Science.gov

Sample records for acid levels increased

  1. Increased isoprostane levels in oleic acid-induced lung injury

    SciTech Connect

    Ono, Koichi; Koizumi, Tomonobu; Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki; Nakagawa, Rikimaru; Obata, Toru

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  2. Ocean acidification increases fatty acids levels of larval fish.

    PubMed

    Díaz-Gil, Carlos; Catalán, Ignacio A; Palmer, Miquel; Faulk, Cynthia K; Fuiman, Lee A

    2015-07-01

    Rising levels of anthropogenic carbon dioxide in the atmosphere are acidifying the oceans and producing diverse and important effects on marine ecosystems, including the production of fatty acids (FAs) by primary producers and their transfer through food webs. FAs, particularly essential FAs, are necessary for normal structure and function in animals and influence composition and trophic structure of marine food webs. To test the effect of ocean acidification (OA) on the FA composition of fish, we conducted a replicated experiment in which larvae of the marine fish red drum (Sciaenops ocellatus) were reared under a climate change scenario of elevated CO2 levels (2100 µatm) and under current control levels (400 µatm). We found significantly higher whole-body levels of FAs, including nine of the 11 essential FAs, and altered relative proportions of FAs in the larvae reared under higher levels of CO2. Consequences of this effect of OA could include alterations in performance and survival of fish larvae and transfer of FAs through food webs. PMID:26179801

  3. High glucose levels reduce fatty acid oxidation and increase triglyceride accumulation in human placenta.

    PubMed

    Visiedo, Francisco; Bugatto, Fernando; Sánchez, Viviana; Cózar-Castellano, Irene; Bartha, Jose L; Perdomo, Germán

    2013-07-15

    Placentas of women with gestational diabetes mellitus (GDM) exhibit an altered lipid metabolism. The mechanism by which GDM is linked to alterations in placental lipid metabolism remains obscure. We hypothesized that high glucose levels reduce mitochondrial fatty acid oxidation (FAO) and increase triglyceride accumulation in human placenta. To test this hypothesis, we measured FAO, fatty acid esterification, de novo fatty acid synthesis, triglyceride levels, and carnitine palmitoyltransferase activities (CPT) in placental explants of women with GDM or no pregnancy complication. In women with GDM, FAO was reduced by ~30% without change in mitochondrial content, and triglyceride content was threefold higher than in the control group. Likewise, in placental explants of women with no complications, high glucose levels reduced FAO by ~20%, and esterification increased linearly with increasing fatty acid concentrations. However, de novo fatty acid synthesis remained unchanged between high and low glucose levels. In addition, high glucose levels increased triglyceride content approximately twofold compared with low glucose levels. Furthermore, etomoxir-mediated inhibition of FAO enhanced esterification capacity by ~40% and elevated triglyceride content 1.5-fold in placental explants of women, with no complications. Finally, high glucose levels reduced CPT I activity by ~70% and phosphorylation levels of acetyl-CoA carboxylase by ~25% in placental explants of women, with no complications. We reveal an unrecognized regulatory mechanism on placental fatty acid metabolism by which high glucose levels reduce mitochondrial FAO through inhibition of CPT I, shifting flux of fatty acids away from oxidation toward the esterification pathway, leading to accumulation of placental triglycerides. PMID:23673156

  4. Dietary alpha-linolenic acid increases brain but not heart and liver docosahexaenoic acid levels.

    PubMed

    Barceló-Coblijn, Gwendolyn; Collison, Lauren W; Jolly, Christopher A; Murphy, Eric J

    2005-08-01

    Fish oil-enriched diets increase n-3 FA in tissue phospholipids; however, a similar effect by plant-derived n-3 FA is poorly defined. To address this question, we determined mass changes in phospholipid FA, individual phospholipid classes, and cholesterol in the liver, heart, and brain of rats fed diets enriched in flax oil (rich in 18:3n-3), fish oil (rich in 22:6n-3 and 20:5n-3), or safflower oil (rich in 18:2n-6) for 8 wk. In the heart and liver phospholipids, 22:6n-3 levels increased only in the fish oil group, although rats fed flax oil accumulated 20:5n-3 and 22:5n-3. However, in the brain, the flax and fish oil diets increased the phospholipid 22:6n-3 mass. In all tissues, these diets decreased the 20:4n-6 mass, although the effect was more marked in the fish oil than in the flax oil group. Although these data do not provide direct evidence for 18:3n-3 elongation and desaturation by the brain, they demonstrate that 18:3n-3-enriched diets reduced tissue 20:4n-6 levels and increased cellular n-3 levels in a tissue-dependent manner. We hypothesize, based on the lack of increased 22:6n-3 but increased 18:3n-3 in the liver and heart, that the flax oil diet increased circulating 18:3n-3, thereby presenting tissue with this EFA for further elongation and desaturation. PMID:16296397

  5. Salicylic Acid Treatment Increases the Levels of Triterpene Glycosides in Black Cohosh (Actaea Racemosa) Rhizomes.

    PubMed

    De Capite, Annette; Lancaster, Tyler; Puthoff, David

    2016-01-01

    Black cohosh (Actaea racemosa) serves as the host plant for the Appalachian azure butterfly, Celastrina neglectamajor. Overharvesting of Black cohosh for the dietary supplement industry may result in its extirpation, and may also cause the elimination of the dependent butterfly. One way to increase or maintain the number of host plants in forested environments would be to reduce the number harvested, for example by increasing the levels of the desired metabolites in Black cohosh rhizomes. The secondary metabolites actein and deoxyactein are triterpene glycosides and are among the compounds associated with the putative activity of Black cohosh extracts. Acetein and deoxyacetein are used to standardize Black cohosh supplements. To gain an understanding of mechanisms that may control actein and deoxyactein accumulation, Black cohosh rhizomes were treated with exogenous salicylic acid, jasmonic acid, or ethylene, or were mechanically wounded. Salicylic acid treatment significantly increased the levels of actein and deoxyactein in the rhizome of Black cohosh, suggesting that the synthesis of triterpene glycosides is controlled in part by salicylic acid. Using salicylic acid or related chemicals to increase the levels of actein and deoxyactein in rhizomes may help supply the supplement industry and, simultaneously, help conserve Black cohosh and species dependent upon it. PMID:26634573

  6. Prednisone lowers serum uric acid levels in patients with decompensated heart failure by increasing renal uric acid clearance.

    PubMed

    Liu, Chao; Zhen, Yuzhi; Zhao, Qingzhen; Zhai, Jian-Long; Liu, Kunshen; Zhang, Jian-Xin

    2016-07-01

    Clinical studies have shown that large doses of prednisone could lower serum uric acid (SUA) in patients with decompensated heart failure (HF); however, the optimal dose of prednisone and underlying mechanisms are unknown. Thirty-eight patients with decompensated HF were randomized to receive standard HF care alone (n = 10) or with low-dose (15 mg/day, n = 8), medium-dose (30 mg/day, n = 10), or high-dose prednisone (60 mg/day, n = 10), for 10 days. At the end of the study, only high-dose prednisone significantly reduced SUA, whereas low- and medium-dose prednisone and standard HF care had no effect on SUA. The reduction in SUA in high-dose prednisone groups was associated with a significant increase in renal uric acid clearance. In conclusion, prednisone can reduce SUA levels by increasing renal uric acid clearance in patients with decompensated HF. PMID:27144905

  7. Increased tachykinin levels in induced sputum from asthmatic and cough patients with acid reflux

    PubMed Central

    Patterson, Robert N; Johnston, Brian T; Ardill, Joy E S; Heaney, Liam G; McGarvey, Lorcan P A

    2007-01-01

    Background Acid reflux may aggravate airway disease including asthma and chronic cough. One postulated mechanism concerns a vagally‐mediated oesophageal‐tracheobronchial reflex with airway sensory nerve activation and tachykinin release. Aim To test the hypothesis that patients with airways disease and reflux have higher airway tachykinin levels than those without reflux. Methods Thirty‐two patients with airways disease (16 with mild asthma and 16 non‐asthmatic subjects with chronic cough) underwent 24 h oesophageal pH monitoring. Acid reflux was defined as increased total oesophageal acid exposure (% total time pH <4 of >4.9% at the distal probe). All subjects underwent sputum induction. Differential cell counts and concentrations of substance P (SP), neurokinin A (NKA), albumin and α2‐macroglobulin were determined. Results SP and NKA levels were significantly higher in patients with reflux than in those without (SP: 1434 (680) pg/ml vs 906 (593) pg/ml, p = 0.026; NKA: 81 (33) pg/ml vs 52 (36) pg/ml, p = 0.03). Significantly higher tachykinin levels were also found in asthmatic patients with reflux than in asthmatic patients without reflux (SP: 1508 (781) pg/ml vs 737 (512) pg/ml, p = 0.035; NKA: median (interquartile range 108 (85–120) pg/ml vs 75 (2–98) pg/ml, p = 0.02). In patients with asthma there was a significant positive correlation between distal oesophageal acid exposure and SP levels (r = 0.59, p = 0.01) and NKA levels (r = 0.56, p = 0.02). Non‐significant increases in SP and NKA were measured in patients with cough with reflux (SP: 1534.71 (711) pg/ml vs 1089 (606) pg/ml, p = 0.20; NKA: 56 (43) pg/ml vs 49 (17) pg/ml, p = 0.71). No significant difference in differential cell counts or any other biochemical parameter was noted between study groups. Conclusion This study demonstrates increased airway tachykinin levels in patients with asthma and cough patients with

  8. Plasma Circulating Nucleic Acids Levels Increase According to the Morbidity of Plasmodium vivax Malaria

    PubMed Central

    Franklin, Bernardo S.; Vitorino, Barbara L. F.; Coelho, Helena C.; Menezes-Neto, Armando; Santos, Marina L. S.; Campos, Fernanda M. F.; Brito, Cristiana F.; Fontes, Cor J.; Lacerda, Marcus V.; Carvalho, Luzia H.

    2011-01-01

    Background Given the increasing evidence of Plasmodium vivax infections associated with severe and fatal disease, the identification of sensitive and reliable markers for vivax severity is crucial to improve patient care. Circulating nucleic acids (CNAs) have been increasingly recognized as powerful diagnostic and prognostic tools for various inflammatory diseases and tumors as their plasma concentrations increase according to malignancy. Given the marked inflammatory status of P. vivax infection, we investigated here the usefulness of CNAs as biomarkers for malaria morbidity. Methods and Findings CNAs levels in plasma from twenty-one acute P. vivax malaria patients from the Brazilian Amazon and 14 malaria non-exposed healthy donors were quantified by two different methodologies: amplification of the human telomerase reverse transcriptase (hTERT) genomic sequence by quantitative real time PCR (qPCR), and the fluorometric dsDNA quantification by Pico Green. CNAs levels were significantly increased in plasma from P. vivax patients as compared to healthy donors (p<0.0001). Importantly, plasma CNAs levels were strongly associated with vivax morbidity (p<0.0001), including a drop in platelet counts (p = 0.0021). These findings were further sustained when we assessed CNAS levels in plasma samples from 14 additional P. vivax patients of a different endemic area in Brazil, in which CNAS levels strongly correlated with thrombocytopenia (p = 0.0072). We further show that plasma CNAs levels decrease and reach physiological levels after antimalarial treatment. Although we found both host and parasite specific genomic sequences circulating in plasma, only host CNAs clearly reflected the clinical spectrum of P. vivax malaria. Conclusions Here, we provide the first evidence of increased plasma CNAs levels in malaria patients and reveal their potential as sensitive biomarkers for vivax malaria morbidity. PMID:21611202

  9. High levels of retinal membrane docosahexaenoic acid increase susceptibility to stress-induced degeneration.

    PubMed

    Tanito, Masaki; Brush, Richard S; Elliott, Michael H; Wicker, Lea D; Henry, Kimberly R; Anderson, Robert E

    2009-05-01

    The fat-1 gene cloned from C. elegans encodes an n-3 fatty acid desaturase that converts n-6 to n-3 PUFA. Mice carrying the fat-1 transgene and wild-type controls were fed an n-3-deficient/n-6-enriched diet [fat-1- safflower oil (SFO) and wt-SFO, respectively]. Fatty acid profiles of rod outer segments (ROS), cerebellum, plasma, and liver demonstrated significantly lower n-6/n-3 ratios and higher docosahexaenoic acid (DHA) levels in fat-1-SFO compared with wt-SFO. When mice were exposed to light stress: 1) the outer nuclear layer (ONL) thickness was reduced; 2) amplitudes of the electroretinogram (ERG) were lower; 3) the number of apoptotic photoreceptor cells was greater; and 4) modification of retinal proteins by 4-hydroxyhexenal (4-HHE), an end-product of n-3 PUFA oxidation was increased in both fat-1-SFO and wt mice fed a regular lab chow diet compared with wt-SFO. The results indicate a positive correlation between the level of DHA, the degree of n-3 PUFA lipid peroxidation, and the vulnerability of the retina to photooxidative stress. In mice not exposed to intense light, the reduction in DHA resulted in reduced efficacy in phototransduction gain steps, while no differences in the retinal morphology or retinal biochemistry. These results highlight the dual roles of DHA in cellular physiology and pathology. PMID:19023138

  10. Human Insulin Resistance Is Associated With Increased Plasma Levels of 12α-Hydroxylated Bile Acids

    PubMed Central

    Haeusler, Rebecca A.; Astiarraga, Brenno; Camastra, Stefania; Accili, Domenico; Ferrannini, Ele

    2013-01-01

    Bile acids (BAs) exert pleiotropic metabolic effects, and physicochemical properties of different BAs affect their function. In rodents, insulin regulates BA composition, in part by regulating the BA 12α-hydroxylase CYP8B1. However, it is unclear whether a similar effect occurs in humans. To address this question, we examined the relationship between clamp-measured insulin sensitivity and plasma BA composition in a cohort of 200 healthy subjects and 35 type 2 diabetic (T2D) patients. In healthy subjects, insulin resistance (IR) was associated with increased 12α-hydroxylated BAs (cholic acid, deoxycholic acid, and their conjugated forms). Furthermore, ratios of 12α-hydroxylated/non–12α-hydroxylated BAs were associated with key features of IR, including higher insulin, proinsulin, glucose, glucagon, and triglyceride (TG) levels and lower HDL cholesterol. In T2D patients, BAs were nearly twofold elevated, and more hydrophobic, compared with healthy subjects, although we did not observe disproportionate increases in 12α-hydroxylated BAs. In multivariate analysis of the whole dataset, controlling for sex, age, BMI, and glucose tolerance status, higher 12α-hydroxy/non–12α-hydroxy BA ratios were associated with lower insulin sensitivity and higher plasma TGs. These findings suggest a role for 12α-hydroxylated BAs in metabolic abnormalities in the natural history of T2D and raise the possibility of developing insulin-sensitizing therapeutics based on manipulations of BA composition. PMID:23884887

  11. Increased Serum Level of Cyclopropaneoctanoic Acid 2-Hexyl in Patients with Hypertriglyceridemia-Related Disorders.

    PubMed

    Mika, Adriana; Stepnowski, Piotr; Chmielewski, Michal; Malgorzewicz, Sylwia; Kaska, Lukasz; Proczko, Monika; Ratnicki-Sklucki, Krzysztof; Sledzinski, Maciej; Sledzinski, Tomasz

    2016-07-01

    We recently reported the presence of various cyclopropane fatty acids-among them, cyclopropaneoctanoic acid 2-hexyl-in the adipose tissue of obese women. The aim of this study was to verify whether the presence of cyclopropaneoctanoic acid 2-hexyl in human serum was associated with obesity or chronic kidney disease (both being related to dyslipidemia), and to find potential associations between the serum level of this compound and specific markers of the these conditions. The serum concentration of cyclopropaneoctanoic acid 2-hexyl was determined by gas chromatography-mass spectrometry (GC-MS) in non-obese controls, obese patients, obese patients after a 3-month low-calorie diet, and individuals with chronic kidney disease. Obese patients and those with chronic kidney disease presented with higher serum levels of cyclopropaneoctanoic acid 2-hexyl than controls. Switching obese individuals to a low-calorie (low-lipid) diet resulted in a reduction in this fatty acid concentration to the level observed in controls. Cyclopropaneoctanoic acid 2-hexyl was also found in foods derived from animal fat. Serum concentrations of triacylglycerols in the analyzed groups followed a pattern similar to that for serum cyclopropaneoctanoic acid 2-hexyl, and these variables were positively correlated with each other among the studied groups. Patients with hypertriglyceridemia-related conditions presented with elevated serum levels of cyclopropaneoctanoic acid 2-hexyl. Our findings suggest that its high serum level is related to high serum triacylglycerol concentrations rather than to body mass or BMI. PMID:27003900

  12. 17β-estradiol increases liver and serum docosahexaenoic acid in mice fed varying levels of α-linolenic acid.

    PubMed

    Mason, Julie K; Kharotia, Shikhil; Wiggins, Ashleigh K A; Kitson, Alex P; Chen, Jianmin; Bazinet, Richard P; Thompson, Lilian U

    2014-08-01

    Docosahexaenoic acid (DHA) is considered to be important for cardiac and brain function, and 17β-estradiol (E2) appears to increase the conversion of α-linolenic acid (ALA) into DHA. However, the effect of varying ALA intake on the positive effect of E2 on DHA synthesis is not known. Therefore, the objective of this study was to investigate the effects of E2 supplementation on tissue and serum fatty acids in mice fed a low-ALA corn oil-based diet (CO, providing 0.6 % fatty acids as ALA) or a high ALA flaxseed meal-based diet (FS, providing 11.2 % ALA). Ovariectomized mice were implanted with a slow-release E2 pellet at 3 weeks of age and half the mice had the pellet removed at 7 weeks of age. Mice were then randomized onto either the CO or FS diet. After 4 weeks, the DHA concentration was measured in serum, liver and brain. A significant main effect of E2 was found for liver and serum DHA, corresponding to 25 and 15 % higher DHA in livers of CO and FS rats, respectively, and 19 and 13 % in serum of CO and FS rats, respectively, compared to unsupplemented mice. There was no effect of E2 on brain DHA. E2 results in higher DHA in serum and liver, at both levels of dietary ALA investigated presently, suggesting that higher ALA intake may result in higher DHA in individuals with higher E2 status. PMID:24913495

  13. Chlorogenic acid increased 5-hydroxymethylfurfural formation when heating fructose alone or with aspartic acid at two pH levels.

    PubMed

    Zhang, Zhenhua; Zou, Yueyu; Wu, Taigang; Huang, Caihuan; Pei, Kehan; Zhang, Guangwen; Lin, Xiaohua; Bai, Weibin; Ou, Shiyi

    2016-01-01

    Chlorogenic acid (CGA) is a phenolic acid that ubiquitously exists in fruits. This work aims to investigate whether and how CGA influences HMF formation during heating fructose alone, or with an amino acid. The results showed that that CGA increased 5-hydroxymethylfurfural (HMF) formation. At pH 5.5 and 7.0, the addition of 5.0 μmol/ml CGA increased HMF formation by 49.4% and 25.2%, respectively when heating fructose alone, and by 9.0% and 16.7%, respectively when heating fructose with aspartic acid. CGA significantly increased HMF formation by promoting 3-deoxosone formation, and its conversion to HMF by inhibiting HMF elimination, especially in the Maillard reaction system. A comparison of the catalytic capacity of CGA with its six analogous compounds showed that both its di-hydroxyphenyl and carboxyl groups function in increasing HMF formation. PMID:26213045

  14. Peanut consumption increases levels of plasma very long chain fatty acids in humans.

    PubMed

    Lam, Christina; Wong, Derek; Cederbaum, Stephen; Lim, Bennie; Qu, Yong

    2012-11-01

    Peanut consumption has been suspected of raising plasma very long chain fatty acid (VLCFA) levels in humans. The effect of peanut consumption on VLCFAs was studied in six human subjects. After 3 to 4h of peanut butter ingestion, plasma C26:0 and C26:0/C22:0 were found to be significantly elevated to levels seen in patients with peroxisomal disorders. These levels returned to normal within 12h. Peanut consumption needs to be accounted for when interpreting VLCFAs. PMID:22864056

  15. Uric acid or 1-methyl uric acid in the urinary bladder increases serum glucose, insulin, true triglyceride, and total cholesterol levels in Wistar rats.

    PubMed

    Balasubramanian, T

    2003-10-01

    In animals deprived of food for a long period, a drop in the fat mass below 5% of the total body mass results in an increase in blood glucocorticoids and uric acid levels, followed by foraging activity. Since the glucocorticoids increase the uric acid excretion, an increase in the level of uric acid in the bladder urine could be the signal for this feeding behaviour and subsequent fat storage. Accumulation of fat is associated with hyperglycaemia, hyperinsulinaemia, hyperlipidaemia, and hypercholesterolaemia as seen in the metabolic syndrome or hibernation. It is hypothesized that uric acid or its structurally related compound, 1-methyl uric acid (one of the metabolites of the methyl xanthines namely caffeine, theophylline, and theobromine present in coffee, tea, cocoa, and some drugs), can act on the urinary bladder mucosa and increases the blood glucose, insulin, triglyceride, and cholesterol levels. In rats, perfusion of the urinary bladder with saturated aqueous solution of uric acid or 1-methyl uric acid results in a significant increase in the serum levels of glucose, insulin, true triglyceride, and total cholesterol in comparison with perfusion of the bladder with distilled water at 20, 40, and 80 min. The uric acid or the 1-methyl uric acid acts on the urinary bladder mucosa and increases the serum glucose, insulin, true triglyceride, and total cholesterol levels. PMID:15241498

  16. Increased tissue levels of omega-3 polyunsaturated fatty acids prevents pathological preterm birth.

    PubMed

    Yamashita, Aki; Kawana, Kei; Tomio, Kensuke; Taguchi, Ayumi; Isobe, Yosuke; Iwamoto, Ryo; Masuda, Koji; Furuya, Hitomi; Nagamatsu, Takeshi; Nagasaka, Kazunori; Arimoto, Takahide; Oda, Katsutoshi; Wada-Hiraike, Osamu; Yamashita, Takahiro; Taketani, Yuji; Kang, Jing X; Kozuma, Shiro; Arai, Hiroyuki; Arita, Makoto; Osuga, Yutaka; Fujii, Tomoyuki

    2013-01-01

    Omega-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) have anti-inflammatory effects. Preterm birth is an important problem in modern obstetrics and one of the main causes is an inflammation. We here showed that abundance of omega-3 fatty acids reduced the incidence of preterm birth induced by LPS with fat-1 mice, capable of converting omega-6 to omega-3 fatty acids. We also indicated that the gene expression of IL-6 and IL-1β in uteruses and the number of cervical infiltrating macrophages were reduced in fat-1 mice. The analyses of lipid metabolomics showed the high level of 18-hydroxyeicosapentaenoate in fat-1 mice, which was derived from EPA and was metabolized to anti-inflammatory product named resolvin E3 (RvE3). We finally showed that the administration of RvE3 to LPS-exposed pregnant wild type mice lowered the incidence of preterm birth. Our data suggest that RvE3 could be a potential new therapeutic for the prevention of preterm birth. PMID:24177907

  17. Increased tissue levels of omega-3 polyunsaturated fatty acids prevents pathological preterm birth

    PubMed Central

    Yamashita, Aki; Kawana, Kei; Tomio, Kensuke; Taguchi, Ayumi; Isobe, Yosuke; Iwamoto, Ryo; Masuda, Koji; Furuya, Hitomi; Nagamatsu, Takeshi; Nagasaka, Kazunori; Arimoto, Takahide; Oda, Katsutoshi; Wada-Hiraike, Osamu; Yamashita, Takahiro; Taketani, Yuji; Kang, Jing X.; Kozuma, Shiro; Arai, Hiroyuki; Arita, Makoto; Osuga, Yutaka; Fujii, Tomoyuki

    2013-01-01

    Omega-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) have anti-inflammatory effects. Preterm birth is an important problem in modern obstetrics and one of the main causes is an inflammation. We here showed that abundance of omega-3 fatty acids reduced the incidence of preterm birth induced by LPS with fat-1 mice, capable of converting omega-6 to omega-3 fatty acids. We also indicated that the gene expression of IL-6 and IL-1β in uteruses and the number of cervical infiltrating macrophages were reduced in fat-1 mice. The analyses of lipid metabolomics showed the high level of 18-hydroxyeicosapentaenoate in fat-1 mice, which was derived from EPA and was metabolized to anti-inflammatory product named resolvin E3 (RvE3). We finally showed that the administration of RvE3 to LPS-exposed pregnant wild type mice lowered the incidence of preterm birth. Our data suggest that RvE3 could be a potential new therapeutic for the prevention of preterm birth. PMID:24177907

  18. Three conazoles increase hepatic microsomal retinoic acid metabolism and decrease mouse hepatic retinoic acid levels in vivo

    SciTech Connect

    Chen, P.-J.; Padgett, William T.; Moore, Tanya; Winnik, Witold; Lambert, Guy R.; Thai, Sheau-Fung; Hester, Susan D.; Nesnow, Stephen

    2009-01-15

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with cancer-preventative properties (Ward et al., Toxicol. Pathol. 2006; 34:863-78). The goals of this study were to examine effects of propiconazole, triadimefon, and myclobutanil, three triazole-containing conazoles, on the microsomal metabolism of atRA, the associated hepatic cytochrome P450 (P450) enzyme(s) involved in atRA metabolism, and their effects on hepatic atRA levels in vivo. The in vitro metabolism of atRA was quantitatively measured in liver microsomes from male CD-1 mice following four daily intraperitoneal injections of propiconazole (210 mg/kg/d), triadimefon (257 mg/kg/d) or myclobutanil (270 mg/kg/d). The formation of both 4-hydroxy-atRA and 4-oxo-atRA were significantly increased by all three conazoles. Propiconazole-induced microsomes possessed slightly greater metabolizing activities compared to myclobutanil-induced microsomes. Both propiconazole and triadimefon treatment induced greater formation of 4-hydroxy-atRA compared to myclobutanil treatment. Chemical and immuno-inhibition metabolism studies suggested that Cyp26a1, Cyp2b, and Cyp3a, but not Cyp1a1 proteins were involved in atRA metabolism. Cyp2b10/20 and Cyp3a11 genes were significantly over-expressed in the livers of both triadimefon- and propiconazole-treated mice while Cyp26a1, Cyp2c65 and Cyp1a2 genes were over-expressed in the livers of either triadimefon- or propiconazole-treated mice, and Cyp2b10/20 and Cyp3a13 genes were over-expressed in the livers of myclobutanil-treated mice. Western blot analyses indicated conazole induced-increases in Cyp2b and Cyp3a proteins. All three conazoles decreased hepatic atRA tissue levels ranging from 45-67%. The possible implications of these changes in hepatic atRA levels

  19. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition.

    PubMed

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-04-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development. PMID:26951372

  20. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition

    PubMed Central

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-01-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development. PMID:26951372

  1. Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels.

    PubMed

    Mandal, Shantanu; Upadhyay, Shivangi; Wajid, Saima; Ram, Mauji; Jain, Dharam Chand; Singh, Ved Pal; Abdin, Malik Zainul; Kapoor, Rupam

    2015-07-01

    It is becoming increasingly evident that the formation of arbuscular mycorrhiza (AM) enhances secondary metabolite production in shoots. Despite mounting evidence, relatively little is known about the underlying mechanisms. This study suggests that increase in artemisinin concentration in Artemisia annua colonized by Rhizophagus intraradices is due to altered trichome density as well as transcriptional patterns that are mediated via enhanced jasmonic acid (JA) levels. Mycorrhizal (M) plants had higher JA levels in leaf tissue that may be due to induction of an allene oxidase synthase gene (AOS), encoding one of the key enzymes for JA production. Non-mycorrhizal (NM) plants were exogenously supplied with a range of methyl jasmonic acid concentrations. When leaves of NM and M plants with similar levels of endogenous JA were compared, these matched closely in terms of shoot trichome density, artemisinin concentration, and transcript profile of artemisinin biosynthesis genes. Mycorrhization increased artemisinin levels by increasing glandular trichome density and transcriptional activation of artemisinin biosynthesis genes. Transcriptional analysis of some rate-limiting enzymes of mevalonate and methyl erythritol phosphate (MEP) pathways revealed that AM increases isoprenoids by induction of the MEP pathway. A decline in artemisinin concentration in shoots of NM and M plants treated with ibuprofen (an inhibitor of JA biosynthesis) further confirmed the implication of JA in the mechanism of artemisinin production. PMID:25366131

  2. Increased Hepatic Fatty Acids Uptake and Oxidation by LRPPRC-Driven Oxidative Phosphorylation Reduces Blood Lipid Levels

    PubMed Central

    Lei, Shi; Sun, Run-zhu; Wang, Di; Gong, Mei-zhen; Su, Xiang-ping; Yi, Fei; Peng, Zheng-wu

    2016-01-01

    Hyperlipidemia is one of the major risk factors of atherosclerosis and other cardiovascular diseases. This study aimed to investigate the impact of leucine rich pentatricopeptide repeat containing protein (LRPPRC)-driven hepatic oxidative phoshorylation on blood lipid levels. The hepatic LRPPRC level was modulated by liver-specific transgenic or adeno-associated virus 8 carried shRNA targeting Lrpprc (aav-shLrpprc). Mice were fed with a high fat diet to induce obesity. Gene expression was analyzed by quantitative real-time PCR and / or western blot. The hepatic ATP level, hepatic and serum lipids contents, and mitochondria oxidative phosphorylation (OxPhos) complex activities were measured using specific assay kits. The uptake and oxidation of fatty acid by hepatocytes were assessed using 14C-palmitate. LRPPRC regulated the expression of genes encoded by mitochondrial genome but not those by nuclear genome involved in mitochondria biogenesis, OxPhos, and lipid metabolism. Increased OxPhos in liver mediated by LRPPRC resulted in the increase of hepatic ATP level. Lrpprc promoted palmitate uptake and oxidation by hypatocytes. The hepatic and serum triglyceride and total cholesterol levels were inversely associated with the hepatic LRPPRC level. These data demonstrated that LRPPRC-driven hepatic OxPhos could promote fatty acids uptake and oxidation by hepatocytes and reduce both hepatic and circulating triglyceride and cholesterol levels. PMID:27462273

  3. Increased Hepatic Fatty Acids Uptake and Oxidation by LRPPRC-Driven Oxidative Phosphorylation Reduces Blood Lipid Levels.

    PubMed

    Lei, Shi; Sun, Run-Zhu; Wang, Di; Gong, Mei-Zhen; Su, Xiang-Ping; Yi, Fei; Peng, Zheng-Wu

    2016-01-01

    Hyperlipidemia is one of the major risk factors of atherosclerosis and other cardiovascular diseases. This study aimed to investigate the impact of leucine rich pentatricopeptide repeat containing protein (LRPPRC)-driven hepatic oxidative phoshorylation on blood lipid levels. The hepatic LRPPRC level was modulated by liver-specific transgenic or adeno-associated virus 8 carried shRNA targeting Lrpprc (aav-shLrpprc). Mice were fed with a high fat diet to induce obesity. Gene expression was analyzed by quantitative real-time PCR and / or western blot. The hepatic ATP level, hepatic and serum lipids contents, and mitochondria oxidative phosphorylation (OxPhos) complex activities were measured using specific assay kits. The uptake and oxidation of fatty acid by hepatocytes were assessed using (14)C-palmitate. LRPPRC regulated the expression of genes encoded by mitochondrial genome but not those by nuclear genome involved in mitochondria biogenesis, OxPhos, and lipid metabolism. Increased OxPhos in liver mediated by LRPPRC resulted in the increase of hepatic ATP level. Lrpprc promoted palmitate uptake and oxidation by hypatocytes. The hepatic and serum triglyceride and total cholesterol levels were inversely associated with the hepatic LRPPRC level. These data demonstrated that LRPPRC-driven hepatic OxPhos could promote fatty acids uptake and oxidation by hepatocytes and reduce both hepatic and circulating triglyceride and cholesterol levels. PMID:27462273

  4. Boric acid increases the expression levels of human anion exchanger genes SLC4A2 and SLC4A3.

    PubMed

    Akbas, F; Aydin, Z

    2012-01-01

    Boron is an important micronutrient in plants and animals. The role of boron in living systems includes coordinated regulation of gene expression, growth and proliferation of higher plants and animals. There are several well-defined genes associated with boron transportation and tolerance in plants and these genes show close homology with human anion exchanger genes. Mutation of these genes also characterizes some genetic disorders. We investigated the toxic effects of boric acid on HEK293 cells and mRNA expression of anion exchanger (SLC4A1, SLC4A2 and SLC4A3) genes. Cytotoxicity of boric acid at different concentrations was tested by using the methylthiazolyldiphenyl-tetrazolium bromide assay. Gene expression profiles were examined using quantitative real-time PCR. In the HEK293 cells, the nontoxic upper concentration of boric acid was 250 μM; more than 500 μM caused cytotoxicity. The 250 μM boric acid concentration increased gene expression level of SLC4A2 up to 8.6-fold and SLC4A3 up to 2.6-fold, after 36-h incubation. There was no significant effect of boric acid on SLC4A1 mRNA expression levels. PMID:22576912

  5. The increased level of COX-dependent arachidonic acid metabolism in blood platelets from secondary progressive multiple sclerosis patients.

    PubMed

    Morel, Agnieszka; Miller, Elzbieta; Bijak, Michal; Saluk, Joanna

    2016-09-01

    Platelet activation is increasingly postulated as a possible component of the pathogenesis of multiple sclerosis (MS), especially due to the increased risk of cardiovascular events in MS. Arachidonic acid cascade metabolized by cyclooxygenase (COX) is a key pathway of platelet activation. The aim of our study was to investigate the COX-dependent arachidonic acid metabolic pathway in blood platelets from secondary progressive multiple sclerosis (SP MS) patients. The blood samples were obtained from 50 patients (man n = 22; female n = 28), suffering from SP MS, diagnosed according to the revised McDonald criteria. Platelet aggregation was measured in platelet-rich plasma after arachidonic acid stimulation. The level of COX activity and thromboxane B2 concentration were determined by ELISA method. Lipid peroxidation was assessed by measuring the level of malondialdehyde. The results were compared with a control group of healthy volunteers. We found that blood platelets obtained from SP MS patients were more sensitive to arachidonic acid and their response measured as platelet aggregation was stronger (about 14 %) relative to control. We also observed a significantly increased activity of COX (about 40 %) and synthesis of thromboxane B2 (about 113 %). The generation of malondialdehyde as a marker of lipid peroxidation was about 10 % higher in SP MS than in control. Cyclooxygenase-dependent arachidonic acid metabolism is significantly increased in blood platelets of patients with SP MS. Future clinical studies are required to recommend the use of low-dose aspirin, and possibly other COX inhibitors in the prevention of cardiovascular risk in MS. PMID:27507559

  6. Omega-3 fatty acids protect renal functions by increasing docosahexaenoic acid-derived metabolite levels in SHR.Cg-Lepr(cp)/NDmcr rats, a metabolic syndrome model.

    PubMed

    Katakura, Masanori; Hashimoto, Michio; Inoue, Takayuki; Al Mamun, Abdullah; Tanabe, Yoko; Iwamoto, Ryo; Arita, Makoto; Tsuchikura, Satoru; Shido, Osamu

    2014-01-01

    The omega-3 polyunsaturated fatty acids (ω-3 PUFAs) docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA) protect against diabetic nephropathy by inhibiting inflammation. The aim of this study was to assess the effects of highly purified DHA and EPA or EPA only administration on renal function and renal eicosanoid and docosanoid levels in an animal model of metabolic syndrome, SHR.Cg-Lepr(cp)/NDmcr (SHRcp) rats. Male SHRcp rats were divided into 3 groups. Control (5% arabic gum), TAK-085 (300 mg/kg/day, containing 467 mg/g EPA and 365 mg/g DHA), or EPA (300 mg/kg/day) was orally administered for 20 weeks. The urinary albumin to creatinine ratio in the TAK-085-administered group was significantly lower than that in other groups. The glomerular sclerosis score in the TAK-085-administered group was significantly lower than that in the other groups. Although DHA levels were increased in total kidney fatty acids, the levels of nonesterified DHA were not significantly different among the 3 groups, whereas the levels of protectin D1, resolvin D1, and resolvin D2 were significantly increased in the TAK-085-administered group. The results show that the use of combination therapy with DHA and EPA in SHRcp rats improved or prevented renal failure associate with metabolic syndrome with decreasing triglyceride levels and increasing ω-3 PUFA lipid mediators. PMID:24642910

  7. Three Conazoles Increase Hepatic Microsomal Retinoic Acid Metabolism and Decrease Mouse Hepatic Retinoic Acid Levels In Vivo

    EPA Science Inventory

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with...

  8. Zebra chip symptoms are associated with increased phenolic, pathogenesis-related protein, and amino acid levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zebra chip disease (ZC) is an emerging problem for the potato industry as it causes undesirable symptoms such as increased browning of freshly-cut tubers and brown-striping of fried tuber slices. ZC is putatively caused by infection of the bacterium ‘Candidatus Liberibacter solanacearum’ (CLso). Thi...

  9. Increased Serum Uric Acid Levels Blunt the Antihypertensive Efficacy of Lifestyle Modifications in Children at Cardiovascular Risk.

    PubMed

    Viazzi, Francesca; Rebora, Paola; Giussani, Marco; Orlando, Antonina; Stella, Andrea; Antolini, Laura; Valsecchi, Maria Grazia; Pontremoli, Roberto; Genovesi, Simonetta

    2016-05-01

    Primary hypertension is a growing concern in children because of the obesity epidemic largely attributable to western lifestyles. Serum uric acid is known to be influenced by dietary habits, correlates with obesity, and could represent a risk factor for hypertension. Preliminary studies in children highlighted uric acid as a potentially modifiable risk factor for the prevention and treatment of hypertension. The effect of lifestyle changes (increase of physical activity and dietary modifications) on blood pressure values, weight status, and serum uric acid levels in a cohort of 248 children referred for cardiovascular risk assessment were evaluated over a mean 1.5-year follow-up. At baseline, 48% of children were obese and 50% showed blood pressure values >90th percentile. At follow-up, a significant improvement in weight class (24% obese;P<0.0001) and blood pressure category (22% >90th percentile;P<0.0001) was found. Systolic blood pressure z-score (P<0.0001), uric acid value (P=0.0056), and puberty at baseline (P=0.0048) were independently associated with higher systolic blood pressure z-score at follow-up, whereas a negative association was observed with body mass index z-score decrease during follow-up (P=0.0033). The risk of hypertension at follow-up was associated with body mass index (P=0.0025) and systolic blood pressure (P<0.0001) z-score at baseline and inversely related to delta body mass index (P=0.0002), whereas the risk of showing hypertension ≥99th percentile was more than doubled for each baseline 1 mg/dL increase of serum uric acid (P=0.0130). Uric acid is a powerful determinant of blood pressure over time, independent of lifestyle modifications. PMID:27021006

  10. Dietary histidine increases mouse skin urocanic acid levels and enhances UVB-induced immune suppression of contact hypersensitivity.

    PubMed

    Reilly, S K; De Fabo, E C

    1991-04-01

    Urocanic Acid (UCA) exists in mammalian skin primarily as the trans isomer and is photoisomerized to cis UCA upon UVB absorption. Our previous studies indicated that the photoisomerization of UCA is the initiating event in UBV-induced suppression of cell-mediated immunity (tUCA----cUCA----immune suppression). The purpose of this study was to verify the role of UCA in UV-induced immune suppression of contact hypersensitivity (CHS) in BALB/c mice. Since UCA is a metabolite of the amino acid L-histidine, we reasoned that increased dietary levels of histidine should raise skin tUCA levels. If skin tUCA is the UVB photoreceptor for immune suppression, this increase should enhance UV-induced suppression of CHS. HPLC analysis of skin from BALB/c mice given a histidine-rich diet (10%) showed that the total amount of UCA is significantly higher in these animals than in mice fed a normal diet. Further, levels of suppression of CHS of 3% and 49% in control fed mice, induced by 4.8 and 7.2 kJ/m2 UVB were significantly increased to 21% and 71% respectively in histidine-fed animals at these same UVB doses. These findings provide additional support for the UCA model for immune suppression, and provide the first evidence that UV-induced immune suppression can be enhanced by a dietary component, L-histidine. PMID:1857737

  11. Absence of aryl hydrocarbon receptors increases endogenous kynurenic acid levels and protects mouse brain against excitotoxic insult and oxidative stress.

    PubMed

    García-Lara, Lucia; Pérez-Severiano, Francisca; González-Esquivel, Dinora; Elizondo, Guillermo; Segovia, José

    2015-09-01

    L-kynurenine (Kyn) is a key element of tryptophan metabolism; it is enzymatically converted by kynurenine aminotransferase II (KAT II) to kynurenic acid (KYNA), which acts as an antagonist to the NMDA receptor-glycine site. Kyn is also an endogenous ligand of the aryl hydrocarbon receptor (AhR), a transcription factor that regulates the expression of a diverse set of genes. KYNA levels are reduced in several regions of the brain of Huntington's disease (HD) patients. The present work uses an AhR-null mouse and age-matched wild-type mice to determine the effect of the absence of AhR on KYNA availability. We found that, in AhR-null mice, there is an increase of KYNA levels in specific brain areas associated with higher expression of KAT II. Moreover, we induced an excitotoxic insult by intrastriatal administration of quinolinic acid, a biochemical model of HD, in both AhR-null and wild-type mice to evaluate the neurological damage as well as the oxidative stress caused by the lesion. The present work demonstrates that, in specific brain regions of AhR-null mice, the levels of KYNA are increased and that this induces a neuroprotective effect against neurotoxic insults. Moreover, AhR-null mice also show improved motor performance in the rotarod test, indicating a constitutive protection of striatal tissue. PMID:26013807

  12. Increase on the Initial Soluble Heme Levels in Acidic Conditions Is an Important Mechanism for Spontaneous Heme Crystallization In Vitro

    PubMed Central

    Egan, Timothy J.; Wright, David W.; Oliveira, Marcus F.

    2010-01-01

    Background Hemozoin (Hz) is a heme crystal that represents a vital pathway for heme disposal in several blood-feeding organisms. Recent evidence demonstrated that β-hematin (βH) (the synthetic counterpart of Hz) formation occurs under physiological conditions near synthetic or biological hydrophilic-hydrophobic interfaces. This seems to require a heme dimer acting as a precursor of Hz crystals that would be formed spontaneously in the absence of the competing water molecules bound to the heme iron. Here, we aimed to investigate the role of medium polarity on spontaneous βH formation in vitro. Methodology/Principal Findings We assessed the effect of water content on spontaneous βH formation by using the aprotic solvent dimethylsulfoxide (DMSO) and a series of polyethyleneglycols (PEGs). We observed that both DMSO and PEGs (3.350, 6.000, 8.000, and 22.000) increased the levels of soluble heme under acidic conditions. These compounds were able to stimulate the production of βH crystals in the absence of any biological sample. Interestingly, the effects of DMSO and PEGs on βH formation were positively correlated with their capacity to promote previous heme solubilization in acidic conditions. Curiously, a short chain polyethyleneglycol (PEG 300) caused a significant reduction in both soluble heme levels and βH formation. Finally, both heme solubilization and βH formation strongly correlated with reduced medium water activity provided by increased DMSO concentrations. Conclusions The data presented here support the notion that reduction of the water activity is an important mechanism to support spontaneous heme crystallization, which depends on the previous increase of soluble heme levels. PMID:20856937

  13. Potato chip intake increases ascorbic acid levels and decreases reactive oxygen species in SMP30/GNL knockout mouse tissues.

    PubMed

    Kondo, Yoshitaka; Sakuma, Rui; Ichisawa, Megumi; Ishihara, Katsuyuki; Kubo, Misako; Handa, Setsuko; Mugita, Hiroyuki; Maruyama, Naoki; Koga, Hidenori; Ishigami, Akihito

    2014-09-24

    Potato chips (PC) contain abundant amounts of the free radical scavenger ascorbic acid (AA) due to the rapid dehydration of potato tubers (Solanum tuberosum) that occurs during frying. To evaluate the antioxidant activity of PC, this study examined reactive oxygen species (ROS) levels in tissues from SMP30/GNL knockout (KO) mice that cannot synthesize AA and determined AA and ROS levels after the animals were fed 20 and 10% PC diets for 7 weeks. Compared with AA-sufficient mice, AA-depleted SMP30/GNL KO mice showed high ROS levels in tissues. SMP30/GNL KO mice fed a PC diet showed high AA and low ROS levels in the brain, heart, lung, testis, soleus muscle, plantaris muscle, stomach, small intestine, large intestine, eyeball, and epididymal fat compared with AA-depleted mice. The data suggest that PC intake increases AA levels and enhances ROS scavenging activity in tissues of SMP30/GNL KO mice, which are a promising model for evaluating the antioxidant activity of foods. PMID:25180784

  14. Increased plasma levels of competing amino acids, rather than lowered plasma tryptophan levels, are associated with a non-response to treatment in major depression.

    PubMed

    Ormstad, Heidi; Dahl, Johan; Verkerk, Robert; Andreassen, Ole A; Maes, Michael

    2016-08-01

    Lowered plasma tryptophan (TRP) and TRP/competing amino acid (CAA) ratio may be involved in the pathophysiology of major depression (MDD). Increased cortisol and immune-inflammatory mediators in MDD may affect the availability of TRP to the brain. We investigated whether baseline or post-treatment TRP, CAAs and TRP/CAA ratio are associated with a treatment response in MDD and whether these effects may be mediated by cortisol or immune biomarkers. We included 50 medication-free MDD patients with a depressive episode (DSM diagnosis) and assessed symptom severity with the Inventory of Depressive Symptomatology (IDS) before and after treatment as usual for 12 weeks (endpoint). Plasma levels of TRP, CAAs, the ratio, cortisol, CRP and 6 selected cytokines were assayed. The primary outcome was a 50% reduction in the IDS, while the secondary was a remission of the depressive episode. In IDS non-responders, CAAs increased and the TRP/CAA ratio decreased, while in IDS responders CAAs decreased and the TRP/CAA ratio increased from baseline to endpoint. In patients who were still depressed at endpoint TRP and CAAs levels had increased from baseline, while in remitted patients no such effects were found. Increases in CAAs were inversely correlated with changes in interleukin-1 receptor antagonist levels. The results show that increased CAA levels from baseline to endpoint are associated with a non-response to treatment in MDD patients. This suggests that the mechanism underpinning the CAA-related treatment resistance may be related to changes in immune pathways. CAA levels and amino acid metabolism may be new drug targets in depression. PMID:27237997

  15. Effect of 3-methylcholanthrene-induced increases in ascorbic acid levels on tissue. beta. -glucuronidase activity in rats

    SciTech Connect

    Calabrese, E.J.; Barrett, T.J.; Leonard, D.A.; Horton, H.M.; Kenyon, E.M.

    1988-01-01

    The interrelationship between tissue ascorbic acid levels and tissue ..beta..-glucuronidase activity was examined in rats injected with 3-methylcholanthrene, an agent which induces ascorbic acid synthesis in rats. Six Fisher 344 rats were dosed intraperitoneally (IP) with 30 mg/kg of 3-methylcholanthrene. Ascorbic acid levels and ..beta..-glucuronidase (..beta..-G) activity were determined for lung, liver and kidney tissues. In a follow-up study, rats were dosed for three consecutive days with 3-methylcholanthrene. Controls in both groups were dosed IP with Emulphor (EL-620). Animals were sacrificed one week after the final dosage and lung, liver and kidney tissues were examined.

  16. Lead-acid battery with improved cycle life and increased efficiency for lead leveling application and electric road vehicles

    NASA Astrophysics Data System (ADS)

    Winsel, A.; Schulz, J.; Guetlich, K. F.

    1983-11-01

    Lifetime and efficiency of lead acid batteries are discussed. A gas lift pump was used to prevent acid stratification and to reduce the charging factor (down to 1.03 to 1.05). A re-expansion method was applied and an expander depot and a compound separation were built in. Cycle life is increased from 700 cycles to 1690 cycles. Efficiency is increased by energy and time saving due to the reduced charging factor and by the use of a recombination stopper and a charge indicator with remote control. It is suggested that the lead acid system is still one of the best possibilities for electric road vehicle applications.

  17. Increased glutamate and homocysteine and decreased glutamine levels in autism: a review and strategies for future studies of amino acids in autism.

    PubMed

    Ghanizadeh, Ahmad

    2013-01-01

    There are many reports about the significant roles of some amino acids in neurobiology and treatment of autism. This is a critical review of amino acids levels in autism. No published review article about the level of amino acids in autism was found. The levels of glutamate and homocystein are increased in autism while the levels of glutamine and tryptophan are decreased. Findings regarding the plasma levels of taurine and lysine are controversial. The urinary levels of homocysteine and essential amino acids in both the untreated and treated autistic children are significantly less than those in the controls. The current literature suffers from many methodological shortcomings which needed to be considered in future studies. Some of them are age, gender, developmental level, autism symptoms severity, type of autism spectrum disorders, medical comorbidities, intelligent quotient, diet, concomitant medications, body mass index, and technical method of assessment of amino acids. PMID:24167375

  18. Sulfur mustard-induced increase in intracellular free calcium level and arachidonic acid release from cell membrane

    SciTech Connect

    Ray, R.; Legere, R.H.; Majerus, B.J.; Petrali, J.P.

    1995-12-31

    The mechanism of action of the alkylating agent bis-(2-chloroethyl)sulfide (sulfur mustard, SM) was studied using the in thai vitro mouse neuroblastoma-rat glioma hybrid NG 108-1 S clonal p cell line model. Following 0.3 mM SM exposure, cell viability remained high (>80% of untreated control) up to 9 hr and then declined steadily to about 40% of control after 20-24 hr. During the early period of SM exposure, when there was no significant cell viability loss, the following effects were observed. The cellular glutathione level decreased 20% after 1 hr and 34% after 6 hr. Between 2 and 6 hr, there was a time-dependent increase (about 10 to 30%) in intracellular free calcium (Ca2+), which was localized to the limiting membrane of swollen endoplasmic reticula and mitochondria, to euchromatin areas of the nucleus, and to areas of the cytosol and plasma membrane. Moreover,there was also a time-dependent increase in the release of isotopically labeled arachidonic acid ((3H)AA) from cellular membranes. Increase in (3H)AA release was 28% at 3 hr and about 60-80% between 6 and 9 hr. This increase in I3HIAA release was inhibited by quinacrine (20 uM), which is a phospholipase (PLA2) inhibitor. At 16 hr after SM exposure, there was a large increase (about 200% of control) in I3HIAA release, which was coincident with a 50% loss of cell viability. These results suggest a Ca2+-mediated toxic mechanism of SM via PLA2 activation and arachidonate release.

  19. Fed levels of amino acids are required for the somatotropin-induced increase in muscle protein synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic somatotropin (pST) treatment in pigs increases muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin could not account for the pST-induced increase in muscle protein synthesis when amino acids were...

  20. L-DOPA Reverses the Increased Free Amino Acids Tissue Levels Induced by Dopamine Depletion and Rises GABA and Tyrosine in the Striatum.

    PubMed

    Solís, Oscar; García-Sanz, Patricia; Herranz, Antonio S; Asensio, María-José; Moratalla, Rosario

    2016-07-01

    Perturbations in the cerebral levels of various amino acids are associated with neurological disorders, and previous studies have suggested that such alterations have a role in the motor and non-motor symptoms of Parkinson's disease. However, the direct effects of chronic L-DOPA treatment, that produces dyskinesia, on neural tissue amino acid concentrations have not been explored in detail. To evaluate whether striatal amino acid concentrations are altered in peak dose dyskinesia, 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian mice were treated chronically with L-DOPA and tissue amino acid concentrations were assessed by HPLC analysis. These experiments revealed that neither 6-OHDA nor L-DOPA treatment are able to alter glutamate in the striatum. However, glutamine increases after 6-OHDA and returns back to normal levels with L-DOPA treatment, suggesting increased striatal glutamatergic transmission with lack of dopamine. In addition, glycine and taurine levels are increased following dopamine denervation and restored to normal levels by L-DOPA. Interestingly, dyskinetic animals showed increased levels of GABA and tyrosine, while aspartate striatal tissue levels are not altered. Overall, our results indicate that chronic L-DOPA treatment, besides normalizing the altered levels of some amino acids after 6-OHDA, robustly increases striatal GABA and tyrosine levels which may in turn contribute to the development of L-DOPA-induced dyskinesia. PMID:26966009

  1. Body condition loss and increased serum levels of nonesterified fatty acids enhance progesterone levels at estrus and reduce estrous activity and insemination rates in postpartum dairy cows.

    PubMed

    Lüttgenau, J; Purschke, S; Tsousis, G; Bruckmaier, R M; Bollwein, H

    2016-03-01

    Data from 96 Holstein Friesian cows on a commercial dairy farm were used to investigate whether body condition and serum levels of nonesterified fatty acids (NEFAs) postpartum (pp) affect progesterone (P4) levels, estrous activity, and fertility in dairy cows. The examination period started 14 days before the expected calving date and ended either when a cow was inseminated or at a maximum of 90 days pp. Body condition score (BCS; 1-5 scale) and backfat thickness (BFT) were determined every 2 weeks. Blood for analysis of NEFA and P4 concentrations was sampled weekly during the first 35 days pp and then every 48 hours until an ovulation was observed. Transrectal ultrasonography of the ovaries started at 21 days pp and was performed after blood sampling. If cows were not inseminated because of silent ovulation, sampling and ultrasonography continued on Days 7, 14, and 18 after ovulation and again every 48 hours until the next ovulation. Estrous activity was continuously measured with the Heatime estrus detection system. Pregnancy controls were performed ultrasonographically 28 and 42 days after AI. Cows with increased NEFA levels at 28 days pp had an increased risk of maintaining minimum P4 levels above 0.4 ng/mL at first recognized estrus (P = 0.03). Higher NEFA levels at Day 7 were associated with lower probability for a cow to have elevated P4 levels (≥2 ng/mL) by Day 35 pp, indicating delayed commencement of luteal activity (C-LA). Estrous activity was not influenced (P > 0.10) by minimum P4 concentrations at estrus, but more animals with C-LA until Day 35 pp showed estrous activity compared to cows without C-LA throughout this period (P = 0.006). Estrous activity was lower in cows with a low BCS 14 days pp (P = 0.02) and with a low BFT 42 days pp (P = 0.03). Moreover, the probability to exhibit estrus was reduced with higher NEFA levels at 21 days pp (P = 0.01). Eighty-five cows were inseminated and 37 (44%) got pregnant after insemination. Higher NEFA levels

  2. Increase of EPA-derived hydroxy, epoxy and dihydroxy fatty acid levels in human plasma after a single dose of long-chain omega-3 PUFA

    PubMed Central

    Schuchardt, Jan Philipp; Schneider, Inga; Willenberg, Ina; Yang, Jun; Hammock, Bruce D.; Hahn, Andreas; Schebb, Nils Helge

    2014-01-01

    Introduction Several supplementation studies with long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) describe an increase of EPA-derived hydroxy, epoxy and dihydroxy fatty acids in blood, while changes in levels of other LC n-3 and n-6 PUFA-derived oxylipins were minor. In order to investigate the kinetics of changes in oxylipin levels in response to LC n-3 PUFA ingestion, we conducted a single dose treatment study with healthy subjects. Subjects and methods In the present kinetic study, we compared patterns of hydroxy, epoxy and dihydroxy fatty acids in plasma of 6 healthy men before and after 6, 8, 24, and 48 h of fish oil (1008 mg EPA and 672 mg DHA) ingestion. Levels of EPA- as well as other LC PUFA-derived hydroxy, epoxy and dihydroxy fatty acids were analyzed in plasma by LC–MS. Additionally, levels of these oxylipins were compared with their parent PUFA levels in plasma phospholipids. Results All EPA-derived oxylipin levels were significantly increased 6 h after LC n-3 PUFA ingestion and gradually drop thereafter reaching the baseline levels about 48 h after treatment. The relative increase in EPA plasma phospholipid levels highly correlated with the increase of plasma EPA-derived oxylipin levels at different time points. In contrast, plasma levels of arachidonic acid- and DHA-derived oxylipins as well as parent PUFA levels in plasma phospholipids were hardly changed. Discussion and conclusions Our findings demonstrate that a single dose of LC n-3 PUFAs can rapidly induce a shift in the EPA oxylipin profile of healthy subjects within a few hours. Taking the high biological activity of the EPA-derived epoxy fatty acids into account, even short-term treatment with LC n-3 PUFAs may cause systemic effects, which warrant further investigation. PMID:24667634

  3. Loss of von Hippel-Lindau Protein (VHL) Increases Systemic Cholesterol Levels through Targeting Hypoxia-Inducible Factor 2α and Regulation of Bile Acid Homeostasis

    PubMed Central

    Ramakrishnan, Sadeesh K.; Taylor, Matthew; Qu, Aijuan; Ahn, Sung-Hoon; Suresh, Madathilparambil V.; Raghavendran, Krishnan; Gonzalez, Frank J.

    2014-01-01

    Cholesterol synthesis is a highly oxygen-dependent process. Paradoxically, hypoxia is correlated with an increase in cellular and systemic cholesterol levels and risk of cardiovascular diseases. The mechanism for the increase in cholesterol during hypoxia is unclear. Hypoxia signaling is mediated through hypoxia-inducible factor 1α (HIF-1α) and HIF-2α. The present study demonstrates that activation of HIF signaling in the liver increases hepatic and systemic cholesterol levels due to a decrease in the expression of cholesterol hydroxylase CYP7A1 and other enzymes involved in bile acid synthesis. Specifically, activation of hepatic HIF-2α (but not HIF-1α) led to hypercholesterolemia. HIF-2α repressed the circadian expression of Rev-erbα, resulting in increased expression of E4BP4, a negative regulator of Cyp7a1. To understand if HIF-mediated decrease in bile acid synthesis is a physiologically relevant pathway by which hypoxia maintains or increases systemic cholesterol levels, two hypoxic mouse models were assessed, an acute lung injury model and mice exposed to 10% O2 for 3 weeks. In both models, cholesterol levels increased with a concomitant decrease in expression of genes involved in bile acid synthesis. The present study demonstrates that hypoxic activation of hepatic HIF-2α leads to an adaptive increase in cholesterol levels through inhibition of bile acid synthesis. PMID:24421394

  4. Loss of von Hippel-Lindau protein (VHL) increases systemic cholesterol levels through targeting hypoxia-inducible factor 2α and regulation of bile acid homeostasis.

    PubMed

    Ramakrishnan, Sadeesh K; Taylor, Matthew; Qu, Aijuan; Ahn, Sung-Hoon; Suresh, Madathilparambil V; Raghavendran, Krishnan; Gonzalez, Frank J; Shah, Yatrik M

    2014-04-01

    Cholesterol synthesis is a highly oxygen-dependent process. Paradoxically, hypoxia is correlated with an increase in cellular and systemic cholesterol levels and risk of cardiovascular diseases. The mechanism for the increase in cholesterol during hypoxia is unclear. Hypoxia signaling is mediated through hypoxia-inducible factor 1α (HIF-1α) and HIF-2α. The present study demonstrates that activation of HIF signaling in the liver increases hepatic and systemic cholesterol levels due to a decrease in the expression of cholesterol hydroxylase CYP7A1 and other enzymes involved in bile acid synthesis. Specifically, activation of hepatic HIF-2α (but not HIF-1α) led to hypercholesterolemia. HIF-2α repressed the circadian expression of Rev-erbα, resulting in increased expression of E4BP4, a negative regulator of Cyp7a1. To understand if HIF-mediated decrease in bile acid synthesis is a physiologically relevant pathway by which hypoxia maintains or increases systemic cholesterol levels, two hypoxic mouse models were assessed, an acute lung injury model and mice exposed to 10% O2 for 3 weeks. In both models, cholesterol levels increased with a concomitant decrease in expression of genes involved in bile acid synthesis. The present study demonstrates that hypoxic activation of hepatic HIF-2α leads to an adaptive increase in cholesterol levels through inhibition of bile acid synthesis. PMID:24421394

  5. Jasmonate-Inducible Genes Are Activated in Rice by Pathogen Attack without a Concomitant Increase in Endogenous Jasmonic Acid Levels.

    PubMed

    Schweizer, P.; Buchala, A.; Silverman, P.; Seskar, M.; Raskin, I.; Metraux, J. P.

    1997-05-01

    The possible role of the octadecanoid signaling pathway with jasmonic acid (JA) as the central component in defense-gene regulation of pathogen-attacked rice was studied. Rice (Oryza sativa L.) seedlings were treated with JA or inoculated with the rice blast fungus Magnaporthe grisea (Hebert) Barr., and gene-expression patterns were compared between the two treatments. JA application induced the accumulation of a number of pathogenesis-related (PR) gene products at the mRNA and protein levels, but pathogen attack did not enhance the levels of (-)-JA during the time required for PR gene expression. Pathogen-induced accumulation of PR1-like proteins was reduced in plants treated with tetcyclacis, a novel inhibitor of jasmonate biosynthesis. There was an additive and negative interaction between JA and an elicitor from M. grisea with respect to induction of PR1-like proteins and of an abundant JA-and wound-induced protein of 26 kD, respectively. Finally, activation of the octadecanoid signaling pathway and induction of a number of PR genes by exogenous application of JA did not confer local acquired resistance to rice. The data suggest that accumulation of nonconjugated (-)-JA is not necessary for induction of PR genes and that JA does not orchestrate localized defense responses in pathogen-attacked rice. Instead, JA appears to be embedded in a signaling network with another pathogen-induced pathway(s) and may be required at a certain minimal level for induction of some PR genes. PMID:12223690

  6. Fish oil N-3 fatty acids increase adiponectin and decrease leptin levels in patients with systemic lupus erythematosus.

    PubMed

    Lozovoy, Marcell Alysson Batisti; Simão, Andréa Name Colado; Morimoto, Helena Kaminami; Scavuzzi, Bruna Miglioranza; Iriyoda, Tathiana Veiga Mayumi; Reiche, Edna Maria Vissoci; Cecchini, Rubens; Dichi, Isaias

    2015-02-01

    Cardiovascular disease (CVD) has emerged as an important cause of death in patients with systemic lupus erythematosus (SLE). Reduced adiponectin and elevated leptin levels may contribute to CVD in SLE patients. The purpose of this study was to verify the effects of fish oil (FO) on adiponectin and leptin in patients with SLE. Biochemical and disease activity analysis were performed. Patients with SLE were divided in two groups: patients who used fish oil for four months and patients who did not use fish oil. Patients with SLE who used FO had a significant decrease in SLE disease activity index (SLEDAI) score (p ˂ 0.023) in relation to baseline. SLE patients who used fish oil had increased adiponectin levels (p ˂ 0.026) and decreased leptin levels (p ˂ 0.024) compared to baseline values, whereas there were no differences in adiponectin and leptin levels in patients with SLE who did not use fish oil. In conclusion, the findings of increased serum adiponectin an decreased leptin levels after 120 days in the fish oil group, reinforce the importance of evaluating prospective studies of fish and fish oil fish ingestion on these adipokines in an attempt to decrease cardiovascular risk factors in patients with SLE. PMID:25690094

  7. Fish Oil N-3 Fatty Acids Increase Adiponectin and Decrease Leptin Levels in Patients with Systemic Lupus Erythematosus

    PubMed Central

    Lozovoy, Marcell Alysson Batisti; Colado Simão, Andréa Name; Morimoto, Helena Kaminami; Scavuzzi, Bruna Miglioranza; Iriyoda, Tathiana Veiga Mayumi; Reiche, Edna Maria Vissoci; Cecchini, Rubens; Dichi, Isaias

    2015-01-01

    Cardiovascular disease (CVD) has emerged as an important cause of death in patients with systemic lupus erythematosus (SLE). Reduced adiponectin and elevated leptin levels may contribute to CVD in SLE patients. The purpose of this study was to verify the effects of fish oil (FO) on adiponectin and leptin in patients with SLE. Biochemical and disease activity analysis were performed. Patients with SLE were divided in two groups: patients who used fish oil for four months and patients who did not use fish oil. Patients with SLE who used FO had a significant decrease in SLE disease activity index (SLEDAI) score (p ˂ 0.023) in relation to baseline. SLE patients who used fish oil had increased adiponectin levels (p ˂ 0.026) and decreased leptin levels (p ˂ 0.024) compared to baseline values, whereas there were no differences in adiponectin and leptin levels in patients with SLE who did not use fish oil. In conclusion, the findings of increased serum adiponectin an decreased leptin levels after 120 days in the fish oil group, reinforce the importance of evaluating prospective studies of fish and fish oil fish ingestion on these adipokines in an attempt to decrease cardiovascular risk factors in patients with SLE. PMID:25690094

  8. Hesperetin Modifies the Composition of Fecal Microbiota and Increases Cecal Levels of Short-Chain Fatty Acids in Rats.

    PubMed

    Unno, Tomonori; Hisada, Takayoshi; Takahashi, Shunsuke

    2015-09-16

    There has been particular interest in the prebiotic-like effects of commonly consumed polyphenols. This study aimed to evaluate the effects of hesperidin (HD) and its aglycone hesperetin (HT), major flavonoids in citrus fruits, on the structure and activity of gut microbiota in rats. Rats ingested an assigned diet (a control diet, a 0.5% HT diet, or a 1.0% HD diet) for 3 weeks. Terminal restriction fragment length polymorphism analysis revealed that the proportion of Clostridium subcluster XIVa in the feces collected at the third week of feeding was significantly reduced by the HT diet: 19.8 ± 4.3% for the control diet versus 5.3 ± 1.5% for the HT diet (P < 0.01). There was a significant difference in the cecal pool of short-chain fatty acids (SCFA), the sum of acetic, propionic, and butyric acids, between the control diet (212 ± 71 μmol) and the HT diet (310 ± 51 μmol) (P < 0.05), whereas the HD diet exhibited no effects (245 ± 51 μmol). Interestingly, dietary HT resulted in a significant increase in the excretion of starch in the feces. HT, but not HD, might reduce starch digestion, and parts of undigested starch were utilized to produce SCFA by microbial fermentation in the large intestine. PMID:26306898

  9. Increasing serum Pre-adipocyte factor-1 (Pref-1) correlates with decreased body fat, increased free fatty acids, and level of recent alcohol consumption in excessive alcohol drinkers

    PubMed Central

    Liangpunsakul, Suthat; Bennett, Rachel; Westerhold, Chi; Ross, Ruth A.; Crabb, David W.; Lai, Xianyin; Witzmann, Frank A.

    2014-01-01

    Background Patients with alcoholic liver disease have been reported to have a significantly lower percentage of body fat (%BF) than controls. The mechanism for the reduction in %BF in heavy alcohol users has not been elucidated. In adipose tissue, Pref-1 is specifically expressed in pre-adipocytes but not in adipocytes. Pref-1 inhibits adipogenesis and elevated levels are associated with reduced adipose tissue mass. We investigated the association between serum Pref-1 and %BF, alcohol consumption, and serum free fatty acids (FFA) in a well-characterized cohort of heavy alcohol users compared to controls. Methods One hundred forty-eight subjects were prospectively recruited. The Time Line Follow-Back (TLFB) questionnaire was used to quantify the amount of alcohol consumed over the 30-day period before their enrollment. Anthropometric measurements were performed to calculate %BF. Serum Pref-1 and FFA were measured. Results Fifty-one subjects (mean age 32 ± 9 years, 88% men) were non-excessive drinkers whereas 97 were excessive drinkers (mean age 41 ± 18 years, 69% men). Compared to non-excessive drinkers, individuals with excessive drinking had significantly higher levels of Pref-1 (p < 0.01), FFA (p < 0.001), and lower %BF (p = 0.03). Serum levels of Pref-1 were associated with the amount of alcohol consumed during the previous 30 days. Serum Pref-1 was negatively correlated with %BF, but positively associated with serum FFA. Conclusions Our data suggest that elevated Pref-1 levels in excessive drinkers might inhibit the expansion of adipose tissue, decreasing %BF in alcoholics. Further work is needed to validate these findings and to better understand the role of Pref-1 and its clinical significance in subjects with heavy alcohol use. PMID:25449367

  10. Increasing serum pre-adipocyte factor-1 (Pref-1) correlates with decreased body fat, increased free fatty acids, and level of recent alcohol consumption in excessive alcohol drinkers.

    PubMed

    Liangpunsakul, Suthat; Bennett, Rachel; Westerhold, Chi; Ross, Ruth A; Crabb, David W; Lai, Xianyin; Witzmann, Frank A

    2014-12-01

    Patients with alcoholic liver disease have been reported to have a significantly lower percentage of body fat (%BF) than controls. The mechanism for the reduction in %BF in heavy alcohol users has not been elucidated. In adipose tissue, Pref-1 is specifically expressed in pre-adipocytes but not in adipocytes. Pref-1 inhibits adipogenesis and elevated levels are associated with reduced adipose tissue mass. We investigated the association between serum Pref-1 and %BF, alcohol consumption, and serum free fatty acids (FFA) in a well-characterized cohort of heavy alcohol users compared to controls. One hundred forty-eight subjects were prospectively recruited. The Time Line Follow-Back (TLFB) questionnaire was used to quantify the amount of alcohol consumed over the 30-day period before their enrollment. Anthropometric measurements were performed to calculate %BF. Serum Pref-1 and FFA were measured. Fifty-one subjects (mean age 32 ± 9 years, 88% men) were non-excessive drinkers whereas 97 were excessive drinkers (mean age 41 ± 18 years, 69% men). Compared to non-excessive drinkers, individuals with excessive drinking had significantly higher levels of Pref-1 (p<0.01), FFA (p < 0.001), and lower %BF (p = 0.03). Serum levels of Pref-1 were associated with the amount of alcohol consumed during the previous 30 days. Serum Pref-1 was negatively correlated with %BF, but positively associated with serum FFA. Our data suggest that elevated Pref-1 levels in excessive drinkers might inhibit the expansion of adipose tissue, decreasing %BF in alcoholics. Further work is needed to validate these findings and to better understand the role of Pref-1 and its clinical significance in subjects with heavy alcohol use. PMID:25449367

  11. The influence of thermal processing on the fatty acid profile of pork and lamb meat fed diet with increased levels of unsaturated fatty acids.

    PubMed

    Janiszewski, Piotr; Grześkowiak, Eugenia; Lisiak, Dariusz; Borys, Bronisław; Borzuta, Karol; Pospiech, Edward; Poławska, Ewa

    2016-01-01

    The research was carried out on 32 crossbred pigs of Polish Large White × Danish Landrace with Duroc and 80 rams, crossbreds of the Prolific-Dairy Koludzka Sheep with the Ile de France, a meat sheep. The fodder for the animals was enriched with the unsaturated fatty acids originated mainly from linseed and rapeseed oils. The fatty acid profile was determined in cooked longissimus lumborum, roasted triceps brachii and raw ripened rump from pigs as well as in grilled lambs' legs and their corresponding raw materials. Roasting caused the most pronounced increase of the saturated fatty acids and decrease in the polyunsaturated fatty acids of heated pork muscles. The smallest changes were observed in grilled lamb legs. The heating processes applied in this study, in most cases, did not cause essential changes in the indices of pro-health properties of fatty acid, therefore meat in the majority fulfil the latest recommendations of EFSA and FAO/WHO according to human health. PMID:26422798

  12. Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice.

    PubMed

    Midtbø, Lisa Kolden; Borkowska, Alison G; Bernhard, Annette; Rønnevik, Alexander Krokedal; Lock, Erik-Jan; Fitzgerald, Michael L; Torstensen, Bente E; Liaset, Bjørn; Brattelid, Trond; Pedersen, Theresa L; Newman, John W; Kristiansen, Karsten; Madsen, Lise

    2015-06-01

    Introduction of vegetable ingredients in fish feed has affected the fatty acid composition in farmed Atlantic salmon (Salmo salar L). Here we investigated how changes in fish feed affected the metabolism of mice fed diets containing fillets from such farmed salmon. We demonstrate that replacement of fish oil with rapeseed oil or soybean oil in fish feed had distinct spillover effects in mice fed western diets containing the salmon. A reduced ratio of n-3/n-6 polyunsaturated fatty acids in the fish feed, reflected in the salmon, and hence also in the mice diets, led to a selectively increased abundance of arachidonic acid in the phospholipid pool in the livers of the mice. This was accompanied by increased levels of hepatic ceramides and arachidonic acid-derived pro-inflammatory mediators and a reduced abundance of oxylipins derived from eicosapentaenoic acid and docosahexaenoic acid. These changes were associated with increased whole body insulin resistance and hepatic steatosis. Our data suggest that an increased ratio between n-6 and n-3-derived oxylipins may underlie the observed marked metabolic differences between mice fed the different types of farmed salmon. These findings underpin the need for carefully considering the type of oil used for feed production in relation to salmon farming. PMID:25776459

  13. SYSTEMIC ADMINISTRATION OF KAINIC ACID INCREASES GABA LEVELS IN PERFUSATE FROM THE HIPPOCAMPUS OF RATS IN VIVO

    EPA Science Inventory

    The ventral hippocampi of male, Fischer-344 rats were implanted with microdialysis probes and the effects of systemically administered kainic acid (KA) (8 mg/kg, s.c.) on the in vivo release of amino acids were measured for four hours after administration. n order to measure GABA...

  14. Zoledronic acid increases the circulating soluble RANKL level in mice, with a further increase in lymphocyte-derived soluble RANKL in zoledronic acid- and glucocorticoid-treated mice stimulated with bacterial lipopolysaccharide.

    PubMed

    Abe, Takahiro; Sato, Tsuyoshi; Kokabu, Shoichiro; Hori, Naoko; Shimamura, Yumiko; Sato, Tomoya; Yoda, Tetsuya

    2016-07-01

    The nitrogen-containing bisphosphonate (BP) zoledronic acid (ZA) is a potent antiresorptive drug used in conjunction with standard cancer therapy to treat osteolysis or hypercalcemia due to malignancy. However, it is unclear how ZA influences the circulating levels of bone remodeling factors. The aim of this study was to evaluate the effects of ZA on the serum levels of soluble receptor activator of NF-kB ligand (sRANKL) and osteoprotegerin (OPG). The following four groups of C57BL/6 mice were used (five mice per group): (1) the placebo+phosphate-buffered saline (PBS) group, in which placebo-treated mice were injected once weekly with PBS for 4weeks; (2) the placebo+ZA group, in which placebo-treated mice were injected once weekly with ZA for 4weeks; (3) the prednisolone (PSL)+PBS group, in which PSL-treated mice were injected once weekly with PBS for 4weeks; and (4) the PSL+ZA group, in which PSL-treated mice were injected once weekly with ZA for 4weeks. At the 3-week time point, all mice were subjected to oral inflammatory stimulation with bacterial lipopolysaccharide (LPS). The sera of these mice were obtained every week and the levels of sRANKL and OPG were measured using enzyme-linked immunosorbent assay. At the time of sacrifice, femurs were prepared for micro-computed tomography (micro-CT), histological, and histomorphometric analyses. Our data indicated that ZA administration remarkably reduced bone turnover and significantly increased the basal level of sRANKL. Interestingly, the PSL+ZA group showed a dramatically elevated sRANKL level after LPS stimulation. In contrast, the PSL+ZA group in nonobese diabetic mice with severe combined immunodeficiency disease (NOD-SCID mice), which are characterized by the absence of functional T- and B-lymphocytes, showed no increase in the sRANKL level. Our data suggest that, particularly with combination treatment of ZA and glucocorticoids, surviving lymphocytes might be the source of inflammation-induced sRANKL. Thus

  15. Metabolic engineering of hydroxy fatty acid production in plants: rcdgat2 drives dramatic increases in ricinoleate levels in seed oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A central goal of green chemistry is to produce industrially-useful fatty acids in oilseed crops. Although genes encoding suitable modification enzymes are available from many wild species, progress has been stymied because expression of these in transgenic plants produces poor yields of the desire...

  16. Low level of trans-10, cis-12 conjugated linoleic acid decreases adiposity and increases browning independent of inflammatory signaling in overweight Sv129 mice

    PubMed Central

    Shen, Wan; Baldwin, Jessie; Collins, Brian; Hixson, Lindsay; Lee, Kuan-Ting; Herberg, Timothy; Starnes, Joseph; Cooney, Paula; Chuang, Chia-Chi; Hopkins, Robin; Reid, Tanya; Gupta, Sat; McIntosh, Michael

    2015-01-01

    The objective of this study was to determine the extent to which a low level of trans-10, cis-12 (10,12) conjugated linoleic acid (CLA) decreases adiposity and increases browning in overweight mice, its dependence on inflammatory signaling, and potential synergistic effects of daily exercise. Young, Sv129 male mice were fed a high fat diet for 5 wk to make them fat and glucose intolerant, and then switch them to a low fat diet with or without 0.1% 10,12 CLA, sodium salicylate, or exercise for another 7 wk. 10,12 CLA decreased white adipose tissue (WAT) and brown adipose tissue mass, and increased the mRNA and protein levels, and activities of enzymes associated with thermogenesis or fatty acid oxidation in WAT. Mice fed 10,12 CLA had lower body temperatures compared to controls during cold exposure, which coincided with decreased adiposity. Although sodium salicylate decreased 10,12 CLA-mediated increases in markers of inflammation in WAT, it did not affect other outcomes. Exercise had no further effect on the outcomes measured. Collectively, these data indicate that 10,12 CLA-mediated reduction of adiposity is independent of inflammatory signaling, and possibly due to up-regulation of fatty acid oxidation and heat production in order to regulate body temperature. Although this low level of 10,12 CLA reduced adiposity in overweight mice, hepatomegaly and inflammation are major health concerns. PMID:25801353

  17. Increasing Levels of Dietary Hempseed Products Leads to Differential Responses in the Fatty Acid Profiles of Egg Yolk, Liver and Plasma of Laying Hens.

