were made with each one of the enzymatically tailored pectins (50%, 70%, and 80% DM; Cameron et al. Carbohydr. Polym.2008, 71, 287-299) or commercial high methoxyl pectin (HMP; 72% DM). Since AA stability was dependent on water availability in the network, pectin nanostructure affected the AA kinetics. Higher AA retention and lower browning rates were achieved in HMP films, and calcium presence in them stabilized AA because of higher water immobilization. Air storage did not change AA decay and browning rates in HMP films, but they significantly increased in Ca-HMP films. It was concluded that the ability of the polymeric network to immobilize water seems to be the main factor to consider in order to succeed in retaining AA into film materials. PMID:22537342

  18. Infrared spectra of solid films formed from vapors containing water and nitric acid

    NASA Technical Reports Server (NTRS)

    Smith, Roland H.; Leu, Ming-Taun; Keyser, Leon F.

    1991-01-01

    The paper presents infrared spectra recorded at 188 K for crystalline mono- and trihydrates of nitric acid formed by vapor deposition, along with spectra of fully deuterated forms of these compounds. The spectra are interpreted in terms of the known ionic structures of the hydrates and the known spectra of oxonium and nitrate ions. Two additional species were identified: a molecular hydrogen-bonded HNO3-H2O complex, stable only at temperatures below 120 or 150 K, and a substance considered to be a crystalline mixtgure of trihydrate and ice. The relevance of these findings to the stratospheric ozone hole problem is discussed.

  19. Geochemistry of impactites and basement lithologies from ICDP borehole LB-07A, Bosumtwi impact structure, Ghana

    NASA Astrophysics Data System (ADS)

    Coney, Louise; Reimold, Wolf Uwe; Gibson, Roger L.; Koeberl, Christian

    In 2004, a drilling project by the International Continental Scientific Drilling Program (ICDP) at the Bosumtwi impact crater, Ghana (1.07 Myr old and 10.5 km in diameter), obtained drill core LB-07A, which sampled impactites and underlying metasediments in the crater moat surrounding the small central uplift of the structure. The LB-07A core consists of three sequences: 82.29 m of an upper impactite sequence of alternating polymict lithic and suevitic impact breccias overlying 54.88 m of so-called lower impactite of monomict impact breccia with several suevite intercalations, and 74.53 m of meta-graywacke and altered shale of the basement, also containing a number of suevite intercalations. Major- and trace-element characteristics of all three sequences have been determined to investigate breccia formation and the role of the respective basement lithologies therein. Compositions of polymict impact breccias of the crater fill revealed by core LB-07A are compared with the compositions of the Ivory Coast tektites and the fallout suevites. The impactites of the LB-07A borehole appear well homogenized with respect to the silicate component, and little change in the ranges of many major- and trace-element differences is seen along the length of the borehole (except for Fe2O3, MgO, and CaO contents). Much scatter is observed for a number of elements, and in many cases this increases with depth. It is proposed that any variability in composition is likely the function of clast population differences (i.e., also of relatively small sample sizes). No systematic compositional difference between polymict lithic and suevitic impact breccias is evident. An indication of carbonate enrichment due to hydrothermal alteration is observed in samples from all lithologies. The impactites of the borehole generally show intermediate compositions to previously defined target rocks. The fallout suevites have comparable major element abundances, except for relatively lower MgO contents. The

  20. Characterization of the fulgide-doped PMMA films and investigation of photochromic reaction of Langmuir-Blodgett films as recording materials

    NASA Astrophysics Data System (ADS)

    Lafond, Christophe; Pouraghajani, Ozra; Tork, Amir; Bolte, Michel; Ritcey, Anna-Marie R.; Lessard, Roger A.

    2001-06-01

    Photochemical characterization and holographic recording of fulgide Aberchrome 670 and 540-doped polymethyl methacrylate (PMMA) were investigated. Upon UV and visible exposure, closed-form absorbency followed first-order kinetic. The real time holographic recording in fulgides doped PMMA films were studied. The effect of dye concentration, thickness of the film and the recording intensity on diffraction efficiency was reported. We used the Langmuir-Blodgett (LB) technique in order to transferring a compact multilayer of fulgide spread on water surface between two thin films of cellulose acetate (CA). The preliminary results of the surface pressure-area isotherms obtained by LB show the transfer of the fulgide between two CA thin films. Finally, the photochromic reaction of fulgide in LB films was investigated.

  1. Growth, Morphology, and Electrical Characterization of Polyaniline-ZnO Nano-composite Langmuir-Blodgett Thin Films

    NASA Astrophysics Data System (ADS)

    Bhullar, Gurpreet Kaur; Kaur, Ramneek; Raina, K. K.

    2015-10-01

    Polyaniline (PANi)-zinc oxide (ZnO) nano-composites were prepared by chemical polymerization of aniline doped with ZnO nanoparticles. Surface pressure-area ( π-A) isotherms for the PANi-ZnO nano-composite revealed phase transformations of the monolayer during compression. Langmuir-Blodgett (LB) films of PANi and PANi-ZnO nano-composite were characterized by use of UV-visible (UV-Vis) and Fourier-transform infrared spectroscopy, atomic force microscopy, and conductive atomic force microscopy (C-AFM). Local current-voltage ( I- V) characteristics revealed the current range for PANi-ZnO nano-composite LB films was larger than that for PANi LB films. Conductive data images were recorded to investigate charge-transport current inhomogeneities in the LB films.

  2. Incorporation of preservatives in polylactic acid films for inactivating Escherichia coli O157:H7 and extending microbiological shelf life of strawberry puree.

    PubMed

    Jin, Tony; Zhang, Howard; Boyd, Glenn

    2010-05-01

    Antimicrobial films of polylactic acid polymer incorporated with nisin, EDTA, sodium benzoate (SB), potassium sorbate (PS), and their combinations were developed, and their antimicrobial effects on the inactivation of Escherichia coli O157:H7 and natural background microflora (total aerobic bacteria, molds, and yeasts) in strawberry puree at 10 and 22 degrees C were determined. Direct addition of SB+PS to strawberry puree was also used as a comparison with SB+PS film treatment. The combination treatment reduced the cell populations of E. coli O157:H7 from 3.5 log CFU/ml to undetectable levels (<1 CFU/ml) after 14 days and 1 day at 10 and 22 degrees C, respectively, while the cells of E. coli O157:H7 in control samples survived up to 48 days at 10 degrees C and more than 14 days at 22 degrees C. The SB+PS film treatment produced a greater reduction of population of E. coli O157:H7 cells than did the SB+PS direct addition treatment. Similar results were observed for inactivation of natural microflora. In general, the antimicrobial effect was in the following order: film combination > SB+PS film > SB+PS direct addition > EDTA film > nisin film. The data obtained in this study suggest two approaches toward the development of control interventions against E. coli O157:H7 and extension of the microbiological shelf life of strawberry puree: (i) using antimicrobial packaging and (ii) using combinations of preservatives. The film formulas developed here can be used to make bottles or as coatings on the surface of bottles for use in liquid food packaging. PMID:20501030

  3. The properties of antimicrobial films derived from poly(lactic acid)/starch/chitosan blended matrix.

    PubMed

    Bie, Pingping; Liu, Peng; Yu, Long; Li, Xiaoxi; Chen, Ling; Xie, Fengwei

    2013-10-15

    An antimicrobial material with a slow release property was developed based on poly(lactic acid)/starch/chitosan blends, in which chitosan acted as an antimicrobial agent while PLA and starch together were used as a slow-releasing device. An increase in the starch content drastically improved the hydrophilicity of the blends, which was favorable for the diffusion of the embedded chitosan. Moreover, the release of chitosan was observed to occur in two stages, with a very fast release stage initially and a slow but durable release stage as the latter. These two stages exhibited the effectiveness and long residual action of antimicrobial property of the blends respectively, demonstrating the suitability to be used for foods with high water activity, such as fresh meat. The tensile and thermal properties further verified the promising use of the blend material in packaging. PMID:23987434

  4. An epitaxial organic film. The self-assembled monolayer of docosanoic acid on silver(111)

    SciTech Connect

    Samant, M.G.; Brown, C.A.; Gordon, J.G. II )

    1993-04-01

    Docosanoic acid in solution spontaneously forms an ordered self-assembled (SA) monolayer on the silver(111) surface, exposing methyl groups to the atmosphere. The contact wetting angles for water and hexadecane are 116[degrees] and 55[degrees], respectively. Surface X-ray diffraction shows that the in-plane structure of the SA monolayer is p(2 [times] 2). The SA monolayer is present in domains of about 215 A with a mosaic spread of 0.85[degrees]C. The chains within the monolayer are titled at 27 [+-] 1[degrees] from the surface normal toward the near neighbors. We conclude that the carboxylate group is bound nearly normal to specific sites on the Ag surface and that this determines the interchain spacing. The tilt angle is a consequence of this interchain spacing. 17 refs., 6 figs., 1 tab.

  5. Porous thin film barrier layers from 2,3-dicarboxylic acid cellulose nanofibrils for membrane structures.

    PubMed

    Visanko, Miikka; Liimatainen, Henrikki; Sirviö, Juho Antti; Haapala, Antti; Sliz, Rafal; Niinimäki, Jouko; Hormi, Osmo

    2014-02-15

    To fabricate a strong hydrophilic barrier layer for ultrafiltration (UF) membranes, 2,3-dicarboxylic acid cellulose nanofibrils with high anionic surface charge density (1.2 mekv/g at pH 7) and a width of 22 ± 4 nm were used. A simple vacuum filtration method combined with a solvent exchange procedure resulted in a porous layer with a thickness of ∼ 0.85 μm. The fabricated membranes reached high rejection efficiencies (74-80%) when aqueous dextrans up to 35-45 kDa were filtrated to evaluate the molecular weight cut-offs (MWCO). A linear correlation between the barrier layer thickness and the flux rate was observed in all tested cases. Further optimization of the barrier layer thickness can lead to an even more effective structure. PMID:24507322

  6. Tensile and fatigue qualification testing of ITER-CS conduit alloy JK2LB

    NASA Astrophysics Data System (ADS)

    Walsh, R. P.; McRae, D. M.; Han, K.; Martovetsky, N. N.

    2015-12-01

    The ITER Central Solenoid (CS) coils utilize cable-in-conduit conductor (CICC) and the conduit alloy is JK2LB. The production grade conduit alloy (and it's welds) must meet strict requirements for strength, toughness, fatigue crack resistance, and fabricability. The conduit alloy must retain good mechanical properties after additional fabrication steps such as welding, coil winding strain and exposure to the Nb3Sn superconductor's reaction heat treatment. Here we present data from cryogenic tensile, fracture toughness, fatigue crack growth rate, and axial fatigue tests of JK2LB alloy and conduit butt welds, before and after the exposure to the reaction heat treatment. The tests of specimens removed directly from the conduit provide confirmation of the materials properties and the effect of the cold work and aging. The 4 K fatigue performance is extremely important to the reliability of the CS and is covered both by axial cyclic fatigue tests and the fatigue crack growth rate measurements.

  7. LbL multilayer capsules: recent progress and future outlook for their use in life sciences

    NASA Astrophysics Data System (ADS)

    Del Mercato, Loretta L.; Rivera-Gil, Pilar; Abbasi, Azhar Z.; Ochs, Markus; Ganas, Carolin; Zins, Inga; Sönnichsen, Carsten; Parak, Wolfgang J.

    2010-04-01

    In this review we provide an overview of the recent progress in designing composite polymer capsules based on the Layer-by-Layer (LbL) technology demonstrated so far in material science, focusing on their potential applications in medicine, drug delivery and catalysis. The benefits and limits of current systems are discussed and the perspectives on emerging strategies for designing novel classes of therapeutic vehicles are highlighted.

  8. The development of a flight termination parachute system for a 1900 lb payload

    SciTech Connect

    Waye, D.E.

    1997-04-01

    A 30-ft-diameter ringslot/solid parachute was designed, developed, and tested at Sandia National Laboratories as the major component of a flight termination system required for a 1900-lb gliding delivery platform. Four full-scale sled tests were performed to validate the design models of the parachute, determine reefing line length, demonstrate structural adequacy of the parachute materials, and demonstrate that performance met the design requirements.

  9. [Use of Plaferon LB for cardiac preconditioning during experimental ischemia/reperfusion injury in rabbits].

    PubMed

    Ubilava, T O; Megreladze, I I; Dzhangavadze, M B; Khodeli, N G; Chkhaidze, Z A

    2007-01-01

    The main goal of research was to study potential of Plaferon LB for cardiac preconditioning during experimental ischemia/reperfusion injury in rabbits. 30 rabbits (2.5-3.0 kg) were used in experiment. They were divided in 3 groups and 6 subgroups (n=5). In I group experimental design of m/i was performed by proximal ligation of left coronary artery (LCA) (2-6 hours). In II group on the 2 and 6 hour ligature was removed - reperfusion during 1 hour. In III group before ligation of LCA animals was administered Plaferon LB (0.2 mg/kg). The animals were under electrocardiographic monitoring. Troponin I was measured in blood. In II group after 1 hour of reperfusion Troponin I concentration was higher than in I group after 2 and 6 hours. In II group electrocardiographic data was worsened (rhythm and heart rate). In III group these changes were less marked. Obtained data confirm enhancement of myocardial injury during the reperfusion. Cardiac preconditioning by Plaferon LB significantly decreased pathologic indices. PMID:17921551

  10. Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging.

