Science.gov

Sample records for acid lipase gene

  1. Genomic organization of the human lysosomal acid lipase gene (LIPA)

    SciTech Connect

    Aslandis, C.; Klima, H.; Lackner, K.J.; Schmitz, G. )

    1994-03-15

    Defects in the human lysosomal acid lipase gene are responsible for cholesteryl ester storage disease (CESD) and Wolman disease. Exon skipping as the cause for CESD has been demonstrated. The authors present here a summary of the exon structure of the entire human lysosomal acid lipase gene consisting of 10 exons, together with the sizes of genomic EcoRI and SacI fragments hybridizing to each exon. In addition, the DNA sequence of the putative promoter region is presented. The EMBL accession numbers for adjacent intron sequences are given. 7 refs., 2 figs., 1 tab.

  2. Acid Lipase Disease

    MedlinePlus

    ... Page You are here Home » Disorders » All Disorders Acid Lipase Disease Information Page Acid Lipase Disease Information Page What research is being ... research to understand lipid storage diseases such as acid lipase deficiency. Additional research studies hope to identify ...

  3. Comparative Studies of Mammalian Acid Lipases: Evidence for a New Gene Family in Mouse and Rat (Lipo)

    PubMed Central

    Holmes, Roger S; Cox, Laura A; VandeBerg, John L

    2010-01-01

    At least six families of mammalian acid lipases (E.C. 3.1.1.-) catalyse the hydrolysis of triglycerides in the body, designated as LIPA (lysosomal), LIPF (gastric), LIPJ (testis) and LIPK, LIPM and LIPN (epidermal), which belong to the AB hydrolase superfamily. In this study, in silico methods were used to predict the amino acid sequences, secondary and tertiary structures, and gene locations for acid lipase genes and encoded proteins using data from several mammalian genome projects. Mammalian acid lipase genes were located within a gene cluster for each of the 8 mammalian genomes examined, including human (Homo sapiens), chimpanzee (Pons troglodytes), rhesus monkey (Macacca mulatta), mouse (Mus musculus), rat (Rattus norvegicus), cow (Bos taurus), horse (Equus caballus) and dog (Canis familaris), with each containing 9 coding exons. Human and mouse acid lipases shared 44-87% sequence identity and exhibited sequence alignments and identities for key amino acid residues and conservation of predicted secondary and tertiary structures with those previously reported for human gastric lipase (LIPF) (Roussel et al., 1999). Evidence for a new family of acid lipase genes is reported for mouse and rat genomes, designated as Lipo. Mouse acid lipase genes are subject to differential mRNA tissue expression, with Lipa showing wide tissue expression, while others have a more restricted tissue expression in the digestive tract (Lipf), salivary gland (Lipo) and epidermal tissues (Lipk, Lipm and Lipn). Phylogenetic analyses of the mammalian acid lipase gene families suggested that these genes are products of gene duplication events prior to eutherian mammalian evolution and derived from an ancestral vertebrate LIPA gene, which is present in the frog, Xenopus tropicalis. PMID:20598663

  4. Organization of the human lipoprotein lipase gene and evolution of the lipase gene family.

    PubMed Central

    Kirchgessner, T G; Chuat, J C; Heinzmann, C; Etienne, J; Guilhot, S; Svenson, K; Ameis, D; Pilon, C; d'Auriol, L; Andalibi, A

    1989-01-01

    The human lipoprotein lipase gene was cloned and characterized. It is composed of 10 exons spanning approximately equal to 30 kilobases. The first exon encodes the 5'-untranslated region, the signal peptide plus the first two amino acids of the mature protein. The next eight exons encode the remaining 446 amino acids, and the tenth exon encodes the long 3'-untranslated region of 1948 nucleotides. The lipoprotein lipase transcription start site and the sequence of the 5'-flanking region were also determined. We compared the organization of genes for lipoprotein lipase, hepatic lipase, pancreatic lipase, and Drosophila yolk protein 1, which are members of a family of related genes. A model for the evolution of the lipase gene family is presented that involves multiple rounds of gene duplication plus exon-shuffling and intron-loss events. Images PMID:2602366

  5. Genetics Home Reference: lysosomal acid lipase deficiency

    MedlinePlus

    ... Home Health Conditions lysosomal acid lipase deficiency lysosomal acid lipase deficiency Enable Javascript to view the expand/ ... Download PDF Open All Close All Description Lysosomal acid lipase deficiency is an inherited condition characterized by ...

  6. Senescent case of cholesterol ester storage disease that progressed to liver cirrhosis with a novel mutation (N250H) of lysosomal acid lipase gene.

    PubMed

    Kojima, Seiichiro; Watanabe, Norihito; Takashimizu, Shinji; Kagawa, Tatehiro; Shiraishi, Koichi; Koizumi, Jun; Hirabayashi, Ken-Ichi; Ohkubo, Tomoichi; Kamiguchi, Hiroshi; Tsuda, Michio; Mine, Tetsuya

    2013-12-01

    The patient, a 69-year-old man, had a chief complaint of hepatomegaly. The liver was palpated four fingerbreadths below the costal margin, and the spleen was three fingerbreadths below the costal margin. There were no other abnormal findings. Laparoscopy showed that the liver resembled an orange-yellow crayon in appearance and was nodular. The pathological findings of the liver biopsy tissue were consistent with liver cirrhosis. Inside the fibrous septum was an apparent aggregation of enlarged macrophages that phagocytosed lipid components, as well as enlarged Kupffer cells that phagocytosed lipid droplets. Electron microscopy showed the lipid droplets to have a moth-eaten appearance. Using monocytes extracted from the peripheral blood, acid lipase activity was measured by fluorescence spectrometry using 4-methylumbelliferone palmitate as a substrate. This patient's human lysosomal acid lipase activity was 0.020 nM/min per 10(6)  cells, corresponding to 5.9% of that in healthy subjects (0.332 ± 0.066 nM/min per 10(6)  cells). Cholesterol ester storage disease was therefore diagnosed. The acid lipase A base sequence obtained from leukocytes by direct sequencing was compared with a library. This patient had a point mutation of N250H/N250H in exon 7, a novel gene abnormality that has not previously been reported.

  7. Neutral Lipids and Peroxisome Proliferator-Activated Receptor-γ Control Pulmonary Gene Expression and Inflammation-Triggered Pathogenesis in Lysosomal Acid Lipase Knockout Mice

    PubMed Central

    Lian, Xuemei; Yan, Cong; Qin, Yulin; Knox, Lana; Li, Tingyu; Du, Hong

    2005-01-01

    The functional roles of neutral lipids in the lung are poorly understood. However, blocking cholesteryl ester and triglyceride metabolism in lysosomal acid lipase gene knockout mice (lal−/−) results in severe pathogenic phenotypes in the lung, including massive neutrophil infiltration, foamy macrophage accumulation, unwanted cell growth, and emphysema. To elucidate the mechanism underlining these pathologies, we performed Affymetrix GeneChip microarray analysis of 1-, 3-, and 6-month-old mice and identified aberrant gene expression that progressed with age. Among changed genes, matrix metalloproteinase (MMP)-12, apoptosis inhibitor 6 (Api-6), erythroblast transformation-specific domain (Ets) transcription factor family member Spi-C, and oncogene MafB were increased 100-, 70-, 40-, and 10-fold, respectively, in lal−/− lungs versus the wild-type lungs. The pathogenic increases of these molecules occurred primarily in alveolar type II epithelial cells. Transcriptional activities of the MMP-12 and Api-6 promoters were stimulated by Spi-C or MafB in respiratory epithelial cells. Treatment with 9-hydroxyoctadecanoic acids and ciglitazone significantly rescued lal−/− pulmonary inflammation and aberrant gene expression. In addition, both compounds as well as peroxisome proliferator-activated receptor gamma inhibited MMP-12 and Api-6 promoter activities. These data suggest that inflammation-triggered cell growth and emphysema during lysosomal acid lipase deficiency are partially caused by peroxisome proliferator-activated receptor-γ inactivation. PMID:16127159

  8. Cloning and expression of gene, and activation of an organic solvent-stable lipase from Pseudomonas aeruginosa LST-03.

    PubMed

    Ogino, Hiroyasu; Katou, Yoshikazu; Akagi, Rieko; Mimitsuka, Takashi; Hiroshima, Shinichi; Gemba, Yuichi; Doukyu, Noriyuki; Yasuda, Masahiro; Ishimi, Kosaku; Ishikawa, Haruo

    2007-11-01

    Organic solvent-tolerant Pseudomonas aeruginosa LST-03 secretes an organic solvent-stable lipase, LST-03 lipase. The gene of the LST-03 lipase (Lip9) and the gene of the lipase-specific foldase (Lif9) were cloned and expressed in Escherichia coli. In the cloned 2.6 kbps DNA fragment, two open reading frames, Lip9 consisting of 933 nucleotides which encoded 311 amino acids and Lif9 consisting of 1,020 nucleotides which encoded 340 amino acids, were found. The overexpression of the lipase gene (lip9) was achieved when T7 promoter was used and the signal peptide of the lipase was deleted. The expressed amount of the lipase was greatly increased and overexpressed lipase formed inclusion body in E. coli cell. The collected inclusion body of the lipase from the cell was easily solubilized by urea and activated by using lipase-specific foldase of which 52 or 58 amino acids of N-terminal were deleted. Especially, the N-terminal methionine of the lipase of which the signal peptide was deleted was released in E. coli and the amino acid sequence was in agreement with that of the originally-produced lipase by P. aeruginosa LST-03. Furthermore, the overexpressed and solubilized lipase of which the signal peptide was deleted was more effectively activated by lipase-specific foldase.

  9. Improving palm oil quality through identification and mapping of the lipase gene causing oil deterioration.

    PubMed

    Morcillo, F; Cros, D; Billotte, N; Ngando-Ebongue, G-F; Domonhédo, H; Pizot, M; Cuéllar, T; Espéout, S; Dhouib, R; Bourgis, F; Claverol, S; Tranbarger, T J; Nouy, B; Arondel, V

    2013-01-01

    The oil palm fruit mesocarp contains high lipase activity that increases free fatty acids and necessitates post-harvest inactivation by heat treatment of fruit bunches. Even before heat treatment the mesocarp lipase activity causes consequential oil losses and requires costly measures to limit free fatty acids quantities. Here we demonstrate that elite low-lipase lines yield oil with substantially less free fatty acids than standard genotypes, allowing more flexibility for post-harvest fruit processing and extended ripening for increased yields. We identify the lipase and its gene cosegregates with the low-/high-lipase trait, providing breeders a marker to rapidly identify potent elite genitors and introgress the trait into major cultivars. Overall, economic gains brought by wide adoption of this material could represent up to one billion dollars per year. Expected benefits concern all planters but are likely to be highest for African smallholders who would be more able to produce oil that meets international quality standards.

  10. Amplification of thermostable lipase genes fragment from thermogenic phase of domestic waste composting process

    NASA Astrophysics Data System (ADS)

    Nurhasanah, Nurbaiti, Santi; Madayanti, Fida; Akhmaloka

    2015-09-01

    Lipases are lipolytic enzymes, catalyze the hydrolysis of fatty acid ester bonds of triglycerides to produce free fatty acids and glycerol. The enzyme is widely used in various fields of biotechnological industry. Hence, lipases with unique properties (e.g.thermostable lipase) are still being explored by variation methods. One of the strategy is by using metagenomic approach to amplify the gene directly from environmental sample. This research was focused on amplification of lipase gene fragment directly from the thermogenic phase of domestic waste composting in aerated trenches. We used domestic waste compost from waste treatment at SABUGA, ITB for the sample. Total chromosomal DNA were directly extracted from several stages at thermogenic phase of compost. The DNA was then directly used as a template for amplification of thermostable lipase gene fragments using a set of internal primers namely Flip-1a and Rlip-1a that has been affixed with a GC clamp in reverse primer. The results showed that the primers amplified the gene from four stages of thermogenic phase with the size of lipase gene fragment of approximately 570 base pairs (bp). These results were further used for Denaturing Gradient Gel Electrophoresis (DGGE) analysis to determine diversity of thermostable lipase gene fragments.

  11. [Cloning and expression of organic solvent tolerant lipase gene from Staphylococcus saprophyticus M36].

    PubMed

    Tang, Yanchong; Lu, Yaping; Lü, Fengxia; Bie, Xiaomei; Guo, Yao; Lu, Zhaoxin

    2009-12-01

    Lipases are important biocatalysts that are widely used in food processing and bio-diesel production. However, organic solvents could inactivate some lipases during applications. Therefore, the efficient cloning and expression of the organic solvent-tolerant lipase is important to its application. In this work, we first found out an organic solvent-tolerant lipase from Staphylococcus saprophyticus M36 and amplified the 741 bp Lipase gene lip3 (GenBank Accession No. FJ979867), by PCR, which encoded a 31.6 kD polypeptide of 247 amino acid residues. But the lipase shared 83% identity with tentative lip3 gene of Staphylococcus saprophyticus (GenBank Accession No. AP008934). We connected the gene with expression vector pET-DsbA, transformed it into Escherichia coli BL21 (DE3), and obtained the recombinant pET-DsbA-lip3. With the induction by 0.4 mmol/L of isopropyl beta-D-thiogalactopyranoside at pH 8.0, OD600 1.0, 25 degrees C for 12 h, the lipase activity reached up to 25.8 U/mL. The lipase expressed was stable in the presence of methanol, n-hexane, and isooctane, n-heptane.

  12. A gene encoding a new cold-active lipase from an Antarctic isolate of Penicillium expansum.

    PubMed

    Mohammed, Suja; Te'o, Junior; Nevalainen, Helena

    2013-08-01

    Cold-active lipases are of significant interest as biocatalysts in industrial processes. We have identified a lipase that displayed activity towards long carbon-chain-p-nitrophenyl substrates (C12-C18) at 25 °C from the culture supernatant of an Antarctic Penicillium expansum strain assigned P. expansum SM3. Zymography revealed a protein band of around 30 kDa with activity towards olive oil. DNA fragments of a lipase gene designated as lipPE were isolated from the genomic DNA of P. expansum SM3 by genomic walking PCR. Subsequently, the complete genomic lipPE gene was amplified using gene-specific primers designed from the 5'- and 3'-regions. Reverse transcription PCR was used to amplify the lipPE cDNA. The deduced amino acid sequence consisted of 285 residues that included a predicted signal peptide. Three peptides identified by LC/MS/MS analysis of the proteins in the culture supernatant of P. expansum were also present in the deduced amino acid sequence of the lipPE gene suggesting that this gene encoded the lipase identified by initial zymogram activity analysis. Full analysis of the nucleotide and the deduced amino acid sequences indicated that the lipPE gene encodes a novel P. expansum lipase. The lipPE gene was expressed in E. coli for further characterization of the enzyme with a view of assessing its suitability for industrial applications.

  13. Diet quality determines lipase gene expression and lipase/esterase activity in Daphnia pulex

    PubMed Central

    Schwarzenberger, Anke; Wacker, Alexander

    2017-01-01

    ABSTRACT We studied the short- (12 h) and long-term (144 h) response of Daphnia pulex lipases to quality shifts in diets consisting of different mixtures of the green alga Scenedesmus with the cyanobacterium Synechococcus, two species with contrasting lipid compositions. The lipase/esterase activity in both the gut and the body tissues had fast responses to the diet shift and increased with higher dietary contributions of Synechococcus. When screening the Daphnia genome for TAG lipases, we discovered a large gene-family expansion of these enzymes. We used a subset of eight genes for mRNA expression analyses and distinguished between influences of time and diet on the observed gene expression patterns. We identified five diet-responsive lipases of which three showed a sophisticated short- and long-term pattern of expression in response to small changes in food-quality. Furthermore, the gene expression of one of the lipases was strongly correlated to lipase/esterase activity in the gut suggesting its potentially major role in digestion. These findings demonstrate that the lipid-related enzymatic machinery of D. pulex is finely tuned to diet and might constitute an important mechanism of physiological adaptation in nutritionally complex environments. PMID:28069588

  14. Lipoprotein lipase variants interact with polyunsaturated fatty acids to modulate obesity traits in Puerto Ricans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipoprotein lipase (LPL) is a candidate gene for obesity based on its role in triglyceride hydrolysis and the partitioning of fatty acids towards storage or oxidation. Whether dietary fatty acids modify LPL associated obesity risk is unknown. We examined five single nucleotide polymorphisms (SNPs) (...

  15. Screening, gene sequencing and characterising of lipase for methanolysis of crude palm oil.

    PubMed

    Ratnaningsih, Enny; Handayani, Dewi; Khairunnisa, Fatiha; Ihsanawati; Kurniasih, Sari Dewi; Mangindaan, Bill; Rismayani, Sinta; Kasipah, Cica; Nurachman, Zeily

    2013-05-01

    Staphylococcus sp. WL1 lipase (LipFWS) was investigated for methanolysis of crude palm oil (CPO) at moderate temperatures. Experiments were conducted in the following order: searching for the suitable bacterium for producing lipase from activated sludge, sequencing lipase gene, identifying lipase activity, then synthesising CPO biodiesel using the enzyme. From bacterial screening, one isolated specimen which consistently showed the highest extracellular lipase activity was identified as Staphylococcus sp. WL1 possessing lipFWS (lipase gene of 2,244 bp). The LipFWS deduced was a protein of 747 amino acid residues containing an α/β hydrolase core domain with predicted triad catalytic residues to be Ser474, His704 and Asp665. Optimal conditions for the LipFWS activity were found to be at 55 °C and pH 7.0 (in phosphate buffer but not in Tris buffer). The lipase had a K(M) of 0.75 mM and a V(max) of 0.33 mMmin(-1) on p-nitrophenyl palmitate substrate. The lyophilised crude LipFWS performed as good as the commonly used catalyst potassium hydroxide for methanolysis of CPO. ESI-IT-MS spectra indicated that the CPO was converted into biodiesel, suggesting that free LipFWS is a worthy alternative for CPO biodiesel synthesis.

  16. Characterization of an alkaline lipase from Proteus vulgaris K80 and the DNA sequence of the encoding gene.

    PubMed

    Kim, H K; Lee, J K; Kim, H; Oh, T K

    1996-01-01

    A facultatively anaerobic bacterium producing an extracellular alkaline lipase was isolated from the soil collected near a sewage disposal plant in Korea and identified to be a strain of Proteus vulgaris. The molecular mass of the purified lipase K80 was estimated to be 31 kDa by SDS-PAGE. It was found to be an alkaline enzyme having maximum hydrolytic activity at pH 10, while fairly stable in a wide pH range from 5 to 11. The gene for lipase K80 was cloned in Escherichia coli. Sequence analysis showed an open reading frame of 861 bp coding for a polypeptide of 287 amino acid residues. The deduced amino acid sequence of the lipase gene had 46.3% identity to the lipase from Pseudomonas fragi.

  17. [Gene cloning, expression and characterization of two cold-adapted lipases from Penicillium sp. XMZ-9].

    PubMed

    Zheng, Xiaomei; Wu, Ningfeng; Fan, Yunliu

    2012-04-01

    Cold-adapted lipases are attractive biocatalysts that can be used at low temperatures as additives in food products, laundry detergents, and the organic synthesis of chiral intermediates. Cold-adapted lipases are normally found in microorganisms that survive at low temperatures. A fungi strain XMZ-9 exhibiting lipolytic activity was isolated from the soil of glaciers in Xinjiang by the screening plates using 1% tributyrin as the substrate and Victoria blue as an indicator. Based on morphological characteristics and phylogenetic comparisons of its 18S rDNA, the strain was identified as Penicillium sp. The partial nucleotide sequences of these two lipase related genes, LipA and LipB, were obtained by touchdown PCR using the degenerate primers designed according to the conservative domains of lipase. The full-length sequences of two genes were obtained by genome walking. The gene lipA contained 1 014 nucleotides, without any intron, comprising one open reading frame encoding a polypeptide of 337 amino acids. The gene lipB comprised two introns (61 bp and 49 bp) and a coding region sequence of 1 122 bp encoding a polypeptide of 373 amino acids, cDNA sequences of both lipA and lipB were cloned and expressed in Escherichia coli BL21 (DE3). The recombinant LipA was mostly expressed as inclusion bodies, and recovered lipase activity at low temperature after in vitro refolded by dilution. Differently, the recombinant LipB was expressed in the soluble form and then purified by Ni-NTA affinity chromatography Column. It showed high lipase activity at low temperature. These results indicated that they were cold-adapted enzymes. This study paves the way for the further research of these cold-adapted lipases for application in the industry.

  18. Clinical Features of Lysosomal Acid Lipase Deficiency

    PubMed Central

    Burton, Barbara K.; Deegan, Patrick B.; Enns, Gregory M.; Guardamagna, Ornella; Horslen, Simon; Hovingh, Gerard K.; Lobritto, Steve J.; Malinova, Vera; McLin, Valerie A.; Raiman, Julian; Di Rocco, Maja; Santra, Saikat; Sharma, Reena; Sykut-Cegielska, Jolanta; Whitley, Chester B.; Eckert, Stephen; Valayannopoulos, Vassili; Quinn, Anthony G.

    2015-01-01

    Abstract Objective: The aim of this study was to characterize key clinical manifestations of lysosomal acid lipase deficiency (LAL D) in children and adults. Methods: Investigators reviewed medical records of LAL D patients ages ≥5 years, extracted historical data, and obtained prospective laboratory and imaging data on living patients to develop a longitudinal dataset. Results: A total of 49 patients were enrolled; 48 had confirmed LAL D. Mean age at first disease-related abnormality was 9.0 years (range 0–42); mean age at diagnosis was 15.2 years (range 1–46). Twenty-nine (60%) were male patients, and 27 (56%) were <20 years of age at the time of consent/assent. Serum transaminases were elevated in most patients with 458 of 499 (92%) of alanine aminotransferase values and 265 of 448 (59%) of aspartate aminotransferase values above the upper limit of normal. Most patients had elevated low-density lipoprotein (64% patients) and total cholesterol (63%) at baseline despite most being on lipid-lowering therapies, and 44% had high-density lipoprotein levels below the lower limit of normal. More than half of the patients with liver biopsies (n = 31, mean age 13 years) had documented evidence of steatosis (87%) and/or fibrosis (52%). Imaging assessments revealed that the median liver volume was ∼1.15 multiples of normal (MN) and median spleen volume was ∼2.2 MN. Six (13%) patients had undergone a liver transplant (ages 9–43.5 years). Conclusion: This study provides the largest longitudinal case review of patients with LAL D and confirms that LAL D is predominantly a pediatric disease causing early and progressive hepatic dysfunction associated with dyslipidemia that often leads to liver failure and transplantation. PMID:26252914

  19. Lipase

    MedlinePlus

    ... Lipase is used for indigestion, heartburn, allergy to gluten in wheat products (celiac disease), Crohn's disease, and ... that is associated with cystic fibrosis.Allergy to gluten in wheat products (celiac disease). Crohn's disease. Indigestion. ...