    PubMed

    Neijat, M; Suh, M; Neufeld, J; House, J D

    2016-05-01

    The limited efficiency with which dietary alpha-linolenic acid (ALA) is converted by hens into docosahexaenoic acid (DHA) for egg deposition is not clearly understood. In this study, dietary ALA levels were increased via the inclusion of hempseed (HS) and hempseed oil (HO) in hen diets, with the goal of assessing the effects on the fatty acid (FA) profiles of total lipids and lipid classes in yolk, liver and plasma. Forty-eight hens were individually caged and fed one of six diets containing either HS:10, 20 or 30, HO:4.5 or 9.0 (%, diet) or a control (containing corn oil), providing a range (0.1-1.28 %, diet) of ALA. Fatty acid methyl esters of total lipids and lipid classes, including phosphatidyl choline (PtdCho) and ethanolamine (PtdEtn) in yolk, plasma and liver were then determined. Levels of n-3 FAs in both total lipids and lipid classes increased in all tissues. ALA and eicosapentaenoic acid (EPA) increased linearly, while docosapentaenoic acid and DHA increased quadratically. The FA profiles of yolk closely reflected levels in both plasma and liver. While ALA was highly concentrated in the triacylglycerol, it was low but equally distributed between PtdCho and PtdEtn in all tissues; however, the net accumulation was lower (P < 0.0001) in liver compared to yolk and plasma. Levels of EPA and ALA in yolk-PtdEtn were linearly (P < 0.0001; R (2) = 0.93) associated, and reflected those in liver-PtdEtn (P < 0.0001; R (2) = 0.90). In the liver, a strong inverse correlation (P < 0.0001; r = -0.94) between PL-DHA and ALA-to-EPA ratio in PtdEtn supports theories of low substrate availability, possibly limiting the conversion of ALA into DHA for egg enrichment. PMID:27052441

  18. Increasing FCC regenerator catalyst level

    SciTech Connect

    Wong, R.F. )

    1993-11-01

    A Peruvian FCC unit's operations were improved by increasing the regenerator's catalyst level. This increase resulted in lower stack losses, an improved temperature profile, increased catalyst activity and a lower catalyst consumption rate. A more stable operation saved this Peruvian refiner over $131,000 per year in catalyst alone. These concepts and data may be suitable for your FCC unit as well.

  19. Lysophosphatidic acid can support the formation of membranous structures and an increase in MBP mRNA levels in differentiating oligodendrocytes

    PubMed Central

    Nogaroli, Luciana; Yuelling, Larra M.; Dennis, Jameel; Gorse, Karen; Payne, Shawn G.; Fuss, Babette

    2009-01-01

    During development, differentiating oligodendrocytes progress in distinct maturation steps from premyelinating to myelinating cells. Such maturing oligodendrocytes express both receptors mediating signaling via extracellular lysophosphatidic acid (LPA) and the major enzyme generating extracellular LPA, namely phosphodiesterase-Iα/autotaxin (PD-Iα/ATX). However, the biological role of extracellular LPA during the maturation of differentiating oligodendrocytes is currently unclear. Here, we demonstrate that application of exogenous LPA induced an increase in the area occupied by the oligodendrocytes’ process network, but only when PD-Iα/ATX expression was down-regulated. This increase in network area was caused primarily by the formation of membranous structures. In addition, LPA increased the number of cells positive for myelin basic protein (MBP). This effect was associated by an increase in the mRNA levels coding for MBP but not myelin oligodendrocyte glycoprotein (MOG). Taken together, these data suggest that LPA may play a crucial role in regulating the later stages of oligodendrocyte maturation. PMID:18594965

  20. Nucleotide excision repair deficiency increases levels of acrolein-derived cyclic DNA adduct and sensitizes cells to apoptosis induced by docosahexaenoic acid and acrolein.

    PubMed

    Pan, Jishen; Sinclair, Elizabeth; Xuan, Zhuoli; Dyba, Marcin; Fu, Ying; Sen, Supti; Berry, Deborah; Creswell, Karen; Hu, Jiaxi; Roy, Rabindra; Chung, Fung-Lung

    2016-07-01

    The acrolein derived cyclic 1,N(2)-propanodeoxyguanosine adduct (Acr-dG), formed primarily from ω-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) under oxidative conditions, while proven to be mutagenic, is potentially involved in DHA-induced apoptosis. The latter may contribute to the chemopreventive effects of DHA. Previous studies have shown that the levels of Acr-dG are correlated with apoptosis induction in HT29 cells treated with DHA. Because Acr-dG is shown to be repaired by the nucleotide excision repair (NER) pathway, to further investigate the role of Acr-dG in apoptosis, in this study, NER-deficient XPA and its isogenic NER-proficient XAN1 cells were treated with DHA. The Acr-dG levels and apoptosis were sharply increased in XPA cells, but not in XAN1 cells when treated with 125μM of DHA. Because DHA can induce formation of various DNA damage, to specifically investigate the role of Acr-dG in apoptosis induction, we treated XPA knockdown HCT116+ch3 cells with acrolein. The levels of both Acr-dG and apoptosis induction increased significantly in the XPA knockdown cells. These results clearly demonstrate that NER deficiency induces higher levels of Acr-dG in cells treated with DHA or acrolein and sensitizes cells to undergo apoptosis in a correlative manner. Collectively, these results support that Acr-dG, a ubiquitously formed mutagenic oxidative DNA adduct, plays a role in DHA-induced apoptosis and suggest that it could serve as a biomarker for the cancer preventive effects of DHA. PMID:27036235

  1. Studies on the potential neurotoxic and convulsant effects of increased blood levels of quinolinic acid in rats with altered blood-brain barrier permeability

    SciTech Connect

    Vezzani, A.; Stasi, M.A.; Wu, H.Q.; Castiglioni, M.; Weckermann, B.; Samanin, R. )

    1989-10-01

    Intravenous injection of 450 mg/kg quinolinic acid (Quin), an endogenous kynurenine metabolite with excitotoxic properties, induced only minor electroencephalographic (EEG) modifications and no neurotoxicity in rats with a mature blood-brain barrier (BBB). BBB permeability was altered in rats by focal unilateral irradiation of the cortex (7 mm in diameter and 5 mm in depth) with protons (60 Gy, 9 Gy/min). Three days after irradiation, Evans blue dye staining showed BBB breakdown in the dorsal hippocampus of the irradiated hemisphere. No neurotoxic or convulsant effects were observed as a consequence of the radiation itself. When BBB-lesioned rats were challenged with 225 mg/kg Quin iv, epileptiform activity was observed on EEG analysis. Tonic-clonic seizures were induced by 225-450 mg/kg Quin. Light microscopic analysis showed a dose-related excitotoxic type of lesion restricted to the hippocampus ipsilateral to the irradiated side. Neuro-degeneration was prevented by local injection of 120 nmol D(-)2-amino-7-phosphonoheptanoic acid, a selective N-methyl-D-aspartate receptor antagonist. No lesions or EEG or behavioral modifications occurred after 450 mg/kg nicotinic acid, an inactive analog of Quin. The potential neurotoxic and convulsant effects of increased blood levels of Quin under conditions of altered BBB permeability are discussed.

  2. Oral administration of D-alanine in monkeys robustly increases plasma and cerebrospinal fluid levels but experimental D-amino acid oxidase inhibitors had minimal effect.

    PubMed

    Rojas, Camilo; Alt, Jesse; Ator, Nancy A; Wilmoth, Heather; Rais, Rana; Hin, Niyada; DeVivo, Michael; Popiolek, Michael; Tsukamoto, Takashi; Slusher, Barbara S

    2016-09-01

    Hypofunction of the N-methyl-d-aspartate (NMDA) receptor is thought to exacerbate psychosis in patients diagnosed with schizophrenia. Consistent with this hypothesis, D-alanine, a co-agonist at the glycine site of the NMDA receptor, was shown to improve positive and cognitive symptoms when used as add-on therapy for schizophrenia treatment. However, D-alanine had to be administered at high doses (~7 g) to observe clinical effects. One possible reason for the high dose is that D-alanine could be undergoing oxidation by D-amino acid oxidase (DAAO) before it reaches the brain. If this is the case, the dose could be reduced by co-administration of D-alanine with a DAAO inhibitor (DAAOi). Early studies with rodents showed that co-administration of D-alanine with 5-chloro-benzo[d]isoxazol-3-ol (CBIO), a prototype DAAOi, significantly enhanced the levels of extracellular D-alanine in the frontal cortex compared with D-alanine alone. Further, the use of CBIO reduced the dose of D-alanine needed to attenuate prepulse inhibition deficits induced by dizocilpine. The objective of the work reported herein was to confirm the hypothesis that DAAO inhibition can enhance D-alanine exposure in a species closer to humans: non-human primates. We report that while oral D-alanine administration to baboons (10 mg/kg) enhanced D-alanine plasma and CSF levels over 20-fold versus endogenous levels, addition of experimental DAAOi to the regimen exhibited a 2.2-fold enhancement in plasma and no measurable effect on CSF levels. The results provide caution regarding the utility of DAAO inhibition to increase D-amino acid levels as treatment for patients with schizophrenia. PMID:27287825

  3. Linoleic acid permeabilizes gastric epithelial cells by increasing connexin 43 levels in the cell membrane via a GPR40- and Akt-dependent mechanism.

    PubMed

    Puebla, Carlos; Cisterna, Bruno A; Salas, Daniela P; Delgado-López, Fernando; Lampe, Paul D; Sáez, Juan C

    2016-05-01

    Linoleic acid (LA) is known to activate G-protein coupled receptors and connexin hemichannels (Cx HCs) but possible interlinks between these two responses remain unexplored. Here, we evaluated the mechanism of action of LA on the membrane permeability mediated by Cx HCs in MKN28 cells. These cells were found to express connexins, GPR40, GPR120, and CD36 receptors. The Cx HC activity of these cells increased after 5 min of treatment with LA or GW9508, an agonist of GPR40/GPR120; or exposure to extracellular divalent cation-free solution (DCFS), known to increase the open probability of Cx HCs, yields an immediate increase in Cx HC activity of similar intensity and additive with LA-induced change. Treatment with a CD36 blocker or transfection with siRNA-GPR120 maintains the LA-induced Cx HC activity. However, cells transfected with siRNA-GPR40 did not show LA-induced Cx HC activity but activity was increased upon exposure to DCFS, confirming the presence of activatable Cx HCs in the cell membrane. Treatment with AKTi (Akt inhibitor) abrogated the LA-induced Cx HC activity. In HeLa cells transfected with Cx43 (HeLa-Cx43), LA induced phosphorylation of surface Cx43 at serine 373 (S373), site for Akt phosphorylation. HeLa-Cx43 but not HeLa-Cx43 cells with a S373A mutation showed a LA-induced Cx HC activity directly related to an increase in cell surface Cx43 levels. Thus, the increase in membrane permeability induced by LA is mediated by an intracellular signaling pathway activated by GPR40 that leads to an increase in membrane levels of Cx43 phosphorylated at serine 373 via Akt. PMID:26869446

  4. Effect of ascorbic acid or increasing metabolizable energy level with or without supplementation of some essential amino acids on productive and physiological traits of slow-growing chicks exposed to chronic heat stress.

    PubMed

    Attia, Y A; Hassan, R A; Tag El-Din, A E; Abou-Shehema, B M

    2011-12-01

    Four hundred and twenty, 21-day-old slow-growing chicks were divided randomly into seven treatments, each containing five replicates. Each replicate was kept in a 1 × 1-m floor pen. One treatment was kept under thermo-neutral conditions in a semi-open house and fed a corn-soybean meal diet (positive control). The other six groups were kept under chronic heat stress (CHS) at 38 °C and 60% RH for 4 h from 12:00 to 16:00 pm for three successive days per week. Chicks in CHS treatments were fed a corn-soybean meal diet without (negative control) or with increasing metabolizable energy (ME) level by oil supplementation alone, or also with increasing some essential amino acids (EAA) such as methionine (Met), methionine and lysine (Met+Lys) or methionine, lysine and arginine (Met+Lys+Arg) or supplemented with 250 mg of ascorbic acid (AA)/kg. CHS impaired (p < 0.05) growth performance, increased plasma triglycerides and total serum Ca while decreasing (p < 0.05) plasma glucose and total serum protein. Meanwhile 250 mg AA/kg diet or an increasing ME without or with some EAA partially alleviated (p < 0.0001) the negative effect of CHS on growth while increasing (p < 0.05) feed intake and improving (p < 0.05) feed:gain ratio (F:G) and crude protein (CP) digestibility (p < 0.05). AA or increasing ME with or without EAA increased (p < 0.05) percentage dressing, liver and giblets to those of the positive control. AA or increasing ME with or without EAA partially alleviated the negative effect of CHS on blood pH, packed cell volume (PCV), haemoglobin (Hgb), total serum protein and total Ca, plasma glucose and triglyceride, rectal temperature and respiration rate. Increasing ME level improved chickens' tolerance to CHS without a significant difference from those supplemented with AA. However, increasing Met, Lys and Arg concentration did not improve performance over that recorded with increasing ME level alone. Under CHS, 250 mg AA/kg diet or increasing ME level by addition of 3

  5. Lysophosphatidic Acid Acyltransferase from Coconut Endosperm Mediates the Insertion of Laurate at the sn-2 Position of Triacylglycerols in Lauric Rapeseed Oil and Can Increase Total Laurate Levels

    PubMed Central

    Knutzon, Deborah S.; Hayes, Thomas R.; Wyrick, Annette; Xiong, Hui; Maelor Davies, H.; Voelker, Toni A.

    1999-01-01

    Expression of a California bay laurel (Umbellularia californica) 12:0-acyl-carrier protein thioesterase, bay thioesterase (BTE), in developing seeds of oilseed rape (Brassica napus) led to the production of oils containing up to 50% laurate. In these BTE oils, laurate is found almost exclusively at the sn-1 and sn-3 positions of the triacylglycerols (T.A. Voelker, T.R. Hayes, A.C. Cranmer, H.M. Davies [1996] Plant J 9: 229–241). Coexpression of a coconut (Cocos nucifera) 12:0-coenzyme A-preferring lysophosphatitic acid acyltransferase (D.S. Knutzon, K.D. Lardizabal, J.S. Nelsen, J.L. Bleibaum, H.M. Davies, J.G. Metz [1995] Plant Physiol 109: 999–1006) in BTE oilseed rape seeds facilitates efficient laurate deposition at the sn-2 position, resulting in the acccumulation of trilaurin. The introduction of the coconut protein into BTE oilseed rape lines with laurate above 50 mol % further increases total laurate levels. PMID:10398708

  6. Dietary gamma-linolenic acid in the form of borage oil causes less body fat accumulation accompanying an increase in uncoupling protein 1 mRNA level in brown adipose tissue.

    PubMed

    Takahashi, Y; Ide, T; Fujita, H

    2000-10-01

    Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid

  7. N-3 Polyunsaturated Fatty Acids Improve Liver Lipid Oxidation-Related Enzyme Levels and Increased the Peroxisome Proliferator-Activated Receptor α Expression Level in Mice Subjected to Hemorrhagic Shock/Resuscitation

    PubMed Central

    Zhang, Li; Tian, Feng; Gao, Xuejin; Wang, Xinying; Wu, Chao; Li, Ning; Li, Jieshou

    2016-01-01

    Appropriate metabolic interventions after hemorrhagic shock/resuscitation injury have not yet been identified. We aimed to examine the effects of fish oil on lipid metabolic intervention after hemorrhagic shock/resuscitation. Firstly, 48 C57BL/6 mice were assigned to six groups (n = 8 per group). The sham group did not undergo surgery, while mice in the remaining groups were sacrificed 1–5 days after hemorrhagic shock/resuscitation. In the second part, mice were treated with saline or fish oil (n = 8 per group) five days after injury. We determined serum triglyceride levels and liver tissues were collected and prepared for qRT-PCR or Western blot analysis. We found that triglyceride levels were increased five days after hemorrhagic shock/resuscitation, but decreased after addition of fish oil. After injury, the protein and gene expression of carnitine palmitoyltransferase 1A, fatty acid transport protein 1, and peroxisome proliferator-activated receptor-α decreased significantly in liver tissue. In contrast, after treatment with fish oil, the expression levels of these targets increased compared with those in the saline group. The present results suggest n-3 polyunsaturated fatty acids could improve lipid oxidation-related enzymes in liver subjected to hemorrhagic shock/resuscitation. This function is possibly accomplished through activating the peroxisome proliferator-activated receptor-α pathway. PMID:27110821

  8. N-3 Polyunsaturated Fatty Acids Improve Liver Lipid Oxidation-Related Enzyme Levels and Increased the Peroxisome Proliferator-Activated Receptor α Expression Level in Mice Subjected to Hemorrhagic Shock/Resuscitation.

    PubMed

    Zhang, Li; Tian, Feng; Gao, Xuejin; Wang, Xinying; Wu, Chao; Li, Ning; Li, Jieshou

    2016-01-01

    Appropriate metabolic interventions after hemorrhagic shock/resuscitation injury have not yet been identified. We aimed to examine the effects of fish oil on lipid metabolic intervention after hemorrhagic shock/resuscitation. Firstly, 48 C57BL/6 mice were assigned to six groups (n = 8 per group). The sham group did not undergo surgery, while mice in the remaining groups were sacrificed 1-5 days after hemorrhagic shock/resuscitation. In the second part, mice were treated with saline or fish oil (n = 8 per group) five days after injury. We determined serum triglyceride levels and liver tissues were collected and prepared for qRT-PCR or Western blot analysis. We found that triglyceride levels were increased five days after hemorrhagic shock/resuscitation, but decreased after addition of fish oil. After injury, the protein and gene expression of carnitine palmitoyltransferase 1A, fatty acid transport protein 1, and peroxisome proliferator-activated receptor-α decreased significantly in liver tissue. In contrast, after treatment with fish oil, the expression levels of these targets increased compared with those in the saline group. The present results suggest n-3 polyunsaturated fatty acids could improve lipid oxidation-related enzymes in liver subjected to hemorrhagic shock/resuscitation. This function is possibly accomplished through activating the peroxisome proliferator-activated receptor-α pathway. PMID:27110821

  9. Higher serum uric acid level increases risk of prehypertension in subjects with normal glucose tolerance, but not pre-diabetes and diabetes.

    PubMed

    Wu, I-H; Wu, J-S; Sun, Z-J; Lu, F-H; Chang, C-S; Chang, C-J; Yang, Y-C

    2016-08-01

    Although the association between serum uric acid (SUA) levels and prehypertension has been reported in previous studies, it is unknown whether their relationship is similar in subjects with diabetes, pre-diabetes and normal glucose tolerance (NGT). This study thus aimed to investigate the relationship between SUA and prehypertension in subjects with different glycemic status, including NGT, pre-diabetes and diabetes. A total of 12 010 participants were included after excluding subjects with blood pressure ⩾140/90 mm Hg, history of hypertension, leukaemia, lymphoma, hypothyroidism, medication for hypertension and hyperuricemia and missing data. Subjects were divided into four groups based on SUA quartiles (male Q1: ⩽345.0, Q2: 345.0-392.6, Q3: 392.6-440.2, Q4: ⩾440.2 μmol l(-1) and female Q1: ⩽249.8, Q2: 249.8-285.5, Q3: 285.5-333.1, Q4: ⩾333.1 μmol l(-1)). Diabetes, pre-diabetes and NGT were assessed according to the 2010 American Diabetes Association diagnostic criteria. Normotension and prehypertension were defined according to the JNC-7 (The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure) criteria. The SUA was significantly higher in prehypertensive subjects as compared with normotensive subjects. SUA, as a continuous variable, was positively associated with prehypertension in subjects with NGT but not pre-diabetes and diabetes. Besides, NGT subjects with the highest quartile of SUA exhibited a higher risk of prehypertension after adjustment for other confounding factors. In pre-diabetes and diabetes groups, none of SUA quartiles was significantly related to prehypertension. SUA was significantly associated with an increased risk of prehypertension in subjects with NGT but insignificantly in subjects with pre-diabetes and diabetes. PMID:26911534

  10. Increase of α1-acid glycoprotein after treatment with amitriptyline

    PubMed Central

    Baumann, P.; Tinguely, D.; Schöpf, J.

    1982-01-01

    Sixteen primary depressive patients were treated for 3 weeks with amitriptyline 150 mg daily. In thirteen patients the plasma level of α1-acid glycoprotein (AAG) significantly increased after the treatment but the albumin levels did not change. PMID:7104160

  11. Effects of feeding increasing dietary levels of high oleic or regular sunflower or linseed oil on fatty acid profile of goat milk.

    PubMed

    Martínez Marín, A L; Gómez-Cortés, P; Gómez Castro, G; Juárez, M; Pérez Alba, L; Pérez Hernández, M; de la Fuente, M A

    2012-04-01

    In this work, the effects of increasing amounts of 3 plant oils in diets on the fatty acid (FA) profile of goat milk were studied. The study consisted of 3 experiments, one per oil tested (linseed oil, LO; high oleic sunflower oil, HOSFO; and regular sunflower oil, RSFO). The 3 experiments were conducted successively on 12 Malagueña goats, which were assigned at random to 1 of 4 treatments: 0, 30, 48, and 66 (H) g of added oil/d. A basal diet made of alfalfa hay and pelleted concentrate (33:67) was used in all of the experiments. For each animal, milk samples collected after 15 d on treatments were analyzed for fat, protein, lactose, and FA composition, whereas individual milk yield was measured the last 3 d of each experiment. Oil supplementation affected neither dry matter intake nor milk production traits. Increasing the oil supplementation decreased the content of saturated FA (especially 16:0) in milk fat and increased mono- and polyunsaturated FA in a linear manner. Vaccenic acid content linearly increased with the oil supplementation by 370, 217, and 634% to 5.32, 2.66, and 5.09 g/100 g of total FA methyl esters with the H diet in LO, HOSFO, and RSFO experiments, respectively. Rumenic acid content linearly increased with LO and RSFO supplementation by 298 and 354% from 0.53 and 0.41 g/100 g of total FA methyl esters with the 0 g of added oil/d diet. The content of trans-10-18:1 was not affected by LO supplementation but showed an increasing linear trend with HOSFO supplementation and linearly increased with RSFO supplementation. The ratio of n-6 to n-3 polyunsaturated FA in milk fat was decreased by about 70% with the H diet in the LO experiment and it was increased by 54 and 82% with the H diet in the HOSFO and RSFO experiments. In conclusion, LO supplementation in this work seemed to be the most favorable alternative compared with HOSFO or RSFO supplementation. PMID:22459841

  12. Treatment of mice with 2,3,7,8-Tetrachlorodibenzo-p-dioxin markedly increases the levels of a number of cytochrome P450 metabolites of omega-3 polyunsaturated fatty acids in the liver and lung

    PubMed Central

    Yang, J.; Solaimani, P.; Dong, H; Hammock, B.D.; Hankinson, O.

    2014-01-01

    We previously reported that 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) increased the levels of several cytochrome P450 metabolites of the omega-6 polyunsaturated fatty acids (PUFAs), arachidonic acid (ARA) and linoleic acid in the serum, liver, lung and spleen of C57BL/6 mice in an aryl hydrocarbon receptor (AHR)-dependent fashion. These increases correlated with increased levels of CYP1A1, CYP1A2 and/or CYP1B1. In the current study, we measured 77 oxylipins, including 59 that we had not measured previously, and demonstrate that TCDD also markedly increases the levels of many epoxide and diol metabolites of the omega-3 PUFAs, α-linolenic acid, eicosapentaenoic acid (EPA) and docasahexaenoic acid (DHA) in these mice. Since these epoxide metabolites have been reported to have opposite effects on angiogenesis, tumor growth and tumor metastasis compared with the equivalent metabolites of omega-6 PUFA, these observations have important implications with regard to the potential involvement of the cytochrome P450 metabolites of PUFAs in mediating the biological effects of TCDD and other agonists of AHR. PMID:24213002

  13. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress.

    PubMed

    Zhang, Juan; Yu, Haiyue; Zhang, Yushi; Wang, Yubing; Li, Maoying; Zhang, Jiachang; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2016-03-01

    Abscisic acid (ABA) is a vital cellular signal in plants, and effective ABA signalling is pivotal for stress tolerance. AtLOS5 encoding molybdenum cofactor sulphurase is a key regulator of ABA biosynthesis. Here, transgenic AtLOS5 plants were generated to explore the role of AtLOS5 in salt tolerance in maize. AtLOS5 overexpression significantly up-regulated the expression of ZmVp14-2, ZmAO, and ZmMOCO, and increased aldehyde oxidase activities, which enhanced ABA accumulation in transgenic plants under salt stress. Concurrently, AtLOS5 overexpression induced the expression of ZmNHX1, ZmCBL4, and ZmCIPK16, and enhanced the root net Na(+) efflux and H(+) influx, but decreased net K(+) efflux, which maintained a high cytosolic K(+)/Na(+) ratio in transgenic plants under salt stress. However, amiloride or sodium orthovanadate could significantly elevate K(+) effluxes and decrease Na(+) efflux and H(+) influx in salt-treated transgenic roots, but the K(+) effluxes were inhibited by TEA, suggesting that ion fluxes regulated by AtLOS5 overexpression were possibly due to activation of Na(+)/H(+) antiport and K(+) channels across the plasma membrane. Moreover, AtLOS5 overexpression could up-regulate the transcripts of ZmPIP1:1, ZmPIP1:5, and ZmPIP2:4, and enhance root hydraulic conductivity. Thus transgenic plants had higher leaf water potential and turgor, which was correlated with greater biomass accumulation under salt stress. Thus AtLOS5 overexpression induced the expression of ABA biosynthetic genes to promote ABA accumulation, which activated ion transporter and PIP aquaporin gene expression to regulate root ion fluxes and water uptake, thus maintaining high cytosolic K(+) and Na(+) homeostasis and better water status in maize exposed to salt stress. PMID:26743432

  14. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress

    PubMed Central

    Zhang, Juan; Yu, Haiyue; Zhang, Yushi; Wang, Yubing; Li, Maoying; Zhang, Jiachang; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2016-01-01

    Abscisic acid (ABA) is a vital cellular signal in plants, and effective ABA signalling is pivotal for stress tolerance. AtLOS5 encoding molybdenum cofactor sulphurase is a key regulator of ABA biosynthesis. Here, transgenic AtLOS5 plants were generated to explore the role of AtLOS5 in salt tolerance in maize. AtLOS5 overexpression significantly up-regulated the expression of ZmVp14-2, ZmAO, and ZmMOCO, and increased aldehyde oxidase activities, which enhanced ABA accumulation in transgenic plants under salt stress. Concurrently, AtLOS5 overexpression induced the expression of ZmNHX1, ZmCBL4, and ZmCIPK16, and enhanced the root net Na+ efflux and H+ influx, but decreased net K+ efflux, which maintained a high cytosolic K+/Na+ ratio in transgenic plants under salt stress. However, amiloride or sodium orthovanadate could significantly elevate K+ effluxes and decrease Na+ efflux and H+ influx in salt-treated transgenic roots, but the K+ effluxes were inhibited by TEA, suggesting that ion fluxes regulated by AtLOS5 overexpression were possibly due to activation of Na+/H+ antiport and K+ channels across the plasma membrane. Moreover, AtLOS5 overexpression could up-regulate the transcripts of ZmPIP1:1, ZmPIP1:5, and ZmPIP2:4, and enhance root hydraulic conductivity. Thus transgenic plants had higher leaf water potential and turgor, which was correlated with greater biomass accumulation under salt stress. Thus AtLOS5 overexpression induced the expression of ABA biosynthetic genes to promote ABA accumulation, which activated ion transporter and PIP aquaporin gene expression to regulate root ion fluxes and water uptake, thus maintaining high cytosolic K+ and Na+ homeostasis and better water status in maize exposed to salt stress. PMID:26743432

  15. Betulinic acid decreases specificity protein 1 (Sp1) level via increasing the sumoylation of sp1 to inhibit lung cancer growth.

    PubMed

    Hsu, Tsung-I; Wang, Mei-Chun; Chen, Szu-Yu; Huang, Shih-Ting; Yeh, Yu-Min; Su, Wu-Chou; Chang, Wen-Chang; Hung, Jan-Jong

    2012-12-01

    Previous studies have shown that the inhibitory effect of betulinic acid (BA) on specificity protein 1 (Sp1) expression is involved in the prevention of cancer progression, but the mechanism of this effect remains to be delineated. In this study, we determined that BA treatment in HeLa cells increased the sumoylation of Sp1 by inhibiting sentrin-specific protease 1 expression. The subsequent recruitment of E3 ubiquitin-protein ligase RING finger protein 4 resulted in ubiquitin-mediated degradation in a 26S-proteosome-dependent pathway. In addition, both BA treatment and mithramycin A (MMA) treatment inhibited lung tumor growth and down-regulated Sp1 protein expression in Kras(G12D)-induced lung cancers of bitransgenic mice. In gene expression profiles of Kras(G12D)-induced lung cancers in bitransgenic mice with and without Sp1 inhibition, 542 genes were affected by MMA treatment. One of the gene products, cyclin A2, which was involved in the S and G(2)/M phase transition during cell cycle progression, was investigated in detail because its expression was regulated by Sp1. The down-regulation of cyclin A2 by BA treatment resulted in decreased retinoblastoma protein phosphorylation and cell cycle G(2)/M arrest. The BA-mediated cellular Sp1 degradation and antitumor effect were also confirmed in a xenograft mouse model by using H1299 cells. The knockdown of Sp1 in lung cancer cells attenuated the tumor-suppressive effect of BA. Taken together, the results of this study clarify the mechanism of BA-mediated Sp1 degradation and identify a pivotal role for Sp1 in the BA-induced repression of lung cancer growth. PMID:22956772

  16. A conjugated fatty acid present at high levels in bitter melon seed favorably affects lipid metabolism in hepatocytes by increasing NAD(+)/NADH ratio and activating PPARα, AMPK and SIRT1 signaling pathway.

    PubMed

    Chen, Gou-Chun; Su, Hui-Min; Lin, Yu-Shun; Tsou, Po-Yen; Chyuan, Jong-Ho; Chao, Pei-Min

    2016-07-01

    α-Eleostearic acid (α-ESA), or the cis-9, trans-11, trans-13 isomer of conjugated linolenic acid, is a special fatty acid present at high levels in bitter melon seed oil. The aim of this study was to examine the effect of α-ESA on hepatic lipid metabolism. Using H4IIEC3 hepatoma cell line, we showed that α-ESA significantly lowered intracellular triglyceride accumulation compared to α-linolenic acid (LN), used as a fatty acid control, in a dose- and time-dependent manner. The effects of α-ESA on enzyme activities and mRNA profiles in H4IIEC3 cells suggested that enhanced fatty acid oxidation and lowered lipogenesis were involved in α-ESA-mediated triglyceride lowering effects. In addition, α-ESA triggered AMP-activated protein kinase (AMPK) activation without altering sirtuin 1 (SIRT1) protein levels. When cells were treated with vehicle control (VC), LN alone (LN; 100μmol/L) or in combination with α-ESA (LN+α-ESA; 75+25μmol/L) for 24h, acetylation of forkhead box protein O1 was decreased, while the NAD(+)/NADH ratio, mRNA levels of NAMPT and PTGR1 and enzyme activity of nicotinamide phosphoribosyltransferase were increased by LN+α-ESA treatment compared to treatment with LN alone, suggesting that α-ESA activates SIRT1 by increasing NAD(+) synthesis and NAD(P)H consumption. The antisteatosis effect of α-ESA was confirmed in mice treated with a high-sucrose diet supplemented with 1% α-ESA for 5weeks. We conclude that α-ESA favorably affects hepatic lipid metabolism by increasing cellular NAD(+)/NADH ratio and activating PPARα, AMPK and SIRT1 signaling pathways. PMID:27260465

  17. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid

    PubMed Central

    Ro, Dae-Kyun; Ouellet, Mario; Paradise, Eric M; Burd, Helcio; Eng, Diana; Paddon, Chris J; Newman, Jack D; Keasling, Jay D

    2008-01-01

    Background Due to the global occurrence of multi-drug-resistant malarial parasites (Plasmodium falciparum), the anti-malarial drug most effective against malaria is artemisinin, a natural product (sesquiterpene lactone endoperoxide) extracted from sweet wormwood (Artemisia annua). However, artemisinin is in short supply and unaffordable to most malaria patients. Artemisinin can be semi-synthesized from its precursor artemisinic acid, which can be synthesized from simple sugars using microorganisms genetically engineered with genes from A. annua. In order to develop an industrially competent yeast strain, detailed analyses of microbial physiology and development of gene expression strategies are required. Results Three plant genes coding for amorphadiene synthase, amorphadiene oxidase (AMO or CYP71AV1), and cytochrome P450 reductase, which in concert divert carbon flux from farnesyl diphosphate to artemisinic acid, were expressed from a single plasmid. The artemisinic acid production in the engineered yeast reached 250 μg mL-1 in shake-flask cultures and 1 g L-1 in bio-reactors with the use of Leu2d selection marker and appropriate medium formulation. When plasmid stability was measured, the yeast strain synthesizing amorphadiene alone maintained the plasmid in 84% of the cells, whereas the yeast strain synthesizing artemisinic acid showed poor plasmid stability. Inactivation of AMO by a point-mutation restored the high plasmid stability, indicating that the low plasmid stability is not caused by production of the AMO protein but by artemisinic acid synthesis or accumulation. Semi-quantitative reverse-transcriptase (RT)-PCR and quantitative real time-PCR consistently showed that pleiotropic drug resistance (PDR) genes, belonging to the family of ATP-Binding Cassette (ABC) transporter, were massively induced in the yeast strain producing artemisinic acid, relative to the yeast strain producing the hydrocarbon amorphadiene alone. Global transcriptional analysis by

  18. Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction of vegetable ingredients in fish feed has affected the fatty acid composition in farmed Atlantic salmon (Salmo salar L). Here we investigated how changes in fish feed affected the metabolism of mice fed diets containing fillets from such farmed salmon. We demonstrate that replacement of...

  19. Oligo-carrageenan kappa-induced reducing redox status and activation of TRR/TRX system increase the level of indole-3-acetic acid, gibberellin A3 and trans-zeatin in Eucalyptus globulus trees.

    PubMed

    González, Alberto; Contreras, Rodrigo A; Zúiga, Gustavo; Moenne, Alejandra

    2014-01-01

    Eucalyptus globulus trees treated with oligo-carrageenan (OC) kappa showed an increase in NADPH, ascorbate and glutathione levels and activation of the thioredoxin reductase (TRR)/thioredoxin (TRX) system which enhance photosynthesis, basal metabolism and growth. In order to analyze whether the reducing redox status and the activation of thioredoxin reductase (TRR)/thioredoxin (TRX) increased the level of growth-promoting hormones, trees were treated with water (control), with OC kappa, or with inhibitors of ascorbate synthesis, lycorine, glutathione synthesis, buthionine sulfoximine (BSO), NADPH synthesis, CHS-828, and thioredoxin reductase activity, auranofine, and with OC kappa, and cultivated for four additional months. Eucalyptus trees treated with OC kappa showed an increase in the levels of the auxin indole 3-acetic acid (IAA), gibberellin A3 (GA3) and the cytokinin trans-zeatin (t-Z) as well as a decrease in the level of the brassinosteroid epi-brassinolide (EB). In addition, treatment with lycorine, BSO, CHS-828 and auranofine inhibited the increase in IAA, GA3 and t-Z as well as the decrease in EB levels. Thus, the reducing redox status and the activation of TRR/TRX system induced by OC kappa increased the levels of IAA, GA3 and t-Z levels determining, at least in part, the stimulation of growth in Eucalyptus trees. PMID:25140447

  20. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity.

    PubMed

    Simopoulos, Artemis P

    2016-01-01

    In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC) membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity. PMID:26950145

  1. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity

    PubMed Central

    Simopoulos, Artemis P.

    2016-01-01

    In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC) membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity. PMID:26950145

  2. The novel neurotensin analog NT69L blocks phencyclidine (PCP)-induced increases in locomotor activity and PCP-induced increases in monoamine and amino acids levels in the medial prefrontal cortex.

    PubMed

    Li, Zhimin; Boules, Mona; Williams, Katrina; Peris, Joanna; Richelson, Elliott

    2010-01-22

    Schizophrenia is a life-long, severe, and disabling brain disorder that requires chronic pharmacotherapy. Because current antipsychotic drugs do not provide optimal therapy, we have been developing novel treatments that focus on receptors for the neuropeptide neurotensin (NT). NT69L, an analog of neurotensin(8-13), acts like an atypical antipsychotic drug in several dopamine-based animal models used to study schizophrenia. Another current animal model utilizes non-competitive antagonists of the NMDA/glutamate receptor, such as the psychotomimetic phencyclidine (PCP). In the present study, we investigated the effects of NT69L on PCP-induced behavioral and biochemical changes in the rat. The top of an activity chamber was modified to allow us to perform microdialysis in rat brain, while simultaneously recording the locomotor activity of a rat. PCP injection significantly increased activity as well as the extracellular concentration of norepinephrine (NE), 5-HT, dopamine (DA), and glutamate in the medial prefrontal cortex (mPFC). Pretreating with NT69L blocked the PCP-induced hyperactivity as well as the increase of DA, 5-HT, NE, and glutamate in mPFC. Interestingly and unexpectedly, NT69L markedly increased glycine levels, while PCP was without effect on glycine levels. Thus, NT69L showed antipsychotic-like effects in this glutamate-based animal model for studying schizophrenia. Previous work from our group suggests that NT69L also has antipsychotic-like effects in dopaminergic and serotonergic rodent models. Taken together, these data suggest that NT69L in particular and NT receptor agonists in general, will be useful as broad-spectrum antipsychotic drugs. PMID:19948149

  3. Acid mine drainage and subsidence: effects of increased coal utilization.

    PubMed Central

    Hill, R D; Bates, E R

    1979-01-01

    The increases above 1975 levels for acid mine drainage and subsidence for the years 1985 and 2000 based on projections of current mining trends and the National Energy Plan are presented. No increases are projected for acid mine drainage from surface mines or waste since enforcement under present laws should control this problem. The increase in acid mine drainage from underground mines is projected to be 16 percent by 1985 and 10 percent by 2000. The smaller increase in 2000 over 1985 reflects the impact of the PL 95-87 abandoned mine program. Mine subsidence is projected to increase by 34 and 115 percent respectively for 1985 and 2000. This estimate assumes that subsidence will parallel the rate of underground coal production and that no new subsidence control measures are adopted to mitigate subsidence occurrence. PMID:540617

  4. Association between the proportion of sampled transition cows with increased nonesterified fatty acids and beta-hydroxybutyrate and disease incidence, pregnancy rate, and milk production at the herd level.

    PubMed

    Ospina, P A; Nydam, D V; Stokol, T; Overton, T R

    2010-08-01

    In this study the herd alarm level was defined as the proportion of sampled transition cows per herd with increased prepartum nonesterified fatty acid (NEFA), postpartum beta-hydroxybutyrate (BHBA), or NEFA concentrations that were associated with herd-level incidence of displaced abomasum (DA) or clinical ketosis (CK), pregnancy rate (PR), and milk production. The objectives were to 1) identify the herd alarm level for excessive negative energy balance and 2) describe the herd-level prevalence of this proportion. This was a prospective cohort study of 60 free-stall herds fed total mixed rations in the northeast United States. Two cohorts of approximately 15 animals were assessed for prepartum NEFA and postpartum BHBA and NEFA. The herd alarm level (i.e., the proportion of sampled animals above a certain metabolite threshold) was as follows: 15% had prepartum NEFA of 0.27 mEq/L; 15 and 20% had BHBA of 10 and 12 mg/dL, respectively; and 15% had postpartum NEFA of 0.60 and 0.70 mEq/L. The different herd alarm levels correspond to differences between the metabolites and respective herd-level effect. The herd-level effects for herds above the herd alarm level for prepartum NEFA were 3.6% increase in DA and CK incidence, 1.2% decrease in PR, and 282 kg decrease in average mature equivalent 305-d (ME 305) milk. For BHBA, the herd-level effects were a 1.8% increase in DA and CK, 0.8% decrease in PR, and 534 and 358 kg decrease in projected ME 305 milk yield for heifers and cows, respectively. For postpartum NEFA, the herd-level effects were 1.7% increase in DA and CK, 0.9% decrease in PR, and 288 and 593 kg decrease in projected ME 305 milk yield for heifers and cows, respectively. The prevalence of herds in which more than 15% of animals sampled had prepartum NEFA concentration >or=0.30 mEq/L was 75%, BHBA >or=12 mg/dL was 40%, and postpartum NEFA >or=0.70 mEq/L was 65%. This study showed that there were detrimental herd-level effects if a large enough proportion of cows

  5. Plasma FGF23 levels increase rapidly after acute kidney injury

    PubMed Central

    Christov, Marta; Waikar, Sushrut; Pereira, Renata; Havasi, Andrea; Leaf, David E.; Goltzman, David; Pajevic, Paola Divieti; Wolf, Myles; Jüppner, Harald

    2013-01-01

    Emerging evidence suggests that fibroblast growth factor 23 (FGF23) levels are elevated in patients with acute kidney injury (AKI). In order to determine how early this increase occurs we used a murine folic acid nephropathy model and found that plasma FGF23 levels increased significantly from baseline already after 1 hour of AKI, with an 18-fold increase at 24 hours. Similar elevations of FGF23 levels were found when AKI was induced in mice with osteocyte-specific parathyroid hormone receptor ablation or the global deletion of parathyroid hormone or vitamin D receptor, indicating that the increase in FGF23 was independent of parathyroid hormone and vitamin D signaling. Furthermore, FGF23 levels increased to a similar extent in wild-type mice maintained on normal or phosphate-depleted diets prior to induction of AKI, indicating that the marked FGF23 elevation is at least partially independent of dietary phosphate. Bone production of FGF23 was significantly increased in AKI. The half-life of intravenously administered recombinant FGF23 was only modestly increased. Consistent with the mouse data, plasma FGF23 levels rose 15.9-fold by 24 hours following cardiac surgery in patients who developed AKI. The levels were significantly higher than in those without postoperative AKI. Thus, circulating FGF23 levels rise rapidly during AKI in rodents and humans. In mice this increase is independent of established modulators of FGF23 secretion. PMID:23657144

  6. Increased formation of ursodeoxycholic acid in patients treated with chenodeoxycholic acid.

    PubMed Central

    Salen, G; Tint, G S; Eliav, B; Deering, N; Mosbach, E H

    1974-01-01

    The formation of ursodeoxycholic acid, the 7 beta-hydroxy epimer of chenodeoxycholic acid, was investigated in three subjects with cerebrotendinous xanthomatosis and in four subjects with gallstones. Total biliary bile acid composition was analyzed by gas-liquid chromatography before and after 4 months of treatment with 0.75 g/day of chenodeoxycholic acid. Individual bile acids were identified by mass spectrometry. Before treatment, bile from cerebrotendinous xanthomatosis (CTX) subjects contained cholic acid, 85%; chenodeoxycholic acid, 7%; deoxycholic acid, 3%; allocholic acid, 3%; and unidentified steroids, 2%; while bile from gallstone subjects contained cholic acid, 45%; chenodeoxycholic acid, 43%; deoxycholic acid, 11%, and lithocholic acid, 1%. In all subjects, 4 months of chenodeoxycholic acid therapy increased the proportion of this bile acid to approximately 80% and decreased cholic acid to 3% of the total biliary bile acids, the remaining 17% of bile acids were identified as ursodeoxycholic acid. After the intravenous injection of [3H]chenodeoxycholic acid, the specific activity of biliary ursodeoxycholic acid exceeded the specific activity of chenodeoxycholic acid, and the resulting specific activity decay curves suggested precursor-product relationships. When [3H]7-ketolithocholic acid was administrated to another patient treated with chenodeoxycholic acid, radioactivity was detected in both the ursodeoxycholic acid and chenodeoxycholic acid fractions. These results indicate that substantial amounts of ursodeoxycholic acid are formed in patients treated with chenodeoxycholic acid. The ursodeoxycholic acid was synthesized from chenodeoxycholic acid presumably via 7-ketolithocholic acid. Images PMID:11344576

  7. Using nonesterified fatty acids and β-hydroxybutyrate concentrations during the transition period for herd-level monitoring of increased risk of disease and decreased reproductive and milking performance.

    PubMed

    Ospina, Paula A; McArt, Jessica A; Overton, Thomas R; Stokol, Tracy; Nydam, Daryl V

    2013-07-01

    Dairy cows visit a state of negative energy balance (NEB) as they transition from late gestation to early lactation. At the individual level, there are several metabolic adaptations to manage NEB, including mobilization of nonesterified fatty acids (NEFA) from body fat reserves and glucose sparing for lactogenesis. Based on current pen-level feeding and management practices, strategies to minimize excessive NEB in both the individual and herd should focus on herd-level testing and management. This article reviews strategies for testing and monitoring of excessive NEB at the herd level through individual testing of 2 energy markers: NEFA and β-hydroxybutyrate. PMID:23809897

  8. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer.

    PubMed

    Ren, Ang; Li, Xiong-Biao; Miao, Zhi-Gang; Shi, Liang; Jaing, Ai-Liang; Zhao, Ming-Wen

    2014-12-01

    Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 μg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation. PMID:25216642

  9. Sleep restriction increases free fatty acids in healthy men

    PubMed Central

    Broussard, Josiane L.; Chapotot, Florian; Abraham, Varghese; Day, Andrew; Delebecque, Fanny; Whitmore, Harry R.; Tasali, Esra

    2015-01-01

    Aims/hypothesis Sleep loss is associated with insulin resistance and an increased risk for type 2 diabetes, yet underlying mechanisms are not understood. Elevation of circulating non-esterified (i.e. free) fatty acid (NEFA) concentrations can lead to insulin resistance and plays a central role in the development of metabolic diseases. Circulating NEFA in healthy individuals shows a marked diurnal variation with maximum levels occurring at night, yet the impact of sleep loss on NEFA levels across the 24 h cycle remains unknown. We hypothesised that sleep restriction would alter hormones that are known to stimulate lipolysis and lead to an increase in NEFA levels. Methods We studied 19 healthy young men under controlled laboratory conditions with four consecutive nights of 8.5 h in bed (normal sleep) and 4.5 h in bed (sleep restriction) in randomised order. The 24 h blood profiles of NEFA, growth hormone (GH), noradrenaline (norepinephrine), cortisol, glucose and insulin were simultaneously assessed. Insulin sensitivity was estimated by a frequently sampled intravenous glucose tolerance test. Results Sleep restriction relative to normal sleep resulted in increased NEFA levels during the nocturnal and early-morning hours. The elevation in NEFA was related to prolonged nocturnal GH secretion and higher early-morning noradrenaline levels. Insulin sensitivity was decreased after sleep restriction and the reduction in insulin sensitivity was correlated with the increase in nocturnal NEFA levels. Conclusions/interpretation Sleep restriction in healthy men results in increased nocturnal and early-morning NEFA levels, which may partly contribute to insulin resistance and the elevated diabetes risk associated with sleep loss. PMID:25702040

  10. Increased levels of a particular phosphatidylcholine species in senescent human dermal fibroblasts in vitro.

    PubMed

    Naru, Eiji; Takanezawa, Yasukazu; Kobayashi, Misako; Misaki, Yuko; Kaji, Kazuhiko; Arakane, Kumi

    2008-08-01

    Plasma membranes are essential components of living cells, and phospholipids are major components of cellular membranes. Here, we used liquid chromatography/mass spectrometry to investigate changes in the membrane phospholipid content that occur in association with aging. Our results indicate that the levels of a particular species of phosphatidylcholine comprised of stearic acid and arachidonic acid increased with age. To determine the reason for the increased levels of this particular phosphatidylcholine, we examined the effect of highly unsaturated fatty acids, such as arachidonic acid and eicosapentaenoic acid, on cellular aging. Applied arachidonic acid was incorporated into phosphatidylcholine molecules, but neither arachidonic acid nor other related unsaturated fatty acids had any effect. We conclude that increased levels of this distinctive phosphatidylcholine are a result of in vitro senescence. PMID:18667023

  11. [Serum uric acid levels and risk of developing preeclampsia].

    PubMed

    Corominas, Ana I; Balconi, Silvia M; Palermo, Mario; Maskin, Bernardo; Damiano, Alicia E

    2014-01-01

    It is well known that preeclampsia is associated to high uric acid levels, but the clinical assessment of this relationship is still under consideration. Our research was to evaluate if periodic doses of uric acid during pregnancy might help to identify a high risk group prior to the onset of preeclampsia. We conducted a retrospective investigation in 79 primary gestates with normal blood pressure and 79 women with preeclampsia who were assisted at Hospital Nacional Posadas during 2010. Serum uric acid levels, creatininemia, uremia, and proteinuria data from the clinical records of the pregnant women were considered. Uric acid levels were similar in both groups during the first half of gestation. However, as of the 20th week, uric acid increased 1.5-times in preeclamptic women with no changes in creatinine and urea, confirming that these patients had no renal complications. Furthermore, we noted that higher levels of uric acid correlated with low birth weight. We also observed that pregnant women with a family history of hypertension were more likely to develop this condition. Moreover, we did not find a direct relationship with the fetal sex or the appearance of clinical symptoms. The analytical evidence suggests that changes in uric acid concentrations may be due to metabolic alterations at the initial stages of preeclampsia. Therefore, we propose that monitoring levels of uric acid during pregnancy might contribute to the early control of this condition. PMID:25555007

  12. Method of increasing conversion of a fatty acid to its corresponding dicarboxylic acid

    DOEpatents

    Craft, David L.; Wilson, C. Ron; Eirich, Dudley; Zhang, Yeyan

    2004-09-14

    A nucleic acid sequence including a CYP promoter operably linked to nucleic acid encoding a heterologous protein is provided to increase transcription of the nucleic acid. Expression vectors and host cells containing the nucleic acid sequence are also provided. The methods and compositions described herein are especially useful in the production of polycarboxylic acids by yeast cells.

  13. Breeding Vegetables with Increased Content in Bioactive Phenolic Acids.

    PubMed

    Kaushik, Prashant; Andújar, Isabel; Vilanova, Santiago; Plazas, Mariola; Gramazio, Pietro; Herraiz, Francisco Javier; Brar, Navjot Singh; Prohens, Jaime

    2015-01-01

    Vegetables represent a major source of phenolic acids, powerful antioxidants characterized by an organic carboxylic acid function and which present multiple properties beneficial for human health. In consequence, developing new varieties with enhanced content in phenolic acids is an increasingly important breeding objective. Major phenolic acids present in vegetables are derivatives of cinnamic acid and to a lesser extent of benzoic acid. A large diversity in phenolic acids content has been found among cultivars and wild relatives of many vegetable crops. Identification of sources of variation for phenolic acids content can be accomplished by screening germplasm collections, but also through morphological characteristics and origin, as well as by evaluating mutations in key genes. Gene action estimates together with relatively high values for heritability indicate that selection for enhanced phenolic acids content will be efficient. Modern genomics and biotechnological strategies, such as QTL detection, candidate genes approaches and genetic transformation, are powerful tools for identification of genomic regions and genes with a key role in accumulation of phenolic acids in vegetables. However, genetically increasing the content in phenolic acids may also affect other traits important for the success of a variety. We anticipate that the combination of conventional and modern strategies will facilitate the development of a new generation of vegetable varieties with enhanced content in phenolic acids. PMID:26473812

  14. Uric acid excretion predicts increased aggression in urban adolescents.

    PubMed

    Mrug, Sylvie; Mrug, Michal

    2016-09-01

    Elevated levels of uric acid have been linked with impulsive and disinhibited behavior in clinical and community populations of adults, but no studies have examined uric acid in relation to adolescent aggression. This study examined the prospective role of uric acid in aggressive behavior among urban, low income adolescents, and whether this relationship varies by gender. A total of 84 adolescents (M age 13.36years; 50% male; 95% African American) self-reported on their physical aggression at baseline and 1.5years later. At baseline, the youth also completed a 12-h (overnight) urine collection at home which was used to measure uric acid excretion. After adjusting for baseline aggression and age, greater uric acid excretion predicted more frequent aggressive behavior at follow up, with no significant gender differences. The results suggest that lowering uric acid levels may help reduce youth aggression. PMID:27180134

  15. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    SciTech Connect

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.; Culley, David E.; Deng, Shuang; Collett, James R.; Umemura, Myco; Koike, Hideaki; Baker, Scott E.; Machida, Masa

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes we successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.

  16. Heavy metals influence on ascorbic acid level

    NASA Astrophysics Data System (ADS)

    Kamaldinov, E. V.; Patrashkov, S. A.; Batenyeva, E. V.; Korotkevich, O. S.

    2003-05-01

    It is well known that heavy metals (HM) are extremely dangerous pollutants influencing to metabolism in animals' organisms. The vitamin C is one of the most important metabolites taking part in many biochemical processes. We studied the influence of main essential HM-Zn and Cu as well as the based supertoxical elements - Cd and Pd on ascorbic acid level in serum. The studies were carried out in Tulinskoe farm of Novosibirsk region. The objects of investigations were piglets (2 month after weaning) and 6-month pigs of Early Ripe Meat breed. The levels of HM in bristle were found by stripping voltammetric analysis using the TA-2 analyzer. Vitamin C content was determined by I.P. Kondrakhin (1985) method using 2,2-dipyridyl. The significant negative correlations between Pb, Cd content and vitamin C (-0.46 ± 0.18, -0.47 ± 0.19) in 6-month pigs were determined. The tendencies of negative correlation between all HM levels in hair and ascorbic acid level in plasma of piglets were revealed. Thus, the obtained correlations let us to suppose that all studied HM influence on 1-gulono-gamma-lactone oxidase and other vitamin C metabolism enzymes activity.

  17. Increasing the Oleic Acid in Soybean Oil with Plant Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing the oleic acid content along with decrease in linolenic acid can improve the oxidative stability of soybean oil. Genetic changes in soybean using standard plant breeding practices has resulted in a publicly released a mid-oleic breeding line, N98-4445A, with oil that averages 57% oleic ac...

  18. Increased levels of homocysteine in patients with ulcerative colitis

    PubMed Central

    Akbulut, Sabiye; Altiparmak, Emin; Topal, Firdevs; Ozaslan, Ersan; Kucukazman, Metin; Yonem, Ozlem

    2010-01-01

    AIM: To investigate serum levels of homocysteine (Hcys) and the risk that altered levels carry for thrombosis development in ulcerative colitis (UC) patients. METHODS: 55 UC patients and 45 healthy adults were included. Hcys, vitamin B12 and folic acid levels were measured in both groups. Clinical history and thromboembolic events were investigated. RESULTS: The average Hcys level in the UC patients was 13.3 ± 1.93 μmmol/L (range 4.60-87) and was higher than the average Hcys level of the control group which was 11.2 ± 3.58 μmmol/L (range 4.00-20.8) (P < 0.001). Vitamin B12 and folic acid average values were also lower in the UC group (P < 0.001). When multivariate regression analysis was performed, it was seen that folic acid deficiency was the only risk factor for hyperhomocysteinemia. Frequencies of thromboembolic complications were not statistically significantly different in UC and control groups. When those with and without a thrombosis history in the UC group were compared according to Hcys levels, it was seen that there were no statistically significant differences. A negative linear relationship was found between folic acid levels and Hcys. CONCLUSION: We could not find any correlations between Hcys levels and history of prior thromboembolic events. PMID:20480528

  19. Cinnamic acid increases lignin production and inhibits soybean root growth.

    PubMed

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth. PMID:23922685

  20. Linoleic acid supplementation results in increased arachidonic acid and eicosanoid production in CF airway cells and in cftr−/− transgenic mice

    PubMed Central

    Zaman, Munir M.; Martin, Camilia R.; Andersson, Charlotte; Bhutta, Abdul Q.; Cluette-Brown, Joanne E.; Laposata, Michael

    2010-01-01

    Cystic fibrosis (CF) patients display a fatty acid imbalance characterized by low linoleic acid levels and variable changes in arachidonic acid. This led to the recommendation that CF patients consume a high-fat diet containing >6% linoleic acid. We hypothesized that increased conversion of linoleic acid to arachidonic acid in CF leads to increased levels of arachidonate-derived proinflammatory metabolites and that this process is exacerbated by increasing linoleic acid levels in the diet. To test this hypothesis, we determined the effect of linoleic acid supplementation on downstream proinflammatory biomarkers in two CF models: 1) in vitro cell culture model using 16HBE14o− sense [wild-type (WT)] and antisense (CF) human airway epithelial cells; and 2) in an in vivo model using cftr−/− transgenic mice. Fatty acids were analyzed by gas chromatography-mass spectrometry (GC/MS), and IL-8 and eicosanoids were measured by ELISA. Neutrophils were quantified in bronchoalveolar lavage fluid from knockout mice following linoleic acid supplementation and exposure to aerosolized Pseudomonas LPS. Linoleic acid supplementation increased arachidonic acid levels in CF but not WT cells. IL-8, PGE2, and PGF2α secretion were increased in CF compared with WT cells, with a further increase following linoleic acid supplementation. cftr−/− Mice supplemented with 100 mg of linoleic acid had increased arachidonic acid levels in lung tissue associated with increased neutrophil infiltration into the airway compared with control mice. These findings support the hypothesis that increasing linoleic acid levels in the setting of loss of cystic fibrosis transmembrane conductance regulator (CFTR) function leads to increased arachidonic acid levels and proinflammatory mediators. PMID:20656894

  1. Lysobisphosphatidic acid controls endosomal cholesterol levels.

    PubMed

    Chevallier, Julien; Chamoun, Zeina; Jiang, Guowei; Prestwich, Glenn; Sakai, Naomi; Matile, Stefan; Parton, Robert G; Gruenberg, Jean

    2008-10-10

    Most cell types acquire cholesterol by endocytosis of circulating low density lipoprotein, but little is known about the mechanisms of intra-endosomal cholesterol transport and about the primary cause of its aberrant accumulation in the cholesterol storage disorder Niemann-Pick type C (NPC). Here we report that lysobisphosphatidic acid (LBPA), an unconventional phospholipid that is only detected in late endosomes, regulates endosomal cholesterol levels under the control of Alix/AlP1, which is an LBPA-interacting protein involved in sorting into multivesicular endosomes. We find that Alix down-expression decreases both LBPA levels and the lumenal vesicle content of late endosomes. Cellular cholesterol levels are also decreased, presumably because the storage capacity of endosomes is affected and thus cholesterol clearance accelerated. Both lumenal membranes and cholesterol can be restored in Alix knockdown cells by exogenously added LBPA. Conversely, we also find that LBPA becomes limiting upon pathological cholesterol accumulation in NPC cells, because the addition of exogenous LBPA, but not of LBPA isoforms or analogues, partially reverts the NPC phenotype. We conclude that LBPA controls the cholesterol capacity of endosomes. PMID:18644787

  2. Directed evolution increases desaturation of a cyanobacterial fatty acid desaturase in eukaryotic expression systems.

    PubMed

    Bai, Shuangyi; Wallis, James G; Denolf, Peter; Browse, John

    2016-07-01

    Directed evolution of a cyanobacterial Δ9 fatty acid desaturase (DSG) from Synechococcus elongatus, PCC6301 created new, more productive desaturases and revealed the importance of certain amino acid residues to increased desaturation. A codon-optimized DSG open reading frame with an endoplasmic-reticulum retention/retrieval signal appended was used as template for random mutagenesis. Increased desaturation was detected using a novel screen based on complementation of the unsaturated fatty acid auxotrophy of Saccharomyces cerevisiae mutant ole1Δ. Amino acid residues whose importance was discovered by the random processes were further examined by saturation mutation to determine the best amino acid at each identified location in the peptide chain and by combinatorial analysis. One frequently-detected single amino acid change, Q240R, yielded a nearly 25-fold increase in total desaturation in S. cerevisiae. Several other variants of the protein sequence with multiple amino acid changes increased total desaturation more than 60-fold. Many changes leading to increased desaturation were in the vicinity of the canonical histidine-rich regions known to be critical for electron transfer mediated by these di-iron proteins. Expression of these evolved proteins in the seed of Arabidopsis thaliana altered the fatty acid composition, increasing monounsaturated fatty acids and decreasing the level of saturated fatty acid, suggesting a potential application of these desaturases in oilseed crops. Biotechnol. Bioeng. 2016;113: 1522-1530. © 2016 Wiley Periodicals, Inc. PMID:26724425

  3. Increased cerebellar volume and BDNF level following quadrato motor training.

    PubMed

    Ben-Soussan, Tal Dotan; Piervincenzi, Claudia; Venditti, Sabrina; Verdone, Loredana; Caserta, Micaela; Carducci, Filippo

    2015-01-01

    Using whole-brain structural measures coupled to analysis of salivary brain-derived neurotrophic factor (BDNF), we demonstrate sensory motor training-induced plasticity, including cerebellar gray matter volume increment and increased BDNF level. The increase of cerebellar volume was positively correlated with the increase of BDNF level. PMID:25311848

  4. Increased expression of sialic acid in cervical biopsies with squamous intraepithelial lesions

    PubMed Central

    2010-01-01

    Background Altered sialylation has been observed during oncogenic transformation. Sialylated oligosaccharides of glycoproteins and glycolipids have been implicated in tumor progression and metastases. In the cervical cancer high levels of sialic acid have been reported in the patients serum, and an increased of total sialic acid concentration has been reported for the cervical neoplasia and cervical cancer. This study investigates the changes in expression and distribution of α2,3-linked sialic acid and α2,6- linked sialic acid in low and high squamous intraepithelial lesions and in normal tissue. Methods Lectin histochemistry was used to examine the expression and distribution of sialic acid in different grades of cervical neoplasia. We applied Maackia amurensis lectin, which interacts with α2,3-linked sialic acid and Sambucus nigra lectin specific for α2,6-linked sialic acid. Results The histochemical analysis showed that α2,3-linked sialic acid and α2,6- linked sialic acid increased in intensity and distribution in concordance with the grade of squamous intraepithelial lesion (SIL). These results are in concordance with a previous study that reports increased RNAm levels of three sialyltransferases. Conclusions These results show that the change in sialylation occurs before cancer development and may play an important role in cellular transformation. These findings provide the basis for more detailed studies of the possible role of cell surface glycoconjugates bearing sialic acid in the cellular cervix transformation. PMID:21092209

  5. Increased levels of inosine in a mouse model of inflammation

    PubMed Central

    Prestwich, Erin G; Mangerich, Aswin; Pang, Bo; McFaline, Jose L; Lonkar, Pallavi; Sullivan, Matthew R; Trudel, Laura J; Taghizedeh, Koli; Dedon, Peter C

    2013-01-01

    One possible mechanism linking inflammation with cancer involves the generation of reactive oxygen, nitrogen and halogen species by activated macrophages and neutrophils infiltrating sites of infection or tissue damage, with these chemical mediators causing damage that ultimately leads to cell death and mutation. To determine the most biologically deleterious chemistries of inflammation, we previously assessed products across the spectrum of DNA damage arising in inflamed tissues in the SJL mouse model nitric oxide over-production (Pang et al., Carcinogenesis 28: 1807–1813, 2007). Among the anticipated DNA damage chemistries, we observed significant changes only in lipid peroxidation-derived etheno adducts. We have now developed an isotope-dilution, liquid chromatography-coupled, tandem quadrupole mass spectrometric method to quantify representative species across the spectrum of RNA damage products predicted to arise at sites of inflammation, including nucleobase deamination (xanthosine, inosine), oxidation (8-oxoguanosine), and alkylation (1,N6-etheno-adenosine). Application of the method to liver, spleen, and kidney from the SJL mouse model revealed generally higher levels of oxidative background RNA damage than was observed in DNA in control mice. However, compared to control mice, RcsX treatment to induce nitric oxide overproduction resulted in significant increases only in inosine and only in the spleen. Further, the nitric oxide synthase inhibitor, N-methylarginine, did not significantly affect the levels of inosine in control and RcsX-treated mice. The differences between DNA and RNA damage in the same animal model of inflammation point to possible influences from DNA repair, RcsX-induced alterations in adenosine deaminase activity, and differential accessibility of DNA and RNA to reactive oxygen and nitrogen species as determinants of nucleic acid damage during inflammation. PMID:23506120

  6. High Level Waste System Impacts from Acid Dissolution of Sludge

    SciTech Connect

    KETUSKY, EDWARD

    2006-04-20

    This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

  7. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2002-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  8. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, M.; Millard, C.S.; Stols, L.

    1998-06-23

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria. 2 figs.

  9. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1998-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  10. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2001-09-25

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  11. Ethanol Effects On Physiological Retinoic Acid Levels

    PubMed Central

    Napoli, Joseph L.

    2011-01-01

    Summary All-trans-retinoic acid (atRA) serves essential functions during embryogenesis and throughout post-natal vertebrate life. Insufficient or excess atRA causes teratogenic and/or toxic effects in the developing embryo: interference with atRA biosynthesis or signaling likely underlies some forms of cancer. Many symptoms of vitamin A (atRA precursor) deficiency and/or toxicity overlap with those of another pleiotropic agent—ethanol. These overlapping symptoms have prompted research to understand whether interference with atRA biosynthesis and/or action may explain (in part) pathology associated with excess ethanol consumption. Ethanol affects many aspects of retinoid metabolism and mechanisms of action site-specifically, but no robust data support inhibition of vitamin A metabolism, resulting in decreased atRA in vivo during normal vitamin A nutriture. Actually, ethanol either has no effect on or increases atRA at select sites. Despite this realization, insight into whether interactions between ethanol and retinoids represent cause vs. effect requires additional research. PMID:21766417

  12. Low brain ascorbic acid increases susceptibility to seizures in mouse models of decreased brain ascorbic acid transport and Alzheimer's disease.

    PubMed

    Warner, Timothy A; Kang, Jing-Qiong; Kennard, John A; Harrison, Fiona E

    2015-02-01

    Seizures are a known co-occurring symptom of Alzheimer's disease, and they can accelerate cognitive and neuropathological dysfunction. Sub-optimal vitamin C (ascorbic acid) deficiency, that is low levels that do not lead the sufferer to present with clinical signs of scurvy (e.g. lethargy, hemorrhage, hyperkeratosis), are easily obtainable with insufficient dietary intake, and may contribute to the oxidative stress environment of both Alzheimer's disease and epilepsy. The purpose of this study was to test whether mice that have diminished brain ascorbic acid in addition to carrying human Alzheimer's disease mutations in the amyloid precursor protein (APP) and presenilin 1 (PSEN1) genes, had altered electrical activity in the brain (electroencephalography; EEG), and were more susceptible to pharmacologically induced seizures. Brain ascorbic acid was decreased in APP/PSEN1 mice by crossing them with sodium vitamin C transporter 2 (SVCT2) heterozygous knockout mice. These mice have an approximately 30% decrease in brain ascorbic acid due to lower levels of SVCT2 that supplies the brain with ASC. SVCT2+/-APP/PSEN1 mice had decreased ascorbic acid and increased oxidative stress in brain, increased mortality, faster seizure onset latency following treatment with kainic acid (10 mg/kg i.p.), and more ictal events following pentylenetetrazol (50 mg/kg i.p.) treatment. Furthermore, we report the entirely novel phenomenon that ascorbic acid deficiency alone increased the severity of kainic acid- and pentylenetetrazol-induced seizures. These data suggest that avoiding ascorbic acid deficiency may be particularly important in populations at increased risk for epilepsy and seizures, such as Alzheimer's disease. PMID:25616451

  13. Increased acyclovir oral bioavailability via a bile acid conjugate.

    PubMed

    Tolle-Sander, Sanna; Lentz, Kimberley A; Maeda, Dean Y; Coop, Andrew; Polli, James E

    2004-01-12

    The objective of this work was to design an acyclovir prodrug that would utilize the human apical sodium-dependent bile acid transporter (hASBT) and enhance acyclovir oral bioavailability. Using each chenodeoxycholate, deoxycholate, cholate, and ursodeoxycholate, four bile acid prodrugs of acyclovir were synthesized, where acyclovir was conjugated to a bile acid via a valine linker. The affinity of the prodrug for hASBT was determined through inhibition of taurocholate uptake by COS-7 cells transfected with hASBT (hASBT-COS). The prodrug with the highest inhibitory affinity was further evaluated in vitro and in vivo. The prodrug acyclovir valylchenodeoxycholate yielded the highest affinity for hASBT (Ki = 35 microM), showing that chenodeoxycholate is the free bile acid with the greatest affinity for hASBT. Acyclovir valylchenodeoxycholate's affinity was similar to that of cholic acid (Ki = 25 microM). Further characterization showed that acyclovir was catalytically liberated from acyclovir valylchenode-oxycholate by esterase. Relative to cellular uptake studies of acyclovir alone, the cellular uptake from the prodrug resulted in a 16-fold greater acyclovir accumulation within hASBT-COS cells, indicating enhanced permeation properties of the prodrug. Enhanced permeability was due to hASBT-mediated uptake and increased passive permeability. The extent of acyclovir uptake in the presence of sodium was 1.4-fold greater than the extent of passive prodrug uptake in the absence of sodium (p = 0.02), indicating translocation of the prodrug by hASBT. The prodrug also exhibited an almost 12-fold enhanced passive permeability, relative to acyclovir's passive permeability. Oral administration of acyclovir valylchenodeoxycholate to rats resulted in a 2-fold increase in the bioavailability of acyclovir, compared to the bioavailability after administration of acyclovir alone. Results indicate that a bile acid prodrug strategy may be useful in improving the oral bioavailability of

  14. The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity.

    PubMed

    Broeders, Evie P M; Nascimento, Emmani B M; Havekes, Bas; Brans, Boudewijn; Roumans, Kay H M; Tailleux, Anne; Schaart, Gert; Kouach, Mostafa; Charton, Julie; Deprez, Benoit; Bouvy, Nicole D; Mottaghy, Felix; Staels, Bart; van Marken Lichtenbelt, Wouter D; Schrauwen, Patrick

    2015-09-01

    The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In rodents, BAT can be activated by bile acids, which activate type 2 iodothyronine deiodinase (D2) in BAT via the G-coupled protein receptor TGR5, resulting in increased oxygen consumption and energy expenditure. Here we examined the effects of oral supplementation of the bile acid chenodeoxycholic acid (CDCA) on human BAT activity. Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity. Whole-body energy expenditure was also increased upon CDCA treatment. In vitro treatment of primary human brown adipocytes derived with CDCA or specific TGR5 agonists increased mitochondrial uncoupling and D2 expression, an effect that was absent in human primary white adipocytes. These findings identify bile acids as a target to activate BAT in humans. PMID:26235421

  15. Increase of betulinic acid production in Saccharomyces cerevisiae by balancing fatty acids and betulinic acid forming pathways.

    PubMed

    Li, Jing; Zhang, Yansheng

    2014-04-01

    Betulinic acid is a plant-based triterpenoid that has been recognized for its antitumor and anti-HIV activities. The level of betulinic acid in its natural hosts is extremely low. In the present study, we constructed betulinic acid biosynthetic pathway in Saccharomyces cerevisiae by metabolic engineering. Given the betulinic acid forming pathways sharing the common substrate acetyl-CoA with fatty acid synthesis, the metabolic fluxes between the two pathways were varied by changing gene expressions, and their effects on betulinic acid production were investigated. We constructed nine S. cerevisiae strains representing nine combinations of the flux distributions between betulinic acid and fatty acid pathways. Our results demonstrated that it was possible to improve the betulinic acid production in S. cerevisiae while keeping a desirable growth phenotype by optimally balancing the carbon fluxes of the two pathways. Through modulating the expressions of the key genes on betulinic acid and fatty acid pathways, the difference in betulinic acid yield varied largely in the range of 0.01-1.92 mg L(-1) OD(-1). The metabolic engineering approach used in this study could be extended for synthesizing other triterpenoids in S. cerevisiae. PMID:24389702

  16. Uric acid secretion from adipose tissue and its increase in obesity.

    PubMed

    Tsushima, Yu; Nishizawa, Hitoshi; Tochino, Yoshihiro; Nakatsuji, Hideaki; Sekimoto, Ryohei; Nagao, Hirofumi; Shirakura, Takashi; Kato, Kenta; Imaizumi, Keiichiro; Takahashi, Hiroyuki; Tamura, Mizuho; Maeda, Norikazu; Funahashi, Tohru; Shimomura, Iichiro

    2013-09-20

    Obesity is often accompanied by hyperuricemia. However, purine metabolism in various tissues, especially regarding uric acid production, has not been fully elucidated. Here we report, using mouse models, that adipose tissue could produce and secrete uric acid through xanthine oxidoreductase (XOR) and that the production was enhanced in obesity. Plasma uric acid was elevated in obese mice and attenuated by administration of the XOR inhibitor febuxostat. Adipose tissue was one of major organs that had abundant expression and activities of XOR, and adipose tissues in obese mice had higher XOR activities than those in control mice. 3T3-L1 and mouse primary mature adipocytes produced and secreted uric acid into culture medium. The secretion was inhibited by febuxostat in a dose-dependent manner or by gene knockdown of XOR. Surgical ischemia in adipose tissue increased local uric acid production and secretion via XOR, with a subsequent increase in circulating uric acid levels. Uric acid secretion from whole adipose tissue was increased in obese mice, and uric acid secretion from 3T3-L1 adipocytes was increased under hypoxia. Our results suggest that purine catabolism in adipose tissue could be enhanced in obesity. PMID:23913681

  17. Organic Acid Excretion in Penicillium ochrochloron Increases with Ambient pH

    PubMed Central

    Vrabl, Pamela; Fuchs, Viktoria; Pichler, Barbara; Schinagl, Christoph W.; Burgstaller, Wolfgang

    2012-01-01

    Despite being of high biotechnological relevance, many aspects of organic acid excretion in filamentous fungi like the influence of ambient pH are still insufficiently understood. While the excretion of an individual organic acid may peak at a certain pH value, the few available studies investigating a broader range of organic acids indicate that total organic acid excretion rises with increasing external pH. We hypothesized that this phenomenon might be a general response of filamentous fungi to increased ambient pH. If this is the case, the observation should be widely independent of the organism, growth conditions, or experimental design and might therefore be a crucial key point in understanding the function and mechanisms of organic acid excretion in filamentous fungi. In this study we explored this hypothesis using ammonium-limited chemostat cultivations (pH 2–7), and ammonium or phosphate-limited bioreactor batch cultivations (pH 5 and 7). Two strains of Penicillium ochrochloron were investigated differing in the spectrum of excreted organic acids. Confirming our hypothesis, the main result demonstrated that organic acid excretion in P. ochrochloron was enhanced at high external pH levels compared to low pH levels independent of the tested strain, nutrient limitation, and cultivation method. We discuss these findings against the background of three hypotheses explaining organic acid excretion in filamentous fungi, i.e., overflow metabolism, charge balance, and aggressive acidification hypothesis. PMID:22493592

  18. Does high serum uric acid level cause aspirin resistance?

    PubMed

    Yildiz, Bekir S; Ozkan, Emel; Esin, Fatma; Alihanoglu, Yusuf I; Ozkan, Hayrettin; Bilgin, Murat; Kilic, Ismail D; Ergin, Ahmet; Kaftan, Havane A; Evrengul, Harun

    2016-06-01

    In patients with coronary artery disease (CAD), though aspirin inhibits platelet activation and reduces atherothrombotic complications, it does not always sufficiently inhibit platelet function, thereby causing a clinical situation known as aspirin resistance. As hyperuricemia activates platelet turnover, aspirin resistance may be specifically induced by increased serum uric acid (SUA) levels. In this study, we thus investigated the association between SUA level and aspirin resistance in patients with CAD. We analyzed 245 consecutive patients with stable angina pectoris (SAP) who in coronary angiography showed more than 50% occlusion in a major coronary artery. According to aspirin resistance, two groups were formed: the aspirin resistance group (Group 1) and the aspirin-sensitive group (Group 2). Compared with those of Group 2, patients with aspirin resistance exhibited significantly higher white blood cell counts, neutrophil counts, neutrophil-to-lymphocyte ratios, SUA levels, high-sensitivity C-reactive protein levels, and fasting blood glucose levels. After multivariate analysis, a high level of SUA emerged as an independent predictor of aspirin resistance. The receiver-operating characteristic analysis provided a cutoff value of 6.45 mg/dl for SUA to predict aspirin resistance with 79% sensitivity and 65% specificity. Hyperuricemia may cause aspirin resistance in patients with CAD and high SUA levels may indicate aspirin-resistant patients. Such levels should thus recommend avoiding heart attack and stroke by adjusting aspirin dosage. PMID:26656902

  19. Increased kinin levels and decreased responsiveness to kinins during aging.

    PubMed

    Pérez, Viviana; Velarde, Victoria; Acuña-Castillo, Claudio; Gómez, Christian; Nishimura, Sumiyo; Sabaj, Valeria; Walter, Robin; Sierra, Felipe

    2005-08-01

    Kinins are vasoactive peptides released from precursors called kininogens, and serum levels of both T- and K-kininogens increase dramatically as rats age. Kinin release is tightly regulated, and here we show that serum kinin levels also increase with age, from 63 +/- 16 nmol/L in young Fisher 344 rats to 398 +/- 102 nmol/L in old animals. Both K- and T-kininogens contribute sequentially to this increase, with the increase in middle-aged animals being driven primarily by K-kininogen, whereas the further augmentation in older rats occurs by increasing T-kininogen. By measuring ERK activation, we show that aorta endothelial cells from old animals are hyporesponsive to exogenous bradykinin. However, if serum kinin levels are experimentally decreased by lipopolysaccharide treatment, then the endothelial response to bradykinin is re-established. These results indicate that serum levels of kinins increase with age, whereas the responsiveness of target cells to kinins is reduced in these same animals. PMID:16127100

  20. Endogenous flow of amino acids in the avian ileum as influenced by increasing dietary peptide concentrations.

    PubMed

    Ravindran, Velmurugu; Morel, Patrick C H; Rutherfurd, Shane M; Thomas, Donald V

    2009-03-01

    The aim of the present study was to establish whether feeding broiler chickens with diets containing increasing dietary peptide concentrations would cause increases in ileal endogenous amino acid flow. The flow of N and most amino acids increased quadratically (P < 0.05 to 0.001) with increasing dietary concentrations of peptides. The exceptions were the flow of threonine, serine, glycine, tyrosine and cystine, which increased linearly (P < 0.001) with dietary peptide levels. Another notable exception to the general trend was the flow of proline, which was significantly higher (P < 0.01) in birds fed the protein-free diet. The amino acid profile of endogenous protein, expressed as proportion of crude protein, indicated that the ratios of threonine, glutamic acid, proline, glycine, leucine, histidine, arginine and cystine were influenced (P < 0.05) with increasing dietary peptide concentrations. In general, compared with the protein-free diet, the ratios of threonine and arginine in endogenous protein were lower (P < 0.05) and those of glutamic acid, glycine and histidine were greater (P < 0.05) in diets with high concentrations of peptides. The ratio of proline was found to decrease (P < 0.05) with increasing dietary peptide concentrations. These changes in the amino acid profile of endogenous protein are probably reflective of changes in the output of one or more of the components of endogenous protein. Overall, the present results demonstrated that increasing dietary peptide concentrations increased the flow of endogenous amino acid flow at the terminal ileum of broiler chickens in a dose-dependent manner and also caused changes in the composition of endogenous protein. The observed changes in endogenous amino flow will influence the maintenance requirements for amino acids and also have implications for the calculation of true digestibility coefficient of feedstuffs. PMID:18662428

  1. Prebiotically plausible mechanisms increase compositional diversity of nucleic acid sequences

    PubMed Central

    Derr, Julien; Manapat, Michael L.; Rajamani, Sudha; Leu, Kevin; Xulvi-Brunet, Ramon; Joseph, Isaac; Nowak, Martin A.; Chen, Irene A.