    PubMed

    Ramos, Marina; Jiménez, Alfonso; Peltzer, Mercedes; Garrigós, María C

    2014-11-01

    Novel nano-biocomposite films based on poly (lactic acid) (PLA) were prepared by incorporating thymol, as the active additive, and modified montmorillonite (D43B) at two different concentrations. A complete thermal, structural, mechanical and functional characterization of all nano-biocomposites was carried out. Thermal stability was not significantly affected by the addition of thymol, but the incorporation of D43B improved mechanical properties and reduced the oxygen transmission rate by the formation of intercalated structures, as suggested by wide angle X-ray scattering patterns and transmission electron microscopy images. The addition of thymol decreased the PLA glass transition temperature, as the result of the polymer plasticization, and led to modification of the elastic modulus and elongation at break. Finally, the amount of thymol remaining in these formulations was determined by liquid chromatography (HPLC-UV) and the antioxidant activity by the DPPH spectroscopic method, suggesting that the formulated nano-biocomposites could be considered a promising antioxidant active packaging material. PMID:24874370

  11. Constant and pulse power capabilities of lead-acid batteries made with thin metal film (TMF®) for different applications

    NASA Astrophysics Data System (ADS)

    Bhardwaj, R. C.

    Conventional power sources are able to deliver high energy, but high-power demands can be met only with advanced electrochemical or heavy battery devices. BOLDER Technologies has developed a high-power cell (86 g, 1.0 A h, 2 V) based on patented Thin Metal Film (TMF®) Technology which is capable of delivering very high constant or pulse power for several applications. Six cells in a 0.5-1 kg pack are capable of delivering 1 to 1000 A with a stiff voltage plateau of 12 V for periods ranging from 1 h to a few milliseconds, respectively, and constant power not provided by any other battery chemistry. The BOLDER TMF® cells are made of thin lead foil and PbO active material, which gives enormous cost advantages compared with existing lead-acid batteries or with competing battery systems. This paper presents the high constant-power and pulse-power delivery characteristics of batteries made with TMF technology. The new concept of developing hybrid power sources with proton exchange membrane fuel cells (PEMFCs) or other battery types for electronic communication and turbine-starting applications is also discussed.

  12. Improved thermal stability of polylactic acid (PLA) composite film via PLA-β-cyclodextrin-inclusion complex systems.

    PubMed

    Byun, Youngjae; Rodriguez, Katia; Han, Jung H; Kim, Young Teck

    2015-11-01

    The effects of the incorporation of PLA-β-cyclodextrin-inclusion complex (IC) and β-cyclodextrin (β-CD) on biopolyester PLA films were investigated. Thermal stability, surface morphology, barrier, and mechanical properties of the films were measured at varying IC (1, 3, 5, and 7%) and β-CD (1 and 5%) concentrations. The PLA-IC-composite films (IC-PLA-CFs) showed uniform morphological structure, while samples containing β-CD (β-CD-PLA-CFs) showed high agglomeration of β-CD due to poor interfacial interaction between β-CD and PLA moieties. According to the thermal property analysis, the 5% IC-PLA-CFs showed 6.6 times lower dimensional changes (6.5%) at the temperature range of 20-80°C than that of pure PLA film (43.0%). The increase of IC or β-CD content in the PLA-composite films shifted the glass transition and crystallization temperature to higher temperature regions. The crystallinity of both composite films improved by increasing IC or β-CD content. Both composite films had higher oxygen and water vapor permeability as IC or β-CD content increased in comparison to pure PLA film. All the composite films had less flexibility and lower tensile strength than the pure PLA film. In conclusion, this study shows that the IC technique is valuable to improve the thermal expansion stability of PLA-based films. PMID:26299710

  13. Multilayer Films Electrodes Consisted of Cashew Gum and Polyaniline Assembled by the Layer-by-Layer Technique: Electrochemical Characterization and Its Use for Dopamine Determination

    PubMed Central

    Barros, Sergio Bitencourt Araújo; Leite, Cleide Maria da Silva; de Brito, Ana Cristina Facundo; Dos Santos Júnior, José Ribeiro; Zucolotto, Valtencir; Eiras, Carla

    2012-01-01

    We take advantage of polyelectrolyte feature exhibited by natural cashew gum (Anacardium occidentale L.) (CG), found in northeast Brazil, to employ it in the formation of electroactive nanocomposites prepared by layer-by-layer (LbL) technique. We used polyaniline unmodified (PANI) or modified with phosphonic acid (PA), PANI-PA as cationic polyelectrolyte. On the other hand, the CG or polyvinyl sulfonic (PVS) acids were used as anionic polyelectrolytes. The films were prepared with PANI or PANI-PA intercalated with CG or with PVS alternately resulting in four films with different sequences: PANI/CG PANI-PA/CG, PANI/PVS and PANI-PA/PVS, respectively. Analysis by cyclic voltammetry (CV) of the films showed that the presence of gum increases the stability of the films in acidic medium. The performance of the modified electrode of PANI-PA/CG was evaluated in electro analytical determination of dopamine (DA). The tests showed great sensitivity of the film for this analyte that was detected at 10−5 mol L−1. PMID:22505924

  14. Mammalian cell cultures on micropatterned surfaces of weak-acid, polyelectrolyte hyperbranched thin films on gold.

    PubMed

    Amirpour, M L; Ghosh, P; Lackowski, W M; Crooks, R M; Pishko, M V

    2001-04-01

    A four-step soft lithographic process based on micro-contact printing of organic monolayers, hyperbranched polymer grafting, and subsequent polymer functionalization results in polymer/n-alkanethiol patterns that direct the growth and migration of mammalian cells. The functional units on these surfaces are three-dimensional cell "corrals" that have walls 52+/-2 nm in height and lateral dimensions on the order of 60 microm. The corrals have hydrophobic, methyl-terminated n-alkanethiol bottoms, which promote cell adhesion, and walls consisting of hydrophilic poly(acrylic acid)/poly(ethylene glycol) layered nanocomposites that inhibit cell growth. Cell viability studies indicate that cells remain viable on the patterned surfaces for up to 21 days, and fluorescence microscopy studies of stained cells demonstrate that cell growth and spreading does not occur outside of the corral boundaries. This simple, chemically flexible micropatterning method provides spatial control over growth of IC-21 murine peritoneal macrophages, human umbilical vein endothelial cells, and murine hepatocytes. PMID:11321309

  15. Ionic Driven Embedment of Hyaluronic Acid Coated Liposomes in Polyelectrolyte Multilayer Films for Local Therapeutic Delivery

    NASA Astrophysics Data System (ADS)

    Hayward, Stephen L.; Francis, David M.; Sis, Matthew J.; Kidambi, Srivatsan

    2015-10-01

    The ability to control the spatial distribution and temporal release of a therapeutic remains a central challenge for biomedical research. Here, we report the development and optimization of a novel substrate mediated therapeutic delivery system comprising of hyaluronic acid covalently functionalized liposomes (HALNPs) embedded into polyelectrolyte multilayer (PEM) platform via ionic stabilization. The PEM platform was constructed from sequential deposition of Poly-L-Lysine (PLL) and Poly(Sodium styrene sulfonate) (SPS) “(PLL/SPS)4.5” followed by adsorption of anionic HALNPs. An adsorption affinity assay and saturation curve illustrated the preferential HALNP deposition density for precise therapeutic loading. (PLL/SPS)2.5 capping layer on top of the deposited HALNP monolayer further facilitated complete nanoparticle immobilization, cell adhesion, and provided nanoparticle confinement for controlled linear release profiles of the nanocarrier and encapsulated cargo. To our knowledge, this is the first study to demonstrate the successful embedment of a translatable lipid based nanocarrier into a substrate that allows for temporal and spatial release of both hydrophobic and hydrophilic drugs. Specifically, we have utilized our platform to deliver chemotherapeutic drug Doxorubicin from PEM confined HALNPs. Overall, we believe the development of our HALNP embedded PEM system is significant and will catalyze the usage of substrate mediated delivery platforms in biomedical applications.

  16. Ionic Driven Embedment of Hyaluronic Acid Coated Liposomes in Polyelectrolyte Multilayer Films for Local Therapeutic Delivery

    PubMed Central

    Hayward, Stephen L.; Francis, David M.; Sis, Matthew J.; Kidambi, Srivatsan

    2015-01-01

    The ability to control the spatial distribution and temporal release of a therapeutic remains a central challenge for biomedical research. Here, we report the development and optimization of a novel substrate mediated therapeutic delivery system comprising of hyaluronic acid covalently functionalized liposomes (HALNPs) embedded into polyelectrolyte multilayer (PEM) platform via ionic stabilization. The PEM platform was constructed from sequential deposition of Poly-L-Lysine (PLL) and Poly(Sodium styrene sulfonate) (SPS) “(PLL/SPS)4.5” followed by adsorption of anionic HALNPs. An adsorption affinity assay and saturation curve illustrated the preferential HALNP deposition density for precise therapeutic loading. (PLL/SPS)2.5 capping layer on top of the deposited HALNP monolayer further facilitated complete nanoparticle immobilization, cell adhesion, and provided nanoparticle confinement for controlled linear release profiles of the nanocarrier and encapsulated cargo. To our knowledge, this is the first study to demonstrate the successful embedment of a translatable lipid based nanocarrier into a substrate that allows for temporal and spatial release of both hydrophobic and hydrophilic drugs. Specifically, we have utilized our platform to deliver chemotherapeutic drug Doxorubicin from PEM confined HALNPs. Overall, we believe the development of our HALNP embedded PEM system is significant and will catalyze the usage of substrate mediated delivery platforms in biomedical applications. PMID:26423010

  17. Neutron Reference Benchmark Field Specification: ACRR 44 Inch Lead-Boron (LB44) Bucket Environment (ACRR-LB44-CC-32-CL).

    SciTech Connect

    Vega, Richard Manuel; Parma, Edward J.; Griffin, Patrick J.; Vehar, David W.

    2015-07-01

    This report was put together to support the International Atomic Energy Agency (IAEA) REAL- 2016 activity to validate the dosimetry community’s ability to use a consistent set of activation data and to derive consistent spectral characterizations. The report captures details of integral measurements taken in the Annular Core Research Reactor (ACRR) central cavity with the 44 inch Lead-Boron (LB44) bucket, reference neutron benchmark field. The field is described and an “a priori” calculated neutron spectrum is reported, based on MCNP6 calculations, and a subject matter expert (SME) based covariance matrix is given for this “a priori” spectrum. The results of 31 integral dosimetry measurements in the neutron field are reported.

  18. Chitinase Genes LbCHI31 and LbCHI32 from Limonium bicolor Were Successfully Expressed in Escherichia coli and Exhibit Recombinant Chitinase Activities

    PubMed Central

    Liu, Zhihua; Huang, Ying; Zhang, Rongshu; Diao, Guiping; Fan, Haijuan; Wang, Zhiying

    2013-01-01

    The two chitinase genes, LbCHI31 and LbCHI32 from Limonium bicolor, were, respectively, expressed in Escherichia coli BL21 strain. The intracellular recombinant chitinases, inrCHI31 and inrCHI32, and the extracellular exrCHI31 and exrCHI32 could be produced into E. coli. The exrCHI31 and exrCHI32 can be secreted into extracellular medium. The optimal reaction condition for inrCHI31 was 5 mmol/L of Mn2+ at 40°C and pH 5.0 with an activity of 0.772 U using Alternaria alternata cell wall as substrate. The optimal condition of inrCHI32 was 5 mmol/L of Ba2+ at 45°C and pH 5.0 with an activity of 0.792 U using Valsa sordida cell wall as substrate. The optimal reaction condition of exrCHI31 was 5 mmol/L of Zn2+ at 40°C and pH 5.0, and the activity was 0.921 U using the A. alternata cell wall as substrate. Simultaneously, the optimal condition of exrCHI32 was 5 mmol/L of K+ at 45°C and pH 5.0, with V. sordida cell wall as the substrate, and the activity was 0.897 U. Furthermore, the activities of extracellular recombinant enzymes on fungal cell walls and compounds were generally higher than those of the intracellular recombinant enzymes. Recombinant exrCHI31 and exrCHI32 have better hydrolytic ability on cell walls of different fungi than synthetic chitins and obviously showed activity against A. alternata. PMID:24385885

  19. Effects of hydrochloric acid treatment of TiO{sub 2} nanoparticles/nanofibers bilayer film on the photovoltaic properties of dye-sensitized solar cells

    SciTech Connect

    Song, Lixin; Du, Pingfan; Shao, Xiaoli; Cao, Houbao; Hui, Quan; Xiong, Jie

    2013-03-15

    Highlights: ► The TiO{sub 2} nanoparticles/TiO{sub 2} nanofibers bilayer film was fabricated for DSSC. ► The effects of HCl treated TiO{sub 2} on the performance of DSSC were investigated. ► The potential methods of improving conversion efficiency are suggested. - Abstract: The TiO{sub 2} nanoparticles/nanofibers bilayer film has been fabricated via spin coating and electrospinning followed by calcination. The TiO{sub 2} bilayer film with thickness of about 6.0 μm is composed of anatase TiO{sub 2} phase. Dye-sensitized solar cells (DSSC) were assembled by hydrochloric acid (HCl) treated TiO{sub 2} film. The results of the photocurrent action spectra, electrochemical impedance spectroscopy (EIS), and I–V curves showed that each photovoltaic parameter of DSSC increased with the concentration of HCl increasing, and reached a maximum value and afterwards decreased. The maximum incident monochromatic photo-to-electron conversion efficiency (at 350 nm) and maximum overall conversion efficiency (η) of 0.05 M HCl treated TiO{sub 2} based DSSC were enhanced to 48.0% and 4.75%, which were respectively increased by 14% and 6.3% than those of DSSC based on untreated TiO{sub 2} film.

