Science.gov

Sample records for acid levels increased

  1. Increased isoprostane levels in oleic acid-induced lung injury

    SciTech Connect

    Ono, Koichi; Koizumi, Tomonobu; Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki; Nakagawa, Rikimaru; Obata, Toru

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  2. A Mutant of Arabidopsis with Increased Levels of Stearic Acid.

    PubMed Central

    Lightner, J.; Wu, J.; Browse, J.

    1994-01-01

    A mutation at the fab2 locus of Arabidopsis caused increased levels of stearate in leaves. The increase in leaf stearate in fab2 varied developmentally, and the largest increase occurred in young leaves, where stearate accounted for almost 20% of total leaf fatty acids. The fatty acid composition of leaf lipids isolated from the fab2 mutant showed increased stearate in all the major glycerolipids of both the chloroplast and extrachloroplast membranes. Although the stearate content was increased, the fab2 mutant still contained abundant amounts of 18:1, 18:2, and 18:3 fatty acids. These results are consistent with the expectations for a mutation partially affecting the action of the stromal stearoyl-acyl carrier protein desaturase. Positional analysis indicated that the extra 18:0 is excluded with high specificity from the sn-2 position of both chloroplast and extrachloroplast glycerolipids. Although stearate content was increased in all the major leaf membrane lipids, the amount of increase varied considerably among the different lipids, from a high of 25% of fatty acids in phosphatidylcholine to a low of 2.9% of fatty acids in monogalactosyldiacylglycerol. PMID:12232421

  3. Ocean acidification increases fatty acids levels of larval fish.

    PubMed

    Díaz-Gil, Carlos; Catalán, Ignacio A; Palmer, Miquel; Faulk, Cynthia K; Fuiman, Lee A

    2015-07-01

    Rising levels of anthropogenic carbon dioxide in the atmosphere are acidifying the oceans and producing diverse and important effects on marine ecosystems, including the production of fatty acids (FAs) by primary producers and their transfer through food webs. FAs, particularly essential FAs, are necessary for normal structure and function in animals and influence composition and trophic structure of marine food webs. To test the effect of ocean acidification (OA) on the FA composition of fish, we conducted a replicated experiment in which larvae of the marine fish red drum (Sciaenops ocellatus) were reared under a climate change scenario of elevated CO2 levels (2100 µatm) and under current control levels (400 µatm). We found significantly higher whole-body levels of FAs, including nine of the 11 essential FAs, and altered relative proportions of FAs in the larvae reared under higher levels of CO2. Consequences of this effect of OA could include alterations in performance and survival of fish larvae and transfer of FAs through food webs.

  4. Ocean acidification increases fatty acids levels of larval fish

    PubMed Central

    Díaz-Gil, Carlos; Catalán, Ignacio A.; Palmer, Miquel; Faulk, Cynthia K.; Fuiman, Lee A.

    2015-01-01

    Rising levels of anthropogenic carbon dioxide in the atmosphere are acidifying the oceans and producing diverse and important effects on marine ecosystems, including the production of fatty acids (FAs) by primary producers and their transfer through food webs. FAs, particularly essential FAs, are necessary for normal structure and function in animals and influence composition and trophic structure of marine food webs. To test the effect of ocean acidification (OA) on the FA composition of fish, we conducted a replicated experiment in which larvae of the marine fish red drum (Sciaenops ocellatus) were reared under a climate change scenario of elevated CO2 levels (2100 µatm) and under current control levels (400 µatm). We found significantly higher whole-body levels of FAs, including nine of the 11 essential FAs, and altered relative proportions of FAs in the larvae reared under higher levels of CO2. Consequences of this effect of OA could include alterations in performance and survival of fish larvae and transfer of FAs through food webs. PMID:26179801

  5. In vivo blockade of thalamic GABA(B) receptors increases excitatory amino-acid levels.

    PubMed

    Nyitrai, G; Emri, Z; Crunelli, V; Kékesi, K A; Dobolyi, A; Juhász, G

    1996-12-30

    The effect of intrathalamic application of GABA(B) receptor antagonists on the basal excitatory amino-acid levels was studied using microdialysis probes implanted in the dorsal lateral geniculate nucleus and in the ventrobasal complex. In both nuclei, continuous perfusion of the GABA(B) receptor antagonist 3-aminopropyl-(diethoxymethyl)-phosphinic acid (CGP 35348) produced an increase in the extracellular concentration of aspartate and (to a lesser extent) glutamate, but no change was observed in the level of taurine, the main amino acid involved in the regulation of brain osmolarity processes. In contrast, 3-amino-2-hydroxy-2-(4-chlorophenyl)-propanesulphonic acid (2-hydroxy-saclofen), another GABA(B) receptor antagonist, failed to affect the extracellular concentration of aspartate, glutamate and taurine. Thus, the basal level of excitatory amino acids in the thalamus in vivo is under the control of CGP 35348-sensitive GABA(B) receptors.

  6. Salicylic Acid Treatment Increases the Levels of Triterpene Glycosides in Black Cohosh (Actaea Racemosa) Rhizomes.

    PubMed

    De Capite, Annette; Lancaster, Tyler; Puthoff, David

    2016-01-01

    Black cohosh (Actaea racemosa) serves as the host plant for the Appalachian azure butterfly, Celastrina neglectamajor. Overharvesting of Black cohosh for the dietary supplement industry may result in its extirpation, and may also cause the elimination of the dependent butterfly. One way to increase or maintain the number of host plants in forested environments would be to reduce the number harvested, for example by increasing the levels of the desired metabolites in Black cohosh rhizomes. The secondary metabolites actein and deoxyactein are triterpene glycosides and are among the compounds associated with the putative activity of Black cohosh extracts. Acetein and deoxyacetein are used to standardize Black cohosh supplements. To gain an understanding of mechanisms that may control actein and deoxyactein accumulation, Black cohosh rhizomes were treated with exogenous salicylic acid, jasmonic acid, or ethylene, or were mechanically wounded. Salicylic acid treatment significantly increased the levels of actein and deoxyactein in the rhizome of Black cohosh, suggesting that the synthesis of triterpene glycosides is controlled in part by salicylic acid. Using salicylic acid or related chemicals to increase the levels of actein and deoxyactein in rhizomes may help supply the supplement industry and, simultaneously, help conserve Black cohosh and species dependent upon it.

  7. Gallic acid induces HeLa cell death via increasing GSH depletion rather than ROS levels.

    PubMed

    Park, Woo Hyun

    2017-02-01

    Gallic acid (GA; 3,4,5-triphydroxyl-benzoic acid) is widely dispersed in various plants, fruits and foods and it shows various biological properties including anticancer effects. This study investigated the effects of GA on HeLa cervical cancer cells in relation to cell death, reactive oxygen species (ROS) and glutathione (GSH). GA dose-dependently inhibited the growth of HeLa cells and human umbilical vein endothelial cells (HUVEC) at 24 or 72 h. The susceptibility of HeLa cells to GA was higher than that of HUVEC. GA induced apoptosis in HeLa cells, which was accompanied by the loss of mitochondrial membrane potential (MMP; ∆ψm). GA increased ROS levels including O2•- in HeLa cells at 24 h and it also induced GSH depletion. N-acetyl cysteine (NAC) increased the growth inhibition of GA-treated HeLa cells and enhanced the death of these cells. NAC differently influenced ROS levels in GA-treated HeLa cells and significantly increased GSH depletion in these cells. L-buthionine sulfoximine (BSO) increased MMP (∆ψm) loss, ROS levels and GSH depletion in GA-treated HeLa cells. In conclusion, GA significantly inhibited the growth of HeLa cells. GA-induced HeLa cell death was tightly related to GSH depletion rather than ROS level changes.

  8. Prednisone lowers serum uric acid levels in patients with decompensated heart failure by increasing renal uric acid clearance.

    PubMed

    Liu, Chao; Zhen, Yuzhi; Zhao, Qingzhen; Zhai, Jian-Long; Liu, Kunshen; Zhang, Jian-Xin

    2016-07-01

    Clinical studies have shown that large doses of prednisone could lower serum uric acid (SUA) in patients with decompensated heart failure (HF); however, the optimal dose of prednisone and underlying mechanisms are unknown. Thirty-eight patients with decompensated HF were randomized to receive standard HF care alone (n = 10) or with low-dose (15 mg/day, n = 8), medium-dose (30 mg/day, n = 10), or high-dose prednisone (60 mg/day, n = 10), for 10 days. At the end of the study, only high-dose prednisone significantly reduced SUA, whereas low- and medium-dose prednisone and standard HF care had no effect on SUA. The reduction in SUA in high-dose prednisone groups was associated with a significant increase in renal uric acid clearance. In conclusion, prednisone can reduce SUA levels by increasing renal uric acid clearance in patients with decompensated HF.

  9. Salivary total sialic acid levels increase in breast cancer patients: a preliminary study.

    PubMed

    Oztürk, Leyla Koç; Emekli-Alturfan, Ebru; Kaşikci, Emel; Demir, Gokhan; Yarat, Aysen

    2011-09-01

    Breast cancer is the most common cancer in women living in the Western world, even though it occurs worldwide. Cancer and cancer therapy induce multiple oral complications including dental and periodontal disease. Saliva is a complex and dynamic biologic fluid, which reflects both oral and systemic changes. While saliva is easily accessible body fluid, there has been little effort to study its value in cancer diagnosis. Sialic acids (SA), the end moieties of the carbohydrate chains, are biologically important and essential for functions of glycoconjugates that are reported to be altered in both blood and saliva of various cancer patients. Increased sialylation has been shown to be a characteristic feature in cancer tissue and blood in breast cancer patients. However, there is no data about salivary SA in breast cancer. The aim of this study was to evaluate salivary total sialic acid (TSA) levels in breast cancer patients who were under chemotheraphy. The study included 15 breast cancer patients in different stages and 10 healthy individuals as age-matched controls. Unstimulated whole saliva was collected. Salivary total protein and SA levels were determined. Flow rate was calculated from salivary volume by the time of secretion. Salivary SA was significantly higher and total protein was lower in breast cancer patients compared to controls. It is concluded that sialylation may be increased in saliva of patients with breast cancer as the same way for cancer tissue and for blood . Increased salivary SA may therefore be useful as a non-invasive predictive marker for breast cancer patients and for the prevention and management of oral complications of cancer and cancer therapy to improve oral function and quality-of-life. The effects of different types of chemotherapies and different stages of the disease on salivary SA levels and salivary sialo-glycomic are worthy of being further investigated in breast cancer patients.

  10. Drought-Induced Increases in Abscisic Acid Levels in the Root Apex of Sunflower 1

    PubMed Central

    Robertson, J. Mason; Pharis, Richard P.; Huang, Yan Y.; Reid, David M.; Yeung, Edward C.

    1985-01-01

    Abscisic acid (ABA) levels in 3-mm apical root segments of slowly droughted sunflower plants (Helianthus annuus L. cv Russian Giant) were analyzed as the methyl ester by selected ion monitoring gas chromatography-mass spectrometry using characteristic ions. An internal standard, hexadeuterated ABA (d6ABA) was used for quantitative analysis. Sunflower seedlings, grown in aeroponic chambers, were slowly droughted over a 7-day period. Drought stress increased ABA levels in the root tips at 24, 72, and 168 hour sample times. Control plants had 57 to 106 nanograms per gram ABA dry weight in the root tips (leaf water potential, −0.35 to −0.42 megapascals). The greatest increase in ABA, about 20-fold, was found after 72 hours of drought (leaf water potential, −1.34 to −1.47 megapascals). Levels of ABA also increased (about 7− to 54-fold) in 3-mm apical root segments which were excised and then allowed to dessicate for 1 hour at room temperature. PMID:16664535

  11. Type IV resistant starch increases cecum short chain fatty acids level in rats.

    PubMed

    Le Thanh-Blicharz, Joanna; Anioła, Jacek; Kowalczewski, Przemysław; Przygoński, Krzysztof; Zaborowska, Zofia; Lewandowicz, Grażyna

    2014-01-01

    Resistant starches are type of dietary fibers. However, their physiological effects depend on the way they resist digestion in the gastrointestinal tract. The objective of this study was to examine the hypothesis that new type of RS4 preparations, of in vitro digestibility of about 50%, obtained by cross-linking and acetylation, acts as a prebiotic by increasing short chain fatty acids content in cecum digesta. The rats were fed with diet containing pregelatinized, cross-linked and acetylated starches as a main carbohydrate source. Pregelatinized, but not chemically modified, potato starch was used in the composition of the control diet. After two weeks of experiment the increase of short chain fatty acids contents in ceceum digesta was observed. The intake of starch A, cross-linked only with adipic acid, resulted in increase of about 40% of short chain fatty acids content, whereas starch PA cross-linked with sodium trimetaphosphate and adipic acid of about 50%. The utmost twofold increase was observed in the case of the production of propionic acid. In contrast, the content of butyric acid increased (12%) only as an effect of consumption of starch PA and even decreased (about 30%) in case of starch A. Both RS4 starches caused an increase of the production of acetic acid by more than 40%. No changes in serum biochemistry, liver cholesterol and organ weights of rats were stated.

  12. Antibacterial drug treatment increases intestinal bile acid absorption via elevated levels of ileal apical sodium-dependent bile acid transporter but not organic solute transporter α protein.

    PubMed

    Miyata, Masaaki; Hayashi, Kenjiro; Yamakawa, Hiroki; Yamazoe, Yasushi; Yoshinari, Kouichi

    2015-01-01

    Antibacterial drug treatment increases the bile acid pool size and hepatic bile acid concentration through the elevation of hepatic bile acid synthesis. However, the involvement of intestinal bile acid absorption in the increased bile acid pool size remains unclear. To determine whether intestinal bile acid absorption contributes to the increased bile acid pool in mice treated with antibacterial drugs, we evaluated the levels of bile acid transporter proteins and the capacity of intestinal bile acid absorption. Ileal apical sodium-dependent bile acid transporter (ASBT) mRNA and protein levels were significantly increased in ampicillin (ABPC)-treated mice, whereas organic solute transporter α (OSTα) mRNA levels, but not protein levels, significantly decreased in mice. Similar alterations in the expression levels of bile acid transporters were observed in mice treated with bacitracin/neomycin/streptomycin. The capacity for intestinal bile acid absorption was evaluated by an in situ loop method. Increased ileal absorption of taurochenodeoxycholic acid was observed in mice treated with ABPC. These results suggest that intestinal bile acid absorption is elevated in an ASBT-dependent manner in mice treated with antibacterial drugs.

  13. Chlorogenic acid increased 5-hydroxymethylfurfural formation when heating fructose alone or with aspartic acid at two pH levels.

    PubMed

    Zhang, Zhenhua; Zou, Yueyu; Wu, Taigang; Huang, Caihuan; Pei, Kehan; Zhang, Guangwen; Lin, Xiaohua; Bai, Weibin; Ou, Shiyi

    2016-01-01

    Chlorogenic acid (CGA) is a phenolic acid that ubiquitously exists in fruits. This work aims to investigate whether and how CGA influences HMF formation during heating fructose alone, or with an amino acid. The results showed that that CGA increased 5-hydroxymethylfurfural (HMF) formation. At pH 5.5 and 7.0, the addition of 5.0 μmol/ml CGA increased HMF formation by 49.4% and 25.2%, respectively when heating fructose alone, and by 9.0% and 16.7%, respectively when heating fructose with aspartic acid. CGA significantly increased HMF formation by promoting 3-deoxosone formation, and its conversion to HMF by inhibiting HMF elimination, especially in the Maillard reaction system. A comparison of the catalytic capacity of CGA with its six analogous compounds showed that both its di-hydroxyphenyl and carboxyl groups function in increasing HMF formation.

  14. Hepatic bile acid metabolism in the neonatal hamster: expansion of the bile acid pool parallels increased Cyp7a1 expression levels.

    PubMed

    Burke, Katie T; Horn, Paul S; Tso, Patrick; Heubi, James E; Woollett, Laura A

    2009-07-01

    Intraluminal concentrations of bile acids are low in newborn infants and increase rapidly after birth, at least partly owing to increased bile acid synthesis rates. The expansion of the bile acid pool is critical since bile acids are required to stimulate bile flow and absorb lipids, a major component of newborn diets. The purpose of the present studies was to determine the mechanism responsible for the increase in bile acid synthesis rates and the subsequent enlargement of bile acid pool sizes (BAPS) during the neonatal period, and how changes in circulating hormone levels might affect BAPS. In the hamster, pool size was low just after birth and increased modestly until 10.5 days postpartum (dpp). BAPS increased more significantly ( approximately 3-fold) between 10.5 and 15.5 dpp. An increase in mRNA and protein levels of cholesterol 7alpha-hydroxylase (Cyp7a1), the rate-limiting step in classical bile acid synthesis, immediately preceded an increase in BAPS. In contrast, levels of oxysterol 7alpha-hydroxylase (Cyp7b1), a key enzyme in bile acid synthesis by the alternative pathway, were relatively elevated by 1.5 dpp. farnesyl X receptor (FXR) and short heterodimeric partner (SHP) mRNA levels remained relatively constant at a time when Cyp7a1 levels increased. Finally, although simultaneous increases in circulating cortisol and Cyp7a1 levels occurred, precocious expression of Cyp7a1 could not be induced in neonatal hamsters with dexamethasone. Thus the significant increase in Cyp7a1 levels in neonatal hamsters is due to mechanisms independent of the FXR and SHP pathway and cortisol.

  15. Fish oil at low dietary levels enhances physiological activity of sesamin to increase hepatic fatty acid oxidation in rats.

    PubMed

    Ide, Takashi

    2012-11-01

    We previously demonstrated that a diet containing fish oil at a level of 80 g/kg strongly stimulated the physiological activity of a sesame sesamin preparation containing sesamin and episesamin at equal amounts to increase hepatic fatty acid oxidation. This study was conducted to clarify whether fish oil at lower dietary levels enhances the physiological activity of sesamin to increase hepatic fatty acid oxidation. Rats were fed experimental diets supplemented with 0 or 2 g sesamin/kg, and containing 0, 15 or 30 g fish oil/kg for 15 days. Among rats fed sesamin-free diets, diets containing 15 and 30 g fish oil/kg slightly increased the activity of enzymes involved in hepatic fatty acid oxidation. Sesamin increased these values irrespective of the presence or absence of fish oil in diets; however, the extent of the increase of many parameters was much greater in rats given fish oil-containing diets than in those fed a fish oil-free diet. Diets simultaneously containing sesamin and fish oil increased the gene expression of various peroxisomal fatty acid oxidation enzymes in a synergistic manner; but they were ineffective in causing a synergistic increase in mRNA levels of mitochondrial fatty acid oxidation enzymes. The extent of the synergistic increase in the activity of hepatic fatty acid oxidation enzymes and mRNA levels of the peroxisomal enzymes was indistinguishable between diets containing 15 and 30 g fish oil/kg and appeared comparable to that observed previously with a diet containing 80 g fish oil/kg.

  16. Increased plasma levels of xanthurenic and kynurenic acids in type 2 diabetes

    PubMed Central

    Oxenkrug, Gregory F

    2015-01-01

    About 350 million people worldwide have type 2 diabetes (T2D). The major risk factor of T2D is impaired glucose tolerance (pre-diabetes) with 10% of pre-diabetes subjects develop T2D every year. Understanding of mechanisms of development of T2D from pre-diabetes is important for prevention and treatment of T2D. Chronic stress and chronic low grade inflammation are prominent risk factors for T2D development in pre-diabetic subjects. However, molecular mechanisms mediating effect of stress and inflammation on development of T2D from pre-diabetes remain unknown. One of such mechanisms might involve kynurenine (KYN) pathway (KP) of tryptophan (TRP) metabolism. We suggested that chronic stress- or chronic low grade inflammation-induced upregulation of formation of upstream KTP metabolites, KYN and 3-hydroxyKYN, combined with chronic stress or chronic low grade inflammation-induced deficiency of pyridoxal 5'-phosphate, a cofactor of downstream enzymes of KTP, triggers overproduction of diabetogenic downstream KYN metabolites, kynurenic acid (KYNA) and 3-hydroxyKYNA (also known as xanthurenic acid (XA)). As the initial assessment of our working hypothesis, we evaluated plasma levels of up- and down-stream KP metabolites in the same samples of T2D patients. KYN, XA and KYNA levels in plasma samples of T2D patients were higher than in samples of non-diabetic subjects. Our results provide further support of “kynurenine hypothesis of insulin resistance and its progression to T2D” that suggested that overproduction of diabetogenic KP metabolites, induced by chronic stress- or chronic low grade inflammation, is one of the mechanisms promoting development of T2D from pre-diabetes. Downstream metabolites of KP might serve as biomarkers of T2D and targets for clinical intervention. PMID:26055228

  17. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition.

    PubMed

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-04-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development.

  18. Increased Hepatic Fatty Acids Uptake and Oxidation by LRPPRC-Driven Oxidative Phosphorylation Reduces Blood Lipid Levels

    PubMed Central

    Lei, Shi; Sun, Run-zhu; Wang, Di; Gong, Mei-zhen; Su, Xiang-ping; Yi, Fei; Peng, Zheng-wu

    2016-01-01

    Hyperlipidemia is one of the major risk factors of atherosclerosis and other cardiovascular diseases. This study aimed to investigate the impact of leucine rich pentatricopeptide repeat containing protein (LRPPRC)-driven hepatic oxidative phoshorylation on blood lipid levels. The hepatic LRPPRC level was modulated by liver-specific transgenic or adeno-associated virus 8 carried shRNA targeting Lrpprc (aav-shLrpprc). Mice were fed with a high fat diet to induce obesity. Gene expression was analyzed by quantitative real-time PCR and / or western blot. The hepatic ATP level, hepatic and serum lipids contents, and mitochondria oxidative phosphorylation (OxPhos) complex activities were measured using specific assay kits. The uptake and oxidation of fatty acid by hepatocytes were assessed using 14C-palmitate. LRPPRC regulated the expression of genes encoded by mitochondrial genome but not those by nuclear genome involved in mitochondria biogenesis, OxPhos, and lipid metabolism. Increased OxPhos in liver mediated by LRPPRC resulted in the increase of hepatic ATP level. Lrpprc promoted palmitate uptake and oxidation by hypatocytes. The hepatic and serum triglyceride and total cholesterol levels were inversely associated with the hepatic LRPPRC level. These data demonstrated that LRPPRC-driven hepatic OxPhos could promote fatty acids uptake and oxidation by hepatocytes and reduce both hepatic and circulating triglyceride and cholesterol levels. PMID:27462273

  19. Boric acid increases the expression levels of human anion exchanger genes SLC4A2 and SLC4A3.

    PubMed

    Akbas, F; Aydin, Z

    2012-04-03

    Boron is an important micronutrient in plants and animals. The role of boron in living systems includes coordinated regulation of gene expression, growth and proliferation of higher plants and animals. There are several well-defined genes associated with boron transportation and tolerance in plants and these genes show close homology with human anion exchanger genes. Mutation of these genes also characterizes some genetic disorders. We investigated the toxic effects of boric acid on HEK293 cells and mRNA expression of anion exchanger (SLC4A1, SLC4A2 and SLC4A3) genes. Cytotoxicity of boric acid at different concentrations was tested by using the methylthiazolyldiphenyl-tetrazolium bromide assay. Gene expression profiles were examined using quantitative real-time PCR. In the HEK293 cells, the nontoxic upper concentration of boric acid was 250 μM; more than 500 μM caused cytotoxicity. The 250 μM boric acid concentration increased gene expression level of SLC4A2 up to 8.6-fold and SLC4A3 up to 2.6-fold, after 36-h incubation. There was no significant effect of boric acid on SLC4A1 mRNA expression levels.

  20. The increased level of COX-dependent arachidonic acid metabolism in blood platelets from secondary progressive multiple sclerosis patients.

    PubMed

    Morel, Agnieszka; Miller, Elzbieta; Bijak, Michal; Saluk, Joanna

    2016-09-01

    Platelet activation is increasingly postulated as a possible component of the pathogenesis of multiple sclerosis (MS), especially due to the increased risk of cardiovascular events in MS. Arachidonic acid cascade metabolized by cyclooxygenase (COX) is a key pathway of platelet activation. The aim of our study was to investigate the COX-dependent arachidonic acid metabolic pathway in blood platelets from secondary progressive multiple sclerosis (SP MS) patients. The blood samples were obtained from 50 patients (man n = 22; female n = 28), suffering from SP MS, diagnosed according to the revised McDonald criteria. Platelet aggregation was measured in platelet-rich plasma after arachidonic acid stimulation. The level of COX activity and thromboxane B2 concentration were determined by ELISA method. Lipid peroxidation was assessed by measuring the level of malondialdehyde. The results were compared with a control group of healthy volunteers. We found that blood platelets obtained from SP MS patients were more sensitive to arachidonic acid and their response measured as platelet aggregation was stronger (about 14 %) relative to control. We also observed a significantly increased activity of COX (about 40 %) and synthesis of thromboxane B2 (about 113 %). The generation of malondialdehyde as a marker of lipid peroxidation was about 10 % higher in SP MS than in control. Cyclooxygenase-dependent arachidonic acid metabolism is significantly increased in blood platelets of patients with SP MS. Future clinical studies are required to recommend the use of low-dose aspirin, and possibly other COX inhibitors in the prevention of cardiovascular risk in MS.

  1. Apocynin protects against neurological damage induced by quinolinic acid by an increase in glutathione synthesis and Nrf2 levels.

    PubMed

    Cruz-Álvarez, Silvia; Santana-Martínez, Ricardo; Avila-Chávez, Euclides; Barrera-Oviedo, Diana; Hernández-Pando, Rogelio; Pedraza-Chaverri, José; Maldonado, Perla D

    2017-03-19

    Apocynin (APO) is a well-known NADPH oxidase (NOX) inhibitor. However, several studies have reported its ability to increase glutathione (GSH) levels. Due to GSH is a major non-enzymatic antioxidant in brain, the aim of this study was to evaluate, in the striatum of control and quinolinic acid (QUIN) injected rats, the effect of APO administration on: (1) GSH levels, (2) activity of some enzymes involved in the GSH metabolism, and (3) nuclear factor erythroid-2-related factor 2 (Nrf2) mRNA levels. Animals received QUIN 240nmol in right striatum and APO (5mg/kg, i.p.), 30min before and 60min after intrastriatal injection. APO treatment prevented the QUIN-induced histological damage to the striatum. In control rats, APO treatment increased GSH and Nrf2 mRNA levels and the activities of gamma-glutamylcysteine ligase (γ-GCL), glutathione-S-transferase (GST) and glutathione peroxidase (GPx). On the other hand, APO treatment prevented the QUIN-induced decrease in GSH and Nrf2 levels, and in γ-GCL and GPx activities. These data indicate that APO is able to increase GSH levels and the activity of proteins involved in its metabolism, which could be associated with its ability to increase the Nrf2 mRNA levels.

  2. Three Conazoles Increase Hepatic Microsomal Retinoic Acid Metabolism and Decrease Mouse Hepatic Retinoic Acid Levels In Vivo

    EPA Science Inventory

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with...

  3. Increased Serum Uric Acid Levels Blunt the Antihypertensive Efficacy of Lifestyle Modifications in Children at Cardiovascular Risk.

    PubMed

    Viazzi, Francesca; Rebora, Paola; Giussani, Marco; Orlando, Antonina; Stella, Andrea; Antolini, Laura; Valsecchi, Maria Grazia; Pontremoli, Roberto; Genovesi, Simonetta

    2016-05-01

    Primary hypertension is a growing concern in children because of the obesity epidemic largely attributable to western lifestyles. Serum uric acid is known to be influenced by dietary habits, correlates with obesity, and could represent a risk factor for hypertension. Preliminary studies in children highlighted uric acid as a potentially modifiable risk factor for the prevention and treatment of hypertension. The effect of lifestyle changes (increase of physical activity and dietary modifications) on blood pressure values, weight status, and serum uric acid levels in a cohort of 248 children referred for cardiovascular risk assessment were evaluated over a mean 1.5-year follow-up. At baseline, 48% of children were obese and 50% showed blood pressure values >90th percentile. At follow-up, a significant improvement in weight class (24% obese;P<0.0001) and blood pressure category (22% >90th percentile;P<0.0001) was found. Systolic blood pressure z-score (P<0.0001), uric acid value (P=0.0056), and puberty at baseline (P=0.0048) were independently associated with higher systolic blood pressure z-score at follow-up, whereas a negative association was observed with body mass index z-score decrease during follow-up (P=0.0033). The risk of hypertension at follow-up was associated with body mass index (P=0.0025) and systolic blood pressure (P<0.0001) z-score at baseline and inversely related to delta body mass index (P=0.0002), whereas the risk of showing hypertension ≥99th percentile was more than doubled for each baseline 1 mg/dL increase of serum uric acid (P=0.0130). Uric acid is a powerful determinant of blood pressure over time, independent of lifestyle modifications.

  4. Salvianolic acid B reverses multidrug resistance in HCT‑8/VCR human colorectal cancer cells by increasing ROS levels.

    PubMed

    Guo, Piaoting; Wang, Songpo; Liang, Wei; Wang, Wenjing; Wang, Huijun; Zhao, Miaomiao; Liu, Xiaowei

    2017-02-01

    Salvianolic acid B (SalB) a water‑soluble phenolic compound, extracted from Salvia miltiorrhiza, has previously been demonstrated to reverse tumor multidrug resistance (MDR), including in colorectal cancer. Reactive oxygen species (ROS) are oxygen radicals generated during aerobic metabolism (superoxide and hydroxyl radicals) and superoxide easily generating free radicals (H2O2). The concept that increased ROS levels can lead to augmented tumor cell‑sensitivity to chemotherapy drugs has become notable. The aim of the present study was to elucidate the role of ROS in mediating the effect of SalB on drug resistance and the correlation with drug resistance‑associated protein, P‑glycoprotein (P‑gp), and apoptosis‑associated proteins, B‑cell lymphoma 2 (Bcl‑2) and Bcl‑2‑associated X (Bax). In the current study, through utilizing the multidrug resistant colorectal cancer cell line, HCT‑8/VCR, it was demonstrate that SalB reversed MDR in HCT‑8/VCR. In addition, SalB significantly increased ROS levels, which may have accelerated the apoptosis of HCT‑8/VCR cells by downregulating Bcl‑2 and increasing Bax protein expression. Furthermore the increased intracellular ROS levels may have inhibited P‑gp expression at the gene and protein levels. In conclusion, the data of the current study demonstrate that SalB reversed MDR in HCT‑8/VCR cells, and the effect is associated with increased ROS levels, which may downregulate P‑gp expression and promote tumor cell apoptosis, which in turn increases the sensitivity of drug‑resistant cells to chemotherapy drugs.

  5. Compared with stearic acid, palmitic acid increased the yield of milk fat and improved feed efficiency across production level of cows.

    PubMed

    Rico, J E; Allen, M S; Lock, A L

    2014-02-01

    The effects of dietary palmitic and stearic acids on feed intake, yields of milk and milk components, and feed efficiency of dairy cows were evaluated in an experiment with a crossover arrangement of treatments with a covariate period. Cows with a wide range of milk production (38 to 65 kg/d) were used to determine if response to fat supplementation varied according to production level. Thirty-two Holstein cows (143 ± 61 d in milk) were assigned randomly to a treatment sequence within level of milk production. Treatments were diets supplemented (2% of diet dry matter) with palmitic acid (PA; 97.9% C16:0) or stearic acid (SA; 97.4% C18:0). Treatment periods were 21 d and cows were fed a nonfat supplemented diet for 14 d immediately before the first treatment period. The final 4d of each period were used for sample and data collection. Milk production measured during the covariate period (preliminary milk yield) was used as the covariate. No interactions were detected between treatment and preliminary milk yield for the production response variables measured. Compared with SA, the PA treatment increased milk fat concentration (3.66 vs. 3.55%) and yield (1.68 vs. 1.59 kg/d), and 3.5% fat-corrected milk yield (47.5 vs. 45.6 kg/d). Treatment did not affect dry matter intake, milk yield, milk protein yield, body weight, or body condition score. Milk protein concentration was lower for PA compared with SA treatment (3.24 vs. 3.29%). The PA treatment increased feed efficiency (3.5% fat-corrected milk yield/dry matter intake) compared with SA (1.48 vs. 1.40). The increase in milk fat yield by PA was entirely accounted for by a 24% increase in 16-carbon fatty acid output into milk. Yields of de novo (3.2%) and preformed fatty acids (2.9%) were only slightly decreased by PA relative to SA. The PA treatment increased plasma concentration of nonesterified fatty acids (96.3 vs. 88.2 μEq/L) and glucose (56.6 vs. 55.7 mg/dL) compared with SA, but insulin and

  6. Phosphatidic acid increases inositol-1,4,5,-trisphosphate and [Ca2+]i levels in neonatal rat cardiomyocytes.

    PubMed

    Liu, P; Xu, Y; Hopfner, R L; Gopalakrishnan, V

    1999-08-25

    Phosphatidic acid (PA), which can be synthesized de novo, or as a product of phosphatidylcholine hydrolysis and/or phosphorylation of 1,2-diacylglycerol (DAG), mediates diverse cellular functions in various cell types, including cardiomyocytes. We set out to characterize the effect of PA on intracellular free calcium ([Ca2+]i) and inositol-1,4,5-trisphosphate (IP(3)) levels in primary cultures of neonatal rat cardiomyocytes. Addition of PA led to rapid, concentration and time dependent increases in both IP(3) and [Ca2+]i levels in adherent cells. There was strong correlation in the concentration-response relationships between IP(3) and [Ca2+]i increases evoked by PA. Incubation with the sarcoplasmic reticulum (SR) Ca2+ pump inhibitor, cyclopiazonic acid (CPA), significantly attenuated the PA evoked [Ca2+]i increase but had no significant effect on IP(3) accumulation. The phospholipase C (PLC) inhibitor, D-609, attenuated both IP(3) and [Ca2+]i elevations evoked by PA whereas staurosporine (STS), a potent and non-selective PKC inhibitor, had no significant effect on either. Another PLC inhibitor, U73122, but not its inactive analog, U73343, also inhibited PA evoked increases in [Ca2+]i. Depletion of extracellular calcium attenuated both basal and PA evoked increases in [Ca2+]i. The PLA(2) inhibitors, bromophenylacyl-bromide (BPB) and CDP-choline, had no effect on PA evoked [Ca2+]i responses. Neither the DAG analog, dioctanoylglycerol, nor the DAG kinase inhibitor, R59949, affected PA evoked changes in [Ca2+]i. Taken together, these data indicate that PA, in a manner independent of PKC, DAG, or PLA(2), may enhance Ca2+ release from IP(3) sensitive SR Ca(2+) stores via activation of PLC in neonatal rat cardiomyocytes.

  7. Palmitic acid increased yields of milk and milk fat and nutrient digestibility across production level of lactating cows.

    PubMed

    Piantoni, P; Lock, A L; Allen, M S

    2013-01-01

    The effects of palmitic acid supplementation on feed intake, digestibility, and metabolic and production responses were evaluated in dairy cows with a wide range of milk production (34.5 to 66.2 kg/d) in a crossover design experiment with a covariate period. Thirty-two multiparous Holstein cows (151 ± 66 d in milk) were randomly assigned to treatment sequence within level of milk production. Treatments were diets supplemented (2% of diet DM) with palmitic acid (PA; 99% C16:0) or control (SH; soyhulls). Treatment periods were 21 d, with the final 4 d used for data and sample collection. Immediately before the first treatment period, cows were fed the control diet for 21 d and baseline values were obtained for all variables (covariate period). Milk production measured during the covariate period (preliminary milk yield) was used as covariate. In general, no interactions were detected between treatment and preliminary milk yield for the response variables measured. The PA treatment increased milk fat percentage (3.40 vs. 3.29%) and yields of milk (46.0 vs. 44.9 kg/d), milk fat (1.53 vs. 1.45 kg/d), and 3.5% fat-corrected milk (44.6 vs. 42.9 kg/d), compared with SH. Concentrations and yields of protein and lactose were not affected by treatment. The PA treatment did not affect dry matter (DM) intake or body weight, tended to decrease body condition score (2.93 vs. 2.99), and increased feed efficiency (3.5% fat-corrected milk/DM intake; 1.60 vs. 1.54), compared with SH. The PA treatment increased total-tract digestibility of neutral detergent fiber (39.0 vs.35.7%) and organic matter (67.9 vs. 66.2%), but decreased fatty acid (FA) digestibility (61.2 vs. 71.3%). As total FA intake increased, total FA digestibility decreased (R(2) = 0.51) and total FA absorbed increased (quadratic R(2) = 0.82). Fatty acid yield response, calculated as the additional FA yield secreted in milk per unit of additional FA intake, was 11.7% for total FA and 16.5% for C16:0 plus cis-9 C16:1 FA

  8. Increased plasma levels of competing amino acids, rather than lowered plasma tryptophan levels, are associated with a non-response to treatment in major depression.

    PubMed

    Ormstad, Heidi; Dahl, Johan; Verkerk, Robert; Andreassen, Ole A; Maes, Michael

    2016-08-01

    Lowered plasma tryptophan (TRP) and TRP/competing amino acid (CAA) ratio may be involved in the pathophysiology of major depression (MDD). Increased cortisol and immune-inflammatory mediators in MDD may affect the availability of TRP to the brain. We investigated whether baseline or post-treatment TRP, CAAs and TRP/CAA ratio are associated with a treatment response in MDD and whether these effects may be mediated by cortisol or immune biomarkers. We included 50 medication-free MDD patients with a depressive episode (DSM diagnosis) and assessed symptom severity with the Inventory of Depressive Symptomatology (IDS) before and after treatment as usual for 12 weeks (endpoint). Plasma levels of TRP, CAAs, the ratio, cortisol, CRP and 6 selected cytokines were assayed. The primary outcome was a 50% reduction in the IDS, while the secondary was a remission of the depressive episode. In IDS non-responders, CAAs increased and the TRP/CAA ratio decreased, while in IDS responders CAAs decreased and the TRP/CAA ratio increased from baseline to endpoint. In patients who were still depressed at endpoint TRP and CAAs levels had increased from baseline, while in remitted patients no such effects were found. Increases in CAAs were inversely correlated with changes in interleukin-1 receptor antagonist levels. The results show that increased CAA levels from baseline to endpoint are associated with a non-response to treatment in MDD patients. This suggests that the mechanism underpinning the CAA-related treatment resistance may be related to changes in immune pathways. CAA levels and amino acid metabolism may be new drug targets in depression.

  9. Bacterial endotoxin inhibits LHRH secretion following the increased release of hypothalamic GABA levels. Different effects on amino acid neurotransmitter release.

    PubMed

    Feleder, C; Refojo, D; Jarry, H; Wuttke, W; Moguilevsky, J A

    1996-01-01

    exposure to LPS. At the same time, GABA and Tau concentrations increased in the superfusion medium, while Glu decreased significantly compared with the control group. The GABA antagonists blocked and reversed the LPS effect on LHRH secretion. No significant differences were found between the effect of GABA-A and-B receptor antagonists. Meanwhile, GABA levels measured in the control group did not increase since they were the same as when LPS was added alone. Furthermore, LPS was without effect on Glu and Tau release in the presence of the GABA blockers. Therefore, the effect of the bacterial endotoxin was blocked. These observations indicate that there is an increase in GABA release that becomes significant at the same time when LHRH release is decreased. This effect can be blocked by GABA-specific receptor blockers. The effect of LPS is thus exerted by increasing GABA. The elevated GABA levels may also reduce Glu release and enhance Tau release. These modifications in neurotransmitter release may also contribute to LHRH suppression. These effects may be explained by the stimulation of cytokines of neuronal and/or glial origin that interact with the excitatory and inhibitory amino acids.

  10. Increasing levels of long-chain perfluorocarboxylic acids (PFCAs) in Arctic and North Atlantic marine mammals, 1984-2009.

    PubMed

    Rotander, Anna; Kärrman, Anna; van Bavel, Bert; Polder, Anuschka; Rigét, Frank; Auðunsson, Guðjón Atli; Víkingsson, Gísli; Gabrielsen, Geir Wing; Bloch, Dorete; Dam, Maria

    2012-01-01

    Temporal variations in concentrations of perfluorinated carboxylic acids (PFCAs) and sulfonic acids (PFSAs), including perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) structural isomers, were examined in livers of pilot whale (Globicephala melas), ringed seal (Phoca hisida), minke whale (Balaenoptera acutorostrata), harbor porpoise (Phocoena phocoena), hooded seal (Cystophora cristata), Atlantic white-sided dolphin (Lagenorhynchus acutus) and in muscle tissue of fin whales (Balaenoptera physalus). The sampling spanned over 20 years (1984-2009) and covered a large geographical area of the North Atlantic and West Greenland. Liver and muscle samples were homogenized, extracted with acetonitrile, cleaned up using hexane and solid phase extraction (SPE), and analyzed by liquid chromatography with negative electrospray tandem mass spectrometry (LC-MS/MS). In general, the levels of the long-chained PFCAs (C9-C12) increased whereas the levels of PFOS remained steady over the studied period. The PFOS isomer pattern in pilot whale liver was relatively constant over the sampling years. However, in ringed seals there seemed to be a decrease in linear PFOS (L-PFOS) with time, going from 91% in 1984 to 83% in 2006.

  11. Knockdown of lecithin retinol acyltransferase increases all-trans retinoic acid levels and restores retinoid sensitivity in malignant melanoma cells.

    PubMed

    Amann, Philipp M; Czaja, Katharina; Bazhin, Alexandr V; Rühl, Ralph; Skazik, Claudia; Heise, Ruth; Marquardt, Yvonne; Eichmüller, Stefan B; Merk, Hans F; Baron, Jens M

    2014-11-01

    Retinoids such as all-trans retinoic acid (ATRA) influence cell growth, differentiation and apoptosis and may play decisive roles in tumor development and progression. An essential retinoid-metabolizing enzyme known as lecithin retinol acyltransferase (LRAT) is expressed in melanoma cells but not in melanocytes catalysing the esterification of all-trans retinol (ATRol). In this study, we show that a stable LRAT knockdown (KD) in the human melanoma cell line SkMel23 leads to significantly increased levels of the substrate ATRol and biologically active ATRA. LRAT KD restored cellular sensitivity to retinoids analysed in cell culture assays and melanoma 3D skin models. Furthermore, ATRA-induced gene regulatory mechanisms drive depletion of added ATRol in LRAT KD cells. PCR analysis revealed a significant upregulation of retinoid-regulated genes such as CYP26A1 and STRA6 in LRAT KD cells, suggesting their possible involvement in mediating retinoid resistance in melanoma cells. In conclusion, LRAT seems to be important for melanoma progression. We propose that reduction in ATRol levels in melanoma cells by LRAT leads to a disturbance in cellular retinoid level. Balanced LRAT expression and activity may provide protection against melanoma development and progression. Pharmacological inhibition of LRAT activity could be a promising strategy for overcoming retinoid insensitivity in human melanoma cells.

  12. Sulfur mustard-induced increase in intracellular free calcium level and arachidonic acid release from cell membrane

    SciTech Connect

    Ray, R.; Legere, R.H.; Majerus, B.J.; Petrali, J.P.

    1995-12-31

    The mechanism of action of the alkylating agent bis-(2-chloroethyl)sulfide (sulfur mustard, SM) was studied using the in thai vitro mouse neuroblastoma-rat glioma hybrid NG 108-1 S clonal p cell line model. Following 0.3 mM SM exposure, cell viability remained high (>80% of untreated control) up to 9 hr and then declined steadily to about 40% of control after 20-24 hr. During the early period of SM exposure, when there was no significant cell viability loss, the following effects were observed. The cellular glutathione level decreased 20% after 1 hr and 34% after 6 hr. Between 2 and 6 hr, there was a time-dependent increase (about 10 to 30%) in intracellular free calcium (Ca2+), which was localized to the limiting membrane of swollen endoplasmic reticula and mitochondria, to euchromatin areas of the nucleus, and to areas of the cytosol and plasma membrane. Moreover,there was also a time-dependent increase in the release of isotopically labeled arachidonic acid ((3H)AA) from cellular membranes. Increase in (3H)AA release was 28% at 3 hr and about 60-80% between 6 and 9 hr. This increase in I3HIAA release was inhibited by quinacrine (20 uM), which is a phospholipase (PLA2) inhibitor. At 16 hr after SM exposure, there was a large increase (about 200% of control) in I3HIAA release, which was coincident with a 50% loss of cell viability. These results suggest a Ca2+-mediated toxic mechanism of SM via PLA2 activation and arachidonate release.

  13. Increasing cellular level of phosphatidic acid enhances FGF-1 production in long term-cultured rat astrocytes.

    PubMed

    Nagayasu, Yuko; Morita, Shin-Ya; Hayashi, Hideki; Miura, Yutaka; Yokoyama, Kazuki; Michikawa, Makoto; Ito, Jin-Ichi

    2014-05-14

    We found in a previous study that both mRNA expression and release of fibroblast growth factor 1 (FGF-1) are greater in rat astrocytes that are long term-cultured for one month (W/M cells) than in the cells cultured for one week (W/W cells). However, FGF-1 does not enhance phosphorylation of Akt, MEK, and ERK in W/M cells, while it does in W/W cells. In this work we studied the mechanism to cause these differences between W/W and W/M cells in culture. As it is known that long term culture generates oxidative stress, we characterized the stresses which W/M cells undergo in comparison with W/W cells. The levels of superoxide dismutase 1 (SOD1) and mitochondrial Bax were higher in W/M cells than in W/W cells. W/M cells recovered their ability to respond to FGF-1 to enhance phosphorylation of Akt, MEK, and ERK in the presence of antioxidants. Oxidative stress induced by hydrogen peroxide (H2O2) had no effect on mRNA expression of FGF-1 in W/W cells, although H2O2 enhances release of FGF-1 from W/W cells without inducing apoptosis. The influence of cell density was studied on mRNA expression of FGF-1 and cellular response to FGF-1, as an increasing cell density is observed in W/M cells. The increasing cell density enhanced mRNA expression of FGF-1 in W/W cells without suppression of responses to FGF-1. The decrease in cell density lowered the FGF-1 mRNA expression in W/M cells without recovery of the response to FGF-1 to enhance phosphorylation of Akt, MEK, and ERK. These findings suggest that oxidative stress attenuate sensitivity to FGF-1 and higher cell density may enhance FGF-1 expression in W/M cells. In addition, we found that the cellular level of phosphatidic acid (PA) increased in H2O2-treated W/W and W/M cells and decreased by the treatment with antioxidants, and that PA enhances the mRNA expression of FGF-1 in the W/W cells. These findings suggest that the increasing PA production may enhance FGF-1 expression to protect astrocytes against oxidative stress

  14. L-DOPA Reverses the Increased Free Amino Acids Tissue Levels Induced by Dopamine Depletion and Rises GABA and Tyrosine in the Striatum.

    PubMed

    Solís, Oscar; García-Sanz, Patricia; Herranz, Antonio S; Asensio, María-José; Moratalla, Rosario

    2016-07-01

    Perturbations in the cerebral levels of various amino acids are associated with neurological disorders, and previous studies have suggested that such alterations have a role in the motor and non-motor symptoms of Parkinson's disease. However, the direct effects of chronic L-DOPA treatment, that produces dyskinesia, on neural tissue amino acid concentrations have not been explored in detail. To evaluate whether striatal amino acid concentrations are altered in peak dose dyskinesia, 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian mice were treated chronically with L-DOPA and tissue amino acid concentrations were assessed by HPLC analysis. These experiments revealed that neither 6-OHDA nor L-DOPA treatment are able to alter glutamate in the striatum. However, glutamine increases after 6-OHDA and returns back to normal levels with L-DOPA treatment, suggesting increased striatal glutamatergic transmission with lack of dopamine. In addition, glycine and taurine levels are increased following dopamine denervation and restored to normal levels by L-DOPA. Interestingly, dyskinetic animals showed increased levels of GABA and tyrosine, while aspartate striatal tissue levels are not altered. Overall, our results indicate that chronic L-DOPA treatment, besides normalizing the altered levels of some amino acids after 6-OHDA, robustly increases striatal GABA and tyrosine levels which may in turn contribute to the development of L-DOPA-induced dyskinesia.

  15. The effect of transient increases in kynurenic acid and quinolinic acid levels early in life on behavior in adulthood: Implications for schizophrenia.

    PubMed

    Iaccarino, Hannah F; Suckow, Raymond F; Xie, Shan; Bucci, David J

    2013-11-01

    Kynurenic acid is a tryptophan metabolite that is synthesized and released in the brain by astrocytes and acts as an antagonist of nicotinic acetylcholine receptors and N-methyl-d-aspartate glutamate receptors, both of which are critically involved in cognition as well as neural plasticity and brain development. The concentration of kynurenic acid is increased in the brains of persons with schizophrenia and this increase has been implicated in the cognitive and social impairments associated with the disease. In addition, growing evidence suggests that the increase in kynurenic acid may begin early in life. For example, exposure to influenza A virus during development results in a transient increase in kynurenic acid concentration that could disrupt normal brain development and lead to cognitive deficits later in life. Changes in kynurenic acid may thus provide a link between developmental exposure to viruses and the increased risk of subsequently developing schizophrenia. To test this, we mimicked the effects of influenza A exposure by treating rats with kynurenine, the precursor of kynurenic acid, on postnatal days 7-10. We observed a transient increase in both kynurenic acid and quinolinic acid during treatment. When rats were subsequently behaviorally tested as adults, those previously treated with kynurenine exhibited decreased social behavior and locomotor activity. In contrast, attentional function and fear conditioning were not affected. Together with other recent findings, these data have several implications for understanding how viral-induced changes in tryptophan metabolism during development may contribute to schizophrenia-related symptoms later in life.

  16. Loss of von Hippel-Lindau Protein (VHL) Increases Systemic Cholesterol Levels through Targeting Hypoxia-Inducible Factor 2α and Regulation of Bile Acid Homeostasis

    PubMed Central

    Ramakrishnan, Sadeesh K.; Taylor, Matthew; Qu, Aijuan; Ahn, Sung-Hoon; Suresh, Madathilparambil V.; Raghavendran, Krishnan; Gonzalez, Frank J.

    2014-01-01

    Cholesterol synthesis is a highly oxygen-dependent process. Paradoxically, hypoxia is correlated with an increase in cellular and systemic cholesterol levels and risk of cardiovascular diseases. The mechanism for the increase in cholesterol during hypoxia is unclear. Hypoxia signaling is mediated through hypoxia-inducible factor 1α (HIF-1α) and HIF-2α. The present study demonstrates that activation of HIF signaling in the liver increases hepatic and systemic cholesterol levels due to a decrease in the expression of cholesterol hydroxylase CYP7A1 and other enzymes involved in bile acid synthesis. Specifically, activation of hepatic HIF-2α (but not HIF-1α) led to hypercholesterolemia. HIF-2α repressed the circadian expression of Rev-erbα, resulting in increased expression of E4BP4, a negative regulator of Cyp7a1. To understand if HIF-mediated decrease in bile acid synthesis is a physiologically relevant pathway by which hypoxia maintains or increases systemic cholesterol levels, two hypoxic mouse models were assessed, an acute lung injury model and mice exposed to 10% O2 for 3 weeks. In both models, cholesterol levels increased with a concomitant decrease in expression of genes involved in bile acid synthesis. The present study demonstrates that hypoxic activation of hepatic HIF-2α leads to an adaptive increase in cholesterol levels through inhibition of bile acid synthesis. PMID:24421394

  17. The influence of thermal processing on the fatty acid profile of pork and lamb meat fed diet with increased levels of unsaturated fatty acids.

    PubMed

    Janiszewski, Piotr; Grześkowiak, Eugenia; Lisiak, Dariusz; Borys, Bronisław; Borzuta, Karol; Pospiech, Edward; Poławska, Ewa

    2016-01-01

    The research was carried out on 32 crossbred pigs of Polish Large White × Danish Landrace with Duroc and 80 rams, crossbreds of the Prolific-Dairy Koludzka Sheep with the Ile de France, a meat sheep. The fodder for the animals was enriched with the unsaturated fatty acids originated mainly from linseed and rapeseed oils. The fatty acid profile was determined in cooked longissimus lumborum, roasted triceps brachii and raw ripened rump from pigs as well as in grilled lambs' legs and their corresponding raw materials. Roasting caused the most pronounced increase of the saturated fatty acids and decrease in the polyunsaturated fatty acids of heated pork muscles. The smallest changes were observed in grilled lamb legs. The heating processes applied in this study, in most cases, did not cause essential changes in the indices of pro-health properties of fatty acid, therefore meat in the majority fulfil the latest recommendations of EFSA and FAO/WHO according to human health.

  18. Co-supplementation of healthy women with fish oil and evening primrose oil increases plasma docosahexaenoic acid, gamma-linolenic acid and dihomo-gamma-linolenic acid levels without reducing arachidonic acid concentrations.

    PubMed

    Geppert, Julia; Demmelmair, Hans; Hornstra, Gerard; Koletzko, Berthold

    2008-02-01

    Fish oil supplementation during pregnancy not only improves maternal and neonatal DHA status, but often reduces gamma-linolenic acid (GLA), dihomo-GLA (DGLA), and arachidonic acid (ARA) levels also, which may compromise foetal and infant development. The present study investigated the effects of a fish oil/evening primrose oil (FSO/EPO) blend (456 mg DHA/d and 353 mg GLA/d) compared to a placebo (mixture of habitual dietary fatty acids) on the plasma fatty acid (FA) composition in two groups of twenty non-pregnant women using a randomised, double-blind, placebo-controlled parallel design. FA were quantified in plasma total lipids, phospholipids, cholesterol esters, and TAG at weeks 0, 4, 6 and 8. After 8 weeks of intervention, percentage changes from baseline values of plasma total lipid FA were significantly different between FSO/EPO and placebo for GLA (+49.9 % v. +2.1 %, means), DGLA (+13.8 % v. +0.7 %) and DHA (+59.6 % v. +5.5 %), while there was no significant difference for ARA ( - 2.2 % v. - 5.9 %). FA changes were largely comparable between plasma lipid fractions. In both groups three subjects reported mild adverse effects. As compared with placebo, FSO/EPO supplementation did not result in any physiologically relevant changes of safety parameters (blood cell count, liver enzymes). In women of childbearing age the tested FSO/EPO blend was well tolerated and appears safe. It increases plasma GLA, DGLA, and DHA levels without impairing ARA status. These data provide a basis for testing this FSO/EPO blend in pregnant women for its effects on maternal and neonatal FA status and infant development.

  19. Increasing Levels of Dietary Hempseed Products Leads to Differential Responses in the Fatty Acid Profiles of Egg Yolk, Liver and Plasma of Laying Hens.

    PubMed

    Neijat, M; Suh, M; Neufeld, J; House, J D

    2016-05-01

    The limited efficiency with which dietary alpha-linolenic acid (ALA) is converted by hens into docosahexaenoic acid (DHA) for egg deposition is not clearly understood. In this study, dietary ALA levels were increased via the inclusion of hempseed (HS) and hempseed oil (HO) in hen diets, with the goal of assessing the effects on the fatty acid (FA) profiles of total lipids and lipid classes in yolk, liver and plasma. Forty-eight hens were individually caged and fed one of six diets containing either HS:10, 20 or 30, HO:4.5 or 9.0 (%, diet) or a control (containing corn oil), providing a range (0.1-1.28 %, diet) of ALA. Fatty acid methyl esters of total lipids and lipid classes, including phosphatidyl choline (PtdCho) and ethanolamine (PtdEtn) in yolk, plasma and liver were then determined. Levels of n-3 FAs in both total lipids and lipid classes increased in all tissues. ALA and eicosapentaenoic acid (EPA) increased linearly, while docosapentaenoic acid and DHA increased quadratically. The FA profiles of yolk closely reflected levels in both plasma and liver. While ALA was highly concentrated in the triacylglycerol, it was low but equally distributed between PtdCho and PtdEtn in all tissues; however, the net accumulation was lower (P < 0.0001) in liver compared to yolk and plasma. Levels of EPA and ALA in yolk-PtdEtn were linearly (P < 0.0001; R (2) = 0.93) associated, and reflected those in liver-PtdEtn (P < 0.0001; R (2) = 0.90). In the liver, a strong inverse correlation (P < 0.0001; r = -0.94) between PL-DHA and ALA-to-EPA ratio in PtdEtn supports theories of low substrate availability, possibly limiting the conversion of ALA into DHA for egg enrichment.

  20. Evaluation of increasing levels of a microbial phytase in phosphorus deficient broiler diets via live broiler performance, tibia bone ash, apparent metabolizable energy, and amino acid digestibility.

    PubMed

    Pieniazek, J; Smith, K A; Williams, M P; Manangi, M K; Vazquez-Anon, M; Solbak, A; Miller, M; Lee, J T

    2017-02-01

    The objective was to investigate increasing concentrations of an evolved microbial phytase on male broiler performance, tibia bone ash, AME, and amino acid digestibility when fed diets deficient in available phosphorus (aP). Experiment 1 evaluated the effects of phytase during a 21 d battery cage study and Experiment 2 was a 42 d grow-out. Experiment 1 included six treatments; negative control (NC) with an aP level of 0.23% (starter) and 0.19% (grower), two positive controls (PC) consisting of an additional 0.12% and 0.22% aP (PC 1 and PC 2), and the NC supplemented with three levels of phytase (250, 500, and 2,000 U/kg). The NC diet reduced (P < 0.05) FC, BW, and bone ash. Phytase increased (P < 0.05) BW with 2,000 U/kg phytase yielding similar results to the PC2, and improved FCR and increased bone ash was observed at all phytase levels. Amino acid digestibility coefficients were increased (P < 0.05) with phytase at 250 U/kg. Phytase at all rates increased (P < 0.05) AME to levels similar level as PC diets. Linear regression analysis indicated average P equivalency values for BW and bone ash of 0.137, 0.147, and 0.226 for phytase inclusion of 250, 500, and 2000 U/kg, respectively. Experiment 2 included a PC consisting of 0.45%, 0.41%, and 0.38% aP for the starter, grower, and finisher, respectively; NC with reduced aP of 0.17%; and phytase at 500 and 2,000 U/kg. Phytase increased BW (P < 0.05) compared to the NC as 2,000 U/kg phytase resulted in further BW increases compared to the PC (starter and grower). Phytase improved FCR to levels comparable to the PC, with supplementation at 2,000 U/kg resulting in improvements beyond the PC in the starter phase. Amino acid digestibility coefficients were increased with phytase at 2,000 U/kg to levels comparable to that of the PC. These data confirm that the inclusion of phytase improves broiler performance and bone mineralization in aP reduced diets and levels beyond the traditional 500 U/kg can result in further

  1. Elevated salicylic acid levels conferred by increased expression of ISOCHORISMATE SYNTHASE 1 contribute to hyperaccumulation of SUMO1 conjugates in the Arabidopsis mutant early in short days 4.

    PubMed

    Villajuana-Bonequi, Mitzi; Elrouby, Nabil; Nordström, Karl; Griebel, Thomas; Bachmair, Andreas; Coupland, George

    2014-07-01

    Post-translational modification of proteins by attachment of small ubiquitin-like modifier (SUMO) is essential for plant growth and development. Mutations in the SUMO protease early in short days 4 (ESD4) cause hyperaccumulation of conjugates formed between SUMO and its substrates, and phenotypically are associated with extreme early flowering and impaired growth. We performed a suppressor mutagenesis screen of esd4 and identified a series of mutants called suppressor of esd4 (sed), which delay flowering, enhance growth and reduce hyperaccumulation of SUMO conjugates. Genetic mapping and genome sequencing indicated that one of these mutations (sed111) is in the gene salicylic acid induction-deficient 2 (SID2), which encodes ISOCHORISMATE SYNTHASE I, an enzyme required for biosynthesis of salicylic acid (SA). Analyses showed that compared with wild-type plants, esd4 contains higher levels of SID2 mRNA and about threefold more SA, whereas sed111 contains lower SA levels. Other sed mutants also contain lower SA levels but are not mutant for SID2, although most reduce SID2 mRNA levels. Therefore, higher SA levels contribute to the small size, early flowering and elevated SUMO conjugate levels of esd4. Our results support previous data indicating that SUMO homeostasis influences SA biosynthesis in wild-type plants, and also demonstrate that elevated levels of SA strongly increase the abundance of SUMO conjugates.

  2. Levels of prostaglandin E metabolite and leukotriene E(4) are increased in the urine of smokers: evidence that celecoxib shunts arachidonic acid into the 5-lipoxygenase pathway.

    PubMed

    Duffield-Lillico, Anna J; Boyle, Jay O; Zhou, Xi Kathy; Ghosh, Aradhana; Butala, Geera S; Subbaramaiah, Kotha; Newman, Robert A; Morrow, Jason D; Milne, Ginger L; Dannenberg, Andrew J

    2009-04-01

    Cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LO) play a role in inflammation and carcinogenesis. Biomarkers that reflect tobacco smoke-induced tissue injury are needed. In this study, levels of urinary prostaglandin E metabolite (PGE-M) and leukotriene E(4) (LTE(4)), biomarkers of the COX and 5-LO pathways, were compared in never smokers, former smokers, and current smokers. The effects of celecoxib, a selective COX-2 inhibitor, on levels of PGE-M and LTE(4) were determined. Baseline levels of PGE-M and LTE(4) were positively associated with smoking status; levels of PGE-M and LTE(4) were higher in current versus never smokers. Treatment with 200 mg celecoxib twice daily for 6 +/- 1 days led to a reduction in urinary PGE-M levels in all groups but exhibited the greatest effect among subjects with high baseline PGE-M levels. Thus, high baseline PGE-M levels in smokers reflected increased COX-2 activity. In individuals with high baseline PGE-M levels, treatment with celecoxib led to a significant increase in levels of urinary LTE(4), an effect that was not found in individuals with low baseline PGE-M levels. In conclusion, increased levels of urinary PGE-M and LTE(4) were found in human smokers, a result that may reflect subclinical lung inflammation. In individuals with high baseline levels of PGE-M (elevated COX-2 activity), celecoxib administration shunted arachidonic acid into the proinflammatory 5-LO pathway. Because 5-LO activity and LTE(4) have been suggested to play a role in cardiovascular disease, these results may help to explain the link between use of COX-2 inhibitors and cardiovascular complications.

  3. Tumor-dependent increase of serum amino acid levels in breast cancer patients has diagnostic potential and correlates with molecular tumor subtypes

    PubMed Central

    2013-01-01

    Background Malignancies induce changes in the levels of serum amino acids (AA), which may offer diagnostic potential. Furthermore, changes in AA levels are associated with immune cell function. In this study, serum AA levels were studied in breast cancer patients versus patients with benign breast lesions. Methods In a prospective study, serum levels of 15 AA were measured by high performance liquid chromatography before and after surgery in 41 breast cancer patients (BrCA) and nine patients with benign breast lesions (healthy donors, HD). Results were analyzed in relation to clinical tumor data and tested against immunological flow cytometry data. Principal component analysis was performed and the accuracy of AA levels as a potential diagnostic tool was tested. Results Pre- but not postoperative serum AA levels were increased in BrCA in eight out of 15 AA compared with HD. Serum AA levels were highest in the most aggressive (basal-like) as compared with the least aggressive tumor subtype (luminal A). A principal component (PC1) of all measured AA correlated with a mainly pro-inflammatory immune profile, while a second one (PC2, selectively considering AA preoperatively differing between HD and BrCA) could predict health state with an area under the curve of 0.870. Conclusions Breast cancer shows a tumor-dependent impact on serum AA levels, which varies with intrinsic tumor subtypes and is associated with a pro-inflammatory state. Serum AA levels need further evaluation as a potential diagnostic tool. PMID:24237611

  4. Duloxetine, a Selective Noradrenaline Reuptake Inhibitor, Increased Plasma Levels of 3-Methoxy-4-hydroxyphenylglycol but Not Homovanillic Acid in Patients with Major Depressive Disorder

    PubMed Central

    Atake, Kiyokazu; Hori, Hikaru; Katsuki, Asuka; Ikenouchi-Sugita, Atsuko; Umene-Nakano, Wakako; Nakamura, Jun

    2014-01-01

    Objective We investigated the effects of duloxetine on the plasma levels of catecholamine metabolites and serum brain-derived neurotrophic factor (BDNF) in 64 patients with major depressive disorder (MDD). Methods Major depressive episode was diagnosed using the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders-fourth edition (DSM-IV) according to the DSM-IV text revision (DSM-IV-TR) criteria. The severity of depression was evaluated using the 17-item Hamilton Rating Scale for Depression (HAMD-17). Blood sampling and clinical evaluation were performed on days 0, 28, and 56. Results Duloxetine treatment for 8 weeks significantly increased the plasma 3-methoxy-4-hydroxyphenylglycol (MHPG) levels but not the homovanillic acid (HVA) levels in responders with MDD. Conclusion These results imply that noradrenaline plays an important role in alleviating depressive symptoms. PMID:24851119

  5. Probiotic yogurts manufactured with increased glucose oxidase levels: postacidification, proteolytic patterns, survival of probiotic microorganisms, production of organic acid and aroma compounds.

    PubMed

    Cruz, A G; Castro, W F; Faria, J A F; Lollo, P C B; Amaya-Farfán, J; Freitas, M Q; Rodrigues, D; Oliveira, C A F; Godoy, H T

    2012-05-01

    We investigated the effect of increased glucose oxidase concentration as a technological option to decrease oxidative stress during the processing of probiotic yogurts. Probiotic yogurts were produced with increased concentrations of glucose oxidase (0, 250, 500, 750, or 1,000 mg/kg) and submitted to physicochemical and microbiological analysis at 1, 15, and 30 d of refrigerated storage. Higher concentrations of glucose oxidase (750 and 1,000 mg/kg) and a longer storage time were found to have an influence on the characteristics of the probiotic yogurt, contributing to more extensive postacidification, an increase in the dissolved oxygen level, and higher proteolysis. In addition, increased production of aroma compounds (diacetyl and acetaldehyde) and organic acids (mainly lactic acid) and a decrease in the probiotic bacteria count were reported. The use of glucose oxidase was a feasible option to minimize oxidative stress in probiotic yogurts. However, supplementation with excessive amounts of the enzyme may be ineffective, because insufficient substrate (glucose) is present for its action. Consumer tests should be performed to evaluate changes in the sensory attributes of the probiotic yogurts with increased supplementation of glucose oxidase. In addition, packaging systems with different permeability to oxygen should be evaluated.

  6. Positive impact of a weekly iron-folic acid supplement delivered with social marketing to Cambodian women: compliance, participation, and hemoglobin levels increase with higher socioeconomic status.

    PubMed

    Crape, Byron L; Kenefick, Eric; Cavalli-Sforza, Tommaso; Busch-Hallen, Jennifer; Milani, Silvano; Kanal, Koum

    2005-12-01

    A social marketing program promoting weekly iron-folic acid supplementation improved hemoglobin levels in women of reproductive age in Cambodia. Supplementation was increasingly effective among women of higher socioeconomic status (SES). Among higher SES schoolgirls, 58% took the supplements, compared with 49% for lower SES (P = 0.07). Garment factory workers with an 11th- or 12th-grade education had a mean improvement in hemoglobin of 0.72 g/dL over those with a 5th-grade education or less (P = 0.04). The percentage of rural village women taking supplements increased with increasing SES (linear trend P = 0.046). These results suggest that women with lower SES be given special attention for future programs.

  7. Aspirin increases mitochondrial fatty acid oxidation.

    PubMed

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E; Bharathi, Sivakama S; Zhang, Yuxun; Stolz, Donna B; Goetzman, Eric S

    2017-01-08

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders.

  8. Prescription n-3 fatty acids, but not eicosapentaenoic acid alone, improve reference memory-related learning ability by increasing brain-derived neurotrophic factor levels in SHR.Cg-Lepr(cp)/NDmcr rats, a metabolic syndrome model.

    PubMed

    Hashimoto, Michio; Inoue, Takayuki; Katakura, Masanori; Tanabe, Yoko; Hossain, Shahdat; Tsuchikura, Satoru; Shido, Osamu

    2013-10-01

    Metabolic syndrome is implicated in the decline of cognitive ability. We investigated whether the prescription n-3 fatty acid administration improves cognitive learning ability in SHR.Cg-Lepr(cp)/NDmcr (SHR-cp) rats, a metabolic syndrome model, in comparison with administration of eicosapentaenoic acid (EPA, C20:5, n-3) alone. Administration of TAK-085 [highly purified and concentrated n-3 fatty acid formulation containing EPA ethyl ester and docosahexaenoic acid (DHA, C22:6, n-3) ethyl ester] at 300 mg/kg body weight per day for 13 weeks reduced the number of reference memory-related errors in SHR-cp rats, but EPA alone had no effect, suggesting that long-term TAK-085 administration improves cognitive learning ability in a rat model of metabolic syndrome. However, the working memory-related errors were not affected in either of the rat groups. TAK-085 and EPA administration increased plasma EPA and DHA levels of SHR-cp rats, associating with an increase in EPA and DHA in the cerebral cortex. The TAK-085 administration decreased the lipid peroxide levels and reactive oxygen species in the cerebral cortex and hippocampus of SHR-cp rats, suggesting that TAK-085 increases antioxidative defenses. Its administration also increased the brain-derived neurotrophic factor levels in the cortical and hippocampal tissues of TAK-085-administered rats. The present study suggests that long-term TAK-085 administration is a possible therapeutic strategy for protecting against metabolic syndrome-induced learning decline.

  9. Linoleic acid permeabilizes gastric epithelial cells by increasing connexin 43 levels in the cell membrane via a GPR40- and Akt-dependent mechanism.

    PubMed

    Puebla, Carlos; Cisterna, Bruno A; Salas, Daniela P; Delgado-López, Fernando; Lampe, Paul D; Sáez, Juan C

    2016-05-01

    Linoleic acid (LA) is known to activate G-protein coupled receptors and connexin hemichannels (Cx HCs) but possible interlinks between these two responses remain unexplored. Here, we evaluated the mechanism of action of LA on the membrane permeability mediated by Cx HCs in MKN28 cells. These cells were found to express connexins, GPR40, GPR120, and CD36 receptors. The Cx HC activity of these cells increased after 5 min of treatment with LA or GW9508, an agonist of GPR40/GPR120; or exposure to extracellular divalent cation-free solution (DCFS), known to increase the open probability of Cx HCs, yields an immediate increase in Cx HC activity of similar intensity and additive with LA-induced change. Treatment with a CD36 blocker or transfection with siRNA-GPR120 maintains the LA-induced Cx HC activity. However, cells transfected with siRNA-GPR40 did not show LA-induced Cx HC activity but activity was increased upon exposure to DCFS, confirming the presence of activatable Cx HCs in the cell membrane. Treatment with AKTi (Akt inhibitor) abrogated the LA-induced Cx HC activity. In HeLa cells transfected with Cx43 (HeLa-Cx43), LA induced phosphorylation of surface Cx43 at serine 373 (S373), site for Akt phosphorylation. HeLa-Cx43 but not HeLa-Cx43 cells with a S373A mutation showed a LA-induced Cx HC activity directly related to an increase in cell surface Cx43 levels. Thus, the increase in membrane permeability induced by LA is mediated by an intracellular signaling pathway activated by GPR40 that leads to an increase in membrane levels of Cx43 phosphorylated at serine 373 via Akt.

  10. Soy-based infant formula supplemented with DHA and ARA supports growth and increases circulating levels of these fatty acids in infants.

    PubMed

    Hoffman, Dennis; Ziegler, Ekhard; Mitmesser, Susan H; Harris, Cheryl L; Diersen-Schade, Deborah A

    2008-01-01

    Healthy term infants (n = 244) were randomized to receive: (1) control, soy-based formula without supplementation or (2) docosahexaenoic acid-arachidonic acid (DHA + ARA), soy-based formula supplemented with at least 17 mg DHA/100 kcal (from algal oil) and 34 mg ARA/100 kcal (from fungal oil) in a double-blind, parallel group trial to evaluate safety, benefits, and growth from 14 to 120 days of age. Anthropometric measurements were taken at 14, 30, 60, 90, and 120 days of age and 24-h dietary and tolerance recall were recorded at 30, 60, 90, and 120 days of age. Adverse events were recorded throughout the study. Blood samples were drawn from subsets of 25 infants in each group. Capillary column gas chromatography was used to analyze the percentages of fatty acids in red blood cell (RBC) lipids and plasma phospholipids. Compared with the control group, percentages of fatty acids such as DHA and ARA in total RBC and plasma phospholipids were significantly higher in infants in the DHA + ARA group at 120 days of age (P < 0.001). Growth rates did not differ significantly between feeding groups at any assessed time point. Supplementation did not affect the tolerance of formula or the incidence of adverse events. Feeding healthy term infants soy-based formula supplemented with DHA and ARA from single cell oil sources at concentrations similar to human milk significantly increased circulating levels of DHA and ARA when compared with the control group. Both formulas supported normal growth and were well tolerated.

  11. Acute consumption of organic and conventional tropical grape juices (Vitis labrusca L.) increases antioxidants in plasma and erythrocytes, but not glucose and uric acid levels, in healthy individuals.