  20. Tuning Lipase Reaction for Production of Fatty Acids from Oil.

    PubMed

    Odaneth, Annamma A; Vadgama, Rajeshkumar N; Bhat, Anuradha D; Lali, Arvind M

    2016-10-01

    Fats or oils are split partially or completely to obtain fatty acids that find wide applications in oleo-chemical industries. Lipase-mediated complete splitting (hydrolysis) of oils is a green process having great potential to replace the traditional methods of oil splitting. However, cost of lipases, mechanistic kinetic equilibrium and associated operational limitations prove to be deterrents for scale up of the enzymatic oil splitting process. In the present study, we demonstrate the use of immobilised 1,3-regioselective lipase (HyLIP) for complete hydrolysis of oil in monophasic reaction medium. Incorporation of a polar organic solvent (tert-butanol, 1:5, v/v) homogenises the oil-water mixture and contributes positively towards complete hydrolysis. The monophasic oil hydrolysis reaction with optimised water concentration (0.05 %, v/v) gave Free Fatty Acid (FFA) yield of 88 % (HyLIP and Novozym-435) and 66 % (TLIM and RMIM). Smart reaction engineering and modification of the reaction intermediates to favourable substrate lead to ∼99 % degree of hydrolysis of triglycerides with ∼90 % FFA yield using 1,3-regioselective lipase. The present work becomes basic platform for developing technologies for synthesis of fatty acids, monoglycerides, diglycerides and glycerol.

  1. MfLIP1, a gene encoding an extracellular lipase of the lipid-dependent fungus Malassezia furfur.

    PubMed

    Brunke, Sascha; Hube, Bernhard

    2006-02-01

    Malassezia furfur is a dimorphic fungus and a member of the normal cutaneous microflora of humans. However, it is also a facultative pathogen, associated with a wide range of skin diseases. One unusual feature of M. furfur is an absolute dependency on externally provided lipids which the fungus hydrolyses by lipolytic activity to release fatty acids necessary for both growth and pathogenicity. In this study, the cloning and characterization of the first gene encoding a secreted lipase of M. furfur possibly associated with this activity are reported. The gene, MfLIP1, shows high sequence similarity to other known extracellular lipases, but is not a member of a lipase gene family in M. furfur. MfLIP1 consists of 1464 bp, encoding a protein with a molecular mass of 54.3 kDa, a conserved lipase motif and an N-terminal signal peptide of 26 aa. By using a genomic library, two other genes were identified flanking MfLIP1, one of them encoding a putative secreted catalase, the other a putative amine oxidase. The cDNA of MfLIP1 was expressed in Pichia pastoris and the biochemical properties of the recombinant lipase were analysed. MfLip1 is most active at 40 degrees C and the pH optimum was found to be 5.8. The lipase hydrolysed lipids, such as Tweens, frequently used as the source of fatty acids in M. furfur media, and had minor esterase activity. Furthermore, the lipase is inhibited by different bivalent metal ions. This is the first molecular description of a secreted lipase from M. furfur.

  2. Critical Roles of Lysosomal Acid Lipase in Myelopoiesis

    PubMed Central

    Qu, Peng; Shelley, William C.; Yoder, Mervin C.; Wu, Lingyan; Du, Hong; Yan, Cong

    2010-01-01

    Lysosomal acid lipase (LAL) is a key enzyme that cleaves cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in lysosomes. Genetic ablation of the lal gene (lal−/−) in mice has resulted in a systemic increase of macrophages and neutrophils, causing severe inflammation and pathogenesis in multiple organs. We hypothesized that aberrant growth and differentiation of myeloid cells in lal−/− mice arises from dysregulated production of progenitor cells in the bone marrow. Indeed, lal−/− mice displayed increased numbers of primitive lin−Sca-1+c-Kit+ (LSK) cells and granulocyte-macrophage precursors (GMP). Increased high proliferative potential colony-forming cells (HPP-CFC) were enumerated from cultured lal−/− bone marrow cells, as were significantly more CFU-GM, CFU-G, and CFU-M colonies. As a consequence, lal−/− mice developed significant myeloid infiltration, particularly with CD11b+/Gr-1+ myeloid-derived suppressive cells in multiple organs. Both decreased apoptosis and increased proliferation contribute to the systemic increase of myeloid cells in lal−/− myeloid cells. These lal−/− CD11b+/Gr-1+ cells displayed suppressive activity on T cell proliferation and function in vitro. Bone marrow chimeras confirmed that the myeloproliferative disorder in lal−/− mice was primarily attributable to autonomous defects in myeloid progenitor cells, although the hematopoietic microenvironment in the lal−/− mice did not support hematopoiesis normally. These results provide evidence that LAL is an important regulator of myelopoiesis during hematopoietic development, differentiation, and homeostasis. PMID:20348241

  3. Gene cloning and catalytic characterization of cold-adapted lipase of Photobacterium sp. MA1-3 isolated from blood clam.

    PubMed

    Kim, Young Ok; Khosasih, Vivia; Nam, Bo-Hye; Lee, Sang-Jun; Suwanto, Antonius; Kim, Hyung Kwoun

    2012-12-01

    A lipase-producing Photobacterium strain (MA1-3) was isolated from the intestine of a blood clam caught at Namhae, Korea. The lipase gene was cloned by shotgun cloning and encoded 340 amino acids with a molecular mass of 38,015 Da. It had a very low sequence identity with other bacterial lipases, with the exception of that of Photobacterium lipolyticum M37 (83.2%). The MA1-3 lipase was produced in soluble form when Escherichia coli cells harboring the gene were cultured at 18°C. Its optimum temperature and pH were 45°C and pH 8.5, respectively. Its activation energy was calculated to be 2.69 kcal/mol, suggesting it to be a cold-adapted lipase. Its optimum temperature, temperature stability, and substrate specificity were quite different from those of M37 lipase, despite the considerable sequence similarities. Meanwhile, MA1-3 lipase performed a transesterification reaction using olive oil and various alcohols including methanol, ethanol, 1-propanol, and 1-butanol. In the presence of t-butanol as a co-solvent, this lipase produced biodiesel using methanol and plant or waste oils. The highest biodiesel conversion yield (73%) was achieved using waste soybean oil and methanol at a molar ratio of 1:5 after 12 h using 5 units of lipase.

  4. Retinal pigment epithelial acid lipase activity and lipoprotein receptors: effects of dietary omega-3 fatty acids.

    PubMed Central

    Elner, Victor M

    2002-01-01

    PURPOSE: To show that fish oil-derived omega-3 polyunsaturated fatty acids, delivered to the retinal pigment epithelium (RPE) by circulating low-density lipoproteins (LDL), enhance already considerable RPE lysosomal acid lipase activity, providing for more efficient hydrolysis of intralysosomal RPE lipids, an effect that may help prevent development of age-related macular degeneration (ARMD). METHODS: Colorimetric biochemical and histochemical techniques were used to demonstrate RPE acid lipase in situ, in vitro, and after challenge with phagocytic stimuli. Receptor-mediated RPE uptake of fluorescently labeled native, aceto-acetylated, and oxidized LDL was studied in vitro and in vivo. LDL effects on RPE lysosomal enzymes were assessed. Lysosomal enzyme activity was compared in RPE cells from monkeys fed diets rich in fish oil to those from control animals and in cultured RPE cells exposed to sera from these monkeys. RESULTS: RPE acid lipase activity was substantial and comparable to that of mononuclear phagocytes. Acid lipase activity increased significantly following phagocytic challenge with photoreceptor outer segment (POS) membranes. Receptor-mediated RPE uptake of labeled lipoproteins was determined in vitro. Distinctive uptake of labeled lipoproteins occurred in RPE cells and mononuclear phagocytes in vivo. Native LDL enhanced RPE lysosomal enzyme activity. RPE lysosomal enzymes increased significantly in RPE cells from monkeys fed fish oil-rich diets and in cultured RPE cells exposed to their sera. CONCLUSIONS: RPE cells contain substantial acid lipase for efficient metabolism of lipids imbibed by POS phagocytosis and LDL uptake. Diets rich in fish oil-derived omega-3 fatty acids, by enhancing acid lipase, may reduce RPE lipofuscin accumulation, RPE oxidative damage, and the development of ARMD. PMID:12545699

  5. The Saccharomyces cerevisiae YLL012/YEH1, YLR020/YEH2, and TGL1 genes encode a novel family of membrane-anchored lipases that are required for steryl ester hydrolysis.

    PubMed

    Köffel, René; Tiwari, Rashi; Falquet, Laurent; Schneiter, Roger

    2005-03-01

    Sterol homeostasis in eukaryotic cells relies on the reciprocal interconversion of free sterols and steryl esters. The formation of steryl esters is well characterized, but the mechanisms that control steryl ester mobilization upon cellular demand are less well understood. We have identified a family of three lipases of Saccharomyces cerevisiae that are required for efficient steryl ester mobilization. These lipases, encoded by YLL012/YEH1, YLR020/YEH2, and TGL1, are paralogues of the mammalian acid lipase family, which is composed of the lysosomal acid lipase, the gastric lipase, and four novel as yet uncharacterized human open reading frames. Lipase triple-mutant yeast cells are completely blocked in steryl ester hydrolysis but do not affect the mobilization of triacylglycerols, indicating that the three lipases are required for steryl ester mobilization in vivo. Lipase single mutants mobilize steryl esters to various degrees, indicating partial functional redundancy of the three gene products. Lipase double-mutant cells in which the third lipase is expressed from the inducible GAL1 promoter have greatly reduced steady-state levels of steryl esters, indicating that overexpression of any of the three lipases is sufficient for steryl ester mobilization in vivo. The three yeast enzymes constitute a novel class of membrane-anchored lipases that differ in topology and subcellular localization.

  6. Surfactant enhanced ricinoleic acid production using Candida rugosa lipase.

    PubMed

    Goswami, Debajyoti; Sen, Ramkrishna; Basu, Jayanta Kumar; De, Sirshendu

    2010-01-01

    In this study, ricinoleic acid was produced on surfactant enhanced castor oil hydrolysis using Candida rugosa lipase. The most effective surfactant was Span 80. Employing fractional factorial design, the most suitable temperature and surfactant concentration were found to be 31 degrees C and 0.257% (w/w in buffer) respectively whereas pH, enzyme concentration, buffer concentration and agitation were identified as the most significant independent variables. A 2(4) full factorial central composite design was applied and the optimal conditions were found to be pH 7.0, enzyme concentration 7.42 mg/g oil, buffer concentration 0.20 g/g oil and agitation 1400 rpm with the maximum response of 76% in 4 h. The most important variable was pH, whereas enzyme and buffer concentrations also showed pronounced effect on response. This is the first report on the application of response surface methodology for optimizing surfactant enhanced ricinoleic acid production using C. rugosa lipase.

  7. SOA genes encode proteins controlling lipase expression in response to triacylglycerol utilization in the yeast Yarrowia lipolytica.

    PubMed

    Desfougères, Thomas; Haddouche, Ramdane; Fudalej, Franck; Neuvéglise, Cécile; Nicaud, Jean-Marc

    2010-02-01

    The oleaginous yeast Yarrowia lipolytica efficiently metabolizes hydrophobic substrates such as alkanes, fatty acids or triacylglycerol. This yeast has been identified in oil-polluted water and in lipid-rich food. The enzymes involved in lipid breakdown, for use as a carbon source, are known, but the molecular mechanisms controlling the expression of the genes encoding these enzymes are still poorly understood. The study of mRNAs obtained from cells grown on oleic acid identified a new group of genes called SOA genes (specific for oleic acid). SOA1 and SOA2 are two small genes coding for proteins with no known homologs. Single- and double-disrupted strains were constructed. Wild-type and mutant strains were grown on dextrose, oleic acid and triacylglycerols. The double mutant presents a clear phenotype consisting of a growth defect on tributyrin and triolein, but not on dextrose or oleic acid media. Lipase activity was 50-fold lower in this mutant than in the wild-type strain. The impact of SOA deletion on the expression of the main extracellular lipase gene (LIP2) was monitored using a LIP2-beta-galactosidase promoter fusion protein. These data suggest that Soa proteins are components of a molecular mechanism controlling lipase gene expression in response to extracellular triacylglycerol.

  8. Gene cloning and molecular characterization of the Talaromyces thermophilus lipase catalyzed efficient hydrolysis and synthesis of esters.

    PubMed

    Romdhane, Ines Belhaj-Ben; Frikha, Fakher; Maalej-Achouri, Inès; Gargouri, Ali; Belghith, Hafedh

    2012-02-15

    A genomic bank from Talaromyces thermophilus fungus was constructed and screened using a previously isolated fragment lipase gene as probe. From several clones isolated, the nucleotide sequence of the lipase gene (TTL gene) was completed and sequenced. The TTL coding gene consists of an open reading frame (ORF) of 1083bp encoding a protein of 269 Aa with an estimated molecular mass of 30kDa. The TTL belongs to the same gene family as Thermomyces lanuginosus lipase (TLL, Lipolase®), a well known lipase with multiple applications. The promoter sequence of the TTL gene showed the conservation of known consensus sequences PacC, CreA, Hap2-3-4 and the existence of a particular sequence like the binding sites of Oleate Response Element (ORE) and Fatty acids Responsis Element (FARE) which are similar to that already found to be specific of lipolytic genes in Candida and Fusarium, respectively. Northern blot analysis showed that the TTL expression was much higher on wheat bran than on olive oil as sole carbon source. Compared to the Lipolase®, this enzyme was found to be more efficient for the hydrolysis and the synthesis of esters; and its synthetic efficiency even reached 91.6% from Waste Cooking Oil triglycerides.

  9. Cloning, sequencing and characterization of lipase genes from a polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipase (lip) and lipase-specific foldase (lif) genes of a biodegradable polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans NRRL B-2649 were cloned using primers based on consensus sequences, followed by PCR-based genome walking. Sequence analyses showed a putative Lip gene-product (...

  10. Acid lipase from Candida viswanathii: production, biochemical properties, and potential application.

    PubMed

    de Almeida, Alex Fernando; Tauk-Tornisielo, Sâmia Maria; Carmona, Eleonora Cano

    2013-01-01

    Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (Y L/S = 1.381 g/g), lipase yield (Y L/S = 6.892 U/g), and biomass productivity (P X = 0.282 g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield (Y L/S ) of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties.

  11. Acid Lipase from Candida viswanathii: Production, Biochemical Properties, and Potential Application

    PubMed Central

    de Almeida, Alex Fernando; Carmona, Eleonora Cano

    2013-01-01

    Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (YL/S = 1.381 g/g), lipase yield (YL/S = 6.892 U/g), and biomass productivity (PX = 0.282 g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield (YL/S) of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties. PMID:24350270

  12. Compound heterozygote for lipoprotein lipase deficiency: Ser----Thr244 and transition in 3' splice site of intron 2 (AG----AA) in the lipoprotein lipase gene.

    PubMed Central

    Hata, A; Emi, M; Luc, G; Basdevant, A; Gambert, P; Iverius, P H; Lalouel, J M

    1990-01-01

    Cloning and sequencing of translated exons and intron-exon boundaries of the lipoprotein lipase gene in a patient of French descent who has the chylomicronemia syndrome revealed that he was a compound heterozygote for two nucleotide substitutions. One (TCC----ACC) leads to an amino acid substitution (Ser----Thr244), while the other alters the 3' splice site of intron 2 (AG----AA). The functional significance of the Thr244 amino acid substitution was established by in vitro expression in cultured mammalian cells. Images Figure 1 Figure 2 PMID:2121025

  13. Synthesis of structured triacylglycerols enriched in n-3 fatty acids by immobilized microbial lipase.

    PubMed

    Araújo, Maria Elisa Melo Branco de; Campos, Paula Renata Bueno; Alberto, Thiago Grando; Contesini, Fabiano Jares; Carvalho, Patrícia de Oliveira

    The search for new biocatalysts has aroused great interest due to the variety of micro-organisms and their role as enzyme producers. Native lipases from Aspergillus niger and Rhizopus javanicus were used to enrich the n-3 long-chain polyunsaturated fatty acids content in the triacylglycerols of soybean oil by acidolysis with free fatty acids from sardine oil in solvent-free media. For the immobilization process, the best lipase/support ratios were 1:3 (w/w) for Aspergillus niger lipase and 1:5 (w/w) for Rhizopus javanicus lipase using Amberlite MB-1. Both lipases maintained constant activity for 6 months at 4°C. Reaction time, sardine-free fatty acids:soybean oil mole ratio and initial water content of the lipase were investigated to determine their effects on n-3 long-chain polyunsaturated fatty acids incorporation into soybean oil. Structured triacylglycerols with 11.7 and 7.2% of eicosapentaenoic acid+docosahexaenoic acid were obtained using Aspergillus niger lipase and Rhizopus javanicus lipase, decreasing the n-6/n-3 fatty acids ratio of soybean oil (11:1 to 3.5:1 and 4.7:1, respectively). The best reaction conditions were: initial water content of lipase of 0.86% (w/w), sardine-free faty acids:soybean oil mole ratio of 3:1 and reaction time of 36h, at 40°C. The significant factors for the acidolysis reaction were the sardine-free fatty acids:soybean oil mole ratio and reaction time. The characterization of structured triacylglycerols was obtained using easy ambient sonic-spray ionization mass spectrometry. The enzymatic reaction led to the formation of many structured triacylglycerols containing eicosapentaenoic acid, docosahexaenoic acid or both polyunsaturated fatty acids.

  14. Fatty acid alcohol ester-synthesizing activity of lipoprotein lipase.

    PubMed

    Tsujita, T; Sumiyoshi, M; Okuda, H

    1999-12-01

    The fatty acid alcohol ester-synthesizing activity of lipoprotein lipase (LPL) was characterized using bovine milk LPL. Synthesizing activities were determined in an aqueous medium using oleic acid or trioleylglycerol as the acyl donor and equimolar amounts of long-chain alcohols as the acyl acceptor. When oleic acid and hexadecanol emulsified with gum arabic were incubated with LPL, palmityl oleate was synthesized, in a time- and dose-dependent manner. Apo-very low density lipoprotein (apoVLDL) stimulated LPL-catalyzed palmityl oleate synthesis. The apparent equilibrium ratio of fatty acid alcohol ester/oleic acid was estimated using a high concentration of LPL and a long (20 h) incubation period. The equilibrium ratio was affected by the incubation pH and the alcohol chain length. When the incubation pH was below pH 7.0 and long chain fatty acyl alcohols were used as substrates, the fatty acid alcohol ester/free fatty acid equilibrium ratio favored ester formation, with an apparent equilibrium ratio of fatty acid alcohol ester/fatty acid of about 0.9/0.1. The equilibrium ratio decreased sharply at alkaline pH (above pH 8.0). The ratio also decreased when fatty alcohols with acyl chains shorter than dodecanol were used. When a trioleoylglycerol/fatty acyl alcohol emulsion was incubated with LPL, fatty acid alcohol esters were synthesized in a dose- and time-dependent fashion. Fatty acid alcohol esters were easily synthesized from trioleoylglycerol when fatty alcohols with acyl chains longer than dodecanol were used, but synthesis was decreased with fatty alcohols with acyl chain lengths shorter than decanol, and little synthesizing activity was detected with shorter-chain fatty alcohols such as butanol or ethanol.

  15. A computational search for lipases that can preferentially hydrolyze long-chain omega-3 fatty acids from fish oil triacylglycerols.

    PubMed

    Kamal, Md Zahid; Barrow, Colin J; Rao, Nalam Madhusudhana

    2015-04-15

    Consumption of long-chain omega-3 fatty acids is known to decrease the risk of major cardiovascular events. Lipases, a class of triacylglycerol hydrolases, have been extensively tested to concentrate omega-3 fatty acids from fish oils, under mild enzymatic conditions. However, no lipases with preference for omega-3 fatty acids selectivity have yet been discovered or developed. In this study we performed an exhaustive computational study of substrate-lipase interactions by docking, both covalent and non-covalent, for 38 lipases with a large number of structured triacylglycerols containing omega-3 fatty acids. We identified some lipases that have potential to preferentially hydrolyze omega-3 fatty acids from structured triacylglycerols. However omega-3 fatty acid preferences were found to be modest. Our study provides an explanation for absence of reports of lipases with omega-3 fatty acid hydrolyzing ability and suggests methods for developing these selective lipases.

  16. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    PubMed

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %.

  17. Expression of lipases and lipid receptors in sperm storage tubules and possible role of fatty acids in sperm survival in the hen oviduct.

    PubMed

    Huang, A; Isobe, N; Obitsu, T; Yoshimura, Y

    2016-04-15

    The aim of this study was to determine the role of fatty acids for sperm survival in the sperm storage tubules (SSTs) of the hen oviduct. The mucosa tissues of uterovaginal junction (UVJ) of White Leghorn laying hens with or without artificial insemination using semen from Barred Plymouth Rock roosters were collected. The lipid density in the epithelium of UVJ and SST was analyzed by Sudan black B staining. The expressions of genes encoding lipid receptors and lipases were assayed by polymerase chain reaction in UVJ mucosa and SST cells isolated by laser microdissection. Fatty acid composition was analyzed by gas chromatography, and sperm were cultured with or without the identified predominant fatty acids for 24 hours to examine their effect on sperm viability. The lipid droplets were localized in the epithelium of UVJ mucosa and SSTs. The expression of genes encoding very low-density lipoprotein receptor(VLDLR), low-density lipoprotein receptor (LDLR), and fatty acid translocase (FAT/CD36) were found in SST cells. Expression of genes encoding endothelial lipase (EL), lipase H (LIPH), adipose triglyceride lipase (ATGL), and lipoprotein lipase (LPL) were found in UVJ. In contrast, only ATGL was found in SST cells, and its expression was significantly upregulated after artificial insemination. In UVJ mucosal tissues, five fatty acids, namely myristic acid (C14), palmitic acid (C16), stearic acid (C18), oleic acid (C18:1n9), and linoleic acid (C18:2n6), were identified as predominant fatty acids. The viability of sperm cultured with 1 mM oleic acid or linoleic acid was significantly higher than the sperm in the control culture without fatty acids. These results suggest that lipids in the SST cells may be degraded by ATGL, and fatty acids including oleic acid and linoleic acid may be released into the SST lumen to support sperm survival.

  18. Lysosomal Acid Lipase Hydrolyzes Retinyl Ester and Affects Retinoid Turnover.

    PubMed

    Grumet, Lukas; Eichmann, Thomas O; Taschler, Ulrike; Zierler, Kathrin A; Leopold, Christina; Moustafa, Tarek; Radovic, Branislav; Romauch, Matthias; Yan, Cong; Du, Hong; Haemmerle, Guenter; Zechner, Rudolf; Fickert, Peter; Kratky, Dagmar; Zimmermann, Robert; Lass, Achim

    2016-08-19

    Lysosomal acid lipase (LAL) is essential for the clearance of endocytosed cholesteryl ester and triglyceride-rich chylomicron remnants. Humans and mice with defective or absent LAL activity accumulate large amounts of cholesteryl esters and triglycerides in multiple tissues. Although chylomicrons also contain retinyl esters (REs), a role of LAL in the clearance of endocytosed REs has not been reported. In this study, we found that murine LAL exhibits RE hydrolase activity. Pharmacological inhibition of LAL in the human hepatocyte cell line HepG2, incubated with chylomicrons, led to increased accumulation of REs in endosomal/lysosomal fractions. Furthermore, pharmacological inhibition or genetic ablation of LAL in murine liver largely reduced in vitro acid RE hydrolase activity. Interestingly, LAL-deficient mice exhibited increased RE content in the duodenum and jejunum but decreased RE content in the liver. Furthermore, LAL-deficient mice challenged with RE gavage exhibited largely reduced post-prandial circulating RE content, indicating that LAL is required for efficient nutritional vitamin A availability. In summary, our results indicate that LAL is the major acid RE hydrolase and required for functional retinoid homeostasis.