  20. Structural, chemical and optical properties of the polyethylene-copper sulfide composite thin films synthesized using polythionic acid as sulfur source

    NASA Astrophysics Data System (ADS)

    Ancutiene, Ingrida; Navea, Juan G.; Baltrusaitis, Jonas

    2015-08-01

    Synthesis and properties of thin copper sulfide films deposited on polyethylene were explored for the development of low cost hybrid organic-inorganic photovoltaic materials. Polyethylene was used as a model organic host material for thin copper sulfide film formation. Adsorption-diffusion method was used which utilized consecutive exposure of polyethylene to polythionic acid followed by aqueous Cu(II/I) solution. Several crystalline copper sulfide phases were obtained in synthesized samples and elucidated using X-ray diffraction. Surface chemical composition determined using X-ray photoelectron spectroscopy showed the presence of copper sulfides in combination with copper hydroxide. Thickness of the composite material films ranged from several microns to ∼18 μm and depended on the Cu(II/I) exposure time. Bandgap of the materials obtained was measured and ranged from 1.88 to 1.17 eV. Importantly, heating these complex copper sulfide crystalline phase containing films at 100 °C in inert atmosphere invariably resulted in a single copper sulfide, anilite (Cu1.75S), phase. Anilite possesses a bandgap of 1.36 eV and has demonstrated excellent photovoltaic properties. Thus, the method described in this work can be used for a low cost large scale composite thin film photovoltaic material deposition based on anilite as photoactive material.

  1. Nonlinear optical studies on 4-(ferrocenylmethylimino)-2-hydroxy-benzoic acid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    NASA Astrophysics Data System (ADS)

    Matei, Andreea; Marinescu, Maria; Constantinescu, Catalin; Ion, Valentin; Mitu, Bogdana; Ionita, Iulian; Dinescu, Maria; Emandi, Ana

    2016-06-01

    We present results on a new, laboratory synthesized ferrocene-derivative, i.e. 4-(ferrocenylmethylimino)-2-hydroxy-benzoic acid. Thin films with controlled thickness are deposited by matrix-assisted pulsed laser evaporation (MAPLE), on quartz and silicon substrates, with the aim of evaluating the nonlinear optical properties for potential optoelectronic applications. Dimethyl sulfoxide was used as matrix, with 1% wt. concentration of the guest compound. The frozen target is irradiated by using a Nd:YAG laser (4ω/266 nm, 7 ns pulse duration, 10 Hz repetition rate), at low fluences ranging from 0.1 to 1 J/cm2. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to probe the surface morphology of the films. Fourier transform infrared (FTIR) and Raman spectroscopy reveal similar structure of the thin film material when compared to the starting material. The optical properties of the thin films are investigated by spectroscopic-ellipsometry (SE), and the refractive index dependence with respect to temperature is studied. The second harmonic generation (SHG) potential is assessed by using a femtosecond Ti:sapphire laser (800 nm, 60-100 fs pulse duration, 80 MHz repetition rate), at 200 mW maximum output power, revealing that the SHG signal intensity is strongly influenced by the films' thickness.

  2. In-situ formation of silver nanoparticles on poly (lactic acid) film by γ-radiation induced grafting of N-vinyl pyrrolidone.

    PubMed

    Wang, Jingxia; Chen, Hao; Chen, Zhuping; Chen, Yuheng; Guo, Dan; Ni, Maojun; Liu, Siyang; Peng, Chaorong

    2016-06-01

    A fast, easy and novel method for preparing biodegradable polymer films with silver nanoparticles was investigated to endow the material with excellent biocompatibility and antibacterial property. Silver nanoparticles (Ag NPs) were immobilized on the surface of polylactic acid (PLA) film by gamma radiation induced grafting of N-vinyl pyrrolidone (NVP). In this method, poly (N-vinyl pyrrolidone) (PVP) was produced and grafted onto the surface of PLA film by gamma radiation polymerization of NVP. PVP acted as both a bridge to connect the Ag NPs with the PLA film, and a stabilizer to protect the Ag NPs from agglomeration. The effect of various reaction parameters, including NVP/Ag mole ratio and radiation dose, on the fabrication of PLA-g-NVP/Ag film was demonstrated. Moreover, the interaction between PVP and Ag NPs was studied by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy, that revealed the Ag NPs coordinated through the oxygen atom on the carbonyl group of PVP at 15kGy radiation dose, but through the nitrogen atom and the oxygen atom of the amide group of PVP at 1kGy dose. PMID:27040205

  3. 26 CFR 1.1400L(b)-1 - Additional first year depreciation deduction for qualified New York Liberty Zone property.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... qualified New York Liberty Zone property. 1.1400L(b)-1 Section 1.1400L(b)-1 Internal Revenue INTERNAL... qualified New York Liberty Zone property. (a) Scope. This section provides the rules for determining the 30... York Liberty Zone property. (b) Definitions. For purposes of section 1400L(b) and this section,...

  4. 26 CFR 1.1400L(b)-1 - Additional first year depreciation deduction for qualified New York Liberty Zone property.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... for qualified New York Liberty Zone property. 1.1400L(b)-1 Section 1.1400L(b)-1 Internal Revenue... deduction for qualified New York Liberty Zone property. (a) Scope. This section provides the rules for... qualified New York Liberty Zone property. (b) Definitions. For purposes of section 1400L(b) and this...

  5. A Stimuli-Responsive Biosensor of Glucose on Layer-by-Layer Films Assembled through Specific Lectin-Glycoenzyme Recognition.

    PubMed

    Yao, Huiqin; Gan, Qianqian; Peng, Juan; Huang, Shan; Zhu, Meilin; Shi, Keren

    2016-01-01

    The research on intelligent bioelectrocatalysis based on stimuli-responsive materials or interfaces is of great significance for biosensors and other bioelectronic devices. In the present work, lectin protein concanavalin A (Con A) and glycoenzyme glucose oxidase (GOD) were assembled into {Con A/GOD}n layer-by-layer (LbL) films by taking advantage of the biospecific lectin-glycoenzyme affinity between them. These film electrodes possess stimuli-responsive properties toward electroactive probes such as ferrocenedicarboxylic acid (Fc(COOH)₂) by modulating the surrounding pH. The CV peak currents of Fc(COOH)₂ were quite large at pH 4.0 but significantly suppressed at pH 8.0, demonstrating reversible stimuli-responsive on-off behavior. The mechanism of stimuli-responsive property of the films was explored by comparative experiments and attributed to the different electrostatic interaction between the films and the probes at different pH. This stimuli-responsive films could be used to realize active/inactive electrocatalytic oxidation of glucose by GOD in the films and mediated by Fc(COOH)₂ in solution, which may establish a foundation for fabricating novel stimuli-responsive electrochemical biosensors based on bioelectrocatalysis with immobilized enzymes. PMID:27104542

  6. A Stimuli-Responsive Biosensor of Glucose on Layer-by-Layer Films Assembled through Specific Lectin-Glycoenzyme Recognition

    PubMed Central

    Yao, Huiqin; Gan, Qianqian; Peng, Juan; Huang, Shan; Zhu, Meilin; Shi, Keren

    2016-01-01

    The research on intelligent bioelectrocatalysis based on stimuli-responsive materials or interfaces is of great significance for biosensors and other bioelectronic devices. In the present work, lectin protein concanavalin A (Con A) and glycoenzyme glucose oxidase (GOD) were assembled into {Con A/GOD}n layer-by-layer (LbL) films by taking advantage of the biospecific lectin-glycoenzyme affinity between them. These film electrodes possess stimuli-responsive properties toward electroactive probes such as ferrocenedicarboxylic acid (Fc(COOH)2) by modulating the surrounding pH. The CV peak currents of Fc(COOH)2 were quite large at pH 4.0 but significantly suppressed at pH 8.0, demonstrating reversible stimuli-responsive on-off behavior. The mechanism of stimuli-responsive property of the films was explored by comparative experiments and attributed to the different electrostatic interaction between the films and the probes at different pH. This stimuli-responsive films could be used to realize active/inactive electrocatalytic oxidation of glucose by GOD in the films and mediated by Fc(COOH)2 in solution, which may establish a foundation for fabricating novel stimuli-responsive electrochemical biosensors based on bioelectrocatalysis with immobilized enzymes. PMID:27104542

  7. Impact of colostomy on intestinal microflora and bacterial translocation in young rats fed with heat-killed Lactobacillus acidophilus strain LB.

    PubMed

    Rigon-Zimmer, K; Mullié, C; Tir-Touil-Meddah, A; Buisson, P; Léké, L; Canarelli, J P

    2008-01-01

    A rat animal model of left colostomy was found to significantly impair the growth curve of rats. Assessment of the intestinal flora showed that colostomy mostly affects the cecal but not colonic microflora. Generally, the number of enterococci was increased in both ileum and cecum; cecal lactobacilli also rose, accounting for a promotion of lactic acid bacteria in colostomised rats. No significant differences between colostomised, laparotomised and control rats could be observed for the translocation of intestinal bacteria to internal organs of rats (i.e. spleen, kidneys, lungs or liver), whatever their diet. Heat-killed Lactobacillus acidophilus strain LB administration (dead probiotic bacteria) tended to exhibit a stimulatory effect on bifidobacteria, probably affecting the culture-medium fermentation substances included in the pharmaceutical product. This effect was abolished by laparotomy and colostomy. A trend towards a probiotic-like effect, not susceptible to colostomy, was also witnessed as counts of lactobacilli tended to increase in both cecum and colon of all animals fed with L. acidophilus LB. PMID:18481224

  8. Discriminating plants using the DNA barcode rbcLb: an appraisal based on a large data set.

    PubMed

    Dong, Wenpan; Cheng, Tao; Li, Changhao; Xu, Chao; Long, Ping; Chen, Chumming; Zhou, Shiliang

    2014-03-01

    The ideal DNA barcode for plants remains to be discovered, and the candidate barcode rbcL has been met with considerable skepticism since its proposal. In fact, the variability within this gene has never been fully explored across all plant groups from algae to flowering plants, and its performance as a barcode has not been adequately tested. By analysing all of the rbcL sequences currently available in GenBank, we attempted to determine how well a region of rbcL performs as a barcode in species discrimination. We found that the rbcLb region was more variable than the frequently used rbcLa region. Both universal and plant group-specific primers were designed to amplify rbcLb, and the performance of rbcLa and rbcLb was tested in several ways. Using blast, both regions successfully identified all families and nearly all genera; however, the successful species identification rates varied significantly among plant groups, ranging from 24.58% to 85.50% for rbcLa and from 36.67% to 90.89% for rbcLb. Successful species discrimination ranged from 5.19% to 96.33% for rbcLa and from 22.09% to 98.43% for rbcLb in species-rich families, and from 0 to 88.73% for rbcLa and from 2.04% to 100% for rbcLb in species-rich genera. Both regions performed better for lower plants than for higher plants, although rbcLb performed significantly better than rbcLa overall, particularly for angiosperms. Considering the applicability across plants, easy and unambiguous alignment, high primer universality, high sequence quality and high species discrimination power for lower plants, we suggest rbcLb as a universal plant barcode. PMID:24119263

  9. Magnetic Cellulose Nanocrystal Based Anisotropic Polylactic Acid Nanocomposite Films: Influence on Electrical, Magnetic, Thermal, and Mechanical Properties.