    2012-01-01

    During the origin of life, the biological information of nucleic acid polymers must have increased to encode functional molecules (the RNA world). Ribozymes tend to be compositionally unbiased, as is the vast majority of possible sequence space. However, ribonucleotides vary greatly in synthetic yield, reactivity and degradation rate, and their non-enzymatic polymerization results in compositionally biased sequences. While natural selection could lead to complex sequences, molecules with some activity are required to begin this process. Was the emergence of compositionally diverse sequences a matter of chance, or could prebiotically plausible reactions counter chemical biases to increase the probability of finding a ribozyme? Our in silico simulations using a two-letter alphabet show that template-directed ligation and high concatenation rates counter compositional bias and shift the pool toward longer sequences, permitting greater exploration of sequence space and stable folding. We verified experimentally that unbiased DNA sequences are more efficient templates for ligation, thus increasing the compositional diversity of the pool. Our work suggests that prebiotically plausible chemical mechanisms of nucleic acid polymerization and ligation could predispose toward a diverse pool of longer, potentially structured molecules. Such mechanisms could have set the stage for the appearance of functional activity very early in the emergence of life. PMID:22319215

  2. Acetic acid suppresses the increase in disaccharidase activity that occurs during culture of caco-2 cells.

    PubMed

    Ogawa, N; Satsu, H; Watanabe, H; Fukaya, M; Tsukamoto, Y; Miyamoto, Y; Shimizu, M

    2000-03-01

    To understand how blood glucose level is lowered by oral administration of vinegar, we examined effects of acetic acid on glucose transport and disaccharidase activity in Caco-2 cells. Cells were cultured for 15 d in a medium containing 5 mmol/L of acetic acid. This chronic treatment did not affect cell growth or viability, and furthermore, apoptotic cell death was not observed. Glucose transport, evaluated with a nonmetabolizable substrate, 3-O-methyl glucose, also was not affected. However, the increase of sucrase activity observed in control cells (no acetic acid) was significantly suppressed by acetic acid (P < 0.01). Acetic acid suppressed sucrase activity in concentration- and time-dependent manners. Similar treatments (5 mmol/L and 15 d) with other organic acids such as citric, succinic, L-maric, L-lactic, L-tartaric and itaconic acids, did not suppress the increase in sucrase activity. Acetic acid treatment (5 mmol/L and 15 d) significantly decreased the activities of disaccharidases (sucrase, maltase, trehalase and lactase) and angiotensin-I-converting enzyme, whereas the activities of other hydrolases (alkaline phosphatase, aminopeptidase-N, dipeptidylpeptidase-IV and gamma-glutamyltranspeptidase) were not affected. To understand mechanisms underlying the suppression of disaccharidase activity by acetic acid, Northern and Western analyses of the sucrase-isomaltase complex were performed. Acetic acid did not affect the de novo synthesis of this complex at either the transcriptional or translational levels. The antihyperglycemic effect of acetic acid may be partially due to the suppression of disaccharidase activity. This suppression seems to occur during the post-translational processing. PMID:10702577

  3. The effects of increasing dietary levels of amino acid-supplemented soy protein concentrate and constant dietary supplementation of phosphorus on growth, composition and immune responses of juvenile Atlantic salmon (Salmo salar L.).

    PubMed

    Metochis, C; Crampton, V O; Ruohonen, K; Bell, J G; Adams, A; Thompson, K D

    2016-06-01

    Diets with 50 (SPC50), 65 (SPC65) and 80 % (SPC80) substitution of prime fish meal (FM) with soy protein concentrate (SPC) were evaluated against a commercial type control feed with 35 % FM replacement with SPC. Increases in dietary SPC were combined with appropriate increases in methionine, lysine and threonine supplementation, whereas added phosphorus was constant among treatments. Diets were administered to quadruplicate groups of 29 g juvenile Atlantic salmon were exposed to constant light, for 97 days. On Day 63 salmon were subjected to vaccination. Significant weight reductions in SPC65 and SPC80 compared with SPC35 salmon were observed by Day 97. Linear reductions in body cross-sectional ash, Ca/P ratios, and Ca, P, Mn and Zn were observed at Days 63 (prior vaccination) and 97 (34 days post-vaccination), while Mg presented a decrease at Day 63, in salmon fed increasing dietary SPC. Significant reductions in Zn, Ca, P and Ca/P ratios persisted in SPC65 and SPC80 compared with SPC35 salmon at Day 97. Significant haematocrit reductions in SPC50, SPC65 and SPC80 salmon were observed at Days 63, 70 and 97. Enhanced plasma haemolytic activity, increased total IgM, and a rise in thrombocytes were demonstrated in SPC50 and SPC65 salmon on Day 97, while increased lysozyme activity was demonstrated for these groups on Days 63, 70 and 97. Leucocyte and lymphocyte counts revealed enhanced immunostimulation in salmon fed with increasing dietary SPC at Day 97. High SPC inclusion diets did not compromise the immune responses of salmon, while SPC50 diet also supported good growth without compromising elemental concentrations. PMID:26781956

  4. New alleles of FATB-1A to reduce palmitic acid levels in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In wild-type soybeans, palmitic acid typically constitutes 10% of the total seed oil. Palmitic acid is a saturated fat linked to increased cholesterol levels, and reducing levels of saturated fats in soybean oil has been a breeding target. To identify novel and useful variation that could help in re...

  5. What is the relationship between gestational age and docosahexaenoic acid (DHA) and arachidonic acid (ARA) levels?

    PubMed

    Baack, Michelle L; Puumala, Susan E; Messier, Stephen E; Pritchett, Deborah K; Harris, William S

    2015-09-01

    Long chain polyunsaturated fatty acids (LCPUFA) including docosahexaenoic acid (DHA) and arachidonic acid (ARA) are increasingly transferred from mother to fetus late in pregnancy. Infants born before this transfer is complete are at risk for deficiency. This study determines the relationship between gestational age (GA) and circulating LCPUFA levels to better understand the unique needs of premature infants born at various GAs. Whole blood was collected within the first 7 days of life from 60 preterm (≤34 weeks GA) and 30 term infants (≥38 weeks GA) and FA levels were analyzed. Since concurrent intravenous lipid emulsion can skew composition data, blood LCPUFA concentrations were also measured. Levels were compared among groups, and linear regression models were used to examine the association between FA composition and GA. Preterm infants had significantly lower DHA and ARA levels than term peers, and whether assessed as concentrations or compositions, both directly correlated with GA (p<0.0001). Moreover, FA comparisons suggest that premature infants have impaired synthesis of LCPUFAs from precursors and may require preformed DHA and ARA. This study confirms that essential FA status is strongly related to GA, and that those babies born the earliest are at the greatest risk of LCPUFA deficiency. PMID:26205427

  6. Increases in Serum Estrone Sulfate Level Are Associated with Increased Mammographic Density during Menopausal Hormone Therapy

    PubMed Central

    Crandall, Carolyn J.; Guan, Min; Laughlin, Gail A.; Ursin, Giske A.; Stanczyk, Frank Z.; Ingles, Sue A.; Barrett-Connor, Elizabeth; Greendale, Gail A.

    2009-01-01

    Background Menopausal hormone therapy increases mammographic density. We determined whether increases in serum estrone sulfate (E1S) levels during menopausal hormone therapy predict increased mammographic density. Methods We measured percent mammographic density and serum E1S levels in 428 participants of the Postmenopausal Estrogen/Progestin Interventions study who were randomly assigned to daily conjugated equine estrogen (CEE) 0.625 mg alone, CEE + daily medroxyprogesterone acetate (MPA) 2.5 mg, CEE + cyclical MPA (10 mg days 1-12 per 28-day cycle), or CEE + cyclical micronized progesterone (10 mg days 1-12). Serum E1S levels were determined by RIA. Information about covariates was determined by annual questionnaire. Using linear regression, we determined the association between change in E1S level from baseline to 12 months and change in percent mammographic density (by semiquantitative interactive threshold method). Results After controlling for baseline mammographic density, age, body mass index, alcohol intake, parity, smoking, ethnicity, physical activity, and age at first pregnancy, mammographic density increased by 1.3% for every 1 ng/mL increase in E1S level (P < 0.0001). The association between change in E1S level and change in mammographic density differed by treatment group (greater effect in CEE + cyclical MPA group versus CEE group; P = 0.05). After controlling for treatment group, change in the ratio of E1S to E1 was also positively associated with change in mammographic density. Conclusions Increases in serum E1S levels during menopausal hormone therapy are associated with increases in mammographic density. The relative contribution of E1S and E1 to stimulation of breast tissue awaits further elucidation. PMID:18628419

  7. Increased cancer cell proliferation in prostate cancer patients with high levels of serum folate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: A recent clinical trial revealed that folic acid supplementation is associated with an increased incidence of prostate cancer (1). The present study evaluates serum and prostate tissue folate levels in men with prostate cancer, compared to histologically normal prostate glands from can...

  8. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    PubMed Central

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  9. Oleic, linoleic and linolenic acids increase ros production by fibroblasts via NADPH oxidase activation.

    PubMed

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47 (phox) phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47 (phox) mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  10. Acute UV irradiation increases heparan sulfate proteoglycan levels in human skin.

    PubMed

    Jung, Ji-Yong; Oh, Jang-Hee; Kim, Yeon Kyung; Shin, Mi Hee; Lee, Dayae; Chung, Jin Ho

    2012-03-01

    Glycosaminoglycans are important structural components in the skin and exist as various proteoglycan forms, except hyaluronic acid. Heparan sulfate (HS), one of the glycosaminoglycans, is composed of repeated disaccharide units, which are glucuronic acids linked to an N-acetyl-glucosamine or its sulfated forms. To investigate acute ultraviolet (UV)-induced changes of HS and HS proteoglycans (HSPGs), changes in levels of HS and several HSPGs in male human buttock skin were examined by immunohistochemistry and real-time quantitative polymerase chain reaction (qPCR) after 2 minimal erythema doses (MED) of UV irradiation (each n = 4-7). HS staining revealed that 2 MED of UV irradiation increased its expression, and staining for perlecan, syndecan-1, syndecan-4, CD44v3, and CD44 showed that UV irradiation increased their protein levels. However, analysis by real-time qPCR showed that UV irradiation did not change mRNA levels of CD44 and agrin, and decreased perlecan and syndecan-4 mRNA levels, while increased syndecan-1 mRNA level. As HS-synthesizing or -degrading enzymes, exostosin-1 and heparanase mRNA levels were increased, but exostosin-2 was decreased by UV irradiation. UV-induced matrix metalloproteinase-1 expression was confirmed for proper experimental conditions. Acute UV irradiation increases HS and HSPG levels in human skin, but their increase may not be mediated through their transcriptional regulation. PMID:22379342

  11. Intrahepatic cholangiocarcinoma with increased serum CYFRA 21-1 level.

    PubMed

    Kashihara, T; Ohki, A; Kobayashi, T; Sato, T; Nishizawa, H; Ogawa, K; Tako, H; Kawakami, F; Tsuji, M; Tamaoka, K

    1998-06-01

    CYFRA 21-1 is a fragment of cytokeratin 19 (CK 19). Four patients with large intrahepatic (or peripheral) cholangiocarcinoma (CC) and high serum levels of CYFRA 21-1 (normal, < or = 2 ng/ml) are reported. CYFRA 21-1 levels exceeded 9 ng/ml in all 4 patients. Carcinoembryonic antigen (CEA), was high in 1 (CEA; normal range, < or = 5.0 ng/ml) and carbohydrate antigen 19-9 (CA 19-9) was high in 3 (CA19-9; normal range, < or = 36 U/ml). We also measured serum levels of CYFRA 21-1 in 13 patients with hepatocellular carcinoma (HCC) more than 5 cm in diameter. Levels of CYFRA 21-1 exceeded 2 ng/ml in 9 of the HCC patients and were higher than 9 ng/ml in 2 of the HCC patients. Levels of alpha fetoprotein (AFP) and/or protein induced by vitamin K absence or antagonist II (PIVKA II) were elevated in all HCC patients (AFP, PIVKA II, respectively; normal range, < or = 10.0 ng/ml and < or = 0.1 AU/ml) CYFRA 21-1 levels were measured twice or three times during the clinical course in 2 CC patients and in 6 HCC patients, and increased gradually with tumor growth in the 2 CC patients and in 3 of the 6 HCC patients. Marked increases in serum CYFRA 21-1 levels in patients with large liver cancers, particularly in those with normal levels of AFP and PIVKA II, would suggest the existence of intrahepatic CC rather than HCC. PMID:9658330

  12. Endozepine-4 levels are increased in hepatic coma

    PubMed Central

    Malaguarnera, Giulia; Vacante, Marco; Drago, Filippo; Bertino, Gaetano; Motta, Massimo; Giordano, Maria; Malaguarnera, Michele

    2015-01-01

    AIM: To evaluate the serum levels of endozepine-4, their relation with ammonia serum levels, the grading of coma and the severity of cirrhosis, in patients with hepatic coma. METHODS: In this study we included 20 subjects with Hepatic coma, 20 subjects with minimal hepatic encephalopathy (MHE) and 20 subjects control. All subjects underwent blood analysis, Child Pugh and Model for End - stage liver disease (MELD) assessment, endozepine-4 analysis. RESULTS: Subjects with hepatic coma showed significant difference in endozepine-4 (P < 0.001) and NH3 levels (P < 0.001) compared both to MHE and controls patients. Between NH3 and endozepine-4 we observed a significant correlation (P = 0.009; Pearson correlation 0.570). There was a significant correlation between endozepine-4 and MELD (P = 0.017; Pearson correlation = 0.529). In our study blood ammonia concentration was noted to be raised in patients with hepatic coma, with the highest ammonia levels being found in those who were comatose. We also found a high correlation between endozepine-4 and ammonia (P < 0.001). In patients with grade IV hepatic coma, endozepine levels were significantly higher compared to other groups. CONCLUSION: This study suggests that an increased level of endozepine in subjects with higher levels of MELD was observed. In conclusion, data concerning involvement of the GABA-ergic system in HE coma could be explained by stage-specific alterations. PMID:26290636

  13. Modulation of sialic acid levels among some organs during insulin resistance or hyperglycemic states.

    PubMed

    Ibrahim, Mohammed Auwal; Abdulkadir, Aisha; Onojah, Alice; Sani, Lawal; Adamu, Auwal; Abdullahi, Hadiza

    2016-01-01

    Previous studies have suggested a possible connection between insulin resistance and chronic hyperglycemia with membrane sialic acid content. In this study, the effects of high (20% ad libitum) fructose and glucose feeding on the sialic acid levels of some organs were investigated in rats. The blood glucose levels of the high fructose- and glucose-fed rats were consistently and significantly (P < 0.05) higher than the normal control throughout the experiment. Free serum sialic acid and total hepatic sialic acid levels were elevated in the high fructose- and glucose-fed rats compared to normal control, but only the data for the high glucose-fed group were significantly (P < 0.05) different from the normal control. Conversely, a significant (P < 0.05) decrease in the pancreatic sialic acid level was observed in high glucose-fed group compared to normal control. Also, the high fructose-fed rats had lower, but insignificant (P > 0.05), pancreatic sialic acid level than the normal control. On the other hand, high fructose and glucose feeding did not significantly (P > 0.05) affect the sialic acid levels of the skeletal muscle and heart, though a tendency to increase the sialic acid level was evident in the heart. In the kidney, the sialic acid level was significantly (P < 0.05) increased in both high fructose- and glucose-fed groups. It was concluded that the liver and kidney tend to stimulate sialic acid synthesis, while the pancreas downregulate sialic acids synthesis and/or promote sialic acid release from glycoconjugates. Also, these organs may contribute to high-serum sialic acid level observed during diabetes. PMID:26468092

  14. The significance of plasma phytanic acid levels in adults.

    PubMed Central

    Britton, T C; Gibberd, F B; Clemens, M E; Billimoria, J D; Sidey, M C

    1989-01-01

    The presence of phytanic acid in tissues and plasma has been considered diagnostic of heredopathia atactica polyneuritiformis (Refsum's disease), but recently slightly raised plasma phytanic acid levels have been reported in other conditions. Forty two normal people were found to have a phytanic acid level of 0-33 mumol/l. Fourteen patients with heredopathia atactica polyneuritiformis had a plasma phytanic acid level before treatment of 992-6400 mumol/l. Five patients with retinitis pigmentosa but not heredopathia atactica polyneuritiformis had plasma levels of 38-192 mumol/l. It was concluded that some patients with retinitis pigmentosa without heredopathia atactica polyneuritiformis but a raised plasma phytanic acid may represent a group of patients with a disease or diseases as yet uncharacterised apart from the retinal condition. PMID:2475586

  15. Orchiectomy increases bone marrow interleukin-6 levels in mice.

    PubMed

    Zhang, J; Pugh, T D; Stebler, B; Ershler, W B; Keller, E T

    1998-03-01

    Interleukin-6 (IL-6) appears to be an important factor in disease states associated with bone resorption. There is both in vitro and in vivo evidence supporting the fact that androgens down-regulate interleukin-6 production. These observations, in combination with the fact that osteoblasts and bone marrow stromal cells produce IL-6, led us to hypothesize that orchiectomy-induced androgen loss will result in increased IL-6 expression in the bone microenvironment. To prove our hypothesis we assessed the effect of orchiectomy on IL-6 protein and mRNA expression in bone marrow and spleen. We found that orchiectomy was associated with increased serum IL-6 levels at 3 and 28 days postsurgery. Phorbol ester-stimulated IL-6 levels were also higher in supernatants from bone marrow and spleen cell cultures from orchiectomized mice compared with unoperated or sham-operated mice. Additionally, we found that steady state IL-6 mRNA levels were increased in bone marrow but not spleen cells. Finally, we found that orchiectomized mice had splenomegaly and increased bone marrow cellularity. Histopathology of the spleen revealed lymphoid hyperplasia accompanied by a marked mononuclear cell infiltration of the red pulp. We conclude that orchiectomy induces IL-6 expression in the bone marrow. These findings suggest that endocrine and cytokine interactions contribute to bone pathophysiology. PMID:9501955

  16. Increasing carbonmonoxide blood levels in Bangkok bus drivers

    SciTech Connect

    Saenghirunvattana, S.; Wananukul, W.; Mokkhavesa, C.; Opasi, N.

    1995-05-01

    In order to study the effects of air pollution in Bangkok, 31 bus drivers were examined and blood was drawn for measurement of carboxyhemoglobin (COHb) prior to and after work. The COHb level before work was 2.19{+-}2.46% (range 0.7.18). It had increased after work to 5.26{+-}2.52% (range 0-10.4) (p<0.001). Twenty-one drivers complained of chronic headaches, myalgia, and eye irritation during working hours. The COHb level was not statistically different between smokers and nonsmokers.

  17. Increased Intraocular Pressure and Hyperglycemic Level in Diabetic Patients

    PubMed Central

    Hymowitz, Maggie B.; Chang, Donny; Feinberg, Edward B.; Roy, Sayon

    2016-01-01

    Purpose To determine whether hyperglycemic levels as determined from high hemoglobin A1c (HbA1c) levels influence intraocular pressure (IOP) in patients with non-proliferative diabetic retinopathy (NPDR). Methods A retrospective chart review was performed on subjects with a diagnosis of NPDR and a corresponding HbA1c level measured within 90 days before or after an IOP measurement over a two-year period. Exclusion criteria included a diagnosis of glaucoma or treatment with IOP lowering medications or oral or topical steroids. Results Using 14.5mmHg as a baseline mean value for IOP, 42 subjects had an IOP < 14.5mmHg and mean HbA1c of 8.1±1.1, while 72 subjects had an IOP ≥ 14.5mmHg and a mean HbA1c of 9.0±2.1. Although there was an overlap in the confidence intervals, a significant difference (P = 0.01) in the mean HbA1c level was observed in regression analysis between the two groups. Importantly, diabetic subjects with elevated HbA1c levels rarely (<1%) exhibited reduced IOP levels. Conclusions Diabetic subjects with elevated HbA1c levels exhibited significantly higher IOPs compared to those with lower HbA1c levels. Findings from this study indicate an association between hyperglycemia and elevated IOP and that poor glycemic control may contribute to increased IOP levels in long-term diabetic patients. PMID:27002725

  18. Production of siderophores increases resistance to fusaric acid in Pseudomonas protegens Pf-5.

    PubMed

    Ruiz, Jimena A; Bernar, Evangelina M; Jung, Kirsten

    2015-01-01

    Fusaric acid is produced by pathogenic fungi of the genus Fusarium, and is toxic to plants and rhizobacteria. Many fluorescent pseudomonads can prevent wilt diseases caused by these fungi. This study was undertaken to evaluate the effect of fusaric acid on P. protegens Pf-5 and elucidate the mechanisms that enable the bacterium to survive in the presence of the mycotoxin. The results confirm that fusaric acid negatively affects growth and motility of P. protegens. Moreover, a notable increase in secretion of the siderophore pyoverdine was observed when P. protegens was grown in the presence of fusaric acid. Concomitantly, levels of enzymes involved in the biosynthesis of pyoverdine and enantio-pyochelin, the second siderophore encoded by P. protegens, increased markedly. Moreover, while similar levels of resistance to fusaric acid were observed for P. protegens mutants unable to synthesize either pyoverdine or enanto-pyochelin and the wild type strain, a double mutant unable to synthesize both kinds of siderophores showed a dramatically reduced resistance to this compound. This reduced resistance was not observed when this mutant was grown under conditions of iron excess. Spectrophotometric titrations revealed that fusaric acid binds not only Fe2+ and Fe3+, but also Zn2+, Mn2+ and Cu2+, with high affinity. Our results demonstrate that iron sequestration accounts at least in part for the deleterious effect of the mycotoxin on P. protegens. PMID:25569682

  19. Production of Siderophores Increases Resistance to Fusaric Acid in Pseudomonas protegens Pf-5

    PubMed Central

    Ruiz, Jimena A.; Bernar, Evangelina M.; Jung, Kirsten

    2015-01-01

    Fusaric acid is produced by pathogenic fungi of the genus Fusarium, and is toxic to plants and rhizobacteria. Many fluorescent pseudomonads can prevent wilt diseases caused by these fungi. This study was undertaken to evaluate the effect of fusaric acid on P. protegens Pf-5 and elucidate the mechanisms that enable the bacterium to survive in the presence of the mycotoxin. The results confirm that fusaric acid negatively affects growth and motility of P. protegens. Moreover, a notable increase in secretion of the siderophore pyoverdine was observed when P. protegens was grown in the presence of fusaric acid. Concomitantly, levels of enzymes involved in the biosynthesis of pyoverdine and enantio-pyochelin, the second siderophore encoded by P. protegens, increased markedly. Moreover, while similar levels of resistance to fusaric acid were observed for P. protegens mutants unable to synthesize either pyoverdine or enanto-pyochelin and the wild type strain, a double mutant unable to synthesize both kinds of siderophores showed a dramatically reduced resistance to this compound. This reduced resistance was not observed when this mutant was grown under conditions of iron excess. Spectrophotometric titrations revealed that fusaric acid binds not only Fe2+ and Fe3+, but also Zn2+, Mn2+ and Cu2+, with high affinity. Our results demonstrate that iron sequestration accounts at least in part for the deleterious effect of the mycotoxin on P. protegens. PMID:25569682

  20. Increased Bile Acid Synthesis and Deconjugation After Biliopancreatic Diversion.

    PubMed

    Ferrannini, Ele; Camastra, Stefania; Astiarraga, Brenno; Nannipieri, Monica; Castro-Perez, Jose; Xie, Dan; Wang, Liangsu; Chakravarthy, Manu; Haeusler, Rebecca A

    2015-10-01

    Biliopancreatic diversion (BPD) improves insulin sensitivity and decreases serum cholesterol out of proportion with weight loss. Mechanisms of these effects are unknown. One set of proposed contributors to metabolic improvements after bariatric surgeries is bile acids (BAs). We investigated the early and late effects of BPD on plasma BA levels, composition, and markers of BA synthesis in 15 patients with type 2 diabetes (T2D). We compared these to the early and late effects of Roux-en-Y gastric bypass (RYGB) in 22 patients with T2D and 16 with normal glucose tolerance. Seven weeks after BPD, insulin sensitivity had doubled and serum cholesterol had halved. At this time, BA synthesis markers and total plasma BAs, particularly unconjugated BAs, had markedly risen; this effect could not be entirely explained by low FGF19. In contrast, after RYGB, insulin sensitivity improved gradually with weight loss and cholesterol levels declined marginally; BA synthesis markers were decreased at an early time point (2 weeks) after surgery and returned to the normal range 1 year later. These findings indicate that BA synthesis contributes to the decreased serum cholesterol after BPD. Moreover, they suggest a potential role for altered enterohepatic circulation of BAs in improving insulin sensitivity and cholesterol metabolism after BPD. PMID:26015549

  1. Placental Cadmium Levels Are Associated with Increased Preeclampsia Risk

    PubMed Central

    Laine, Jessica E.; Ray, Paul; Bodnar, Wanda; Cable, Peter H.; Boggess, Kim; Offenbacher, Steven; Fry, Rebecca C.

    2015-01-01

    Environmental exposure to heavy metals is a potentially modifiable risk factor for preeclampsia (PE). Toxicologically, there are known interactions between the toxic metal cadmium (Cd) and essential metals such as selenium (Se) and zinc (Zn), as these metals can protect against the toxicity of Cd. As they relate to preeclampsia, the interaction between Cd and these essential metals is unknown. The aims of the present study were to measure placental levels of Cd, Se, and Zn in a cohort of 172 pregnant women from across the southeast US and to examine associations of metals levels with the odds of PE in a nested case-control design. Logistic regressions were performed to assess odds ratios (OR) for PE with exposure to Cd controlling for confounders, as well as interactive models with Se or Zn. The mean placental Cd level was 3.6 ng/g, ranging from 0.52 to 14.5 ng/g. There was an increased odds ratio for PE in relationship to placental levels of Cd (OR = 1.5; 95% CI: 1.1–2.2). The Cd-associated OR for PE increased when analyzed in relationship to lower placental Se levels (OR = 2.0; 95% CI: 1.1–3.5) and decreased with higher placental Se levels (OR = 0.98; 95% CI: 0.5–1.9). Similarly, under conditions of lower placental Zn, the Cd-associated OR for PE was elevated (OR = 1.8; 95% CI: 0.8–3.9), whereas with higher placental Zn it was reduced (OR = 1.3; 95% CI: 0.8–2.0). Data from this pilot study suggest that essential metals may play an important role in reducing the odds of Cd-associated preeclampsia and that replication in a larger cohort is warranted. PMID:26422011

  2. Dietary arachidonic acid dose-dependently increases the arachidonic acid concentration in human milk.

    PubMed

    Weseler, Antje R; Dirix, Chantal E H; Bruins, Maaike J; Hornstra, Gerard

    2008-11-01

    Lactation hampers normalization of the maternal arachidonic acid (AA) status, which is reduced after pregnancy and can further decline by the presently recommended increased consumption of (n-3) long-chain PUFA [(n-3) LCPUFA]. This may be unfavorable for breast-fed infants, because they also require an optimum supply of (n-6) LCPUFA. We therefore investigated the LCPUFA responses in nursing mothers upon increased consumption of AA and (n-3) LCPUFA. In a parallel, double-blind, controlled trial, lactating women received for 8 wk no extra LCPUFA (control group, n = 8), 200 (low AA group, n = 9), or 400 (high AA group, n = 8) mg/d AA in combination with (n-3) LCPUFA [320 mg/d docosahexaenoic acid (DHA), 80 mg/d eicosapentaenoic acid, and 80 mg/d other (n-3) fatty acids], or this dose of (n-3) LCPUFA alone [DHA + eicosapentaenoic acid group, n = 8]. Relative concentrations of AA, DHA, and sums of (n-6) and (n-3) LCPUFA were measured in milk total lipids (TL) and erythrocyte phospholipids (PL) after 2 and 8 wk and changes were compared by ANCOVA. The combined consumption of AA and (n-3) LCPUFA caused dose-dependent elevations of AA and total (n-6) LCPUFA concentrations in milk TL and did not significantly affect the DHA and total (n-3) LCPUFA increases caused by (n-3) LCPUFA supplementation only. This latter treatment did not significantly affect breast milk AA and total (n-6) LCPUFA concentrations. AA and DHA concentrations in milk TL and their changes were strongly and positively correlated with their corresponding values in erythrocyte PL (r(2) = 0.27-0.50; P increased the AA concentration of their milk TL. PMID:18936218

  3. Uric Acid Levels in Normotensive Children of Hypertensive Parents

    PubMed Central

    Yildirim, Ali; Keles, Fatma; Kosger, Pelin; Ozdemir, Gokmen; Ucar, Birsen; Kilic, Zubeyir

    2015-01-01

    This study evaluated uric acid concentrations in normotensive children of parents with hypertension. Eighty normotensive children from families with and without a history of essential hypertension were included. Concentrations of lipid parameters and uric acid were compared. Demographic and anthropometric characteristics were similar in the groups. Systolic and diastolic blood pressure were higher in the normotensive children of parents with hypertension without statistically significant difference (P > 0.05). Uric acid concentrations were higher in the normotensive children of parents with hypertension (4.61 versus 3.57 mg/dL, P < 0.01). Total cholesterol and triglyceride concentrations were similar in the two groups. Systolic and diastolic blood pressure were significantly higher in control children aged >10 years (P < 0.01). Uric acid levels were significantly higher in all children with more pronounced difference after age 10 of years (P < 0.001). Positive correlations were found between the level of serum uric acid and age, body weight, body mass index, and systolic and diastolic blood pressure in the normotensive children of parents. The higher uric acid levels in the normotensive children of hypertensive parents suggest that uric acid may be a predeterminant of hypertension. Monitoring of uric acid levels in these children may allow for prevention or earlier treatment of future hypertension. PMID:26464873

  4. Increased mutagenicity of chromium compounds by nitrilotriacetic acid

    SciTech Connect

    Loprieno, N.; Boncristiani, G.; Venier, P.; Montaldi, A.; Majone, F.; Bianchi, V.; Paglialunga, S.; Levis, A.G.

    1985-01-01

    Nitrilotriacetic acid trisodium salt (NTA), which is a substitute for polyphosphates in household laundry detergents, and N-nitrosoiminodiacetic acid (NIDA), a derivative of NTA produced by metabolism of soil microorganisms, were tested for in vitro mutagenicity in bacteria and yeasts. No gene reversions in five strains of Salmonella typhimurium (TA1535, TA1537, TA1538, TA98, and TA100), no forward gene mutations in Schizosaccharomyces pombe P1, and no mitotic gene conversions at two loci in Saccharomyces cerevisiae D4 were induced by NTA and NIDA independently of the presence of rat liver metabolic activation. The influence of NTA on the mutagenic and clastogenic activity of several chromium compounds was examined in the Salmonella/microsome assay and in the sister chromatid exchange (SCE) assay in mammalian cell cultures (Chinese hamster ovary (CHO) line). NTA does not affect the genetic inactivity of water-soluble Cr(III) (Cr/sub 2/(SO/sub 4/)/sub 3/) and the direct mutagenicity of soluble Cr(VI) (Na/sub 2/CrO/sub 4/, K/sub 2/Cr/sub 2/O/sub 7/) compounds. The very insoluble Cr(VI) compounds PbCrO/sub 4/ and PbCrO/sub 4/ x PbO are instead clearly mutagenic in the Salmonella/microsome assay (TA100 strain) only in the presence of NTA or NaOH. The chromosome-damaging activity of PbCrO/sub 4/ is significantly increased by NTA but not by NaOH.

  5. Acid-activated biochar increased sulfamethazine retention in soils.

    PubMed

    Vithanage, Meththika; Rajapaksha, Anushka Upamali; Zhang, Ming; Thiele-Bruhn, Sören; Lee, Sang Soo; Ok, Yong Sik

    2015-02-01

    Sulfamethazine (SMZ) is an ionizable and highly mobile antibiotic which is frequently found in soil and water environments. We investigated the sorption of SMZ onto soils amended with biochars (BCs) at varying pH and contact time. Invasive plants were pyrolyzed at 700 °C and were further activated with 30 % sulfuric (SBBC) and oxalic (OBBC) acids. The sorption rate of SMZ onto SBBC and OBBC was pronouncedly pH dependent and was decreased significantly when the values of soil pH increased from 3 to 5. Modeled effective sorption coefficients (K D,eff) values indicated excellent sorption on SBBC-treated loamy sand and sandy loam soils for 229 and 183 L/kg, respectively. On the other hand, the low sorption values were determined for OBBC- and BBC700-treated loamy sand and sandy loam soils. Kinetic modeling demonstrated that the pseudo second order model was the best followed by intra-particle diffusion and the Elovich model, indicating that multiple processes govern SMZ sorption. These findings were also supported by sorption edge experiments based on BC characteristics. Chemisorption onto protonated and ligand containing functional groups of the BC surface, and diffusion in macro-, meso-, and micro-pores of the acid-activated BCs are the proposed mechanisms of SMZ retention in soils. Calculated and experimental q e (amount adsorbed per kg of the adsorbent at equilibrium) values were well fitted to the pseudo second order model, and the predicted maximum equilibrium concentration of SBBC for loamy sand soils was 182 mg/kg. Overall, SBBC represents a suitable soil amendment because of its high sorption rate of SMZ in soils. PMID:25172460

  6. A Three Level Autonomous Software System for Increased Science Return

    NASA Astrophysics Data System (ADS)

    Robinson, P. I.; Mancinelli, R. L.; Landheim, R.

    2005-12-01

    The development of smart science instruments for autonomous operation (on Earth or in space) has the potential to increase science return and reduce the risk of experiment failure. When researchers are confronted with unexpected data/results of the experimental test system, they must determine whether the experimental setup has failed, or scientific discovery is being made. These two classes of events could have the same time series signature. To directly address this issue, we have developed a three-level software system referred to as E3, which consists of an engineering level, an experiment level, and an executive level. Each level of the software system is designed in a modular fashion using model based feedback controllers. The same feedback control mechanism is used for each level; the model itself determines the level. To determine if failure of the experimental setup can explain the data/results, researchers run calibration tests for hardware (e.g., sensors and actuators) as well as verify that the software (e.g., controls and analog to digital conversion routines) is running as planned. If anomalies are found, then modifications are made to the experimental setup, or the anomaly is accepted as the new baseline state of the instrument. The engineering level of the E3 software system is responsible for this process. To determine if scientific discovery, as opposed to failure, can explain the data/results, a researcher tries to explain the difference between the observed and expected results. These explanations are terms of the basic processes of nature to determine the rate limiting step(s) of a complex set of processes, where the flux could be due to heat transfer, mass transfer, momentum transfer, or chemical reaction processes. Once the differences are understood, modifications are made to the software control of the experiment, as well as to the model the researcher is building over the course of repeated experiments. The experiment level of the E3

  7. Genistein increases glycosaminoglycan levels in mucopolysaccharidosis type I cell models.

    PubMed

    Kingma, Sandra D K; Wagemans, Tom; IJlst, Lodewijk; Wijburg, Frits A; van Vlies, Naomi

    2014-09-01

    Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder characterized by diminished degradation of the glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate, which results in the accumulation of these GAGs and subsequent cellular dysfunction. Patients present with a variety of symptoms, including severe skeletal disease. Genistein has been shown previously to inhibit GAG synthesis in MPS fibroblasts, presumably through inhibition of tyrosine kinase activity of the epidermal growth factor receptor (EGFR). To determine the potentials of genistein for the treatment of skeletal disease, MPS I fibroblasts were induced into chondrocytes and osteoblasts and treated with genistein. Surprisingly, whereas tyrosine phosphorylation levels (as a measure for tyrosine kinase inhibition) were decreased in all treated cell lines, there was a 1.3 and 1.6 fold increase in GAG levels in MPS I chondrocytes and fibroblast, respectively (p < 0.05). Sulfate incorporation in treated MPS I fibroblasts was 2.6 fold increased (p < 0.05), indicating increased GAG synthesis despite tyrosine kinase inhibition. This suggests that GAG synthesis is not exclusively regulated through the tyrosine kinase activity of the EGFR. We hypothesize that the differences in outcomes between studies on the effect of genistein in MPS are caused by the different effects of genistein on different growth factor signaling pathways, which regulate GAG synthesis. More studies are needed to elucidate the precise signaling pathways which are affected by genistein and alter GAG metabolism in order to evaluate the therapeutic potential of genistein for MPS patients. PMID:24699889

  8. Increased levels of metallothionein in placenta of smokers.

    PubMed

    Ronco, Ana Maria; Arguello, Graciela; Suazo, Myriam; Llanos, Miguel N

    2005-03-01

    Experiments were designed to evaluate and compare metallothionein (MT), zinc and cadmium levels in human placentas of smoking and non-smoking women. Smoking was assessed by self-reported cigarette consumption and urine cotinine levels before delivery. Smoking pregnant women with urine cotinine levels higher than 130 ng/ml were included in the smoking group. Determination of placental MT was performed by western blot analysis after tissue homogenization and saturation with cadmium chloride (1000 ppm). Metallothionein was analyzed with a monoclonal antibody raised against MT-1 and MT-2 and with a second anti mouse antibody conjugated to alkaline phosphatase. Zinc and cadmium were determined by neutron activation analysis and atomic absorption spectrometry respectively. Smokers showed higher placental MT and cadmium levels, together with decreased newborn birth weights, as compared to non-smokers. The semi-quantitative analysis of western blots by band densitometry indicated that darker bands corresponded to MT present in smokers' samples. This study confirms that cigarette smoking increases cadmium accumulation in placental tissue and suggests that this element has a stimulatory effect on placental MT production. PMID:15664440

  9. [Effect of the increasing levels of soil radioactive pollution on the biochemical composition of plants].

    PubMed

    Gromova, V S; Pchelenok, O A; Kozlova, N M

    2012-01-01

    The study was undertaken to study a relationship between the changes of some parameters of the biochemical and mineral composition of different plants, such as rape, pods, and lentil, and the levels of soil radiation pollution, by using the conventional methods. Radioactive pollution of dark-grey forest soils was found to cause a change in the biochemical composition of plant seeds even at the level of cesium 137 (137Cs) within the present temporary permissible levels (TPL) (600 Bq/kg): there were elevated concentrations of salts of potassium, phosphorus, ammonia nitrogen, catechols, sucrose, and some amino acids. With the radioactive cesium level exceeding the TPL, biochemical changes in the seeds depended on the species of the plants: in the rape seeds, the additional formation of sucrose and amino acids continued, but less intensively than with its lower radiation; the pod beans were significantly positively correlated with the increasing amounts of catechols. PMID:22834257

  10. [Hydroxycinnamic acid levels of various batches from mugwort flowering tops].

    PubMed

    Fraisse, D; Carnat, A; Carnat, A-P; Guédon, D; Lamaison, J-L

    2003-07-01

    Dried flowering tops of 24 harvested batches (Artemisia vulgaris: 13; Artemisia verlotiorum: 11) and 12 batches of mugwort from commercial origin were examined. The levels of principal compounds averaged respectively: total hydroxycinnamic acids 6.09; 10.29 and 9.13%, chlorogenic acid 0.79; 2.05 and 1.35%, 1,5-dicaffeoylquinic acid 0.51; 4.01 and 1.25%, 3,5-dicaffeoylquinic acid 2.21; 1.25 and 2.60%. Specifications were discussed for an European Pharmacopoeial monography. PMID:12843960

  11. Can nursing students' confidence levels increase with repeated simulation activities?

    PubMed

    Cummings, Cynthia L; Connelly, Linda K

    2016-01-01

    In 2014, nursing faculty conducted a study with undergraduate nursing students on their satisfaction, confidence, and educational practice levels, as it related to simulation activities throughout the curriculum. The study was a voluntary survey conducted on junior and senior year nursing students. It consisted of 30 items based on the Student Satisfaction and Self-Confidence in Learning and the Educational Practices Questionnaire (Jeffries, 2012). Mean averages were obtained for each of the 30 items from both groups and were compared using T scores for unpaired means. The results showed that 8 of the items had a 95% confidence level and when combined the items were significant for p <.001. The items identified were those related to self-confidence and active learning. Based on these findings, it can be assumed that repeated simulation experiences can lead to an increase in student confidence and active learning. PMID:26599594

  12. Increased levels of copeptin before clinical diagnosis of preelcampsia.

    PubMed

    Yeung, Edwina H; Liu, Aiyi; Mills, James L; Zhang, Cuilin; Männistö, Tuija; Lu, Zhaohui; Tsai, Michael Y; Mendola, Pauline

    2014-12-01

    Copeptin, a surrogate biomarker of vasopressin, has been associated with renal function decline and may serve as a useful early biomarker for preeclampsia. We measured serum copeptin using samples collected longitudinally during pregnancy among unaffected controls (n=136) and cases of preeclampsia (n=169), gestational diabetes mellitus (n=92), gestational hypertension (n=101), and preterm birth (n=86) in the Calcium for Preeclampsia Prevention trial (1992-1995). Preeclampsia and gestational hypertension were defined as having a diastolic blood pressure≥90 mm Hg on 2 occasions with and without proteinuria, respectively. The risk of pregnancy complications associated with copeptin was estimated by logistic regression adjusting for maternal age, race, body mass index, insurance status, marital status, current smoking, and clinical site. Baseline copeptin levels, at mean 16 weeks of gestation, were associated with increased preeclampsia risk (adjusted odds ratios and 95% confidence interval being 1.55 per log unit; 1.03-2.31) when compared with controls (P=0.03). The association was stronger among cases diagnosed before 37 weeks (1.86; 1.08-3.20) than those diagnosed later (1.45; 0.91-2.32). Copeptin levels rose with increasing gestational age in both cases and controls but remained significantly higher among those who were diagnosed with preeclampsia. Differences in levels of copeptin between cases and controls became more apparent closer to time of diagnosis. No significant associations were found for gestational hypertension without proteinuria, gestational diabetes mellitus, or preterm birth without preeclampsia. Copeptin levels are elevated in pregnant women before diagnosis of preeclampsia with elevation specific to this pregnancy complication rather than hypertension alone. PMID:25225209

  13. Methylenetetrahydrofolate reductase deficiency alters levels of glutamate and γ-aminobutyric acid in brain tissue

    PubMed Central

    Jadavji, N.M.; Wieske, F.; Dirnagl, U.; Winter, C.

    2015-01-01

    Methylenetetrahydrofolate reductase (MTHFR) is an enzyme key regulator in folate metabolism. Deficiencies in MTHFR result in increased levels of homocysteine, which leads to reduced levels of S-adenosylmethionine (SAM). In the brain, SAM donates methyl groups to catechol-O-methyltransferase (COMT), which is involved in neurotransmitter analysis. Using the MTHFR-deficient mouse model the purpose of this study was to investigate levels of monoamine neurotransmitters and amino acid levels in brain tissue. MTHFR deficiency affected levels of both glutamate and γ-aminobutyric acid in within the cerebellum and hippocampus. Mthfr−/− mice had reduced levels of glutamate in the amygdala and γ-aminobutyric acid in the thalamus. The excitatory mechanisms of homocysteine through activation of the N-methyl-d-aspartate receptor in brain tissue might alter levels of glutamate and γ-aminobutyric acid. PMID:26937386

  14. Dependence of intestinal amino acid uptake on dietary protein or amino acid levels

    SciTech Connect

    Karasov, W.H.; Solberg, D.H.; Diamond, J.M.

    1987-05-01

    To understand how intestinal amino acid (AA) transport is regulated by dietary substrate levels, the authors measured uptake of seven radioactively-labelled AAs and glucose across the jejunal brush-border membrane of mice kept on one of three isocaloric rations differing in nitrogen content. In the high-protein ration, uptake increased by 77-81% for the nonessential, less toxic AAs, proline, and aspartate but only by 32-61% for the more toxic essential AAs tested. In the nitrogen-deficient ration, uptake decreased for the nonessential aspartate and proline but stayed constant or increased for essential AAs and for the nonessential alanine. These patterns imply independent regulation of the intestine's various AA transporters. With decreasing dietary AA (or protein), the imino acid and acidic AA private transporters are repressed, while activities of the basic AA transporter and the neutral AA public transporter decrease to an asymptote or else go through a minimum. These regulatory patterns can be understood as a compromise among conflicting constraints imposed by protein's multiple roles as a source of calories, nitrogen, and essential AAs and by the toxicity of essential AAs at high concentrations.

  15. Dietary Crude Lecithin Increases Systemic Availability of Dietary Docosahexaenoic Acid with Combined Intake in Rats.

    PubMed

    van Wijk, Nick; Balvers, Martin; Cansev, Mehmet; Maher, Timothy J; Sijben, John W C; Broersen, Laus M

    2016-07-01

    Crude lecithin, a mixture of mainly phospholipids, potentially helps to increase the systemic availability of dietary omega-3 polyunsaturated fatty acids (n-3 PUFA), such as docosahexaenoic acid (DHA). Nevertheless, no clear data exist on the effects of prolonged combined dietary supplementation of DHA and lecithin on RBC and plasma PUFA levels. In the current experiments, levels of DHA and choline, two dietary ingredients that enhance neuronal membrane formation and function, were determined in plasma and red blood cells (RBC) from rats after dietary supplementation of DHA-containing oils with and without concomitant dietary supplementation of crude lecithin for 2-3 weeks. The aim was to provide experimental evidence for the hypothesized additive effects of dietary lecithin (not containing any DHA) on top of dietary DHA on PUFA levels in plasma and RBC. Dietary supplementation of DHA-containing oils, either as vegetable algae oil or as fish oil, increased DHA, eicosapentaenoic acid (EPA), and total n-3 PUFA, and decreased total omega-6 PUFA levels in plasma and RBC, while dietary lecithin supplementation alone did not affect these levels. However, combined dietary supplementation of DHA and lecithin increased the changes induced by DHA supplementation alone. Animals receiving a lecithin-containing diet also had a higher plasma free choline concentration as compared to controls. In conclusion, dietary DHA-containing oils and crude lecithin have synergistic effects on increasing plasma and RBC n-3 PUFA levels, including DHA and EPA. By increasing the systemic availability of dietary DHA, dietary lecithin may increase the efficacy of DHA supplementation when their intake is combined. PMID:27038174

  16. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V.

    2012-02-21

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  17. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V

    2013-04-30

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  18. Can increased atmospheric CO2 levels trigger a runaway greenhouse?

    PubMed

    Ramirez, Ramses M; Kopparapu, Ravi Kumar; Lindner, Valerie; Kasting, James F

    2014-08-01

    Recent one-dimensional (globally averaged) climate model calculations by Goldblatt et al. (2013) suggest that increased atmospheric CO(2) could conceivably trigger a runaway greenhouse on present Earth if CO(2) concentrations were approximately 100 times higher than they are today. The new prediction runs contrary to previous calculations by Kasting and Ackerman (1986), which indicated that CO(2) increases could not trigger a runaway, even at Venus-like CO(2) concentrations. Goldblatt et al. argued that this different behavior is a consequence of updated absorption coefficients for H(2)O that make a runaway more likely. Here, we use a 1-D climate model with similar, up-to-date absorption coefficients, but employ a different methodology, to show that the older result is probably still valid, although our model nearly runs away at ∼12 preindustrial atmospheric levels of CO(2) when we use the most alarmist assumptions possible. However, we argue that Earth's real climate is probably stable given more realistic assumptions, although 3-D climate models will be required to verify this result. Potential CO(2) increases from fossil fuel burning are somewhat smaller than this, 10-fold or less, but such increases could still cause sufficient warming to make much of the planet uninhabitable by humans. PMID:25061956

  19. Structural stability and prebiotic properties of resistant starch type 3 increase bile acid turnover and lower secondary bile acid formation.

    PubMed

    Dongowski, Gerhard; Jacobasch, Gisela; Schmiedl, Detlef

    2005-11-16

    Microbial metabolism is essential in maintaining a healthy mucosa in the large bowel, preferentially through butyrate specific mechanisms. This system depends on starch supply. Two structurally different resistant starches type 3 (RS3) have been investigated with respect to their resistance to digestion, fermentability, and their effects on the composition and turnover of bile acids in rats. RSA (a mixture of retrograded maltodextrins and branched high molecular weight polymers), which is more resistant than RSB (a retrograded potato starch), increased the rate of fermentation accompanied by a decrease of pH in cecum, colon, and feces. Because they were bound to RS3, less bile acids were reabsorbed, resulting in a higher turnover through the large bowel. Because of the rise of volume, the bile acid level was unchanged and the formation of secondary bile acids was partly suppressed. The results proved a strong relation between RS3, short chain fatty acid production, and microflora. However, butyrate specific benefits are only achieved by an intake of RS3 that result in good fermentation properties, which depend on the kind of the resistant starch structures. PMID:16277431

  20. Possible Increase in Serum FABP4 Level Despite Adiposity Reduction by Canagliflozin, an SGLT2 Inhibitor

    PubMed Central

    Furuhashi, Masato; Matsumoto, Megumi; Hiramitsu, Shinya; Omori, Akina; Tanaka, Marenao; Moniwa, Norihito; Yoshida, Hideaki; Ishii, Junnichi; Miura, Tetsuji

    2016-01-01

    Background Fatty acid-binding protein 4 (FABP4/A-FABP/aP2) is secreted from adipocytes in association with catecholamine-induced lipolysis, and elevated serum FABP4 level is associated with obesity, insulin resistance and atherosclerosis. Secreted FABP4 as a novel adipokine leads to insulin resistance via increased hepatic glucose production (HGP). Sodium-glucose cotransporter 2 (SGLT2) inhibitors decrease blood glucose level via increased urinary glucose excretion, though HGP is enhanced. Here we investigated whether canagliflozin, an SGLT2 inhibitor, modulates serum FABP4 level. Methods Canagliflozin (100 mg/day) was administered to type 2 diabetic patients (n = 39) for 12 weeks. Serum FABP4 level was measured before and after treatment. Results At baseline, serum FABP4 level was correlated with adiposity, renal dysfunction and noradrenaline level. Treatment with canagliflozin significantly decreased adiposity and levels of fasting glucose and HbA1c but increased average serum FABP4 level by 10.3% (18.0 ± 1.0 vs. 19.8 ± 1.2 ng/ml, P = 0.008), though elevation of FABP4 level after treatment was observed in 26 (66.7%) out of 39 patients. Change in FABP4 level was positively correlated with change in levels of fasting glucose (r = 0.329, P = 0.044), HbA1c (r = 0.329, P = 0.044) and noradrenaline (r = 0.329, P = 0.041) but was not significantly correlated with change in adiposity or other variables. Conclusions Canagliflozin paradoxically increases serum FABP4 level in some diabetic patients despite amelioration of glucose metabolism and adiposity reduction, possibly via induction of catecholamine-induced lipolysis in adipocytes. Increased FABP4 level by canagliflozin may undermine the improvement of glucose metabolism and might be a possible mechanism of increased HGP by inhibition of SGLT2. Trial Registration UMIN-CTR Clinical Trial UMIN000018151 PMID:27124282

  1. Ascorbic acid recycling by cultured beta cells: effects of increased glucose metabolism.

    PubMed

    Steffner, Robert J; Wu, Lan; Powers, Alvin C; May, James M

    2004-11-15

    Ascorbic acid is necessary for optimal insulin secretion from pancreatic islets. We evaluated ascorbate recycling and whether it is impaired by increased glucose metabolism in the rat beta-cell line INS-1. INS-1 cells, engineered with the potential for overexpression of glucokinase under the control of a tetracycline-inducible gene expression system, took up and reduced dehydroascorbic acid to ascorbate in a concentration-dependent manner that was optimal in the presence of physiologic D-glucose concentrations. Ascorbate uptake did not affect intracellular GSH concentrations. Whereas depletion of GSH in culture to levels about 25% of normal also did not affect the ability of the cells to reduce dehydroascorbic acid, more severe acute GSH depletion to less than 10% of normal levels did impair dehydroascorbic acid reduction. Culture of inducible cells in 11.8 mM D-glucose and doxycycline for 48 h enhanced glucokinase activity, increased glucose utilization, abolished D-glucose-dependent insulin secretion, and increased generation of reactive oxygen species. The latter may have contributed to subsequent decreases in the ability of the cells both to maintain intracellular ascorbate and to recycle it from dehydroascorbic acid. Cultured beta cells have a high capacity to recycle ascorbate, but this is sensitive to oxidant stress generated by increased glucose metabolism due to culture in high glucose concentrations and increased glucokinase expression. Impaired ascorbate recycling as a result of increased glucose metabolism may have implications for the role of ascorbate in insulin secretion in diabetes mellitus and may partially explain glucose toxicity in beta cells. PMID:15477012

  2. Heparin, free fatty acids and an increased metabolic demand for oxygen.

    PubMed

    Jung, R T; Shetty, P S; James, W P

    1980-05-01

    Obese and lean subjects were given heparin with or without Intralipid in order to assess the effect of heparin on plasma concentration of free fatty acids (FFA) and oxidative metabolism. The FFA response depended on the triglyceride concentration and was associated with a prompt rise in oxygen consumption. Plasma catecholamines did not alter after heparin and the increase in oxygen uptake was proportional to the rise in FFA. The use of heparin, therefore, has metabolic disadvantages which may outweigh the potential benefits, for example in the management of myocardial infarction where heparin may increase the metabolic demand on the heart by increasing FFA levels. PMID:7443592

  3. Heparin, free fatty acids and an increased metabolic demand for oxygen.

    PubMed Central

    Jung, R. T.; Shetty, P. S.; James, W. P.

    1980-01-01

    Obese and lean subjects were given heparin with or without Intralipid in order to assess the effect of heparin on plasma concentration of free fatty acids (FFA) and oxidative metabolism. The FFA response depended on the triglyceride concentration and was associated with a prompt rise in oxygen consumption. Plasma catecholamines did not alter after heparin and the increase in oxygen uptake was proportional to the rise in FFA. The use of heparin, therefore, has metabolic disadvantages which may outweigh the potential benefits, for example in the management of myocardial infarction where heparin may increase the metabolic demand on the heart by increasing FFA levels. PMID:7443592

  4. Differential effects of cyclosporin A on transport of bile acids by rat hepatocytes: relationship to individual serum bile acid levels.

    PubMed

    Azer, S A; Stacey, N H

    1994-02-01

    Cyclosporin A treatment has been reported to induce hepatotoxicity marked by a rise in total serum bile acid and total bilirubin. The mechanism of cyclosporin A-induced hepatotoxicity seems to be related to interference with hepatocellular transport of these substrates although this remains to be fully substantiated. The purpose of this study was to investigate whether the hepatocellular uptake of the different bile acids, in the presence of cyclosporin A, is consistent with the changes in their respective individual serum bile acid concentrations. High-performance liquid chromatography has been used to assay individual serum bile acids in cyclosporin A-treated rats at doses of 0.1, 1, and 10 mg/kg/day for 4 days. Control rats were treated with Cremophor (1 ml/kg/day). At the higher doses, cyclosporin A produced a significant increase in levels of cholic acid, taurocholic acid, chenodeoxycholic acid, and deoxycholic acid compared with controls. Serum glycocholate was unaffected even at the highest dose. Inhibition of initial rate of uptake and accumulation of [14C]cholic acid, [14C]chenodeoxycholic acid, and [14C]deoxycholic acid by isolated rat hepatocytes was consistent with the changes in their respective serum bile acids. Coincubation of rat hepatocytes with unlabeled cholic acid (100 microM), the major serum bile acid in cyclosporin A-treated rats, showed a further inhibitory effect on [14C]cholic acid and [14C]deoxycholic acid accumulation. The initial rate of uptake of [14C]glycocholate was also inhibited. However, accumulation of glycocholic acid did not show significant changes at the longer incubation times (2-30 min). In addition, coincubation of rat hepatocytes with unlabeled cholic acid (100 microM) plus cyclosporin A did not induce any inhibition of glycocholate accumulation. Together, these differences provide an explanation for the unchanged serum levels of glycocholate. In conclusion, the changes in individual serum bile acids in cyclosporin A

  5. Altered myocardial metabolic adaptation to increased fatty acid availability in cardiomyocyte-specific CLOCK mutant mice.

    PubMed

    Peliciari-Garcia, Rodrigo A; Goel, Mehak; Aristorenas, Jonathan A; Shah, Krishna; He, Lan; Yang, Qinglin; Shalev, Anath; Bailey, Shannon M; Prabhu, Sumanth D; Chatham, John C; Gamble, Karen L; Young, Martin E

    2016-10-01

    A mismatch between fatty acid availability and utilization leads to cellular/organ dysfunction during cardiometabolic disease states (e.g., obesity, diabetes mellitus). This can precipitate cardiac dysfunction. The heart adapts to increased fatty acid availability at transcriptional, translational, post-translational and metabolic levels, thereby attenuating cardiomyopathy development. We have previously reported that the cardiomyocyte circadian clock regulates transcriptional responsiveness of the heart to acute increases in fatty acid availability (e.g., short-term fasting). The purpose of the present study was to investigate whether the cardiomyocyte circadian clock plays a role in adaptation of the heart to chronic elevations in fatty acid availability. Fatty acid availability was increased in cardiomyocyte-specific CLOCK mutant (CCM) and wild-type (WT) littermate mice for 9weeks in time-of-day-independent (streptozotocin (STZ) induced diabetes) and dependent (high fat diet meal feeding) manners. Indices of myocardial metabolic adaptation (e.g., substrate reliance perturbations) to STZ-induced diabetes and high fat meal feeding were found to be dependent on genotype. Various transcriptional and post-translational mechanisms were investigated, revealing that Cte1 mRNA induction in the heart during STZ-induced diabetes is attenuated in CCM hearts. At the functional level, time-of-day-dependent high fat meal feeding tended to influence cardiac function to a greater extent in WT versus CCM mice. Collectively, these data suggest that CLOCK (a circadian clock component) is important for metabolic adaption of the heart to prolonged elevations in fatty acid availability. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk. PMID:26721420

  6. Homologous electron transport components fail to increase fatty acid hydroxylation in transgenic Arabidopsis thaliana

    PubMed Central

    Wayne, Laura L.; Browse, John

    2013-01-01

    Ricinoleic acid, a hydroxylated fatty acid (HFA) present in castor ( Ricinus communis) seeds, is an important industrial commodity used in products ranging from inks and paints to polymers and fuels. However, due to the deadly toxin ricin and allergens also present in castor, it would be advantageous to produce ricinoleic acid in a different agricultural crop. Unfortunately, repeated efforts at heterologous expression of the castor fatty acid hydroxylase (RcFAH12) in the model plant Arabidopsis thaliana have produced only 17-19% HFA in the seed triacylglycerols (TAG), whereas castor seeds accumulate up to 90% ricinoleic acid in the endosperm TAG. RcFAH12 requires an electron supply from NADH:cytochrome b5 reductase (CBR1) and cytochrome b5 (Cb5) to synthesize ricinoleic acid. Previously, our laboratory found a mutation in the Arabidopsis CBR1 gene, cbr1-1, that caused an 85% decrease in HFA levels in the RcFAH12 Arabidopsis line. These results raise the possibility that electron supply to the heterologous RcFAH12 may limit the production of HFA. Therefore, we hypothesized that by heterologously expressing RcCb5, the reductant supply to RcFAH12 would be improved and lead to increased HFA accumulation in Arabidopsis seeds. Contrary to this proposal, heterologous expression of the top three RcCb5 candidates did not increase HFA accumulation. Furthermore, coexpression of RcCBR1 and RcCb5 in RcFAH12 Arabidopsis also did not increase in HFA levels compared to the parental lines. These results demonstrate that the Arabidopsis electron transfer system is supplying sufficient reductant to RcFAH12 and that there must be other bottlenecks limiting the accumulation of HFA. PMID:24555099

  7. Artificially Increased Yolk Hormone Levels and Neophobia in Domestic Chicks.

    PubMed

    Bertin, Aline; Arnould, Cécile; Moussu, Chantal; Meurisse, Maryse; Constantin, Paul; Leterrier, Christine; Calandreau, Ludovic

    2015-01-01

    In birds there is compelling evidence that the development and expression of behavior is affected by maternal factors, particularly via variation in yolk hormone concentrations of maternal origin. In the present study we tested whether variation in yolk hormone levels lead to variation in the expression of neophobia in young domestic chicks. Understanding how the prenatal environment could predispose chicks to express fear-related behaviors is essential in order to propose preventive actions and improve animal welfare. We simulated the consequences of a maternal stress by experimentally enhancing yolk progesterone, testosterone and estradiol concentrations in hen eggs prior to incubation. The chicks from these hormone-treated eggs (H) and from sham embryos (C) that received the vehicle-only were exposed to novel food, novel object and novel environment tests. H chicks approached a novel object significantly faster and were significantly more active in a novel environment than controls, suggesting less fearfulness. Conversely, no effect of the treatment was found in food neophobia tests. Our study highlights a developmental influence of yolk hormones on a specific aspect of neophobia. The results suggest that increased yolk hormone levels modulate specifically the probability of exploring novel environments or novel objects in the environment. PMID:26633522

  8. Artificially Increased Yolk Hormone Levels and Neophobia in Domestic Chicks

    PubMed Central

    Bertin, Aline; Arnould, Cécile; Moussu, Chantal; Meurisse, Maryse; Constantin, Paul; Leterrier, Christine; Calandreau, Ludovic

    2015-01-01

    In birds there is compelling evidence that the development and expression of behavior is affected by maternal factors, particularly via variation in yolk hormone concentrations of maternal origin. In the present study we tested whether variation in yolk hormone levels lead to variation in the expression of neophobia in young domestic chicks. Understanding how the prenatal environment could predispose chicks to express fear-related behaviors is essential in order to propose preventive actions and improve animal welfare. We simulated the consequences of a maternal stress by experimentally enhancing yolk progesterone, testosterone and estradiol concentrations in hen eggs prior to incubation. The chicks from these hormone-treated eggs (H) and from sham embryos (C) that received the vehicle-only were exposed to novel food, novel object and novel environment tests. H chicks approached a novel object significantly faster and were significantly more active in a novel environment than controls, suggesting less fearfulness. Conversely, no effect of the treatment was found in food neophobia tests. Our study highlights a developmental influence of yolk hormones on a specific aspect of neophobia. The results suggest that increased yolk hormone levels modulate specifically the probability of exploring novel environments or novel objects in the environment. PMID:26633522

  9. An Increase Incidence in Uric Acid Nephrolithiasis: Changing Patterns

    PubMed Central

    Kumari, Asha; Mittal, Pawan; Kumar, Rajender; Goel, Richa; Bansal, Piyush; Kumar, Himanshu Devender; Bhutani, Jaikrit

    2016-01-01

    Introduction Nephrolithiasis is a complex disease affecting all age groups globally. As the causative factors for nephrolithiasis rises significantly, its incidence, prevalence and recurrence continues to baffle clinicians and patients. Aim To study the prevalence of different types of renal stones extracted by Percutaneous Nephrolithotomy (PCNL) and open surgical procedures. Materials and Methods Renal stones from 50 patients were retrieved by Percutaneous Nephrolithotomy (PCNL), Ureterorenoscopy (URS) and open surgical techniques for qualitative tests for detection of calcium, oxalate, uric acid, phosphate, ammonium ion, carbonate, cystine and xanthine. Results Three patients had stone removed by open surgery and rest had undergone PCNL. Nine of the stones were pure of calcium oxalate, 9 were of pure uric acid and 32 were mixed stones. Forty one stones had calcium. Among the mixed stones, oxalate was present in 25 samples (39 of total), uric acid was seen in 17 (25 of total stones), phosphate was present in 23 (23 of total) and carbonate was present in 4 stones (4 of total). Only 1 patient had triple phosphate stone. 12 were of staghorn appearance of which 6 were of struvite type, 6 were pure uric acid and remaining were mixed oxalate-phosphate stones. Conclusion Our study, though in a small number of hospital based patients, found much higher prevalence of uric acid stones and mixed stones than reported by previous hospital based studies in north India (oxalate stones~90%, uric acid~1% and mixed stones~3%). Biochemical analysis of renal stones is warranted in all cases.

  10. Effect of Increased Water Vapor Levels on TBC Lifetime

    SciTech Connect

    Pint, Bruce A; Garner, George Walter; Lowe, Tracie M; Haynes, James A; Zhang, Ying

    2011-01-01

    To investigate the effect of increased water vapor levels on thermal barrier coating (TBC) lifetime, furnace cycle tests were performed at 1150 C in air with 10 vol.% water vapor (similar to natural gas combustion) and 90 vol.%. Either Pt diffusion or Pt-modified aluminide bond coatings were applied to specimens from the same batch of a commercial second-generation single-crystal superalloy and commercial vapor-deposited yttria-stabilized zirconia (YSZ) top coats were applied. Three coatings of each type were furnace cycled to failure to compare the average lifetimes obtained in dry O{sub 2}, using the same superalloy batch and coating types. Average lifetimes with Pt diffusion coatings were unaffected by the addition of water vapor. In contrast, the average lifetime of Pt-modified aluminide coatings was reduced by more than 50% with 10% water vapor but only slightly reduced by 90% water vapor. Based on roughness measurements from similar specimens without a YSZ coating, the addition of 10% water vapor increased the rate of coating roughening more than 90% water vapor. Qualitatively, the amount of {beta}-phase depletion in the coatings exposed in 10% water vapor did not appear to be accelerated.

  11. Increased serum bile acid concentration following low-dose chronic administration of thioacetamide in rats, as evidenced by metabolomic analysis.

    PubMed

    Jeong, Eun Sook; Kim, Gabin; Shin, Ho Jung; Park, Se-Myo; Oh, Jung-Hwa; Kim, Yong-Bum; Moon, Kyoung-Sik; Choi, Hyung-Kyoon; Jeong, Jayoung; Shin, Jae-Gook; Kim, Dong Hyun

    2015-10-15

    A liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS)-based metabolomics approach was employed to identify endogenous metabolites as potential biomarkers for thioacetamide (TAA)-induced liver injury. TAA (10 and 30mg/kg), a well-known hepatotoxic agent, was administered daily to male Sprague-Dawley (SD) rats for 28days. We then conducted untargeted analyses of endogenous serum and liver metabolites. Partial least squares discriminant analysis (PLS-DA) was performed on serum and liver samples to evaluate metabolites associated with TAA-induced perturbation. TAA administration resulted in altered levels of bile acids, acyl carnitines, and phospholipids in serum and in the liver. We subsequently demonstrated and confirmed the occurrence of compromised bile acid homeostasis. TAA treatment significantly increased serum levels of conjugated bile acids in a dose-dependent manner, which correlated well with toxicity. However, hepatic levels of these metabolites were not substantially changed. Gene expression profiling showed that the hepatic mRNA levels of Ntcp, Bsep, and Oatp1b2 were significantly suppressed, whereas those of basolateral Mrp3 and Mrp4 were increased. Decreased levels of Ntcp, Oatp1b2, and Ostα proteins in the liver were confirmed by western blot analysis. These results suggest that serum bile acids might be increased due to the inhibition of bile acid enterohepatic circulation rather than increased endogenous bile acid synthesis. Moreover, serum bile acids are a good indicator of TAA-induced hepatotoxicity. PMID:26222700

  12. Increases in levels of epoxyeicosatrienoic and dihydroxyeicosatrienoic acids (EETs and DHETs) in liver and heart in vivo by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and in hepatic EET:DHET ratios by cotreatment with TCDD and the soluble epoxide hydrolase inhibitor AUDA.

    PubMed

    Diani-Moore, Silvia; Ma, Yuliang; Gross, Steven S; Rifkind, Arleen B

    2014-02-01

    The environmental toxin and carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) binds and activates the transcription factor aryl hydrocarbon receptor (AHR), inducing CYP1 family cytochrome P450 enzymes. CYP1A2 and its avian ortholog CYP1A5 are highly active arachidonic acid epoxygenases. Epoxygenases metabolize arachidonic acid to four regioisomeric epoxyeicosatrienoic acids (EETs) and selected monohydroxyeicosatetraenoic acids (HETEs). EETs can be further metabolized by epoxide hydrolases to dihydroxyeicosatrienoic acids (DHETs). As P450-arachidonic acid metabolites affect vasoregulation, responses to ischemia, inflammation, and metabolic disorders, identification of their production in vivo is needed to understand their contribution to biologic effects of TCDD and other AHR activators. Here we report use of an acetonitrile-based extraction procedure that markedly increased the yield of arachidonic acid products by lipidomic analysis over a standard solid-phase extraction protocol. We show that TCDD increased all four EETs (5,6-, 8,9-, 11,12-, and 14,15-), their corresponding DHETs, and 18- and 20-HETE in liver in vivo and increased 5,6-EET, the four DHETs, and 18-HETE in heart, in a chick embryo model. As the chick embryo heart lacks arachidonic acid-metabolizing activity, the latter findings suggest that arachidonic acid metabolites may travel from their site of production to a distal organ, i.e., heart. To determine if the TCDD-arachidonic acid-metabolite profile could be altered pharmacologically, chick embryos were treated with TCDD and the soluble epoxide hydrolase inhibitor 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA). Cotreatment with AUDA increased hepatic EET-to-DHET ratios, indicating that the in vivo profile of P450-arachidonic acid metabolites can be modified for potential therapeutic intervention. PMID:24311719

  13. Omega 3 fatty acids increase spontaneous release of cytosolic components from tumor cells

    SciTech Connect

    Jenski, L.J.; Sturdevant, L.K.; Ehringer, W.D.; Stillwell, W. )

    1991-05-01

    Mice fed menhaden (fish) oil or coconut oil-rich diets were inoculated intraperitoneally with a rapidly growing leukemia, T27A. After one week, the tumor cells were harvested, and 51Cr was used to label intracellular molecules. Spontaneous release of 51Cr was used as a measure of plasma membrane permeability. Compared to cells from mice fed coconut oil (rich in saturated fatty acids), tumor cells from mice fed menhaden oil (rich in long chain polyunsaturated omega 3 fatty acids) showed an increased level of spontaneous 51Cr release, which was exacerbated by increased temperature and reduced by extracellular protein. At physiological salt concentrations, the released 51Cr was detected in particles of approximately 2700 daltons. Enhanced permeability correlated with the incorporation of dietary (fish oil) omega 3 polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic acid into the tumor cells. The results demonstrate that omega 3 fatty acids are incorporated into cellular constituents of tumor cells and change properties associated with the plasma membrane. This result suggests that dietary manipulation may be used to enhance tumor cell permeability and contribute to tumor eradication.

  14. Unusually high levels of n-6 polyunsaturated fatty acids in whale sharks and reef manta rays.

    PubMed

    Couturier, L I E; Rohner, C A; Richardson, A J; Pierce, S J; Marshall, A D; Jaine, F R A; Townsend, K A; Bennett, M B; Weeks, S J; Nichols, P D

    2013-10-01

    Fatty acid (FA) signature analysis has been increasingly used to assess dietary preferences and trophodynamics in marine animals. We investigated FA signatures of connective tissue of the whale shark Rhincodon typus and muscle tissue of the reef manta ray Manta alfredi. We found high levels of n-6 polyunsaturated fatty acids (PUFA), dominated by arachidonic acid (20:4n-6; 12-17 % of total FA), and comparatively lower levels of the essential n-3 PUFA-eicosapentaenoic acid (20:5n-3; ~1 %) and docosahexaenoic acid (22:6n-3; 3-10 %). Whale sharks and reef manta rays are regularly observed feeding on surface aggregations of coastal crustacean zooplankton during the day, which generally have FA profiles dominated by n-3 PUFA. The high levels of n-6 PUFA in both giant elasmobranchs raise new questions about the origin of their main food source. PMID:23975574

  15. Increase in voice level and speaker comfort in lecture rooms.

    PubMed

    Brunskog, Jonas; Gade, Anders Christian; Bellester, Gaspar Payá; Calbo, Lilian Reig

    2009-04-01

    Teachers often suffer from health problems related to their voice. These problems are related to their working environment, including the acoustics of the lecture rooms. However, there is a lack of studies linking the room acoustic parameters to the voice produced by the speaker. In this pilot study, the main goals are to investigate whether objectively measurable parameters of the rooms can be related to an increase in the voice sound power produced by speakers and to the speakers' subjective judgments about the rooms. In six different rooms with different sizes, reverberation times, and other physical attributes, the sound power level produced by six speakers was measured. Objective room acoustic parameters were measured in the same rooms, including reverberation time and room gain, and questionnaires were handed out to people who had experience talking in the rooms. It is found that in different rooms significant changes in the sound power produced by the speaker can be found. It is also found that these changes mainly have to do with the size of the room and to the gain produced by the room. To describe this quality, a new room acoustic quantity called "room gain" is proposed. PMID:19354383

  16. Increased Rat Placental Fatty Acid, but Decreased Amino Acid and Glucose Transporters Potentially Modify Intrauterine Programming.