    PubMed

    Toaldo, Isabela Maia; Cruz, Fernanda Alves; da Silva, Edson Luiz; Bordignon-Luiz, Marilde T

    2016-08-01

    Bioactive polyphenols in grapes are influenced by grape variety and cultivation conditions. The Vitis labrusca L. varieties are cultivated in tropical regions and used for grape juice production. We hypothesized that polyphenols from tropical grape juices would beneficially affect redox homeostasis in humans. Therefore, the effects of acute consumption of organic and conventional grape juices from V labrusca L. on antioxidants biomarkers were investigated in healthy individuals. In a controlled, randomized, crossover, intervention trial, 24 individuals were assigned to drink 400 mL of conventional juice, organic juice, or water. Each intervention was followed by a 14-day washout period. Blood samples were obtained before and 1 hour after acute intake and analyzed for erythrocyte reduced glutathione, serum total antioxidant capacity, antioxidant enzymes in erythrocytes, and glucose and uric acid in serum. The ingestion of both grape juices resulted in elevated levels of reduced glutathione (P< .001) and serum total antioxidant capacity (P< .05) and increased activity of catalase (P< .001), superoxide dismutase (P< .001), and glutathione peroxidase (P< .05) compared with the control intervention, with no significant differences between grape juices (P< .05). The intake of juices did not affect significantly the concentrations of glucose or uric acid. Grape juice polyphenols were associated with increased antioxidants, and the chemical differences between organic and conventional juices were not predictive of the observed responses. The results suggest a bioactive potential of V labrusca L. juices to improve redox homeostasis, which is involved in defense against oxidative stress in humans.

  12. Nutrient digestibility and milk production responses to increasing levels of palmitic acid supplementation vary in cows receiving diets with or without whole cottonseed.

    PubMed

    Rico, J E; de Souza, J; Allen, M S; Lock, A L

    2017-01-01

    Our study evaluated the dose-dependent effects of a palmitic acid-enriched supplement in basal diets with or without the inclusion of whole cottonseed on nutrient digestibility and production responses of dairy cows. Sixteen Holstein cows (149 ± 56 days in milk) were used in a split plot Latin square design experiment. Cows were blocked by 3.5% fat-corrected milk (FCM) and allocated to a main plot receiving either a basal diet with soyhulls (SH, = 8) or a basal diet with whole cottonseed (CS, = 8) that was fed throughout the experiment. A palmitic acid-enriched supplement (PA 88.5% C16:0) was fed at 0, 0.75, 1.50, or 2.25% of ration DM in a replicated 4 × 4 Latin Square design within each basal diet group. Periods were 14 d with the final 4 d used for data collection. PA dose increased milk fat content linearly, and cubically affected yields of milk fat and 3.5% FCM. The PA dose did not affect milk protein and lactose contents, BW, and BCS, but tended to increase yields of milk, milk protein, and milk lactose. Also, PA dose reduced DMI and 16-carbon fatty acid digestibility quadratically, and increased 18-carbon fatty acid digestibility quadratically. There were no effects of basal diet on the yield of milk or milk components, but DMI tended to decrease in CS compared with SH, increasing feed efficiency (3.5% FCM/DMI). Compared with SH, CS diets increased yield of preformed milk fatty acids and 16-carbon fatty acid digestibility, and tended to decrease 18-carbon fatty acid digestibility. We observed basal diet × PA dose interactions for yields of milk and milk protein and for 16-carbon and total fatty acid digestibility, as well as tendency for yields of milk fat and 3.5% FCM. Also, there was a tendency for an interaction between basal diet and PA dose for NDF digestibility, which increased more for CS with increasing PA than for SH. PA dose linearly decreased digestibility of total fatty acids in SH diets but did not affect it in CS diets Results demonstrate

  13. Supplementation of medium with diammonium hydrogen phosphate enhanced the D-lactate dehydrogenase levels leading to increased D-lactic acid productivity.

    PubMed

    Singhvi, Mamata; Jadhav, Akanksha; Gokhale, Digambar

    2013-10-01

    The production of D-lactic acid by Lactobacillus lactis RM2-24 was investigated using modified media to increase the efficiency of the fermentation process. The results indicated that the addition of 5 g/l peptone and 1 g/l (NH4)2HPO4 enhanced D-lactic acid production by 32%, as compared to that obtained from non supplemented media, with a productivity of 3.0 g/l/h. Lactate dehydrogenase (LDH) expression profile in these different media was studied which resulted in appearance of additional LDH isoform produced by cells when they were grown in HSYE supplemented with (NH4)2HPO4. The additional LDH appears to be L-LDH contributing to production of L-lactic acid in the fermented broth. This is totally new information in the lactic acid fermentation and could be very useful to industries engaged in D-lactic acid production.

  14. A fish protein hydrolysate alters fatty acid composition in liver and adipose tissue and increases plasma carnitine levels in a mouse model of chronic inflammation

    PubMed Central

    2013-01-01

    Background There is growing evidence that fish protein hydrolysate (FPH) diets affect mitochondrial fatty acid metabolism in animals. The aim of the study was to determine if FPH could influence fatty acid metabolism and inflammation in transgene mice expressing human tumor necrosis factor alpha (hTNFα). Methods hTNFα mice (C57BL/6 hTNFα) were given a high-fat (23%, w/w) diet containing 20% casein (control group) or 15% FPH and 5% casein (FPH group) for two weeks. After an overnight fast, blood, adipose tissue, and liver samples were collected. Gene expression and enzyme activity was analysed in liver, fatty acid composition was analyzed in liver and ovarian white adipose tissue, and inflammatory parameters, carnitine, and acylcarnitines were analyzed in plasma. Results The n-3/n-6 fatty acid ratio was higher in mice fed the FPH diet than in mice fed the control diet in both adipose tissue and liver, and the FPH diet affected the gene expression of ∆6 and ∆9 desaturases. Mice fed this diet also demonstrated lower hepatic activity of fatty acid synthase. Concomitantly, a lower plasma INF-γ level was observed. Plasma carnitine and the carnitine precursor γ-butyrobetaine was higher in the FPH-group compared to control, as was plasma short-chained and medium-chained acylcarnitine esters. The higher level of plasma acetylcarnitine may reflect a stimulated mitochondrial and peroxisomal β-oxidation of fatty acids, as the hepatic activities of peroxisomal acyl-CoA oxidase 1 and mitochondrial carnitine palmitoyltransferase-II were higher in the FPH-fed mice. Conclusions The FPH diet was shown to influence hepatic fatty acid metabolism and fatty acid composition. This indicates that effects on fatty acid metabolism are important for the bioactivity of protein hydrolysates of marine origin. PMID:24098955

  15. Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice.

    PubMed

    Merkel, M; Velez-Carrasco, W; Hudgins, L C; Breslow, J L

    2001-11-06

    Heart-healthy dietary recommendations include decreasing the intake of saturated fatty acids (SFA). However, the relative benefit of replacing SFA with monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), or carbohydrates (CARB) is still being debated. We have used two mouse models of atherosclerosis, low density lipoprotein receptor-deficient (LDLRKO) and apolipoprotein E-deficient (apoEKO) mice to measure the effects of four isocaloric diets enriched with either SFA, MUFA, PUFA, or CARB on atherosclerotic lesion area and lipoprotein levels. In LDLRKO mice, compared with the SFA diet, the MUFA and CARB diets significantly increased atherosclerosis in both sexes, but the PUFA diet had no effect. The MUFA and CARB diets also increased very low density lipoprotein-cholesterol (VLDL-C) and LDL-cholesterol (LDL-C) in males and VLDL-C levels in females. Analysis of data from LDLRKO mice on all diets showed that atherosclerotic lesion area correlated positively with VLDL-C levels (males: r = 0.47, P < 0.005; females: r = 0.52, P < 0.001). In contrast, in apoEKO mice there were no significant dietary effects on atherosclerosis in either sex. Compared with the SFA diet, the CARB diet significantly decreased VLDL-C in males and the MUFA, PUFA, and CARB diets decreased VLDL-C and the CARB diet decreased LDL-C in females. In summary, in LDLRKO mice the replacement of dietary SFA by either MUFA or CARB causes a proportionate increase in both atherosclerotic lesion area and VLDL-C. There were no significant dietary effects on atherosclerotic lesion area in apoEKO mice. These results are surprising and suggest that, depending on the underlying genotype, dietary MUFA and CARB can actually increase atherosclerosis susceptibility, probably by raising VLDL-C levels through a non-LDL receptor, apoE-dependent pathway.

  16. Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L.).

    PubMed

    Tong, Zongyong; Xie, Can; Ma, Lei; Liu, Liping; Jin, Yongsheng; Dong, Jiangli; Wang, Tao

    2014-01-01

    Alfalfa (Medicago sativa L.) is one of the most important forage crops used to feed livestock, such as cattle and sheep, and the sulfur amino acid (SAA) content of alfalfa is used as an index of its nutritional value. Aspartate kinase (AK) catalyzes the phosphorylation of aspartate to Asp-phosphate, the first step in the aspartate family biosynthesis pathway, and adenylylsulfate reductase (APR) catalyzes the conversion of activated sulfate to sulfite, providing reduced sulfur for the synthesis of cysteine, methionine, and other essential metabolites and secondary compounds. To reduce the feedback inhibition of other metabolites, we cloned bacterial AK and APR genes, modified AK, and introduced them into alfalfa. Compared to the wild-type alfalfa, the content of cysteine increased by 30% and that of methionine increased substantially by 60%. In addition, a substantial increase in the abundance of essential amino acids (EAAs), such as aspartate and lysine, was found. The results also indicated a close connection between amino acid metabolism and the tricarboxylic acid (TCA) cycle. The total amino acid content and the forage biomass tested showed no significant changes in the transgenic plants. This approach provides a new method for increasing SAAs and allows for the development of new genetically modified crops with enhanced nutritional value.

  17. Lysophosphatidic acid acyltransferase from coconut endosperm mediates the insertion of laurate at the sn-2 position of triacylglycerols in lauric rapeseed oil and can increase total laurate levels

    PubMed

    Knutzon; Hayes; Wyrick; Xiong; Maelor Davies H; Voelker

    1999-07-01

    Expression of a California bay laurel (Umbellularia californica) 12:0-acyl-carrier protein thioesterase, bay thioesterase (BTE), in developing seeds of oilseed rape (Brassica napus) led to the production of oils containing up to 50% laurate. In these BTE oils, laurate is found almost exclusively at the sn-1 and sn-3 positions of the triacylglycerols (T.A. Voelker, T.R. Hayes, A.C. Cranmer, H.M. Davies [1996] Plant J 9: 229-241). Coexpression of a coconut (Cocos nucifera) 12:0-coenzyme A-preferring lysophosphatitic acid acyltransferase (D.S. Knutzon, K.D. Lardizabal, J.S. Nelsen, J.L. Bleibaum, H.M. Davies, J.G. Metz [1995] Plant Physiol 109: 999-1006) in BTE oilseed rape seeds facilitates efficient laurate deposition at the sn-2 position, resulting in the acccumulation of trilaurin. The introduction of the coconut protein into BTE oilseed rape lines with laurate above 50 mol % further increases total laurate levels.

  18. N-3 Polyunsaturated Fatty Acids Improve Liver Lipid Oxidation-Related Enzyme Levels and Increased the Peroxisome Proliferator-Activated Receptor α Expression Level in Mice Subjected to Hemorrhagic Shock/Resuscitation.

    PubMed

    Zhang, Li; Tian, Feng; Gao, Xuejin; Wang, Xinying; Wu, Chao; Li, Ning; Li, Jieshou

    2016-04-22

    Appropriate metabolic interventions after hemorrhagic shock/resuscitation injury have not yet been identified. We aimed to examine the effects of fish oil on lipid metabolic intervention after hemorrhagic shock/resuscitation. Firstly, 48 C57BL/6 mice were assigned to six groups (n = 8 per group). The sham group did not undergo surgery, while mice in the remaining groups were sacrificed 1-5 days after hemorrhagic shock/resuscitation. In the second part, mice were treated with saline or fish oil (n = 8 per group) five days after injury. We determined serum triglyceride levels and liver tissues were collected and prepared for qRT-PCR or Western blot analysis. We found that triglyceride levels were increased five days after hemorrhagic shock/resuscitation, but decreased after addition of fish oil. After injury, the protein and gene expression of carnitine palmitoyltransferase 1A, fatty acid transport protein 1, and peroxisome proliferator-activated receptor-α decreased significantly in liver tissue. In contrast, after treatment with fish oil, the expression levels of these targets increased compared with those in the saline group. The present results suggest n-3 polyunsaturated fatty acids could improve lipid oxidation-related enzymes in liver subjected to hemorrhagic shock/resuscitation. This function is possibly accomplished through activating the peroxisome proliferator-activated receptor-α pathway.

  19. Effect of ascorbic acid or increasing metabolizable energy level with or without supplementation of some essential amino acids on productive and physiological traits of slow-growing chicks exposed to chronic heat stress.

    PubMed

    Attia, Y A; Hassan, R A; Tag El-Din, A E; Abou-Shehema, B M

    2011-12-01

    Four hundred and twenty, 21-day-old slow-growing chicks were divided randomly into seven treatments, each containing five replicates. Each replicate was kept in a 1 × 1-m floor pen. One treatment was kept under thermo-neutral conditions in a semi-open house and fed a corn-soybean meal diet (positive control). The other six groups were kept under chronic heat stress (CHS) at 38 °C and 60% RH for 4 h from 12:00 to 16:00 pm for three successive days per week. Chicks in CHS treatments were fed a corn-soybean meal diet without (negative control) or with increasing metabolizable energy (ME) level by oil supplementation alone, or also with increasing some essential amino acids (EAA) such as methionine (Met), methionine and lysine (Met+Lys) or methionine, lysine and arginine (Met+Lys+Arg) or supplemented with 250 mg of ascorbic acid (AA)/kg. CHS impaired (p < 0.05) growth performance, increased plasma triglycerides and total serum Ca while decreasing (p < 0.05) plasma glucose and total serum protein. Meanwhile 250 mg AA/kg diet or an increasing ME without or with some EAA partially alleviated (p < 0.0001) the negative effect of CHS on growth while increasing (p < 0.05) feed intake and improving (p < 0.05) feed:gain ratio (F:G) and crude protein (CP) digestibility (p < 0.05). AA or increasing ME with or without EAA increased (p < 0.05) percentage dressing, liver and giblets to those of the positive control. AA or increasing ME with or without EAA partially alleviated the negative effect of CHS on blood pH, packed cell volume (PCV), haemoglobin (Hgb), total serum protein and total Ca, plasma glucose and triglyceride, rectal temperature and respiration rate. Increasing ME level improved chickens' tolerance to CHS without a significant difference from those supplemented with AA. However, increasing Met, Lys and Arg concentration did not improve performance over that recorded with increasing ME level alone. Under CHS, 250 mg AA/kg diet or increasing ME level by addition of 3

  20. Levels of Arabidopsis thaliana Leaf Phosphatidic Acids, Phosphatidylserines, and Most Trienoate-Containing Polar Lipid Molecular Species Increase during the Dark Period of the Diurnal Cycle.

    PubMed

    Maatta, Sara; Scheu, Brad; Roth, Mary R; Tamura, Pamela; Li, Maoyin; Williams, Todd D; Wang, Xuemin; Welti, Ruth

    2012-01-01

    Previous work has demonstrated that plant leaf polar lipid fatty acid composition varies during the diurnal (dark-light) cycle. Fatty acid synthesis occurs primarily during the light, but fatty acid desaturation continues in the absence of light, resulting in polyunsaturated fatty acids reaching their highest levels toward the end of the dark period. In this work, Arabidopsis thaliana were grown at constant (21°C) temperature with 12-h light and 12-h dark periods. Collision induced dissociation time-of-flight mass spectrometry (MS) demonstrated that 16:3 and 18:3 fatty acid content in membrane lipids of leaves are higher at the end of the dark than at the end of the light period, while 16:1, 16:2, 18:0, and 18:1 content are higher at the end of the light period. Lipid profiling of membrane galactolipids, phospholipids, and lysophospholipids by electrospray ionization triple quadrupole MS indicated that the monogalactosyldiacylglycerol, phosphatidylglycerol, and phosphatidylcholine classes include molecular species whose levels are highest at end of the light period and others that are highest at the end of the dark period. The levels of phosphatidic acid (PA) and phosphatidylserine classes were higher at the end of the dark period, and molecular species within these classes either followed the class pattern or were not significantly changed in the diurnal cycle. Phospholipase D (PLD) is a family of enzymes that hydrolyzes phospholipids to produce PA. Analysis of several PLD mutant lines suggests that PLDζ2 and possibly PLDα1 may contribute to diurnal cycling of PA. The polar lipid compositional changes are considered in relation to recent data that demonstrate phosphatidylcholine acyl editing.

  1. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation.

    PubMed

    Reineke, Gavin; Heinze, Bernadette; Schirawski, Jan; Buettner, Hermann; Kahmann, Regine; Basse, Christoph W

    2008-05-01

    Infection of maize (Zea mays) plants with the smut fungus Ustilago maydis is characterized by excessive host tumour formation. U. maydis is able to produce indole-3-acetic acid (IAA) efficiently from tryptophan. To assess a possible connection to the induction of host tumours, we investigated the pathways leading to fungal IAA biosynthesis. Besides the previously identified iad1 gene, we identified a second indole-3-acetaldehyde dehydrogenase gene, iad2. Deltaiad1Deltaiad2 mutants were blocked in the conversion of both indole-3-acetaldehyde and tryptamine to IAA, although the reduction in IAA formation from tryptophan was not significantly different from Deltaiad1 mutants. To assess an influence of indole-3-pyruvic acid on IAA formation, we deleted the aromatic amino acid aminotransferase genes tam1 and tam2 in Deltaiad1Deltaiad2 mutants. This revealed a further reduction in IAA levels by five- and tenfold in mutant strains harbouring theDeltatam1 andDeltatam1Deltatam2 deletions, respectively. This illustrates that indole-3-pyruvic acid serves as an efficient precursor for IAA formation in U. maydis. Interestingly, the rise in host IAA levels upon U. maydis infection was significantly reduced in tissue infected with Deltaiad1Deltaiad2Deltatam1 orDeltaiad1Deltaiad2Deltatam1Deltatam2 mutants, whereas induction of tumours was not compromised. Together, these results indicate that fungal IAA production critically contributes to IAA levels in infected tissue, but this is apparently not important for triggering host tumour formation.

  2. Dietary gamma-linolenic acid in the form of borage oil causes less body fat accumulation accompanying an increase in uncoupling protein 1 mRNA level in brown adipose tissue.

    PubMed

    Takahashi, Y; Ide, T; Fujita, H

    2000-10-01

    Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid

  3. Increased retinoic acid levels through ablation of Cyp26b1 determine the processes of embryonic skin barrier formation and peridermal development.

    PubMed

    Okano, Junko; Lichti, Ulrike; Mamiya, Satoru; Aronova, Maria; Zhang, Guofeng; Yuspa, Stuart H; Hamada, Hiroshi; Sakai, Yasuo; Morasso, Maria I

    2012-04-01

    The process by which the periderm transitions to stratified epidermis with the establishment of the skin barrier is unknown. Understanding the cellular and molecular processes involved is crucial for the treatment of human pathologies, where abnormal skin development and barrier dysfunction are associated with hypothermia and perinatal dehydration. For the first time, we demonstrate that retinoic acid (RA) levels are important for periderm desquamation, embryonic skin differentiation and barrier formation. Although excess exogenous RA has been known to have teratogenic effects, little is known about the consequences of elevated endogenous retinoids in skin during embryogenesis. Absence of cytochrome P450, family 26, subfamily b, polypeptide 1 (Cyp26b1), a retinoic-acid-degrading enzyme, results in aberrant epidermal differentiation and filaggrin expression, defective cornified envelopes and skin barrier formation, in conjunction with peridermal retention. We show that these alterations are RA dependent because administration of exogenous RA in vivo and to organotypic skin cultures phenocopy Cyp26b1(-/-) skin abnormalities. Furthermore, utilizing the Flaky tail (Ft/Ft) mice, a mouse model for human ichthyosis, characterized by mutations in the filaggrin gene, we establish that proper differentiation and barrier formation is a prerequisite for periderm sloughing. These results are important in understanding pathologies associated with abnormal embryonic skin development and barrier dysfunction.

  4. Whole body protein deposition and plasma amino acid profiles in growing and/or finishing pigs fed increasing levels of sulfur amino acids with and without Escherichia coli lipopolysaccharide challenge.

    PubMed

    Kim, J C; Mullan, B P; Frey, B; Payne, H G; Pluske, J R

    2012-12-01

    A split plot experiment with 72 male pigs weighing 52.9 ± 0.39 kg (mean ± SEM) was conducted to examine AA partitioning and body protein deposition (PD) in response to increasing dietary sulfur amino acids (SAA) with or without immune system (IS) activation. The main plot was with and without IS activation, and 4 diets containing different amounts of standardized ileal digestible (SID) SAA (SAA to Lys ratios of 0.45, 0.55, 0.65 and 0.75) were the subplots. Activation of IS was achieved by intramuscular injection of Escherichia coli lipopolysaccharides (LPS; serotype 055:B5, Sigma; 30 μg/kg BW) every Monday and Thursday, with control pigs injected with sterile saline. Maximum body PD, measured by dual-energy X-ray absorptiometry (DXA), and minimum plasma urea content were achieved at SID SAA:Lys ratio of 0.55 in saline-injected pigs but were achieved at a SID SAA:Lys ratio of 0.75 in IS-activated pigs. Immune system activation increased rectal temperature (P < 0.05), plasma haptoglobin (1.1 vs. 2.0 mg/mL; P < 0.001), and the proportion of neutrophils (0.39 vs. 0.42; P < 0.05) and decreased serum albumin content (38.4 vs. 36.8 g/L; P < 0.01). Increasing dietary SAA had no effects on these variables. Immune system-activated pigs had lower levels of homocysteine (Hcy; P < 0.001) and a lower Ser content (P < 0.05). Results showed that increasing dietary SAA as DL-methionine in growing and/or finishing pigs altered plasma AA contents, and that use efficiency of the AA was improved when greater levels of SAA were supplemented in IS-activated pigs.

  5. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress.

    PubMed

    Zhang, Juan; Yu, Haiyue; Zhang, Yushi; Wang, Yubing; Li, Maoying; Zhang, Jiachang; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2016-03-01

    Abscisic acid (ABA) is a vital cellular signal in plants, and effective ABA signalling is pivotal for stress tolerance. AtLOS5 encoding molybdenum cofactor sulphurase is a key regulator of ABA biosynthesis. Here, transgenic AtLOS5 plants were generated to explore the role of AtLOS5 in salt tolerance in maize. AtLOS5 overexpression significantly up-regulated the expression of ZmVp14-2, ZmAO, and ZmMOCO, and increased aldehyde oxidase activities, which enhanced ABA accumulation in transgenic plants under salt stress. Concurrently, AtLOS5 overexpression induced the expression of ZmNHX1, ZmCBL4, and ZmCIPK16, and enhanced the root net Na(+) efflux and H(+) influx, but decreased net K(+) efflux, which maintained a high cytosolic K(+)/Na(+) ratio in transgenic plants under salt stress. However, amiloride or sodium orthovanadate could significantly elevate K(+) effluxes and decrease Na(+) efflux and H(+) influx in salt-treated transgenic roots, but the K(+) effluxes were inhibited by TEA, suggesting that ion fluxes regulated by AtLOS5 overexpression were possibly due to activation of Na(+)/H(+) antiport and K(+) channels across the plasma membrane. Moreover, AtLOS5 overexpression could up-regulate the transcripts of ZmPIP1:1, ZmPIP1:5, and ZmPIP2:4, and enhance root hydraulic conductivity. Thus transgenic plants had higher leaf water potential and turgor, which was correlated with greater biomass accumulation under salt stress. Thus AtLOS5 overexpression induced the expression of ABA biosynthetic genes to promote ABA accumulation, which activated ion transporter and PIP aquaporin gene expression to regulate root ion fluxes and water uptake, thus maintaining high cytosolic K(+) and Na(+) homeostasis and better water status in maize exposed to salt stress.

  6. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress

    PubMed Central

    Zhang, Juan; Yu, Haiyue; Zhang, Yushi; Wang, Yubing; Li, Maoying; Zhang, Jiachang; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2016-01-01

    Abscisic acid (ABA) is a vital cellular signal in plants, and effective ABA signalling is pivotal for stress tolerance. AtLOS5 encoding molybdenum cofactor sulphurase is a key regulator of ABA biosynthesis. Here, transgenic AtLOS5 plants were generated to explore the role of AtLOS5 in salt tolerance in maize. AtLOS5 overexpression significantly up-regulated the expression of ZmVp14-2, ZmAO, and ZmMOCO, and increased aldehyde oxidase activities, which enhanced ABA accumulation in transgenic plants under salt stress. Concurrently, AtLOS5 overexpression induced the expression of ZmNHX1, ZmCBL4, and ZmCIPK16, and enhanced the root net Na+ efflux and H+ influx, but decreased net K+ efflux, which maintained a high cytosolic K+/Na+ ratio in transgenic plants under salt stress. However, amiloride or sodium orthovanadate could significantly elevate K+ effluxes and decrease Na+ efflux and H+ influx in salt-treated transgenic roots, but the K+ effluxes were inhibited by TEA, suggesting that ion fluxes regulated by AtLOS5 overexpression were possibly due to activation of Na+/H+ antiport and K+ channels across the plasma membrane. Moreover, AtLOS5 overexpression could up-regulate the transcripts of ZmPIP1:1, ZmPIP1:5, and ZmPIP2:4, and enhance root hydraulic conductivity. Thus transgenic plants had higher leaf water potential and turgor, which was correlated with greater biomass accumulation under salt stress. Thus AtLOS5 overexpression induced the expression of ABA biosynthetic genes to promote ABA accumulation, which activated ion transporter and PIP aquaporin gene expression to regulate root ion fluxes and water uptake, thus maintaining high cytosolic K+ and Na+ homeostasis and better water status in maize exposed to salt stress. PMID:26743432

  7. Expression of a Flax Allene Oxide Synthase cDNA Leads to Increased Endogenous Jasmonic Acid (JA) Levels in Transgenic Potato Plants but Not to a Corresponding Activation of JA-Responding Genes.

    PubMed Central

    Harms, K.; Atzorn, R.; Brash, A.; Kuhn, H.; Wasternack, C.; Willmitzer, L.; Pena-Cortes, H.

    1995-01-01

    Both jasmonic acid (JA) and its methyl ester, methyl jasmonate (MeJA), are thought to be significant components of the signaling pathway regulating the expression of plant defense genes in response to various stresses. JA and MeJA are plant lipid derivatives synthesized from [alpha]-linolenic acid by a lipoxygenase-mediated oxygenation leading to 13-hydroperoxylinolenic acid, which is subsequently transformed by the action of allene oxide synthase (AOS) and additional modification steps. AOS converts lipoxygenase-derived fatty acid hydroperoxide to allene epoxide, which is the precursor for JA formation. Overexpression of flax AOS cDNA under the regulation of the cauliflower mosaic virus 35S promoter in transgenic potato plants led to an increase in the endogenous level of JA. Transgenic plants had six- to 12-fold higher levels of JA than the nontransformed plants. Increased levels of JA have been observed when potato and tomato plants are mechanically wounded. Under these conditions, the proteinase inhibitor II (pin2) genes are expressed in the leaves. Despite the fact that the transgenic plants had levels of JA similar to those found in nontransgenic wounded plants, pin2 genes were not constitutively expressed in the leaves of these plants. Transgenic plants with increased levels of JA did not show changes in water state or in the expression of water stress-responsive genes. Furthermore, the transgenic plants overexpressing the flax AOS gene, and containing elevated levels of JA, responded to wounding or water stress by a further increase in JA and by activating the expression of either wound- or water stress-inducible genes. Protein gel blot analysis demonstrated that the flax-derived AOS protein accumulated in the chloroplasts of the transgenic plants. PMID:12242357

  8. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid

    PubMed Central

    Ro, Dae-Kyun; Ouellet, Mario; Paradise, Eric M; Burd, Helcio; Eng, Diana; Paddon, Chris J; Newman, Jack D; Keasling, Jay D

    2008-01-01

    Background Due to the global occurrence of multi-drug-resistant malarial parasites (Plasmodium falciparum), the anti-malarial drug most effective against malaria is artemisinin, a natural product (sesquiterpene lactone endoperoxide) extracted from sweet wormwood (Artemisia annua). However, artemisinin is in short supply and unaffordable to most malaria patients. Artemisinin can be semi-synthesized from its precursor artemisinic acid, which can be synthesized from simple sugars using microorganisms genetically engineered with genes from A. annua. In order to develop an industrially competent yeast strain, detailed analyses of microbial physiology and development of gene expression strategies are required. Results Three plant genes coding for amorphadiene synthase, amorphadiene oxidase (AMO or CYP71AV1), and cytochrome P450 reductase, which in concert divert carbon flux from farnesyl diphosphate to artemisinic acid, were expressed from a single plasmid. The artemisinic acid production in the engineered yeast reached 250 μg mL-1 in shake-flask cultures and 1 g L-1 in bio-reactors with the use of Leu2d selection marker and appropriate medium formulation. When plasmid stability was measured, the yeast strain synthesizing amorphadiene alone maintained the plasmid in 84% of the cells, whereas the yeast strain synthesizing artemisinic acid showed poor plasmid stability. Inactivation of AMO by a point-mutation restored the high plasmid stability, indicating that the low plasmid stability is not caused by production of the AMO protein but by artemisinic acid synthesis or accumulation. Semi-quantitative reverse-transcriptase (RT)-PCR and quantitative real time-PCR consistently showed that pleiotropic drug resistance (PDR) genes, belonging to the family of ATP-Binding Cassette (ABC) transporter, were massively induced in the yeast strain producing artemisinic acid, relative to the yeast strain producing the hydrocarbon amorphadiene alone. Global transcriptional analysis by

  9. Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction of vegetable ingredients in fish feed has affected the fatty acid composition in farmed Atlantic salmon (Salmo salar L). Here we investigated how changes in fish feed affected the metabolism of mice fed diets containing fillets from such farmed salmon. We demonstrate that replacement of...

  10. Transgenic cells with increased plastoquinone levels and methods of use

    SciTech Connect

    Sayre, Richard T.; Subramanian, Sowmya; Cahoon, Edgar

    2016-12-27

    Disclosed herein are transgenic cells expressing a heterologous nucleic acid encoding a prephenate dehydrogenase (PDH) protein, a heterologous nucleic acid encoding a homogentisate solanesyl transferase (HST) protein, a heterologous nucleic acid encoding a deoxyxylulose phosphate synthase (DXS) protein, or a combination of two or more thereof. In particular examples, the disclosed transgenic cells have increased plastoquinone levels. Also disclosed are methods of increasing cell growth rates or production of biomass by cultivating transgenic cells expressing a heterologous nucleic acid encoding a PDH protein, a heterologous nucleic acid encoding an HST protein, a heterologous nucleic acid encoding a DXS protein, or a combination of two or more thereof under conditions sufficient to produce cell growth or biomass.

  11. Body weight loss in beef cows: I. The effect of increased beta-oxidation on messenger ribonucleic acid levels of uncoupling proteins two and three and peroxisome proliferator-activated receptor in skeletal muscle.

    PubMed

    Brennan, K M; Michal, J J; Ramsey, J J; Johnson, K A

    2009-09-01

    Twenty-six Angus-cross cows were studied during BW loss (WL) and BW maintenance (WM) to examine the effects of elevated beta-oxidation on mRNA levels of NEFA-responsive signaling molecules in skeletal muscle. At the end of the WL and WM sampling periods, muscle biopsies were removed from the biceps femoris and mRNA levels were measured using real-time PCR. In comparison with WM, cows undergoing WL had elevated mRNA levels of carnitine palmitoyltransferase 1 (4.6-fold), fatty acid binding protein 3 (2.0-fold), and acyl-coenzyme A oxidase 1 (2.8-fold), all of which are indicators of beta-oxidation. Levels of mRNA of the NEFA-responsive signaling molecules PPAR alpha, delta, and gamma increased 2.0-fold, 2.2-fold, and 1.84-fold, respectively, during WL. Uncoupling proteins 2 and 3 also had increased mRNA (3.0-fold and 6.0-fold, respectively) during WL, but Western blot analysis found no changes in protein abundance of uncoupling protein 3. Uncoupling protein expression can be directly stimulated by elevated NEFA, potentially to protect cells from damage by lipid oxidation by-products. Thus, an increase in mRNA levels of genes involved in beta-oxidation of fatty acids and fatty acid by-products occurs during BW loss in beef cattle. These data support previous findings in nonruminants and suggest that these genes play a role in the same physiological processes in ruminants.

  12. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity

    PubMed Central

    Simopoulos, Artemis P.

    2016-01-01

    In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC) membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity. PMID:26950145

  13. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity.

    PubMed

    Simopoulos, Artemis P

    2016-03-02

    In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC) membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity.

  14. Conjugated fatty acids increase energy expenditure in part by increasing voluntary movement in mice.

    PubMed

    Park, Yooheon; Park, Yeonhwa

    2012-07-15

    Conjugated linoleic acid (CLA) and conjugated nonadecadienoic acid (CNA) have been previously shown to effectively reduce body fat. However, it is not clear if these effects persist with extended feeding, including potential mechanisms of increased energy expenditure. Thus the current investigation was conducted to determine the influence of dietary conjugated fatty acids on non-exercise form of voluntary movement and lipid and glucose metabolisms for 4-12 week feeding of male mice. CLA and CNA significantly reduced body weight and fat mass by increasing energy expenditure, in part by increasing voluntary movement. CLA and CNA significantly reduced serum leptin and tumour necrosis factor-α, while modulating the mRNA levels of genes associated with lipid and glucose metabolisms. The current results of increased physical activity along with modulation of lipid and glucose metabolisms by conjugated fatty acids will help contribute to future applications of these toward controlling obesity.

  15. Acid mine drainage and subsidence: effects of increased coal utilization.

    PubMed Central

    Hill, R D; Bates, E R

    1979-01-01

    The increases above 1975 levels for acid mine drainage and subsidence for the years 1985 and 2000 based on projections of current mining trends and the National Energy Plan are presented. No increases are projected for acid mine drainage from surface mines or waste since enforcement under present laws should control this problem. The increase in acid mine drainage from underground mines is projected to be 16 percent by 1985 and 10 percent by 2000. The smaller increase in 2000 over 1985 reflects the impact of the PL 95-87 abandoned mine program. Mine subsidence is projected to increase by 34 and 115 percent respectively for 1985 and 2000. This estimate assumes that subsidence will parallel the rate of underground coal production and that no new subsidence control measures are adopted to mitigate subsidence occurrence. PMID:540617

  16. Effect of domoic acid on brain amino acid levels.

    PubMed

    Durán, R; Arufe, M C; Arias, B; Alfonso, M

    1995-03-01

    The administration of Domoic Acid (Dom) in a 0.2 mg/kg i.p. dose induces changes in the levels of amino acids of neurochemical interest (Asp, Glu, Gly, Tau, Ala, GABA) in different rat brain regions (hypothalamus, hippocampus, amygdala, striatum, cortex and midbrain). The most affected amino acid is the GABA, the main inhibitory amino acid neurotransmitter, whereas glutamate, the main excitatory amino acid, is not affected. The rat brain regions that seem to be the main target of the Dom action belong to the limbic system (hippocampus, amygdala). The possible implication of the amino acids in the actions of Dom is also discussed.

  17. Microencapsulated krill and tuna oil blend raises plasma long-chain n-3 polyunsaturated fatty acid levels compared to tuna oil with similar increases in ileal contractility in rats.

    PubMed

    Patten, Glen S; Sanguansri, Luz; Augustin, Mary Ann; Abeywardena, Mahinda Y; Bird, Anthony R; Patch, Craig S; Belobrajdic, Damien P

    2017-03-01

    Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) may be more bioavailable from krill oil compared to fish oil due to their phospholipid structure. We tested whether a microencapsulated krill and tuna oil blend (ME-TOKO) provided greater LC n-3 PUFA bioavailability, improved blood lipid profiles and increased intestinal contractility compared to microencapsulated tuna oil (ME-TO). Rats were divided into three groups to receive isocaloric diets containing ME-TO, ME-TOKO and microencapsulated olive oil (ME-OO) at 0.3 or 2 g/100 g for 4 weeks. Final body and organ weights, feed intake and waste output were similar. ME-TOKO rats had higher plasma total LC n-3 PUFA levels compared to ME-TO, but liver LC n-3 PUFA levels and plasma triglyceride and cholesterol levels were similar in non-fasted rats. Diets containing 2% ME-TO and ME-TOKO also showed similar increases in ileal contractility. In summary, ME-TO bioavailability of LC n-3 PUFA was similar to ME-TOKO.

  18. Effects of modified tall oil versus a commercial source of conjugated linoleic acid and increasing levels of modified tall oil on growth performance and carcass characteristics of growing-finishing pigs.

    PubMed

    O'Quinn, P R; Nelssen, J L; Goodband, R D; Unruh, J A; Woodworth, J C; Smith, J S; Tokach, M D

    2000-09-01

    Two experiments were conducted to evaluate the effects of conjugated linoleic acid (CLA)-enriched feed additives for swine. These additives included a source of CLA that was commercially available (CLA-60) and modified tall oil (MTO). Experiment 1 used 36 barrows (initially 37.6+/-2.8 kg) to compare the effects of CLA-60 and MTO on growth performance and carcass characteristics of finishing pigs. The corn-soybean meal diets contained .50% soybean oil (control), .50% CLA-60, or .50% MTO. Pigs fed CLA-60 had less (P = .03) ADG from 37.6 to 72.6 kg than the control pigs; otherwise, pigs fed either CLA-60 or MTO had growth performance similar (P > .15) to that of the control pigs. Pigs fed MTO grew faster (P = .03) and consumed more feed (P = .10) over the duration of the experiment (37.6 to 106.4 kg) than pigs fed CLA-60. Dietary treatment did not affect (P > .15) plasma triglycerides or carcass characteristics, but pigs fed either MTO or CLA-60 had greater saturation of fatty acids in the adipose tissue at the 10th rib than pigs fed the control diet. Experiment 2 used 80 barrows (initially 33.4+/-2.2 kg) to examine the effects of increasing levels of MTO on growth performance and carcass characteristics of finishing pigs. The corn-soybean meal diet contained 1% cornstarch, which was replaced with MTO to give dietary levels of .25, .50, or 1.00% MTO. Dietary treatment did not affect (P > .15) growth performance. Feeding increasing levels of MTO quadratically decreased (P = .02) average backfat thickness and longissimus muscle drip loss (P = .04) and quadratically increased longissimus muscle area (P = .07) and percentage lean (P = .03). Feeding MTO tended to increase belly firmness (P < .10) compared with pigs fed the control diet. These traits appeared to be optimized with .50% MTO. In summary, pigs fed MTO had greater ADG, ADFI, and ending BW than pigs fed CLA-60. Feeding MTO does not appear to affect growth performance but improves carcass lean content and may

  19. Phytoplankton succession during acidification with and without increasing aluminum levels.

    PubMed

    Havens, K E; Heath, R T

    1990-01-01

    An in situ mesocosm experiment was performed to investigate the role of aluminum in controlling phytoplankton community succession during lake acidification. Large (2000 liter) mesocosms were suspended in mesotrophic East Twin Lake, Ohio, USA. Duplicates were either untreated controls (pH 8.8), acidified to pH 4.5 over 23 days, or acidified and spiked with 200 microg/liter Al in incremental additions. Filamentous blue greens, diatoms and other chrysophytes became extinct in both acid treatments, but declined most rapidly where Al levels were also increased. The large desmid Closterium and the filamentous chlorophyte Mougoetia became dominant in the Acid treatment. In the Acid + Al treatment, these algae also became dominant, but the species with greatest biomass was the dinoflagellate Peridinium inconspicuum. Acidification (with or without added Al) also resulted in a significant shift in the algal size spectrum to larger (> 20 microm) cells.

  20. Accumulation of Phosphatidic Acid Increases Vancomycin Resistance in Escherichia coli

    PubMed Central

    Sutterlin, Holly A.; Zhang, Sisi

    2014-01-01

    In Gram-negative bacteria, lipopolysaccharide (LPS) contributes to the robust permeability barrier of the outer membrane, preventing entry of toxic molecules such as antibiotics. Mutations in lptD, the beta-barrel component of the LPS transport and assembly machinery, compromise LPS assembly and result in increased antibiotic sensitivity. Here, we report rare vancomycin-resistant suppressors that improve barrier function of a subset of lptD mutations. We find that all seven suppressors analyzed mapped to the essential gene cdsA, which is responsible for the conversion of phosphatidic acid to CDP-diacylglycerol in phospholipid biosynthesis. These cdsA mutations cause a partial loss of function and, as expected, accumulate phosphatidic acid. We show that this suppression is not confined to mutations that cause defects in outer membrane biogenesis but rather that these cdsA mutations confer a general increase in vancomycin resistance, even in a wild-type cell. We use genetics and quadrupole time of flight (Q-TOF) liquid chromatography-mass spectrometry (LC-MS) to show that accumulation of phosphatidic acid by means other than cdsA mutations also increases resistance to vancomycin. We suggest that increased levels of phosphatidic acid change the physical properties of the outer membrane to impede entry of vancomycin into the periplasm, hindering access to its target, an intermediate required for the synthesis of the peptidoglycan cell wall. PMID:24957626

  1. Cerebrospinal fluid ascorbic acid levels in neurological disorders.

    PubMed

    Brau, R H; García-Castiñeiras, S; Rifkinson, N

    1984-02-01

    The ascorbic acid/dehydroascorbic acid system was analyzed in the cerebrospinal fluid (CSF) of 41 patients with different neurological disorders. The chi-square test of covariance analysis revealed in this sample significant differences in the CSF levels of total ascorbic acid when patients were classified by diagnostic categories. The population analyzed contained a group of 18 patients (back pain/sciatica group) in whom no overt neurological abnormalities were disclosed upon evaluation. Taking the CSF levels of total ascorbic acid and dehydroascorbic acid in these patients as the reference (3.57 +/- 0.87 (SD)/100 ml and 0.53 +/- 0.19 mg/100 ml, respectively), it was found that head-traumatized patients showed a significant reduction in the concentration of total ascorbic acid in the CSF. CSF ascorbic acid levels were also significantly lower in patients with increased intracranial pressure (noninfected hydrocephalus group) and in patients with cerebral tumors. Although the CSF concentration of dehydroascorbic acid did not correspondingly increase over the reference values in these three groups of patients, the tendency existed for dehydroascorbic acid to represent in them a higher percentage of total ascorbic acid. After examining different alternatives, it is concluded that the hypothesis of free radical damage to the central nervous system after certain types of injury (trauma, ischemia, and tumors) may provide a satisfactory explanation of our findings. A rationale for the use of vitamin C in the management of some neurological patients is also derived from this work.

  2. Can protein levels be economically increased?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One result from the 2010 hard red winter wheat harvest was an increase of discussions on protein values across the southern great plains. The crop garnered relatively low protein values for several reasons, many of which were directly related to the weather patterns and environmental conditions. T...

  3. Free fatty acids do not acutely increase asymmetrical dimethylarginine concentrations.

    PubMed

    Namiranian, K; Mittermayer, F; Artwohl, M; Pleiner, J; Schaller, G; Mayer, B X; Bayerle-Eder, M; Roden, M; Baumgartner-Parzer, S; Wolzt, M

    2005-12-01

    Concentrations of asymmetrical dimethylarginine (ADMA) and free fatty acids (FFAs) are elevated in insulin resistance which is associated with impaired vascular function. We hypothesized that FFAs could alter vascular tone by affecting ADMA concentrations. Plasma FFA levels were increased in seventeen healthy male volunteers by Intralipid/heparin infusion; hemodynamic and biochemical parameters were measured after 90 minutes. Plasma collected before and during Intralipid/heparin or equivalent synthetic FFAs was incubated with human umbilical vein endothelial cells (HUVECs) in vitro. Intralipid/heparin infusion resulted in an approximately seven-fold increase in plasma FFA levels to 1861 +/- 139 micromol/l, which was paralleled by increased systemic blood pressure and forearm blood flow. Intralipid/heparin did not affect ADMA (baseline mean 0.59 [95 % confidence interval [CI]: 0.54; 0.64] and 0.56 [CI: 0.51; 0.59] after 90 minutes), but slightly decreased SDMA (from 0.76, [CI: 0.70; 0.83] to 0.71 [CI: 0.64; 0.74], p < 0.05), and had no effect on ADMA/SDMA ratio. There was no correlation between ADMA and FFA concentrations or forearm blood flow. Incubation of HUVECs with FFA-rich plasma or synthetic FFAs induced an ADMA release after 24 hours, but not after 90 minutes. Acutely increased FFA levels caused hemodynamic effects but did not affect ADMA. Prolonged elevation of FFA levels might influence vascular function by increasing ADMA levels.

  4. Maternal folic acid supplementation to dams on marginal protein level alters brain fatty acid levels of their adult offspring.

    PubMed

    Rao, Shobha; Joshi, Sadhana; Kale, Anvita; Hegde, Mahabaleshwar; Mahadik, Sahebarao

    2006-05-01

    Studies on fetal programming of adult diseases have highlighted the importance of maternal nutrition during pregnancy. Folic acid and long-chain essential polyunsaturated fatty acids (LC-PUFAs) have independent effects on fetal growth. However, folic acid effects may also involve alteration of LC-PUFA metabolism. Because marginal deficiency of LC-PUFAs during critical periods of brain growth and development is associated with risks for adult diseases, it is highly relevant to investigate how maternal supplementation of such nutrients can alter brain fatty acid levels. We examined the impact of folic acid supplementation, conventionally used in maternal intervention, on brain essential fatty acid levels and plasma corticosterone concentrations in adult offspring at 11 months of age. Pregnant female rats from 4 groups (6 in each) were fed with casein diets either with 18 g protein/100 g diet (control diet) or treatment diets that were marginal in protein (MP), such as 12 g protein/100 g diet supplemented with 8 mg folic acid (FAS/MP), 12 g protein/100 g diet without folic acid (FAD/MP), or 12 g protein/100 g diet (MP) with 2 mg folic acid. Pups were weaned to a standard laboratory diet with 18 g protein/100 g diet. All male adult offspring in the FAS/MP group showed lower docosahexaenoic acid (P<.05) as compared with control adult offspring (6.04+/-2.28 vs 10.33+/-0.86 g/100 g fatty acids) and higher n-6/n-3 ratio (P<.05). Docosahexaenoic acid levels in FAS/MP adult offspring were also lower (P<.05) when compared with the MP group. Plasma corticosterone concentrations were higher (P<.05) in male adult offspring from the FAS/MP group compared with control as well as the MP adult offspring. Results suggest that maternal folic acid supplementation at MP intake decreased brain docosahexaenoic acid levels probably involving corticosterone increase.

  5. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer.

    PubMed

    Ren, Ang; Li, Xiong-Biao; Miao, Zhi-Gang; Shi, Liang; Jaing, Ai-Liang; Zhao, Ming-Wen

    2014-12-01

    Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 μg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation.

  6. Time-course of SKF-81297-induced increase in glutamic acid decarboxylase 65 and 67 mRNA levels in striatonigral neurons and decrease in GABA(A) receptor alpha1 subunit mRNA levels in the substantia nigra, pars reticulata, in adult rats with a unilateral 6-hydroxydopamine lesion.

    PubMed

    Yamamoto, N; Soghomonian, J-J

    2008-06-26

    Striatal projection neurons use GABA as their neurotransmitter and express the rate-limiting synthesizing enzyme glutamic acid decarboxylase (GAD) and the vesicular GABA transporter vGAT. The chronic systemic administration of an agonist of dopamine D1/D5-preferring receptors is known to alter GAD mRNA levels in striatonigral neurons in intact and dopamine-depleted rats. In the present study, the effects of a single or subchronic systemic administration of the dopamine D1/D5-preferring receptor agonist SKF-81297 on GAD65, GAD67, PPD and vGAT mRNA levels in the striatum and GABA(A) receptor alpha1 subunit mRNA levels in the substantia nigra, pars reticulata, were measured in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion. After a single injection of SKF-81297, striatal GAD65 mRNA levels were significantly increased at 3 but not 72 h. In contrast, striatal GAD67 mRNA levels were increased and nigral alpha1 mRNA levels were decreased at 72 but not 3 h. Single cell analysis on double-labeled sections indicated that increased GAD or vGAT mRNA levels after acute SKF-81297 occurred in striatonigral neurons identified by their lack of preproenkephalin expression. Subchronic SKF-81297 induced significant increases in striatal GAD67, GAD65, preprodynorphin and vGAT mRNA levels and decreases in nigral alpha1 mRNA levels. In the striatum contralateral to the 6-OHDA lesion, subchronic but not acute SKF-81297 induced a significant increase in GAD65 mRNA levels. The other mRNA levels were not significantly altered. Finally, striatal GAD67 mRNA levels were negatively correlated with nigral alpha1 mRNA levels in the dopamine-depleted but not dopamine-intact side. The results suggest that different signaling pathways are involved in the modulation by dopamine D1/D5 receptors of GAD65 and GAD67 mRNA levels in striatonigral neurons. They also suggest that the down-regulation of nigral GABA(A) receptors is linked to the increase in striatal GAD67 mRNA levels in the dopamine

  7. Excess nicotinamide increases plasma serotonin and histamine levels.

    PubMed

    Tian, Yan-Jie; Li, Da; Ma, Qiang; Gu, Xin-Yi; Guo, Ming; Lun, Yong-Zhi; Sun, Wu-Ping; Wang, Xin-Yuan; Cao, Yu; Zhou, Shi-Sheng

    2013-02-25

    Methylation, a methyl group-consuming reaction, plays a key role in the degradation (i.e., inactivation) of monoamine neurotransmitters, including catecholamines, serotonin and histamine. Without labile methyl groups, the methylation-mediated degradation cannot take place. Although high niacin (nicotinic acid and nicotinamide) intake, which is very common nowadays, is known to deplete the body's methyl-group pool, its effect on monoamine-neurotransmitter degradation is not well understood. The aim of this article was to investigate the effect of excess nicotinamide on the levels of plasma serotonin and histamine in healthy subjects. Urine and venous blood samples were collected from nine healthy male volunteers before and after oral loading with 100 mg nicotinamide. Plasma N(1)-methylnicotinamide, urinary N(1)-methyl-2-pyridone-5-carboxamide (2-Py), and plasma betaine levels were measured by using high-performance liquid chromatography (HPLC). Plasma concentrations of choline, serotonin and histamine were measured using commercial kits. The results showed that the plasma N(1)-methylnicotinamide level and the urinary excretion of 2-Py significantly increased after oral loading with 100 mg nicotinamide, which was accompanied with a decrease in the methyl-group donor betaine. Compared with those before nicotinamide load, five-hour postload plasma serotonin and histamine levels significantly increased. These results suggest that excess nicotinamide can disturb monoamine-neurotransmitter metabolism. These findings may be of significance in understanding the etiology of monoamine-related mental diseases, such as schizophrenia and autism (a neurodevelopmental disorder).

  8. Internal waves as a proposed mechanism for increasing ambient noise in an increasingly acidic ocean.

    PubMed

    Rouseff, Daniel; Tang, Dajun

    2010-06-01

    The effect on the ambient noise level in shallow water of the ocean growing more acidic is modeled. Because most noise sources are near the surface, high-order acoustic modes are preferentially excited. Linear internal waves, however, can scatter the noise into the low-order, low-loss modes most affected by the changes in acidity. The model uses transport theory to couple the modes and assumes an isotropic distribution for the noise sources. For a scenario typical of the East China Sea, the noise at 3 kHz is predicted to increase by 30%, about one decibel, as the pH decreases from 8.0 to 7.4.

  9. Method of increasing conversion of a fatty acid to its corresponding dicarboxylic acid

    DOEpatents

    Craft, David L.; Wilson, C. Ron; Eirich, Dudley; Zhang, Yeyan

    2004-09-14

    A nucleic acid sequence including a CYP promoter operably linked to nucleic acid encoding a heterologous protein is provided to increase transcription of the nucleic acid. Expression vectors and host cells containing the nucleic acid sequence are also provided. The methods and compositions described herein are especially useful in the production of polycarboxylic acids by yeast cells.

  10. Independence of sialic acid levels in normal and malignant growth.

    PubMed

    Khadapkar, S V; Sheth, N A; Bhide, S V

    1975-06-01

    Sialic acid content in breast or tumor tissue and serum of mouse strains that are either susceptible or resistant to breast cancer was measured at various age periods. Sialic acid content was also studied in normal lung tissue and in lung adenoma and hepatoma. Sialic acid levels during nonmalignant growth of a tissue were measured in breast tissue during pregnancy and lactation, and in regenerating liver, as well as in newborn and postnatal liver. The sialic acid content, when expressed per mg of protein, increased in mammary tumor, lung adenoma, and hepatoma. It also increased in nonmalignant growth of breast tissue during pregnancy and lactation and of regenerating liver and postnatal liver. Increase in sialic acid per mg DNA was observed only in lung tumors, regenerating liver, and postnatal liver. It appears that the changes in sialic acid level are independent of the normal or malignant growth of a tissue and that these changes might be the function of the parameter used to express the sialic acid values, i.e., either the DNA content or protein content of a given tissue.

  11. Acetic acid enhances endurance capacity of exercise-trained mice by increasing skeletal muscle oxidative properties.

    PubMed

    Pan, Jeong Hoon; Kim, Jun Ho; Kim, Hyung Min; Lee, Eui Seop; Shin, Dong-Hoon; Kim, Seongpil; Shin, Minkyeong; Kim, Sang Ho; Lee, Jin Hyup; Kim, Young Jun

    2015-01-01

    Acetic acid has been shown to promote glycogen replenishment in skeletal muscle during exercise training. In this study, we investigated the effects of acetic acid on endurance capacity and muscle oxidative metabolism in the exercise training using in vivo mice model. In exercised mice, acetic acid induced a significant increase in endurance capacity accompanying a reduction in visceral adipose depots. Serum levels of non-esterified fatty acid and urea nitrogen were significantly lower in acetic acid-fed mice in the exercised mice. Importantly, in the mice, acetic acid significantly increased the muscle expression of key enzymes involved in fatty acid oxidation and glycolytic-to-oxidative fiber-type transformation. Taken together, these findings suggest that acetic acid improves endurance exercise capacity by promoting muscle oxidative properties, in part through the AMPK-mediated fatty acid oxidation and provide an important basis for the application of acetic acid as a major component of novel ergogenic aids.

  12. Excessive S-Adenosyl-L-Methionine-Dependent Methylation Increases Levels of Methanol, Formaldehyde and Formic Acid in Rat Brain Striatal Homogenates: Possible role in S-adenosyl-L-methionine-induced Parkinson’s disease-like disorders

    PubMed Central

    Lee, Eun-Sook; Chen, Hongtao; Hardman, Chadwick; Simm, Anthony; Charlton, Clivel

    2009-01-01

    Aims Excessive methylation may be a precipitating factor for Parkinson’s disease (PD) since S-adenosylmethionine (SAM), the endogenous methyl donor, induces PD-like changes when injected into the rat brain. The hydrolysis of the methyl ester bond of the methylated proteins produces methanol. Since methanol is oxidized into formaldehyde, and formaldehyde into formic acid in the body, we investigated the effects of SAM on the production of methanol, formaldehyde and formic acid in rat brain striatal homogenates and the toxicity of these products in PC12 cells. Main methods radio-enzymatic and colorimetric assays, cell viability, Western blot. Key findings SAM increased the formation of methanol, formaldehyde and formic acid in a concentration and time-dependent manner. Concentrations of [3H-methyl]-SAM at 0.17, 0.33, 0.67 and 1.34 nM produced 3.8, 8.0, 18.3 and 34.4 fmol/mg protein/h of [3H] methanol in rat striatal homogenates, respectively. SAM also significantly generated formaldehyde and formic acid in striatal homogenates. Formaldehyde was the most toxic metabolite to differentiated PC12 pheochromocytoma cells in cell culture studies, indicating that formaldehyde formed endogenously may contribute to neuronal damage in excessive methylation conditions. Subtoxic concentration of formaldehyde decreased the expression of tyrosine hydroxylase, the limiting factor in dopamine synthesis. Formaldehyde was more toxic to catecholaminergic PC12 cells than C6 glioma cells, indicating that neurons are more vulnerable to formaldehyde than glia cells. Significance We suggest that excessive carboxylmethylation of proteins might be involved in the SAM-induced PD-like changes and in the aging process via the toxic effects of formaldehyde. PMID:18930743

  13. Plasma amino acid response to graded levels of escape protein.

    PubMed

    Gibb, D J; Klopfenstein, T J; Britton, R A; Lewis, A J

    1992-09-01

    A trial was conducted to examine the potential of using plasma amino acid responses to graded levels of escape protein to determine limiting amino acids in cattle. Growing calves (n = 120; mean BW = 220 +/- 21 kg) were fed a basal diet of corncob:sorghum silage (61:39) and were individually supplemented with distillers' dried grains (DDG), heat-damaged DDG (H-DDG), feather meal (FTH), or urea. The urea supplement was mixed with DDG and H-DDG to allow 0, 20, 35, 50, 65, or 80% of the supplemental CP to come from distillers' protein and maintain an 11.5% CP diet. Urea supplement was mixed with FTH to allow 0, 22, 39, 56, 73, or 90% of the supplemental CP to come from FTH. Dietary CP ranged from 11.5% at the 0% level to 17.3% at the 90% level. Plasma concentration of most essential plasma amino acids responded (P less than .10) linearly and(or) quadratically to increased escape protein. The broken-line response of plasma methionine at low DDG intake suggested that methionine was limiting at low levels of escape protein. An initial decrease followed by a plateau fit by a broken line indicated that histidine became limiting in FTH diets, and lysine eventually became limiting for DDG, H-DDG, and FTH diets before maximum BW gain was reached. Results indicate that plasma amino acid responses may identify amino acids that become limiting with increasing escape protein.

  14. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    SciTech Connect

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.; Culley, David E.; Deng, Shuang; Collett, James R.; Umemura, Myco; Koike, Hideaki; Baker, Scott E.; Machida, Masa

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes we successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.

  15. Association of Renal Manifestations with Serum Uric Acid in Korean Adults with Normal Uric Acid Levels

    PubMed Central

    Jung, Dong-Hyuk; Lee, Yong-Jae; Lee, Hye-Ree; Lee, Jung-Hyun

    2010-01-01

    Several studies have reported that hyperuricemia is associated with the development of hypertension and cardiovascular disease. Increasing evidences also suggest that hyperuricemia may have a pathogenic role in the progression of renal disease. Paradoxically, uric acid is also widely accepted to have antioxidant activity in experimental studies. We aimed to investigate the association between glomerular filtration rate (GFR) and uric acid in healthy individuals with a normal serum level of uric acid. We examined renal function determined by GFR and uric acid in 3,376 subjects (1,896 men; 1,480 women; aged 20-80 yr) who underwent medical examinations at Gangnam Severance Hospital from November 2006 to June 2007. Determinants for renal function and uric acid levels were also investigated. In both men and women, GFR was negatively correlated with systolic and diastolic blood pressures, fasting plasma glucose, total cholesterol, uric acid, log transformed C reactive protein, and log transformed triglycerides. In multivariate regression analysis, total uric acid was found to be an independent factor associated with estimated GFR in both men and women. This result suggests that uric acid appears to contribute to renal impairment in subjects with normal serum level of uric acid. PMID:21165292

  16. Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth

    PubMed Central

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth. PMID:23922685

  17. Altered Serum Uric Acid Level in Lichen Planus Patients

    PubMed Central

    Chakraborti, Goutam; Biswas, Rabindranath; Chakraborti, Sandip; Sen, Pradyot Kumar

    2014-01-01

    Background: Lichen planus (LP) is a common disorder whose etiopathogenesis is not clear. Recently, it has been suggested that increased reactive oxygen species (ROS) play important roles in the underlying mechanism of LP. Objectives: The principal aim of this study was to evaluate serum uric acid (UA) levels as a measure of the antioxidant defense status in LP patients. Methods: Serum UA levels were determined in 58 LP patients and 61 controls. Results: Serum UA levels were significantly decreased in patients with respect to controls. Moreover, serum UA level was decreased according to increasing duration of disease. Conclusions: The results of our study suggest that LP is associated with decrease of UA levels in serum. UA may be a potential, useful biomarker of antioxidant status in LP for elaboration of treatment strategy and monitoring. PMID:25484383

  18. Linoleic acid supplementation results in increased arachidonic acid and eicosanoid production in CF airway cells and in cftr−/− transgenic mice

    PubMed Central

    Zaman, Munir M.; Martin, Camilia R.; Andersson, Charlotte; Bhutta, Abdul Q.; Cluette-Brown, Joanne E.; Laposata, Michael

    2010-01-01

    Cystic fibrosis (CF) patients display a fatty acid imbalance characterized by low linoleic acid levels and variable changes in arachidonic acid. This led to the recommendation that CF patients consume a high-fat diet containing >6% linoleic acid. We hypothesized that increased conversion of linoleic acid to arachidonic acid in CF leads to increased levels of arachidonate-derived proinflammatory metabolites and that this process is exacerbated by increasing linoleic acid levels in the diet. To test this hypothesis, we determined the effect of linoleic acid supplementation on downstream proinflammatory biomarkers in two CF models: 1) in vitro cell culture model using 16HBE14o− sense [wild-type (WT)] and antisense (CF) human airway epithelial cells; and 2) in an in vivo model using cftr−/− transgenic mice. Fatty acids were analyzed by gas chromatography-mass spectrometry (GC/MS), and IL-8 and eicosanoids were measured by ELISA. Neutrophils were quantified in bronchoalveolar lavage fluid from knockout mice following linoleic acid supplementation and exposure to aerosolized Pseudomonas LPS. Linoleic acid supplementation increased arachidonic acid levels in CF but not WT cells. IL-8, PGE2, and PGF2α secretion were increased in CF compared with WT cells, with a further increase following linoleic acid supplementation. cftr−/− Mice supplemented with 100 mg of linoleic acid had increased arachidonic acid levels in lung tissue associated with increased neutrophil infiltration into the airway compared with control mice. These findings support the hypothesis that increasing linoleic acid levels in the setting of loss of cystic fibrosis transmembrane conductance regulator (CFTR) function leads to increased arachidonic acid levels and proinflammatory mediators. PMID:20656894

  19. Uric acid increases erythrocyte aggregation: Implications for cardiovascular disease.

    PubMed

    Sloop, Gregory D; Bialczak, Jessica K; Weidman, Joseph J; St Cyr, J A

    2016-10-05

    Uric acid may be a risk factor for atherosclerotic cardiovascular disease, although the data conflict and the mechanism by which it may cause cardiovascular disease is uncertain. This study was performed to test the hypothesis that uric acid, an anion at physiologic pH, can cause erythrocyte aggregation, which itself is associated with cardiovascular disease. Normal erythrocytes and erythrocytes with a positive direct antiglobulin test for surface IgG were incubated for 15 minutes in 14.8 mg/dL uric acid. Erythrocytes without added uric acid were used as controls. Erythrocytes were then examined microscopically for aggregation. Aggregates of up to 30 erythrocytes were noted when normal erythrocytes were incubated in uric acid. Larger aggregates were noted when erythrocytes with surface IgG were incubated in uric acid. Aggregation was negligible in controls. These data show that uric acid causes erythrocyte aggregation. The most likely mechanism is decreased erythrocyte zeta potential. Erythrocyte aggregates will increase blood viscosity at low shear rates and increase the risk of atherothrombosis. In this manner, hyperuricemia and decreased zeta potential may be risk factors for atherosclerotic cardiovascular disease.

  20. Phytic acid increases mucin and endogenous amino acid losses from the gastrointestinal tract of chickens.

    PubMed

    Onyango, Edward M; Asem, Elikplimi K; Adeola, Olayiwola

    2009-03-01

    The influence of the form of phytic acid on the regulation of mucin and endogenous losses of amino acids, nitrogen and energy in chickens was investigated. Forty-eight 10-week-old male broilers were grouped by weight into eight blocks of six cages with one bird per cage. Birds received by intubation six dextrose-based combinations of phytic acid and phytase arranged in a 3 x 2 factorial consisting of phytic acid form (no phytic acid, 1.0 g free phytic acid or 1.3 g magnesium-potassium phytate) and phytase (0 or 1000 units). Each bird received the assigned combination added to 25 g dextrose at each of the two feedings on the first day of experimentation. All excreta were collected continuously for 54 h following feeding and frozen until analysed. Frozen excreta were thawed, pooled for each bird, lyophilised, ground, and analysed for DM, energy, nitrogen, amino acids, mucin, and sialic and uric acids. Chickens fed either magnesium-potassium phytate or free phytic acid showed increased (P < 0.05) loss of crude mucin and sialic acid. The amount of crude mucin lost was significantly greater (P < 0.05) with magnesium-potassium phytate than with free phytic acid treatment. Both phytic acid treatments also increased (P < 0.05) endogenous loss of threonine, proline and serine. In conclusion, the form of phytic acid fed to chickens affects the extent of mucin and endogenous amino acid losses from the gastrointestinal tract.

  1. Forage breeding and management to increase the beneficial fatty acid content of ruminant products.

    PubMed

    Dewhurst, R J; Scollan, N D; Lee, M R F; Ougham, H J; Humphreys, M O

    2003-05-01

    The declining consumption of ruminant products has been partly associated with their high proportion (but not necessarily content) of saturated fatty acids. Recent studies have focused on the less prominent fact that they are also important sources of beneficial fatty acids, including n-3 fatty acids and conjugated linoleic acids. alpha-Linolenic acid (18 : 3n-3) is of particular interest because it also contributes to improved flavour of beef and lamb. Many recent studies showed large effects of special concentrates on levels of fatty acids in milk and meat. However, the 'rumen protection' treatments, needed to ensure a worthwhile level of fatty acid in products, are expensive. Herbage lipids are the cheapest and safest source of these fatty acids and so breeding to increase delivery of fatty acids from plants into ruminant products is an important long-term strategy. Plant lipids usually contain high levels of polyunsaturated fatty acids, particularly 18 : 2n-6 and 18 : 3n-3 which are the precursors of beneficial fatty acids. Whilst some plants are particularly rich in individual fatty acids (e.g. 18 : 3n-3 in linseed), there are also useful levels in grass and clover (Trifolium Spp.). Levels of fatty acids in forages in relation to species and varieties are considered, as well as management and conservation methods. Relationships between levels of fatty acids and existing traits and genetic markers are identified. The effects of forage treatments on the fatty acid content of ruminant products are reviewed. The higher levels of polyunsaturated fatty acids in milk from cows fed clover silages show that the level of fatty acids in herbage is not the only factor affecting levels of fatty acids in ruminant products. Further effort is needed to characterise susceptibility of unsaturated fatty acids to oxidative loss during field wilting and biohydrogenation losses in the rumen, and the relative importance of plant and microbial processes in these losses. The pathways

  2. Increased expression of sialic acid in cervical biopsies with squamous intraepithelial lesions

    PubMed Central

    2010-01-01

    Background Altered sialylation has been observed during oncogenic transformation. Sialylated oligosaccharides of glycoproteins and glycolipids have been implicated in tumor progression and metastases. In the cervical cancer high levels of sialic acid have been reported in the patients serum, and an increased of total sialic acid concentration has been reported for the cervical neoplasia and cervical cancer. This study investigates the changes in expression and distribution of α2,3-linked sialic acid and α2,6- linked sialic acid in low and high squamous intraepithelial lesions and in normal tissue. Methods Lectin histochemistry was used to examine the expression and distribution of sialic acid in different grades of cervical neoplasia. We applied Maackia amurensis lectin, which interacts with α2,3-linked sialic acid and Sambucus nigra lectin specific for α2,6-linked sialic acid. Results The histochemical analysis showed that α2,3-linked sialic acid and α2,6- linked sialic acid increased in intensity and distribution in concordance with the grade of squamous intraepithelial lesion (SIL). These results are in concordance with a previous study that reports increased RNAm levels of three sialyltransferases. Conclusions These results show that the change in sialylation occurs before cancer development and may play an important role in cellular transformation. These findings provide the basis for more detailed studies of the possible role of cell surface glycoconjugates bearing sialic acid in the cellular cervix transformation. PMID:21092209

  3. High Level Waste System Impacts from Acid Dissolution of Sludge

    SciTech Connect

    KETUSKY, EDWARD

    2006-04-20

    This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

  4. Valproic Acid Increases the Hepatic Differentiation Potential of Salivary Gland Cells

    PubMed Central

    Petrakova, O. S.; Ashapkin, V. V.; Shtratnikova, V. Y.; Kutueva, L. I.; Vorotelyak, E. A.; Borisov, M. A.; Terskikh, V. V.; Gvazava, I. G.; Vasiliev, A. V.

    2015-01-01

    The studies of cell plasticity and differentiation abilities are important problems in modern cellular biology. The use of histone deacetylase inhibitor - valproic acid is a promising approach to increasing the differentiation efficiency of various cell types. In this paper we investigate the ability of mouse submandibular salivary gland cells to differentiate into the hepatic direction and the effect of valproic acid on the efficiency of this differentiation. It was shown that the gene expression levels of hepatocyte markers (Aat, Afp, G6p, Pepck, Tat, Cyp3a13) and liver-enriched transcription factors (Hnf-3α, Hnf-3β, Hnf-4α, Hnf-6) were increased after differentiation in salivary gland cells. Valproic acid increases the specificity of hepatic differentiation, reducing the expression levels of the ductal (Krt19, Hhex1, Cyp7a1) and acinar (Ptf1a) markers. After valproic acid exposure, the efficiency of hepatic differentiation also increases, as evidenced by the increase in the gene expression level of Alb and Tdo, and increase in urea production by differentiated cells. No change was found in DNA methylation of the promoter regions of the genes; however, valproic acid treatment and subsequent hepatic differentiation largely affected the histone H3 methylation of liver-enriched genes. Thus, mouse submandibular salivary gland cells are capable of effective differentiation in the hepatic direction. Valproic acid increases the specificity and efficiency of the hepatic differentiation of these cells. PMID:26798494

  5. Increased CSF levels of endorphines in chronic psychosis.

    PubMed

    Terenius, L; Wahlström, A; Lindström, L; Widerlöv, E

    1976-10-01

    The levels of two endorphines, endogenously occurring morphinomimetic peptides, were measured in serial samples of CSF from seven psychiatric patients. Four cases with chronic schizophrenia were studied before and after treatment with the antipsychotic agent clozapine (Leponex). Supernormal fraction II levels were found on at least one sampling occasion in each patient. Two patients, who responded well to clozapine treatment, showed a clear-cut drop in fraction II levels, whereas two patients showed increased levels which paralleled a deterioration of the schizophrenic symptoms. Three manic-depressive cases showed abnormally high levels of endorphine fraction I in the manic phase which declined during normal or depressed phases. Levels of fraction II varied in a less consistent manner and appeared to be at maximum during the apparently normal phases. Although preliminary, the data indicate that endorphines may reach supernormal levels in patients with chronic psychoses.

  6. Increases in serum estrogen levels during major illness are caused by increased peripheral aromatization.

    PubMed

    Spratt, Daniel I; Morton, Jeremy R; Kramer, Robert S; Mayo, Sara W; Longcope, Christopher; Vary, Calvin P H

    2006-09-01

    Although serum testosterone levels decrease acutely in critically ill patients, estrogen levels rise. We hypothesized that increased rates of aromatization of androgens to estrogens underlie the increase in serum estrogen levels. Eleven men and three women (age 42-69 yr) were prospectively studied before and again after elective coronary artery bypass graft surgery (CABG). Each patient received priming doses of [(14)C]androgen and [(3)H]estrogen that were immediately followed by peripheral infusions for 210 min. Eight men and three women received androstenedione (A(4))/estrone (E(1)) and three men received testosterone (T)/estradiol (E(2)). Adipose tissue biopsies were obtained in another six men before and after CABG to evaluate levels of P450 aromatase mRNA. Serum T levels decreased postoperatively in all 17 men (P < 0.001), whereas E(1) levels rose (P = 0.004), with a trend toward a rise in E(2) (P = 0.23). Peripheral aromatization rates of androgens to estrogens rose markedly in all 14 patients (P < 0.0001). Estrogen clearance rates rose (P < 0.002). Mean serum A(4) levels increased slightly postoperatively (P = 0.04), although no increase in A(4) production rates (PRs) was observed. T PRs decreased in two of three men, whereas clearance rates increased in all three. Adipose tissue P450 aromatase mRNA content increased postoperatively (P < 0.001). We conclude that the primary cause of increased estrogen levels in acute illness is increased aromatase P450 gene expression, resulting in enhanced aromatization of androgens to estrogens, a previously undescribed endocrine response to acute illness. Both increased T clearance and decreased T production contribute to decreased serum T levels. Animal studies suggest that these opposing changes in circulating estrogen and androgen levels may be important to reduce morbidity and mortality in critical illness.

  7. Hyperglycemia may determine fibrinopeptide A plasma level increase in humans.

    PubMed

    Ceriello, A; Giugliano, D; Quatraro, A; Dello Russo, P; Marchi, E; Torella, R

    1989-12-01

    The effects of hyperglycemia on plasma fibrinopeptide A (FPA) levels in normal subjects are reported. An increase of FPA concentration parallel to sustained hyperglycemia was observed; when the glycemia returned to basal values, FPA showed values in normal range. Heparin infusion was able to significantly decrease the hyperglycemia-induced augment of FPA levels. Isovolumic-isotonic NaCl solution infusion produced a slight (NS) increase in FPA levels; however, mild hyperglycemia, achieved by glucagon, was also able to produce a significant increase in FPA concentration. These data demonstrate the direct role of hyperglycemia in conditioning FPA level, and suggest that hyperglycemia, by itself, is a sufficient stimulus to produce thrombin activation in humans.

  8. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2001-09-25

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  9. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, M.; Millard, C.S.; Stols, L.

    1998-06-23

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria. 2 figs.