    PubMed

    Dhar, Prodyut; Kumar, Amit; Katiyar, Vimal

    2016-07-20

    This paper reports a single-step co-precipitation method for the fabrication of magnetic cellulose nanocrystals (MGCNCs) with high iron oxide nanoparticle content (∼51 wt % loading) adsorbed onto cellulose nanocrystals (CNCs). X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Raman spectroscopic studies confirmed that the hydroxyl groups on the surface of CNCs (derived from the bamboo pulp) acted as anchor points for the adsorption of Fe3O4 nanoparticles. The fabricated MGCNCs have a high magnetic moment, which is utilized to orient the magnetoresponsive nanofillers in parallel or perpendicular orientations inside the polylactic acid (PLA) matrix. Magnetic-field-assisted directional alignment of MGCNCs led to the incorporation of anisotropic mechanical, thermal, and electrical properties in the fabricated PLA-MGCNC nanocomposites. Thermomechanical studies showed significant improvement in the elastic modulus and glass-transition temperature for the magnetically oriented samples. Differential scanning calorimetry (DSC) and XRD studies confirmed that the alignment of MGCNCs led to the improvement in the percentage crystallinity and, with the absence of the cold-crystallization phenomenon, finds a potential application in polymer processing in the presence of magnetic field. The tensile strength and percentage elongation for the parallel-oriented samples improved by ∼70 and 240%, respectively, and for perpendicular-oriented samples, by ∼58 and 172%, respectively, in comparison to the unoriented samples. Furthermore, its anisotropically induced electrical and magnetic properties are desirable for fabricating self-biased electronics products. We also demonstrate that the fabricated anisotropic PLA-MGCNC nanocomposites could be laminated into films with the incorporation of directionally tunable mechanical properties. Therefore, the current study provides a novel noninvasive approach of orienting nontoxic bioderived CNCs in the presence of low

  10. A study of thin film solid phase microextraction methods for analysis of fluorinated benzoic acids in seawater.

    PubMed

    Boyacı, Ezel; Goryński, Krzysztof; Viteri, C Ricardo; Pawliszyn, Janusz

    2016-03-01

    Fluorinated benzoic acids (FBAs) are frequently used as tracers by the oil industry to characterize petroleum reservoirs. The demand for fast, reliable, robust, and sensitive approaches to separate and quantify FBAs in produced water, both in laboratory and field conditions, has not been yet fully satisfied. In this study, for the first time, thin film solid phase microextraction (TF-SPME) is proposed as a versatile sample preparation tool for the determination of FBAs in produced water by pursing two different approaches. First, an automated high throughput TF-SPME method using solvent desorption for fast and simultaneous preparation of multiple samples prior to liquid chromatographic separation and high resolution mass spectrometric detection (LC-MS) of FBAs was demonstrated for routine laboratory analysis. This method was optimized in terms of extraction phase chemistry, sample pH and ionic strength, extraction/desorption times using two representative FBAs (4-FBA and 2,3,4,5-tetra FBA). It incorporates a relatively simple sample pretreatment involving pH adjustment prior to the TF-SPME, and obtained limits of quantification (LOQ) are at the 1.0ngmL(-1) level. Second, the applicability of TF-SPME for fast mass spectrometric (MS) determination of FBAs with omission of derivatization and gas chromatographic (GC) separation was proven. This second method consists of manual extractions of analytes from seawater samples with a thermally stable TF-SPME membrane and direct thermal desorption of the extracted FBAs to a MS via a thermal desorption unit (TDU). It was demonstrated that the TF-SPME extracts and thermally releases analytes quantitatively and with good reproducibility. This approach opens up the possibility for on-site measurements with portable analyzers. PMID:26860049

  11. Preparation of Langmuir-Blodgett thin films of calix[6]arenes and p-tert butyl group effect on their gas sensing properties

    NASA Astrophysics Data System (ADS)

    Ozmen, Mustafa; Ozbek, Zikriye; Bayrakci, Mevlut; Ertul, Seref; Ersoz, Mustafa; Capan, Rifat

    2015-12-01

    Organic vapor sensing properties of Langmuir-Blodgett (LB) thin films of p-tert-butyl calix[6]arene and calix[6]arene, and their certain characterization are reported in this work. LB films of these calixarenes have been characterized by contact angle measurement, quartz crystal microbalance (QCM), scanning electron microscopy (SEM) and atomic force microscopy (AFM). QCM system was used for the measurement of sensor response against chloroform, benzene, toluene and ethanol vapors. Forming of stable monolayers was observed at the water surface using surface pressure-area isotherm graph. The results indicate that good quality, uniform LB films can be prepared with a transfer ratio of over 0.95. Due to the adsorption of vapors into the LB film structures; they yield a response to all vapors as of large, fast, and reproducible.

  12. Mechanical reinforcement of nanoparticle thin films using atomic layer deposition.

    PubMed

    Dafinone, Majemite I; Feng, Gang; Brugarolas, Teresa; Tettey, Kwadwo E; Lee, Daeyeon

    2011-06-28

    Thin films composed of nanoparticles exhibit synergistic properties, making them useful for numerous advanced applications. Nanoparticle thin films (NTFs), however, have a very low resistance to mechanical loading and abrasion, presenting a major bottleneck to their widespread use and commercialization. High-temperature sintering has been shown to improve the mechanical durability of NTFs on inorganic substrates; however, these high-temperature processes are not amenable to organic substrates. In this study, we demonstrate that the mechanical durability of TiO(2)/SiO(2) nanoparticle layer-by-layer (LbL) films on glass and polycarbonate substrates can be drastically improved using atomic layer deposition (ALD) at a relatively low temperature. The structure and physical properties of ALD-treated TiO(2)/SiO(2) nanoparticle LbL films are studied using spectroscopic ellipsometry, UV-vis spectroscopy, contact angle measurements, and nanoindentation. The composition of TiO(2)/SiO(2) LbL films as a function of ALD-cycle number is determined through solution ellipsometry, enabling the determination of the characteristic pore size of nanoparticle thin films. Mechanical durability is also investigated by abrasion tests, showing that the robustness of ALD-treated nanoparticle films is comparable to that of thermally calcined films. More importantly, ALD-treated nanoparticle films retain the original functionality of the TiO(2)/SiO(2) LbL films, such as superhydrophilicity and antireflection properties, demonstrating the utility of ALD as a reinforcement method for nanoparticle thin films. PMID:21557541

  13. Performance of Small (100-lb Thrust) Rocket Motors Using Coaxial Injection of Hydrazine and Nitrogen Tetroxide

    NASA Technical Reports Server (NTRS)

    Wasserbauer, Joseph F.; Tabata, William

    1961-01-01

    An investigation was conducted on a small (approximately 100-lb thrust) rocket using coaxial injection of hydrazine and nitrogen tetroxide. Characteristic-velocity efficiencies of 94 percent of the theoretical shifting equilibrium value were obtained at a chamber pressure of about 300 pounds per square inch using a 21-tube injector and a combustion chamber characteristic length of 10 inches. Performance at lower chamber pressures could be improved by reducing contraction ratio and thereby increasing the combustion chamber length and injector pressure drop, which would tend to promote better mixing. Calculations based on experimental data showed a vacuum specific impulse of 305 seconds with a nozzle area ratio of 50.

  14. Design and performance of a parachute for supersonic and subsonic recovery of an 800-lb payload

    SciTech Connect

    Peterson, C.W.; Waye, D.E.; Rollstin, L.R.; Holt, I.T.

    1986-01-01

    The design and development of a parachute system to recover an 800-lb test payload flying at both supersonic and subsonic speeds are presented. Performance data from full-scale flight tests for several parachute configurations were used to define an acceptable parachute system and to gain insight into which design parameters are most critical for supersonic parachute design. The suspension line length, canopy configuration, and forebody wake have a major effect upon parachute performance and stability. A tractor rocket was used to deploy this parachute system successfully at all deployment speeds.

  15. Layer-by-layer deposited organic/inorganic hybrid multilayer films containing noncentrosymmetrically orientated azobenzene chromophores.

    PubMed

    Kang, En-Hua; Bu, Tianjia; Jin, Pengcheng; Sun, Junqi; Yang, Yanqiang; Shen, Jiacong

    2007-07-01

    Organic/inorganic hybrid multilayer films with noncentrosymmetrically orientated azobenzene chromophores were fabricated by the sequential deposition of ZrO2 layers by a surface sol-gel process and subsequent layer-by-layer (LbL) adsorption of the nonlinear optical (NLO)-active azobenzene-containing polyanion PAC-azoBNS and poly(diallyldimethylammonium chloride) (PDDA). Noncentrosymmetric orientation of the NLO-active azobenzene chromophores was achieved because of the strong repulsion between the negatively charged ZrO(2) and the sulfonate groups of the azobenzene chromophore in PAC-azoBNS. Regular deposition of ZrO(2)/PAC-azoBNS/PDDA multilayer films was verified by UV-vis absorption spectroscopy and quartz crystal microbalance measurements. Both UV-vis absorption spectroscopy and transmission second harmonic generation (SHG) measurements confirmed the noncentrosymmetric orientation of the azobenzene chromophores in the as-prepared ZrO2/PAC-azoBNS/PDDA multilayer films. The square root of the SHG signal (I(2omega)(1/2)) increases with the increase of the azobenzene graft ratio in PAC-azoBNS as the number of deposition cycles of the ZrO(2)/PAC-azoBNS/PDDA films remains the same, while the second-order susceptibility chi(zzz)(2) of the film decreases with the increase of the azobenzene graft ratio. Furthermore, the present method was successfully extended to realize the noncentrosymmetric orientation of azobenzene chromophores in multilayer films when small organic azobenzene compounds with carboxylic acid and/or hydroxyl groups at one end and sulfonate groups at the other end were used. The present method was characterized by its simplicity and flexibility in film preparation, and it is anticipated to be a facile way to fabricate second-order nonlinear optical film materials. PMID:17555337

  16. Erosion-corrosion resistance of electroplated Co-Pd film on 316L stainless steel in a hot sulfuric acid slurry environment

    NASA Astrophysics Data System (ADS)

    Li, Sirui; Zuo, Yu; Ju, Pengfei

    2015-03-01

    A Co-Pd film was deposited on 316L stainless steel by electroplating. The erosion-corrosion behavior of the Co-Pd plated samples in hot sulfuric acid solution with SiO2 particles was investigated. The results showed that there was a significant synergistic effect between erosion and corrosion. At higher stirring speed, even in such strong corrosive environment the erosion-corrosion rate of Co-Pd plated samples was controlled mainly by the erosion resistance. The erosion-corrosion resistance of pure Pd plated sample decreased rapidly with increasing stirring speed, whereas that of Co-Pd plated sample kept almost stable under the tested conditions due to the high micro-hardness and good corrosion resistance of the film.

  17. Poly(brilliant green) and poly(thionine) modified carbon nanotube coated carbon film electrodes for glucose and uric acid biosensors.

    PubMed

    Ghica, M Emilia; Brett, Christopher M A

    2014-12-01

    Poly(brilliant green) (PBG) and poly(thionine) (PTH) films have been formed on carbon film electrodes (CFEs) modified with carbon nanotubes (CNT) by electropolymerisation using potential cycling. Voltammetric and electrochemical impedance characterisation were performed. Glucose oxidase and uricase, as model enzymes, were immobilised on top of PBG/CNT/CFE and PTH/CNT/CFE for glucose and uric acid (UA) biosensing. Amperometric determination of glucose and UA was carried out in phosphate buffer pH 7.0 at -0.20 and +0.30 V vs. SCE, respectively, and the results were compared with other similarly modified electrodes existing in the literature. An interference study and recovery measurements in natural samples were successfully performed, indicating these architectures to be good and promising biosensor platforms. PMID:25159399

  18. Influence of the Virus LbFV and of Wolbachia in a Host-Parasitoid Interaction

    PubMed Central

    Woolfit, Megan; Vavre, Fabrice; O'Neill, Scott L.; Varaldi, Julien

    2012-01-01

    Symbionts are widespread and might have a substantial effect on the outcome of interactions between species, such as in host-parasitoid systems. Here, we studied the effects of symbionts on the outcome of host-parasitoid interactions in a four-partner system, consisting of the parasitoid wasp Leptopilina boulardi, its two hosts Drosophila melanogaster and D. simulans, the wasp virus LbFV, and the endosymbiotic bacterium Wolbachia. The virus is known to manipulate the superparasitism behavior of the parasitoid whereas some Wolbachia strains can reproductively manipulate and/or confer pathogen protection to Drosophila hosts. We used two nuclear backgrounds for both Drosophila species, infected with or cured of their respective Wolbachia strains, and offered them to L. boulardi of one nuclear background, either infected or uninfected by the virus. The main defence mechanism against parasitoids, i.e. encapsulation, and other important traits of the interaction were measured. The results showed that virus-infected parasitoids are less frequently encapsulated than uninfected ones. Further experiments showed that this viral effect involved both a direct protective effect against encapsulation and an indirect effect of superparasitism. Additionally, the Wolbachia strain wAu affected the encapsulation ability of its Drosophila host but the direction of this effect was strongly dependent on the presence/absence of LbFV. Our results confirmed the importance of heritable symbionts in the outcome of antagonistic interactions. PMID:22558118

  19. Immobilization and stabilization of lipase (CaLB) through hierarchical interfacial assembly.

    PubMed

    Talbert, Joey N; Wang, Li-Sheng; Duncan, Bradley; Jeong, Youngdo; Andler, Stephanie M; Rotello, Vincent M; Goddard, Julie M

    2014-11-10

    Nanostructure-enabled hierarchical assembly holds promise for efficient biocatalyst immobilization for improved stability in bioprocessing. In this work we demonstrate the use of a hierarchical assembly immobilization strategy to enhance the physicochemical properties and stability of lipase B from Candida antarctica (CaLB). CaLB was complexed with iron oxide nanoparticles followed by interfacial assembly at the surface of an oil-in-water emulsion. Subsequent ring opening polymerization of the oil provided cross-linked microparticles that displayed an increase in catalytic efficiency when compared to the native enzyme and Novozym 435. The hierarchical immobilized enzyme assembly showed no leakage from the support in 50% acetonitrile and could be magnetically recovered across five cycles. Immobilized lipase exhibited enhanced thermal and pH stability, providing 72% activity retention after 24 h at 50 °C (pH 7.0) and 62% activity retention after 24 h at pH 3.0 (30 °C); conditions resulting in complete deactivation of the native lipase. PMID:25252004

  20. Design and performance of a parachute for the recovery of a 760-lb payload

    SciTech Connect

    Waye, D.E.

    1991-01-01

    A 26-ft-diameter ribbon parachute deployed using a pilot parachute system has been developed at Sandia National Laboratories for the recovery of a 760-lb payload released at subsonic and transonic speeds. The wide range of deployment dynamic pressures led to the design, utilizing wind tunnel testing and computer simulation, of a unique pilot parachute system verified in full-scale flight tests. Performance data from 20 full-scale flight tests were used to evaluate system performance and structural validity. The concical ribbon parachute design chosen for this development effort follows the practice of previous Sandia National Laboratory parachute development programs for high performance airdropped payloads. The design process for this parachute system included a tradeoff study to evaluate and compare the performance between an equivalent drag area 26-foot-diameter single parachute system and a cluster system of three 14-ft-diameter parachutes. The results showed a small advantage for the cluster system in inflation and initial deceleration characteristics. However, the higher cost, higher weight, greater packing complexity and greater risk involved in the development of the cluster system outweighed the performance advantages and led to the choice of the 26-ft-diameter parachute as the baseline design for the development. This paper describes the design and performance of the 26-ft-diameter parachute which was chosen for the recovery of a 760-lb payload. The results of 20 full-scale flight test of this parachute system are summarized. 8 refs., 13 figs., 2 tabs.