    PubMed

    Nüsken, Eva; Gellhaus, Alexandra; Kühnel, Elisabeth; Swoboda, Isabelle; Wohlfarth, Maria; Vohlen, Christina; Schneider, Holm; Dötsch, Jörg; Nüsken, Kai-Dietrich

    2016-07-01

    Regulation of placental nutrient transport significantly affects fetal development and may modify intrauterine growth restriction (IUGR) and fetal programming. We hypothesized that placental nutrient transporters are differentially affected both by utero-placental insufficiency and prenatal surgical stress. Pregnant rats underwent bilateral uterine artery and vein ligation (LIG), sham operation (SOP) or no operation (controls, C) on gestational day E19. Placentas were obtained by caesarean section 4 h (LIG, n=20 placentas; SOP, n=24; C, n=12), 24 h (LIG, n=28; SOP, n=20; C, n=12) and 72 h (LIG, n=20; SOP, n=20; C, n=24) after surgery. Gene and protein expression of placental nutrient transporters for fatty acids (h-FABP, CD36), amino acids (SNAT1, SNAT2) and glucose (GLUT-1, Connexin 26) were examined by qRT-PCR, western blot and immunohistochemistry. Interestingly, the mean protein expression of h-FABP was doubled in placentas of LIG and SOP animals 4, 24 (SOP significant) and 72 h (SOP significant) after surgery. CD36 protein was significantly increased in LIG after 72 h. SNAT1 and SNAT2 protein and gene expressions were significantly reduced in LIG and SOP after 24 h. Further significantly reduced proteins were GLUT-1 in LIG (4 h, 72 h) and SOP (24 h), and Connexin 26 in LIG (72 h). In conclusion, placental nutrient transporters are differentially affected both by reduced blood flow and stress, probably modifying the already disturbed intrauterine milieu and contributing to IUGR and fetal programming. Increased fatty acid transport capacity may affect energy metabolism and could be a compensatory reaction with positive effects on brain development. J. Cell. Biochem. 117: 1594-1603, 2016. © 2015 Wiley Periodicals, Inc. PMID:26590355

  17. Virulent Hessian Fly Larvae Trigger Increased Wheat Polyamine Levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect herbivores depend on dietary amino acids and polyamines (PA) for their growth and development. We have analyzed polyamine metabolism during the interaction of wheat with one of its major insect pests, the Hessian fly. The wheat-Hessian fly interaction operates in a gene-for-gene manner result...

  18. Significant association between parathyroid hormone and uric acid level in men

    PubMed Central

    Chin, Kok-Yong; Ima Nirwana, Soelaiman; Wan Ngah, Wan Zurinah

    2015-01-01

    Background Previous reports of patients undergoing parathyroidectomy and of patients receiving teriparatide as antiosteoporotic treatment have suggested a plausible relationship between parathyroid hormone (PTH) and uric acid. However, similar data at population level were lacking. The current study aimed to determine the relationship between PTH and uric acid in a group of apparently healthy Malaysian men. Methods A cross-sectional study was conducted among 380 Malay and Chinese men aged 20 years and above, residing in the Klang Valley, Malaysia. Their body anthropometry was measured, and their fasting blood samples were collected for biochemical analysis. The relationship between PTH and uric acid was analyzed using regression analysis. Results Increased serum PTH level was significantly associated with increased serum uric acid level (β=0.165; P=0.001). Increased PTH level was also significantly associated with the condition of hyperuricemia in the study population (odds ratio [OR], 1.045; 95% confidence interval [CI], 1.017–1.075; P=0.002). All analyses were adjusted for age, body mass index, vitamin D, total calcium, inorganic phosphate, blood urea nitrogen and creatinine levels. Conclusion There is a significant positive relationship between PTH level and uric acid level in Malaysian men. This relationship and its clinical significance should be further investigated in a larger longitudinal study. PMID:26346636

  19. Depletion of retinoic acid receptors initiates a novel positive feedback mechanism that promotes teratogenic increases in retinoic acid.

    PubMed

    D'Aniello, Enrico; Rydeen, Ariel B; Anderson, Jane L; Mandal, Amrita; Waxman, Joshua S

    2013-01-01

    Normal embryonic development and tissue homeostasis require precise levels of retinoic acid (RA) signaling. Despite the importance of appropriate embryonic RA signaling levels, the mechanisms underlying congenital defects due to perturbations of RA signaling are not completely understood. Here, we report that zebrafish embryos deficient for RA receptor αb1 (RARαb1), a conserved RAR splice variant, have enlarged hearts with increased cardiomyocyte (CM) specification, which are surprisingly the consequence of increased RA signaling. Importantly, depletion of RARαb2 or concurrent depletion of RARαb1 and RARαb2 also results in increased RA signaling, suggesting this effect is a broader consequence of RAR depletion. Concurrent depletion of RARαb1 and Cyp26a1, an enzyme that facilitates degradation of RA, and employment of a novel transgenic RA sensor line support the hypothesis that the increases in RA signaling in RAR deficient embryos are the result of increased embryonic RA coupled with compensatory RAR expression. Our results support an intriguing novel mechanism by which depletion of RARs elicits a previously unrecognized positive feedback loop that can result in developmental defects due to teratogenic increases in embryonic RA. PMID:23990796

  20. Regulation of Invertase Levels in Avena Stem Segments by Gibberellic Acid, Sucrose, Glucose, and Fructose 1

    PubMed Central

    Kaufman, Peter B.; Ghosheh, Najati S.; Lacroix, J. Donald; Soni, Sarvjit L.; Ikuma, Hiroshi

    1973-01-01

    Gibberellic acid and sucrose play significant roles in the increases in invertase and growth in Avena stem segments. About 80% of invertase is readily solubilized, whereas the rest is in the cell wall fraction. The levels of both types of invertase change in a similar manner in the response to gibberellic acid and sucrose treatment. The work described here was carried out with only the soluble enzyme. In response to a treatment, the level of invertase activity typically follows a pattern of increase followed by decrease; the increase in activity is approximately correlated with the active growth phase, whereas the decrease in activity is initiated when growth of the segments slows. A continuous supply of gibberellic acid retards the decline of enzyme activity. When gibberellic acid was pulsed to the segments treated with or without sucrose, the level of invertase activity increased at least twice as high in the presence of sucrose as in its absence, but the lag period is longer with sucrose present. Cycloheximide treatments effectively abolish the gibberellic acid-promoted growth, and the level of enzyme activity drops rapidly. Decay of invertase activity in response to cycloheximide treatment occurs regardless of gibberellic acid or sucrose treatment or both, and it is generally faster when the inhibitor is administered at the peak of enzyme induction than when given at its rising phase. Pulses with sucrose, glucose, fructose, or glucose + fructose elevate the level of invertase significantly with a lag of about 5 to 10 hours. The increase in invertase activity elicited by a sucrose pulse is about one-third that caused by a gibberellic acid pulse given at a comparable time during mid-phase of enzyme induction, and the lag before the enzyme activity increases is nearly twice as long for sucrose as for gibberellic acid. Moreover, the gibberellic acid pulse results in about three times more growth than the sucrose pulse. Our studies support the view that gibberellic

  1. Two Levels of Caffeine Ingestion on Blood Lactate and Free Fatty Acid Responses during Incremental Exercise.

    ERIC Educational Resources Information Center

    McNaughton, Lars

    1987-01-01

    Research was conducted to determine the effects of two doses of caffeine on the lactate threshold and also to examine the effects on substrate utilization during incremental cycle ergometry. Results found that caffeine increased heart rates and free fatty acid levels for all workloads and decreased blood lactate levels at some of the workloads.…

  2. Empagliflozin, via Switching Metabolism Toward Lipid Utilization, Moderately Increases LDL Cholesterol Levels Through Reduced LDL Catabolism.

    PubMed

    Briand, François; Mayoux, Eric; Brousseau, Emmanuel; Burr, Noémie; Urbain, Isabelle; Costard, Clément; Mark, Michael; Sulpice, Thierry

    2016-07-01

    In clinical trials, a small increase in LDL cholesterol has been reported with sodium-glucose cotransporter 2 (SGLT2) inhibitors. The mechanisms by which the SGLT2 inhibitor empagliflozin increases LDL cholesterol levels were investigated in hamsters with diet-induced dyslipidemia. Compared with vehicle, empagliflozin 30 mg/kg/day for 2 weeks significantly reduced fasting blood glucose by 18%, with significant increase in fasting plasma LDL cholesterol, free fatty acids, and total ketone bodies by 25, 49, and 116%, respectively. In fasting conditions, glycogen hepatic levels were further reduced by 84% with empagliflozin, while 3-hydroxy-3-methylglutaryl-CoA reductase activity and total cholesterol hepatic levels were 31 and 10% higher, respectively (both P < 0.05 vs. vehicle). A significant 20% reduction in hepatic LDL receptor protein expression was also observed with empagliflozin. Importantly, none of these parameters were changed by empagliflozin in fed conditions. Empagliflozin significantly reduced the catabolism of (3)H-cholesteryl oleate-labeled LDL injected intravenously by 20%, indicating that empagliflozin raises LDL levels through reduced catabolism. Unexpectedly, empagliflozin also reduced intestinal cholesterol absorption in vivo, which led to a significant increase in LDL- and macrophage-derived cholesterol fecal excretion (both P < 0.05 vs. vehicle). These data suggest that empagliflozin, by switching energy metabolism from carbohydrate to lipid utilization, moderately increases ketone production and LDL cholesterol levels. Interestingly, empagliflozin also reduces intestinal cholesterol absorption, which in turn promotes LDL- and macrophage-derived cholesterol fecal excretion. PMID:27207551

  3. Engineering Porous Organic Cage Crystals with Increased Acid Gas Resistance.

    PubMed

    Zhu, Guanghui; Hoffman, Christopher D; Liu, Yang; Bhattacharyya, Souryadeep; Tumuluri, Uma; Jue, Melinda L; Wu, Zili; Sholl, David S; Nair, Sankar; Jones, Christopher W; Lively, Ryan P

    2016-07-25

    Both known and new CC3-based porous organic cages are prepared and exposed to acidic SO2 in vapor and liquid conditions. Distinct differences in the stability of the CC3 cages exist depending on the chirality of the diamine linkers used. The acid catalyzed CC3 degradation mechanism is probed via in situ IR and a degradation pathway is proposed and supported with computational results. CC3 crystals synthesized with racemic mixtures of diaminocyclohexane exhibited enhanced stability compared to CC3-R and CC3-S. Confocal fluorescent microscope images reveal that the stability difference in CC3 species originates from an abundance of mesoporous grain boundaries in CC3-R and CC3-S, allowing facile access of aqueous SO2 throughout the crystal, promoting decomposition. These grain boundaries are absent from CC3 crystals made with racemic linkers. PMID:27253350

  4. Plasma and cerebrosponal fluid amino acid levels in diabetic ketoacidosis before and after corrective therapy.

    PubMed

    Aoki, T T; Assal J-P; Manzano, F M; Kozak, G P; Cahill, G F

    1975-05-01

    To evaluate the effect of insulin-saline-bicarbonate therapy on amino acid metabolism in diabetic ketoacidosis, arterial and venous blood samples as well as cerebrospinal fluid (CSF) were obtained from six patients before and after initiation of corrective therapy. Levels of CSF glutamine were decreased while alanine alpha-amino-n-butyrate, valine, isoleucine and leucine were increased significantly compared to a control group composed of six normal, postabsorptive adults free of any neurologic disease. Following therapy, CSF levels of alanine, alpha-amino-n-butyrate, valine, isoleucine, and leucine declined while glutamine levels did not change. Admission arterial plasma levels of the glycogenic amino acids were lower than normal while the branched-chain amino acids were elevated. Plasma alanine and glutamine arterio-venous (A-V) differences across forearm tissue were larger. After four hours of corrective therapy, arterial plasma levels of most of the amino acids had declined sharply and A-V differences for glutamine and alanine were markedly reduced (p smaller than.025 and p smaller than.01, paired t, respectively). Coincident with the decrease in A-V amino acid differences, plasma glucagon and free fatty acid levels declined significantly. These data suggest that the effect exerted by insulin-saline-bicarbonate therapy on amino acid metabolism is manifested by diminished A-V plasma alanine and glutamine differences across forearm tissue. Thus, the role played by the splanchnic bed both before and following corrective measures may be secondary to substrate availability. PMID:805076

  5. Increases in Levels of Epoxyeicosatrienoic and Dihydroxyeicosatrienoic Acids (EETs and DHETs) in Liver and Heart in Vivo by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) and in Hepatic EET:DHET Ratios by Cotreatment with TCDD and the Soluble Epoxide Hydrolase Inhibitor AUDA

    PubMed Central

    Diani-Moore, Silvia; Ma, Yuliang; Gross, Steven S.

    2014-01-01

    The environmental toxin and carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) binds and activates the transcription factor aryl hydrocarbon receptor (AHR), inducing CYP1 family cytochrome P450 enzymes. CYP1A2 and its avian ortholog CYP1A5 are highly active arachidonic acid epoxygenases. Epoxygenases metabolize arachidonic acid to four regioisomeric epoxyeicosatrienoic acids (EETs) and selected monohydroxyeicosatetraenoic acids (HETEs). EETs can be further metabolized by epoxide hydrolases to dihydroxyeicosatrienoic acids (DHETs). As P450–arachidonic acid metabolites affect vasoregulation, responses to ischemia, inflammation, and metabolic disorders, identification of their production in vivo is needed to understand their contribution to biologic effects of TCDD and other AHR activators. Here we report use of an acetonitrile-based extraction procedure that markedly increased the yield of arachidonic acid products by lipidomic analysis over a standard solid-phase extraction protocol. We show that TCDD increased all four EETs (5,6-, 8,9-, 11,12-, and 14,15-), their corresponding DHETs, and 18- and 20-HETE in liver in vivo and increased 5,6-EET, the four DHETs, and 18-HETE in heart, in a chick embryo model. As the chick embryo heart lacks arachidonic acid–metabolizing activity, the latter findings suggest that arachidonic acid metabolites may travel from their site of production to a distal organ, i.e., heart. To determine if the TCDD–arachidonic acid–metabolite profile could be altered pharmacologically, chick embryos were treated with TCDD and the soluble epoxide hydrolase inhibitor 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA). Cotreatment with AUDA increased hepatic EET-to-DHET ratios, indicating that the in vivo profile of P450–arachidonic acid metabolites can be modified for potential therapeutic intervention. PMID:24311719

  6. Relationship between Uric Acid Level and Achievement Motivation. Final Report.

    ERIC Educational Resources Information Center

    Mueller, Ernst F.; French, John R. P., Jr.

    In an investigation of the relationship of uric acid (a metabolic end product) to achievement, this study hypothesized that a person's serum urate level (a factor often associated with gout) is positively related to achievement need as well as indicators of actual achievement. (Speed of promotion and number of yearly publications were chosen as…

  7. C-Myc Induced Compensated Cardiac Hypertrophy Increases Free Fatty Acid Utilization for the Citric Acid Cycle

    SciTech Connect

    Olson, Aaron; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Isern, Nancy G.; Portman, Michael A.

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc-induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam). Isolated working hearts and 13Carbon (13C )-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing 13C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was confirmed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contribution in NTG. Substrate utilization was not significantly altered in 3dMyc versus cont. The free fatty acid FC was significantly greater in 7dMyc vs cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change maintained

  8. Inhibitions of several antineoplastic drugs on serum sialic Acid levels in mice bearing tumors.

    PubMed

    Lu, Da-Yong; Xu, Jing; Lu, Ting-Ren; Wu, Hong-Ying; Xu, Bin

    2013-03-01

    Six murine tumors, including ascetic tumors HepA, EC, P388 leukemia, S180 and solid tumor S180, and Lewis lung carcinoma, were employed in this work. The free sialic acid concentrations in both blood and ascites were measured in tumor-bearing mice. The results showed that the content of sialic acids in blood was increased in tumor growth and certain tumor types. Higher sialic acid content was observed in ascites than that present in blood. The influence of antineoplastic agents (vincristine, thiotepa, adriamycin, probimane, cisplatin, oxalysine, cortisone, nitrogen mustard, lycobetaine, Ara-C, harringtonine, and cyclophosphamide) on the content of sialic acids in mice blood bearing solid tumors of either S180 or Lewis lung carcinoma was observed. Different inhibitions of antineoplastic drugs on both tumor growth and serum sialic acid levels in mice bearing tumors were found. Among these antineoplastic drugs, probimane, cisplatin, nitrogen mustard, and lycobetaine were able to decrease the serum sialic acid levels in mice bearing tumors. Since these four antineoplastic drugs are all DNA chelating agents, it was proposed that the inhibition of tumor sialic acids by these drugs might be through the DNA template via two ways. Since we have found no effect of antineoplastic drugs on serum sialic acid levels in normal mice, this suggests that the inhibition of antineoplastic drugs on sialic acids is by tumor involvement. PMID:23641340

  9. Estuaries May Face Increased Parasitism as Sea Levels Rise

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-12-01

    Invertebrates in estuaries could be at a greater risk of parasitism as climate change causes sea levels to rise. A new paper published 8 December in Proceedings of the National Academy of Sciences of the United States of America (doi:10.1073/pnas.1416747111) describes how rapid sea level rise in the Holocene affected the population of parasitic flatworms called trematodes.

  10. delta-Aminolevulinic acid dehydratase activity, urinary delta-aminolevulinic acid concentration and zinc protoporphyrin level among people with low level of lead exposure.

    PubMed

    Wang, Qi; Zhao, Huan-hu; Chen, Jian-wei; Hao, Qiao-ling; Gu, Kang-ding; Zhu, Ye-xiang; Zhou, Yi-kai; Ye, Lin-xiang

    2010-01-01

    To evaluate the relationship of delta-aminolevulinic acid dehydratase (ALAD) activity, urinary delta-aminolevulinic acid (ALAU) level and blood zinc protoporphyrin (ZPP) concentration to low blood lead (PbB) levels, these biomarkers were determined for all subjects enrolled from a rural area of southeast China where people had low levels of exposure to lead. The mean values of PbB, ALAD, ALAU and ZPP were 67.11 microg/L (SD: 1.654, range: 10.90-514.04), 339.66 nmol ml(-1)h(-1) (1.419, 78.33-793.13), 20.64 microg/L (1.603, 2.00-326.00), and 0.14 micromol/L (3.437, 0.01-2.26), respectively. ALAD was inversely associated with low levels of PbB. ZPP was inversely related to low levels of PbB but positively related to relatively higher levels of PbB. Alcohol drinking contributed to low ALAD in men. Women had higher ZPP than men. ALAU had no significant association with PbB. In conclusion, ALAD possibly has a non-linear relation with low to moderate levels of PbB. At moderate levels of PbB, ZPP increases with increasing levels of PbB. ALAU is not suitable as an indicator for low levels of lead exposure. PMID:19733117

  11. Chlorogenic acid ameliorates intestinal mitochondrial injury by increasing antioxidant effects and activity of respiratory complexes.

    PubMed

    Zhou, Yan; Zhou, Lili; Ruan, Zheng; Mi, Shumei; Jiang, Min; Li, Xiaolan; Wu, Xin; Deng, Zeyuan; Yin, Yulong

    2016-05-01

    Dietary polyphenols are thought to be beneficial for human health by acting as antioxidants. Chlorogenic acid (CGA) is abundant in plant-based foods as an ester of caffeic acid and quinic acid. In this study, we investigated the effects of CGA on mitochondrial protection. Our results demonstrated that pretreatment with CGA ameliorated the intestinal mitochondrial injury induced by H2O2; membrane potential was increased, mitochondrial swelling, levels of reactive oxygen species, contents of 8-hydroxy-2-deoxyguanosine, and cytochrome c released were decreased. The beneficial effects of CGA were accompanied by an increase in antioxidant and respiratory-chain complex I, IV, and V activities. In trinitrobenzene-sulfonic acid-induced colitic rats indicated that CGA supplementation improved mitochondria ultrastructure and decreased mitochondrial injury. Our results suggest a promising role for CGA as a mitochondria-targeted antioxidant in combating intestinal oxidative injury. Daily intake of diets containing CGA, such as coffee and honeysuckle, may be useful for prevention of intestinal diseases. PMID:26824685

  12. Increase of eicosapentaenoic acid in thraustochytrids through thraustochytrid ubiquitin promoter-driven expression of a fatty acid {delta}5 desaturase gene.

    PubMed

    Kobayashi, Takumi; Sakaguchi, Keishi; Matsuda, Takanori; Abe, Eriko; Hama, Yoichiro; Hayashi, Masahiro; Honda, Daiske; Okita, Yuji; Sugimoto, Shinichi; Okino, Nozomu; Ito, Makoto

    2011-06-01

    Thraustochytrids, marine protists known to accumulate polyunsaturated fatty acids (PUFAs) in lipid droplets, are considered an alternative to fish oils as a source of PUFAs. The major fatty acids produced in thraustochytrids are palmitic acid (C(16:0)), n - 6 docosapentaenoic acid (DPA) (C(22:5)(n) (- 6)), and docosahexaenoic acid (DHA) (C(22:6)(n) (- 3)), with eicosapentaenoic acid (EPA) (C(20:5)(n) (- 3)) and arachidonic acid (AA) (C(20:4)(n) (- 6)) as minor constituents. We attempted here to alter the fatty acid composition of thraustochytrids through the expression of a fatty acid Δ5 desaturase gene driven by the thraustochytrid ubiquitin promoter. The gene was functionally expressed in Aurantiochytrium limacinum mh0186, increasing the amount of EPA converted from eicosatetraenoic acid (ETA) (C(20:4)(n) (- 3)) by the Δ5 desaturase. The levels of EPA and AA were also increased by 4.6- and 13.2-fold in the transgenic thraustochytrids compared to levels in the mock transfectants when ETA and dihomo-γ-linolenic acid (DGLA) (C(20:3)(n) (- 6)) were added to the culture at 0.1 mM. Interestingly, the amount of EPA in the transgenic thraustochytrids increased in proportion to the amount of ETA added to the culture up to 0.4 mM. The rates of conversion and accumulation of EPA were much higher in the thraustochytrids than in baker's yeasts when the desaturase gene was expressed with the respective promoters. This report describes for the first time the finding that an increase of EPA could be accomplished by introducing the Δ5 desaturase gene into thraustochytrids and indicates that molecular breeding of thraustochytrids is a promising strategy for generating beneficial PUFAs. PMID:21478316

  13. Increase of Eicosapentaenoic Acid in Thraustochytrids through Thraustochytrid Ubiquitin Promoter-Driven Expression of a Fatty Acid Δ5 Desaturase Gene▿†

    PubMed Central

    Kobayashi, Takumi; Sakaguchi, Keishi; Matsuda, Takanori; Abe, Eriko; Hama, Yoichiro; Hayashi, Masahiro; Honda, Daiske; Okita, Yuji; Sugimoto, Shinichi; Okino, Nozomu; Ito, Makoto

    2011-01-01

    Thraustochytrids, marine protists known to accumulate polyunsaturated fatty acids (PUFAs) in lipid droplets, are considered an alternative to fish oils as a source of PUFAs. The major fatty acids produced in thraustochytrids are palmitic acid (C16:0), n − 6 docosapentaenoic acid (DPA) (C22:5n − 6), and docosahexaenoic acid (DHA) (C22:6n − 3), with eicosapentaenoic acid (EPA) (C20:5n − 3) and arachidonic acid (AA) (C20:4n − 6) as minor constituents. We attempted here to alter the fatty acid composition of thraustochytrids through the expression of a fatty acid Δ5 desaturase gene driven by the thraustochytrid ubiquitin promoter. The gene was functionally expressed in Aurantiochytrium limacinum mh0186, increasing the amount of EPA converted from eicosatetraenoic acid (ETA) (C20:4n − 3) by the Δ5 desaturase. The levels of EPA and AA were also increased by 4.6- and 13.2-fold in the transgenic thraustochytrids compared to levels in the mock transfectants when ETA and dihomo-γ-linolenic acid (DGLA) (C20:3n − 6) were added to the culture at 0.1 mM. Interestingly, the amount of EPA in the transgenic thraustochytrids increased in proportion to the amount of ETA added to the culture up to 0.4 mM. The rates of conversion and accumulation of EPA were much higher in the thraustochytrids than in baker's yeasts when the desaturase gene was expressed with the respective promoters. This report describes for the first time the finding that an increase of EPA could be accomplished by introducing the Δ5 desaturase gene into thraustochytrids and indicates that molecular breeding of thraustochytrids is a promising strategy for generating beneficial PUFAs. PMID:21478316

  14. Total and free valproic acid: plasma level/dose ratio in monotherapy.

    PubMed

    Abadín, J A; Durán, J A; Sánchez, A; Serrano, J S

    1991-04-01

    Free plasma level/dose ratio of valproic acid (L/D-F) can be more effective than total plasma level/dose ratio (L/D-T) in adjusting dosage regimens. The influence of age, dose, and plasma concentration have been studied on L/D-T and L/D-F ratios. L/D-T and L/D-F ratios from 67 outpatients under long-term monotherapy were obtained. Analytical data was carried out by fluorescent polarized immunoassay. L/D-T and L/D-F ratios do not vary according to age. L/D-T and L/D-F ratios decreased while the dosage increased; both ratios increased with an increase in total plasma level of valproic acid. Significant differences were found between L/D-T and L/D-F ratios. Dose and interindividual variations are the factors which most influence L/D ratios of valproic acid. PMID:2051846

  15. Puget Sound acidity levels drop after ASARCO shutdown

    SciTech Connect

    Not Available

    1987-07-01

    The levels of acidity in Puget Sound region rainfall have decreased significantly since the shutdown of the ASARCO copper smelter in Tacoma, Washington, according to a study funded by the US Environmental Protection Agency. Results indicate that sulfate and hydrogen ion concentrations obtained from samples taken before the closure were significantly different than those collected after the shutdown. Rainwater samples collected downwind during smelter operation were also significantly different from those collected upwind. Sulfur dioxide is considered to be one of the principal contributors to acid rain. The smelter was a major source of sulfur dioxide emissions in the Puget Sound region before it shut down in March 1985.

  16. Ileal apical sodium-dependent bile acid transporter protein levels are down-regulated through ubiquitin-dependent protein degradation induced by bile acids.

    PubMed

    Miyata, Masaaki; Yamakawa, Hiroki; Hayashi, Kenjiro; Kuribayashi, Hideaki; Yamazoe, Yasushi; Yoshinari, Kouichi

    2013-08-15

    The ileal apical sodium-dependent bile acid transporter (ASBT or SLC10A2) has a crucial role in intestinal bile acid absorption. We previously reported that enterobacteria-mediated bile acid conversion was involved in the alteration of ileal ASBT expression levels. In the present study, to investigate the hypothesis that ileal ASBT protein levels are post-translationally regulated by enterobacteria-associated bile acids, alteration of ileal ASBT protein levels was analysed in mice 12 h and 24 h after anti-bacterial drug ampicillin (ABPC) treatment (100 mg/kg, single shot) that altered bile acid composition in the intestinal lumen. In ABPC-treated mice, enterobacteria-biotransformed bile acid, taurodeoxycholic acid (TDCA) and cholic acid (CA) levels were decreased, whereas taurocholic acid (TCA) and tauro-β-muricholic acid levels were increased in the intestinal lumen. Ileal ASBT protein levels in brush-border membrane vesicles (BBMVs), but not ileal Asbt mRNA levels, were significantly increased in the ABPC-treated mice, and the extent of ubiquitination of the ileal ASBT protein was reduced in the ABPC-treated mice. Treatment of ABPC-pretreated mice with CA or TDCA, but not TCA, significantly decreased ileal ASBT protein levels and increased the extent of ubiquitination of ileal ASBT protein. Treatment of mice with the lysosome inhibitor, chloroquine, or the proteasome inhibitor, MG132, increased ileal ASBT protein levels in BBMVs. CA-mediated reduction of ASBT protein levels in the ABPC-pretreated mice was attenuated by co-treatment with chloroquine or MG132. These results suggest that ileal ASBT protein is degraded by a ubiquitin-dependent pathway in response to enterobacteria-associated bile acids. PMID:23872411

  17. Intake of n-3 Polyunsaturated Fatty Acids Increases Omega-3 Index in Aged Male and Female Spontaneously Hypertensive Rats

    PubMed Central

    Bačová, Barbara; Seč, Peter; Čertik, Milan

    2013-01-01

    The purpose of this study was to examine whether n-3 PUFA intake affects n-3 and n-6 FA levels in plasma and red blood cells as well as omega-3 index in old male and female spontaneously hypertensive (SHR) and healthy rats. Plasma linoleic acid and eicosapentaenoic acid increased due to n-3 PUFA intake in SHR and healthy rats. Comparing to healthy rats the levels of PUFA in red blood cells of SHR were lower in males and higher in females with exception of arachidonic acid, which was high in males and low in females. Feeding of rats with n-3 PUFA resulted in increase of red blood cells levels of eicosapentaenoic acid and/or docosahexaenoic acid in a sex- and strain-dependent manner. Moreover, n-3 PUFA intake decreased arachidonic acid in healthy female rats but increased it in SHR and did not affect it in males. Omega-3 index was lower in SHR comparing to healthy rats and it increased due to the consumption of n-3 PUFA. Results point out sex- and strain-related differences in red blood cells levels of n-3 and n-6 PUFA in basal conditions as well as in response to n-3 PUFA intake. PMID:24967252

  18. Circulating Docosahexaenoic Acid Levels Are Associated with Fetal Insulin Sensitivity

    PubMed Central

    Zhao, Jin-Ping; Levy, Emile; Fraser, William D.; Julien, Pierre; Delvin, Edgard; Montoudis, Alain; Spahis, Schohraya; Garofalo, Carole; Nuyt, Anne Monique; Luo, Zhong-Cheng

    2014-01-01

    Background Arachidonic acid (AA; C20∶4 n-6) and docosahexaenoic acid (DHA; C22∶6 n-3) are important long-chain polyunsaturated fatty acids (LC-PUFA) in maintaining pancreatic beta-cell structure and function. Newborns of gestational diabetic mothers are more susceptible to the development of type 2 diabetes in adulthood. It is not known whether low circulating AA or DHA is involved in perinatally “programming” this susceptibility. This study aimed to assess whether circulating concentrations of AA, DHA and other fatty acids are associated with fetal insulin sensitivity or beta-cell function, and whether low circulating concentrations of AA or DHA are involved in compromised fetal insulin sensitivity in gestational diabetic pregnancies. Methods and Principal Findings In a prospective singleton pregnancy cohort, maternal (32-35 weeks gestation) and cord plasma fatty acids were assessed in relation to surrogate indicators of fetal insulin sensitivity (cord plasma glucose-to-insulin ratio, proinsulin concentration) and beta-cell function (proinsulin-to-insulin ratio) in 108 mother-newborn pairs. Cord plasma DHA levels (in percentage of total fatty acids) were lower comparing newborns of gestational diabetic (n = 24) vs. non-diabetic pregnancies (2.9% vs. 3.5%, P = 0.01). Adjusting for gestational age at blood sampling, lower cord plasma DHA levels were associated with lower fetal insulin sensitivity (lower glucose-to-insulin ratio, r = 0.20, P = 0.036; higher proinsulin concentration, r = −0.37, P <0.0001). The associations remained after adjustment for maternal and newborn characteristics. Cord plasma saturated fatty acids C18∶0 and C20∶0 were negatively correlated with fetal insulin sensitivity, but their levels were not different between gestational diabetic and non-diabetic pregnancies. Cord plasma AA levels were not correlated with fetal insulin sensitivity. Conclusion Low circulating DHA levels are associated with compromised

  19. Increased Heme Levels in the Heart Lead to Exacerbated Ischemic Injury

    PubMed Central

    Sawicki, Konrad Teodor; Shang, Meng; Wu, Rongxue; Chang, Hsiang-Chun; Khechaduri, Arineh; Sato, Tatsuya; Kamide, Christine; Liu, Ting; Naga Prasad, Sathyamangla V; Ardehali, Hossein

    2015-01-01

    Background Heme is an essential iron-containing molecule for cardiovascular physiology, but in excess it may increase oxidative stress. Failing human hearts have increased heme levels, with upregulation of the rate-limiting enzyme in heme synthesis, δ-aminolevulinic acid synthase 2 (ALAS2), which is normally not expressed in cardiomyocytes. We hypothesized that increased heme accumulation (through cardiac overexpression of ALAS2) leads to increased oxidative stress and cell death in the heart. Methods and Results We first showed that ALAS2 and heme levels are increased in the hearts of mice subjected to coronary ligation. To determine the causative role of increased heme in the development of heart failure, we generated transgenic mice with cardiac-specific overexpression of ALAS2. While ALAS2 transgenic mice have normal cardiac function at baseline, their hearts display increased heme content, higher oxidative stress, exacerbated cell death, and worsened cardiac function after coronary ligation compared to nontransgenic littermates. We confirmed in cultured cardiomyoblasts that the increased oxidative stress and cell death observed with ALAS2 overexpression is mediated by increased heme accumulation. Furthermore, knockdown of ALAS2 in cultured cardiomyoblasts exposed to hypoxia reversed the increases in heme content and cell death. Administration of the mitochondrial antioxidant MitoTempo to ALAS2-overexpressing cardiomyoblasts normalized the elevated oxidative stress and cell death levels to baseline, indicating that the effects of increased ALAS2 and heme are through elevated mitochondrial oxidative stress. The clinical relevance of these findings was supported by the finding of increased ALAS2 induction and heme accumulation in failing human hearts from patients with ischemic cardiomyopathy compared to nonischemic cardiomyopathy. Conclusions Heme accumulation is detrimental to cardiac function under ischemic conditions, and reducing heme in the heart may be a

  20. Infantile Refsum Disease: Influence of Dietary Treatment on Plasma Phytanic Acid Levels.

    PubMed

    Sá, Maria João Nabais; Rocha, Júlio C; Almeida, Manuela F; Carmona, Carla; Martins, Esmeralda; Miranda, Vasco; Coutinho, Miguel; Ferreira, Rita; Pacheco, Sara; Laranjeira, Francisco; Ribeiro, Isaura; Fortuna, Ana Maria; Lacerda, Lúcia

    2016-01-01

    Infantile Refsum disease (IRD) is one of the less severe of Zellweger spectrum disorders (ZSDs), a group of peroxisomal biogenesis disorders resulting from a generalized peroxisomal function impairment. Increased plasma levels of very long chain fatty acids (VLCFA) and phytanic acid are biomarkers used in IRD diagnosis. Furthermore, an increased plasma level of phytanic acid is known to be associated with neurologic damage. Treatment of IRD is symptomatic and multidisciplinary.The authors report a 3-year-old child, born from consanguineous parents, who presented with developmental delay, retinitis pigmentosa, sensorineural deafness and craniofacial dysmorphisms. While the relative level of plasma C26:0 was slightly increased, other VLCFA were normal. Thus, a detailed characterization of the phenotype was essential to point to a ZSD. Repeatedly increased levels of plasma VLCFA, along with phytanic acid and pristanic acid, deficient dihydroxyacetone phosphate acyltransferase activity in fibroblasts and identification of the homozygous pathogenic mutation c.2528G>A (p.Gly843Asp) in the PEX1 gene, confirmed this diagnosis. Nutritional advice and follow-up was proposed aiming phytanic acid dietary intake reduction. During dietary treatment, plasma levels of phytanic acid decreased to normal, and the patient's development evaluation showed slow progressive acquisition of new competences.This case report highlights the relevance of considering a ZSD in any child with developmental delay who manifests hearing and visual impairment and of performing a systematic biochemical investigation, when plasma VLCFA are mildly increased. During dietary intervention, a biochemical improvement was observed, and the long-term clinical effect of this approach needs to be evaluated. PMID:26303611

  1. Salivary Sialic Acid Levels in Smokeless Tobacco Users

    PubMed Central

    Farhad Mollashahi, Leila; Honarmand, Marieh; Nakhaee, Alireza; Mollashahi, Ghasem

    2016-01-01

    Background Smokeless tobacco chewing is one of the known risk factors for oral cancer. It is consumed widely by residents of southeastern Iran. Objectives In this study, salivary free and total sialic acid, and total protein were compared in paan consumers and non-consumers. Patients and Methods In this cross-sectional study, unstimulated saliva of 94 subjects (44 paan consumers and 50 non-consumers) who were referred to the oral medicine department of the dentistry school of Zahedan were collected. Salivary free and total sialic acid, and total protein concentration were measured by standard biochemical methods, and the obtained data were analyzed using SPSS 20 through the non-parametric Mann-Whitney test. Results The concentration of salivary free sialic acid (23.21 ± 18.98 mg/L) was significantly increased in paan consumers. The concentration of salivary Total sialic acid (TSA) (39.57 ± 26.58 mg/L) and total protein (0.77 ± 0.81 mg/mL) showed increases in paan consumers, however, the results were not statistically significant. Conclusions Salivary free and total sialic acid, and total protein were higher in the paan consumers compared to non-consumers. Due to the carcinogenic effect of smokeless tobacco, measurement of these parameters in saliva may be useful in early detection of oral cancer. PMID:27622172

  2. Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids.

    PubMed

    Yang, Li; Li, Bosheng; Zheng, Xiao-yu; Li, Jigang; Yang, Mei; Dong, Xinnian; He, Guangming; An, Chengcai; Deng, Xing Wang

    2015-01-01

    Heterosis, the phenotypic superiority of a hybrid over its parents, has been demonstrated for many traits in Arabidopsis thaliana, but its effect on defence remains largely unexplored. Here, we show that hybrids between some A. thaliana accessions show increased resistance to the biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. Comparisons of transcriptomes between these hybrids and their parents after inoculation reveal that several key salicylic acid (SA) biosynthesis genes are significantly upregulated in hybrids. Moreover, SA levels are higher in hybrids than in either parent. Increased resistance to Pst DC3000 is significantly compromised in hybrids of pad4 mutants in which the SA biosynthesis pathway is blocked. Finally, increased histone H3 acetylation of key SA biosynthesis genes correlates with their upregulation in infected hybrids. Our data demonstrate that enhanced activation of SA biosynthesis in A. thaliana hybrids may contribute to their increased resistance to a biotrophic bacterial pathogen. PMID:26065719

  3. Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids

    PubMed Central

    Yang, Li; Li, Bosheng; Zheng, Xiao-yu; Li, Jigang; Yang, Mei; Dong, Xinnian; He, Guangming; An, Chengcai; Deng, Xing Wang

    2015-01-01

    Heterosis, the phenotypic superiority of a hybrid over its parents, has been demonstrated for many traits in Arabidopsis thaliana, but its effect on defence remains largely unexplored. Here, we show that hybrids between some A. thaliana accessions show increased resistance to the biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. Comparisons of transcriptomes between these hybrids and their parents after inoculation reveal that several key salicylic acid (SA) biosynthesis genes are significantly upregulated in hybrids. Moreover, SA levels are higher in hybrids than in either parent. Increased resistance to Pst DC3000 is significantly compromised in hybrids of pad4 mutants in which the SA biosynthesis pathway is blocked. Finally, increased histone H3 acetylation of key SA biosynthesis genes correlates with their upregulation in infected hybrids. Our data demonstrate that enhanced activation of SA biosynthesis in A. thaliana hybrids may contribute to their increased resistance to a biotrophic bacterial pathogen. PMID:26065719

  4. Mutations in a novel 9-stearoyl-ACP-desaturase gene are associated with enhanced stearic acid levels in soybean seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stearic acid (18:0) is typically a minor component of soybean [Glycine max (L.) Merr.] oil, accounting for only 2-4 % of the total fatty acid content. Increasing stearic acid levels of soybean oil would lead to enhanced oxidative stability, potentially reducing the need for hydrogenation, a process...

  5. A thraustochytrid diacylglycerol acyltransferase 2 with broad substrate specificity strongly increases oleic acid content in engineered Arabidopsis thaliana seeds

    PubMed Central

    Zhang, Chunyu; Iskandarov, Umidjon; Cahoon, Edgar B.

    2013-01-01

    Diacylglycerol acyltransferase (DGAT) catalyses the last step in acyl-CoA-dependent triacylglycerol (TAG) biosynthesis and is an important determinant of cellular oil content and quality. In this study, a gene, designated TaDGAT2, encoding a type 2 DGAT (DGAT2)-related enzyme was identified from the oleaginous marine protist Thraustochytrium aureum. The deduced TaDGAT2 sequence contains a ~460 amino acid domain most closely related to DGAT2s from Dictyostelium sp. (45–50% identity). Recombinant TaDGAT2 restored TAG biosynthesis to the Saccharomyces cerevisiae H1246 TAG-deficient mutant, and microsomes from the complemented mutant displayed DGAT activity with C16 and C18 saturated and unsaturated fatty acyl-CoA and diacylglycerol substrates. To examine its biotechnological potential, TaDGAT2 was expressed under control of a strong seed-specific promoter in wild-type Arabidopsis thaliana and the high linoleic acid fad3fae1 mutant. In both backgrounds, little change was detected in seed oil content, but a striking increase in oleic acid content of seeds was observed. This increase was greatest in fad3fae1 seeds, where relative amounts of oleic acid increased nearly 2-fold to >50% of total fatty acids. In addition, >2-fold increase in oleic acid levels was detected in the triacylglycerol sn-2 position and in the major seed phospholipid phosphatidylcholine. These results suggest that increased seed oleic acid content mediated by TaDGAT2 is influenced in part by the fatty acid composition of host cells and occurs not by enhancing oleic acid content at the TAG sn-3 position directly but by increasing total oleic acid levels in seeds, presumably by limiting flux through phosphatidylcholine-based desaturation reactions. PMID:23814277

  6. Increasing Fatty Acid Oxidation Remodels the Hypothalamic Neurometabolome to Mitigate Stress and Inflammation

    PubMed Central

    McFadden, Joseph W.; Aja, Susan; Li, Qun; Bandaru, Veera V. R.; Kim, Eun-Kyoung; Haughey, Norman J.; Kuhajda, Francis P.; Ronnett, Gabriele V.

    2014-01-01

    Modification of hypothalamic fatty acid (FA) metabolism can improve energy homeostasis and prevent hyperphagia and excessive weight gain in diet-induced obesity (DIO) from a diet high in saturated fatty acids. We have shown previously that C75, a stimulator of carnitine palmitoyl transferase-1 (CPT-1) and fatty acid oxidation (FAOx), exerts at least some of its hypophagic effects via neuronal mechanisms in the hypothalamus. In the present work, we characterized the effects of C75 and another anorexigenic compound, the glycerol-3-phosphate acyltransferase (GPAT) inhibitor FSG67, on FA metabolism, metabolomics profiles, and metabolic stress responses in cultured hypothalamic neurons and hypothalamic neuronal cell lines during lipid excess with palmitate. Both compounds enhanced palmitate oxidation, increased ATP, and inactivated AMP-activated protein kinase (AMPK) in hypothalamic neurons in vitro. Lipidomics and untargeted metabolomics revealed that enhanced catabolism of FA decreased palmitate availability and prevented the production of fatty acylglycerols, ceramides, and cholesterol esters, lipids that are associated with lipotoxicity-provoked metabolic stress. This improved metabolic signature was accompanied by increased levels of reactive oxygen species (ROS), and yet favorable changes in oxidative stress, overt ER stress, and inflammation. We propose that enhancing FAOx in hypothalamic neurons exposed to excess lipids promotes metabolic remodeling that reduces local inflammatory and cell stress responses. This shift would restore mitochondrial function such that increased FAOx can produce hypothalamic neuronal ATP and lead to decreased food intake and body weight to improve systemic metabolism. PMID:25541737

  7. Decrease in erythrocyte glycophorin sialic acid content is associated with increased erythrocyte aggregation in human diabetes.

    PubMed

    Rogers, M E; Williams, D T; Niththyananthan, R; Rampling, M W; Heslop, K E; Johnston, D G

    1992-03-01

    1. Sialic acid moieties of erythrocyte membrane glycoproteins are the principal determinants of the negative charge on the cell surface. The resultant electrostatic repulsion between the cells reduces erythrocyte aggregation and hence the low shear rate viscosity and yield stress of blood. 2. Using g.c.-m.s., a decrease in sialic acid content has been observed in the major erythrocyte membrane glycoprotein, glycophorin A, obtained from nine diabetic patients compared with that from seven normal control subjects [median (range): 3.30 (0.01-11.90) versus 18.60 (3.20-32.60) micrograms/100 micrograms of protein, P less than 0.02]. 3. Erythrocyte aggregation, measured by viscometry as the ratio of suspension viscosity to supernatant viscosity (LS/S) in fibrinogen solution, was increased in ten diabetic patients compared with ten normal control subjects (mean +/- SEM, 37.6 +/- 1.3 versus 33.8 +/- 0.6, P less than 0.02). 4. In the patients in whom both viscometry and carbohydrate analysis were performed, the decrease in erythrocyte glycophorin sialylation and the increase in erythrocyte aggregation in fibrinogen solution were related statistically (LS/S correlated negatively with glycophorin sialic acid content, r = 0.73, P less than 0.05). 5. Decreased glycophorin sialylation provides an explanation at the molecular level for increased erythrocyte aggregation and it may be important in the pathogenesis of vascular disease in diabetes. PMID:1312416

  8. Plasma ascorbic acid level and erythrocyte fragility in preeclampsia and eclampsia.

    PubMed

    Ozan, H; Esmer, A; Kolsal, N; Copur, O U; Ediz, B

    1997-01-01

    An imbalance between oxidants and antioxidants in the circulation is blamed to cause preeclampsia and eclampsia. In this study plasma ascorbic acid level was analysed in 13 eclamptic, 14 mild preeclamptic, 12 severe preeclamptic and 20 uncomplicated pregnancies to see whether there is any correlation with blood pressure, proteinuria, serum triglyceride level, erythrocyte fragility and leukocyte count. Plasma ascorbic acid level was normal and had no significant difference among the groups. Fasting serum triglyceride level was significantly higher in the study group than in the control group but it did not differ among the three study groups. Erythrocyte fragility was found to be increased in all three study groups. Blood leukocyte count was increased in the study groups, especially in the eclampsia group. However, plasma ascorbic acid level and erythrocyte fragility were found to have no significant correlation with blood pressure and proteinuria. It was concluded that though the ascorbic acid levels were normal in both the study and the control groups, erythrocyte fragility increased probably due to an elevation in peroxide and free radical levels in preeclampsia and eclampsia groups, but without any correlation with the severity of the clinical picture. PMID:9031958

  9. Acetate supplementation increases brain phosphocreatine and reduces AMP levels with no effect on mitochondrial biogenesis

    PubMed Central

    Bhatt, Dhaval P.; Houdek, Heidi M.; Watt, John A.; Rosenberger, Thad A.

    2013-01-01

    Acetate supplementation in rats increases plasma acetate and brain acetyl-CoA levels. Although acetate is used as a marker to study glial energy metabolism, the effect that acetate supplementation has on normal brain energy stores has not been quantified. To determine the effect(s) that an increase in acetyl-CoA levels has on brain energy metabolism, we measured brain nucleotide, phosphagen and glycogen levels, and quantified cardiolipin content and mitochondrial number in rats subjected to acetate supplementation. Acetate supplementation was induced with glyceryl triacetate (GTA) by oral gavage (6 g/Kg body weight). Rats used for biochemical analysis were euthanized using head-focused microwave irradiation at 2, and 4 hr following treatment to immediately stop metabolism. We found that acetate did not alter brain ATP, ADP, NAD, GTP levels, or the energy charge ratio [ECR, (ATP + ½ ADP) / (ATP + ADP + AMP)] when compared to controls. However, after 4 hr of treatment brain phosphocreatine levels were significantly elevated with a concomitant reduction in AMP levels with no change in glycogen levels. In parallel studies where rats were treated with GTA for 28 days, we found that acetate did not alter brain glycogen and mitochondrial biogenesis as determined by measuring brain cardiolipin content, the fatty acid composition of cardiolipin and using quantitative ultra-structural analysis to determine mitochondrial density/unit area of cytoplasm in hippocampal CA3 neurons. Collectively, these data suggest that an increase in brain acetyl-CoA levels by acetate supplementation does increase brain energy stores however it has no effect on brain glycogen and neuronal mitochondrial biogenesis. PMID:23321384

  10. Increase in the permeability of tonoplast of garlic (Allium sativum) by monocarboxylic acids.

    PubMed

    Bai, Bing; Li, Lei; Hu, Xiaosong; Wang, Zhengfu; Zhao, Guanghua

    2006-10-18

    Immersion of intact aged garlic (Allium sativum) cloves in a series of 5% weak organic monocarboxylate solutions (pH 2.0) resulted in green color formation. No color was formed upon treatment with other weak organic acids, such as citric and malic acids, and the inorganic hydrochloric acid under the same conditions. To understand the significance of monocarboxylic acids and their differing function from that of other acids, acetic acid was compared with organic acids citric and malic and the inorganic hydrochloric acid. The effects of these acids on the permeability of plasma and intracellular membrane of garlic cells were measured by conductivity, light microscopy, and transmission electron microscopy. Except for hydrochloric acid, treatment of garlic with all three organic acids greatly increased the relative conductivity of their respective pickling solutions, indicating that all tested organic acids increased the permeability of plasma membrane. Moreover, a pickling solution containing acetic acid exhibited 1.5-fold higher relative conductivity (approximately 90%) as compared to those (approximately 60%) of both citric and malic acids, implying that exposure of garlic cloves to acetic acid not only changed the permeability of the plasma membrane but also increased the permeability of intracellular membrane. Exposure of garlic to acetic acid led to the production of precipitate along the tonoplast, but no precipitate was formed by citric and malic acids. This indicates that the structure of the tonoplast was damaged by this treatment. Further support for this conclusion comes from results showing that the concentration of thiosulfinates [which are produced only by catalytic conversion of S-alk(en)yl-l-cysteine sulfoxides in cytosol by alliinase located in the vacuole] in the acetic acid pickling solution is 1.3 mg/mL, but almost no thiosulfinates were detected in the pickling solution of citric and malic acids. Thus, all present results suggest that damage of

  11. Amino acid limitation induces down-regulation of WNT5a at transcriptional level

    SciTech Connect

    Wang Zuguang; Chen Hong

    2009-01-23

    An aberrant WNT signaling contributes to the development and progression of multiple cancers. WNT5a is one of the WNT signaling molecules. This study was designed to test the hypothesis that amino acid deprivation induces changes in the WNT signaling pathway in colon cancer cells. Results showed that targets of the amino acid response pathway, ATF3 and p21, were induced in the human colon cancer cell line SW480 during amino acid limitation. There was a significant decrease in the WNT5a mRNA level following amino acid deprivation. The down-regulation of WNT5a mRNA by amino acid deprivation is not due to mRNA destabilization. There is a reduction of nuclear {beta}-catenin protein level by amino acid limitation. Under amino acid limitation, phosphorylation of ERK1/2 was increased and the blockage of ERK1/2 by the inhibitor U0126 partially restored WNT5a mRNA level. In conclusion, amino acid limitation in colon cancer cells induces phosphorylation of ERK1/2, which then down-regulates WNT5a expression.

  12. Dietary whey protein hydrolysates increase skeletal muscle glycogen levels via activation of glycogen synthase in mice.

    PubMed

    Kanda, Atsushi; Morifuji, Masashi; Fukasawa, Tomoyuki; Koga, Jinichiro; Kanegae, Minoru; Kawanaka, Kentaro; Higuchi, Mitsuru

    2012-11-14

    Previously, we have shown that consuming carbohydrate plus whey protein hydrolysates (WPHs) replenished muscle glycogen after exercise more effectively than consuming intact whey protein or branched-chain amino acids (BCAAs). The mechanism leading to superior glycogen replenishment after consuming WPH is unclear. In this 5 week intervention, ddY mice were fed experimental diets containing WPH, a mixture of whey amino acids (WAAs), or casein (control). After the intervention, gastrocnemius muscle glycogen levels were significantly higher in the WPH group (4.35 mg/g) than in the WAA (3.15 mg/g) or control (2.51 mg/g) groups. In addition, total glycogen synthase (GS) protein levels were significantly higher in the WPH group (153%) than in the WAA (89.2%) or control groups, and phosphorylated GS levels were significantly decreased in the WPH group (51.4%). These results indicate that dietary WPH may increase the muscle glycogen content through increased GS activity. PMID:23113736

  13. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid.

    PubMed

    Lee, Kwang Hee; Piao, Hai Lan; Kim, Ho-Youn; Choi, Sang Mi; Jiang, Fan; Hartung, Wolfram; Hwang, Ildoo; Kwak, June M; Lee, In-Jung; Hwang, Inhwan

    2006-09-22

    Abscisic acid (ABA) is a phytohormone critical for plant growth, development, and adaptation to various stress conditions. Plants have to adjust ABA levels constantly to respond to changing physiological and environmental conditions. To date, the mechanisms for fine-tuning ABA levels remain elusive. Here we report that AtBG1, a beta-glucosidase, hydrolyzes glucose-conjugated, biologically inactive ABA to produce active ABA. Loss of AtBG1 causes defective stomatal movement, early germination, abiotic stress-sensitive phenotypes, and lower ABA levels, whereas plants with ectopic AtBG1 accumulate higher ABA levels and display enhanced tolerance to abiotic stress. Dehydration rapidly induces polymerization of AtBG1, resulting in a 4-fold increase in enzymatic activity. Furthermore, diurnal increases in ABA levels are attributable to polymerization-mediated AtBG1 activation. We propose that the activation of inactive ABA pools by polymerized AtBG1 is a mechanism by which plants rapidly adjust ABA levels and respond to changing environmental cues. PMID:16990135

  14. Increased acetyl and total histone levels in post-mortem Alzheimer's disease brain.

    PubMed

    Narayan, Pritika J; Lill, Claire; Faull, Richard; Curtis, Maurice A; Dragunow, Mike

    2015-02-01

    Histone acetylation is an epigenetic modification that plays a critical role in chromatin remodelling and transcriptional regulation. There is increasing evidence that epigenetic modifications may become compromised in aging and increase susceptibility to the development of neurodegenerative disorders such as Alzheimer's disease. Immunohistochemical labelling of free-floating sections from the inferior temporal gyrus (Alzheimer's disease, n=14; control, n=17) and paraffin-embedded tissue microarrays containing tissue from the middle temporal gyrus (Alzheimer's disease, n=29; control, n=28) demonstrated that acetyl histone H3 and acetyl histone H4 levels, as well as total histone H3 and total histone H4 protein levels, were significantly increased in post-mortem Alzheimer's disease brain tissue compared to age- and sex-matched neurologically normal control brain tissue. Changes in acetyl histone levels were proportional to changes in total histone levels. The increase in acetyl histone H3 and H4 was observed in Neuronal N immunopositive pyramidal neurons in Alzheimer's disease brain. Using immunolabelling, histone markers correlated significantly with the level of glial fibrillary acidic protein and HLA-DP, -DQ and -DR immunopositive cells and with the pathological hallmarks of Alzheimer's disease (hyperphosphorylated tau load and β-amyloid plaques). Given that histone acetylation changes were correlated with changes in total histone protein, it was important to evaluate if protein degradation pathways may be compromised in Alzheimer's disease. Consequently, significant positive correlations were also found between ubiquitin load and histone modifications. The relationship between histone acetylation and ubiquitin levels was further investigated in an in vitro model of SK-N-SH cells treated with the proteasome inhibitor Mg132 and the histone deacetylase inhibitor valproic acid. In this model, compromised protein degradation caused by Mg132 lead to elevated histone

  15. Effect of increased protein intake on renal acid load and renal hemodynamic responses.

    PubMed

    Teunissen-Beekman, Karianna F M; Dopheide, Janneke; Geleijnse, Johanna M; Bakker, Stephan J L; Brink, Elizabeth J; de Leeuw, Peter W; van Baak, Marleen A

    2016-03-01

    Increased protein intake versus maltodextrin intake for 4 weeks lowers blood pressure. Concerns exist that high-protein diets reduce renal function. Effects of acute and 4-week protein intake versus maltodextrin intake on renal acid load, glomerular filtration rate and related parameters were compared in this study. Seventy-nine overweight individuals with untreated elevated blood pressure and normal kidney function were randomized to consume a mix of protein isolates (60 g/day) or maltodextrin (60 g/day) for 4 weeks in energy balance. Twenty-four-hour urinary potential renal acid load (uPRAL) was compared between groups. A subgroup (maltodextrin N = 27, protein mix N = 25) participated in extra test days investigating fasting levels and postprandial effects of meals supplemented with a moderate protein- or maltodextrin-load on glomerular filtration rate, effective renal plasma flow, plasma renin, aldosterone, pH, and bicarbonate. uPRAL was significantly higher in the protein group after 4 weeks (P ≤ 0.001). Postprandial filtration fraction decreased further after the protein-supplemented breakfast than after the maltodextrin-supplemented breakfast after 4 weeks of supplementation (P ≤ 0.001). Fasting and postprandial levels of glomerular filtration rate, effective renal plasma flow, renin, aldosterone, angiotensin-converting enzyme, pH and bicarbonate did not differ between groups. In conclusion, 4 weeks on an increased protein diet (25% of energy intake) increased renal acid load, but did not affect renal function. Postprandial changes, except for filtration fraction, also did not differ between groups. These data suggest that a moderate increase in protein intake by consumption of a protein mix for 4 weeks causes no (undesirable) effects on kidney function in overweight and obese individuals with normal kidney function. PMID:26997623

  16. Pyoderma gangrenosum with increased levels of serum cytokines.

    PubMed

    Kozono, Kana; Nakahara, Takeshi; Kikuchi, Satoko; Itoh, Eriko; Kido-Nakahara, Makiko; Furue, Masutaka

    2015-12-01

    A 66-year-old woman presented after an episode of accidental trauma with a painful ulcer on her scalp which rapidly enlarged in size, accompanied by central necrosis and undermining ulceration. The patient's past history was negative for underlying systemic disease, although she had had a similar post-traumatic intractable leg ulcer 3 years prior, which was unresponsive to surgical management but successfully treated with systemic steroids. A biopsied specimen from the scalp showed marked neutrophilic infiltrates in the dermis, compatible with a diagnosis of pyoderma gangrenosum (PG). The large ulcerative lesion responded very well to oral steroid therapy, showing rapid epithelialization. Serum levels of granulocyte colony-stimulating factor and interleukin-6 were significantly elevated prior to treatment, with decrease to normal levels after treatment. Serum tumor necrosis factor (TNF)-α and granulocyte macrophage colony-stimulating factor levels were within normal limits. The significance and pathogenic role of cytokine burst in PG is reviewed and discussed. PMID:26047254

  17. Cofilin/Twinstar Phosphorylation Levels Increase in Response to Impaired Coenzyme A Metabolism

    PubMed Central

    Siudeja, Katarzyna; Grzeschik, Nicola A.; Rana, Anil; de Jong, Jannie; Sibon, Ody C. M.

    2012-01-01

    Coenzyme A (CoA) is a pantothenic acid-derived metabolite essential for many fundamental cellular processes including energy, lipid and amino acid metabolism. Pantothenate kinase (PANK), which catalyses the first step in the conversion of pantothenic acid to CoA, has been associated with a rare neurodegenerative disorder PKAN. However, the consequences of impaired PANK activity are poorly understood. Here we use Drosophila and human neuronal cell cultures to show how PANK deficiency leads to abnormalities in F-actin organization. Cells with reduced PANK activity are characterized by abnormally high levels of phosphorylated cofilin, a conserved actin filament severing protein. The increased levels of phospho-cofilin coincide with morphological changes of PANK-deficient Drosophila S2 cells and human neuronal SHSY-5Y cells. The latter exhibit also markedly reduced ability to form neurites in culture – a process that is strongly dependent on actin remodeling. Our results reveal a novel and conserved link between a metabolic biosynthesis pathway, and regulation of cellular actin dynamics. PMID:22912811

  18. Comparative Indole-3-Acetic Acid Levels in the Slender Pea and Other Pea Phenotypes 1

    PubMed Central

    Law, David M.; Davies, Peter J.

    1990-01-01

    Free indole-3-acetic acid levels were measured by gas chromatography-mass spectrometry in three ultra-tall `slender' Pisum sativum L. lines differing in gibberellin content. Measurements were made for apices and stem elongation zones of light-grown plants and values were compared with wild-type, dwarf, and nana phenotypes in which internode length is genetically regulated, purportedly via the gibberellin level. Indole-3-acetic acid levels of growing stems paralleled growth rates in all lines, and were high in all three slender genotypes. Growth was inhibited by p-chlorophenoxyisobutyric acid, demonstrating the requirement of auxin activity for stem elongation, and also by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. It is concluded that the slender phenotype may arise from constant activation of a gibberellin receptor or transduction chain event leading directly or indirectly to elevated levels of indole-3-acetic acid, and that increased indole-3-acetic acid levels are a significant factor in the promotion of stem elongation. PMID:16667653

  19. Increased universality of Lepidopteran elicitor compounds across insects: Identification of fatty acid amino acid conjugates (FACs)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid amino acid conjugates (FACs) are known elicitors of induced release of volatile compounds in plants that, in turn, attract foraging parasitoids. Since the discovery of volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] in the regurgitant of larval Spodoptera exigua1, a series of related FAC...

  20. Effects of increasing docosahexaenoic acid intake in human healthy volunteers on lymphocyte activation and monocyte apoptosis

    PubMed Central

    Mebarek, Saïda; Ermak, Natalia; Benzaria, Amal; Vicca, Stéphanie; Dubois, Madeleine; Némoz, Georges; Laville, Martine; Lacour, Bernard; Véricel, Evelyne; Lagarde, Michel; Prigent, Annie-France

    2009-01-01

    Dietary intake of long-chain n-3 polyunsaturated fatty acids (n-3 PUFA) has been reported to decrease several markers of lymphocyte activation and modulate monocyte susceptibility to apoptosis. However most human studies examined the combined effect of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) using relatively high daily amounts of n-3 PUFA. The present study investigated the effects of increasing doses of DHA added to the regular diet of human healthy volunteers on lymphocyte response to tetradecanoylphorbol acetate (TPA) plus ionomycin activation, and on monocyte apoptosis induced by oxidized LDL (oxLDL). Eight subjects were supplemented with increasing daily doses of DHA (200, 400, 800 and 1600mg) in a triacylglycerol form containing DHA as the only PUFA, for two weeks each dose. DHA intake dose-dependently increased the proportion of DHA in mononuclear cell phospholipids, the augmentation being significant after 400mg DHA/day. The TPA plus ionomycin-stimulated IL-2 mRNA level started to increase after ingestion of 400mg DHA/day, with a maximum after 800mg intake, and was positively correlated (P<0.003) with DHA enrichment in cell phospholipids. The treatment of monocytes by oxLDL before DHA supplementation drastically reduced mitochondrial membrane potential as compared with native LDL treatment. OxLDL apoptotic effect was significantly attenuated after 400mg DHA/day and the protective effect was maintained throughout the experiment, although to a lesser extent at higher doses. The present results show that supplementation of the human diet with low DHA dosages improves lymphocyte activability. It also increases monocyte resistance to oxLDL-induced apoptosis, which may be beneficial in the prevention of atherosclerosis. PMID:18710607

  1. Reducing nursing students' anxiety level and increasing retention of materials.

    PubMed

    Phillips, A P

    1988-01-01

    The purpose of this descriptive study is to examine the effects active learning, collaboration and modified group testing have on reducing students' anxiety and increasing learning and retention of material. Subjects consist of 34 associate degree nursing students enrolled in the Advanced Adult Health nursing class at North Georgia College. Most of the students are married, have children and work part time. A self-reporting questionnaire suggests a reduction of the students' anxiety during the quarter. The attitudinal questionnaire reveals an atmosphere of collaboration among peers. Data evaluating learning and retention of material were analyzed using the parametric (T-test) and nonparametric (Wiley Rank Sum test) methods. Examination of the Null Hypotheses I and II suggests there were increased learning and retention of material as evidenced by higher grades on the comprehensive final examination than on the quizzes given after presentation of content. Principles of andragogy as defined by Knowles (1980) and cooperation with peers as described by Johnson, Johnson, Holabec, and Roy (1984), Johnson, Johnson, and Maruyama (1983), and Johnson and Johnson (1975) form the theoretical foundation. PMID:2828575

  2. Ferulic acid prevents liver injury and increases the anti-tumor effect of diosbulbin B in vivo *

    PubMed Central

    Wang, Jun-ming; Sheng, Yu-chen; Ji, Li-li; Wang, Zheng-tao

    2014-01-01

    The present study is designed to investigate the protection by ferulic acid against the hepatotoxicity induced by diosbulbin B and its possible mechanism, and further observe whether ferulic acid augments diosbulbin B-induced anti-tumor activity. The results show that ferulic acid decreases diosbulbin B-increased serum alanine transaminase/aspartate transaminase (ALT/AST) levels. Ferulic acid also decreases lipid peroxide (LPO) levels which are elevated in diosbulbin B-treated mice. Histological evaluation of the liver demonstrates hydropic degeneration in diosbulbin B-treated mice, while ferulic acid reverses this injury. Moreover, the activities of copper- and zinc-containing superoxide dismutase (CuZn-SOD) and catalase (CAT) are decreased in the livers of diosbulbin B-treated mice, while ferulic acid reverses these decreases. Further results demonstrate that the mRNA expressions of CuZn-SOD and CAT in diosbulbin B-treated mouse liver are significantly decreased, while ferulic acid prevents this decrease. In addition, ferulic acid also augments diosbulbin B-induced tumor growth inhibition compared with diosbulbin B alone. Taken together, the present study shows that ferulic acid prevents diosbulbin B-induced liver injury via ameliorating diosbulbin B-induced liver oxidative stress injury and augments diosbulbin B-induced anti-tumor activity. PMID:24903991

  3. The effects of changing dairy intake on trans and saturated fatty acid levels- results from a randomized controlled study

    PubMed Central

    2014-01-01

    Background Dairy food is an important natural source of saturated and trans fatty acids in the human diet. This study evaluates the effect of dietary advice to change dairy food intake on plasma fatty acid levels known to be present in milk in healthy volunteers. Methods Twenty one samples of whole fat dairy milk were analyzed for fatty acids levels. Changes in levels of plasma phospholipid levels were evaluated in 180 healthy volunteers randomized to increase, not change or reduce dairy intake for one month. Fatty acids were measured by gas chromatography–mass spectrometry and levels are normalized to d-4 alanine. Results The long chain fatty acids palmitic (13.4%), stearic (16.7%) and myristic (18.9%) acid were most common saturated fats in milk. Four trans fatty acids constituted 3.7% of the total milk fat content. Increased dairy food intake by 3.0 (± 1.2) serves/ day for 1 month was associated with small increases in plasma levels of myristic (+0.05, 95% confidence level-0.08 to 0.13, p = 0.07), pentadecanoic (+0.014, 95% confidence level -0.016 to 0.048, p = 0.02) and margaric acid (+0.02, -0.03 to 0.05, p = 0.03). There was no significant change in plasma levels of 4 saturated, 4 trans and 10 unsaturated fatty acids. Decreasing dairy food intake by 2.5 (± 1.2) serves per day was not associated with change in levels of any plasma fatty acid levels. Conclusion Dietary advice to change dairy food has a minor effect on plasma fatty acid levels. Trial registration ACTRN12612000574842. PMID:24708591

  4. Increased extracellular levels of glutamate in the hippocampus of chronically epileptic rats.

    PubMed

    Soukupova, M; Binaschi, A; Falcicchia, C; Palma, E; Roncon, P; Zucchini, S; Simonato, M

    2015-08-20

    An increase in the release of excitatory amino acids has consistently been observed in the hippocampus during seizures, both in humans and animals. However, very little or nothing is known about the extracellular levels of glutamate and aspartate during epileptogenesis and in the interictal chronic period of established epilepsy. The aim of this study was to systematically evaluate the relationship between seizure activity and changes in hippocampal glutamate and aspartate extracellular levels under basal and high K(+)-evoked conditions, at various time-points in the natural history of experimental temporal lobe epilepsy, using in vivo microdialysis. Hippocampal extracellular glutamate and aspartate levels were evaluated: 24h after pilocarpine-induced status epilepticus (SE); during the latency period preceding spontaneous seizures; immediately after the first spontaneous seizure; in the chronic (epileptic) period. We found that (i) basal (spontaneous) glutamate outflow is increased in the interictal phases of the chronic period, whereas basal aspartate outflow remains stable for the entire course of the disease; (ii) high K(+) perfusion increased glutamate and aspartate outflow in both control and pilocarpine-treated animals, and the overflow of glutamate was clearly increased in the chronic group. Our data suggest that the glutamatergic signaling is preserved and even potentiated in the hippocampus of epileptic rats, and thus may favor the occurrence of spontaneous recurrent seizures. Together with an impairment of GABA signaling (Soukupova et al., 2014), these data suggest that a shift toward excitation occurs in the excitation/inhibition balance in the chronic epileptic state. PMID:26073699

  5. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance

    PubMed Central

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H.; Patton-Vogt, Jana; Bakalinsky, Alan T.

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification. PMID:25673654

  6. Dissolution of Simulated and Radioactive Savannah River Site High-Level Waste Sludges with Oxalic Acid & Citric Acid Solutions

    SciTech Connect

    STALLINGS, MARY

    2004-07-08

    This report presents findings from tests investigating the dissolution of simulated and radioactive Savannah River Site sludges with 4 per cent oxalic acid and mixtures of oxalic and citric acid previously recommended by a Russian team from the Khlopin Radium Institute and the Mining and Chemical Combine (MCC). Testing also included characterization of the simulated and radioactive waste sludges. Testing results showed the following: Dissolution of simulated HM and PUREX sludges with oxalic and citric acid mixtures at SRTC confirmed general trends reported previously by Russian testing. Unlike the previous Russian testing six sequential contacts of a mixture of oxalic acid citric acids at a 2:1 ratio (v/w) of acid to sludge did not produce complete dissolution of simulated HM and PUREX sludges. We observed that increased sludge dissolution occurred at a higher acid to sludge ratio, 50:1 (v/w), compared to the recommended ratio of 2:1 (v/w). We observed much lower dissolution of aluminum in a simulated HM sludge by sodium hydroxide leaching. We attribute the low aluminum dissolution in caustic to the high fraction of boehmite present in the simulated sludge. Dissolution of HLW sludges with 4 per cent oxalic acid and oxalic/citric acid followed general trends observed with simulated sludges. The limited testing suggests that a mixture of oxalic and citric acids is more efficient for dissolving HM and PUREX sludges and provides a more homogeneous dissolution of HM sludge than oxalic acid alone. Dissolution of HLW sludges in oxalic and oxalic/citric acid mixtures produced residual sludge solids that measured at higher neutron poison to equivalent 235U weight ratios than that in the untreated sludge solids. This finding suggests that residual solids do not present an increased nuclear criticality safety risk. Generally the neutron poison to equivalent 235U weight ratios of the acid solutions containing dissolved sludge components are lower than those in the untreated

  7. Increase of inherent protection level in spent nuclear fuel

    SciTech Connect

    Krasnobaev, A.; Kryuchkov, E.; Glebov, V.

    2006-07-01

    The paper is devoted to upgrading inherent proliferation protection of fissionable nuclear materials (FNM). Some possibilities were investigated to form high radiation barrier inside spent fuel assemblies (SFA) discharged from power reactors of VVER-1000 type and research reactors of IRT type. The radiation barrier is estimated in the terms of rate of equivalent dose (RED) at 30-cm distance from SFA. The values of RED were calculated with application of the computer code package SCALE 4.3. The paper considers the criteria adopted for estimation of FNM proliferation resistance. The paper presents numerical results on a component-wise analysis of the radiation barrier in SFA from reactors of VVER-1000 and IRT type and on capability of various radionuclides to prolong action of the radiation barrier. Isotopic admixtures were selected and amounts of these admixtures were evaluated for significant prolongation of the radiation barrier action at the levels of the radiation standards used for estimation of FNM proliferation resistance. The paper considers vulnerability of the radiation barriers in respect to thermal processing of spent fuel. (authors)

  8. [Diagnosis of an increased serum level of ferritin].

    PubMed

    Lorcerie, B; Audia, S; Samson, M; Millière, A; Falvo, N; Leguy-Seguin, V; Berthier, S; Bonnotte, B

    2015-08-01

    The discovery of a hyperferritinemia is most of the time fortuitous. The diagnostic approach aims at looking for the responsible etiology and at verifying if an iron hepatic overload is present or not. Three diagnostic steps are proposed. The clinical elements and a few straightforward biological tests are sufficient at first to identify one of the four main causes: alcoholism, inflammatory syndrome, cytolysis, and metabolic syndrome. None of these causes is associated with a significant iron hepatic overload. If the transferring saturation coefficient is raised (>50%) a hereditary hemochromatosis should be discussed. Secondly, less common disorders will be discussed. Among these, only the chronic hematological disorders either acquired or congenital are at risk of iron hepatic overload. Thirdly, if a doubt persists in the etiologic research, and the serum ferritin level is very high or continues to rise, it is essential to verify that there is no iron hepatic overload. For that purpose, the MRI with study of the iron overload is the main test, which will guide the therapeutic attitude. Identification of more than a single etiology occurs in more than 40% of the cases. PMID:25640247

  9. Childrens' learning and behaviour and the association with cheek cell polyunsaturated fatty acid levels.

    PubMed

    Kirby, A; Woodward, A; Jackson, S; Wang, Y; Crawford, M A

    2010-01-01

    Increasing interest in the role of omega-3 fatty acids in relation to neurodevelopmental disorders (e.g. ADHD, dyslexia, autism) has occurred as a consequence of some international studies highlighting this link. In particular, some studies have shown that children with ADHD may have lower concentrations of polyunsaturated fatty acids (PUFAs), particularly omega-3, in their red blood cells and plasma, and that supplementation with omega-3 fatty acids may alleviate behavioural symptoms in this population. However, in order to compare levels it seems appropriate to establish fatty acid levels in a mainstream school aged population and if levels relate to learning and behaviour. To date no study has established this. For this study, cheek cell samples from 411 typically developing school children were collected and analysed for PUFA content, in order to establish the range in this population. In addition, measures of general classroom attention and behaviour were assessed in these children by teachers and parents. Cognitive performance tests were also administered in order to explore whether an association between behaviour and/or cognitive performance and PUFA levels exists. Relationships between PUFA levels and socio-economic status were also explored. Measures of reading, spelling and intelligence did not show any association with PUFA levels, but some associations were noted with the level of omega-3 fatty acids and teacher and parental reports of behaviour, with some evidence that higher omega-3 levels were associated with decreased levels of inattention, hyperactivity, emotional and conduct difficulties and increased levels of prosocial behaviour. These findings are discussed in relation to previous findings from omega-3 supplementation studies with children. PMID:20172688

  10. [Effect of amino acid solutions on the blood ammonia level].

    PubMed

    Sanjo, K; Harihara, Y; Kawasaki, S; Umekita, N; Idezuki, Y

    1985-09-01

    We have carried out several basic experiments on artificial liver support and found that the plasma free amino acid balance was lost after treatment according to this procedure. Application of fluid therapy--Using conventional amino acid preparations available on the market--Is not adequate during and after the treatment with artificial liver. Fluid therapy using mainly special amino acid preparations should have been established; preparations, named Todai Hospital fluid (THF), are intended to correct the deranged aminogram, supply nutrition and promote the improvement in symptoms. Furthermore, experimental animals with acute hepatic insufficiency of diverse severity were prepared and basic experiments were performed which these animals to see how the efficacy of THF developed. In the basic experiments, psychoneurotic symptoms and the electroencephalogram were improved with the lowering of the blood ammonia level. Clinically, THF was not only used as a therapeutic agent after treatment by artificial liver support in patients with fulminant hepatitis, but is also served as a further indication in hepatic encephalopathy accompanying chronic liver diseases in late stages. Improvement in encephalopathy was observed immediately after the administration of THF and persisted while the aminogram pattern returned to the premedication representation. There was more improvement in patients in whom ammonemia was complicated, and the blood ammonia level was reduced markedly. PMID:4088243

  11. Intravenous lipid and amino acids briskly increase plasma glucose concentrations in small premature infants.

    PubMed

    Savich, R D; Finley, S L; Ogata, E S

    1988-07-01

    We determined the glycemic response to intravenous lipid infusion alone, lipid with amino acids, or amino acids alone in 15 very small premature infants receiving constant glucose infusion during early life. Infants who received lipid or lipid and amino acids demonstrated significant increases in glucose compared with infants who received amino acids. The combination of lipid and amino acids resulted in an earlier increase than lipid alone. Although plasma insulin did not change in all three groups, infants who received amino acids alone demonstrated an appropriate increase in glucagon. These data suggest that lipid infusion, a commonly used means of providing nutrition to premature infants, may cause significant disturbances in glucoregulation, particularly when administered with amino acids. PMID:3132930

  12. Serum fluoride and sialic acid levels in osteosarcoma.

    PubMed

    Sandhu, R; Lal, H; Kundu, Z S; Kharb, S

    2011-12-01

    Osteosarcoma is a rare malignant bone tumor most commonly occurring in children and young adults presenting with painful swelling. Various etiological factors for osteosarcoma are ionizing radiation, family history of bone disorders and cancer, chemicals (fluoride, beryllium, and vinyl chloride), and viruses. Status of fluoride levels in serum of osteosarcoma is still not clear. Recent reports have indicated that there is a link between fluoride exposure and osteosarcoma. Glycoproteins and glycosaminoglycans are an integral part of bone and prolonged exposure to fluoride for long duration has been shown to cause degradation of collagen and ground substance in bones. The present study was planned to analyze serum fluoride, sialic acid, calcium, phosphorus, and alkaline phosphatase levels in 25 patients of osteosarcoma and age- and sex-matched subjects with bone-forming tumours other than osteosarcoma and musculo-skeletal pain (controls, 25 each). Fluoride levels were analyzed by ISE and sialic acid was analyzed by Warren's method. Mean serum fluoride concentration was found to be significantly higher in patients with osteosarcoma as compared to the other two groups. The mean value of flouride in patients with other bone-forming tumors was approximately 50% of the group of osteosarcoma; however, it was significantly higher when compared with patients of group I. Serum sialic acid concentration was found to be significantly raised in patients with osteosarcoma as well as in the group with other bone-forming tumors as compared to the group of controls. There was, however, no significant difference in the group of patients of osteosarcoma when compared with group of patients with other bone-forming tumors. These results showing higher level of fluoride with osteosarcoma compared to others suggesting a role of fluoride in the disease. PMID:19390788

  13. Prognostic Significance of Uric Acid Levels in Ischemic Stroke Patients.

    PubMed

    Zhang, Xia; Huang, Zhi-Chao; Lu, Tao-Sheng; You, Shou-Jiang; Cao, Yong-Jun; Liu, Chun-Feng

    2016-01-01

    The importance and function of serum uric acid (UA) levels in patients with cardiovascular disease or stroke are unclear. We sought to evaluate the appropriate UA levels for stroke patients and the association between endogenous UA levels and clinical outcomes in acute ischemic stroke (AIS) patients, particularly regarding the possible interaction between gender and UA levels with respect to AIS prognosis. We examined 303 patients who had an onset of ischemic stroke within 48 h. Of those, 101 patients received thrombolytic treatment. Serum UA (μmol/L) levels were measured the second morning after admission. Patient prognosis was evaluated 90 days after clinical onset by modified Rankin Scale. Patients were divided into four groups according to serum UA quartiles. A binary multivariate logistic regression model was used to assess clinical relevance in regard to functional outcome and endogenous UA levels. Analysis of subgroups by gender and normal glomerular filtration rate were also been done. Poor functional outcome was associated with older age, history of atrial fibrillation, or higher baseline National Institutes of Health Stroke Scale scores. After adjustment for potential confounders, patients with higher UA levels (>380 μmol/L) or lower UA levels (≤250 μmol/L) were 2-3 times more likely to have a poor outcome (OR 2.95, 95% CI 1.14-7.61; OR 2.78, 95% CI 1.02-7.58, respectively) compared to the baseline group (UA level 316-380 μmol/L). The same results were observed in thrombolyzed patients. Patients with high and low UA levels were 9-18 times more likely to having poor outcomes compared to the baseline group (UA level: 316-380 μmol/L; OR 18.50, 95% CI: 2.041-167.67; OR 9.66, 95% CI 1.42-65.88, respectively). In men, patients with high UA levels were 6 times more likely to have poor outcomes compared to the baseline group (UA level: 279-334 μmol/L; OR 6.10, 95% CI 1.62-22.93). However, female patients with UA level 271-337 μmol/L were seven times more

  14. Treatment of flaxseed to reduce biohydrogenation of a-linolenic acid by ruminal microbes in sheep and cattle and increase n-3 fatty acid concentrations in red meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our study determined if flaxseed treated with a formaldehyde-free process increased n-3 fatty acid (FA) levels in ruminant muscle. Twenty-four lambs (initial BW 43.8 ± 4.4 kg) were randomly divided into 4 groups for a 90-d trial. One treatment group (FLX) was fed 136 g/d of non-treated ground flaxse...