  10. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2002-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  11. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1998-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  12. FABP4 plasma levels are increased in familial combined hyperlipidemia

    PubMed Central

    Cabré, Anna; Lázaro, Iolanda; Cofán, Montserrat; Jarauta, Estibaliz; Plana, Núria; Garcia-Otín, Angel L.; Ascaso, Juan F.; Ferré, Raimón; Civeira, Fernando; Ros, Emilio; Masana, Lluís

    2010-01-01

    The lipid profile of familial combined hyperlipidemia (FCHL) shares some characteristics with atherogenic dyslipidemia seen in diabetes, metabolic syndrome, and obesity. Adipocyte fatty acid-binding protein 4 (FABP4) appears to be a determinant of atherogenic dyslipidemia. We examined relationships between FABP4 plasma concentrations, dyslipidemia, and metabolic variables in patients with FCHL. We studied 273 unrelated FCHL patients and 118 control subjects. FABP4 was higher in FCHL than controls, with mean levels of 21.8 (10.1) μg/l and 19.2 (9.2) μg/l, respectively (adjusted P= 0.012). In FCHL, FABP4 correlated to body mass index (BMI), waist circumference, insulin levels, and homeostasis model assessment (HOMA) index (all P< 0.05), but not to lipid levels, whereas in obese patients, FABP4 correlated to triglyceride levels (r = 0.303, P= 0.014) and very low density lipoprotein size (r = 0.502, P = 0.001), as determined by nuclear magnetic resonance. Associations of FABP4 with BMI and waist circumference, but not with insulin levels, persisted in this subgroup. Plasma FABP4 does not influence the lipid phenotype of FCHL. In a small subgroup of obese FCHL, FABP4 levels were associated with triglyceride-rich lipoproteins independent of insulin resistance. These results support a hyperlipidemic mechanism of FCHL different from similar metabolic conditions where fat mass is strongly related to FABP4 and hypertriglyceridemia. PMID:20388924

  13. Elevation of serum levels of beta-aminoisobutyric acid in uremic patients and the toxicity of the amino acid.

    PubMed

    Gejyo, F; Kinoshita, Y; Ikenaka, T

    1977-12-01

    A reliable method for the determination of beta-aminoisobutyric acid in serum was developed utilizing an automated amino acid analyzer. The serum concentrations of beta-aminoisobutyric acid were determined in 20 normal subjects and in 71 uremic patients. The mean serum level of beta-aminoisobutyric acid was markedly increased in the uremic patients to 0.856 +/- 0.910 (mean +/- SD) mg/100 ml as compared with a normal value of 0.026 +/- 0.027 mg/100 ml. The distribution of serum beta-aminoisobutyric acid level in uremic patients was wide-spread, and there was no correlation between the serum levels of the amino acid and those of urea nitrogen, creatinine and uric acid. The toxicity of beta-aminoisobutyric acid on mice with acute renal failure induced by uranyl acetate was investigated and compared with that of alpha-amino-n-butyric acid and gamma-amino-n-butyric acid. All mice given more than 4 g/kg body wt of beta-aminoisobutyric acid showed twitching and cramps, and some of them died. However, the control mice given an equivalent dose of alpha-amino-n-butyric acid or gamma-amino-n-butyric acid showed no change. These results suggest that beta-aminoisobutyric acid might be a factor influencing the development and progression of uremic toxemia.

  14. Acidic beverages increase the risk of in vitro tooth erosion.

    PubMed

    Ehlen, Leslie A; Marshall, Teresa A; Qian, Fang; Wefel, James S; Warren, John J

    2008-05-01

    Acidic beverages are thought to increase the potential for dental erosion. We report pH and titratable acidities (ie, quantity of base required to bring a solution to neutral pH) of beverages popular in the United States and lesion depths in enamel and root surfaces after beverage exposure, and we describe associations among pH, titratable acidity, and both enamel and root erosive lesion depths. The pH of 100% juices, regular sodas, diet sodas, and sports drinks upon opening and the titratable acidity both upon opening and after 60 minutes of stirring were measured. Enamel and root surfaces of healthy permanent molars and premolars were exposed to individual beverages (4 enamel and 4 root surfaces per beverage) for 25 hours, and erosion was measured. Statistical analyses included 2-sample t tests, analyses of variance with post hoc Tukey studentized range test; and Spearman rank correlation coefficients. All beverages were acidic; the titratable acidity of energy drinks was greater than that of regular and diet sodas that were greater than that of 100% juices and sports drinks (P < .05). Enamel lesion depths after beverage exposures were greatest for Gatorade, followed by those for Red Bull and Coke that were greater than those for Diet Coke and 100% apple juice (P < .05). Root lesion depths were greatest for Gatorade, followed by Red Bull, Coke, 100% apple juice, and Diet Coke (P < .05). Lesion depths were not associated with pH or titratable acidity. Beverages popular in the United States can produce dental erosion.

  15. Increased interleukin-13 levels in patients with chronic heart failure.

    PubMed

    Nishimura, Yuki; Inoue, Teruo; Nitto, Takeaki; Morooka, Toshifumi; Node, Koichi

    2009-01-24

    A great number of basic and clinical studies have demonstrated that inflammatory cytokines play an important role in development and progress of heart failure. However, there is limited information about allergic cytokine interleukin-13 (IL-13). The inflammatory responses mediated by allergic cytokines can cause significant morbidity and mortality when they become chronic. Therefore, we elucidated the role of IL-13 in the pathophysiology of chronic heart failure. We measured plasma IL-13 levels by enzyme-linked immunosorbent assay in 110 patients with chronic heart failure and 20 control subjects. Plasma IL-13 levels were increased in heart failure patients, compared with the controls, in association with NYHA functional class. In addition, IL-13 levels were correlated positively with plasma levels of brain natriuretic peptide and C-reactive protein, and negatively with left ventricular ejection fraction. Plasma IL-13 levels may be useful for evaluating disease severity in chronic heart failure.

  16. Increased brain nitric oxide levels following ethanol administration.

    PubMed

    Finnerty, Niall; O'Riordan, Saidhbhe L; Klamer, Daniel; Lowry, John; Pålsson, Erik

    2015-05-01

    Nitric oxide is a ubiquitous messenger molecule, which at elevated concentrations has been implicated in the pathogenesis of several neurological disorders. Its role in oxidative stress, attributed in particular to the formation of peroxynitrite, proceeds through its high affinity for the superoxide radical. Alcoholism has recently been associated with the induction of oxidative stress, which is generally defined as a shift in equilibrium between pro-oxidant and anti-oxidant species in the direction of the former. Furthermore, its primary metabolite acetaldehyde, has been extensively associated with oxidative damage related toxic effects following alcohol ingestion. The principal objective of this study was the application of long term in vivo electrochemistry (LIVE) to investigate the effect of ethanol (0.125, 0.5 and 2.0 g kg(-1)) and acetaldehyde (12.5, 50 and 200 mg kg(-1)) on NO levels in the nucleus accumbens of freely moving rats. Systemic administrations of ethanol and acetaldehyde resulted in a dose-dependent increases in NO levels, albeit with very differing time courses. Subsequent to this the effect on accumbal NO levels, of subjecting the animal to different drug combinations, was also elucidated. The nitric oxide synthase inhibitor L-NAME (20 mg kg(-1)) and acetaldehyde sequestering agent D-penicillamine (50 mg kg(-1)) both attenuated the increase in NO levels following ethanol (1 g kg(-1)) administration. Conversely, the alcohol dehydrogenase inhibitor 4-methylpyrazole (25 mg kg(-1)) and catalase inhibitor sodium azide (10 mg kg(-1)) potentiated the increase in NO levels following ethanol administration. Finally, dual inhibition of aldehyde dehydrogenase and catalase by cyanamide (25 mg kg(-1)) caused an attenuation of ethanol effects on NO levels. Taken together these data highlight a robust increase in brain NO levels following systemic alcohol administration which is dependent on NO synthase activity and may involve both alcohol- and acetaldehyde

  17. Does high serum uric acid level cause aspirin resistance?

    PubMed

    Yildiz, Bekir S; Ozkan, Emel; Esin, Fatma; Alihanoglu, Yusuf I; Ozkan, Hayrettin; Bilgin, Murat; Kilic, Ismail D; Ergin, Ahmet; Kaftan, Havane A; Evrengul, Harun

    2016-06-01

    In patients with coronary artery disease (CAD), though aspirin inhibits platelet activation and reduces atherothrombotic complications, it does not always sufficiently inhibit platelet function, thereby causing a clinical situation known as aspirin resistance. As hyperuricemia activates platelet turnover, aspirin resistance may be specifically induced by increased serum uric acid (SUA) levels. In this study, we thus investigated the association between SUA level and aspirin resistance in patients with CAD. We analyzed 245 consecutive patients with stable angina pectoris (SAP) who in coronary angiography showed more than 50% occlusion in a major coronary artery. According to aspirin resistance, two groups were formed: the aspirin resistance group (Group 1) and the aspirin-sensitive group (Group 2). Compared with those of Group 2, patients with aspirin resistance exhibited significantly higher white blood cell counts, neutrophil counts, neutrophil-to-lymphocyte ratios, SUA levels, high-sensitivity C-reactive protein levels, and fasting blood glucose levels. After multivariate analysis, a high level of SUA emerged as an independent predictor of aspirin resistance. The receiver-operating characteristic analysis provided a cutoff value of 6.45 mg/dl for SUA to predict aspirin resistance with 79% sensitivity and 65% specificity. Hyperuricemia may cause aspirin resistance in patients with CAD and high SUA levels may indicate aspirin-resistant patients. Such levels should thus recommend avoiding heart attack and stroke by adjusting aspirin dosage.

  18. Endogenous Levels of Abscisic Acid and Decanoic Acid in Dutch Iris Bulbs and the Influence of Abscisic Acid and Decanoic Acid on Iris Meristems Cultured In Vitro1

    PubMed Central

    Doss, Robert P.; Kimura, Yosh; Christian, James K.

    1983-01-01

    Abscisic acid (ABA) and decanoic acid inhibited shoot elongation and floral development of Dutch iris (Iris hollandica Hoog. cv Ideal) meristems cultured in vitro. No synergism with respect to inhibition of leaf growth between ABA and decanoic acid was observed. With monthly harvest dates, from July 10, 1981 to October 10, 1981, there was a progressive decrease in endogenous level of free ABA in `Ideal' iris bulbs. Bulbs subjected to a full set of the usual preplanting storage conditions flowered, on average, 46 days after planting versus 194 days after planting for bulbs planted directly after harvest. ABA levels at harvest were 4- to 5-fold those after the preplanting storage treatment. In general, ABA levels did not correlate well with the length of time from planting until flowering of iris bulbs. Endogenous decanoic acid levels did not follow any pattern with respect to harvest date or postharvest treatment. After the postharvest high temperature treatment, there was about a 3-fold increase in nonscale decanoic acid concentration. Decanoic acid levels, in nonscale tissue, remained high after each of the other postharvest treatments. It is concluded that there is no good evidence to support the contention that either ABA or decanoic acid is directly involved in iris bulb dormancy. PMID:16663072

  19. The effects of increasing dietary levels of amino acid-supplemented soy protein concentrate and constant dietary supplementation of phosphorus on growth, composition and immune responses of juvenile Atlantic salmon (Salmo salar L.).

    PubMed

    Metochis, C; Crampton, V O; Ruohonen, K; Bell, J G; Adams, A; Thompson, K D

    2016-06-01

    Diets with 50 (SPC50), 65 (SPC65) and 80 % (SPC80) substitution of prime fish meal (FM) with soy protein concentrate (SPC) were evaluated against a commercial type control feed with 35 % FM replacement with SPC. Increases in dietary SPC were combined with appropriate increases in methionine, lysine and threonine supplementation, whereas added phosphorus was constant among treatments. Diets were administered to quadruplicate groups of 29 g juvenile Atlantic salmon were exposed to constant light, for 97 days. On Day 63 salmon were subjected to vaccination. Significant weight reductions in SPC65 and SPC80 compared with SPC35 salmon were observed by Day 97. Linear reductions in body cross-sectional ash, Ca/P ratios, and Ca, P, Mn and Zn were observed at Days 63 (prior vaccination) and 97 (34 days post-vaccination), while Mg presented a decrease at Day 63, in salmon fed increasing dietary SPC. Significant reductions in Zn, Ca, P and Ca/P ratios persisted in SPC65 and SPC80 compared with SPC35 salmon at Day 97. Significant haematocrit reductions in SPC50, SPC65 and SPC80 salmon were observed at Days 63, 70 and 97. Enhanced plasma haemolytic activity, increased total IgM, and a rise in thrombocytes were demonstrated in SPC50 and SPC65 salmon on Day 97, while increased lysozyme activity was demonstrated for these groups on Days 63, 70 and 97. Leucocyte and lymphocyte counts revealed enhanced immunostimulation in salmon fed with increasing dietary SPC at Day 97. High SPC inclusion diets did not compromise the immune responses of salmon, while SPC50 diet also supported good growth without compromising elemental concentrations.

  20. Endozepine-4 levels are increased in hepatic coma

    PubMed Central

    Malaguarnera, Giulia; Vacante, Marco; Drago, Filippo; Bertino, Gaetano; Motta, Massimo; Giordano, Maria; Malaguarnera, Michele

    2015-01-01

    AIM: To evaluate the serum levels of endozepine-4, their relation with ammonia serum levels, the grading of coma and the severity of cirrhosis, in patients with hepatic coma. METHODS: In this study we included 20 subjects with Hepatic coma, 20 subjects with minimal hepatic encephalopathy (MHE) and 20 subjects control. All subjects underwent blood analysis, Child Pugh and Model for End - stage liver disease (MELD) assessment, endozepine-4 analysis. RESULTS: Subjects with hepatic coma showed significant difference in endozepine-4 (P < 0.001) and NH3 levels (P < 0.001) compared both to MHE and controls patients. Between NH3 and endozepine-4 we observed a significant correlation (P = 0.009; Pearson correlation 0.570). There was a significant correlation between endozepine-4 and MELD (P = 0.017; Pearson correlation = 0.529). In our study blood ammonia concentration was noted to be raised in patients with hepatic coma, with the highest ammonia levels being found in those who were comatose. We also found a high correlation between endozepine-4 and ammonia (P < 0.001). In patients with grade IV hepatic coma, endozepine levels were significantly higher compared to other groups. CONCLUSION: This study suggests that an increased level of endozepine in subjects with higher levels of MELD was observed. In conclusion, data concerning involvement of the GABA-ergic system in HE coma could be explained by stage-specific alterations. PMID:26290636

  1. Organic Acid Excretion in Penicillium ochrochloron Increases with Ambient pH

    PubMed Central

    Vrabl, Pamela; Fuchs, Viktoria; Pichler, Barbara; Schinagl, Christoph W.; Burgstaller, Wolfgang

    2012-01-01

    Despite being of high biotechnological relevance, many aspects of organic acid excretion in filamentous fungi like the influence of ambient pH are still insufficiently understood. While the excretion of an individual organic acid may peak at a certain pH value, the few available studies investigating a broader range of organic acids indicate that total organic acid excretion rises with increasing external pH. We hypothesized that this phenomenon might be a general response of filamentous fungi to increased ambient pH. If this is the case, the observation should be widely independent of the organism, growth conditions, or experimental design and might therefore be a crucial key point in understanding the function and mechanisms of organic acid excretion in filamentous fungi. In this study we explored this hypothesis using ammonium-limited chemostat cultivations (pH 2–7), and ammonium or phosphate-limited bioreactor batch cultivations (pH 5 and 7). Two strains of Penicillium ochrochloron were investigated differing in the spectrum of excreted organic acids. Confirming our hypothesis, the main result demonstrated that organic acid excretion in P. ochrochloron was enhanced at high external pH levels compared to low pH levels independent of the tested strain, nutrient limitation, and cultivation method. We discuss these findings against the background of three hypotheses explaining organic acid excretion in filamentous fungi, i.e., overflow metabolism, charge balance, and aggressive acidification hypothesis. PMID:22493592

  2. Increased cancer cell proliferation in prostate cancer patients with high levels of serum folate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: A recent clinical trial revealed that folic acid supplementation is associated with an increased incidence of prostate cancer (1). The present study evaluates serum and prostate tissue folate levels in men with prostate cancer, compared to histologically normal prostate glands from can...

  3. Increasing carbonmonoxide blood levels in Bangkok bus drivers

    SciTech Connect

    Saenghirunvattana, S.; Wananukul, W.; Mokkhavesa, C.; Opasi, N.

    1995-05-01

    In order to study the effects of air pollution in Bangkok, 31 bus drivers were examined and blood was drawn for measurement of carboxyhemoglobin (COHb) prior to and after work. The COHb level before work was 2.19{+-}2.46% (range 0.7.18). It had increased after work to 5.26{+-}2.52% (range 0-10.4) (p<0.001). Twenty-one drivers complained of chronic headaches, myalgia, and eye irritation during working hours. The COHb level was not statistically different between smokers and nonsmokers.

  4. Methamphetamine increases basal ganglia iron to levels observed in aging.

    PubMed

    Melega, William P; Laćan, Goran; Harvey, Dennis C; Way, Baldwin M

    2007-10-29

    Increases in basal ganglia iron are well documented for neurodegenerative diseases but have not been associated with methamphetamine (METH). In this study, vervet monkeys that received two doses of METH (2 mg/kg, intramuscularly, 6 h apart) showed at 1 month, iron increases in substantia nigra pars reticulata and globus pallidus, with concurrent increases of ferritin-immunoreactivity and decreases of tyrosine hydroxylase-immunoreactivity in substantia nigra. At 1.5 years, substantia nigra tyrosine hydroxylase-immunoreactivity had recovered while iron and ferritin-immunoreactivity increases persisted. Globus pallidus and substantia nigra iron levels of the adult METH-exposed animals (age 5-9 years) were now comparable with those of drug-naive, aged animals (19-22 years), suggesting an aging-related condition that might render those regions more vulnerable to oxidative stress.

  5. A rotamer energy level study of sulfuric acid.

    PubMed

    Partanen, Lauri; Pesonen, Janne; Sjöholm, Elina; Halonen, Lauri

    2013-10-14

    It is a common approach in quantum chemical calculations for polyatomic molecules to rigidly constrain some of the degrees of freedom in order to make the calculations computationally feasible. However, the presence of the rigid constraints also affects the kinetic energy operator resulting in the frozen mode correction, originally derived by Pesonen [J. Chem. Phys. 139, 144310 (2013)]. In this study, we compare the effects of this correction to several different approximations to the kinetic energy operator used in the literature, in the specific case of the rotamer energy levels of sulfuric acid. The two stable conformers of sulfuric acid are connected by the rotations of the O-S-O-H dihedral angles and possess C2 and Cs symmetry in the order of increasing energy. Our results show that of the models tested, the largest differences with the frozen mode corrected values were obtained by simply omitting the passive degrees of freedom. For the lowest 17 excited states, this inappropriate treatment introduces an increase of 9.6 cm(-1) on average, with an increase of 8.7 cm(-1) in the zero-point energies. With our two-dimensional potential energy surface calculated at the CCSD(T)-F12a/VDZ-F12 level, we observe a radical shift in the density of states compared to the harmonic picture, combined with an increase in zero point energy. Thus, we conclude that the quantum mechanical inclusion of the different conformers of sulfuric acid have a significant effect on its vibrational partition function, suggesting that it will also have an impact on the computational values of the thermodynamic properties of any reactions where sulfuric acid plays a role. Finally, we also considered the effect of the anharmonicities for the other vibrational degrees of freedom with a VSCF-calculation at the DF-MP2-F12/VTZ-F12 level of theory but found that the inclusion of the other conformer had the more important effect on the vibrational partition function.

  6. New alleles of FATB-1A to reduce palmitic acid levels in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In wild-type soybeans, palmitic acid typically constitutes 10% of the total seed oil. Palmitic acid is a saturated fat linked to increased cholesterol levels, and reducing levels of saturated fats in soybean oil has been a breeding target. To identify novel and useful variation that could help in re...

  7. Aspergillus fumigatus challenge increases cytokine levels in nasal lavage fluid.

    PubMed

    Stark, H; Roponen, M; Purokivi, M; Randell, J; Tukiainen, H; Hirvonen, M-R

    2006-12-01

    Several studies have shown an association between exposure in moisture-damaged buildings and adverse health effects. There are several indicator microbes of moisture damage, but Aspergillus fumigatus is one of the best-documented molds provoking health problems in different occupational conditions. We assessed whether inhalation of a commercial A. fumigatus solution would affect cytokine levels (tumor necrosis factor [TNF]-alpha, interleukin [IL]-1beta, IL-4, IL-6, interferon [IFN]-gamma) in nasal lavage fluid (NAL) compared with that evoked by placebo challenge. Twenty-seven subjects were studied: 13 had occupational exposure in a moisture-damaged building, 4 were atopic, and 10 were considered as controls. In all the subjects, the IL-1beta levels were increased significantly both at 6 (p = 0.013) and 24 h (p = .005) after the A. fumigatus challenge compared to placebo. In subjects with previous occupational exposure in a moisture-damaged building, IL-4 concentrations were increased significantly both at 6 (p =.046) and 24 h (p =.008) after the A. fumigatus challenge compared with placebo. Furthermore, in the control group, TNF-alpha levels were significantly increased at 6 h after the A. fumigatus challenge compared to placebo (p = .028). Thus, these data show a link between markers of inflammation in NAL and experimental A. fumigatus challenge.

  8. Low phytic acid lentils (Lens culinaris L.): a potential solution for increased micronutrient bioavailability.

    PubMed

    Thavarajah, Pushparajah; Thavarajah, Dil; Vandenberg, Albert

    2009-10-14

    Phytic acid is an antinutrient present mainly in seeds of grain crops such as legumes and cereals. It has the potential to bind mineral micronutrients in food and reduce their bioavailability. This study analyzed the phytic acid concentration in seeds of 19 lentil ( Lens culinaris L.) genotypes grown at two locations for two years in Saskatchewan, Canada. The objectives of this study were to determine (1) the levels of phytic acid in commercial lentil genotypes and (2) the impact of postharvest processing and (3) the effect of boiling on the stability of phytic aid in selected lentil genotypes. The phytic acid was analyzed by high-performance anion exchange separation followed by conductivity detection. The Saskatchewan-grown lentils were naturally low in phytic acid (phytic acid = 2.5-4.4 mg g(-1); phytic acid phosphorus = 0.7-1.2 mg g(-1)), with concentrations lower than those reported for low phytic acid mutants of corn, wheat, common bean, and soybean. Decortication prior to cooking further reduced total phytic acid by >50%. As lowering phytic acid intake can lead to increased mineral bioavailability, dietary inclusion of Canadian lentils may have significant benefits in regions with widespread micronutrient malnutrition.

  9. Increased amplification success from forensic samples with locked nucleic acids.

    PubMed

    Ballantyne, Kaye N; van Oorschot, Roland A H; Mitchell, R John

    2011-08-01

    Inadequate sample quantities and qualities can commonly result in poor DNA amplification success rates for forensic case samples. In some instances, modifying the PCR protocol or components may assist profiling by overcoming inhibition, or reducing the threshold required for successful amplification and detection. Incorporation of locked nucleic acids (LNAs) into PCR primers has previously been shown to increase amplification success for a range of non-forensic sample types and applications. To investigate their use in a forensic context, the PCR primers for four commonly used STR loci have been redesigned to include LNA bases. The modified LNA primers provided significantly increased amplification success when compared to standard DNA primers, with both high-quality buccal samples and simulated forensic casework samples. Peak heights increased by as much as 5.75× for the singleplex amplifications. When incorporated into multiplexes, the LNA primers continued to outperform standard DNA primers, with increased ease of optimisation, and increased amplification success. The use of LNAs in PCR primers can greatly assist the profiling of a range of samples, and increase success rates from challenging forensic samples.

  10. DIETARY N-6 POLYUNSATURATED FATTY ACID DEPRIVATION INCREASES DOCOSAHEXAENOIC ACID METABOLISM IN RAT BRAIN

    PubMed Central

    Kim, Hyung-Wook; Chang, Lisa; Ma, Kaizong; Rapoport, Stanley I.

    2011-01-01

    Dietary n-6 polyunsaturated fatty acid (PUFA) deprivation in rodents reduces brain arachidonic acid (20:4n-6) concentration and 20:4n-6-preferring cytosolic phospholipase A2 (cPLA2-IVA) and cyclooxygenase (COX)-2 expression, while increasing brain docosahexaenoic acid (DHA, 22:6n-3) concentration and DHA-selective Ca2+-independent iPLA2-VIA expression. We hypothesized that these changes are accompanied by upregulated brain DHA metabolic rates. Using a fatty acid model, brain DHA concentrations and kinetics were measured in unanesthetized male rats fed, for 15 weeks post-weaning, an n-6 PUFA “adequate” (31.4 wt% linoleic acid) or “deficient” (2.7 wt% linoleic acid) diet, each lacking 20:4n-6 and DHA. [1-14C]DHA was infused intravenously, arterial blood was sampled, and the brain was microwaved at 5 min and analyzed. Rats fed the n-6 PUFA deficient compared with adequate diet had significantly reduced n-6 PUFA concentrations in brain phospholipids but increased eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acidn-3 (DPAn-3, 22:5n-3) and DHA (by 9.4%) concentrations, particularly in ethanolamine glycerophospholipid. Incorporation rates of unesterified DHA from plasma, which represent DHA metabolic loss from brain, were increased 45% in brain phospholipids, as was DHA turnover. Increased DHA metabolism following dietary n-6 PUFA deprivation may increase brain concentrations of antiinflammatory DHA metabolites, which with a reduced brain n-6 PUFA content, likely promote neuroprotection. (199 words) PMID:22117540

  11. Increasing dietary crude protein does not increase the essential amino acid requirements of kittens.

    PubMed

    Strieker, M J; Morris, J G; Rogers, Q R

    2006-08-01

    Essential amino acid (EAA) requirements of omnivores and herbivores (e.g. chicks, lambs, pigs and rats) are directly related to the concentration of dietary crude protein (CP). When an EAA is limiting in the diet, addition of a mixture of EAA lacking the limiting one (which increases dietary CP) results in a decrease in food intake and weight gain. This interaction has been referred to as an AA imbalance and has not been studied in depth in strict carnivores. The objectives of these experiments were to examine the effects on growing kittens (2-week periods) of the addition to diets of a mixture of AA lacking the limiting one. The control diets were at the requirement of the respective limiting EAA (or about 85% of the 1986 National Research Council requirement). In experiment 1, with the dietary EAAs at the minimally determined requirements, the concentration of the essential or dispensable amino acids was increased to determine if CP or an EAA was limiting. Results of growth rates (n = 12) and plasma AA concentrations indicated that tryptophan was limiting, but increased body weight gain also occurred when the concentration of CP was increased as dispensable amino acids without additional tryptophan. Experiment 1 was repeated in experiment 2 using a crossover design. Again, when tryptophan was limiting additional concentrations of dispensable AAs increased body weight gain. This response is the opposite of that in herbivores and omnivores. Experiment 3 consisted of 10 separate crossover trials, one for each of the 10 EAA and examined the effect of two concentrations of dietary CP (200 and 300 g CP/kg diet) on body weight gain of kittens (n = 8) offered diets limiting in each respective EAA. Body weight gain was numerically greater when diets contained 300 g CP/kg than 200 g CP/kg for eight of 10 EAAs (p < 0.05 for only isoleucine and threonine) when each amino acid was limiting. This response is the reverse of that which occurs in chicks, lambs, pigs and rats when

  12. Decreased training volume and increased carbohydrate intake increases oxidized LDL levels.

    PubMed

    Välimäki, I A; Vuorimaa, T; Ahotupa, M; Kekkonen, R; Korpela, R; Vasankari, T

    2012-04-01

    We studied effects of probiotics and training volume on oxidized LDL lipids (ox-LDL), serum antioxidant potential (s-TRAP) and serum antioxidants (s-α-tocopherol, s-γ-tocopherol, s-retinol, s-β-carotene and s-ubiquinone-10) in marathon runners during 3-months training period, 6-days preparation period and marathon run. Runners (n=127) were recruited for a randomized, double-blind intervention during which they received either Lactobacillus rhamnosus GG (LGG, probiotic group) or placebo drink (placebo group) during whole study. During the preparation period, subjects decreased training and increased carbohydrate intake. Blood samples were taken at baseline, before 6-days preparation, before and immediately after the marathon. Probiotics did not have any effect on ox-LDL, s-TRAP or serum antioxidants levels during the study. Interestingly, ox-LDL increased by 28% and 33% during the preparation period and decreased by 16% and 19% during the marathon run in the placebo and probiotic groups, respectively (in all, P<0.001). No changes were seen in s-TRAP before marathon, but during run s-TRAP raised by 16% in both groups (both, P<0.001). The increase of ox-LDL level during the preparative period after several months' training suggests that aerobic training may reduce the concentration of ox-LDL and that decrease of training together with increased energy intake, mainly carbohydrate, before marathon is capable of increasing the level of ox-LDL.

  13. Synovial fluid lactic acid levels in septic arthritis.

    PubMed

    Riley, T V

    1981-01-01

    Synovial fluid lactic acid estimations were carried out on 50 samples by gas liquid chromatography. Specimens from 4 patients with bacteria arthritis, other than gonococcal, had a mean lactic acid concentration of 215 mg/dl. One patient with gonococcal arthritis had a synovial fluid lactic acid of 30 mg/dl. Forty-one patients with inflammatory arthritis and 4 patients with degenerative arthritis had mean synovial fluid lactic acid levels of 27 and 23 mg/dl respectively. The estimation of synovial fluid lactic acid is reliable in differentiating septic arthritis from inflammatory and degenerative arthritis except when the infecting organism is NEisseria gonorrhoeae.

  14. Hydrocellular foam dressing increases the leptin level in wound fluid.

    PubMed

    Yoshino, Sawako; Nakagami, Gojiro; Ohira, Tomomi; Kawasaki, Rui; Shimura, Mari; Iwatsuki, Ken; Sanada, Hiromi; Kobayashi-Hattori, Kazuo; Oishi, Yuichi; Yamane, Takumi

    2015-09-01

    Hydrocellular foam dressing (HCF) absorbs excessive wound fluid, which contains various cytokines and growth factors, and ensures a moist environment to promote wound healing. However, the molecular mechanisms underlying the wound fluid component changes induced by HCF are poorly understood. In the present study, we examined the effect of HCF on wound healing and the associated regulatory mechanisms in relation to variations in cytokine levels in the wound fluid. We created full-thickness wounds on the dorsolateral skin of rats and collected the resulting wound fluid samples. HCF was immersed in a plate containing the wound fluids. HCF was then removed and the excess wound fluid remaining in the plate was examined by cytokine array and enzyme-linked immunosorbent assay. We also used a rat model and human dermal fibroblast cultures to examine the effect of wound fluid component changes during the wound healing process. Upon treatment with HCF, leptin levels were upregulated in the wound fluid. Fibroblast proliferation was enhanced and the effect was suppressed in the presence of leptin antagonist. In our in vivo model, HCF increased wound contraction compared with film dressings and this positive effect of HCF was suppressed by addition of leptin antagonist. Our results suggest that dermal fibroblast proliferation is upregulated by HCF due to increased leptin level at the wound surface, and these effects promote wound healing. We believe that the present study contributes to furthering the understanding of the mechanisms underlying the effects of HCF-induced wound healing.

  15. Increased endogenous DNA oxidation correlates to increased iron levels in melanocytes relative to keratinocytes.

    PubMed

    Pelle, Edward; Huang, Xi; Zhang, Qi; Pernodet, Nadine; Yarosh, Daniel B; Frenkel, Krystyna

    2014-01-01

    The endogenous oxidative state of normal human epidermal melanocytes was investigated and compared to normal human epidermal keratinocytes (NHEKs) in order to gain new insight into melanocyte biology. Previously, we showed that NHEKs contain higher levels of hydrogen peroxide (H2O2) than melanocytes and that it can migrate from NHEKs to melanocytes by passive permeation. Nevertheless, despite lower concentrations of H2O2, we now report higher levels of oxidative DNA in melanocytes as indicated by increased levels of 8-oxo-2'-deoxyguanosine (8-oxo-dG): 4.49 (±0.55 SEM) 8-oxo-dG/10(6) dG compared to 1.49 (±0.11 SEM) 8-oxo-dG/10(6) dG for NHEKs. An antioxidant biomarker, glutathione (GSH), was also lower in melanocytes (3.14 nmoles (±0.15 SEM)/cell) in comparison to NHEKs (5.98 nmoles (±0.33 SEM)/cell). Intriguingly, cellular bioavailable iron as measured in ferritin was found to be nearly fourfold higher in melanocytes than in NHEKs. Further, ferritin levels in melanocytes were also higher than in hepatocarcinoma cells, an iron-rich cell, and it indicates that higher relative iron levels may be characteristic of melanocytes. To account for the increased oxidative DNA and lower GSH and H2O2 levels that we observe, we propose that iron may contribute to higher levels of oxidation by reacting with H2O2 through a Fenton reaction leading to the generation of DNA-reactive hydroxyl radicals. In conclusion, our data support the concept of elevated oxidation and high iron levels as normal parameters of melanocytic activity. We present new evidence that may contribute to our understanding of the melanogenic process and lead to the development of new skin care products.

  16. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    PubMed Central

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  17. Oleic, linoleic and linolenic acids increase ros production by fibroblasts via NADPH oxidase activation.

    PubMed

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47 (phox) phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47 (phox) mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts.

  18. Groundwater depletion's contribution to sea level rise increasing

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-11-01

    Since the turn of the twentieth century, industrial-scale redistribution of water from landlocked aquifers to the ocean has driven up the global average sea level by more than 12 centimeters. Between 1900 and 2008, roughly 4500 cubic kilometers of water was drawn from the ground, largely to feed an agricultural system increasingly reliant on irrigation. Of that 4500-cubic-kilometer total (nearly the volume of Lake Michigan), 1100 cubic kilometers were pumped out between 2000 and 2008 alone. This early-21st-century groundwater depletion was responsible for raising global sea level at a rate of 0.4 millimeter per year, an eighth of the observed total. These updated values, falling near the middle of the range of previous estimates, are the product of an investigation by Konikow that drew together a variety of volumetric measurements of groundwater storage.

  19. Increased copeptin levels in metabolic syndrome from a Romanian population

    PubMed Central

    Vintilă, M; Gheorghiu, ML; Caragheorgheopol, A; Baculescu, N; Lichiardopol, C; Badiu, C; Coculescu, M; Grigorescu, F; Poiană, C

    2016-01-01

    Rationale: Arginine vasopressin (AVP) is secreted under conditions of water deprivation. Since AVP has a low half-life in the plasma, the C-terminal fragment of AVP-precursor (copeptin) was used to estimate the AVP levels. High copeptin levels increase the risk for the development of diabetes mellitus. Aim: This study was aimed to measure copeptin levels in the metabolic syndrome (MetS) in Romanians using a competitive enzyme immunoassay. Methods and results: Patients prone to present MetS (n = 63) were compared to controls (n = 42). In the MetS group, the syndrome was confirmed in 93.6%. Affected patients displayed 85.7% obesity and insulin resistance (HOMAIR of 4.9 ± 0.4 versus 1.1 ± 0.8 in controls). Low HDL-cholesterol was less represented (47.5%). Copeptin levels were 0.6 ± 0.0 in MetS versus 0.42 ± 0.0 ng/ mL in controls (P < 0.004). Higher copeptin (0.79 to 1.83 ng/ mL) was associated with MetS, P < 0.0018, OR 20, 95%CI [3.03 – 131.7]. In ANOVA, high copeptin was equally explained by MetS or obesity (P < 0.05,α = 3.8). The best correlation was found with high triglyceride levels (P < 0.013,α = 6.3) while the correlation with HOMAIR remained not significant. Discussion: These data indicated a concordant correlation between increased copeptin and MetS or its components. In the light of epidemiological data, indicating that more than 50% of the European population has a lower daily water intake and a fraction of 25% displaying high copeptin, our data further sustained that copeptin may be a good biomarker for MetS and/ or obesity, which should be further investigated with other members of the osmoregulation pathway at both pathogenesis and genetic levels. PMID:27928437

  20. Cafeteria diet increases prostaglandin E2 levels in rat prostate, kidney and testis.

    PubMed

    Brunetti, L; Leone, S; Chiavaroli, A; Orlando, G; Recinella, L; Ferrante, C; Di Nisio, C; Verratti, V; Vacca, M

    2010-01-01

    Nutrient composition, particularly the omega-6/omega-3 polyunsaturated fatty acids ratio, may differently affect inflammatory mediators production in tissues, which could be causally related to increased cancer incidence in obesity. We evaluated prostaglandin E(2) levels in male Wistar rat prostate, kidney and testicle tissues after 15 days of either a high fat, cafeteria-style diet (5.50 Kcal/g, 30 percent calories from fat, omega-6/omega-3 ratio 2.33) or a standard laboratory chow diet (3.35 Kcal/g, 3 percent calories from fat, omega-6/omega-3 ratio 0.56). In the cafeteria diet compared to standard laboratory diet rats, we found both an increase in weight gain and increased prostaglandin E(2) (PGE(2)) levels in prostate, kidney and testicle tissues. The increased levels of PGE(2) induced by the cafeteria diet could drive an inflammatory process leading to increased incidence of prostate, kidney and testicular cancer in overweight patients.

  1. [Effect of the increasing levels of soil radioactive pollution on the biochemical composition of plants].

    PubMed

    Gromova, V S; Pchelenok, O A; Kozlova, N M

    2012-01-01

    The study was undertaken to study a relationship between the changes of some parameters of the biochemical and mineral composition of different plants, such as rape, pods, and lentil, and the levels of soil radiation pollution, by using the conventional methods. Radioactive pollution of dark-grey forest soils was found to cause a change in the biochemical composition of plant seeds even at the level of cesium 137 (137Cs) within the present temporary permissible levels (TPL) (600 Bq/kg): there were elevated concentrations of salts of potassium, phosphorus, ammonia nitrogen, catechols, sucrose, and some amino acids. With the radioactive cesium level exceeding the TPL, biochemical changes in the seeds depended on the species of the plants: in the rape seeds, the additional formation of sucrose and amino acids continued, but less intensively than with its lower radiation; the pod beans were significantly positively correlated with the increasing amounts of catechols.

  2. Acute stress induces increases in salivary IL-10 levels.

    PubMed

    Szabo, Yvette Z; Newton, Tamara L; Miller, James J; Lyle, Keith B; Fernandez-Botran, Rafael

    2016-09-01

    The purpose of this study was to investigate the stress-reactivity of the anti-inflammatory cytokine, IL-10, in saliva and to determine how salivary IL-10 levels change in relation to those of IL-1β, a pro-inflammatory cytokine, following stress. Healthy young adults were randomly assigned to retrieve a negative emotional memory (n = 46) or complete a modified version of the Trier Social Stress Test (n = 45). Saliva samples were taken 10 min before (baseline) and 50 min after (post-stressor) onset of a 10-min stressor, and were assayed using a high sensitivity multiplex assay for cytokines. Measurable IL-10 levels (above the minimum detectable concentration) were found in 96% of the baseline samples, and 98% of the post-stressor samples. Flow rate-adjusted salivary IL-10 levels as well as IL-1β/IL-10 ratios showed moderate but statistically significant increases in response to stress. Measurement of salivary IL-10 and pro-/anti-inflammatory cytokine ratios may be useful, noninvasive tools, in stress research.

  3. Malic acid or orthophosphoric acid-heat treatments for protecting sunflower (Helianthus annuus) meal proteins against ruminal degradation and increasing intestinal amino acid supply.

    PubMed

    Arroyo, J M; González, J; Ouarti, M; Silván, J M; Ruiz del Castillo, M L; de la Peña Moreno, F

    2013-02-01

    The protection of sunflower meal (SFM) proteins by treatments with solutions of malic acid (1 M) or orthophosphoric acid (0.67 M) and heat was studied in a 3 × 3 Latin-square design using three diets and three rumen and duodenum cannulated wethers. Acid solutions were applied to SFM at a rate of 400 ml/kg under continuous mixing. Subsequently, treated meals were dried in an oven at 150°C for 6 h. Diets (ingested at 75 g/kg BW0.75) were isoproteic and included 40% Italian ryegrass hay and 60% concentrate. The ratio of untreated to treated SFM in the concentrate was 100 : 0 in the control diet and around 40 : 60 in diets including acid-treated meals. The use of acid-treated meals did not alter either ruminal fermentation or composition of rumen contents and led to moderate reductions of the rumen outflow rates of untreated SFM particles, whereas it did not affect their comminution and mixing rate. In situ effective estimates of by-pass (BP) and its intestinal effective digestibility (IED) of dry matter (DM), CP and amino acids (AAs) were obtained considering both rates and correcting the particle microbial contamination in the rumen using 15N infusion techniques. Estimates of BP and IED decreased applying microbial correction, but these variations were low in agreement with the small contamination level. Protective treatments increased on average the BP of DM (48.5%) and CP (267%), mainly decreasing both the soluble fraction and the degradation rate but also increasing the undegradable fraction, which was higher using orthophosphoric acid. Protective treatments increased the IED of DM (108%) and CP, but this increase was lower using orthophosphoric acid (11.8%) than malic acid (20.7%). Concentrations of AA were similar among all meals, except for a reduction in lysine concentrations using malic acid (16.3%) or orthophosphoric acid (20.5%). Protective treatments also increased on average the BP of all AA, as well as the IED of most of them. Evidence of higher

  4. Wall teichoic acids mediate increased virulence in Staphylococcus aureus.

    PubMed

    Wanner, Stefanie; Schade, Jessica; Keinhörster, Daniela; Weller, Nicola; George, Shilpa E; Kull, Larissa; Bauer, Jochen; Grau, Timo; Winstel, Volker; Stoy, Henriette; Kretschmer, Dorothee; Kolata, Julia; Wolz, Christiane; Bröker, Barbara M; Weidenmaier, Christopher

    2017-01-23

    Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) are the cause of a severe pandemic consisting primarily of skin and soft tissue infections. The underlying pathomechanisms have not been fully understood and we report here a mechanism that plays an important role for the elevated virulence of CA-MRSA. Surprisingly, skin abscess induction in an animal model was correlated with the amount of a major cell wall component of S. aureus, termed wall teichoic acid (WTA). CA-MRSA exhibited increased cell-wall-associated WTA content (WTA(high)) and thus were more active in inducing abscess formation via a WTA-dependent and T-cell-mediated mechanism than S. aureus strains with a WTA(low) phenotype. We show here that WTA is directly involved in S. aureus strain-specific virulence and provide insight into the underlying molecular mechanisms that could guide the development of novel anti-infective strategies.

  5. Uric Acid Levels in Normotensive Children of Hypertensive Parents

    PubMed Central

    Yildirim, Ali; Keles, Fatma; Kosger, Pelin; Ozdemir, Gokmen; Ucar, Birsen; Kilic, Zubeyir

    2015-01-01

    This study evaluated uric acid concentrations in normotensive children of parents with hypertension. Eighty normotensive children from families with and without a history of essential hypertension were included. Concentrations of lipid parameters and uric acid were compared. Demographic and anthropometric characteristics were similar in the groups. Systolic and diastolic blood pressure were higher in the normotensive children of parents with hypertension without statistically significant difference (P > 0.05). Uric acid concentrations were higher in the normotensive children of parents with hypertension (4.61 versus 3.57 mg/dL, P < 0.01). Total cholesterol and triglyceride concentrations were similar in the two groups. Systolic and diastolic blood pressure were significantly higher in control children aged >10 years (P < 0.01). Uric acid levels were significantly higher in all children with more pronounced difference after age 10 of years (P < 0.001). Positive correlations were found between the level of serum uric acid and age, body weight, body mass index, and systolic and diastolic blood pressure in the normotensive children of parents. The higher uric acid levels in the normotensive children of hypertensive parents suggest that uric acid may be a predeterminant of hypertension. Monitoring of uric acid levels in these children may allow for prevention or earlier treatment of future hypertension. PMID:26464873

  6. Production of Siderophores Increases Resistance to Fusaric Acid in Pseudomonas protegens Pf-5

    PubMed Central

    Ruiz, Jimena A.; Bernar, Evangelina M.; Jung, Kirsten

    2015-01-01

    Fusaric acid is produced by pathogenic fungi of the genus Fusarium, and is toxic to plants and rhizobacteria. Many fluorescent pseudomonads can prevent wilt diseases caused by these fungi. This study was undertaken to evaluate the effect of fusaric acid on P. protegens Pf-5 and elucidate the mechanisms that enable the bacterium to survive in the presence of the mycotoxin. The results confirm that fusaric acid negatively affects growth and motility of P. protegens. Moreover, a notable increase in secretion of the siderophore pyoverdine was observed when P. protegens was grown in the presence of fusaric acid. Concomitantly, levels of enzymes involved in the biosynthesis of pyoverdine and enantio-pyochelin, the second siderophore encoded by P. protegens, increased markedly. Moreover, while similar levels of resistance to fusaric acid were observed for P. protegens mutants unable to synthesize either pyoverdine or enanto-pyochelin and the wild type strain, a double mutant unable to synthesize both kinds of siderophores showed a dramatically reduced resistance to this compound. This reduced resistance was not observed when this mutant was grown under conditions of iron excess. Spectrophotometric titrations revealed that fusaric acid binds not only Fe2+ and Fe3+, but also Zn2+, Mn2+ and Cu2+, with high affinity. Our results demonstrate that iron sequestration accounts at least in part for the deleterious effect of the mycotoxin on P. protegens. PMID:25569682

  7. Chronic lamotrigine treatment increases rat hippocampal GABA shunt activity and elevates cerebral taurine levels.

    PubMed

    Hassel, B; Taubøll, E; Gjerstad, L

    2001-02-01

    The mechanism of action of the antiepileptic drug lamotrigine has previously been investigated only in acute experiments and is thought to involve inhibition of voltage-dependent sodium channels. However, lamotrigine is effective against more forms of epilepsies than other antiepileptic drugs that also inhibit sodium channels. We investigated whether chronic lamotrigine treatment may affect cerebral amino acid levels. Rats received lamotrigine, 10 mg/kg/day, for 90 days. The hippocampal level of GABA increased 25%, and the activities of glutamate decarboxylase and succinic semialdehyde/GABA transaminase increased 12 and 21% (p< 0.05), respectively, indicating increased GABA turnover. The uptake of GABA and glutamate into proteoliposomes remained unaltered. The level of taurine increased 27% in the hippocampus and 16% in the frontal and parietal cortices. The activities of hexokinase and alpha-ketoglutarate dehydrogenase, remained at control values. Serum lamotrigine was 41.7+/-1.5 microM (mean+/-S.E.M.), which is within the range seen in epileptic patients. Acute experiments with 5, 20 or 100 mg lamotrigine/kg, caused no changes in brain amino acid levels. The results suggest that chronic lamotrigine treatment increases GABAergic activity in the hippocampus. The cerebral increase in taurine, which has neuromodulatory properties, may contribute to the antiepileptic effect of lamotrigine.

  8. Coumarin effects on amino acid levels in mice prefrontal cortex and hippocampus.

    PubMed

    Pereira, Elaine Cristina; Lucetti, Daniel Luna; Barbosa-Filho, José Maria; de Brito, Eliane Magalhães; Monteiro, Valdécio Silvano; Patrocínio, Manoel Cláudio Azevedo; de Moura, Rebeca Ribeiro; Leal, Luzia Kalyne Almeida Moreira; Macedo, Danielle Silveira; de Sousa, Francisca Cléa Florenço; de Barros Viana, Glauce Socorro; Vasconcelos, Silvânia Maria Mendes

    2009-04-24

    Coumarin is a compound known to be present in a wide variety of plants, microorganisms and animal species. Most of its effects were studied in organs and systems other than the central nervous system. The present work evaluated the effect of coumarin administration on the levels of gamma-aminobutyric acid (GABA), glutamate (GLU), glycine (GLY) and taurine (TAU) in the prefrontal cortex and hippocampus of mice. Male Swiss mice were treated with distilled water (controls), coumarin (20 or 40 mg/kg, i.p.) or diazepam (1 mg/kg, i.p.). Results showed that in the prefrontal cortex, coumarin at the lowest dose increased the levels of GLU and TAU, while GABA increased with both doses studied and GLY had its levels increased only at the dose of 40 mg/kg. Diazepam (DZP) increased the levels of GABA and TAU and decreased the levels of GLU and GLY in this area. In the hippocampus, only glutamate had its levels decreased after coumarin treatment, while diazepam increased the levels of GABA and TAU and decreased the levels of GLU in this brain region. We concluded that coumarin stimulates the release of endogenous amino acids, increasing the levels of inhibitory and excitatory amino acids in the prefrontal cortex, and decreasing glutamate levels in the hippocampus. Together, these results are of interest, considering that some neurodegenerative diseases and seizures are related to the imbalance of the amino acid levels in the CNS suggesting a perspective of a therapeutic use of coumarins in these disorders.

  9. Possible Increase in Serum FABP4 Level Despite Adiposity Reduction by Canagliflozin, an SGLT2 Inhibitor

    PubMed Central

    Furuhashi, Masato; Matsumoto, Megumi; Hiramitsu, Shinya; Omori, Akina; Tanaka, Marenao; Moniwa, Norihito; Yoshida, Hideaki; Ishii, Junnichi; Miura, Tetsuji

    2016-01-01

    Background Fatty acid-binding protein 4 (FABP4/A-FABP/aP2) is secreted from adipocytes in association with catecholamine-induced lipolysis, and elevated serum FABP4 level is associated with obesity, insulin resistance and atherosclerosis. Secreted FABP4 as a novel adipokine leads to insulin resistance via increased hepatic glucose production (HGP). Sodium-glucose cotransporter 2 (SGLT2) inhibitors decrease blood glucose level via increased urinary glucose excretion, though HGP is enhanced. Here we investigated whether canagliflozin, an SGLT2 inhibitor, modulates serum FABP4 level. Methods Canagliflozin (100 mg/day) was administered to type 2 diabetic patients (n = 39) for 12 weeks. Serum FABP4 level was measured before and after treatment. Results At baseline, serum FABP4 level was correlated with adiposity, renal dysfunction and noradrenaline level. Treatment with canagliflozin significantly decreased adiposity and levels of fasting glucose and HbA1c but increased average serum FABP4 level by 10.3% (18.0 ± 1.0 vs. 19.8 ± 1.2 ng/ml, P = 0.008), though elevation of FABP4 level after treatment was observed in 26 (66.7%) out of 39 patients. Change in FABP4 level was positively correlated with change in levels of fasting glucose (r = 0.329, P = 0.044), HbA1c (r = 0.329, P = 0.044) and noradrenaline (r = 0.329, P = 0.041) but was not significantly correlated with change in adiposity or other variables. Conclusions Canagliflozin paradoxically increases serum FABP4 level in some diabetic patients despite amelioration of glucose metabolism and adiposity reduction, possibly via induction of catecholamine-induced lipolysis in adipocytes. Increased FABP4 level by canagliflozin may undermine the improvement of glucose metabolism and might be a possible mechanism of increased HGP by inhibition of SGLT2. Trial Registration UMIN-CTR Clinical Trial UMIN000018151 PMID:27124282

  10. [Hydroxycinnamic acid levels of various batches from mugwort flowering tops].

    PubMed

    Fraisse, D; Carnat, A; Carnat, A-P; Guédon, D; Lamaison, J-L

    2003-07-01

    Dried flowering tops of 24 harvested batches (Artemisia vulgaris: 13; Artemisia verlotiorum: 11) and 12 batches of mugwort from commercial origin were examined. The levels of principal compounds averaged respectively: total hydroxycinnamic acids 6.09; 10.29 and 9.13%, chlorogenic acid 0.79; 2.05 and 1.35%, 1,5-dicaffeoylquinic acid 0.51; 4.01 and 1.25%, 3,5-dicaffeoylquinic acid 2.21; 1.25 and 2.60%. Specifications were discussed for an European Pharmacopoeial monography.

  11. Increased levels of sister chromatid exchanges in military aircraft pilots.

    PubMed

    Silva, M J; Carothers, A; Castelo Branco, N; Dias, A; Boavida, M G

    1999-04-26

    Sister chromatid exchanges (SCEs) were scored in lymphocytes of nine high-performance pilots of alphajet aircrafts and of ten control individuals from the same air base. Statistical analysis of the mean SCE count per cell in the total number of cells analyzed as well as in those having 12 or more SCEs (high-frequency cells, HFCs) revealed a significant difference between pilots and controls, after adjusting for the effect of smoking. Analysis of the cell cycle kinetic data (replication and mitotic indices) revealed no significant differences either between pilots and controls or between smokers and nonsmokers. Previously, we reported an increase in the SCE levels in workers of the aeronautical industry exposed to noise and whole-body vibration. The present results corroborate those findings and indicate that noise and whole-body vibration may cause genotoxic effects in man.

  12. Eicosapentaenoic and docosahexaenoic acids increase insulin sensitivity in growing steers.

    PubMed

    Cartiff, S E; Fellner, V; Eisemann, J H

    2013-05-01

    An experiment was conducted to determine the effect of dietary n-3 long chain PUFA on insulin sensitivity in growing steers. Steers (n = 12, initial BW = 336.3 kg, SEM = 7.7) were adapted to a basal diet that was 70% concentrate mix and 30% orchardgrass hay. Steers were fed a daily amount of 0.26 Mcal ME per kg BW (0.75). After 3 wk steers were transitioned to 1 of 2 treatment (Trt) diets (n = 6 per diet) containing added Ca salts of fatty acids at 4% of DM using a source of fat that was enriched in n-3 fatty acids, including eicosapentaenoic acid and docosahexaenoic acid (FOFA), or a source of fat without n-3 fatty acids and a greater percentage of C16:0 and C18:1 (LCFA). Three intravenous (i.v.) glucose tolerance tests (IVGTT) were conducted, 1 during the basal diet, and 2 after transition to treatment diets at time 1 (T1; d 4 Trt) and time 2 (T2; d 39 Trt). Three i.v. insulin challenge tests (IC) were conducted the day after each IVGTT. Measurements on the basal diet were used as covariates. For IVGTT, there was a diet by time interaction (P < 0.05) for glucose area under the response curve (AUC). The AUC50 (mM glucose × 50 min) at T1 was less (P = 0.02) for LCFA (126.2) than FOFA (151.8), AUC50 at T2 tended to be greater (P = 0.07) for LCFA (165.9) than FOFA (146.0). Preinfusion insulin concentration was greater (P < 0.001) before the IVGTT and IC for steers fed LCFA (40.4 and 40.2 µIU/mL) than for steers fed FOFA (23.7 and 27.1 µIU/mL), respectively. Glucose clearance did not differ between treatments. For IC, minimum glucose concentration was greater (P = 0.02) and glucose AUC150 was less (P < 0.01) for steers fed LCFA than for steers fed FOFA. Values for glucose concentration were 1.8 mM and 1.5 mM and for AUC150 (mM glucose × 150 min) were 203.1 and 263.6 for steers fed LCFA and FOFA, respectively. Insulin clearance (fraction/min) was greater (P < 0.01) for steers fed LCFA (0.121) than FOFA (0.101). The insulin AUC60 (µIU/mL × 60 min) postinfusion was

  13. Artificially Increased Yolk Hormone Levels and Neophobia in Domestic Chicks

    PubMed Central

    Bertin, Aline; Arnould, Cécile; Moussu, Chantal; Meurisse, Maryse; Constantin, Paul; Leterrier, Christine; Calandreau, Ludovic

    2015-01-01

    In birds there is compelling evidence that the development and expression of behavior is affected by maternal factors, particularly via variation in yolk hormone concentrations of maternal origin. In the present study we tested whether variation in yolk hormone levels lead to variation in the expression of neophobia in young domestic chicks. Understanding how the prenatal environment could predispose chicks to express fear-related behaviors is essential in order to propose preventive actions and improve animal welfare. We simulated the consequences of a maternal stress by experimentally enhancing yolk progesterone, testosterone and estradiol concentrations in hen eggs prior to incubation. The chicks from these hormone-treated eggs (H) and from sham embryos (C) that received the vehicle-only were exposed to novel food, novel object and novel environment tests. H chicks approached a novel object significantly faster and were significantly more active in a novel environment than controls, suggesting less fearfulness. Conversely, no effect of the treatment was found in food neophobia tests. Our study highlights a developmental influence of yolk hormones on a specific aspect of neophobia. The results suggest that increased yolk hormone levels modulate specifically the probability of exploring novel environments or novel objects in the environment. PMID:26633522

  14. Towards engineering increased pantothenate (vitamin B(5)) levels in plants.

    PubMed

    Chakauya, Ereck; Coxon, Katy M; Wei, Ma; Macdonald, Mary V; Barsby, Tina; Abell, Chris; Smith, Alison G

    2008-11-01

    Pantothenate (vitamin B(5)) is the precursor of the 4'-phosphopantetheine moiety of coenzyme A and acyl-carrier protein. It is made by plants and microorganisms de novo, but is a dietary requirement for animals. The pantothenate biosynthetic pathway is well-established in bacteria, comprising four enzymic reactions catalysed by ketopantoate hydroxymethyltransferase (KPHMT), L: -aspartate-alpha-decarboxylase (ADC), pantothenate synthetase (PS) and ketopantoate reductase (KPR) encoded by panB, panD, panC and panE genes, respectively. In higher plants, the genes encoding the first (KPHMT) and last (PS) enzymes have been identified and characterised in several plant species. Commercially, pantothenate is chemically synthesised and used in vitamin supplements, feed additives and cosmetics. Biotransformation is an attractive alternative production system that would circumvent the expensive procedures of separating racemic intermediates. We explored the possibility of manipulating pantothenate biosynthesis in plants. Transgenic oilseed rape (Brassica napus) lines were generated in which the E. coli KPHMT and PS genes were expressed under a strong constitutive CaMV35SS promoter. No significant change of pantothenate levels in PS transgenic lines was observed. In contrast plants expressing KPHMT had elevated pantothenate levels in leaves, flowers siliques and seed in the range of 1.5-2.5 fold increase compared to the wild type plant. Seeds contained the highest vitamin content, indicating that they might be the ideal target for production purposes.

  15. Acid-activated biochar increased sulfamethazine retention in soils.

    PubMed

    Vithanage, Meththika; Rajapaksha, Anushka Upamali; Zhang, Ming; Thiele-Bruhn, Sören; Lee, Sang Soo; Ok, Yong Sik

    2015-02-01

    Sulfamethazine (SMZ) is an ionizable and highly mobile antibiotic which is frequently found in soil and water environments. We investigated the sorption of SMZ onto soils amended with biochars (BCs) at varying pH and contact time. Invasive plants were pyrolyzed at 700 °C and were further activated with 30 % sulfuric (SBBC) and oxalic (OBBC) acids. The sorption rate of SMZ onto SBBC and OBBC was pronouncedly pH dependent and was decreased significantly when the values of soil pH increased from 3 to 5. Modeled effective sorption coefficients (K D,eff) values indicated excellent sorption on SBBC-treated loamy sand and sandy loam soils for 229 and 183 L/kg, respectively. On the other hand, the low sorption values were determined for OBBC- and BBC700-treated loamy sand and sandy loam soils. Kinetic modeling demonstrated that the pseudo second order model was the best followed by intra-particle diffusion and the Elovich model, indicating that multiple processes govern SMZ sorption. These findings were also supported by sorption edge experiments based on BC characteristics. Chemisorption onto protonated and ligand containing functional groups of the BC surface, and diffusion in macro-, meso-, and micro-pores of the acid-activated BCs are the proposed mechanisms of SMZ retention in soils. Calculated and experimental q e (amount adsorbed per kg of the adsorbent at equilibrium) values were well fitted to the pseudo second order model, and the predicted maximum equilibrium concentration of SBBC for loamy sand soils was 182 mg/kg. Overall, SBBC represents a suitable soil amendment because of its high sorption rate of SMZ in soils.

  16. Increased mutagenicity of chromium compounds by nitrilotriacetic acid

    SciTech Connect

    Loprieno, N.; Boncristiani, G.; Venier, P.; Montaldi, A.; Majone, F.; Bianchi, V.; Paglialunga, S.; Levis, A.G.

    1985-01-01

    Nitrilotriacetic acid trisodium salt (NTA), which is a substitute for polyphosphates in household laundry detergents, and N-nitrosoiminodiacetic acid (NIDA), a derivative of NTA produced by metabolism of soil microorganisms, were tested for in vitro mutagenicity in bacteria and yeasts. No gene reversions in five strains of Salmonella typhimurium (TA1535, TA1537, TA1538, TA98, and TA100), no forward gene mutations in Schizosaccharomyces pombe P1, and no mitotic gene conversions at two loci in Saccharomyces cerevisiae D4 were induced by NTA and NIDA independently of the presence of rat liver metabolic activation. The influence of NTA on the mutagenic and clastogenic activity of several chromium compounds was examined in the Salmonella/microsome assay and in the sister chromatid exchange (SCE) assay in mammalian cell cultures (Chinese hamster ovary (CHO) line). NTA does not affect the genetic inactivity of water-soluble Cr(III) (Cr/sub 2/(SO/sub 4/)/sub 3/) and the direct mutagenicity of soluble Cr(VI) (Na/sub 2/CrO/sub 4/, K/sub 2/Cr/sub 2/O/sub 7/) compounds. The very insoluble Cr(VI) compounds PbCrO/sub 4/ and PbCrO/sub 4/ x PbO are instead clearly mutagenic in the Salmonella/microsome assay (TA100 strain) only in the presence of NTA or NaOH. The chromosome-damaging activity of PbCrO/sub 4/ is significantly increased by NTA but not by NaOH.

  17. Effect of Increased Water Vapor Levels on TBC Lifetime

    SciTech Connect

    Pint, Bruce A; Garner, George Walter; Lowe, Tracie M; Haynes, James A; Zhang, Ying

    2011-01-01

    To investigate the effect of increased water vapor levels on thermal barrier coating (TBC) lifetime, furnace cycle tests were performed at 1150 C in air with 10 vol.% water vapor (similar to natural gas combustion) and 90 vol.%. Either Pt diffusion or Pt-modified aluminide bond coatings were applied to specimens from the same batch of a commercial second-generation single-crystal superalloy and commercial vapor-deposited yttria-stabilized zirconia (YSZ) top coats were applied. Three coatings of each type were furnace cycled to failure to compare the average lifetimes obtained in dry O{sub 2}, using the same superalloy batch and coating types. Average lifetimes with Pt diffusion coatings were unaffected by the addition of water vapor. In contrast, the average lifetime of Pt-modified aluminide coatings was reduced by more than 50% with 10% water vapor but only slightly reduced by 90% water vapor. Based on roughness measurements from similar specimens without a YSZ coating, the addition of 10% water vapor increased the rate of coating roughening more than 90% water vapor. Qualitatively, the amount of {beta}-phase depletion in the coatings exposed in 10% water vapor did not appear to be accelerated.

  18. Enforced physical inactivity increases endothelial microparticle levels in healthy volunteers.

    PubMed

    Navasiolava, Nastassia M; Dignat-George, Françoise; Sabatier, Florence; Larina, Irina M; Demiot, Claire; Fortrat, Jacques-Olivier; Gauquelin-Koch, Guillemette; Kozlovskaya, Inesa B; Custaud, Marc-Antoine

    2010-08-01

    A sedentary lifestyle has adverse effects on the cardiovascular system, including impaired endothelial functions. Subjecting healthy men to 7 days of dry immersion (DI) presented a unique opportunity to analyze the specific effects of enhanced inactivity on the endothelium. We investigated endothelial properties before, during, and after 7 days of DI involving eight subjects. Microcirculatory functions were assessed with laser Doppler in the skin of the calf. We studied basal blood flow and endothelium-dependent and -independent vasodilation. We also measured plasma levels of microparticles, a sign of cellular dysfunction, and soluble endothelial factors, reflecting the endothelial state. Basal flow and endothelium-dependent vasodilation were reduced by DI (22 + or - 4 vs. 15 + or - 2 arbitrary units and 29 + or - 6% vs. 12 + or - 6%, respectively, P < 0.05), and this was accompanied by an increase in circulating endothelial microparticles (EMPs), which was significant on day 3 (42 + or - 8 vs. 65 + or - 10 EMPs/microl, P < 0.05), whereas microparticles from other cell origins remained unchanged. Plasma soluble VEGF decreased significantly during DI, whereas VEGF receptor 1 and soluble CD62E were unchanged, indicating that the increase in EMPs was associated with a change in antiapoptotic tone rather than endothelial activation. Our study showed that extreme physical inactivity in humans induced by 7 days of DI causes microvascular impairment with a disturbance of endothelial functions, associated with a selective increase in EMPs. Microcirculatory endothelial dysfunction might contribute to cardiovascular deconditioning as well as to hypodynamia-associated pathologies. In conclusion, the endothelium should be the focus of special care in situations of acute limitation of physical activity.

  19. Dependence of intestinal amino acid uptake on dietary protein or amino acid levels

    SciTech Connect

    Karasov, W.H.; Solberg, D.H.; Diamond, J.M.

    1987-05-01

    To understand how intestinal amino acid (AA) transport is regulated by dietary substrate levels, the authors measured uptake of seven radioactively-labelled AAs and glucose across the jejunal brush-border membrane of mice kept on one of three isocaloric rations differing in nitrogen content. In the high-protein ration, uptake increased by 77-81% for the nonessential, less toxic AAs, proline, and aspartate but only by 32-61% for the more toxic essential AAs tested. In the nitrogen-deficient ration, uptake decreased for the nonessential aspartate and proline but stayed constant or increased for essential AAs and for the nonessential alanine. These patterns imply independent regulation of the intestine's various AA transporters. With decreasing dietary AA (or protein), the imino acid and acidic AA private transporters are repressed, while activities of the basic AA transporter and the neutral AA public transporter decrease to an asymptote or else go through a minimum. These regulatory patterns can be understood as a compromise among conflicting constraints imposed by protein's multiple roles as a source of calories, nitrogen, and essential AAs and by the toxicity of essential AAs at high concentrations.

  20. Effects of Increased Free Fatty Acid Availability on Adipose Tissue Fatty Acid Storage in Men

    PubMed Central

    Mundi, Manpreet S.; Koutsari, Chistina

    2014-01-01

    Context: A portion of free fatty acids (FFA) released from adipose tissue lipolysis are re-stored in adipocytes via direct uptake. Rates of direct adipose tissue FFA storage are much greater in women than men, but women also have greater systemic FFA flux and more body fat. Objective: We tested the hypotheses that experimental increases in FFA in men would equalize the rates of direct adipose tissue FFA storage in men and women. Design: We used a lipid emulsion infusion to raise FFA in men to levels seen in post-absorptive women. Direct FFA storage (μmol·kg fat−1·min−1) rates in abdominal and femoral fat was assessed using stable isotope tracer infusions to measure FFA disappearance rates and an iv FFA radiotracer bolus/timed biopsy. Setting: These studies were performed in a Clinical Research Center. Participants: Data from 13 non-obese women was compared with that from eight obese and eight non-obese men. Intervention: The men received a lipid emulsion infusion to raise FFA. Main Outcome Measures: We measured the rates of direct FFA storage in abdominal and femoral adipose tissue. Results: The three groups were similar in age and FFA flux by design; obese men had similar body fat percentage as non-obese women. Despite matching for FFA concentrations and flux, FFA storage per kg abdominal (P < .01) and femoral (P < .001) fat was less in both lean and obese men than in non-obese women. Abdominal FFA storage rates were correlated with proteins/enzymes in the FFA uptake/triglyceride synthesis pathway in men. Conclusion: The lesser rates of direct FFA adipose tissue in men compared with women cannot be explained by reduced FFA availability. PMID:25192251

  1. Lignosulfonic acid promotes hypertrophy in 3T3-L1 cells without increasing lipid content and increases their 2-deoxyglucose uptake

    PubMed Central

    Hasegawa, Yasushi; Nakagawa, Erina; Kadota, Yukiya; Kawaminami, Satoshi

    2017-01-01

    Objective Adipose tissue plays a key role in the development of obesity and diabetes. We previously reported that lignosulfonic acid suppresses the rise in blood glucose levels through the inhibition of α-glucosidase activity and intestinal glucose absorption. The purpose of this study is to examine further biological activities of lignosulfonic acid. Methods In this study, we examined the effect of lignosulfonic acid on differentiation of 3T3-L1 cells. Results While lignosulfonic acid inhibited proliferation (mitotic clonal expansion) after induction of differentiation, lignosulfonic acid significantly increased the size of accumulated lipid droplets in the cells. Semi-quantitative reverse transcription polymerase chain reaction analysis showed that lignosulfonic acid increased the expression of the adipogenic transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ), leading to increased glucose transporter 4 (Glut-4) expression and 2-deoxyglucose uptake in differentiated 3T3-L1 cells. Additionally, feeding lignosulfonic acid to diabetic KK-Ay mice suppressed increase of blood glucose level. Conclusion Lignosulfonic acid may be useful as a functional anti-diabetic component of food. PMID:27383805

  2. Short branched-chain C6 carboxylic acids result in increased growth, novel 'unnatural' fatty acids and increased membrane fluidity in a Listeria monocytogenes branched-chain fatty acid-deficient mutant.

    PubMed

    Sen, Suranjana; Sirobhushanam, Sirisha; Hantak, Michael P; Lawrence, Peter; Brenna, J Thomas; Gatto, Craig; Wilkinson, Brian J

    2015-10-01

    Listeria monocytogenes is a psychrotolerant food borne pathogen, responsible for the high fatality disease listeriosis, and expensive food product recalls. Branched-chain fatty acids (BCFAs) of the membrane play a critical role in providing appropriate membrane fluidity and optimum membrane biophysics. The fatty acid composition of a BCFA-deficient mutant is characterized by high amounts of straight-chain fatty acids and even-numbered iso fatty acids, in contrast to the parent strain where odd-numbered anteiso fatty acids predominate. The presence of 2-methylbutyrate (C5) stimulated growth of the mutant at 37°C and restored growth at 10°C along with the content of odd-numbered anteiso fatty acids. The C6 branched-chain carboxylic acids 2-ethylbutyrate and 2-methylpentanoate also stimulated growth to a similar extent as 2-methylbutyrate. However, 3-methylpentanoate was ineffective in rescuing growth. 2-Ethylbutyrate and 2-methylpentanoate led to novel major fatty acids in the lipid profile of the membrane that were identified as 12-ethyltetradecanoic acid and 12-methylpentadecanoic acid respectively. Membrane anisotropy studies indicated that growth of strain MOR401 in the presence of these precursors increased its membrane fluidity to levels of the wild type. Cells supplemented with 2-methylpentanoate or 2-ethylbutyrate at 10°C shortened the chain length of novel fatty acids, thus showing homeoviscous adaptation. These experiments use the mutant as a tool to modulate the membrane fatty acid compositions through synthetic precursor supplementation, and show how existing enzymes in L. monocytogenes adapt to exhibit non-native activity yielding unique 'unnatural' fatty acid molecules, which nevertheless possess the correct biophysical properties for proper membrane function in the BCFA-deficient mutant.

  3. d-Amino Acid Levels in Perfused Mouse Brain Tissue and Blood: A Comparative Study.

    PubMed

    Weatherly, Choyce A; Du, Siqi; Parpia, Curran; Santos, Polan T; Hartman, Adam L; Armstrong, Daniel W

    2017-02-16

    The l-enantiomer is the predominant type of amino acid in all living systems. However, d-amino acids, once thought to be "unnatural", have been found to be indigenous even in mammalian systems and increasingly appear to be functioning in essential biological and neurological roles. Both d- and l-amino acid levels in the hippocampus, cortex, and blood samples from NIH Swiss mice are reported. Perfused brain tissues were analyzed for the first time, thereby eliminating artifacts due to endogenous blood, and decreased the mouse-to-mouse variability in amino acid levels. Total amino acid levels (l- plus d-enantiomers) in brain tissue are up to 10 times higher than in blood. However, all measured d-amino acid levels in brain tissue are typically ∼10 to 2000 times higher than blood levels. There was a 13% reduction in almost all measured d-amino acid levels in the cortex compared to those in the hippocampus. There is an approximate inverse relationship between the prevalence of an amino acid and the percentage of its d-enantiomeric form. Interestingly, glutamic acid, unlike all other amino acids, had no quantifiable level of its d-antipode. The bioneurological reason for the unique and conspicuous absence/removal of this d-amino acid is yet unknown. However, results suggest that d-glutamate metabolism is likely a unidirectional process and not a cycle, as per the l-glutamate/glutamine cycle. The results suggest that there might be unreported d-amino acid racemases in mammalian brains. The regulation and function of specific other d-amino acids are discussed.

  4. Acid and organic aerosol coatings on magnetic nanoparticles increase iron concentrations in human airway epithelial cells.

    PubMed

    Ghio, Andrew J; Dailey, Lisa A; Richards, Judy H; Jang, Myoseon

    2009-07-01

    Numerous industrial applications for man-made nanoparticles have been proposed. Interactions of nanoparticles with agents in the atmosphere may impact human health. We tested the postulate that in vitro exposures of respiratory epithelial cells to airborne magnetic nanoparticles (MNP; Fe(3)O(4)) with and without a secondary organic aerosol (SOA) and an inorganic acid could affect iron homeostasis, oxidative stress, and interleukin (IL)-8 release. Cell iron concentrations were increased after exposures to MNP and values were further elevated with co-exposures to either SOA or inorganic acid. Increased expression of ferritin and elevated levels of RNA for DMT1, proteins for iron storage and transport respectively, followed MNP exposures, but values were significant for only those with co-exposures to inorganic acid and organic aerosols. Cell iron concentration corresponded to a measure of oxidative stress in the airway epithelial cells; MNP with co-exposures to SOA and inorganic acid increased both available metal and indices of oxidant generation. Finally, the release of a proinflammatory cytokine (i.e. IL-8) by the exposed cells similarly increased with cell iron concentration. We conclude that MNP can interact with a SOA and an inorganic acid to present metal in a catalytically reactive state to cultured respiratory cells. This produces an oxidative stress to affect a release of IL-8.