  19. Lysosomal Acid Lipase Hydrolyzes Retinyl Ester and Affects Retinoid Turnover*

    PubMed Central

    Grumet, Lukas; Eichmann, Thomas O.; Zierler, Kathrin A.; Leopold, Christina; Moustafa, Tarek; Radovic, Branislav; Romauch, Matthias; Yan, Cong; Haemmerle, Guenter; Zechner, Rudolf; Fickert, Peter; Lass, Achim

    2016-01-01

    Lysosomal acid lipase (LAL) is essential for the clearance of endocytosed cholesteryl ester and triglyceride-rich chylomicron remnants. Humans and mice with defective or absent LAL activity accumulate large amounts of cholesteryl esters and triglycerides in multiple tissues. Although chylomicrons also contain retinyl esters (REs), a role of LAL in the clearance of endocytosed REs has not been reported. In this study, we found that murine LAL exhibits RE hydrolase activity. Pharmacological inhibition of LAL in the human hepatocyte cell line HepG2, incubated with chylomicrons, led to increased accumulation of REs in endosomal/lysosomal fractions. Furthermore, pharmacological inhibition or genetic ablation of LAL in murine liver largely reduced in vitro acid RE hydrolase activity. Interestingly, LAL-deficient mice exhibited increased RE content in the duodenum and jejunum but decreased RE content in the liver. Furthermore, LAL-deficient mice challenged with RE gavage exhibited largely reduced post-prandial circulating RE content, indicating that LAL is required for efficient nutritional vitamin A availability. In summary, our results indicate that LAL is the major acid RE hydrolase and required for functional retinoid homeostasis. PMID:27354281

  20. Breast milk jaundice; the role of lipoprotein lipase and the free fatty acids.

    PubMed

    Constantopoulos, A; Messaritakis, J; Matsaniotis, N

    1980-06-01

    Lipoprotein lipase activity and free fatty acid concentrations were measured in samples of milk collected from mothers of infants without and with prolonged neonatal jaundice. The lipoprotein lipase and free fatty acid values in the milk from mothers of infants without jaundice were found to increase with the duration of breast-feeding until the 12th post-partum day, and then to fall to the original levels. In the group of mothers with jaundiced infants both lipoprotein lipase and free fatty acid values were found within normal limits when measured between 15th and 37th days post-partum. These findings indicate that increased values of lipoprotein lipase and free fatty acids in the milk are not responsible for the development of breast-milk jaundice.

  1. Release of short chain fatty acids from cream lipids by commercial lipases and esterases.

    PubMed

    Saerens, K; Descamps, D; Dewettinck, K

    2008-02-01

    Lipases and esterases are frequently used in dairy production processes to enhance the buttery flavour of the end product. Short chain fatty acids, and especially butanoic acid, play a key role in this and different enzymes with specificity towards short chain fatty acids are commercially available as potent flavouring tools. We have compared six lipases/esterases associated with buttery flavour production. Although specificity to short chain fatty acids was ascribed to each enzyme, clear differences in free fatty acid profiles were found when these enzymes were applied on cream. Candida cylindraceae lipase was the most useful enzyme for buttery flavour production in cream with the highest yield of free fatty acids (57 g oleic acid 100 g(-1) fat), no release of long chain fatty acids and specificity towards butanoic acid.

  2. Identification of lipase encoding genes from Antarctic seawater bacteria using degenerate primers: expression of a cold-active lipase with high specific activity.

    PubMed

    Parra, Loreto P; Espina, Giannina; Devia, Javier; Salazar, Oriana; Andrews, Barbara; Asenjo, Juan A

    2015-01-01

    Cold-active enzymes are valuable catalysts showing high activity at low and moderate temperatures and low thermostability. Among cold-active enzymes, lipases offer a great potential in detergent, cosmetic, biofuel and food or feed industries. In this paper we describe the identification of novel lipase coding genes and the expression of a lipase with high activity at low temperatures. The genomic DNA from Antarctic seawater bacteria showing lipolytic activity at 4°C was used to amplify five DNA fragments that partially encode novel lipases using specifically designed COnsensus-DEgenerate Hybrid Oligonucleotide Primers (CODEHOP). All the fragments were found to have a high identity with an α/β-hydrolase domain-containing protein identified by the sequencing of the complete genome of Shewanella frigidimarina NCIMB 400. The complete sequence of one of the lipase-coding gene fragments, lipE13, was obtained by genome walking. Considering that the other fragments had a high identity to the putative lipase from S. frigidimarina NCIMB 400, the complete lipase genes were amplified using oligonucleotide primers designed based on the 5' and 3' regions of the coding sequence of the related protein. This strategy allowed the amplification of 3 lipase-encoding genes of which one was expressed in the periplasm using the Escherichia coli BL21(DE3)/pET-22b(+) expression system. The recombinant protein was obtained with activity toward p-nitrophenyl caproate showing a high specific activity between 15 and 25°C.

  3. A novel cold-adapted lipase from Sorangium cellulosum strain So0157-2: gene cloning, expression, and enzymatic characterization.

    PubMed

    Cheng, Yuan-Yuan; Qian, Yun-Kai; Li, Zhi-Feng; Wu, Zhi-Hong; Liu, Hong; Li, Yue-Zhong

    2011-01-01

    Genome sequencing of cellulolytic myxobacterium Sorangium cellulosum reveals many open-reading frames (ORFs) encoding various degradation enzymes with low sequence similarity to those reported, but none of them has been characterized. In this paper, a predicted lipase gene (lipA) was cloned from S. cellulosum strain So0157-2 and characterized. lipA is 981-bp in size, encoding a polypeptide of 326 amino acids that contains the pentapeptide (GHSMG) and catalytic triad residues (Ser114, Asp250 and His284). Searching in the GenBank database shows that the LipA protein has only the 30% maximal identity to a human monoglyceride lipase. The novel lipA gene was expressed in Escherichia coli BL21 and the recombinant protein (r-LipA) was purified using Ni-NTA affinity chromatography. The enzyme hydrolyzed the p-nitrophenyl (pNP) esters of short or medium chain fatty acids (≤C(10)), and the maximal activity was on pNP acetate. The r- LipA is a cold-adapted lipase, with high enzymatic activity in a wide range of temperature and pH values. At 4 °C and 30 °C, the K(m) values of r-LipA on pNP acetate are 0.037 ± 0.001 and 0.174 ± 0.006 mM, respectively. Higher pH and temperature conditions promoted hydrolytic activity toward the pNP esters with longer chain fatty acids. Remarkably, this lipase retained much of its activity in the presence of commercial detergents and organic solvents. The results suggest that the r-LipA protein has some new characteristics potentially promising for industrial applications and S. cellulosum is an intriguing resource for lipase screening.

  4. Enzyme therapy for lysosomal acid lipase deficiency in the mouse.

    PubMed

    Du, H; Schiavi, S; Levine, M; Mishra, J; Heur, M; Grabowski, G A

    2001-08-01

    Lysosomal acid lipase (LAL) is the critical enzyme for the hydrolysis of the triglycerides (TG) and cholesteryl esters (CE) delivered to lysosomes. Its deficiency produces two human phenotypes, Wolman disease (WD) and cholesteryl ester storage disease (CESD). A targeted disruption of the LAL locus produced a null (lal( -/-)) mouse model that mimics human WD/CESD. The potential for enzyme therapy was tested using mannose terminated human LAL expressed in Pichia pastoris (phLAL), purified, and administered by tail vein injections to lal( -/-) mice. Mannose receptor (MR)-dependent uptake and lysosomal targeting of phLAL were evidenced ex vivo using competitive assays with MR-positive J774E cells, a murine monocyte/macrophage line, immunofluorescence and western blots. Following (bolus) IV injection, phLAL was detected in Kupffer cells, lung macrophages and intestinal macrophages in lal( -/-) mice. Two-month-old lal( -/-) mice received phLAL (1.5 U/dose) or saline injections once every 3 days for 30 days (10 doses). The treated lal( -/-) mice showed nearly complete resolution of hepatic yellow coloration; hepatic weight decreased by approximately 36% compared to PBS-treated lal( -/-) mice. Histologic analyses of numerous tissues from phLAL-treated mice showed reductions in macrophage lipid storage. TG and cholesterol levels decreased by approximately 50% in liver, 69% in spleen and 50% in small intestine. These studies provide feasibility for LAL enzyme therapy in human WD and CESD.

  5. Lipoprotein lipase gene sequencing and plasma lipid profile[S

    PubMed Central

    Pirim, Dilek; Wang, Xingbin; Radwan, Zaheda H.; Niemsiri, Vipavee; Hokanson, John E.; Hamman, Richard F.; Barmada, M. Michael; Demirci, F. Yesim; Kamboh, M. Ilyas

    2014-01-01

    Lipoprotein lipase (LPL) plays a crucial role in lipid metabolism by hydrolyzing triglyceride (TG)-rich particles and affecting HDL cholesterol (HDL-C) levels. In this study, the entire LPL gene plus flanking regions were resequenced in individuals with extreme HDL-C/TG levels (n = 95), selected from a population-based sample of 623 US non-Hispanic White (NHW) individuals. A total of 176 sequencing variants were identified, including 28 novel variants. A subset of 64 variants [common tag single nucleotide polymorphisms (tagSNP) and selected rare variants] were genotyped in the total sample, followed by association analyses with major lipid traits. A gene-based association test including all genotyped variants revealed significant association with HDL-C (P = 0.024) and TG (P = 0.006). Our single-site analysis revealed seven independent signals (P < 0.05; r2 < 0.40) with either HDL-C or TG. The most significant association was for the SNP rs295 exerting opposite effects on TG and HDL-C levels with P values of 7.5.10−4 and 0.002, respectively. Our work highlights some common variants and haplotypes in LPL with significant associations with lipid traits; however, the analysis of rare variants using burden tests and SKAT-O method revealed negligible effects on lipid traits. Comprehensive resequencing of LPL in larger samples is warranted to further test the role of rare variants in affecting plasma lipid levels. PMID:24212298

  6. Activation of Hepatic Lipase Expression by Oleic Acid: Possible Involvement of USF1

    PubMed Central

    van Deursen, Diederik; van Leeuwen, Marije; Akdogan, Deniz; Adams, Hadie; Jansen, Hans; Verhoeven, Adrie J.M.

    2009-01-01

    Polyunsaturated fatty acids affect gene expression mainly through peroxisome proliferator-activated receptors (PPARs) and sterol regulatory element binding proteins (SREBPs), but how monounsaturated fatty acids affect gene expression is poorly understood. In HepG2 cells, oleate supplementation has been shown to increase secretion of hepatic lipase (HL). We hypothesized that oleate affects HL gene expression at the transcriptional level. To test this, we studied the effect of oleate on HL promoter activity using HepG2 cells and the proximal HL promoter region (700 bp). Oleate increased HL expression and promoter activity 1.3–2.1 fold and reduced SREBP activity by 50%. Downregulation of SREBP activity by incubation with cholesterol+25-hydroxycholesterol had no effect on HL promoter activity. Overexpression of SREBP2, but not SREBP1, reduced HL promoter activity, which was effected mainly through the USF1 binding site at -307/-312. Oleate increased the nuclear abundance of USF1 protein 2.7 ± 0.6 fold, while USF1 levels were reduced by SREBP2 overexpression. We conclude that oleate increases HL gene expression via USF1. USF1 may be an additional fatty acid sensor in liver cells. PMID:22253973

  7. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases.

    PubMed

    Sóti, Péter Lajos; Weiser, Diana; Vigh, Tamás; Nagy, Zsombor Kristóf; Poppe, László; Marosi, György

    2016-03-01

    Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150).

  8. [Prediction of lipases types by different scale pseudo-amino acid composition].

    PubMed

    Zhang, Guangya; Li, Hongchun; Gao, Jiaqiang; Fang, Baishan

    2008-11-01

    Lipases are widely used enzymes in biotechnology. Although they catalyze the same reaction, their sequences vary. Therefore, it is highly desired to develop a fast and reliable method to identify the types of lipases according to their sequences, or even just to confirm whether they are lipases or not. By proposing two scales based pseudo amino acid composition approaches to extract the features of the sequences, a powerful predictor based on k-nearest neighbor was introduced to address the problems. The overall success rates thus obtained by the 10-fold cross-validation test were shown as below: for predicting lipases and nonlipase, the success rates were 92.8%, 91.4% and 91.3%, respectively. For lipase types, the success rates were 92.3%, 90.3% and 89.7%, respectively. Among them, the Z scales based pseudo amino acid composition was the best, T scales was the second. They outperformed significantly than 6 other frequently used sequence feature extraction methods. The high success rates yielded for such a stringent dataset indicate predicting the types of lipases is feasible and the different scales pseudo amino acid composition might be a useful tool for extracting the features of protein sequences, or at lease can play a complementary role to many of the other existing approaches.

  9. Cloning, expression and characterization of a lipase gene from marine bacterium Pseudoalteromonas lipolytica SCSIO 04301

    NASA Astrophysics Data System (ADS)

    Su, Hongfei; Mai, Zhimao; Zhang, Si

    2016-12-01

    A lipase gene, lip1233, isolated from Pseudoalteromonas lipolytica SCSIO 04301, was cloned and expressed in E. coli. The enzyme comprised 810 amino acid residues with a deduced molecular weight of 80 kDa. Lip1233 was grouped into the lipase family X because it contained a highly conserved motif GHSLG. The recombinant enzyme was purified with Ni-NTA affinity chromatography. The optimal temperature and pH value of Lip1233 were 45°C and 8.0, respectively. It retained more than 70% of original activity after being incubated in pH ranging from 6.0 to 9.5 for 30 min. It was stable when the temperature was below 45°C, but was unstable when the temperature was above 55°C. Most metal ions tested had no significant effect on the activity of Lip1233. Lip1233 remained more than original activity in some organic solvents at the concentration of 30% (v/v). It retained more than 30% activity after incubated in pure organic solvents for 12 h, while in hexane the activity was nearly 100%. Additionally, Lip1233 exhibited typical halotolerant characteristic as it was active under 4M NaCl. Lip1233 powder could catalyze efficiently the synthesis of fructose esters in hexane at 40°C. These characteristics demonstrated that Lip1233 is applicable to elaborate food processing and organic synthesis.

  10. Isolation and biochemical characterization of Bacillus pumilus lipases from the Antarctic.

    PubMed

    Arifin, Arild Ranlym; Kim, Soon-Ja; Yim, Joung Han; Suwanto, Antonius; Kim, Hyung Kwoun

    2013-05-01

    Lipase-producing bacterial strains were isolated from Antarctic soil samples using the tricaprylin agar plate method. Seven strains with relatively strong lipase activities were selected. All of them turned out to be Bacillus pumilus strains by the 16S rRNA gene sequence analysis. Their corresponding lipase genes were cloned, sequenced, and compared. Finally, three different Bacillus pumilus lipases (BPL1, BPL2, and BPL3) were chosen. Their amino acid sequence identities were in the range of 92-98% with the previous Bacillus pumilus lipases. Their optimum temperatures and pHs were measured to be 40 degrees C and pH 9. Lipase BPL1 and lipase BPL2 were stable up to 30 degrees C, whereas lipase BPL3 was stable up to 20 degrees C. Lipase BPL2 was stable within a pH range of 6-10, whereas lipase BPL1 and lipase BPL3 were stable within a pH range of 5-11, showing strong alkaline tolerance. All these lipases exhibited high hydrolytic activity toward pnitrophenyl caprylate (C8). In addition, lipase BPL1 showed high hydrolytic activity toward tributyrin, whereas lipase BPL2 and lipase BPL3 hydrolyzed tricaprylin and castor oil preferentially. These results demonstrated that the three Antarctic Bacillus lipases were alkaliphilic and had a substrate preference toward short- and mediumchain triglycerides. These Antarctic Bacillus lipases might be used in detergent and food industries.

  11. Gene cloning, expression, and characterization of the Bacillus amyloliquefaciens PS35 lipase

    PubMed Central

    Kanmani, Palanisamy; Kumaresan, Kuppamuthu; Aravind, Jeyaseelan

    2015-01-01

    Abstract Lipases are enzymes of immense industrial relevance, and, therefore, are being intensely investigated. In an attempt to characterize lipases at molecular level from novel sources, a lipase gene from Bacillus amyloliquefaciens PS35 was cloned, heterologously expressed in Escherichia coli DH5α cells and sequenced. It showed up to 98% homology with other lipase sequences in the NCBI database. The recombinant enzyme was then purified from E. coli culture, resulting in a 19.41-fold purification with 9.7% yield. It displayed a preference for long-chain para-nitrophenyl esters, a characteristic that is typical of true lipases. Its optimum pH and temperature were determined to be 8.0 and 40 °C, respectively. The half-lives were 2.0, 1.0 and 0.5 h at 50 °C, 60 °C and 70 °C, respectively. The metal ions K+ and Fe3+ enhanced the enzyme activity. The enzyme displayed substantial residual activity in the presence of various tested chemical modifiers, and interestingly, the organic solvents, such as n-hexane and toluene, also favored the enzyme activity. Thus, this study involves characterization of B. amyloliquefaciens lipase at molecular level. The key outcomes are novelty of the bacterial source and purification of the enzyme with desirable properties for industrial applications. PMID:26691486

  12. Synthesis of monoacylglycerol containing pinolenic acid via stepwise esterification using a cold active lipase.

    PubMed

    Pyo, Young-Gil; Hong, Seung In; Kim, Yangha; Kim, Byung Hee; Kim, In-Hwan

    2012-01-01

    High purity monoacylglycerol (MAG) containing pinolenic acid was synthesized via stepwise esterification of glycerol and fatty acids from pine nut oil using a cold active lipase from Penicillium camembertii as a biocatalyst. Effects of temperature, molar ratio, water content, enzyme loading, and vacuum on the synthesis of MAG by lipase-catalyzed esterification of glycerol and fatty acid from pine nut oil were investigated. Diacylglycerol (DAG) as well as MAG increased significantly when temperature was increased from 20 to 40 °C. At a molar ratio of 1:1, MAG content decreased because of the significant increase in DAG content. Water has a profound influence on both MAG and DAG content through the entire course of reaction. The reaction rate increased significantly as enzyme loading increased up to 600 units. Vacuum was an effective method to reduce DAG content. The optimum temperature, molar ratio, water content, enzyme loading, vacuum, and reaction time were 20 °C, 1:5 (fatty acid to glycerol), 2%, 600 units, 5 torr, and 24 h, respectively. MAG content further increased via lipase-catalyzed second step esterification at subzero temperature. P. camembertii lipase exhibited esterification activity up to -30 °C.

  13. Lipase-catalyzed regioselective preparation of fatty acid esters of hydrocortisone.

    PubMed

    Quintana, Paula G; Baldessari, Alicia

    2009-01-01

    A series of fatty acid derivatives of hydrocortisone has been prepared by an enzymatic methodology. Nine 21-monoacyl products and one 3,11,17-triacetyl derivative, nine of them novel compounds, were obtained in a highly regioselective way through lipase-catalyzed esterification, transesterification and alcoholysis reactions. The influence of various reaction parameters such as acylating agent: substrate ratio, enzyme: substrate ratio, solvent, temperature and nature of acylating agent and alcohol was evaluated. Among the tested lipases, Candida antarctica lipase appeared to be the most appropriate and showed a high efficient behavior especially in a one-pot transesterification. The advantages presented by this methodology, such as mild reaction conditions and low environmental impact, make the biocatalysis a convenient way to prepare acyl derivatives of hydrocortisone. These lipophilic compounds are potential products in the pharmaceutical industry.

  14. Gene cloning and characterization of a novel highly organic solvent tolerant lipase from Proteus sp. SW1 and its application for biodiesel production.

    PubMed

    Whangsuk, Wirongrong; Sungkeeree, Pareenart; Thiengmag, Sirinthra; Kerdwong, Jarunee; Sallabhan, Ratiboot; Mongkolsuk, Skorn; Loprasert, Suvit

    2013-01-01

    Proteus sp. SW1 was found to produce an extracellular solvent tolerant lipase. The gene, lipA, encoding a bacterial lipase, was cloned from total Proteus sp. SW1 DNA. lipA was predicted to encode a 287 amino acid protein of 31.2 kDa belonging to the Group I proteobacterial lipases. Purified His-tagged LipA exhibited optimal activity at pH 10.0 and 55°C. It was highly stable in organic solvents retaining 112% of its activity in 100% isopropanol after 24 h, and exhibited more than 200% of its initial activity upon exposure to 60% acetone, ethanol, and hexane for 18 h. Biodiesel synthesis reactions, using a single step addition of 13% an acyl acceptor ethanol, showed that LipA was highly effective at converting palm oil into biodiesel.

  15. Severe hypertriglyceridemia in a patient heterozygous for a lipoprotein lipase gene allele with two novel missense variants.

    PubMed

    Kassner, Ursula; Salewsky, Bastian; Wühle-Demuth, Marion; Szijarto, Istvan Andras; Grenkowitz, Thomas; Binner, Priska; März, Winfried; Steinhagen-Thiessen, Elisabeth; Demuth, Ilja

    2015-09-01

    Rare monogenic hyperchylomicronemia is caused by loss-of-function mutations in genes involved in the catabolism of triglyceride-rich lipoproteins, including the lipoprotein lipase gene, LPL. Clinical hallmarks of this condition are eruptive xanthomas, recurrent pancreatitis and abdominal pain. Patients with LPL deficiency and severe or recurrent pancreatitis are eligible for the first gene therapy treatment approved by the European Union. Therefore the precise molecular diagnosis of familial hyperchylomicronemia may affect treatment decisions. We present a 57-year-old male patient with excessive hypertriglyceridemia despite intensive lipid-lowering therapy. Abdominal sonography showed signs of chronic pancreatitis. Direct DNA sequencing and cloning revealed two novel missense variants, c.1302A>T and c.1306G>A, in exon 8 of the LPL gene coexisting on the same allele. The variants result in the amino-acid exchanges p.(Lys434Asn) and p.(Gly436Arg). They are located in the carboxy-terminal domain of lipoprotein lipase that interacts with the glycosylphosphatidylinositol-anchored HDL-binding protein (GPIHBP1) and are likely of functional relevance. No further relevant mutations were found by direct sequencing of the genes for APOA5, APOC2, LMF1 and GPIHBP1. We conclude that heterozygosity for damaging mutations of LPL may be sufficient to produce severe hypertriglyceridemia and that chylomicronemia may be transmitted in a dominant manner, at least in some families.