  15. Evaluation of serum sialic acid, fucose levels and their ratio in oral squamous cell carcinoma

    PubMed Central

    Chinnannavar, Sangamesh Ningappa; Ashok, Lingappa; Vidya, Kodige Chandrashekhar; Setty, Sunil Mysore Kantharaja; Narasimha, Guru Eraiah; Garg, Ranjana

    2015-01-01

    Background: Detection of cancer at the early stage is of utmost importance to decrease the morbidity and mortality of the disease. Apart from the conventional biopsy, minimally invasive methods like serum evaluation are used for screening large populations. Thus, this study aimed to estimate serum levels of sialic acid and fucose and their ratio in oral cancer patients and in healthy control group to evaluate their role in diagnosis. Materials and Methods: Serum samples were collected from 52 healthy controls (group I) and 52 squamous cell carcinoma patients (group II). Estimation of serum levels of sialic acid and fucose and their ratio was performed. This was correlated histopathologically with the grades of carcinoma. Statistical analysis was done by using analysis of variance (ANOVA) test and unpaired “t” test. Results: Results showed that serum levels of sialic acid and fucose were significantly higher in oral cancer patients compared to normal healthy controls (P < 0.001). The sialic acid to fucose ratio was significantly lower in cancer patients than in normal controls (P < 0.01). However, comparison with histological grading, habits, gender, and age group did not show any significant result. Conclusion: The mean serum sialic acid and fucose levels showed an increasing trend from controls to malignant group and their corresponding ratio showed decreasing trend from controls to malignant group. The ratio of sialic acid to fucose can be a useful diagnostic aid for oral cancer patients. PMID:26759796

  16. Reducing Isozyme Competition Increases Target Fatty Acid Accumulation in Seed Triacylglycerols of Transgenic Arabidopsis1[OPEN

    PubMed Central

    van Erp, Harrie; Shockey, Jay; Zhang, Meng; Adhikari, Neil D.; Browse, John

    2015-01-01

    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on hydroxy fatty acids (HFAs) and conjugated polyenoic FAs (α-eleostearic acids [ESAs]) using Arabidopsis (Arabidopsis thaliana) as a model. These FAs are found naturally in seed oils of castor (Ricinus communis) and tung tree (Vernicia fordii), respectively, and used for the production of lubricants, nylon, and paints. Transgenic oils typically contain less target FA than that produced in the source species. We hypothesized that competition between endogenous and transgenic isozymes for substrates limits accumulation of unique FAs in Arabidopsis seeds. This hypothesis was tested by introducing a mutation in Arabidopsis diacylglycerol acyltransferase1 (AtDGAT1) in a line expressing castor FA hydroxylase and acyl-Coenzyme A:RcDGAT2 in its seeds. This led to a 17% increase in the proportion of HFA in seed oil. Expression of castor phospholipid:diacylglycerol acyltransferase 1A in this line increased the proportion of HFA by an additional 12%. To determine if our observations are more widely applicable, we investigated if isozyme competition influenced production of ESA. Expression of tung tree FA conjugase/desaturase in Arabidopsis produced approximately 7.5% ESA in seed lipids. Coexpression of VfDGAT2 increased ESA levels to approximately 11%. Overexpression of VfDGAT2 combined with suppression of AtDGAT1 increased ESA accumulation to 14% to 15%. Our results indicate that isozyme competition is a limiting factor in the engineering of unusual FAs in heterologous plant systems and that reduction of competition through mutation and RNA suppression may be a useful component of seed metabolic engineering strategies. PMID:25739701

  17. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  18. Phosphorus limitation strategy to increase propionic acid flux towards 3-hydroxyvaleric acid monomers in Cupriavidus necator.

    PubMed

    Grousseau, Estelle; Blanchet, Elise; Déléris, Stéphane; Albuquerque, Maria G E; Paul, Etienne; Uribelarrea, Jean-Louis

    2014-02-01

    Properties of polyhydroxybutyrate-co-hydroxyvalerate (P(3HB-co-3HV)) depend on their 3HV content. 3HV can be produced by Cupriavidus necator from propionic acid. Few studies explored carbon distribution and dynamics of 3HV and 3HB monomers production, and none of them have been done with phosphorus as limiting nutrient. In this study, fed-batch cultures of C. necator with propionic acid, as sole carbon source or mixed with butyric acid, were performed. Phosphorus deficiency allowed sustaining 3HV production rate and decreasing 3HB production rate, leading to an instant production of up to 100% of 3HV. When a residual growth is sustained by a phosphorus feeding, the maximum 3HV percentage produced from propionic acid is limited to 33% (Mole.Mole(-1)). The association of a second carbon source like butyric acid lead to higher conversion of propionic acid into 3HV. This study showed the importance of the limiting nutrient and of the culture strategy to get the appropriate product. PMID:24365742

  19. Serum uric acid level in normal pregnant and preeclamptic ladies: a comparative study.

    PubMed

    Pramanik, T; Khatiwada, B; Pradhan, P

    2014-09-01

    Preeclampsia is a serious pregnancy complication characterized by hypertension, proteinuria with or without pathological edema. According to some studies, serum uric acid lacks sensitivity and specificity as a diagnostic tool whereas another group of the researchers indicated uricemia as a predictor of preeclampsia in pregnant ladies. The present study was designed to assess whether serum uric acid can be used as a biochemical indicator or not in preeclamptic patients. Pre-eclamptic patients admitted in Nepal Medical College Teaching Hospital from June 2012 to June 2013 were included in this study. Age matched normal healthy pregnant ladies served as control. The record of their blood pressure and serum uric acid level was evaluated. Results showed significantly high blood pressure [SBP 149.42±12.35 vs 109.00±7.93 mm Hg; DBP 96.85±8.32 vs 72.5±7.10 mm Hg], and serum uric acid level [6.27±1.37 vs 4.27±0.61 mg/dl] in pre-eclamptic patients compared to their healthy counterparts. Uric acid is a terminal metabolite of the degradation of nucleotides, which increases their blood levels in patients with preeclampsia increasing its synthesis by damage and death of trophoblastic cells and proliferation. Uricemia in preeclampsia likely results from reduced uric acid clearance from diminished glomerular filtration, increased tubular reabsorption and decreased secretion. Results of the present study indicated association of elevated serum uric acid level with preeclampsia which could be used as a biochemical indicator of preeclampsia in pregnant women. PMID:25799807

  20. mTORC1 signaling activates NRF1 to increase cellular proteasome levels

    PubMed Central

    Zhang, Yinan; Manning, Brendan D

    2015-01-01

    Defects in the maintenance of protein homeostasis, or proteostasis, has emerged as an underlying feature of a variety of human pathologies, including aging-related diseases. Proteostasis is achieved through the coordinated action of cellular systems overseeing amino acid availability, mRNA translation, protein folding, secretion, and degradation. The regulation of these distinct systems must be integrated at various points to attain a proper balance. In a recent study, we found that the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) pathway, well known to enhance the protein synthesis capacity of cells while concordantly inhibiting autophagy, promotes the production of more proteasomes. Activation of mTORC1 genetically, through loss of the tuberous sclerosis complex (TSC) tumor suppressors, or physiologically, through growth factors or feeding, stimulates a transcriptional program involving the sterol-regulatory element binding protein 1 (SREBP1) and nuclear factor erythroid-derived 2-related factor 1 (NRF1; also known as NFE2L1) transcription factors leading to an increase in cellular proteasome content. As discussed here, our findings suggest that this increase in proteasome levels facilitates both the maintenance of proteostasis and the recovery of amino acids in the face of an increased protein load consequent to mTORC1 activation. We also consider the physiological and pathological implications of this unexpected new downstream branch of mTORC1 signaling. PMID:26017155

  1. Glycodeoxycholic Acid Levels as Prognostic Biomarker in Acetaminophen-Induced Acute Liver Failure Patients

    PubMed Central

    Woolbright, Benjamin L.; McGill, Mitchell R.; Staggs, Vincent S.; Winefield, Robert D.; Gholami, Parviz; Olyaee, Mojtaba; Sharpe, Matthew R.; Curry, Steven C.; Lee, William M.; Jaeschke, Hartmut

    2014-01-01

    Acetaminophen (APAP)-induced acute liver failure (ALF) remains a major clinical problem. Although a majority of patients recovers after severe liver injury, a subpopulation of patients proceeds to ALF. Bile acids are generated in the liver and accumulate in blood during liver injury, and as such, have been proposed as biomarkers for liver injury and dysfunction. The goal of this study was to determine whether individual bile acid levels could determine outcome in patients with APAP-induced ALF (AALF). Serum bile acid levels were measured in AALF patients using mass spectrometry. Bile acid levels were elevated 5–80-fold above control values in injured patients on day 1 after the overdose and decreased over the course of hospital stay. Interestingly, glycodeoxycholic acid (GDCA) was significantly increased in non-surviving AALF patients compared with survivors. GDCA values obtained at peak alanine aminotransferase (ALT) and from day 1 of admission indicated GDCA could predict survival in these patients by receiver-operating characteristic analysis (AUC = 0.70 for day 1, AUC = 0.68 for peak ALT). Of note, AALF patients also had significantly higher levels of serum bile acids than patients with active cholestatic liver injury. These data suggest measurements of GDCA in this patient cohort modestly predicted outcome and may serve as a prognostic biomarker. Furthermore, accumulation of bile acids in serum or plasma may be a result of liver cell dysfunction and not cholestasis, suggesting elevation of circulating bile acid levels may be a consequence and not a cause of liver injury. PMID:25239633

  2. Inhibition of endocannabinoid-degrading enzyme fatty acid amide hydrolase increases atherosclerotic plaque vulnerability in mice.

    PubMed

    Hoyer, Friedrich Felix; Khoury, Mona; Slomka, Heike; Kebschull, Moritz; Lerner, Raissa; Lutz, Beat; Schott, Hans; Lütjohann, Dieter; Wojtalla, Alexandra; Becker, Astrid; Zimmer, Andreas; Nickenig, Georg

    2014-01-01

    The role of endocannabinoids such as anandamide during atherogenesis remains largely unknown. Fatty acid amide hydrolase (FAAH) represents the key enzyme in anandamide degradation, and its inhibition is associated with subsequent higher levels of anandamide. Here, we tested whether selective inhibition of FAAH influences the progression of atherosclerosis in mice. Selective inhibition of FAAH using URB597 resulted in significantly increased plasma levels of anandamide compared to control, as assessed by mass spectrometry experiments in mice. Apolipoprotein E-deficient (ApoE(-/-)) mice were fed a high-fat, cholesterol-rich diet to induce atherosclerotic conditions. Simultaneously, mice received either the pharmacological FAAH inhibitor URB597 1mg/kg body weight (n=28) or vehicle (n=25) via intraperitoneal injection three times a week. After eight weeks, mice were sacrificed, and experiments were performed. Vascular superoxide generation did not differ between both groups, as measured by L012 assay. To determine whether selective inhibition of FAAH affects atherosclerotic plaque inflammation, immunohistochemical staining of the aortic root was performed. Atherosclerotic plaque formation, vascular macrophage accumulation, as well as vascular T cell infiltration did not differ between both groups. Interestingly, neutrophil cell accumulation was significantly increased in mice receiving URB597 compared to control. Vascular collagen structures in atherosclerotic plaques were significantly diminished in mice treated with URB597 compared to control, as assessed by picro-sirius-red staining. This was accompanied by an increased aortic expression of matrix metalloproteinase-9, as determined by quantitative RT-PCR and western blot analysis. Inhibition of fatty acid amide hydrolase does not influence plaque size but increases plaque vulnerability in mice. PMID:24286707

  3. Synergism of α-linolenic acid, conjugated linoleic acid and calcium in decreasing adipocyte and increasing osteoblast cell growth.

    PubMed

    Kim, Youjin; Kelly, Owen J; Ilich, Jasminka Z

    2013-08-01

    Whole fat milk and dairy products (although providing more energy compared to low- or non-fat products), are good sources of α-linolenic acid (ALA), conjugated linoleic acid (CLA) and calcium, which may be favorable in modulating bone and adipose tissue metabolism. We examined individual and/or synergistic effects of ALA, CLA and calcium (at levels similar to those in whole milk/dairy products) in regulating bone and adipose cell growth. ST2 stromal, MC3T3-L1 adipocyte-like and MC3T3-E1 osteoblast-like cells were treated with: (a) linoleic acid (LNA):ALA ratios = 1-5:1; (b) individual/combined 80-90 % c9, t11 (9,11) and 5-10 % t10, c12 (10,12) CLA isomers; (c) 0.5-3.0 mM calcium; (d) combinations of (a), (b), (c); and (e) control. Local mediators, including eicosanoids and growth factors, were measured. (a) The optimal effect was found at the 4:1 LNA:ALA ratio where insulin-like growth factor-1 (IGF-1) and IGF binding protein-3 (IGFBP-3) production was the lowest in MC3T3-L1 cells. (b) All CLA isomer blends decreased MC3T3-L1 and increased MC3T3-E1 cell differentiation. (c) 1.5-2.5 mM calcium increased ST2 and MC3T3-E1, and decreased MC3T3-L1 cell proliferation. (d) Combination of 4:1 LNA:ALA + 90:10 % CLA + 2.0 mM calcium lowered MC3T3-L1 and increased MC3T3-E1 cell differentiation. Overall, the optimal LNA:ALA ratio to enhance osteoblastogenesis and inhibit adipogenesis was 4:1. This effect was enhanced by 90:10 % CLA + 2.0 mM calcium, indicating possible synergism of these dietary factors in promoting osteoblast and inhibiting adipocyte differentiation in cell cultures. PMID:23757205

  4. Association between serum folic acid level and erectile dysfunction.

    PubMed

    Karabakan, M; Erkmen, A E; Guzel, O; Aktas, B K; Bozkurt, A; Akdemir, S

    2016-06-01

    This study measured the serum folic acid (FA) level in patients with erectile dysfunction (ED) and evaluated the possible association between the serum FA level and erectile function. The study divided 120 patients with ED into 3 groups of 40 patients each: those with severe, moderate and mild ED. Forty healthy men served as controls. Fasting serum samples were obtained, and the total testosterone, cholesterol and FA levels were measured using chemiluminescent immunoassays. There were no significant differences in the mean age, mean body mass index or mean serum total testosterone and cholesterol levels among the three ED groups and controls (P > 0.05). The mean serum FA concentrations were 7.2 ± 3.7, 7.1 ± 3.2, 10.2 ± 4.6 and 10.7 ± 4.6 ng ml(-1) in the severe, moderate and mild ED and control groups respectively. The mean serum FA concentration was significantly higher in the control group than in the severe and moderate ED groups (both P < 0.001), but not the mild ED group (P = 0.95). Considering the significant differences in the serum FA levels between the control and ED groups, serum FA deficiency might reflect the severity of ED. PMID:26302884

  5. Kaempferol Isolated from Nelumbo nucifera Inhibits Lipid Accumulation and Increases Fatty Acid Oxidation Signaling in Adipocytes.

    PubMed

    Lee, Bonggi; Kwon, Misung; Choi, Jae Sue; Jeong, Hyoung Oh; Chung, Hae Young; Kim, Hyeung-Rak

    2015-12-01

    Stamens of Nelumbo nucifera Gaertn have been used as a Chinese medicine due to its antioxidant, hypoglycemic, and antiatherogenic activity. However, the effects of kaempferol, a main component of N. nucifera, on obesity are not fully understood. We examined the effect of kaempferol on adipogenesis and fatty acid oxidation signaling pathways in 3T3-L1 adipocytes. Kaempferol reduced cytoplasmic triglyceride (TG) accumulation in dose and time-dependent manners during adipocyte differentiation. Accumulation of TG was rapidly reversed by retrieving kaempferol treatment. Kaempferol broadly decreased mRNA or protein levels of adipogenic transcription factors and their target genes related to lipid accumulation. Kaempferol also suppressed glucose uptake and glucose transporter GLUT4 mRNA expression in adipocytes. Furthermore, protein docking simulation suggests that Kaempferol can directly bind to and activate peroxisome proliferator-activated receptor (PPAR)-α by forming hydrophobic interactions with VAL324, THR279, and LEU321 residues of PPARα. The binding affinity was higher than a well-known PPARα agonist fenofibrate. Consistently, mRNA expression levels of PPARα target genes were increased. Our study indicates while kaempferol inhibits lipogenic transcription factors and lipid accumulation, it may bind to PPARα and stimulate fatty acid oxidation signaling in adipocytes. PMID:26280739

  6. Pyruvic acid levels in serum and saliva: A new course for oral cancer screening?

    PubMed Central

    Bhat, Manohara A; Prasad, KVV; Trivedi, Dheeraj; Rajeev, BR; Battur, Hemanth

    2016-01-01

    Objective: Cancerous cells show increased glycolysis rate. This will increase overall levels of pyruvate as it is one of the end products of glycolysis. The present on-going study is to estimate the levels of pyruvate in saliva and serum among healthy and oral cancer subjects. Settings and Design: Hospital-based cross-sectional comparative study. Methodology: A total of 50 subjects among healthy and oral cancer subjects were selected based on clinical and histological criteria. Saliva and serum samples were collected and subjected to pyruvate level estimation using biochemical analysis. Statistical Analysis: Descriptive analysis and Mann-Whitney test were used to find the statistical difference between the two independent groups. Results: Serum pyruvic acid levels of the healthy group were 1.09 ± 0.14 and for oral cancer, it was 2.95 ± 0.59 and salivary level were 3.49 ± 0.47 and 1.32 ± 0.10 respectively. Mann-Whitney test showed statistically significant difference in serum and salivary pyruvate level in between two groups (P < 0.000 respectively). Conclusion: The present study showed noticeable variation in the level of pyruvic acid among healthy and oral cancer subjects. This generates the hypothesis that estimation of the pyruvic acid can be a new tool to screening of the cancer. PMID:27194870

  7. Fecal levels of short-chain fatty acids and bile acids as determinants of colonic mucosal cell proliferation in humans.

    PubMed

    Dolara, Piero; Caderni, Giovanna; Salvadori, Maddalena; Morozzi, Guido; Fabiani, Roberto; Cresci, Alberto; Orpianesi, Carla; Trallori, Giacomo; Russo, Antonio; Palli, Domenico

    2002-01-01

    We studied the correlation between fecal levels of short-chain fatty acids (SCFA), bile acids (BA), and colonic mucosal proliferation in humans on a free diet. Subjects [n = 43: 27 men and 16 women; 61 +/- 7 and 59 +/- 6 (SE) yr old, respectively] were outpatients who previously underwent resection of at least two sporadic colon polyps. Mucosal proliferation was determined by [3H]thymidine incorporation in vitro in three colorectal biopsies obtained without cathartics and was expressed as labeling index (LI). BA were analyzed in feces by mass spectrometry and SCFA by gas chromatography. We found that increasing levels of BA in feces did not correlate with higher LI. On the contrary, higher levels of SCFA were significantly associated with lower LI in the colonic mucosa (P for trend = 0.02). In conclusion, in humans on a free diet, intestinal proliferation seems to be regulated by the levels of SCFA in feces and not by BA. Because a lower intestinal proliferation is associated with a decreased colon cancer risk, treatments or diets that increase colonic levels of SCFA might be beneficial for colonic mucosa. PMID:12416258

  8. Increased Biomass Yield of Lactococcus lactis by Reduced Overconsumption of Amino Acids and Increased Catalytic Activities of Enzymes

    PubMed Central

    Adamberg, Kaarel; Seiman, Andrus; Vilu, Raivo

    2012-01-01

    Steady state cultivation and multidimensional data analysis (metabolic fluxes, absolute proteome, and transcriptome) are used to identify parameters that control the increase in biomass yield of Lactococcus lactis from 0.10 to 0.12 C-mol C-mol−1 with an increase in specific growth rate by 5 times from 0.1 to 0.5 h−1. Reorganization of amino acid consumption was expressed by the inactivation of the arginine deiminase pathway at a specific growth rate of 0.35 h−1 followed by reduced over-consumption of pyruvate directed amino acids (asparagine, serine, threonine, alanine and cysteine) until almost all consumed amino acids were used only for protein synthesis at maximal specific growth rate. This balanced growth was characterized by a high glycolytic flux carrying up to 87% of the carbon flow and only amino acids that relate to nucleotide synthesis (glutamine, serine and asparagine) were consumed in higher amounts than required for cellular protein synthesis. Changes in the proteome were minor (mainly increase in the translation apparatus). Instead, the apparent catalytic activities of enzymes and ribosomes increased by 3.5 times (0.1 vs 0.5 h−1). The apparent catalytic activities of glycolytic enzymes and ribosomal proteins were seen to follow this regulation pattern while those of enzymes involved in nucleotide metabolism increased more than the specific growth rate (over 5.5 times). Nucleotide synthesis formed the most abundant biomonomer synthetic pathway in the cells with an expenditure of 6% from the total ATP required for biosynthesis. Due to the increase in apparent catalytic activity, ribosome translation was more efficient at higher growth rates as evidenced by a decrease of protein to mRNA ratios. All these effects resulted in a 30% decrease of calculated ATP spilling (0.1 vs 0.5 h−1). Our results show that bioprocesses can be made more efficient (using a balanced metabolism) by varying the growth conditions. PMID:23133574

  9. Zoledronic acid in vivo increases in vitro proliferation of rat mesenchymal stromal cells.

    PubMed

    Heino, Terhi J; Alm, Jessica J; Halkosaari, Heikki J; Välimäki, Ville-Valtteri

    2016-08-01

    Background and purpose - Bisphosphonates are widely used in the treatment of bone loss, but they might also have positive effects on osteoblastic cells and bone formation. We evaluated the effect of in vivo zoledronic acid (ZA) treatment and possible concomitant effects of ZA and fracture on the ex vivo osteogenic capacity of rat mesenchymal stromal cells (MSCs). Methods - A closed femoral fracture model was used in adult female rats and ZA was administered as a single bolus or as weekly doses up to 8 weeks. Bone marrow MSCs were isolated and cultured for in vitro analyses. Fracture healing was evaluated by radiography, micro-computed tomography (μCT), and histology. Results - Both bolus and weekly ZA increased fracture-site bone mineral content and volume. MSCs from weekly ZA-treated animals showed increased ex vivo proliferative capacity, while no substantial effect on osteoblastic differentiation was observed. Fracture itself did not have any substantial effect on cell proliferation or differentiation at 8 weeks. Serum biochemical markers showed higher levels of bone formation in animals with fracture than in intact animals, while no difference in bone resorption was observed. Interestingly, ex vivo osteoblastic differentiation of MSCs was found to correlate with in vivo serum bone markers. Interpretation - Our data show that in vivo zoledronic acid treatment can influence ex vivo proliferation of MSCs, indicating that bisphosphonates can have sustainable effects on cells of the osteoblastic lineage. Further research is needed to investigate the mechanisms. PMID:27196705

  10. Naloxone-precipitated morphine withdrawal increases pontine glutamate levels in the rat.

    PubMed

    Zhang, T; Feng, Y; Rockhold, R W; Ho, I K

    1994-01-01

    Extracellular fluid (ECF) levels of glutamate (Glu) and aspartate (Asp) were measured in the locus coeruleus (LC) during morphine withdrawal by using microdialysis in conscious morphine-dependent Sprague-Dawley rats. Guide cannulae were implanted chronically and rats were given intracerebroventricular (i.c.v.) infusions of morphine (26 nmol/1 microliters/hr) or saline (1 microliters/hr) for 3 days. Microdialysis probes (2 mm tip) were inserted into the LC 24 hr before precipitation of withdrawal by i.c.v. injection of naloxone (12 or 48 nmol/5 microliters). Behavioral evidence of withdrawal (teeth-chattering, wet-dog shakes, etc.) was detected following naloxone challenge in morphine, but not in saline-infused rats. Increases (P < 0.01) in ECF levels of Glu (and Asp, to a lesser degree) were noted after naloxone-precipitated withdrawal only in the morphine group. The ECF Glu levels in the LC increased from 9.6 +/- 2.7 to 15.5 +/- 5.0 microM following 12 nmol/5 microliters naloxone, and from 9.5 +/- 1.9 to 20.5 +/- 3.3 microM following 48 nmol/5 microliters naloxone, before and in the first 15 min sample after the precipitation of withdrawal in the morphine-dependent rats, respectively. These results provide direct evidence to support the role of excitatory amino acids within the LC in morphine withdrawal. PMID:7912397

  11. Increased levels of phthalates in very low birth weight infants with septicemia and bronchopulmonary dysplasia.

    PubMed

    Strømmen, Kenneth; Lyche, Jan Ludvig; Blakstad, Elin Wahl; Moltu, Sissel Jennifer; Veierød, Marit Bragelien; Almaas, Astrid Nylander; Sakhi, Amrit Kaur; Thomsen, Cathrine; Nakstad, Britt; Brække, Kristin; Rønnestad, Arild Erlend; Drevon, Christian André; Iversen, Per Ole

    2016-01-01

    Very low birth weight infants (VLBW; birth weight<1500g) are exposed to potentially harmful phthalates from medical devices during their hospital stay. We measured urinary phthalate concentrations among hospitalized VLBW infants participating in a nutritional study. Possible associations between different phthalates and birth weight (BW), septicemia and bronchopulmonary dysplasia (BPD) were evaluated. Forty-six VLBW infants were enrolled in this randomized controlled nutritional study. The intervention group (n=24) received increased quantities of energy, protein, fat, essential fatty acids and vitamin A, as compared to the control group (n=22). The concentrations of 12 urinary phthalate metabolites were measured, using high-performance liquid chromatography coupled to tandem mass spectrometry, at 3 time points during the first 5weeks of life. During this study, the levels of di (2-ethylhexyl) phthalate (DEHP) metabolites decreased, whereas an increasing trend was seen regarding metabolites of di-iso-nonyl phthalate (DiNP). Significantly higher levels of phthalate metabolites were seen in infants with lower BW and those diagnosed with late onset septicemia or BPD. A significant positive correlation between the duration of respiratory support and DEHP metabolites was observed (p≤0.01) at 2.9weeks of age. Birth weight was negatively associated with urinary phthalate metabolite concentrations. Infants with lower BW and those diagnosed with septicemia or BPD experienced prolonged exposure from medical equipment containing phthalates, with subsequent higher levels of phthalate metabolites detected. Clinical Trial Registration no.: NCT01103219. PMID:26922148

  12. Regulation of carnitine palmitoyltransferase (CPT) I during fasting in rainbow trout (Oncorhynchus mykiss) promotes increased mitochondrial fatty acid oxidation.

    PubMed

    Morash, Andrea J; McClelland, Grant B

    2011-01-01

    Periods of fasting, in most animals, are fueled principally by fatty acids, and changes in the regulation of fatty acid oxidation must exist to meet this change in metabolic substrate use. We examined the regulation of carnitine palmitoyltransferase (CPT) I, to help explain changes in mitochondrial fatty acid oxidation with fasting. After fasting rainbow trout (Oncorhynchus mykiss) for 5 wk, the mitochondria were isolated from red muscle and liver to determine (1) mitochondrial fatty acid oxidation rate, (2) CPT I activity and the concentration of malonyl-CoA needed to inhibit this activity by 50% (IC(50)), (3) mitochondrial membrane fluidity, and (4) CPT I (all five known isoforms) and peroxisome proliferator-activated receptor (PPARα and PPARβ) mRNA levels. Fatty acid oxidation in isolated mitochondria increased during fasting by 2.5- and 1.75-fold in liver and red muscle, respectively. Fasting also decreased sensitivity of CPT I to malonyl-CoA (increased IC(50)), by two and eight times in red muscle and liver, respectively, suggesting it facilitates the rate of fatty acid oxidation. In the liver, there was also a significant increase CPT I activity per milligram mitochondrial protein and in whole-tissue PPARα and PPARβ mRNA levels. However, there were no changes in mitochondrial membrane fluidity in either tissue, indicating that the decrease in CPT I sensitivity to malonyl-CoA is not due to bulk fluidity changes in the membrane. However, there were significant differences in CPT I mRNA levels during fasting. Overall, these data indicate some important changes in the regulation of CPT I that promote the increased mitochondrial fatty acid oxidation that occurs during fasting in trout. PMID:22030855

  13. n-3 fatty acids effectively improve the reference memory-related learning ability associated with increased brain docosahexaenoic acid-derived docosanoids in aged rats.

    PubMed

    Hashimoto, Michio; Katakura, Masanori; Tanabe, Yoko; Al Mamun, Abdullah; Inoue, Takayuki; Hossain, Shahdat; Arita, Makoto; Shido, Osamu

    2015-02-01

    We investigated whether a highly purified eicosapentaenoic acid (EPA) and a concentrated n-3 fatty acid formulation (prescription TAK-085) containing EPA and docosahexaenoic acid (DHA) ethyl ester could improve the learning ability of aged rats and whether this specific outcome had any relation with the brain levels of EPA-derived eicosanoids and DHA-derived docosanoids. The rats were tested for reference memory errors (RMEs) and working memory errors (WMEs) in an eight-arm radial maze. Fatty acid compositions were analyzed by GC, whereas brain eicosanoid/docosanoids were measured by LC-ESI-MS-MS-based analysis. The levels of lipid peroxides (LPOs) were measured by thiobarbituric acid reactive substances. The administration of TAK-085 at 300 mg·kg⁻¹day⁻¹ for 17 weeks reduced the number of RMEs in aged rats compared with that in the control rats. Both TAK-085 and EPA administration increased plasma EPA and DHA levels in aged rats, with concurrent increases in DHA and decreases in arachidonic acid in the corticohippocampal brain tissues. TAK-085 administration significantly increased the formation of EPA-derived 5-HETE and DHA-derived 7-, 10-, and 17-HDoHE, PD1, RvD1, and RvD2. ARA-derived PGE2, PGD2, and PGF2α significantly decreased in TAK-085-treated rats. DHA-derived mediators demonstrated a significantly negative correlation with the number of RMEs, whereas EPA-derived mediators did not exhibit any relationship. Furthermore, compared with the control rats, the levels of LPO in the plasma, cerebral cortex, and hippocampus were significantly reduced in TAK-085-treated rats. The findings of the present study suggest that long-term EPA+DHA administration may be a possible preventative strategy against age-related cognitive decline. PMID:25450447

  14. Increased saturated fatty acids in obesity alter resolution of inflammation in part by stimulating prostaglandin production.

    PubMed

    Hellmann, Jason; Zhang, Michael J; Tang, Yunan; Rane, Madhavi; Bhatnagar, Aruni; Spite, Matthew

    2013-08-01

    Extensive evidence indicates that nutrient excess associated with obesity and type 2 diabetes activates innate immune responses that lead to chronic, sterile low-grade inflammation, and obese and diabetic humans also have deficits in wound healing and increased susceptibility to infections. Nevertheless, the mechanisms that sustain unresolved inflammation during obesity remain unclear. In this study, we report that saturated free fatty acids that are elevated in obesity alter resolution of acute sterile inflammation by promoting neutrophil survival and decreasing macrophage phagocytosis. Using a targeted mass spectrometry-based lipidomics approach, we found that in db/db mice, PGE2/D2 levels were elevated in inflammatory exudates during the development of acute peritonitis. Moreover, in isolated macrophages, palmitic acid stimulated cyclooxygenase-2 induction and prostanoid production. Defects in macrophage phagocytosis induced by palmitic acid were mimicked by PGE2 and PGD2 and were reversed by cyclooxygenase inhibition or prostanoid receptor antagonism. Macrophages isolated from obese-diabetic mice expressed prostanoid receptors, EP2 and DP1, and contained significantly higher levels of downstream effector, cAMP, compared with wild-type mice. Therapeutic administration of EP2/DP1 dual receptor antagonist, AH6809, decreased neutrophil accumulation in the peritoneum of db/db mice, as well as the accumulation of apoptotic cells in the thymus. Taken together, these studies provide new insights into the mechanisms underlying altered innate immune responses in obesity and suggest that targeting specific prostanoid receptors may represent a novel strategy for resolving inflammation and restoring phagocyte defects in obese and diabetic individuals. PMID:23785121

  15. Association of Serum Uric Acid Levels in Psoriasis

    PubMed Central

    Li, Xin; Miao, Xiao; Wang, Hongshen; Wang, Yifei; Li, Fulun; Yang, Qiong; Cui, Rutao; Li, Bin

    2016-01-01

    Abstract High levels of serum uric acid (SUAC) are frequently detected in patients with psoriasis. However, the relationship between psoriasis and hyperuricemia remains unknown. Here we conducted a meta-analysis to identify the SUAC levels in subjects with psoriasis and to determine whether there is an associated risk between psoriasis and hyperuricemia. A comprehensive search of the literature from January 1980 to November 2014 across 7 databases (MEDLINE, Embase, Cochrane Central Register, and 4 Chinese databases) was conducted to determine whether there is an associated risk between psoriasis and hyperuricemia. Among the 170 identified reports, 14 observational studies were included in this meta-analysis. We found a significant higher SUAC level (MD 0.68, 95% CI 0.26–1.09; P = 0.002) in patients with psoriasis in Western Europe, but no significant differences were found between the East Asia and India subgroup (MD 1.22, 95% CI –0.13–2.56; P = 0.08) or the Middle East subgroup (MD 0.48, 95% CI –0.49–1.44; P = 0.33). Similar results were obtained from the meta-analysis of SUAC levels in subjects with severe psoriasis. Our meta-analysis showed that the correlation between psoriasis and hyperuricemia was either ethnicity- or region-dependent and that patients with psoriasis in Western Europe were more likely to have hyperuricemia. PMID:27175702

  16. Injected tryptophan increases brain but not plasma tryptophan levels more in ethanol treated rats

    SciTech Connect

    Haleem, D.J. )

    1990-01-01

    In the present study ethanol treatment given for two weeks decreased hepatic apo-tryptophan pyrrolase but not total tryptophan pyrrolase activity in rats. Tryptophan levels in plasma and brain did not increase significantly. But there was a marked increase of 5-HT but not 5-hydroxyindoleacetic acid (5-HIAA) concentration in brain, suggesting a possible increase in the activity of tryptophan hydroxylase. The effect of a tryptophan load on brain 5-HT metabolism was therefore compared in controls and ethanol treated rats. One hour after tryptophan injection plasma concentrations of total and free tryptophan were identical in controls and ethanol treated rats, but the increases of brain tryptophan 5-HT and 5-HIAA were considerably greater in the latter group. The results are consistent with long term ethanol treatment enhancing brain serotonin metabolism and show that brain uptake/utilization of exogenous tryptophan is increased in ethanol treated rats and may be useful to understand the role and possible mechanism of tryptophan/serotonin involvement in mood regulation.

  17. Increased Missense Mutation Burden of Fatty Acid Metabolism Related Genes in Nunavik Inuit Population

    PubMed Central

    Zhou, Sirui; Xiong, Lan; Xie, Pingxing; Ambalavanan, Amirthagowri; Bourassa, Cynthia V.; Dionne-Laporte, Alexandre; Spiegelman, Dan; Turcotte Gauthier, Maude; Henrion, Edouard; Diallo, Ousmane; Dion, Patrick A.; Rouleau, Guy A.

    2015-01-01

    Background Nunavik Inuit (northern Quebec, Canada) reside along the arctic coastline where for generations their daily energy intake has mainly been derived from animal fat. Given this particular diet it has been hypothesized that natural selection would lead to population specific allele frequency differences and unique variants in genes related to fatty acid metabolism. A group of genes, namely CPT1A, CPT1B, CPT1C, CPT2, CRAT and CROT, encode for three carnitine acyltransferases that are important for the oxidation of fatty acids, a critical step in their metabolism. Methods Exome sequencing and SNP array genotyping were used to examine the genetic variations in the six genes encoding for the carnitine acyltransferases in 113 Nunavik Inuit individuals. Results Altogether ten missense variants were found in genes CPT1A, CPT1B, CPT1C, CPT2 and CRAT, including three novel variants and one Inuit specific variant CPT1A p.P479L (rs80356779). The latter has the highest frequency (0.955) compared to other Inuit populations. We found that by comparison to Asians or Europeans, the Nunavik Inuit have an increased mutation burden in CPT1A, CPT2 and CRAT; there is also a high level of population differentiation based on carnitine acyltransferase gene variations between Nunavik Inuit and Asians. Conclusion The increased number and frequency of deleterious variants in these fatty acid metabolism genes in Nunavik Inuit may be the result of genetic adaptation to their diet and/or the extremely cold climate. In addition, the identification of these variants may help to understand some of the specific health risks of Nunavik Inuit. PMID:26010953

  18. Exogenous fatty acids affect CDP-choline pathway to increase phosphatidylcholine synthesis in granular pneumocytes

    SciTech Connect

    Chander, A.; Gullo, J.; Reicherter, J.; Fisher, A.

    1987-05-01

    Regulation of phosphatidylcholine (PC) synthesis in rat granular pneumocytes isolated by tryptic digestion of lungs and maintained in primary culture for 24 h was investigated by following effects of exogenous fatty acids on (/sup 3/H-methyl)choline incorporation into PC and disaturated PC (DSPC). At 0.1 mM choline, the rate of choline incorporation into PC and DSPC was 440 +/- and 380 +/- 50 pmol/h/ug Pi (mean +/- SE, n=3-5), respectively, and was linear for up to 3 h. PC synthesis was significantly increased by 0.1 mM each of palmitic, oleic, linoleic, or linolenic acid. However, synthesis of DSPC was increased only by palmitic acid and this increase was prevented by addition of oleic acid suggesting lack of effect on the remodeling pathway. Pulse-chase experiments with choline in absence or presence of palmitic or oleic acid showed that the label declined in choline phosphate and increased in PC more rapidly in presence of either of the fatty acids, suggesting rapid conversion of choline phosphate to PC. Microsomal choline phosphate cytidyltransferase activity in cells preincubated without or with palmitic acid for 3 h was 0.81 +/- 0.07 and 1.81 +/- 0.09 nmol choline phosphate converted/min/mg protein (n=4). These results suggest that in granular pneumocytes, exogenous fatty acids modulate PC synthesis by increasing choline phosphate cytidyltransferase activity.

  19. Camelina meal increases egg n-3 fatty acid content without altering quality or production in laying hens.

    PubMed

    Kakani, Radhika; Fowler, Justin; Haq, Akram-Ul; Murphy, Eric J; Rosenberger, Thad A; Berhow, Mark; Bailey, Christopher A

    2012-05-01

    Camelina sativa is an oilseed plant rich in n-3 and n-6 fatty acids and extruding the seeds results in high protein meal (*40%) containing high levels of n-3 fatty acids. In this study, we examined the effects of feeding extruded defatted camelina meal to commercial laying hens, measuring egg production, quality, and fatty acid composition. Lohmann White Leghorn hens (29 weeks old) were randomly allocated to three dietary treatment groups (n = 25 per group) and data was collected over a 12 week production period. All the treatment groups were fed a corn soy based experimental diet containing 0% (control), 5, or 10% extruded camelina meal. We found no significant differences in percent hen-day egg production and feed consumed per dozen eggs. Egg shell strength was significantly higher in both camelina groups compared to the controls. Egg total n-3 fatty acid content increased 1.9- and 2.7-fold in 5 and 10% camelina groups respectively relative to the control. A similar increase in DHA content also occurred. Further camelina meal did not alter glucosinolate levels and no detectable glucosinolates or metabolic product isothiocyanates were found in the eggs from either the 5 or 10% camelina groups. These results indicate that camelina meal is a viable dietary source of n-3 fatty acids for poultry and its dietary inclusion results in eggs enriched with n-3 fatty acids. PMID:22302480

  20. Low irradiances affect abscisic acid, indole-3-acidic acid, and cytokinin levels of wheat (Triticum aestivum L.) tissues

    NASA Technical Reports Server (NTRS)

    Nan, R.; Carman, J. G.; Salisbury, F. B.

    1999-01-01

    Wheat (Triticum aestivum L.) plants were grown under four irradiance levels: 1,400, 400, 200, and 100 micromol m-2 s-1. Leaves and roots were sampled before, during, and after the boot stage, and levels of abscisic acid (ABA), indole-3-acetic acid (IAA), zeatin, zeatin riboside, dihydrozeatin, dihydrozeatin riboside, isopentenyl adenine, and isopentenyl adenosine were quantified using noncompetitive indirect ELISA systems. Levels of IAA in leaves and roots of plants exposed to 100 micromol m-2 s-1 of irradiance were 0.7 and 2.9 micromol kg-1 dry mass (DM), respectively. These levels were 0.2 and 1.0 micromol kg-1 DM, respectively, when plants were exposed to 1,400 micromol m-2 s-1. Levels of ABA in leaves and roots of plants exposed to 100 micromol m-2 s-1 were 0.65 and 0.55 micromol kg-1 DM, respectively. They were 0.24 micromol kg-1 DM (both leaves and roots) when plants were exposed to 1,400 micromol m-2 s-1. Levels of isopentenyl adenosine in leaves (24.3 nmol kg-1 DM) and roots (29.9 nmol kg-1 DM) were not affected by differences in the irradiance regime. Similar values were obtained in a second experiment. Other cytokinins could not be detected (<10 nmol kg 1 DM) in either experiment with the sample sizes used (150-600 mg DM for roots and shoots, respectively).

  1. Regulation of plasma lipoprotein levels by dietary triglycerides enriched with different fatty acids.

    PubMed

    Nicolosi, R J; Rogers, E J

    1997-11-01

    Saturated vegetable oils (coconut, palm, and palm kernel oil) containing predominantly saturated fatty acids, lauric (12:0) or myristic (14:0 and palmitic (16:0), raise plasma total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) levels in animals and humans, presumably by decreasing LDL receptor activity and/or increasing LDL-C production rate. Although stearic acid (18:0) is chemically a saturated fatty acid, both human and animal studies suggest it is biologically neutral (neither raising nor lowering) blood cholesterol levels. Although earlier studies indicated that medium chain fatty acids (8:0-10:0) were also thought to be neutral, more recent studies in animals and humans suggest otherwise. Unsaturated vegetable oils such as corn, soybean, olive, and canola oil, by virtue of their predominant levels of either linoleic acid (18:2) or oleic acid (18:1), are hypocholesterolemic, probably as a result of their ability to upregulate LDL receptor activity and/or decrease LDL-C production rate. Whether trans fatty acids such as trans oleate (t18:1), in hydrogenated products such as margarine, are hypercholesterolemic remains controversial. Studies in humans suggest that their cholesterol-raising potential falls between the native nonhydrogenated vegetable oil and the more saturated dairy products such as butter. Assessment of the magnitude of the cholesterolemic response of trans 18:1 is difficult because in most diet studies its addition is often at the expense of cholesterol-lowering unsaturated fatty acids, making an independent evaluation almost impossible. PMID:9372477

  2. Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage.

    PubMed

    Zhu, Yuyan; Yu, Jie; Brecht, Jeffrey K; Jiang, Tianjia; Zheng, Xiaolin

    2016-01-01

    Kiwifruit (Actinidia deliciosa cv. Bruno) fruits were sprayed with 5mM oxalic acid (OA) at 130, 137, and 144 days after full blossom, and then harvested at commercial maturity [soluble solid content (SSC) around 10.0%] and stored at room temperature (20 ± 1 °C). Pre-harvest application of OA led to fruit with higher ascorbic acid content at harvest, slowed the decreases in fruit firmness and ascorbic acid content and increase in SSC during storage, and also decreased the natural disease incidence, lesion diameter, and patulin accumulation in fruit inoculated with Penicillium expansum, indicating that the OA treatment increased quality and induced disease resistance in kiwifruit. It was suggested that the increase in activities of defense-related enzymes and in levels of substances related to disease resistance might collectively contribute to resistance in kiwifruit against fungi such as P. expansum in storage. PMID:26213007

  3. Plasma levels of acetylsalicylic acid and salicylic acid after oral ingestion of plain and buffered acetylsalicylic acid in relation to bleeding time and thrombocyte function.

    PubMed

    Proost, J H; Van Imhoff, G W; Wesseling, H

    1983-02-25

    Buffered acetylsalicylic acid (Alka Seltzer, B-ASA) and plain aspirin (P-ASA) tablets were compared as to their effects on bleeding time and platelet function in eight healthy male volunteers. Two doses (500 and 1000 mg) of each preparation were investigated in a cross-over design, each volunteer being his own control in each dose group (n=4). Both preparations disturbed platelet aggregation to the same extent. Bleeding time increased after both preparations, though significantly more after the buffered preparation than after plain acetylsalicylic acid, irrespective of the dosage. The 1000 mg dose prolonged bleeding time significantly more than the 500 mg dose, irrespective of the preparation. Kinetic analysis showed that B-ASA gave higher peak plasma levels of acetylsalicylic acid (ASA) and accordingly salicylic acid peak levels were also higher after the buffered preparation. It is concluded that B-ASA in equi-analgesic doses prolongs bleeding time more than the plain preparation. Since it is less agressive on the gastro-intestinal mucosa, its use may be advantageous in situations where acetylsalicylic acid induced loss of platelet aggregation is desired. However, the risk of prolonged bleeding--e.g. after tooth extractions--is probably higher after the buffered preparation. PMID:6844122

  4. Thyroid sialyltransferase mRNA level and activity are increased in Graves' disease.

    PubMed

    Kiljański, Jacek; Ambroziak, Michał; Pachucki, Janusz; Jazdzewski, Krystian; Wiechno, Wieslaw; Stachlewska, Elzbieta; Górnicka, Barbara; Bogdańska, Magdalena; Nauman, Janusz; Bartoszewicz, Zbigniew

    2005-07-01

    Sialylation of cell components is an important immunomodulating mechanism affecting cell response to hormones and adhesion molecules. To study alterations in sialic acid metabolism in Graves' disease (GD) we measured the following parameters in various human thyroid tissues: lipid-bound sialic acid (LBSA) content, ganglioside profile, total sialyltransferase activity, and the two major sialyltransferase mRNAs for sialyltransferase-1 (ST6Gal I) and for sialyltransferase-4A (ST3Gal I). Fragments of toxic thyroid nodules (TN), nontoxic thyroid nodules (NN) and nontumorous tissue from patients with nodular goiter or thyroid cancer were used as a control (C). The LBSA content and sialyltransferase activity were the highest in the GD group (164 +/- 4.44 versus 120 +/- 2.00 nmoL/g, p = 0.005 and 1625 +/- 283.5 versus 324 +/- 54.2 cpm/mg of protein, p < 0.005 compared to control group C). Ganglioside profile in the GD group was similar to that in control tissues. Sialyltransferase- 1 mRNA and sialyltransferase-4A mRNA levels were significantly higher in the GD group than in the control group (12.52 +/- 6.90 versus 2.54 +/- 1.24 arbitrary units, p < 0.005 and 2,49 +/- 1.16 versus 1.23 +/- 0.46 arbitrary units, p < 0.05, respectively). There was a positive correlation between the increased sialyltransferase-1 mRNA level and the TSH-receptor antibody titer determined by the TRAK test. These results indicate that sialyltransferases expression and activity are increased in GD. Exact mechanism of this upregulation remains unknown, though one of possible explanations is the activation of the thyrotropin (TSH) receptor. PMID:16053379

  5. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice.

    PubMed

    Fu, Zidong Donna; Klaassen, Curtis D

    2013-12-15

    Previous studies showed glucose and insulin signaling can regulate bile acid (BA) metabolism during fasting or feeding. However, limited knowledge is available on the effect of calorie restriction (CR), a well-known anti-aging intervention, on BA homeostasis. To address this, the present study utilized a "dose-response" model of CR, where male C57BL/6 mice were fed 0, 15, 30, or 40% CR diets for one month, followed by BA profiling in various compartments of the enterohepatic circulation by UPLC-MS/MS technique. This study showed that 40% CR increased the BA pool size (162%) as well as total BAs in serum, gallbladder, and small intestinal contents. In addition, CR "dose-dependently" increased the concentrations of tauro-cholic acid (TCA) and many secondary BAs (produced by intestinal bacteria) in serum, such as tauro-deoxycholic acid (TDCA), DCA, lithocholic acid, ω-muricholic acid (ωMCA), and hyodeoxycholic acid. Notably, 40% CR increased TDCA by over 1000% (serum, liver, and gallbladder). Interestingly, 40% CR increased the proportion of 12α-hydroxylated BAs (CA and DCA), which correlated with improved glucose tolerance and lipid parameters. The CR-induced increase in BAs correlated with increased expression of BA-synthetic (Cyp7a1) and conjugating enzymes (BAL), and the ileal BA-binding protein (Ibabp). These results suggest that CR increases BAs in male mice possibly through orchestrated increases in BA synthesis and conjugation in liver as well as intracellular transport in ileum. PMID:24183703

  6. Unsaturated fatty acids supplementation reduces blood lead level in rats.

    PubMed

    Skoczyńska, Anna; Wojakowska, Anna; Nowacki, Dorian; Bobak, Łukasz; Turczyn, Barbara; Smyk, Beata; Szuba, Andrzej; Trziszka, Tadeusz

    2015-01-01

    Some dietary factors could inhibit lead toxicity. The aim of this study was to evaluate the effect of dietary compounds rich in unsaturated fatty acids (FA) on blood lead level, lipid metabolism, and vascular reactivity in rats. Serum metallothionein and organs' lead level were evaluated with the aim of assessing the possible mechanism of unsaturated FA impact on blood lead level. For three months, male Wistar rats that were receiving drinking water with (100 ppm Pb) or without lead acetate were supplemented per os daily with virgin olive oil or linseed oil (0.2 mL/kg b.w.) or egg derived lecithin fraction: "super lecithin" (50 g/kg b.w.). Mesenteric artery was stimulated ex vivo by norepinephrine (NE) administered at six different doses. Lecithin supplementation slightly reduced pressor responses of artery to NE. Lead administered to rats attenuated the beneficial effect of unsaturated FA on lipid metabolism and vascular reactivity to adrenergic stimulation. On the other hand, the super lecithin and linseed oil that were characterized by low omega-6 to omega-3 ratio (about 1) reduced the blood lead concentration. This effect was observed in lead poisoned rats (p < 0.0001) and also in rats nonpoisoned with lead (p < 0.05). PMID:26075218

  7. Unsaturated Fatty Acids Supplementation Reduces Blood Lead Level in Rats

    PubMed Central

    Skoczyńska, Anna; Wojakowska, Anna; Nowacki, Dorian; Bobak, Łukasz; Turczyn, Barbara; Smyk, Beata; Szuba, Andrzej; Trziszka, Tadeusz

    2015-01-01

    Some dietary factors could inhibit lead toxicity. The aim of this study was to evaluate the effect of dietary compounds rich in unsaturated fatty acids (FA) on blood lead level, lipid metabolism, and vascular reactivity in rats. Serum metallothionein and organs' lead level were evaluated with the aim of assessing the possible mechanism of unsaturated FA impact on blood lead level. For three months, male Wistar rats that were receiving drinking water with (100 ppm Pb) or without lead acetate were supplemented per os daily with virgin olive oil or linseed oil (0.2 mL/kg b.w.) or egg derived lecithin fraction: “super lecithin” (50 g/kg b.w.). Mesenteric artery was stimulated ex vivo by norepinephrine (NE) administered at six different doses. Lecithin supplementation slightly reduced pressor responses of artery to NE. Lead administered to rats attenuated the beneficial effect of unsaturated FA on lipid metabolism and vascular reactivity to adrenergic stimulation. On the other hand, the super lecithin and linseed oil that were characterized by low omega-6 to omega-3 ratio (about 1) reduced the blood lead concentration. This effect was observed in lead poisoned rats (p < 0.0001) and also in rats nonpoisoned with lead (p < 0.05). PMID:26075218

  8. Dietary oleic acid increases M2 macrophages in the mesenteric adipose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several studies have implicated fatty-acids as inflammatory regulators, suggesting that there may be a direct role for common dietary fatty-acids in regulating innate immune cells. In humans, a single high-fat meal increases systemic cytokines and leukocytes. In mice, short term high-fat feeding in...

  9. Acute Administration of Branched-Chain Amino Acids Increases the Pro-BDNF/Total-BDNF Ratio in the Rat Brain.

    PubMed

    Scaini, Giselli; Morais, Meline O S; Furlanetto, Camila B; Kist, Luiza W; Pereira, Talita C B; Schuck, Patrícia F; Ferreira, Gustavo C; Pasquali, Matheus A B; Gelain, Daniel P; Moreira, José Cláudio F; Bogo, Maurício R; Streck, Emilio L

    2015-05-01

    Maple syrup urine disease (MSUD) is caused by an inborn error in metabolism resulting from a deficiency in the branched-chain α-keto acid dehydrogenase complex activity. This blockage leads to accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine and valine, as well as their corresponding α-keto acids and α-hydroxy acids. High levels of BCAAs are associated with neurological dysfunction and the role of pro- and mature brain-derived neurotrophic factor (BDNF) in the neurological dysfunction of MSUD is still unclear. Thus, in the present study we investigated the effect of an acute BCAA pool administration on BDNF levels and on the pro-BDNF cleavage-related proteins S100A10 and tissue plasminogen activator (tPA) in rat brains. Our results demonstrated that acute Hyper-BCAA (H-BCAA) exposure during the early postnatal period increases pro-BDNF and total-BDNF levels in the hippocampus and striatum. Moreover, tPA levels were significantly decreased, without modifications in the tPA transcript levels in the hippocampus and striatum. On the other hand, the S100A10 mRNA and S100A10 protein levels were not changed in the hippocampus and striatum. In the 30-day-old rats, we observed increased pro-BDNF, total-BDNF and tPA levels only in the striatum, whereas the tPA and S100A10 mRNA expression and the immunocontent of S100A10 were not altered. In conclusion, we demonstrated that acute H-BCAA administration increases the pro-BDNF/total-BDNF ratio and decreases the tPA levels in animals, suggesting that the BCAA effect may depend, at least in part, on changes in BDNF post-translational processing. PMID:25681161

  10. Diabetes Mellitus and Increased Tuberculosis Susceptibility: The Role of Short-Chain Fatty Acids.

    PubMed

    Lachmandas, Ekta; van den Heuvel, Corina N A M; Damen, Michelle S M A; Cleophas, Maartje C P; Netea, Mihai G; van Crevel, Reinout

    2016-01-01

    Type 2 diabetes mellitus confers a threefold increased risk for tuberculosis, but the underlying immunological mechanisms are still largely unknown. Possible mediators of this increased susceptibility are short-chain fatty acids, levels of which have been shown to be altered in individuals with diabetes. We examined the influence of physiological concentrations of butyrate on cytokine responses to Mycobacterium tuberculosis (Mtb) in human peripheral blood mononuclear cells (PBMCs). Butyrate decreased Mtb-induced proinflammatory cytokine responses, while it increased production of IL-10. This anti-inflammatory effect was independent of butyrate's well-characterised inhibition of HDAC activity and was not accompanied by changes in Toll-like receptor signalling pathways, the eicosanoid pathway, or cellular metabolism. In contrast blocking IL-10 activity reversed the effects of butyrate on Mtb-induced inflammation. Alteration of the gut microbiota, thereby increasing butyrate concentrations, can reduce insulin resistance and obesity, but further studies are needed to determine how this affects susceptibility to tuberculosis. PMID:27057552

  11. Diabetes Mellitus and Increased Tuberculosis Susceptibility: The Role of Short-Chain Fatty Acids

    PubMed Central

    Lachmandas, Ekta; van den Heuvel, Corina N. A. M.; Damen, Michelle S. M. A.; Cleophas, Maartje C. P.; Netea, Mihai G.; van Crevel, Reinout

    2016-01-01

    Type 2 diabetes mellitus confers a threefold increased risk for tuberculosis, but the underlying immunological mechanisms are still largely unknown. Possible mediators of this increased susceptibility are short-chain fatty acids, levels of which have been shown to be altered in individuals with diabetes. We examined the influence of physiological concentrations of butyrate on cytokine responses to Mycobacterium tuberculosis (Mtb) in human peripheral blood mononuclear cells (PBMCs). Butyrate decreased Mtb-induced proinflammatory cytokine responses, while it increased production of IL-10. This anti-inflammatory effect was independent of butyrate's well-characterised inhibition of HDAC activity and was not accompanied by changes in Toll-like receptor signalling pathways, the eicosanoid pathway, or cellular metabolism. In contrast blocking IL-10 activity reversed the effects of butyrate on Mtb-induced inflammation. Alteration of the gut microbiota, thereby increasing butyrate concentrations, can reduce insulin resistance and obesity, but further studies are needed to determine how this affects susceptibility to tuberculosis. PMID:27057552

  12. Proteins implicated in the increase of adhesivity induced by suberoylanilide hydroxamic acid in leukemic cells.

    PubMed

    Grebeňová, D; Röselová, P; Pluskalová, M; Halada, P; Rösel, D; Suttnar, J; Brodská, B; Otevřelová, P; Kuželová, K

    2012-12-21

    We have previously shown that suberoylanilide hydroxamic acid (SAHA) treatment increases the adhesivity of leukemic cells to fibronectin at clinically relevant concentrations. Now, we present the results of the proteomic analysis of SAHA effects on leukemic cell lines using 2-DE and ProteomLab PF2D system. Histone acetylation at all studied acetylation sites reached the maximal level after 5 to 10 h of SAHA treatment. No difference in histone acetylation between subtoxic and toxic SAHA doses was observed. SAHA treatment induced cofilin phosphorylation at Ser3, an increase in vimentin and paxillin expression and a decrease in stathmin expression as confirmed by western-blotting and immunofluorescence microscopy. The interaction of cofilin with 14-3-3 epsilon was documented using both Duolink system and coimmunoprecipitation. However, this interaction was independent of cofilin Ser3 phosphorylation and the amount of 14-3-3-ε-bound cofilin did not rise following SAHA treatment. SAHA-induced increase in the cell adhesivity was associated with an increase in PAK phosphorylation in CML-T1 cells and was abrogated by simultaneous treatment with IPA-3, a PAK inhibitor. The effects of SAHA on JURL-MK1 cells were similar to those of other histone deacetylase inhibitors, tubastatin A and sodium butyrate. The proteome analysis also revealed several potential non-histone targets of histone deacetylases. PMID:23022583

  13. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation

    PubMed Central

    Sawada, Kazutaka

    2016-01-01

    Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus). Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation. PMID:26839744

  14. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation.

    PubMed

    Sawada, Kazutaka; Kitagaki, Hiroshi

    2016-01-01

    Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus). Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation. PMID:26839744

  15. Hepatoprotectant Ursodeoxycholyl Lysophosphatidylethanolamide Increasing Phosphatidylcholine Levels as a Potential Therapy of Acute Liver Injury

    PubMed Central

    Chamulitrat, Walee; Zhang, Wujuan; Xu, Weihong; Pathil, Anita; Setchell, Kenneth; Stremmel, Wolfgang

    2012-01-01

    It has been long known that hepatic synthesis of phosphatidylcholine (PC) is depressed during acute such as carbon tetrachloride-induced liver injury. Anti-hepatotoxic properties of PC as liposomes have been recognized for treatment of acute liver damage. Ursodeoxycholate (UDCA) is a known hepatoprotectant in stabilizing cellular membrane. For therapeutic management of liver injury, we coupled UDCA with a phospholipid known as ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE). UDCA-LPE has been shown to first-in-class hepatoprotectant being superior to UDCA or PC. It inhibits mitochondrial damage and apoptosis, elicits survival signaling pathway, and promotes regeneration of hepatocytes. We herein report that a unique contribution of UDCA-LPE in increasing concentrations of PC in vitro and in vivo. UDCA-LPE-treated hepatocytes contained significantly increased PC levels. UDCA-LPE underwent the hydrolysis to LPE which was not the precursor of the increased PC. The levels of PC in the liver and blood were increased rapidly after intraperitoneally administration UDCA-LPE, and were found to be sustained even after 24 h. Among PC synthesis genes tested, UDCA-LPE treatment of mouse hepatocytes increased transcription of CDP-diacylglycerol synthase 1 which is an enzyme catalyzing phosphatidic acid to generate intermediates for PC synthesis. Thus, UDCA-LPE as a hepatoprotectant was able to induce synthesis of protective PC which would supplement for the loss of PC occurring during acute liver injury. This property has placed UDCA-LPE as a candidate agent for therapy of acute hepatotoxicity such as acetaminophen poisoning. PMID:22363296

  16. Serum phytanic and pristanic acid levels and prostate cancer risk in Finnish smokers.

    PubMed

    Wright, Margaret E; Albanes, Demetrius; Moser, Ann B; Weinstein, Stephanie J; Snyder, Kirk; Männistö, Satu; Gann, Peter H

    2014-12-01

    Phytanic acid is a saturated branched-chain fatty acid found predominantly in red meat and dairy products, and may contribute to the elevated risks of prostate cancer associated with higher consumption of these foods. Pristanic acid is formed during peroxisomal oxidation of phytanic acid, and is the direct substrate of α-Methyl-CoA-Racemase (AMACR)--an enzyme that is consistently overexpressed in prostate tumors relative to benign tissue. We measured phytanic and pristanic acids as percentages of total fatty acids by gas chromatography-mass spectrometry in prediagnostic blood samples from 300 prostate cancer cases and 300 matched controls, all of whom were participants in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study supplementation trial and follow-up cohort. In addition to providing a fasting blood sample at baseline, all men completed extensive diet, lifestyle, and medical history questionnaires. Among controls, the strongest dietary correlates of serum phytanic and pristanic acids were saturated fat, dairy fat, and butter (r = 0.50 and 0.40, 0.46 and 0.38, and 0.40 and 0.37, respectively; all P-values <0.001). There was no association between serum phytanic acid and risk of total or aggressive prostate cancer in multivariate logistic regression models (for increasing quartiles, odds ratios (OR) and 95% confidence intervals (CI) for aggressive cancer were 1.0 (referent), 1.62 (0.97-2.68), 1.12 (0.66-1.90), and 1.14 (0.67-1.94), P(trend) = 0.87). Pristanic acid was strongly correlated with phytanic acid levels (r = 0.73, P < 0.0001), and was similarly unrelated to prostate cancer risk. Significant interactions between phytanic and pristanic acids and baseline circulating β-carotene concentrations were noted in relation to total and aggressive disease among participants who did not receive β-carotene supplements as part of the original ATBC intervention trial. In summary, we observed no overall association between serum phytanic and

  17. Serum phytanic and pristanic acid levels and prostate cancer risk in Finnish smokers

    PubMed Central

    Wright, Margaret E; Albanes, Demetrius; Moser, Ann B; Weinstein, Stephanie J; Snyder, Kirk; Männistö, Satu; Gann, Peter H

    2014-01-01

    Phytanic acid is a saturated branched-chain fatty acid found predominantly in red meat and dairy products, and may contribute to the elevated risks of prostate cancer associated with higher consumption of these foods. Pristanic acid is formed during peroxisomal oxidation of phytanic acid, and is the direct substrate of α-Methyl-CoA-Racemase (AMACR)—an enzyme that is consistently overexpressed in prostate tumors relative to benign tissue. We measured phytanic and pristanic acids as percentages of total fatty acids by gas chromatography-mass spectrometry in prediagnostic blood samples from 300 prostate cancer cases and 300 matched controls, all of whom were participants in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study supplementation trial and follow-up cohort. In addition to providing a fasting blood sample at baseline, all men completed extensive diet, lifestyle, and medical history questionnaires. Among controls, the strongest dietary correlates of serum phytanic and pristanic acids were saturated fat, dairy fat, and butter (r = 0.50 and 0.40, 0.46 and 0.38, and 0.40 and 0.37, respectively; all P-values <0.001). There was no association between serum phytanic acid and risk of total or aggressive prostate cancer in multivariate logistic regression models (for increasing quartiles, odds ratios (OR) and 95% confidence intervals (CI) for aggressive cancer were 1.0 (referent), 1.62 (0.97–2.68), 1.12 (0.66–1.90), and 1.14 (0.67–1.94), Ptrend = 0.87). Pristanic acid was strongly correlated with phytanic acid levels (r = 0.73, P < 0.0001), and was similarly unrelated to prostate cancer risk. Significant interactions between phytanic and pristanic acids and baseline circulating β-carotene concentrations were noted in relation to total and aggressive disease among participants who did not receive β-carotene supplements as part of the original ATBC intervention trial. In summary, we observed no overall association between serum phytanic and

  18. Increased Flow of Fatty Acids toward β-Oxidation in Developing Seeds of Arabidopsis Deficient in Diacylglycerol Acyltransferase Activity or Synthesizing Medium-Chain-Length Fatty Acids1

    PubMed Central

    Poirier, Yves; Ventre, Giovanni; Caldelari, Daniela

    1999-01-01

    Synthesis of polyhydroxyalkanoates (PHAs) from intermediates of fatty acid β-oxidation was used as a tool to study fatty acid degradation in developing seeds of Arabidopsis. Transgenic plants expressing a peroxisomal PHA synthase under the control of a napin promoter accumulated PHA in developing seeds to a final level of 0.06 mg g−1 dry weight. In plants co-expressing a plastidial acyl-acyl carrier protein thioesterase from Cuphea lanceolata and a peroxisomal PHA synthase, approximately 18-fold more PHA accumulated in developing seeds. The proportion of 3-hydroxydecanoic acid monomer in the PHA was strongly increased, indicating a large flow of capric acid toward β-oxidation. Furthermore, expression of the peroxisomal PHA synthase in an Arabidopsis mutant deficient in the enzyme diacylglycerol acyltransferase resulted in a 10-fold increase in PHA accumulation in developing seeds. These data indicate that plants can respond to the inadequate incorporation of fatty acids into triacylglycerides by recycling the fatty acids via β-oxidation and that a considerable flow toward β-oxidation can occur even in a plant tissue primarily devoted to the accumulation of storage lipids. PMID:10594123

  19. Increases in 1,5-anhydroglucitol levels in germinating amaranth seeds and in ripening banana.

    PubMed

    Konishi, Y; Hashima, K; Kishida, K

    2000-11-01

    To examine whether 1,5-anhydroglucitol (AG) is derived from starch degradation in plant tissues, we colorimetrically measured AG contents of germinating amaranth seeds and ripening banana pulp. In both cases, as starch degradation proceeded, AG levels were significantly increased, but were 1,700-5,000 times lower than those of total soluble carbohydrates. alpha-1,4-Glucan lyase activity, which is measured by the 1,5-anhydrofructose (AF) liberated from non-reducing glucose residues of starch or glycogen, was too low to be detected in amaranth or banana by the 3,5-dinitrosalicylic acid method. On the other hand, AF reductase, which reduces AF to AG, was detected in germinating amaranth seeds and banana pulp. Thus, the increases in AG levels are conceived to be derived from starch breakdown, although further investigation is needed to answer whether the starch degradation pathway via alpha-1,4-glucan lyase/AF reductase exists in plant tissues. PMID:11193417

  20. Increase in adipose tissue linoleic acid of US adults in the last half century.

    PubMed

    Guyenet, Stephan J; Carlson, Susan E

    2015-11-01

    Linoleic acid (LA) is a bioactive fatty acid with diverse effects on human physiology and pathophysiology. LA is a major dietary fatty acid, and also one of the most abundant fatty acids in adipose tissue, where its concentration reflects dietary intake. Over the last half century in the United States, dietary LA intake has greatly increased as dietary fat sources have shifted toward polyunsaturated seed oils such as soybean oil. We have conducted a systematic literature review of studies reporting the concentration of LA in subcutaneous adipose tissue of US cohorts. Our results indicate that adipose tissue LA has increased by 136% over the last half century and that this increase is highly correlated with an increase in dietary LA intake over the same period of time. PMID:26567191

  1. Dihydrolipoic acid activates oligomycin-sensitive thiol groups and increases ATP synthesis in mitochondria.

    PubMed

    Zimmer, G; Mainka, L; Krüger, E

    1991-08-01

    Investigations with dihydrolipoic acid in rat heart mitochondria and mitoplasts reveal an activation of ATP-synthase up to 45%, whereas ATPase activities decrease by 36%. In parallel with an increase in ATP synthesis oligomycin-sensitive mitochondrial -SH groups are activated at 2-4 nmol dihydrolipoic acid/mg protein. ATPase activation by the uncouplers carbonylcyanide-p-trifluoromethoxyphenylhydrazone and oleate is diminished by dihydrolipoic acid, and ATP synthesis depressed by oleate is partially restored. No such efficiency of dihydrolipoic acid is seen with palmitate-induced ATPase activation or decrease of ATP synthesis. This indicates different interference of oleate and palmitate with mitochondria. In addition to its known coenzymatic properties dihydrolipoic acid may act as a substitute for coenzyme A, thereby diminishing the uncoupling efficiency of oleate. Furthermore, dihydrolipoic acid is a very potent antioxidant, shifting the -SH-S-S- equilibrium in mitochondria to the reduced state and improving the energetic state of cells. PMID:1832845

  2. Increased brain uptake of gamma-aminobutyric acid in a rabbit model of hepatic encephalopathy

    SciTech Connect

    Bassett, M.L.; Mullen, K.D.; Scholz, B.; Fenstermacher, J.D.; Jones, E.A. )

    1990-03-01

    Transfer of the inhibitory neurotransmitter gamma-aminobutyric acid across the normal blood-brain barrier is minimal. One prerequisite for gamma-aminobutyric acid in plasma contributing to the neural inhibition of hepatic encephalopathy would be that increased transfer of gamma-aminobutyric acid across the blood-brain barrier occurs in liver failure. The aim of the present study was to determine if brain gamma-aminobutyric acid uptake is increased in rabbits with stage II-III (precoma) hepatic encephalopathy due to galactosamine-induced fulminant hepatic failure. A modification of the Oldendorf intracarotid artery-injection technique was applied. (3H) gamma-aminobutyric acid, (14C) butanol, and 113mIn-labeled serum protein (transferrin) were injected simultaneously 4 s before decapitation. The ipsilateral brain uptake index of gamma-aminobutyric acid was determined from measurements of the 3 isotopes in 5 brain regions. Uncorrected or simple brain uptake indices of (3H) gamma-aminobutyric acid and (113mIn) transferrin were calculated using (14C) butanol as the highly extracted reference compound. The (113mIn) transferrin data were also used to correct the brain uptake index of (3H) gamma-aminobutyric acid for intravascular retention of (3H) gamma-aminobutyric acid. The methodology adopted minimized problems attributable to rapid (3H) gamma-aminobutyric acid metabolism, and slow brain washout and recirculation of the radiolabeled tracers. Both the uncorrected and corrected brain uptake indices of gamma-aminobutyric acid as well as the simple brain uptake index of transferrin were significantly increased in both stage II and III hepatic encephalopathy in all brain regions studied. Moreover, these brain uptake indices were significantly greater in stage III hepatic encephalopathy than in stage II hepatic encephalopathy.

  3. Fatty acids and glucose increase neutral endopeptidase activity in human microvascular endothelial cells.

    PubMed

    Muangman, Pornprom; Spenny, Michelle L; Tamura, Richard N; Gibran, Nicole S

    2003-06-01

    Neutral endopeptidase (NEP), a membrane-bound metallopeptidase enzyme that degrades neuropeptides, bradykinin, atrial natriuretic factor, enkephalins, and endothelin may regulate response to injury. We have previously demonstrated increased NEP localization and enzyme activity in diabetic wounds and skin compared with normal controls. We hypothesized that hyperlipidemia and hyperglycemia associated with type 2 diabetes mellitus may induce excessive NEP activity and thereby diminish normal response to injury. Human microvascular endothelial cells were treated with five different fatty acids (40 microM) with varying degrees of saturation, including oleic acid, linoleic acid, palmitic acid, stearic acid, and linolenic acid and/or glucose (40 mM) for 48 h. The effect of the antioxidative agents vitamin E and C on NEP enzyme activation was determined by treating the cultured cells with alpha-tocopherol succinate and/or L-ascorbic acid. Cell membrane preparations were assayed for NEP activity by incubation with glutaryl-Ala-Ala-Phe-4-methoxy-beta naphthylamide to generate a fluorescent degradation product methoxy 2 naphthylamine. High glucose or fatty acid concentration upregulated NEP activity. The highest NEP activity was observed with combined elevated glucose, linoleic acid, and oleic acid (P < 0.05). Antioxidant vitamin E and C treatment significantly reduced NEP enzyme activity after fatty acid exposure (P < 0.05). Thus, hyperglycemia and hyperlipidemia associated with type 2 diabetes mellitus may increase endothelial cell NEP activity and thereby decrease early pro-inflammatory responses. The modulator effect of vitamin E and C on NEP membrane enzyme activity after exposure to fatty acid stimulation suggests that lipid oxidation may activate NEP. PMID:12785004

  4. Ingestion of a single serving of saury alters postprandial levels of plasma n-3 polyunsaturated fatty acids and long-chain monounsaturated fatty acids in healthy human adults

    PubMed Central

    2012-01-01

    Background Saury oil contains considerable amounts of n-3 polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA) with long aliphatic tails (>18C atoms). Ingestion of saury oil reduces the risk of developing metabolic syndrome concomitant with increases in n-3 PUFA and long-chain MUFA in plasma and organs of mice. We therefore evaluated changes in postprandial plasma fatty acid levels and plasma parameters in healthy human subjects after ingestion of a single meal of saury. Findings Five healthy human adults ingested 150 g of grilled saury. Blood was collected before the meal and at 2, 6, and 24 hr after the meal, and plasma was prepared. Plasma levels of eicosapentaenoic acid, docosahexaenoic acid, and long-chain MUFA (C20:1 and C22:1 isomers combined) increased significantly throughout the postprandial period compared with the pre-meal baseline. Postprandial plasma insulin concentration increased notably, and plasma levels of glucose and free fatty acids decreased significantly and subsequently returned to the pre-meal levels. Conclusions Our study suggests that a single saury meal may alter the postprandial plasma levels of n-3 PUFA and long-chain MUFA in healthy human subjects. PMID:22846384

  5. Skeletal muscle amino acid transporter expression is increased in young and older adults following resistance exercise

    PubMed Central

    Fry, Christopher S.; Glynn, Erin L.; Timmerman, Kyle L.; Dickinson, Jared M.; Walker, Dillon K.; Gundermann, David M.; Volpi, Elena; Rasmussen, Blake B.