  1. Molecular layer-by-layer assembled thin-film composite membranes for water desalination.

    PubMed

    Gu, Joung-Eun; Lee, Seunghye; Stafford, Christopher M; Lee, Jong Suk; Choi, Wansuk; Kim, Bo-Young; Baek, Kyung-Youl; Chan, Edwin P; Chung, Jun Young; Bang, Joona; Lee, Jung-Hyun

    2013-09-14

    Molecular layer-by-layer (mLbL) assembled thin-film composite membranes fabricated by alternating deposition of reactive monomers on porous supports exhibit both improved salt rejection and enhanced water flux compared to traditional reverse osmosis membranes prepared by interfacial polymerization. Additionally, the well-controlled structures achieved by mLbL deposition further lead to improved antifouling performance. PMID:23847127

  2. Ionically conductive thin polymer films prepared by plasma polymerization; Preparation and characterization of ultrathin films having fixed sulfonic acid groups with only one mobile species

    SciTech Connect

    Ogumi, Z.; Uchimoto, Y.; Takehara, Z. ); Foulkes, F.R. . Dept. of Chemical Engineering and Applied Chemistry)

    1990-01-01

    Ultrathin solid polymer electrolyte membranes containing sulfonic ester groups were prepared by polymerization of methyl benzenesulfonate and octamethylcyclotetrasiloxane in a glow discharge plasma. The sulfonic ester groups of the plasma polymer were transformed to lithium sulfonate groups by treatment with lithium iodide. Hybridization of this plasma polymer containing the lithium sulfonate groups with poly(ethylene oxide) (average Mw 300) resulted in the formation of a single lithium ion conductive film. The hybrid polymer electrolyte films were about 1 {mu}m thick, pinhole-free, adherent to various substrates, and showed ionic conductivities at 60{degrees}C of the order of 10{sup {minus} 6} S cm{sup {minus} 1} (10{sup 2} {Omega} cm{sup 2} resistance per unit area of as-prepared solid polymer electrolyte). This material shows promise for electrochemical applications such as all solid-state lithium batteries, sensors, and electrochemical display devices.

  3. Burkholderia xernovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility

    SciTech Connect

    Chain, Patrick S. G.; Denef, Vincent; Konstantinidis, Konstantinos T; Vergez, Lisa; Agullo, Loreine; Reyes, Valeria Latorre; Hauser, Loren John; Cordova, Macarena; Gomez, Luis; Gonzalez, Myriam; Land, Miriam L; Lao, Victoria; Larimer, Frank W; LiPuma, John J; Mahenthiralingam, Eshwar; Malfatti, Stephanie; Marx, Christopher J; Parnell, J Jacob; Ramette, Alban; Richardson, P M; Seeger, Michael; Smith, Daryl; Spilker, Theodore; Sul, Woo Jun; Tsoi, Tamara V; Zhulin, Igor B; Tiedje, James M.

    2006-01-01

    Burkholderia xenovorans LB400 (LB400), a well studied, effective polychlorinated biphenyl-degrader, has one of the two largest known bacterial genomes and is the first nonpathogenic Burkholderia isolate sequenced. From an evolutionary perspective, we find significant differences in functional specialization between the three replicons of LB400, as well as a more relaxed selective pressure for genes located on the two smaller vs. the largest replicon. High genomic plasticity, diversity, and specialization within the Burkholderia genus are exemplified by the conservation of only 44% of the genes between LB400 and Burkholderia cepacia complex strain 383. Even among four B. xenovorans strains, genome size varies from 7.4 to 9.73 Mbp. The latter is largely explained by our findings that >20% of the LB400 sequence was recently acquired by means of lateral gene transfer. Although a range of genetic factors associated with in vivo survival and intercellular interactions are present, these genetic factors are likely related to niche breadth rather than determinants of pathogenicity. The presence of at least eleven 'central aromatic' and twenty 'peripheral aromatic' pathways in LB400, among the highest in any sequenced bacterial genome, supports this hypothesis. Finally, in addition to the experimentally observed redundancy in benzoate degradation and formaldehyde oxidation pathways, the fact that 17.6% of proteins have a better LB400 paralog than an ortholog in a different genome highlights the importance of gene duplication and repeated acquirement, which, coupled with their divergence, raises questions regarding the role of paralogs and potential functional redundancies in large-genome microbes.

  4. Fullerene-C60-MWCNT composite film based ultrasensitive electrochemical sensing platform for the trace analysis of pyruvic acid in biological fluids.

    PubMed

    Brahman, Pradeep Kumar; Pandey, Nidhi; Topkaya, Seda Nur; Singhai, Rashmi

    2015-03-01

    We propose development of a novel electrochemical sensor based on fullerene-multi-walled carbon nanotubes composite film for the sensitive determination of the pyruvic acid in biological fluids. The developed sensor was characterized by cyclic voltammetry. The nanocomposite film of C60-MWCNTs on GCE exhibits electrocatalytic activity towards pyruvic acid reduction and also decreases the reduction overpotential. The influence of the optimization parameters such as pH and effect of loading of composite mixture of C60 and MWCNTs on the electrochemical performance of the sensor were evaluated. Various kinetic parameters such as electron transfer number (n=2), proton transfer number (m=2) and charge transfer coefficient (α=0.56) were also calculated. Under optimized conditions, the squarewave reduction peak current was linear over the concentration range of 2.0-55 nM with the detection and quantification limit of 0.1 nM and 0.8 nM respectively. The fabricated sensor was successfully applied to the detection of pyruvic acid in biological samples with good recovery ranging from 97.6% to 103.6%. PMID:25618707

  5. Influences of acid on molecular forms of fluorescein and photoinduced electron transfer in fluorescein-dispersing sol-gel titania films.

    PubMed

    Nishikiori, Hiromasa; Setiawan, Rudi Agus; Miyashita, Kyohei; Teshima, Katsuya; Fujii, Tsuneo

    2014-01-01

    Fluorescein-dispersing titania gel films were prepared by the acid-catalyzed sol-gel reaction using a titanium alkoxide solution containing fluorescein. The molecular forms of fluorescein in the films, depending on its acid-base equilibria, and the complex formation and photoinduced electron transfer process between the dye and titania surface were investigated by fluorescence and photoelectric measurements. The titanium species were coordinated to the carboxylate and phenolate-like groups of the fluorescein species. The quantum efficiencies of the fluorescence quenching and photoelectric conversion were higher upon excitation of the dianion species interacting with the titania, i.e. the dye-titania complex. This result indicated that the dianion form was the most favorable for formation of the dye-titania complex exhibiting the highest electron transfer efficiency. Using nitric acid as the catalyst, the titania surface bonded to the fluorescein instead of the adsorbed nitrate ion during the steam treatment. The dye-titania complex formation played an important role in the electron injection from the dye to the titania conduction band. PMID:24502447

  6. Rational Design of a Nile Red/Polymer Composite Film for Fluorescence Sensing of Organophosphonate Vapors using Hydrogen Bond Acidic Polymers

    SciTech Connect

    Levitsky, Igor; Krivoshlykov, Sergei G.; Grate, Jay W. )

    2000-12-01

    The solvatochromic dye Nile Red dispersed in selected hydrogen-bond acidic polymer matrices demonstrated strong fluorescence enhancement at the presence of dimethyl methylphosphonate (DMMP) vapors. Two hydrogen bond acidic polymers were examined as dye matrices, one with fluorinated alcohol groups on a polystyrene backbone (PSFA), and the other with fluorinated bisphenol groups alternating with oligodimethylsiloxane segments (BSP3). The combination of hydrogen-bond acidic polymer (a strong sorbent for DMMP) with the solvatochromic dye led to initial depression of the dye fluorescence and a significant red shift in the absorbance and fluorescence spectra. DMMP sorption changed the dye environment and dramatically altered the fluorescence spectrum and intensity, resulting in a strong fluorescence enhancement. It is proposed that this fluorescence enhancement is due to the competition set up between the dye and the sorbed vapor for polymeric hydrogen bonding sites. The highest responses were obtained with BSP3. DMMP detection has been demonstrated at sub-ppm DMMP concentrations, indicating very low detection limits compared to previous Nile Red/polymer matrix fluorescence vapor sensors. Nile Red/poly(methyl methacrylate) films prepared for comparisons exhibited substantially lower response to DMMP. Rational selection of polymers providing high sorption for DMMP and competition for hydrogen-bonding interactions with Nile Red yielded fluorescent films with high sensitivity.

  7. Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets.

    PubMed

    Priolo, Morgan A; Holder, Kevin M; Guin, Tyler; Grunlan, Jaime C

    2015-05-01

    Layer-by-layer (LbL) assembly has emerged as the leading non-vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal and metal oxide-based barrier films. This Feature Article is a mini-review of LbL-based multilayer thin films with a 'nanobrick wall' microstructure comprising polymeric mortar and nano-platelet bricks that impart high gas barrier to otherwise permeable polymer substrates. These transparent, water-based thin films exhibit oxygen transmission rates below 5 × 10(-3) cm(3) m(-2) day(-1) atm(-1) and lower permeability than any other barrier material reported. In an effort to put this technology in the proper context, incumbent technologies such as metallized plastics, metal oxides, and flake-filled polymers are briefly reviewed. PMID:25800245

  8. From Nanofibrillar to Nanolaminar Poly(butylene succinate): Paving the Way to Robust Barrier and Mechanical Properties for Full-Biodegradable Poly(lactic acid) Films.

    PubMed

    Xie, Lan; Xu, Huan; Chen, Jing-Bin; Zhang, Zi-Jing; Hsiao, Benjamin S; Zhong, Gan-Ji; Chen, Jun; Li, Zhong-Ming

    2015-04-22

    The traditional approach toward barrier property enhancement of poly(lactic acid) (PLA) is the incorporation of sheet-like fillers such as nanoclay and graphene, unfortunately leading to the sacrificed biocompatibility and degradability. Here we unveil the first application of a confined flaking technique to establish the degradable nanolaminar poly(butylene succinate) (PBS) in PLA films based on PLA/PBS in situ nanofibrillar composites. The combination of high pressure (10 MPa) and appropriate temperature (160 °C) during the flaking process desirably enabled sufficient deformation of PBS nanofibrils and retention of ordered PLA channels. Particularly, interlinked and individual nanosheets were created in composite films containing 10 and 20 wt % PBS, respectively, both of which presented desirable alignment and large width/thickness ratio (nanoscale thickness with a width of 428±13.1 and 76.9±8.2 μm, respectively). With the creation of compact polymer "nano-barrier walls", a dramatic decrease of 86% and 67% in the oxygen permeability coefficient was observed for the film incorporated with well-organized 20 wt % PBS nanosheets compared to pure PLA and pure PBS (1.4 and 0.6×10(-14) cm3·cm·cm(-2)·s(-1)·Pa(-1)), respectively. Unexpectedly, prominent increases of 21% and 28% were achieved in the tensile strength and modulus of composite films loaded 20 wt % PBS nanosheets compared to pure PLA films, although PBS intrinsically presents poor strength and stiffness. The unusual combination of barrier and mechanical performances established in the fully degradable system represent specific properties required in packaging beverages, food and medicine. PMID:25826123

  9. Fabrication of Novel Bioactive Cellulose-Based Films Derived from Caffeic Acid Phenethyl Ester-Loaded Nanoparticles via a Rapid Expansion Process: RESOLV.

    PubMed

    Saelo, Suparak; Assatarakul, Kitipong; Sane, Amporn; Suppakul, Panuwat

    2016-09-01

    Caffeic acid phenethyl ester (CAPE) nanoparticles (NPs) with an average size of ∼40 nm obtained from TEM and binomial average sizes of ∼90 and ∼400 nm obtained from DLS were successfully produced by rapid expansion of subcritical solutions into liquid solvents (RESOLV). The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of CAPE and CAPE-NPs were determined by plate count method against 12 pathogenic and spoilage bacteria and 3 strains of yeast. Total phenolic content (TPC) and antioxidant activities of CAPE-NPs were quantified and subsequently investigated using two assays, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and ferric reducing antioxidant power (FRAP). CAPE-NP-incorporated cellulose-based films were prepared and characterized. MICs and MBCs of CAPE-NPs against most bacteria and Candida albicans were 700 and 1400 μg/mL, respectively. CAPE-NPs yielded a TPC value of 426.74 μgGAE/mg and lower antioxidant activities than those of CAPE in ethanol (CAPE-EtOH), whereas BHT yielded lower FRAP than that of CAPE-NPs. The impregnation of CAPE into cellulose-based films was confirmed by FTIR spectra. Moreover, incorporation of only 0.5 wt % CAPE-NPs into the films resulted in an inhibitory effect against microorganisms. Fortunately, incorporation of higher concentration of CAPE-NPs-MC films led to a significantly higher antioxidant activity and vice versa. This indicated that CAPE-NPs significantly enhanced the antimicrobial and antioxidant activities of CAPE. The results show that the environmentally benign supercritical CO2 technique should be generally applicable to NP fabrication of other important bioactive ingredients, especially in liquid form. In addition, it is suggested that CAPE-NPs can be used to reduce the dosage of CAPE and improve their bioavailability and thus merit further investigation for bioactive packaging film and coating applications. PMID:27548627

  10. Redox buffered hydrofluoric acid etchant for the reduction of galvanic attack during release etching of MEMS devices having noble material films

    DOEpatents

    Hankins, Matthew G.