  5. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V

    2013-04-30

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  6. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian [East Lansing, MI; Kleff, Susanne [East Lansing, MI; Guettler, Michael V [Holt, MI

    2012-02-21

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  7. Pros and cons of increasing folic acid and vitamin B12 intake by fortification.

    PubMed

    Allen, Lindsay H

    2012-01-01

    There is no doubt that folic acid fortification can be effective for reducing the incidence of neural tube defects. The degree of efficacy depends on both the level of folate depletion and other, yet to be fully characterized, genetic and/or environmental factors. This article summarizes briefly data on neural tube defect reduction and other benefits of folic acid fortification as these have been reviewed in more detail elsewhere. More attention is drawn to questions that have been raised about the possible adverse effects of folic acid fortification including the incidence of colorectal cancer and immune function. The main question addressed here is whether folic acid fortification can exacerbate the adverse effects of vitamin B12 deficiency. Most analyses of this question have been conducted in wealthier countries based on data from elderly populations - which have the highest prevalence of vitamin B12 deficiency. However, of potentially greater concern is the increasingly common practice of folic acid fortification in developing countries, where folate status is probably often adequate even prior to fortification, and vitamin B12 depletion or deficiency is common. To add to this information, data from a group of Chilean elderly with a range of vitamin B12 status and exposed to high levels of folic acid fortification will be presented.

  8. Abscisic Acid and Ethylene Increase in Heterodera avenae-infected Tolerant or Intolerant Oat Cultivars

    PubMed Central

    Volkmar, K. M.

    1991-01-01

    The relationship between root stunting caused by the cereal cyst nematode and levels of two root growth inhibiting hormones, abscisic acid and ethylene, was investigated in aseptically cultured root segments and in intact roots of two oat cultivars differing in tolerance to the nematode. Cultured root segments of oat cultivars New Zealand Cape (tolerant) and Sual (intolerant) were inoculated with sterilized Heterodera avenae second-stage juveniles. Suppressed growth of root axes and emerged laterals following nematode penetration corresponded to an increase in abscisic acid and ethylene in roots of both intolerant and tolerant cultivars. When the experiment was repeated on intact root systems, nematodes retarded root growth of Sual more than New Zealand Cape despite an increase in ABA and ethylene in both cultivars. Abscisic acid and (or) ethylene may be involved in growth inhibition of H. avenae-infected roots but appear to play no direct role in determining tolerance. PMID:19283149

  9. High folic acid increases cell turnover and lowers differentiation and iron content in human HT29 colon cancer cells.

    PubMed

    Pellis, Linette; Dommels, Yvonne; Venema, Dini; Polanen, Ab van; Lips, Esther; Baykus, Hakan; Kok, Frans; Kampman, Ellen; Keijer, Jaap

    2008-04-01

    Folate, a water-soluble B vitamin, is a cofactor in one-carbon metabolism and is essential for DNA synthesis, amino acid interconversion, methylation and, consequently, normal cell growth. In animals with existing pre-neoplastic and neoplastic lesions, folic acid supplementation increases the tumour burden. To identify processes that are affected by increased folic acid levels, we compared HT29 human colon cancer cells exposed to a chronic supplemental (100 ng/ml) level of folic acid to cells exposed to a normal (10 ng/ml) level of folic acid, in the presence of vitamin B12 and other micronutrients involved in the folate-methionine cycle. In addition to higher intracellular folate levels, HT29 cells at 100 ng folic acid/ml displayed faster growth and higher metabolic activity. cDNA microarray analysis indicated an effect on cell turnover and Fe metabolism. We fully confirmed these effects at the physiological level. At 100 ng/ml, cell assays showed higher proliferation and apoptosis, while gene expression analysis and a lower E-cadherin protein expression indicated decreased differentiation. These results are in agreement with the promoting effect of folic acid supplementation on established colorectal neoplasms. The lower expression of genes related to Fe metabolism at 100 ng folic acid/ml was confirmed by lower intracellular Fe levels in the cells exposed to folic acid at 100 ng/ml. This suggests an effect of folate on Fe metabolism.

  10. Increase in voice level and speaker comfort in lecture rooms.

    PubMed

    Brunskog, Jonas; Gade, Anders Christian; Bellester, Gaspar Payá; Calbo, Lilian Reig

    2009-04-01

    Teachers often suffer from health problems related to their voice. These problems are related to their working environment, including the acoustics of the lecture rooms. However, there is a lack of studies linking the room acoustic parameters to the voice produced by the speaker. In this pilot study, the main goals are to investigate whether objectively measurable parameters of the rooms can be related to an increase in the voice sound power produced by speakers and to the speakers' subjective judgments about the rooms. In six different rooms with different sizes, reverberation times, and other physical attributes, the sound power level produced by six speakers was measured. Objective room acoustic parameters were measured in the same rooms, including reverberation time and room gain, and questionnaires were handed out to people who had experience talking in the rooms. It is found that in different rooms significant changes in the sound power produced by the speaker can be found. It is also found that these changes mainly have to do with the size of the room and to the gain produced by the room. To describe this quality, a new room acoustic quantity called "room gain" is proposed.

  11. Increased serum level of homocysteine correlates with retinal nerve fiber layer thinning in diabetic retinopathy

    PubMed Central

    Srivastav, Khushboo; Mahdi, Abbas A.; Shukla, Rajendra K.; Meyer, Carsten H.; Akduman, Levent; Khanna, Vinay K.

    2016-01-01

    Purpose To study the correlation between serum levels of vitamin B12, folic acid, and homocysteine and the severity of diabetic retinopathy and the correlation with retinal nerve fiber layer (RNFL) thinning on spectral domain optical coherence tomography (SD-OCT). Methods In a tertiary care center–based prospective cross-sectional study, 60 consecutive cases and 20 healthy controls in the age group of 40–65 years were included. The eyes of the cases were divided into three groups according to Early Treatment Diabetic Retinopathy Study (ETDRS) classification: diabetes mellitus without retinopathy (n = 20), non-proliferative diabetic retinopathy with macular edema (n = 20), and proliferative diabetic retinopathy with macular edema (n = 20). The serum levels of vitamin B12 and folic acid were measured using a standard protocol. The serum homocysteine assay was performed using an enzyme-linked immunosorbent assay (ELISA) kit. Average RNFL thickness was measured using SD-OCT. Statistical analysis was used to assess the correlations between the study variables. Results Increased severity of diabetic retinopathy was found to correlate with an increase in the serum levels of homocysteine (F = 53.79; p<0.001). The mean serum levels of vitamin B12 and folic acid were found to be within the normal reference range. A positive correlation was found between retinal nerve fiber layer thinning and serum levels of homocysteine (p<0.001). Conclusions This study, for the first time, demonstrated a correlation between increased homocysteine with a decrease in RNFL thickness and increased severity of diabetic retinopathy. PMID:27994434

  12. Serum uric acid levels and cardiovascular disease: the Gordian knot

    PubMed Central

    Tugores, Antonio; Rodríguez-González, Fayna

    2016-01-01

    Hyperuricemia is defined as serum uric acid level of more than 7 mg/dL and blood levels of uric acid are causally associated with gout, as implicated by evidence from randomized clinical trials using urate lowering therapies. Uric acid as a cardiovascular risk factor often accompanies metabolic syndrome, hypertension, diabetes, dyslipidemia, chronic renal disease, and obesity. Despite the association of hyperuricemia with cardiovascular risk factors, it has remained controversial as to whether uric acid is an independent predictor of cardiovascular disease. To settle this issue, and in the absence of large randomized controlled trials, Mendelian randomization analysis in which the exposure is defined based on the presence or absence of a specific allele that influences a risk factor of interest have tried to shed light on this. PMID:28066631

  13. Substitution of aspartic acid with glutamic acid increases the unfolding transition temperature of a protein.

    PubMed

    Lee, Duck Yeon; Kim, Kyeong-Ae; Yu, Yeon Gyu; Kim, Key-Sun

    2004-07-30

    Proteins from thermophiles are more stable than those from mesophiles. Several factors have been suggested as causes for this greater stability, but no general rule has been found. The amino acid composition of thermophile proteins indicates that the content of polar amino acids such as Asn, Gln, Ser, and Thr is lower, and that of charged amino acids such as Arg, Glu, and Lys is higher than in mesophile proteins. Among charged amino acids, however, the content of Asp is even lower in thermophile proteins than in mesophile proteins. To investigate the reasons for the lower occurrence of Asp compared to Glu in thermophile proteins, Glu was substituted with Asp in a hyperthermophile protein, MjTRX, and Asp was substituted with Glu in a mesophile protein, ETRX. Each substitution of Glu with Asp decreased the Tm of MjTRX by about 2 degrees C, while each substitution of Asp with Glu increased the Tm of ETRX by about 1.5 degrees C. The change of Tm destabilizes the MjTRX by 0.55 kcal/mol and stabilizes the ETRX by 0.45 kcal/mol in free energy.

  14. Deimination level and peptidyl arginine deiminase 2 expression are elevated in astrocytes with increased incubation temperature.

    PubMed

    Enriquez-Algeciras, Mabel; Bhattacharya, Sanjoy K; Serra, Horacio M

    2015-09-01

    Astrocytes respond to environmental cues, including changes in temperatures. Increased deimination, observed in many progressive neurological diseases, is thought to be contributed by astrocytes. We determined the level of deimination and expression of peptidyl arginine deiminase 2 (PAD2) in isolated primary astrocytes in response to changes on either side (31°C and 41°C) of the optimal temperature (37°C). We investigated changes in the astrocytes by using a number of established markers and accounted for cell death with the CellTiter-Blue assay. We found increased expression of glial fibrillary acidic protein, ALDH1L1, and J1-31, resulting from increased incubation temperature and increased expression of TSP1, S100β, and AQP4, resulting from decreased incubation temperature vs. optimal temperature, suggesting activation of different biochemical pathways in astrocytes associated with different incubation temperatures. Mass spectrometric analyses support such trends. The PAD2 level was increased only as a result of increased incubation temperature with a commensurate increased level of deimination. Actin cytoskeleton and iso[4]LGE, a lipid peroxidase modification, also showed an increase with higher incubation temperature. Altogether, these results suggest that temperature, as an environmental cue, activates astrocytes in a different manner on either side of the optimal temperature and that increase in deimination is associated only with the higher temperature side of the spectrum.

  15. Increased cerebrospinal fluid pyruvate levels in Alzheimer's disease.

    PubMed

    Parnetti, L; Gaiti, A; Polidori, M C; Brunetti, M; Palumbo, B; Chionne, F; Cadini, D; Cecchetti, R; Senin, U

    1995-10-27

    Impaired energy metabolism is an early, predominant feature in Alzheimer's disease. In order to find out simple, reliable 'in vivo' markers for the clinical-biological typization of the disorder, we measured cerebrospinal fluid (CSF) glucose, lactate and pyruvate levels in patients suffering from dementia of Alzheimer type (DAT) and in healthy elderly controls. DAT group showed remarkably higher levels of pyruvate (P = 0.01), with no overlap with the values obtained in controls. CSF pyruvate levels were also significantly associated with the severity of dementia. Therefore, CSF pyruvate levels neatly separate DAT patients from controls, having also pathogenetic value.

  16. Homologous electron transport components fail to increase fatty acid hydroxylation in transgenic Arabidopsis thaliana

    PubMed Central

    Wayne, Laura L.; Browse, John

    2013-01-01

    Ricinoleic acid, a hydroxylated fatty acid (HFA) present in castor ( Ricinus communis) seeds, is an important industrial commodity used in products ranging from inks and paints to polymers and fuels. However, due to the deadly toxin ricin and allergens also present in castor, it would be advantageous to produce ricinoleic acid in a different agricultural crop. Unfortunately, repeated efforts at heterologous expression of the castor fatty acid hydroxylase (RcFAH12) in the model plant Arabidopsis thaliana have produced only 17-19% HFA in the seed triacylglycerols (TAG), whereas castor seeds accumulate up to 90% ricinoleic acid in the endosperm TAG. RcFAH12 requires an electron supply from NADH:cytochrome b5 reductase (CBR1) and cytochrome b5 (Cb5) to synthesize ricinoleic acid. Previously, our laboratory found a mutation in the Arabidopsis CBR1 gene, cbr1-1, that caused an 85% decrease in HFA levels in the RcFAH12 Arabidopsis line. These results raise the possibility that electron supply to the heterologous RcFAH12 may limit the production of HFA. Therefore, we hypothesized that by heterologously expressing RcCb5, the reductant supply to RcFAH12 would be improved and lead to increased HFA accumulation in Arabidopsis seeds. Contrary to this proposal, heterologous expression of the top three RcCb5 candidates did not increase HFA accumulation. Furthermore, coexpression of RcCBR1 and RcCb5 in RcFAH12 Arabidopsis also did not increase in HFA levels compared to the parental lines. These results demonstrate that the Arabidopsis electron transfer system is supplying sufficient reductant to RcFAH12 and that there must be other bottlenecks limiting the accumulation of HFA. PMID:24555099

  17. Intra-articular hyaluronic acid increases cartilage breakdown biomarker in patients with knee osteoarthritis.

    PubMed

    Gonzalez-Fuentes, Alexandra M; Green, David M; Rossen, Roger D; Ng, Bernard

    2010-06-01

    Intra-articular hyaluronic acid has been used in treatment of patients with knee osteoarthritis. Though its effect on pain has been well studied, it is not clear how it affects the articular cartilage. This is a preliminary study to evaluate the kinetics of urinary collagen type-II C-telopeptide (CTX-II) as a biomarker of collagen breakdown in response to intra-articular hyaluronic acid injection in patients with symptomatic knee osteoarthritis. Intra-articular injections of hyaluronan were administered to ten patients with symptomatic knee osteoarthritis. Urine collection for urinary CTX-II was obtained at baseline, before each injection and once every other week for a total of 6 months. Urine CTX-II was measured using a CartiLaps(c) ELISA kit. There was a statistically significant increase (p = 0.0136) in CTX-II a week after the third intra-articular injection of hyaluronic acid (6,216 ng/mmol +/- 4,428) compared with baseline (2,233 ng/mmol +/- 1,220). This increase in CTX-II was sustained throughout the entire 6 months follow-up period (repeated measures ANOVA, p < 0.015). This is the first study of changes in an osteoarthritis biomarker after intra-articular hyaluronic acid injections in patients with symptomatic knee osteoarthritis. Contrary to our initial hypothesis that CTX-II levels should decrease after intra-articular hyaluronic acid injections, we found a significant increase in urinary CTX-II levels that was sustained throughout the study. These observations suggest that intra-articular hyaluronic acid injections may accelerate cartilage breakdown in patients with symptomatic knee osteoarthritis. The responsible mechanisms are unknown and warrant further study.

  18. An Increase Incidence in Uric Acid Nephrolithiasis: Changing Patterns

    PubMed Central

    Kumari, Asha; Mittal, Pawan; Kumar, Rajender; Goel, Richa; Bansal, Piyush; Kumar, Himanshu Devender; Bhutani, Jaikrit

    2016-01-01

    Introduction Nephrolithiasis is a complex disease affecting all age groups globally. As the causative factors for nephrolithiasis rises significantly, its incidence, prevalence and recurrence continues to baffle clinicians and patients. Aim To study the prevalence of different types of renal stones extracted by Percutaneous Nephrolithotomy (PCNL) and open surgical procedures. Materials and Methods Renal stones from 50 patients were retrieved by Percutaneous Nephrolithotomy (PCNL), Ureterorenoscopy (URS) and open surgical techniques for qualitative tests for detection of calcium, oxalate, uric acid, phosphate, ammonium ion, carbonate, cystine and xanthine. Results Three patients had stone removed by open surgery and rest had undergone PCNL. Nine of the stones were pure of calcium oxalate, 9 were of pure uric acid and 32 were mixed stones. Forty one stones had calcium. Among the mixed stones, oxalate was present in 25 samples (39 of total), uric acid was seen in 17 (25 of total stones), phosphate was present in 23 (23 of total) and carbonate was present in 4 stones (4 of total). Only 1 patient had triple phosphate stone. 12 were of staghorn appearance of which 6 were of struvite type, 6 were pure uric acid and remaining were mixed oxalate-phosphate stones. Conclusion Our study, though in a small number of hospital based patients, found much higher prevalence of uric acid stones and mixed stones than reported by previous hospital based studies in north India (oxalate stones~90%, uric acid~1% and mixed stones~3%). Biochemical analysis of renal stones is warranted in all cases. PMID:27630833

  19. Estuaries May Face Increased Parasitism as Sea Levels Rise

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-12-01

    Invertebrates in estuaries could be at a greater risk of parasitism as climate change causes sea levels to rise. A new paper published 8 December in Proceedings of the National Academy of Sciences of the United States of America (doi:10.1073/pnas.1416747111) describes how rapid sea level rise in the Holocene affected the population of parasitic flatworms called trematodes.

  20. Overexpression of a Gene Involved in Phytic Acid Biosynthesis Substantially Increases Phytic Acid and Total Phosphorus in Rice Seeds.

    PubMed

    Tagashira, Yusuke; Shimizu, Tomoe; Miyamoto, Masanobu; Nishida, Sho; Yoshida, Kaoru T

    2015-04-24

    The manipulation of seed phosphorus is important for seedling growth and environmental P sustainability in agriculture. The mechanism of regulating P content in seed, however, is poorly understood. To study regulation of total P, we focused on phytic acid (inositol hexakisphosphate; InsP₆) biosynthesis-related genes, as InsP₆ is a major storage form of P in seeds. The rice (Oryza sativa L.) low phytic acid mutant lpa1-1 has been identified as a homolog of archael 2-phosphoglycerate kinase. The homolog might act as an inositol monophosphate kinase, which catalyzes a key step in InsP₆ biosynthesis. Overexpression of the homolog in transgenic rice resulted in a significant increase in total P content in seed, due to increases in InsP₆ and inorganic phosphates. On the other hand, overexpression of genes that catalyze the first and last steps of InsP₆ biosynthesis could not increase total P levels. From the experiments using developing seeds, it is suggested that the activation of InsP₆ biosynthesis in both very early and very late periods of seed development increases the influx of P from vegetative organs into seeds. This is the first report from a study attempting to elevate the P levels of seed through a transgenic approach.

  1. Prolonged maternal amino acid infusion in late-gestation pregnant sheep increases fetal amino acid oxidation.

    PubMed

    Rozance, Paul J; Crispo, Michelle M; Barry, James S; O'Meara, Meghan C; Frost, Mackenzie S; Hansen, Kent C; Hay, William W; Brown, Laura D

    2009-09-01

    Protein supplementation during human pregnancy does not improve fetal growth and may increase small-for-gestational-age birth rates and mortality. To define possible mechanisms, sheep with twin pregnancies were infused with amino acids (AA group, n = 7) or saline (C group, n = 4) for 4 days during late gestation. In the AA group, fetal plasma leucine, isoleucine, valine, and lysine concentrations were increased (P < 0.05), and threonine was decreased (P < 0.05). In the AA group, fetal arterial pH (7.365 +/- 0.007 day 0 vs. 7.336 +/- 0.012 day 4, P < 0.005), hemoglobin-oxygen saturation (46.2 +/- 2.6 vs. 37.8 +/- 3.6%, P < 0.005), and total oxygen content (3.17 +/- 0.17 vs. 2.49 +/- 0.20 mmol/l, P < 0.0001) were decreased on day 4 compared with day 0. Fetal leucine disposal did not change (9.22 +/- 0.73 vs. 8.09 +/- 0.63 micromol x min(-1) x kg(-1), AA vs. C), but the rate of leucine oxidation increased 43% in the AA group (2.63 +/- 0.16 vs. 1.84 +/- 0.24 micromol x min(-1) x kg(-1), P < 0.05). Fetal oxygen utilization tended to be increased in the AA group (327 +/- 23 vs. 250 +/- 29 micromol x min(-1) x kg(-1), P = 0.06). Rates of leucine incorporation into fetal protein (5.19 +/- 0.97 vs. 5.47 +/- 0.89 micromol x min(-1) x kg(-1), AA vs. C), release from protein breakdown (4.20 +/- 0.95 vs. 4.62 +/- 0.74 micromol x min(-1) x kg(-1)), and protein accretion (1.00 +/- 0.30 vs. 0.85 +/- 0.25 micromol x min(-1) x kg(-1)) did not change. Consistent with these data, there was no change in the fetal skeletal muscle ubiquitin ligases MaFBx1 or MuRF1 or in the protein synthesis regulators 4E-BP1, eEF2, eIF2alpha, and p70(S6K). Decreased concentrations of certain essential amino acids, increased amino acid oxidation, fetal acidosis, and fetal hypoxia are possible mechanisms to explain fetal toxicity during maternal amino acid supplementation.

  2. Unusually high levels of n-6 polyunsaturated fatty acids in whale sharks and reef manta rays.

    PubMed

    Couturier, L I E; Rohner, C A; Richardson, A J; Pierce, S J; Marshall, A D; Jaine, F R A; Townsend, K A; Bennett, M B; Weeks, S J; Nichols, P D

    2013-10-01

    Fatty acid (FA) signature analysis has been increasingly used to assess dietary preferences and trophodynamics in marine animals. We investigated FA signatures of connective tissue of the whale shark Rhincodon typus and muscle tissue of the reef manta ray Manta alfredi. We found high levels of n-6 polyunsaturated fatty acids (PUFA), dominated by arachidonic acid (20:4n-6; 12-17 % of total FA), and comparatively lower levels of the essential n-3 PUFA-eicosapentaenoic acid (20:5n-3; ~1 %) and docosahexaenoic acid (22:6n-3; 3-10 %). Whale sharks and reef manta rays are regularly observed feeding on surface aggregations of coastal crustacean zooplankton during the day, which generally have FA profiles dominated by n-3 PUFA. The high levels of n-6 PUFA in both giant elasmobranchs raise new questions about the origin of their main food source.

  3. Minocycline, but not ascorbic acid, increases motor activity and extends the life span of Drosophila melanogaster.

    PubMed

    Mora, Marylhi; Medina-Leendertz, Shirley J; Bonilla, Ernesto; Terán, Raikelin E; Paz, Milagros C; Arcaya, José Luis

    2013-06-01

    In the present study we compared the effects of minocycline and ascorbic acid in the life span, motor activity and lipid peroxidation of Drosophila melanogaster, in an effort to find a substance capable of providing protection against oxidative stress in aging. In the flies treated with minocycline a very significant increase in the life span (101 +/- 1.33 days) was observed when compared to those treated with ascorbic acid and controls (42.3% and 38.4%, respectively). The motor activity of minocycline treated flies also increased significantly with respect to control and ascorbic acid fed flies, from the 3rd to the 9th week of treatment. With regard to lipid peroxidation, it was found that the levels of malondialdehyde (MDA) in flies treated with minocycline showed no statistical differences to the control on the first day of treatment, but a significantly lower content on the day of 50% survival. In contrast, in flies treated with ascorbic acid significantly elevated levels of MDA compared to control and minocycline treated flies were detected throughout. These results suggest a protective effect of minocycline against oxidative stress and aging in D. melanogaster. An inhibitory effect on reactive oxygen species production may be an important contributing factor.

  4. Omega 3 fatty acids increase spontaneous release of cytosolic components from tumor cells

    SciTech Connect

    Jenski, L.J.; Sturdevant, L.K.; Ehringer, W.D.; Stillwell, W. )

    1991-05-01

    Mice fed menhaden (fish) oil or coconut oil-rich diets were inoculated intraperitoneally with a rapidly growing leukemia, T27A. After one week, the tumor cells were harvested, and 51Cr was used to label intracellular molecules. Spontaneous release of 51Cr was used as a measure of plasma membrane permeability. Compared to cells from mice fed coconut oil (rich in saturated fatty acids), tumor cells from mice fed menhaden oil (rich in long chain polyunsaturated omega 3 fatty acids) showed an increased level of spontaneous 51Cr release, which was exacerbated by increased temperature and reduced by extracellular protein. At physiological salt concentrations, the released 51Cr was detected in particles of approximately 2700 daltons. Enhanced permeability correlated with the incorporation of dietary (fish oil) omega 3 polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic acid into the tumor cells. The results demonstrate that omega 3 fatty acids are incorporated into cellular constituents of tumor cells and change properties associated with the plasma membrane. This result suggests that dietary manipulation may be used to enhance tumor cell permeability and contribute to tumor eradication.

  5. Hip Osteonecrosis Is Associated with Increased Plasma IL-33 Level

    PubMed Central

    Ma, Jinhui; Guo, Wanshou; Li, Zirong; Li, Shirui; Wang, Peng

    2017-01-01

    The recently discovered IL-33 as an IL-1 cytokine family member has been proved to be specifically released from osteonecrotic bones. We aimed to investigate the potential role of IL-33 in the development of osteonecrosis of femoral head (ONFH). Forty patients diagnosed with ONFH and forty age-, sex-, and body mass index- (BMI-) matched healthy subjects were included in this prospective study between March 2016 and September 2016. A commercially available ELISA kit was used to test the level of plasma IL-33. The IL-33 levels were compared among different ARCO stages, CJFH types, and etiology groups. Plasma IL-33 levels were significantly higher in the ONFH patients than that in the control subjects. The levels of IL-33 did not differ significantly among the ONFH patients with different ARCO stages. The IL-33 levels of patients with CJFH type L3 were significantly higher than that of patients with types L1 and L2. No significant differences were observed in IL-33 levels between steroid-induced, alcohol-induced, and idiopathic patients. Our findings seem to indicate that IL-33 effects may be detrimental during ONFH, which appeared to be associated with the prognosis of ONFH. The IL-33 deserves particular attention in the pathogenesis of ONFH. PMID:28167850

  6. Transgenic Arabidopsis thaliana containing increased levels of ATP and sucrose is more susceptible to Pseudomonas syringae.

    PubMed

    Zhang, Renshan; Qi, Hua; Sun, Yuzhe; Xiao, Shi; Lim, Boon Leong

    2017-01-01

    Disease resistance exerts a fitness cost on plants, presumably due to the extra consumption of energy and carbon. In this study, we examined whether transgenic Arabidopsis thaliana with increased levels of ATP and sucrose is more resistant or susceptible to pathogen infection. Lines of A. thaliana over-expressing purple acid phosphatase 2 (AtPAP2) (OE lines) contain increased levels of ATP and sucrose, with improved growth rate and seed production. Compared to wild type (WT) and pap2 lines, the OE lines were more susceptible to several Pseudomonas syringae pv. tomato (Pst) strains carrying AvrRpm1, AvrRpt2 AvrRps4, AvrPtoB, HrcC and WT strain DC3000. The increased susceptibility of the OE lines to Pst strains cannot solely be attributed to the suppressed expression of R-genes but must also be attributed to the suppression of downstream signaling components, such as MOS2, EDS1 and EDS5. Before infection, the levels of salicylic acid (SA) and jasmonic acid (JA) precursor OPDA were similar in the leaves of OE, pap2 and WT plants, whereas the levels of JA and its derivative JA-Ile were significantly lower in the leaves of OE lines and higher in the pap2 line. The expression of JA marker defense gene PDF1.2 was up-regulated in the OE lines compared to the WT prior to Pst DC3000 infection, but its expression was lower in the OE lines after infection. In summary, high fitness Arabidopsis thaliana exhibited altered JA metabolism and broad suppression of R-genes and downstream genes as well as a higher susceptibility to Pst infections.

  7. Transgenic Arabidopsis thaliana containing increased levels of ATP and sucrose is more susceptible to Pseudomonas syringae

    PubMed Central

    Zhang, Renshan; Qi, Hua; Sun, Yuzhe; Xiao, Shi

    2017-01-01

    Disease resistance exerts a fitness cost on plants, presumably due to the extra consumption of energy and carbon. In this study, we examined whether transgenic Arabidopsis thaliana with increased levels of ATP and sucrose is more resistant or susceptible to pathogen infection. Lines of A. thaliana over-expressing purple acid phosphatase 2 (AtPAP2) (OE lines) contain increased levels of ATP and sucrose, with improved growth rate and seed production. Compared to wild type (WT) and pap2 lines, the OE lines were more susceptible to several Pseudomonas syringae pv. tomato (Pst) strains carrying AvrRpm1, AvrRpt2 AvrRps4, AvrPtoB, HrcC and WT strain DC3000. The increased susceptibility of the OE lines to Pst strains cannot solely be attributed to the suppressed expression of R-genes but must also be attributed to the suppression of downstream signaling components, such as MOS2, EDS1 and EDS5. Before infection, the levels of salicylic acid (SA) and jasmonic acid (JA) precursor OPDA were similar in the leaves of OE, pap2 and WT plants, whereas the levels of JA and its derivative JA-Ile were significantly lower in the leaves of OE lines and higher in the pap2 line. The expression of JA marker defense gene PDF1.2 was up-regulated in the OE lines compared to the WT prior to Pst DC3000 infection, but its expression was lower in the OE lines after infection. In summary, high fitness Arabidopsis thaliana exhibited altered JA metabolism and broad suppression of R-genes and downstream genes as well as a higher susceptibility to Pst infections. PMID:28152090

  8. Increased Lactate Levels and Reduced pH in Postmortem Brains of Schizophrenics: Medication Confounds

    PubMed Central

    Halim, Nader D.; Lipska, Barbara K.; Hyde, Thomas M.; Deep-Soboslay, Amy; Saylor, E. Michael; Herman, Mary; Thakar, Jay; Verma, Ajay; Kleinman, Joel E.

    2008-01-01

    A number of postmortem studies have found decreased pH in brains of patients with schizophrenia. Insofar as lower pH has been associated with decreased mRNA expression in postmortem human brain, decreased pH in schizophrenia may represent an important potential confound in comparisons between patients and controls. We hypothesized that decreased pH may be related to increased concentration of lactic acid. However, in contrast to the previous notion that an increase in lactic acid represents evidence for primary metabolic abnormalities in schizophrenia, we hypothesized that this increase is secondary to prior antipsychotic treatment. We have tested this by first demonstrating that lactate levels in the cerebellum of patients with schizophrenia (n=35) are increased relative to control subjects (n=42) by 28%, p=0.001. Second, we have shown that there is an excellent correlation between lactate levels in the cerebellum and pH, and that this correlation is particularly strong in patients (r=− 0.78, p=3e-6). Third, we have shown in rats that chronic haloperidol (0.8 mg/kg/day) and clozapine (5 mg/kg/day) increase lactic acid concentration in the frontal cortex relative to vehicle (by 31% and 22% respectively, p<0.01). These data suggest that lactate increases in postmortem human brain of patients with schizophrenia are associated with decreased pH and that these changes are possibly related to antipsychotic treatment rather than a primary metabolic abnormality in the prefrontal cortex of patients with schizophrenia. PMID:18177946

  9. Limiting amino acids in bengal gram (Cicer arietinum) as determined from blood amino acid levels and amino acid supplementation studies in the rat.

    PubMed

    Khader, V; Rao, S V

    1982-01-01

    The limiting amino acids of Bengal gram (Cicer arietinum) were determined from plasma amino acid score and ratio and growth response of weanling rats to supplements of amino acids. The results indicated that methionine, threonine and tryptophan are the most limiting amino acids. Protein efficiency ratio of raw and cooked Bengal gram fed at a dietary level of 10% protein increased from 2.7 to 3.7 and 2.4 to 3.4, respectively, on supplementing the diets with methionine, threonine and tryptophan. Plasma levels of lysine, methionine, threonine and tryptophan were similar in rats fed raw or cooked Bengal gram, indicating that the trypsin or other inhibitors that may be present in the raw gram do not affect the biological availability of these amino acids.

  10. Pyoderma gangrenosum with increased levels of serum cytokines.

    PubMed

    Kozono, Kana; Nakahara, Takeshi; Kikuchi, Satoko; Itoh, Eriko; Kido-Nakahara, Makiko; Furue, Masutaka

    2015-12-01

    A 66-year-old woman presented after an episode of accidental trauma with a painful ulcer on her scalp which rapidly enlarged in size, accompanied by central necrosis and undermining ulceration. The patient's past history was negative for underlying systemic disease, although she had had a similar post-traumatic intractable leg ulcer 3 years prior, which was unresponsive to surgical management but successfully treated with systemic steroids. A biopsied specimen from the scalp showed marked neutrophilic infiltrates in the dermis, compatible with a diagnosis of pyoderma gangrenosum (PG). The large ulcerative lesion responded very well to oral steroid therapy, showing rapid epithelialization. Serum levels of granulocyte colony-stimulating factor and interleukin-6 were significantly elevated prior to treatment, with decrease to normal levels after treatment. Serum tumor necrosis factor (TNF)-α and granulocyte macrophage colony-stimulating factor levels were within normal limits. The significance and pathogenic role of cytokine burst in PG is reviewed and discussed.

  11. Two Levels of Caffeine Ingestion on Blood Lactate and Free Fatty Acid Responses during Incremental Exercise.

    ERIC Educational Resources Information Center

    McNaughton, Lars

    1987-01-01

    Research was conducted to determine the effects of two doses of caffeine on the lactate threshold and also to examine the effects on substrate utilization during incremental cycle ergometry. Results found that caffeine increased heart rates and free fatty acid levels for all workloads and decreased blood lactate levels at some of the workloads.…

  12. Methylglyoxal increases dopamine level and leads to oxidative stress in SH-SY5Y cells.

    PubMed

    Xie, Bingjie; Lin, Fankai; Peng, Lei; Ullah, Kaleem; Wu, Hanyan; Qing, Hong; Deng, Yulin

    2014-11-01

    More and more studies have suggested that methylglyoxal (MGO) induced by type-2 diabetes is related to Parkinson's disease (PD). However, little is known about the molecular mechanism. In this study, we explored the MGO toxicity in neuroblastoma SH-SY5Y cells. Neurotoxicity of MGO was measured by mitochondrial membrane potential, malondialdehyde, and methylthiazoletetrazolium assays. The levels of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), and 1-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline (salsolinol) were detected by liquid chromatography-mass spectrometry/mass spectrometry. The expressions of tyrosine hydroxylase (TH) and dopamine transporter (DAT) were detected by reverse transcriptase polymerase chain reaction and western blot analysis. The results showed that MGO induced an increase in TH and DAT expressions in SH-SY5Y neuroblastoma cells, while the levels of dopamine, DOPAC, and endogenous neurotoxin salsolinol also increased. Aminoguanidine (AG) is an inhibitor of MGO. It was found that AG could decrease the reactive oxygen species (ROS) level induced by MGO, but could not inhibit an increase of TH, DAT and dopamine. The increase of dopamine, DOPAC and salsolinol levels could lead to high ROS and mitochondrial damage. This study suggests that ROS caused by dopamine could contribute to the damage of dopaminergic neurons when MGO is increased during the course of diabetes.

  13. Relationship between Uric Acid Level and Achievement Motivation. Final Report.

    ERIC Educational Resources Information Center

    Mueller, Ernst F.; French, John R. P., Jr.

    In an investigation of the relationship of uric acid (a metabolic end product) to achievement, this study hypothesized that a person's serum urate level (a factor often associated with gout) is positively related to achievement need as well as indicators of actual achievement. (Speed of promotion and number of yearly publications were chosen as…

  14. C-Myc induced compensated cardiac hypertrophy increases free fatty acid utilization for the citric acid cycle.

    PubMed

    Olson, Aaron K; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly Priddy, Colleen; Isern, Nancy; Portman, Michael A

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam) injections. Isolated working hearts and (13)Carbon ((13)C)-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing (13)C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (Cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was assessed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contributions in NTG. Substrate utilization was not significantly altered in 3dMyc versus Cont. The free fatty acid FC was significantly greater in 7dMyc versus Cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to Cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes for the citric acid cycle did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the

  15. Increased Rat Placental Fatty Acid, but Decreased Amino Acid and Glucose Transporters Potentially Modify Intrauterine Programming.

    PubMed

    Nüsken, Eva; Gellhaus, Alexandra; Kühnel, Elisabeth; Swoboda, Isabelle; Wohlfarth, Maria; Vohlen, Christina; Schneider, Holm; Dötsch, Jörg; Nüsken, Kai-Dietrich

    2016-07-01

    Regulation of placental nutrient transport significantly affects fetal development and may modify intrauterine growth restriction (IUGR) and fetal programming. We hypothesized that placental nutrient transporters are differentially affected both by utero-placental insufficiency and prenatal surgical stress. Pregnant rats underwent bilateral uterine artery and vein ligation (LIG), sham operation (SOP) or no operation (controls, C) on gestational day E19. Placentas were obtained by caesarean section 4 h (LIG, n=20 placentas; SOP, n=24; C, n=12), 24 h (LIG, n=28; SOP, n=20; C, n=12) and 72 h (LIG, n=20; SOP, n=20; C, n=24) after surgery. Gene and protein expression of placental nutrient transporters for fatty acids (h-FABP, CD36), amino acids (SNAT1, SNAT2) and glucose (GLUT-1, Connexin 26) were examined by qRT-PCR, western blot and immunohistochemistry. Interestingly, the mean protein expression of h-FABP was doubled in placentas of LIG and SOP animals 4, 24 (SOP significant) and 72 h (SOP significant) after surgery. CD36 protein was significantly increased in LIG after 72 h. SNAT1 and SNAT2 protein and gene expressions were significantly reduced in LIG and SOP after 24 h. Further significantly reduced proteins were GLUT-1 in LIG (4 h, 72 h) and SOP (24 h), and Connexin 26 in LIG (72 h). In conclusion, placental nutrient transporters are differentially affected both by reduced blood flow and stress, probably modifying the already disturbed intrauterine milieu and contributing to IUGR and fetal programming. Increased fatty acid transport capacity may affect energy metabolism and could be a compensatory reaction with positive effects on brain development. J. Cell. Biochem. 117: 1594-1603, 2016. © 2015 Wiley Periodicals, Inc.

  16. Increased Heme Levels in the Heart Lead to Exacerbated Ischemic Injury

    PubMed Central

    Sawicki, Konrad Teodor; Shang, Meng; Wu, Rongxue; Chang, Hsiang-Chun; Khechaduri, Arineh; Sato, Tatsuya; Kamide, Christine; Liu, Ting; Naga Prasad, Sathyamangla V; Ardehali, Hossein

    2015-01-01

    Background Heme is an essential iron-containing molecule for cardiovascular physiology, but in excess it may increase oxidative stress. Failing human hearts have increased heme levels, with upregulation of the rate-limiting enzyme in heme synthesis, δ-aminolevulinic acid synthase 2 (ALAS2), which is normally not expressed in cardiomyocytes. We hypothesized that increased heme accumulation (through cardiac overexpression of ALAS2) leads to increased oxidative stress and cell death in the heart. Methods and Results We first showed that ALAS2 and heme levels are increased in the hearts of mice subjected to coronary ligation. To determine the causative role of increased heme in the development of heart failure, we generated transgenic mice with cardiac-specific overexpression of ALAS2. While ALAS2 transgenic mice have normal cardiac function at baseline, their hearts display increased heme content, higher oxidative stress, exacerbated cell death, and worsened cardiac function after coronary ligation compared to nontransgenic littermates. We confirmed in cultured cardiomyoblasts that the increased oxidative stress and cell death observed with ALAS2 overexpression is mediated by increased heme accumulation. Furthermore, knockdown of ALAS2 in cultured cardiomyoblasts exposed to hypoxia reversed the increases in heme content and cell death. Administration of the mitochondrial antioxidant MitoTempo to ALAS2-overexpressing cardiomyoblasts normalized the elevated oxidative stress and cell death levels to baseline, indicating that the effects of increased ALAS2 and heme are through elevated mitochondrial oxidative stress. The clinical relevance of these findings was supported by the finding of increased ALAS2 induction and heme accumulation in failing human hearts from patients with ischemic cardiomyopathy compared to nonischemic cardiomyopathy. Conclusions Heme accumulation is detrimental to cardiac function under ischemic conditions, and reducing heme in the heart may be a

  17. Blood folic acid, vitamin B12, and homocysteine levels in pregnant women with fetal growth restriction.

    PubMed

    Jiang, H L; Cao, L Q; Chen, H Y

    2016-12-19

    Deficiencies in nutrients such as folic acid and vitamin B12 may play a role in fetal growth restriction (FGR). However, whether folic acid, vitamin B12, or homocysteine is associated with FGR in Chinese populations remains unclear. This study investigated the relationship between these nutrient deficiencies and FGR in pregnant Chinese women. We selected 116 mother and infant pairs, and categorized the neonates into the FGR, appropriate for gestational age, and large for gestational age groups. Birth weight, body length, head circumference, body mass index (BMI), and Rohrer's body index of the newborns were measured. Serum folic acid, vitamin B12, and homocysteine levels were measured in mothers during the first three days of their hospital stay. Results showed that the FGR group exhibited reduced folic acid and vitamin B12 levels and elevated homocysteine levels than those in the other two groups. Folic acid and vitamin B12 levels were positively correlated with birth weight, head circumference, and BMI, whereas homocysteine level was negatively correlated with these variables. The FGR ratio in the folic acid and vitamin B12 deficiency group was higher than that in the sufficiency group (χ(2) = 4.717 and 4.437, P = 0.029 and 0.035, respectively). In addition, elevated homocysteine was associated with FGR (χ(2) = 5.366, P = 0.021). In conclusion, we found that folic acid and vitamin B12 deficiency was associated with elevated homocysteine levels, which may increase susceptibility to FGR.

  18. Lower serum uric acid level predicts mortality in dialysis patients

    PubMed Central

    Bae, Eunjin; Cho, Hyun-Jeong; Shin, Nara; Kim, Sun Moon; Yang, Seung Hee; Kim, Dong Ki; Kim, Yong-Lim; Kang, Shin-Wook; Yang, Chul Woo; Kim, Nam Ho; Kim, Yon Su; Lee, Hajeong

    2016-01-01

    Abstract We evaluated the impact of serum uric acid (SUA) on mortality in patients with chronic dialysis. A total of 4132 adult patients on dialysis were enrolled prospectively between August 2008 and September 2014. Among them, we included 1738 patients who maintained dialysis for at least 3 months and had available SUA in the database. We categorized the time averaged-SUA (TA-SUA) into 5 groups: <5.5, 5.5–6.4, 6.5–7.4, 7.5–8.4, and ≥8.5 mg/dL. Cox regression analysis was used to calculate the hazard ratio (HR) of all-cause mortality according to SUA group. The mean TA-SUA level was slightly higher in men than in women. Patients with lower TA-SUA level tended to have lower body mass index (BMI), phosphorus, serum albumin level, higher proportion of diabetes mellitus (DM), and higher proportion of malnourishment on the subjective global assessment (SGA). During a median follow-up of 43.9 months, 206 patients died. Patients with the highest SUA had a similar risk to the middle 3 TA-SUA groups, but the lowest TA-SUA group had a significantly elevated HR for mortality. The lowest TA-SUA group was significantly associated with increased all-cause mortality (adjusted HR, 1.720; 95% confidence interval, 1.007–2.937; P = 0.047) even after adjusting for demographic, comorbid, nutritional covariables, and medication use that could affect SUA levels. This association was prominent in patients with well nourishment on the SGA, a preserved serum albumin level, a higher BMI, and concomitant DM although these parameters had no significant interaction in the TA-SUA-mortality relationship except DM. In conclusion, a lower TA-SUA level <5.5 mg/dL predicted all-cause mortality in patients with chronic dialysis. PMID:27310949

  19. delta-Aminolevulinic acid dehydratase activity, urinary delta-aminolevulinic acid concentration and zinc protoporphyrin level among people with low level of lead exposure.

    PubMed

    Wang, Qi; Zhao, Huan-hu; Chen, Jian-wei; Hao, Qiao-ling; Gu, Kang-ding; Zhu, Ye-xiang; Zhou, Yi-kai; Ye, Lin-xiang

    2010-01-01

    To evaluate the relationship of delta-aminolevulinic acid dehydratase (ALAD) activity, urinary delta-aminolevulinic acid (ALAU) level and blood zinc protoporphyrin (ZPP) concentration to low blood lead (PbB) levels, these biomarkers were determined for all subjects enrolled from a rural area of southeast China where people had low levels of exposure to lead. The mean values of PbB, ALAD, ALAU and ZPP were 67.11 microg/L (SD: 1.654, range: 10.90-514.04), 339.66 nmol ml(-1)h(-1) (1.419, 78.33-793.13), 20.64 microg/L (1.603, 2.00-326.00), and 0.14 micromol/L (3.437, 0.01-2.26), respectively. ALAD was inversely associated with low levels of PbB. ZPP was inversely related to low levels of PbB but positively related to relatively higher levels of PbB. Alcohol drinking contributed to low ALAD in men. Women had higher ZPP than men. ALAU had no significant association with PbB. In conclusion, ALAD possibly has a non-linear relation with low to moderate levels of PbB. At moderate levels of PbB, ZPP increases with increasing levels of PbB. ALAU is not suitable as an indicator for low levels of lead exposure.

  20. Increased Cortisol and Cortisone Levels in Overweight Children

    PubMed Central

    Chu, Lanling; Sheng, Kangwei; Liu, Ping; Ye, Kan; Wang, Yu; Li, Chen; Kang, Xuejun; Song, Yuan

    2017-01-01

    Background It has been unclear whether relatively high cortisol and cortisone levels are related to overweight in childhood, parental body mass index (BMI), and family dietary habits. The aim of this study was to compare cortisol and cortisone levels in urine and saliva from overweight and normal children, as well as correlations between children’s BMI, parental BMI and family dietary behavior questionnaire score (QS). Material/Methods We analyzed the data from 52 overweight children and 53 age- and sex-matched normal-weight children aged 4–5 years. The concentrations of salivary cortisol (SF), salivary cortisone (SE), urinary cortisol (UF) and urinary cortisone (UE) were measured using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The family dietary behavior QS was answered by the parent mainly responsible for the family diet. Results Average cortisol and cortisone levels were significantly higher in overweight children. There was no significant difference in the ratio of cortisol to cortisone (Rcc) and the marker of 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) activities. The results displayed correlations among cortisol, cortisone, and Rcc. Positive correlations were weak-to-moderate between BMI and SF, SE, UF, and UE. There were correlations between BMI and maternal BMI (mBMI), and BMI was significantly associated with QS. Conclusions Our results suggest that cortisol and cortisone levels are associated with overweight in children, but the 11β-HSD2 activities showed no significant differences. Unhealthy family diet was associated with higher BMI, UF, and UE, and families with maternal overweight or obesity had a higher prevalence of children’s overweight or obesity. PMID:28179618

  1. Decreased eicosapentaenoic acid levels in acne vulgaris reveals the presence of a proinflammatory state.

    PubMed

    Aslan, İbrahim; Özcan, Filiz; Karaarslan, Taner; Kıraç, Ebru; Aslan, Mutay

    2017-01-01

    This study aimed to determine circulating levels of polyunsaturated fatty acids (PUFAs), secretory phospholipase A2 (sPLA2), lipoprotein lipase (LPL) and measure circulating protein levels of angiopoietin-like protein 3 (ANGPTL3), ANGPTL4, cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in patients with acne vulgaris. Serum from 21 control subjects and 31 acne vulgaris patients were evaluated for levels of arachidonic acid (AA, C20:4n- 6), dihomo-gamma-linolenic acid (DGLA, C20:3n-6), eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3). PUFA levels were determined by an optimized multiple reaction monitoring (MRM) method using ultra fast-liquid chromatography (UFLC) coupled with tandem mass spectrometry (MS/MS). Lipid profile, routine biochemical and hormone parameters were assayed by standard kit methods Serum EPA levels were significantly decreased while AA/EPA and DGLA/EPA ratio were significantly increased in acne vulgaris patients compared to controls. Serum levels of AA, DGLA and DHA showed no significant difference while activity of sPLA2 and LPL were significantly increased in acne vulgaris compared to controls. Results of this study reveal the presence of a proinflammatory state in acne vulgaris as shown by significantly decreased serum EPA levels and increased activity of sPLA2, AA/EPA and DGLA/EPA ratio. Increased LPL activity in the serum of acne vulgaris patients can be protective through its anti-dyslipidemic actions. This is the first study reporting altered EPA levels and increased sPLA2 activity in acne vulgaris and supports the use of omega-3 fatty acids as adjuvant treatment for acne patients.

  2. Dietary flavonoids increase plasma very long-chain (n-3) fatty acids in rats.

    PubMed

    Toufektsian, Marie-Claire; Salen, Patricia; Laporte, François; Tonelli, Chiara; de Lorgeril, Michel

    2011-01-01

    Flavonoids probably contribute to the health benefits associated with the consumption of fruit and vegetables. However, the mechanisms by which they exert their effects are not fully elucidated. PUFA of the (n-3) series also have health benefits. Epidemiological and clinical studies have suggested that wine flavonoids may interact with the metabolism of (n-3) PUFA and increase their blood and cell levels. The present studies in rats were designed to assess whether flavonoids actually increase plasma levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the main very long-chain (n-3) PUFA. Rats were fed a corn-derived anthocyanin (ACN)-rich (ACN-rich) or ACN-free diet with constant intakes of plant and marine (n-3) PUFA for 8 wk (Expt. 1). Plasma fatty acids were measured by GC. The ACN-rich diet contained ~0.24 ± 0.01 mg of ACN/g pellets. There were no significant differences between groups in the main saturated, monounsaturated, and (n-6) fatty acids. In contrast, plasma EPA and DHA were greater in the ACN-rich diet group than in the ACN-free diet group (P < 0.05). We obtained similar results in 2 subsequent experiments in which rats were administered palm oil (80 μL/d) and consumed the ACN-rich or ACN-free diet (Expt. 2) or were supplemented with fish oil (60 mg/d, providing 35 mg DHA and 12 mg EPA) and consumed the ACN-rich or ACN-free diet (Expt. 3). In both experiments, plasma EPA and DHA were significantly greater in the ACN-rich diet group. These studies demonstrate that the consumption of flavonoids increases plasma very long-chain (n-3) PUFA levels. These data confirm previous clinical and epidemiological studies and provide new insights into the health benefits of flavonoids.

  3. Dietary n-3 polyunsaturated fatty acids increase oxidative stress in rats with intracerebral hemorrhagic stroke.

    PubMed

    Park, Yongsoon; Nam, Somyoung; Yi, Hyeong-Joong; Hong, Hyun-Jong; Lee, Myoungsook

    2009-11-01

    Intake of n-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has been suggested to associate with an increased risk of hemorrhagic stroke. The present study was designed to investigate the hypothesis that EPA and DHA increase oxidative stress and hemorrhage volume in rats with intracerebral hemorrhagic (ICH) stroke. Thirty-five-week-old male rats were fed an American Institute of Nutrition-93M diet containing 0% (n = 27), 0.5% (n = 15), or 1% EPA + DHA of total energy for 5 weeks. Of 5 rats fed 1% EPA + DHA (41%), 5 died because of excessive bleeding within 12 hours after ICH surgery. Behavior test score and hemorrhage volume were significantly (P < .05) greater in the 1% EPA + DHA-fed rats than in other rats. Magnetic resonance imaging consistently showed that edema and bleeding were visible in only the rats fed 1% EPA + DHA. Levels of superoxide dismutase and glutathione were significantly (P < .05) lower in rats fed 0.5% and 1% EPA + DHA than those fed 0% EPA + DHA. Thiobarbituric acid-reactive substance content was significantly (P < .05) higher in 1% EPA + DHA-fed rats than in 0% and 0.5% EPA + DHA-fed rats. The level of 8-hydroxydeoxyguanosine was significantly (P < .05) higher in ICH rats with all diets than in sham surgery rats. Brain levels of EPA and DHA were highest in rats fed 1% EPA + DHA than in rats fed 0% and 0.5% EPA + DHA. These results suggested that intake of 1% EPA + DHA of total energy could lead to oxidative damage to the brain and thus increase the risk of intracerebral hemorrhagic stroke in this rat model.

  4. Acute and chronic increases in osmolality increase excitatory amino acid drive of the rostral ventrolateral medulla in rats.

    PubMed

    Brooks, Virginia L; Freeman, Korrina L; O'Donaughy, Theresa L

    2004-12-01

    Water deprivation is associated with increased excitatory amino acid (EAA) drive of the rostral ventrolateral medulla (RVLM), but the mechanism is unknown. This study tested the hypotheses that the increased EAA activity is mediated by decreased blood volume and/or increased osmolality. This was first tested in urethane-anesthetized rats by determining whether bilateral microinjection of kynurenate (KYN, 2.7 nmol) into the RVLM decreases arterial pressure less in water-deprived rats after normalization of blood volume by intravenous infusion of isotonic saline or after normalization of plasma osmolality by intravenous infusion of 5% dextrose in water (5DW). Water-deprived rats exhibited decreased plasma volume and elevated plasma osmolality, hematocrit, and plasma sodium, chloride, and protein levels (all P < 0.05). KYN microinjection decreased arterial pressure by 24 +/- 2 mmHg (P < 0.05; n = 17). The depressor response was not altered following isotonic saline infusion but, while still present (P < 0.05), was reduced (P < 0.05) to -13 +/- 2 mmHg soon after 5DW infusion. These data suggest that the high osmolality, but not low blood volume, contributes to the KYN depressor response. To further investigate the action of increased osmolality on EAA input to RVLM, water-replete rats were also studied after hypertonic saline infusion. Whereas KYN microinjection did not decrease pressure immediately following the infusion, a depressor response gradually developed over the next 3 h. Lumbar sympathetic nerve activity also gradually increased to up to 167 +/- 19% of control (P < 0.05) 3 h after hypertonic saline infusion. In conclusion, acute and chronic increases in osmolality appear to increase EAA drive of the RVLM.

  5. Plasma ω-3 fatty acid levels negatively and ω-6 fatty acid levels positively associated with other cardiovascular risk factors including homocysteine in severe obese subjects.

    PubMed

    Mehmetoglu, Idris; Yerlikaya, F Hümeyra; Kurban, Sevil; Polat, Hakkı

    2012-01-01

    Obesity and homocysteine (tHcy) are important risk factors for cardiovascular diseases (CVD). Plasma omega-3 fatty acids (ω-3 FAs) and omega-6 fatty acids (ω-6 FAs) are essential fatty acids with diverse biological effects in human health and disease. We have investigated the relation of plasma ω-3 FAs and ω-6 FAs levels with other cardiovascular risk factors including tHcy in severe obese subjects. This study was performed on 96 severe obese and 65 normal weight subjects. Plasma fatty acid composition was measured by GC/MS and serum tHcy level was measured by HPLC methods. There were no differences between groups in terms of concentrations of serum tHcy, plasma ω-3 FAs, ω-6 FAs and ω-3/ω-6 ratio, whereas serum vitamin B-12 (p<0.01) and folic acid (p<0.05) levels were lower than those of the normal weight subjects. Homocysteine positively correlated with ω-6 FAs and negatively correlated with ω-3 FAs in severe obese and normal weight subjects. Serum vitamin B-12 positively correlated with ω-3 FAs (p<0.01) and ω-3/ω-6 ratio (p<0.01) and negatively correlated with ω-6 FAs (p<0.05) in severe obese subjects. Serum folic acid positively correlated with ω-3 FAs (p<0.01) in severe obese subjects. Our results suggest an association between the plasma ω-3 FAs and ω-6 FAs and serum tHcy concentrations in severe obese and normal weight subjects. Low levels vitamin B-12 and folic acid may have been responsible for the elevated tHcy levels in severe obese subjects, increasing the risk for future development of cardiovascular diseases.

  6. Puget Sound acidity levels drop after ASARCO shutdown

    SciTech Connect

    Not Available

    1987-07-01

    The levels of acidity in Puget Sound region rainfall have decreased significantly since the shutdown of the ASARCO copper smelter in Tacoma, Washington, according to a study funded by the US Environmental Protection Agency. Results indicate that sulfate and hydrogen ion concentrations obtained from samples taken before the closure were significantly different than those collected after the shutdown. Rainwater samples collected downwind during smelter operation were also significantly different from those collected upwind. Sulfur dioxide is considered to be one of the principal contributors to acid rain. The smelter was a major source of sulfur dioxide emissions in the Puget Sound region before it shut down in March 1985.

  7. Palmitic acid feeding increases ceramide supply in association with increased milk yield, circulating nonesterified fatty acids, and adipose tissue responsiveness to a glucose challenge.

    PubMed

    Rico, J E; Mathews, A T; Lovett, J; Haughey, N J; McFadden, J W

    2016-11-01

    . Palmitic acid feeding increased hepatic ceramide levels, a response not observed in skeletal muscle tissue. Plasma ceramides (e.g., C24:0-ceramide) were positively correlated with plasma NEFA and milk yield, and positively correlated with NEFA levels following a glucose challenge. Our data demonstrate a remodeled plasma and hepatic sphingolipidome in mid-lactation dairy cows fed PALM. The potential involvement in ceramide in homeorhetic nutrient partitioning to support lactation requires further consideration.

  8. Increased acetyl and total histone levels in post-mortem Alzheimer's disease brain.

    PubMed

    Narayan, Pritika J; Lill, Claire; Faull, Richard; Curtis, Maurice A; Dragunow, Mike

    2015-02-01

    Histone acetylation is an epigenetic modification that plays a critical role in chromatin remodelling and transcriptional regulation. There is increasing evidence that epigenetic modifications may become compromised in aging and increase susceptibility to the development of neurodegenerative disorders such as Alzheimer's disease. Immunohistochemical labelling of free-floating sections from the inferior temporal gyrus (Alzheimer's disease, n=14; control, n=17) and paraffin-embedded tissue microarrays containing tissue from the middle temporal gyrus (Alzheimer's disease, n=29; control, n=28) demonstrated that acetyl histone H3 and acetyl histone H4 levels, as well as total histone H3 and total histone H4 protein levels, were significantly increased in post-mortem Alzheimer's disease brain tissue compared to age- and sex-matched neurologically normal control brain tissue. Changes in acetyl histone levels were proportional to changes in total histone levels. The increase in acetyl histone H3 and H4 was observed in Neuronal N immunopositive pyramidal neurons in Alzheimer's disease brain. Using immunolabelling, histone markers correlated significantly with the level of glial fibrillary acidic protein and HLA-DP, -DQ and -DR immunopositive cells and with the pathological hallmarks of Alzheimer's disease (hyperphosphorylated tau load and β-amyloid plaques). Given that histone acetylation changes were correlated with changes in total histone protein, it was important to evaluate if protein degradation pathways may be compromised in Alzheimer's disease. Consequently, significant positive correlations were also found between ubiquitin load and histone modifications. The relationship between histone acetylation and ubiquitin levels was further investigated in an in vitro model of SK-N-SH cells treated with the proteasome inhibitor Mg132 and the histone deacetylase inhibitor valproic acid. In this model, compromised protein degradation caused by Mg132 lead to elevated histone

  9. C-Myc Induced Compensated Cardiac Hypertrophy Increases Free Fatty Acid Utilization for the Citric Acid Cycle

    SciTech Connect

    Olson, Aaron; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Isern, Nancy G.; Portman, Michael A.

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc-induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam). Isolated working hearts and 13Carbon (13C )-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing 13C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was confirmed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contribution in NTG. Substrate utilization was not significantly altered in 3dMyc versus cont. The free fatty acid FC was significantly greater in 7dMyc vs cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change maintained

  10. Salivary Sialic Acid Levels in Smokeless Tobacco Users

    PubMed Central

    Farhad Mollashahi, Leila; Honarmand, Marieh; Nakhaee, Alireza; Mollashahi, Ghasem

    2016-01-01

    Background Smokeless tobacco chewing is one of the known risk factors for oral cancer. It is consumed widely by residents of southeastern Iran. Objectives In this study, salivary free and total sialic acid, and total protein were compared in paan consumers and non-consumers. Patients and Methods In this cross-sectional study, unstimulated saliva of 94 subjects (44 paan consumers and 50 non-consumers) who were referred to the oral medicine department of the dentistry school of Zahedan were collected. Salivary free and total sialic acid, and total protein concentration were measured by standard biochemical methods, and the obtained data were analyzed using SPSS 20 through the non-parametric Mann-Whitney test. Results The concentration of salivary free sialic acid (23.21 ± 18.98 mg/L) was significantly increased in paan consumers. The concentration of salivary Total sialic acid (TSA) (39.57 ± 26.58 mg/L) and total protein (0.77 ± 0.81 mg/mL) showed increases in paan consumers, however, the results were not statistically significant. Conclusions Salivary free and total sialic acid, and total protein were higher in the paan consumers compared to non-consumers. Due to the carcinogenic effect of smokeless tobacco, measurement of these parameters in saliva may be useful in early detection of oral cancer. PMID:27622172

  11. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria.

    PubMed

    Chino, Yukihiro; Samukawa, Yoshishige; Sakai, Soichi; Nakai, Yasuhiro; Yamaguchi, Jun-ichi; Nakanishi, Takeo; Tamai, Ikumi

    2014-10-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors have been reported to lower the serum uric acid (SUA) level. To elucidate the mechanism responsible for this reduction, SUA and the urinary excretion rate of uric acid (UE(UA)) were analysed after the oral administration of luseogliflozin, a SGLT2 inhibitor, to healthy subjects. After dosing, SUA decreased, and a negative correlation was observed between the SUA level and the UE(UA), suggesting that SUA decreased as a result of the increase in the UE(UA). The increase in UE(UA) was correlated with an increase in urinary D-glucose excretion, but not with the plasma luseogliflozin concentration. Additionally, in vitro transport experiments showed that luseogliflozin had no direct effect on the transporters involved in renal UA reabsorption. To explain that the increase in UE(UA) is likely due to glycosuria, the study focused on the facilitative glucose transporter 9 isoform 2 (GLUT9ΔN, SLC2A9b), which is expressed at the apical membrane of the kidney tubular cells and transports both UA and D-glucose. It was observed that the efflux of [(14) C]UA in Xenopus oocytes expressing the GLUT9 isoform 2 was trans-stimulated by 10 mm D-glucose, a high concentration of glucose that existed under SGLT2 inhibition. On the other hand, the uptake of [(14) C]UA by oocytes was cis-inhibited by 100 mm D-glucose, a concentration assumed to exist in collecting ducts. In conclusion, it was demonstrated that the UE(UA) could potentially be increased by luseogliflozin-induced glycosuria, with alterations of UA transport activity because of urinary glucose.

  12. Infantile Refsum Disease: Influence of Dietary Treatment on Plasma Phytanic Acid Levels.

    PubMed

    Sá, Maria João Nabais; Rocha, Júlio C; Almeida, Manuela F; Carmona, Carla; Martins, Esmeralda; Miranda, Vasco; Coutinho, Miguel; Ferreira, Rita; Pacheco, Sara; Laranjeira, Francisco; Ribeiro, Isaura; Fortuna, Ana Maria; Lacerda, Lúcia

    2016-01-01

    Infantile Refsum disease (IRD) is one of the less severe of Zellweger spectrum disorders (ZSDs), a group of peroxisomal biogenesis disorders resulting from a generalized peroxisomal function impairment. Increased plasma levels of very long chain fatty acids (VLCFA) and phytanic acid are biomarkers used in IRD diagnosis. Furthermore, an increased plasma level of phytanic acid is known to be associated with neurologic damage. Treatment of IRD is symptomatic and multidisciplinary.The authors report a 3-year-old child, born from consanguineous parents, who presented with developmental delay, retinitis pigmentosa, sensorineural deafness and craniofacial dysmorphisms. While the relative level of plasma C26:0 was slightly increased, other VLCFA were normal. Thus, a detailed characterization of the phenotype was essential to point to a ZSD. Repeatedly increased levels of plasma VLCFA, along with phytanic acid and pristanic acid, deficient dihydroxyacetone phosphate acyltransferase activity in fibroblasts and identification of the homozygous pathogenic mutation c.2528G>A (p.Gly843Asp) in the PEX1 gene, confirmed this diagnosis. Nutritional advice and follow-up was proposed aiming phytanic acid dietary intake reduction. During dietary treatment, plasma levels of phytanic acid decreased to normal, and the patient's development evaluation showed slow progressive acquisition of new competences.This case report highlights the relevance of considering a ZSD in any child with developmental delay who manifests hearing and visual impairment and of performing a systematic biochemical investigation, when plasma VLCFA are mildly increased. During dietary intervention, a biochemical improvement was observed, and the long-term clinical effect of this approach needs to be evaluated.

  13. Increase of inherent protection level in spent nuclear fuel

    SciTech Connect

    Krasnobaev, A.; Kryuchkov, E.; Glebov, V.

    2006-07-01

    The paper is devoted to upgrading inherent proliferation protection of fissionable nuclear materials (FNM). Some possibilities were investigated to form high radiation barrier inside spent fuel assemblies (SFA) discharged from power reactors of VVER-1000 type and research reactors of IRT type. The radiation barrier is estimated in the terms of rate of equivalent dose (RED) at 30-cm distance from SFA. The values of RED were calculated with application of the computer code package SCALE 4.3. The paper considers the criteria adopted for estimation of FNM proliferation resistance. The paper presents numerical results on a component-wise analysis of the radiation barrier in SFA from reactors of VVER-1000 and IRT type and on capability of various radionuclides to prolong action of the radiation barrier. Isotopic admixtures were selected and amounts of these admixtures were evaluated for significant prolongation of the radiation barrier action at the levels of the radiation standards used for estimation of FNM proliferation resistance. The paper considers vulnerability of the radiation barriers in respect to thermal processing of spent fuel. (authors)

  14. Increasing the intracellular availability of all-trans retinoic acid in neuroblastoma cells

    PubMed Central

    Armstrong, J L; Ruiz, M; Boddy, A V; Redfern, C P F; Pearson, A D J; Veal, G J

    2005-01-01

    Recent data indicate that isomerisation to all-trans retinoic acid (ATRA) is the key mechanism underlying the favourable clinical properties of 13-cis retinoic acid (13cisRA) in the treatment of neuroblastoma. Retinoic acid (RA) metabolism is thought to contribute to resistance, and strategies to modulate this may increase the clinical efficacy of 13cisRA. The aim of this study was to test the hypothesis that retinoids, such as acitretin, which bind preferentially to cellular retinoic acid binding proteins (CRABPs), or specific inhibitors of the RA hydroxylase CYP26, such as R116010, can increase the intracellular availability of ATRA. Incubation of SH-SY5Y cells with acitretin (50 μM) or R116010 (1 or 10 μM) in combination with either 10 μM ATRA or 13cisRA induced a selective increase in intracellular levels of ATRA, while 13cisRA levels were unaffected. CRABP was induced in SH-SY5Y cells in response to RA. In contrast, acitretin had no significant effect on intracellular retinoid concentrations in those neuroblastoma cell lines that showed little or no induction of CRABP after RA treatment. Both ATRA and 13cisRA dramatically induced the expression of CYP26A1 in SH-SY5Y cells, and treatment with R116010, but not acitretin, potentiated the RA-induced expression of a reporter gene and CYP26A1. The response of neuroblastoma cells to R116010 was consistent with inhibition of CYP26, indicating that inhibition of RA metabolism may further optimise retinoid treatment in neuroblastoma. PMID:15714209

  15. Low ascorbic acid and increased oxidative stress in gulo−/− mice during development

    PubMed Central

    Harrison, Fiona E.; Meredith, M. Elizabeth; Dawes, Sean M.; Saskowski, Jeanette L.; May, James M.

    2010-01-01

    Vitamin C (ascorbic acid, AA) depletion during pre-natal and post-natal development can lead to oxidative stress in the developing brains and other organs. Such damage may lead to irreversible effects on later brain function. We studied the relationship between AA deficiency and oxidative stress during development in gulonolactone oxidase (gulo) knockout mice that are unable to synthesize their own ascorbic acid. Heterozygous gulo(+/−) mice can synthesize AA and typically have similar tissue levels to wild-type mice. Gulo(+/−) dams were mated with gulo(+/−) males to provide offspring of each possible genotype. Overall, embryonic day 20 (E20) and post-natal day 1 (P1) pups were protected against oxidative stress by sufficient AA transfer during pregnancy. On post-natal day 10 (P10) AA levels were dramatically lower in liver and cerebellum in gulo (−/−) mice and malondialdehyde (MDA) levels were significantly increased. In post-natal day 18 pups (P18) AA levels decreased further in gulo(−/−) mice and oxidative stress was observed in the accompanying elevations in MDA in liver, and F2-isoprostanes in cortex. Further, total glutathione levels were higher in gulo(−/−) mice in cortex, cerebellum and liver, indicating that a compensatory antioxidant system was activated. These data show a direct relationship between AA level and oxidative stress in the gulo(−/−) mice. They reinforce the critical role of ascorbic acid in preventing oxidative stress in the developing brain in animals that, like humans, cannot synthesize their own AA. PMID:20599829

  16. Increased carbon tetrachloride hepatotoxicity after low-level ethanol consumption.

    PubMed

    Strubelt, O; Obermeier, F; Siegers, C P; Vöpel, M

    1978-07-01

    Male rats provided with a 5 or 15% (v/v) ethanol solution as the sole source of fluid consumed ethanol at a rate of 11.4 or 24.9% of total calories (4.2 or 8.3 g/kg daily). After ethanol consumption lasting 1, 2 and 3 weeks the hepatotoxicity of CCl4 (0.1 ml/kg i.p.) was elevated by determination of serum activities of glutamic-oxaloacetic transaminase (GOT), glutamic-pyruvic transaminase ( GPT), sorbitol dehydrogenase (SDH) and histological investigations. Carbon tetrachloride (CCl4)-induced liver damage was significantly greater in rats provided with ethanol than in the tap-water consuming controls. This potentiation of CCl4 hepatotoxicicty was fully developed already after a 1-week exposition to ethanol and was greater in the 15% than in the 5% ethanol group. Ethanol alone did not influence serum enzyme activities but increased microsomal aniline hydroxylation. There was, however, no clear-cut parallelism between potentiation of CCl4 hepatotoxicity and activation of aniline hydroxylation.

  17. Amino acid limitation induces down-regulation of WNT5a at transcriptional level

    SciTech Connect

    Wang Zuguang; Chen Hong

    2009-01-23

    An aberrant WNT signaling contributes to the development and progression of multiple cancers. WNT5a is one of the WNT signaling molecules. This study was designed to test the hypothesis that amino acid deprivation induces changes in the WNT signaling pathway in colon cancer cells. Results showed that targets of the amino acid response pathway, ATF3 and p21, were induced in the human colon cancer cell line SW480 during amino acid limitation. There was a significant decrease in the WNT5a mRNA level following amino acid deprivation. The down-regulation of WNT5a mRNA by amino acid deprivation is not due to mRNA destabilization. There is a reduction of nuclear {beta}-catenin protein level by amino acid limitation. Under amino acid limitation, phosphorylation of ERK1/2 was increased and the blockage of ERK1/2 by the inhibitor U0126 partially restored WNT5a mRNA level. In conclusion, amino acid limitation in colon cancer cells induces phosphorylation of ERK1/2, which then down-regulates WNT5a expression.

  18. Increased cholesterol 7α-hydroxylase expression and size of the bile acid pool in the lactating rat

    PubMed Central

    Wooton-Kee, Clavia Ruth; Cohen, David E.; Vore, Mary

    2008-01-01

    Maximal bile acid secretory rates and expression of bile acid transporters in liver and ileum are increased in lactation, possibly to facilitate increased enterohepatic recirculation of bile acids. We determined changes in the size and composition of the bile acid pool and key enzymes of the bile acid synthetic pathway [cholesterol 7α-hydroxylase (Cyp7a1), sterol 27-hydroxylase (Cyp27a1), and sterol 12α-hydroxylase (Cyp8b1)] in lactating rats relative to female virgin controls. The bile acid pool increased 1.9 to 2.5-fold [postpartum (PP) days 10, 14, and 19–23], compared with controls. A 1.5-fold increase in cholic acids and a 14 to 20% decrease in muricholic acids in lactation significantly increased the hydrophobicity index. In contrast, the hepatic concentration of bile acids and small heterodimer partner mRNA were unchanged in lactation. A 2.8-fold increase in Cyp7a1 mRNA expression at 16 h (10 h of light) demonstrated a shift in the diurnal rhythm at day 10 PP; Cyp7a1 protein expression and cholesterol 7α-hydroxylase activity were significantly increased at this time and remained elevated at day 14 PP but decreased to control levels by day 21 PP. There was an overall decrease in Cyp27a1 mRNA expression and a 20% decrease in Cyp27a1 protein expression, but there was no change in Cyp8b1 mRNA or protein expression at day 10 PP. The increase in Cyp7a1 expression PP provides a mechanism for the increase in the bile acid pool. PMID:18292185

  19. Increasing Fatty Acid Oxidation Remodels the Hypothalamic Neurometabolome to Mitigate Stress and Inflammation

    PubMed Central

    McFadden, Joseph W.; Aja, Susan; Li, Qun; Bandaru, Veera V. R.; Kim, Eun-Kyoung; Haughey, Norman J.; Kuhajda, Francis P.; Ronnett, Gabriele V.