    2011-01-01

    Amino acid transporters and mammalian target of rapamycin complex 1 (mTORC1) signaling are important contributors to muscle protein anabolism. Aging is associated with reduced mTORC1 signaling following resistance exercise, but the role of amino acid transporters is unknown. Young (n = 13; 28 ± 2 yr) and older (n = 13; 68 ± 2 yr) subjects performed a bout of resistance exercise. Skeletal muscle biopsies (vastus lateralis) were obtained at basal and 3, 6, and 24 h postexercise and were analyzed for amino acid transporter mRNA and protein expression and regulators of amino acid transporter transcription utilizing real-time PCR and Western blotting. We found that basal amino acid transporter expression was similar in young and older adults (P > 0.05). Exercise increased L-type amino acid transporter 1/solute-linked carrier (SLC) 7A5, CD98/SLC3A2, sodium-coupled neutral amino acid transporter 2/SLC38A2, proton-assisted amino acid transporter 1/SLC36A1, and cationic amino acid transporter 1/SLC7A1 mRNA expression in both young and older adults (P < 0.05). L-type amino acid transporter 1 and CD98 protein increased only in younger adults (P < 0.05). eukaryotic initiation factor 2 α-subunit (S52) increased similarly in young and older adults postexercise (P < 0.05). Ribosomal protein S6 (S240/244) and activating transcription factor 4 nuclear protein expression tended to be higher in the young, while nuclear signal transducer and activator of transcription 3 (STAT3) (Y705) was higher in the older subjects postexercise (P < 0.05). These results suggest that the rapid upregulation of amino acid transporter expression following resistance exercise may be regulated differently between the age groups, but involves a combination of mTORC1, activating transcription factor 4, eukaryotic initiation factor 2 α-subunit, and STAT3. We propose an increase in amino acid transporter expression may contribute to enhanced amino acid sensitivity following exercise in young and older

  6. Serum uric acid levels during leprosy reaction episodes

    PubMed Central

    Alves-Junior, Eduardo R.; Arruda, Talita A.; Lopes, Jose C.; Fontes, Cor J.F.

    2016-01-01

    Background. Leprosy reactions are acute inflammatory episodes that occur mainly in the multibacillary forms of the disease. The reactions are classified as type 1 (reverse reaction) or type 2 (erythema nodosum leprosum). Leprosy-associated oxidative stress has been widely demonstrated. Several recent studies have shown uric acid (UA) to have antioxidative effects under pathologic conditions. The objective of this study was to assess serum levels of UA in patients with leprosy reactions, with the aim of monitoring their levels before and after treatment, compared with levels in leprosy patients without reactions. Methods. The study included patients aged 18–69 years assisted at a leprosy treatment reference center in the Central Region of Brazil. Patients who were pregnant; were using immunosuppressant drugs or immunobiologicals; or had an autoimmune disease, human immunodeficiency virus infection, acquired immune deficiency syndrome, or tuberculosis were excluded. Upon recruitment, all individuals were clinically assessed for skin lesions and neural or systemic impairment. Some patients had already completed treatment for leprosy, while others were still undergoing treatment or had initiated treatment after being admitted. The treatment of the reactional episode was started only after the initial evaluation. Laboratory assessments were performed upon admission (baseline) and at approximately 30 and 60 days (time points 1 and 2, respectively). Results. A total of 123 leprosy patients were recruited between June 2012 and June 2015; among them, 56, 42, and 25 presented with type 1, type 2, and no reactions, respectively. Serum UA levels were significantly reduced in patients with type 2 leprosy reactions compared with patients in the control group and remained lower in the two subsequent assessments, after initiation of anti-reaction treatments, with similar values to those recorded before the treatment. Discussion. The decreased serum UA levels in patients with

  7. Serum uric acid levels during leprosy reaction episodes.

    PubMed

    Morato-Conceicao, Yvelise T; Alves-Junior, Eduardo R; Arruda, Talita A; Lopes, Jose C; Fontes, Cor J F

    2016-01-01

    Background. Leprosy reactions are acute inflammatory episodes that occur mainly in the multibacillary forms of the disease. The reactions are classified as type 1 (reverse reaction) or type 2 (erythema nodosum leprosum). Leprosy-associated oxidative stress has been widely demonstrated. Several recent studies have shown uric acid (UA) to have antioxidative effects under pathologic conditions. The objective of this study was to assess serum levels of UA in patients with leprosy reactions, with the aim of monitoring their levels before and after treatment, compared with levels in leprosy patients without reactions. Methods. The study included patients aged 18-69 years assisted at a leprosy treatment reference center in the Central Region of Brazil. Patients who were pregnant; were using immunosuppressant drugs or immunobiologicals; or had an autoimmune disease, human immunodeficiency virus infection, acquired immune deficiency syndrome, or tuberculosis were excluded. Upon recruitment, all individuals were clinically assessed for skin lesions and neural or systemic impairment. Some patients had already completed treatment for leprosy, while others were still undergoing treatment or had initiated treatment after being admitted. The treatment of the reactional episode was started only after the initial evaluation. Laboratory assessments were performed upon admission (baseline) and at approximately 30 and 60 days (time points 1 and 2, respectively). Results. A total of 123 leprosy patients were recruited between June 2012 and June 2015; among them, 56, 42, and 25 presented with type 1, type 2, and no reactions, respectively. Serum UA levels were significantly reduced in patients with type 2 leprosy reactions compared with patients in the control group and remained lower in the two subsequent assessments, after initiation of anti-reaction treatments, with similar values to those recorded before the treatment. Discussion. The decreased serum UA levels in patients with type

  8. Playground Designs to Increase Physical Activity Levels during School Recess: A Systematic Review

    ERIC Educational Resources Information Center

    Escalante, Yolanda; García-Hermoso, Antonio; Backx, Karianne; Saavedra, Jose M.

    2014-01-01

    School recess provides a major opportunity to increase children's physical activity levels. Various studies have described strategies to increase levels of physical activity. The purpose of this systematic review is therefore to examine the interventions proposed as forms of increasing children's physical activity levels during recess. A…

  9. Expression of dehydratase domains from a polyunsaturated fatty acid synthase increases the production of fatty acids in Escherichia coli.

    PubMed

    Oyola-Robles, Delise; Rullán-Lind, Carlos; Carballeira, Néstor M; Baerga-Ortiz, Abel

    2014-02-01

    Increasing the production of fatty acids by microbial fermentation remains an important step toward the generation of biodiesel and other portable liquid fuels. In this work, we report an Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis. Results show that the E. coli strain expressing the DH tetradomain fragment was capable of producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the negative control strain lacking the recombinant enzyme. The enhancement in production was observed across the board for all the fatty acids that are typically made by E. coli. The overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the observed enhancement in fatty acid production was not a result of effects associated with cell density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16 °C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol did not result in an increase in fatty acid production. All these results taken together suggest that either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new tool which could be incorporated into other existing strategies aimed at improving fatty acid production in bacterial fermentations toward accessible biodiesel precursors. PMID:24411456

  10. Expression of dehydratase domains from a polyunsaturated fatty acid synthase increases the production of fatty acids in Escherichia coli

    PubMed Central

    Oyola-Robles, Delise; Rullán-Lind, Carlos; Carballeira, Néstor M.; Baerga-Ortiz, Abel

    2014-01-01

    Increasing the production of fatty acids by microbial fermentation remains an important step towards the generation of biodiesel and other portable liquid fuels. In this work, we report an Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis. Results show that the E. coli strain expressing the DH tetradomain fragment was capable of producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the negative control strain lacking the recombinant enzyme. The enhancement in production was observed across the board for all the fatty acids that are typically made by E. coli. The overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the observed enhancement in fatty acid production was not a result of effects associated with cell density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16 °C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol did not result in an increase in fatty acid production. All these results taken together suggest that either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new tool which could be incorporated into other existing strategies aimed at improving fatty acid production in bacterial fermentations towards accessible biodiesel precursors. PMID:24411456

  11. Suberoylanilide hydroxamic acid (SAHA) at subtoxic concentrations increases the adhesivity of human leukemic cells to fibronectin.

    PubMed

    Kuzelová, Katerina; Pluskalová, Michaela; Brodská, Barbora; Otevrelová, Petra; Elknerová, Klára; Grebenová, Dana; Hrkal, Zbynek

    2010-01-01

    Suberoylanilide hydroxamic acid (SAHA) is an inhibitor of histone deacetylases (HDACs) which is being introduced into clinic for the treatment of hematological diseases. We studied the effect of this compound on six human hematopoietic cell lines (JURL-MK1, K562, CML-T1, Karpas-299, HL-60, and ML-2) as well as on normal human lymphocytes and on leukemic primary cells. SAHA induced dose-dependent and cell type-dependent cell death which displayed apoptotic features (caspase-3 activation and apoptotic DNA fragmentation) in most cell types including the normal lymphocytes. At subtoxic concentrations (0.5-1 microM), SAHA increased the cell adhesivity to fibronectin (FN) in all leukemia/lymphoma-derived cell lines but not in normal lymphocytes. This increase was accompanied by an enhanced expression of integrin beta1 and paxillin, an essential constituent of focal adhesion complexes, both at the protein and mRNA level. On the other hand, the inhibition of ROCK protein, an important regulator of cytoskeleton structure, had no consistent effect on SAHA-induced increase in the cell adhesivity. The promotion of cell adhesivity to FN seems to be specific for SAHA as we observed no such effects with other HDAC inhibitors (trichostatin A and sodium butyrate). PMID:19911379

  12. Erythrocyte membrane docosapentaenoic acid levels are associated with islet autoimmunity: The Diabetes Autoimmunity Study in the Young

    PubMed Central

    Norris, Jill M.; Kroehl, Miranda; Fingerlin, Tasha E.; Frederiksen, Brittni N.; Seifert, Jennifer; Wong, Randall; Clare-Salzler, Michael; Rewers, Marian

    2013-01-01

    Aims/hypotheses We previously reported that lower n-3 fatty acid intake and levels in erythrocyte membranes were associated with increased risk of islet autoimmunity (IA) but not progression to type 1 diabetes in children at increased risk for diabetes. We hypothesise that specific n-3 fatty acids and genetic markers contribute synergistically to this increased risk of IA in the Diabetes Autoimmunity Study in the Young (DAISY). Methods DAISY is following 2547 children at increased risk for type 1 diabetes for the development of IA, defined as being positive for glutamic acid decarboxylase (GAD)65, IA-2 or insulin autoantibodies on two consecutive visits. Using a case-cohort design, erythrocyte membrane fatty acids and dietary intake were measured prospectively in 58 IA-positive children and 299 IA-negative children. Results Lower membrane levels of the n-3 fatty acid, docosapentaenoic acid (DPA), were predictive of IA (HR 0.23; 95% CI 0.09,0.55), while alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were not, adjusting for HLA and diabetes family history. We examined whether the effect of dietary intake of the n-3 fatty acid ALA on IA risk was modified by fatty acid elongation and desaturation genes. Adjusting for HLA, diabetes family history, ethnicity, energy intake and questionnaire type, ALA intake was significantly more protective for IA in the presence of an increasing number of minor alleles at FADS1 rs174556 (pinteraction=0.017), at FADS2 rs174570 (pinteraction=0.016) and at FADS2 rs174583 (pinteraction=0.045). Conclusions/interpretation The putative protective effect of n-3 fatty acids on IA may result from a complex interaction between intake and genetically-controlled fatty acid desaturation. PMID:24240437

  13. Higher transcription levels in ascorbic acid biosynthetic and recycling genes were associated with higher ascorbic acid accumulation in blueberry.

    PubMed

    Liu, Fenghong; Wang, Lei; Gu, Liang; Zhao, Wei; Su, Hongyan; Cheng, Xianhao

    2015-12-01

    In our preliminary study, the ripe fruits of two highbush blueberry (Vaccinium corymbosum L.) cultivars, cv 'Berkeley' and cv 'Bluecrop', were found to contain different levels of ascorbic acid. However, factors responsible for these differences are still unknown. In the present study, ascorbic acid content in fruits was compared with expression profiles of ascorbic acid biosynthetic and recycling genes between 'Bluecrop' and 'Berkeley' cultivars. The results indicated that the l-galactose pathway was the predominant route of ascorbic acid biosynthesis in blueberry fruits. Moreover, higher expression levels of the ascorbic acid biosynthetic genes GME, GGP, and GLDH, as well as the recycling genes MDHAR and DHAR, were associated with higher ascorbic acid content in 'Bluecrop' compared with 'Berkeley', which indicated that a higher efficiency ascorbic acid biosynthesis and regeneration was likely to be responsible for the higher ascorbic acid accumulation in 'Bluecrop'. PMID:26041210

  14. Cutaneous retinoic acid levels determine hair follicle development and downgrowth.

    PubMed

    Okano, Junko; Levy, Clara; Lichti, Ulrike; Sun, Hong-Wei; Yuspa, Stuart H; Sakai, Yasuo; Morasso, Maria I

    2012-11-16

    Retinoic acid (RA) is essential during embryogenesis and for tissue homeostasis, whereas excess RA is well known as a teratogen. In humans, excess RA is associated with hair loss. In the present study, we demonstrate that specific levels of RA, regulated by Cyp26b1, one of the RA-degrading enzymes, are required for hair follicle (hf) morphogenesis. Mice with embryonic ablation of Cyp26b1 (Cyp26b1(-/-)) have excessive endogenous RA, resulting in arrest of hf growth at the hair germ stage. The altered hf development is rescued by grafting the mutant skin on immunodeficient mice. Our results show that normalization of RA levels is associated with reinitiation of hf development. Conditional deficiency of Cyp26b1 in the dermis (En1Cre;Cyp26b1f/-) results in decreased hair follicle density and specific effect on hair type, indicating that RA levels also influence regulators of hair bending. Our results support the model of RA-dependent dermal signals regulating hf downgrowth and bending. To elucidate target gene pathways of RA, we performed microarray and RNA-Seq profiling of genes differentially expressed in Cyp26b1(-/-) skin and En1Cre;Cyp26b1f/- tissues. We show specific effects on the Wnt-catenin pathway and on members of the Runx, Fox, and Sox transcription factor families, indicating that RA modulates pathways and factors implicated in hf downgrowth and bending. Our results establish that proper RA distribution is essential for morphogenesis, development, and differentiation of hfs. PMID:23007396

  15. Cutaneous Retinoic Acid Levels Determine Hair Follicle Development and Downgrowth*

    PubMed Central

    Okano, Junko; Levy, Clara; Lichti, Ulrike; Sun, Hong-Wei; Yuspa, Stuart H.; Sakai, Yasuo; Morasso, Maria I.

    2012-01-01

    Retinoic acid (RA) is essential during embryogenesis and for tissue homeostasis, whereas excess RA is well known as a teratogen. In humans, excess RA is associated with hair loss. In the present study, we demonstrate that specific levels of RA, regulated by Cyp26b1, one of the RA-degrading enzymes, are required for hair follicle (hf) morphogenesis. Mice with embryonic ablation of Cyp26b1 (Cyp26b1−/−) have excessive endogenous RA, resulting in arrest of hf growth at the hair germ stage. The altered hf development is rescued by grafting the mutant skin on immunodeficient mice. Our results show that normalization of RA levels is associated with reinitiation of hf development. Conditional deficiency of Cyp26b1 in the dermis (En1Cre;Cyp26b1f/−) results in decreased hair follicle density and specific effect on hair type, indicating that RA levels also influence regulators of hair bending. Our results support the model of RA-dependent dermal signals regulating hf downgrowth and bending. To elucidate target gene pathways of RA, we performed microarray and RNA-Seq profiling of genes differentially expressed in Cyp26b1−/− skin and En1Cre;Cyp26b1f/− tissues. We show specific effects on the Wnt-catenin pathway and on members of the Runx, Fox, and Sox transcription factor families, indicating that RA modulates pathways and factors implicated in hf downgrowth and bending. Our results establish that proper RA distribution is essential for morphogenesis, development, and differentiation of hfs. PMID:23007396

  16. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice

    SciTech Connect

    Fu, Zidong Donna; Klaassen, Curtis D.

    2013-12-15

    Previous studies showed glucose and insulin signaling can regulate bile acid (BA) metabolism during fasting or feeding. However, limited knowledge is available on the effect of calorie restriction (CR), a well-known anti-aging intervention, on BA homeostasis. To address this, the present study utilized a “dose–response” model of CR, where male C57BL/6 mice were fed 0, 15, 30, or 40% CR diets for one month, followed by BA profiling in various compartments of the enterohepatic circulation by UPLC-MS/MS technique. This study showed that 40% CR increased the BA pool size (162%) as well as total BAs in serum, gallbladder, and small intestinal contents. In addition, CR “dose-dependently” increased the concentrations of tauro-cholic acid (TCA) and many secondary BAs (produced by intestinal bacteria) in serum, such as tauro-deoxycholic acid (TDCA), DCA, lithocholic acid, ω-muricholic acid (ωMCA), and hyodeoxycholic acid. Notably, 40% CR increased TDCA by over 1000% (serum, liver, and gallbladder). Interestingly, 40% CR increased the proportion of 12α-hydroxylated BAs (CA and DCA), which correlated with improved glucose tolerance and lipid parameters. The CR-induced increase in BAs correlated with increased expression of BA-synthetic (Cyp7a1) and conjugating enzymes (BAL), and the ileal BA-binding protein (Ibabp). These results suggest that CR increases BAs in male mice possibly through orchestrated increases in BA synthesis and conjugation in liver as well as intracellular transport in ileum. - Highlights: • Dose response effects of short-term CR on BA homeostasis in male mice. • CR increased the BA pool size and many individual BAs. • CR altered BA composition (increased proportion of 12α-hydroxylated BAs). • Increased mRNAs of BA enzymes in liver (Cyp7a1 and BAL) and ileal BA binding protein.

  17. Chemical Changes Associated with Increased Acid Resistance of Er:YAG Laser Irradiated Enamel

    PubMed Central

    Olea-Mejía, Oscar Fernando; García-Fabila, María Magdalena; Rodríguez-Vilchis, Laura Emma; Sánchez-Flores, Ignacio; Centeno-Pedraza, Claudia

    2014-01-01

    Background. An increase in the acid resistance of dental enamel, as well as morphological and structural changes produced by Er:YAG laser irradiation, has been reported. Purpose. To evaluate the chemical changes associated with acid resistance of enamel treated with Er:YAG laser. Methods. Forty-eight enamel samples were divided into 4 groups (n = 12). Group I (control); Groups II, III, and IV were irradiated with Er:YAG at 100 mJ (12.7 J/cm2), 200 mJ (25.5 J/cm2), and 300 mJ (38.2 J/cm2), respectively. Results. There were significant differences in composition of irradiated groups (with the exception of chlorine) and in the amount of calcium released. Conclusions. Chemical changes associated with an increase in acid resistance of enamel treated with Er:YAG laser showed a clear postirradiation pattern characterized by a decrease in C at.% and an increase in O, P, and Ca at.% and no changes in Cl at.%. An increased Ca/P ratio after Er:YAG laser irradiation was associated with the use of higher laser energy densities. Chemical changes produced by acid dissolution showed a similar trend among experimental groups. Stable or increased Ca/P ratio after acid dissolution was observed in the irradiated groups, with reduction of Ca released into the acid solution. PMID:24600327

  18. Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling

    PubMed Central

    Alrob, Osama Abo; Sankaralingam, Sowndramalingam; Ma, Cary; Wagg, Cory S.; Fillmore, Natasha; Jaswal, Jagdip S.; Sack, Michael N.; Lehner, Richard; Gupta, Mahesh P.; Michelakis, Evangelos D.; Padwal, Raj S.; Johnstone, David E.; Sharma, Arya M.; Lopaschuk, Gary D.

    2014-01-01

    Aims Lysine acetylation is a novel post-translational pathway that regulates the activities of enzymes involved in both fatty acid and glucose metabolism. We examined whether lysine acetylation controls heart glucose and fatty acid oxidation in high-fat diet (HFD) obese and SIRT3 knockout (KO) mice. Methods and results C57BL/6 mice were placed on either a HFD (60% fat) or a low-fat diet (LFD; 4% fat) for 16 or 18 weeks. Cardiac fatty acid oxidation rates were significantly increased in HFD vs. LFD mice (845 ± 76 vs. 551 ± 87 nmol/g dry wt min, P < 0.05). Activities of the fatty acid oxidation enzymes, long-chain acyl-CoA dehydrogenase (LCAD), and β-hydroxyacyl-CoA dehydrogenase (β-HAD) were increased in hearts from HFD vs. LFD mice, and were associated with LCAD and β-HAD hyperacetylation. Cardiac protein hyperacetylation in HFD-fed mice was associated with a decrease in SIRT3 expression, while expression of the mitochondrial acetylase, general control of amino acid synthesis 5 (GCN5)-like 1 (GCN5L1), did not change. Interestingly, SIRT3 deletion in mice also led to an increase in cardiac fatty acid oxidation compared with wild-type (WT) mice (422 ± 29 vs. 291 ± 17 nmol/g dry wt min, P < 0.05). Cardiac lysine acetylation was increased in SIRT3 KO mice compared with WT mice, including increased acetylation and activity of LCAD and β-HAD. Although the HFD and SIRT3 deletion decreased glucose oxidation, pyruvate dehydrogenase acetylation was unaltered. However, the HFD did increase Akt acetylation, while decreasing its phosphorylation and activity. Conclusion We conclude that increased cardiac fatty acid oxidation in response to high-fat feeding is controlled, in part, via the down-regulation of SIRT3 and concomitant increased acetylation of mitochondrial β-oxidation enzymes. PMID:24966184

  19. High hydrostatic pressure increases amino acid requirements in the piezo-hyperthermophilic archaeon Thermococcus barophilus.

    PubMed

    Cario, Anaïs; Lormières, Florence; Xiang, Xiao; Oger, Philippe

    2015-11-01

    We have established a defined growth medium for the piezophilic hyperthermophilic archaeon Thermococcus barophilus, which allows growth yields of ca. 10(8) cells/ml under both atmospheric and high hydrostatic pressure. Our results demonstrate a major impact of hydrostatic pressure on amino acid metabolism, with increases from 3 amino acids required at atmospheric pressure to 17 at 40 MPa. We observe in T. barophilus and other Thermococcales a similar discrepancy between the presence/absence of amino acid synthesis pathways and amino acid requirements, which supports the existence of alternate, but yet unknown, amino acid synthesis pathways, and may explain the low number of essential amino acids observed in T. barophilus and other Thermococcales. T. barophilus displays a strong metabolic preference for organic polymers such as polypeptides and chitin, which may constitute a more readily available resource of carbon and energy in situ in deep-sea hydrothermal vents. We hypothesize that the low energy yields of fermentation of organic polymers, together with energetic constraints imposed by high hydrostatic pressure, may render de novo synthesis of amino acids ecologically unfavorable. Induction of this metabolic switch to amino acid recycling can explain the requirement for non-essential amino acids by Thermococcales for efficient growth in defined medium. PMID:26226334

  20. Electric field increases the phase transition temperature in the bilayer membrane of phosphatidic acid.

    PubMed

    Antonov, V F; Smirnova EYu; Shevchenko, E V

    1990-02-01

    The effect of the electric field on the phase transition temperature (Tc) of acidic 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA) and 1,2-dipalmitoyl-sn-glycero-3-thionphosphate (thion-DPPA) and zwitterion, i.e. 1,2-dipalmitoyl-rac-3-phosphocholine and 1,2-distearoyl-rac-glycero-3-phosphocholine (DPPC and DSPC), lipids has been investigated. The phase transition was detected using the jump-like increase effect in the conductance of the planar bilayer membrane. A voltage increase to 150 mV has been shown to increase the phase transition temperature in a bilayer lipid membrane (BLM) of phosphatidic acids (DPPA and thion-DPPA) by 8-12 degrees C while the transition temperature in the bilayer of zwitterion lipids (DPPC and DSPC) increases insignificantly. The increasing of Tt in BLM of acidic lipids is attributed to the voltage-induced changes in the molecule packing density. PMID:2340602

  1. Increasing or stabilizing renal epoxyeicosatrienoic acid production attenuates abnormal renal function and hypertension in obese rats.

    PubMed

    Huang, Hui; Morisseau, Christophe; Wang, JingFeng; Yang, Tianxin; Falck, John R; Hammock, Bruce D; Wang, Mong-Heng

    2007-07-01

    Since epoxyeicosatrienoic acids (EETs) affect sodium reabsorption in renal tubules and dilate the renal vasculature, we have examined their effects on renal hemodynamics and sodium balance in male rats fed a high-fat (HF) diet by fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPAR-alpha) agonist and an inducer of cytochrome P-450 (CYP) epoxygenases; by N-methanesulfonyl-6-(2-proparyloxyphenyl)hexanamide (MSPPOH), a selective EET biosynthesis inhibitor; and by 12-(3-adamantane-1-yl-ureido)dodecanoic acid (AUDA), a selective inhibitor of soluble epoxide hydrolase. In rats treated with fenofibrate (30 mg.kg(-1).day(-1) ig) or AUDA (50 mg/l in drinking water) for 2 wk, mean arterial pressure, renal vascular resistance, and glomerular filtration rate were lower but renal blood flow was higher than in vehicle-treated control rats. In addition, fenofibrate and AUDA decreased cumulative sodium balance in the HF rats. Treatment with MSPPOH (20 mg.kg(-1).day(-1) iv) + fenofibrate for 2 wk reversed renal hemodynamics and sodium balance to the levels in control HF rats. Moreover, fenofibrate caused a threefold increase in renal cortical CYP epoxygenase activity, whereas the fenofibrate-induced elevation of this activity was attenuated by MSPPOH. Western blot analysis showed that fenofibrate induced the expression of CYP epoxygenases in renal cortex and microvessels and that the induction effect of fenofibrate was blocked by MSPPOH. These results demonstrate that the fenofibrate-induced increase of CYP epoxygenase expression and the AUDA-induced stabilization of EET production in the kidneys cause renal vascular dilation and reduce sodium retention, contributing to the improvement of abnormal renal hemodynamics and hypertension in HF rats. PMID:17442729

  2. Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice.

    PubMed

    Strong, Randy; Miller, Richard A; Astle, Clinton M; Floyd, Robert A; Flurkey, Kevin; Hensley, Kenneth L; Javors, Martin A; Leeuwenburgh, Christiaan; Nelson, James F; Ongini, Ennio; Nadon, Nancy L; Warner, Huber R; Harrison, David E

    2008-10-01

    The National Institute on Aging's Interventions Testing Program was established to evaluate agents that are purported to increase lifespan and delay the appearance of age-related disease in genetically heterogeneous mice. Up to five compounds are added to the study each year and each compound is tested at three test sites (The Jackson Laboratory, University of Michigan, and University of Texas Health Science Center at San Antonio). Mice in the first cohort were exposed to one of four agents: aspirin, nitroflurbiprofen, 4-OH-alpha-phenyl-N-tert-butyl nitrone, or nordihydroguaiaretic acid (NDGA). Sample size was sufficient to detect a 10% difference in lifespan in either sex,with 80% power, using data from two of the three sites. Pooling data from all three sites, a log-rank test showed that both NDGA (p=0.0006) and aspirin (p=0.01) led to increased lifespan of male mice. Comparison of the proportion of live mice at the age of 90% mortality was used as a surrogate for measurement of maximum lifespan;neither NDGA (p=0.12) nor aspirin (p=0.16) had a significant effect in this test. Measures of blood levels of NDGA or aspirin and its salicylic acid metabolite suggest that the observed lack of effects of NDGA or aspirin on life span in females could be related to gender differences in drug disposition or metabolism. Further studies are warranted to find whether NDGA or aspirin, over a range of doses,might prove to postpone death and various age-related outcomes reproducibly in mice. PMID:18631321

  3. Retinoic Acid-Treated Pluripotent Stem Cells Undergoing Neurogenesis Present Increased Aneuploidy and Micronuclei Formation

    PubMed Central

    Sartore, Rafaela C.; Campos, Priscila B.; Trujillo, Cleber A.; Ramalho, Bia L.; Negraes, Priscilla D.; Paulsen, Bruna S.; Meletti, Tamara; Costa, Elaine S.; Chicaybam, Leonardo; Bonamino, Martin H.; Ulrich, Henning; Rehen, Stevens K.

    2011-01-01

    The existence of loss and gain of chromosomes, known as aneuploidy, has been previously described within the central nervous system. During development, at least one-third of neural progenitor cells (NPCs) are aneuploid. Notably, aneuploid NPCs may survive and functionally integrate into the mature neural circuitry. Given the unanswered significance of this phenomenon, we tested the hypothesis that neural differentiation induced by all-trans retinoic acid (RA) in pluripotent stem cells is accompanied by increased levels of aneuploidy, as previously described for cortical NPCs in vivo. In this work we used embryonal carcinoma (EC) cells, embryonic stem (ES) cells and induced pluripotent stem (iPS) cells undergoing differentiation into NPCs. Ploidy analysis revealed a 2-fold increase in the rate of aneuploidy, with the prevalence of chromosome loss in RA primed stem cells when compared to naïve cells. In an attempt to understand the basis of neurogenic aneuploidy, micronuclei formation and survivin expression was assessed in pluripotent stem cells exposed to RA. RA increased micronuclei occurrence by almost 2-fold while decreased survivin expression by 50%, indicating possible mechanisms by which stem cells lose their chromosomes during neural differentiation. DNA fragmentation analysis demonstrated no increase in apoptosis on embryoid bodies treated with RA, indicating that cell death is not the mandatory fate of aneuploid NPCs derived from pluripotent cells. In order to exclude that the increase in aneuploidy was a spurious consequence of RA treatment, not related to neurogenesis, mouse embryonic fibroblasts were treated with RA under the same conditions and no alterations in chromosome gain or loss were observed. These findings indicate a correlation amongst neural differentiation, aneuploidy, micronuclei formation and survivin downregulation in pluripotent stem cells exposed to RA, providing evidence that somatically generated chromosomal variation accompanies

  4. Copper uptake is required for pyrrolidine dithiocarbamate-mediated oxidation and protein level increase of p53 in cells.

    PubMed Central

    Furuta, Saori; Ortiz, Fausto; Zhu Sun, Xiu; Wu, Hsiao-Huei; Mason, Andrew; Momand, Jamil

    2002-01-01

    The p53 tumour-suppressor protein is a transcription factor that activates the expression of genes involved in cell cycle arrest, apoptosis and DNA repair. The p53 protein is vulnerable to oxidation at cysteine thiol groups. The metal-chelating dithiocarbamates, pyrrolidine dithiocarbamate (PDTC), diethyldithiocarbamate, ethylene(bis)dithiocarbamate and H(2)O(2) were tested for their oxidative effects on p53 in cultured human breast cancer cells. Only PDTC oxidized p53, although all oxidants tested increased the p53 level. Inductively coupled plasma MS analysis indicated that the addition of 60 microM PDTC increased the cellular copper concentration by 4-fold, which was the highest level of copper accumulated amongst all the oxidants tested. Bathocuproinedisulphonic acid, a membrane-impermeable Cu(I) chelator inhibited the PDTC-mediated copper accumulation. Bathocuproinedisulphonic acid as well as the hydroxyl radical scavenger d-mannitol inhibited the PDTC-dependent increase in p53 protein and oxidation. Our results show that a low level of copper accumulation in the range of 25-40 microg/g of cellular protein increases the steady-state levels of p53. At copper accumulation levels higher than 60 microg/g of cellular protein, p53 is oxidized. These results suggest that p53 is vulnerable to free radical-mediated oxidation at cysteine residues. PMID:11964141

  5. Does salicylic acid increase the percutaneous absorption of diflucortolone-21-valerate?

    PubMed

    Täuber, U; Weiss, C; Matthes, H

    1993-01-01

    The percutaneous absorption of diflucortolone-21-valerate (DFV) and its effect on the pituitary adrenal system were investigated during large skin area treatment (20 g ointment twice a day for 8 days) of two groups of healthy volunteers with Nerisona and Nerisalic ointment, respectively. Plasma levels of diflucortolone, cortisol and dehydroepiandrosterone (DHEA) were measured in both groups whereas plasma levels of salicylic acid were measured additionally in volunteers treated with Nerisalic. No differences, neither in percutaneous absorption of DFV nor in effects on cortisol and DHEA were found between the two treatment groups. There was a slight reduction in cortisol levels under both treatments, but the circadian rhythm was not disturbed. Mean salicylic acid plasma levels under high-dose topical Nerisalic treatment were about 50-fold below levels where toxicity may be expected. PMID:8198813

  6. A geographic cline in leaf salicylic acid with increasing elevation in Arabidopsis thaliana.

    PubMed

    Zhang, Nana; Tonsor, Stephen J; Traw, M Brian

    2015-01-01

    Salicylic acid (SA) occupies a key role as a hormone central to both plant resistance to bacterial pathogens and tolerance of abiotic stresses. Plants at high elevation experience colder temperatures and elevated UV levels. While it has been predicted that SA concentrations will be higher in plants from high elevation populations, few studies have addressed this question. Here, we asked how concentrations of SA vary in natural populations of Arabidopsis thaliana collected across an elevational gradient on the Iberian Peninsula. In a series of common garden experiments, we found that constitutive SA concentrations were highest in genotypes from the low elevation populations. This result was in the opposite direction from our prediction and is an exception to the general finding that phenolic compounds increase with increasing elevation. These data suggest that high constitutive SA is not associated with resistance to cold temperatures in these plants. Furthermore, we also found that leaf constitutive camalexin concentrations, an important defense against some bacterial and fungal enemies, were highest in the low elevation populations, suggesting that pathogen pressures may be important. Further examination of this elevational cline will likely provide additional insights into the interplay between phenolic compounds and biotic and abiotic stress. PMID:25875692

  7. A geographic cline in leaf salicylic acid with increasing elevation in Arabidopsis thaliana

    PubMed Central

    Zhang, Nana; Tonsor, Stephen J; Traw, M Brian

    2015-01-01

    Salicylic acid (SA) occupies a key role as a hormone central to both plant resistance to bacterial pathogens and tolerance of abiotic stresses. Plants at high elevation experience colder temperatures and elevated UV levels. While it has been predicted that SA concentrations will be higher in plants from high elevation populations, few studies have addressed this question. Here, we asked how concentrations of SA vary in natural populations of Arabidopsis thaliana collected across an elevational gradient on the Iberian Peninsula. In a series of common garden experiments, we found that constitutive SA concentrations were highest in genotypes from the low elevation populations. This result was in the opposite direction from our prediction and is an exception to the general finding that phenolic compounds increase with increasing elevation. These data suggest that high constitutive SA is not associated with resistance to cold temperatures in these plants. Furthermore, we also found that leaf constitutive camalexin concentrations, an important defense against some bacterial and fungal enemies, were highest in the low elevation populations, suggesting that pathogen pressures may be important. Further examination of this elevational cline will likely provide additional insights into the interplay between phenolic compounds and biotic and abiotic stress. PMID:25875692

  8. A Phospholipid-Protein Complex from Antarctic Krill Reduced Plasma Homocysteine Levels and Increased Plasma Trimethylamine-N-Oxide (TMAO) and Carnitine Levels in Male Wistar Rats

    PubMed Central

    Bjørndal, Bodil; Ramsvik, Marie S.; Lindquist, Carine; Nordrehaug, Jan E.; Bruheim, Inge; Svardal, Asbjørn; Nygård, Ottar; Berge, Rolf K.

    2015-01-01

    Seafood is assumed to be beneficial for cardiovascular health, mainly based on plasma lipid lowering and anti-inflammatory effects of n-3 polyunsaturated fatty acids. However, other plasma risk factors linked to cardiovascular disease are less studied. This study aimed to penetrate the effect of a phospholipid-protein complex (PPC) from Antarctic krill on one-carbon metabolism and production of trimethylamine-N-oxide (TMAO) in rats. Male Wistar rats were fed isoenergetic control, 6%, or 11% PPC diets for four weeks. Rats fed PPC had reduced total homocysteine plasma level and increased levels of choline, dimethylglycine and cysteine, whereas the plasma level of methionine was unchanged compared to control. PPC feeding increased the plasma level of TMAO, carnitine, its precursors trimethyllysine and γ-butyrobetaine. There was a close correlation between plasma TMAO and carnitine, trimethyllysine, and γ-butyrobetaine, but not between TMAO and choline. The present data suggest that PPC has a homocysteine lowering effect and is associated with altered plasma concentrations of metabolites related to one-carbon metabolism and B-vitamin status in rats. Moreover, the present study reveals a non-obligatory role of gut microbiota in the increased plasma TMAO level as it can be explained by the PPC’s content of TMAO. The increased level of carnitine and carnitine precursors is interpreted to reflect increased carnitine biosynthesis. PMID:26371012

  9. CONCENTRATION OF GLIAL FIBRILLARY ACIDIC PROTEIN INCREASES WITH AGE IN THE MOUSE AND RAT BRAIN

    EPA Science Inventory

    The role of aging in the expression of the astrocyte protein, glial fibrillary acidic protein (GFAP), was examined. n both mice and rats the concentration of GFAP increased throughout the brain as a function of aging. he largest increase (2-fold) was observed in striatum for both...

  10. Regulation of auxin, abscisic acid and salicylic acid levels by ascorbate application under heat stress in sensitive and tolerant maize leaves.

    PubMed

    Dinler, Burcu Seckin; Demir, Emel; Kompe, Yasemin Ozdener

    2014-12-01

    In the present study, the effect of ascorbic acid (5 mM) on some physiological parameters and three hormones (auxin, abscisic acid, salicylic acid) was determined under heat stress (40 °C) in maize tolerant cv. (MAY 69) and sensitive cv. SHEMAL (SH) at 0 h, 4 h and 8 h. Heat stress reduced total chlorophyll content (CHL), relative water content (RWC) and stomatal conductance (gs) in SH but did not lead to changes in MAY 69 at 4 h and 8 h. However, pretreatment with ascorbic acid increased (CHL), (RWC) and (gs) in SH under heat stress while it reduced MDA content significantly in both cv. We also observed that heat stress led to a reduction in SA level but increased ABA and IAA levels in SH, whereas it increased SA and IAA levels but did not change ABA level in MAY 69 at 4 h. Furthermore, in SH, ASC application under heat stress increased SA level and decreased IAA and ABA levels at 4 h, but it had no effect on SA and ABA at 8 h. PMID:25475985

  11. Ascorbic Acid may Exacerbate Aspirin-Induced Increase in Intestinal Permeability.

    PubMed

    Sequeira, Ivana R; Kruger, Marlena C; Hurst, Roger D; Lentle, Roger G

    2015-09-01

    Ascorbic acid in combination with aspirin has been used to prevent aspirin-induced oxidative GI damage. We aimed to determine whether ascorbic acid reduces or prevents aspirin-induced changes in intestinal permeability over a 6-hr period using saccharidic probes mannitol and lactulose. The effects of administration of 600 mg aspirin alone, 500 mg ascorbic acid alone and simultaneous dosage of both agents were compared in a cross-over study in 28 healthy female volunteers. These effects were also compared with that of a placebo. The ability of ascorbic acid to mitigate the effects of aspirin when administered either half an hour before or after dosage with aspirin was also assessed in 19 healthy female volunteers. The excretion of lactulose over the 6-hr period was augmented after consumption of either aspirin or ascorbic acid compared with that after consumption of placebo. Dosage with ascorbic acid alone augmented the excretion of lactulose more than did aspirin alone. Simultaneous dosage with both agents augmented the excretion of lactulose in an additive manner. The timing of dosage with ascorbic acid in relation to that with aspirin had no significant effect on the excretion of the two sugars. These findings indicate that ascorbic acid does not prevent aspirin-induced increase in gut permeability rather that both agents augment it to a similar extent. The additive effect on simultaneous dosage with both agents in augmenting the absorption of lactulose suggests that each influences paracellular permeability by different pathways. PMID:25641731

  12. Adaptation and Transcriptome Analysis of Aureobasidium pullulans in Corncob Hydrolysate for Increased Inhibitor Tolerance to Malic Acid Production

    PubMed Central

    Zou, Xiang; Wang, Yongkang; Tu, Guangwei; Zan, Zhanquan; Wu, Xiaoyan

    2015-01-01

    Malic acid is a dicarboxylic acid widely used in the food industry, and is also a potential C4 platform chemical. Corncob is a low-cost renewable feedstock from agricultural industry. However, side-reaction products (furfural, 5-hydroxymethylfurfural (HMF), formic acid, and acetic acid) that severely hinder fermentation are formed during corncob pretreatment. The process for producing malic acid from a hydrolysate of corncob was investigated with a polymalic acid (PMA)-producing Aureobasidium pullulans strain. Under the optimal hydrolysate sugar concentration 110 g/L, A. pullulans was further adapted in an aerobic fibrous bed bioreactor (AFBB) by gradually increasing the sugar concentration of hydrolysate. After nine batches of fermentation, the production and productivity of malic acid reached 38.6 g/L and 0.4 g/L h, respectively, which was higher than that in the first batch (27.6 g/L and 0.29 g/L h, respectively). The adapted strain could grow under the stress of 0.5 g/L furfural, 3 g/L HMF, 2g/L acetic acid, and 0.5 g/L formic acid, whereas the wild type did not. Transcriptome analysis revealed that the differentially expressed genes were related to carbohydrate transport and metabolism, lipid transport and metabolism, signal transduction mechanism, redox metabolism, and energy production and conversion under 0.5 g/L furfural and 3 g/L HMF stress conditions. In total, 42 genes in the adapted strain were upregulated by 15-fold or more, and qRT-PCR also confirmed that the expression levels of key genes (i.e. SIR, GSS, CYS, and GSR) involved in sulfur assimilation pathway were upregulated by over 10-fold in adapted strain for cellular protection against oxidative stress. PMID:25793624

  13. Enterostatin decreases postprandial pancreatic UCP2 mRNA levels and increases plasma insulin and amylin.

    PubMed

    Arsenijevic, Denis; Gallmann, Eva; Moses, William; Lutz, Thomas; Erlanson-Albertsson, Charlotte; Langhans, Wolfgang

    2005-07-01

    This study investigated the chronic effect of enterostatin on body weight and some of the associated changes in postprandial metabolism. Rats were adapted to 6 h of food access/day and a choice of low-fat and high-fat (HF) food and then given enterostatin or vehicle by an intraperitoneally implanted minipump delivering 160 nmol enterostatin/h continuously over a 5-day infusion period. Enterostatin resulted in a slight but significant reduction of HF intake and body weight. After the last 6-h food access period, enterostatin-treated animals had lower plasma triglyceride and free fatty acid but higher plasma glucose and lactate levels than control animals. Enterostatin infusion resulted in increased uncoupling protein-2 (UCP2) expression in various tissues, including epididymal fat and liver. UCP2 was reduced in the pancreas of enterostatin-treated animals, and this was associated with increased plasma levels of insulin and amylin. Whether these two hormones are involved in the observed decreased food intake due to enterostatin remains to be determined. As lipid metabolism appeared to be altered by enterostatin, we measured peroxisome proliferator-activated receptor (PPAR) expression in tissues and observed that PPARalpha, -beta, -gamma1, and -gamma2 expression were modified by enterostatin in epididymal fat, pancreas, and liver. This further links altered lipid metabolism with body weight loss. Our data suggest that alterations in UCP2 and PPARgamma2 play a role in the control of insulin and amylin release from the pancreas. This implies that enterostatin changes lipid and carbohydrate metabolic pathways in addition to its effects on food intake and energy expenditure. PMID:15713687

  14. Peptidoglycan synthesis and structure in Staphylococcus haemolyticus expressing increasing levels of resistance to glycopeptide antibiotics.

    PubMed Central

    Billot-Klein, D; Gutmann, L; Bryant, D; Bell, D; Van Heijenoort, J; Grewal, J; Shlaes, D M

    1996-01-01

    The structures of cytoplasmic peptidoglycan precursor and mature peptidoglycan of an isogenic series of Staphylococcus haemolyticus strains expressing increasing levels of resistance to the glycopeptide antibiotics teicoplanin and vancomycin (MICs, 8 to 32 and 4 to 16 microg/ml, respectively) were determined. High-performance liquid chromatography, mass spectrometry, amino acid analysis, digestion by R39 D,D-carboxypeptidase, and N-terminal amino acid sequencing were utilized. UDP-muramyl-tetrapeptide-D-lactate constituted 1.7% of total cytoplasmic peptidoglycan precursors in the most resistant strain. It is not clear if this amount of depsipeptide precursor can account for the levels of resistance achieved by this strain. Detailed structural analysis of mature peptidoglycan, examined for the first time for this species, revealed that the peptidoglycan of these strains, like that of other staphylococci, is highly cross-linked and is composed of a lysine muropeptide acceptor containing a substitution at its epsilon-amino position of a glycine-containing cross bridge to the D-Ala 4 of the donor, with disaccharide-pentapeptide frequently serving as an acceptor for transpeptidation. The predominant cross bridges were found to be COOH-Gly-Gly-Ser-Gly-Gly-NH2 and COOH-Ala-Gly-Ser-Gly-Gly-NH2. Liquid chromatography-mass spectrometry analysis of the peptidoglycan of resistant strains revealed polymeric muropeptides bearing cross bridges containing an additional serine in place of glycine (probable structures, COOH-Gly-Ser-Ser-Gly-Gly-NH2 and COOH-Ala-Gly-Ser-Ser-Gly-NH2). Muropeptides bearing an additional serine in their cross bridges are estimated to account for 13.6% of peptidoglycan analyzed from resistant strains of S. haemolyticus. A soluble glycopeptide target (L-Ala-gamma-D-iso-glutamyl-L-Lys-D-Ala-D-Ala) was able to more effectively compete for vancomycin when assayed in the presence of resistant cells than when assayed in the presence of susceptible cells

  15. Changes in intramuscular amino acid levels in submaximally exercised horses - a pilot study.

    PubMed

    van den Hoven, R; Bauer, A; Hackl, S; Zickl, M; Spona, J; Zentek, J

    2010-08-01

    The time-dependent changes in intramuscular amino acid (AA) levels caused by exercise and by feeding a protein/AA supplement were analysed in nine horses. Horses were submitted to a total of four standardized exercise tests (SETs). Amino acid concentrations were determined prior to, immediately after, 4 and 18 h after exercise. The experiment was subdivided into two consecutive periods of 3 weeks. In each period two SETs were performed. In the second period, horses were given a protein/AA supplement within 1 h after exercise. Significant changes in mean plasma AA levels similar to previous studies were noted to be time-dependent and to be associated with feeding the supplement. The intramuscular concentrations of the free AA in relation to pre-exercise levels showed significant time-dependent changes for alanine, asparagine, aspartate, citrulline, glutamine, glycine, isoleucine, leucine, methionine, serine, taurine, threonine, tyrosine and valine. Feeding the supplement significantly increased the 4 h post-exercise intramuscular concentration of alanine, isoleucine, methionine and tyrosine. At 18 h after exercise, apart from isoleucine and methionine, levels were still increased and also those of asparagine, histidine and valine in relation to none treatment. Hence, it was concluded that AA mixtures administered orally to horses within 1 h after exercise increased intramuscular AA pool. PMID:19663973

  16. Chicoric Acid Levels in Basil (Ocimum basilicum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, we reported the presence of chicoric acid in basil leaves (confirmed by co-chromatography with purchased standard). Chicoric acid being the chief phenolic of the Echinacea purpurea plant which is popularly consumed as a dietary supplement. For this study, basil products commonly purchased ...

  17. Inhibition of Neuronal Cell Mitochondrial Complex I with Rotenone Increases Lipid β-Oxidation, Supporting Acetyl-Coenzyme A Levels*

    PubMed Central

    Worth, Andrew J.; Basu, Sankha S.; Snyder, Nathaniel W.; Mesaros, Clementina; Blair, Ian A.

    2014-01-01

    Rotenone is a naturally occurring mitochondrial complex I inhibitor with a known association with parkinsonian phenotypes in both human populations and rodent models. Despite these findings, a clear mechanistic link between rotenone exposure and neuronal damage remains to be determined. Here, we report alterations to lipid metabolism in SH-SY5Y neuroblastoma cells exposed to rotenone. The absolute levels of acetyl-CoA were found to be maintained despite a significant decrease in glucose-derived acetyl-CoA. Furthermore, palmitoyl-CoA levels were maintained, whereas the levels of many of the medium-chain acyl-CoA species were significantly reduced. Additionally, using isotopologue analysis, we found that β-oxidation of fatty acids with varying chain lengths helped maintain acetyl-CoA levels. Rotenone also induced increased glutamine utilization for lipogenesis, in part through reductive carboxylation, as has been found previously in other cell types. Finally, palmitoylcarnitine levels were increased in response to rotenone, indicating an increase in fatty acid import. Taken together, these findings show that alterations to lipid and glutamine metabolism play an important compensatory role in response to complex I inhibition by rotenone. PMID:25122772

  18. Effects of Step-Wise Increases in Dietary Carbohydrate on Circulating Saturated Fatty Acids and Palmitoleic Acid in Adults with Metabolic Syndrome

    PubMed Central

    Volk, Brittanie M.; Kunces, Laura J.; Freidenreich, Daniel J.; Kupchak, Brian R.; Saenz, Catherine; Artistizabal, Juan C.; Fernandez, Maria Luz; Bruno, Richard S.; Maresh, Carl M.; Kraemer, William J.; Phinney, Stephen D.; Volek, Jeff S.

    2014-01-01

    Recent meta-analyses have found no association between heart disease and dietary saturated fat; however, higher proportions of plasma saturated fatty acids (SFA) predict greater risk for developing type-2 diabetes and heart disease. These observations suggest a disconnect between dietary saturated fat and plasma SFA, but few controlled feeding studies have specifically examined how varying saturated fat intake across a broad range affects circulating SFA levels. Sixteen adults with metabolic syndrome (age 44.9±9.9 yr, BMI 37.9±6.3 kg/m2) were fed six 3-wk diets that progressively increased carbohydrate (from 47 to 346 g/day) with concomitant decreases in total and saturated fat. Despite a distinct increase in saturated fat intake from baseline to the low-carbohydrate diet (46 to 84 g/day), and then a gradual decrease in saturated fat to 32 g/day at the highest carbohydrate phase, there were no significant changes in the proportion of total SFA in any plasma lipid fractions. Whereas plasma saturated fat remained relatively stable, the proportion of palmitoleic acid in plasma triglyceride and cholesteryl ester was significantly and uniformly reduced as carbohydrate intake decreased, and then gradually increased as dietary carbohydrate was re-introduced. The results show that dietary and plasma saturated fat are not related, and that increasing dietary carbohydrate across a range of intakes promotes incremental increases in plasma palmitoleic acid, a biomarker consistently associated with adverse health outcomes. PMID:25415333

  19. Gut Microbial Fatty Acid Metabolites Reduce Triacylglycerol Levels in Hepatocytes.

    PubMed

    Nanthirudjanar, Tharnath; Furumoto, Hidehiro; Zheng, Jiawen; Kim, Young-Il; Goto, Tsuyoshi; Takahashi, Nobuyuki; Kawada, Teruo; Park, Si-Bum; Hirata, Akiko; Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun; Hirata, Takashi; Sugawara, Tatsuya

    2015-11-01

    Hydroxy and oxo fatty acids were recently found to be produced as intermediates during gut microbial fatty acid metabolism. Lactobacillus plantarum produces these fatty acids from unsaturated fatty acids such as linoleic acid. In this study, we investigated the effects of these gut microbial fatty acid metabolites on the lipogenesis in liver cells. We screened their effect on sterol regulatory element binding protein-1c (SREBP-1c) expression in HepG2 cells treated with a synthetic liver X receptor α (LXRα) agonist (T0901317). The results showed that 10-hydroxy-12(Z)-octadecenoic acid (18:1) (HYA), 10-hydroxy-6(Z),12(Z)-octadecadienoic acid (18:2) (γHYA), 10-oxo-12(Z)-18:1 (KetoA), and 10-oxo-6(Z),12(Z)-18:2 (γKetoA) significantly decreased SREBP-1c mRNA expression induced by T0901317. These fatty acids also downregulated the mRNA expression of lipogenic genes by suppressing LXRα activity and inhibiting SREBP-1 maturation. Oral administration of KetoA, which effectively reduced triacylglycerol accumulation and acetyl-CoA carboxylase 2 (ACC2) expression in HepG2 cells, for 2 weeks significantly decreased Srebp-1c, Scd-1, and Acc2 expression in the liver of mice fed a high-sucrose diet. Our findings suggest that the hypolipidemic effect of the fatty acid metabolites produced by L. plantarum can be exploited in the treatment of cardiovascular diseases or dyslipidemia. PMID:26399511

  20. Effects of different fatty acid chain lengths on fatty acid oxidation-related protein expression levels in rat skeletal muscles.

    PubMed

    Ishizawa, Rie; Masuda, Kazumi; Sakata, Susumu; Nakatani, Akira

    2015-01-01

    Skeletal muscles can adapt to dietary interventions that affect energy metabolism. Dietary intake of medium-chain fatty acids (MCFAs) enhances mitochondrial oxidation of fatty acids (FAO) in type IIa skeletal muscle fibers. However, the effect of MCFAs diet on mitochondrial or cytoplasmic FAO-related protein expression levels in different types of muscle fibers remains unclear. This study aims to examine the effects of a high-fat diet, containing MCFAs, on mitochondrial enzyme activities and heart-type fatty acid-binding protein (H-FABP) levels in different types of skeletal muscle fibers. Five-week-old male Wistar rats were assigned to one of the following three dietary conditions: standard chow (SC, 12% of calories from fat), high-fat MCFA, or high-fat long-chain fatty acids (LCFAs) diet (60% of calories from fat for both). The animals were provided food and water ad libitum for 4 weeks, following which citrate synthase (CS) activity and H-FABP concentration were analyzed. The epididymal fat pads (EFP) were significantly smaller in the MCFA group than in the LCFA group (p < 0.05). MCFA-fed group displayed an increase in CS activity compared with that observed in SC-fed controls in all types of skeletal muscle fibers (triceps, surface portion of gastrocnemius (gasS), deep portion of gastrocnemius (gasD), and soleus; p < 0.05,). H-FABP concentration was significantly higher in the LCFA group than in both the SC-fed and MCFA-fed groups (triceps, gasS, gasD, and soleus; p < 0.05,). However, no significant difference was observed in the H-FABP concentrations between the SC-fed and MCFA-fed groups. The results of this study showed that the MCFA diet can increase the expression of the mitochondrial enzyme CS, but not that of H-FABP, in both fast- and slow-twitch muscle fibers, suggesting that H-FABP expression is dependent on the chain length of fatty acids in the cytoplasm of skeletal muscles cells. PMID:25766930

  1. Increased acid responsiveness in vagal sensory neurons in a guinea pig model of eosinophilic esophagitis

    PubMed Central

    Hu, Youtian; Liu, Zhenyu; Yu, Xiaoyun; Pasricha, Pankaj J.; Undem, Bradley J.

    2014-01-01

    Eosinophilic esophagitis (EoE) is characterized with eosinophils and mast cells predominated allergic inflammation in the esophagus and present with esophageal dysfunctions such as dysphagia, food impaction, and heartburn. However, the underlying mechanism of esophageal dysfunctions is unclear. This study aims to determine whether neurons in the vagal sensory ganglia are modulated in a guinea pig model of EoE. Animals were actively sensitized by ovalbumin (OVA) and then challenged with aerosol OVA inhalation for 2 wk. This results in a mild esophagitis with increases in mast cells and eosinophils in the esophageal wall. Vagal nodose and jugular neurons were disassociated, and their responses to acid, capsaicin, and transient receptor potential vanilloid type 1 (TRPV1) antagonist AMG-9810 were studied by calcium imaging and whole cell patch-clamp recording. Compared with naïve animals, antigen challenge significantly increased acid responsiveness in both nodose and jugular neurons. Their responses to capsaicin were also increased after antigen challenge. AMG-9810, at a concentration that blocked capsaicin-evoked calcium influx, abolished the increase in acid-induced activation in both nodose and jugular neurons. Vagotomy strongly attenuated those increased responses of nodose and jugular neurons to both acid and capsaicin induced by antigen challenge. These data for the first time demonstrated that prolonged antigen challenge significantly increases acid responsiveness in vagal nodose and jugular ganglia neurons. This sensitization effect is mediated largely through TRPV1 and initiated at sensory nerve endings in the peripheral tissues. Allergen-induced enhancement of responsiveness to noxious stimulation by acid in sensory nerve may contribute to the development of esophageal dysfunctions such as heartburn in EoE. PMID:24875100

  2. Pros and cons of increasing folic acid and vitamin B12 intake by fortification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is no doubt that folic acid fortification can be effective for reducing the incidence of neural tube defects (NTDs). The degree of efficacy depends on both the level of folate depletion and other, yet to be fully characterized, genetic and/or environmental factors. This article summarizes brie...

  3. 5,7-DIHYDROXYTRYPTAMINE INJECTIONS INCREASE GLIAL FIBRILLARY ACIDIC PROTEIN IN THE HYPOTHALAMUS OF ADULT RATS

    EPA Science Inventory

    The distribution and level of glial fibrillary acidic protein (GFAP) were determined in the adult rat hypothalamus following axotomy of serotonin (5-HT) neurons. even days after unilateral intrahypothalamic injection of the 5-HT neurotoxic, 5,7- dihydroxytryptamine, there gas a m...

  4. Diesterified Nitrone Rescues Nitroso-Redox Levels and Increases Myocyte Contraction Via Increased SR Ca2+ Handling

    PubMed Central

    Traynham, Christopher J.; Roof, Steve R.; Wang, Honglan; Prosak, Robert A.; Tang, Lifei; Viatchenko-Karpinski, Serge; Ho, Hsiang-Ting; Racoma, Ira O.; Catalano, Dominic J.; Huang, Xin; Han, Yongbin; Kim, Shang-U; Gyorke, Sandor; Billman, George E.

    2012-01-01

    Nitric oxide (NO) and superoxide (O2−) are important cardiac signaling molecules that regulate myocyte contraction. For appropriate regulation, NO and O2.− must exist at defined levels. Unfortunately, the NO and O2.− levels are altered in many cardiomyopathies (heart failure, ischemia, hypertrophy, etc.) leading to contractile dysfunction and adverse remodeling. Hence, rescuing the nitroso-redox levels is a potential therapeutic strategy. Nitrone spin traps have been shown to scavenge O2.− while releasing NO as a reaction byproduct; and we synthesized a novel, cell permeable nitrone, 2–2–3,4-dihydro-2H-pyrrole 1-oxide (EMEPO). We hypothesized that EMEPO would improve contractile function in myocytes with altered nitroso-redox levels. Ventricular myocytes were isolated from wildtype (C57Bl/6) and NOS1 knockout (NOS1−/−) mice, a known model of NO/O2.− imbalance, and incubated with EMEPO. EMEPO significantly reduced O2.− (lucigenin-enhanced chemiluminescence) and elevated NO (DAF-FM diacetate) levels in NOS1−/− myocytes. Furthermore, EMEPO increased NOS1−/− myocyte basal contraction (Ca2+ transients, Fluo-4AM; shortening, video-edge detection), the force-frequency response and the contractile response to β-adrenergic stimulation. EMEPO had no effect in wildtype myocytes. EMEPO also increased ryanodine receptor activity (sarcoplasmic reticulum Ca2+ leak/load relationship) and phospholamban Serine16 phosphorylation (Western blot). We also repeated our functional experiments in a canine post-myocardial infarction model and observed similar results to those seen in NOS1−/− myocytes. In conclusion, EMEPO improved contractile function in myocytes experiencing an imbalance of their nitroso-redox levels. The concurrent restoration of NO and O2.− levels may have therapeutic potential in the treatment of various cardiomyopathies. PMID:23300588

  5. Beef tallow increases the potency of conjugated linoleic acid in the reduction of mouse mammary tumor metastasis.

    PubMed

    Hubbard, Neil E; Lim, Debora; Erickson, Kent L

    2006-01-01

    Animal studies consistently show that dietary conjugated linoleic acid (CLA) reduces mammary tumorigenesis including metastasis. Relatively low concentrations of CLA are required for those effects, and a threshold level exists above which there is no added reduction. We reasoned that the concentration of CLA required to effectively alter mammary tumor metastasis may be dependent on the type of dietary fat because select fatty acids can enhance or suppress normal or malignant cell growth and metastasis. For this study, the diets (a total of 12 different groups) differed in fatty acid composition but not in energy from fat (40%). In experiments involving spontaneous metastasis, mice were fed for 11 wk; in experiments in which mice were injected i.v. with tumor cells, they were fed for 7 wk. Mice were then assessed for the effect of CLA concentration on mammary tumorigenesis. Mammary tumor growth was not altered, but metastasis was significantly decreased when beef tallow (BT) replaced half of a defined vegetable fat blend (VFB). That blend reflects the typical fat content of a Western diet. In addition, that same VFB:BT diet lowered the concentration of CLA required to significantly decrease mammary tumor metastasis from 0.1% of the diet to 0.05%. A diet in which corn oil replaced half of the VFB did not lower the threshold from 0.1 to 0.05%. In vitro, the main fatty acid in vegetable oil, linoleic acid, reduced the efficacy of CLA toxicity on mammary tumor cells in culture. Alternatively, fatty acids normally found in BT, such as oleic, stearic, and palmitic acids, either did not change or enhanced the cytolytic effects of CLA isomers on mouse mammary tumor cells in culture. These data provide evidence that dietary BT, itself with negligible levels of CLA, may increase the efficacy of dietary CLA in reducing mammary tumorigenesis. PMID:16365064

  6. Genome-Wide Analysis of Branched-Chain Amino Acid Levels in Arabidopsis Seeds[W

    PubMed Central

    Angelovici, Ruthie; Lipka, Alexander E.; Deason, Nicholas; Gonzalez-Jorge, Sabrina; Lin, Haining; Cepela, Jason; Buell, Robin; Gore, Michael A.; DellaPenna, Dean

    2013-01-01

    Branched-chain amino acids (BCAAs) are three of the nine essential amino acids in human and animal diets and are important for numerous processes in development and growth. However, seed BCAA levels in major crops are insufficient to meet dietary requirements, making genetic improvement for increased and balanced seed BCAAs an important nutritional target. Addressing this issue requires a better understanding of the genetics underlying seed BCAA content and composition. Here, a genome-wide association study and haplotype analysis for seed BCAA traits in Arabidopsis thaliana revealed a strong association with a chromosomal interval containing two BRANCHED-CHAIN AMINO ACID TRANSFERASES, BCAT1 and BCAT2. Linkage analysis, reverse genetic approaches, and molecular complementation analysis demonstrated that allelic variation at BCAT2 is responsible for the natural variation of seed BCAAs in this interval. Complementation analysis of a bcat2 null mutant with two significantly different alleles from accessions Bayreuth-0 and Shahdara is consistent with BCAT2 contributing to natural variation in BCAA levels, glutamate recycling, and free amino acid homeostasis in seeds in an allele-dependent manner. The seed-specific phenotype of bcat2 null alleles, its strong transcription induction during late seed development, and its subcellular localization to the mitochondria are consistent with a unique, catabolic role for BCAT2 in BCAA metabolism in seeds. PMID:24368787

  7. Cochlear ablation effects on amino acid levels in the chinchilla cochlear nucleus.

    PubMed

    Godfrey, D A; Chen, K; Godfrey, M A; Lee, A C; Crass, S P; Shipp, D; Simo, H; Robinson, K T

    2015-06-25

    Inner ear damage can lead to hearing disorders, including tinnitus, hyperacusis, and hearing loss. We measured the effects of severe inner ear damage, produced by cochlear ablation, on the levels and distributions of amino acids in the first brain center of the auditory system, the cochlear nucleus. Measurements were also made for its projection pathways and the superior olivary nuclei. Cochlear ablation produces complete degeneration of the auditory nerve, which provides a baseline for interpreting the effects of partial damage to the inner ear, such as that from ototoxic drugs or intense sound. Amino acids play a critical role in neural function, including neurotransmission, neuromodulation, cellular metabolism, and protein construction. They include major neurotransmitters of the brain - glutamate, glycine, and γ-aminobutyrate (GABA) - as well as others closely related to their metabolism and/or functions - aspartate, glutamine, and taurine. Since the effects of inner ear damage develop over time, we measured the changes in amino acid levels at various survival times after cochlear ablation. Glutamate and aspartate levels decreased by 2weeks in the ipsilateral ventral cochlear nucleus and deep layer of the dorsal cochlear nucleus, with the largest decreases in the posteroventral cochlear nucleus (PVCN): 66% for glutamate and 63% for aspartate. Aspartate levels also decreased in the lateral part of the ipsilateral trapezoid body, by as much as 50%, suggesting a transneuronal effect. GABA and glycine levels showed some bilateral decreases, especially in the PVCN. These results may represent the state of amino acid metabolism in the cochlear nucleus of humans after removal of eighth nerve tumors, which may adversely result in destruction of the auditory nerve. Measurement of chemical changes following inner ear damage may increase understanding of the pathogenesis of hearing impairments and enable improvements in their diagnosis and treatment. PMID:25839146

  8. Structure of a Microbial Community in Soil after Prolonged Addition of Low Levels of Simulated Acid Rain

    PubMed Central

    Pennanen, Taina; Fritze, Hannu; Vanhala, Pekka; Kiikkilä, Oili; Neuvonen, Seppo; Bååth, Erland

    1998-01-01

    Humus samples were collected 12 growing seasons after the start of a simulated acid rain experiment situated in the subarctic environment. The acid rain was simulated with H2SO4, a combination of H2SO4 and HNO3, and HNO3 at two levels of moderate acidic loads close to the natural anthropogenic pollution levels of southern Scandinavia. The higher levels of acid applications resulted in acidification, as defined by humus chemistry. The concentrations of base cations decreased, while the concentrations of exchangeable H+, Al, and Fe increased. Humus pH decreased from 3.83 to 3.65. Basal respiration decreased with decreasing humus pH, and total microbial biomass, measured by substrate-induced respiration and total amount of phospholipid fatty acids (PLFA), decreased slightly. An altered PLFA pattern indicated a change in the microbial community structure at the higher levels of acid applications. In general, branched fatty acids, typical of gram-positive bacteria, increased in the acid plots. PLFA analysis performed on the bacterial community growing on agar plates also showed that the relative amount of PLFA specific for gram-positive bacteria increased due to the acidification. The changed bacterial community was adapted to the more acidic environment in the acid-treated plots, even though bacterial growth rates, estimated by thymidine and leucine incorporation, decreased with pH. Fungal activity (measured as acetate incorporation into ergosterol) was not affected. This result indicates that bacteria were more affected than fungi by the acidification. The capacity of the bacterial community to utilize 95 different carbon sources was variable and only showed weak correlations to pH. Differences in the toxicities of H2SO4 and HNO3 for the microbial community were not found. PMID:9603831

  9. Physiological response to increasing levels of neurally adjusted ventilatory assist (NAVA).

    PubMed

    Lecomte, François; Brander, Lukas; Jalde, Fredrick; Beck, Jennifer; Qui, Haibo; Elie, Caroline; Slutsky, Arthur S; Brunet, Fabrice; Sinderby, Christer

    2009-04-30

    This study evaluated the response to increasing levels of neurally adjusted ventilatory assist (NAVA), a mode converting electrical activity of the diaphragm (EAdi) into pressure, regulated by a proportionality constant called the NAVA level. Fourteen rabbits were studied during baseline, resistive loading and ramp increases of the NAVA level. EAdi, airway (Paw) and esophageal pressure (Pes), Pes pressure time product (PTPes), breathing pattern, and blood gases were measured. Resistive loading increased PTPes and EAdi. P(a)(CO)(2) increased with high load but not during low load. Increasing NAVA levels increased Paw until a breakpoint where the Paw increase was reduced despite increasing NAVA level. At this breakpoint, Pes, PTPes, EAdi, and P(a)(CO)(2) were similar to baseline. Further increase of the NAVA level reduced Pes, PTPes and EAdi without changes in ventilation. In conclusion, observing the trend in Paw during a ramp increase of the NAVA level allows determination of a level where the inspiratory effort matches unloaded conditions. PMID:19429528

  10. Disrupted short chain specific β-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae.

    PubMed

    Leber, Christopher; Choi, Jin Wook; Polson, Brian; Da Silva, Nancy A

    2016-04-01

    Biologically derived fatty acids have gained tremendous interest as an alternative to petroleum-derived fuels and chemical precursors. We previously demonstrated the synthesis of short chain fatty acids in Saccharomyces cerevisiae by introduction of the Homo sapiens fatty acid synthase (hFAS) with heterologous phosphopantetheine transferases and heterologous thioesterases. In this study, short chain fatty acid production was improved by combining a variety of novel enzyme and metabolic engineering strategies. The use of a H. sapiens-derived thioesterase and phosphopantetheine transferase were evaluated. In addition, strains were engineered to disrupt either the full β-oxidation (by deleting FAA2, PXA1, and POX1) or short chain-specific β-oxidation (by deleting FAA2, ANT1, and PEX11) pathways. Prohibiting full β-oxidation increased hexanoic and octanoic acid levels by 8- and 79-fold relative to the parent strain expressing hFAS. However, by targeting only short chain β-oxidation, hexanoic and octanoic acid levels increased further to 31- and 140-fold over the parent. In addition, an optimized hFAS gene increased hexanoic, octanoic, decanoic and total short chain fatty acid levels by 2.9-, 2.0-, 2.3-, and 2.2-fold, respectively, relative to the non-optimized counterpart. By combining these unique enzyme and metabolic engineering strategies, octanoic acid was increased more than 181-fold over the parent strain expressing hFAS. PMID:26388428

  11. Increased hepatic Fatty Acid uptake and esterification contribute to tetracycline-induced steatosis in mice.

    PubMed

    Choi, You-Jin; Lee, Chae-Hyeon; Lee, Kang-Yo; Jung, Seung-Hwan; Lee, Byung-Hoon

    2015-06-01

    Tetracycline induces microvesicular steatosis, which has a poor long-term prognosis and a higher risk of steatohepatitis development compared with macrovesicular steatosis. Recent gene expression studies indicated that tetracycline treatment affects the expression of many genes associated with fatty acid transport and esterification. In this study, we investigated the role of fatty acid transport and esterification in tetracycline-induced steatosis. Intracellular lipid accumulation and the protein expression of fatty acid translocase (FAT or CD36) and diacylglycerol acyltransferase (DGAT) 2 were increased in both mouse liver and HepG2 cells treated with tetracycline at 50 mg/kg (intraperitoneal injection, i.p.) and 100 μM, respectively. Tetracycline increased the cellular uptake of boron-dipyrromethene-labeled C16 fatty acid, which was abolished by CD36 RNA interference. Oleate-induced cellular lipid accumulation was further enhanced by co-incubation with tetracycline. Tetracycline downregulated extracellular signal-regulated kinase (ERK) phosphorylation, which negatively regulated DGAT2 expression. U0126, a specific ERK inhibitor, also increased DGAT2 expression and cellular lipid accumulation. DGAT1 and 2 knock-down with specific small interfering (si)-RNA completely abrogated the steatogenic effect of tetracycline in HepG2 cells. Taken together, our data showed that tetracycline induces lipid accumulation by facilitating fatty acid transport and triglyceride esterification by upregulating CD36 and DGAT2, respectively. PMID:25745068

  12. Central injection of CDP-choline suppresses serum ghrelin levels while increasing serum leptin levels in rats.

    PubMed

    Kiyici, Sinem; Basaran, Nesrin Filiz; Cavun, Sinan; Savci, Vahide

    2015-10-01

    In this study we aimed to test central administration of CDP-choline on serum ghrelin, leptin, glucose and corticosterone levels in rats. Intracerebroventricular (i.c.v.) 0.5, 1.0 and 2.0 µmol CDP-choline and saline were administered to male Wistar-Albino rats. For the measurement of serum leptin and ghrelin levels, blood samples were obtained baseline and at 5, 15, 30, 60 and 120 min following i.c.v. CDP-choline injection. Equimolar doses of i.c.v. choline (1.0 µmol) and cytidine (1.0 µmol) were administered and measurements were repeated throughout the second round of the experiment. Atropine (10 µg) and mecamylamine (50 µg) were injected intracerebroventricularly prior to CDP-choline and measurements repeated in the third round of the experiment. After 1 µmol CDP-choline injection, serum ghrelin levels were suppressed significantly at 60 min (P=0.025), whereas serum leptin levels were increased at 60 and 120 min (P=0.012 and P=0.017 respectively). CDP-choline injections also induced a dose- and time-dependent increase in serum glucose and corticosterone levels. The effect of choline on serum leptin and ghrelin levels was similar with CDP-choline while no effect was seen with cytidine. Suppression of serum ghrelin levels was eliminated through mecamylamine pretreatment while a rise in leptin was prevented by both atropine and mecamylamine pretreatments. In conclusion; centrally injected CDP-choline suppressed serum ghrelin levels while increasing serum leptin levels. The observed effects following receptor antagonist treatment suggest that nicotinic receptors play a role in suppression of serum ghrelin levels,whereas nicotinic and muscarinic receptors both play a part in the increase of serum leptin levels. PMID:26162700

  13. Increased expression of fatty acid synthase and acetyl-CoA carboxylase in the prefrontal cortex and cerebellum in the valproic acid model of autism

    PubMed Central

    Chen, Jianling; Wu, Wei; Fu, Yingmei; Yu, Shunying; Cui, Donghong; Zhao, Min; Du, Yasong; Li, Jijun; Li, Xiaohong

    2016-01-01

    The primary aim of the present study was to investigate alterations in enzymes associated with fatty acid synthesis, namely fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC), in the prefrontal cortex and cerebellum of the valproic acid (VPA)-induced animal model of autism. In this model, pregnant rats were given a single intraperitoneal injection of VPA, and prefrontal cortex and cerebellum samples from their pups were analyzed. The results of western blotting and reverse transcription-quantitative polymerase chain reaction analyses demonstrated that the protein and mRNA expression levels of FASN, ACC and phospho-ACC (pACC) were increased in the prefrontal cortex and cerebellum of the VPA model of autism. Furthermore, in the prefrontal cortex and cerebellum of the VPA model of autism, AMPK expression is increased, whereas PI3K and Akt expression are unchanged. This suggests that disorder of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt/FASN and/or adenosine 5′-monophosphate-activated protein kinase (AMPK)/ACC pathway may be involved in the pathogenesis of autism. It is hypothesized that fatty acid synthesis participates in autism through PI3K/Akt/FASN and AMPK/ACC pathways. PMID:27602061

  14. Amino acid and vascular endothelial growth factor levels in subretinal fluid in rhegmatogenous retinal detachment

    PubMed Central

    Buyukuysal, Rifat Levent; Gelisken, Oner; Buyukuysal, Cagatay; Can, Basak

    2014-01-01

    Purpose To study the concentrations of amino acids and vascular endothelial growth factor (VEGF) in subretinal fluid (SRF) of cases with rhegmatogenous retinal detachment (RRD). The relevance of the results with postoperative anatomic and functional success in RRD was investigated. Methods Fifty-three patients were included in this prospective study. The study group consisted of 46 patients who had scleral buckling surgery with the diagnosis of RRD, and SRF was obtained during the surgery. The control specimens consisted of vitreous samples of seven patients who were diagnosed with pars plana vitrectomy without RRD. Study cases were divided into three groups, corresponding to the duration of retinal detachment. Clinical characteristics, including best corrected visual acuity (BCVA) and anatomic status at month 6, were recorded. Concentrations of 15 selected amino acids were quantified by using high performance liquid chromatography, and VEGF levels were measured with enzyme immunoassay. Results When compared with the control group, SRF concentrations of aspartate, citrulline, glutamate, and glycine increased significantly in the study group (p<0.05). Statistical analysis showed that concentrations of alanine, isoleucine, leucine, methionine, phenylalanine, threonine, tyrosine, and valine decreased (p<0.05). SRF levels of glutamine, taurine, and serine had no significant change. SRF VEGF levels were significantly higher than the vitreous samples of the controls (p<0.001). Time-dependent changes and interactions between VEGF and amino acids were observed. There was no correlation between the concentrations of amino acids or VEGF with the parameters of BCVA and anatomical success. Conclusions Significant changes occur in concentrations of amino acids and VEGF in SRF of cases with RRD. Our results suggest that several mechanisms contribute to the pathophysiology. PMID:25352742

  15. Assessment of Folic Acid Supplementation in Pregnant Women by Estimation of Serum Levels of Tetrahydrofolic Acid, Dihydrofolate Reductase, and Homocysteine

    PubMed Central

    Saxena, Vartika; Mirza, Anissa Atif; Kumari, Ranjeeta; Sharma, Kapil; Bharadwaj, Jyoti

    2016-01-01

    Background. Status of folic acid use in pregnant women of the hilly regions in North India was little known. This study was carried out to assess the folic acid use and estimate folate metabolites in pregnant women of this region. Materials and Methods. This cross-sectional study is comprised of 76 pregnant women, whose folic acid supplementation was assessed by a questionnaire and serum levels of homocysteine, tetrahydrofolic acid (THFA), and dihydrofolate reductase (DHFR) were estimated using Enzyme Linked Immunoassays. Results. The study data revealed awareness of folic acid use during pregnancy was present in 46.1% and 23.7% were taking folic acid supplements. The study depicted that there was no statistically significant difference between serum levels of THFA and DHFR in pregnant women with and without folic acid supplements (p = 0.790). Hyperhomocysteinemia was present in 15.78% of the participants. Conclusion. Less awareness about folic acid supplementation and low use of folic acid by pregnant women were observed in this region. Sufficient dietary ingestion may suffice for the escalated requirements in pregnancy, but since this cannot be ensured, hence folic acid supplementation should be made as an integral part of education and reproductive health programs for its better metabolic use, growth, and development of fetus. PMID:27064332

  16. High-sucrose diet increases ROS generation, FFA accumulation, UCP2 level, and proton leak in liver mitochondria.

    PubMed

    Ruiz-Ramírez, Angélica; Chávez-Salgado, Monserrath; Peñeda-Flores, José Antonio; Zapata, Estrella; Masso, Felipe; El-Hafidi, Mohammed

    2011-12-01

    Obesity, a risk factor for insulin resistance, contributes to the development of type 2 diabetes and cardiovascular diseases. The relationship between increased levels of free fatty acids in the liver mitochondria, mitochondrial function, and ROS generation in rat model of obesity induced by a high-sucrose diet was not sufficiently established. We determined how the bioenergetic functions and ROS generation of the mitochondria respond to a hyperlipidemic environment. Mitochondria from sucrose-fed rats generated H(2)O(2) at a higher rate than the control mitochondria. Adding fatty acid-free bovine serum albumin to mitochondria from sucrose-fed rats significantly reduced the rate of H(2)O(2) generation. In contrast, adding exogenous oleic or linoleic acid exacerbated the rate of H(2)O(2) generation in both sucrose-fed and control mitochondria, and the mitochondria from sucrose-fed rats were more sensitive than the control mitochondria. The increased rate of H(2)O(2) generation in sucrose-fed mitochondria corresponded to decreased levels of reduced GSH and vitamin E and increased levels of Cu/Zn-SOD in the intermembrane space. There was no difference between the levels of lipid peroxidation and protein carbonylation in the two types of mitochondria. In addition to the normal activity of Mn-SOD, GPX and catalase detected an increased activity of complex II, and upregulation of UCP2 was observed in mitochondria from sucrose-fed rats, all of which may accelerate respiration rates and reduce generation of ROS. In turn, these effects may protect the mitochondria of sucrose-fed rats from oxidative stress and preserve their function and integrity. However, in whole liver these adaptive mechanisms of the mitochondria were inefficient at counteracting redox imbalances and inhibiting oxidative stress outside of the mitochondria. PMID:21917631

  17. Triticale dried distillers' grain increases alpha-linolenic acid in subcutaneous fat of beef cattle fed oilseeds.

    PubMed

    He, M L; Sultana, H; Oba, M; Kastelic, J P; Dugan, M E R; McKinnon, J J; McAllister, T A

    2012-12-01

    This study investigated the effect of triticale dried distillers' grain with solubles (DDGS), flax (FS) and sunflower (SS) seed on growth and the fatty acid profile of subcutaneous (SQ) fat in individually housed steers (n = 15 per diet) fed ad libitum (DM basis); (1) control (CON) 90% barley grain + 10% barley silage; or substitution of barley grain for: (2) 30% DDGS; (3) 10% FS; (4) 30% DDGS + 8.5% FS; (5) 10% SS and (6) 30% DDGS + 8.5% SS. Oilseeds in the combination diets were reduced to maintain diet lipid levels below 9% DM and to determine if favorable changes in the fatty acid profile could be maintained or enhanced at reduced levels of oilseed. Plasma and SQ fat biopsies were collected at 0, 6, and 12 weeks. Inclusion of DDGS decreased (P < 0.05) average daily gain, feed conversion and backfat thickness. Feeding FS increased (P < 0.05) plasma ALA compared to CON and SS and consistently increased (P < 0.01) ALA and non-conjugated and non-methylene interrupted dienes (NCD), whereas SS tended to decrease ALA in fat. Inclusion of DDGS with FS further increased (P < 0.02) ALA and decreased (P < 0.05) NCD and 18:1-t10 in fat. The fact that the levels of n-3 fatty acids in SQ fat from steers fed DDGS + FS were higher than those obtained with FS alone, has obvious benefits to the practical cost of favorably manipulating fatty acid profiles in beef. PMID:23054550

  18. INCREASE IN GLIAL FIBRILLARY ACIDIC PROTEIN FOLLOWS BRAIN HYPERTHERMIA IN RATS

    EPA Science Inventory

    Previously, the authors have demonstrated that an increase in the astrocyte-associated protein, glial fibrillary acidic protein (GFAP), accompanies brain injury induced by a variety of chemical insults. In the present study the authors examined the effects of microwave-induced hy...