    2009-10-06

    Etchant solutions comprising a redox buffer can be used during the release etch step to reduce damage to the structural layers of a MEMS device that has noble material films. A preferred redox buffer comprises a soluble thiophosphoric acid, ester, or salt that maintains the electrochemical potential of the etchant solution at a level that prevents oxidation of the structural material. Therefore, the redox buffer preferentially oxidizes in place of the structural material. The sacrificial redox buffer thereby protects the exposed structural layers while permitting the dissolution of sacrificial oxide layers during the release etch.

  11. Purification and characterization of the oxygenase component of biphenyl 2,3-dioxygenase from Pseudomonas sp. strain LB400.

    PubMed Central

    Haddock, J D; Gibson, D T

    1995-01-01

    The iron-sulfur protein of biphenyl 2,3-dioxygenase (ISPBPH) was purified from Pseudomonas sp. strain LB400. The protein is composed of a 1:1 ratio of a large (alpha) subunit with an estimated molecular weight of 53,300 and a small (beta) subunit with an estimated molecular weight of 27,300. The native molecular weight was 209,000, indicating that the protein adopts an alpha 3 beta 3 native conformation. Measurements of iron and acid-labile sulfide gave 2 mol of each per mol of alpha beta heterodimer. The absorbance spectrum showed peaks at 325 and 450 nm with a broad shoulder at 550 nm. The spectrum was bleached upon reduction of the protein with NADPH in the presence of catalytic amounts of ferredoxinBPH and ferredoxinBPH oxidoreductase. The electron paramagnetic resonance spectrum of the reduced protein showed three signals at gx = 1.74, gy = 1.92, and gz = 2.01. These properties are characteristic of proteins that contain a Rieske-type [2Fe-2S] center. Biphenyl was oxidized to cis-(2R,3S)-dihydroxy-1-phenylcyclohexa-4,6-diene by ISPBPH in the presence of ferredoxinBPH, ferredoxinBPH oxidoreductase, NADPH, and ferrous iron. Naphthalene was also oxidized to a cis-dihydrodiol, but only 3% was converted to product under the same conditions that gave 92% oxidation of biphenyl. Benzene, toluene, 2,5-dichlorotoluene, carbazole, and dibenzothiophene were not oxidized. ISPBPH is proposed to be the terminal oxygenase component of biphenyl 2,3-dioxygenase where substrate binding and oxidation occur via addition of molecular oxygen and two reducing equivalents. PMID:7592331

  12. Site-directed circular dichroism of proteins: 1Lb bands of Trp resolve position-specific features in tear lipocalin

    PubMed Central

    Gasymov, Oktay K.; Abduragimov, Adil R.; Glasgow, Ben J.

    2008-01-01

    The absorption spectra of N-acetyl-L-tryptophanamide in various solvents were resolved into the sums of the 1La and 1Lb components. The relative intensities of the 0-0 transitions of the 1Lb bands correlate linearly with the solvent polarity values (ETN). A novel strategy, which utilizes a set of the experimental 1Lb bands, was employed to resolve the near-UV CD spectra of tryptophanyl residues. Resolved spectral parameters from the single-tryptophan mutants of tear lipocalin (TL), F99W and Y87W, corroborate the fluorescence as well as structural data of TL. Analysis of the 1Lb bands of the Trp CD spectra in proteins is a valuable tool to obtain the local features. The “DMSO-like” 1Lb band of Trp CD spectra may be used as a “fingerprint” to identify the tryptophanyl side chains in situations where the benzene rings of Trp have van der Waals interactions with the side chains of its nearest neighbor. In addition, the signs and intensities of the components hold information about the side-chain conformations and dynamics in proteins. Combined with Trp mutagenesis, this method we call site-directed circular dichroism is broadly applicable to various proteins to obtain the position-specific data. PMID:18047823

  13. Site-directed circular dichroism of proteins: 1Lb bands of Trp resolve position-specific features in tear lipocalin.

    PubMed

    Gasymov, Oktay K; Abduragimov, Adil R; Glasgow, Ben J

    2008-03-15

    The absorption spectra of N-acetyl-L-tryptophanamide in various solvents were resolved into the sums of the (1)L(a) and (1)L(b) components. The relative intensities of the 0-0 transitions of the (1)L(b) bands correlate linearly with the solvent polarity values (E(T)(N)). A novel strategy that uses a set of the experimental (1)L(b) bands was employed to resolve the near-UV circular dichroism (CD) spectra of tryptophanyl residues. Resolved spectral parameters from the single-tryptophan mutants of tear lipocalin (TL), F99W and Y87W, corroborate the fluorescence and structural data of TL. Analysis of the (1)L(b) bands of the Trp CD spectra in proteins is a valuable tool to obtain the local features. The dimethyl sulfoxide (DMSO)-like (1)L(b) band of Trp CD spectra may be used as a "fingerprint" to identify the tryptophanyl side chains in situations where the benzene rings of Trp have van der Waals interactions with the side chains of its nearest neighbor. In addition, the signs and intensities of the components hold information about the side chain conformations and dynamics in proteins. Combined with Trp mutagenesis, this method, which we call site-directed circular dichroism, is broadly applicable to various proteins to obtain the position-specific data. PMID:18047823

  14. Protein Phosphatase 2A Inhibition with LB100 Enhances Radiation-Induced Mitotic Catastrophe and Tumor Growth Delay in Glioblastoma.

    PubMed

    Gordon, Ira K; Lu, Jie; Graves, Christian A; Huntoon, Kristin; Frerich, Jason M; Hanson, Ryan H; Wang, Xiaoping; Hong, Christopher S; Ho, Winson; Feldman, Michael J; Ikejiri, Barbara; Bisht, Kheem; Chen, Xiaoyuan S; Tandle, Anita; Yang, Chunzhang; Arscott, W Tristram; Ye, Donald; Heiss, John D; Lonser, Russell R; Camphausen, Kevin; Zhuang, Zhengping

    2015-07-01

    Protein phosphatase 2A (PP2A) is a tumor suppressor whose function is lost in many cancers. An emerging, though counterintuitive, therapeutic approach is inhibition of PP2A to drive damaged cells through the cell cycle, sensitizing them to radiotherapy. We investigated the effects of PP2A inhibition on U251 glioblastoma cells following radiation treatment in vitro and in a xenograft mouse model in vivo. Radiotherapy alone augmented PP2A activity, though this was significantly attenuated with combination LB100 treatment. LB100 treatment yielded a radiation dose enhancement factor of 1.45 and increased the rate of postradiation mitotic catastrophe at 72 and 96 hours. Glioblastoma cells treated with combination LB100 and radiotherapy maintained increased γ-H2AX expression at 24 hours, diminishing cellular repair of radiation-induced DNA double-strand breaks. Combination therapy significantly enhanced tumor growth delay and mouse survival and decreased p53 expression 3.68-fold, compared with radiotherapy alone. LB100 treatment effectively inhibited PP2A activity and enhanced U251 glioblastoma radiosensitivity in vitro and in vivo. Combination treatment with LB100 and radiation significantly delayed tumor growth, prolonging survival. The mechanism of radiosensitization appears to be related to increased mitotic catastrophe, decreased capacity for repair of DNA double-strand breaks, and diminished p53 DNA-damage response pathway activity. PMID:25939762

  15. Lithostratigraphic and petrographic analysis of ICDP drill core LB-07A, Bosumtwi impact structure, Ghana

    NASA Astrophysics Data System (ADS)

    Coney, Louise; Gibson, Roger L.; Reimold, Wolf Uwe; Koeberl, Christian

    Lithostratigraphic and petrographic studies of drill core samples from the 545.08 m deep International Continental Scientific Drilling Program (ICDP) borehole LB-07A in the Bosumtwi impact structure revealed two sequences of impactites below the post-impact crater sediments and above coherent basement rock. The upper impactites (333.38-415.67 m depth) comprise an alternating sequence of suevite and lithic impact breccias. The lower impactite sequence (415.67-470.55 m depth) consists essentially of monomict impact breccia formed from meta-graywacke with minor shale, as well as two narrow injections of suevite, which differ from the suevites of the upper impactites in color and intensity of shock metamorphism of the clasts. The basement rock (470.55-545.08 m depth) is composed of lower greenschist-facies metapelites (shale, schist and minor phyllite), meta-graywacke, and minor meta-sandstone, as well as interlaminated quartzite and calcite layers. The basement also contains a number of suevite dikelets that are interpreted as injection veins, as well as a single occurrence of granophyric-textured rock, tentatively interpreted as a hydrothermally altered granitic intrusion likely related to the regional pre-impact granitoid complexes. Impact melt fragments are not as prevalent in LB-07A suevite as in the fallout suevite facies around the northern crater rim; on average, 3.6 vol% of melt fragments is seen in the upper suevites and up to 18 vol% in the lower suevite occurrences. Shock deformation features observed in the suevites and polymict lithic breccias include planar deformation features in quartz (1 to 3 sets), rare diaplectic quartz glass, and very rare diaplectic feldspar glass. Notably, no ballen quartz, which is abundant in the fallout suevites, has been found in the within-crater impact breccias. An overall slight increase in the degree of shock metamorphism occurs with depth in the impactites, but considerably lower shock degrees are seen in the suevites of

  16. OGLE-2005-BLG-071Lb, the Most Massive M-Dwarf Planetary Companion?

    SciTech Connect

    Dong, S; Gould, A; Udalski, A; Anderson, J; Christie, G W; Gaudi, B S; Jaroszynski, M; Kubiak, M; Szymanski, M K; Pietrzynski, G; Soszynski, I; Szewczyk, O; Ulaczyk, K; Wyrzykowski, L; DePoy, D L; Fox, D B; Gal-Yam, A; Han, C; Lepine, S; McCormick, J; Ofek, E; Park, B; Pogge, R W; Abe, F; Bennett, D P; Bond, I A; Britton, T R; Gilmore, A C; Hearnshaw, J B; Itow, Y; Kamiya, K; Kilmartin, P M; Korpela, A; Masuda, K; Matsubara, Y; Motomura, M; Muraki, Y; Nakamura, S; Ohnishi, K; Okada, C; Rattenbury, N; Saito, T; Sako, T; Sasaki, M; Sullivan, D; Sumi, T; Tristram, P J; Yanagisawa, T; Yock, P M; Yoshoika, T; Albrow, M D; Beaulieu, J P; Brillant, S; Calitz, H; Cassan, A; Cook, K H; Coutures, C; Dieters, S; Prester, D D; Donatowicz, J; Fouque, P; Greenhill, J; Hill, K; Hoffman, M; Horne, K; J?rgensen, U G; Kane, S; Kubas, D; Marquette, J B; Martin, R; Meintjes, P; Menzies, J; Pollard, K R; Sahu, K C; Vinter, C; Wambsganss, J; Williams, A; Bode, M; Bramich, D M; Burgdorf, M; Snodgrass, C; Steele, I; Doublier, V; Foelmi, C

    2008-04-18

    We combine all available information to constrain the nature of OGLE-2005-BLG-071Lb, the second planet discovered by microlensing and the first in a high-magnification event. These include photometric and astrometric measurements from Hubble Space Telescope, as well as constraints from higher-order effects extracted from the ground-based light curve, such as microlens parallax, planetary orbital motion and finite-source effects. Our primary analysis leads to the conclusion that the host of Jovian planet OGLE-2005-BLG-071Lb is a foreground M dwarf, with mass M = 0.46 {+-} 0.04M{sub {circle_dot}}, distance D{sub l} = 3.3 {+-} 0.4 kpc, and thick-disk kinematics {nu}{sub LSR} {approx} 103 km s{sup -1}. From the best-fit model, the planet has mass M{sub p} = 3.5 {+-} 0.3 M{sub Jupiter}, lies at a projected separation r{sub {perpendicular}} = 3.6 {+-} 0.2 AU from its host and has an equilibrium temperature of T {approx} 50 K, i.e., similar to Neptune. A degenerate model less favored by {Delta}{sub {chi}}{sup 2} {approx} 4 gives essentially the same planetary mass M{sub p} = 3.3 {+-} 0.3 M{sub Jupiter} with a smaller projected separation, r{sub {perpendicular}} = 2.1 {+-} 0.1 AU, and higher equilibrium temperature T {approx} 68 K. These results from the primary analysis suggest that OGLE-2005-BLG-071Lb is likely to be the most massive planet yet discovered that is hosted by an M dwarf. However, the formation of such high-mass planetary companions in the outer regions of M-dwarf planetary systems is predicted to be unlikely within the core-accretion scenario. There are a number of caveats to this analysis, but these could mostly be resolved by a single astrometric measurement a few years after the event.