  16. Lysosomal acid lipase over-expression disrupts lamellar body genesis and alveolar structure in the lung.

    PubMed

    Li, Yuan; Qin, Yulin; Li, Huimin; Wu, Renliang; Yan, Cong; Du, Hong

    2007-12-01

    The functional role of neutral lipids in the lung is poorly understood. Lysosomal acid lipase (LAL) is a critical enzyme in hydrolysis of cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in lysosomes. Human LAL was over-expressed in a doxycycline-controlled system in mouse respiratory epithelial cells to accelerate intracellular neutral lipid degradation and perturb the surfactant homeostasis in the lung. In this animal system, neutral lipid concentrations of pulmonary surfactant were reduced in bronchoalveolar lavage fluid (BALF) in association with decrease of surfactant protein C (SP-C) gene expression. The size and the number of lamellar bodies in alveolar type II epithelial cells (AT II cells) were significantly reduced accordingly. The number of macrophages required for surfactant recycling in BALF was also significantly reduced. As a result of these combinatory effects, emphysema of the alveolar structure was observed. Taken together, neutral lipid homeostasis is essential for maintenance of lamellar body genesis and the alveolar structure in the lung.

  17. Cloning and Expression of a Subfamily 1.4 Lipase from Bacillus licheniformis IBRL-CHS2.

    PubMed

    Reddy, Nidyaletchmy Subba; Rahim, Rashidah Abdul; Ibrahim, Darah; Kumar, K Sudesh

    2016-11-01

    We report on the cloning of the lipase gene from Bacillus licheniformis IBRL-CHS2 and the expression of the recombinant lipase. DNA sequencing analysis of the cloned lipase gene showed that it shares 99% identity with the lipase gene from B. licheniformis ATCC 14580 and belongs to subfamily 1.4 of true lipases based on amino acid sequence alignment of various Bacillus lipases. The 612 bp lipase gene was then cloned into the pET-15b(+) expression vector and the construct was transformed into E. coli BL21 (DE3) for bulk expression of the lipase. Expression was analysed by SDS-PAGE where the lipase was found to have a molecular weight of about 23 kDa.

  18. Cloning and Expression of a Subfamily 1.4 Lipase from Bacillus licheniformis IBRL-CHS2

    PubMed Central

    Reddy, Nidyaletchmy Subba; Rahim, Rashidah Abdul; Ibrahim, Darah; Kumar, K. Sudesh

    2016-01-01

    We report on the cloning of the lipase gene from Bacillus licheniformis IBRL-CHS2 and the expression of the recombinant lipase. DNA sequencing analysis of the cloned lipase gene showed that it shares 99% identity with the lipase gene from B. licheniformis ATCC 14580 and belongs to subfamily 1.4 of true lipases based on amino acid sequence alignment of various Bacillus lipases. The 612 bp lipase gene was then cloned into the pET-15b(+) expression vector and the construct was transformed into E. coli BL21 (DE3) for bulk expression of the lipase. Expression was analysed by SDS-PAGE where the lipase was found to have a molecular weight of about 23 kDa. PMID:27965753

  19. Macrophage-Specific Expression of Human Lysosomal Acid Lipase Corrects Inflammation and Pathogenic Phenotypes in lal−/− Mice

    PubMed Central

    Yan, Cong; Lian, Xuemei; Li, Yuan; Dai, Ying; White, Amanda; Qin, Yulin; Li, Huimin; Hume, David A.; Du, Hong

    2006-01-01

    Lysosomal acid lipase (LAL) hydrolyzes cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in the cell. The downstream metabolites of these compounds serve as hormonal ligands for nuclear receptors and transcription factors. Genetic ablation of the lal gene in the mouse caused malformation of macrophages and inflammation-triggered multiple pathogenic phenotypes in multiple organs. To assess the relationship between macrophages and lal−/− pathogenic phenotypes, a macrophage-specific doxycycline-inducible transgenic system was generated to induce human LAL (hLAL) expression in the lal−/− genetic background under control of the 7.2-kb c-fms promoter/intron2 regulatory sequence. Doxycycline-induced hLAL expression in macrophages significantly ameliorated aberrant gene expression, inflammatory cell (neutrophil) influx, and pathogenesis in multiple organs. These studies strongly support that neutral lipid metabolism in macrophages contributes to organ inflammation and pathogenesis. PMID:16936266

  20. Cloning and functional characterization of the 5' regulatory region of ovine Hormone Sensitive Lipase (HSL) gene.

    PubMed

    Lampidonis, Antonis D; Stravopodis, Dimitrios J; Voutsinas, Gerassimos E; Messini-Nikolaki, Niki; Stefos, George C; Margaritis, Lukas H; Argyrokastritis, Alexandros; Bizelis, Iosif; Rogdakis, Emmanuel

    2008-12-31

    Hormone Sensitive Lipase (HSL) catalyzes the rate-limiting step in the mobilization of fatty acids from adipose tissue, thus determining the supply of energy substrates in the body. HSL enzymatic activity is increased by adrenergic agonists, such as catecholamines and glucagons, which induce cyclic AMP (cAMP) intracellular production, subsequently followed by the activation of Protein Kinase A (PKA) and its downstream signaling cascade reactions. HSL constitutes the critical enzyme in the modulation of lipid stores and the only component being subjected to hormonal control in terms of the recently identified Adipose Triglyceride Lipase (ATGL). In order to acquire detailed knowledge with regard to the mechanisms regulating ovine HSL (ovHSL) gene transcription activity, we initially isolated and cloned the 5' proximal and distal promoter regions through a genome walking approach, with the utilization of the already characterized ovHSL cDNAs. As evinced by BLAST analysis and a multiple alignment procedure, the isolated genomic fragment of 2.744 kb appeared to contain the already specified 5'-untranslated region (5'-UTR), which was interrupted by a relatively large intron of 1.448 kb. Regarding the upstream remaining part of 1.224 kb, it was demonstrated to represent a TATA-less promoter area, harboring several cis-regulatory elements that could be putatively recognized by relatively more general transcription factors, mainly including Stimulating protein 1 (Sp1), CCAAT-box Binding Factors (CBFs), Activator Protein 2 (AP2) and Glucocorticoid Receptor (GR), as well as other cis-acting regions denominated as Insulin Response Element (IRE), Glucose Response Element (GRE), Fat Specific Element (FSE) and cAMP Response Element (CRE), which could likely function in a nourishment (i.e. glucose)-/hormone-dependent fashion. When different genomic fragments were directionally (5' to 3') cloned into a suitable reporter vector upstream of a promoter-less luciferase gene and

  1. Hormone-sensitive lipase deficiency alters gene expression and cholesterol content of mouse testis

    PubMed Central

    Wang, Feng; Chen, Zheng; Ren, Xiaofang; Tian, Ye; Wang, Fucheng; Liu, Chao; Jin, Pengcheng; Li, Zongyue; Zhang, Feixiong

    2016-01-01

    Hormone-sensitive lipase-knockout (HSL−/−) mice exhibit azoospermia for unclear reasons. To explore the basis of sterility, we performed the following three experiments. First, HSL protein distribution in the testis was determined. Next, transcriptome analyses were performed on the testes of three experimental groups. Finally, the fatty acid and cholesterol levels in the testes with three different genotypes studied were determined. We found that the HSL protein was present from spermatocyte cells to mature sperm acrosomes in wild-type (HSL+/+) testes. Spermiogenesis ceased at the elongation phase of HSL−/− testes. Transcriptome analysis indicated that genes involved in lipid metabolism, cell membrane, reproduction and inflammation-related processes were disordered in HSL−/− testes. The cholesterol content was significantly higher in HSL−/− than that in HSL+/+ testis. Therefore, gene expression and cholesterol ester content differed in HSL−/− testes compared to other testes, which may explain the sterility of male HSL−/− mice. PMID:27920259

  2. Identification and characterization of genes, encoding the 3-hydroxybutyrate dehydrogenase and a putative lipase, in an avirulent spontaneous Legionella pneumophila serogroup 6 mutant.

    PubMed

    Scaturro, Maria; Barello, Cristina; Giusti, Melania De; Fontana, Stefano; Pinci, Federica; Giuffrida, Maria Gabriella; Ricci, Maria Luisa

    2015-04-01

    Legionella pneumophila is a pathogen widespread in aquatic environment, able to multiply both within amoebae and human macrophages. The aim of this study was to identify genes differently expressed in a spontaneous avirulent Legionella pneumophila serogroup 6 mutant, named Vir-, respect the parental strain (Vir+), and to determine their role in the loss of virulence. Protein profiles revealed some differences in Vir- proteomic maps, and among the identified proteins the undetectable 3-hydroxybutyrate dehydrogenase (BdhA) and a down-produced lipase. Both Legionella enzymes were studied before and were here further characterized at genetic level. A significant down-regulation of both genes was observed in Vir- at the transcriptional level, but the use of defined mutants demonstrated that they did not affect the intracellular multiplication. A mutant (MS1) showed an accumulation of poly-3-hydroxybutyrate (PHB) granules suggesting a role of bdhA gene in its degradation process. The lipase deduced amino acid sequence revealed a catalytic triad, typical of the 'lipase box' characteristic of PHB de-polymerase enzymes, that let us suppose a possible involvement of lipase in the PHB granule degradation process. Our results revealed unexpected alterations in secondary metabolic pathways possibly linking the loss of virulence to Legionella lack of energy sources.

  3. Production of fatty acid butyl esters using the low cost naturally immobilized Carica papaya lipase.

    PubMed

    Su, Erzheng; Wei, Dongzhi

    2014-07-09

    In this work, the low cost naturally immobilized Carica papaya lipase (CPL) was investigated for production of fatty acid butyl esters (FABE) to fulfill the aim of reducing the lipase cost in the enzymatic butyl-biodiesel process. The CPL showed specificities to different alcohol acyl acceptors. Alcohols with more than three carbon atoms did not have negative effects on the CPL activity. The CPL catalyzed butanolysis for FABE production was systematically investigated. The reaction solvent, alcohol/oil molar ratio, enzyme amount, reaction temperature, and water activity all affected the butanolysis process. Under the optimized conditions, the highest conversion of 96% could be attained in 24 h. These optimal conditions were further applied to CPL catalyzed butanolysis of other vegetable oils. All of them showed very high conversion. The CPL packed-bed reactor was further developed, and could be operated continuously for more than 150 h. All of these results showed that the low cost Carica papaya lipase can be used as a promising lipase for biodiesel production.

  4. Lipoprotein lipase gene variants and risk of coronary disease: a quantitative analysis of population-based studies.

    PubMed

    Hokanson, J E

    1997-01-01

    The purpose of this study is to quantify the magnitude of the association between common variants in the lipoprotein lipase gene and coronary disease, based on published population-based studies. Fourteen studies, representing 15,708 subjects, report allelic distribution for lipoprotein lipase gene variants among coronary disease patients and control subjects. Patient outcomes included clinical coronary disease events and documented coronary disease based on angiography. Allele frequencies are estimated for disease and non-disease groups within each study. A 2 x 2 contingency table is used to compute individual study odds ratios and 95% confidence intervals, relating the presence of the rare allele to disease status. Mantel-Haenszel-stratified analysis of each allelic variant results in a summary odds ratio and 95% confidence interval for the association between each rare allele in the lipoprotein lipase gene and coronary disease. The lipoprotein lipase D9N allele has a summary odds ratio of 1.59 (95% confidence interval 1.03-2.55), indicating a 59% increase in risk of coronary disease for carriers with this allelic variant. The lipoprotein lipase N291S allele showed no association with coronary disease (summary odds ratio 0.93, 95% confidence interval 0.73-1.19). The summary odds ratio for lipoprotein lipase S447Ter allele is 0.81 (95% confidence interval 0.65-1.0), indicating a marginal negative association between this variant and coronary disease. The common lipoprotein lipase Pvu II polymorphism shows no relation to coronary disease (summary odds ratio 0.90, 95% confidence interval 0.80-1.01). The rare allele of the lipoprotein lipase HindIII polymorphism is negatively associated with coronary disease (summary odds ratio 0.84, 95% confidence interval 0.73-0.96). The lipoprotein lipase D9N allele is associated with high levels of triglyceride and low levels of high-density lipoprotein. Similar atherogenic lipid levels are observed in subjects with structural

  5. In situ localization of the genetic locus encoding the lysosomal acid lipase/cholesteryl esterase (LIPA) deficient in wolman disease to chromosome 10q23. 2-q23. 3

    SciTech Connect

    Anderson, R.A.; Rao, N.; Byrum, R.S.; Rothschild, C.B.; Bowden, D.W.; Hayworth, R.; Pettenati, M. )

    1993-01-01

    Human acid lipase/cholesteryl esterase (EC 3.1.1.13) is a 46-kDa glycoprotein required for the lysosomal hydrolysis of cholesteryl esters and triglycerides that cells acquire through the receptor-mediated endocytosis of low-density lipoproteins. This activity is essential in the provision of free cholesterol for cell metabolism as well as for the feedback signal that modulates endogenous cellular cholesterol production. The extremely low level of lysosomal acid lipase in patients afflicted with the hereditary, allelic lysosomal storage disorders Woman disease (WD) and cholesteryl ester storage disease (CESD) (MIM Number 278000 (6)) is associated with the massive intralysosomal lipid storage and derangements in the regulation of cellular cholesterol production (10). Both WD and CESD cells lack a specific acid lipase isoenzyme and it is thought that the different mutations associated with WD and CESD are in the structural gene for this isoenzyme, LIPA. Analysis of the activity of the acid lipase isoenzyme in cell extracts from human-Chinese hamster somatic cell hybrids (4, 11) demonstrated the concordant segregation of the gene locus for lysosomal acid lipase with the glutamate oxaloacetate transaminase-1 (GOT1) enzyme marker for human chromosome 10 which was subsequently localized to 10q24.1 q25.1 (8). 11 refs., 1 figs.

  6. Linkage of low-density lipoprotein size to the lipoprotein lipase gene in heterozygous lipoprotein lipase deficiency.

    PubMed Central

    Hokanson, J E; Brunzell, J D; Jarvik, G P; Wijsman, E M; Austin, M A

    1999-01-01

    Small low-density lipoprotein (LDL) particles are a genetically influenced coronary disease risk factor. Lipoprotein lipase (LpL) is a rate-limiting enzyme in the formation of LDL particles. The current study examined genetic linkage of LDL particle size to the LpL gene in five families with structural mutations in the LpL gene. LDL particle size was smaller among the heterozygous subjects, compared with controls. Among heterozygous subjects, 44% were classified as affected by LDL subclass phenotype B, compared with 8% of normal family members. Plasma triglyceride levels were significantly higher, and high-density lipoprotein cholesterol (HDL-C) levels were lower, in heterozygous subjects, compared with normal subjects, after age and sex adjustment. A highly significant LOD score of 6.24 at straight theta=0 was obtained for linkage of LDL particle size to the LpL gene, after adjustment of LDL particle size for within-genotype variance resulting from triglyceride and HDL-C. Failure to adjust for this variance led to only a modest positive LOD score of 1.54 at straight theta=0. Classifying small LDL particles as a qualitative trait (LDL subclass phenotype B) provided only suggestive evidence for linkage to the LpL gene (LOD=1. 65 at straight theta=0). Thus, use of the quantitative trait adjusted for within-genotype variance, resulting from physiologic covariates, was crucial for detection of significant evidence of linkage in this study. These results indicate that heterozygous LpL deficiency may be one cause of small LDL particles and may provide a potential mechanism for the increase in coronary disease seen in heterozygous LpL deficiency. This study also demonstrates a successful strategy of genotypic specific adjustment of complex traits in mapping a quantitative trait locus. PMID:9973300

  7. Characterization of the promoter and upstream activating sequence from the Pseudomonas alcaligenes lipase gene.

    PubMed

    Cox, M; Gerritse, G; Dankmeyer, L; Quax, W J

    2001-03-09

    Pseudomonas alcaligenes secretes a lipase with a high pH optimum, which has interesting properties for application in detergents. The expression of the lipase is strongly dependent on the presence of lipids in the growth medium such as soybean oil. The promoter of the gene was characterized and found to have resemblance to sigma54 controlled promoters, which are known to be tightly regulated. The transcription start was mapped precisely downstream of a sequence with close similarity to the -12/-24 consensus sequence of sigma54 controlled promoters. Interestingly, a hyperproducer mutant strain was isolated and found to have a C to T mutation in the -12/-24 promoter consensus region. In addition an Upstream Activating Sequence (UAS) with homology to sigma54 UAS consensus sequences was identified. It was demonstrated that an increase of the distance from the UAS to the transcription start or the deletion of the UAS results in significantly lower expression levels of lipase. A systematic mutational analysis of the UAS sequence has resulted in a variant with an increased lipase expression.

  8. Expression of Talaromyces thermophilus lipase gene in Trichoderma reesei by homologous recombination at the cbh1 locus.

    PubMed

    Zhang, Xu; Xia, Liming

    2017-03-01

    CBH1 (cellobiohydrolase) comprises the majority of secreted proteins by Trichoderma reesei. For expression of Talaromyces thermophilus lipase gene in T. reesei, a self-designed CBH1 promoter was applied to drive the lipase gene expression cassette which was bracketed by flanking sequences of cbh1 gene for homologous recombination. Protoplast and Agrobacterium-mediated plasmid transformations were performed and compared, resultantly, transformation mediated by Agrobacterium was overall proved to be more efficient. Stable integration of lipase gene into chromosomal DNA of T. reesei transformants was verified by PCR. After shaking flask fermentation, lipase activity of transformant reached 375 IU mL(-1), whereas no cellobiohydrolase activity was detected. SDS-PAGE analysis further showed an obvious protein band about 39 kDa and no CBH1 band in fermentation broth, implying lipase gene was successfully extracellularly expressed in T. reesei via homologous recombination at cbh1 locus. This study herein would benefit genetic engineering of filamentous fungi and industrial application of thermo-alkaline lipase like in paper making and detergents addition.

  9. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    PubMed Central

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M.J.

    2011-01-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. PMID:21915852

  10. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters.

    PubMed

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M J

    2012-02-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel.

  11. Analysis of Comparative Sequence and Genomic Data to Verify Phylogenetic Relationship and Explore a New Subfamily of Bacterial Lipases

    PubMed Central

    Salleh, Abu Bakar; Basri, Mahiran

    2016-01-01

    Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca2+-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65°C and retained ≥ 97% activity after incubation at 50°C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents. PMID:26934700

  12. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase

    PubMed Central

    Sahonero-Canavesi, Diana X.; Sohlenkamp, Christian; Sandoval-Calderón, Mario; Lamsa, Anne; Pogliano, Kit; López-Lara, Isabel M.; Geiger, Otto

    2016-01-01

    Summary Phospholipids are well known for their membrane forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth. PMID:25711932

  13. Preparation of palm olein enriched with medium chain fatty acids by lipase acidolysis.

    PubMed

    Chnadhapuram, Mounika; Sunkireddy, Yella Reddy

    2012-05-01

    Medium chain (MC) fatty acids, caprylic (C8:0) and capric (C10:0) were incorporated into palm olein by 1,3-specific lipase acidolysis, up to 36% and 43%, respectively, when added as mixtures or individually after 24h. It was found that these acids were incorporated into palm olein at the expense of palmitic and oleic acids, the former being larger in quantity and reduction of 18:2 was negligible. The modified palm olein products showed reduction in higher molecular weight triacylglycerols (TGs) and increase in concentration of lower molecular weight TGs compared to those of palm olein. Fatty acids at sn-2 position in modified products were: C10:0, 4%; C16:0, 13%; C18:1, 66%; and C18:2, 15.4%. DSC results showed that the onset of melting and solids fat content were considerably reduced in modified palm olein products and no solids were found even at and below 10°C and also the onset of crystallisation was considerably lowered. The cloud point was reduced and iodine value dropped from 55.4 to 38 in modified palm olein. Thus, nutritionally superior palm olein was prepared by introducing MC fatty acids with reduced palmitic acid through lipase acidolysis.

  14. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase.

    PubMed

    Sahonero-Canavesi, Diana X; Sohlenkamp, Christian; Sandoval-Calderón, Mario; Lamsa, Anne; Pogliano, Kit; López-Lara, Isabel M; Geiger, Otto

    2015-09-01

    Phospholipids are well known for their membrane-forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth.

  15. Molecular cloning and characterization of the mouse carboxyl ester lipase gene and evidence for expression in the lactating mammary gland

    SciTech Connect

    Lidmer, A.S.; Lundberg, L.; Kannius, M.; Bjursell, G.

    1995-09-01

    DNA hybridization was used to isolate a 2.04-kb cDNA encoding carboxyl ester lipase (CEL) from a mouse lactating mammary gland, {lambda}gt10 cDNA library. The cDNA sequence translated into a protein of 599 amino acids, including 20 amino acids of a putative signal peptide. Comparison of the deduced amino acid sequence of the mouse CEL with CEL from five other species revealed that there is a high degree of a homology between the different species. The mouse CEL gene was also isolated and found to span approximately 7.2 kb and to include 11 exons. This organization is similar to those of the recently reported human and rat CEL genes. We have also analyzed expression of the CEL gene in the mammary glands from other species by performing a Northern blot analysis with RNA from goat and cow. The results show that the gene is expressed in both species. 36 refs., 6 figs., 1 tab.

  16. GDSL esterase/lipase genes in Brassica rapa L.: genome-wide identification and expression analysis.

    PubMed

    Dong, Xiangshu; Yi, Hankuil; Han, Ching-Tack; Nou, Ill-Sup; Hur, Yoonkang

    2016-04-01

    GDSL esterase/lipase proteins (GELPs), a very large subfamily of lipolytic enzymes, have been identified in microbes and many plants, but only a few have been characterized with respect to their roles in growth, development, and stress responses. In Brassica crops, as in many other species, genome-wide systematic analysis and functional studies of these genes are still lacking. As a first step to study their function in B. rapa ssp. pekinensis (Chinese cabbage), we comprehensively identified all GELP genes in the genome. We found a total of 121 Brassica rapa GDSL esterase/lipase protein genes (BrGELPs), forming three clades in the phylogenetic analysis (two major and one minor), with an asymmetrical chromosomal distribution. Most BrGELPs possess four strictly conserved residues (Ser-Gly-Asn-His) in four separate conserved regions, along with short conserved and clade-specific blocks, suggesting functional diversification of these proteins. Detailed expression profiling revealed that BrGELPs were expressed in various tissues, including floral organs, implying that BrGELPs play diverse roles in various tissues and during development. Ten percent of BrGELPs were specifically expressed in fertile buds, rather than male-sterile buds, implying their involvement in pollen development. Analyses of EXL6 (extracellular lipase 6) expression and its co-expressed genes in both B. rapa and Arabidopsis, as well as knockdown of this gene in Arabidopsis, revealed that this gene plays an important role in pollen development in both species. The data described in this study will facilitate future investigations of other BrGELP functions.