    2014-01-01

    Modification of hypothalamic fatty acid (FA) metabolism can improve energy homeostasis and prevent hyperphagia and excessive weight gain in diet-induced obesity (DIO) from a diet high in saturated fatty acids. We have shown previously that C75, a stimulator of carnitine palmitoyl transferase-1 (CPT-1) and fatty acid oxidation (FAOx), exerts at least some of its hypophagic effects via neuronal mechanisms in the hypothalamus. In the present work, we characterized the effects of C75 and another anorexigenic compound, the glycerol-3-phosphate acyltransferase (GPAT) inhibitor FSG67, on FA metabolism, metabolomics profiles, and metabolic stress responses in cultured hypothalamic neurons and hypothalamic neuronal cell lines during lipid excess with palmitate. Both compounds enhanced palmitate oxidation, increased ATP, and inactivated AMP-activated protein kinase (AMPK) in hypothalamic neurons in vitro. Lipidomics and untargeted metabolomics revealed that enhanced catabolism of FA decreased palmitate availability and prevented the production of fatty acylglycerols, ceramides, and cholesterol esters, lipids that are associated with lipotoxicity-provoked metabolic stress. This improved metabolic signature was accompanied by increased levels of reactive oxygen species (ROS), and yet favorable changes in oxidative stress, overt ER stress, and inflammation. We propose that enhancing FAOx in hypothalamic neurons exposed to excess lipids promotes metabolic remodeling that reduces local inflammatory and cell stress responses. This shift would restore mitochondrial function such that increased FAOx can produce hypothalamic neuronal ATP and lead to decreased food intake and body weight to improve systemic metabolism. PMID:25541737

  20. Fatty Acid Biosynthesis Inhibition Increases Reduction Potential in Neuronal Cells under Hypoxia

    PubMed Central

    Brose, Stephen A.; Golovko, Svetlana A.; Golovko, Mikhail Y.

    2016-01-01

    Recently, we have reported a novel neuronal specific pathway for adaptation to hypoxia through increased fatty acid (FA) biosynthesis followed by esterification into lipids. However, the biological role of this pathway under hypoxia remains to be elucidated. In the presented study, we have tested our hypothesis that activation of FA synthesis maintains reduction potential and reduces lactoacidosis in neuronal cells under hypoxia. To address this hypothesis, we measured the effect of FA synthesis inhibition on NADH2+/NAD+ and NADPH2+/NADP+ ratios, and lactic acid levels in neuronal SH-SY5Y cells exposed to normoxic and hypoxic conditions. FA synthesis inhibitors, TOFA (inhibits Acetyl-CoA carboxylase) and cerulenin (inhibits FA synthase), increased NADH2+/NAD+ and NADPH2+/NADP+ ratios under hypoxia. Further, FA synthesis inhibition increased lactic acid under both normoxic and hypoxic conditions, and caused cytotoxicity under hypoxia but not normoxia. These results indicate that FA may serve as hydrogen acceptors under hypoxia, thus supporting oxidation reactions including anaerobic glycolysis. These findings may help to identify a radically different approach to attenuate hypoxia related pathophysiology in the nervous system including stroke. PMID:27965531

  1. Metformin impairs systemic bile acid homeostasis through regulating SIRT1 protein levels.

    PubMed

    Chen, Qi; Yang, Xiaoying; Zhang, Huabing; Kong, Xingxing; Yao, Lu; Cui, Xiaona; Zou, Yongkang; Fang, Fude; Yang, Jichun; Chang, Yongsheng

    2017-01-01

    Metformin is widely used to treat hyperglycemia. However, metformin treatment may induce intrahepatic cholestasis and liver injury in a few patients with type II diabetes through an unknown mechanism. Here we show that metformin decreases SIRT1 protein levels in primary hepatocytes and liver. Both metformin-treated wild-type C57 mice and hepatic SIRT1-mutant mice had increased hepatic and serum bile acid levels. However, metformin failed to change systemic bile acid levels in hepatic SIRT1-mutant mice. Molecular mechanism study indicates that SIRT1 directly interacts with and deacetylates Foxa2 to inhibit its transcriptional activity on expression of genes involved in bile acids synthesis and transport. Hepatic SIRT1 mutation elevates Foxa2 acetylation levels, which promotes Foxa2 binding to and activating genes involved in bile acids metabolism, impairing hepatic and systemic bile acid homeostasis. Our data clearly suggest that hepatic SIRT1 mediates metformin effects on systemic bile acid metabolism and modulation of SIRT1 activity in liver may be an attractive approach for treatment of bile acid-related diseases such as cholestasis.

  2. Fecal steroid excretion is increased in rats by oral administration of gymnemic acids contained in Gymnema sylvestre leaves.

    PubMed

    Nakamura, Y; Tsumura, Y; Tonogai, Y; Shibata, T

    1999-06-01

    Gymnemic acids are the saponins with a triterpenoid structure contained in Gymnema sylvestre leaves and have the hypoglycemic effects. In spite of the cholesterol-binding properties of saponins, the effect of gymnemic acids on cholesterol metabolism has not been elucidated to date. We investigated the effects of gymnemic acids on fecal steroid excretion in rats. Three kinds of extracts from Gymnema sylvestre leaves, extract (GSE), acid precipitate (GSA) and column fractionate (GSF), of which the gymnemagenin (an aglycone of gymnemic acids) concentrations are 58.87, 161.6, and 363.3 mg/g respectively, were used for the experiments. These were administered to rats orally at the dose of 0.05-1.0 g/kg for 22 d. Rats were given free access to water and nonpurified diet without cholesterol, and the differences in fecal excretion of steroids and gymnemic acids were investigated. Although there were no significant effects of GSE, GSA and GSF decreased body weight gain and food intakes in a dose-dependent manner (P < 0.01). GSF (1.0 g/kg) significantly increased fecal excretion of neutral steroids and bile acids in a dose-dependent manner (P < 0.05), especially those of cholesterol and cholic acid (CA)-derived bile acids. The increases in fecal steroid excretion of cholesterol, total neutral steroids, total bile acids and CA-related bile acids were acute and significantly correlated with fecal gymnemagenin levels (r2 = 0.2316-0.9861, P < 0. 05). These results demonstrated for the first time that a high dose of gymnemic acids increases fecal cholesterol and CA-derived bile acid excretion. Further studies are needed to clarify the effect of gymnemic acids on cholesterol metabolism.

  3. A thraustochytrid diacylglycerol acyltransferase 2 with broad substrate specificity strongly increases oleic acid content in engineered Arabidopsis thaliana seeds

    PubMed Central

    Zhang, Chunyu; Iskandarov, Umidjon; Cahoon, Edgar B.

    2013-01-01

    Diacylglycerol acyltransferase (DGAT) catalyses the last step in acyl-CoA-dependent triacylglycerol (TAG) biosynthesis and is an important determinant of cellular oil content and quality. In this study, a gene, designated TaDGAT2, encoding a type 2 DGAT (DGAT2)-related enzyme was identified from the oleaginous marine protist Thraustochytrium aureum. The deduced TaDGAT2 sequence contains a ~460 amino acid domain most closely related to DGAT2s from Dictyostelium sp. (45–50% identity). Recombinant TaDGAT2 restored TAG biosynthesis to the Saccharomyces cerevisiae H1246 TAG-deficient mutant, and microsomes from the complemented mutant displayed DGAT activity with C16 and C18 saturated and unsaturated fatty acyl-CoA and diacylglycerol substrates. To examine its biotechnological potential, TaDGAT2 was expressed under control of a strong seed-specific promoter in wild-type Arabidopsis thaliana and the high linoleic acid fad3fae1 mutant. In both backgrounds, little change was detected in seed oil content, but a striking increase in oleic acid content of seeds was observed. This increase was greatest in fad3fae1 seeds, where relative amounts of oleic acid increased nearly 2-fold to >50% of total fatty acids. In addition, >2-fold increase in oleic acid levels was detected in the triacylglycerol sn-2 position and in the major seed phospholipid phosphatidylcholine. These results suggest that increased seed oleic acid content mediated by TaDGAT2 is influenced in part by the fatty acid composition of host cells and occurs not by enhancing oleic acid content at the TAG sn-3 position directly but by increasing total oleic acid levels in seeds, presumably by limiting flux through phosphatidylcholine-based desaturation reactions. PMID:23814277

  4. A thraustochytrid diacylglycerol acyltransferase 2 with broad substrate specificity strongly increases oleic acid content in engineered Arabidopsis thaliana seeds.

    PubMed

    Zhang, Chunyu; Iskandarov, Umidjon; Klotz, Elliott T; Stevens, Robyn L; Cahoon, Rebecca E; Nazarenus, Tara J; Pereira, Suzette L; Cahoon, Edgar B

    2013-08-01

    Diacylglycerol acyltransferase (DGAT) catalyses the last step in acyl-CoA-dependent triacylglycerol (TAG) biosynthesis and is an important determinant of cellular oil content and quality. In this study, a gene, designated TaDGAT2, encoding a type 2 DGAT (DGAT2)-related enzyme was identified from the oleaginous marine protist Thraustochytrium aureum. The deduced TaDGAT2 sequence contains a ~460 amino acid domain most closely related to DGAT2s from Dictyostelium sp. (45-50% identity). Recombinant TaDGAT2 restored TAG biosynthesis to the Saccharomyces cerevisiae H1246 TAG-deficient mutant, and microsomes from the complemented mutant displayed DGAT activity with C16 and C18 saturated and unsaturated fatty acyl-CoA and diacylglycerol substrates. To examine its biotechnological potential, TaDGAT2 was expressed under control of a strong seed-specific promoter in wild-type Arabidopsis thaliana and the high linoleic acid fad3fae1 mutant. In both backgrounds, little change was detected in seed oil content, but a striking increase in oleic acid content of seeds was observed. This increase was greatest in fad3fae1 seeds, where relative amounts of oleic acid increased nearly 2-fold to >50% of total fatty acids. In addition, >2-fold increase in oleic acid levels was detected in the triacylglycerol sn-2 position and in the major seed phospholipid phosphatidylcholine. These results suggest that increased seed oleic acid content mediated by TaDGAT2 is influenced in part by the fatty acid composition of host cells and occurs not by enhancing oleic acid content at the TAG sn-3 position directly but by increasing total oleic acid levels in seeds, presumably by limiting flux through phosphatidylcholine-based desaturation reactions.

  5. Increased sodium and fluctuations in minerals in acid limes expressing witches' broom symptoms.

    PubMed

    Al-Ghaithi, Aisha G; Hanif, Muhammad Asif; Al-Busaidi, Walid M; Al-Sadi, Abdullah M

    2016-01-01

    Witches' broom disease of lime (WBDL), caused by 'Candidatus Phytoplasma aurantifolia', is a very serious disease of acid limes. The disease destroyed more than one million lime trees in the Middle East. WBDL results in the production of small, clustered leaves in some branches of lime trees. Branches develop symptoms with time and become unproductive, until the whole tree collapses within 4-8 years of first symptom appearance. This study was conducted to investigate differences in minerals between symptomatic and asymptomatic leaves of infected lime trees. The study included one set of leaves from uninfected trees and two sets of infected leaves: symptomatic leaves and asymptomatic leaves obtained from randomly selected acid lime trees. Nested polymerase chain reaction detected phytoplasma in the symptomatic and asymptomatic leaves from the six infected trees, but not from the uninfected trees. Phylogenetic analysis showed that all phytoplasmas belong to the 16S rRNA group II-B. Mineral analysis revealed that the level of Na significantly increased by four times in the symptomatic leaves compared to the non-symptomatic leaves and to the uninfected leaves. In addition, symptom development resulted in a significant increase in the levels of P and K by 1.6 and 1.5 times, respectively, and a significant decrease in the levels of Ca and B by 1.2 and 1.8 times, respectively. There was no significant effect of WBDL on the levels of N, Cu, Zn, and Fe. The development of witches' broom disease symptoms was found to be associated with changes in some minerals. The study discusses factors and consequences of changes in the mineral content of acid limes infected by phytoplasma.

  6. Inositol Depletion Induced by Acute Treatment of the Bipolar Disorder Drug Valproate Increases Levels of Phytosphingosine.

    PubMed

    Jadhav, Shyamalagauri; Russo, Sarah; Cowart, L Ashley; Greenberg, Miriam L

    2017-03-24

    Bipolar disorder (BD) is a severe psychiatric illness affecting ∼1% of the world population. Valproate (VPA) and lithium, widely used for the treatment of BD, are not universally effective. These drugs have been shown to cause inositol depletion, but translating this observation to a specific therapeutic mechanism has been difficult, hampering the development of more effective therapies. We have shown previously in yeast that chronic VPA treatment induces the unfolded protein response due to increasing ceramide levels. To gain insight into the mechanisms activated during acute VPA treatment, we performed a genome-wide expression study in yeast treated with VPA for 30 min. We observed increased mRNA and protein levels of RSB1, which encodes an exporter of long chain bases dihydrosphingosine (DHS) and phytosphingosine (PHS), and further saw that VPA increased sensitivity of an rsb1Δ mutant to PHS, suggesting that VPA increases long chain base levels. Consistent with this, PHS levels were elevated in wild type and, to a greater extent, in rsb1Δ cells. Expression of ORM genes (negative regulators of PHS synthesis) and of fatty acid elongase genes FEN1 and SUR4 were decreased, and expression of YOR1 (exporter of PHS-1P) and DPL1 (lyase that degrades DHS-1P and PHS-1P) was increased. These effects were more pronounced in medium lacking inositol, and were mirrored by inositol starvation of an ino1Δ mutant. These findings provide a metabolic explanation as to how VPA-mediated inositol depletion causes increased synthesis of PHS and further support the therapeutic relevance of inositol depletion as a bipolar disorder treatment.

  7. High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10.

    PubMed

    Zhang, Huili; Zhu, Jianzhong; Zhu, Xiangcheng; Cai, Jin; Zhang, Anyi; Hong, Yizhi; Huang, Jin; Huang, Lei; Xu, Zhinan

    2012-07-01

    A new exogenous glutamic acid-independent γ-PGA producing strain was isolated and characterized as Bacillus subtilis C10. The factors influencing the endogenous glutamic acid supply and the biosynthesis of γ-PGA in this strain were investigated. The results indicated that citric acid and oxalic acid showed the significant capability to support the overproduction of γ-PGA. This stimulated increase of γ-PGA biosynthesis by citric acid or oxalic acid was further proved in the 10 L fermentor. To understand the possible mechanism contributing to the improved γ-PGA production, the activities of four key intracellular enzymes were measured, and the possible carbon fluxes were proposed. The result indicated that the enhanced level of pyruvate dehydrogenase (PDH) activity caused by oxalic acid was important for glutamic acid synthesized de novo from glucose. Moreover, isocitrate dehydrogenase (ICDH) and glutamate dehydrogenase (GDH) were the positive regulators of glutamic acid biosynthesis, while 2-oxoglutarate dehydrogenase complex (ODHC) was the negative one.

  8. Comparative Indole-3-Acetic Acid Levels in the Slender Pea and Other Pea Phenotypes 1

    PubMed Central

    Law, David M.; Davies, Peter J.

    1990-01-01

    Free indole-3-acetic acid levels were measured by gas chromatography-mass spectrometry in three ultra-tall `slender' Pisum sativum L. lines differing in gibberellin content. Measurements were made for apices and stem elongation zones of light-grown plants and values were compared with wild-type, dwarf, and nana phenotypes in which internode length is genetically regulated, purportedly via the gibberellin level. Indole-3-acetic acid levels of growing stems paralleled growth rates in all lines, and were high in all three slender genotypes. Growth was inhibited by p-chlorophenoxyisobutyric acid, demonstrating the requirement of auxin activity for stem elongation, and also by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. It is concluded that the slender phenotype may arise from constant activation of a gibberellin receptor or transduction chain event leading directly or indirectly to elevated levels of indole-3-acetic acid, and that increased indole-3-acetic acid levels are a significant factor in the promotion of stem elongation. PMID:16667653

  9. Ursolic acid reduces prostate size and dihydrotestosterone level in a rat model of benign prostatic hyperplasia.

    PubMed

    Shin, In-Sik; Lee, Mee-Young; Jung, Da-Young; Seo, Chang-Seob; Ha, Hye-Kyung; Shin, Hyeun-Kyoo

    2012-03-01

    Benign prostatic hyperplasia (BPH) is characterized by hyperplasia of prostatic stromal and epithelial cells, which can lead to lower urinary tract symptoms. The prevalence of BPH increases in an age-dependent manner. We investigated the protective effect of ursolic acid in BPH development using a testosterone-induced BPH rat model. BPH was induced in experimental groups by daily subcutaneous injections of testosterone propionate (TP), for a period of four weeks. Ursolic acid was administrated daily by oral gavage at a dose level of 5mg/kg during the four weeks of TP injections. Animals were sacrificed on the scheduled termination, before prostates were weighed and subjected to histopathological examination. TP and dihydrotestosterone (DHT) levels in the serum and prostate were also measured. BPH-induced animals displayed an increase in prostate weight with increased testosterone and DHT levels in both the serum and prostate. However, ursolic acid treatment resulted in significant reductions in prostate weight and testosterone and DHT levels in both the serum and prostate, compared with BPH-induced animals. Histopathological examination also showed that ursolic acid treatment suppressed TP-induced prostatic hyperplasia. These findings indicate that ursolic acid may effectively inhibit the development of BPH and it may be a useful agent in BPH treatment.

  10. Adipic acid increases plasma lysine but does not improve the efficiency of lysine utilization in swine.

    PubMed

    van Kempen, T A; van Heugten, E; Trottier, N L

    2001-09-01

    Adipic acid, upon catabolism, results in intermediates that bear a structural similarity to lysine degradation products. The objectives of this research were to determine whether adipic acid affects lysine concentrations in plasma and to evaluate whether adipic acid improves the efficiency of lysine utilization in pigs. In Exp. 1, nursery pigs (n = 14) were fed (for a period of 7 d) either a standard nursery diet or the same diet supplemented with 1% adipic acid to assess effects on plasma amino acid concentrations (plasma collected on d 7). In Exp. 2, nursery pigs (n = 56) were fed (for a period of 15 d) either a control diet or the same diet but deficient in either lysine, threonine, or tryptophan with or without supplemental adipic acid to assess the effects of adipic acid on the efficiency of amino acid utilization. The results from Exp. 1 showed that adipic acid increased plasma lysine (by 18%) but not alpha-amino adipic acid, an intermediate in lysine degradation. Experiment 2 demonstrated that adipic acid did not increase the efficiency of utilization of lysine, threonine, or tryptophan. The lack of effects on alpha-amino adipic acid in Exp. 1 and the lack of a positive effect on the efficiency of utilization of lysine, threonine, and tryptophan suggest that adipic acid does not inhibit the mitochondrial uptake of lysine and(or) its degradation in the mitochondrion. It is concluded that feeding adipic acid increases plasma lysine but does not improve the efficiency of lysine utilization.

  11. The effects of changing dairy intake on trans and saturated fatty acid levels- results from a randomized controlled study

    PubMed Central

    2014-01-01

    Background Dairy food is an important natural source of saturated and trans fatty acids in the human diet. This study evaluates the effect of dietary advice to change dairy food intake on plasma fatty acid levels known to be present in milk in healthy volunteers. Methods Twenty one samples of whole fat dairy milk were analyzed for fatty acids levels. Changes in levels of plasma phospholipid levels were evaluated in 180 healthy volunteers randomized to increase, not change or reduce dairy intake for one month. Fatty acids were measured by gas chromatography–mass spectrometry and levels are normalized to d-4 alanine. Results The long chain fatty acids palmitic (13.4%), stearic (16.7%) and myristic (18.9%) acid were most common saturated fats in milk. Four trans fatty acids constituted 3.7% of the total milk fat content. Increased dairy food intake by 3.0 (± 1.2) serves/ day for 1 month was associated with small increases in plasma levels of myristic (+0.05, 95% confidence level-0.08 to 0.13, p = 0.07), pentadecanoic (+0.014, 95% confidence level -0.016 to 0.048, p = 0.02) and margaric acid (+0.02, -0.03 to 0.05, p = 0.03). There was no significant change in plasma levels of 4 saturated, 4 trans and 10 unsaturated fatty acids. Decreasing dairy food intake by 2.5 (± 1.2) serves per day was not associated with change in levels of any plasma fatty acid levels. Conclusion Dietary advice to change dairy food has a minor effect on plasma fatty acid levels. Trial registration ACTRN12612000574842. PMID:24708591

  12. Childrens' learning and behaviour and the association with cheek cell polyunsaturated fatty acid levels.

    PubMed

    Kirby, A; Woodward, A; Jackson, S; Wang, Y; Crawford, M A

    2010-01-01

    Increasing interest in the role of omega-3 fatty acids in relation to neurodevelopmental disorders (e.g. ADHD, dyslexia, autism) has occurred as a consequence of some international studies highlighting this link. In particular, some studies have shown that children with ADHD may have lower concentrations of polyunsaturated fatty acids (PUFAs), particularly omega-3, in their red blood cells and plasma, and that supplementation with omega-3 fatty acids may alleviate behavioural symptoms in this population. However, in order to compare levels it seems appropriate to establish fatty acid levels in a mainstream school aged population and if levels relate to learning and behaviour. To date no study has established this. For this study, cheek cell samples from 411 typically developing school children were collected and analysed for PUFA content, in order to establish the range in this population. In addition, measures of general classroom attention and behaviour were assessed in these children by teachers and parents. Cognitive performance tests were also administered in order to explore whether an association between behaviour and/or cognitive performance and PUFA levels exists. Relationships between PUFA levels and socio-economic status were also explored. Measures of reading, spelling and intelligence did not show any association with PUFA levels, but some associations were noted with the level of omega-3 fatty acids and teacher and parental reports of behaviour, with some evidence that higher omega-3 levels were associated with decreased levels of inattention, hyperactivity, emotional and conduct difficulties and increased levels of prosocial behaviour. These findings are discussed in relation to previous findings from omega-3 supplementation studies with children.

  13. Uric Acid Level and Erectile Dysfunction In Patients With Coronary Artery Disease

    PubMed Central

    Solak, Yalcin; Akilli, Hakan; Kayrak, Mehmet; Aribas, Alpay; Gaipov, Abduzhappar; Turk, Suleyman; Perez-Pozo, Santos E.; Covic, Adrian; McFann, Kim; Johnson, Richard J.; Kanbay, Mehmet

    2013-01-01

    Introduction Erectile dysfunction (ED) is a frequent complaint of elderly subjects, and is closely associated with endothelial dysfunction and cardiovascular disease. Uric acid is also associated with endothelial dysfunction, oxidative stress and cardiovascular disease, raising the hypothesis that an increased serum uric acid might predict erectile dysfunction in patients who are at risk for coronary artery disease. Aim To evaluate the association of serum uric acid levels with presence and severity of ED in patients presenting with chest pain of presumed cardiac origin. Methods This is a cross-sectional study of 312 adult male patients with suspected coronary artery disease who underwent exercise stress test (EST) for workup of chest pain and completed a sexual health inventory for men (SHIM) survey form to determine the presence and severity of ED. Routine serum biochemistry (and uric acid levels) were measured. Logistic regression analysis was used to assess risk factors for ED. Main Outcome Measures The short version of the international index of erectile function (IIEF-5) questionnaire diagnosed ED (cutoff score ≤21). Serum Uric acid levels were determined. Patients with chest pain of suspected cardiac origin underwent an exercise stress test. Results 149 of 312 (47.7%) male subjects had ED by survey criteria. Patients with ED were older and had more frequent CAD, hypertension, diabetes, and impaired renal function, and also had significantly higher levels of uric acid, fibrinogen, glucose, CRP, triglycerides compared with patients without ED. Uric acid levels were associated with ED by univariate analysis (OR = 1.36, p = 0.002); however, this association was not observed in multivariate analysis adjusted for eGFR. Conclusion Subjects presenting with chest pain of presumed cardiac origin are more likely to have ED if they have elevated uric acid levels. PMID:24433559

  14. Polyunsaturated Fatty Acid Levels in Maternal Erythrocytes of Japanese Women during Pregnancy and after Childbirth

    PubMed Central

    Kawabata, Terue; Kagawa, Yasuo; Kimura, Fumiko; Miyazawa, Teruo; Saito, Shoji; Arima, Takahiro; Nakai, Kunihiko; Yaegashi, Nobuo

    2017-01-01

    Background: The transport of polyunsaturated fatty acids (PUFAs), such as arachidonic acid (ARA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), to the fetus from maternal stores increases depending on the fetal requirements for PUFA during the last trimester of pregnancy. Therefore, maternal blood PUFA changes physiologically with gestational age. However, the changes in PUFA levels in maternal blood erythrocytes during pregnancy and after childbirth have not been fully investigated in a fish-eating population. Objective: To examine the changes of ARA and DHA levels in maternal erythrocytes with the progress of pregnancy and the relationship between maternal and umbilical cord erythrocyte PUFA levels in pregnant Japanese women who habitually eat fish and shellfish. Design: This study was performed as a part of the adjunct study of the Japan Environment and Children’s Study (JECS). The participants were 74 pregnant women. The maternal blood samples were collected at 27, 30, and 36 weeks of pregnancy, and 2 days and 1 month after delivery, and umbilical cord blood was collected at delivery. The fatty acid levels of erythrocytes in these blood samples were determined. Results: ARA and DHA levels in maternal erythrocytes tended to decrease with the progress of pregnancy. While the DHA level decreased further after delivery, the ARA level returned to the value at 27 weeks of pregnancy within 1 month after delivery. The n-3 and n-6 PUFA levels in maternal erythrocytes at 27, 30, and 36 weeks of pregnancy were significantly positively correlated with the corresponding fatty acid levels in umbilical cord erythrocytes. Conclusion: The present findings showed a significant change in erythrocyte PUFA levels during pregnancy and after childbirth in a fish-eating population. The PUFA levels of maternal blood after the second trimester may be a reliable marker for predicting PUFA levels in infants’ circulating blood. PMID:28272345

  15. Serum sialic acid and glycoprotein levels in some Libyan cancer patients.

    PubMed

    Balo, N N; Ishaq, M

    1991-01-01

    Sialic acid is a common conjugate of some serum glycoproteins and glycolipids. Elevated levels of serum sialic acid and alterations in serum glycoproteins have been observed in certain types of cancer. In this study sialic acid concentration in the sera of patients with various types of cancer was determined. In addition to this, serum glycoproteins were also analysed by electrophoretic method. Our results indicate that serum sialic acid levels are generally raised in all types of cancer studied. This increase was more pronounced in case of lung, bronchogenic, intestinal and breast cancer. Some alterations in the serum glycoprotein profiles were also observed, particularly in bronchogenic and gall bladder cancer where an additional band in the low molecular weight region was present and in lung, breast and lymphoma where a band in the middle molecular weight region was found missing when compared with normals.

  16. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  17. Increased universality of Lepidopteran elicitor compounds across insects: Identification of fatty acid amino acid conjugates (FACs)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid amino acid conjugates (FACs) are known elicitors of induced release of volatile compounds in plants that, in turn, attract foraging parasitoids. Since the discovery of volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] in the regurgitant of larval Spodoptera exigua1, a series of related FAC...

  18. Evaluation of serum sialic acid, fucose levels and their ratio in oral squamous cell carcinoma

    PubMed Central

    Chinnannavar, Sangamesh Ningappa; Ashok, Lingappa; Vidya, Kodige Chandrashekhar; Setty, Sunil Mysore Kantharaja; Narasimha, Guru Eraiah; Garg, Ranjana

    2015-01-01

    Background: Detection of cancer at the early stage is of utmost importance to decrease the morbidity and mortality of the disease. Apart from the conventional biopsy, minimally invasive methods like serum evaluation are used for screening large populations. Thus, this study aimed to estimate serum levels of sialic acid and fucose and their ratio in oral cancer patients and in healthy control group to evaluate their role in diagnosis. Materials and Methods: Serum samples were collected from 52 healthy controls (group I) and 52 squamous cell carcinoma patients (group II). Estimation of serum levels of sialic acid and fucose and their ratio was performed. This was correlated histopathologically with the grades of carcinoma. Statistical analysis was done by using analysis of variance (ANOVA) test and unpaired “t” test. Results: Results showed that serum levels of sialic acid and fucose were significantly higher in oral cancer patients compared to normal healthy controls (P < 0.001). The sialic acid to fucose ratio was significantly lower in cancer patients than in normal controls (P < 0.01). However, comparison with histological grading, habits, gender, and age group did not show any significant result. Conclusion: The mean serum sialic acid and fucose levels showed an increasing trend from controls to malignant group and their corresponding ratio showed decreasing trend from controls to malignant group. The ratio of sialic acid to fucose can be a useful diagnostic aid for oral cancer patients. PMID:26759796

  19. Fatty acid and prostaglandin metabolism in children with diabetes mellitus. II. The effect of evening primrose oil supplementation on serum fatty acid and plasma prostaglandin levels.

    PubMed

    Arisaka, M; Arisaka, O; Yamashiro, Y

    1991-07-01

    Our previous study demonstrated that levels of dihomo-gamma-linolenic acid (DGLA) and arachidonic acid in serum total lipids decreased in association with increased plasma levels of prostaglandins E2 (PGE2) and F2 alpha (PGF2 alpha) in patients with insulin-dependent diabetes mellitus. In this study, 11 children with insulin-dependent diabetes mellitus completed a double-blind, placebo-controlled study to assess the effect of dietary supplementation with gamma-linolenic acid (GLA) on serum essential fatty acid and plasma PGE2 and PGF2 alpha levels. GLA was given as the seed oil from the evening primrose (EPO) and all patients received either EPO capsules (containing 45 mg of GLA and 360 mg of linoleic acid) or indistinguishable placebo capsules for 8 months. Initially patients took 2 capsules daily for 4 months then 4 capsules daily for a further 4 months. All patients were assessed at the start of the study, after 4 months and at the end of the study, by measuring serum essential fatty acid and plasma PGE2 and PGF2 alpha levels. After administration of 4 capsules daily the DGLA levels increased and PGE2 levels decreased significantly (p less than 0.01) in the EPO compared with the placebo group. Neither fatty acid nor PGE2 and PGF2 alpha levels were altered by administration of 2 EPO capsules daily. This suggests that the altered essential fatty acid and PG metabolism in diabetes may be reversed by direct GLA supplementation.

  20. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats

    PubMed Central

    Kelly, Karen B.; Kennelly, John P.; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J.; Jacobs, René L.

    2016-01-01

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet. PMID:27669293

  1. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats.

    PubMed

    Kelly, Karen B; Kennelly, John P; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J; Jacobs, René L

    2016-09-23

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet.

  2. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    PubMed

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification.

  3. Overexpression of PGC-1α Increases Peroxisomal and Mitochondrial Fatty Acid Oxidation in Human Primary Myotubes.

    PubMed

    Huang, Tai-Yu; Zheng, Donghai; Houmard, Joseph A; Brault, Jeffrey J; Hickner, Robert C; Cortright, Ronald N

    2017-01-10

    Peroxisomes are indispensable organelles for lipid metabolism in humans and their biogenesis has been assumed to be under regulation by peroxisome proliferator-activated receptors (PPARs). However, recent studies in hepatocytes suggest that the mitochondrial proliferator PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1 alpha) also acts as an upstream transcriptional regulator for enhancing peroxisomal abundance and associated activity. It is unknown whether the regulatory mechanism(s) for enhancing peroxisomal function is through the same node as mitochondrial biogenesis in human skeletal muscle (HSkM) and whether fatty acid oxidation (FAO) is affected. Primary myotubes from vastus lateralis biopsies from lean donors (BMI =24.0 ± 0.6 kg/m(2), N = 6) were exposed to adenovirus encoding human PGC-1α or GFP control. Peroxisomal biogenesis proteins (Peroxins) and genes (PEXs) responsible for proliferation and functions were assessed by western blotting and real-time qRT-PCR respectively. 1-(14)C palmitic acid and 1-(14)C lignoceric acid (exclusive peroxisomal specific substrate) were used to assess mitochondrial oxidation of peroxisomal derived metabolites. Following overexpression of PGC-1α, 1) Peroxisomal membrane protein 70kD (PMP70), PEX19, and mitochondrial citrate synthetase protein content were significantly elevated (P<0.05) 2) PGC-1α, PMP70, key PEXs, and peroxisomal β-oxidation mRNA expression levels were significantly upregulated (P<0.05) and 3) A concomitant increase in lignoceric acid oxidation by both peroxisomal and mitochondrial activity was observed (P<0.05). These novel findings demonstrate that, in addition to the proliferative effect on mitochondria, PGC-1α can induce peroxisomes and accompanying elevations in long-chain and very-long-chain fatty acid oxidation by a peroxisomal-mitochondrial functional cooperation as observed in HSkM cells.

  4. The TOC159 mutant of Arabidopsis thaliana accumulates altered levels of saturated and polyunsaturated fatty acids.

    PubMed

    Afitlhile, Meshack; Fry, Morgan; Workman, Samantha

    2015-02-01

    We evaluated whether the TOC159 mutant of Arabidopsis called plastid protein import 2-2 (ppi2-2) accumulates normal levels of fatty acids, and transcripts of fatty acid desaturases and galactolipid synthesis enzymes. The ppi2-2 mutant accumulates decreased pigments and total fatty acid content. The MGD1 gene was downregulated and the mutant accumulates decreased levels of monogalactosyldiacylglycerol (MGDG) and 16:3, which suggests that the prokaryotic pathway was impaired in the mutant. The HY5 gene, which encodes long hypocotyl5 transcription factor, was upregulated in the mutant. The DGD1 gene, an HY5 target was marginally increased and the mutant accumulates digalactosyldiacylglycerol at the control level. The mutant had increased expression of 3-ketoacyl-ACP synthase II gene, which encodes a plastid enzyme that elongates 16:0 to 18:0. Interestingly, glycerolipids in the mutant accumulate increased levels of 18:0. A gene that encodes stearoyl-ACP desaturase (SAD) was expressed at the control level and 18:1 was increased, which suggest that SAD may be strongly regulated at the posttranscriptional level. The molar ratio of MGDG to bilayer forming plastid lipids was decreased in the cold-acclimated wild type but not in the ppi2-2 mutant. This indicates that the mutant was unresponsive to cold-stress, and is consistent with increased levels of 18:0, and decreased 16:3 and 18:3 in the ppi2-2 mutant. Overall, these data indicate that a defective Toc159 receptor impaired the synthesis of MGDG, and affected desaturation of 16 and 18-carbon fatty acids. We conclude that expression of the MGD1 gene and synthesis of MGDG are tightly linked to plastid biogenesis.

  5. Treatment of flaxseed to reduce biohydrogenation of a-linolenic acid by ruminal microbes in sheep and cattle and increase n-3 fatty acid concentrations in red meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our study determined if flaxseed treated with a formaldehyde-free process increased n-3 fatty acid (FA) levels in ruminant muscle. Twenty-four lambs (initial BW 43.8 ± 4.4 kg) were randomly divided into 4 groups for a 90-d trial. One treatment group (FLX) was fed 136 g/d of non-treated ground flaxse...

  6. Reducing isozyme competition increases target fatty acid accumulation in seed triacylglycerols of transgenic Arabidopsis.

    PubMed

    van Erp, Harrie; Shockey, Jay; Zhang, Meng; Adhikari, Neil D; Browse, John

    2015-05-01

    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on hydroxy fatty acids (HFAs) and conjugated polyenoic FAs (α-eleostearic acids [ESAs]) using Arabidopsis (Arabidopsis thaliana) as a model. These FAs are found naturally in seed oils of castor (Ricinus communis) and tung tree (Vernicia fordii), respectively, and used for the production of lubricants, nylon, and paints. Transgenic oils typically contain less target FA than that produced in the source species. We hypothesized that competition between endogenous and transgenic isozymes for substrates limits accumulation of unique FAs in Arabidopsis seeds. This hypothesis was tested by introducing a mutation in Arabidopsis diacylglycerol acyltransferase1 (AtDGAT1) in a line expressing castor FA hydroxylase and acyl-Coenzyme A:RcDGAT2 in its seeds. This led to a 17% increase in the proportion of HFA in seed oil. Expression of castor phospholipid:diacylglycerol acyltransferase 1A in this line increased the proportion of HFA by an additional 12%. To determine if our observations are more widely applicable, we investigated if isozyme competition influenced production of ESA. Expression of tung tree FA conjugase/desaturase in Arabidopsis produced approximately 7.5% ESA in seed lipids. Coexpression of VfDGAT2 increased ESA levels to approximately 11%. Overexpression of VfDGAT2 combined with suppression of AtDGAT1 increased ESA accumulation to 14% to 15%. Our results indicate that isozyme competition is a limiting factor in the engineering of unusual FAs in heterologous plant systems and that reduction of competition through mutation and RNA suppression may be a useful component of seed metabolic engineering strategies.

  7. Evaluation of cooling strategies for pumping of milk - impact of fatty acid composition on free fatty acid levels.

    PubMed

    Wiking, Lars; Bertram, Hanne C; Björck, Lennart; Nielsen, Jacob H

    2005-11-01

    Cooling strategies for pumping of raw milk were evaluated. Milk was pumped for 450 s at 31 degrees C, or pumped after cooling to 4 degrees C and subsequently subjected to various incubation times. Two types of milk were used; i.e. milk from cows fed a diet high in saturated fat supplements resulting in significantly larger milk fat globules than the other type of milk which comes from cows fed a low-fat diet that stimulates high de novo fat synthesis. The content of liquid fat was determined by low-field 1H NMR, which showed that milk from cows given the saturated fat diet also contained less liquid fat at both 4 degrees and 31 degrees C than the other type of milk. This can be ascribed to the differences in the fatty acid composition of the milk as a result of the fatty acid composition of the diets. After pumping of the milk at 31 degrees C, measurement of fat globule size distribution revealed a significant coalescence of milk fat globules in the milk obtained from the saturated fat diet due to pumping. Pumping at 4 degrees C or pumping the other type of milk did not result in coalescence of milk fat globules. Formation of free fatty acids increased significantly in both types of milk by pumping at 31 degrees C. Cooling the milk to 4 degrees C immediately before pumping inhibited an increased content of free fatty acids. However, when the milk was incubated at 4 degrees C for 60 min after cooling and then subjected to pumping, a significant increase in the formation of free fatty acids was observed in both types of milk. It is suggested that this increase in free fatty acids is caused by transition of polymorphic crystal forms or higher level of attached lipoprotein lipases to the milk fat globule before pumping.

  8. Association between serum folic acid level and erectile dysfunction.

    PubMed

    Karabakan, M; Erkmen, A E; Guzel, O; Aktas, B K; Bozkurt, A; Akdemir, S

    2016-06-01

    This study measured the serum folic acid (FA) level in patients with erectile dysfunction (ED) and evaluated the possible association between the serum FA level and erectile function. The study divided 120 patients with ED into 3 groups of 40 patients each: those with severe, moderate and mild ED. Forty healthy men served as controls. Fasting serum samples were obtained, and the total testosterone, cholesterol and FA levels were measured using chemiluminescent immunoassays. There were no significant differences in the mean age, mean body mass index or mean serum total testosterone and cholesterol levels among the three ED groups and controls (P > 0.05). The mean serum FA concentrations were 7.2 ± 3.7, 7.1 ± 3.2, 10.2 ± 4.6 and 10.7 ± 4.6 ng ml(-1) in the severe, moderate and mild ED and control groups respectively. The mean serum FA concentration was significantly higher in the control group than in the severe and moderate ED groups (both P < 0.001), but not the mild ED group (P = 0.95). Considering the significant differences in the serum FA levels between the control and ED groups, serum FA deficiency might reflect the severity of ED.

  9. Increased levels of antibodies against heat shock proteins in stroke patients.

    PubMed

    Banecka-Majkutewicz, Zyta; Grabowski, Michał; Kadziński, Leszek; Papkov, Aliaksei; Węgrzyn, Alicja; Banecki, Bogdan

    2014-01-01

    Ischemic stroke is the second leading cause of death worldwide. One of the main risk factors of the ischemic stroke is atherosclerosis which is a chronic inflammatory and immune-mediated disease. Bacterial infections generate specific human antibodies against various antigens, including Hsps. It has been demonstrated that Hsps are selectively overexpressed in the atherosclerotic lesions. The amino acid sequence homology between human and bacterial Hsps may lead to an autoimmune response by immunological cross-reaction. Such immune response against Hsps overexpressed in the blood vessels under stressful conditions may contribute to inflammatory processes and subsequent development of atherosclerosis. In this study we determined the antibody levels against bacterial and human Hsp by ELISA in blood plasma obtained from stroke patients. Using ANOVA we analyzed levels of Hsp-antibodies in control and patient groups and correlate them with several stroke risk factors. The group of stroke patients had elevated levels of anti-Hsp antibodies compared to the control group. We also discovered an antibody level increase in patients that previously underwent another stroke. Our data provide evidence that autoimmunity could underlie formation of atherosclerosis plaque leading to stroke.

  10. Cytokine levels affected by gamma-linolenic acid.

    PubMed

    Dirks, J; van Aswegen, C H; du Plessis, D J

    1998-10-01

    This study was undertaken to assess whether gamma-linolenic acid (GLA) in the form of evening primrose oil (EPO) could affect rat serum cytokines, interferon-gamma (IFN-gamma), monocyte chemotactic protein-1 (MCP-1) and tumour necrosis factor-alpha (TNF-alpha). The following diets were administered: control, glucan, Freund's adjuvant and glucan plus Freund's adjuvant with and without GLA. In the presence of GLA, the IFN-gamma and MCP-1 levels were significantly decreased in contrast to the control group of TNF-alpha, which was significantly stimulated. On account of interaction between diets and GLA, the remaining diet groups of TNF-alpha were either not affected or were inhibited in the presence of GLA. The observations indicate that GLA may modulate the level of serum IFN-gamma, MCP-1 and TNF-alpha, which may be a worthwhile line of treatment in certain human diseases.

  11. Fasting levels of monoketonic bile acids in human peripheral and portal circulation.

    PubMed

    Björkhem, I; Angelin, B; Einarsson, K; Ewerth, S

    1982-09-01

    It has been suggested that large amounts of ketonic bile acids may be present in portal venous blood. We have therefore determined the approximate concentration of 3-oxo-, 7-oxo-, and 12-oxo-bile acids (monoketonic bile acids) in human peripheral and portal circulation. These compounds were converted into the corresponding 3alpha-, 7alpha-, and 12alpha-hydroxy bile acids by treatment with sodium borodeuteride, thus increasing the molecular weight of each bile acid formed by one mass unit. The ratio between deuterated and nondeuterated bile acid was determined by combined gas-liquid chromatography-mass spectrometry with use of selected ion monitoring. From the ratio obtained and from the concentration of unlabeled bile acid, determined by isotope dilution-mass spectrometry, the approximate concentration of the different ketonic bile acids could be calculated. This method underestimates 3-oxygenated bile acids by 4-8%, 7-oxygenated bile acids by 2-3%, and 12-oxygenated bile acids by about 25%. The approximate concentration of monoketonic 3,7-oxygenated bile acids was found to be 0.08 +/- 0.02 and 0.37 +/- 0.25 micro mol/l in the peripheral venous serum and the portal venous serum, respectively. The approximate concentration of monoketonic 3,12-oxygenated bile acids was found to be 0.07 +/- 0.02 and 0.32 +/- 0.12 micro mol/l in the peripheral venous serum and the portal venous serum, respectively. The approximate concentration of monoketonic 3,7,12-oxygenated bile acids was found to be 0.03 +/- 0.01 and 0.14 +/- 0.05 micro mol/l in the peripheral venous serum and in the portal venous serum, respectively. The total concentration of the ketonic bile acids constituted only 9 +/- 1% and 8 +/- 3% of the nonoxidized bile acids in the peripheral venous serum and in the portal venous serum, respectively. Thus it seems less likely that the portal inflow of ketonic bile acids is of significant physiological importance under normal conditions.-Björkhem, I., B. Angelin, K

  12. Effect of excitatory amino acids on serum TSH and thyroid hormone levels in freely moving rats.

    PubMed

    Alfonso, M; Durán, R; Arufe, M C

    2000-01-01

    The actions of glutamate (L-Glu), and glutamate receptor agonists on serum thyroid hormones (T4 and T3) and TSH levels have been studied in conscious and freely moving adult male rats. The excitatory amino acids (EAA), L-Glu, N-methyl-D-aspartate (NMDA), kainic acid (KA) and domoic acid (Dom) were administered intraperitoneally. Blood samples were collected through a cannula implanted in the rats jugular 0--60 min after injection. Thyroid hormone concentrations were measured by enzyme immunoassay, and thyrotrophin (TSH) concentrations were determined by radioimmunoassay. The results showed that L-Glu (20 and 25 mg/kg) and NMDA (25 mg/kg) increased serum thyroxine (T4), triiodothyronine (T3) and TSH concentrations. Serum thyroid hormone levels increased 30 min after treatment, while serum TSH levels increased 5 min after i.p. administration, in both cases serum levels remained elevated during one hour. Injection of the non-NMDA glutamatergic agonists KA (30 mg/kg) and Dom (1 mg/kg) produced an increase in serum thyroid hormones and TSH levels. These results suggest the importance of EAAs in the regulation of hormone secretion from the pituitary-thyroid axis, as well as the importance of the NMDA and non-NMDA receptors in this stimulatory effect.

  13. Phosphorus limitation strategy to increase propionic acid flux towards 3-hydroxyvaleric acid monomers in Cupriavidus necator.

    PubMed

    Grousseau, Estelle; Blanchet, Elise; Déléris, Stéphane; Albuquerque, Maria G E; Paul, Etienne; Uribelarrea, Jean-Louis

    2014-02-01

    Properties of polyhydroxybutyrate-co-hydroxyvalerate (P(3HB-co-3HV)) depend on their 3HV content. 3HV can be produced by Cupriavidus necator from propionic acid. Few studies explored carbon distribution and dynamics of 3HV and 3HB monomers production, and none of them have been done with phosphorus as limiting nutrient. In this study, fed-batch cultures of C. necator with propionic acid, as sole carbon source or mixed with butyric acid, were performed. Phosphorus deficiency allowed sustaining 3HV production rate and decreasing 3HB production rate, leading to an instant production of up to 100% of 3HV. When a residual growth is sustained by a phosphorus feeding, the maximum 3HV percentage produced from propionic acid is limited to 33% (Mole.Mole(-1)). The association of a second carbon source like butyric acid lead to higher conversion of propionic acid into 3HV. This study showed the importance of the limiting nutrient and of the culture strategy to get the appropriate product.

  14. Valproic acid increases conservative homologous recombination frequency and reactive oxygen species formation: a potential mechanism for valproic acid-induced neural tube defects.

    PubMed

    Defoort, Ericka N; Kim, Perry M; Winn, Louise M

    2006-04-01

    Valproic acid, a commonly used antiepileptic agent, is associated with a 1 to 2% incidence of neural tube defects when taken during pregnancy; however, the molecular mechanism by which this occurs has not been elucidated. Previous research suggests that valproic acid exposure leads to an increase in reactive oxygen species (ROS). DNA damage due to ROS can result in DNA double-strand breaks, which can be repaired through homologous recombination (HR), a process that is not error-free and can result in detrimental genetic changes. Because the developing embryo requires tight regulation of gene expression to develop properly, we propose that the loss or dysfunction of genes involved in embryonic development through aberrant HR may ultimately cause neural tube defects. To determine whether valproic acid induces HR, Chinese hamster ovary 3-6 cells, containing a neomycin direct repeat recombination substrate, were exposed to valproic acid for 4 or 24 h. A significant increase in HR after exposure to valproic acid (5 and 10 mM) for 24 h was observed, which seems to occur through a conservative HR mechanism. We also demonstrated that exposure to valproic acid (5 and 10 mM) significantly increased intracellular ROS levels, which were attenuated by preincubation with polyethylene glycol-conjugated (PEG)-catalase. A significant change in the ratio of 8-hydroxy-2'-deoxyguanosine/2'-de-oxyguanosine, a measure of DNA oxidation, was not observed after valproic acid exposure; however, preincubation with PEG-catalase significantly blocked the increase in HR. These data demonstrate that valproic acid increases HR frequency and provides a possible mechanism for valproic acid-induced neural tube defects.

  15. Phosphatidic acid increases intracellular free Ca2+ and cardiac contractile force.

    PubMed

    Xu, Y J; Panagia, V; Shao, Q; Wang, X; Dhalla, N S

    1996-08-01

    Although phosphatidic acid (PA) is mainly formed due to the hydrolysis of phosphatidylcholine by myocardial phospholipase D, its functional significance in the heart is not fully understood. The present study was designed to determine the effects of PA on intracellular free Ca2+ level ([Ca2+]i) in freshly isolated adult rat cardiomyocytes by using fura 2-acextoxmethylester and free fura 2 technique. Addition of PA at concentrations of 1-200 microM produced a concentration-dependent increase in [Ca2+]i from the basal level of 117 +/- 8 nM; maximal increase in [Ca2+]i was 233 +/- 50 nM, whereas median effective concentration (EC50) for PA was 45 +/- 1.2 microM. This increase in [Ca2+]i was abolished by the removal of extracellular Ca2+ with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and was partially attenuated by Ca2+ channel blockers, verapamil or diltiazem. Preincubation of cardiomyocytes with cyclopiazonic acid and thapsigargin or with ryanodine [to deplete sarcoplasmic reticulum (SR) Ca2+] attenuated the PA-induced increase in [Ca2+]i by 66, 37, and 43%, respectively. Furthermore, the response of [Ca2+]i to PA was blunted by 2-nitro-4 carboxyphenylcarbonate, an inhibitor of phospholipase C, but was unaffected by staurosporine, a protein kinase C inhibitor. PA was also observed to induce Ca2+ efflux from the myocytes. In addition, an injection of PA (0.34 microgram/100 g body wt i.v.) in rats produced a significant increase of the left ventricular developed pressure as well as the maximum rates of cardiac contraction and relaxation within 5 min. These data suggest that the PA-induced increase in [Ca2+]i in cardiomyocytes is a consequence of both Ca2+ influx from the extracellular source and Ca2+ release from the intracellular SR stores. Furthermore, these in vitro data suggest the possibility that PA may regulate [Ca2+]i and contractile parameters in the heart.

  16. Pyruvic acid levels in serum and saliva: A new course for oral cancer screening?

    PubMed Central

    Bhat, Manohara A; Prasad, KVV; Trivedi, Dheeraj; Rajeev, BR; Battur, Hemanth

    2016-01-01

    Objective: Cancerous cells show increased glycolysis rate. This will increase overall levels of pyruvate as it is one of the end products of glycolysis. The present on-going study is to estimate the levels of pyruvate in saliva and serum among healthy and oral cancer subjects. Settings and Design: Hospital-based cross-sectional comparative study. Methodology: A total of 50 subjects among healthy and oral cancer subjects were selected based on clinical and histological criteria. Saliva and serum samples were collected and subjected to pyruvate level estimation using biochemical analysis. Statistical Analysis: Descriptive analysis and Mann-Whitney test were used to find the statistical difference between the two independent groups. Results: Serum pyruvic acid levels of the healthy group were 1.09 ± 0.14 and for oral cancer, it was 2.95 ± 0.59 and salivary level were 3.49 ± 0.47 and 1.32 ± 0.10 respectively. Mann-Whitney test showed statistically significant difference in serum and salivary pyruvate level in between two groups (P < 0.000 respectively). Conclusion: The present study showed noticeable variation in the level of pyruvic acid among healthy and oral cancer subjects. This generates the hypothesis that estimation of the pyruvic acid can be a new tool to screening of the cancer. PMID:27194870

  17. Autistic Children Exhibit Decreased Levels of Essential Fatty Acids in Red Blood Cells

    PubMed Central

    Brigandi, Sarah A.; Shao, Hong; Qian, Steven Y.; Shen, Yiping; Wu, Bai-Lin; Kang, Jing X.

    2015-01-01

    Omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFA) are essential nutrients for brain development and function. However, whether or not the levels of these fatty acids are altered in individuals with autism remains debatable. In this study, we compared the fatty acid contents between 121 autistic patients and 110 non-autistic, non-developmentally delayed controls, aged 3–17. Analysis of the fatty acid composition of red blood cell (RBC) membrane phospholipids showed that the percentage of total PUFA was lower in autistic patients than in controls; levels of n-6 arachidonic acid (AA) and n-3 docosahexaenoic acid (DHA) were particularly decreased (p < 0.001). In addition, plasma levels of the pro-inflammatory AA metabolite prostaglandin E2 (PGE2) were higher in a subset of the autistic participants (n = 20) compared to controls. Our study demonstrates an alteration in the PUFA profile and increased production of a PUFA-derived metabolite in autistic patients, supporting the hypothesis that abnormal lipid metabolism is implicated in autism. PMID:25946342

  18. Increased BDNF expression in fetal brain in the valproic acid model of autism.

    PubMed

    Almeida, Luis E F; Roby, Clinton D; Krueger, Bruce K

    2014-03-01

    Human fetal exposure to valproic acid (VPA), a widely-used anti-epileptic and mood-stabilizing drug, leads to an increased incidence of behavioral and intellectual impairments including autism; VPA administration to pregnant rats and mice at gestational days 12.5 (E12.5) or E13.5 leads to autistic-like symptoms in the offspring and is widely used as an animal model for autism. We report here that this VPA administration protocol transiently increased both BDNF mRNA and BDNF protein levels 5-6-fold in the fetal mouse brain. VPA exposure in utero induced smaller increases in the expression of mRNA encoding the other neurotrophins, NT3 (2.5-fold) and NT4 (2-fold). Expression of the neurotrophin receptors, trkA, trkB and trkC were minimally affected, while levels of the low-affinity neurotrophin receptor, p75(NTR), doubled. Of the nine 5'-untranslated exons of the mouse BDNF gene, only expression of exons I, IV and VI was stimulated by VPA in utero. In light of the well-established role of BDNF in regulating neurogenesis and the laminar fate of postmitotic neurons in the developing cortex, an aberrant increase in BDNF expression in the fetal brain may contribute to VPA-induced cognitive disorders by altering brain development.

  19. Dithiocarbamate fungicides increase intracellular Zn(2+) levels by increasing influx of Zn(2+) in rat thymic lymphocytes.

    PubMed

    Kanemoto-Kataoka, Yumiko; Oyama, Tomohiro M; Ishibashi, Hitoshi; Oyama, Yasuo

    2015-07-25

    Dithiocarbamate fungicides are used as alternative antifouling agents to highly toxic organotin antifouling agents, such as tri-n-butyltin and triphenyltin. There are some concerns regarding their environmental and health risks. It has been shown that tri-n-butyltin increases intracellular Zn(2+) levels of mammalian lymphocytes. Therefore, we examined the effects of dithiocarbamate fungicides (Ziram, Thiram, and Zineb) on rat thymic lymphocytes using a flow-cytometric technique to elucidate how these fungicides affect intracellular Zn(2+) levels. We further determined whether the agents increase intracellular Zn(2+) and/or Ca(2+), because both Zn(2+) and Ca(2+) are intracellular signals in lymphocytes, and excessive increases in their intracellular concentrations can have adverse effects. Dithiocarbamate fungicides increased intracellular Zn(2+) levels, without affecting intracellular Ca(2+) levels. Ziram was the most potent compound, increasing intracellular Zn(2+) levels via Zn(2+) influx. Ziram (1μM) greatly decreased the cellular nonprotein thiol content, and Zn(2+) chelators attenuated the Ziram-induced decrease. Ziram increased the population of annexin V-positive cells in a Zn(2+)-dependent manner. Therefore, we propose that dithiocarbamate fungicides induce Zn(2+) influx, resulting in an excessive elevation of intracellular Zn(2+) levels, leading to the induction of apoptosis. This study gives a basic insight into the mechanisms of dithiocarbamate fungicide-induced adverse events.

  20. The environmental light influences the circulatory levels of retinoic acid and associates with hepatic lipid metabolism.

    PubMed

    Pang, Wenqiang; Li, Chunying; Zhao, Yue; Wang, Shiming; Dong, Wei; Jiang, Pengjiu; Zhang, Jianfa

    2008-12-01

    Environmental light is involved in the regulation of photochemical reaction in mouse retina. It remains unclear whether light-mediated increase in all-trans retinoic acid (ATRA) synthesis in retina will result in altering the circulatory levels of ATRA and regulating downstream gene expression and physiological function. Here we showed circulatory levels of ATRA decreased in mice under constant darkness and elevated by light exposure. Fat gene pancreatic lipase-related protein 2 (mPlrp2) and its partner procolipase (mClps), but not hepatic lipase (mHl), activated in livers for responding to lack of light illuminating. Light-triggered alterations in circulatory ATRA levels regulated ecto-5'-nucleotidase gene expression by retinoic acid receptor retinoic acid receptor-alpha and modulated 5'-AMP levels in blood and were associated with mPlrp2 and mClps expression in the livers. Mice deficient in adenosine receptors displayed mPlrp2 and mClps expression in livers under 12-h light, 12-h dark cycles. Caffeine blocked adenosine receptors and induced hepatic mPlrp2 and mClps expression in wild-type mice. Mice activated in hepatic mPlrp2 and mClps expression lowered hepatic and serum lipid levels and markedly elevated circulatory levels of all-trans retinol. Our results suggest environmental light influence hepatic lipid homeostasis by light-modulated retinoic acid signaling associated with mPlrp2 and mClps gene expression in livers.

  1. Circulating irisin levels are associated with lipid and uric acid metabolism in a Chinese population.

    PubMed

    Tang, Shanshan; Zhang, Rong; Jiang, Feng; Wang, Jie; Chen, Miao; Peng, Danfeng; Yan, Jing; Wang, Shiyun; Bao, Yuqian; Hu, Cheng; Jia, Weiping

    2015-06-26

    Irisin is a novel hormone secreted by skeletal muscle after exercise, which may ameliorate insulin resistance. In this study, we aimed to explore the relationship between circulating irisin levels and type 2 diabetes (T2DM) as well as related metabolic traits in a Chinese population. A total of 203 subjects were recruited. Of these, 68 subjects with NGT, 63 subjects with IGR and 72 subjects with new-onset T2DM. Circulating irisin levels were measured by ELISA. Detailed clinical investigations and biochemistry measurements were carried out in all of the subjects. Multivariate linear regression analysis was performed to assess the association between irisin levels and related metabolic characteristics. All subjects were classified into normal weight and overweight/obese subgroups according to body mass index (BMI). No significant differences in circulating irisin levels were identified among the three groups (p=0.9741). After adjusting for covariates, multiple linear regression analysis revealed that serum irisin level was independently and significantly associated with total cholesterol (p=0.0005), low-density lipoprotein cholesterol (p=0.0014), fasting fatty acids (p=0.0402) and uric acid (p=0.0062). By dividing the serum irisin levels into three tertile group, the values of total cholesterol, low-density lipoprotein cholesterol, fasting fatty acids and uric acid were all increased significantly with the increase of irisin (p<0.05) . Moreover, serum irisin levels remain closely related to total cholesterol in both normal weight and overweight/obese subgroups. Our study suggests that circulating irisin concentrations are significantly associated with lipid and uric acid metabolism in a Chinese population. This article is protected by copyright. All rights reserved.

  2. Serum hyaluronic acid levels in patients with ankylosing spondylitis.

    PubMed

    Duruöz, Mehmet Tuncay; Turan, Yasemin; Cerrahoglu, Lale; Isbilen, Banu

    2008-05-01

    Our aim in this study was to investigate serum hyaluronic acid (HA) levels and the relationship between clinical parameters in ankylosing spondylitis (AS). Approximately 30 patients with AS and 30 healthy individuals were recruited in this study consecutively. Cross-sectional study was planned, and demographic, clinical, functional, radiological, and laboratory data of patients were evaluated. Disease activity, functional status, and quality of life were assessed, respectively, with Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI), and Short-Form 36 (SF-36). Mander Enthesis Index (MEI) was used for evaluation of enthesis involvement. We examined serum concentrations of HA (ng/ml) in patients with AS and controls. The mean ages of patients and control group were 38.3 (SD=10.8) and 42.7 (SD=10.6) years, respectively. The mean of serum HA levels in AS patients was 40.4 (SD=34.8) ng/ml and in controls was 24.9 (SD=20.2). There was significant difference of HA levels between two groups (p=0.04). Furthermore, there was a significant correlation between HA level and distance of hand-floor (r=0.444, p=0.014), modified lumbar Schober's (r= -0.413, p=0.023), distance of chin to chest (r=0.436, p=0.016), right sacroiliit grade (r=0.601, p<0.001), left sacroiliit grade (r=0.610, p<0.001), C reactive protein level (r=0.404, p=0.027), albumin (r= -0.464, p=0.010), C3 (p=0.449, p=0.013), and IgA levels (r=0.369, p=0.045). However, there was no significant correlation between HA levels with MEI, BASFI, BASDAI, and SF-36 (p >or= 0.05). Serum HA level was significantly higher in AS patients than controls. However, there was no significant correlation between serum HA level and disease-specific measures as BASFI and BASDAI; it had significant relation with spinal mobility limitation, sacroiliitis, and laboratory parameters related with acute inflammation. The serum HA level may be a potential biomarker of axial

  3. Neutral detergent fiber increases endogenous ileal losses but has no effect on ileal digestibility of amino acids in growing pigs.

    PubMed

    Mariscal-Landín, Gerardo; Reis de Souza, Tércia Cesária; Bayardo Uribe, Alejandro

    2017-02-01

    Two experiments were conducted to determine the effect of neutral detergent fiber (NDF) on endogenous amino acids and protein ileal losses; and also apparent ileal digestibility (AID), and standardized ileal digestibility (SID) of amino acids and crude protein. Sixteen barrows were fed four protein-free diets containing graded NDF levels in Experiment 1. NDF was a mixture of sugarcane bagasse and corn leaves (SBCL). Twenty-four barrows were fed diets with soybean protein concentrate (SPC) or casein as protein sources and SBCL or corncobs (CC) as NDF sources in Experiment 2. In Experiment 1, a linear increase (P < 0.05) in endogenous amino acid and protein ileal losses was observed with increased NDF levels, except for arginine, histidine, methionine and proline. In Experiment 2, protein (P < 0.001) and NDF (P < 0.01) sources significantly affected AID of dry matter, which was higher in casein diets (71.7%) and CC diets (70.7%). Protein and NDF sources significantly affected (P < 0.05) SID of crude protein, which was higher in casein diets (92.8%) and CC diets (92.7%). NDF source had no effect (P > 0.05) on SID of amino acids. Overall, this study showed that NDF increased endogenous amino acid and protein ileal losses, but did not affect ileal digestibility of amino acids.

  4. Kaempferol Isolated from Nelumbo nucifera Inhibits Lipid Accumulation and Increases Fatty Acid Oxidation Signaling in Adipocytes.

    PubMed

    Lee, Bonggi; Kwon, Misung; Choi, Jae Sue; Jeong, Hyoung Oh; Chung, Hae Young; Kim, Hyeung-Rak

    2015-12-01

    Stamens of Nelumbo nucifera Gaertn have been used as a Chinese medicine due to its antioxidant, hypoglycemic, and antiatherogenic activity. However, the effects of kaempferol, a main component of N. nucifera, on obesity are not fully understood. We examined the effect of kaempferol on adipogenesis and fatty acid oxidation signaling pathways in 3T3-L1 adipocytes. Kaempferol reduced cytoplasmic triglyceride (TG) accumulation in dose and time-dependent manners during adipocyte differentiation. Accumulation of TG was rapidly reversed by retrieving kaempferol treatment. Kaempferol broadly decreased mRNA or protein levels of adipogenic transcription factors and their target genes related to lipid accumulation. Kaempferol also suppressed glucose uptake and glucose transporter GLUT4 mRNA expression in adipocytes. Furthermore, protein docking simulation suggests that Kaempferol can directly bind to and activate peroxisome proliferator-activated receptor (PPAR)-α by forming hydrophobic interactions with VAL324, THR279, and LEU321 residues of PPARα. The binding affinity was higher than a well-known PPARα agonist fenofibrate. Consistently, mRNA expression levels of PPARα target genes were increased. Our study indicates while kaempferol inhibits lipogenic transcription factors and lipid accumulation, it may bind to PPARα and stimulate fatty acid oxidation signaling in adipocytes.

  5. Differences in the fatty-acid composition of rodent spermatozoa are associated to levels of sperm competition.

    PubMed

    delBarco-Trillo, Javier; Mateo, Rafael; Roldan, Eduardo R S

    2015-03-20

    Sperm competition is a prevalent phenomenon that drives the evolution of sperm function. High levels of sperm competition lead to increased metabolism to fuel higher sperm velocities. This enhanced metabolism can result in oxidative damage (including lipid peroxidation) and damage to the membrane. We hypothesized that in those species experiencing high levels of sperm competition there are changes in the fatty-acid composition of the sperm membrane that makes the membrane more resistant to oxidative damage. Given that polyunsaturated fatty acids (PUFAs) are the most prone to lipid peroxidation, we predicted that higher sperm competition leads to a reduction in the proportion of sperm PUFAs. In contrast, we predicted that levels of sperm competition should not affect the proportion of PUFAs in somatic cells. To test these predictions, we quantified the fatty-acid composition of sperm, testis and liver cells in four mouse species (genus Mus) that differ in their levels of sperm competition. Fatty-acid composition in testis and liver cells was not associated to sperm competition levels. However, in sperm cells, as predicted, an increase in sperm competition levels was associated with an increase in the proportion of saturated fatty-acids (the most resistant to lipid peroxidation) and by a concomitant decrease in the proportion of PUFAs. Two particular fatty acids were most responsible for this pattern (arachidonic acid and palmitic acid). Our findings thus indicate that sperm competition has a pervasive influence in the composition of sperm cells that ultimately may have important effects in sperm function.

  6. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors.

    PubMed

    Vuille-dit-Bille, Raphael N; Camargo, Simone M; Emmenegger, Luca; Sasse, Tom; Kummer, Eva; Jando, Julia; Hamie, Qeumars M; Meier, Chantal F; Hunziker, Schirin; Forras-Kaufmann, Zsofia; Kuyumcu, Sena; Fox, Mark; Schwizer, Werner; Fried, Michael; Lindenmeyer, Maja; Götze, Oliver; Verrey, François

    2015-04-01

    Sodium-dependent neutral amino acid transporter B(0)AT1 (SLC6A19) and imino acid (proline) transporter SIT1 (SLC6A20) are expressed at the luminal membrane of small intestine enterocytes and proximal tubule kidney cells where they exert key functions for amino acid (re)absorption as documented by their role in Hartnup disorder and iminoglycinuria, respectively. Expression of B(0)AT1 was shown in rodent intestine to depend on the presence of the carboxypeptidase angiotensin-converting enzyme 2 (ACE2). This enzyme belongs to the renin-angiotensin system and its expression is induced by treatment with ACE-inhibitors (ACEIs) or angiotensin II AT1 receptor blockers (ARBs) in many rodent tissues. We show here in the Xenopus laevis oocyte expression system that human ACE2 also functionally interacts with SIT1. To investigate in human intestine the potential effect of ACEIs or ARBs on ACE2, we analysed intestinal biopsies taken during routine gastroduodenoscopy and ileocolonoscopy from 46 patients of which 9 were under ACEI and 13 ARB treatment. Analysis of transcript expression by real-time PCR and of proteins by immunofluorescence showed a co-localization of SIT1 and B(0)AT1 with ACE2 in the brush-border membrane of human small intestine enterocytes and a distinct axial expression pattern of the tested gene products along the intestine. Patients treated with ACEIs displayed in comparison with untreated controls increased intestinal mRNA levels of ACE2, peptide transporter PEPT1 (SLC15A1) and AA transporters B(0)AT1 and PAT1 (SLC36A1). This study unravels in human intestine the localization and distribution of intestinal transporters involved in amino acid absorption and suggests that ACEIs impact on their expression.

  7. Saturated fatty acid intake can influence increase in plasminogen activator inhibitor-1 in obese adolescents.

    PubMed

    Masquio, D C L; de Piano, A; Campos, R M S; Sanches, P L; Corgosinho, F C; Carnier, J; Oyama, L M; do Nascimento, C M P O; de Mello, M T; Tufik, S; Dâmaso, A R

    2014-04-01

    The aim of this study was to verify if saturated fatty acid intake adjusted by tertiles can influence metabolic, inflammation, and plasminogen activator inhibitor-1 (PAI-1) in obese adolescents. Body mass, height, body mass index, waist circumference, blood pressure, and body composition of 108 obese adolescents were obtained. Fasting glucose, insulin, PAI-1, and CRP were determined. Insulin resistance was assessed by Homeostasis Model Assessment (HOMA-IR) and insulin sensitivity by Quantitative Insulin Sensitivity Check Index (QUICKI). Dietetic intake was estimated by a 3-day dietary record, and volunteers were divided according to consumption of saturated fatty acids: tertile 1 [Low Saturated Fatty Acid Intake (Low-SFA): ≤12.14 g], tertile 2 [Moderate Saturated Fatty Intake (Moderate SFA intake): 12.15-20.48 g], and tertile 3 [High Saturated Fatty Acid Intake (High-SFA Intake); >20.48 g]. Statistical analysis was performed using STATISTICA 7.0 software and the significance level was set at p<0.05. The most important finding in the present study is that Moderate and High-SFA intakes presented significantly higher values of PAI-1 than Low-SFA Intake. PAI-1 was positively associated with saturated fatty intake, waist circumference, mean blood pressure, and HOMA-IR. SFA intake was predictor of PAI-1 independent of body fat, HOMA-IR and total-cholesterol. In addition, PAI-1 was an independent predictor of blood pressure. HOMA-IR and QUICKI presented significantly higher and lower, respectively, in High-SFA compared to Moderate-SFA intake. High-SFA influenced cardiovascular disease risks, since it increased PAI-1 and insulin resistance, and decreased insulin sensibility, leading to vicious cycle among food ingestion, pro-thrombotic state, and cardiovascular risks in obese adolescents.

  8. Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy

    PubMed Central

    Munger, Joshua; Bennett, Bryson D; Parikh, Anuraag; Feng, Xiao-Jiang; McArdle, Jessica; Rabitz, Herschel A; Shenk, Thomas; Rabinowitz, Joshua D

    2010-01-01

    Viruses rely on the metabolic network of their cellular hosts to provide energy and building blocks for viral replication. We developed a flux measurement approach based on liquid chromatography–tandem mass spectrometry to quantify changes in metabolic activity induced by human cytomegalovirus (HCMV). This approach reliably elucidated fluxes in cultured mammalian cells by monitoring metabolome labeling kinetics after feeding cells 13C-labeled forms of glucose and glutamine. Infection with HCMV markedly upregulated flux through much of the central carbon metabolism, including glycolysis. Particularly notable increases occurred in flux through the tricarboxylic acid cycle and its efflux to the fatty acid biosynthesis pathway. Pharmacological inhibition of fatty acid biosynthesis suppressed the replication of both HCMV and influenza A, another enveloped virus. These results show that fatty acid synthesis is essential for the replication of two divergent enveloped viruses and that systems-level metabolic flux profiling can identify metabolic targets for antiviral therapy. PMID:18820684

  9. Dietary oleic acid increases m2 macrophages in the mesenteric adipose tissue.

    PubMed

    Camell, Christina; Smith, C Wayne

    2013-01-01

    Several studies have implicated fatty-acids as inflammatory regulators, suggesting that there may be a direct role for common dietary fatty-acids in regulating innate immune cells. In humans, a single high-fat meal increases systemic cytokines and leukocytes. In mice, short term high-fat feeding increases adipose tissue (AT) leukocytes and alters the inflammatory profile of AT macrophages. We have seen that short term high fat feeding to C57BL/6J male mice increases palmitic and oleic acid within AT depots, but oleic acid increase is highest in the mesenteric AT (MAT). In vitro, oleic acid increases M2 macrophage markers (CD206, MGL1, and ARG1) in a murine macrophage cell line, while addition of palmitic acid is able to inhibit that increase. Three day supplementation of a chow diet, with oleic acid, induced an increase in M2 macrophage markers in the MAT, but not in the epididymal AT. We tested whether increases in M2 macrophages occur during short term ad lib feeding of a high fat diet, containing oleic acid. Experiments revealed two distinct populations of macrophages were altered by a three day high milk-fat diet. One population, phenotypically intermediate for F4/80, showed diet-induced increases in CD206, an anti-inflammatory marker characteristic of M2 macrophages intrinsic to the AT. Evidence for a second population, phenotypically F4/80(HI)CD11b(HI) macrophages, showed increased association with the MAT following short term feeding that is dependent on the adhesion molecule, ICAM-1. Collectively, we have shown that short term feeding of a high-fat diet changes two population of macrophages, and that dietary oleic acid is responsible for increases in M2 macrophage polarization.