  17. Thin films under chemical stress. [Final Report], September 1, 1988--April 1, 1991

    SciTech Connect

    Not Available

    1991-12-01

    The goal of work on this project has been develop a set of experimental tools to allow investigators interested in transport, binding, and segregation phenomena in composite thin film structures to study these phenomena in situ. Work to-date has focuses on combining novel spatially-directed optical excitation phenomena, e.g. waveguide eigenmodes in thin dielectric slabs, surface plasmon excitations at metal-dielectric interfaces, with standard spectroscopies to understand dynamic processes in thin films and at interfaces. There have been two main scientific thrusts in the work and an additional technical project. In one thrust we have sought to develop experimental tools which will allow us to understand the chemical and physical changes which take place when thin polymer films are placed under chemical stress. In principle this stress may occur because the film is being swelled by a penetrant entrained in solvent, because interfacial reactions are occurring at one or more boundaries within the film structure, or because some component of the film is responding to an external stimulus (e.g. pH, temperature, electric field, or radiation). However all work to-date has focused on obtaining a clearer understanding penetrant transport phenomena. The other thrust has addressed the kinetics of adsorption of model n-alkanoic acids from organic solvents. Both of these thrusts are important within the context of our long-term goal of understanding the behavior of composite structures, composed of thin organic polymer films interspersed with Langmuir-Blodgett (LB) and self-assembled monolayers. In addition there has been a good deal of work to develop the local technical capability to fabricate grating couplers for optical waveguide excitation. This work, which is subsidiary to the main scientific goals of the project, has been successfully completed and will be detailed as well. 41 refs., 10 figs.

  18. In situ x-ray scattering study of the passive film on Ni(III) in sulfuric acid solution

    SciTech Connect

    Magnussen, O.M.; Scherer, J.; Ocko, B.M.; Behm, R.J.

    2000-02-17

    Results of an in situ X-ray scattering study of the passive film formed on Ni(111) electrodes by passivation in 0.05 M H{sub 2}SO{sub 4} (pH 1.0) at 0.50 V{sub Ag/AgCl} are reported and compared with results on the film formed by oxidation in air at room temperature. In both cases, ultrathin, (111)-oriented NiO films are observed, which are aligned with the Ni substrate lattice and slightly expanded along the surface normal with respect to bulk NiO. However, two major structural differences are found: (1) while on the air-formed oxide parallel (NiO-[1{bar 1}0] {parallel} Ni[1{bar 1}0]) and antiparallel (NiO[1{bar 1}0] {parallel} Ni[{bar 1}10]) oriented domains coexist, the passive film exhibits a well-defined antiparallel orientation and (2) the lattice of the passive film is, in contrast to that of the air-formed oxide, tilted relative to the substrate with a broad angular dispersion of the tilt angle centered at about 3.3{degree}.

  19. Characterization of a Novel Angular Dioxygenase from Fluorene-Degrading Sphingomonas sp. Strain LB126▿

    PubMed Central

    Schuler, Luc; Ní Chadhain, Sinéad M.; Jouanneau, Yves; Meyer, Christine; Zylstra, Gerben J.; Hols, Pascal; Agathos, Spiros N.

    2008-01-01

    In this study, the genes involved in the initial attack on fluorene by Sphingomonas sp. strain LB126 were investigated. The α and β subunits of a dioxygenase complex (FlnA1-FlnA2), showing 63 and 51% sequence identity, respectively, to the subunits of an angular dioxygenase from the gram-positive dibenzofuran degrader Terrabacter sp. strain DBF63, were identified. When overexpressed in Escherichia coli, FlnA1-FlnA2 was responsible for the angular oxidation of fluorene, 9-hydroxyfluorene, 9-fluorenone, dibenzofuran, and dibenzo-p-dioxin. Moreover, FlnA1-FlnA2 was able to oxidize polycyclic aromatic hydrocarbons and heteroaromatics, some of which were not oxidized by the dioxygenase from Terrabacter sp. strain DBF63. The quantification of resulting oxidation products showed that fluorene and phenanthrene were the preferred substrates of FlnA1-FlnA2. PMID:18156320

  20. A versatile 50 ft-lb-sec reaction wheel for TRMM and XTE missions

    NASA Astrophysics Data System (ADS)

    Bialke, Bill

    A 50 ft-lb-sec Reaction Wheel is being manufactured by ITHACO, Inc. for NASA's X-ray Timing Explorer (XTE) and Tropical Rainfall Measuring Mission (TRMM) missions, using the same mechanical assemblies as a similar Reaction Wheel developed by ITHACO for the Air Force's Advanced Research and Global Observation Satellite (ARGOS) (P91-1) mission. The versatile design allows variation in motor torque and speed capability with no mechanical modifications. State of the art ball bearing technology is combined with flight proven materials and conventional fabrication techniques to produce a relaible and manufacturable wheel assembly. An ironless armature brushless DC motor is incorporated for high efficiency and minimum weight. Comprehensive tradeoff analyses from the Reaction Wheel development are discussed for each component, and performance characteristics are presented for design variations from a high torque Reaction Wheel used in a three axis stabilized spacecraft to a low torque Momentum Wheel used in a momentum biased attitude Control System.

  1. MOA-2013-BLG-220Lb: Massive planetary companion to galactic-disk host

    SciTech Connect

    Yee, J. C.; Gould, A.; Gaudi, B. S.; Han, C.; Choi, J.-Y.; Hwang, K.-H.; Jung, Y. K.; Skowron, J.; Udalski, A.; Bond, I. A.; Hundertmark, M.; Monard, L. A. G.; Porritt, I.; Nelson, P.; Bozza, V.; Albrow, M. D.; Christie, G. W.; DePoy, D. L.; Lee, C.-U.; McCormick, J.; Collaboration: μFUN Collaboration),; MOA Collaboration),; OGLE Collaboration),; RoboNet Collaboration),; and others

    2014-07-20

    We report the discovery of MOA-2013-BLG-220Lb, which has a super-Jupiter mass ratio q = 3.01 ± 0.02 × 10{sup –3} relative to its host. The proper motion, μ = 12.5 ± 1 mas yr{sup –1}, is one of the highest for microlensing planets yet discovered, implying that it will be possible to separately resolve the host within ∼7 yr. Two separate lines of evidence imply that the planet and host are in the Galactic disk. The planet could have been detected and characterized purely with follow-up data, which has important implications for microlensing surveys, both current and into the Large Synoptic Survey Telescope (LSST) era.

  2. The success story at Birchwood: Operation below 0.10 lb/10{sup 6} Btu

    SciTech Connect

    Cohen, M.B.

    1999-07-01

    The Southern Energy, Inc. (SEI) Birchwood Power Facility is successfully operating on coal maintaining stack NO{sub x} emissions below 0.10 lb/10{sup 6} Btu (73 ppmvd at 3% O{sub 2}, 43 ng/J) on a 30-day rolling average. The cogeneration plant uses an integrated approach for controlling NO{sub x} including in-furnace reduction from a TFS 2000{trademark} firing system and post-combustion control from selective catalytic reduction (SCR). The plant began operation in November 1996, and continues to meet the State of Virginia's stringent environmental requirements under all operating conditions. This paper focuses upon recent performance and operation of the NO{sub x} control technologies. Operational data of the NO{sub x} emissions from the steam generator as well as those exiting the SCR are presented. In addition, the latest information from the Spring '99 outage is discussed.

  3. Adhesion of human Lactobacillus acidophilus strain LB to human enterocyte-like Caco-2 cells.

    PubMed

    Chauvière, G; Coconnier, M H; Kernéis, S; Fourniat, J; Servin, A L

    1992-08-01

    Twenty-five strains of lactobacilli were tested for their ability to adhere to human enterocyte-like Caco-2 cells in culture. Seven Lactobacillus strains adhered well to the Caco-2 cells, of which three possessed calcium-independent adhesion properties. A high level of calcium-independent adhesion was observed with the human stool isolate Lactobacillus acidophilus strain LB. Scanning electron microscopy revealed that this strain adhered to the apical brush border of the cells. Adhesion increased in parallel with the morphological and functional differentiation of the Caco-2 cells. Two Lactobacillus components were involved in this adhesion. One was protease-resistant and bacterial-surface-associated; the other was heat-stable, extracellular and protease-sensitive. PMID:1527509

  4. Structural tailoring of hydrogen-bonded poly(acrylic acid)/poly(ethylene oxide) multilayer thin films for reduced gas permeability.

    PubMed

    Xiang, Fangming; Ward, Sarah M; Givens, Tara M; Grunlan, Jaime C

    2015-02-01

    Hydrogen bonded poly(acrylic acid) (PAA)/poly(ethylene oxide) (PEO) layer-by-layer assemblies are highly elastomeric, but more permeable than ionically bonded thin films. In order to expand the use of hydrogen-bonded assemblies to applications that require a better gas barrier, the effect of assembling pH on the oxygen permeability of PAA/PEO multilayer thin films was investigated. Altering the assembling pH leads to significant changes in phase morphology and bonding. The amount of intermolecular hydrogen bonding between PAA and PEO is found to increase with increasing pH due to reduction of COOH dimers between PAA chains. This improved bonding leads to smaller PEO domains and lower gas permeability. Further increasing the pH beyond 2.75 results in higher oxygen permeability due to partial deprotonation of PAA. By setting the assembling pH at 2.75, the negative impacts of COOH dimer formation and PAA ionization on intermolecular hydrogen bonding can be minimized, leading to a 50% reduction in the oxygen permeability of the PAA/PEO thin film. A 20 bilayer coating reduces the oxygen transmission rate of a 1.58 mm natural rubber substrate by 20 ×. These unique nanocoatings provide the opportunity to impart a gas barrier to elastomeric substrates without altering their mechanical behavior. PMID:25519816

  5. Effect of various de-anodizing techniques on the surface stability of non-colored and colored nanoporous AAO films in acidic solution

    NASA Astrophysics Data System (ADS)

    Awad, Ahmed M.; Shehata, Omnia S.; Heakal, Fakiha El-Taib

    2015-12-01

    Anodic aluminum oxide (AAO) is well known as an important nanostructured material, and a useful template in the fabrication of nanostructures. Nanoporous anodic alumina (PAA) with high open porosity was prepared by adopting three de-anodizing regimes following the first anodizing step and preceding the second one. The de-anodizing methods include electrolytic etching (EE) and chemical etching using either phosphoric acid (PE) or sodium hydroxide (HE) solutions. Three of the obtained AAO samples were black colored by electrodeposition of copper nanoparticles in their pores. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques were used to characterize the electrochemical performance of the two sets of the prepared samples. In general, the data obtained in aggressive aerated 0.5 M HCl solution demonstrated dissimilar behavior for the three prepared samples despite that the second anodizing step was the same for all of them. The data indicated that the resistance and thickness of the inner barrier part of nano-PAA film, are the main controlling factors determining its stability. On the other hand, coloring the film decreased its stability due to the galvanic effect. The difference in the electrochemical behavior of the three colored samples was discussed based on the difference in both the pore size and thickness of the outer porous part of PAA film as supported by SEM, TEM and cross-sectional micrographs. These results can thus contribute for better engineering applications of nanoporous AAO.

  6. Antagonistic activity of Lactobacillus acidophilus LB against intracellular Salmonella enterica serovar Typhimurium infecting human enterocyte-like Caco-2/TC-7 cells.

    PubMed

    Coconnier, M H; Liévin, V; Lorrot, M; Servin, A L

    2000-03-01

    To gain further insight into the mechanism by which lactobacilli develop antimicrobial activity, we have examined how Lactobacillus acidophilus LB inhibits the promoted cellular injuries and intracellular lifestyle of Salmonella enterica serovar Typhimurium SL1344 infecting the cultured, fully differentiated human intestinal cell line Caco-2/TC-7. We showed that the spent culture supernatant of strain LB (LB-SCS) decreases the number of apical serovar Typhimurium-induced F-actin rearrangements in infected cells. LB-SCS treatment efficiently decreased transcellular passage of S. enterica serovar Typhimurium. Moreover, LB-SCS treatment inhibited intracellular growth of serovar Typhimurium, since treated intracellular bacteria displayed a small, rounded morphology resembling that of resting bacteria. We also showed that LB-SCS treatment inhibits adhesion-dependent serovar Typhimurium-induced interleukin-8 production. PMID:10698785

  7. Protein-triggered instant disassembly of biomimetic Layer-by-Layer films.

    PubMed

    Abdelkebir, Khalil; Gaudière, Fabien; Morin-Grognet, Sandrine; Coquerel, Gérard; Atmani, Hassan; Labat, Béatrice; Ladam, Guy

    2011-12-01

    Layer-by-Layer (LbL) coatings are promising tools for the biofunctionalization of biomaterials, as they allow stress-free immobilization of proteins. Here, we explore the possibility to immobilize phosvitin, a highly phosphorylated protein viewed as a model of bone phosphoproteins and, as such, a potential promotive agent of surface-directed biomineralization, into biomimetic LbL architectures. Two immobilization protocols are attempted, first, using phosvitin as the polyanionic component of phosvitin/poly-(L-lysine) films and, second, adsorbing it onto preformed chondroitin sulfate/poly-(L-lysine) films. Surprisingly, it is neither possible to embed phosvitin as the constitutive polyanion of the LbL architectures nor to adsorb it atop preformed films. Instead, phosvitin triggers instant massive film disassembly. This unexpected, incidentally detected behavior constitutes the first example of destructive interactions between LbL films and a third polyelectrolyte, a fortiori a protein, which might open a route toward new stimuli-responsive films for biosensing or drug delivery applications. Interestingly, additional preliminary results still indicate a promotive effect of phosvitin-containing remnant films on calcium phosphate deposition. PMID:22007998

  8. Mechanical Properties of High Manganese Austenitic Stainless Steel JK2LB for ITER Central Solenoid Jacket Material

    NASA Astrophysics Data System (ADS)

    Saito, Toru; Kawano, Katsumi; Yamazaki, Toru; Ozeki, Hidemasa; Isono, Takaaki; Hamada, Kazuya; Devred, Arnaud; Vostner, Alexander

    A suite of advanced austenitic stainless steels are used for the ITER TF, CS and PF coil systems.These materials will be exposed to cyclic-stress at cryogenic temperature. Therefore, high manganese austenitic stainless steel JK2LB, which has high tensile strength, high ductility and high resistance to fatigue at 4 K has been chosen for the CS conductor. The cryogenic temperature mechanical property data of this material are very important for the ITER magnet design. This study is focused on mechanical characteristics of JK2LB and its weld joint.