  17. Enantioselective esterification of (R,S)-2-methylalkanoic acid with Carica papaya lipase in organic solvents.

    PubMed

    Chang, Chun-Sheng; Ho, Ssu-Ching

    2011-11-01

    Isooctane was the best reaction medium for the enantioselective esterification of (R,S)-2-methylalkanoic acid with n-butanol using Carica papaya lipase as catalyst. Increasing linear alkyl-chain length of racemic 2-methylalkanoic acids from ethyl to hexyl increased the enantioselectivity (E) from 2.1 to 98.2 for the esterification of racemic 2-methylalkanoic acids with n-butanol at 35°C. Decreasing reaction temperature from 40 to 20°C increased the enantioselectivity (E) from 14 to 33 for the esterification of racemic 2-methylhexanoic acids with n-butanol. We obtained a maximum enantioselectivity, of E = 24.3, for the enantioselective esterification of racemic 2-methylhexanoic acids with n-butanol in isooctane at water activity 0.33, and at 35°C.

  18. Harnessing biodiesel-producing microbes: from genetic engineering of lipase to metabolic engineering of fatty acid biosynthetic pathway.

    PubMed

    Yan, Jinyong; Yan, Yunjun; Madzak, Catherine; Han, Bingnan

    2017-02-01

    Microbial production routes, notably whole-cell lipase-mediated biotransformation and fatty-acids-derived biosynthesis, offer new opportunities for synthesizing biodiesel. They compare favorably to immobilized lipase and chemically catalyzed processes. Genetically modified whole-cell lipase-mediated in vitro route, together with in vivo and ex vivo microbial biosynthesis routes, constitutes emerging and rapidly developing research areas for effective production of biodiesel. This review presents recent advances in customizing microorganisms for producing biodiesel, via genetic engineering of lipases and metabolic engineering (including system regulation) of fatty-acids-derived pathways. Microbial hosts used include Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Aspergillus oryzae. These microbial cells can be genetically modified to produce lipases under different forms: intracellularly expressed, secreted or surface-displayed. They can be metabolically redesigned and systematically regulated to obtain balanced biodiesel-producing cells, as highlighted in this study. Such genetically or metabolically modified microbial cells can support not only in vitro biotransformation of various common oil feedstocks to biodiesel, but also de novo biosynthesis of biodiesel from glucose, glycerol or even cellulosic biomass. We believe that the genetically tractable oleaginous yeast Yarrowia lipolytica could be developed to an effective biodiesel-producing microbial cell factory. For this purpose, we propose several engineered pathways, based on lipase and wax ester synthase, in this promising oleaginous host.

  19. Differential Candida albicans lipase gene expression during alimentary tract colonization and infection.

    PubMed

    Schofield, David A; Westwater, Caroline; Warner, Thomas; Balish, Edward

    2005-03-15

    The human pathogenic fungus Candida albicans, which can reside as a benign commensal of the gut, possesses a large family of lipase encoding genes whose extracellular activity may be important for colonization and subsequent infection. The expression of the C. albicans lipase gene family (LIP1-10) was investigated using a mouse model of mucosal candidiasis during alimentary tract colonization (cecum contents) and orogastric infection. LIPs4-8 were expressed in nearly every sample prepared from the cecum contents and infected mucosal tissues (stomach, hard palate, esophagus and tongue) suggesting a maintenance function for these gene products. In contrast, LIPs1, 3, and 9, which were detected consistently in infected gastric tissues, were essentially undetectable in infected oral tissues. In addition, LIP2 was expressed consistently in cecum contents but was undetectable in infected oral tissues suggesting LIP2 may be important for alimentary tract colonization, but not oral infection. The host responded to a C. albicans infection by significantly increasing expression of the chemokines MIP-2 and KC at the site of infection. Therefore, differential LIP gene expression was observed during colonization, infection and at different infected mucosal sites.

  20. Characterization of the 5' flanking region of lipase gene from Penicillium expansum and its application in molecular breeding.

    PubMed

    Zhang, Tian; Peng, Ying; Yu, Qingsheng; Wang, Jieliang; Tang, Kexuan

    2014-01-01

    A major challenge for further promotion of lipase productivity in Penicillium expansum PE-12 is to find a suitable promoter that can function efficiently in this industrial strain. In this study, the 5' flanking region of P. expansum lipase (Ppel) containing a putative novel promoter sequence was characterized by fusing to β-glucuronidase (GUS) and subsequently introducing into P. expansum. As a result, all the transformants showed blue color quickly after incubation in GUS detection buffer, suggesting a strong promoter activity of this fragment. Glucose repression was identified for the promoter, whereas olive oil acted as a positive regulator. Facilitated by this novel promoter, P. expansum PE-12 was genetically modified, with an improved lipase yield, via a recombinant plasmid with P. expansum lipase gene (PEL) under the control of Ppel promoter and TtrpC terminator. The highest lipase yield among the modified strains could attain 2,100 U/mL, which is more than twofold of the previous industrial strain (900 U/mL). The engineered strain through molecular breeding method as well as this new promoter has great value in lipase industry.

  1. Improved Performance of Lipase Immobilized on Tannic Acid-Templated Mesoporous Silica Nanoparticles.

    PubMed

    Jiang, Yanjun; Sun, Wenya; Zhou, Liya; Ma, Li; He, Ying; Gao, Jing

    2016-08-01

    Mesoporous silica nanoparticles were synthesized by using tannic acid as a pore-forming agent, which is an environmentally friendly, cheap, and non-surfactant template. SEM and TEM images indicated that the tannic acid-templated mesoporous silica nanoparticles (TA-MSNs) are monodisperse spherical-like particles with an average diameter of 195 ± 16 nm. The Brunauer-Emmett-Teller (BET) results showed that the TA-MSNs had a relatively high surface area (447 m(2)/g) and large pore volume (0.91 cm(3)/g), and the mean pore size was ca. 10.1 nm. Burkholderia cepacia lipase was immobilized on the TA-MSNs by physical adsorption for the first time, and the properties of immobilized lipase (BCL@TA-MSNs) were investigated. The BCL@TA-MSNs exhibited satisfactory thermal stability; strong tolerance to organic solvents such as methanol, ethanol, isooctane, n-hexane, and tetrahydrofuran; and high operational reusability when BCL@TA-MSNs were applied in esterification and transesterification reactions. After recycling 15 times in the transesterification reaction for biodiesel production, over 85 % of biodiesel yield can be maintained. With these desired characteristics, the TA-MSNs may provide excellent candidates for enzyme immobilization.

  2. A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: gene cloning and enzyme purification and characterization.

    PubMed

    Choo, D W; Kurihara, T; Suzuki, T; Soda, K; Esaki, N

    1998-02-01

    A psychrotrophic bacterium producing a cold-adapted lipase upon growth at low temperatures was isolated from Alaskan soil and identified as a Pseudomonas strain. The lipase gene (lipP) was cloned from the strain and sequenced. The amino acid sequence deduced from the nucleotide sequence of the gene (924 bp) corresponded to a protein of 308 amino acid residues with a molecular weight of 33,714. LipP also has consensus motifs conserved in other cold-adapted lipases, i.e., Lipase 2 from Antarctic Moraxella TA144 (G. Feller, M. Thirty, J. L. Arpigny, and C. Gerday, DNA Cell Biol. 10:381-388, 1991) and the mammalian hormone-sensitive lipase (D. Langin, H. Laurell, L. S. Holst, P. Belfrage, and C. Holm, Proc. Natl. Acad. Sci. USA 90:4897-4901, 1993): a pentapeptide, GDSAG, containing the putative active-site serine and an HG dipeptide. LipP was purified from an extract of recombinant Escherichia coli C600 cells harboring a plasmid coding for the lipP gene. The enzyme showed a 1,3-positional specificity toward triolein. p-Nitrophenyl esters of fatty acids with short to medium chains (C4 and C6) served as good substrates. The enzyme was stable between pH 6 and 9, and the optimal pH for the enzymatic hydrolysis of tributyrin was around 8. The activation energies for the hydrolysis of p-nitrophenyl butyrate and p-nitrophenyl laurate were determined to be 11.2 and 7.7 kcal/mol, respectively, in the temperature range 5 to 35 degrees C. The enzyme was unstable at temperatures higher than 45 degrees C. The Km of the enzyme for p-nitrophenyl butyrate increased with increases in the assay temperature. The enzyme was strongly inhibited by Zn2+, Cu2+, Fe3+, and Hg2+ but was not affected by phenylmethylsulfonyl fluoride and bisnitrophenyl phosphate. Various water-miscible organic solvents, such as methanol and dimethyl sulfoxide, at concentrations of 0 to 30% (vol/vol) activated the enzyme.

  3. Predicting lipase types by improved Chou's pseudo-amino acid composition.

    PubMed

    Zhang, Guang-Ya; Li, Hong-Chun; Gao, Jia-Qiang; Fang, Bai-Shan

    2008-01-01

    By proposing a improved Chou's pseudo amino acid composition approach to extract the features of the sequences, a powerful predictor based on k-nearest neighbor was introduced to identify the types of lipases according to their sequences. To avoid redundancy and bias, demonstrations were performed on a dataset where none of the proteins has > or =25% sequence identity to any other. The overall success rate thus obtained by the 10-fold cross-validation test was over 90%, indicating that the improved Chou's pseudo amino acid composition might be a useful tool for extracting the features of protein sequences, or at lease can play a complementary role to many of the other existing approaches.

  4. Synthetic resin-bound truncated Candida antarctica lipase B for production of fatty acid alkyl esters by transesterification of corn and soybean oils with ethanol or butanol.

    PubMed

    Hughes, Stephen R; Moser, Bryan R; Robinson, Samantha; Cox, Elby J; Harmsen, Amanda J; Friesen, Jon A; Bischoff, Kenneth M; Jones, Marjorie A; Pinkelman, Rebecca; Bang, Sookie S; Tasaki, Ken; Doll, Kenneth M; Qureshi, Nasib; Liu, Siqing; Saha, Badal C; Jackson, John S; Cotta, Michael A; Rich, Joseph O; Caimi, Paolo

    2012-05-31

    A gene encoding a synthetic truncated Candida antarctica lipase B (CALB) was generated via automated PCR and expressed in Saccharomyces cerevisiae. Western blot analysis detected five truncated CALB variants, suggesting multiple translation starts from the six in-frame ATG codons. The longest open reading frame, which corresponds to amino acids 35-317 of the mature lipase, appeared to be expressed in the greatest amount. The truncated CALB was immobilized on Sepabeads® EC-EP resin and used to produce ethyl and butyl esters from crude corn oil and refined soybean oil. The yield of ethyl esters was 4-fold greater from corn oil than from soybean oil and was 36% and 50% higher, respectively, when compared to a commercially available lipase resin (Novozym 435) using the same substrates. A 5:1 (v/v) ratio of ethanol to corn oil produced 3.7-fold and 8.4-fold greater yields than ratios of 15:1 and 30:1, respectively. With corn oil, butyl ester production was 56% higher than ethyl ester production. Addition of an ionic catalytic resin step prior to the CALB resin increased yields of ethyl esters from corn oil by 53% compared to CALB resin followed by ionic resin. The results suggest resin-bound truncated CALB has potential application in biodiesel production using biocatalysts.

  5. Asymmetric synthesis of aromatic β-amino acids using ω-transaminase: Optimizing the lipase concentration to obtain thermodynamically unstable β-keto acids.

    PubMed

    Mathew, Sam; Jeong, Seong-Su; Chung, Taeowan; Lee, Sang-Hyeup; Yun, Hyungdon

    2016-01-01

    Synthesized aromatic β-amino acids have recently attracted considerable attention for their application as precursors in many pharmacologically relevant compounds. Previous studies on asymmetric synthesis of aromatic β-amino acids using ω-transaminases could not be done efficiently due to the instability of β-keto acids. In this study, a strategy to circumvent the instability problem of β-keto acids was utilized to generate β-amino acids efficiently via asymmetric synthesis. In this work, thermodynamically stable β-ketoesters were initially converted to β-keto acids using lipase, and the β-keto acids were subsequently aminated using ω-transaminase. By optimizing the lipase concentration, we successfully overcame the instability problem of β-keto acids and enhanced the production of β-amino acids. This strategy can be used as a general approach to efficiently generate β-amino acids from β-ketoesters.

  6. Triterpene acids from apple peel inhibit lepidopteran larval midgut lipases and larval growth.

    PubMed

    Christeller, John T; McGhie, Tony K; Poulton, Joanne; Markwick, Ngaire P

    2014-07-01

    Fruit extracts from apple, kiwifruit, feijoa, boysenberry, and blueberry were screened for the presence of lipase inhibitory compounds against lepidopteran larval midgut crude extracts. From 120 extracts, six showed significant inhibition with an extract from the peel of Malus × domestica cv. "Big Red" showing highest levels of inhibition. Because this sample was the only apple peel sample in the initial screen, a survey of peels from seven apple cultivars was undertaken and showed that, despite considerable variation, all had inhibitory activity. Successive solvent fractionation and LC-MS of cv. "Big Red" apple peel extract identified triterpene acids as the most important inhibitory compounds, of which ursolic acid and oleanolic acid were the major components and oxo- and hydroxyl-triterpene acids were minor components. When ursolic acid was incorporated into artificial diet and fed to Epiphyas postvittana Walker (Tortricidae: Lepidoptera) larvae at 0.16% w/v, a significant decrease in larval weight was observed after 21 days. This concentration of ursolic acid is less than half the concentration reported in the skin of some apple cultivars.

  7. Aromatic amino acid mutagenesis at the substrate binding pocket of Yarrowia lipolytica lipase Lip2 affects its activity and thermostability.

    PubMed

    Wang, Guilong; Liu, Zimin; Xu, Li; Yan, Yunjun

    2014-01-01

    The lipase2 from Yarrowia lipolytica (YLLip2) is a yeast lipase exhibiting high homologous to filamentous fungal lipase family. Though its crystal structure has been resolved, its structure-function relationship has rarely been reported. By contrast, there are two amino acid residues (V94 and I100) with significant difference in the substrate binding pocket of YLLip2; they were subjected to site-directed mutagenesis (SDM) to introduce aromatic amino acid mutations. Two mutants (V94W and I100F) were created. The enzymatic properties of the mutant lipases were detected and compared with the wild-type. The activities of mutant enzymes dropped to some extent towards p-nitrophenyl palmitate (pNPC16) and their optimum temperature was 35°C, which was 5°C lower than that of the wild-type. However, the thermostability of I100F increased 22.44% after incubation for 1 h at 40°C and its optimum substrate shifted from p-nitrophenyl laurate (pNPC12) to p-nitrophenyl caprate (pNPC10). The above results demonstrated that the two substituted amino acid residuals have close relationship with such enzymatic properties as thermostability and substrate selectivity.

  8. Lysosomal acid lipase: at the crossroads of normal and atherogenic cholesterol metabolism

    PubMed Central

    Dubland, Joshua A.; Francis, Gordon A.

    2015-01-01

    Unregulated cellular uptake of apolipoprotein B-containing lipoproteins in the arterial intima leads to the formation of foam cells in atherosclerosis. Lysosomal acid lipase (LAL) plays a crucial role in both lipoprotein lipid catabolism and excess lipid accumulation as it is the primary enzyme that hydrolyzes cholesteryl esters derived from both low density lipoprotein (LDL) and modified forms of LDL. Evidence suggests that as atherosclerosis progresses, accumulation of excess free cholesterol in lysosomes leads to impairment of LAL activity, resulting in accumulation of cholesteryl esters in the lysosome as well as the cytosol in foam cells. Impaired metabolism and release of cholesterol from lysosomes can lead to downstream defects in ATP-binding cassette transporter A1 regulation, needed to offload excess cholesterol from plaque foam cells. This review focuses on the role LAL plays in normal cholesterol metabolism and how the associated changes in its enzymatic activity may ultimately contribute to atherosclerosis progression. PMID:25699256

  9. Rhodococcus sp. Strain CR-53 LipR, the First Member of a New Bacterial Lipase Family (Family X) Displaying an Unusual Y-Type Oxyanion Hole, Similar to the Candida antarctica Lipase Clan

    PubMed Central

    Bassegoda, Arnau; Pastor, F. I. Javier

    2012-01-01

    Bacterial lipases constitute the most important group of biocatalysts for synthetic organic chemistry. Accordingly, there is substantial interest in developing new valuable lipases. Considering the lack of information concerning the lipases of the genus Rhodococcus and taking into account the interest raised by the enzymes produced by actinomycetes, a search for putative lipase-encoding genes from Rhodococcus sp. strain CR-53 was performed. We isolated, cloned, purified, and characterized LipR, the first lipase described from the genus Rhodococcus. LipR is a mesophilic enzyme showing preference for medium-chain-length acyl groups without showing interfacial activation. It displays good long-term stability and high tolerance for the presence of ions and chemical agents in the reaction mixture. Amino acid sequence analysis of LipR revealed that it displays four unique amino acid sequence motifs that clearly separate it from any other previously described family of bacterial lipases. Using bioinformatics tools, LipR could be related only to several uncharacterized putative lipases from different bacterial origins, all of which display the four blocks of consensus amino acid sequence motifs that contribute to define a new family of bacterial lipases, namely, family X. Therefore, LipR is the first characterized member of the new bacterial lipase family X. Further confirmation of this new family of lipases was performed after cloning Burkholderia cenocepacia putative lipase, bearing the same conserved motifs and clustering in family X. Interestingly, all lipases grouping in the new bacterial lipase family X display a Y-type oxyanion hole, a motif conserved in the Candida antarctica lipase clan but never found among bacterial lipases. This observation contributes to confirm that LipR and its homologs belong to a new family of bacterial lipases. PMID:22226953

  10. Immobilized MAS1 lipase showed high esterification activity in the production of triacylglycerols with n-3 polyunsaturated fatty acids.

    PubMed

    Wang, Xiumei; Li, Daoming; Qu, Man; Durrani, Rabia; Yang, Bo; Wang, Yonghua

    2017-02-01

    Immobilization of lipase MAS1 from marine Streptomyces sp. strain W007 and its application in catalyzing esterification of n-3 polyunsaturated fatty acids (PUFA) with glycerol were investigated. The resin XAD1180 was selected as a suitable support for the immobilization of lipase MAS1, and its absorption ability was 75mg/g (lipase/resin ratio) with initial buffer pH value of 8.0. The thermal stability of immobilized MAS1 was improved significantly compared with that of the free lipase. Immobilized MAS1 had no regiospecificity in the hydrolysis of triolein. The highest esterification degree (99.31%) and TAG content (92.26%) by immobilized MAS1-catalyzed esterification were achieved under the optimized conditions, which were significantly better than those (82.16% and 47.26%, respectively) by Novozym 435. More than 92% n-3 PUFA was incorporated into TAG that had similar fatty acids composition to the substrate (n-3 PUFA). The immobilized MAS1 exhibited 50% of its initial activity after being used for five cycles.

  11. ShRNA-mediated gene silencing of lipoprotein lipase improves insulin sensitivity in L6 skeletal muscle cells.

    PubMed

    Jan, Majib; Medh, Jheem D

    2015-06-19

    In previous studies, we demonstrated that down-regulation of lipoprotein lipase in L6 muscle cells increased insulin-stimulated glucose uptake. In the current study, we used RNA interference technology to silence the LPL gene in L6 cells and generate a LPL-knock-down (LPL-KD) cell line. ShRNA transfected cells showed a 88% reduction in the level of LPL expression. The metabolic response to insulin was compared in wild-type (WT) and LPL-KD cells. Insulin-stimulated glycogen synthesis and glucose oxidation were respectively, 2.4-fold and 2.6-fold greater in LPL-KD cells compared to WT cells. Oxidation of oleic acid was reduced by 50% in LPL-KD cells compared to WT cells even in the absence of insulin. The contribution of LPL in regulating fuel metabolism was confirmed by adding back purified LPL to the culture media of LPL-KD cells. The presence of 10 μg/mL LPL resulted in LPL-KD cells reverting back to lower glycogen synthesis and glucose oxidation and increased fatty acid oxidation. Thus, LPL depletion appeared to mimic the action of insulin. These finding suggests an inverse correlation between muscle LPL levels and insulin-stimulated fuel homeostasis.

  12. G0/G1 switch gene-2 regulates human adipocyte lipolysis by affecting activity and localization of adipose triglyceride lipase.

    PubMed

    Schweiger, Martina; Paar, Margret; Eder, Christina; Brandis, Janina; Moser, Elena; Gorkiewicz, Gregor; Grond, Susanne; Radner, Franz P W; Cerk, Ines; Cornaciu, Irina; Oberer, Monika; Kersten, Sander; Zechner, Rudolf; Zimmermann, Robert; Lass, Achim

    2012-11-01

    The hydrolysis of triglycerides in adipocytes, termed lipolysis, provides free fatty acids as energy fuel. Murine lipolysis largely depends on the activity of adipose triglyceride lipase (ATGL), which is regulated by two proteins annotated as comparative gene identification-58 (CGI-58) and G0/G1 switch gene-2 (G0S2). CGI-58 activates and G0S2 inhibits ATGL activity. In contrast to mice, the functional role of G0S2 in human adipocyte lipolysis is poorly characterized. Here we show that overexpression or silencing of G0S2 in human SGBS adipocytes decreases and increases lipolysis, respectively. Human G0S2 is upregulated during adipocyte differentiation and inhibits ATGL activity in a dose-dependent manner. Interestingly, C-terminally truncated ATGL mutants, which fail to localize to lipid droplets, translocate to the lipid droplet upon coexpression with G0S2, suggesting that G0S2 anchors ATGL to lipid droplets independent of ATGL's C-terminal lipid binding domain. Taken together, our results indicate that G0S2 also regulates human lipolysis by affecting enzyme activity and intracellular localization of ATGL. Increased lipolysis is known to contribute to the pathogenesis of insulin resistance, and G0S2 expression has been shown to be reduced in poorly controlled type 2 diabetic patients. Our data indicate that downregulation of G0S2 in adipose tissue could represent one of the underlying causes leading to increased lipolysis in the insulin-resistant state.

  13. Simultaneous conversion of free fatty acids and triglycerides to biodiesel by immobilized Aspergillus oryzae expressing Fusarium heterosporum lipase.

    PubMed

    Amoah, Jerome; Quayson, Emmanuel; Hama, Shinji; Yoshida, Ayumi; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2017-03-01

    The presence of high levels of free fatty acids (FFA) in oil is a barrier to one-step biodiesel production. Undesirable soaps are formed during conventional chemical methods, and enzyme deactivation occurs when enzymatic methods are used. This work investigates an efficient technique to simultaneously convert a mixture of free fatty acids and triglycerides (TAG). A partial soybean hydrolysate containing 73.04% free fatty acids and 24.81% triglycerides was used as a substrate for the enzymatic production of fatty acid methyl ester (FAME). Whole-cell Candida antarctica lipase B-expressing Aspergillus oryzae, and Novozym 435 produced only 75.2 and 73.5% FAME, respectively. Fusarium heterosporum lipase-expressing A. oryzae produced more than 93% FAME in 72 h using three molar equivalents of methanol. FFA and TAG were converted simultaneously in the presence of increasing water content that resulted from esterification. Therefore, F. heterosporum lipase with a noted high level of tolerance of water could be useful in the industrial production of biodiesel from feedstock that has high proportion of free fatty acids.