  19. Polyunsaturated fatty acid content is increased in the milk of women with pregnancy associated breast cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Pregnancy associated breast cancer (PABC) is aggressive and difficult to diagnose. High intake of most types of dietary fat is thought to increase breast cancer risk, however results in humans supporting this premise remain equivocal. Fatty acid (FA) concentrations in the body comprise b...

  20. Association of androgen with gender difference in serum adipocyte fatty acid binding protein levels

    PubMed Central

    Hu, Xiang; Ma, Xiaojing; Pan, Xiaoping; Luo, Yuqi; Xu, Yiting; Xiong, Qin; Bao, Yuqian; Jia, Weiping

    2016-01-01

    Clinical investigations have indicated women have higher levels of adipocyte fatty acid binding protein (A-FABP) than men. The present study aimed to identify factors related to gender difference in serum A-FABP levels. A total of 507 participants (194 men, 132 premenopausal women, and 181 postmenopausal women) were enrolled in the present study. Serum A-FABP levels increased in the order from men to premenopausal women to postmenopausal women in both body mass index categories (<25.0 and ≥25.0 kg/m2; all P < 0.05). Multiple stepwise regression analyses showed that after adjustment for factors related to serum A-FABP levels, the trunk fat mass was an independent and positive factor of serum A-FABP levels. For men, total testosterone was associated independently and inversely with serum A-FABP levels. For pre- and postmenopausal women, bioavailable testosterone and total testosterone were independent and positive factors associated with serum A-FABP levels, respectively. The present study demonstrated that the androgen was correlated with the serum A-FABP levels negatively in men, but positively in women. With these effects on the fat content, especially trunk fat, androgen might contribute to the gender difference in serum A-FABP levels. PMID:27270834

  1. Association of androgen with gender difference in serum adipocyte fatty acid binding protein levels.

    PubMed

    Hu, Xiang; Ma, Xiaojing; Pan, Xiaoping; Luo, Yuqi; Xu, Yiting; Xiong, Qin; Bao, Yuqian; Jia, Weiping

    2016-01-01

    Clinical investigations have indicated women have higher levels of adipocyte fatty acid binding protein (A-FABP) than men. The present study aimed to identify factors related to gender difference in serum A-FABP levels. A total of 507 participants (194 men, 132 premenopausal women, and 181 postmenopausal women) were enrolled in the present study. Serum A-FABP levels increased in the order from men to premenopausal women to postmenopausal women in both body mass index categories (<25.0 and ≥25.0 kg/m(2); all P < 0.05). Multiple stepwise regression analyses showed that after adjustment for factors related to serum A-FABP levels, the trunk fat mass was an independent and positive factor of serum A-FABP levels. For men, total testosterone was associated independently and inversely with serum A-FABP levels. For pre- and postmenopausal women, bioavailable testosterone and total testosterone were independent and positive factors associated with serum A-FABP levels, respectively. The present study demonstrated that the androgen was correlated with the serum A-FABP levels negatively in men, but positively in women. With these effects on the fat content, especially trunk fat, androgen might contribute to the gender difference in serum A-FABP levels. PMID:27270834

  2. Serum uric acid levels in patients with infections of central nervous system.

    PubMed

    Liu, Jia; Li, Min; Wang, Xuan; Yi, Huan; Xu, Li; Zhong, Xiu-Feng; Peng, Fu-Hua

    2016-09-01

    The lower levels of serum uric acid (UA) correlated with meningitis have been reported. However, comparison of UA levels among different kinds of infections of central nervous system (CNS) and changes of UA levels before and after treatment are unknown. Our study aimed to investigate the antioxidant status of serum UA in five common types of CNS infections. We retrospectively evaluated serum UA levels of 399 patients with different types of CNS infections including viral meningitis or meningoencephalitis (VM), brain cysticercosis (BC), tuberculous meningitis or meningoencephalitis (TM), cryptococcus meningitis or meningoencephalitis (CM) and bacterial meningitis or meningoencephalitis (BM), and 119 healthy controls. The changes of serum UA were examined and analyzed. The serum levels of UA in patients with CNS infections were significantly lower than those in normal subjects and among in TM, CM and BM groups were apparently lower when compared with VM and BC groups; otherwise, after effective therapy, serum UA levels were obviously higher than before. Our findings showed that patients with CNS infections had lower serum UA levels, which was independent of the classification and the serum UA levels increased obviously after valid treatment, the variation of UA levels might be considered as an indicator of clinical curative effect in patients with CNS infections. PMID:26612048

  3. Nod2 deficiency protects mice from cholestatic liver disease by increasing renal excretion of bile acids

    PubMed Central

    Wang, Lirui; Hartmann, Phillipp; Haimerl, Michael; Bathena, Sai P.; Sjöwall, Christopher; Almer, Sven; Alnouti, Yazen; Hofmann, Alan F.; Schnabl, Bernd

    2014-01-01

    Background & aims Chronic liver disease is characterized by fibrosis that may progress to cirrhosis. Nucleotide oligomerization domain 2 (Nod2), a member of the Nod-like receptor (NLR) family of intracellular immune receptors, plays an important role in the defense against bacterial infection through binding to the ligand muramyl dipeptide (MDP). Here, we investigated the role of Nod2 in the development of liver fibrosis. Methods We studied experimental cholestatic liver disease induced by bile duct ligation or toxic liver disease induced by carbon tetrachloride in wild type and Nod2−/− mice. Results Nod2 deficiency protected mice from cholestatic but not toxin-induced liver injury and fibrosis. Most notably, the hepatic bile acid concentration was lower in Nod2−/− mice than wild type mice following bile duct ligation for 3 weeks. In contrast to wild type mice, Nod2−/− mice had increased urinary excretion of bile acids, including sulfated bile acids, and an upregulation of the bile acid efflux transporters MRP2 and MRP4 in tubular epithelial cells of the kidney. MRP2 and MRP4 were downregulated by IL-1β in a Nod2 dependent fashion. Conclusions Our findings indicate that Nod2 deficiency protects mice from cholestatic liver injury and fibrosis through enhancing renal excretion of bile acids that in turn contributes to decreased concentration of bile acids in the hepatocyte. PMID:24560660

  4. Effects of dietary pantethine levels on contents of fatty acids and thiobarbituric acid reactive substances in the liver of rats orally administered varying amounts of autoxidized linoleate.

    PubMed

    Hiramatsu, N; Kishida, T; Hamano, T; Natake, M

    1991-02-01

    The effects of dietary pantethine levels on the contents and compositions of fatty acids and on the levels of lipid peroxides were investigated with rat liver and its S-9 fraction under administration of 0 (non), 0.2 (low dose), and 0.35 ml (high dose) of autoxidized linoleate (AL) per 100 g body weight of the rats per day for 5 days. AL having 800 meq/kg of peroxide value (PV) and 1,700 meq/kg of carbonyl value (CV) was dosed to the rats of each group given drinking water containing 0 mg% (deficient), 6.25 mg% (adequate), and 125 mg% pantethine (excess). In the pantethine-deficient and -adequate groups, the contents of fatty acids both in the liver homogenate and in the S-9 fraction were correspondingly decreased by increasing dose levels of AL, and the decrease was remarkable especially in the pantethine-deficient group, but was not significant in the pantethine-excess group even by a high dose of AL. Particularly, in the high dose of AL, the notable decreases of oleic acid (C18:1) contents in both the liver and the S-9 fraction were observed in rats of the pantethine-deficient and -adequate groups. The thiobarbituric acid (TBA) values in the liver homogenate and the S-9 fraction were increased correspondingly by increasing dose levels of AL, and the increases were repressed in the pantethine-excess group. PMID:1880633

  5. Increased muscle fatty acid oxidation in dairy cows with intensive body fat mobilization during early lactation.

    PubMed

    Schäff, C; Börner, S; Hacke, S; Kautzsch, U; Sauerwein, H; Spachmann, S K; Schweigel-Röntgen, M; Hammon, H M; Kuhla, B

    2013-10-01

    The beginning of lactation requires huge metabolic adaptations to meet increased energy demands for milk production of dairy cows. One of the adaptations is the mobilization of body reserves mainly from adipose tissue as reflected by increased plasma nonesterified fatty acid (NEFA) concentrations. The capacity of the liver for complete oxidation of NEFA is limited, leading to an increased formation of ketone bodies, reesterification, and accumulation of triglycerides in the liver. As the skeletal muscle also may oxidize fatty acids, it may help to decrease the fatty acid load on the liver. To test this hypothesis, 19 German Holstein cows were weekly blood sampled from 7 wk before until 5 wk after parturition to analyze plasma NEFA concentrations. Liver biopsies were obtained at d 3, 18, and 30 after parturition and, based on the mean liver fat content, cows were grouped to the 10 highest (HI) and 9 lowest (LO). In addition, muscle biopsies were obtained at d -17, 3, and 30 relative to parturition and used to quantify mRNA abundance of genes involved in fatty acid degradation. Plasma NEFA concentrations peaked after parturition and were 1.5-fold higher in HI than LO cows. Muscle carnitine palmitoyltransferase 1α and β mRNA was upregulated in early lactation. The mRNA abundance of muscle peroxisome proliferator-activated receptor γ (PPARG) increased in early lactation and was higher in HI than in LO cows, whereas the abundance of PPARA continuously decreased after parturition. The mRNA abundance of muscle PPARD, uncoupling protein 3, and the β-oxidative enzymes 3-hydroxyacyl-coenzyme A (CoA) dehydrogenase, very long-chain acyl-CoA dehydrogenase, and 3-ketoacyl-CoA was greatest at d 3 after parturition, whereas the abundance of PPARγ coactivator 1α decreased after parturition. Our results indicate that around parturition, oxidation of fatty acids in skeletal muscle is highly activated, which may contribute to diminish the fatty acid load on the liver. The

  6. Plasma amino acids

    MedlinePlus

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  7. Soy-Based Multiple Amino Acid Oral Supplementation Increases the Anti-Sarcoma Effect of Cyclophosphamide

    PubMed Central

    Yao, Chien-An; Chen, Chin-Chu; Wang, Nai-Phog; Chien, Chiang-Ting

    2016-01-01

    The use of a mixture of amino acids caused a selective apoptosis induction against a variety of tumor cell lines, reduced the adverse effects of anti-cancer drugs and increased the sensitivity of tumor cells to chemotherapeutic agents. We evaluated the effects and underlying mechanisms of soy-derived multiple amino acids’ oral supplementation on the therapeutic efficacy of low-dose cyclophosphamide (CTX) and on tumor growth, apoptosis, and autophagy in severe combined immunodeficiency (SCID) mice that were injected with sarcoma-180 (S-180) cells. 3-methyladenine or siRNA knockdown of Atg5 was used to evaluate its effect on sarcoma growth. A comparison of mice with implanted sarcoma cells, CTX, and oral saline and mice with implanted sarcoma cells, CTX, and an oral soy-derived multiple amino acid supplement indicated that the soy-derived multiple amino acid supplement significantly decreased overall sarcoma growth, increased the Bax/Bcl-2 ratio, caspase 3 expression, and apoptosis, and depressed LC3 II-mediated autophagy. Treatment with 3-methyladenine or Atg5 siRNA elicited similar responses as CTX plus soy-derived multiple amino acid in downregulating autophagy and upregulating apoptosis. A low dose of CTX combined with an oral soy-derived multiple amino acid supplement had a potent anti-tumor effect mediated through downregulation of autophagy and upregulation of apoptosis. PMID:27043621

  8. 5 CFR 531.504 - Level of performance required for quality step increase.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... summary level used by the program; and (2) Demonstrates sustained performance of high quality... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Level of performance required for quality... SERVICE REGULATIONS PAY UNDER THE GENERAL SCHEDULE Quality Step Increases § 531.504 Level of...

  9. 5 CFR 531.504 - Level of performance required for quality step increase.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... summary level used by the program; and (2) Demonstrates sustained performance of high quality... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Level of performance required for quality... SERVICE REGULATIONS PAY UNDER THE GENERAL SCHEDULE Quality Step Increases § 531.504 Level of...

  10. A high linoleic acid diet increases oxidative stress in vivo and affects nitric oxide metabolism in humans.

    PubMed

    Turpeinen, A M; Basu, S; Mutanen, M

    1998-09-01

    Evidence from in vitro studies shows that increased intake of polyunsaturated fatty acids leads to increased oxidative stress, which may be associated with endothelial damage. We measured the urinary levels of 8-iso-PGF2alpha and nitric oxide metabolites as well as plasma sICAM-1 levels from healthy subjects after strictly controlled diets rich in either linoleic acid (LA, C18:2 n-6) or oleic acid (OA, C18:1 n-9). Thirty-eight volunteers (20 women and 18 men, mean age 27 years) consumed a baseline diet rich in saturated fatty acids (SFA) for 4 weeks and were then switched to either a high LA diet (11.5 en%) or a high OA diet (18.0 en%) also for 4 weeks. During the LA and OA diets, nearly all food was provided for the whole day. A control group of 13 subjects consumed their habitual diet throughout the study. Urinary excretion of 8-iso-PGF2alpha was significantly increased after the LA diet (170 vs 241 ng/mmol creatinine, P=0.04), whereas the urinary concentration of nitric oxide metabolites decreased (4.2 vs 2.6 mg/mmol creatinine, P=0.03). No significant changes were seen in the OA group. Significant differences between the LA and control group were found for both 8-oxo-PGF2alpha (P=0.03) and NO (P=0.02), whereas the OA and LA groups did not differ with respect to any parameter. Also plasma sICAM-1 remained unchanged in both groups throughout the study. In conclusion, the high-LA diet increased oxidative stress and affected endothelial function in a way which may in the long-term predispose to endothelial dysfunction. PMID:9844997

  11. Increased hepatic cholesterol esterification with essential fatty acid deficiency (EFAD): relationship to plasma lipoprotein (LP) cholesterol content

    SciTech Connect

    Ney, D.M.; Ziboh, V.A.; Schneeman, B.O.

    1986-03-01

    EFAD in the rat is associated with hepatic accumulation of esterified cholesterol and altered distribution of cholesterol between plasma and hepatic tissue. Little is known regarding the impact of EFAD on LP composition. To determine the relationship between hepatic cholesterol esterification and plasma lP composition in control (C) and EFAD male Wistar rats, the authors induced EFAD with continuous intragastric (IG) infusion of EFA-free solutions containing 3.5% of calories as triolein for 7 and 14 days. C animals received IG infusion of solutions containing 3.5% of calories as linoleic acid. Data in the EFAD groups reveal: (i) marked decreases in hepatic EFAs and increases in monoenoic acids; (ii) progressive increases in hepatic content of triglyceride and esterified cholesterol with 7 and 14 days of feeding; (iii) assay of acyl CoA:cholesterol acyltransferase activity in hepatic tissue using /sup 14/C-cholesterol demonstrates an increase in hepatic cholesterol esterification when compared to C animals. Increased hepatic cholesterol esterification correlates with elevated levels of esterified cholesterol in plasma VLDL and HDL particles. These data indicate that the elevated levels of cholesterol esters in LP particles is due, at least in part, to increased hepatic cholesterol esterification with EFAD.

  12. Determination of trans fatty acid levels by FTIR in processed foods in Australia.

    PubMed

    McCarthy, Justine; Barr, Daniel; Sinclair, Andrew

    2008-01-01

    Health authorities around the world advise 'limiting consumption of trans fatty acid', however in Australia the trans fatty acid (TFA) content is not required to be listed in the nutrition information panel unless a declaration or nutrient claim is made about fatty acids or cholesterol. Since there is limited knowledge about trans fatty acid levels in processed foods available in Australia, this study aimed to determine the levels of TFA in selected food items known to be sources of TFA from previously published studies. Food items (n=92) that contain vegetable oil and a total fat content greater than 5% were included. This criterion was used in conjunction with a review of similar studies where food items were found to contain high levels of trans fatty acids. Lipids were extracted using solvents. Gravimetric methods were used to determine total fat content and trans fatty acid levels were quantified by Attenuated Total Reflectance Fourier Transform Infrared spectroscopy. High levels of trans fatty acids were found in certain items in the Australian food supply, with a high degree of variability. Of the samples analysed, 13 contained greater than 1 g of trans fatty acids per serving size, the highest value was 8.1 g/serving. Apart from when the nutrition information panel states that the content is less than a designated low level, food labels sold in Australia do not indicate trans fatty acid levels. We suggested that health authorities seek ways to assist consumers to limit their intakes of trans fatty acids. PMID:18818158

  13. Serum uric acid levels in normal pregnancy with observations on the renal excretion of urate in pregnancy

    PubMed Central

    Boyle, James A.; Campbell, Stuart; Duncan, Anne M.; Greig, William R.; Buchanan, W. Watson

    1966-01-01

    Serum uric acid estimations were performed in 106 healthy pregnant women during early, middle, and late pregnancy, using an automated colorimetric method. The mean serum uric acid level was significantly lower during early and middle pregnancy than that of 64 age-matched female controls. The serum uric acid level was not significantly different in late pregnancy from the control group. Studies of the daily urinary urate excretion in 31 pregnant women showed normal urinary urate excretion in early pregnancy and enhanced renal loss of urate in middle and late pregnancy. It appears that the renal clearance of urate in pregnancy is high, especially in the middle period when the serum level is low in spite of the increased production of uric acid by the foetus. PMID:5919366

  14. Cerebral level of vGlut1 is increased and level of glycine is decreased in TgSwDI mice.

    PubMed

    Timmer, Nienke M; Metaxas, Athanasios; van der Stelt, Inge; Kluijtmans, Leo A J; van Berckel, Bart N; Verbeek, Marcel M

    2014-01-01

    Amyloid-β (Aβ) deposition, one of the main hallmarks of Alzheimer's disease (AD), has been linked to glutamatergic dysfunction, i.e., increased stimulation of synaptic glutamate receptors that may ultimately result in neuronal loss. It was our aim to study the effect of Aβ on multiple components of the glutamatergic system, and therefore we assessed the expression of several glutamate-related proteins and amino acids in the TgSwDI mouse model for Aβ pathology. We determined that in TgSwDI mice, levels of several amino acids are altered, in particular that of glycine. Protein changes were only found in 9-month-old TgSwDI mice with extensive Aβ deposits, with the most prominent change an increased expression of vesicular glutamate transporter 1 (vGlut1). Autoradiography experiments demonstrated that, while the number of activated N-methyl-D-aspartic acid (NMDA) receptors was unchanged in TgSwDI mice, binding of the NMDA receptor radioligand [3H]MDL-105,519 to the glycine-binding site of these receptors was increased. Although there are some discrepancies between our results and those found in AD patients, our results suggest that several components of the glutamatergic system might serve as meaningful markers to monitor the progression of AD. PMID:24145381

  15. Increased production of apolipoprotein B and its lipoproteins by oleic acid in Caco-2 cells.

    PubMed

    Dashti, N; Smith, E A; Alaupovic, P

    1990-01-01

    The production of lipids, apolipoproteins (apo), and lipoproteins induced by oleic acid has been examined in Caco-2 cells. The rates of accumulation in the control medium of 15-day-old Caco-2 cells of triglycerides, unesterified cholesterol, and cholesteryl esters were 102 +/- 8, 73 +/- 5, and 11 +/- 1 ng/mg cell protein/h, respectively; the accumulation rates for apolipoproteins A-I, B, C-III, and E were 111 +/- 9, 53 +/- 4, 13 +/- 1, and 63 +/- 4 ng/mg cell protein/h, respectively. Whereas apolipoproteins A-IV and C-II were detected by immunoblotting, apoA-II was absent in most culture media. In contrast to an early production of apolipoproteins A-I and E occurring 2 days after plating, the apoB expression appeared to be differentiation-dependent and was not measurable in the medium until the sixth day post-confluency. In the control medium, very low density lipoproteins (VLDL), low density lipoproteins (LDL), high density lipoproteins (HDL), and lipid-poor very high density lipoproteins (VHDL) accounted for 12%, 46%, 18%, and 24% of the total lipid and apolipoprotein contents, respectively. The triglyceride-rich VLDL contained mainly apoE (75%) and apoB (23%), while the protein moiety of LDL was composed of apoB (59%), apoE (20%), apoA-I (15%), and apoC-III (6%). The cholesterol-rich HDL contained mainly apoA-I (69%) and apoE (27%). In the control medium, major portions of apolipoproteins B and C-III (93-97%) were present in LDL, whereas the main parts of apoA-I (92%) and apoE (76%) were associated with HDL and VHDL. Oleate increased the production of triglycerides 10-fold, cholesteryl esters 7-fold, and apoB 2- to 4-fold. There was also a moderate increase (39%) in the production of apoC-III but no significant changes in those of apolipoproteins A-I and E. These increases were reflected mainly in a 55-fold elevation in the concentration of VLDL, and a 2-fold increase in the level of LDL; there were no significant changes in HDL and VHDL. VLDL contained the

  16. Sulforaphane reduces the alterations induced by quinolinic acid: modulation of glutathione levels.

    PubMed

    Santana-Martínez, R A; Galván-Arzáte, S; Hernández-Pando, R; Chánez-Cárdenas, M E; Avila-Chávez, E; López-Acosta, G; Pedraza-Chaverrí, J; Santamaría, A; Maldonado, P D

    2014-07-11

    Glutamate-induced excitotoxicity involves a state of acute oxidative stress, which is a crucial event during neuronal degeneration and is part of the physiopathology of neurodegenerative diseases. In this work, we evaluated the ability of sulforaphane (SULF), a natural dietary isothiocyanate, to induce the activation of transcription factor Nrf2 (a master regulator of redox state in the cell) in a model of striatal degeneration in rats infused with quinolinic acid (QUIN). Male Wistar rats received SULF (5mg/kg, i.p.) 24h and 5min before the intrastriatal infusion of QUIN. SULF increased the reduced glutathione (GSH) levels 4h after QUIN infusion, which was associated with its ability to increase the activity of glutathione reductase (GR), an antioxidant enzyme capable to regenerate GSH levels at 24h. Moreover, SULF treatment increased glutathione peroxidase (GPx) activity, while no changes were observed in γ-glutamyl cysteine ligase (GCL) activity. SULF treatment also prevented QUIN-induced oxidative stress (measured by oxidized proteins levels), the histological damage and the circling behavior. These results suggest that the protective effect of SULF could be related to its ability to preserve GSH levels and increase GPx and GR activities. PMID:24814729

  17. Organic reactions increasing the absorption index of atmospheric sulfuric acid aerosols

    NASA Astrophysics Data System (ADS)

    Nozière, B.; Esteve, W.

    2005-02-01

    Unlike most environments present at Earth's surface atmospheric aerosols can be favorable to organic reactions. Among them, the acid-catalyzed aldol condensation of aldehydes and ketones produces light-absorbing compounds. In this work the increase of the absorption index of sulfuric acid solutions 50-96 wt. % resulting from the uptake of gas-phase acetaldehyde, acetone, and 2-butanone (methyl ethyl ketone), has been measured in the near UV and visible range. Our results indicate that the absorption index between 200 and 500 nm for stratospheric sulfuric aerosols exposed to 100 pptV of acetaldehyde (1 pptV = 10-12 v/v) would increase by four orders of magnitude over a two-year lifetime. Rough estimates based on previous radiative calculations suggest that this reaction could result in an increase of the radiative forcing of sulfate aerosols of the order of 0.01 W m-2, and that these processes are worth further investigation.

  18. [Uric acid and purine plasma levels as plausible markers for placental dysfunction in pre-eclampsia].

    PubMed

    Escudero, Carlos; Bertoglia, Patricio; Muñoz, Felipe; Roberts, James M

    2013-07-01

    Uric acid is the final metabolite of purine break down, such as ATP, ADP, AMP, adenosine, inosine and hypoxanthine. The metabolite has been used broadly as a renal failure marker, as well as a risk factor for maternal and neonatal morbidity during pre-eclamptic pregnancies. High purine levels are observed in pre-eclamptic pregnancies, but the sources of these purines are unknown. However, there is evidence that pre-eclampsia (mainly severe pre-eclampsia) is associated with an increased release of cellular fragments (or microparticles) from the placenta to the maternal circulation. These in fact could be the substrate for purine metabolism. Considering this background, we propose that purines and uric acid are part of the same physiopathological phenomenon in pre-eclampsia (i.e., placental dysfunction) and could become biomarkers for placental dysfunction and postnatal adverse events. PMID:24356738

  19. Increased UVA exposures and decreased cutaneous Vitamin D(3) levels may be responsible for the increasing incidence of melanoma.

    PubMed

    Godar, Dianne E; Landry, Robert J; Lucas, Anne D

    2009-04-01

    Cutaneous malignant melanoma (CMM) has been increasing at a steady exponential rate in fair-skinned, indoor workers since before 1940. A paradox exists between indoor and outdoor workers because indoor workers get three to nine times less solar UV (290-400 nm) exposure than outdoor workers get, yet only indoor workers have an increasing incidence of CMM. Thus, another "factor(s)" is/are involved that increases the CMM risk for indoor workers. We hypothesize that one factor involves indoor exposures to UVA (321-400 nm) passing through windows, which can cause mutations and can break down vitamin D(3) formed after outdoor UVB (290-320 nm) exposure, and the other factor involves low levels of cutaneous vitamin D(3). After vitamin D(3) forms, melanoma cells can convert it to the hormone, 1,25-dihydroxyvitamin D(3), or calcitriol, which causes growth inhibition and apoptotic cell death in vitro and in vivo. We measured the outdoor and indoor solar irradiances and found indoor solar UVA irradiances represent about 25% (or 5-10 W/m(2)) of the outdoor irradiances and are about 60 times greater than fluorescent light irradiances. We calculated the outdoor and indoor UV contributions toward different biological endpoints by weighting the emission spectra by the action spectra: erythema, squamous cell carcinoma, melanoma (fish), and previtamin D(3). Furthermore, we found production of previtamin D(3) only occurs outside where there is enough UVB. We agree that intense, intermittent outdoor UV overexposures and sunburns initiate CMM; we now propose that increased UVA exposures and inadequately maintained cutaneous levels of vitamin D(3) promotes CMM. PMID:19155143

  20. Postprandial Levels of Branch Chained and Aromatic Amino Acids Associate with Fasting Glycaemia.

    PubMed

    Ottosson, Filip; Ericson, Ulrika; Almgren, Peter; Nilsson, Jeanette; Magnusson, Martin; Fernandez, Céline; Melander, Olle

    2016-01-01

    High fasting plasma concentrations of isoleucine, phenylalanine, and tyrosine have been associated with increased risk of hyperglycaemia and incidence of type 2 diabetes. Whether these associations are diet or metabolism driven is unknown. We examined how the dietary protein source affects the postprandial circulating profile of these three diabetes associated amino acids (DMAAs) and tested whether the postprandial DMAA profiles are associated with fasting glycaemia. We used a crossover design with twenty-one healthy individuals and four different isocaloric test meals, containing proteins from different dietary sources (dairy, fish, meat, and plants). Analysis of the postprandial DMAAs concentrations was performed using targeted mass spectrometry. A DMAA score was defined as the sum of all the three amino acid concentrations. The postprandial area under the curve (AUC) of all the three amino acids and the DMAA score was significantly greater after intake of the meal with dairy protein compared to intake of the three other meals. The postprandial AUC for the DMAA score and all the three amino acids strongly associated with fasting glucose level and insulin resistance. This indicates the importance of the postprandial kinetics and metabolism of DMAAs in understanding the overall association between DMAAs and glycaemia. PMID:27274867

  1. Postprandial Levels of Branch Chained and Aromatic Amino Acids Associate with Fasting Glycaemia

    PubMed Central

    Ottosson, Filip; Ericson, Ulrika; Almgren, Peter; Nilsson, Jeanette; Magnusson, Martin; Fernandez, Céline; Melander, Olle

    2016-01-01

    High fasting plasma concentrations of isoleucine, phenylalanine, and tyrosine have been associated with increased risk of hyperglycaemia and incidence of type 2 diabetes. Whether these associations are diet or metabolism driven is unknown. We examined how the dietary protein source affects the postprandial circulating profile of these three diabetes associated amino acids (DMAAs) and tested whether the postprandial DMAA profiles are associated with fasting glycaemia. We used a crossover design with twenty-one healthy individuals and four different isocaloric test meals, containing proteins from different dietary sources (dairy, fish, meat, and plants). Analysis of the postprandial DMAAs concentrations was performed using targeted mass spectrometry. A DMAA score was defined as the sum of all the three amino acid concentrations. The postprandial area under the curve (AUC) of all the three amino acids and the DMAA score was significantly greater after intake of the meal with dairy protein compared to intake of the three other meals. The postprandial AUC for the DMAA score and all the three amino acids strongly associated with fasting glucose level and insulin resistance. This indicates the importance of the postprandial kinetics and metabolism of DMAAs in understanding the overall association between DMAAs and glycaemia. PMID:27274867

  2. Forkhead Transcription Factor FOXO3a Levels Are Increased in Huntington Disease Because of Overactivated Positive Autofeedback Loop*

    PubMed Central

    Kannike, Kaja; Sepp, Mari; Zuccato, Chiara; Cattaneo, Elena; Timmusk, Tõnis

    2014-01-01

    Huntington disease (HD) is a fatal autosomal dominant neurodegenerative disorder caused by an increased number of CAG repeats in the HTT gene coding for huntingtin. Decreased neurotrophic support and increased mitochondrial and excitotoxic stress have been reported in HD striatal and cortical neurons. The members of the class O forkhead (FOXO) transcription factor family, including FOXO3a, act as sensor proteins that are activated upon decreased survival signals and/or increased cellular stress. Using immunocytochemical screening in mouse striatal Hdh7/7 (wild type), Hdh7/109 (heterozygous for HD mutation), and Hdh109/109 (homozygous for HD mutation) cells, we identified FOXO3a as a differentially regulated transcription factor in HD. We report increased nuclear FOXO3a levels in mutant Hdh cells. Additionally, we show that treatment with mitochondrial toxin 3-nitropropionic acid results in enhanced nuclear localization of FOXO3a in wild type Hdh7/7 cells and in rat primary cortical neurons. Furthermore, mRNA levels of Foxo3a are increased in mutant Hdh cells compared with wild type cells and in 3-nitropropionic acid-treated primary neurons compared with untreated neurons. A similar increase was observed in the cortex of R6/2 mice and HD patient post-mortem caudate tissue compared with controls. Using chromatin immunoprecipitation and reporter assays, we demonstrate that FOXO3a regulates its own transcription by binding to the conserved response element in Foxo3a promoter. Altogether, the findings of this study suggest that FOXO3a levels are increased in HD cells as a result of overactive positive feedback loop. PMID:25271153

  3. Forkhead transcription factor FOXO3a levels are increased in Huntington disease because of overactivated positive autofeedback loop.

    PubMed

    Kannike, Kaja; Sepp, Mari; Zuccato, Chiara; Cattaneo, Elena; Timmusk, Tõnis

    2014-11-21

    Huntington disease (HD) is a fatal autosomal dominant neurodegenerative disorder caused by an increased number of CAG repeats in the HTT gene coding for huntingtin. Decreased neurotrophic support and increased mitochondrial and excitotoxic stress have been reported in HD striatal and cortical neurons. The members of the class O forkhead (FOXO) transcription factor family, including FOXO3a, act as sensor proteins that are activated upon decreased survival signals and/or increased cellular stress. Using immunocytochemical screening in mouse striatal Hdh(7/7) (wild type), Hdh(7/109) (heterozygous for HD mutation), and Hdh(109/109) (homozygous for HD mutation) cells, we identified FOXO3a as a differentially regulated transcription factor in HD. We report increased nuclear FOXO3a levels in mutant Hdh cells. Additionally, we show that treatment with mitochondrial toxin 3-nitropropionic acid results in enhanced nuclear localization of FOXO3a in wild type Hdh(7/7) cells and in rat primary cortical neurons. Furthermore, mRNA levels of Foxo3a are increased in mutant Hdh cells compared with wild type cells and in 3-nitropropionic acid-treated primary neurons compared with untreated neurons. A similar increase was observed in the cortex of R6/2 mice and HD patient post-mortem caudate tissue compared with controls. Using chromatin immunoprecipitation and reporter assays, we demonstrate that FOXO3a regulates its own transcription by binding to the conserved response element in Foxo3a promoter. Altogether, the findings of this study suggest that FOXO3a levels are increased in HD cells as a result of overactive positive feedback loop. PMID:25271153

  4. Conjugated linoleic acid increases in milk from cows fed condensed corn distillers solubles and fish oil.

    PubMed

    Bharathan, M; Schingoethe, D J; Hippen, A R; Kalscheur, K F; Gibson, M L; Karges, K

    2008-07-01

    Twelve lactating Holstein cows were randomly assigned to 1 of 4 experimental diets in a replicated 4 x 4 Latin square design with 4-wk periods to ascertain the lactational response to feeding fish oil (FO), condensed corn distillers solubles (CDS) as a source of extra linoleic acid, or both. Diets contained either no FO or 0.5% FO and either no CDS or 10% CDS in a 2 x 2 factorial arrangement of treatments. Diets were fed as total mixed rations for ad libitum consumption. The forage to concentrate ratio was 55:45 on a dry matter basis for all diets and the diets contained 16.2% crude protein. The ether extract concentrations were 2.86, 3.22, 4.77, and 5.02% for control, FO, CDS, and FOCDS diets, respectively. Inclusion of FO or CDS or both had no effect on dry matter intake, feed efficiency, body weight, and body condition scores compared with diets without FO and CDS, respectively. Yields of milk (33.3 kg/d), energy-corrected milk, protein, lactose, and milk urea N were similar for all diets. Feeding FO and CDS decreased milk fat percentages (3.85, 3.39, 3.33, and 3.12%) and yields compared with diets without FO and CDS. Proportions of trans-11 C18:1 (vaccenic acid), cis-9 trans-11 conjugated linoleic acid (CLA; 0.52, 0.90, 1.11, and 1.52 g/100 g of fatty acids), and trans-10 cis-12 CLA (0.07, 0.14, 0.13, and 0.16 g/100 g of fatty acids) in milk fat were increased by FO and CDS. No interactions were observed between FO and CDS on cis-9 trans-11 CLA although vaccenic acid tended to be higher with the interaction. The addition of CDS to diets increased trans-10 C18:1. Greater ratios of vaccenic acid to cis-9 trans-11 CLA in plasma than in milk fat indicate tissue synthesis of cis-9 trans-11 CLA in the mammary gland from vaccenic acid in cows fed FO or CDS. Feeding fish oil at 0.5% of diet dry matter with a C18:2 n-6 rich source such as CDS increased the milk CLA content but decreased milk fat percentages. PMID:18565937

  5. Down-regulation of crambe fatty acid desaturase and elongase in Arabidopsis and crambe resulted in significantly increased oleic acid content in seed oil.

    PubMed

    Li, Xueyuan; Mei, Desheng; Liu, Qing; Fan, Jing; Singh, Surinder; Green, Allan; Zhou, Xue-Rong; Zhu, Li-Hua

    2016-01-01

    High oleic oil is an important industrial feedstock that has been one of the main targets for oil improvement in a number of oil crops. Crambe (Crambe abyssinica) is a dedicated oilseed crop, suitable for industrial oil production. In this study, we down-regulated the crambe fatty acid desaturase (FAD) and fatty acid elongase (FAE) genes for creating high oleic seed oil. We first cloned the crambe CaFAD2, CaFAD3 and CaFAE1 genes. Multiple copies of each of these genes were isolated, and the highly homologous sequences were used to make RNAi constructs. These constructs were first tested in Arabidopsis, which led to the elevated oleic or linoleic levels depending on the genes targeted, indicating that the RNAi constructs were effective in regulating the expression of the target genes in nonidentical but closely related species. Furthermore, down-regulation of CaFAD2 and CaFAE1 in crambe with the FAD2-FAE1 RNAi vector resulted in even more significant increase in oleic acid level in the seed oil with up to 80% compared to 13% for wild type. The high oleic trait has been stable in subsequent five generations and the GM line grew normally in greenhouse. This work has demonstrated the great potential of producing high oleic oil in crambe, thus contributing to its development into an oil crop platform for industrial oil production. PMID:25998013

  6. Single-Cell Measurements of Enzyme Levels as a Predictive Tool for Cellular Fates during Organic Acid Production

    PubMed Central

    Zdraljevic, Stefan; Wagner, Drew; Cheng, Kevin; Ruohonen, Laura; Jäntti, Jussi; Penttilä, Merja; Resnekov, Orna

    2013-01-01

    Organic acids derived from engineered microbes can replace fossil-derived chemicals in many applications. Fungal hosts are preferred for organic acid production because they tolerate lignocellulosic hydrolysates and low pH, allowing economic production and recovery of the free acid. However, cell death caused by cytosolic acidification constrains productivity. Cytosolic acidification affects cells asynchronously, suggesting that there is an underlying cell-to-cell heterogeneity in acid productivity and/or in resistance to toxicity. We used fluorescence microscopy to investigate the relationship between enzyme concentration, cytosolic pH, and viability at the single-cell level in Saccharomyces cerevisiae engineered to synthesize xylonic acid. We found that cultures producing xylonic acid accumulate cells with cytosolic pH below 5 (referred to here as “acidified”). Using live-cell time courses, we found that the probability of acidification was related to the initial levels of xylose dehydrogenase and sharply increased from 0.2 to 0.8 with just a 60% increase in enzyme abundance (Hill coefficient, >6). This “switch-like” relationship likely results from an enzyme level threshold above which the produced acid overwhelms the cell's pH buffering capacity. Consistent with this hypothesis, we showed that expression of xylose dehydrogenase from a chromosomal locus yields ∼20 times fewer acidified cells and ∼2-fold more xylonic acid relative to expression of the enzyme from a plasmid with variable copy number. These results suggest that strategies that further reduce cell-to-cell heterogeneity in enzyme levels could result in additional gains in xylonic acid productivity. Our results demonstrate a generalizable approach that takes advantage of the cell-to-cell variation of a clonal population to uncover causal relationships in the toxicity of engineered pathways. PMID:24038690

  7. Single-cell measurements of enzyme levels as a predictive tool for cellular fates during organic acid production.

    PubMed

    Zdraljevic, Stefan; Wagner, Drew; Cheng, Kevin; Ruohonen, Laura; Jäntti, Jussi; Penttilä, Merja; Resnekov, Orna; Pesce, C Gustavo

    2013-12-01

    Organic acids derived from engineered microbes can replace fossil-derived chemicals in many applications. Fungal hosts are preferred for organic acid production because they tolerate lignocellulosic hydrolysates and low pH, allowing economic production and recovery of the free acid. However, cell death caused by cytosolic acidification constrains productivity. Cytosolic acidification affects cells asynchronously, suggesting that there is an underlying cell-to-cell heterogeneity in acid productivity and/or in resistance to toxicity. We used fluorescence microscopy to investigate the relationship between enzyme concentration, cytosolic pH, and viability at the single-cell level in Saccharomyces cerevisiae engineered to synthesize xylonic acid. We found that cultures producing xylonic acid accumulate cells with cytosolic pH below 5 (referred to here as "acidified"). Using live-cell time courses, we found that the probability of acidification was related to the initial levels of xylose dehydrogenase and sharply increased from 0.2 to 0.8 with just a 60% increase in enzyme abundance (Hill coefficient, >6). This "switch-like" relationship likely results from an enzyme level threshold above which the produced acid overwhelms the cell's pH buffering capacity. Consistent with this hypothesis, we showed that expression of xylose dehydrogenase from a chromosomal locus yields ∼20 times fewer acidified cells and ∼2-fold more xylonic acid relative to expression of the enzyme from a plasmid with variable copy number. These results suggest that strategies that further reduce cell-to-cell heterogeneity in enzyme levels could result in additional gains in xylonic acid productivity. Our results demonstrate a generalizable approach that takes advantage of the cell-to-cell variation of a clonal population to uncover causal relationships in the toxicity of engineered pathways. PMID:24038690

  8. Bioaugmentation of Syntrophic Acetate-Oxidizing Culture in Biogas Reactors Exposed to Increasing Levels of Ammonia

    PubMed Central

    Westerholm, Maria; Levén, Lotta

    2012-01-01

    The importance of syntrophic acetate oxidation for process stability in methanogenic systems operating at high ammonia concentrations has previously been emphasized. In this study we investigated bioaugmentation of syntrophic acetate-oxidizing (SAO) cultures as a possible method for decreasing the adaptation period of biogas reactors operating at gradually increased ammonia concentrations (1.5 to 11 g NH4+-N/liter). Whole stillage and cattle manure were codigested semicontinuously for about 460 days in four mesophilic anaerobic laboratory-scale reactors, and a fixed volume of SAO culture was added daily to two of the reactors. Reactor performance was evaluated in terms of biogas productivity, methane content, pH, alkalinity, and volatile fatty acid (VFA) content. The decomposition pathway of acetate was analyzed by isotopic tracer experiments, and population dynamics were monitored by quantitative PCR analyses. A shift in dominance from aceticlastic methanogenesis to SAO occurred simultaneously in all reactors, indicating no influence by bioaugmentation on the prevailing pathway. Higher abundances of Clostridium ultunense and Tepidanaerobacter acetatoxydans were associated with bioaugmentation, but no influence on Syntrophaceticus schinkii or the methanogenic population was distinguished. Overloading or accumulation of VFA did not cause notable dynamic effects on the population. Instead, the ammonia concentration had a substantial impact on the abundance level of the microorganisms surveyed. The addition of SAO culture did not affect process performance or stability against ammonia inhibition, and all four reactors deteriorated at high ammonia concentrations. Consequently, these findings further demonstrate the strong influence of ammonia on the methane-producing consortia and on the representative methanization pathway in mesophilic biogas reactors. PMID:22923397

  9. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid.

    PubMed

    Brown, Stephen H; Bashkirova, Lena; Berka, Randy; Chandler, Tyler; Doty, Tammy; McCall, Keith; McCulloch, Michael; McFarland, Sarah; Thompson, Sheryl; Yaver, Debbie; Berry, Alan

    2013-10-01

    Malic acid, a petroleum-derived C4-dicarboxylic acid that is used in the food and beverage industries, is also produced by a number of microorganisms that follow a variety of metabolic routes. Several members of the genus Aspergillus utilize a two-step cytosolic pathway from pyruvate to malate known as the reductive tricarboxylic acid (rTCA) pathway. This simple and efficient pathway has a maximum theoretical yield of 2 mol malate/mol glucose when the starting pyruvate originates from glycolysis. Production of malic acid by Aspergillus oryzae NRRL 3488 was first improved by overexpression of a native C4-dicarboxylate transporter, leading to a greater than twofold increase in the rate of malate production. Overexpression of the native cytosolic alleles of pyruvate carboxylase and malate dehydrogenase, comprising the rTCA pathway, in conjunction with the transporter resulted in an additional 27 % increase in malate production rate. A strain overexpressing all three genes achieved a malate titer of 154 g/L in 164 h, corresponding to a production rate of 0.94 g/L/h, with an associated yield on glucose of 1.38 mol/mol (69 % of the theoretical maximum). This rate of malate production is the highest reported for any microbial system. PMID:23925533

  10. System-level understanding of the potential acid-tolerance components of Acidithiobacillus thiooxidans ZJJN-3 under extreme acid stress.

    PubMed

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2015-09-01

    In previous study, two extremely acidophilic strains Acidithiobacillus thiooxidans ZJJN-3 (collection site: bioleaching leachate) and ZJJN-5 (collection site: bioleaching wastewater) were isolated from a typical industrial bio-heap in China. Here, we unraveled the potential acid-tolerance components of ZJJN-3 by comparing the physiological differences with ZJJN-5 under different acid stresses. The parameters used for comparison included intracellular pH (pHin), capsule morphology, fatty acid composition of cell membrane, transcription of key molecular chaperones, H(+)-ATPase activities and NAD(+)/NADH ratio. It was indicated that the acid-tolerance of A. thiooxidans ZJJN-3 was systematically regulated. Capsule first thickened and then shed off along with increased acid stress. Cell membrane maintained the intracellular stability by up-regulating the proportion of unsaturated fatty acid and cyclopropane fatty acids. Meanwhile, the transcription of key repair molecular chaperones (GrpE-DnaK-DnaJ) was up-regulated by 2.2-3.5 folds for ensuring the proper folding of peptide. Moreover, low pHin promoted ZJJN-3 to biosynthesize more H(+)-ATPase for pumping H(+) out of cells. Furthermore, the NAD(+)/NADH ratio increased due to the decreased H(+) concentration. Based on the above physiological analysis, the potential acid-tolerance components of A. thiooxidans ZJJN-3 were first proposed and it would be useful for better understanding how these extremophiles responded to the high acid stress. PMID:26264736

  11. Uric acid is released in the brain during seizure activity and increases severity of seizures in a mouse model for acute limbic seizures.

    PubMed

    Thyrion, Lisa; Raedt, Robrecht; Portelli, Jeanelle; Van Loo, Pieter; Wadman, Wytse J; Glorieux, Griet; Lambrecht, Bart N; Janssens, Sophie; Vonck, Kristl; Boon, Paul

    2016-03-01

    Recent evidence points at an important role of endogenous cell-damage induced pro-inflammatory molecules in the generation of epileptic seizures. Uric acid, under the form of monosodium urate crystals, has shown to have pro-inflammatory properties in the body, but less is known about its role in seizure generation. This study aimed to unravel the contribution of uric acid to seizure generation in a mouse model for acute limbic seizures. We measured extracellular levels of uric acid in the brain and modulated them using complementary pharmacological and genetic tools. Local extracellular uric acid levels increased three to four times during acute limbic seizures and peaked between 50 and 100 min after kainic acid infusion. Manipulating uric acid levels through administration of allopurinol or knock-out of urate oxidase significantly altered the number of generalized seizures, decreasing and increasing them by a twofold respectively. Taken together, our results consistently show that uric acid is released during limbic seizures and suggest that uric acid facilitates seizure generalization. PMID:26774005

  12. Acidic pH increases airway surface liquid viscosity in cystic fibrosis.

    PubMed

    Tang, Xiao Xiao; Ostedgaard, Lynda S; Hoegger, Mark J; Moninger, Thomas O; Karp, Philip H; McMenimen, James D; Choudhury, Biswa; Varki, Ajit; Stoltz, David A; Welsh, Michael J

    2016-03-01

    Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3- concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator-dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF. PMID:26808501

  13. Acidic pH increases airway surface liquid viscosity in cystic fibrosis

    PubMed Central

    Tang, Xiao Xiao; Ostedgaard, Lynda S.; Hoegger, Mark J.; Moninger, Thomas O.; Karp, Philip H.; McMenimen, James D.; Choudhury, Biswa; Varki, Ajit; Stoltz, David A.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3– concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator–dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF. PMID:26808501

  14. The deposition of conjugated linoleic acids in eggs of laying hens fed diets varying in fat level and fatty acid profile.

    PubMed

    Raes, Katleen; Huyghebaert, Gerard; De Smet, Stefaan; Nollet, Lode; Arnouts, Sven; Demeyer, Daniel

    2002-02-01

    The objective of this study was to investigate the incorporation of conjugated linoleic acid (CLA) into eggs and its effect on the fatty acid metabolism when layers are fed diets with different fat sources and fat levels. Layers were fed either a low fat diet (LF) or one of three high fat diets based on soybean oil (SB), animal fat (AF) or flaxseed oil (FSO). CLA was added at a concentration of 1 g/100 g feed from two different CLA premixes with a different CLA profile. For the trial, 144 laying hens were allocated to 12 treatments (4 basal fat sources x 3 CLA treatments) with 3 replicates of 4 hens each. No significant differences were observed in feed intake, egg weight, feed conversion or laying rate between chickens fed control and CLA-supplemented diets. Differences in yolk fat, cholesterol or yolk color were not clearly related to the dietary CLA. However, the supplementation of CLA to the diets had clear effects on the fatty acid composition, i.e., a decrease in monounsaturated fatty acids (MUFA) and an increase in saturated fatty acids (SFA) was observed, whereas the polyunsaturated fatty acids (PUFA) content were essentially unaffected. The results suggest that CLA may influence the activity of the desaturases to a different extent in the synthesis of (n-6) and (n-3) long-chain fatty acids. These effects of CLA depend on the level of (n-6) and (n-3) fatty acids available in the feed. The apparent deposition rate (%) is clearly higher for the c9, t11 isomer than for the t10, c12 isomer. Adding CLA to layers diets rich in (n-3) fatty acids produces eggs that could promote the health of the consumer in terms of a higher intake of (n-3) fatty acids and CLA. PMID:11823576

  15. Uric acid level and elevated blood pressure in US adolescents: National Health and Nutrition Examination Survey, 1999-2006.

    PubMed

    Loeffler, Lauren F; Navas-Acien, Ana; Brady, Tammy M; Miller, Edgar R; Fadrowski, Jeffrey J

    2012-04-01

    Uric acid is associated with cardiovascular disease and cardiovascular disease risk factors in adults, including chronic kidney disease, coronary artery disease, stroke, diabetes mellitus, preeclampsia, and hypertension. We examined the association between uric acid and elevated blood pressure in a large, nationally representative cohort of US adolescents, a population with a relatively low prevalence of cardiovascular disease and cardiovascular disease risk factors. Among 6036 adolescents 12 to 17 years of age examined in the 1999-2006 National Health and Nutrition Examination Survey, the mean age was 14.5 years, 17% were obese (body mass index: ≥95th percentile), and 3.3% had elevated blood pressure. Mean serum uric acid level was 5.0 mg/dL, and 34% had a uric acid level ≥5.5 mg/dL. In analyses adjusted for age, sex, race/ethnicity, and body mass index percentile, the odds ratio of elevated blood pressure, defined as a systolic or diastolic blood pressure ≥95th percentile for age, sex, and height, for each 0.1-mg/dL increase in uric acid level was 1.38 (95% CI: 1.16-1.65). Compared with <5.5 mg/dL, participants with a uric acid level ≥5.5 mg/dL had a 2.03 times higher odds of having elevated blood pressure (95% CI: 1.38-3.00). In conclusion, increasing levels of serum uric acid are associated with elevated blood pressure in healthy US adolescents. Additional prospective studies and clinical trials are needed to determine whether uric acid is merely a marker in a complex metabolic pathway or causal of hypertension and, thus, a potential screening and therapeutic target. PMID:22353609

  16. Plasma Amino Acid Levels in Children with Autism and Their Families.

    ERIC Educational Resources Information Center

    Aldred, Sarah; Moore, Kieran M.; Fitzgerald, Michael; Waring, Rosemary H.

    2003-01-01

    Plasma amino acid levels were measured in autistic (n=12), Asperger syndrome (n=11) patients, their parents and siblings. Patients with autism or Asperger syndrome and their siblings and parents all had raised glutamic acid, phenyalanine, asparagine, tyrosine, alanine, and lysine levels than age-matched controls. Results suggest dysregulated amino…

  17. Trophic assimilation efficiency markedly increases at higher trophic levels in four-level host-parasitoid food chain.

    PubMed

    Sanders, Dirk; Moser, Andrea; Newton, Jason; van Veen, F J Frank

    2016-03-16

    Trophic assimilation efficiency (conversion of resource biomass into consumer biomass) is thought to be a limiting factor for food chain length in natural communities. In host-parasitoid systems, which account for the majority of terrestrial consumer interactions, a high trophic assimilation efficiency may be expected at higher trophic levels because of the close match of resource composition of host tissue and the consumer's resource requirements, which would allow for longer food chains. We measured efficiency of biomass transfer along an aphid-primary-secondary-tertiary parasitoid food chain and used stable isotope analysis to confirm trophic levels. We show high efficiency in biomass transfer along the food chain. From the third to the fourth trophic level, the proportion of host biomass transferred was 45%, 65% and 73%, respectively, for three secondary parasitoid species. For two parasitoid species that can act at the fourth and fifth trophic levels, we show markedly increased trophic assimilation efficiencies at the higher trophic level, which increased from 45 to 63% and 73 to 93%, respectively. In common with other food chains, δ(15)N increased with trophic level, with trophic discrimination factors (Δ(15)N) 1.34 and 1.49‰ from primary parasitoids to endoparasitic and ectoparasitic secondary parasitoids, respectively, and 0.78‰ from secondary to tertiary parasitoids. Owing to the extraordinarily high efficiency of hyperparasitoids, cryptic higher trophic levels may exist in host-parasitoid communities, which could alter our understanding of the dynamics and drivers of community structure of these important systems. PMID:26962141

  18. Trophic assimilation efficiency markedly increases at higher trophic levels in four-level host–parasitoid food chain

    PubMed Central

    Moser, Andrea; van Veen, F. J. Frank

    2016-01-01

    Trophic assimilation efficiency (conversion of resource biomass into consumer biomass) is thought to be a limiting factor for food chain length in natural communities. In host–parasitoid systems, which account for the majority of terrestrial consumer interactions, a high trophic assimilation efficiency may be expected at higher trophic levels because of the close match of resource composition of host tissue and the consumer's resource requirements, which would allow for longer food chains. We measured efficiency of biomass transfer along an aphid-primary–secondary–tertiary parasitoid food chain and used stable isotope analysis to confirm trophic levels. We show high efficiency in biomass transfer along the food chain. From the third to the fourth trophic level, the proportion of host biomass transferred was 45%, 65% and 73%, respectively, for three secondary parasitoid species. For two parasitoid species that can act at the fourth and fifth trophic levels, we show markedly increased trophic assimilation efficiencies at the higher trophic level, which increased from 45 to 63% and 73 to 93%, respectively. In common with other food chains, δ15N increased with trophic level, with trophic discrimination factors (Δ15N) 1.34 and 1.49‰ from primary parasitoids to endoparasitic and ectoparasitic secondary parasitoids, respectively, and 0.78‰ from secondary to tertiary parasitoids. Owing to the extraordinarily high efficiency of hyperparasitoids, cryptic higher trophic levels may exist in host–parasitoid communities, which could alter our understanding of the dynamics and drivers of community structure of these important systems. PMID:26962141

  19. Bi-functional prodrugs of 5-aminolevulinic acid and butyric acid increase erythropoiesis in anemic mice in an erythropoietin-independent manner.

    PubMed

    Rephaeli, Ada; Tarasenko, Nataly; Fibach, Eitan; Rozic, Gabriela; Lubin, Ido; Lipovetsky, Julia; Furman, Svetlana; Malik, Zvi; Nudelman, Abraham

    2016-08-25

    Anemia is a major cause of morbidity and mortality worldwide resulting from a wide variety of pathological conditions. In severe cases it is treated by blood transfusions or injection of erythroid stimulating agents, e.g., erythropoietin (Epo), which can be associated with serious adverse effects. Therefore, there is a need to develop new treatment modalities. We recently reported that treatment of erythroleukemic cells with the novel the bi-functional prodrugs of 5-aminolevulinic acid (ALA) and butyric acid (BA), AN233 and AN908, enhanced hemoglobin (Hb) synthesis to a substantially higher level than did ALA and BA individually or their mixture. Herein, we describe that these prodrugs when given orally to mice induced histone deacetylase inhibition in the kidneys, bone marrow and spleen, thus, indicating good penetrability to the tissues. In mice where anemia was chemically induced, treatment with the prodrugs increased the Hb, the number of red blood cells (RBCs) and the percentage of reticulocytes to normal levels. The prodrugs had no adverse effects even after repeated treatment at 100-200mg/kg for 50days. The lack of increased levels of Epo in the blood of mice that were treated with the prodrugs suggests that AN233 and AN908 affected the Hb and RBC levels in an Epo-independent manner. Taken together with our previous studies, we propose that the prodrugs increase globin expression by BA inhibition of histone deacetylase and elevation heme synthesis by ALA. These results support an Epo-independent approach for treating anemia with these prodrugs. PMID:27283485

  20. The Association between Marine n-3 Polyunsaturated Fatty Acid Levels and Survival after Renal Transplantation

    PubMed Central

    Jenssen, Trond; Hartmann, Anders; Diep, Lien M.; Dahle, Dag O.; Reisæter, Anna V.; Bjerve, Kristian S.; Christensen, Jeppe H.; Schmidt, Erik B.; Svensson, My

    2015-01-01

    Background and objectives Several studies have reported beneficial cardiovascular effects of marine n-3 polyunsaturated fatty acids. To date, no large studies have investigated the potential benefits of marine n-3 polyunsaturated fatty acids in recipients of renal transplants. Design, setting, participants, & measurements In this observational cohort study of 1990 Norwegian recipients of renal transplants transplanted between 1999 and 2011, associations between marine n-3 polyunsaturated fatty acid levels and mortality were investigated by stratified analysis and multivariable Cox proportional hazard regression analysis adjusting for traditional and transplant-specific mortality risk factors. Marine n-3 polyunsaturated fatty acid levels in plasma phospholipids were measured by gas chromatography in a stable phase 10 weeks after transplantation. Results There were 406 deaths (20.4%) during a median follow-up period of 6.8 years. Mortality rates were lower in patients with high marine n-3 polyunsaturated fatty acid levels (≥7.95 weight percentage) compared with low levels (<7.95 weight percentage) for all age categories (pooled mortality rate ratio estimate, 0.69; 95% confidence interval, 0.57 to 0.85). When divided into quartiles according to marine n-3 polyunsaturated fatty acid levels, patients in the upper quartile compared with the lower quartile had a 56% lower risk of death (adjusted hazard ratio, 0.44; 95% confidence interval, 0.26 to 0.75) using multivariable Cox proportional hazard regression analysis. There was a lower hazard ratio for death from cardiovascular disease with high levels of marine n-3 polyunsaturated fatty acid and a lower hazard ratio for death from infectious disease with high levels of the marine n-3 polyunsaturated fatty acid eicosapentaenoic acid, whereas there was no association between total or individual marine n-3 polyunsaturated fatty acid levels and cancer mortality. Conclusions Higher plasma phospholipid marine n-3

  1. Strategies for Mitigating the Reduction in Economic Value of Variable Generation with Increasing Penetration Levels

    SciTech Connect

    Mills, Andrew; Wiser, Ryan

    2014-03-03

    In this report, we evaluate individual options that have the potential to stem the decline in the marginal value of variable generation (VG) with increasing penetration levels. We focus only on the effectiveness of mitigation measures for wind and PV.

  2. Humic substances increase survival of freshwater shrimp Caridina sp. D to acid mine drainage.

    PubMed

    Holland, Aleicia; Duivenvoorden, Leo J; Kinnear, Susan H W

    2013-02-01

    Humic substances (HS) are known to decrease the toxicity of heavy metals to aquatic organisms, and it has been suggested that they can provide buffering protection in low pH conditions. Despite this, little is known about the ability for HS to increase survival to acid mine drainage (AMD). In this study, the ability of HS to increase survival of the freshwater shrimp (Caridina sp. D sensu Page et al. in Biol Lett 1:139-142, 2005) to acid mine drainage was investigated using test waters collected from the Mount Morgan open pit in Central Queensland with the addition of Aldrich humic acid (AHA). The AMD water from the Mount Morgan open pit is highly acidic (pH 2.67) as well as contaminated with heavy metals (1780 mg/L aluminum, 101 mg/L copper [Cu], 173 mg/L manganese, 51.8 mg/L zinc [Zn], and 51.8 mg/L iron). Freshwater shrimp were exposed to dilutions in the range of 0.5 % to 5 % AMD water with and without the addition of 10 or 20 mg/L AHA. In the absence of HS, all shrimp died in the 2.5 % AMD treatment. In contrast, addition of HS increased survival in the 2.5 % AMD treatment by ≤66 % as well as significantly decreased the concentration of dissolved Cu, cobalt, cadmium, and Zn. The decreased toxicity of AMD in the presence of HS is likely to be due to complexation and precipitation of heavy metals with the HS; it is also possible that HS caused changes to the physiological condition of the shrimp, thus increasing their survival. These results are valuable in contributing to an improved understanding of potential role of HS in ameliorating the toxicity of AMD environments. PMID:23135152

  3. Decreased bile-acid synthesis in livers of hepatocyte-conditional NADPH-cytochrome P450 reductase-null mice results in increased bile acids in serum.

    PubMed

    Cheng, Xingguo; Zhang, Youcai; Klaassen, Curtis D

    2014-10-01

    NADPH-cytochrome P450 reductase (Cpr) is essential for the function of microsomal cytochrome P450 monooxygenases (P450), including those P450s involved in bile acid (BA) synthesis. Mice with hepatocyte-specific deletion of NADPH-cytochrome P450 reductase (H-Cpr-null) have been engineered to understand the in vivo function of hepatic P450s in the metabolism of xenobiotics and endogenous compounds. However, the impact of hepatic Cpr on BA homeostasis is not clear. The present study revealed that H-Cpr-null mice had a 60% decrease in total BA concentration in liver, whereas the total BA concentration in serum was almost doubled. The decreased level of cholic acid (CA) in both serum and livers of H-Cpr-null mice is likely due to diminished enzyme activity of Cyp8b1 that is essential for CA biosynthesis. Feedback mechanisms responsible for the reduced liver BA concentrations and/or increased serum BA concentrations in H-Cpr-null mice included the following: 1) enhanced alternative BA synthesis pathway, as evidenced by the fact that classic BA synthesis is diminished but chenodeoxycholic acid still increases in both serum and livers of H-Cpr-null mice; 2) inhibition of farnesoid X receptor activation, which increased the mRNA of Cyp7a1 and 8b1; 3) induction of intestinal BA transporters to facilitate BA absorption from the intestine to the circulation; 4) induction of hepatic multidrug resistance-associated protein transporters to increase BA efflux from the liver to blood; and 5) increased generation of secondary BAs. In summary, the present study reveals an important contribution of the alternative BA synthesis pathway and BA transporters in regulating BA concentrations in H-Cpr-null mice. PMID:25034404

  4. Chlorogenic Acid Decreases Intestinal Permeability and Increases Expression of Intestinal Tight Junction Proteins in Weaned Rats Challenged with LPS

    PubMed Central

    Ruan, Zheng; Liu, Shiqiang; Zhou, Yan; Mi, Shumei; Liu, Gang; Wu, Xin; Yao, Kang; Assaad, Houssein; Deng, Zeyuan; Hou, Yongqing; Wu, Guoyao; Yin, Yulong

    2014-01-01

    Chlorogenic acid, a natural phenolic acid present in fruits and plants, provides beneficial effects for human health. The objectives of this study were to investigate whether chlorogenic acid (CHA) could improve the intestinal barrier integrity for weaned rats with lipopolysaccharide (LPS) challenge. Thirty-two weaned male Sprague Dawley rats (21±1 d of age; 62.26±2.73 g) were selected and randomly allotted to four treatments, including weaned rat control, LPS-challenged and chlorogenic acid (CHA) supplemented group (orally 20 mg/kg and 50 mg/kg body). Dietary supplementation with CHA decreased (P<0.05) the concentrations of urea and albumin in the serum, compared to the LPS-challenged group. The levels of IFN-γ and TNF-α were lower (P<0.05) in the jejunal and colon of weaned rats receiving CHA supplementation, in comparison with the control group. CHA supplementation increased (P<0.05) villus height and the ratio of villus height to crypt depth in the jejunal and ileal mucosae under condictions of LPS challenge. CHA supplementation decreased (P<0.05) intestinal permeability, which was indicated by the ratio of lactulose to mannitol and serum DAO activity, when compared to weaned rats with LPS challenge. Immunohistochemical analysis of tight junction proteins revealed that ZO-1 and occludin protein abundances in the jejunum and colon were increased (P<0.05) by CHA supplementation. Additionally, results of immunoblot analysis revealed that the amount of occludin in the colon was also increased (P<0.05) in CHA-supplemented rats. In conclusion, CHA decreases intestinal permeability and increases intestinal expression of tight junction proteins in weaned rats challenged with LPS. PMID:24887396

  5. Inhibition of Cancer Cell Proliferation by PPARγ is Mediated by a Metabolic Switch that Increases Reactive Oxygen Species Levels

    PubMed Central

    Srivastava, Nishi; Kollipara, Rahul K.; Singh, Dinesh K.; Sudderth, Jessica; Hu, Zeping; Nguyen, Hien; Wang, Shan; Humphries, Caroline G.; Carstens, Ryan; Huffman, Kenneth E.; DeBerardinis, Ralph J.; Kittler, Ralf

    2014-01-01

    SUMMARY The nuclear receptor peroxisome-proliferation activated receptor gamma (PPARγ), a transcriptional master regulator of glucose and lipid metabolism, inhibits the growth of several common cancers including lung cancer. In this study, we show that the mechanism by which activation of PPARγ inhibits proliferation of lung cancer cells is based on metabolic changes. We found that treatment with the PPARγ agonist pioglitazone triggers a metabolic switch that inhibits pyruvate oxidation and reduces glutathione levels. These PPARγ-induced metabolic changes result in a marked increase of reactive oxygen species (ROS) levels that lead to rapid hypophosphorylation of retinoblastoma protein (RB) and cell cycle arrest. The antiproliferative effect of PPARγ activation can be prevented by suppressing pyruvate dehydrogenase kinase 4 (PDK4) or β-oxidation of fatty acids in vitro and in vivo. Our proposed mechanism also suggests that metabolic changes can rapidly and directly inhibit cell cycle progression of cancer cells by altering ROS levels. PMID:25264247

  6. Inhibition of cancer cell proliferation by PPARγ is mediated by a metabolic switch that increases reactive oxygen species levels.

    PubMed

    Srivastava, Nishi; Kollipara, Rahul K; Singh, Dinesh K; Sudderth, Jessica; Hu, Zeping; Nguyen, Hien; Wang, Shan; Humphries, Caroline G; Carstens, Ryan; Huffman, Kenneth E; DeBerardinis, Ralph J; Kittler, Ralf

    2014-10-01

    The nuclear receptor peroxisome-proliferation-activated receptor gamma (PPARγ), a transcriptional master regulator of glucose and lipid metabolism, inhibits the growth of several common cancers, including lung cancer. In this study, we show that the mechanism by which activation of PPARγ inhibits proliferation of lung cancer cells is based on metabolic changes. We found that treatment with the PPARγ agonist pioglitazone triggers a metabolic switch that inhibits pyruvate oxidation and reduces glutathione levels. These PPARγ-induced metabolic changes result in a marked increase of reactive oxygen species (ROS) levels that lead to rapid hypophosphorylation of retinoblastoma protein (RB) and cell-cycle arrest. The antiproliferative effect of PPARγ activation can be prevented by suppressing pyruvate dehydrogenase kinase 4 (PDK4) or β-oxidation of fatty acids in vitro and in vivo. Our proposed mechanism also suggests that metabolic changes can rapidly and directly inhibit cell-cycle progression of cancer cells by altering ROS levels. PMID:25264247

  7. Increase in fatty acid oxidation in calvaria cells cultured with diphosphonates.

    PubMed Central

    Felix, R; Fleisch, H

    1981-01-01

    1. Cultured calvaria cells oxidized palmitate and octanoate to CO2 and water-soluble products. 2. When these cells were treated for 6 days with 0.025 and 0.25 mM-dichloromethanediphosphonate, oxidation of palmitate was increased, whereas that of octanoate was influenced less. 3. When the rate of oxidation was raised by increasing the palmitate concentration in the medium, the effect of the diphosphonate was decreased and finally disappeared. 4. 1-Hydroxyethane-1,1-diphosphonate had only minor effects. 5. The increase in palmitate oxidation appeared 2 days after the addition of dichloromethanediphosphonate, simultaneously with a fall in lactate production. (Inhibition of glycolysis by diphosphonates has already been shown.) 6. Cycloheximide, an inhibitor of protein synthesis, did not influence the effect of dichloromethanediphosphonate on the oxidation of palmitate and the production of lactate. 7. Cells cultured with dichloromethanediphosphonate showed a faster uptake of palmitic acid than did control cells. However, this observation did not explain the increased palmitate oxidation, since uptake was much faster than oxidation, and was therefore not the rate-limiting step. 8. 2-Bromopalmitate, an inhibitor of fatty acid oxidation, did not influence the inhibition of glycolysis by the diphosphonates. This inhibition, therefore, did not result from the increased oxidation of palmitate. It is also unlikely that the increased oxidation of palmitate is connected with the inhibition of glycolysis. PMID:6458286

  8. Caffeic Acid Phenethyl Ester Regulates PPAR's Levels in Stem Cells-Derived Adipocytes.

    PubMed

    Vanella, Luca; Tibullo, Daniele; Godos, Justyna; Pluchinotta, Francesca Romana; Di Giacomo, Claudia; Sorrenti, Valeria; Acquaviva, Rosaria; Russo, Alessandra; Li Volti, Giovanni; Barbagallo, Ignazio

    2016-01-01

    Hypertrophic obesity inhibits activation of peroxisome proliferators-activated receptor gamma (PPARγ), considered the key mediator of the fully differentiated and insulin sensitive adipocyte phenotype. We examined the effects of Caffeic Acid Phenethyl Ester (Cape), isolated from propolis, a honeybee hive product, on Adipose Stem Cells (ASCs) differentiation to the adipocyte lineage. Finally we tested the effects of Cape on insulin-resistant adipocytes. Quantification of Oil Red O-stained cells showed that lipid droplets decreased following Cape treatment as well as radical oxygen species formation. Additionally, exposure of ASC to high glucose levels decreased adiponectin and increased proinflammatory cytokines mRNA levels, which were reversed by Cape-mediated increase of insulin sensitivity. Cape treatment resulted in decreased triglycerides synthesis and increased beta-oxidation. Exposure of ASCs to Lipopolysaccharide (LPS) induced a reduction of PPARγ, an increase of IL-6 levels associated with a well-known stimulation of lipolysis; Cape partially attenuated the LPS-mediated effects. These observations reveal the main role of PPARγ in the adipocyte function and during ASC differentiation. As there is now substantial interest in functional food and nutraceutical products, the observed therapeutic value of Cape in insulin-resistance related diseases should be taken into consideration. PMID:26904104

  9. Caffeic Acid Phenethyl Ester Regulates PPAR's Levels in Stem Cells-Derived Adipocytes

    PubMed Central

    Vanella, Luca; Tibullo, Daniele; Godos, Justyna; Pluchinotta, Francesca Romana; Di Giacomo, Claudia; Sorrenti, Valeria; Acquaviva, Rosaria; Russo, Alessandra; Li Volti, Giovanni; Barbagallo, Ignazio

    2016-01-01

    Hypertrophic obesity inhibits activation of peroxisome proliferators-activated receptor gamma (PPARγ), considered the key mediator of the fully differentiated and insulin sensitive adipocyte phenotype. We examined the effects of Caffeic Acid Phenethyl Ester (Cape), isolated from propolis, a honeybee hive product, on Adipose Stem Cells (ASCs) differentiation to the adipocyte lineage. Finally we tested the effects of Cape on insulin-resistant adipocytes. Quantification of Oil Red O-stained cells showed that lipid droplets decreased following Cape treatment as well as radical oxygen species formation. Additionally, exposure of ASC to high glucose levels decreased adiponectin and increased proinflammatory cytokines mRNA levels, which were reversed by Cape-mediated increase of insulin sensitivity. Cape treatment resulted in decreased triglycerides synthesis and increased beta-oxidation. Exposure of ASCs to Lipopolysaccharide (LPS) induced a reduction of PPARγ, an increase of IL-6 levels associated with a well-known stimulation of lipolysis; Cape partially attenuated the LPS-mediated effects. These observations reveal the main role of PPARγ in the adipocyte function and during ASC differentiation. As there is now substantial interest in functional food and nutraceutical products, the observed therapeutic value of Cape in insulin-resistance related diseases should be taken into consideration. PMID:26904104

  10. What is the intrapatient variability of mycophenolic acid trough levels?

    PubMed

    Todorova, Ekaterina K; Huang, Shih-Han S; Kobrzynski, Marta C; Filler, Guido

    2015-11-01

    TDM of MPA, the active compound of MMF, is rarely used despite its substantial intra- and interpatient variability. Little is known about the utility of long-term MPA TDM. Data are expressed as mean (one standard deviation). All available data from 27 renal transplant recipients (mean age at transplantation: 7.7 [5.0] yr) with an average follow-up of 9.3 (4.6) yr were analyzed. MPA levels were measured using the EMIT. GFR was measured using cystatin C and eGFR was calculated using the Filler formula. Intrapatient CV of the trough level was calculated as the ratio of the mean divided by one standard deviation. Mean cystatin C eGFR was 56.9 (24.4) mL/min/1.73 m(2) . There was a weak but significant correlation between the MPA trough level and the AUC (Spearman r = 0.6592, p < 0.0001). A total of 1964 MPA trough levels (73 [45]/patient) were measured, as compared to 3462 Tac trough levels (144 [71]/patient). The average MPA trough level was 3.01 (1.26) mg/L and the average trough Tac level was 7.3 (1.8) ng/mL. Intrapatient CV was statistically higher (p = 0.00093) for MPA at 0.68 (0.29) when compared to Tac with a CV of 0.46 (0.12). CV did not correlate with eGFR. Intrapatient MPA trough level CV is significantly higher than for Tac, while CV for both MPA and Tac was high. MPA trough level monitoring may be a feasible monitoring option to improve patient exposure and possibly outcomes. PMID:26201386

  11. The Effect of Temperature on the Level and Biosynthesis of Unsaturated Fatty Acids in Diacylglycerols of Brassica napus Leaves 1

    PubMed Central

    Williams, John P.; Khan, Mobashsher U.; Mitchell, Kirk; Johnson, Geoff

    1988-01-01

    Experiments on the effects of temperature on the levels of unsaturated fatty acids and their rates of desaturation in Brassica napus leaf lipids have shown that significant differences occur in the composition of all diacylglycerols in the leaf between plants grown at high and low temperatures. In the major thylakoid diacylglycerols, monogalactosyl-diacylglycerol and digalactosyldiacylglycerol, not only is there an increase in the level of unsaturation at low temperatures, but there is a change in the balance between molecular species of chloroplastic origin (16/18C) and cytosolic origin (18/18C). Radioactivity tracer data indicate that at low temperatures there are two distinct phases of desaturation in the fatty acids of the major diacylglycerols of these leaves. A rapid phase, which appears in plants grown at low temperatures and results in the desaturation of palmitic acid to hexadecadienoic acid and oleic acid to linoleic acid may explain the high levels of unsaturated fatty acids found in the leaf diacylglycerols from plants grown at low temperatures. The appearance of this rapid phase is controlled by the temperature at which the plant is grown and is not subject to rapid variations in environmental temperature. PMID:16666243

  12. Increasing levels of assistance in refinement of knowledge-based retrieval systems

    NASA Technical Reports Server (NTRS)

    Baudin, Catherine; Kedar, Smadar; Pell, Barney

    1994-01-01

    The task of incrementally acquiring and refining the knowledge and algorithms of a knowledge-based system in order to improve its performance over time is discussed. In particular, the design of DE-KART, a tool whose goal is to provide increasing levels of assistance in acquiring and refining indexing and retrieval knowledge for a knowledge-based retrieval system, is presented. DE-KART starts with knowledge that was entered manually, and increases its level of assistance in acquiring and refining that knowledge, both in terms of the increased level of automation in interacting with users, and in terms of the increased generality of the knowledge. DE-KART is at the intersection of machine learning and knowledge acquisition: it is a first step towards a system which moves along a continuum from interactive knowledge acquisition to increasingly automated machine learning as it acquires more knowledge and experience.