  10. Zoledronic acid in vivo increases in vitro proliferation of rat mesenchymal stromal cells

    PubMed Central

    Heino, Terhi J; Alm, Jessica J; Halkosaari, Heikki J; Välimäki, Ville-Valtteri

    2016-01-01

    Background and purpose Bisphosphonates are widely used in the treatment of bone loss, but they might also have positive effects on osteoblastic cells and bone formation. We evaluated the effect of in vivo zoledronic acid (ZA) treatment and possible concomitant effects of ZA and fracture on the ex vivo osteogenic capacity of rat mesenchymal stromal cells (MSCs). Methods A closed femoral fracture model was used in adult female rats and ZA was administered as a single bolus or as weekly doses up to 8 weeks. Bone marrow MSCs were isolated and cultured for in vitro analyses. Fracture healing was evaluated by radiography, micro-computed tomography (μCT), and histology. Results Both bolus and weekly ZA increased fracture-site bone mineral content and volume. MSCs from weekly ZA-treated animals showed increased ex vivo proliferative capacity, while no substantial effect on osteoblastic differentiation was observed. Fracture itself did not have any substantial effect on cell proliferation or differentiation at 8 weeks. Serum biochemical markers showed higher levels of bone formation in animals with fracture than in intact animals, while no difference in bone resorption was observed. Interestingly, ex vivo osteoblastic differentiation of MSCs was found to correlate with in vivo serum bone markers. Interpretation Our data show that in vivo zoledronic acid treatment can influence ex vivo proliferation of MSCs, indicating that bisphosphonates can have sustainable effects on cells of the osteoblastic lineage. Further research is needed to investigate the mechanisms. PMID:27196705

  11. Abscisic Acid Levels during Early Seed Development in Sechium edule Sw

    PubMed Central

    Vernieri, Paolo; Perata, Pierdomenico; Lorenzi, Roberto; Ceccarelli, Nello

    1989-01-01

    The time-course growth of single tissues in pollinated and unpollinated ovules of Sechium edule Sw. is described in relation to the endogenous levels of abscisic acid. Quantitation of abscisic acid (ABA) in the minute amounts of material obtained after ovule dissection has been performed by using a highly specific and sensitive solid-phase radioimmunoassay based on a monoclonal antibody raised against free (S)-ABA. While the absolute amount of ABA rises in both types of ovules, only in unpollinated ones does this leads to an increase in the hormone concentration. Infact in pollinated ovules the rapid growth following pollination prevents, through a dilution effect, the increase in ABA concentration. Growth patterns and endogenous ABA levels are similar for integuments and nucellus tissues either in pollinated or unpollinated ovules. It is suggested that the growth inhibition induced by the increase in ABA concentration after anthesis could be counteracted by the pollination triggered fast ovule growth. PMID:16667185

  12. Acetylsalicylic acid and ascorbic acid combination improves cognition; via antioxidant effect or increased expression of NMDARs and nAChRs?

    PubMed

    Kara, Yusuf; Doguc, Duygu Kumbul; Kulac, Esin; Gultekin, Fatih

    2014-05-01

    Chronic inflammation occurs systematically in the central nervous system during ageing, it has been shown that neuroinflammation plays an important role in the pathogenesis of many neurodegenerative disorders. Aspirin, a nonselective COX inhibitor, as well as ascorbic acid, has been purported to protect cerebral tissue. We investigated the effects of subchronic aspirin and ascorbic acid usage on spatial learning, oxidative stress and expressions of NR2A, NR2B, nAChRα7, α4 and β2. Forty male rats (16-18 months) were divided into 4 groups, namely, control, aspirin-treated, ascorbic acid-treated, aspirin+ascorbic acid-treated groups. Following 10-weeks administration period, rats were trained and tested in the Morris water maze. 8-Hydroxy-2-deoxyguanosine and malondialdehyde were evaluated by ELISA and HPLC, respectively. Receptor expressions were assessed by western blotting of hippocampi. Spatial learning performance improved partially in the aspirin group, but significant improvement was seen in the aspirin+ascorbic acid group (p < 0.05). While 8-hydroxy-2-deoxyguanosine and malondialdehyde levels were significantly decreased, NR2B and nAChRα7 expressions were significantly increased in the aspirin+ascorbic acid group as compared to the control group (p < 0.05). Subchronic treatment with aspirin+ascorbic acid in aged rats was shown to enhance cognitive performance and increase the expressions of several receptors related to learning and memory process.

  13. Oleic acid increases intestinal absorption of the BCRP/ABCG2 substrate, mitoxantrone, in mice.

    PubMed

    Aspenström-Fagerlund, Bitte; Tallkvist, Jonas; Ilbäck, Nils-Gunnar; Glynn, Anders W

    2015-09-02

    The efflux transporter breast cancer resistance protein (BCRP/ABCG2) decrease intestinal absorption of many food toxicants. Oleic acid increases absorption of the specific BCRP substrate mitoxantrone (MXR), and also BCRP gene expression in human intestinal Caco-2 cells, suggesting that oleic acid affect the BCRP function. Here, we investigated the effect of oleic acid on intestinal absorption of MXR in mice. Mice were orally dosed with 2.4g oleic acid/kg b.w. and 1mg MXR/kg b.w., and sacrificed 30, 60, 90 or 120min after exposure, or were exposed to 0.6, 2.4 or 4.8g oleic acid/kg b.w. and 1mg MXR/kg b.w., and sacrificed 90min after exposure. Mice were also treated with Ko143 together with MXR and sacrificed after 60min, as a positive control of BCRP-mediated effects on MXR absorption. Absorption of MXR increased after exposure to oleic acid at all doses, and also after exposure to Ko143. Intestinal BCRP gene expression tended to increase 120min after oleic acid exposure. Our results in mice demonstrate that oleic acid decreases BCRP-mediated efflux, causing increased intestinal MXR absorption in mice. These findings may have implications in humans, concomitantly exposed to oleic acid and food contaminants that, similarly as MXR, are substrates of BCRP.

  14. Playground Designs to Increase Physical Activity Levels during School Recess: A Systematic Review

    ERIC Educational Resources Information Center

    Escalante, Yolanda; García-Hermoso, Antonio; Backx, Karianne; Saavedra, Jose M.

    2014-01-01

    School recess provides a major opportunity to increase children's physical activity levels. Various studies have described strategies to increase levels of physical activity. The purpose of this systematic review is therefore to examine the interventions proposed as forms of increasing children's physical activity levels during recess. A…

  15. n-3 fatty acids effectively improve the reference memory-related learning ability associated with increased brain docosahexaenoic acid-derived docosanoids in aged rats.

    PubMed

    Hashimoto, Michio; Katakura, Masanori; Tanabe, Yoko; Al Mamun, Abdullah; Inoue, Takayuki; Hossain, Shahdat; Arita, Makoto; Shido, Osamu

    2015-02-01

    We investigated whether a highly purified eicosapentaenoic acid (EPA) and a concentrated n-3 fatty acid formulation (prescription TAK-085) containing EPA and docosahexaenoic acid (DHA) ethyl ester could improve the learning ability of aged rats and whether this specific outcome had any relation with the brain levels of EPA-derived eicosanoids and DHA-derived docosanoids. The rats were tested for reference memory errors (RMEs) and working memory errors (WMEs) in an eight-arm radial maze. Fatty acid compositions were analyzed by GC, whereas brain eicosanoid/docosanoids were measured by LC-ESI-MS-MS-based analysis. The levels of lipid peroxides (LPOs) were measured by thiobarbituric acid reactive substances. The administration of TAK-085 at 300 mg·kg⁻¹day⁻¹ for 17 weeks reduced the number of RMEs in aged rats compared with that in the control rats. Both TAK-085 and EPA administration increased plasma EPA and DHA levels in aged rats, with concurrent increases in DHA and decreases in arachidonic acid in the corticohippocampal brain tissues. TAK-085 administration significantly increased the formation of EPA-derived 5-HETE and DHA-derived 7-, 10-, and 17-HDoHE, PD1, RvD1, and RvD2. ARA-derived PGE2, PGD2, and PGF2α significantly decreased in TAK-085-treated rats. DHA-derived mediators demonstrated a significantly negative correlation with the number of RMEs, whereas EPA-derived mediators did not exhibit any relationship. Furthermore, compared with the control rats, the levels of LPO in the plasma, cerebral cortex, and hippocampus were significantly reduced in TAK-085-treated rats. The findings of the present study suggest that long-term EPA+DHA administration may be a possible preventative strategy against age-related cognitive decline.

  16. [Evaluation of the possibilities to increase the content of conjugated linoleic acid (CLA) in meat and meat product].

    PubMed

    Piotrowska, Anna; Swiader, Katarzyna; Waszkiewicz-Robak, Bozena; Swiderski, Franciszek

    2012-01-01

    The paper characterizes pro-health properties of conjugated linoleic acid (CLA) and assesses the possibility of increasing their content in pork and pork meat products. Studies conducted on animals indicate antitumor, antiatherosclerotic and antiinflammatory effect ofCLA, also find impact on reducing body fat and increasing muscle growth. However, the number of observations concerning human populations is insufficient to fully evaluate the relationship between CLA intake and reducing the risk of lifestyle diseases. Therefore, it is necessary to conduct further research. Literature data indicate that the use in pigs feed suplementation with CLA preparations, can increase the content of these compounds in the meat and also show, that isomer cis-9, trans-11 is accumulated at significantly higher level. However, these changes were accompanied by increased the share of saturated fatty acids at the expense of monounsaturated which is unfavorable for human health. A better way to increase the CLA content in pork meat appears to be the addition of CLA preparation during the production process, because it does not affect the level of saturated fats. Pork and pork meat products enriched in CLA are characterized by low susceptibility to oxidation, which may result from the coupling of double bonds, antioxidantive properties of conjugated linoleic acid and the increased content of saturated fatty acids. The issue of beneficial effects on human health of pork and pork products with a higher content of CLA, requires further studies conducted on humans. Only then these products can be classified as a functional foods.

  17. Eicosapentaenoic acid increases cytochrome P-450 2J2 gene expression and epoxyeicosatrienoic acid production via peroxisome proliferator-activated receptor γ in endothelial cells.

    PubMed

    Wang, Dahai; Hirase, Tetsuaki; Nitto, Takeaki; Soma, Masaaki; Node, Koichi

    2009-12-01

    ω-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have beneficial effects on cardiovascular diseases. Cytochrome P-450 (CYP) 2J2 that is expressed in endothelial cells metabolizes arachidonic acids to biologically active epoxyeicosatrienoic acids (EETs) that possess anti-inflammatory and anti-thrombotic effects. We studied the effects of EPA and DHA on the expression of CYP 2J2 mRNA by reverse transcription-polymerase chain reaction in cultured human umbilical vein endothelial cells and found that EPA, but not DHA, increased the expression of CYP 2J2 mRNA in a dose-dependent and a time-dependent manner. EPA-induced CYP 2J2 expression was significantly inhibited by pretreatment with a peroxisome proliferator-activated receptor (PPAR) γ antagonist, GW9662. EPA, but not DHA, caused a significant increase in cellular levels of 11,12-dihydroxyeicosatrienoic acid that is a stable metabolite of 11,12-EET, which was blocked by pretreatment with GW9662. These data demonstrate that EPA increases CYP 2J2 mRNA expression and 11,12-EET production via PPARγ in endothelial cells and indicate a novel protective role of EPA and PPARγ against vascular inflammation.

  18. Low irradiances affect abscisic acid, indole-3-acidic acid, and cytokinin levels of wheat (Triticum aestivum L.) tissues

    NASA Technical Reports Server (NTRS)

    Nan, R.; Carman, J. G.; Salisbury, F. B.

    1999-01-01

    Wheat (Triticum aestivum L.) plants were grown under four irradiance levels: 1,400, 400, 200, and 100 micromol m-2 s-1. Leaves and roots were sampled before, during, and after the boot stage, and levels of abscisic acid (ABA), indole-3-acetic acid (IAA), zeatin, zeatin riboside, dihydrozeatin, dihydrozeatin riboside, isopentenyl adenine, and isopentenyl adenosine were quantified using noncompetitive indirect ELISA systems. Levels of IAA in leaves and roots of plants exposed to 100 micromol m-2 s-1 of irradiance were 0.7 and 2.9 micromol kg-1 dry mass (DM), respectively. These levels were 0.2 and 1.0 micromol kg-1 DM, respectively, when plants were exposed to 1,400 micromol m-2 s-1. Levels of ABA in leaves and roots of plants exposed to 100 micromol m-2 s-1 were 0.65 and 0.55 micromol kg-1 DM, respectively. They were 0.24 micromol kg-1 DM (both leaves and roots) when plants were exposed to 1,400 micromol m-2 s-1. Levels of isopentenyl adenosine in leaves (24.3 nmol kg-1 DM) and roots (29.9 nmol kg-1 DM) were not affected by differences in the irradiance regime. Similar values were obtained in a second experiment. Other cytokinins could not be detected (<10 nmol kg 1 DM) in either experiment with the sample sizes used (150-600 mg DM for roots and shoots, respectively).

  19. Influence of age, dietary cholic acid, and calcium levels on performance, utilization of free fatty acids, and bone mineralization in broilers.

    PubMed

    Atteh, J O; Leeson, S

    1985-10-01

    The effects of age on the utilization of dietary palmitic or a 50/50 mixture of palmitic and oleic acid at the 8% inclusion level in the absence or presence of .2% cholic acid and also in the presence of low (.8%) or high (1.2%) calcium were investigated using broiler chicks from 1 to 56 days of age. Significant interactions (P less than .01) were observed between the type of fatty acid supplemented and the presence or absence of cholic acid on weight gain and feed efficiency. Supplementing diets with a mixture of equal weights of palmitic and oleic acid, reduced feed intake relative to control diets and diets supplemented with palmitic acid alone. There was an interaction between the age of the bird and the type of fatty acid supplemented on fat retention and metabolizable energy (ME) of diets (P less than .01). There was also a significant interaction between the type of fatty acid supplemented and the addition of cholic acid on fat retention and ME of diets. While cholic acid reduced soap formation during the process of digestion (P less than .05), increasing dietary calcium level increased the proportion of the digesta fat that was present as soap (P less than .01). The proportion of digesta and excreta fat, present as soap, depended on the type of fatty acid supplemented. The addition of free fatty acids to broiler diets resulted in a decrease in bone ash and bone calcium content relative to those birds fed the control diet. It is concluded that the ability of broilers to utilize dietary free fatty acids depends on the age at which they are fed, although in all cases supplemental cholic acid enhances fatty acid utilization.

  20. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation.

    PubMed

    Sawada, Kazutaka; Kitagaki, Hiroshi

    2016-01-01

    Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus). Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation.

  1. Camelina meal increases egg n-3 fatty acid content without altering quality or production in laying hens.

    PubMed

    Kakani, Radhika; Fowler, Justin; Haq, Akram-Ul; Murphy, Eric J; Rosenberger, Thad A; Berhow, Mark; Bailey, Christopher A

    2012-05-01

    Camelina sativa is an oilseed plant rich in n-3 and n-6 fatty acids and extruding the seeds results in high protein meal (*40%) containing high levels of n-3 fatty acids. In this study, we examined the effects of feeding extruded defatted camelina meal to commercial laying hens, measuring egg production, quality, and fatty acid composition. Lohmann White Leghorn hens (29 weeks old) were randomly allocated to three dietary treatment groups (n = 25 per group) and data was collected over a 12 week production period. All the treatment groups were fed a corn soy based experimental diet containing 0% (control), 5, or 10% extruded camelina meal. We found no significant differences in percent hen-day egg production and feed consumed per dozen eggs. Egg shell strength was significantly higher in both camelina groups compared to the controls. Egg total n-3 fatty acid content increased 1.9- and 2.7-fold in 5 and 10% camelina groups respectively relative to the control. A similar increase in DHA content also occurred. Further camelina meal did not alter glucosinolate levels and no detectable glucosinolates or metabolic product isothiocyanates were found in the eggs from either the 5 or 10% camelina groups. These results indicate that camelina meal is a viable dietary source of n-3 fatty acids for poultry and its dietary inclusion results in eggs enriched with n-3 fatty acids.

  2. Alterations of amino Acid level in depressed rat brain.

    PubMed

    Yang, Pei; Li, Xuechun; Ni, Jian; Tian, Jingchen; Jing, Fu; Qu, Changhai; Lin, Longfei; Zhang, Hui

    2014-10-01

    Amino-acid neurotransmitter system dysfunction plays a major role in the pathophysiology of depression. Several studies have demonstrated the potential of amino acids as a source of neuro-specific biomarkers could be used in future diagnosis of depression. Only partial amino acids such as glycine and asparagine were determined from certain parts of rats' brain included hippocampi and cerebral cortex in previous studies. However, according to systematic biology, amino acids in different area of brain are interacted and interrelated. Hence, the determination of 34 amino acids through entire rats' brain was conducted in this study in order to demonstrate more possibilities for biomarkers of depression by discovering other potential amino acids in more areas of rats' brain. As a result, 4 amino acids (L-aspartic acid, L-glutamine, taurine and γ-amino-n-butyric acid) among 34 were typically identified as potentially primary biomarkers of depression by data statistics. Meanwhile, an antidepressant called Fluoxetine was employed to verify other potential amino acids which were not identified by data statistics. Eventually, we found L-α-amino-adipic acid could also become a new potentially secondary biomarker of depression after drug validation. In conclusion, we suggested that L-aspartic acid, L-glutamine, taurine, γ-amino-n-butyric acid and L-α-amino-adipic acid might become potential biomarkers for future diagnosis of depression and development of antidepressant.

  3. Absolute identification of muramic acid, at trace levels, in human septic synovial fluids in vivo and absence in aseptic fluids.

    PubMed

    Fox, A; Fox, K; Christensson, B; Harrelson, D; Krahmer, M

    1996-09-01

    This is the first report of a study employing the state-of-the-art technique of gas chromatography-tandem mass spectrometry for absolute identification of muramic acid (a marker for peptidoglycan) at trace levels in a human or animal body fluid or tissue. Daughter mass spectra of synovial fluid muramic acid peaks (> or = 30 ng/ml) were identical to those of pure muramic acid. Absolute chemical identification at this level represents a 1,000-fold increase in sensitivity over previous gas chromatography-mass spectrometry identifications. Muramic acid was positively identified in synovial fluids during infection and was eliminated over time but was absent from aseptic fluids.

  4. Effects of copper on chlorophyll, proline, protein and abscisic acid level of sunflower (Helianthus annuus L.) seedlings.

    PubMed

    Zengin, Fikriye Kirbag; Kirbag, Sevda

    2007-07-01

    The effect of copperchloride (CuCl2) on the level of chlorophyll (a+b), proline, protein and abscisic acid in sunflower (Helianthus annuus L.) seedlings were investigated Control and copper treated (0.4, 0.5 and 0.6 mM) seedlings were grown for ten days in Hoagland solution. Abscisic acid content was determined in root, shoot and leaf tissues of seedlings by HPLC. Copper stress caused significant increase of the abscisic acid contents in roots, shoots and leaves of seedlings. The increase was dependent on the copper salt concentration. Enhanced accumulation of proline in the leaves of seedlings exposed to copper was determined, as well as a decrease of chlorophyll (a+b) and total protein (p < 0.05 or p < 0.01). It was observed that the level of chlorophyll (a+b) and total protein (p < 0.05 or p < 0.01) remarkably decreased as copper concentration increased to 0.6 mM, although the levels of proline and abscisic acid in the leaves of plants were increased--a dose-depended behavior The same trends were also observed with the level of abscisic acid of stems and roots. Copper has dose- depended effects on chlorophyll, proline, protein and abscisic acid level of sunflower (Helianthus annuus L.) seedlings. Thus, we assumed that copper levels increase above some critical points seedling growth get negative effects. This assumption is in line with previous findings.

  5. Acute supplementation of amino acids increases net protein accretion in IUGR fetal sheep.

    PubMed

    Brown, Laura D; Rozance, Paul J; Thorn, Stephanie R; Friedman, Jacob E; Hay, William W

    2012-08-01

    Placental insufficiency decreases fetal amino acid uptake from the placenta, plasma insulin concentrations, and protein accretion, thus compromising normal fetal growth trajectory. We tested whether acute supplementation of amino acids or insulin into the fetus with intrauterine growth restriction (IUGR) would increase net fetal protein accretion rates. Late-gestation IUGR and control (CON) fetal sheep received acute, 3-h infusions of amino acids (with euinsulinemia), insulin (with euglycemia and euaminoacidemia), or saline. Fetal leucine metabolism was measured under steady-state conditions followed by a fetal muscle biopsy to quantify insulin signaling. In CON, increasing amino acid delivery rates to the fetus by 100% increased leucine oxidation rates by 100%. In IUGR, amino acid infusion completely suppressed fetal protein breakdown rates but increased leucine oxidation rate by only 25%, resulting in increased protein accretion rates by 150%. Acute insulin infusion, however, had very little effect on amino acid delivery rates, fetal leucine disposal rates, or fetal protein accretion rates in CON or IUGR fetuses despite robust signaling of the fetal skeletal muscle insulin-signaling cascade. These results indicate that, when amino acids are given directly into the fetal circulation independently of changes in insulin concentrations, IUGR fetal sheep have suppressed protein breakdown rates, thus increasing net fetal protein accretion.

  6. Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage.

    PubMed

    Zhu, Yuyan; Yu, Jie; Brecht, Jeffrey K; Jiang, Tianjia; Zheng, Xiaolin

    2016-01-01

    Kiwifruit (Actinidia deliciosa cv. Bruno) fruits were sprayed with 5mM oxalic acid (OA) at 130, 137, and 144 days after full blossom, and then harvested at commercial maturity [soluble solid content (SSC) around 10.0%] and stored at room temperature (20 ± 1 °C). Pre-harvest application of OA led to fruit with higher ascorbic acid content at harvest, slowed the decreases in fruit firmness and ascorbic acid content and increase in SSC during storage, and also decreased the natural disease incidence, lesion diameter, and patulin accumulation in fruit inoculated with Penicillium expansum, indicating that the OA treatment increased quality and induced disease resistance in kiwifruit. It was suggested that the increase in activities of defense-related enzymes and in levels of substances related to disease resistance might collectively contribute to resistance in kiwifruit against fungi such as P. expansum in storage.

  7. Messenger ribonucleic acid levels in disrupted human anterior cruciate ligaments.

    PubMed

    Lo, Ian K Y; Marchuk, Linda; Hart, David A; Frank, Cyril B

    2003-02-01

    Thirty patients had anterior cruciate ligament reconstruction for ongoing instability. Two groups were defined according to gross morphologic features identified during reconstruction: anterior cruciate ligament disruptions with scars attached to a structure in the joint and disruptions without reattachments. Reverse transcription polymerase chain reaction for a subset of extracellular matrix molecules, proteinases, and proteinase inhibitors was done on samples of scarred anterior cruciate ligament tissue removed during reconstructive surgery. Results of the nonattached scar group showed significantly increased mRNA levels for Type I collagen, and an increased Type I to Type III collagen ratio compared with that for the attached scar group. In the first year after injury, decorin mRNA levels in the nonattached scar group also were significantly higher than in the attached scar group. Biglycan mRNA levels in the nonattached scar group correlated closely with Type I collagen mRNA levels. These results suggest differences in cellular expression in torn anterior cruciate ligaments that attach to structures in the joint versus those which do not. Although the molecular mechanisms responsible for these differences have not been delineated, different molecular signals may influence the gross morphologic features of anterior cruciate ligament disruptions or alternatively, differing gross morphologic features may be subject to different mechanical loads leading to altered molecular expression. However, the finding of endogenous cellular activity in injured anterior cruciate ligaments raises the possibility that this activity may be enhanced to improve outcomes.

  8. Serum uric acid levels during leprosy reaction episodes

    PubMed Central

    Alves-Junior, Eduardo R.; Arruda, Talita A.; Lopes, Jose C.; Fontes, Cor J.F.

    2016-01-01

    Background. Leprosy reactions are acute inflammatory episodes that occur mainly in the multibacillary forms of the disease. The reactions are classified as type 1 (reverse reaction) or type 2 (erythema nodosum leprosum). Leprosy-associated oxidative stress has been widely demonstrated. Several recent studies have shown uric acid (UA) to have antioxidative effects under pathologic conditions. The objective of this study was to assess serum levels of UA in patients with leprosy reactions, with the aim of monitoring their levels before and after treatment, compared with levels in leprosy patients without reactions. Methods. The study included patients aged 18–69 years assisted at a leprosy treatment reference center in the Central Region of Brazil. Patients who were pregnant; were using immunosuppressant drugs or immunobiologicals; or had an autoimmune disease, human immunodeficiency virus infection, acquired immune deficiency syndrome, or tuberculosis were excluded. Upon recruitment, all individuals were clinically assessed for skin lesions and neural or systemic impairment. Some patients had already completed treatment for leprosy, while others were still undergoing treatment or had initiated treatment after being admitted. The treatment of the reactional episode was started only after the initial evaluation. Laboratory assessments were performed upon admission (baseline) and at approximately 30 and 60 days (time points 1 and 2, respectively). Results. A total of 123 leprosy patients were recruited between June 2012 and June 2015; among them, 56, 42, and 25 presented with type 1, type 2, and no reactions, respectively. Serum UA levels were significantly reduced in patients with type 2 leprosy reactions compared with patients in the control group and remained lower in the two subsequent assessments, after initiation of anti-reaction treatments, with similar values to those recorded before the treatment. Discussion. The decreased serum UA levels in patients with

  9. Dietary oleic acid increases M2 macrophages in the mesenteric adipose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several studies have implicated fatty-acids as inflammatory regulators, suggesting that there may be a direct role for common dietary fatty-acids in regulating innate immune cells. In humans, a single high-fat meal increases systemic cytokines and leukocytes. In mice, short term high-fat feeding in...

  10. Exogenous t-PA Administration Increases Hippocampal Mature BDNF Levels. Plasmin- or NMDA-Dependent Mechanism?

    PubMed Central

    Rodier, Marion; Prigent-Tessier, Anne; Béjot, Yannick; Jacquin, Agnès; Mossiat, Claude; Marie, Christine; Garnier, Philippe

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) through TrkB activation is central for brain functioning. Since the demonstration that plasmin is able to process pro-BDNF to mature BDNF and that these two forms have opposite effects on neuronal survival and plasticity, a particular attention has been paid to the link between tissue plasminogen activator (tPA)/plasmin system and BDNF metabolism. However, t-PA via its action on different N-methyl-D-aspartate (NMDA) receptor subunits is also considered as a neuromodulator of glutamatergic transmission. In this context, the aim of our study was to investigate the effect of recombinant (r)t-PA administration on brain BDNF metabolism in rats. In the hippocampus, we found that rt-PA (10 mg/kg) administration induced a progressive increase in mature BDNF levels associated with TrkB activation. In order to delineate the mechanistic involved, plasmin activity was assessed and its inhibition was attempted using tranexamic acid (30 or 300 mg/kg, i.v.) while NMDA receptors were antagonized with MK801 (0.3 or 3 mg/kg, i.p.) in combination with rt-PA treatment. Our results showed that despite a rise in rt-PA activity, rt-PA administration failed to increase hippocampal plasmin activity suggesting that the plasminogen/plasmin system is not involved whereas MK801 abrogated the augmentation in mature BDNF levels observed after rt-PA administration. All together, our results show that rt-PA administration induces increase in hippocampal mature BDNF expression and suggests that rt-PA contributes to the control of brain BDNF synthesis through a plasmin-independent potentiation of NMDA receptors signaling. PMID:24670989

  11. Exogenous t-PA administration increases hippocampal mature BDNF levels. plasmin- or NMDA-dependent mechanism?

    PubMed

    Rodier, Marion; Prigent-Tessier, Anne; Béjot, Yannick; Jacquin, Agnès; Mossiat, Claude; Marie, Christine; Garnier, Philippe

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) through TrkB activation is central for brain functioning. Since the demonstration that plasmin is able to process pro-BDNF to mature BDNF and that these two forms have opposite effects on neuronal survival and plasticity, a particular attention has been paid to the link between tissue plasminogen activator (tPA)/plasmin system and BDNF metabolism. However, t-PA via its action on different N-methyl-D-aspartate (NMDA) receptor subunits is also considered as a neuromodulator of glutamatergic transmission. In this context, the aim of our study was to investigate the effect of recombinant (r)t-PA administration on brain BDNF metabolism in rats. In the hippocampus, we found that rt-PA (10 mg/kg) administration induced a progressive increase in mature BDNF levels associated with TrkB activation. In order to delineate the mechanistic involved, plasmin activity was assessed and its inhibition was attempted using tranexamic acid (30 or 300 mg/kg, i.v.) while NMDA receptors were antagonized with MK801 (0.3 or 3 mg/kg, i.p.) in combination with rt-PA treatment. Our results showed that despite a rise in rt-PA activity, rt-PA administration failed to increase hippocampal plasmin activity suggesting that the plasminogen/plasmin system is not involved whereas MK801 abrogated the augmentation in mature BDNF levels observed after rt-PA administration. All together, our results show that rt-PA administration induces increase in hippocampal mature BDNF expression and suggests that rt-PA contributes to the control of brain BDNF synthesis through a plasmin-independent potentiation of NMDA receptors signaling.

  12. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids.

    PubMed

    Zhang, Lizhi; Garneau, Matthew G; Majumdar, Rajtilak; Grant, Jan; Tegeder, Mechthild

    2015-01-01

    The development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic-active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.), source to sink partitioning of amino acids requires at least two active transport events mediated by plasma membrane-localized proteins, and these are: (i) amino acid phloem loading; and (ii) import of amino acids into the seed cotyledons via epidermal transfer cells. As each of these transport steps might potentially be limiting to efficient nitrogen delivery to the pea embryo, we manipulated both simultaneously. Additional copies of the pea amino acid permease PsAAP1 were introduced into the pea genome and expression of the transporter was targeted to the sieve element-companion cell complexes of the leaf phloem and to the epidermis of the seed cotyledons. The transgenic pea plants showed increased phloem loading and embryo loading of amino acids resulting in improved long distance transport of nitrogen, sink development and seed protein accumulation. Analyses of root and leaf tissues further revealed that genetic manipulation positively affected root nitrogen uptake, as well as primary source and sink metabolism. Overall, the results suggest that amino acid phloem loading exerts regulatory control over pea biomass production and seed yield, and that import of amino acids into the cotyledons limits seed protein levels.

  13. Increased von Willebrand factor levels in patients with systemic lupus erythematosus reflect inflammation rather than increased propensity for platelet activation

    PubMed Central

    Raymond, Warren D; Eilertsen, Gro Østli

    2016-01-01

    Background von Willebrand factor (VWF) is involved in platelet plug formation and protein transport. Increased VWF levels in systemic lupus erythematous (SLE) are considered risk factors for vascular events. VWF protein levels, however, do not accurately reflect its platelet-aggregating function, which has not been examined in SLE. Methods Cross-sectional study with clinical and laboratory data obtained in patients with SLE (n=92) from a regional lupus registry. VWF function was determined by ristocetin-induced platelet aggregation (VWF ristocetin cofactor, VWF:RCo) and VWF levels by turbidimetric assay (VWF antigen, VWF:Ag). The platelet-aggregating activity per VWF unit was estimated by the VWF RCo/Ag ratio. Healthy controls served as comparators and associations were evaluated by non-parametric methods. Results VWF:Ag (142% vs 107%, p=0.001) and VWF:RCo levels (123% vs 78%, p<0.041) were increased in patients with SLE, but VWF RCo/Ag ratio was similar as in controls (0.83 vs 0.82, p=0.8). VWF:Ag levels were higher in patients experiencing serositis but unrelated to other manifestations, thrombotic disease, Systemic Lupus Erythematous Disease Activity Index 2000 or Systemic Lupus International Collaborative Clinics-Damage Index. VWF:Ag levels correlated significantly with VWF:RCo levels (Rs 0.8, p<0.001), erythrocyte sedimentation rate (ESR) (Rs 0.32, p<0.01), anti-dsDNA Ab (Rs 0.27, p<0.01), total IgG (Rs 0.33 p<0.01), fibrinogen (Rs 0.28, p<0.01) and ceruloplasmin (Rs 0.367, p<0.01) levels. VWF:RCo levels were not related to clinical findings but were correlated with ESR, anti-dsDNA and transferrin levels. No serological associations existed for VWF RCo/Ag ratio (all p>0.2). Conclusions In this SLE cohort, VWF:Ag behaved similarly to acute-phase reactants, but VWF:Ag increases were not matched by increases in functional activity per unit of VWF. Thus, more VWF did not increase the propensity for platelet aggregation in SLE. PMID:27651919

  14. Goat milk fat naturally enriched with conjugated linoleic acid increased lipoproteins and reduced triacylglycerol in rats.

    PubMed

    Rodrigues, Raphaela; Soares, Juliana; Garcia, Hugo; Nascimento, Claudenice; Medeiros, Maria; Bomfim, Marco; Medeiros, Maria Carmo; Queiroga, Rita

    2014-03-24

    Goat milk is source of different lipids, including conjugated linoleic acid (CLA). CLA reduces body fat and protect against cardiovascular diseases. In the present study fat from goat milk naturally enriched with CLA was used. Male Wistar rats were divided into three groups that received during a 10 week diet with different lipid sources: soybean oil (CON), coconut oil (CO) and goat milk fat naturally enriched with CLA (GM-CLA). We evaluated the effects of a GM-CLA on biochemistry parameters--high density lipoprotein (HDL), triacylglycerol (TAG), TAG/HDL ratio, total cholesterol and glucose, body weight and histopathological aspects of the intestine and liver. GM-CLA increased body weight from the second to the fifth week of the experiment compared to CON. Feed intake differed between the CON group and GM-CLA early in the first to third week of the experiments and later between the ninth and tenth week. The CLA-diet group showed increased levels of HDL, reduced levels of TAG and TAG/HDL ratio and no effect on LDL, but enhanced total cholesterol. Serum glucose of the GM-CLA group showed no difference from the control group. Thus, a GM-CLA diet promoted growth in young rats and acted as protector of cardiovascular function, but further studies are still needed to clarify these effects.

  15. Increased presence of monounsaturated fatty acids in the stratum corneum of human skin equivalents.

    PubMed

    Thakoersing, Varsha S; van Smeden, Jeroen; Mulder, Aat A; Vreeken, Rob J; El Ghalbzouri, Abdoelwaheb; Bouwstra, Joke A

    2013-01-01

    Previous results showed that our in-house human skin equivalents (HSEs) differ in their stratum corneum (SC) lipid organization compared with human SC. To elucidate the cause of the altered SC lipid organization in the HSEs, a recently developed liquid chromatography/mass spectrometry method was used to study the free fatty acid (FFA) and ceramide composition in detail. In addition, the SC lipid composition of the HSEs and human skin was examined quantitatively with high-performance thin-layer chromatography. Our results reveal that all our HSEs have an increased presence of monounsaturated FFAs compared with human SC. Moreover, the HSEs display the presence of ceramide species with a monounsaturated acyl chain, which are not detected in human SC. All HSEs also exhibit an altered expression of stearoyl-CoA desaturase, the enzyme that converts saturated FFAs to monounsaturated FFAs. Furthermore, the HSEs show the presence of 12 ceramide subclasses, similar to native human SC. However, the HSEs have increased levels of ceramides EOS and EOH and ceramide species with short total carbon chains and a reduced FFA level compared with human SC. The presence of unsaturated lipid chains in HSE offers new opportunities to mimic the lipid properties of human SC more closely.

  16. Not all cases of neural-tube defect can be prevented by increasing the intake of folic acid.

    PubMed

    Heseker, Helmut B; Mason, Joel B; Selhub, Jacob; Rosenberg, Irwin H; Jacques, Paul F

    2009-07-01

    Some countries have introduced mandatory folic acid fortification, whereas others support periconceptional supplementation of women in childbearing age. Several European countries are considering whether to adopt a fortification policy. Projections of the possible beneficial effects of increased folic acid intake assume that the measure will result in a considerable reduction in neural-tube defects (NTD) in the target population. Therefore, the objective of the present study is to evaluate the beneficial effects of different levels of folic acid administration on the prevalence of NTD. Countries with mandatory fortification achieved a significant increase in folate intake and a significant decline in the prevalence of NTD. This was also true for supplementation trials. However, the prevalence of NTD at birth declined to approximately five cases at birth per 10 000 births and seven to eight cases at birth or abortion per 10 000 births. This decline was independent of the amount of folic acid administered and apparently reveals a 'floor effect' for folic acid-preventable NTD. This clearly shows that not all cases of NTD are preventable by increasing the folate intake. The relative decline depends on the initial NTD rate. Countries with NTD prevalence close to the observed floor may have much smaller reductions in NTD rates with folic acid fortification. Additionally, potential adverse effects of fortification on other vulnerable population groups have to be seriously considered. Policy decisions concerning national mandatory fortification programmes must take into account realistically projected benefits as well as the evidence of risks to all vulnerable groups.

  17. Acetic acid vapor levels associated with facial prosthetics

    SciTech Connect

    McElroy, T.H.; Guerra, O.N.; Lee, S.A.

    1985-01-01

    The use of Silastic Medical Adhesive Type A in the fabrication of facial prostheses may cause health hazards to the patient and the operator because of acetic acid emissions. Caution must be exercised to remove acetic acid vapors from the air and unliberated acetic acid from material applied directly to the skin.

  18. GSF2 deletion increases lactic acid production by alleviating glucose repression in Saccharomyces cerevisiae

    PubMed Central

    Baek, Seung-Ho; Kwon, Eunice Y.; Kim, Seon-Young; Hahn, Ji-Sook

    2016-01-01

    Improving lactic acid (LA) tolerance is important for cost-effective microbial production of LA under acidic fermentation conditions. Previously, we generated LA-tolerant D-LA-producing S. cerevisiae strain JHY5310 by laboratory adaptive evolution of JHY5210. In this study, we performed whole genome sequencing of JHY5310, identifying four loss-of-function mutations in GSF2, SYN8, STM1, and SIF2 genes, which are responsible for the LA tolerance of JHY5310. Among the mutations, a nonsense mutation in GSF2 was identified as the major contributor to the improved LA tolerance and LA production in JHY5310. Deletion of GSF2 in the parental strain JHY5210 significantly improved glucose uptake and D-LA production levels, while derepressing glucose-repressed genes including genes involved in the respiratory pathway. Therefore, more efficient generation of ATP and NAD+ via respiration might rescue the growth defects of the LA-producing strain, where ATP depletion through extensive export of lactate and proton is one of major reasons for the impaired growth. Accordingly, alleviation of glucose repression by deleting MIG1 or HXK2 in JHY5210 also improved D-LA production. GSF2 deletion could be applied to various bioprocesses where increasing biomass yield or respiratory flux is desirable. PMID:27708428

  19. Rehabilitating acid soils for increasing crop productivity through low-cost liming material.

    PubMed

    Bhat, Javid Ahmad; Kundu, Manik Chandra; Hazra, Gora Chand; Santra, Gour Hari; Mandal, Biswapati

    2010-09-15

    Productivity of red and lateritic soils is low because of their acidity and deficiencies in few essential nutrients viz., nitrogen, phosphorus, calcium, zinc, boron, molybdenum etc. We compared the effectiveness of basic slag, a low-cost liming material, with that of calcite as an ameliorant for these soils using mustard followed by rice as test crops. Experiments were conducted with three levels of each of basic slag and calcite along with a control on farmers' fields at 14 different locations. Influence of farmyard manure (FYM) and poultry manure (PM) on the effectiveness of the slag was also tested. On an average, basic slag performed better than calcite in increasing yields of both mustard and rice and left over higher amounts of available Ca, Si and Zn in residual soils. The slag also improved N, P, K and Ca nutrition of mustard and Si and Zn nutrition of rice with a favorable benefit:cost (B:C) ratio over the calcite (4.82 vs. 1.44). Effectiveness of the basic slag improved when it was applied in combination with FYM or PM (B:C, 5.83 and 6.27). Basic slag can, therefore, be advocated for use in the acidic red and lateritic soils for economically improving their productivity.

  20. Copper uptake is required for pyrrolidine dithiocarbamate-mediated oxidation and protein level increase of p53 in cells.

    PubMed Central

    Furuta, Saori; Ortiz, Fausto; Zhu Sun, Xiu; Wu, Hsiao-Huei; Mason, Andrew; Momand, Jamil

    2002-01-01

    The p53 tumour-suppressor protein is a transcription factor that activates the expression of genes involved in cell cycle arrest, apoptosis and DNA repair. The p53 protein is vulnerable to oxidation at cysteine thiol groups. The metal-chelating dithiocarbamates, pyrrolidine dithiocarbamate (PDTC), diethyldithiocarbamate, ethylene(bis)dithiocarbamate and H(2)O(2) were tested for their oxidative effects on p53 in cultured human breast cancer cells. Only PDTC oxidized p53, although all oxidants tested increased the p53 level. Inductively coupled plasma MS analysis indicated that the addition of 60 microM PDTC increased the cellular copper concentration by 4-fold, which was the highest level of copper accumulated amongst all the oxidants tested. Bathocuproinedisulphonic acid, a membrane-impermeable Cu(I) chelator inhibited the PDTC-mediated copper accumulation. Bathocuproinedisulphonic acid as well as the hydroxyl radical scavenger d-mannitol inhibited the PDTC-dependent increase in p53 protein and oxidation. Our results show that a low level of copper accumulation in the range of 25-40 microg/g of cellular protein increases the steady-state levels of p53. At copper accumulation levels higher than 60 microg/g of cellular protein, p53 is oxidized. These results suggest that p53 is vulnerable to free radical-mediated oxidation at cysteine residues. PMID:11964141

  1. A Phospholipid-Protein Complex from Antarctic Krill Reduced Plasma Homocysteine Levels and Increased Plasma Trimethylamine-N-Oxide (TMAO) and Carnitine Levels in Male Wistar Rats

    PubMed Central

    Bjørndal, Bodil; Ramsvik, Marie S.; Lindquist, Carine; Nordrehaug, Jan E.; Bruheim, Inge; Svardal, Asbjørn; Nygård, Ottar; Berge, Rolf K.

    2015-01-01

    Seafood is assumed to be beneficial for cardiovascular health, mainly based on plasma lipid lowering and anti-inflammatory effects of n-3 polyunsaturated fatty acids. However, other plasma risk factors linked to cardiovascular disease are less studied. This study aimed to penetrate the effect of a phospholipid-protein complex (PPC) from Antarctic krill on one-carbon metabolism and production of trimethylamine-N-oxide (TMAO) in rats. Male Wistar rats were fed isoenergetic control, 6%, or 11% PPC diets for four weeks. Rats fed PPC had reduced total homocysteine plasma level and increased levels of choline, dimethylglycine and cysteine, whereas the plasma level of methionine was unchanged compared to control. PPC feeding increased the plasma level of TMAO, carnitine, its precursors trimethyllysine and γ-butyrobetaine. There was a close correlation between plasma TMAO and carnitine, trimethyllysine, and γ-butyrobetaine, but not between TMAO and choline. The present data suggest that PPC has a homocysteine lowering effect and is associated with altered plasma concentrations of metabolites related to one-carbon metabolism and B-vitamin status in rats. Moreover, the present study reveals a non-obligatory role of gut microbiota in the increased plasma TMAO level as it can be explained by the PPC’s content of TMAO. The increased level of carnitine and carnitine precursors is interpreted to reflect increased carnitine biosynthesis. PMID:26371012

  2. A Phospholipid-Protein Complex from Antarctic Krill Reduced Plasma Homocysteine Levels and Increased Plasma Trimethylamine-N-Oxide (TMAO) and Carnitine Levels in Male Wistar Rats.

    PubMed

    Bjørndal, Bodil; Ramsvik, Marie S; Lindquist, Carine; Nordrehaug, Jan E; Bruheim, Inge; Svardal, Asbjørn; Nygård, Ottar; Berge, Rolf K

    2015-09-08

    Seafood is assumed to be beneficial for cardiovascular health, mainly based on plasma lipid lowering and anti-inflammatory effects of n-3 polyunsaturated fatty acids. However, other plasma risk factors linked to cardiovascular disease are less studied. This study aimed to penetrate the effect of a phospholipid-protein complex (PPC) from Antarctic krill on one-carbon metabolism and production of trimethylamine-N-oxide (TMAO) in rats. Male Wistar rats were fed isoenergetic control, 6%, or 11% PPC diets for four weeks. Rats fed PPC had reduced total homocysteine plasma level and increased levels of choline, dimethylglycine and cysteine, whereas the plasma level of methionine was unchanged compared to control. PPC feeding increased the plasma level of TMAO, carnitine, its precursors trimethyllysine and γ-butyrobetaine. There was a close correlation between plasma TMAO and carnitine, trimethyllysine, and γ-butyrobetaine, but not between TMAO and choline. The present data suggest that PPC has a homocysteine lowering effect and is associated with altered plasma concentrations of metabolites related to one-carbon metabolism and B-vitamin status in rats. Moreover, the present study reveals a non-obligatory role of gut microbiota in the increased plasma TMAO level as it can be explained by the PPC's content of TMAO. The increased level of carnitine and carnitine precursors is interpreted to reflect increased carnitine biosynthesis.

  3. Lamotrigine, carbamazepine and phenytoin differentially alter extracellular levels of 5-hydroxytryptamine, dopamine and amino acids.

    PubMed

    Ahmad, Shagufta; Fowler, Leslie J; Whitton, Peter S

    2005-02-01

    We have studied the effects of treatment with the anticonvulsants lamotrigine (LTG), phenytoin (PHN) and carbamazepine (CBZ) on basal and stimulated extracellular aspartate (ASP), glutamate (GLU), taurine (TAU), GABA, 5-hydroxytryptamine (5-HT) and dopamine (DA) in the hippocampus of freely moving rats using microdialysis. All of the drugs investigated have had inhibition of Na(+) channel activity implicated as their principal mechanism of action. Neither LTG (10-20 mg/kg), PHN (20-40 mg/kg) or CBZ (10-20 mg/kg) had an effect on the basal extracellular concentrations of any of the amino acids studied with the exception of glutamate, which was decreased at the highest LTG dose. However, when amino acid transmitter levels were increased with 50 microM veratridine, LTG was found to cause a dose-dependent decrease in dialysate levels of all four amino acids, with the effect being most pronounced for glutamate. In contrast, PHN decreased extracellular aspartate levels but had no effect on evoked-extracellular GLU, TAU or GABA. Somewhat unexpectedly, CBZ did not alter the stimulated increase in the excitatory amino acids, GLU and ASP, but, rather surprisingly for an antiepileptic drug, markedly decreased that of the inhibitory substances TAU and GABA. The three drugs had differing effects on basal extracellular 5-HT and DA. LTG caused a dose-dependent decrease in both, while CBZ and PHN both increased extracellular 5-HT and DA. When extracellular 5-HT and DA was evoked by veratridine LTG had no significant effect on this, while PHN but not CBZ increased stimulated extracellular 5-HT and both PHN and CBZ augmented DA. Thus, the effects of the three drugs studied seemed to depend on whether extracellular transmitter levels are evoked or basal and the particular transmitter in question. This suggests that there are marked differences in the neurochemical mechanisms of antiepileptic drug action of the three compounds studied.

  4. Higher transcription levels in ascorbic acid biosynthetic and recycling genes were associated with higher ascorbic acid accumulation in blueberry.

    PubMed

    Liu, Fenghong; Wang, Lei; Gu, Liang; Zhao, Wei; Su, Hongyan; Cheng, Xianhao

    2015-12-01

    In our preliminary study, the ripe fruits of two highbush blueberry (Vaccinium corymbosum L.) cultivars, cv 'Berkeley' and cv 'Bluecrop', were found to contain different levels of ascorbic acid. However, factors responsible for these differences are still unknown. In the present study, ascorbic acid content in fruits was compared with expression profiles of ascorbic acid biosynthetic and recycling genes between 'Bluecrop' and 'Berkeley' cultivars. The results indicated that the l-galactose pathway was the predominant route of ascorbic acid biosynthesis in blueberry fruits. Moreover, higher expression levels of the ascorbic acid biosynthetic genes GME, GGP, and GLDH, as well as the recycling genes MDHAR and DHAR, were associated with higher ascorbic acid content in 'Bluecrop' compared with 'Berkeley', which indicated that a higher efficiency ascorbic acid biosynthesis and regeneration was likely to be responsible for the higher ascorbic acid accumulation in 'Bluecrop'.

  5. Correlation between maternal and childhood VitB12, folic acid and ferritin levels

    PubMed Central

    Zeeshan, Fatima; Bari, Attia; Farhan, Saima; Jabeen, Uzma; Rathore, Ahsan Waheed

    2017-01-01

    Objective: To determine the correlation between serum folic acid, vitamin B12 and ferritin of mother and child and to study various neonatal risk factors as a cause of anemia in children. Methods: One hundred eighty children two months to two years of age admitted in the department of Pediatric Medicine of The Children’s Hospital and The Institute of Child Health Lahore from January 2013 to January 2015 with common medical conditions having anemia were included. Complete blood count (CBC), serum ferritin level, folic acid and Vitamin (Vit) B12 level were sent of children and their mothers. Data was analyzed using SPSS version 20. Results: Out of 180 children with anemia, 66.7% were males. Mean age of children was 7.3months. Fifty-five percent children were malnourished according to z scoring. The mean Hemoglobin (Hb) of children was 8 g/dl. Only 4% children had low ferritin level while 60% had low folic acid and 45% had decreased VitB12. There was significant correlation between Hb of mother and child (p =0.02), Vit B12 deficiency (p=0.008) and iron deficiency (p<0.001). Premature children had lower folic acid levels (p =0.02), while prematurity, IUGR, previous admission and history of sepsis showed no association with anemia in our study. Both breast-feeding and top feeding showed significant association with anemia with p-value of 0.042 and 0.003 respectively while dilution showed no impact on anemia. Conclusion: Maternal anemia has a significant impact on child’s hemoglobin. As compared to previous concept of increased iron deficiency in children we found increased occurrence of folic acid and VitB12 deficiency in children and their mothers. PMID:28367192

  6. Increased beta-aminoisobutyric acid in rat liver with 6-azauracil and its enantiomer.

    PubMed

    Tamaki, N; Fujimoto, S; Mizutani, N; Mizota, C

    1985-10-21

    When 6-azauracil was subcutaneously injected, beta-aminoisobutyric acid and beta-alanine contents were increased 22 and 61-fold, respectively, in rat liver. Incorporation of [methyl-14C]thymine into beta-aminoisobutyric acid was increased to 42-fold by 6-azauracil treatment. The absolute configuration of this amino acid was proved to be the (R)-form by means of a gas-chromatographic technique. 6-Azauracil inhibited beta-alanine-pyruvate aminotransferase activity with an I50 of approx. 2.5 mM.

  7. Staphylococcus epidermidis Polysaccharide Intercellular Adhesin Production Significantly Increases during Tricarboxylic Acid Cycle Stress

    PubMed Central

    Vuong, Cuong; Kidder, Joshua B.; Jacobson, Erik R.; Otto, Michael; Proctor, Richard A.; Somerville, Greg A.

    2005-01-01

    Staphylococcal polysaccharide intercellular adhesin (PIA) is important for the development of a mature biofilm. PIA production is increased during growth in a nutrient-replete or iron-limited medium and under conditions of low oxygen availability. Additionally, stress-inducing stimuli such as heat, ethanol, and high concentrations of salt increase the production of PIA. These same environmental conditions are known to repress tricarboxylic acid (TCA) cycle activity, leading us to hypothesize that altering TCA cycle activity would affect PIA production. Culturing Staphylococcus epidermidis with a low concentration of the TCA cycle inhibitor fluorocitrate dramatically increased PIA production without impairing glucose catabolism, the growth rate, or the growth yields. These data lead us to speculate that one mechanism by which staphylococci perceive external environmental change is through alterations in TCA cycle activity leading to changes in the intracellular levels of biosynthetic intermediates, ATP, or the redox status of the cell. These changes in the metabolic status of the bacteria result in the attenuation or augmentation of PIA production. PMID:15838022

  8. Increased urinary lysophosphatidic acid in mouse with subtotal nephrectomy: potential involvement in chronic kidney disease.

    PubMed

    Mirzoyan, Koryun; Baïotto, Anna; Dupuy, Aude; Marsal, Dimitri; Denis, Colette; Vinel, Claire; Sicard, Pierre; Bertrand-Michel, Justine; Bascands, Jean-Loup; Schanstra, Joost P; Klein, Julie; Saulnier-Blache, Jean-Sébastien

    2016-12-01

    Increased incidence of chronic kidney disease (CKD) with consecutive progression to end-stage renal disease represents a significant burden to healthcare systems. Renal tubulointerstitial fibrosis (TIF) is a classical hallmark of CKD and is well correlated with the loss of renal function. The bioactive lysophospholipid lysophosphatidic acid (LPA), acting through specific G-protein-coupled receptors, was previously shown to be involved in TIF development in a mouse model of unilateral ureteral obstruction. Here, we study the role of LPA in a mouse subjected to subtotal nephrectomy (SNx), a more chronic and progressive model of CKD. Five months after surgical nephron reduction, SNx mice showed massive albuminuria, extensive TIF, and glomerular hypertrophy when compared to sham-operated animals. Urinary and plasma levels of LPA were analyzed using liquid chromatography tandem mass spectrometry. LPA was significantly increased in SNx urine, not in plasma, and was significantly correlated with albuminuria and TIF. Moreover, SNx mice showed significant downregulation in the renal expression of lipid phosphate phosphohydrolases (LPP1, 2, and 3) that might be involved in reduced LPA bioavailability through dephosphorylation. We concluded that SNx increases urinary LPA through a mechanism that could involve co-excretion of plasma LPA with albumin associated with a reduction of its catabolism in the kidney. Because of the previously demonstrated profibrotic activity of LPA, the association of urinary LPA with TIF suggests the potential involvement of LPA in the development of advanced CKD in the SNx mouse model. Targeting LPA metabolism might represent an interesting approach in CKD treatment.

  9. Suberoylanilide hydroxamic acid (SAHA) at subtoxic concentrations increases the adhesivity of human leukemic cells to fibronectin.

    PubMed

    Kuzelová, Katerina; Pluskalová, Michaela; Brodská, Barbora; Otevrelová, Petra; Elknerová, Klára; Grebenová, Dana; Hrkal, Zbynek

    2010-01-01

    Suberoylanilide hydroxamic acid (SAHA) is an inhibitor of histone deacetylases (HDACs) which is being introduced into clinic for the treatment of hematological diseases. We studied the effect of this compound on six human hematopoietic cell lines (JURL-MK1, K562, CML-T1, Karpas-299, HL-60, and ML-2) as well as on normal human lymphocytes and on leukemic primary cells. SAHA induced dose-dependent and cell type-dependent cell death which displayed apoptotic features (caspase-3 activation and apoptotic DNA fragmentation) in most cell types including the normal lymphocytes. At subtoxic concentrations (0.5-1 microM), SAHA increased the cell adhesivity to fibronectin (FN) in all leukemia/lymphoma-derived cell lines but not in normal lymphocytes. This increase was accompanied by an enhanced expression of integrin beta1 and paxillin, an essential constituent of focal adhesion complexes, both at the protein and mRNA level. On the other hand, the inhibition of ROCK protein, an important regulator of cytoskeleton structure, had no consistent effect on SAHA-induced increase in the cell adhesivity. The promotion of cell adhesivity to FN seems to be specific for SAHA as we observed no such effects with other HDAC inhibitors (trichostatin A and sodium butyrate).

  10. Spray-dried milk supplemented with alpha-linolenic acid or eicosapentaenoic acid and docosahexaenoic acid decreases HMG Co A reductase activity and increases biliary secretion of lipids in rats.

    PubMed

    Ramaprasad, Talahalli R; Srinivasan, Krishnapura; Baskaran, Vallikannan; Sambaiah, Kari; Lokesh, Belur R

    2006-05-01

    In our earlier study, we have shown that rats fed spray-dried milk containing alpha-linolenic acid (LNA 18:3 n-3) or eicosapentaenoic acid (EPA 20:5 n-3) and docosahexaenoic acid (DHA 22:6 n-3) had significantly lower amounts of serum and liver cholesterol. To evaluate the mechanism for hypocholesterolemic effect of n-3 fatty acids containing milk formulation, we fed male Wistar rats with spray-dried milk containing linseed oil (LSO) (source of LNA) or fish oil (FO) (source of EPA+DHA) for 8 weeks. Feeding n-3 fatty acid containing milk formulation lowered the hepatic 3-hydroxy-methylglutaryl coenzyme A (HMG Co A) activity by 17-22% compared to rats given control diet devoid of n-3 fatty acids. The cholesterol level in liver microsomes was found to be decreased by 16% and 20%, respectively, in LSO and FO containing formulation fed rats. The bile flow was enhanced to an extent of 19-23% in experimental groups compared to control animals. The biliary cholesterol and phospholipid secretion was increased to an extent of 49-55% and 140-146%, respectively, in rats fed n-3 fatty acid containing formulation. The increase in the total bile acids secretion in bile was mainly reflected on an increase in the levels of taurine conjugated bile acids. These results indicated that n-3 fatty acid containing spray-dried milk formulation would bring about the hypocholesterolemic effect by lowering HMG Co A reductase activity in liver and by increasing the secretion of bile constituents.

  11. The hypotriglyceridemic effect of biotin supplementation involves increased levels of cGMP and AMPK activation.

    PubMed

    Aguilera-Méndez, Asdrúbal; Fernández-Mejía, Cristina

    2012-01-01

    In addition to its role as a carboxylase cofactor, biotin modifies gene expression and has manifold effects on systemic processes. Several studies have shown that biotin supplementation reduces hypertriglyceridemia. We have previously reported that this effect is related to decreased expression of lipogenic genes. In the present work, we analyzed signaling pathways and posttranscriptional mechanisms involved in the hypotriglyceridemic effects of biotin. Male BALB/cAnN Hsd mice were fed a control or a biotin-supplemented diet (1.76 or 97.7 mg of free biotin/kg diet, respectively for 8 weeks after weaning. The abundance of mature sterol regulatory element-binding protein (SREBP-1c), fatty-acid synthase (FAS), total acetyl-CoA carboxylase-1 (ACC-1) and its phosphorylated form, and AMP-activated protein kinase (AMPK) were evaluated in the liver. We also determined the serum triglyceride concentrations and the hepatic levels of triglycerides and cyclic GMP (cGMP). Compared to the control group, biotin-supplemented mice had lower serum and hepatic triglyceride concentrations. Biotin supplementation increased the levels of cGMP and the phosphorylated forms of AMPK and ACC-1 and decreased the abundance of the mature form of SREBP-1c and FAS. These data provide evidence that the mechanisms by which biotin supplementation reduces lipogenesis involve increased cGMP content and AMPK activation. In turn, these changes lead to augmented ACC-1 phosphorylation and decreased expression of both the mature form of SREBP-1c and FAS. Our results demonstrate for the first time that AMPK is involved in the effects of biotin supplementation and offer new insights into the mechanisms of biotin-mediated hypotriglyceridemic effects.

  12. Increased Plasma Levels of Select Deoxy-ceramide and Ceramide Species are Associated with Increased Odds of Diabetic Neuropathy in Type 1 Diabetes: A Pilot Study.

    PubMed

    Hammad, Samar M; Baker, Nathaniel L; El Abiad, Jad M; Spassieva, Stefanka D; Pierce, Jason S; Rembiesa, Barbara; Bielawski, Jacek; Lopes-Virella, Maria F; Klein, Richard L

    2017-03-01

    Plasma deoxy-sphingoid bases are elevated in type 2 diabetes patients and correlate with the stage of diabetic distal sensorimotor polyneuropathy; however, associations between deoxy-sphingolipids (DSL) and neuropathy in type 1 diabetes have not been examined. The primary aim of this exploratory pilot study was to assess the associations between multiple sphingolipid species including DSL and free amino acids and the presence of symptomatic neuropathy in a DCCT/EDIC type 1 diabetes subcohort. Using mass spectroscopy, plasma levels of DSL and free amino acids in DCCT/EDIC type 1 diabetes participants (n = 80), with and without symptoms of neuropathy, were investigated. Patient-determined neuropathy was based on 15-item self-administered questionnaire (Michigan Neuropathy Screening Instrument) developed to assess distal symmetrical peripheral neuropathy in diabetes. Patients who scored ≥4, or reported inability to sense their feet during walking or to distinguish hot from cold water while bathing were considered neuropathic. Plasma levels of ceramide, sphingomyelin, hexosyl- and lactosylceramide species, and amino acids were measured and analyzed relative to neuropathy status in the patient. Deoxy-C24-ceramide, C24- and C26-ceramide were higher in patients with neuropathy than those without neuropathy. Cysteine was higher in patients with neuropathy. No differences in other sphingolipids or amino acids were detected. The covariate-adjusted Odds Ratios of positive patient-reported neuropathy was associated with increased levels of deoxy-C24-, and deoxy-C24:1-ceramide; C22-, C24-, and C26-ceramide; and cysteine. Plasma deoxy-ceramide and ceramide species may have potential diagnostic and prognostic significance in diabetic neuropathy.

  13. Expression of dehydratase domains from a polyunsaturated fatty acid synthase increases the production of fatty acids in Escherichia coli

    PubMed Central

    Oyola-Robles, Delise; Rullán-Lind, Carlos; Carballeira, Néstor M.; Baerga-Ortiz, Abel

    2014-01-01

    Increasing the production of fatty acids by microbial fermentation remains an important step towards the generation of biodiesel and other portable liquid fuels. In this work, we report an Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis. Results show that the E. coli strain expressing the DH tetradomain fragment was capable of producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the negative control strain lacking the recombinant enzyme. The enhancement in production was observed across the board for all the fatty acids that are typically made by E. coli. The overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the observed enhancement in fatty acid production was not a result of effects associated with cell density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16 °C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol did not result in an increase in fatty acid production. All these results taken together suggest that either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new tool which could be incorporated into other existing strategies aimed at improving fatty acid production in bacterial fermentations towards accessible biodiesel precursors. PMID:24411456

  14. Expression of dehydratase domains from a polyunsaturated fatty acid synthase increases the production of fatty acids in Escherichia coli.

    PubMed

    Oyola-Robles, Delise; Rullán-Lind, Carlos; Carballeira, Néstor M; Baerga-Ortiz, Abel

    2014-02-05

    Increasing the production of fatty acids by microbial fermentation remains an important step toward the generation of biodiesel and other portable liquid fuels. In this work, we report an Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis. Results show that the E. coli strain expressing the DH tetradomain fragment was capable of producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the negative control strain lacking the recombinant enzyme. The enhancement in production was observed across the board for all the fatty acids that are typically made by E. coli. The overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the observed enhancement in fatty acid production was not a result of effects associated with cell density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16 °C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol did not result in an increase in fatty acid production. All these results taken together suggest that either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new tool which could be incorporated into other existing strategies aimed at improving fatty acid production in bacterial fermentations toward accessible biodiesel precursors.

  15. Chlorogenic acid increased acrylamide formation through promotion of HMF formation and 3-aminopropionamide deamination.

    PubMed

    Cai, Yun; Zhang, Zhenhua; Jiang, Shanshan; Yu, Miao; Huang, Caihuan; Qiu, Ruixia; Zou, Yueyu; Zhang, Qirui; Ou, Shiyi; Zhou, Hua; Wang, Yong; Bai, Weibing; Li, Yiqun

    2014-03-15

    This research was aimed to investigate why chlorogenic acid, presents at high concentrations in some food raw material, influences acrylamide formation. In the asparagine/glucose Maillard reaction system (pH=6.8), addition of chlorogenic acid significantly increased acrylamide formation and inhibited its elimination. In contrast, the quinone derivative of chlorogenic acid decreased acrylamide formation. Three mechanisms may be involved for increasing acrylamide formation by chlorogenic acid. Firstly, it increased the formation of HMF, which acts as a more efficient precursor than glucose to form acrylamide. Secondly, it decreased activation energy for conversion of 3-aminopropionamide (3-APA) to acrylamide (from 173.2 to 136.6kJ/mol), and enhances deamination from 3-APA. And thirdly, it prevented attack of the produced acrylamide from free radicals by keeping high redox potential during the Maillard reaction.

  16. Elevated systemic glutamic acid level in the non-obese diabetic mouse is Idd linked and induces beta cell apoptosis.

    PubMed

    Banday, Viqar Showkat; Lejon, Kristina

    2017-02-01

    Although type 1 diabetes (T1D) is a T-cell-mediated disease in the effector stage, the mechanism behind the initial beta cell assault is less understood. Metabolomic differences, including elevated levels of glutamic acid, have been observed in patients with T1D before disease onset, as well as in pre-diabetic non-obese diabetic (NOD) mice. Increased levels of glutamic acid damage both neurons and beta cells, implying that this could contribute to the initial events of T1D pathogenesis. We investigated the underlying genetic factors and consequences of the increased levels of glutamic acid in NOD mice. Serum glutamic acid levels from a (NOD×B6)F2 cohort (n = 182) were measured. By genome-wide and Idd region targeted microsatellite mapping, genetic association was detected for six regions including Idd2, Idd4 and Idd22. In silico analysis of potential enzymes and transporters located in and around the mapped regions that are involved in glutamic acid metabolism consisted of alanine aminotransferase, glutamic-oxaloacetic transaminase, aldehyde dehydrogenase 18 family, alutamyl-prolyl-tRNA synthetase, glutamic acid transporters GLAST and EAAC1. Increased EAAC1 protein expression was observed in lysates from livers of NOD mice compared with B6 mice. Functional consequence of the elevated glutamic acid level in NOD mice was tested by culturing NOD. Rag2(-/-) Langerhans' islets with glutamic acid. Induction of apoptosis of the islets was detected upon glutamic acid challenge using TUNEL assay. Our results support the notion that a dysregulated metabolome could contribute to the initiation of T1D. We suggest that targeting of the increased glutamic acid in pre-diabetic patients could be used as a potential therapy.

  17. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice

    SciTech Connect

    Fu, Zidong Donna; Klaassen, Curtis D.

    2013-12-15

    Previous studies showed glucose and insulin signaling can regulate bile acid (BA) metabolism during fasting or feeding. However, limited knowledge is available on the effect of calorie restriction (CR), a well-known anti-aging intervention, on BA homeostasis. To address this, the present study utilized a “dose–response” model of CR, where male C57BL/6 mice were fed 0, 15, 30, or 40% CR diets for one month, followed by BA profiling in various compartments of the enterohepatic circulation by UPLC-MS/MS technique. This study showed that 40% CR increased the BA pool size (162%) as well as total BAs in serum, gallbladder, and small intestinal contents. In addition, CR “dose-dependently” increased the concentrations of tauro-cholic acid (TCA) and many secondary BAs (produced by intestinal bacteria) in serum, such as tauro-deoxycholic acid (TDCA), DCA, lithocholic acid, ω-muricholic acid (ωMCA), and hyodeoxycholic acid. Notably, 40% CR increased TDCA by over 1000% (serum, liver, and gallbladder). Interestingly, 40% CR increased the proportion of 12α-hydroxylated BAs (CA and DCA), which correlated with improved glucose tolerance and lipid parameters. The CR-induced increase in BAs correlated with increased expression of BA-synthetic (Cyp7a1) and conjugating enzymes (BAL), and the ileal BA-binding protein (Ibabp). These results suggest that CR increases BAs in male mice possibly through orchestrated increases in BA synthesis and conjugation in liver as well as intracellular transport in ileum. - Highlights: • Dose response effects of short-term CR on BA homeostasis in male mice. • CR increased the BA pool size and many individual BAs. • CR altered BA composition (increased proportion of 12α-hydroxylated BAs). • Increased mRNAs of BA enzymes in liver (Cyp7a1 and BAL) and ileal BA binding protein.

  18. Chemical Changes Associated with Increased Acid Resistance of Er:YAG Laser Irradiated Enamel

    PubMed Central

    Olea-Mejía, Oscar Fernando; García-Fabila, María Magdalena; Rodríguez-Vilchis, Laura Emma; Sánchez-Flores, Ignacio; Centeno-Pedraza, Claudia

    2014-01-01

    Background. An increase in the acid resistance of dental enamel, as well as morphological and structural changes produced by Er:YAG laser irradiation, has been reported. Purpose. To evaluate the chemical changes associated with acid resistance of enamel treated with Er:YAG laser. Methods. Forty-eight enamel samples were divided into 4 groups (n = 12). Group I (control); Groups II, III, and IV were irradiated with Er:YAG at 100 mJ (12.7 J/cm2), 200 mJ (25.5 J/cm2), and 300 mJ (38.2 J/cm2), respectively. Results. There were significant differences in composition of irradiated groups (with the exception of chlorine) and in the amount of calcium released. Conclusions. Chemical changes associated with an increase in acid resistance of enamel treated with Er:YAG laser showed a clear postirradiation pattern characterized by a decrease in C at.% and an increase in O, P, and Ca at.% and no changes in Cl at.%. An increased Ca/P ratio after Er:YAG laser irradiation was associated with the use of higher laser energy densities. Chemical changes produced by acid dissolution showed a similar trend among experimental groups. Stable or increased Ca/P ratio after acid dissolution was observed in the irradiated groups, with reduction of Ca released into the acid solution. PMID:24600327

  19. Interaction of aminooxyacetic acid and ethacrynic acid with intense sound at the level of the cochlea.

    PubMed

    Kisiel, D L; Bobbin, R P

    1982-02-01

    Results of previous investigation of the interaction of intense sound and drugs have, in general, failed to show a protective effect mediated by pre-administration with a drug having transient ototoxic effects. The present investigation was designed to further evaluate a protective effect found previously at the anatomical level and explained with an electrochemical theory of noise damage. The alternating current (a.c) potential and compound eighth nerve action potential (CAP) amplitude were monitored in aminooxyacetic acid (AOAA)- or ethacrynic acid (EA)-treated guinea pigs exposed to either moderate or high levels of intense sound and compared to changes observed in the same potentials in animals exposed to the intense sounds alone. Results showed protective effects only in the moderate--intense sound-exposure groups, with changes in sensitivity and voltage on the linear part of the input--output curve of the a.c cochlear potential found to be the only conditions where differences occurred. These results were difficult to interpret in terms of a protective effect and point to the need for obtaining additional data before an electrochemical mechanism is shown to play a role in the effect of intense sound on the cochlea.

  20. The Prevalence of Nonalcoholic Fatty Liver Disease and Relationship with Serum Uric Acid Level in Uyghur Population

    PubMed Central

    Cai, Wen; Song, Jiang-mei; Zhang, Bei; Sun, Yu-ping; Yao, Hua; Zhang, Yue-xin

    2014-01-01

    Objective. To investigate the prevalence of nonalcoholic fatty liver disease (NAFLD) and the association of serum uric acid level with NAFLD in Uygur people, Xinjiang. Methods. A total of 2241 Uyghur persons (1214 males and 1027 females) were interviewed for physical checkups from 2011 to 2012. The clinical data of questionnaire survey, body mass index (BMI), abdominal circumference, blood pressure, blood sugar, blood lipid, and serum uric acid level were collected for analysis. Results. The prevalence rates of NAFLD determined by abdominal ultrasound examination and hyperuricemia were 43.9% and 8.4%, respectively. The persons with NAFLD had significantly higher serum uric acid levels than those without NAFLD (320 ± 88 versus 254 ± 80 μmol/L; P < 0.001). The prevalence rate of NAFLD was significantly higher in subjects with hyperuricemia than that in those without hyperuricemia (78.19% versus 40.83%; P < 0.001), and the prevalence rate increased with progressively higher serum uric acid levels (P < 0.001). Multiple regression analysis showed that hyperuricemia was associated with an increased risk of NAFLD (odds ratio (OR): 2.628, 95% confidence interval (CI): 1.608–4.294, and P < 0.001). Conclusion. Serum uric acid level was significantly associated with NAFLD, and the prevalence rate of NAFLD increased with progressively higher serum uric acid levels. PMID:24516367

  1. Central injection of CDP-choline suppresses serum ghrelin levels while increasing serum leptin levels in rats.

    PubMed

    Kiyici, Sinem; Basaran, Nesrin Filiz; Cavun, Sinan; Savci, Vahide

    2015-10-05

    In this study we aimed to test central administration of CDP-choline on serum ghrelin, leptin, glucose and corticosterone levels in rats. Intracerebroventricular (i.c.v.) 0.5, 1.0 and 2.0 µmol CDP-choline and saline were administered to male Wistar-Albino rats. For the measurement of serum leptin and ghrelin levels, blood samples were obtained baseline and at 5, 15, 30, 60 and 120 min following i.c.v. CDP-choline injection. Equimolar doses of i.c.v. choline (1.0 µmol) and cytidine (1.0 µmol) were administered and measurements were repeated throughout the second round of the experiment. Atropine (10 µg) and mecamylamine (50 µg) were injected intracerebroventricularly prior to CDP-choline and measurements repeated in the third round of the experiment. After 1 µmol CDP-choline injection, serum ghrelin levels were suppressed significantly at 60 min (P=0.025), whereas serum leptin levels were increased at 60 and 120 min (P=0.012 and P=0.017 respectively). CDP-choline injections also induced a dose- and time-dependent increase in serum glucose and corticosterone levels. The effect of choline on serum leptin and ghrelin levels was similar with CDP-choline while no effect was seen with cytidine. Suppression of serum ghrelin levels was eliminated through mecamylamine pretreatment while a rise in leptin was prevented by both atropine and mecamylamine pretreatments. In conclusion; centrally injected CDP-choline suppressed serum ghrelin levels while increasing serum leptin levels. The observed effects following receptor antagonist treatment suggest that nicotinic receptors play a role in suppression of serum ghrelin levels,whereas nicotinic and muscarinic receptors both play a part in the increase of serum leptin levels.

  2. Dichloroacetate improves immune dysfunction caused by tumor-secreted lactic acid and increases antitumor immunoreactivity.

    PubMed

    Ohashi, Toshimitsu; Akazawa, Takashi; Aoki, Mitsuhiro; Kuze, Bunya; Mizuta, Keisuke; Ito, Yatsuji; Inoue, Norimitsu

    2013-09-01

    The activation of oncogenic signaling pathways induces the reprogramming of glucose metabolism in tumor cells and increases lactic acid secretion into the tumor microenvironment. This is a well-known characteristic of tumor cells, termed the Warburg effect, and is a candidate target for antitumor therapy. Previous reports show that lactic acid secreted by tumor cells is a proinflammatory mediator that activates the IL-23/IL-17 pathway, thereby inducing inflammation, angiogenesis and tissue remodeling. Here, we show that lactic acid, or more specifically the acidification it causes, increases arginase I (ARG1) expression in macrophages to inhibit T-cell proliferation and activation. Accordingly, we hypothesized that counteraction of the immune effects by lactic acid might suppress tumor development. We show that dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinases, targets macrophages to suppress activation of the IL-23/IL-17 pathway and the expression of ARG1 by lactic acid. Furthermore, lactic acid-pretreated macrophages inhibited CD8+ T-cell proliferation, but CD8+ T-cell proliferation was restored when macrophages were pretreated with lactic acid and DCA. DCA treatment decreased ARG1 expression in tumor-infiltrating immune cells and increased the number of IFN-γ-producing CD8+ T cells and NK cells in tumor-bearing mouse spleen. Although DCA treatment alone did not suppress tumor growth, it increased antitumor immunotherapeutic activity of Poly(IC) in both CD8+ T cell- and NK cell-sensitive tumor models. Therefore, DCA acts not only on tumor cells to suppress glycolysis but also on immune cells to improve the immune status modulated by lactic acid and to increase the effectiveness of antitumor immunotherapy.