  14. Optimization of Lipase-Mediated Synthesis of 1-Nonene Oxide Using Phenylacetic Acid and Hydrogen Peroxide

    PubMed Central

    Abdulmalek, Emilia; Arumugam, Mahashanon; Basri, Mahiran; Rahman, Mohd Basyaruddin Abdul

    2012-01-01

    Herein, an efficient epoxidation of 1-nonene is described. In a simple epoxidation system, commercially available Novozym 435, an immobilized Candida antarctica lipase B, and hydrogen peroxide (H2O2) were utilized to facilitate the in situ oxidation of phenylacetic acid to the corresponding peroxy acid which then reacted with 1-nonene to give 1-nonene oxide with high yield and selectivity. The aliphatic terminal alkene was epoxidised efficiently in chloroform to give an excellent yield (97%–99%) under the optimum reaction conditions, including temperature (35 °C), initial H2O2 concentration (30%), H2O2 amount (4.4 mmol), H2O2 addition rate (one step), acid amount (8.8 mmol), and stirring speed (250 rpm). Interestingly, the enzyme was stable under the single-step addition of H2O2 with a catalytic activity of 190.0 Ug−1. The entire epoxidation process was carried out within 12 h using a conventional water bath shaker. PMID:23202943

  15. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids

    SciTech Connect

    Saxena, U.; Witte, L.D.; Goldberg, I.J.

    1989-03-15

    Lipoprotein lipase (LPL) bound to the lumenal surface of vascular endothelial cells is responsible for the hydrolysis of triglycerides in plasma lipoproteins. Studies were performed to investigate whether human plasma lipoproteins and/or free fatty acids would release LPL which was bound to endothelial cells. Purified bovine milk LPL was incubated with cultured porcine aortic endothelial cells resulting in the association of enzyme activity with the cells. When the cells were then incubated with media containing chylomicrons or very low density lipoproteins (VLDL), a concentration-dependent decrease in the cell-associated LPL enzymatic activity was observed. In contrast, incubation with media containing low density lipoproteins or high density lipoproteins produced a much smaller decrease in the cell-associated enzymatic activity. The addition of increasing molar ratios of oleic acid:bovine serum albumin to the media also reduced enzyme activity associated with the endothelial cells. To determine whether the decrease in LPL activity was due to release of the enzyme from the cells or inactivation of the enzyme, studies were performed utilizing radioiodinated bovine LPL. Radiolabeled LPL protein was released from endothelial cells by chylomicrons, VLDL, and by free fatty acids (i.e. oleic acid bound to bovine serum albumin). The release of radiolabeled LPL by VLDL correlated with the generation of free fatty acids from the hydrolysis of VLDL triglyceride by LPL bound to the cells. Inhibition of LPL enzymatic activity by use of a specific monoclonal antibody, reduced the extent of release of /sup 125/I-LPL from the endothelial cells by the added VLDL. These results demonstrated that LPL enzymatic activity and protein were removed from endothelial cells by triglyceride-rich lipoproteins (chylomicrons and VLDL) and oleic acid.

  16. Comparative Structures and Evolution of Vertebrate Carboxyl Ester Lipase (CEL) Genes and Proteins with a Major Role in Reverse Cholesterol Transport.

    PubMed

    Holmes, Roger S; Cox, Laura A

    2011-01-01

    Bile-salt activated carboxylic ester lipase (CEL) is a major triglyceride, cholesterol ester and vitamin ester hydrolytic enzyme contained within pancreatic and lactating mammary gland secretions. Bioinformatic methods were used to predict the amino acid sequences, secondary and tertiary structures and gene locations for CEL genes, and encoded proteins using data from several vertebrate genome projects. A proline-rich and O-glycosylated 11-amino acid C-terminal repeat sequence (VNTR) previously reported for human and other higher primate CEL proteins was also observed for other eutherian mammalian CEL sequences examined. In contrast, opossum CEL contained a single C-terminal copy of this sequence whereas CEL proteins from platypus, chicken, lizard, frog and several fish species lacked the VNTR sequence. Vertebrate CEL genes contained 11 coding exons. Evidence is presented for tandem duplicated CEL genes for the zebrafish genome. Vertebrate CEL protein subunits shared 53-97% sequence identities; demonstrated sequence alignments and identities for key CEL amino acid residues; and conservation of predicted secondary and tertiary structures with those previously reported for human CEL. Phylogenetic analyses demonstrated the relationships and potential evolutionary origins of the vertebrate CEL family of genes which were related to a nematode carboxylesterase (CES) gene and five mammalian CES gene families.

  17. AMPK Phosphorylates Desnutrin/ATGL and Hormone-Sensitive Lipase To Regulate Lipolysis and Fatty Acid Oxidation within Adipose Tissue

    PubMed Central

    Kim, Sun-Joong; Tang, Tianyi; Abbott, Marcia; Viscarra, Jose A.; Wang, Yuhui

    2016-01-01

    The role of AMP-activated protein kinase (AMPK) in promoting fatty acid (FA) oxidation in various tissues, such as liver and muscle, has been well understood. However, the role of AMPK in lipolysis and FA metabolism in adipose tissue has been controversial. To investigate the role of AMPK in the regulation of adipose lipolysis in vivo, we generated mice with adipose-tissue-specific knockout of both the α1 and α2 catalytic subunits of AMPK (AMPK-ASKO mice) by using aP2-Cre and adiponectin-Cre. Both models of AMPK-ASKO ablation show no changes in desnutrin/ATGL levels but have defective phosphorylation of desnutrin/ATGL at S406 to decrease its triacylglycerol (TAG) hydrolase activity, lowering basal lipolysis in adipose tissue. These mice also show defective phosphorylation of hormone-sensitive lipase (HSL) at S565, with higher phosphorylation at protein kinase A sites S563 and S660, increasing its hydrolase activity and isoproterenol-stimulated lipolysis. With higher overall adipose lipolysis, both models of AMPK-ASKO mice are lean, having smaller adipocytes with lower TAG and higher intracellular free-FA levels. Moreover, FAs from higher lipolysis activate peroxisome proliferator-activated receptor delta to induce FA oxidative genes and increase FA oxidation and energy expenditure. Overall, for the first time, we provide in vivo evidence of the role of AMPK in the phosphorylation and regulation of desnutrin/ATGL and HSL and thus adipose lipolysis. PMID:27185873

  18. Influence of fatty acid on lipase-catalyzed synthesis of ascorbyl esters and their free radical scavenging capacity.

    PubMed

    Stojanović, Marija; Carević, Milica; Mihailović, Mladen; Veličković, Dušan; Dimitrijević, Aleksandra; Milosavić, Nenad; Bezbradica, Dejan

    2015-01-01

    Fatty acid (FA) ascorbyl esters are recently emerging food, cosmetic, and pharmaceutical additives, which can be prepared in an eco-friendly way by using lipases as catalysts. Because they are amphiphilic molecules, which possess high free radical scavenging capacity, they can be applied as liposoluble antioxidants as well as emulsifiers and biosurfactants. In this study, the influence of a wide range of acyl donors on ester yield in lipase-catalyzed synthesis and ester antioxidant activity was examined. Among saturated acyl donors, higher yields and antioxidant activities of esters were achieved when short-chain FAs were used. Oleic acid gave the highest yield overall and its ester exhibited a high antioxidant activity. Optimization of experimental factors showed that the highest conversion (60.5%) in acetone was achieved with 5 g L(-1) of lipase, 50 mM of vitamin C, 10-fold molar excess of oleic acid, and 0.7 mL L(-1) of initial water. Obtained results showed that even short- and medium-chain ascorbyl esters could be synthesized with high yields and retained (or even exceeded) free radical scavenging capacity of l-ascorbic acid, indicating prospects of broadening their application in emulsions and liposomes.

  19. Screening of microbial lipases and evalutaion of their potential to produce glycerides with high gamma linolenic acid concentration

    PubMed Central

    Fregolente, Patricia B.L.; Fregolente, Leonardo V.; Maciel, Maria R.W.; Carvalho, Patricia O.

    2009-01-01

    Gamma linolenic acid (GLA, 18:3, cis- 6,9,12- octadecatrienoic acid), an important compound in n- 6 eicosanoid family biosynthesis, occurs in the lipids of a few plant and microbial sources. This study focused on the screening of microbial strains with suitable lipase activity for enrichment of GLA by selective hydrolysis of the borage oil (21.6 % of GLA/total fatty acids). Firstly, 352 microrganisms were tested for their lipolytic capacity using screening techniques on agar plates containing borage oil, strains were then selected and screened for their activity (U/mg) using both submerged fermentation (SmF) and solid state fermentation (SSF). The rate of hydrolysis and the selective preference of these hydrolytic enzymes towards fatty acids, with a special focus on enrichment of GLA were studied and compared with those obtained by two commercially-available lipases. Only one of the lipases tested during this study displayed selectivity, discriminating the GLA during the hydrolysis reaction. Using the enzymatic extract from Geotrichum candidum as a biocatalyst of the reaction, it was possible to obtain a percentage of 41.7% of GLA in acylglycerols fraction when the borage oil was treated in a fixed-bed reactor for 24 hours at 30ºC. PMID:24031421

  20. Improvement of catalytic activity of Candida rugosa lipase in the presence of calix[4]arene bearing iminodicarboxylic/phosphonic acid complexes modified iron oxide nanoparticles.

    PubMed

    Ozyilmaz, Elif; Bayrakci, Mevlut; Yilmaz, Mustafa

    2016-04-01

    In the present study, iron oxide magnetite nanoparticles, prepared through a co-precipitation method, were coated with phosphonic acid or iminodicarboxylic acid derivatives of calix[4]arene to modulate their surfaces with different acidic groups. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through sol-gel encapsulation. The catalytic activities and enantioselectivities of the two encapsulated lipases in the hydrolysis reaction of (R/S)-naproxen methyl ester and (R/S)-2-phenoxypropionic acid methyl ester were assessed. The results showed that the activity and enantioselectivity of the lipase were improved when the lipase was encapsulated in the presence of calixarene-based additives; the encapsulated lipase with the phosphonic acid derivative of calix[4]arene had an excellent rate of enantioselectivity against the (R/S)-naproxen methyl and (R/S)-2-phenoxypropionic acid methyl esters, with E=350 and 246, respectively, compared to the free enzyme. The encapsulated lipases (Fe-Calix-N(COOH)) and (Fe-Calix-P) showed good loading ability and little loss of enzyme activity, and the stability of the catalyst was very good; they only lost 6-11% of the enzyme's activity after five batches.

  1. Lipase-Catalyzed Production of 6-O-cinnamoyl-sorbitol from D-sorbitol and Cinnamic Acid Esters.

    PubMed

    Kim, Jung-Ho; Bhatia, Shashi Kant; Yoo, Dongwon; Seo, Hyung Min; Yi, Da-Hye; Kim, Hyun Joong; Lee, Ju Hee; Choi, Kwon-Young; Kim, Kwang Jin; Lee, Yoo Kyung; Yang, Yung-Hun

    2015-05-01

    To overcome the poor properties of solubility and stability of cinnamic acid, cinnamate derivatives with sugar alcohols were produced using the immobilized Candida antarctica lipase with vinyl cinnamate and D-sorbitol as substrate at 45 °C. Immobilized C. antarctica lipase was found to synthesize 6-O-cinnamoyl-sorbitol and confirmed by HPLC and (1)H-NMR and had a preference for vinyl cinnamate over other esters such as allyl-, ethyl-, and isobutyl cinnamate as co-substrate with D-sorbitol. Contrary to D-sorbitol, vinyl cinnamate, and cinnamic acid, the final product 6-O-cinnamoyl-sorbitol was found to have radical scavenging activity. This would be the first report on the biosynthesis of 6-O-cinnamoyl-sorbitol with immobilized enzyme from C. antarctica.

  2. A mechanistic study into the epoxidation of carboxylic acid and alkene in a mono, di-acylglycerol lipase.

    PubMed

    Wang, Xuping; Tang, Qingyun; Popowicz, Grzegorz Maria; Yang, Bo; Wang, Yonghua

    2015-05-01

    More and more industrial chemistry reactions rely on green technologies. Enzymes are finding increasing use in diverse chemical processes. Epoxidized vegetable oils have recently found applications as plasticizers and additives for PVC production. We report here an unusual activity of the Malassezia globosa lipase (SMG1) that is able to catalyze epoxidation of alkenes. SMG1 catalyzes formation of peroxides from long chain carboxylic acids that subsequently react with double bonds of alkenes to produce epoxides. The SMG1 is selective towards carboxylic acids and active also as a mutant lacking hydrolase activity. Moreover we present previously unobserved mechanism of catalysis that does not rely on acyl-substrate complex nor tetrahedral intermediate. Since SMG1 lipase is activated by allosteric change upon binding to the lipophilic-hydrophilic phase interface we reason that it can be used to drive the epoxidation in the lipophilic phase exclusively.

  3. Associations between HDL-cholesterol and polymorphisms in hepatic lipase and lipoprotein lipase genes are modified by dietary fat intake in African American and White adults.

    PubMed

    Nettleton, Jennifer A; Steffen, Lyn M; Ballantyne, Christie M; Boerwinkle, Eric; Folsom, Aaron R

    2007-10-01

    Polymorphisms in genes involved in HDL-cholesterol (HDL-C) metabolism influence plasma HDL-C concentrations. We examined whether dietary fat intake modified relations between HDL-C and polymorphisms in hepatic lipase (LIPC-514C-->T), cholesteryl ester transfer protein (CETP TaqIB), and lipoprotein lipase (LPL S447X) genes. Diet (food frequency questionnaire), plasma lipids, and LIPC, CETP, and LPL genotypes were assessed in approximately 12,000 White and African American adults. In both races and all genotypes studied, minor allele homozygotes had highest HDL-C concentrations compared to the other genotypes (P<0.001). However, main effects were modified by usual dietary fat intake. In African Americans - women somewhat more strongly than men -LIPC TT homozygotes with fat intake >or=33.2% of energy had approximately 3-4 mg/dL higher HDL-C concentrations than CC and CT genotypes. In contrast, when fat intake was <33.2% of energy, TT homozygotes had HDL-C concentrations approximately 3.5mg/dL greater than those with the CC genotype but not different from those with the CT genotype (P(interaction)=0.013). In Whites, LPLGG homozygotes had greatest HDL-C at lower total, saturated, and monounsaturated fat intakes but lowest HDL-C at higher intakes of these fats (P(interaction)

  4. [Lack of association between the S447X variant of the lipoprotein lipase gene and plasma lipids. A preliminary study].

    PubMed

    Zambrano Morales, Mariana; Fernández Salgado, Erika; Balzán Urdaneta, Ligia; Labastidas, Neila; Aranguren-Méndez, José; Connell, Lissette; Molero Paredes, Tania; Rojas, Alicia; Panunzio, Amelia

    2014-06-01

    The increase in lipid plasma values is an important cardiovascular risk factor. Lipoprotein lipase (LPL) plays an important role in the lipoprotein metabolism and metabolic and genetic factors may influence its levels and functions. The S447X variant of the lipoprotein lipase gene is associated with changes in plasma lipids in different populations. The objective of this research was to analyze the S447X variant of the LPL gene and its relation with plasma lipids of individuals in Zulia state, Venezuela. With this purpose, we studied 75 individuals (34 men and 41 women) between 20 and 60 years of age. Each subject had a medical history which included family history, anthropometric characteristics, nutritional status evaluation and biochemical tests. Genomic DNA was extracted for the molecular study and the polymerase chain reaction was used, followed by enzyme digestion, for restriction fragments length polymorphisms using the Hinf I enzyme. The individuals studied had normal levels of blood glucose, triglycerides, total cholesterol and low density lipoproteins (LDL-C) and slightly decreased levels of high density lipoproteins (HDL-C). The genotypic distribution of the LPL gene S447X variant in the studied population was 90.6% for the homozygous genotype SS447 and 9.4% for the heterozygote SX447. The genotype 447XX was not identified. The population was found in Hardy Weinberg genetic equilibrium. No association between the S447X polymorphism of lipoprotein lipase gene and plasma lipids was observed.

  5. bldA-dependent expression of the Streptomyces exfoliatus M11 lipase gene (lipA) is mediated by the product of a contiguous gene, lipR, encoding a putative transcriptional activator.

    PubMed Central

    Servín-González, L; Castro, C; Pérez, C; Rubio, M; Valdez, F

    1997-01-01

    Extracellular lipase synthesis by Streptomyces lividans 66 carrying the cloned lipase gene (lipA) from Streptomyces exfoliatus M11 was found to be growth phase dependent, since lipase was secreted into the medium mainly during the stationary phase; S1 nuclease protection experiments revealed abundant lipA transcripts in RNA preparations obtained during the stationary phase but not in those obtained during exponential growth. Transcription from the lipA promoter was dependent on the presence of lipR, a contiguous downstream gene with a very high guanine-plus-cytosine content (80.2%). The deduced lipR product consists of a protein of 934 amino acids that shows similarity to known transcriptional activators and has a strong helix-turn-helix motif at its C terminus; this motif is part of a domain homologous to DNA-binding domains of bacterial regulators of the UhpA/LuxR superfamily. The lipR sequence revealed the presence of a leucine residue, encoded by the rare TTA codon, which caused bldA dependence of lipA transcription in Streptomyces coelicolor A3(2); replacement of the TTA codon by the alternate CTC leucine codon alleviated bidA dependence but not the apparent growth phase-dependent regulation of lipA transcription. When lipR expression was induced in a controlled fashion during the exponential growth phase, by placing it under the inducible tipA promoter, lipase synthesis was shifted to the exponential growth phase, indicating that the timing of lipR expression, and not its bldA dependence, is the main cause for stationary-phase transcription of lipA. PMID:9401043

  6. Genes Involved in SkfA Killing Factor Production Protect a Bacillus subtilis Lipase against Proteolysis

    PubMed Central

    Westers, Helga; Braun, Peter G.; Westers, Lidia; Antelmann, Haike; Hecker, Michael; Jongbloed, Jan D. H.; Yoshikawa, Hirofumi; Tanaka, Teruo; van Dijl, Jan Maarten; Quax, Wim J.

    2005-01-01

    Small lipases of Bacillus species, such as LipA from Bacillus subtilis, have a high potential for industrial applications. Recent studies showed that deletion of six AT-rich islands from the B. subtilis genome results in reduced amounts of extracellular LipA. Here we demonstrate that the reduced LipA levels are due to the absence of four genes, skfABCD, located in the prophage 1 region. Intact skfABCD genes are required not only for LipA production at wild-type levels by B. subtilis 168 but also under conditions of LipA overproduction. Notably, SkfA has bactericidal activity and, probably, requires the SkfB to SkfD proteins for its production. The present results show that LipA is more prone to proteolytic degradation in the absence of SkfA and that high-level LipA production can be improved significantly by employing multiple protease-deficient B. subtilis strains. In conclusion, our findings imply that SkfA protects LipA, directly or indirectly, against proteolytic degradation. Conceivably, SkfA could act as a modulator in LipA folding or as a protease inhibitor. PMID:15812018

  7. Hepatic entrapment of esterified cholesterol drives continual expansion of whole body sterol pool in lysosomal acid lipase-deficient mice.

    PubMed

    Aqul, Amal; Lopez, Adam M; Posey, Kenneth S; Taylor, Anna M; Repa, Joyce J; Burns, Dennis K; Turley, Stephen D

    2014-10-15

    Cholesteryl ester storage disease (CESD) results from loss-of-function mutations in LIPA, the gene that encodes lysosomal acid lipase (LAL). Hepatomegaly and deposition of esterified cholesterol (EC) in multiple organs ensue. The present studies quantitated rates of synthesis, absorption, and disposition of cholesterol, and whole body cholesterol pool size in a mouse model of CESD. In 50-day-old lal(-/-) and matching lal(+/+) mice fed a low-cholesterol diet, whole animal cholesterol content equalled 210 and 50 mg, respectively, indicating that since birth the lal(-/-) mice sequestered cholesterol at an average rate of 3.2 mg·day(-1)·animal(-1). The proportion of the body sterol pool contained in the liver of the lal(-/-) mice was 64 vs. 6.3% in their lal(+/+) controls. EC concentrations in the liver, spleen, small intestine, and lungs of the lal(-/-) mice were elevated 100-, 35-, 15-, and 6-fold, respectively. In the lal(-/-) mice, whole liver cholesterol synthesis increased 10.2-fold, resulting in a 3.2-fold greater rate of whole animal sterol synthesis compared with their lal(+/+) controls. The rate of cholesterol synthesis in the lal(-/-) mice exceeded that in the lal(+/+) controls by 3.7 mg·day(-1)·animal(-1). Fractional cholesterol absorption and fecal bile acid excretion were unchanged in the lal(-/-) mice, but their rate of neutral sterol excretion was 59% higher than in their lal(+/+) controls. Thus, in this model, the continual expansion of the body sterol pool is driven by the synthesis of excess cholesterol, primarily in the liver. Despite the severity of their disease, the median life span of the lal(-/-) mice was 355 days.