  13. Nitrogen dioxide induced changes in level of free fatty acids, triglyceride, esterified fatty acid, ganglioside and lipase activity in the guinea pig brain

    SciTech Connect

    Farahani, H.; Hasan, M. )

    1992-02-01

    The biochemical response to controlled inhalation of nitrogen dioxide (NO2) was studied in 18 male guinea pigs. Animals were exposed to 2.5, 5.0, and 10 ppm NO2 for 2h daily for 35 consecutive days, and the results compared with six control animals exposed to filtered air for 2h daily for same period. Five biochemical parameters, including triglyceride, free fatty acids, esterified fatty acid, ganglioside and lipase activity were measured immediately after the last day of exposure. At 2.5 ppm NO2 inhalation no significant changes occurred in any region of the central nervous system (CNS). While as the dose concentration was increased to 5 and 10 ppm nitrogen dioxide, significant dose-related alteration were observed in the levels of triglyceride, free fatty acid, esterified fatty acid, ganglioside and lipase activity in the different regions of the guinea pig CNS.

  14. Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions

    PubMed Central

    2011-01-01

    Background Betulinic acid (BA) is a novel antineoplastic agent under evaluation for tumor therapy. Because of the selective cytotoxic effects of BA in tumor cells (including gliomas), the combination of this agent with conservative therapies (such as radiotherapy and chemotherapy) may be useful. Previously, the combination of BA with irradiation under hypoxic conditions had never been studied. Methods In this study, the effects of 3 to 30 μM BA on cytotoxicity, migration, the protein expression of PARP, survivin and HIF-1α, as well as radiosensitivity under normoxic and hypoxic conditions were analyzed in the human malignant glioma cell lines U251MG and U343MG. Cytotoxicity and radiosensitivity were analyzed with clonogenic survival assays, migration was analyzed with Boyden chamber assays (or scratch assays) and protein expression was examined with Western blot analyses. Results Under normoxic conditions, a half maximal inhibitory concentration (IC50) of 23 μM was observed in U251MG cells and 24 μM was observed in U343MG cells. Under hypoxic conditions, 10 μM or 15 μM of BA showed a significantly increased cytotoxicity in U251MG cells (p = 0.004 and p = 0.01, respectively) and U343MG cells (p < 0.05 and p = 0.01, respectively). The combination of BA with radiotherapy resulted in an additive effect in the U343MG cell line under normoxic and hypoxic conditions. Weak radiation enhancement was observed in U251MG cell line after treatment with BA under normoxic conditions. Furthermore, under hypoxic conditions, the incubation with BA resulted in increased radiation enhancement. The enhancement factor, at an irradiation dose of 15 Gy after treatment with 10 or 15 μM BA, was 2.20 (p = 0.02) and 4.50 (p = 0.03), respectively. Incubation with BA led to decreased cell migration, cleavage of PARP and decreased expression levels of survivin in both cell lines. Additionally, BA treatment resulted in a reduction of HIF-1α protein under hypoxic conditions. Conclusion Our

  15. Valproic Acid Increases CD133 Positive Cells that Show Low Sensitivity to Cytostatics in Neuroblastoma.

    PubMed

    Khalil, Mohamed Ashraf; Hraběta, Jan; Groh, Tomáš; Procházka, Pavel; Doktorová, Helena; Eckschlager, Tomáš

    2016-01-01

    Valproic acid (VPA) is a well-known antiepileptic drug that exhibits antitumor activities through its action as a histone deacetylase inhibitor. CD133 is considered to be a cancer stem cell marker in several tumors including neuroblastoma. CD133 transcription is strictly regulated by epigenetic modifications. We evaluated the epigenetic effects of treatment with 1mM VPA and its influence on the expression of CD133 in four human neuroblastoma cell lines. Chemoresistance and cell cycle of CD133+ and CD133- populations were examined by flow cytometry. We performed bisulfite conversion followed by methylation-sensitive high resolution melting analysis to assess the methylation status of CD133 promoters P1 and P3. Our results revealed that VPA induced CD133 expression that was associated with increased acetylation of histones H3 and H4. On treatment with VPA and cytostatics, CD133+ cells were mainly detected in the S and G2/M phases of the cell cycle and they showed less activated caspase-3 compared to CD133- cells. UKF-NB-3 neuroblastoma cells which express CD133 displayed higher colony and neurosphere formation capacities when treated with VPA, unlike IMR-32 which lacks for CD133 protein. Induction of CD133 in UKF-NB-3 was associated with increased expression of phosphorylated Akt and pluripotency transcription factors Nanog, Oct-4 and Sox2. VPA did not induce CD133 expression in cell lines with methylated P1 and P3 promoters, where the CD133 protein was not detected. Applying the demethylating agent 5-aza-2'-deoxycytidine to the cell lines with methylated promoters resulted in CD133 re-expression that was associated with a drop in P1 and P3 methylation level. In conclusion, CD133 expression in neuroblastoma can be regulated by histone acetylation and/or methylation of its CpG promoters. VPA can induce CD133+ cells which display high proliferation potential and low sensitivity to cytostatics in neuroblastoma. These results give new insight into the possible

  16. Hydroxamic acid derivatives of mycophenolic acid inhibit histone deacetylase at the cellular level.

    PubMed

    Batovska, Daniela I; Kim, Dong Hoon; Mitsuhashi, Shinya; Cho, Yoon Sun; Kwon, Ho Jeong; Ubukata, Makoto

    2008-10-01

    Mycophenolic acid (MPA, 1), an inhibitor of IMP-dehydrogenase (IMPDH) and a latent PPARgamma agonist, is used as an effective immunosuppressant for clinical transplantation and recently entered clinical trials in advanced multiple myeloma patients. On the other hand, suberoylanilide hydroxamic acid (SAHA), a non-specific histone deacetylase (HDAC) inhibitor, has been approved for treating cutaneous T-cell lymphoma. MPA seemed to bear a cap, a linker, and a weak metal-binding site as a latent inhibitor of HDAC. Therefore, the hydroxamic acid derivatives of mycophenolic acid having an effective metal-binding site, mycophenolic hydroxamic acid (MPHA, 2), 7-O-acetyl mycophenolic acid (7-O-Ac MPHA, 3), and 7-O-lauroyl mycophenolic hydroxamic acid (7-O-L MPHA, 4) were designed and synthesized. All these compounds inhibited histone deacetylase with IC50 values of 1, 0.9 and 0.5 microM, and cell proliferation at concentrations of 2, 1.5 and 1 microM, respectively. PMID:18838793

  17. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease.

    PubMed

    Coelho, Flávia Gomes de Melo; Vital, Thays Martins; Stein, Angelica Miki; Arantes, Franciel José; Rueda, André Veloso; Camarini, Rosana; Teodorov, Elizabeth; Santos-Galduróz, Ruth Ferreira

    2014-01-01

    Studies indicate the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Alzheimer's disease (AD). Decreased BDNF levels may constitute a lack of trophic support and contribute to cognitive impairment in AD. The benefits of acute and chronic physical exercise on BDNF levels are well-documented in humans, however, exercise effects on BDNF levels have not been analyzed in older adults with AD. The aim of this study was to investigate the effects of acute aerobic exercise on BDNF levels in older adults with AD and to verify associations among BDNF levels, aerobic fitness, and level of physical activity. Using a controlled design, twenty-one patients with AD (76.3 ± 6.2 years) and eighteen healthy older adults (74.6 ± 4.7 years) completed an acute aerobic exercise. The outcomes included measures of BDNF plasma levels, aerobic fitness (treadmill grade, time to exhaustion, VO2, and maximal lactate) and level of physical activity (Baecke Questionnaire Modified for the Elderly). The independent t-test shows differences between groups with respect to the BDNF plasma levels at baseline (p = 0.04; t = 4.53; df = 37). In two-way ANOVA, a significant effect of time was found (p = 0.001; F = 13.63; df = 37), the aerobic exercise significantly increased BDNF plasma levels in AD patients and healthy controls. A significant correlation (p = 0.04; r = 0.33) was found between BDNF levels and the level of physical activity. The results of our study suggest that aerobic exercise increases BDNF plasma levels in patients with AD and healthy controls. In addition to that, BDNF levels had association with level of physical activity. PMID:24164734

  18. Increased levels of brain serotonin correlated with MMP-9 activity and IL-4 levels resulted in severe experimental autoimmune encephalomyelitis (EAE) in obese mice.

    PubMed

    Hasan, M; Seo, J-E; Rahaman, K A; Kang, M-J; Jung, B-H; Kwon, O-S

    2016-04-01

    The aim of this study was to investigate the role of monoamine neurotransmitters on the severity of experimental autoimmune encephalomyelitis (EAE) in obese mice. EAE was induced in mice with normal diets (ND-EAE) and obese mice with high-fat diets (HFD-EAE) through the immune response to myelin oligodendrocyte glycoprotein (MOG) (35-55). The levels of dopamine (DA), serotonin (5-HT) and their metabolites in different anatomical brain regions were measured by high-performance liquid chromatography. The plasma and tissue NADPH oxidase and matrix metalloproteinases (MMP)-9 activities were analyzed by fluorescence spectrophotometry. The cumulative disease index and disease peaks were significantly higher in HFD-EAE compared with those in ND-EAE. Significantly higher 5-HT levels and lower 5-HT turnovers 5-hydroxyindole acetic acid ((5-HIAA)/5-HT) were found in the brains of HFD-EAE mice compared with those found in the HFD-CON and ND-EAE mice brains. Moreover, increased DA levels were observed in the caudate nucleus of the HFD-EAE mice compared with the control and ND-EAE mice. The NADPH oxidase and MMP-9 activities in the plasma and tissues were significantly higher in both the ND-EAE and HFD-EAE groups than in their respective controls. The cytokine levels in the plasma, tissues, and cultured splenocytes were found to be significantly altered in EAE mice compared with control mice. Moreover, HFD-EAE mice exhibited significantly higher MMP-9 activity and lower IL-4 levels than ND-EAE mice and were significantly correlated with brain 5-HT levels. In conclusion, the increased 5-HT levels in the brain significantly correlated with MMP-9 activity and IL-4 levels play an important role in the exacerbation of disease severity in HFD-EAE mice. PMID:26820599

  19. False in vitro and in vivo elevations of uric acid levels in mouse blood.

    PubMed

    Watanabe, Tamaki; Tomioka, Naoko H; Watanabe, Shigekazu; Tsuchiya, Masao; Hosoyamada, Makoto

    2014-01-01

    Uric acid (UA) levels in mouse blood have been reported to range widely from 0.1 μM to 760 μM. The aim of this study was to demonstrate false in vitro and in vivo elevations of UA levels in mouse blood. Male ICR mice were anesthetized with pentobarbital (breathing mice) or sacrificed with overdose ether (non-breathing mice). Collected blood was dispensed into MiniCollect® tubes and incubated in vitro for 0 or 30 min at room temperature. After separation of plasma or serum, the levels of UA and hypoxanthine were determined using HPLC. From the non-incubated plasma of breathing mice, the true value of UA level in vivo was 13.5±1.4 μM. However, UA levels in mouse blood increased by a factor of 3.9 following incubation in vitro. This "false in vitro elevation" of UA levels in mouse blood after blood sampling was inhibited by allopurinol, a xanthine oxidase inhibitor. Xanthine oxidase was converted to UA in mouse serum from hypoxanthine which was released from blood cells during incubation. Plasma UA levels from non-breathing mice were 19 times higher than those from breathing mice. This "false in vivo elevation" of UA levels before blood sampling was inhibited by pre-treatment with phentolamine, an α-antagonist. Over-anesthesia with ether might induce α-vasoconstriction and ischemia and thus degrade intracellular ATP to UA. For the accurate measurement of UA levels in mouse blood, the false in vitro and in vivo elevations of UA level must be avoided by immediate separation of plasma after blood sampling from anesthetized breathing mice. PMID:24940669

  20. Butyric acid increases transepithelial transport of ferulic acid through upregulation of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4).

    PubMed

    Ziegler, Kerstin; Kerimi, Asimina; Poquet, Laure; Williamson, Gary

    2016-06-01

    Ferulic acid is released by microbial hydrolysis in the colon, where butyric acid, a major by-product of fermentation, constitutes the main energy source for colonic enterocytes. We investigated how varying concentrations of this short chain fatty acid may influence the absorption of the phenolic acid. Chronic treatment of Caco-2 cells with butyric acid resulted in increased mRNA and protein abundance of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4), previously proposed to facilitate ferulic acid absorption in addition to passive diffusion. Short term incubation with butyric acid only led to upregulation of MCT4 while both conditions increased transepithelial transport of ferulic acid in the apical to basolateral, but not basolateral to apical, direction. Chronic treatment also elevated intracellular concentrations of ferulic acid, which in turn gave rise to increased concentrations of ferulic acid metabolites. Immunofluorescence staining of cells revealed uniform distribution of MCT1 protein in the cell membrane, whereas MCT4 was only detected in the lateral plasma membrane sections of Caco-2 cells. We therefore propose that MCT1 may be acting as an uptake transporter and MCT4 as an efflux system across the basolateral membrane for ferulic acid, and that this process is stimulated by butyric acid. PMID:26854723

  1. Effect of Exogenous Indole-3-Acetic Acid and Indole-3-Butyric Acid on Internal Levels of the Respective Auxins and Their Conjugation with Aspartic Acid during Adventitious Root Formation in Pea Cuttings.

    PubMed

    Nordström, A C; Jacobs, F A; Eliasson, L

    1991-07-01

    The influence of exogenous indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) on the internal levels of these auxins was studied during the first 4 days of adventitious root formation in cuttings of Pisum sativum L. The quantitations were done by high performance liquid chromatography with spectrofluorometric detection. IBA, identified by combined gas chromatography-mass spectrometry (GC-MS), was found to naturally occur in this plant material. The root inducing ability of exogenous IBA was superior to that of IAA. The IAA level in the tissue increased considerably on the first day after application of IAA, but rapidly decreased again, returning to a level twice the control by day 3. The predominant metabolic route was conjugation with aspartic acid, as reflected by the increase in the level of indole-3-acetylaspartic acid. The IBA treatment resulted in increases in the levels of IBA, IAA, and indole-3-acetylaspartic acid. The IAA content rapidly returned to control levels, whereas the IBA level remained high throughout the experimental period. High amounts of indole-3-butyrylaspartic acid were found in the tissue after feeding with IBA. The identity of the conjugate was confirmed by (1)H-nuclear magnetic resonance and GC-MS. IBA was much more stable in solution than IAA. No IAA was detected after 48 hours, whereas 70% IBA was still recovered after this time. The relatively higher root inducing ability of IBA is ascribed to the fact that its level remained elevated longer than that of IAA, even though IBA was metabolized in the tissue. Adventitious root formation is discussed on the basis of these findings. PMID:16668265

  2. Hippuric Acid Levels in Paint Workers at Steel Furniture Manufacturers in Thailand

    PubMed Central

    Decharat, Somsiri

    2014-01-01

    Background The aims of this study were to determine hippuric acid levels in urine samples, airborne toluene levels, acute and chronic neurological symptoms, and to describe any correlation between urinary hippuric acid and airborne toluene. Methods The hippuric acid concentration in the urine of 87 paint workers exposed to toluene at work (exposed group), and 87 nonexposed people (control group) was studied. Study participants were selected from similar factories in the same region. Urine samples were collected at the end of a shift and analyzed for hippuric acid by high performance liquid chromatography. Air samples for the estimation of toluene exposure were collected with diffusive personal samplers and the toluene quantified using gas–liquid chromatography. The two groups were also interviewed and observed about their work practices and health. Results The median of the 87 airborne toluene levels was 55 ppm (range, 12–198 ppm). The median urinary hippuric acid level was 800 mg/g creatinine (range, 90–2547 mg/g creatinine). A statistically significant positive correlation was found between airborne toluene exposure and urine hippuric acid levels (r = 0.548, p < 0.01). Workers with acute symptoms had significantly higher hippuric acid levels than those who did not (p < 0.05). It was concluded that there was a significant correlation between toluene exposure, hippuric acid levels, and health (p < 0.001). Conclusion There appears to be a significant correlation between workers exposure to toluene at work, their urine hippuric acid levels, and resulting symptoms of poor health. Improvements in working conditions and occupational health education are required at these workplaces. There was good correlation between urinary hippuric acid and airborne toluene levels. PMID:25516817

  3. Rhabdomere biogenesis in Drosophila photoreceptors is acutely sensitive to phosphatidic acid levels

    PubMed Central

    Coessens, Elise; Manifava, Maria; Georgiev, Plamen; Pettitt, Trevor; Wood, Eleanor; Garcia-Murillas, Isaac; Okkenhaug, Hanneke; Trivedi, Deepti; Zhang, Qifeng; Razzaq, Azam; Zaid, Ola; Wakelam, Michael; O'Kane, Cahir J; Ktistakis, Nicholas

    2009-01-01

    Phosphatidic acid (PA) is postulated to have both structural and signaling functions during membrane dynamics in animal cells. In this study, we show that before a critical time period during rhabdomere biogenesis in Drosophila melanogaster photoreceptors, elevated levels of PA disrupt membrane transport to the apical domain. Lipidomic analysis shows that this effect is associated with an increase in the abundance of a single, relatively minor molecular species of PA. These transport defects are dependent on the activation state of Arf1. Transport defects via PA generated by phospholipase D require the activity of type I phosphatidylinositol (PI) 4 phosphate 5 kinase, are phenocopied by knockdown of PI 4 kinase, and are associated with normal endoplasmic reticulum to Golgi transport. We propose that PA levels are critical for apical membrane transport events required for rhabdomere biogenesis. PMID:19349583

  4. Increase in thyroid stimulating hormone levels in patients with gout treated with inhibitors of xanthine oxidoreductase.

    PubMed

    Perez-Ruiz, Fernando; Chinchilla, Sandra Pamela; Atxotegi, Joana; Urionagüena, Irati; Herrero-Beites, Ana Maria; Aniel-Quiroga, Maria Angeles

    2015-11-01

    Increase in thyroid stimulating hormone (TSH) levels over the upper normal limit has been reported in a small percentage of patients treated with febuxostat in clinical trials, but a mechanistic explanation is not yet available. In an observational parallel longitudinal cohort study, we evaluated changes in TSH levels in patients with gout at baseline and during urate-lowering treatment with febuxostat. Patients to be started on allopurinol who had a measurement of TSH in the 6-month period prior to baseline evaluation were used for comparison. TSH levels and change in TSH levels at 12-month follow-up were compared between groups. Patients with abnormal TSH levels or previous thyroid disease or on amiodarone were not included for analysis. Eighty-eight patients treated with febuxostat and 87 with allopurinol were available for comparisons. Patients to be treated with febuxostat had higher urate levels and TSH levels, more severe gout, and poorer renal function, but were similar regarding other characteristics. A similar rise in TSH levels was observed in both groups (0.4 and 0.5 µUI/mL for febuxostat and allopurinol, respectively); at 12-mo, 7/88 (7.9 %) of patients on febuxostat and 4/87 (3.4 %) of patients on allopurinol showed TSH levels over 0.5 µUI/mL. Doses prescribed (corrected for estimated glomerular filtration rate in the case if patients on allopurinol) and baseline TSH levels were determinants of TSH levels at 12-month follow-up. No impact on free T4 (fT4) levels was observed. Febuxostat, but also allopurinol, increased TSH levels in a dose-dependent way, thus suggesting rather a class effect than a drug effect, but with no apparent impact on either clinical or fT4 levels. PMID:26342297

  5. Plasma Elaidic Acid Level as Biomarker of Industrial Trans Fatty Acids and Risk of Weight Change: Report from the EPIC Study

    PubMed Central

    Chajès, Véronique; Biessy, Carine; Ferrari, Pietro; Romieu, Isabelle; Freisling, Heinz; Huybrechts, Inge; Scalbert, Augustin; Bueno de Mesquita, Bas; Romaguera, Dora; Gunter, Marc J.; Vineis, Paolo; Hansen, Camilla Plambeck; Jakobsen, Marianne Uhre; Clavel-Chapelon, Françoise; Fagherazzi, Guy; Boutron-Ruault, Marie-Christine; Katzke, Verana; Neamat-Allah, Jasmine; Boeing, Heiner; Bachlechner, Ursula; Trichopoulou, Antonia; Naska, Androniki; Orfanos, Philippos; Pala, Valeria; Masala, Giovanna; Mattiello, Amalia; Skeie, Guri; Weiderpass, Elisabete; Agudo, Antonio; Huerta, Jose Maria; Ardanaz, Eva; Sánchez, Maria Jose; Dorronsoro, Miren; Quirós, Jose Ramon; Johansson, Ingegerd; Winkvist, Anna; Sonested, Emily; Key, Tim; Khaw, Kay-Tee; Wareham, Nicolas J.; Peeters, Petra H.M.; Slimani, Nadia

    2015-01-01

    Background Few epidemiological studies have examined the association between dietary trans fatty acids and weight gain, and the evidence remains inconsistent. The main objective of the study was to investigate the prospective association between biomarker of industrial trans fatty acids and change in weight within the large study European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Methods Baseline plasma fatty acid concentrations were determined in a representative EPIC sample from the 23 participating EPIC centers. A total of 1,945 individuals were followed for a median of 4.9 years to monitor weight change. The association between elaidic acid level and percent change of weight was investigated using a multinomial logistic regression model, adjusted by length of follow-up, age, energy, alcohol, smoking status, physical activity, and region. Results In women, doubling elaidic acid was associated with a decreased risk of weight loss (odds ratio (OR) = 0.69, 95% confidence interval (CI) = 0.55-0.88, p = 0.002) and a trend was observed with an increased risk of weight gain during the 5-year follow-up (OR = 1.23, 95% CI = 0.97-1.56, p = 0.082) (p-trend<.0001). In men, a trend was observed for doubling elaidic acid level and risk of weight loss (OR = 0.82, 95% CI = 0.66-1.01, p = 0.062) while no significant association was found with risk of weight gain during the 5-year follow-up (OR = 1.08, 95% CI = 0.88-1.33, p = 0.454). No association was found for saturated and cis-monounsaturated fatty acids. Conclusions These data suggest that a high intake of industrial trans fatty acids may decrease the risk of weight loss, particularly in women. Prevention of obesity should consider limiting the consumption of highly processed foods, the main source of industrially-produced trans fatty acids. PMID:25675445

  6. Agomelatine Increases BDNF Serum Levels in Depressed Patients in Correlation with the Improvement of Depressive Symptoms

    PubMed Central

    Pettorruso, Mauro; De Berardis, Domenico; Varasano, Paola Annunziata; Lucidi Pressanti, Gabriella; De Remigis, Valeria; Valchera, Alessandro; Ricci, Valerio; Di Nicola, Marco; Janiri, Luigi; Biggio, Giovanni; Di Giannantonio, Massimo

    2016-01-01

    Background: Agomelatine modulates brain-derived neurotrophic factor expression via its interaction with melatonergic and serotonergic receptors and has shown promising results in terms of brain-derived neurotrophic factor increase in animal models. Methods: Twenty-seven patients were started on agomelatine (25mg/d). Venous blood was collected and brain-derived neurotrophic factor serum levels were measured at baseline and after 2 and 8 weeks along with a clinical assessment, including Hamilton Depression Rating Scale and Snaith-Hamilton Pleasure Scale. Results: Brain-derived neurotrophic factor serum concentration increased after agomelatine treatment. Responders showed a significant increase in brain-derived neurotrophic factor levels after 2 weeks of agomelatine treatment; no difference was observed in nonresponders. Linear regression analysis showed that more prominent brain-derived neurotrophic factor level variation was associated with lower baseline BDNF levels and greater anhedonic features at baseline. Conclusions: Patients affected by depressive disorders showed an increase of brain-derived neurotrophic factor serum concentration after a 2-week treatment with agomelatine. The increase of brain-derived neurotrophic factor levels was found to be greater in patients with lower brain-derived neurotrophic factor levels and marked anhedonia at baseline. PMID:26775293

  7. Inhibiting the platelet derived growth factor receptor increases signs of retinoic acid syndrome in myeloid differentiated HL- 60 cells

    PubMed Central

    Reiterer, Gudrun; Bunaciu, Rodica P.; Smith, James L.; Yen, Andrew

    2008-01-01

    PDGFR inhibitors are successfully used in a number of cancer treatments. The standard treatment for acute promyelocytic leukemia (APL) involves differentiation therapy with retinoic acid (RA). However, the relapse rates are significant. In the present work we evaluated the effects of RA therapy in the presence of PDGFR inhibitor, AG1296. Adding AG1296 with RA increased secretion of TNF-α, IL-8, and MMP-9 expression. This treatment induced higher levels of ICAM-1 endothelial cell expression, and increased cellular mobility. Inhibiting PDGFR enhanced RA-induced expression of integrin. Integrin ligand increased differentiation markers CD11b, inducible oxidative metabolism and PDGFR-â phosphorylation. While the neutrophil- endothelial cell interactions are strengthened by the combined treatment, the endotheliumsubstratum interactions are weakened, a situation common in RAS. PMID:18571505

  8. Cytokines and migraine: increase of IL-5 and IL-4 plasma levels.

    PubMed

    Munno, I; Centonze, V; Marinaro, M; Bassi, A; Lacedra, G; Causarano, V; Nardelli, P; Cassiano, M A; Albano, O

    1998-06-01

    Thirty-two patients suffering from migraine without aura were assessed during in interictal period to evaluate the contribution of cytokines to the pathophysiology of migraine. To this end, plasma levels of IFN-gamma, IL-4, IL-5, and IL-10 were measured by enzyme-linked immunosorbent assay (ELISA) techniques. Plasma levels of both IFN-gamma and IL-10 were not increased in the patients and did not differ significantly from healthy controls. Of interest, we observed a strong increase of IL-5 levels in 84.3% as well as increased IL-4 levels in 37.5% of patients with migraine without aura. These results suggests a preferential enhancement of some Th2-type cytokines, and may support the growing arguments of an immunoallergic mechanism in the pathophysiology of migraine. PMID:9664752

  9. Endurance exercise increases skeletal muscle kynurenine aminotransferases and plasma kynurenic acid in humans.

    PubMed

    Schlittler, Maja; Goiny, Michel; Agudelo, Leandro Z; Venckunas, Tomas; Brazaitis, Marius; Skurvydas, Albertas; Kamandulis, Sigitas; Ruas, Jorge L; Erhardt, Sophie; Westerblad, Håkan; Andersson, Daniel C

    2016-05-15

    Physical exercise has emerged as an alternative treatment for patients with depressive disorder. Recent animal studies show that exercise protects from depression by increased skeletal muscle kynurenine aminotransferase (KAT) expression which shifts the kynurenine metabolism away from the neurotoxic kynurenine (KYN) to the production of kynurenic acid (KYNA). In the present study, we investigated the effect of exercise on kynurenine metabolism in humans. KAT gene and protein expression was increased in the muscles of endurance-trained subjects compared with untrained subjects. Endurance exercise caused an increase in plasma KYNA within the first hour after exercise. In contrast, a bout of high-intensity eccentric exercise did not lead to increased plasma KYNA concentration. Our results show that regular endurance exercise causes adaptations in kynurenine metabolism which can have implications for exercise recommendations for patients with depressive disorder. PMID:27030575

  10. Increased DHT levels in androgenic alopecia have been selected for to protect men from prostate cancer.

    PubMed

    Bhargava, Shiva

    2014-04-01

    Androgenic alopecia, a condition characterized by increased levels of DHT could have been selected for due to the benefits that prostaglandin D2 (PGD(2)) has on the prostate. A DHT metabolite can increase the transcription of prostaglandin D2 synthase through estrogen receptor beta. The increase of PGD(2) can decrease the risk of prostate cancer and proliferation of prostate cancer cells. Therefore, the mechanisms behind male pattern baldness may also curtail the advancement of prostate cancer. PMID:24548754

  11. Adipose tissue fatty acid chain length and mono-unsaturation increases with obesity and insulin resistance

    PubMed Central

    Yew Tan, Chong; Virtue, Samuel; Murfitt, Steven; Robert, Lee D.; Phua, Yi Hui; Dale, Martin; Griffin, Julian L.; Tinahones, Francisco; Scherer, Philipp E.; Vidal-Puig, Antonio

    2015-01-01

    The non-essential fatty acids, C18:1n9, C16:0, C16:1n7, C18:0 and C18:1n7 account for over 75% of fatty acids in white adipose (WAT) triacylglycerol (TAG). The relative composition of these fatty acids (FA) is influenced by the desaturases, SCD1-4 and the elongase, ELOVL6. In knock-out models, loss of SCD1 or ELOVL6 results in reduced Δ9 desaturated and reduced 18-carbon non-essential FA respectively. Both Elovl6 KO and SCD1 KO mice exhibit improved insulin sensitivity. Here we describe the relationship between WAT TAG composition in obese mouse models and obese humans stratified for insulin resistance. In mouse models with increasing obesity and insulin resistance, there was an increase in scWAT Δ9 desaturated FAs (SCD ratio) and FAs with 18-carbons (Elovl6 ratio) in mice. Data from mouse models discordant for obesity and insulin resistance (AKT2 KO, Adiponectin aP2-transgenic), suggested that scWAT TAG Elovl6 ratio was associated with insulin sensitivity, whereas SCD1 ratio was associated with fat mass. In humans, a greater SCD1 and Elovl6 ratio was found in metabolically more harmful visceral adipose tissue when compared to subcutaneous adipose tissue. PMID:26679101

  12. Elevated dietary linoleic acid increases gastric carcinoma cell invasion and metastasis in mice

    PubMed Central

    Matsuoka, T; Adair, J E; Lih, F B; Hsi, L C; Rubino, M; Eling, T E; Tomer, K B; Yashiro, M; Hirakawa, K; Olden, K; Roberts, J D

    2010-01-01

    Background: Dietary (n-6)-polyunsaturated fatty acids influence cancer development, but the mechanisms have not been well characterised in gastric carcinoma. Methods: We used two in vivo models to investigate the effects of these common dietary components on tumour metastasis. In a model of experimental metastasis, immunocompromised mice were fed diets containing linoleic acid (LA) at 2% (LLA), 8% (HLA) or 12% (VHLA) by weight and inoculated intraperitoneally (i.p.) with human gastric carcinoma cells (OCUM-2MD3). To model spontaneous metastasis, OCUM-2MD3 tumours were grafted onto the stomach walls of mice fed with the different diets. In in vitro assays, we investigated invasion and ERK phosphorylation of OCUM-2MD3 cells in the presence or absence of LA. Finally, we tested whether a cyclooxygenase (COX) inhibitor, indomethacin, could block peritoneal metastasis in vivo. Results: Both the HLA and VHLA groups showed increased incidence of tumour nodules (LA: 53% HLA: 89% VHLA: 100% P<0.03); the VHLA group also displayed increased numbers of tumour nodules and higher total volume relative to LLA group in experimental metastasis model. Both liver invasion (78%) and metastasis to the peritoneal cavity (67%) were more frequent in VHLA group compared with the LLA group (22% and 11%, respectively; P<0.03) in spontaneous metastasis model. We also found that the invasive ability of these cells is greatly enhanced when exposed to LA in vitro. Linoleic acid also increased invasion of other scirrhous gastric carcinoma cells, OCUM-12, NUGC3 and MKN-45. Linoleic acid effect on OCUM-2MD3 cells seems to be dependent on phosphorylation of ERK. The data suggest that invasion and phosphorylation of ERK were dependent on COX. Indomethacin decreased the number of tumours and total tumour volume in both LLA and VHLA groups. Finally, COX-1, which is known to be an important enzyme in the generation of bioactive metabolites from dietary fatty acids, appears to be responsible for the

  13. Image guided thermal ablation of tumors increases the plasma level of IL-6 and IL-10

    PubMed Central

    Erinjeri, Joseph P; Thomas, Contessa T; Samoila, Alaiksandra; Fleisher, Martin; Gonen, Mithat; Sofocleous, Constantinos T.; Thornton, Raymond H; Siegelbaum, Robert H.; Covey, Anne M.; Brody, Lynn A.; Alago, William; Maybody, Majid; Brown, Karen T.; Getrajdman, George; Solomon, Stephen B.

    2014-01-01

    PURPOSE To identify changes in plasma cytokine levels following image-guided thermal ablation of human tumors and to identify the factors that independently predict changes in plasma cytokine levels. MATERIALS AND METHODS Whole blood samples were collected from 36 patients at 3 time points: pre-ablation, post-ablation (within 48 hours), and in follow-up (1–5 weeks after ablation). Plasma levels of IL-1a, IL-2, IL-6, IL-10 and TNFa were measured using a multiplex immunoassay. Univariate and multivariate analyses were performed using cytokine level as the dependent variable and sample collection, time, age, sex, primary diagnosis, metastatic status, ablation site, and ablation type as the independent variables. RESULTS There was a significant increase in the plasma level of IL-6 post-ablation when compared to pre-ablation (9.6+/−31 fold, p<0.002). IL-10 also showed a significant increase postablation (1.9 +/−2.8 fold, p<0.02). Plasma levels of IL-1a, IL-2, and TNFa were not significantly changed after ablation. Cryoablation resulted in the largest change in IL-6 level (>54 fold), while radiofrequency and microwave ablation showed 3.6 and 3.4-fold changes, respectively. Ablation of melanomas showed the largest change in IL-6 48 hours after ablation (92×), followed by ablation of kidney (26×), liver (8×), and lung (6×) cancers. Multivariate analysis revealed that ablation type (p<0.0003), and primary diagnosis (p<0.03) were independent predictors of changes to IL-6 following ablation. Age was the only independent predictor of IL-10 levels following ablation (p<0.019). CONCLUSION Image guided thermal ablation of tumors increases the plasma level of IL-6 and IL-10, without increasing the plasma level of IL-1a, IL-2, or TNFa. PMID:23582441

  14. Twice-weekly consumption of farmed Atlantic salmon increases plasma content of phospholipid n-3 fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated intake of the n-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), is related to risk reduction of cardiovascular and other diseases. Increased consumption of seafood such as farmed Atlantic salmon is an effective way to consume n-3 but there is a paucity of data as ...

  15. A Chronological Increase in Gastric Acid Secretion from 1995 to 2014 in Young Japanese Healthy Volunteers under the Age of 40 Years Old.

    PubMed

    Iijima, Katsunori; Koike, Tomoyuki; Abe, Yasuhiko; Ohara, Shuichi; Shimosegawa, Tooru

    2016-01-01

    Gastric acid secretion levels are an important determinant of the manifestation of acid-related upper GI diseases such as gastroesophageal reflux disease. We recently reported that gastric acid secretion levels did not change from the 1990s to 2010s in H. pylori-negative asymptomatic Japanese outpatients with a mean age of 63 years old. However, because young people have a quite different lifestyle, including dietary pattern, from elderly people in Japan, it is worth investigating any chronologic changes in gastric acid secretion in younger generations. The aim of this analysis is to investigate the potential changes in gastric acid secretion from 1995 to 2014 in young Japanese healthy volunteers. Eighty-eight young Japanese healthy volunteers under the age of 40 with a mean age of 26 were extracted from a database accumulated from 1995 to 2014 for the present analysis. Their gastrin-stimulated gastric acid level was determined with the endoscopic gastrin test. In 76 H. pylori-negative subjects, gastric acid secretion levels showed a significant positive correlation with the calendar year when the test was performed (r = 0.27, p < 0.01). A similar trend was observed in 12 H. pylori-positive subjects. A chronological 5-year time period showed a significant positive association with gastric acid secretion in univariate and multivariate analyses (p < 0.01 and p = 0.01, respectively). Gastric acid secretion levels have been increasing in young Japanese healthy volunteers during the last 20 years. We need to monitor future trends in the prevalence of acid-related diseases such as gastro-esophageal reflux disease in Japan. PMID:27440759

  16. Increased fatty acid β-oxidation as a possible mechanism for fat-reducing effect of betaine in broilers.

    PubMed

    Leng, Zhixian; Fu, Qin; Yang, Xue; Ding, Liren; Wen, Chao; Zhou, Yanmin

    2016-08-01

    Two hundred and forty 1-day-old male Arbor Acres broiler chickens were randomly assigned to five dietary treatments with six replicates of eight chickens per replicate cage for a 42-day feeding trial. Broiler chickens were fed a basal diet supplemented with 0 (control), 250, 500, 750 or 1000 mg/kg betaine, respectively. Growth performance was not affected by betaine. Incremental levels of betaine decreased the absolute and relative weight of abdominal fat (linear P < 0.05, quadratic P < 0.01), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG) and total cholesterol (TC) (linear P < 0.05), and increased concentration of nonesterified fatty acid (NEFA) (linear P = 0.038, quadratic P = 0.003) in serum of broilers. Moreover, incremental levels of betaine increased linearly (P < 0.05) the proliferator-activated receptor alpha (PPARα), the carnitine palmitoyl transferase-I (CPT-I) and 3-hydroxyacyl-coenzyme A dehydrogenase (HADH) messenger RNA (mRNA) expression, but decreased linearly (P < 0.05) the fatty acid synthase (FAS) and 3-hydroxyl-3-methylglutaryl-CoA (HMGR) mRNA expression in liver of broilers. In conclusion, this study indicated that betaine supplementation did not affect growth performance of broilers, but was effective in reducing abdominal fat deposition in a dose-dependent manner, which was probably caused by combinations of a decrease in fatty acid synthesis and an increase in β-oxidation. PMID:27071487

  17. Increasing dietary palmitic acid decreases fat oxidation and daily energy expenditure123

    PubMed Central

    Bunn, Janice Y; Ugrasbul, Figen

    2005-01-01

    Background Oleic acid (OA) is oxidized more rapidly than is palmitic acid (PA). Objective We hypothesized that changing the dietary intakes of PA and OA would affect fatty acid oxidation and energy expenditure. Design A double-masked trial was conducted in 43 healthy young adults, who, after a 28-d, baseline, solid-food diet (41% of energy as fat, 8.4% as PA, and 13.1% as OA), were randomly assigned to one of two 28-d formula diets: high PA (40% of energy as fat, 16.8% as PA, and 16.4% as OA; n = 21) or high OA (40% of energy as fat, 1.7% as PA, and 31.4% as OA; n = 22). Differences in the change from baseline were evaluated by analysis of covariance. Results In the fed state, the respiratory quotient was lower (P = 0.01) with the high OA (0.86 ± 0.01) than with the high-PA (0.89 ± 0.01) diet, and the rate of fat oxidation was higher (P = 0.03) with the high-OA (0.0008 ± 0.0001) than with the high-PA (0.0005 ± 0.0001 mg · kg fat-free mass−1 · min−1) diet. Resting energy expenditure in the fed and fasting states was not significantly different between groups. Change in daily energy expenditure in the high-OA group (9 ± 60 kcal/d) was significantly different from that in the high-PA group (−214 ±69 kcal/d; P = 0.02 or 0.04 when expressed per fat-free mass). Conclusions Increases in dietary PA decrease fat oxidation and daily energy expenditure, whereas decreases in PA and increases in OA had the opposite effect. Increases in dietary PA may increase the risk of obesity and insulin resistance. PMID:16087974

  18. [Effect of increasing the omega-3 fatty acid in the diets of animals on the animal products consumed by humans].

    PubMed

    Bourre, Jean-Marie

    2005-01-01

    relatively good preservation of their dietary w-3 fatty acids. The enrichment in eggs is proportional to the amount of w-3 fatty acids in the hen's diet and can be extremely important. Including ALA in fish feeds is effective only if they are, like carp, vegetarians, as they have the enzymes required to transform ALA into EPA and DHA \\; in contrast, it is probably less effective for carnivorous fish (75 % of the fish used for human), which have little of these enzymes : their feed must contain marine animals, mainly fish or fish oil. Analysis of the published results shows that, under the best conditions, feeding animals with extracts of linseed and rapeseed grains, for example, increases the level of ALA acid by 20 to 40-fold in eggs (according to the low or high level of ALA in commercial eggs), 10-fold in chicken, 6-fold in pork and less than 2-fold in beef. By feeding animals with fish extracts or algae (oils), the level of DHA is increased by 20-fold in fish, 7-fold in chicken, 3 to 6-fold in eggs, less than 2-fold in beef. In practise, the effect is considerable for fish and egg, interesting for poultry and rabbit, extremely low for beef, mutton and sheep. The effect on the price paid by the consumer is very low compared to the considerable gain in nutritional value. PMID:16115466

  19. Increase in Dickkopf-1 Serum Level in Recent Spondyloarthritis. Data from the DESIR Cohort

    PubMed Central

    Nocturne, Gaetane; Pavy, Stephan; Boudaoud, Saida; Seror, Raphaèle; Goupille, Philippe; Chanson, Philippe; van der Heijde, Désirée; van Gaalen, Floris; Berenbaum, Francis; Mariette, Xavier; Briot, Karine; Feydy, Antoine; Claudepierre, Pascal; Dieudé, Philippe; Nithitham, Joanne; Taylor, Kimberly E.; Criswell, Lindsey A.; Dougados, Maxime; Roux, Christian; Miceli-Richard, Corinne

    2015-01-01

    Objectives To investigate DKK-1 and SOST serum levels among patients with recent inflammatory back pain (IBP) fulfilling ASAS criteria for SpA and associated factors. Methods The DESIR cohort is a prospective, multicenter French cohort of 708 patients with early IBP (duration >3 months and <3 years) suggestive of AxSpA. DKK-1 and SOST serum levels were assessed at baseline and were compared between the subgroup of patients fulfilling ASAS criteria for SpA (n = 486; 68.6%) and 80 healthy controls. Results Mean SOST serum levels were lower in ASAS+ patients than healthy controls (49.21 ± 25.9 vs. 87.8 ± 26 pmol/L; p<0.0001). In multivariate analysis, age (p = 5.4 10−9), CRP level (p<0.0001) and serum DKK-1 level (p = 0.001) were associated with SOST level. Mean DKK-1 serum levels were higher in axial SpA patients than controls (30.03 ± 15.5 vs. 11.6 ± 4.2 pmol/L; p<0.0001). In multivariate analysis, DKK-1 serum levels were associated with male gender (p = 0.03), CRP level (p = 0.006), SOST serum level (p = 0.002) and presence of sacroiliitis on radiography (p = 0.05). Genetic association testing of 10 SNPs encompassing the DKK-1 locus failed to demonstrate a significant contribution of genetics to control of DKK-1 serum levels. Conclusions DKK-1 serum levels were increased and SOST levels were decreased among a large cohort of patients with early axial SpA compared to healthy controls. DKK-1 serum levels were mostly associated with biological inflammation and SOST serum levels. PMID:26313358

  20. Organic amendments increase soil solution phosphate concentrations in an acid soil: A controlled environment study

    SciTech Connect

    Schefe, C.R.; Patti, A.F.; Clune, T.S.; Jackson, R.

    2008-04-15

    Soil acidification affects at least 4 million hectares of agricultural land in Victoria, Australia. Low soil pH can inhibit plant growth through increased soluble aluminum (Al) concentrations and decreased available phosphorus (P). The addition of organic amendments may increase P availability through competition for P binding sites, solubilization of poorly soluble P pools, and increased solution pH. The effect of two organic amendments (lignite and compost) on P solubility in an acid soil was determined through controlled environment (incubation) studies. Three days after the addition of lignite and compost, both treatments increased orthophosphate and total P measured in soil solution, with the compost treatments having the greatest positive effect. Increased incubation time (26 days) increased soil solution P concentrations in both untreated and amended soils, with the greatest effect seen in total P concentrations. The measured differences in solution P concentrations between the lignite- and compost-amended treatments were likely caused by differences in solution chemistry, predominantly solution pH and cation dynamics. Soil amendment with lignite or compost also increased microbial activity in the incubation systems, as measured by carbon dioxide respiration. Based on the results presented, it is proposed that the measured increase in soil solution P with amendment addition was likely caused by both chemical and biological processes, including biotic and abiotic P solubilization reactions, and the formation of soluble organic-metal complexes.

  1. Modeling Caspian Sea water level oscillations under different scenarios of increasing atmospheric carbon dioxide concentrations

    PubMed Central

    2012-01-01

    The rapid rise of Caspian Sea water level (about 2.25 meters since 1978) has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in the coastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels was simulated. Variations in environmental parameters such as temperature, precipitation, evaporation, atmospheric carbon dioxide and water level oscillations of the Caspian sea and surrounding regions, are considered for both past (1951-2006) and future (2025-2100) time frames. The output of the UKHADGEM general circulation model and five alternative scenarios including A1CAI, BIASF, BIMES WRE450 and WRE750 were extracted using the MAGICC SCENGEN Model software (version 5.3). The results suggest that the mean temperature of the Caspian Sea region (Bandar-E-Anzali monitoring site) has increased by ca. 0.17°C per decade under the impacts of atmospheric carbon dioxide changes (r=0.21). The Caspian Sea water level has increased by ca. +36cm per decade (r=0.82) between the years 1951-2006. Mean results from all modeled scenarios indicate that the temperature will increase by ca. 3.64°C and precipitation will decrease by ca. 10% (182 mm) over the Caspian Sea, whilst in the Volga river basin, temperatures are projected to increase by ca. 4.78°C and precipitation increase by ca. 12% (58 mm) by the year 2100. Finally, statistical modeling of the Caspian Sea water levels project future water level increases of between 86 cm and 163 cm by the years 2075 and 2100, respectively. PMID:23369617

  2. Milk production responses to dietary stearic acid vary by production level in dairy cattle.

    PubMed

    Piantoni, P; Lock, A L; Allen, M S

    2015-03-01

    Effects of stearic acid supplementation on feed intake and metabolic and production responses of dairy cows with a wide range of milk production (32.2 to 64.4 kg/d) were evaluated in a crossover design experiment with a covariate period. Thirty-two multiparous Holstein cows (142±55 d in milk) were assigned randomly within level of milk yield to treatment sequence. Treatments were diets supplemented (2% of diet dry matter) with stearic acid (SA; 98% C18:0) or control (soyhulls). The diets were based on corn silage and alfalfa and contained 24.5% forage neutral detergent fiber, 25.1% starch, and 17.3% crude protein. Treatment periods were 21 d with the final 4 d used for data and sample collection. Compared with the control, SA increased dry matter intake (DMI; 26.1 vs. 25.2 kg/d) and milk yield (40.2 vs. 38.5 kg/d). Stearic acid had no effect on the concentration of milk components but increased yields of fat (1.42 vs. 1.35 kg/d), protein (1.19 vs. 1.14 kg/d), and lactose (1.96 vs. 1.87 kg/d). The SA treatment increased 3.5% fat-corrected milk (3.5% FCM; 40.5 vs. 38.6 kg/d) but did not affect feed efficiency (3.5% FCM/DMI, 1.55 vs. 1.53), body weight, or body condition score compared with the control. Linear interactions between treatment and level of milk yield during the covariate period were detected for DMI and yields of milk, fat, protein, lactose, and 3.5% FCM; responses to SA were positively related to milk yield of cows. The SA treatment increased crude protein digestibility (67.4 vs. 65.5%), tended to increase neutral detergent fiber digestibility (43.6 vs. 42.3%), decreased fatty acid (FA) digestibility (56.6 vs. 76.1%), and did not affect organic matter digestibility. Fatty acid yield response, calculated as the additional FA yield secreted in milk per unit of additional FA intake, was only 13.3% for total FA and 8.2% for C18:0 plus cis-9 C18:1. Low estimated digestibility of the SA supplement was at least partly responsible for the low FA yield response

  3. Aspartame and sucrose produce a similar increase in the plasma phenylalanine to large neutral amino acid ratio in healthy subjects.

    PubMed

    Burns, T S; Stargel, W W; Tschanz, C; Kotsonis, F N; Hurwitz, A

    1991-01-01

    Aspartame (L-aspartyl-L-phenylalanine methyl ester) consumption has been postulated to increase brain phenylalanine levels by increasing the molar ratio of the plasma phenylalanine concentration to the sum of the plasma concentrations of the other large neutral amino acids (Phe/LNAA). Dietary manipulations with carbohydrate or protein can also produce changes in the Phe/LNAA value. To compare the effects of aspartame and carbohydrate on Phe/LNAA, beverages sweetened with aspartame, sucrose, and aspartame plus sucrose, and unsweetened beverage were ingested by 8 healthy, fasted subjects in a randomized, four-way crossover design. The beverages were sweetened with an amount of aspartame (500 mg) and/or sucrose (100 g) approximately equivalent to that used to sweeten 1 liter of soft drink. The baseline-corrected plasma Phe/LNAA values did not differ significantly following ingestion of aspartame or sucrose. Following aspartame alone, the high mean ratio increased 26% over baseline 1 h after ingestion. Following sucrose alone, the high mean ratio increased 19% at 2.5 h. Sucrose increased the Phe/LNAA value due to an insulin-mediated decrease in the plasma LNAA, while aspartame increased the ratio by increasing the plasma Phe concentration. These findings indicate that similar increases in plasma Phe/LNAA occur when healthy, fasting subjects ingest amounts of equivalent sweetness of sucrose or aspartame. PMID:1771173

  4. Eosinophil viability is increased by acidic pH in a cAMP- and GPR65-dependent manner.

    PubMed

    Kottyan, Leah C; Collier, Ann R; Cao, Khanh H; Niese, Kathryn A; Hedgebeth, Megan; Radu, Caius G; Witte, Owen N; Khurana Hershey, Gurjit K; Rothenberg, Marc E; Zimmermann, Nives

    2009-09-24

    The microenvironment of the lung in asthma is acidic, yet the effect of acidity on inflammatory cells has not been well established. We now demonstrate that acidity inhibits eosinophil apoptosis and increases cellular viability in a dose-dependent manner between pH 7.5 and 6.0. Notably, acidity induced eosinophil cyclic adenosine 5'-monophosphate (cAMP) production and enhanced cellular viability in an adenylate cyclase-dependent manner. Furthermore, we identify G protein-coupled receptor 65 (GPR65) as the chief acid-sensing receptor expressed by eosinophils, as GPR65-deficient eosinophils were resistant to acid-induced eosinophil cAMP production and enhanced viability. Notably, GPR65(-/-) mice had attenuated airway eosinophilia and increased apoptosis in 2 distinct models of allergic airway disease. We conclude that eosinophil viability is increased in acidic microenvironments in a cAMP- and GPR65-dependent manner. PMID:19641187

  5. Eosinophil viability is increased by acidic pH in a cAMP- and GPR65-dependent manner

    PubMed Central

    Kottyan, Leah C.; Collier, Ann R.; Cao, Khanh H.; Niese, Kathryn A.; Hedgebeth, Megan; Radu, Caius G.; Witte, Owen N.; Khurana Hershey, Gurjit K.; Rothenberg, Marc E.

    2009-01-01

    The microenvironment of the lung in asthma is acidic, yet the effect of acidity on inflammatory cells has not been well established. We now demonstrate that acidity inhibits eosinophil apoptosis and increases cellular viability in a dose-dependent manner between pH 7.5 and 6.0. Notably, acidity induced eosinophil cyclic adenosine 5′-monophosphate (cAMP) production and enhanced cellular viability in an adenylate cyclase–dependent manner. Furthermore, we identify G protein-coupled receptor 65 (GPR65) as the chief acid-sensing receptor expressed by eosinophils, as GPR65-deficient eosinophils were resistant to acid-induced eosinophil cAMP production and enhanced viability. Notably, GPR65−/− mice had attenuated airway eosinophilia and increased apoptosis in 2 distinct models of allergic airway disease. We conclude that eosinophil viability is increased in acidic microenvironments in a cAMP- and GPR65-dependent manner. PMID:19641187

  6. Genome level analysis of bacteriocins of lactic acid bacteria.

    PubMed

    Singh, Neetigyata Pratap; Tiwari, Abhay; Bansal, Ankiti; Thakur, Shruti; Sharma, Garima; Gabrani, Reema

    2015-06-01

    Bacteriocins are antimicrobial peptides which are ribosomally synthesized by mainly all bacterial species. LABs (lactic acid bacteria) are a diverse group of bacteria that include around 20 genera of various species. Though LABs have a tremendous potential for production of anti-microbial peptides, this group of bacteria is still underexplored for bacteriocins. To study the diversity among bacteriocin encoding clusters and the putative bacteriocin precursors, genome mining was performed on 20 different species of LAB not reported to be bacteriocin producers. The phylogenetic tree of gyrB, rpoB, and 16S rRNA were constructed using MEGA6 software to analyze the diversity among strains. Putative bacteriocins operons identified were found to be diverse and were further characterized on the basis of physiochemical properties and the secondary structure. The presence of at least two cysteine residues in most of the observed putative bacteriocins leads to disulphide bond formation and provide stability. Our data suggests that LABs are prolific source of low molecular weight non modified peptides. PMID:25733445

  7. Increased Dietary Intake of Saturated Fatty Acid Heptadecanoic Acid (C17:0) Associated with Decreasing Ferritin and Alleviated Metabolic Syndrome in Dolphins.

    PubMed

    Venn-Watson, Stephanie K; Parry, Celeste; Baird, Mark; Stevenson, Sacha; Carlin, Kevin; Daniels, Risa; Smith, Cynthia R; Jones, Richard; Wells, Randall S; Ridgway, Sam; Jensen, Eric D

    2015-01-01

    Similar to humans, bottlenose dolphins (Tursiops truncatus) can develop metabolic syndrome and associated high ferritin. While fish and fish-based fatty acids may protect against metabolic syndrome in humans, findings have been inconsistent. To assess potential protective factors against metabolic syndrome related to fish diets, fatty acids were compared between two dolphin populations with higher (n = 30, Group A) and lower (n = 19, Group B) mean insulin (11 ± 12 and 2 ± 5 μIU/ml, respectively; P < 0.0001) and their dietary fish. In addition to higher insulin, triglycerides, and ferritin, Group A had lower percent serum heptadecanoic acid (C17:0) compared to Group B (0.3 ± 0.1 and 1.3 ± 0.4%, respectively; P < 0.0001). Using multivariate stepwise regression, higher percent serum C17:0, a saturated fat found in dairy fat, rye, and some fish, was an independent predictor of lower insulin in dolphins. Capelin, a common dietary fish for Group A, had no detectable C17:0, while pinfish and mullet, common in Group B's diet, had C17:0 (41 and 67 mg/100g, respectively). When a modified diet adding 25% pinfish and/or mullet was fed to six Group A dolphins over 24 weeks (increasing the average daily dietary C17:0 intake from 400 to 1700 mg), C17:0 serum levels increased, high ferritin decreased, and blood-based metabolic syndrome indices normalized toward reference levels. These effects were not found in four reference dolphins. Further, higher total serum C17:0 was an independent and linear predictor of lower ferritin in dolphins in Group B dolphins. Among off the shelf dairy products tested, butter had the highest C17:0 (423mg/100g); nonfat dairy products had no detectable C17:0. We hypothesize that humans' movement away from diets with potentially beneficial saturated fatty acid C17:0, including whole fat dairy products, could be a contributor to widespread low C17:0 levels, higher ferritin, and metabolic syndrome. PMID:26200116

  8. Increased Dietary Intake of Saturated Fatty Acid Heptadecanoic Acid (C17:0) Associated with Decreasing Ferritin and Alleviated Metabolic Syndrome in Dolphins

    PubMed Central

    Venn-Watson, Stephanie K.; Parry, Celeste; Baird, Mark; Stevenson, Sacha; Carlin, Kevin; Daniels, Risa; Smith, Cynthia R.; Jones, Richard; Wells, Randall S.; Ridgway, Sam; Jensen, Eric D.

    2015-01-01

    Similar to humans, bottlenose dolphins (Tursiops truncatus) can develop metabolic syndrome and associated high ferritin. While fish and fish-based fatty acids may protect against metabolic syndrome in humans, findings have been inconsistent. To assess potential protective factors against metabolic syndrome related to fish diets, fatty acids were compared between two dolphin populations with higher (n = 30, Group A) and lower (n = 19, Group B) mean insulin (11 ± 12 and 2 ± 5 μIU/ml, respectively; P < 0.0001) and their dietary fish. In addition to higher insulin, triglycerides, and ferritin, Group A had lower percent serum heptadecanoic acid (C17:0) compared to Group B (0.3 ± 0.1 and 1.3 ± 0.4%, respectively; P < 0.0001). Using multivariate stepwise regression, higher percent serum C17:0, a saturated fat found in dairy fat, rye, and some fish, was an independent predictor of lower insulin in dolphins. Capelin, a common dietary fish for Group A, had no detectable C17:0, while pinfish and mullet, common in Group B’s diet, had C17:0 (41 and 67 mg/100g, respectively). When a modified diet adding 25% pinfish and/or mullet was fed to six Group A dolphins over 24 weeks (increasing the average daily dietary C17:0 intake from 400 to 1700 mg), C17:0 serum levels increased, high ferritin decreased, and blood-based metabolic syndrome indices normalized toward reference levels. These effects were not found in four reference dolphins. Further, higher total serum C17:0 was an independent and linear predictor of lower ferritin in dolphins in Group B dolphins. Among off the shelf dairy products tested, butter had the highest C17:0 (423mg/100g); nonfat dairy products had no detectable C17:0. We hypothesize that humans’ movement away from diets with potentially beneficial saturated fatty acid C17:0, including whole fat dairy products, could be a contributor to widespread low C17:0 levels, higher ferritin, and metabolic syndrome. PMID:26200116

  9. Serum Metabolomics Reveals Higher Levels of Polyunsaturated Fatty Acids in Lepromatous Leprosy: Potential Markers for Susceptibility and Pathogenesis

    PubMed Central

    Al-Mubarak, Reem; Vander Heiden, Jason; Broeckling, Corey D.; Balagon, Marivic; Brennan, Patrick J.; Vissa, Varalakshmi D.

    2011-01-01

    Background Leprosy is a disease of the skin and peripheral nervous system caused by the obligate intracellular bacterium Mycobacterium leprae. The clinical presentations of leprosy are spectral, with the severity of disease determined by the balance between the cellular and humoral immune response of the host. The exact mechanisms that facilitate disease susceptibility, onset and progression to certain clinical phenotypes are presently unclear. Various studies have examined lipid metabolism in leprosy, but there has been limited work using whole metabolite profiles to distinguish the clinical forms of leprosy. Methodology and Principal Findings In this study we adopted a metabolomics approach using high mass accuracy ultrahigh pressure liquid chromatography mass spectrometry (UPLC-MS) to investigate the circulatory biomarkers in newly diagnosed untreated leprosy patients. Sera from patients having bacterial indices (BI) below 1 or above 4 were selected, subjected to UPLC-MS, and then analyzed for biomarkers which distinguish the polar presentations of leprosy. We found significant increases in the abundance of certain polyunsaturated fatty acids (PUFAs) and phospholipids in the high-BI patients, when contrasted with the levels in the low-BI patients. In particular, the median values of arachidonic acid (2-fold increase), eicosapentaenoic acid (2.6-fold increase) and docosahexaenoic acid (1.6-fold increase) were found to be greater in the high-BI patients. Significance Eicosapentaenoic acid and docosahexaenoic acid are known to exert anti-inflammatory properties, while arachidonic acid has been reported to have both pro- and anti-inflammatory activities. The observed increase in the levels of several lipids in high-BI patients may provide novel clues regarding the biological pathways involved in the immunomodulation of leprosy. Furthermore, these results may lead to the discovery of biomarkers that can be used to investigate susceptibility to infection, facilitate

  10. Playground designs to increase physical activity levels during school recess: a systematic review.

    PubMed

    Escalante, Yolanda; García-Hermoso, Antonio; Backx, Karianne; Saavedra, Jose M

    2014-04-01

    School recess provides a major opportunity to increase children's physical activity levels. Various studies have described strategies to increase levels of physical activity. The purpose of this systematic review is therefore to examine the interventions proposed as forms of increasing children's physical activity levels during recess. A systematic search of seven databases was made from the July 1 to July 5, 2012, leading to a final set of eight studies (a total of 2,383 subjects-599 "preschoolers" and 1,784 "schoolchildren") meeting the inclusion criteria. These studies were classified according to the intervention used: playground markings, game equipment, playground markings plus physical structures, and playground markings plus game equipment. The results of these studies indicate that the strategies analyzed do have the potential to increase physical activity levels during recess. The cumulative evidence was (a) that interventions based on playground markings, game equipment, or a combination of the two, do not seem to increase the physical activity of preschoolers and schoolchildren during recess and (ii) that interventions based on playground markings plus physical structures do increase the physical activity of schoolchildren during recess in the short to medium term. PMID:23836828

  11. Increased steroid hormone dehydroepiandrosterone and pregnenolone levels in post-mortem brain samples of alcoholics.

    PubMed

    Kärkkäinen, Olli; Häkkinen, Merja R; Auriola, Seppo; Kautiainen, Hannu; Tiihonen, Jari; Storvik, Markus

    2016-05-01

    Intra-tissue levels of steroid hormones (e.g., dehydroepiandrosterone [DHEA], pregnenolone [PREGN], and testosterone [T]) may influence the pathological changes seen in neurotransmitter systems of alcoholic brains. Our aim was to compare levels of these steroid hormones between the post-mortem brain samples of alcoholics and non-alcoholic controls. We studied steroid levels with quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) in post-mortem brain samples of alcoholics (N = 14) and non-alcoholic controls (N = 10). Significant differences were observed between study groups in DHEA and PREGN levels (p values 0.0056 and 0.019, respectively), but not in T levels. Differences between the study groups were most prominent in the nucleus accumbens (NAC), anterior cingulate cortex (ACC), and anterior insula (AINS). DHEA levels were increased in most alcoholic subjects compared to controls. However, only a subgroup of alcoholics showed increased PREGN levels. Negative Spearman correlations between tissue levels of PREGN and previous reports of [(3)H]naloxone binding to μ-opioid receptors were observed in the AINS, ACC, NAC, and frontal cortex (R values between -0.6 and -0.8; p values ≤ 0.002), suggesting an association between the opioid system and brain PREGN levels. Although preliminary, and from relatively small diagnostic groups, these results show significantly increased levels of DHEA and PREGN in the brains of alcoholics, and could be associated with the pathology of alcoholism. PMID:27139239

  12. The degree of acceptability of swine blood values at increasing levels of hemolysis evaluated through visual inspection versus automated quantification.

    PubMed

    Di Martino, Guido; Stefani, Anna Lisa; Lippi, Giuseppe; Gagliazzo, Laura; McCormick, Wanda; Gabai, Gianfranco; Bonfanti, Lebana

    2015-05-01

    The pronounced fragility that characterizes swine erythrocytes is likely to produce a variable degree of hemolysis during blood sampling, and the free hemoglobin may then unpredictably bias the quantification of several analytes. The aim of this study was to evaluate the degree of acceptability of values obtained for several biochemical parameters at different levels of hemolysis. Progressively increased degrees of physical hemolysis were induced in 3 aliquots of 30 nonhemolytic sera, and the relative effects on the test results were assessed. To define the level of hemolysis, we used both visual estimation (on a scale of 0 to 3+) and analytical assessment (hemolytic index) and identified the best analytical cutoff values for discriminating the visual levels of hemolysis. Hemolysis led to a variable and dose-dependent effect on the test results that was specific for each analyte tested. In mildly hemolyzed specimens, C-reactive protein, haptoglobin, β1-globulin, β2-globulin, α1-globulin, γ-globulin, sodium, calcium, and alkaline phosphatase were not significantly biased, whereas α2-globulin, albumin, urea, creatinine, glucose, total cholesterol, aspartate aminotransferase, alanine aminotransferase, gamma-glutamyl transferase, nonesterified fatty acids, bilirubin, phosphorus, magnesium, iron, zinc, copper, lipase, triglycerides, lactate dehydrogenase, unbound iron-binding capacity, and uric acid were significantly biased. Chloride and total protein were unbiased even in markedly hemolyzed samples. Analytical interference was hypothesized to be the main source of this bias, leading to a nonlinear trend that confirmed the difficulty in establishing reliable coefficients of correction for adjusting the test results. PMID:26038480

  13. The Fatty Acid Signaling Molecule cis-2-Decenoic Acid Increases Metabolic Activity and Reverts Persister Cells to an Antimicrobial-Susceptible State

    PubMed Central

    Morozov, Aleksey; Planzos, Penny; Zelaya, Hector M.

    2014-01-01

    Persister cells, which are tolerant to antimicrobials, contribute to biofilm recalcitrance to therapeutic agents. In turn, the ability to kill persister cells is believed to significantly improve efforts in eradicating biofilm-related, chronic infections. While much research has focused on elucidating the mechanism(s) by which persister cells form, little is known about the mechanism or factors that enable persister cells to revert to an active and susceptible state. Here, we demonstrate that cis-2-decenoic acid (cis-DA), a fatty acid signaling molecule, is able to change the status of Pseudomonas aeruginosa and Escherichia coli persister cells from a dormant to a metabolically active state without an increase in cell number. This cell awakening is supported by an increase of the persister cells' respiratory activity together with changes in protein abundance and increases of the transcript expression levels of several metabolic markers, including acpP, 16S rRNA, atpH, and ppx. Given that most antimicrobials target actively growing cells, we also explored the effect of cis-DA on enhancing antibiotic efficacy in killing persister cells due to their inability to keep a persister cell state. Compared to antimicrobial treatment alone, combinational treatments of persister cell subpopulations with antimicrobials and cis-DA resulted in a significantly greater decrease in cell viability. In addition, the presence of cis-DA led to a decrease in the number of persister cells isolated. We thus demonstrate the ability of a fatty acid signaling molecule to revert bacterial cells from a tolerant phenotype to a metabolically active, antimicrobial-sensitive state. PMID:25192989

  14. High D-dimer levels increase the likelihood of pulmonary embolism.

    PubMed

    Tick, L W; Nijkeuter, M; Kramer, M H H; Hovens, M M C; Büller, H R; Leebeek, F W G; Huisman, M V

    2008-08-01

    Objective. To determine the utility of high quantitative D-dimer levels in the diagnosis of pulmonary embolism. Methods. D-dimer testing was performed in consecutive patients with suspected pulmonary embolism. We included patients with suspected pulmonary embolism with a high risk for venous thromboembolism, i.e. hospitalized patients, patients older than 80 years, with malignancy or previous surgery. Presence of pulmonary embolism was based on a diagnostic management strategy using a clinical decision rule (CDR), D-dimer testing and computed tomography. Results. A total of 1515 patients were included with an overall pulmonary embolism prevalence of 21%. The pulmonary embolism prevalence was strongly associated with the height of the D-dimer level, and increased fourfold with D-dimer levels greater than 4000 ng mL(-1) compared to levels between 500 and 1000 ng mL(-1). Patients with D-dimer levels higher than 2000 ng mL(-1) and an unlikely CDR had a pulmonary embolism prevalence of 36%. This prevalence is comparable to the pulmonary embolism likely CDR group. When D-dimer levels were above 4000 ng mL(-1), the observed pulmonary embolism prevalence was very high, independent of CDR score. Conclusion. Strongly elevated D-dimer levels substantially increase the likelihood of pulmonary embolism. Whether this should translate into more intensive diagnostic and therapeutic measures in patients with high D-dimer levels irrespective of CDR remains to be studied. PMID:18452520

  15. The positive response of Ty1 retrotransposition test to carcinogens is due to increased levels of reactive oxygen species generated by the genotoxins.

    PubMed

    Dimitrov, Martin; Venkov, Pencho; Pesheva, Margarita

    2011-01-01

    In previous laboratory and environmental studies, the Ty1 short-term test showed positive responses (i.e. induced mobility of the Ty1 retrotransposon) to carcinogenic genotoxins. Here, we provide evidence for a causal relationship between increased level of reactive oxygen species and induction the mobility of the Ty1 retrotransposon. Results obtained in concentration and time-dependent experiments after treatment, the tester cells with carcinogenic genotoxins [benzo(a)pyrene, benzo(a)anthracene, ethylmethanesulfonate, formamide], free bile acids (chenodeoxycholic, lithocholic acids) and metals (arsenic, hexavelant chromium, lead) showed a simultaneous increase in both cellular level of the superoxide anions and Ty1 retrotransposition rates. Treatment with the noncarcinogenic genotoxins [benzo(e)pyrene, benzo(b)anthracen, anthracene], conjugated bile acids (taurodeoxycholic, glycodeoxycholic acids) and metals (zinc, trivalent chromium) did not change significantly superoxide anions level and Ty1 retrotransposition rate. The induction by carcinogens of the Ty1 mobility seems to depend on the accumulation of superoxide anions, since the addition of the scavenger N-acetylcysteine resulted in loss of both increased amount of superoxide anions and induced Ty1 retrotransposition. Increased hydrogen peroxide levels are also involved in the induction of Ty1 retrotransposition rates in response to treatment with carcinogenic genotoxins, as evidenced by disruption of YAP1 gene in the tester cells. It is concluded that the carcinogen-induced high level of reactive oxygen species play a primary and key role in determination the selective response of Ty1 test to carcinogenic genotoxins. PMID:20401468

  16. Climbing the goal ladder: how upcoming actions increase level of aspiration.

    PubMed

    Koo, Minjung; Fishbach, Ayelet

    2010-07-01

    Pursuing a series of progressive (e.g., professional) goals that form a goal ladder often leads to a trade-off between moving up to a more advanced level and repeating the same goal level. This article investigates how monitoring one's current goal in terms of remaining actions versus completed actions influences the desire to move up the goal ladder. The authors propose that a focus on remaining (vs. completed) actions increases the motivation to move up to a more advanced level, whereas the focus on completed (vs. remaining) actions increases the satisfaction derived from the present level. They find support for these predictions across several goal ladders, ranging from academic and professional ladders to simple, experimental tasks. They further find that individuals strategically attend to information about remaining (vs. completed) actions to prepare to move up the goal ladder. PMID:20565182

  17. CSF levels of prostaglandins, especially the level of prostaglandin D2, are correlated with increasing propensity towards sleep in rats.

    PubMed

    Ram, A; Pandey, H P; Matsumura, H; Kasahara-Orita, K; Nakajima, T; Takahata, R; Satoh, S; Terao, A; Hayaishi, O

    1997-03-14

    The concentration of PGD2, PGE2, and of PGF2 alpha was measured in the cerebrospinal fluid (CSF) collected from the cisterna magna of conscious rats (n = 29), which, chronically implanted with a catheter for the CSF sampling, underwent deprivation of daytime sleep. Significant elevation of the CSF level of PGD2 was observed following 2.5-h sleep deprivation (SD), and the elevation became more marked following 5- and 10-h SD, apparently reaching the maximum at 5-h SD (703 +/- 140 pg/ml (mean +/- S.E.M.) for baseline vs. 1734 +/- 363 pg/ml for SD, n = 10). The levels of PGE2, and PGF2 alpha also significantly increased following 5- and 10-h SD, but not following 2.5-h SD. It is unlikely that these changes were simply caused by some responses of the animals to stress stimuli, because stress stimuli derived from restraint of the animal at the supine position to a board for 1 h did not produce any acute responses in the CSF levels of prostaglandins (n = 13). In a different group of animals (n = 11) implanted with electrodes for recording electroencephalogram (EEG) and electromyogram (EMG) in addition to the catheter, the levels of the prostaglandins in CSF were determined for slow-wave sleep (SWS) and wakefulness in the day and for SWS and wakefulness in the night. The highest PGD2 value was obtained at daytime SWS, whereas the lowest was at night wakefulness; furthermore, a significant difference was observed between SWS and wakefulness rather than between day and night. The CSF level of PGE2 also showed a similar tendency. In an additional group of animals (n = 6), not only PGD2 but also PGE2 and PGF2 alpha significantly increased the sleeping time of the animal when applied into the subarachnoid space underlying the ventral surface area of the rostral basal forebrain, the previously defined site of action for the sleep-promoting effect of PGD2. The promotion of sleep by PGE2 applied to the subarachnoid space was an effect completely opposite to the well

  18. Highly Dynamic Cellular-Level Response of Symbiotic Coral to a Sudden Increase in Environmental Nitrogen

    PubMed Central

    Kopp, C.; Pernice, M.; Domart-Coulon, I.; Djediat, C.; Spangenberg, J. E.; Alexander, D. T. L.; Hignette, M.; Meziane, T.; Meibom, A.

    2013-01-01

    ABSTRACT Metabolic interactions with endosymbiotic photosynthetic dinoflagellate Symbiodinium spp. are fundamental to reef-building corals (Scleractinia) thriving in nutrient-poor tropical seas. Yet, detailed understanding at the single-cell level of nutrient assimilation, translocation, and utilization within this fundamental symbiosis is lacking. Using pulse-chase 15N labeling and quantitative ion microprobe isotopic imaging (NanoSIMS; nanoscale secondary-ion mass spectrometry), we visualized these dynamic processes in tissues of the symbiotic coral Pocillopora damicornis at the subcellular level. Assimilation of ammonium, nitrate, and aspartic acid resulted in rapid incorporation of nitrogen into uric acid crystals (after ~45 min), forming temporary N storage sites within the dinoflagellate endosymbionts. Subsequent intracellular remobilization of this metabolite was accompanied by translocation of nitrogenous compounds to the coral host, starting at ~6 h. Within the coral tissue, nitrogen is utilized in specific cellular compartments in all four epithelia, including mucus chambers, Golgi bodies, and vesicles in calicoblastic cells. Our study shows how nitrogen-limited symbiotic corals take advantage of sudden changes in nitrogen availability; this opens new perspectives for functional studies of nutrient storage and remobilization in microbial symbioses in changing reef environments. PMID:23674611

  19. Effects of toxic work environments on sperm quality and ascorbic acid levels

    SciTech Connect

    Dawson, E.B.; Harris, W.A.; Powell, L.C. )

    1990-02-26

    Surveys have shown that toxic work environments lower sperm quality, and controlled studies indicate that ascorbic acid supplementation improves sperm viability and agglutination. The sperm quality of 50 subjects each from: (1) office workers, (2) a lead smelter, (3) petroleum refineries, and (4) a herbicide plant were compared with serum and semen ascorbic acid levels. The sperm characteristics studied were: count as million/ml and as percent; viability, motility, clumping, and abnormal morphology. The serum ascorbic acid levels were directly proportional to sperm viability and inversely correlated to clumping of all groups. Moreover, serum ascorbic acid levels were also inversely correlated to twin tail and amorphous forms of abnormal sperm morphology. The results of the study indicate that toxic environments depress sperm quality and suggest that ascorbic acid supplementation will improve sperm quality and fertility.