  3. Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis.

    PubMed

    Piliponsky, Adrian M; Chen, Ching-Cheng; Nishimura, Toshihiko; Metz, Martin; Rios, Eon J; Dobner, Paul R; Wada, Etsuko; Wada, Keiji; Zacharias, Sherma; Mohanasundaram, Uma M; Faix, James D; Abrink, Magnus; Pejler, Gunnar; Pearl, Ronald G; Tsai, Mindy; Galli, Stephen J

    2008-04-01

    Sepsis is a complex, incompletely understood and often fatal disorder, typically accompanied by hypotension, that is considered to represent a dysregulated host response to infection. Neurotensin (NT) is a 13-amino-acid peptide that, among its multiple effects, induces hypotension. We find that intraperitoneal and plasma concentrations of NT are increased in mice after severe cecal ligation and puncture (CLP), a model of sepsis, and that mice treated with a pharmacological antagonist of NT, or NT-deficient mice, show reduced mortality during severe CLP. In mice, mast cells can degrade NT and reduce NT-induced hypotension and CLP-associated mortality, and optimal expression of these effects requires mast cell expression of neurotensin receptor 1 and neurolysin. These findings show that NT contributes to sepsis-related mortality in mice during severe CLP and that mast cells can lower NT concentrations, and suggest that mast cell-dependent reduction in NT levels contributes to the ability of mast cells to enhance survival after CLP.

  4. Chicoric Acid Levels in Basil (Ocimum basilicum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, we reported the presence of chicoric acid in basil leaves (confirmed by co-chromatography with purchased standard). Chicoric acid being the chief phenolic of the Echinacea purpurea plant which is popularly consumed as a dietary supplement. For this study, basil products commonly purchased ...

  5. Circulating Levels of Uric Acid and Risk for Metabolic Syndrome.

    PubMed

    Rubio-Guerra, Alberto F; Morales-López, Herlinda; Garro-Almendaro, Ana K; Vargas-Ayala, German; Durán-Salgado, Montserrat B; Huerta-Ramírez, Saul; Lozano-Nuevo, Jose J

    2017-01-01

    Hyperuricemia leads to insulin resistance, whereas insulin resistance decreases renal excretion of uric acid, both mechanisms link elevated serum uric acid with metabolic syndrome. The aim of this study is to evaluate the probability for the development of metabolic syndrome in low-income young adults with hyperuricaemia.

  6. A geographic cline in leaf salicylic acid with increasing elevation in Arabidopsis thaliana

    PubMed Central

    Zhang, Nana; Tonsor, Stephen J; Traw, M Brian

    2015-01-01

    Salicylic acid (SA) occupies a key role as a hormone central to both plant resistance to bacterial pathogens and tolerance of abiotic stresses. Plants at high elevation experience colder temperatures and elevated UV levels. While it has been predicted that SA concentrations will be higher in plants from high elevation populations, few studies have addressed this question. Here, we asked how concentrations of SA vary in natural populations of Arabidopsis thaliana collected across an elevational gradient on the Iberian Peninsula. In a series of common garden experiments, we found that constitutive SA concentrations were highest in genotypes from the low elevation populations. This result was in the opposite direction from our prediction and is an exception to the general finding that phenolic compounds increase with increasing elevation. These data suggest that high constitutive SA is not associated with resistance to cold temperatures in these plants. Furthermore, we also found that leaf constitutive camalexin concentrations, an important defense against some bacterial and fungal enemies, were highest in the low elevation populations, suggesting that pathogen pressures may be important. Further examination of this elevational cline will likely provide additional insights into the interplay between phenolic compounds and biotic and abiotic stress. PMID:25875692

  7. Staphylococcal lipoteichoic acid promotes osteogenic differentiation of mouse mesenchymal stem cells by increasing autophagic activity.

    PubMed

    Liu, Xin; Wang, Yuan; Cao, Zhen; Dou, Ce; Bai, Yun; Liu, Chuan; Dong, Shiwu; Fei, Jun

    2017-02-16

    This study sought to explore the effect of staphylococcal lipoteichoic acid (LTA) on autophagy in mouse mesenchymal stem cells (MSCs), and then influence osteogenesis through the change of autophagy. C3H10T1/2 cells were induced by osteogenic medium with the treatment of LTA at different concentrations (1, 5, 10 μg/mL); 3-methyladenine (3-MA) were used as the autophagy inhibitor, and rapamycin (rapamycin, Rap) were used to activate autophagy; the effects on osteogenesis were detected by alkaline phosphatase staining, alizarin red staining, real-time quantitative PCR, and western blotting; autophagic activity was investigated by the expression of LC3-Ⅱand p62 proteins. Compared with control group, the expression of osteogenesis markers was significantly up-regulated with the LTA treatment on the mRNA and protein level; the positive rate of alkaline phosphatase was enhanced in the LTA groups; and the formation of calcium nodules was increased simultaneously. The expression of LC3-Ⅱ protein was increased in LTA groups, while the expression of p62 protein was decreased. Inhibition of autophagy significantly reduced the effect of LTA on osteogenesis of MSCs; the promotion of LTA on osteogenic differentiation was further enhanced when adding rapamycin to activate autophagic activity. It provides new insight of prevention and treatment for bone infection.

  8. Retinoic acid increases zif268 early gene expression in rat preosteoblastic cells.

    PubMed Central

    Suva, L J; Ernst, M; Rodan, G A

    1991-01-01

    In this study we demonstrate that retinoic acid (RA) increases the expression of transcription factor zif268 mRNA in primary cultures of fetal rat calvarial cells and in simian virus 40-immortalized clonal rat calvarial preosteoblastic cells (RCT-1), which differentiate in response to RA, but not in the more differentiated RCT-3 and ROS 17/2.8 cells. The increased expression of zif268 mRNA is rapid (maximal within 1 h), transient (returns to basal levels by 3 h), detectable at RA doses of 10(-12)M, and independent of protein synthesis. The relative stimulation of zif268 mRNA by RA was much larger than that of other early genes, including c-fos, c-jun, and junB. The rate of transcription of RA-stimulated RCT-1 cells, estimated by nuclear run-on assays, was elevated, suggesting that RA regulation of zif268 gene transcription was at least in part transcriptional. Moreover, RA stimulated the transcriptional activity of a Zif268CAT (chloramphenicol acetyltransferase) plasmid containing 632 bp of zif268 5' regulatory sequences in RCT-1 cells but not in the more differentiated RCT-3 cells. These in vitro data support the in vivo observations which localize zif268 and RA receptor-gamma transcripts to bone and cartilage during development, suggesting that both RA and zif268 may play a role in osteoblast differentiation. Images PMID:1708092

  9. Is increased arachidonic acid release a cause or a consequence of replicative senescence?

    PubMed

    Lorenzini, A; Hrelia, S; Bordoni, A; Biagi, P; Frisoni, L; Marinucci, T; Cristofalo, V J

    2001-01-01

    Arachidonic acid (AA) has been related to both stimulation and inhibition of cellular proliferation. During replicative senescence of human fibroblasts, increased levels of AA have been thought to play a causal role in the limited proliferative capacity of the cells. To clarify the role of AA in the proliferation of normal fibroblasts and in cellular senescence, we examined uptake from and release of AA into the culture media and its effects on DNA synthesis. Our results indicate that some aspects of AA metabolism in normal human fibroblasts aged in culture are significantly different in comparison to early passage cells. Particularly, AA release following different mitogenic stimulation is higher in senescent than in young cells. Notwithstanding this significant difference, AA, at the concentration used, has no inhibitory effect on fibroblast DNA synthesis. Moreover AA and prostaglandins are responsible for the proliferative block in neither senescent cells nor mediate ceramide inhibition of DNA synthesis. So our results suggest that the increasing AA release is not causal, but rather the result of in vitro aging.

  10. The toc132toc120 heterozygote mutant of Arabidopsis thaliana accumulates reduced levels of hexadecatrienoic acid.

    PubMed

    Afitlhile, Meshack; Duffield-Duncan, Kayla; Fry, Morgan; Workman, Samantha; Hum-Musser, Sue; Hildebrand, David

    2015-11-01

    A null and heterozygous mutant for the Arabidopsis thaliana TOC132 and TOC120 genes accumulates increased levels of 16:0 and decreased 16:3, suggesting altered homeostasis in fatty acid synthesis. The FAD5 gene encodes a plastid desaturase that catalyzes the first step in the synthesis of 16:3 in monogalactosyldiacylglycerol (MGDG). In non-acclimated toc132toc120+/- mutant plants, the FAD5 gene was repressed and this correlated with decreased levels of 16:3. In cold-acclimated mutant however, the FAD5 gene was upregulated and there was a small increase in 16:3 levels relative to the non-acclimated mutant plants. The MGD1 gene was expressed at control levels and the mutant accumulated levels of MGDG that were similar to the wild type. In the mutant however, MGDG had decreased 16:3 levels, suggesting that the activity of FAD5 desaturase was compromised. In the mutant, the FAD2 and FAD3 genes were downregulated but levels of 18:3-PC were increased, suggesting posttranscriptional regulation for the ER-localized fatty acid desaturases. The Toc120 or Toc159 receptor is likely to compensate for a defective Toc132 receptor. In the cold-acclimated mutant, the TOC159 gene was repressed ca. 300-fold, whereas the TOC120 gene was repressed 7-fold relative to the non-acclimated wild type. Thus, the TOC159 gene is more sensitive to cold-stress and might not compensate for defect in the TOC132 gene under these conditions. Overall, these data show that a mutation in the TOC132 gene results in decreased 16:3 levels, indicating the need for an intact Toc132/Toc120 receptor, presumably to facilitate the import of the FAD5 preprotein into chloroplasts.

  11. Increased intake of water and NaCl solutions in omega-3 fatty acid deficient monkeys.

    PubMed

    Reisbick, S; Neuringer, M; Connor, W E; Iliff-Sizemore, S

    1991-06-01

    We previously reported that long-term omega-3 fatty acid deficiency is associated with increased water intake in rhesus monkeys. To determine whether the increase was specific to water, intakes of salt solutions were measured in 15-minute single-bottle tests. Deficient monkeys drank at least twice as much of all NaCl concentrations as controls. Overall intake decreased as salt concentration increased. In 2-bottle preference tests, deficient monkeys again drank more total fluid but neither preferred nor avoided normal saline compared to controls. When deprived of water, deficient monkeys concentrated urine as well as controls, demonstrating that the increased intake was not a result of renal failure or diabetes insipidus. Omega-3 fatty acids have roles both in neural membrane function and in metabolism of prostaglandins and other eicosanoids. Omega-3 fatty acid deficiency may affect drinking through changes in one or both of these functions.

  12. Effects of dietary saturated or unsaturated fatty acids and calcium levels on performance and mineral metabolism of broiler chicks.

    PubMed

    Atteh, J O; Leeson, S

    1984-11-01

    The effects of inclusion of 8% oleic, palmitic, or a 50/50 mixture of oleic and palmitic acids as the major source of fat in the presence of .8, 1.2, or 1.6% calcium in broiler diets was investigated using broiler chicks from day-old to 3 weeks of age. Supplementation of broiler diets with oleic acid reduced feed intake (P less than .05) and improved feed efficiency (P less than .01) compared to other treatments. Chicks fed diets supplemented with oleic acid or a mixture of oleic and palmitic acid gained more weight (P less than .01) over a 3-week period. Significant interactions were observed between type of dietary fatty acid and calcium level on metabolizable energy of diets (P less than .01), magnesium retention (P less than .05), calcium and fat retention (P less than .01), and proportion of excreta fatty acid that was present as soap (P less than .01). Although all fatty acids tested formed soap in the small intestine, soaps of oleic acid were efficiently utilized as opposed to soaps of palmitic acid. There was a significant (P less than .05) reduction in bone ash and bone calcium content of chicks fed diets supplemented with palmitic acid. There was a significant interaction (P less than .05) between type of fatty acid and calcium level on bone magnesium content. Increasing the calcium content of diets aggravated the decrease in calcium retention and bone calcium content associated with addition of fat.

  13. Lens epithelial cell apoptosis and intracellular Ca2+ increase in the presence of xanthurenic acid

    PubMed Central

    Malina, Halina; Richter, Christoph; Frueh, Beatrice; Hess, Otto M

    2002-01-01

    Background Xanthurenic acid is an endogenous product of tryptophan degradation by indoleamine 2,3-dioxygenase (IDO). We have previously reported that IDO is present in mammalian lenses, and xanthurenic acid is accumulated in the lenses with aging. Here, we studied the involvement of xanthurenic acid in the human lens epithelial cell physiology. Methods Human lens epithelial cells primary cultures were used. Control cells, and cells in the presence of xanthurenic acid grow in the dark. Western blot analysis and immunofluorescence studies were performed. Results In the presence of xanthurenic acid human lens epithelial cells undergo apoptosis-like cell death. In the control cells gelsolin stained the perinuclear region, whereas in the presence of 10 μM xanthurenic acid gelsolin is translocated to the cytoskeleton, but does not lead to cytoskeleton breakdown. In the same condition caspase-3 activation, and DNA fragmentation was observed. At low (5 to 10 μM) of xanthurenic acid concentration, the elongation of the cytoskeleton was associated with migration of mitochondria and cytochrome c release. At higher concentrations xanthurenic acid (20 μM and 40 μM) damaged mitochondria were observed in the perinuclear region, and nuclear DNA cleavage was observed. We observed an induction of calpain Lp 82 and an increase of free Ca2+ in the cells in a xanthurenic acid concentration-dependent manner. Conclusions The results show that xanthurenic acid accumulation in human lens epithelial cells disturbs the normal cell physiology and leads to a cascade of pathological events. Xanthurenic acid induces calpain Lp82 and caspases in the cells growing in the dark and can be involved in senile cataract development. PMID:11934353

  14. Developmental PCB Exposure Increases Audiogenic Seizures and Decreases Glutamic Acid Decarboxylase in the Inferior Colliculus

    PubMed Central

    Bandara, Suren B.; Eubig, Paul A.; Sadowski, Renee N.; Schantz, Susan L.

    2016-01-01

    Previously, we observed that developmental polychlorinated biphenyl (PCB) exposure resulted in an increase in audiogenic seizures (AGSs) in rats. However, the rats were exposed to loud noise in adulthood, and were not tested for AGS until after 1 year of age, either of which could have interacted with early PCB exposure to increase AGS susceptibility. This study assessed susceptibility to AGS in young adult rats following developmental PCB exposure alone (without loud noise exposure) and investigated whether there was a decrease in GABA inhibitory neurotransmission in the inferior colliculus (IC) that could potentially explain this effect. Female Long-Evans rats were dosed orally with 0 or 6 mg/kg/day of an environmentally relevant PCB mixture from 28 days prior to breeding until the pups were weaned at postnatal day 21. One male-female pair from each litter was retained for the AGS study whilst another was retained for Western blot analysis of glutamic acid decarboxylase (GAD) and GABAAα1 receptor in the IC, the site in the auditory midbrain where AGS are initiated. There was a significant increase in the number and severity of AGSs in the PCB groups, with females somewhat more affected than males. GAD65 was decreased but there was no change in GAD67 or GABAAα1 in the IC indicating decreased inhibitory regulation in the PCB group. These results confirm that developmental PCB exposure alone is sufficient to increase susceptibility to AGS, and provide the first evidence for a possible mechanism of action at the level of the IC. PMID:26543103

  15. Mechanisms increasing n-3 highly unsaturated fatty acids in the heart.

    PubMed

    Glück, Tobias; Rupp, Heinz; Alter, Peter

    2016-03-01

    Due to ambiguous findings on cardiovascular benefits of systemic omega-3 fatty acid therapy, endogenous mechanisms contributing to local organ-specific concentrations of highly unsaturated fatty acids (HUFA) were examined. Using gas chromatography, 43 fatty acids were analyzed in atrial and ventricular myocardium and in pericardial fluid of male Wistar rats. To examine the endogenous fatty acid metabolism, precursors were administered into the pericardial sac. Pro- and anti-inflammatory actions were induced by talc or fenofibrate, respectively. Physical exercise and a sedentary obese state were used for increased beta-oxidation. DHA (22:6n-3) was increased in ventricular when compared with atrial myocardium (9.0 ± 2.1% vs. 4.7 ± 1.0%, p < 0.001). Intrapericardial EPA (20:5n-3) application lead to an increase of the succeeding tetracosapentaenoic acid (24:5n-3) in atrial myocardium, which is a key precursor of DHA. In contrast, proinflammatory stimulation of the n-6 HUFA pathway did not influence the n-3 metabolism. Exercise- and obesity-induced increased beta-oxidation, the finalizing step of DHA synthesis, was associated with increased ventricular DHA concentrations (6.7 ± 1.0% vs. 8.4 ± 1.2%, p < 0.01). It is concluded that the endogenous metabolism contributes markedly to myocardial HUFA concentrations. The findings are supposed to influence the efficacy of oral HUFA treatment and provide a rationale for divergent findings of previous trials on omega-3 therapy.

  16. Membrane Level of Omega-3 Docosahexaenoic Acid Is Associated with Severity of Obstructive Sleep Apnea

    PubMed Central

    Ladesich, James B.; Pottala, James V.; Romaker, Ann; Harris, William S.

    2011-01-01

    Background: Patients with obstructive sleep apnea (OSA) are at increased risk of cardiovascular disease (CVD). The omega-3 fatty acid docosahexaenoic acid (DHA) is a major component of neural tissues, and supplementation with fish oils improves autonomic tone and reduces risk for CVD. A link between low DHA status and less mature sleep patterns was observed in newborns. Methods: We investigated the relations between red blood cell (RBC) levels of DHA and OSA severity in 350 sequential patients undergoing sleep studies. Severity categories were defined as none/mild, moderate, and severe, based on apnea hypopnea index (AHI) scores of 0 to 14, 15 to 34, and > 34, respectively. Results: After controlling for age, sex, race, smoking, BMI, alcohol intake, fish intake, and omega-3 supplementation, RBC DHA was inversely related with OSA severity. For each 1-SD increase in DHA levels, a patient was about 50% less likely to be classified with severe OSA. The odds ratios (95% CI) were 0.47 (0.28 to 0.80) and 0.55 (0.31 to 0.99) for being in the severe group versus the none/mild or moderate groups, respectively. Conclusion: These findings suggest that disordered membrane fatty acid patterns may play a causal role in OSA and that the assessment of RBC DHA levels might help in the diagnosis of OSA. The effects of DHA supplementation on OSA should be explored. Citation: Ladesich JB; Pottala JV; Romaker A; Harris WS. Membrane level of omega-3 docosahexaenoic acid is associated with severity of obstructive sleep apnea. J Clin Sleep Med 2011;7(4):391-396. PMID:21897776

  17. Trophic assimilation efficiency markedly increases at higher trophic levels in four-level host-parasitoid food chain.

    PubMed

    Sanders, Dirk; Moser, Andrea; Newton, Jason; van Veen, F J Frank

    2016-03-16

    Trophic assimilation efficiency (conversion of resource biomass into consumer biomass) is thought to be a limiting factor for food chain length in natural communities. In host-parasitoid systems, which account for the majority of terrestrial consumer interactions, a high trophic assimilation efficiency may be expected at higher trophic levels because of the close match of resource composition of host tissue and the consumer's resource requirements, which would allow for longer food chains. We measured efficiency of biomass transfer along an aphid-primary-secondary-tertiary parasitoid food chain and used stable isotope analysis to confirm trophic levels. We show high efficiency in biomass transfer along the food chain. From the third to the fourth trophic level, the proportion of host biomass transferred was 45%, 65% and 73%, respectively, for three secondary parasitoid species. For two parasitoid species that can act at the fourth and fifth trophic levels, we show markedly increased trophic assimilation efficiencies at the higher trophic level, which increased from 45 to 63% and 73 to 93%, respectively. In common with other food chains, δ(15)N increased with trophic level, with trophic discrimination factors (Δ(15)N) 1.34 and 1.49‰ from primary parasitoids to endoparasitic and ectoparasitic secondary parasitoids, respectively, and 0.78‰ from secondary to tertiary parasitoids. Owing to the extraordinarily high efficiency of hyperparasitoids, cryptic higher trophic levels may exist in host-parasitoid communities, which could alter our understanding of the dynamics and drivers of community structure of these important systems.

  18. Adaptation and transcriptome analysis of Aureobasidium pullulans in corncob hydrolysate for increased inhibitor tolerance to malic acid production.

    PubMed

    Zou, Xiang; Wang, Yongkang; Tu, Guangwei; Zan, Zhanquan; Wu, Xiaoyan

    2015-01-01

    Malic acid is a dicarboxylic acid widely used in the food industry, and is also a potential C4 platform chemical. Corncob is a low-cost renewable feedstock from agricultural industry. However, side-reaction products (furfural, 5-hydroxymethylfurfural (HMF), formic acid, and acetic acid) that severely hinder fermentation are formed during corncob pretreatment. The process for producing malic acid from a hydrolysate of corncob was investigated with a polymalic acid (PMA)-producing Aureobasidium pullulans strain. Under the optimal hydrolysate sugar concentration 110 g/L, A. pullulans was further adapted in an aerobic fibrous bed bioreactor (AFBB) by gradually increasing the sugar concentration of hydrolysate. After nine batches of fermentation, the production and productivity of malic acid reached 38.6 g/L and 0.4 g/L h, respectively, which was higher than that in the first batch (27.6 g/L and 0.29 g/L h, respectively). The adapted strain could grow under the stress of 0.5 g/L furfural, 3 g/L HMF, 2g/L acetic acid, and 0.5 g/L formic acid, whereas the wild type did not. Transcriptome analysis revealed that the differentially expressed genes were related to carbohydrate transport and metabolism, lipid transport and metabolism, signal transduction mechanism, redox metabolism, and energy production and conversion under 0.5 g/L furfural and 3 g/L HMF stress conditions. In total, 42 genes in the adapted strain were upregulated by 15-fold or more, and qRT-PCR also confirmed that the expression levels of key genes (i.e. SIR, GSS, CYS, and GSR) involved in sulfur assimilation pathway were upregulated by over 10-fold in adapted strain for cellular protection against oxidative stress.

  19. Adaptation and Transcriptome Analysis of Aureobasidium pullulans in Corncob Hydrolysate for Increased Inhibitor Tolerance to Malic Acid Production

    PubMed Central

    Zou, Xiang; Wang, Yongkang; Tu, Guangwei; Zan, Zhanquan; Wu, Xiaoyan

    2015-01-01

    Malic acid is a dicarboxylic acid widely used in the food industry, and is also a potential C4 platform chemical. Corncob is a low-cost renewable feedstock from agricultural industry. However, side-reaction products (furfural, 5-hydroxymethylfurfural (HMF), formic acid, and acetic acid) that severely hinder fermentation are formed during corncob pretreatment. The process for producing malic acid from a hydrolysate of corncob was investigated with a polymalic acid (PMA)-producing Aureobasidium pullulans strain. Under the optimal hydrolysate sugar concentration 110 g/L, A. pullulans was further adapted in an aerobic fibrous bed bioreactor (AFBB) by gradually increasing the sugar concentration of hydrolysate. After nine batches of fermentation, the production and productivity of malic acid reached 38.6 g/L and 0.4 g/L h, respectively, which was higher than that in the first batch (27.6 g/L and 0.29 g/L h, respectively). The adapted strain could grow under the stress of 0.5 g/L furfural, 3 g/L HMF, 2g/L acetic acid, and 0.5 g/L formic acid, whereas the wild type did not. Transcriptome analysis revealed that the differentially expressed genes were related to carbohydrate transport and metabolism, lipid transport and metabolism, signal transduction mechanism, redox metabolism, and energy production and conversion under 0.5 g/L furfural and 3 g/L HMF stress conditions. In total, 42 genes in the adapted strain were upregulated by 15-fold or more, and qRT-PCR also confirmed that the expression levels of key genes (i.e. SIR, GSS, CYS, and GSR) involved in sulfur assimilation pathway were upregulated by over 10-fold in adapted strain for cellular protection against oxidative stress. PMID:25793624

  20. Glycine facilitates gamma-glutamylcysteinylethyl ester-mediated increase in liver glutathione level.

    PubMed

    Nishida, K; Ohta, Y; Ishiguro, I

    1997-08-27

    gamma-Glutamylcysteinylethyl ester (gamma-GCE) increases reduced glutathione (GSH) levels in GSH-depleted rat hepatocytes. Because glycine, a constituent of GSH, exists at 0.3 to 0.4 mM in rat plasma, we examined the influence of glycine added to the medium on the action of gamma-GCE to increase GSH levels in the rat hepatocytes. Glycine (0.2-0.8 mM) dose-dependently enhanced gamma-GCE-mediated increase in intracellular GSH levels with an increase in intracellular gamma-GCE levels. These results indicate that exogenous glycine facilitates gamma-GCE-mediated increase in intracellular GSH levels in rat hepatocytes possibly by enhancing the uptake of gamma-GCE into the cells.

  1. Folic acid supplementation increases cutaneous vasodilator sensitivity to sympathetic nerve activity in older adults.

    PubMed

    Stanhewicz, Anna E; Greaney, Jody L; Alexander, Lacy M; Kenney, W Larry

    2017-02-22

    During heat stress, blunted increases in skin sympathetic nervous system activity (SSNA) and reductions in end-organ vascular responsiveness contribute to the age-related reduction in reflex cutaneous vasodilation. In older adults, folic acid supplementation improves the cutaneous vascular conductance (CVC) response to passive heating; however, the influence of folic acid supplementation on SSNA:CVC transduction is unknown. Fourteen older adults (66±1yrs, 8M/6F) ingested folic acid (5mg·day(-1)) or placebo for 6 weeks in a randomized, double-blind, crossover design. In protocol 1, esophageal temperature (Tes) was increased by 1.0ºC (water-perfused suit) while SSNA (peroneal microneurography) and red cell flux in the innervated dermatome (laser Doppler flowmetry; dorsum of the foot) were continuously measured. In protocol 2, two intradermal microdialysis fibers were placed in the skin of the lateral calf for graded infusions of acetylcholine (ACh; 10(-10) to 10(-1)M) with and without nitric oxide synthase (NOS) blockade (20mM L-NAME). Folic acid improved reflex vasodilation (46±4% vs. 31±3 %CVCmax for placebo; P<0.001) without affecting the increase in SSNA (Δ506±104% vs. Δ415±73% for placebo; NS). Folic acid increased the slope of the SSNA:CVC relation (0.08±0.02 vs. 0.05±0.01 for placebo; P<0.05) and extended the response range. Folic acid augmented ACh-induced vasodilation (83±3% vs. 66±4 %CVCmax for placebo; P=0.002); however there was no difference between treatments at the NOS-inhibited site (53±4% vs. 52±4% CVCmax for placebo; NS). These data demonstrate that folic acid supplementation enhances reflex vasodilation by increasing the sensitivity of skin arterioles to central sympathetic nerve outflow during hyperthermia in aged human subjects.

  2. Algorithm for Increasing Traffic Capacity of Level-Crossing Using Scheduling Theory and Intelligent Embedded Devices

    NASA Astrophysics Data System (ADS)

    Alps, Ivars; Gorobetz, Mikhail; Levchenkov, Anatoly

    2011-01-01

    In this paper the authors present heuristics algorithm for level-crossing traffic capacity increasing. The genetic algorithm is proposed for this task solution. The control of motion speed and operation with level-crossing barriers are proposed to create control centre and installed embedded intelligent devices on railway vehicles. Algorithm is tested using computer. The results of experiments show big promises for rail transport schedule fulfilment and level-crossing traffic capacity increasing using proposed algorithm.

  3. Growth hormone releasing factor (GRF) increases free arachidonate levels in the pituitary: a role for lipoxygenase products

    SciTech Connect

    Canonico, P.L.; Speciale, C.; Sortino, M.A.; Cronin, M.J.; MacLeod, R.M.; Scapagnini, U.

    1986-01-20

    GRF, a specific stimulator of GH release, increased in a concentration- and time-dependent manner pituitary (/sup 3/H)-arachidonate levels in vitro. This effect was antagonized by 100 nM somatostatin. Exogenous arachidonate also stimulated GH release in vitro. Quinacrine, a phospholipase A2 inhibitor, reduced both basal and GRF-stimulated free arachidonate levels as well as GH release. The cyclooxygenase inhibitor indomethacin was ineffective, while BW755c, which also inhibits the lipoxygenase pathway, produced a further increase in the levels of the fatty acid stimulated by GRF and potently reduced GH release. These results provide additional evidence for the involvement of arachidonate metabolism in the hormone-releasing effect of GRF at the somatotroph. 14 references, 1 figure, 2 tables.

  4. Genome-Wide Analysis of Branched-Chain Amino Acid Levels in Arabidopsis Seeds[W

    PubMed Central

    Angelovici, Ruthie; Lipka, Alexander E.; Deason, Nicholas; Gonzalez-Jorge, Sabrina; Lin, Haining; Cepela, Jason; Buell, Robin; Gore, Michael A.; DellaPenna, Dean

    2013-01-01

    Branched-chain amino acids (BCAAs) are three of the nine essential amino acids in human and animal diets and are important for numerous processes in development and growth. However, seed BCAA levels in major crops are insufficient to meet dietary requirements, making genetic improvement for increased and balanced seed BCAAs an important nutritional target. Addressing this issue requires a better understanding of the genetics underlying seed BCAA content and composition. Here, a genome-wide association study and haplotype analysis for seed BCAA traits in Arabidopsis thaliana revealed a strong association with a chromosomal interval containing two BRANCHED-CHAIN AMINO ACID TRANSFERASES, BCAT1 and BCAT2. Linkage analysis, reverse genetic approaches, and molecular complementation analysis demonstrated that allelic variation at BCAT2 is responsible for the natural variation of seed BCAAs in this interval. Complementation analysis of a bcat2 null mutant with two significantly different alleles from accessions Bayreuth-0 and Shahdara is consistent with BCAT2 contributing to natural variation in BCAA levels, glutamate recycling, and free amino acid homeostasis in seeds in an allele-dependent manner. The seed-specific phenotype of bcat2 null alleles, its strong transcription induction during late seed development, and its subcellular localization to the mitochondria are consistent with a unique, catabolic role for BCAT2 in BCAA metabolism in seeds. PMID:24368787

  5. [Pantothenic acid levels in blood of athletes at rest and after aerobic exercise].

    PubMed

    Rokitzki, L; Sagredos, A; Reuss, F; Petersen, G; Keul, J

    1993-12-01

    Ninety-six high-performance athletes of various disciplines were available for this investigation. All athletes had many years of training and competition experience. The pantothenic acid contents in the blood were determined by means of microbiological measurements. In addition to the pantothenic acid level at rest, measurements were made resp. physical exertion in 14 marathon runners and nine body builders. Blood was collected for determination of pantothenic acid before (a), after (b) and 2 h after exercise. Compared to the reference values for untrained persons (1.34 +/- 0.13 nmol/mL), the marathon runners with 0.76 (0.31-0.94) nmol/mL and soccer players with 1.19 (0.37-2.64) nmol/mL were below the reference values. According to relative frequencies, more than 30% of all athletes were below the lower limit (< 1.20 nmol/mL). The values in body builders/racing cyclists differed significantly from those in marathon racers (p < 0.001), which is presumably due to unallowed supplementation. During exercise, there was a significant increase in the pantothenic acid level in marathon runners (p < 0.01).

  6. Resistance Training in Type 2 Diabetic Patients Improves Uric Acid levels

    PubMed Central

    Sousa, Moisés S.S.R.; Saavedra, Francisco J.F.; Neto, Gabriel R.; Novaes, Giovanni S.; Souza, Antonio C. R.; Salerno, Verônica P.; Novaes, Jefferson S.

    2014-01-01

    Resistance training (RT) can provide several benefits for individuals with Type 2 diabetes. The aim of this study was to investigate the effects of resistance training on the strength levels and uric acid (UA) concentration in individuals with Type 2 diabetes. The study included 68 patients (57.7±9.0 years) that participated in an organized program of RT for 12 weeks. The volunteers were divided into two groups: an experimental group (EG; n=34) that performed the resistance training program consisting of seven exercises executed in an alternating order based on segments; and a control group (CG; n=34) that maintained their normal daily life activities. Muscle strength and uric acid were measured both pre- and post-experiment. The results showed a significant increase in strength of the subjects in the EG for all exercises included in the study (p<0.001). Comparing the strength levels of the post-test, intergroup differences were found in supine sitting (p<0.001), leg extension (p<0.001), shoulder press (p<0.001), leg curl (p=0.001), seated row (p<0.001), leg press (p=0.001) and high pulley (p<0.001). The measured uric acid was significantly increased in both experimental and control groups (p<0.001 and p=0.001, respectively). The intergroup comparison showed a significant increase for the EG (p=0.024). We conclude that the training program was effective for strength gains despite an increase in uric acid in Type 2 diabetics. PMID:25713640

  7. Fish meal supplementation increases bovine plasma and luteal tissue omega-3 fatty acid composition.

    PubMed

    White, N R; Burns, P D; Cheatham, R D; Romero, R M; Nozykowski, J P; Bruemmer, J E; Engle, T E

    2012-03-01

    The objective of this experiment was to determine if dietary inclusion of fish meal would increase plasma and luteal tissue concentrations of eicosapentaenoic and docosahexaenoic acids. Seventeen nonlactating Angus cows (2 to 8 yr of age) were housed in individual pens and fed a corn silage-based diet for approximately 60 d. Diets were supplemented with fish meal at 5% DMI (a rich source of eicosapentaenoic acid and docosahexaenoic acid; n = 9 cows) or corn gluten meal at 6% DMI (n = 8 cows). Body weights and jugular blood samples were collected immediately before the initiation of supplementation and every 7 d thereafter for 56 d to monitor plasma n-3 fatty acid composition and BW. Estrous cycles were synchronized using 2 injections of PGF(2α) administered at 14-d intervals. The ovary bearing the corpus luteum was surgically removed at midcycle (between d 10 and 12) after estrus synchronization, which corresponded to approximately d 60 of supplementation. The ovary was transported to the laboratory, and approximately 1.5 g of luteal tissue was stored at -80°C until analyzed for n-3 fatty acid content. Initial and ending BW did not differ (P > 0.10) between cows supplemented with fish meal and those with corn gluten meal. Plasma eicosapentaenoic acid was greater (P < 0.05) beginning at d 7 of supplementation and docosahexaenoic was greater (P < 0.05) beginning at d 14 of supplementation for cows receiving fish meal. Luteal tissue collected from fish meal-supplemented cows had greater (P < 0.05) luteal n-3 fatty acids and reduced (P < 0.05) arachidonic acid and n-6 to n-3 ratio as compared with tissue obtained from cows supplemented with corn gluten meal. Our data show that fish meal supplementation increases luteal n-3 fatty acid content and reduces available arachidonic acid content, the precursor for PGF(2α). The increase in luteal n-3 fatty acids may reduce PGF(2α) intraluteal synthesis after breeding resulting in increased fertility in cattle.

  8. Effects of step-wise increases in dietary carbohydrate on circulating saturated Fatty acids and palmitoleic Acid in adults with metabolic syndrome.

    PubMed

    Volk, Brittanie M; Kunces, Laura J; Freidenreich, Daniel J; Kupchak, Brian R; Saenz, Catherine; Artistizabal, Juan C; Fernandez, Maria Luz; Bruno, Richard S; Maresh, Carl M; Kraemer, William J; Phinney, Stephen D; Volek, Jeff S

    2014-01-01

    Recent meta-analyses have found no association between heart disease and dietary saturated fat; however, higher proportions of plasma saturated fatty acids (SFA) predict greater risk for developing type-2 diabetes and heart disease. These observations suggest a disconnect between dietary saturated fat and plasma SFA, but few controlled feeding studies have specifically examined how varying saturated fat intake across a broad range affects circulating SFA levels. Sixteen adults with metabolic syndrome (age 44.9±9.9 yr, BMI 37.9±6.3 kg/m2) were fed six 3-wk diets that progressively increased carbohydrate (from 47 to 346 g/day) with concomitant decreases in total and saturated fat. Despite a distinct increase in saturated fat intake from baseline to the low-carbohydrate diet (46 to 84 g/day), and then a gradual decrease in saturated fat to 32 g/day at the highest carbohydrate phase, there were no significant changes in the proportion of total SFA in any plasma lipid fractions. Whereas plasma saturated fat remained relatively stable, the proportion of palmitoleic acid in plasma triglyceride and cholesteryl ester was significantly and uniformly reduced as carbohydrate intake decreased, and then gradually increased as dietary carbohydrate was re-introduced. The results show that dietary and plasma saturated fat are not related, and that increasing dietary carbohydrate across a range of intakes promotes incremental increases in plasma palmitoleic acid, a biomarker consistently associated with adverse health outcomes.

  9. Pros and cons of increasing folic acid and vitamin B12 intake by fortification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is no doubt that folic acid fortification can be effective for reducing the incidence of neural tube defects (NTDs). The degree of efficacy depends on both the level of folate depletion and other, yet to be fully characterized, genetic and/or environmental factors. This article summarizes brie...

  10. Adaptation to multiday ozone exposure is associated with a sustained increase of bronchoalveolar uric acid.

    PubMed

    Kirschvink, Nathalie; Fiévez, Laurence; Bureau, Fabrice; Degand, Guy; Maghuin-Rogister, Guy; Smith, Nicola; Art, Tatiana; Lekeux, Pierre

    2002-01-01

    The phenomenon of ozone tolerance is described, but the underlying mechanisms remain unknown. We tested whether adaptation to multiday ozone exposure was related to an upregulated pulmonary antioxidant defence. Six calves were exposed to 0.75 ppm ozone, 12 h day(-1) for seven consecutive days. Pulmonary function tests and bronchoalveolar lavage (BAL) were performed before, after the first (D1), third (D3) and seventh (D7) exposure. Differential cell count, total proteins, 8-epi-PGF2alpha, glutathione and uric acid were determined in BAL. Dynamic lung compliance and arterial oxygen tension were significantly decreased and lung oedema impaired pulmonary function on D1. By repeating ozone exposures, progressive functional adaptation occurred. Ozone induced a significant increase of BAL neutrophil percentage on D1. On D3 and D7, neutrophil percentage was progressively decreased, but remained significantly elevated. BAL total proteins were significantly increased on D1 and decreased progressively until D7. 8-Epi-PGF2alpha was significantly increased on D1 and was returned to baseline on D3 and D7, whilst glutathione significantly increased on D3 and returned to baseline on D7. Uric acid was increased ten-fold on D1. On D3, uric acid was increased six-fold and was persistently elevated at D7. This study suggests that ozone adaptation of functional and inflammatory variables is accompanied with sustained BAL uric acid elevation.

  11. Insulin rapidly increases diacylglycerol by activating de novo phosphatidic acid synthesis.

    PubMed

    Farese, R V; Konda, T S; Davis, J S; Standaert, M L; Pollet, R J; Cooper, D R

    1987-05-01

    The mechanisms whereby insulin increases diacylglycerol in BC3H-1 myocytes were examined. When [3H]arachidonate labeling of phospholipids was used as an indicator of phospholipase C activation, transient increases in [3H]diacylglycerol were observed between 0.5 and 10 minutes after the onset of insulin treatment. With [3H]glycerol labeling as an indicator of de novo phospholipid synthesis, [3H]diacylglycerol was increased maximally at 1 minute and remained elevated for 20 minutes. [3H]Glycerol-labeled diacylglycerol was largely derived directly from phosphatidic acid. Insulin increased de novo phosphatidic acid synthesis within 5 to 10 seconds; within 1 minute, this synthesis was 60 times greater than that of controls. Thus, the initial increase in diacylglycerol is due to both increased hydrolysis of phospholipids and a burst of de novo phosphatidic acid synthesis. After 5 to 10 minutes, de novo phosphatidic acid synthesis continues as a major source of diacylglycerol. Both phospholipid effects of insulin seem important for generating diacylglycerol and other phospholipid-derived intracellular signaling substances.

  12. Increased plasma ammonia may inhibit cellular release of branched-chain amino acids in systemic portal encephalopathy.

    PubMed

    Jahn, H A; Schohn, D C; Koehl, C; Schmitt, R L

    1983-12-01

    Plasma amino acid patterns were determined before and after hemofiltration (HF) and hemodialysis (HD) in 6 patients with portal systemic encephalopathy (PSE) and compared with the plasma AA patterns of 16 patients with chronic renal failure (CRF) treated either by HF or HD. The branched-chain amino acids (BCAA) increased paradoxically in PSE patients during HF but not with HD. There were no differences in BCAA's with HF as compared to HD in the CRF patients. The amount of amino acids lost was the same with both treatment modalities and in both patient groups. Much of the amino acids lost were released from the intracellular space. The BCAA release was significantly higher in PSE patients during HF. No correlation was found between plasma insulin, glucagon, and cortisol levels and BCAA release. An inverse correlation was found between the amount of BCAA's released from the intracellular space and the plasma ammonia levels. It is suggested that a selective cellular transport mechanism for BCAA exists which is inhibited by high plasma ammonia levels in PSE.

  13. High ω-3:ω-6 fatty acids ratio increases fatty acid binding protein 4 and extracellular secretory phospholipase A2IIa in human ectopic endometrial cells

    PubMed Central

    Khanaki, Korosh; Sadeghi, Mohammad Reza; Akhondi, Mohammad Mehdi; Darabi, Masoud; Mehdizadeh, Amir; Shabani, Mahdi; Rahimipour, Ali; Nouri, Mohammad

    2014-01-01

    Background: Endometriosis, a common chronic inflammatory disorder, is defined by the atypical growth of endometrium- like tissue outside of the uterus. Secretory phospholipase A2 group IIa (sPLA2-IIa) and fatty acid binding protein4 (FABP4) play several important roles in the inflammatory diseases. Objective: Due to reported potential anti-inflammatory effects of ω-3 and ω-6 fatty acids, the purpose of the present study was to investigate the effects of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) on fatty acid binding protein 4 and extracellular secretory phospholipase A2IIa in cultured endometrial cells. Materials and Methods: Ectopic and eutopic endometrial tissues obtained from 15 women were snap frozen. After thawing and tissue digestion, primary mixed stromal and endometrial epithelial cell culture was performed for 8 days in culture mediums supplemented with normal and high ratios of ω-3 and ω-6 PUFA. sPLA2-IIa in the culture medium and FABP4 level was determined using enzyme immuno assay (EIA) technique. Results: Within ectopic endometrial cells group, the level of cellular FABP4 and extracellular sPLA2-IIa were remarkably increased under high ω-3 PUFA exposure compared with control condition (p=0.014 and p=0.04 respectively). Conclusion: ω-3 PUFAs may increase the level of cellular FABP4 and extracellular sPLA2-IIa in ectopic endometrial cells, since sPLAIIa and FABP4 may affect endometriosis via several mechanisms, more relevant studies are encouraged to know the potential effect of increased cellular FABP4 and extracellular sPLA2-IIa on endometriosis. PMID:25709631

  14. Middle-aged rats orally supplemented with gel-encapsulated catechin favorably increases blood cytosolic NADPH levels.

    PubMed

    Cueno, Marni E; Tamura, Muneaki; Ochiai, Kuniyasu

    2015-04-15

    Green tea catechins are primarily known to function as free radical scavengers and have several beneficial uses. Orally supplemented catechin (OSC) was previously shown to increase mitochondrial heme and catalase levels in rat heart blood, however, its effect in the cytosol has not been elucidated. Here, we determined the effects of OSC in the rat heart blood cytosol. We used middle-aged (40 week-old) and young (4 week-old) rats throughout the study. We isolated blood cytosol, verified its purity, and determined heme, hydrogen peroxide (H2O2) levels, catalase (CAT) activities, gp91(phox) amounts, NADP and NAD pools, sirtuin 1 (SIRT1) and glutathione reductase (GR) activities, and free fatty acids (FFA). We established that OSC is associated with decreased heme-dependent H2O2 amounts while increasing heme-independent CAT activity. Moreover, we found that OSC-related decrease in NAD(+) amounts among middle-aged rats is associated to increased NADPH levels and SIRT1 activity. In contrast, we associated OSC-related decrease in NAD(+) amounts among young rats to decreased NADPH levels and increased SIRT1 activity. This highlights a major difference between catechin-treated middle-aged and young rats. Furthermore, we observed that cytosolic FFA and GR levels were significantly increased only among OSC-treated middle-aged rats which we hypothesize are related to increased NADPH levels. This insinuates that OSC treatment allows higher catechin amounts to enter the bloodstream of middle-aged rats. We propose that this would favorably increase NADPH amounts and lead to the simultaneous decrease in NADPH-related pro-oxidant activity and increase in NADPH-related biomolecules and anti-oxidant activities.

  15. Loss of organic anion transporting polypeptide 1a1 increases deoxycholic acid absorption in mice by increasing intestinal permeability.

    PubMed

    Zhang, Youcai; Csanaky, Iván L; Lehman-McKeeman, Lois D; Klaassen, Curtis D

    2011-12-01

    Deoxycholic acid (DCA) is a known hepatotoxicant, a tissue tumor promoter, and has been implicated in colorectal cancer. Male mice are more susceptible to DCA toxicity than female mice. Organic anion transporting polypeptide 1a1 (Oatp1a1), which is known to transport bile acids (BAs) in vitro, is predominantly expressed in livers of male mice. In addition, the concentrations of DCA and its taurine conjugate (TDCA) are increased in serum of Oatp1a1-null mice. To investigate whether Oatp1a1 contributes to the gender difference in DCA toxicity in mice, wild-type (WT) and Oatp1a1-null mice were fed a 0.3% DCA diet for 7 days. After feeding DCA, Oatp1a1-null mice had 30-fold higher concentrations of DCA in both serum and livers than WT mice. Feeding DCA caused more hepatotoxcity in Oatp1a1-null mice than WT mice. After feeding DCA, Oatp1a1-null mice expressed higher BA efflux-transporters (bile salt-export pump, organic solute transporter (Ost)α/β, and multidrug resistance-associated protein [Mrp]2) and lower BA-synthetic enzymes (cytochrome P450 [Cyp]7a1, 8b1, 27a1, and 7b1) in livers than WT mice. Intravenous administration of DCA and TDCA showed that lack of Oatp1a1 does not decrease the plasma elimination of DCA or TDCA. After feeding DCA, the concentrations of DCA in ileum and colon tissues are higher in Oatp1a1-null than in WT mice. In addition, Oatp1a1-null mice have enhanced intestinal permeability. Taken together, the current data suggest that Oatp1a1 does not mediate the hepatic uptake of DCA or TDCA, but lack of Oatp1a1 increases intestinal permeability and thus enhances the absorption of DCA in mice.

  16. Loss of Organic Anion Transporting Polypeptide 1a1 Increases Deoxycholic Acid Absorption in Mice by Increasing Intestinal Permeability

    PubMed Central

    Zhang, Youcai; Csanaky, Iván L.; Lehman-McKeeman, Lois D.; Klaassen, Curtis D.

    2011-01-01

    Deoxycholic acid (DCA) is a known hepatotoxicant, a tissue tumor promoter, and has been implicated in colorectal cancer. Male mice are more susceptible to DCA toxicity than female mice. Organic anion transporting polypeptide 1a1 (Oatp1a1), which is known to transport bile acids (BAs) in vitro, is predominantly expressed in livers of male mice. In addition, the concentrations of DCA and its taurine conjugate (TDCA) are increased in serum of Oatp1a1-null mice. To investigate whether Oatp1a1 contributes to the gender difference in DCA toxicity in mice, wild-type (WT) and Oatp1a1-null mice were fed a 0.3% DCA diet for 7 days. After feeding DCA, Oatp1a1-null mice had 30-fold higher concentrations of DCA in both serum and livers than WT mice. Feeding DCA caused more hepatotoxcity in Oatp1a1-null mice than WT mice. After feeding DCA, Oatp1a1-null mice expressed higher BA efflux-transporters (bile salt-export pump, organic solute transporter (Ost)α/β, and multidrug resistance-associated protein [Mrp]2) and lower BA-synthetic enzymes (cytochrome P450 [Cyp]7a1, 8b1, 27a1, and 7b1) in livers than WT mice. Intravenous administration of DCA and TDCA showed that lack of Oatp1a1 does not decrease the plasma elimination of DCA or TDCA. After feeding DCA, the concentrations of DCA in ileum and colon tissues are higher in Oatp1a1-null than in WT mice. In addition, Oatp1a1-null mice have enhanced intestinal permeability. Taken together, the current data suggest that Oatp1a1 does not mediate the hepatic uptake of DCA or TDCA, but lack of Oatp1a1 increases intestinal permeability and thus enhances the absorption of DCA in mice. PMID:21914718

  17. Increased UVA exposures and decreased cutaneous Vitamin D(3) levels may be responsible for the increasing incidence of melanoma.

    PubMed

    Godar, Dianne E; Landry, Robert J; Lucas, Anne D

    2009-04-01

    Cutaneous malignant melanoma (CMM) has been increasing at a steady exponential rate in fair-skinned, indoor workers since before 1940. A paradox exists between indoor and outdoor workers because indoor workers get three to nine times less solar UV (290-400 nm) exposure than outdoor workers get, yet only indoor workers have an increasing incidence of CMM. Thus, another "factor(s)" is/are involved that increases the CMM risk for indoor workers. We hypothesize that one factor involves indoor exposures to UVA (321-400 nm) passing through windows, which can cause mutations and can break down vitamin D(3) formed after outdoor UVB (290-320 nm) exposure, and the other factor involves low levels of cutaneous vitamin D(3). After vitamin D(3) forms, melanoma cells can convert it to the hormone, 1,25-dihydroxyvitamin D(3), or calcitriol, which causes growth inhibition and apoptotic cell death in vitro and in vivo. We measured the outdoor and indoor solar irradiances and found indoor solar UVA irradiances represent about 25% (or 5-10 W/m(2)) of the outdoor irradiances and are about 60 times greater than fluorescent light irradiances. We calculated the outdoor and indoor UV contributions toward different biological endpoints by weighting the emission spectra by the action spectra: erythema, squamous cell carcinoma, melanoma (fish), and previtamin D(3). Furthermore, we found production of previtamin D(3) only occurs outside where there is enough UVB. We agree that intense, intermittent outdoor UV overexposures and sunburns initiate CMM; we now propose that increased UVA exposures and inadequately maintained cutaneous levels of vitamin D(3) promotes CMM.

  18. Beef tallow increases the potency of conjugated linoleic acid in the reduction of mouse mammary tumor metastasis.

    PubMed

    Hubbard, Neil E; Lim, Debora; Erickson, Kent L

    2006-01-01

    Animal studies consistently show that dietary conjugated linoleic acid (CLA) reduces mammary tumorigenesis including metastasis. Relatively low concentrations of CLA are required for those effects, and a threshold level exists above which there is no added reduction. We reasoned that the concentration of CLA required to effectively alter mammary tumor metastasis may be dependent on the type of dietary fat because select fatty acids can enhance or suppress normal or malignant cell growth and metastasis. For this study, the diets (a total of 12 different groups) differed in fatty acid composition but not in energy from fat (40%). In experiments involving spontaneous metastasis, mice were fed for 11 wk; in experiments in which mice were injected i.v. with tumor cells, they were fed for 7 wk. Mice were then assessed for the effect of CLA concentration on mammary tumorigenesis. Mammary tumor growth was not altered, but metastasis was significantly decreased when beef tallow (BT) replaced half of a defined vegetable fat blend (VFB). That blend reflects the typical fat content of a Western diet. In addition, that same VFB:BT diet lowered the concentration of CLA required to significantly decrease mammary tumor metastasis from 0.1% of the diet to 0.05%. A diet in which corn oil replaced half of the VFB did not lower the threshold from 0.1 to 0.05%. In vitro, the main fatty acid in vegetable oil, linoleic acid, reduced the efficacy of CLA toxicity on mammary tumor cells in culture. Alternatively, fatty acids normally found in BT, such as oleic, stearic, and palmitic acids, either did not change or enhanced the cytolytic effects of CLA isomers on mouse mammary tumor cells in culture. These data provide evidence that dietary BT, itself with negligible levels of CLA, may increase the efficacy of dietary CLA in reducing mammary tumorigenesis.

  19. Insulin Signaling Regulates Fatty Acid Catabolism at the Level of CoA Activation

    PubMed Central

    Xu, Xiaojun; Gopalacharyulu, Peddinti; Seppänen-Laakso, Tuulikki; Ruskeepää, Anna-Liisa; Aye, Cho Cho; Carson, Brian P.; Mora, Silvia; Orešič, Matej; Teleman, Aurelio A.

    2012-01-01

    The insulin/IGF signaling pathway is a highly conserved regulator of metabolism in flies and mammals, regulating multiple physiological functions including lipid metabolism. Although insulin signaling is known to regulate the activity of a number of enzymes in metabolic pathways, a comprehensive understanding of how the insulin signaling pathway regulates metabolic pathways is still lacking. Accepted knowledge suggests the key regulated step in triglyceride (TAG) catabolism is the release of fatty acids from TAG via the action of lipases. We show here that an additional, important regulated step is the activation of fatty acids for beta-oxidation via Acyl Co-A synthetases (ACS). We identify pudgy as an ACS that is transcriptionally regulated by direct FOXO action in Drosophila. Increasing or reducing pudgy expression in vivo causes a decrease or increase in organismal TAG levels respectively, indicating that pudgy expression levels are important for proper lipid homeostasis. We show that multiple ACSs are also transcriptionally regulated by insulin signaling in mammalian cells. In sum, we identify fatty acid activation onto CoA as an important, regulated step in triglyceride catabolism, and we identify a mechanistic link through which insulin regulates lipid homeostasis. PMID:22275878

  20. Uric acid plasma level and urine pH in rats treated with ambroxol.

    PubMed

    Drewa, Tomasz; Wolski, Zbigniew; Gruszka, Marzena; Misterek, Bartosz; Lysik, Joanna

    2007-01-01

    It was a chance discovery that ambroxol parenteral administration led to urinary bladder stone formation in rats. This study was undertaken to examine the serum uric acid levels and urine pH in rats after ambroxol parenteral treatment. Ambroxol influence on the uric acid level was measured in 5 rats (Rattus sp.) treated with 60 mg/kg (dissolved in injection water, sc, daily) during 2 weeks. Ambroxol influence on urine pH was examined on 45 rats divided into 3 groups. Rats from the 1st and 2nd group received 30 and 60 mg/kg/24h ambroxol, respectively. Urine was collected once daily and measured with strip kit. All values were presented as the means with standard deviations. The Student t test was used to compare the means, p < 0.05 was considered as significant. Dynamics of pH changes was measured in 4 rats treated with 60 mg/kg/24h of ambroxol. Controls received 1 mL of injection water sc. Serum uric acid level increased up to 8.7 +/- 1.0 mg/dL vs. 5.7 +/- 1.0 mg/dL in control (p < 0.002). In the 1st and 2nd group urine pH increased up to 7.5 +/- 0.5 and 7.6 +/- 0.5 vs. 6.7 +/- 0.4 (p < 0.05). Ambroxol withdrawal resulted in sequential urine pH decrease. 11 days after interruption of ambroxol therapy pH reached the starting value. Urine pH changes and possible disturbances in uric acid metabolic pathway may influence on the stone formation in rats after ambroxol parenteral treatment. The influence of ambroxol on urinary tract GAG layer and the balance between xanthine and CaOx in the urine should be checked.

  1. Effect of brown seaweed lipids on fatty acid composition and lipid hydroperoxide levels of mouse liver.

    PubMed

    Airanthi, M K Widjaja-Adhi; Sasaki, Naoya; Iwasaki, Sayaka; Baba, Nobuko; Abe, Masayuki; Hosokawa, Masashi; Miyashita, Kazuo

    2011-04-27

    Brown seaweed lipids from Undaria pinnatifida (Wakame), Sargassum horneri (Akamoku), and Cystoseira hakodatensis (Uganomoku) contained several bioactive compounds, namely, fucoxanthin, polyphenols, and omega-3 polyunsaturated fatty acids (PUFA). Fucoxanthin and polyphenol contents of Akamoku and Uganomoku lipids were higher than those of Wakame lipids, while Wakame lipids showed higher total omega-3 PUFA content than Akamoku and Uganomoku lipids. The levels of docosahexaenoic acid (DHA) and arachidonic acid (AA) in liver lipids of KK-A(y) mouse significantly increased by Akamoku and Uganomoku lipid feeding as compared with the control, but not by Wakame lipid feeding. Fucoxanthin has been reported to accelerate the bioconversion of omega-3 PUFA and omega-6 PUFA to DHA and AA, respectively. The higher hepatic DHA and AA level of mice fed Akamoku and Uganomoku lipids would be attributed to the higher content of fucoxanthin of Akamoku and Uganomoku lipids. The lipid hydroperoxide levels of the liver of mice fed brown seaweed lipids were significantly lower than those of control mice, even though total PUFA content was higher in the liver of mice fed brown seaweed lipids. This would be, at least in part, due to the antioxidant activity of fucoxanthin metabolites in the liver.

  2. Normal level of sepsis-associated phenylcarboxylic acids in human serum.

    PubMed

    Beloborodova, N V; Moroz, V V; Osipov, A A; Bedova, A Yu; Olenin, A Yu; Getsina, M L; Karpova, O V; Olenina, E G

    2015-03-01

    Previous studies showed that large amounts of phenylcarboxylic acids (PhCAs) are accumulated in a septic patient's blood due to increased endogenous and microbial phenylalanine and tyrosine biotransformation. Frequently, biochemical aromatic amino acid transformation into PhCAs is considered functionally insignificant for people without monogenetic hereditary diseases. The blood of healthy people contains the same PhCAs that are typical for septic patients as shown in this paper. The overall serum PhCAs level was 6 µM on average as measured by gas chromatography with flame ionization detection. This level is a stable biochemical parameter indicating the normal metabolism of aromatic amino acids. The concentrations of PhCAs in the metabolic profile of healthy people are distributed as follows: phenylacetic ≈ p-hydroxyphenyllactic > p-hydroxyphenylacetic > phenyllactic ≈ phenylpropionic > benzoic. We conclude that maintaining of stable PhCAs level in the serum is provided as the result of integration of human endogenous metabolic pathways and microbiota.

  3. Association of androgen with gender difference in serum adipocyte fatty acid binding protein levels

    PubMed Central

    Hu, Xiang; Ma, Xiaojing; Pan, Xiaoping; Luo, Yuqi; Xu, Yiting; Xiong, Qin; Bao, Yuqian; Jia, Weiping

    2016-01-01

    Clinical investigations have indicated women have higher levels of adipocyte fatty acid binding protein (A-FABP) than men. The present study aimed to identify factors related to gender difference in serum A-FABP levels. A total of 507 participants (194 men, 132 premenopausal women, and 181 postmenopausal women) were enrolled in the present study. Serum A-FABP levels increased in the order from men to premenopausal women to postmenopausal women in both body mass index categories (<25.0 and ≥25.0 kg/m2; all P < 0.05). Multiple stepwise regression analyses showed that after adjustment for factors related to serum A-FABP levels, the trunk fat mass was an independent and positive factor of serum A-FABP levels. For men, total testosterone was associated independently and inversely with serum A-FABP levels. For pre- and postmenopausal women, bioavailable testosterone and total testosterone were independent and positive factors associated with serum A-FABP levels, respectively. The present study demonstrated that the androgen was correlated with the serum A-FABP levels negatively in men, but positively in women. With these effects on the fat content, especially trunk fat, androgen might contribute to the gender difference in serum A-FABP levels. PMID:27270834

  4. Increased rhinovirus replication in nasal mucosa cells in allergic subjects is associated with increased ICAM‐1 levels and endosomal acidification and is inhibited by L‐carbocisteine

    PubMed Central

    Nomura, Kazuhiro; Arakawa, Kazuya; Nishimura, Hidekazu; Lusamba Kalonji, Nadine; Kubo, Hiroshi; Nagatomi, Ryoichi; Kawase, Tetsuaki

    2016-01-01

    Abstract Increased viral replication and cytokine production may be associated with the pathogenesis of asthma attacks in rhinovirus (RV) infections. However, the association between increased RV replication and enhanced expression of intercellular adhesion molecule‐1 (ICAM‐1), a receptor for a major RV group, in airway epithelial cells has remained unclear. Furthermore, the inhibitory effects of mucolytics, which have clinical benefits in asthmatic subjects, are uncertain. Human nasal epithelial (HNE) cells were infected with type 14 rhinovirus (RV14), a major RV group. RV14 titers and cytokine concentrations, including interleukin (IL)‐6 and IL‐8, in supernatants, RV14 RNA replication and susceptibility to RV14 infection were higher in HNE cells obtained from subjects in the allergic group (allergic subjects) than in those from subjects in the non‐allergic group (non‐allergic subjects). ICAM‐1 expression and the number and fluorescence intensity of acidic endosomes from which RV14 RNA enters the cytoplasm were higher in HNE cells from allergic subjects, though substantial amounts of interferon (IFN)‐γ and IFN‐λ were not detected in the supernatant. The abundance of p50 and p65 subunits of transcription factor nuclear factor kappa B (NF‐κB) in nuclear extracts of the cells from allergic subjects was higher compared to non‐allergic subjects, and an inhibitor of NF‐κB, caffeic acid phenethyl ester, reduced the fluorescence intensity of acidic endosomes as well as RV titers and RNA. Furthermore, a mucolytic agent, L‐carbocisteine, reduced RV14 titers and RNA levels, cytokine release, ICAM‐1 expression, the fluorescence intensity of acidic endosomes, and NF‐κB activation. The increased RV14 replication observed in HNE cells from allergic subjects might be partly associated with enhanced ICAM‐1 expression and decreased endosomal pH through NF‐κB activation. L‐Carbocisteine inhibits RV14 infection by reducing ICAM‐1 and acidic

  5. Increased rhinovirus replication in nasal mucosa cells in allergic subjects is associated with increased ICAM-1 levels and endosomal acidification and is inhibited by L-carbocisteine.

    PubMed

    Yamaya, Mutsuo; Nomura, Kazuhiro; Arakawa, Kazuya; Nishimura, Hidekazu; Lusamba Kalonji, Nadine; Kubo, Hiroshi; Nagatomi, Ryoichi; Kawase, Tetsuaki

    2016-06-01

    Increased viral replication and cytokine production may be associated with the pathogenesis of asthma attacks in rhinovirus (RV) infections. However, the association between increased RV replication and enhanced expression of intercellular adhesion molecule-1 (ICAM-1), a receptor for a major RV group, in airway epithelial cells has remained unclear. Furthermore, the inhibitory effects of mucolytics, which have clinical benefits in asthmatic subjects, are uncertain. Human nasal epithelial (HNE) cells were infected with type 14 rhinovirus (RV14), a major RV group. RV14 titers and cytokine concentrations, including interleukin (IL)-6 and IL-8, in supernatants, RV14 RNA replication and susceptibility to RV14 infection were higher in HNE cells obtained from subjects in the allergic group (allergic subjects) than in those from subjects in the non-allergic group (non-allergic subjects). ICAM-1 expression and the number and fluorescence intensity of acidic endosomes from which RV14 RNA enters the cytoplasm were higher in HNE cells from allergic subjects, though substantial amounts of interferon (IFN)-γ and IFN-λ were not detected in the supernatant. The abundance of p50 and p65 subunits of transcription factor nuclear factor kappa B (NF-κB) in nuclear extracts of the cells from allergic subjects was higher compared to non-allergic subjects, and an inhibitor of NF-κB, caffeic acid phenethyl ester, reduced the fluorescence intensity of acidic endosomes as well as RV titers and RNA. Furthermore, a mucolytic agent, L-carbocisteine, reduced RV14 titers and RNA levels, cytokine release, ICAM-1 expression, the fluorescence intensity of acidic endosomes, and NF-κB activation. The increased RV14 replication observed in HNE cells from allergic subjects might be partly associated with enhanced ICAM-1 expression and decreased endosomal pH through NF-κB activation. L-Carbocisteine inhibits RV14 infection by reducing ICAM-1 and acidic endosomes and may, therefore, modulate airway

  6. Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus persica L. Batsch).

    PubMed

    Tatsuki, Miho; Nakajima, Naoko; Fujii, Hiroshi; Shimada, Takehiko; Nakano, Michiharu; Hayashi, Ken-ichiro; Hayama, Hiroko; Yoshioka, Hirohito; Nakamura, Yuri

    2013-02-01

    The fruit of melting-flesh peach (Prunus persica L. Batsch) cultivars produce high levels of ethylene caused by high expression of PpACS1 (an isogene of 1-aminocyclopropane-1-carboxylic acid synthase), resulting in rapid fruit softening at the late-ripening stage. In contrast, the fruit of stony hard peach cultivars do not soften and produce little ethylene due to low expression of PpACS1. To elucidate the mechanism for suppressing PpACS1 expression in stony hard peaches, a microarray analysis was performed. Several genes that displayed similar expression patterns as PpACS1 were identified and shown to be indole-3-acetic acid (IAA)-inducible genes (Aux/IAA, SAUR). That is, expression of IAA-inducible genes increased at the late-ripening stage in melting flesh peaches; however, these transcripts were low in mature fruit of stony hard peaches. The IAA concentration increased suddenly just before harvest time in melting flesh peaches exactly coinciding with system 2 ethylene production. In contrast, the IAA concentration did not increase in stony hard peaches. Application of 1-naphthalene acetic acid, a synthetic auxin, to stony hard peaches induced a high level of PpACS1 expression, a large amount of ethylene production and softening. Application of an anti-auxin, α-(phenylethyl-2-one)-IAA, to melting flesh peaches reduced levels of PpACS1 expression and ethylene production. These observations indicate that suppression of PpACS1 expression at the late-ripening stage of stony hard peach may result from a low level of IAA and that a high concentration of IAA is required to generate a large amount of system 2 ethylene in peaches.

  7. Metabolic rates associated with membrane fatty acids in mice selected for increased maximal metabolic rate

    PubMed Central

    Wone, Bernard W. M.; Donovan, Edward R.; Cushman, John C.; Hayes, Jack P.

    2014-01-01

    Aerobic metabolism of vertebrates is linked to membrane fatty acid (FA) composition. Although the membrane pacemaker hypothesis posits that desaturation of FAs accounts for variation in resting or basal metabolic rate (BMR), little is known about the FA profiles that underpin variation in maximal metabolic rate (MMR). We examined membrane FA composition of liver and skeletal muscle in mice after seven generations of selection for increased MMR. In both liver and skeletal muscle, unsaturation index did not differ between control and high-MMR mice. We also examined membrane FA composition at the individual-level of variation. In liver, 18:0, 20:3 n-6, 20:4 n-6, and 22:6 n-3 FAs were significant predictors of MMR. In gastrocnemius muscle, 18:2 n-6, 20:4 n-6, and 22:6 n-3 FAs were significant predictors of MMR. In addition, muscle 16:1 n-7, 18:1 n-9, and 22:5 n-3 FAs were significant predictors of BMR, whereas no liver FAs were significant predictors of BMR. Our findings indicate that (i) individual variation in MMR and BMR appear to be linked to membrane FA composition in the skeletal muscle and liver, and (ii) FAs that differ between selected and control lines are involved in pathways that can affect MMR or BMR. PMID:23422919

  8. High-intensity interval training increases intrinsic rates of mitochondrial fatty acid oxidation in rat red and white skeletal muscle.

    PubMed

    Hoshino, Daisuke; Yoshida, Yuko; Kitaoka, Yu; Hatta, Hideo; Bonen, Arend

    2013-03-01

    High-intensity interval training (HIIT) can increase mitochondrial volume in skeletal muscle. However, it is unclear whether HIIT alters the intrinsic capacity of mitochondrial fatty acid oxidation, or whether such changes are associated with changes in mitochondrial FAT/CD36, a regulator of fatty acid oxidation, or with reciprocal changes in the nuclear receptor coactivator (peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α)) and the corepressor (receptor-interacting protein 140 (RIP140)). We examined whether HIIT alters fatty acid oxidation rates in the isolated subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria of red and white skeletal muscle and (or) induces changes in muscle PGC-1α and RIP140 proteins and mitochondrial FAT/CD36 protein content. Rats were divided into untrained or HIIT-trained groups. HIIT animals performed 10 bouts of 1-min high-intensity treadmill running (30-55 m·min(-1)), separated by 2 min of rest, for 5 days a week for 4 weeks. As expected, after the training period, HIIT increased mitochondrial enzymes (citrate synthase, COXIV, and β-hydroxyacyl CoA dehydrogenase) in red and white muscle, indicating that muscle mitochondrial volume had increased. HIIT also increased the rates of palmitate oxidation in mitochondria of red (37% for SS and 19% for IMF) and white (36% for SS and 12% for IMF) muscle. No changes occurred in SS and IMF mitochondrial FAT/CD36 proteins, despite increasing FAT/CD36 at the whole-muscle level (27% for red and 22% for white). Concurrently, muscle PGC-1α protein was increased in red (22%) and white (16%) muscle, but RIP140 was not altered. These results indicate that increases in SS and IMF mitochondrial fatty acid oxidation induced by HIIT are accompanied by an increase in PGC-1α, but not RIP140 or FAT/CD36.

  9. Saturated fat consumption may not be the main cause of increased blood lipid levels.

    PubMed

    Dias, C B; Garg, R; Wood, L G; Garg, M L

    2014-02-01

    Consumption of foods rich in saturated fatty acids (SFA) has often been associated with elevated blood lipid levels and consequently with risk for chronic diseases, including coronary heart disease. However, epidemiological and interventional studies on this topic are contradictory. While some studies have established a positive link, other studies have failed to show a significant association between saturated fat consumption and blood lipid levels, and others have even found an inverse association. Moreover, studies using animal models have demonstrated that dietary saturated fats raise blood lipid (cholesterol and triglycerides) levels only when the diet is deficient in omega-3 polyunsaturated fatty acids (n-3PUFA). The n-3PUFA are known for their potential in the management of hyperlipidaemia for the prevention of coronary heart disease, as well as for their anti-arrhythmic, anti-aggregatory and anti-inflammatory potential. We believe that with an adequate consumption of n-3PUFA dietary saturated fat may not result in elevated blood lipid levels. Therefore, we critically evaluated the literature regarding saturated fat and blood lipid level, with an emphasis on the role of n-3PUFA on this relationship. Evidence from animal studies and few clinical trials lead to the hypothesis that there are beneficial or neutral effects of saturated fatty acids when combined with recommended levels of n-3PUFA in the diet. However, an intervention focusing on the background fat when the volunteers' diet is supplemented with n-3PUFA is yet to be done. Proving the authenticity of this hypothesis would mean a substantial change in public health messages regarding saturated fats and their health effects; and also a change in the strategies related to prevention of chronic cardiac and artery diseases.

  10. Antidepressant effect of electroacupuncture regulates signal targeting in the brain and increases brain-derived neurotrophic factor levels

    PubMed Central

    Duan, Dong-mei; Tu, Ya; Liu, Ping; Jiao, Shuang

    2016-01-01

    Electroacupuncture improves depressive behavior faster and with fewer adverse effects than antidepressant medication. However, the antidepressant mechanism of electroacupuncture remains poorly understood. Here, we established a rat model of chronic unpredicted mild stress, and then treated these rats with electroacupuncture at Yintang (EX-HN3) and Baihui (DU20) with sparse waves at 2 Hz and 0.6 mA for 30 minutes, once a day. We found increased horizontal and vertical activity, and decreased immobility time, at 2 and 4 weeks after treatment. Moreover, levels of neurotransmitters (5-hydroxytryptamine, glutamate, and γ-aminobutyric acid) and protein levels of brain-derived neurotrophic factor and brain-derived neurotrophic factor-related proteins (TrkB, protein kinase A, and phosphorylation of cyclic adenosine monophosphate response element binding protein) were increased in the hippocampus. Similarly, protein kinase A and TrkB mRNA levels were increased, and calcium-calmodulin-dependent protein kinase II levels decreased. These findings suggest that electroacupuncture increases phosphorylation of cyclic adenosine monophosphate response element binding protein and brain-derived neurotrophic factor levels by regulating multiple targets in the cyclic adenosine monophosphate response element binding protein signaling pathway, thereby promoting nerve regeneration, and exerting an antidepressive effect. PMID:27904490

  11. Cassava interspecific hybrids with increased protein content and improved amino acid profiles.

    PubMed

    Gomes, P T C; Nassar, N M A

    2013-04-12

    Cassava (Manihot esculenta) is a principal food for large populations of poor people in the tropics and subtropics. Its edible roots are poor in protein and lack several essential amino acids. Interspecific hybrids may acquire high protein characteristics from wild species. We analyzed 19 hybrids of M. esculenta with its wild relative, M. oligantha, for crude protein, amino acid profile, and total cyanide. Some hybrids produced roots with high protein content of up to 5.7%, while the common cultivar that we examined had just 2.3% crude protein. The essential amino acids alanine, phenylalanine, and valine were detected in the hybrids. The sulfur-containing amino acids cysteine and methionine were found at relatively high concentrations in the roots of 4 hybrids. The proportion of lysine in one hybrid was 20 times higher than in the common cultivar. The levels of total cyanide ranged from 19.73 to 172.56 mg/kg and most of the roots analyzed were classified as "non-toxic" and "low toxic". Furthermore, 2 progenies showed reasonable levels of cyanide, but higher protein content and amino acid profile more advantageous than the common cassava.