  8. Novel treatment options for lysosomal acid lipase deficiency: critical appraisal of sebelipase alfa

    PubMed Central

    Su, Kim; Donaldson, Emma; Sharma, Reena

    2016-01-01

    Lysosomal acid lipase deficiency (LAL-D) is a rare disorder of cholesterol metabolism with an autosomal recessive mode of inheritance. The absence or deficiency of the LAL enzyme gives rise to pathological accumulation of cholesterol esters in various tissues. A severe LAL-D phenotype manifesting in infancy is associated with adrenal calcification and liver and gastrointestinal involvement with characteristic early mortality. LAL-D presenting in childhood and adulthood is associated with hepatomegaly, liver fibrosis, cirrhosis, and premature atherosclerosis. There are currently no curative pharmacological treatments for this life-threatening condition. Supportive management with lipid-modifying agents does not ameliorate disease progression. Hematopoietic stem cell transplantation as a curative measure in infantile disease has mixed success and is associated with inherent risks and complications. Sebelipase alfa (Kanuma) is a recombinant human LAL protein and the first enzyme replacement therapy for the treatment of LAL-D. Clinical trials have been undertaken in infants with rapidly progressive LAL-D and in children and adults with later-onset LAL-D. Initial data have shown significant survival benefits in the infant group and improvements in biochemical parameters in the latter. Sebelipase alfa has received marketing authorization in the United States and Europe as long-term therapy for all affected individuals. The availability of enzyme replacement therapy for this rare and progressive disorder warrants greater recognition and awareness by physicians. PMID:27799810

  9. Does Lysosomial Acid Lipase Reduction Play a Role in Adult Non-Alcoholic Fatty Liver Disease?

    PubMed Central

    Baratta, Francesco; Pastori, Daniele; Polimeni, Licia; Tozzi, Giulia; Violi, Francesco; Angelico, Francesco; Del Ben, Maria

    2015-01-01

    Lysosomal Acid Lipase (LAL) is a key enzyme involved in lipid metabolism, responsible for hydrolysing the cholesteryl esters and triglycerides. Wolman Disease represents the early onset phenotype of LAL deficiency rapidly leading to death. Cholesterol Ester Storage Disease is a late onset phenotype that occurs with fatty liver, elevated aminotransferase levels, hepatomegaly and dyslipidaemia, the latter characterized by elevated LDL-C and low HDL-C. The natural history and the clinical manifestations of the LAL deficiency in adults are not well defined, and the diagnosis is often incidental. LAL deficiency has been suggested as an under-recognized cause of dyslipidaemia and fatty liver. Therefore, LAL activity may be reduced also in non-obese patients presenting non-alcoholic fatty liver disease (NAFLD), unexplained persistently elevated liver transaminases or with elevation in LDL cholesterol. In these patients, it could be indicated to test LAL activity. So far, very few studies have been performed to assess LAL activity in representative samples of normal subjects or patients with NAFLD. Moreover, no large study has been carried out in adult subjects with NAFLD or cryptogenic cirrhosis. PMID:26602919

  10. Inhibitors of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase: New Targets for Future Antidepressants

    PubMed Central

    Ogawa, Shintaro; Kunugi, Hiroshi

    2015-01-01

    Cannabis and analogs of Δ9-tetrahydrocannabinol have been used for therapeutic purposes, but their therapeutic use remains limited because of various adverse effects. Endogenous cannabinoids have been discovered, and dysregulation of endocannabinoid signaling is implicated in the pathophysiology of major depressive disorder (MDD). Recently, endocannabinoid hydrolytic enzymes such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have become new therapeutic targets in the treatment of MDD. Several FAAH or MAGL inhibitors are reported to have no cannabimimetic side effects and, therefore, are new potential therapeutic options for patients with MDD who are resistant to first-line antidepressants (selective serotonin and serotonin-norepinephrine reuptake inhibitors). In this review, we focus on the possible relationships between MDD and the endocannabinoid system as well as the inhibitors’ therapeutic potential. MAGL inhibitors may reduce inflammatory responses through activation of cannabinoid receptor type 2. In the hypothalamic–pituitary–adrenal axis, repeated FAAH inhibitor administration may be beneficial for reducing circulating glucocorticoid levels. Both FAAH and MAGL inhibitors may contribute to dopaminergic system regulation. Recently, several new inhibitors have been developed with strong potency and selectivity. FAAH inhibitor, MAGL inhibitor, or dual blocker use would be promising new treatments for MDD. Further pre-clinical studies and clinical trials using these inhibitors are warranted. PMID:26630956

  11. Update on lysosomal acid lipase deficiency: Diagnosis, treatment and patient management.

    PubMed

    Camarena, Carmen; Aldamiz-Echevarria, Luis J; Polo, Begoña; Barba Romero, Miguel A; García, Inmaculada; Cebolla, Jorge J; Ros, Emilio

    2017-03-09

    Lysosomal acid lipase deficiency (LALD) is an ultra-rare disease caused by a congenital disorder of the lipid metabolism, characterized by the deposition of cholesterol esters and triglycerides in the organism. In patients with no enzyme function, the disease develops during the perinatal period and is invariably associated with death during the first year of life. In all other cases, the phenotype is heterogeneous, although most patients develop chronic liver diseases and may also develop an early cardiovascular disease. Treatment for LALD has classically included the use of supportive measures that do not prevent the progression of the disease. In 2015, regulatory agencies approved the use of a human recombinant LAL for the treatment of LALD. This long-term enzyme replacement therapy has been associated with significant improvements in the hepatic and lipid profiles of patients with LALD, increasing survival rates in infants with a rapidly progressive disease. Both the severity of LALD and the availability of a specific treatment highlight the need to identify these patients in clinical settings, although its low prevalence and the existing clinical overlap with other more frequent pathologies limit its diagnosis. In this paper we set out practical recommendations to identify and monitor patients with LALD, including a diagnostic algorithm, along with an updated treatment.

  12. Does Lysosomial Acid Lipase Reduction Play a Role in Adult Non-Alcoholic Fatty Liver Disease?

    PubMed

    Baratta, Francesco; Pastori, Daniele; Polimeni, Licia; Tozzi, Giulia; Violi, Francesco; Angelico, Francesco; Del Ben, Maria

    2015-11-25

    Lysosomal Acid Lipase (LAL) is a key enzyme involved in lipid metabolism, responsible for hydrolysing the cholesteryl esters and triglycerides. Wolman Disease represents the early onset phenotype of LAL deficiency rapidly leading to death. Cholesterol Ester Storage Disease is a late onset phenotype that occurs with fatty liver, elevated aminotransferase levels, hepatomegaly and dyslipidaemia, the latter characterized by elevated LDL-C and low HDL-C. The natural history and the clinical manifestations of the LAL deficiency in adults are not well defined, and the diagnosis is often incidental. LAL deficiency has been suggested as an under-recognized cause of dyslipidaemia and fatty liver. Therefore, LAL activity may be reduced also in non-obese patients presenting non-alcoholic fatty liver disease (NAFLD), unexplained persistently elevated liver transaminases or with elevation in LDL cholesterol. In these patients, it could be indicated to test LAL activity. So far, very few studies have been performed to assess LAL activity in representative samples of normal subjects or patients with NAFLD. Moreover, no large study has been carried out in adult subjects with NAFLD or cryptogenic cirrhosis.

  13. Cladistic structure within the human Lipoprotein lipase gene and its implications for phenotypic association studies.

    PubMed Central

    Templeton, A R; Weiss, K M; Nickerson, D A; Boerwinkle, E; Sing, C F

    2000-01-01

    Haplotype variation in 9.7 kb of genomic DNA sequence from the human lipoprotein lipase (LPL) gene was scored in three populations: African-Americans from Jackson, Mississippi (24 individuals), Finns from North Karelia, Finland (24), and non-Hispanic whites from Rochester, Minnesota (23). Earlier analyses had indicated that recombination was common but concentrated into a hotspot and that recurrent mutations at multiple sites may have occurred. We show that much evolutionary structure exists in the haplotype variation on either side of the recombinational hotspot. By peeling off significant recombination events from a tree estimated under the null hypothesis of no recombination, we also reveal some cladistic structure not disrupted by recombination during the time to coalescence of this variation. Additional cladistic structure is estimated to have emerged after recombination. Many apparent multiple mutational events at sites still remain after removing the effects of the detected recombination/gene conversion events. These apparent multiple events are found primarily at sites identified as highly mutable by previous studies, strengthening the conclusion that they are true multiple events. This analysis portrays the complexity of the interplay among many recombinational and mutational events that would be needed to explain the patterns of haplotype diversity in this gene. The cladistic structure in this region is used to identify four to six single-nucleotide polymorphisms (SNPs) that would provide disequilibrium coverage over much of this region. These sites may be useful in identifying phenotypic associations with variable sites in this gene. Evolutionary considerations also imply that the SNPs in the 3' region should have general utility in most human populations, but the 5' SNPs may be more population specific. Choosing SNPs at random would generally not provide adequate disequilibrium coverage of the sequenced region. PMID:11063700

  14. Development of a lipase fermentation process that uses a recombinant Pseudomonas alcaligenes strain.

    PubMed

    Gerritse, G; Hommes, R W; Quax, W J

    1998-07-01

    Pseudomonas alcaligenes M-1 secretes an alkaline lipase, which has excellent characteristics for the removal of fatty stains under modern washing conditions. A fed-batch fermentation process based on the secretion of the alkaline lipase from P. alcaligenes was developed. Due to the inability of P. alcaligenes to grow on glucose, citric acid and soybean oil were applied as substrates in the batch phase and feed phase, respectively. The gene encoding the high-alkaline lipase from P. alcaligenes was isolated and characterized. Amplification of lipase gene copies in P. alcaligenes with the aid of low- and high-copy-number plasmids resulted in an increase of lipase expression that was apparently colinear with the gene copy number. It was found that overexpression of the lipase helper gene, lipB, produced a stimulating effect in strains with high copy numbers (> 20) of the lipase structural gene, lipA. In strains with lipA on a low-copy-number vector, the lipB gene did not show any effect, suggesting that LipB is required in a low ratio to LipA only. During scaling up of the fermentation process to 100 m3, severe losses in lipase productivity were observed. Simulations have identified an increased level of dissolved carbon dioxide as the most probable cause for the scale-up losses. A large-scale fermentation protocol with a reduced dissolved carbon dioxide concentration resulted in a substantial elimination of the scale-up loss.

  15. Piperazine and piperidine carboxamides and carbamates as inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL).

    PubMed

    Korhonen, Jani; Kuusisto, Anne; van Bruchem, John; Patel, Jayendra Z; Laitinen, Tuomo; Navia-Paldanius, Dina; Laitinen, Jarmo T; Savinainen, Juha R; Parkkari, Teija; Nevalainen, Tapio J

    2014-12-01

    The key hydrolytic enzymes of the endocannabinoid system, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), are potential targets for various therapeutic applications. In this paper, we present more extensively the results of our previous work on piperazine and piperidine carboxamides and carbamates as FAAH and MAGL inhibitors. The best compounds of these series function as potent and selective MAGL/FAAH inhibitors or as dual FAAH/MAGL inhibitors at nanomolar concentrations. This study revealed that MAGL inhibitors should comprise leaving-groups with a conjugate acid pKa of 8-10, while diverse leaving groups are tolerated for FAAH inhibitors.

  16. Study of reaction parameters and kinetics of esterification of lauric acid with butanol by immobilized Candida antarctica lipase.

    PubMed

    Shankar, Sini; Agarwal, Madhu; Chaurasia, S P

    2013-12-01

    Esterification of lauric acid with n-butanol, catalyzed by immobilized Candida antarctica lipase (CAL) in aqueous-organic biphasic solvent system was studied. Effects of various reaction parameters on esterification were investigated, such as type and amount of solvent, amount of buffer, pH, temperature, speed of agitation, amount of enzyme, butanol and lauric acid. The most suitable reaction conditions for esterification were observed at 50 degrees C and pH 7.0 using 5000 micromoles of lauric acid, 7000 pmoles of butanol, 0.25 ml phosphate buffer, 1 ml of isooctane as the solvent and 50 mg of immobilized enzyme in the reaction medium at agitation speed of 150 rpm. Maximum esterification of 96.36% was acheived in 600 min of reaction time at n-butanol to lauric acid molar ratio of 1: 0.7. Kinetic study for the esterification of lauric acid with n-butanol using immobilized CAL was carried out and the kinetic constants were estimated by using non-linear regression method. The estimated value of Michaelis kinetic constants for butanol (KmBt) and acid (KmAc) were 451.56 (M) and 4.7 x 10(-7)(M), respectively and the value of dissociation constant (KBt) of the butanol-lipase complex was 9.41 x 10(7)(M). The estimated constants agreed fairly well with literature data.

  17. Characterization of lysosomal acid lipase by site-directed mutagenesis and heterologous expression.

    PubMed

    Sheriff, S; Du, H; Grabowski, G A

    1995-11-17

    Lysosomal acid lipase (LAL) is essential for the hydrolysis of cholesterol esters and triglycerides that are delivered to the lysosomes via the low density lipoprotein receptor system. The deficiency of LAL is associated with cholesteryl ester storage disease (CESD) and Wolman's disease (WD). We cloned the human LAL cDNA and expressed the active enzyme in the baculovirus system. Two molecular forms (M(r) approximately 41,000 and approximately 46,000) with different glycosylation were found intracellularly, and approximately 24% of the M(r) approximately 46,000 form was secreted into the medium. Tunicamycin treatment produced only an inactive M(r) approximately 41,000 form. This result implicates glycosylation occupancy in the proper folding for active-site function. Catalytic activity was greater toward cis- than trans-unsaturated fatty acid esters of 4-methylumbelliferone and toward esters with 7-carbon length acyl chains. LAL cleaved cholesterol esters and mono-, tri-, and diglycerides. Heparin had a biphasic effect on enzymatic activity with initial activation followed by inhibition. Inhibition of LAL activity by tetrahydrolipstatin and diethyl p-nitrophenyl phosphate suggested the presence of active serines in binding/catalytic domain(s) of the protein. Site-directed mutagenesis at two putative active centers, GXSXG, showed that Ser153 was important to catalytic activity, whereas Ser99 was not and neither was the catalytic nucleophile. Three reported mutations (L179P, L336P, and delta AG302 deletion) from CESD patients were created and expressed in the Sf9 cell system. None cleaved cholesterol esters, and L179P and L336P cleaved only triolein at approximately 4% of wild-type levels. These results suggest that mechanisms, in addition to LAL defects, may operate in the selective accumulation of cholesterol esters or triglycerides in CESD and WD patients.

  18. Synthesis of some glucose-fatty acid esters by lipase from Candida antarctica and their emulsion functions.

    PubMed

    Ren, Kangzi; Lamsal, Buddhi P

    2017-01-01

    The synthesis of glucose esters with palmitic acid, lauric acid and hexanoic acid using lipase enzyme was studied and their emulsion functionality in oil-in-water system were compared. Reactions at 3:1M ratio of fatty acids-to-glucose had the highest conversion percentages (over 90% for each of the fatty acid). Initial conversion rate increased as substrate solubility increased. Ester bond formation was confirmed by nuclear magnetic resonance technique that the chemical shifts of glucose H-6 and α-carbon protons of fatty acids in the ester molecules shifted to the higher fields. Contact angle of water on esters' pelleted surface increased as the hydrophobicity increased. Glucose esters' and commercial sucrose esters' functionality as emulsifiers were compared. Glucose esters delayed, but did not prevent coalescence, because the oil droplets diameter doubled during 7days. Sucrose esters prevented coalescence during 7days since the droplets diameter did not have significant change.

  19. Production of high-oleic acid tallow fractions using lipase-catalyzed directed interesterification, using both batch and continuous processing.

    PubMed

    MacKenzie; Stevenson

    2000-08-01

    Immobilized lipases were used to catalyze batch-directed interesterification of tallow, resulting in oleins containing significantly higher levels of unsaturated fatty acids than obtained by fractionation without lipase. After 14 days, a reaction catalyzed by 2% Novozym 435 yielded 57% olein unsaturation, compared with 45% in a no-enzyme control. Free fatty acid levels increased to 2-3% during reactions. Incubation of the enzyme in multiple batches of melted fat caused a gradual loss of interesterification activity, apparently due to progressive dehydration. The activity could be restored by addition of water to the reaction medium. Immobilized lipase was also used to catalyze directed interesterification in a continuous flow reactor. Melted tallow was circulated through a packed bed enzyme reactor and a separate crystallization vessel. The temperatures of the two parts of the apparatus were controlled separately to allow crystallization to occur separately from interesterification. Operation of the reactor with conventionally dry, prefractionated tallow allowed the formation of an olein consisting of up to 60% unsaturated fatty acids. The greatest changes in olein fatty acid composition were achieved when the fractionation temperature was kept constant at a value that promoted selective crystallization of trisaturated triglycerides that were continuously produced by enzymic interesterification. The enzyme could be reused without apparent loss of activity, and its activity was apparently enhanced by preincubation in melted tallow for up to several days. Control of both the water activity of the enzyme and tallow feedstock and of the absorption of atmospheric water vapor were required to maintain enzyme activity, during multiple reuse and minimize free fatty acid formation. This method may form the basis for a process to produce highly mono-unsaturated tallow fractions for use in food applications (e.g. frying) where a "healthy" low saturated fat product is required.

  20. Lipase Test

    MedlinePlus

    ... known as: LPS Formal name: Lipase Related tests: Amylase , Trypsin , Trypsinogen At a Glance Test Sample The ... lipase is most often used, along with an amylase test , to help diagnose and monitor acute pancreatitis . ...

  1. Reduced Lysosomal Acid Lipase Activity in Adult Patients With Non-alcoholic Fatty Liver Disease

    PubMed Central

    Baratta, Francesco; Pastori, Daniele; Del Ben, Maria; Polimeni, Licia; Labbadia, Giancarlo; Di Santo, Serena; Piemonte, Fiorella; Tozzi, Giulia; Violi, Francesco; Angelico, Francesco

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD) is characterized by intra-hepatic fat accumulation and mechanisms involved in its pathogenesis are not fully explained. Lysosomal Acid Lipase (LAL) is a key enzyme in lipid metabolism. We investigated its activity in patients with fatty liver. LAL activity (nmol/spot/h) was measured in 100 adult healthy subjects (HS) and in 240 NAFLD patients. A sub-analysis on 35 patients with biopsy-proven non-alcoholic steatohepatitis (NASH) was performed. Median LAL activity was 1.15 (0.95–1.72) in HS. It was significantly reduced in NAFLD [0.78 (0.61–1.01), p < 0.001 vs. HS]. A further reduction was observed in the subgroup of NASH [0.67 (0.51–0.77), p < 0.001 vs. HS]. Patients with LAL activity below median had higher values of serum total cholesterol (p < 0.05) and LDL-c (p < 0.05), and increased serum liver enzymes (ALT, p < 0.001; AST, p < 0.01; GGT, p < 0.01). At multivariable logistic regression analysis, factors associated with LAL activity below median were ALT (OR: 1.018, 95% CI 1.004–1.032, p = 0.011) and metabolic syndrome (OR: 2.551, 95% CI 1.241–5.245, p = 0.011), whilst statin use predicted a better LAL function (OR: 0.464, 95% CI 0.248–0.866, p = 0.016). Our findings suggest a strong association between impaired LAL activity and NAFLD. A better knowledge of the role of LAL may provide new insights in NAFLD pathogenesis. PMID:26288848

  2. Reduced Lysosomal Acid Lipase Activity in Adult Patients With Non-alcoholic Fatty Liver Disease.

    PubMed

    Baratta, Francesco; Pastori, Daniele; Del Ben, Maria; Polimeni, Licia; Labbadia, Giancarlo; Di Santo, Serena; Piemonte, Fiorella; Tozzi, Giulia; Violi, Francesco; Angelico, Francesco

    2015-07-01

    Non-alcoholic fatty liver disease (NAFLD) is characterized by intra-hepatic fat accumulation and mechanisms involved in its pathogenesis are not fully explained. Lysosomal Acid Lipase (LAL) is a key enzyme in lipid metabolism. We investigated its activity in patients with fatty liver. LAL activity (nmol/spot/h) was measured in 100 adult healthy subjects (HS) and in 240 NAFLD patients. A sub-analysis on 35 patients with biopsy-proven non-alcoholic steatohepatitis (NASH) was performed. Median LAL activity was 1.15 (0.95-1.72) in HS. It was significantly reduced in NAFLD [0.78 (0.61-1.01), p < 0.001 vs. HS]. A further reduction was observed in the subgroup of NASH [0.67 (0.51-0.77), p < 0.001 vs. HS]. Patients with LAL activity below median had higher values of serum total cholesterol (p < 0.05) and LDL-c (p < 0.05), and increased serum liver enzymes (ALT, p < 0.001; AST, p < 0.01; GGT, p < 0.01). At multivariable logistic regression analysis, factors associated with LAL activity below median were ALT (OR: 1.018, 95% CI 1.004-1.032, p = 0.011) and metabolic syndrome (OR: 2.551, 95% CI 1.241-5.245, p = 0.011), whilst statin use predicted a better LAL function (OR: 0.464, 95% CI 0.248-0.866, p = 0.016). Our findings suggest a strong association between impaired LAL activity and NAFLD. A better knowledge of the role of LAL may provide new insights in NAFLD pathogenesis.

  3. Lysosomal acid lipase in mesenchymal stem cell stimulation of tumor growth and metastasis

    PubMed Central

    Zhao, Ting; Yan, Cong; Du, Hong

    2016-01-01

    Bone marrow mesenchymal stem cells (MSCs) are an important participant in the tumor microenvironment, in which they promote tumor growth and progression. Here we report for the first time that depletion of lysosomal acid lipase (LAL) in MSCs impairs their abilities to stimulate tumor growth and metastasis both in allogeneic and syngeneic mouse models. Reduced cell viability was observed in LAL-deficient (lal−/−) MSCs, which was a result of both increased apoptosis and decreased proliferation due to cell cycle arrest. The synthesis and secretion of cytokines and chemokines that are known to mediate MSCs' tumor-stimulating and immunosuppressive effects, i.e., IL-6, MCP-1 and IL-10, were down-regulated in lal−/− MSCs. When tumor cells were treated with the conditioned medium from lal−/− MSCs, decreased proliferation was observed, accompanied by reduced activation of oncogenic intracellular signaling molecules in tumor cells. Co-injection of lal−/− MSCs and B16 melanoma cells into wild type mice not only induced CD8+ cytotoxic T cells, but also decreased accumulation of tumor-promoting Ly6G+CD11b+ myeloid-derived suppressor cells (MDSCs), which may synergistically contribute to the impairment of tumor progression. Furthermore, lal−/− MSCs showed impaired differentiation towards tumor-associated fibroblasts. In addition, MDSCs facilitated MSC proliferation, which was mediated by MDSC-secreted cytokines and chemokines. Our results indicate that LAL plays a critical role in regulating MSCs' ability to stimulate tumor growth and metastasis, which provides a mechanistic basis for targeting LAL in MSCs to reduce the risk of cancer metastasis. PMID:27531897

  4. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media.

    PubMed

    Ng, Choong Hey; Yang, Kun-Lin

    2016-01-01

    Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp.

  5. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase

    SciTech Connect

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M.; Brown, Robert J.

    2014-09-05

    Highlights: • Lipoprotein hydrolysis products were produced by lipoprotein lipase. • Hydrolysis products lowers expression of macrophage cholesterol transporters. • Hydrolysis products reduces expression of select nuclear receptors. • Fatty acid products lowers cholesterol transporters and select nuclear receptors. • Fatty acid products reduces cholesterol efflux from macrophages. - Abstract: Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL.

  6. Biodiesel production with immobilized lipase: A review.

    PubMed

    Tan, Tianwei; Lu, Jike; Nie, Kaili; Deng, Li; Wang, Fang

    2010-01-01

    Fatty acid alkyl esters, also called biodiesel, are environmentally friendly and show great potential as an alternative liquid fuel. Biodiesel is produced by transesterification of oils or fats with chemical catalysts or lipase. Immobilized lipase as the biocatalyst draws high attention because that process is "greener". This article reviews the current status of biodiesel production with immobilized lipase, including various lipases, immobilization methods, various feedstocks, lipase inactivation caused by short chain alcohols and large scale industrialization. Adsorption is still the most widely employed method for lipase immobilization. There are two kinds of lipase used most frequently especially for large scale industrialization. One is Candida antartica lipase immobilized on acrylic resin, and the other is Candida sp. 99-125 lipase immobilized on inexpensive textile membranes. However, to further reduce the cost of biodiesel production, new immobilization techniques with higher activity and stability still need to be explored.