  9. Effectiveness of nanometer-sized extracellular matrix layer-by-layer assembled films for a cell membrane coating protecting cells from physical stress.

    PubMed

    Matsuzawa, Atsushi; Matsusaki, Michiya; Akashi, Mitsuru

    2013-06-18

    In recent approaches to tissue engineering, cells face various stresses from physical, chemical, and environmental stimuli. For example, coating cell membranes with nanofilms using layer-by-layer (LbL) assembly requires many cycles of centrifugation, causing physical (gravity) stress. Damage to cell membranes can cause the leakage of cytosol molecules or sometimes cell death. Accordingly, we evaluated the effectiveness of LbL films prepared on cell membranes in protecting cells from physical stresses. After two steps of LbL assembly using Tris-HCl buffer solution without polymers or proteins (four centrifugation cycles including washing), hepatocyte carcinoma (HepG2) cells showed extremely high cell death and the viability was ca. 15%. Their viability ultimately decreased to 6% after 9 steps of LbL assembly (18 cycles of centrifugation), which is the typical number of steps involved in preparing LbL nanofilms. However, significantly higher viability (>85%) of HepG2 cells was obtained after nine steps of LbL assembly employing fibronectin (FN)-gelatin (G) or type IV collagen (Col IV)-laminin (LN) solution combinations, which are typical components of an extracellular matrix (ECM), to fabricate 10-nm-thick LbL films. When LbL films of synthetic polymers created via electrostatic interactions were employed instead of the ECM films described above, the viability of the HepG2 cells after the same nine steps slightly decreased to 61%. The protective effects of LbL films were strongly dependent on their thickness, and the critical thickness was >5 nm. Surprisingly, a high viability of over 85% was achieved even under extreme physical stress conditions (10,000 rpm). We evaluated the leakage of lactate dehydrogenase (LDH) during the LbL assembly processes to clarify the protective effect, and a reduction in LDH leakage was clearly observed when using FN-G nanofilms. Moreover, the LbL films do not inhibit cell growth during cell culturing, suggesting that these coated cells

  10. Detecting insulation defects in metal/plastic films

    NASA Technical Reports Server (NTRS)

    Buggle, R. N.

    1980-01-01

    Simple apparatus checks insulation between plastic and metal surfaces. Film can be inspected more accurately; apparatus can spot minute electrical contaminants between plastic and metal films. Steel roller connected to high-range ohmmeter is guided over entire plastic area of test sample. Roller weighs 2 lb. (0.9 kg), which effectively translates into 250-psi (1.76X10 to 6th power -N/sq m) contact pressure at plastic surface sufficient to locate microscopic defects.

  11. Electrically conductive palladium-containing polyimide films

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; Furtsch, T. A.; Taylor, L. T.

    1981-01-01

    Palladium addition makes light, flexible film with low resistivity to relieve space charging. Polyimide film is prepared in four steps: preparation of polyamic acid in polar solvent; addition of soluable palladium complex salt; fabrication of film of "palladium polyamic acid" solution; and thermal imidization of film to palladium-containing polyimide by 300 C heating. Lowered resistivities were achieved without loss in film flexibility or increase in film weight.

  12. A conformation and orientation model of the carboxylic group of fatty acids dependent on chain length in a Langmuir monolayer film studied by polarization-modulation infrared reflection absorption spectroscopy.

    PubMed

    Muro, Maiko; Itoh, Yuki; Hasegawa, Takeshi

    2010-09-01

    The conformation of the carboxylic group of fatty acids in a Langmuir (L) monolayer film on water is described in relation to the aggregation property of the hydrocarbon chain. Polarization-modulation infrared reflection absorption spectra (PM-IRRAS) of L films of heptadecanoic acid (C(17)), octadecanoic acid (C(18)), and nonadecanoic acid (C(19)) exhibit systematic spectral changes in both the C-H and C=O stretching vibration regions. Through a stabilization analysis of the L films at a high surface pressure, the C(19) L film has been found outstandingly stable exhibiting no film shrink, while the other two compounds exhibit a large shrink at high surface pressure. By taking into account the uniquely high aggregation property of the hydrocarbon chains of C(19), the three major bands arising from the C=O stretching vibration mode propose three types of molecular conformations about the carboxylic group, which are elucidated by a balance of the hydration of the carboxylic group, the chain length of the hydrocarbon chain, and the surface pressure. PMID:20718412

  13. An automated spin-assisted approach for molecular layer-by-layer assembly of crosslinked polymer thin films

    SciTech Connect

    Chan, Edwin P.; Chung, Jun Young; Stafford, Christopher M.; Lee, Jung-Hyun

    2012-11-15

    We present the design of an automated spin-coater that facilitates fabrication of polymer films based on molecular layer-by-layer (mLbL) assembly. Specifically, we demonstrate the synthesis of ultrathin crosslinked fully-aromatic polyamide (PA) films that are chemically identical to polymer membranes used in water desalination applications as measured by X-ray photoelectron spectroscopy. X-ray reflectivity measurements indicate that the automated mLbL assembly creates films with a constant film growth rate and minimal roughness compared with the traditional interfacial polymerization of PA. This automated spin-coater improves the scalability and sample-to-sample consistency by reducing human involvement in the mLbL assembly.

  14. Immunosensor for diagnosis of Alzheimer disease using amyloid-β 1-40 peptide and silk fibroin thin films.

    PubMed

    Gonçalves, J M; Lima, L R; Moraes, M L; Ribeiro, S J L

    2016-11-01

    Layer-by-Layer (LbL) films containing silk fibroin (SF) and the 40 aminoacid-long amyloid-β peptide (Aβ1-40) were prepared with the purpose of developing a new prototype of an electrochemical immunosensor. The film showed a satisfactory growth in quartz substrate and screen-printed carbon electrodes, as observed by UV-vis spectroscopy and cyclic voltammetric, respectively. The peptide immobilized in LbL films in junction with SF shows secondary structure induced, as shown by circular dichroism measurements, favoring the interaction SF/peptide LbL film with the specific antibody. Immunosensor showed a linear response in the presence of the antibody with concentrations from 0 to 10ngmL(-1) both analyzed by current changes in 0.3V and voltammogram area. This system can be applied as a new prototype for preliminary diagnosis of Alzheimer's disease. PMID:27524028

  15. Antimicrobial polylactic acid packaging films against Listeria and Salmonella in culture medium and on ready-to-eat meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The contamination of Listeria monocytogenes and Salmonella spp. in ready-to-eat (RTE) meat products has been a concern for the meat industry. In this study, edible chitosan-acid solutions incorporating lauric arginate ester (LAE), sodium lactate (NaL) and sorbic acid (SA) alone or in combinations we...

  16. Structural and electrochemical properties of lutetium bis-octachloro-phthalocyaninate nanostructured films. Application as voltammetric sensors.

    PubMed

    Alessio, P; Apetrei, C; Rubira, R J G; Constantino, C J L; Medina-Plazal, C; De Saja, J A; Rodríguez-Méndez, M L

    2014-09-01

    Thin films of the bis[2,3,9,10,16,17,23,24-octachlorophthalocyaninate] lutetium(III) complex (LuPc2Cl32) have been prepared by the Langmuir-Blodgett and the Langmuir-Schaefer (LS) techniques. The influence of the chlorine substituents in the structure of the films and in their spectroscopic, electrochemical and sensing properties has been evaluated. The π-A isotherms exhibit a monolayer stability greater than the observed in the unsubstituted analogue (LuPc2), being easily transferred to solid substrates, also in contrast to LuPc2. The LB and LS films present a linear growth forming stratified layers, monitored by UV-VIS absorption spectroscopy. The latter also revealed the presence of LuPc2Cl32 in the form of monomers and aggregates in both films. The FTIR data showed that the LuPc2Cl32 molecules present a non-preferential arrangement in both films. Monolayers of LB and LS were deposited onto 6 nm Ag island films to record surface-enhanced resonance Raman scattering (SERRS), leading to enhancement factors close to 2 x 10(3). Finally, LB and LS films deposited onto ITO glass have been successfully used as voltammetric sensors for the detection of catechol. The improved electroactivity of the LB and LS films has been confirmed by the reduction of the overpotential of the oxidation of catechol. The enhancement of the electrocatalytic effect observed in LB and LS films is the result of the nanostructured arrangement of the surface which increases the number of active sites. The sensors show a limit of detection in the range of 10(-5) mol/L. PMID:25924327

  17. Synergy between polyaniline and OMt clay mineral in Langmuir-Blodgett films for the simultaneous detection of traces of metal ions.

    PubMed

    de Barros, Anerise; Ferreira, Mariselma; Constantino, Carlos José Leopoldo; Bortoleto, José Roberto Ribeiro; Ferreira, Marystela

    2015-04-01

    We report on Langmuir-Blodgett (LB) films made with emeraldine salt polyaniline (PAni-ES) and organophilic montmorillonite clay mineral (OMt), where synergy between the components was reached to yield an enhanced performance in detecting trace levels of cadmium (Cd(2+)), lead (Pb(2+)) and copper (Cu(2+)). Detection was carried out using square wave anodic stripping (SWAS) voltammetry with indium tin oxide (ITO) electrodes modified with LB films of PAni-ES/OMt nanocomposite, whose data were compared to those obtained with electrodes coated with neat PAni-ES and neat OMt LB films. The enhanced performance in the nanocomposite may be attributed to the stabilizing and ordering effect promoted by OMt in PAni-ES Langmuir films, which then led to more homogeneous LB films. According to X-ray diffraction data, the stacking of OMt layers was preserved in the LB films and therefore the PAni-ES chains did not cause clay mineral exfoliation. Instead, OMt affected the polaronic state of PAni-ES as indicated in UV-vis, Raman and FTIR spectra, also consistent with the changes observed for the Langmuir films. Taken together these results do indicate that semiconducting polymers and clay minerals may be combined for enhancing the electrical properties of nanostructures for sensing and related applications. PMID:25761908

  18. Impact of LbSapSal Vaccine in Canine Immunological and Parasitological Features before and after Leishmania chagasi-Challenge

    PubMed Central

    Resende, Lucilene Aparecida; Aguiar-Soares, Rodrigo Dian de Oliveira; Gama-Ker, Henrique; Roatt, Bruno Mendes; de Mendonça, Ludmila Zanandreis; Alves, Marina Luiza Rodrigues; da Silveira-Lemos, Denise; Corrêa-Oliveira, Rodrigo; Martins-Filho, Olindo Assis; Araújo, Márcio Sobreira Silva; Fujiwara, Ricardo Toshio; Gontijo, Nelder Figueiredo; Reis, Alexandre Barbosa; Giunchetti, Rodolfo Cordeiro

    2016-01-01

    Dogs represent the most important domestic reservoir of L. chagasi (syn. L. infantum). A vaccine against canine visceral leishmaniasis (CVL) would be an important tool for decreasing the anxiety related to possible L. chagasi infection and for controlling human visceral leishmaniasis (VL). Because the sand fly salivary proteins are potent immunogens obligatorily co-deposited during transmission of Leishmania parasites, their inclusion in an anti-Leishmania vaccine has been investigated in past decades. We investigated the immunogenicity of the “LbSapSal” vaccine (L. braziliensis antigens, saponin as adjuvant, and Lutzomyia longipalpis salivary gland extract) in dogs at baseline (T0), during the post-vaccination protocol (T3rd) and after early (T90) and late (T885) times following L. chagasi-challenge. Our major data indicated that immunization with “LbSapSal” is able to induce biomarkers characterized by enhanced amounts of type I (tumor necrosis factor [TNF]-α, interleukin [IL]-12, interferon [IFN]-γ) cytokines and reduction in type II cytokines (IL-4 and TGF-β), even after experimental challenge. The establishment of a prominent pro-inflammatory immune response after “LbSapSal” immunization supported the increased levels of nitric oxide production, favoring a reduction in spleen parasitism (78.9%) and indicating long-lasting protection against L. chagasi infection. In conclusion, these results confirmed the hypothesis that the “LbSapSal” vaccination is a potential tool to control the Leishmania chagasi infection. PMID:27556586

  19. Volumetric Properties of the Mixture Tetrachloromethane CCl4 + C3H7NO2 2-Nitropropane (LB1897, VMSD1211)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Hnědkovský, L.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A `Binary Liquid Systems of Nonelectrolytes' of Volume 23 `Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV `Physical Chemistry'. It corresponds to the data set LB1897 of the ELBT database.

  20. SEQUENCE SIMILARITIES IN THE GENES ENCODING POLY- CHLORINATED BIPHENYL DEGRADATION BY PSEUDOMONAS STRAIN LB400 AND ALCALIGENES EUTROPHUS H850

    EPA Science Inventory

    DNA-DNA hybridization was used to compare the Pseudomonas strain LB400 genes for polychlorinated biphenyl (PCB) degradation with those from seven other PCB-degrading strains. Significant hybridization was detected to the genome of Alcaligenes eutrophus H850, a strain similar to L...