  12. Increased hepatic Fatty Acid uptake and esterification contribute to tetracycline-induced steatosis in mice.

    PubMed

    Choi, You-Jin; Lee, Chae-Hyeon; Lee, Kang-Yo; Jung, Seung-Hwan; Lee, Byung-Hoon

    2015-06-01

    Tetracycline induces microvesicular steatosis, which has a poor long-term prognosis and a higher risk of steatohepatitis development compared with macrovesicular steatosis. Recent gene expression studies indicated that tetracycline treatment affects the expression of many genes associated with fatty acid transport and esterification. In this study, we investigated the role of fatty acid transport and esterification in tetracycline-induced steatosis. Intracellular lipid accumulation and the protein expression of fatty acid translocase (FAT or CD36) and diacylglycerol acyltransferase (DGAT) 2 were increased in both mouse liver and HepG2 cells treated with tetracycline at 50 mg/kg (intraperitoneal injection, i.p.) and 100 μM, respectively. Tetracycline increased the cellular uptake of boron-dipyrromethene-labeled C16 fatty acid, which was abolished by CD36 RNA interference. Oleate-induced cellular lipid accumulation was further enhanced by co-incubation with tetracycline. Tetracycline downregulated extracellular signal-regulated kinase (ERK) phosphorylation, which negatively regulated DGAT2 expression. U0126, a specific ERK inhibitor, also increased DGAT2 expression and cellular lipid accumulation. DGAT1 and 2 knock-down with specific small interfering (si)-RNA completely abrogated the steatogenic effect of tetracycline in HepG2 cells. Taken together, our data showed that tetracycline induces lipid accumulation by facilitating fatty acid transport and triglyceride esterification by upregulating CD36 and DGAT2, respectively.

  13. Adenosine plasma level correlates with homocysteine and uric acid concentrations in patients with coronary artery disease.

    PubMed

    Fromonot, J; Deharo, P; Bruzzese, L; Cuisset, T; Quilici, J; Bonatti, S; Fenouillet, E; Mottola, G; Ruf, J; Guieu, R

    2016-03-01

    The role of hyperhomocysteinemia in coronary artery disease (CAD) patients remains unclear. The present study evaluated the relationship between homocysteine (HCys), adenosine plasma concentration (APC), plasma uric acid, and CAD severity evaluated using the SYNTAX score. We also evaluated in vitro the influence of adenosine on HCys production by hepatoma cultured cells (HuH7). Seventy-eight patients (mean age ± SD: 66.3 ± 11.3; mean SYNTAX score: 19.9 ± 12.3) and 30 healthy subjects (mean age: 61 ± 13) were included. We incubated HuH7 cells with increasing concentrations of adenosine and addressed the effect on HCys level in cell culture supernatant. Patients vs. controls had higher APC (0.82 ± 0.5 μmol/L vs 0.53 ± 0.14 μmol/L; p < 0.01), HCys (15 ± 7.6 μmol/L vs 6.8 ± 3 μmol/L, p < 0.0001), and uric acid (242.6 ± 97 vs 202 ± 59, p < 0.05) levels. APC was correlated with HCys and uric acid concentrations in patients (Pearson's R = 0.65 and 0.52; p < 0.0001, respectively). The SYNTAX score was correlated with HCys concentration. Adenosine induced a time- and dose-dependent increase in HCys in cell culture. Our data suggest that high APC is associated with HCys and uric acid concentrations in CAD patients. Whether the increased APC participates in atherosclerosis or, conversely, is part of a protective regulation process needs further investigations.

  14. Oxidation of nonplasma fatty acids during exercise is increased in women with abdominal obesity.

    PubMed

    Horowitz, J F; Klein, S

    2000-12-01

    We evaluated plasma fatty acid availability and plasma and whole body fatty acid oxidation during exercise in five lean and five abdominally obese women (body mass index = 21 +/- 1 vs. 38 +/- 1 kg/m(2)), who were matched on aerobic fitness, to test the hypothesis that obesity alters the relative contribution of plasma and nonplasma fatty acids to total energy production during exercise. Subjects exercised on a recumbent cycle ergometer for 90 min at 54% of their peak oxygen consumption. Stable isotope tracer methods ([(13)C]palmitate) were used to measure fatty acid rate of appearance in plasma and the rate of plasma fatty acid oxidation, and indirect calorimetry was used to measure whole body substrate oxidation. During exercise, palmitate rate of appearance increased progressively and was similar in obese and lean groups between 60 and 90 min of exercise [3.9 +/- 0.4 vs. 4.0 +/- 0.3 micromol. kg fat free mass (FFM)(-1). min(-1)]. The rate of plasma fatty acid oxidation was also similar in obese and lean subjects (12.8 +/- 1.7 vs. 14.5 +/- 1.8 micromol. kg FFM(-1). min(-1); P = not significant). However, whole body fatty acid oxidation during exercise was 25% greater in obese than in lean subjects (21.9 +/- 1.2 vs. 17.5 +/- 1.6 micromol. kg FFM(-1). min(-1); P < 0.05). These results demonstrate that, although plasma fatty acid availability and oxidation are similar during exercise in lean and obese women, women with abdominal obesity use more fat as a fuel by oxidizing more nonplasma fatty acids.

  15. Assessment of Folic Acid Supplementation in Pregnant Women by Estimation of Serum Levels of Tetrahydrofolic Acid, Dihydrofolate Reductase, and Homocysteine.

    PubMed

    Naithani, Manisha; Saxena, Vartika; Mirza, Anissa Atif; Kumari, Ranjeeta; Sharma, Kapil; Bharadwaj, Jyoti

    2016-01-01

    Background. Status of folic acid use in pregnant women of the hilly regions in North India was little known. This study was carried out to assess the folic acid use and estimate folate metabolites in pregnant women of this region. Materials and Methods. This cross-sectional study is comprised of 76 pregnant women, whose folic acid supplementation was assessed by a questionnaire and serum levels of homocysteine, tetrahydrofolic acid (THFA), and dihydrofolate reductase (DHFR) were estimated using Enzyme Linked Immunoassays. Results. The study data revealed awareness of folic acid use during pregnancy was present in 46.1% and 23.7% were taking folic acid supplements. The study depicted that there was no statistically significant difference between serum levels of THFA and DHFR in pregnant women with and without folic acid supplements (p = 0.790). Hyperhomocysteinemia was present in 15.78% of the participants. Conclusion. Less awareness about folic acid supplementation and low use of folic acid by pregnant women were observed in this region. Sufficient dietary ingestion may suffice for the escalated requirements in pregnancy, but since this cannot be ensured, hence folic acid supplementation should be made as an integral part of education and reproductive health programs for its better metabolic use, growth, and development of fetus.

  16. Assessment of Folic Acid Supplementation in Pregnant Women by Estimation of Serum Levels of Tetrahydrofolic Acid, Dihydrofolate Reductase, and Homocysteine

    PubMed Central

    Saxena, Vartika; Mirza, Anissa Atif; Kumari, Ranjeeta; Sharma, Kapil; Bharadwaj, Jyoti

    2016-01-01

    Background. Status of folic acid use in pregnant women of the hilly regions in North India was little known. This study was carried out to assess the folic acid use and estimate folate metabolites in pregnant women of this region. Materials and Methods. This cross-sectional study is comprised of 76 pregnant women, whose folic acid supplementation was assessed by a questionnaire and serum levels of homocysteine, tetrahydrofolic acid (THFA), and dihydrofolate reductase (DHFR) were estimated using Enzyme Linked Immunoassays. Results. The study data revealed awareness of folic acid use during pregnancy was present in 46.1% and 23.7% were taking folic acid supplements. The study depicted that there was no statistically significant difference between serum levels of THFA and DHFR in pregnant women with and without folic acid supplements (p = 0.790). Hyperhomocysteinemia was present in 15.78% of the participants. Conclusion. Less awareness about folic acid supplementation and low use of folic acid by pregnant women were observed in this region. Sufficient dietary ingestion may suffice for the escalated requirements in pregnancy, but since this cannot be ensured, hence folic acid supplementation should be made as an integral part of education and reproductive health programs for its better metabolic use, growth, and development of fetus. PMID:27064332

  17. Forkhead transcription factor FOXO3a levels are increased in Huntington disease because of overactivated positive autofeedback loop.

    PubMed

    Kannike, Kaja; Sepp, Mari; Zuccato, Chiara; Cattaneo, Elena; Timmusk, Tõnis

    2014-11-21

    Huntington disease (HD) is a fatal autosomal dominant neurodegenerative disorder caused by an increased number of CAG repeats in the HTT gene coding for huntingtin. Decreased neurotrophic support and increased mitochondrial and excitotoxic stress have been reported in HD striatal and cortical neurons. The members of the class O forkhead (FOXO) transcription factor family, including FOXO3a, act as sensor proteins that are activated upon decreased survival signals and/or increased cellular stress. Using immunocytochemical screening in mouse striatal Hdh(7/7) (wild type), Hdh(7/109) (heterozygous for HD mutation), and Hdh(109/109) (homozygous for HD mutation) cells, we identified FOXO3a as a differentially regulated transcription factor in HD. We report increased nuclear FOXO3a levels in mutant Hdh cells. Additionally, we show that treatment with mitochondrial toxin 3-nitropropionic acid results in enhanced nuclear localization of FOXO3a in wild type Hdh(7/7) cells and in rat primary cortical neurons. Furthermore, mRNA levels of Foxo3a are increased in mutant Hdh cells compared with wild type cells and in 3-nitropropionic acid-treated primary neurons compared with untreated neurons. A similar increase was observed in the cortex of R6/2 mice and HD patient post-mortem caudate tissue compared with controls. Using chromatin immunoprecipitation and reporter assays, we demonstrate that FOXO3a regulates its own transcription by binding to the conserved response element in Foxo3a promoter. Altogether, the findings of this study suggest that FOXO3a levels are increased in HD cells as a result of overactive positive feedback loop.

  18. Forkhead Transcription Factor FOXO3a Levels Are Increased in Huntington Disease Because of Overactivated Positive Autofeedback Loop*

    PubMed Central

    Kannike, Kaja; Sepp, Mari; Zuccato, Chiara; Cattaneo, Elena; Timmusk, Tõnis

    2014-01-01

    Huntington disease (HD) is a fatal autosomal dominant neurodegenerative disorder caused by an increased number of CAG repeats in the HTT gene coding for huntingtin. Decreased neurotrophic support and increased mitochondrial and excitotoxic stress have been reported in HD striatal and cortical neurons. The members of the class O forkhead (FOXO) transcription factor family, including FOXO3a, act as sensor proteins that are activated upon decreased survival signals and/or increased cellular stress. Using immunocytochemical screening in mouse striatal Hdh7/7 (wild type), Hdh7/109 (heterozygous for HD mutation), and Hdh109/109 (homozygous for HD mutation) cells, we identified FOXO3a as a differentially regulated transcription factor in HD. We report increased nuclear FOXO3a levels in mutant Hdh cells. Additionally, we show that treatment with mitochondrial toxin 3-nitropropionic acid results in enhanced nuclear localization of FOXO3a in wild type Hdh7/7 cells and in rat primary cortical neurons. Furthermore, mRNA levels of Foxo3a are increased in mutant Hdh cells compared with wild type cells and in 3-nitropropionic acid-treated primary neurons compared with untreated neurons. A similar increase was observed in the cortex of R6/2 mice and HD patient post-mortem caudate tissue compared with controls. Using chromatin immunoprecipitation and reporter assays, we demonstrate that FOXO3a regulates its own transcription by binding to the conserved response element in Foxo3a promoter. Altogether, the findings of this study suggest that FOXO3a levels are increased in HD cells as a result of overactive positive feedback loop. PMID:25271153

  19. Bioaugmentation of Syntrophic Acetate-Oxidizing Culture in Biogas Reactors Exposed to Increasing Levels of Ammonia

    PubMed Central

    Westerholm, Maria; Levén, Lotta

    2012-01-01

    The importance of syntrophic acetate oxidation for process stability in methanogenic systems operating at high ammonia concentrations has previously been emphasized. In this study we investigated bioaugmentation of syntrophic acetate-oxidizing (SAO) cultures as a possible method for decreasing the adaptation period of biogas reactors operating at gradually increased ammonia concentrations (1.5 to 11 g NH4+-N/liter). Whole stillage and cattle manure were codigested semicontinuously for about 460 days in four mesophilic anaerobic laboratory-scale reactors, and a fixed volume of SAO culture was added daily to two of the reactors. Reactor performance was evaluated in terms of biogas productivity, methane content, pH, alkalinity, and volatile fatty acid (VFA) content. The decomposition pathway of acetate was analyzed by isotopic tracer experiments, and population dynamics were monitored by quantitative PCR analyses. A shift in dominance from aceticlastic methanogenesis to SAO occurred simultaneously in all reactors, indicating no influence by bioaugmentation on the prevailing pathway. Higher abundances of Clostridium ultunense and Tepidanaerobacter acetatoxydans were associated with bioaugmentation, but no influence on Syntrophaceticus schinkii or the methanogenic population was distinguished. Overloading or accumulation of VFA did not cause notable dynamic effects on the population. Instead, the ammonia concentration had a substantial impact on the abundance level of the microorganisms surveyed. The addition of SAO culture did not affect process performance or stability against ammonia inhibition, and all four reactors deteriorated at high ammonia concentrations. Consequently, these findings further demonstrate the strong influence of ammonia on the methane-producing consortia and on the representative methanization pathway in mesophilic biogas reactors. PMID:22923397

  20. Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia.

    PubMed

    Westerholm, Maria; Levén, Lotta; Schnürer, Anna

    2012-11-01

    The importance of syntrophic acetate oxidation for process stability in methanogenic systems operating at high ammonia concentrations has previously been emphasized. In this study we investigated bioaugmentation of syntrophic acetate-oxidizing (SAO) cultures as a possible method for decreasing the adaptation period of biogas reactors operating at gradually increased ammonia concentrations (1.5 to 11 g NH(4)(+)-N/liter). Whole stillage and cattle manure were codigested semicontinuously for about 460 days in four mesophilic anaerobic laboratory-scale reactors, and a fixed volume of SAO culture was added daily to two of the reactors. Reactor performance was evaluated in terms of biogas productivity, methane content, pH, alkalinity, and volatile fatty acid (VFA) content. The decomposition pathway of acetate was analyzed by isotopic tracer experiments, and population dynamics were monitored by quantitative PCR analyses. A shift in dominance from aceticlastic methanogenesis to SAO occurred simultaneously in all reactors, indicating no influence by bioaugmentation on the prevailing pathway. Higher abundances of Clostridium ultunense and Tepidanaerobacter acetatoxydans were associated with bioaugmentation, but no influence on Syntrophaceticus schinkii or the methanogenic population was distinguished. Overloading or accumulation of VFA did not cause notable dynamic effects on the population. Instead, the ammonia concentration had a substantial impact on the abundance level of the microorganisms surveyed. The addition of SAO culture did not affect process performance or stability against ammonia inhibition, and all four reactors deteriorated at high ammonia concentrations. Consequently, these findings further demonstrate the strong influence of ammonia on the methane-producing consortia and on the representative methanization pathway in mesophilic biogas reactors.

  1. Trophic assimilation efficiency markedly increases at higher trophic levels in four-level host–parasitoid food chain

    PubMed Central

    Moser, Andrea; van Veen, F. J. Frank

    2016-01-01

    Trophic assimilation efficiency (conversion of resource biomass into consumer biomass) is thought to be a limiting factor for food chain length in natural communities. In host–parasitoid systems, which account for the majority of terrestrial consumer interactions, a high trophic assimilation efficiency may be expected at higher trophic levels because of the close match of resource composition of host tissue and the consumer's resource requirements, which would allow for longer food chains. We measured efficiency of biomass transfer along an aphid-primary–secondary–tertiary parasitoid food chain and used stable isotope analysis to confirm trophic levels. We show high efficiency in biomass transfer along the food chain. From the third to the fourth trophic level, the proportion of host biomass transferred was 45%, 65% and 73%, respectively, for three secondary parasitoid species. For two parasitoid species that can act at the fourth and fifth trophic levels, we show markedly increased trophic assimilation efficiencies at the higher trophic level, which increased from 45 to 63% and 73 to 93%, respectively. In common with other food chains, δ15N increased with trophic level, with trophic discrimination factors (Δ15N) 1.34 and 1.49‰ from primary parasitoids to endoparasitic and ectoparasitic secondary parasitoids, respectively, and 0.78‰ from secondary to tertiary parasitoids. Owing to the extraordinarily high efficiency of hyperparasitoids, cryptic higher trophic levels may exist in host–parasitoid communities, which could alter our understanding of the dynamics and drivers of community structure of these important systems. PMID:26962141

  2. Elevation of cellular NAD levels by nicotinic acid and involvement of nicotinic acid phosphoribosyltransferase in human cells.

    PubMed

    Hara, Nobumasa; Yamada, Kazuo; Shibata, Tomoko; Osago, Harumi; Hashimoto, Tatsuya; Tsuchiya, Mikako

    2007-08-24

    NAD plays critical roles in various biological processes through the function of SIRT1. Although classical studies in mammals showed that nicotinic acid (NA) is a better precursor than nicotinamide (Nam) in elevating tissue NAD levels, molecular details of NAD synthesis from NA remain largely unknown. We here identified NA phosphoribosyltransferase (NAPRT) in humans and provided direct evidence of tight link between NAPRT and the increase in cellular NAD levels. The enzyme was abundantly expressed in the small intestine, liver, and kidney in mice and mediated [(14)C]NAD synthesis from [(14)C]NA in human cells. In cells expressing endogenous NAPRT, the addition of NA but not Nam almost doubled cellular NAD contents and decreased cytotoxicity by H(2)O(2). Both effects were reversed by knockdown of NAPRT expression. These results indicate that NAPRT is essential for NA to increase cellular NAD levels and, thus, to prevent oxidative stress of the cells. Kinetic analyses revealed that NAPRT, but not Nam phosphoribosyltransferase (NamPRT, also known as pre-B-cell colony-enhancing factor or visfatin), is insensitive to the physiological concentration of NAD. Together, we conclude that NA elevates cellular NAD levels through NAPRT function and, thus, protects the cells against stress, partly due to lack of feedback inhibition of NAPRT but not NamPRT by NAD. The ability of NA to increase cellular NAD contents may account for some of the clinically observed effects of the vitamin and further implies a novel application of the vitamin to treat diseases such as those associated with the depletion of cellular NAD pools.

  3. Polyunsaturated fatty acid content is increased in the milk of women with pregnancy associated breast cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Pregnancy associated breast cancer (PABC) is aggressive and difficult to diagnose. High intake of most types of dietary fat is thought to increase breast cancer risk, however results in humans supporting this premise remain equivocal. Fatty acid (FA) concentrations in the body comprise b...

  4. Strategies for Mitigating the Reduction in Economic Value of Variable Generation with Increasing Penetration Levels

    SciTech Connect

    Mills, Andrew; Wiser, Ryan

    2014-03-03

    In this report, we evaluate individual options that have the potential to stem the decline in the marginal value of variable generation (VG) with increasing penetration levels. We focus only on the effectiveness of mitigation measures for wind and PV.

  5. Sulforaphane reduces the alterations induced by quinolinic acid: modulation of glutathione levels.

    PubMed

    Santana-Martínez, R A; Galván-Arzáte, S; Hernández-Pando, R; Chánez-Cárdenas, M E; Avila-Chávez, E; López-Acosta, G; Pedraza-Chaverrí, J; Santamaría, A; Maldonado, P D

    2014-07-11

    Glutamate-induced excitotoxicity involves a state of acute oxidative stress, which is a crucial event during neuronal degeneration and is part of the physiopathology of neurodegenerative diseases. In this work, we evaluated the ability of sulforaphane (SULF), a natural dietary isothiocyanate, to induce the activation of transcription factor Nrf2 (a master regulator of redox state in the cell) in a model of striatal degeneration in rats infused with quinolinic acid (QUIN). Male Wistar rats received SULF (5mg/kg, i.p.) 24h and 5min before the intrastriatal infusion of QUIN. SULF increased the reduced glutathione (GSH) levels 4h after QUIN infusion, which was associated with its ability to increase the activity of glutathione reductase (GR), an antioxidant enzyme capable to regenerate GSH levels at 24h. Moreover, SULF treatment increased glutathione peroxidase (GPx) activity, while no changes were observed in γ-glutamyl cysteine ligase (GCL) activity. SULF treatment also prevented QUIN-induced oxidative stress (measured by oxidized proteins levels), the histological damage and the circling behavior. These results suggest that the protective effect of SULF could be related to its ability to preserve GSH levels and increase GPx and GR activities.

  6. The Biofilm Lifestyle Involves an Increase in Bacterial Membrane Saturated Fatty Acids

    PubMed Central

    Dubois-Brissonnet, Florence; Trotier, Elsa; Briandet, Romain

    2016-01-01

    Biofilm formation on contact surfaces contributes to persistence of foodborne pathogens all along the food and feed chain. The specific physiological features of bacterial cells embedded in biofilms contribute to their high tolerance to environmental stresses, including the action of antimicrobial compounds. As membrane lipid adaptation is a vital facet of bacterial response when cells are submitted to harsh or unstable conditions, we focused here on membrane fatty acid composition of biofilm cells as compared to their free-growing counterparts. Pathogenic bacteria (Staphylococcus aureus, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Typhimurium) were cultivated in planktonic or biofilm states and membrane fatty acid analyses were performed on whole cells in both conditions. The percentage of saturated fatty acids increases in biofilm cells in all cases, with a concomitant decrease of branched-chain fatty acids for Gram-positive bacteria, or with a decrease in the sum of other fatty acids for Gram-negative bacteria. We propose that increased membrane saturation in biofilm cells is an adaptive stress response that allows bacteria to limit exchanges, save energy, and survive. Reprogramming of membrane fluidity in biofilm cells might explain specific biofilm behavior including bacterial recalcitrance to biocide action. PMID:27840623

  7. Use of ascorbic and citric acids to increase dialyzable iron from vinal (Prosopis ruscifolia) pulp.

    PubMed

    Bernardi, C; Freyre, M; Sambucetti, M E; Pirovani, M E

    2004-01-01

    Vinal (Prosopis ruscifolia) is an ecologically important wild leguminous tree that grows spontaneously in Argentine deforested lands, the fruit of which is consumed by humans and animals. Because considerable iron content with low to intermediate availability has been previously reported in vinal pulps, its enhancement would be of interest. Iron availability was determined as iron dialyzability using an in vitro technique. Response surface methodology was used to evaluate iron availability increase after adding ascorbic and/or citric acids to vinal pulp at different mM acid/mM Fe ratios. Those ratios ranged from 0.05:1 to 9.95:1 and from 0.5:1 to 99.5:1 for ascorbic acid/Fe (AA:Fe) and citric acid/Fe (CA:Fe), respectively. The obtained second- and first-order polynomial equations showed that AA:Fe and CA:Fe molar ratios linear terms had a significant effect on iron dialyzability increase (P < or = 0.05). It was possible to enhance iron availability to a maximum of 4.6 times. Additional confirmatory experiments were made adding the same organic acids to different vinal pulps and to a traditional cake prepared with vinal pulp called "patay." There were no significant differences (p > 0.05) between predicted values obtained by the model and experimental results.

  8. The Biofilm Lifestyle Involves an Increase in Bacterial Membrane Saturated Fatty Acids.

    PubMed

    Dubois-Brissonnet, Florence; Trotier, Elsa; Briandet, Romain

    2016-01-01

    Biofilm formation on contact surfaces contributes to persistence of foodborne pathogens all along the food and feed chain. The specific physiological features of bacterial cells embedded in biofilms contribute to their high tolerance to environmental stresses, including the action of antimicrobial compounds. As membrane lipid adaptation is a vital facet of bacterial response when cells are submitted to harsh or unstable conditions, we focused here on membrane fatty acid composition of biofilm cells as compared to their free-growing counterparts. Pathogenic bacteria (Staphylococcus aureus, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Typhimurium) were cultivated in planktonic or biofilm states and membrane fatty acid analyses were performed on whole cells in both conditions. The percentage of saturated fatty acids increases in biofilm cells in all cases, with a concomitant decrease of branched-chain fatty acids for Gram-positive bacteria, or with a decrease in the sum of other fatty acids for Gram-negative bacteria. We propose that increased membrane saturation in biofilm cells is an adaptive stress response that allows bacteria to limit exchanges, save energy, and survive. Reprogramming of membrane fluidity in biofilm cells might explain specific biofilm behavior including bacterial recalcitrance to biocide action.

  9. Soy-Based Multiple Amino Acid Oral Supplementation Increases the Anti-Sarcoma Effect of Cyclophosphamide

    PubMed Central

    Yao, Chien-An; Chen, Chin-Chu; Wang, Nai-Phog; Chien, Chiang-Ting

    2016-01-01

    The use of a mixture of amino acids caused a selective apoptosis induction against a variety of tumor cell lines, reduced the adverse effects of anti-cancer drugs and increased the sensitivity of tumor cells to chemotherapeutic agents. We evaluated the effects and underlying mechanisms of soy-derived multiple amino acids’ oral supplementation on the therapeutic efficacy of low-dose cyclophosphamide (CTX) and on tumor growth, apoptosis, and autophagy in severe combined immunodeficiency (SCID) mice that were injected with sarcoma-180 (S-180) cells. 3-methyladenine or siRNA knockdown of Atg5 was used to evaluate its effect on sarcoma growth. A comparison of mice with implanted sarcoma cells, CTX, and oral saline and mice with implanted sarcoma cells, CTX, and an oral soy-derived multiple amino acid supplement indicated that the soy-derived multiple amino acid supplement significantly decreased overall sarcoma growth, increased the Bax/Bcl-2 ratio, caspase 3 expression, and apoptosis, and depressed LC3 II-mediated autophagy. Treatment with 3-methyladenine or Atg5 siRNA elicited similar responses as CTX plus soy-derived multiple amino acid in downregulating autophagy and upregulating apoptosis. A low dose of CTX combined with an oral soy-derived multiple amino acid supplement had a potent anti-tumor effect mediated through downregulation of autophagy and upregulation of apoptosis. PMID:27043621

  10. Increased saccharification yields from aspen biomass upon treatment with enzymatically generated peracetic acid.

    PubMed

    Duncan, Shona; Jing, Qing; Katona, Adrian; Kazlauskas, Romas J; Schilling, Jonathan; Tschirner, Ulrike; Aldajani, Waleed Wafa

    2010-03-01

    The recalcitrance of lignocellulosic biomass to enzymatic release of sugars (saccharification) currently limits its use as feedstock for biofuels. Enzymatic hydrolysis of untreated aspen wood releases only 21.8% of the available sugars due primarily to the lignin barrier. Nature uses oxidative enzymes to selectively degrade lignin in lignocellulosic biomass, but thus far, natural enzymes have been too slow for industrial use. In this study, oxidative pretreatment with commercial peracetic acid (470 mM) removed 40% of the lignin (from 19.9 to 12.0 wt.% lignin) from aspen and enhanced the sugar yields in subsequent enzymatic hydrolysis to about 90%. Increasing the amount of lignin removed correlated with increasing yields of sugar release. Unfortunately, peracetic acid is expensive, and concentrated forms can be hazardous. To reduce costs and hazards associated with using commercial peracetic acid, we used a hydrolase to catalyze the perhydrolysis of ethyl acetate generating 60-70 mM peracetic acid in situ as a pretreatment to remove lignin from aspen wood. A single pretreatment was insufficient, but multiple cycles (up to eight) removed up to 61.7% of the lignin enabling release of >90% of the sugars during saccharification. This value corresponds to a predicted 581 g of fermentable sugars from 1 kg of aspen wood. Improvements in the enzyme stability are needed before the enzymatically generated peracetic acid is a commercially viable alternative.

  11. Effects of domoic acid on serum levels of TSH and thyroid hormones.

    PubMed

    Arufe, M C; Arias, B; Durán, R; Alfonso, M

    1995-08-01

    The actions of Domoic Acid (Dom), a marine toxin, on the levels of serum TSH and thyroid hormones (T4 and T3) has been studied to determine if these actions could be mediated by the serotoninergic system. In all the experiments, adult male Wistar rats were used. The Dom dissolved in saline was administered via i.p. in doses of 0.5 and 1 mg/kg. The T4 and T3 concentrations were determined by enzimoinmunoassay and TSH concentration was determined by radioinmunoassay. The results show that Dom 1 mg/kg increases the serum T4 levels one hour after treatment and decreases these levels 2 and 3 hr after treatment. Dom 0.5 mg/kg decreased the serum T4 levels 2 and 3 hr after treatment. The concentrations of T3 in serum were unchanged by both doses of Dom. The concentration of TSH was increased by Dom. In order to study the possible mediation of the serotoninergic system in the effect of Dom on the hormone levels, PCPA, a tryptophan hydroxylase inhibitor, was administered i.p. 90 min before blood sampling. In this case, with both doses of Dom a decrease in the levels of both hormones occurred with respect to the PCPA group. These results indicate that the serotoninergic system could affect the actions of Dom on TSH and thyroid hormone secretion.

  12. A Ketogenic Diet Increases Brown Adipose Tissue Mitochondrial Proteins and UCP1 Levels in Mice

    PubMed Central

    Srivastava, Shireesh; Baxa, Ulrich; Niu, Gang; Chen, Xiaoyuan; Veech, Richard L.

    2013-01-01

    We evaluated the effects of feeding a ketogenic diet (KD) for a month on general physiology with emphasis on brown adipose tissue (BAT) in mice. KD did not reduce the caloric intake, or weight or lipid content of BAT. Relative epididymal fat pads were 40% greater in the mice fed the KD (P = 0.06) while leptin was lower (P < 0.05). Blood glucose levels were 30% lower while D-β-hydroxybutyrate levels were about 3.5-fold higher in the KD group. Plasma insulin and leptin levels in the KD group were about half of that of the mice fed NIH-31 pellets (chow group). Median mitochondrial size in the inter-scapular BAT (IBAT) of the KD group was about 60% greater, whereas the median lipid droplet size was about half of that in the chow group. Mitochondrial oxidative phosphorylation proteins were increased (1.5–3-fold) and the uncoupling protein 1 levels were increased by threefold in mice fed the KD. The levels of PPARγ, PGC-1α, and Sirt1 in KD group were 1.5–3-fold while level of Sirt3 was about half of that in the chow-fed group. IBAT cyclic AMP levels were 60% higher in the KD group and cAMP response element binding protein was 2.5-fold higher, suggesting increased sympathetic system activity. These results demonstrate that a KD can also increase BAT mitochondrial size and protein levels. PMID:23233333

  13. Sensitivity to phosphorus limitation increases with ploidy level in a New Zealand snail.

    PubMed

    Neiman, Maurine; Kay, Adam D; Krist, Amy C

    2013-05-01

    Evolutionary and ecological factors that explain natural variation in ploidy level remain poorly understood. One intriguing possibility is that nutrient costs associated with higher per-cell nucleic acid content could differentially influence the fitness of different ploidy levels. Here, we test this hypothesis by determining whether access to phosphorus (P), a main component of nucleic acids, differentially affects growth rate in asexual freshwater snails (Potamopyrgus antipodarum) that differ in ploidy. As expected if larger genomes generate higher dietary P requirements, tetraploid P. antipodarum experienced a more than twofold greater reduction in growth rate in low-P versus high-P conditions relative to triploids. Mirroring these results, tetraploid P. antipodarum also had a significant reduction in body P content under low P relative to high P, whereas triploid body P content was unaffected. Taken together, these results set the stage for the possibility that P availability could influence the distribution and relative frequency of P. antipodarum of different ploidy levels. These findings could be applicable to many other animal taxa featuring ploidy-level variation, which includes many mixed sexual/asexual taxa.

  14. Increasing levels of assistance in refinement of knowledge-based retrieval systems

    NASA Technical Reports Server (NTRS)

    Baudin, Catherine; Kedar, Smadar; Pell, Barney

    1994-01-01

    The task of incrementally acquiring and refining the knowledge and algorithms of a knowledge-based system in order to improve its performance over time is discussed. In particular, the design of DE-KART, a tool whose goal is to provide increasing levels of assistance in acquiring and refining indexing and retrieval knowledge for a knowledge-based retrieval system, is presented. DE-KART starts with knowledge that was entered manually, and increases its level of assistance in acquiring and refining that knowledge, both in terms of the increased level of automation in interacting with users, and in terms of the increased generality of the knowledge. DE-KART is at the intersection of machine learning and knowledge acquisition: it is a first step towards a system which moves along a continuum from interactive knowledge acquisition to increasingly automated machine learning as it acquires more knowledge and experience.

  15. Increased delta aminolevulinic acid and decreased pineal melatonin production. A common event in acute porphyria studies in the rat.

    PubMed

    Puy, H; Deybach, J C; Bogdan, A; Callebert, J; Baumgartner, M; Voisin, P; Nordmann, Y; Touitou, Y

    1996-01-01

    Tryptophan (TRP) is the precursor of melatonin, the primary secretory product of the pineal gland. Hepatic heme deficiency decreases the activity of liver tryptophan pyrrolase, leading to increased plasma TRP and serotonin. As a paradox, patients with attacks of acute intermittent porphyria (AIP), exhibit low nocturnal plasma melatonin levels. This study using a rat experimental model was designed to produce a pattern of TRP and melatonin production similar to that in AIP patients. Pineal melatonin production was measured in response to: (a) a heme synthesis inhibitor, succinylacetone, (b) a heme precursor, delta-aminolevulinic acid (Ala), (c) a structural analogue of Ala, gamma-aminobutyric acid. Studies were performed in intact rats, perifused pineal glands, and pinealocyte cultures. Ala, succinylacetone, and gamma-aminobutyric acid significantly decreased plasma melatonin levels independently of blood TRP concentration. In the pineal gland, the key enzyme activities of melatonin synthesis were unchanged for hydroxyindole-O-methyltransferase and decreased for N-acetyltransferase. Our results strongly suggest that Ala overproduced by the liver acts by mimicking the effect of gamma-aminobutyric acid on pineal melatonin in AIP. They also support the view that Ala acts as a toxic element in the pathophysiology of AIP.

  16. EPA or DHA supplementation increases triacylglycerol, but not phospholipid, levels in isolated rat cardiomyocytes.

    PubMed

    Righi, Valeria; Di Nunzio, Mattia; Danesi, Francesca; Schenetti, Luisa; Mucci, Adele; Boschetti, Elisa; Biagi, Pierluigi; Bonora, Sergio; Tugnoli, Vitaliano; Bordoni, Alessandra

    2011-07-01

    It is well recognized that a high dietary intake of long-chain polyunsaturated fatty acids (LC-PUFA) has profound benefits on health and prevention of chronic diseases. In particular, in recent years there has been a dramatic surge of interest in the health effects of n-3 LC-PUFA derived from fish, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Notwithstanding, the metabolic fate and the effects of these fatty acids once inside the cell has seldom been comprehensively investigated. Using cultured neonatal rat cardiomyocytes as model system we have investigated for the first time, by means of high-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy in combination with gas chromatography (GC), the modification occurring in the cell lipid environment after EPA and DHA supplementation. The most important difference between control and n-3 LC-PUFA-supplemented cardiomyocytes highlighted by HR-MAS NMR spectroscopy is the increase of signals from mobile lipids, identified as triacylglycerols (TAG). The observed increase of mobile TAG is a metabolic response to n-3 LC-PUFA supplementation, which leads to an increased lipid storage. The sequestration of mobile lipids in lipid bodies provides a deposit of stored energy that can be accessed in a regulated fashion according to metabolic need. Interestingly, while n-3 LC-PUFA supplementation to neonatal rat cardiomyocytes causes a huge variation in the cell lipid environment, it does not induce detectable modifications in water-soluble metabolites, suggesting negligible interference with normal metabolic processes.

  17. B Lymphocyte Stimulator Levels in Systemic Lupus Erythematosus: Higher Circulating Levels in African American Patients and Increased Production after Influenza Vaccination in Patients with Low Baseline Levels

    PubMed Central

    Ritterhouse, Lauren L.; Crowe, Sherry R.; Niewold, Timothy B.; Merrill, Joan T.; Roberts, Virginia C.; Dedeke, Amy B.; Neas, Barbara R.; Thompson, Linda F.; Guthridge, Joel M.; James, Judith A.

    2011-01-01

    Objective Examine the relationship between circulating B lymphocyte stimulator (BLyS) levels and humoral responses to influenza vaccination in systemic lupus erythematosus (SLE) patients, as well as the effect of vaccination on BLyS levels. Clinical and serologic features of SLE that are associated with elevated BLyS levels will also be investigated. Methods Clinical history, disease activity measurements and blood specimens were collected from sixty SLE patients at baseline and after influenza vaccination. Sera were tested for BLyS levels, lupus-associated autoantibodies, serum IFN-α activity, 25-hydroxyvitamin D, and humoral responses to influenza vaccination. Results Thirty percent of SLE patients had elevated BLyS levels, with African American patients having higher BLyS levels than European American patients (p=0.006). Baseline BLyS levels in patients were not correlated with humoral responses to influenza vaccination (p=0.863), and BLyS levels increased post-vaccination only in the subset of patients in the lowest quartile of BLyS levels (p=0.0003). Elevated BLyS levels were associated with increased disease activity as measured by SLEDAI, PGA, and SLAM in European Americans (p=0.035, p=0.016, p=0.018, respectively), but not in African Americans. Elevated BLyS levels were also associated with anti-nRNP (p=0.0003) and decreased 25(OH)D (p=0.018). Serum IFN-α activity was a significant predictor of elevated BLyS in a multivariate analysis (p=0.002). Conclusion African American SLE patients have higher BLyS levels regardless of disease activity. Humoral response to influenza vaccination is not correlated with baseline BLyS levels in SLE patients and only those patients with low baseline BLyS levels demonstrate an increased BLyS response after vaccination. PMID:22127709

  18. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease.

    PubMed

    Coelho, Flávia Gomes de Melo; Vital, Thays Martins; Stein, Angelica Miki; Arantes, Franciel José; Rueda, André Veloso; Camarini, Rosana; Teodorov, Elizabeth; Santos-Galduróz, Ruth Ferreira

    2014-01-01

    Studies indicate the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Alzheimer's disease (AD). Decreased BDNF levels may constitute a lack of trophic support and contribute to cognitive impairment in AD. The benefits of acute and chronic physical exercise on BDNF levels are well-documented in humans, however, exercise effects on BDNF levels have not been analyzed in older adults with AD. The aim of this study was to investigate the effects of acute aerobic exercise on BDNF levels in older adults with AD and to verify associations among BDNF levels, aerobic fitness, and level of physical activity. Using a controlled design, twenty-one patients with AD (76.3 ± 6.2 years) and eighteen healthy older adults (74.6 ± 4.7 years) completed an acute aerobic exercise. The outcomes included measures of BDNF plasma levels, aerobic fitness (treadmill grade, time to exhaustion, VO2, and maximal lactate) and level of physical activity (Baecke Questionnaire Modified for the Elderly). The independent t-test shows differences between groups with respect to the BDNF plasma levels at baseline (p = 0.04; t = 4.53; df = 37). In two-way ANOVA, a significant effect of time was found (p = 0.001; F = 13.63; df = 37), the aerobic exercise significantly increased BDNF plasma levels in AD patients and healthy controls. A significant correlation (p = 0.04; r = 0.33) was found between BDNF levels and the level of physical activity. The results of our study suggest that aerobic exercise increases BDNF plasma levels in patients with AD and healthy controls. In addition to that, BDNF levels had association with level of physical activity.

  19. [Ascorbic acid consumption and serum levels in smokers and non-smokers adult men in Hermosillo, Sonora, México].

    PubMed

    Méndez, Rosa Olivia; Wyatt, C Jane; Saavedra, Javier; Ornelas, Alicia

    2002-12-01

    Ascorbic acid is one of the important antioxidant nutrients that can aid in the prevention of oxidative cellular damage. Adequate dietary intake is essential as humans can not synthesize this vitamin. It has been reported that smokers require higher dietary intakes to maintain their serum levels. The objective of this study was to determine serum levels of ascorbic acid in young male smokers and non smokers in the city of Hermosillo, Sonora, Mexico. In addition, their dietary intake of ascorbic acid was determined by a 24 h dietary recall. The dietary intake of ascorbic acid in 12 smokers was 64 +/- 11 mg/d and in 13 non smokers it was 70 +/- 12 mg/d. The smokers in this study did not meet the dietary recommendation of 100 mg/d. Serum ascorbic acid values in smokers and non smokers were 24.2 +/- 6.9 mumol/L and 30.9 +/- 3.7 mumol/L respectively. No significant difference was found among the 2 groups. Although the average serum ascorbic acid values fell within the range considered normal, 50% of the smokers had individual values that were below 23 mumol/L, indicating that these subjects have hipovitaminosis. A positive correlation between intake and serum levels was obtained for smokers (r = 0.71; p = 0.03). The results of this study suggest smokers may be at increased risk for chronic diseases due to their low intake and low serum levels of ascorbic acid.

  20. Increased production of apolipoprotein B and its lipoproteins by oleic acid in Caco-2 cells.

    PubMed

    Dashti, N; Smith, E A; Alaupovic, P

    1990-01-01

    The production of lipids, apolipoproteins (apo), and lipoproteins induced by oleic acid has been examined in Caco-2 cells. The rates of accumulation in the control medium of 15-day-old Caco-2 cells of triglycerides, unesterified cholesterol, and cholesteryl esters were 102 +/- 8, 73 +/- 5, and 11 +/- 1 ng/mg cell protein/h, respectively; the accumulation rates for apolipoproteins A-I, B, C-III, and E were 111 +/- 9, 53 +/- 4, 13 +/- 1, and 63 +/- 4 ng/mg cell protein/h, respectively. Whereas apolipoproteins A-IV and C-II were detected by immunoblotting, apoA-II was absent in most culture media. In contrast to an early production of apolipoproteins A-I and E occurring 2 days after plating, the apoB expression appeared to be differentiation-dependent and was not measurable in the medium until the sixth day post-confluency. In the control medium, very low density lipoproteins (VLDL), low density lipoproteins (LDL), high density lipoproteins (HDL), and lipid-poor very high density lipoproteins (VHDL) accounted for 12%, 46%, 18%, and 24% of the total lipid and apolipoprotein contents, respectively. The triglyceride-rich VLDL contained mainly apoE (75%) and apoB (23%), while the protein moiety of LDL was composed of apoB (59%), apoE (20%), apoA-I (15%), and apoC-III (6%). The cholesterol-rich HDL contained mainly apoA-I (69%) and apoE (27%). In the control medium, major portions of apolipoproteins B and C-III (93-97%) were present in LDL, whereas the main parts of apoA-I (92%) and apoE (76%) were associated with HDL and VHDL. Oleate increased the production of triglycerides 10-fold, cholesteryl esters 7-fold, and apoB 2- to 4-fold. There was also a moderate increase (39%) in the production of apoC-III but no significant changes in those of apolipoproteins A-I and E. These increases were reflected mainly in a 55-fold elevation in the concentration of VLDL, and a 2-fold increase in the level of LDL; there were no significant changes in HDL and VHDL. VLDL contained the

  1. Effect of somatostatin on nonesterified fatty acid levels modifies glucose homeostasis during fasting

    SciTech Connect

    Hendrick, G.K.; Frizzell, R.T.; Cherrington, A.D. )

    1987-10-01

    In the 7-days fasted conscious dog, unlike the postabsorptive conscious dog, somatostatin infusion results in decreased levels of nonesterified fatty acids (NEFA) and increased glucose utilization (R{sub d}) even when insulin and glucagon levels are held constant. The aim of this study was to determine whether NEFA replacement in such animals would prevent the increase in R{sub d}. In each of three protocols there was an 80-min tracer equilibration period, a 40-min basal period, and a 3-h test period. During the test period in the first protocol saline was infused, in the second protocol somatostatin was infused along with intraportal replacement amounts of insulin and glucagon (hormone replacement), while in the third protocol somatostatin plus the pancreatic hormones were infused with concurrent heparin plus Intralipid infusion. Glucose turnover was assessed using (3-{sup 3}H)glucose. The peripheral levels of insulin, glucagon, and glucose were similar and constant in all three protocols; however, during somatostatin infusion, exogenous glucose infusion was necessary to maintain euglycemia. The NEFA level was constant during saline infusion and decreased in the hormone replacement protocol. In the hormone replacement plus NEFA protocol, the NEFA level did not change during the first 90-min period and then increased during the second 90-min period. After a prolonged fast in the dog, (1) somatostatin directly or indirectly inhibits adipose tissue NEFA release and causes a decrease in the plasma NEFA level, and (2) this decrease in the NEFA level causes an increase in R{sub d}.

  2. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana.

    PubMed

    Abreu, Maria Elizabeth; Munné-Bosch, Sergi

    2009-01-01

    Salicylic acid-deficient NahG transgenic lines and sid2 mutants were used to evaluate the role of this compound in the development of the short-lived, annual plant Arabidopsis thaliana, with a particular focus on the interplay between salicylic acid and other phytohormones. Low salicylic acid levels led to increased growth, as well as to smaller abscisic acid levels and reduced damage to PSII (as indicated by F(v)/F(m) ratios) during the reproductive stages in rosette leaves of NahG transgenic lines and sid2 mutants, compared with wild-type plants. Furthermore, salicylic acid deficiency highly influenced seed yield and composition. Seed production increased by 4.4-fold and 3.5-fold in NahG transgenic lines and sid2 mutants, respectively, compared to the wild type. Salicylic acid deficiency also improved seed composition in terms of antioxidant vitamin concentrations, seeds of salicylic acid-deficient plants showing higher levels of alpha- and gamma-tocopherol (vitamin E) and beta-carotene (pro-vitamin A) than seeds of wild-type plants. Seeds of salicylic acid-deficient plants also showed higher nitrogen concentrations than seeds of wild-type plants. It is concluded that (i) the sid2 gene, which encodes for isochorismate synthase, plays a central role in salicylic acid biosynthesis during plant development in A. thaliana, (ii) salicylic acid plays a role in the regulation of growth, senescence, and seed production, (iii) there is a cross-talk between salicylic acid and other phytohormones during plant development, and (iv) the concentrations of antioxidant vitamins in seeds may be influenced by the endogenous levels of salicylic acid in plants.

  3. Changes in plasma amino acid concentrations with increasing age in patients with propionic acidemia.

    PubMed

    Scholl-Bürgi, Sabine; Sass, Jörn Oliver; Heinz-Erian, Peter; Amann, Edda; Haberlandt, Edda; Albrecht, Ursula; Ertl, Claudia; Sigl, Sara Baumgartner; Lagler, Florian; Rostasy, Kevin; Karall, Daniela

    2010-05-01

    The objective of the study is to analyze plasma amino acid concentrations in propionic acidemia (PA) for the purpose of elucidating possible correlations between propionyl-CoA carboxylase deficiency and distinct amino acid behavior. Plasma concentrations of 19 amino acids were measured in 240 random samples from 11 patients (6 families) with enzymatically and/or genetically proven propionic acidemia (sampling period, January 2001-December 2007). They were compared with reference values from the literature and correlated with age using the Pearson correlation coefficient test. Decreased plasma concentrations were observed for glutamine, histidine, threonine, valine, isoleucine, leucine, phenylalanine and arginine. Levels of glycine, alanine and aspartate were elevated, while values of serine, asparagine, ornithine and glutamate were normal. For lysine, proline and methionine a clear association was not possible. Significant correlations with age were observed for 13 amino acids (positive correlation: asparagine, glutamine, proline, alanine, histidine, threonine, methionine, arginine; negative correlation: leucine, phenylalanine, ornithine, glutamate and aspartate). This study gives new insight over long-term changes in plasma amino acid concentrations and may provide options for future therapies (e.g., substitution of anaplerotic substances) in PA patients.

  4. Enhancement of intragastric acid stability of a fat emulsion meal delays gastric emptying and increases cholecystokinin release and gallbladder contraction.

    PubMed

    Marciani, Luca; Wickham, Martin; Singh, Gulzar; Bush, Debbie; Pick, Barbara; Cox, Eleanor; Fillery-Travis, Annette; Faulks, Richard; Marsden, Charles; Gowland, Penny A; Spiller, Robin C

    2007-06-01

    Preprocessed fatty foods often contain calories added as a fat emulsion stabilized by emulsifiers. Emulsion stability in the acidic gastric environment can readily be manipulated by altering emulsifier chemistry. We tested the hypothesis that it would be possible to control gastric emptying, CCK release, and satiety by varying intragastric fat emulsion stability. Nine healthy volunteers received a test meal on two occasions, comprising a 500-ml 15% oil emulsion with 2.5% of one of two emulsifiers that produced emulsions that were either stable (meal A) or unstable (meal B) in the acid gastric environment. Gastric emptying and gallbladder volume changes were assessed by MRI. CCK plasma levels were measured and satiety scores were recorded. Meal B layered rapidly owing to fat emulsion breakdown. The gastric half-emptying time of the aqueous phase was faster for meal B (72 +/- 13 min) than for meal A (171 +/- 35 min, P < 0.008). Meal A released more CCK than meal B (integrated areas, respectively 1,095 +/- 244 and 531 +/- 111 pmol.min.l(-1), P < 0.02), induced a greater gallbladder contraction (P < 0.02), and decreased postprandial appetite (P < 0.05), although no significant differences were observed in fullness and hunger. We conclude that acid-stable emulsions delayed gastric emptying and increased postprandial CCK levels and gallbladder contraction, whereas acid-instability led to rapid layering of fat in the gastric lumen with accelerated gastric emptying, lower CCK levels, and reduced gallbladder contraction. Manipulation of the acid stability of fat emulsion added to preprocessed foods could maximize satiety signaling and, in turn, help to reduce overconsumption of calories.

  5. Extracellular amino acid levels in the interpositus nucleus during classical eyeblink conditioning in alert cats.

    PubMed

    Jiménez-Díaz, Lydia; Gruart, Agnès; Miñano, Francisco Javier; Delgado-García, José María

    2007-10-01

    The extracellular levels of selected amino acids in the cerebellar posterior interpositus nucleus (PIN) during classical eyeblink conditioning was analyzed in alert cats using a delay paradigm. Animals were prepared for the chronic recording of eyelid movements (with the magnetic search-coil technique) and the electromyographic activity of the orbicularis oculi muscle. With the help of a guide and push-pull cannulae, selected PIN sites were perfused daily during classical eyeblink conditioning. The perfusate was sampled at intervals of 5 min and analyzed with a high-pressure liquid chromatography- electrochemical detection (HPLC-EC) method. The analysis of push-pull perfusate revealed a significant increase in the release of glycine, taurine, and glutamate across the successive conditioning sessions, in parallel with the acquisition of eyelid conditioned responses (CRs). Both CRs and extracellular levels of these three amino acids returned to control values during extinction. Other amino acids (alanine, GABA, glutamine, serine, and threonine) did not undergo modifications in their extracellular concentrations across the training. Results are discussed with regard to the role of PIN in this type of associative learning.

  6. Increase in thyroid stimulating hormone levels in patients with gout treated with inhibitors of xanthine oxidoreductase.

    PubMed

    Perez-Ruiz, Fernando; Chinchilla, Sandra Pamela; Atxotegi, Joana; Urionagüena, Irati; Herrero-Beites, Ana Maria; Aniel-Quiroga, Maria Angeles

    2015-11-01

    Increase in thyroid stimulating hormone (TSH) levels over the upper normal limit has been reported in a small percentage of patients treated with febuxostat in clinical trials, but a mechanistic explanation is not yet available. In an observational parallel longitudinal cohort study, we evaluated changes in TSH levels in patients with gout at baseline and during urate-lowering treatment with febuxostat. Patients to be started on allopurinol who had a measurement of TSH in the 6-month period prior to baseline evaluation were used for comparison. TSH levels and change in TSH levels at 12-month follow-up were compared between groups. Patients with abnormal TSH levels or previous thyroid disease or on amiodarone were not included for analysis. Eighty-eight patients treated with febuxostat and 87 with allopurinol were available for comparisons. Patients to be treated with febuxostat had higher urate levels and TSH levels, more severe gout, and poorer renal function, but were similar regarding other characteristics. A similar rise in TSH levels was observed in both groups (0.4 and 0.5 µUI/mL for febuxostat and allopurinol, respectively); at 12-mo, 7/88 (7.9 %) of patients on febuxostat and 4/87 (3.4 %) of patients on allopurinol showed TSH levels over 0.5 µUI/mL. Doses prescribed (corrected for estimated glomerular filtration rate in the case if patients on allopurinol) and baseline TSH levels were determinants of TSH levels at 12-month follow-up. No impact on free T4 (fT4) levels was observed. Febuxostat, but also allopurinol, increased TSH levels in a dose-dependent way, thus suggesting rather a class effect than a drug effect, but with no apparent impact on either clinical or fT4 levels.

  7. The impact of a ketogenic diet and liver dysfunction on serum very long-chain fatty acids levels.

    PubMed

    Stradomska, T J; Bachański, M; Pawłowska, J; Syczewska, M; Stolarczyk, A; Tylki-Szymańska, A

    2013-04-01

    Peroxisomes play an essential role in mammalian cellular metabolism, particularly in oxidation fatty acid pathways. Serum very long-chain fatty acids (VLCFA), the main biochemical diagnostic parameters for peroxisomal disorders, were examined in 25 neurological patients with epilepsy on a ketogenic diet and 27 patients with liver dysfunction. The data show that patients on a ketogenic diet have increased levels of C22:0 and C24:0, but not C26:0, and normal C24:0/C22:0 and C26:0/C22:0. Patients with liver insufficiency showed a slightly elevated level of C26:0, a normal level of C24:0 and a decreased level of C22:0; thus in 21/27 the ratio of C24:0/C22:0 was increased and 15/27 the ratio of C26:0/C22:0 was increased.

  8. Acid retention with reduced glomerular filtration rate increases urine biomarkers of kidney and bone injury.

    PubMed

    Wesson, Donald E; Pruszynski, Jessica; Cai, Wendy; Simoni, Jan

    2017-04-01

    Diets high in acid of developed societies that do not cause metabolic acidosis in patients with chronic kidney disease nevertheless appear to cause acid retention with associated morbidity, particularly in those with reduced glomerular filtration rate. Here we used a rat 2/3 nephrectomy model of chronic kidney disease to study induction and maintenance of acid retention and its consequences on indicators of kidney and bone injury. Dietary acid was increased in animals eating base-producing soy protein with acid-producing casein and in casein-eating animals with added ammonium chloride. Using microdialysis to measure the kidney cortical acid content, we found that nephrectomized animals had greater acid retention than sham-operated animals when both ate the soy diet. Each increment in dietary acid further increased acid retention more in nephrectomized than in sham rats. Nephrectomized and sham animals achieved similar steady-state daily urine net acid excretion in response to increments in dietary acid but nephrectomized animals took longer to do so, contributing to greater acid retention that was maintained until the increased dietary acid was stopped. Acid retention was associated with increased urine excretion of both N-acetyl-β-D-glucosaminidase and deoxypyridinoline, greater in nephrectomized than control rats, consistent with kidney tubulointerstitial and bone matrix injury, respectively. Greater acid retention in nephrectomized than control animals was induced by a slower increase in urinary net acid excretion rate in response to the increment in dietary acid and also maintained until the dietary acid increment was stopped. Thus, acid retention increased biomarkers of kidney and bone injury in the urine, supporting untoward consequences to these two tissues.

  9. Plasma amino acids

    MedlinePlus

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  10. Receptor-level interrelationships of amino acids and the adequate amino acid type hormones in Tetrahymena: a receptor evolution model.

    PubMed

    Csaba, G; Darvas, Z

    1986-01-01

    Histidine stimulates the phagocytosis of Tetrahymena to the same extent as histamine, and also stimulates its division, which histamine does not. Tyrosine and diiodotyrosine equally stimulate the growth of the Tetrahymena. Both amino acids inhibit the characteristic influence of the adequate amino acid hormone when added to Tetrahymena culture 72 h in advance of it. Primary interaction with diiodotyrosine and tyrosine notably increases the cellular growth rate. Histamine has a similar, although less notable effect than histidine. In the light of these experimental observations there is reason to postulate that the receptors of the amino acid hormones have developed from amino acid receptors.

  11. Tobacco use is associated with increased plasma BDNF levels in depressed patients.

    PubMed

    Colle, Romain; Trabado, Séverine; Rotenberg, Samuel; Brailly-Tabard, Sylvie; Benyamina, Amine; Aubin, Henri-Jean; Hardy, Patrick; Falissard, Bruno; Becquemont, Laurent; Verstuyft, Céline; Fève, Bruno; Corruble, Emmanuelle

    2016-12-30

    Since serum Brain Derived Neurotrophic Factor (BDNF) levels are higher in tobacco smokers than in non-smokers and since Major Depressive Disorder (MDD) is associated with a 2-fold increased risk of smoking, we assessed the association of smoking and plasma BDNF levels in 359 depressed MDD patients. Plasma BDNF levels were positively correlated with the magnitude of tobacco consumption (current number of cigarettes/day and number of packs/year). Accordingly, current tobacco users had significantly higher plasma BDNF levels than non-users. In further studies of MDD, peripheral measures of BDNF should take into account tobacco use.

  12. Plasma Amino Acid Levels in Children with Autism and Their Families.

    ERIC Educational Resources Information Center

    Aldred, Sarah; Moore, Kieran M.; Fitzgerald, Michael; Waring, Rosemary H.

    2003-01-01

    Plasma amino acid levels were measured in autistic (n=12), Asperger syndrome (n=11) patients, their parents and siblings. Patients with autism or Asperger syndrome and their siblings and parents all had raised glutamic acid, phenyalanine, asparagine, tyrosine, alanine, and lysine levels than age-matched controls. Results suggest dysregulated amino…

  13. Conjugated linoleic acid increases in milk from cows fed condensed corn distillers solubles and fish oil.

    PubMed

    Bharathan, M; Schingoethe, D J; Hippen, A R; Kalscheur, K F; Gibson, M L; Karges, K

    2008-07-01

    Twelve lactating Holstein cows were randomly assigned to 1 of 4 experimental diets in a replicated 4 x 4 Latin square design with 4-wk periods to ascertain the lactational response to feeding fish oil (FO), condensed corn distillers solubles (CDS) as a source of extra linoleic acid, or both. Diets contained either no FO or 0.5% FO and either no CDS or 10% CDS in a 2 x 2 factorial arrangement of treatments. Diets were fed as total mixed rations for ad libitum consumption. The forage to concentrate ratio was 55:45 on a dry matter basis for all diets and the diets contained 16.2% crude protein. The ether extract concentrations were 2.86, 3.22, 4.77, and 5.02% for control, FO, CDS, and FOCDS diets, respectively. Inclusion of FO or CDS or both had no effect on dry matter intake, feed efficiency, body weight, and body condition scores compared with diets without FO and CDS, respectively. Yields of milk (33.3 kg/d), energy-corrected milk, protein, lactose, and milk urea N were similar for all diets. Feeding FO and CDS decreased milk fat percentages (3.85, 3.39, 3.33, and 3.12%) and yields compared with diets without FO and CDS. Proportions of trans-11 C18:1 (vaccenic acid), cis-9 trans-11 conjugated linoleic acid (CLA; 0.52, 0.90, 1.11, and 1.52 g/100 g of fatty acids), and trans-10 cis-12 CLA (0.07, 0.14, 0.13, and 0.16 g/100 g of fatty acids) in milk fat were increased by FO and CDS. No interactions were observed between FO and CDS on cis-9 trans-11 CLA although vaccenic acid tended to be higher with the interaction. The addition of CDS to diets increased trans-10 C18:1. Greater ratios of vaccenic acid to cis-9 trans-11 CLA in plasma than in milk fat indicate tissue synthesis of cis-9 trans-11 CLA in the mammary gland from vaccenic acid in cows fed FO or CDS. Feeding fish oil at 0.5% of diet dry matter with a C18:2 n-6 rich source such as CDS increased the milk CLA content but decreased milk fat percentages.

  14. Radiofrequency Thermal Ablation: Increase in Lesion Diameter with Continuous Acetic Acid Infusion

    SciTech Connect

    Lubienski, Andreas Duex, Markus; Lubienski, Katrin; Grenacher, Lars; Kauffmann, Guenter

    2005-12-15

    Purpose. To evaluate the influence of continuous infusion of acetic acid 50% during radiofrequency ablation (RFA) on the size of the thermal lesion produced. Methods. Radiofrequency (RF) was applied to excised bovine liver by using an expandable needle electrode with 10 retractable tines (LeVeen Needle Electrode, RadioTherapeutics, Sunnyvale, CA) connected to a commercially available RF generator (RF 2000, RadioTherapeutics, Sunnyvale, CA). Experiments were performed using three different treatment modalities: RF only (n = 15), RF with continuous saline 0.9% infusion (n = 15), and RF with continuous acetic acid 50% infusion (n = 15). RF duration, power output, tissue impedance, and time to a rapid rise in impedance were recorded. The ablated lesions were evaluated both macroscopically and histologically. Results. The ablated lesions appeared as spherical or ellipsoid, well-demarcated pale areas with a surrounding brown rim with both RF only and RF plus saline 0.9% infusion. In contrast, thermolesions generated with RF in combination with acetic acid 50% infusion were irregular in shape and the central portion was jelly-like. Mean diameter of the coagulation necrosis was 22.3 {+-} 2.1 mm (RF only), 29.2 {+-} 4.8 mm (RF + saline 0.9%) and 30.7 {+-} 5.7 mm (RF + acetic acid 50%), with a significant increase in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Time to a rapid rise in impedance was significantly prolonged in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Conclusions. A combination of RF plus acetic acid 50% infusion is able to generate larger thermolesions than RF only or RF combined with saline 0.9% infusion.

  15. Arsenic increased lipid peroxidation in rat tissues by a mechanism independent of glutathione levels.

    PubMed Central

    Ramos, O; Carrizales, L; Yáñez, L; Mejía, J; Batres, L; Ortíz, D; Díaz-Barriga, F

    1995-01-01

    The role of lipid peroxidation in the mechanism of arsenic toxicity was investigated in female rats pretreated with N-acetylcysteine (NAC, a glutathione [GSH] inducer) or with buthionine sulfoximine (BSO, a GSH depletor). Rats were challenged with sodium arsenite, and sacrificed 1 hr after this treatment. Results showed that arsenic decreased GSH levels and increased lipid peroxidation in liver, kidney, and heart, with a larger effect at 18.2 mg/kg than at 14.8 mg/kg for lipid peroxidation induction. In the liver of rats treated with arsenic, pretreatment with NAC increased the levels of GSH and decreased lipid peroxidation. In kidney and heart, NAC pretreatment protected the tissues against arsenic-induced depletion of GSH levels, but the same degree of protection was not found for lipid peroxidation induction. In its turn, BSO had an additive effect with arsenic in lowering the levels of GSH in the liver and kidney, but an inverse correlation between GSH levels and lipid peroxidation was found only in liver. Arsenic content in tissues of rats pretreated with NAC was lower than in rats treated only with arsenic. In rats with depleted levels of GSH (BSO-pretreated rats), a shift in arsenic tissue distribution was found, with higher levels in skin and lower levels in kidney. A clear tendency for a positive correlation between arsenic concentration and lipid peroxidation levels was found in liver, kidney, and heart. PMID:7621808

  16. The ketogenic diet component decanoic acid increases mitochondrial citrate synthase and complex I activity in neuronal cells.

    PubMed

    Hughes, Sean David; Kanabus, Marta; Anderson, Glenn; Hargreaves, Iain P; Rutherford, Tricia; O'Donnell, Maura; Cross, J Helen; Rahman, Shamima; Eaton, Simon; Heales, Simon J R

    2014-05-01

    The Ketogenic diet (KD) is an effective treatment with regards to treating pharmaco-resistant epilepsy. However, there are difficulties around compliance and tolerability. Consequently, there is a need for refined/simpler formulations that could replicate the efficacy of the KD. One of the proposed hypotheses is that the KD increases cellular mitochondrial content which results in elevation of the seizure threshold. Here, we have focussed on the medium-chain triglyceride form of the diet and the observation that plasma octanoic acid (C8) and decanoic acid (C10) levels are elevated in patients on the medium-chain triglyceride KD. Using a neuronal cell line (SH-SY5Y), we demonstrated that 250-μM C10, but not C8, caused, over a 6-day period, a marked increase in the mitochondrial enzyme, citrate synthase along with complex I activity and catalase activity. Increased mitochondrial number was also indicated by electron microscopy. C10 is a reported peroxisome proliferator activator receptor γ agonist, and the use of a peroxisome proliferator activator receptor γ antagonist was shown to prevent the C10-mediated increase in mitochondrial content and catalase. C10 may mimic the mitochondrial proliferation associated with the KD and raises the possibility that formulations based on this fatty acid could replace a more complex diet. We propose that decanoic acid (C10) results in increased mitochondrial number. Our data suggest that this may occur via the activation of the PPARγ receptor and its target genes involved in mitochondrial biogenesis. This finding could be of significant benefit to epilepsy patients who are currently on a strict ketogenic diet. Evidence that C10 on its own can modulate mitochondrial number raises the possibility that a simplified and less stringent C10-based diet could be developed.

  17. The Association between Marine n-3 Polyunsaturated Fatty Acid Levels and Survival after Renal Transplantation

    PubMed Central

    Jenssen, Trond; Hartmann, Anders; Diep, Lien M.; Dahle, Dag O.; Reisæter, Anna V.; Bjerve, Kristian S.; Christensen, Jeppe H.; Schmidt, Erik B.; Svensson, My

    2015-01-01

    Background and objectives Several studies have reported beneficial cardiovascular effects of marine n-3 polyunsaturated fatty acids. To date, no large studies have investigated the potential benefits of marine n-3 polyunsaturated fatty acids in recipients of renal transplants. Design, setting, participants, & measurements In this observational cohort study of 1990 Norwegian recipients of renal transplants transplanted between 1999 and 2011, associations between marine n-3 polyunsaturated fatty acid levels and mortality were investigated by stratified analysis and multivariable Cox proportional hazard regression analysis adjusting for traditional and transplant-specific mortality risk factors. Marine n-3 polyunsaturated fatty acid levels in plasma phospholipids were measured by gas chromatography in a stable phase 10 weeks after transplantation. Results There were 406 deaths (20.4%) during a median follow-up period of 6.8 years. Mortality rates were lower in patients with high marine n-3 polyunsaturated fatty acid levels (≥7.95 weight percentage) compared with low levels (<7.95 weight percentage) for all age categories (pooled mortality rate ratio estimate, 0.69; 95% confidence interval, 0.57 to 0.85). When divided into quartiles according to marine n-3 polyunsaturated fatty acid levels, patients in the upper quartile compared with the lower quartile had a 56% lower risk of death (adjusted hazard ratio, 0.44; 95% confidence interval, 0.26 to 0.75) using multivariable Cox proportional hazard regression analysis. There was a lower hazard ratio for death from cardiovascular disease with high levels of marine n-3 polyunsaturated fatty acid and a lower hazard ratio for death from infectious disease with high levels of the marine n-3 polyunsaturated fatty acid eicosapentaenoic acid, whereas there was no association between total or individual marine n-3 polyunsaturated fatty acid levels and cancer mortality. Conclusions Higher plasma phospholipid marine n-3

  18. Association between Increased Gastric Juice Acidity and Sliding Hiatal Hernia Development in Humans

    PubMed Central

    Kishikawa, Hiroshi; Kimura, Kayoko; Ito, Asako; Arahata, Kyoko; Takarabe, Sakiko; Kaida, Shogo; Kanai, Takanori; Miura, Soichiro; Nishida, Jiro

    2017-01-01

    Objectives Several clinical factors; overweight, male gender and increasing age, have been implicated as the etiology of hiatal hernia. Esophageal shortening due to acid perfusion in the lower esophagus has been suggested as the etiological mechanism. However, little is known about the correlation between gastric acidity and sliding hiatus hernia formation. This study examined whether increased gastric acid secretion is associated with an endoscopic diagnosis of hiatal hernia. Methods A total of 286 consecutive asymptomatic patients (64 were diagnosed as having a hiatal hernia) who underwent upper gastrointestinal endoscopy were studied. Clinical findings including fasting gastric juice pH as an indicator of acid secretion, age, sex, body mass index, and Helicobacter pylori infection status determined by both Helicobacter pylori serology and pepsinogen status, were evaluated to identify predictors in subjects with hiatal hernia. Results Male gender, obesity with a body mass index >25, and fasting gastric juice pH were significantly different between subjects with and without hiatal hernia. The cut-off point of fasting gastric juice pH determined by receiver operating curve analysis was 2.1. Multivariate regression analyses using these variables, and age, which is known to be associated with hiatal hernia, revealed that increased gastric acid secretion with fasting gastric juice pH <2.1 (OR = 2.60, 95% CI: 1.38–4.90) was independently associated with hiatal hernia. Moreover, previously reported risk factors including male gender (OR = 2.32, 95% CI: 1.23–4.35), body mass index >25 (OR = 3.49, 95% CI: 1.77–6.91) and age >65 years (OR = 1.86, 95% CI: 1.00–3.45), were also significantly associated with hiatal hernia. Conclusions This study suggests that increased gastric acid secretion independently induces the development of hiatal hernia in humans. These results are in accordance with the previously reported hypothesis that high gastric acid itself induces

  19. Increase in Dickkopf-1 Serum Level in Recent Spondyloarthritis. Data from the DESIR Cohort

    PubMed Central

    Nocturne, Gaetane; Pavy, Stephan; Boudaoud, Saida; Seror, Raphaèle; Goupille, Philippe; Chanson, Philippe; van der Heijde, Désirée; van Gaalen, Floris; Berenbaum, Francis; Mariette, Xavier; Briot, Karine; Feydy, Antoine; Claudepierre, Pascal; Dieudé, Philippe; Nithitham, Joanne; Taylor, Kimberly E.; Criswell, Lindsey A.; Dougados, Maxime; Roux, Christian; Miceli-Richard, Corinne

    2015-01-01

    Objectives To investigate DKK-1 and SOST serum levels among patients with recent inflammatory back pain (IBP) fulfilling ASAS criteria for SpA and associated factors. Methods The DESIR cohort is a prospective, multicenter French cohort of 708 patients with early IBP (duration >3 months and <3 years) suggestive of AxSpA. DKK-1 and SOST serum levels were assessed at baseline and were compared between the subgroup of patients fulfilling ASAS criteria for SpA (n = 486; 68.6%) and 80 healthy controls. Results Mean SOST serum levels were lower in ASAS+ patients than healthy controls (49.21 ± 25.9 vs. 87.8 ± 26 pmol/L; p<0.0001). In multivariate analysis, age (p = 5.4 10−9), CRP level (p<0.0001) and serum DKK-1 level (p = 0.001) were associated with SOST level. Mean DKK-1 serum levels were higher in axial SpA patients than controls (30.03 ± 15.5 vs. 11.6 ± 4.2 pmol/L; p<0.0001). In multivariate analysis, DKK-1 serum levels were associated with male gender (p = 0.03), CRP level (p = 0.006), SOST serum level (p = 0.002) and presence of sacroiliitis on radiography (p = 0.05). Genetic association testing of 10 SNPs encompassing the DKK-1 locus failed to demonstrate a significant contribution of genetics to control of DKK-1 serum levels. Conclusions DKK-1 serum levels were increased and SOST levels were decreased among a large cohort of patients with early axial SpA compared to healthy controls. DKK-1 serum levels were mostly associated with biological inflammation and SOST serum levels. PMID:26313358

  20. A Forest Tent Caterpillar Outbreak Increased Resource Levels and Seedling Growth in a Northern Hardwood Forest.

    PubMed

    Rozendaal, Danaë M A; Kobe, Richard K

    2016-01-01

    In closed-canopy forests, gap formation and closure are thought to be major drivers of forest dynamics. Crown defoliation by insects, however, may also influence understory resource levels and thus forest dynamics. We evaluate the effect of a forest tent caterpillar outbreak on understory light availability, soil nutrient levels and tree seedling height growth in six sites with contrasting levels of canopy defoliation in a hardwood forest in northern lower Michigan. We compared resource levels and seedling growth of six hardwood species before, during and in the three years after the outbreak (2008-2012). Canopy openness increased strongly during the forest tent caterpillar outbreak in the four moderately and severely defoliated sites, but not in lightly defoliated sites. Total inorganic soil nitrogen concentrations increased in response to the outbreak in moderately and severely defoliated sites. The increase in total inorganic soil nitrogen was driven by a strong increase in soil nitrate, and tended to become stronger with increasing site defoliation. Seedling height growth increased for all species in the moderately and severely defoliated sites, but not in lightly defoliated sites, either during the outbreak year or in the year after the outbreak. Growth increases did not become stronger with increasing site defoliation, but were strongest in a moderately defoliated site with high soil nutrient levels. Growth increases tended to be strongest for the shade intolerant species Fraxinus americana and Prunus serotina, and the shade tolerant species Ostrya virginiana. The strong growth response of F. americana and P. serotina suggests that recurring forest tent caterpillar outbreaks may facilitate the persistence of shade intolerant species in the understory in the absence of canopy gaps. Overall, our results suggest that recurrent canopy defoliation resulting from cyclical forest insect outbreaks may be an additional driver of dynamics in temperate closed