  7. Lipase-catalyzed enantioselective synthesis of (R,R)-lactide from alkyl lactate to produce PDLA (poly D-lactic acid) and stereocomplex PLA (poly lactic acid).

    PubMed

    Jeon, Byoung Wook; Lee, Jumin; Kim, Hyun Sook; Cho, Dae Haeng; Lee, Hyuk; Chang, Rakwoo; Kim, Yong Hwan

    2013-10-20

    R-lactide, a pivotal monomer for the production of poly (D-lactic acid) (PDLA) or stereocomplex poly (lactic acid) (PLA) was synthesized from alkyl (R)-lactate through a lipase-catalyzed reaction without racemization. From among several types of lipase, only lipase B from Candida antarctica (Novozym 435; CAL-B) was effective in the reaction that synthesized (R,R)-lactide. Enantiopure (R,R)-lactide, which consisted of over 99% enantiomeric excess, was synthesized from methyl (R)-lactate through CAL-B catalysis. Removal of the methanol by-product was critical to obtain a high level of lactide conversion. The (R,R)-lactide yield was 56% in a reaction containing 100 mg of Novozym 435, 10 mM methyl (R)-lactate and 1500 mg of molecular sieve 5A in methyl tert-butyl ether (MTBE). The important monomer (R,R)-lactide that is required for the production of the widely recognized bio-plastic PDLA and the PLA stereocomplex can be obtained using this novel synthetic method.

  8. Psychrophilic Lipase from Arctic Bacterium

    PubMed Central

    Ramle, Zakiah; Rahim, Rashidah Abdul

    2016-01-01

    A lipase producer psychrophilic microorganism isolated from Arctic sample was studied. The genomic DNA of the isolate was extracted using modified CTAB method. Identification of the isolate by morphological and 16S rRNA sequence analysis revealed that the isolate is closely related to Arthrobacter gangotriensis (97% similarity). A. gangotriensis was determined as positive lipase producer based on the plate screening using specific and sensitive plate assay of Rhodamine B. The PCR result using Arthrobacter sp.’s full lipase gene sequence as the template primers emphasised a possible lipase gene at 900 bp band size. The gene is further cloned in a suitable vector system for expression of lipase. PMID:27965754

  9. Familial lipoprotein lipase deficiency: a case of compound heterozygosity of a novel duplication (R44Kfs*4) and a common mutation (N291S) in the lipoprotein lipase gene.

    PubMed

    Overgaard, Martin; Brasen, Claus Lohman; Svaneby, Dea; Feddersen, Søren; Nybo, Mads

    2013-07-01

    Familial lipoprotein lipase (LPL) deficiency (FLLD) is a rare autosomal recessive genetic disorder caused by homozygous or compound heterozygous mutations in the LPL gene. FLLD individuals usually express an impaired or non-functional LPL enzyme with low or absent triglyceride (TG) hydrolysis activity causing severe hypertriglyceridaemia. Here we report a case of FLLD in a 29-year-old man, who initially presented with eruptive cutaneous xanthomata, elevated plasma TG concentration but no other co-morbidities. Subsequent genetic testing of the patient revealed compound heterozygosity of a novel duplication (p.R44Kfs*4) leading to a premature stop codon in exon 2 and a known mutation (N291S) in exon 5 of the LPL gene. Further biochemical analysis of the patient's postheparin plasma confirmed a reduction of total lipase activity compared with his heterozygous father carrying the common N291S mutation and to a healthy control. Also the patient showed increased (1.85-fold) activity of hepatic lipase (HL), indicating a functional link between HL and LPL. In summary, we report a case of FLLD caused by compound heterozygosity of a new duplication and a common mutation in the LPL gene, resulting in residual LPL activity. With such mutations, individuals may not receive a diagnosis before classical FLLD symptoms appear later in adulthood. Nevertheless, early diagnosis and lipid-lowering treatment may favour a reduced risk of premature cardiovascular disease or acute pancreatitis in such individuals.

  10. Lipase-catalyzed synthesis of azido-functionalized aliphatic polyesters towards acid-degradable amphiphilic graft copolymers.

    PubMed

    Wu, Wan-Xia; Wang, Na; Liu, Bei-Yu; Deng, Qing-Feng; Yu, Xiao-Qi

    2014-02-28

    A series of novel aliphatic polyesters with azido functional groups were synthesized via the direct lipase-catalyzed polycondensation of dialkyl diester, diol and 2-azido-1,3-propanediol (azido glycerol) using immobilized lipase B from Candida antarctica (CALB). The effects of polymerization conditions including reaction time, temperature, enzyme amount, substrates and monomer feed ratio on the molecular weights of the products were studied. The polyesters with pendant azido groups were characterized by (1)H NMR, (13)C NMR, 2D NMR, FTIR, GPC and DSC. Alkyne end-functionalized poly(ethylene glycol) containing a cleavable acetal group was then grafted onto the polyester backbone by copper-catalyzed azide-alkyne cycloaddition (CuAAC, click chemistry). Using fluorescence spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM), these amphiphilic graft copolymers were found to readily self-assemble into nanosized micelles in aqueous solution with critical micelle concentrations between 0.70 and 1.97 mg L(-1), and micelle sizes from 20-70 nm. The degradation of these polymers under acidic conditions was investigated by GPC and (1)H NMR spectroscopy. Cell cytotoxicity tests indicated that the micelles had no apparent cytotoxicity to Bel-7402 cells, suggesting their potential as carriers for controlled drug delivery.

  11. Transformation of waste cooking oil into C-18 fatty acids using a novel lipase produced by Penicillium chrysogenum through solid state fermentation.

    PubMed

    Kumar, Sunil; Negi, Sangeeta

    2015-10-01

    The prime aim of the current work was to illustrate the components existing in repeatedly used cooking oil and to develop an economical process for the production of fatty acids from low cost feedstock waste. The waste cooking oil was characterized by the occurrence of high molecular weight hydrocarbons and polymerized derivative of esters. Triacontanoic acid methyl ester, 2,3,5,8-Tetramethyldecane, 3,3 dimethyl heptane, and 2,2,3,3-teramethyl pentane were detected as thermal and oxidative contaminants that adversely affect the quality of cooking oil. Fundamentally, waste cooking oil comprises ester bonds of long chain fatty acids. The extracellular lipase produced from P. chrysogenum was explored for the hydrolysis of waste cooking oil. The incorporation of lipase to waste cooking oil in 1:1 proportion released 17 % oleic acid and 5 % stearic acid.

  12. Candida rugosa Lipase Immobilized onto Acid-Functionalized Multi-walled Carbon Nanotubes for Sustainable Production of Methyl Oleate.

    PubMed

    Che Marzuki, Nur Haziqah; Mahat, Naji Arafat; Huyop, Fahrul; Buang, Nor Aziah; Wahab, Roswanira Abdul

    2015-10-01

    The chemical production of methyl oleate using chemically synthesized fatty acid alcohols and other toxic chemicals may lead to significant environmental hazards to mankind. Being a highly valuable fatty acid replacement raw material in oleochemical industry, the mass production of methyl oleate via environmentally favorable processes is of concern. In this context, an alternative technique utilizing Candida rugosa lipase (CRL) physically adsorbed on multi-walled carbon nanotubes (MWCNTs) has been suggested. In this study, the acid-functionalized MWCNTs prepared using a mixture of HNO3 and H2SO4 (1:3 v/v) was used as support for immobilizing CRL onto MWCNTs (CRL-MWCNTs) as biocatalysts. Enzymatic esterification was performed and the efficiency of CRL-MWCNTs was evaluated against the free CRL under varying conditions, viz. temperature, molar ratio of acid/alcohol, solvent log P, and enzyme loading. The CRL-MWCNTs resulted in 30-110 % improvement in the production of methyl oleate over the free CRL. The CRL-MWCNTs attained its highest yield (84.17 %) at 50 °C, molar ratio of acid/alcohol of 1:3, 3 mg/mL of enzyme loading, and iso-octane (log P 4.5) as solvent. Consequently, physical adsorption of CRL onto acid-functionalized MWCNTs has improved the activity and stability of CRL and hence provides an environmentally friendly means for the production of methyl oleate.

  13. High-yield preparation of wax esters via lipase-catalyzed esterification using fatty acids and alcohols from crambe and camelina oils.

    PubMed

    Steinke, G; Weitkamp, P; Klein, E; Mukherjee, K D

    2001-02-01

    Fatty acids obtained from seed oils of crambe (Crambe abyssinica) and camelina (Camelina sativa) via alkaline saponification or steam splitting were esterified using lipases as biocatalysts with oleyl alcohol and the alcohols derived from crambe and camelina oils via hydrogenolysis of their methyl esters. Long-chain wax esters were thus obtained in high yields when Novozym 435 (immobilized lipase B from Candida antarctica) and papaya (Carica papaya) latex lipase were used as biocatalysts and vacuum was applied to remove the water formed. The highest conversions to wax esters were obtained with Novozym 435 (> or =95%) after 4-6 h of reaction, whereas with papaya latex lipase such a high degree of conversion was attained after 24 h. Products obtained from stoichiometric amounts of substrates were almost exclusively (>95%) composed of wax esters having compositions approaching that of jojoba (Simmondsia chinensis) oil, especially when crambe fatty acids in combination with camelina alcohols or camelina fatty acids in combination with crambe alcohols were used as substrates.

  14. Synthesis of phosphatidylcholine with defined fatty acid in the sn-1 position by lipase-catalyzed esterification and transesterification reaction.

    PubMed

    Adlercreutz, Dietlind; Budde, Heike; Wehtje, Ernst

    2002-05-20

    The incorporation of caproic acid in the sn-1 position of phosphatidylcholine (PC) catalyzed by lipase from Rhizopus oryzae was investigated in a water activity-controlled organic medium. The reaction was carried out either as esterification or transesterification. A comparison between these two reaction modes was made with regard to product yield, product purity, reaction time, and byproduct formation as a consequence of acyl migration. The yield in the esterification and transesterification reaction was the same under identical conditions. The highest yield (78%) was obtained at a water activity (a(w)) of 0.11 and a caproic acid concentration of 0.8 M. The reaction time was shorter in the esterification reaction than in the transesterification reaction. The difference in reaction time was especially pronounced at low water activities and high fatty acid concentrations. The loss in yield due to acyl migration and consequent enzymatic side reactions was around 16% under a wide range of conditions. The incorporation of a fatty acid in the sn-1 position of PC proved to be thermodynamically much more favorable than the incorporation of a fatty acid in the sn-2 position.

  15. Correction of feline lipoprotein lipase deficiency with adeno-associated virus serotype 1-mediated gene transfer of the lipoprotein lipase S447X beneficial mutation.

    PubMed

    Ross, Colin J D; Twisk, Jaap; Bakker, Andrew C; Miao, Fudan; Verbart, Dennis; Rip, Jaap; Godbey, Tamara; Dijkhuizen, Paul; Hermens, Wim T J M C; Kastelein, John J P; Kuivenhoven, Jan Albert; Meulenberg, Janneke M; Hayden, Michael R

    2006-05-01

    Human lipoprotein lipase (hLPL) deficiency, for which there currently exists no adequate treatment, leads to excessive plasma triglycerides (TGs), recurrent abdominal pain, and life-threatening pancreatitis. We have shown that a single intramuscular administration of adeno-associated virus (AAV) serotype 1 vector, encoding the human LPL(S447X) variant, results in complete, long-term normalization of dyslipidemia in LPL(/) mice. As a prelude to gene therapy for human LPL deficiency, we tested the efficacy of AAV1-LPL(S447X) in LPL(/) cats, which demonstrate hypertriglyceridemia (plasma TGs, >10,000 mg/dl) and clinical symptoms similar to LPL deficiency in humans, including pancreatitis. Male LPL(/) cats were injected intramuscularly with saline or AAV1-LPL(S447X) (1 x 10(11)-1.7 x 10(12) genome copies [GC]/kg), combined with oral doses of cyclophosphamide (0-200 mg/m(2) per week) to inhibit an immune response against hLPL. Within 3-7 days after administration of >or=5 x 10(11) GC of AAV1-LPL(S447X) per kilogram, the visible plasma lipemia was completely resolved and plasma TG levels were reduced by >99% to normal levels (10-20 mg/dl); intermediate efficacy (95% reduction) was achieved with 1 x 10(11) GC/kg. Injection in two sites, greatly limiting the amount of transduced muscle, was sufficient to completely correct the dyslipidemia. By varying the dose per site, linear LPL expression was demonstrated over a wide range of local doses (4 x 10(10)-1 x 10(12) GC/site). However, efficacy was transient, because of an anti-hLPL immune response blunting LPL expression. The level and duration of efficacy were significantly improved with cyclophosphamide immunosuppression. We conclude that AAV1-mediated delivery of LPL(S447X) in muscle is an effective means to correct the hypertriglyceridemia associated with feline LPL deficiency.

  16. Overexpression and characterization in Bacillus subtilis of a positionally nonspecific lipase from Proteus vulgaris.

    PubMed

    Lu, Yaping; Lin, Qian; Wang, Jin; Wu, Yufan; Bao, Wuyundalai; Lv, Fengxia; Lu, Zhaoxin

    2010-09-01

    A Proteus vulgaris strain named T6 which produced lipase (PVL) with nonpositional specificity had been isolated in our laboratory. To produce the lipase in large quantities, we cloned its gene, which had an opening reading frame of 864 base pairs and encoded a deduced 287-amino-acid protein. The PVL gene was inserted into the Escherichia coli expression vector pET-DsbA, and active lipase was expressed in E. coli BL21 cells. The secretive expression of PVL gene in Bacillus subtilis was examined. Three vectors, i.e., pMM1525 (xylose-inducible), pMMP43 (constitutive vector, derivative of pMM1525), and pHPQ (sucrose-inducible, constructed based on pHB201), were used to produce lipase in B. subtilis. Recombinant B. subtilis WB800 cells harboring the pHPQ-PVL plasmid could synthesize and secrete the PVL protein in high yield. The lipase activity reached 356.8 U/mL after induction with sucrose for 72 h in shake-flask culture, representing a 12-fold increase over the native lipase activity in P. vulgaris. The characteristics of the heterologously expressed lipase were identical to those of the native one.

  17. Enzymatic Synthesis of Furfuryl Alcohol Ester with Oleic Acid by Candida antarctica Lipase B and Its Kinetic Study

    NASA Astrophysics Data System (ADS)

    Sengupta, Avery; Dey, Tanmoy; Ghosh, Mahua; Ghosh, Jaydip; Ghosh, Santinath

    2012-08-01

    This study investigated the successful enzymatic production of furfuryl oleate and its detailed kinetic study by Michaelis-Menten model. Esterification of oleic acid and furfuryl alcohol by Candida antarctica lipase B (Novozym 435 preparation) in a solvent free system was studied in the present work at 1:1 molar ratio of furfuryl alcohol and oleic acid. About 99 % conversion (on the basis of oleic acid) has been achieved within 6 h at 5 % enzyme concentration. Ping-pong bi-bi mechanism (inhibition phenomenon taken into account) was applied to describe the ratios as a complex kinetic model. The kinetic parameters were determined using MATLAB language programme. The two initial rate constants KA and KB respectively were found out by different progress curves plotted with the help of MATLAB language programme. It was concluded from the results that furfuryl alcohol considerably inhibited the enzymatic reaction while oleic acid had negligible inhibitory effect. It was clearly seen that the initial rate was increased with the increase in the furfuryl alcohol concentration until 2 M/L after which there was a drop in the initial rate depicting the inhibitory effect of furfuryl alcohol. Surprisingly, it has been observed that addition of 0.1 mol of product activated the esterification reaction. Finally, the model was found to be statistically fitting well with the experimental data.

  18. Lipase test

    MedlinePlus

    ... cholecystitis Chronic pancreatitis Enzyme Familial lipoprotein lipase deficiency Pancreatic cancer Triglyceride level Review Date 2/4/2015 Updated ... team. Related MedlinePlus Health Topics Gastroenteritis Genetic Disorders Pancreatic Cancer Pancreatic Diseases Pancreatitis Browse the Encyclopedia A.D. ...

  19. Apple peels, from seven cultivars, have lipase-inhibitory activity and contain numerous ursenoic acids as identified by LC-ESI-QTOF-HRMS.

    PubMed

    McGhie, Tony K; Hudault, Sébastien; Lunken, Rona C M; Christeller, John T

    2012-01-11

    Apple peel contains numerous phytochemicals, many of which show bioactivity. This study investigated the identity of triterpenoid compounds contained in ethanolic extracts of peel from seven apple cultivars. Using HPLC-ESI-QTOF-HRMS, accurate mass information was obtained for 43 compounds, and chemical identity was inferred from the calculated elemental composition, fragment masses, ms/ms, and a limited set of authentic standards. Compounds were identified as triterpene acids and tentatively identified as ursenoic (or oleanoic) acid derivatives containing hydroxyl, oxo, and coumaroyloxy groups. These apple skin extracts exhibited lipase-inhibitory activity, which may be linked to the ursenoic acid content. Furthermore, both triterpene content and lipase-inhibitory activity varied by cultivar.

  20. Resveratrol regulates lipolysis via adipose triglyceride lipase.

    PubMed

    Lasa, Arrate; Schweiger, Martina; Kotzbeck, Petra; Churruca, Itziar; Simón, Edurne; Zechner, Rudolf; Portillo, María del Puy

    2012-04-01

    Resveratrol has been reported to increase adrenaline-induced lipolysis in 3T3-L1 adipocytes. The general aim of the present work was to gain more insight concerning the effects of trans-resveratrol on lipid mobilization. The specific purpose was to assess the involvement of the two main lipases: adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), in the activation of lipolysis induced by this molecule. For lipolysis experiments, 3T3-L1 and human SGBS adipocytes as well as adipose tissue from wild-type, ATGL knockout and HSL knockout mice were used. Moreover, gene and protein expressions of these lipases were analyzed. Resveratrol-induced free fatty acids release but not glycerol release in 3T3-L1 under basal and isoproterenol-stimulating conditions and under isoproterenol-stimulating conditions in SGBS adipocytes. When HSL was blocked by compound 76-0079, free fatty acid release was still induced by resveratrol. By contrast, in the presence of the compound C, an inhibitor of adenosine monophosphate-activated protein kinase, resveratrol effect was totally blunted. Resveratrol increased ATGL gene and protein expressions, an effect that was not observed for HSL. Resveratrol increased fatty acids release in epididymal adipose tissue from wild-type and HSL knockout mice but not in that adipose tissue from ATGL knockout mice. Taking as a whole, the present results provide novel evidence that resveratrol regulates lipolytic activity in human and murine adipocytes, as well as in white adipose tissue from mice, acting mainly on ATGL at transcriptional and posttranscriptional levels. Enzyme activation seems to be induced via adenosine monophosphate-activated protein kinase.

  1. Production of Candida antaractica Lipase B Gene Open Reading Frame using Automated PCR Gene Assembly Protocol on Robotic Workcell & Expression in Ethanologenic Yeast for use as Resin-Bound Biocatalyst in Biodiesel Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A synthetic Candida antarctica lipase B (CALB) gene open reading frame (ORF) for expression in yeast was produced using an automated PCR assembly and DNA purification protocol on an integrated robotic workcell. The lycotoxin-1 (Lyt-1) C3 variant gene ORF was added in-frame with the CALB ORF to pote...

  2. Ezetimibe markedly attenuates hepatic cholesterol accumulation and improves liver function in the lysosomal acid lipase-deficient mouse, a model for cholesteryl ester storage disease.

    PubMed

    Chuang, Jen-Chieh; Lopez, Adam M; Posey, Kenneth S; Turley, Stephen D

    2014-01-17

    Lysosomal acid lipase (LAL) plays a critical role in the intracellular handling of lipids by hydrolyzing cholesteryl esters (CE) and triacylglycerols (TAG) contained in newly internalized lipoproteins. In humans, mutations in the LAL gene result in cholesteryl ester storage disease (CESD), or in Wolman disease (WD) when the mutations cause complete loss of LAL activity. A rat model for WD and a mouse model for CESD have been described. In these studies we used LAL-deficient mice to investigate how modulating the amount of intestinally-derived cholesterol reaching the liver might impact its mass, cholesterol content, and function in this model. The main experiment tested if ezetimibe, a potent cholesterol absorption inhibitor, had any effect on CE accumulation in mice lacking LAL. In male Lal(-/-) mice given ezetimibe in their diet (20 mg/day/kg bw) for 4 weeks starting at 21 days of age, both liver mass and hepatic cholesterol concentration (mg/g) were reduced to the extent that whole-liver cholesterol content (mg/organ) in the treated mice (74.3±3.4) was only 56% of that in those not given ezetimibe (133.5±6.7). There was also a marked improvement in plasma alanine aminotransferase (ALT) activity. Thus, minimizing cholesterol absorption has a favorable impact on the liver in CESD.

  3. Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis

    PubMed Central

    2012-01-01

    Background GDSL esterases/lipases are a newly discovered subclass of lipolytic enzymes that are very important and attractive research subjects because of their multifunctional properties, such as broad substrate specificity and regiospecificity. Compared with the current knowledge regarding these enzymes in bacteria, our understanding of the plant GDSL enzymes is very limited, although the GDSL gene family in plant species include numerous members in many fully sequenced plant genomes. Only two genes from a large rice GDSL esterase/lipase gene family were previously characterised, and the majority of the members remain unknown. In the present study, we describe the rice OsGELP (Oryza sativa GDSL esterase/lipase protein) gene family at the genomic and proteomic levels, and use this knowledge to provide insights into the multifunctionality of the rice OsGELP enzymes. Results In this study, an extensive bioinformatics analysis identified 114 genes in the rice OsGELP gene family. A complete overview of this family in rice is presented, including the chromosome locations, gene structures, phylogeny, and protein motifs. Among the OsGELPs and the plant GDSL esterase/lipase proteins of known functions, 41 motifs were found that represent the core secondary structure elements or appear specifically in different phylogenetic subclades. The specification and distribution of identified putative conserved clade-common and -specific peptide motifs, and their location on the predicted protein three dimensional structure may possibly signify their functional roles. Potentially important regions for substrate specificity are highlighted, in accordance with protein three-dimensional model and location of the phylogenetic specific conserved motifs. The differential expression of some representative genes were confirmed by quantitative real-time PCR. The phylogenetic analysis, together with protein motif architectures, and the expression profiling were analysed to predict the

  4. Lipase-mediated enantioselective kinetic resolution of racemic acidic drugs in non-standard organic solvents: Direct chiral liquid chromatography monitoring and accurate determination of the enantiomeric excesses.

    PubMed

    Ghanem, Ashraf; Aboul-Enein, Mohammed Nabil; El-Azzouny, Aida; El-Behairy, Mohammed F

    2010-02-12

    The enantioselective resolution of a set of racemic acidic compounds such as non-steroidal anti-inflammatory drugs (NSAIDs) of the group arylpropionic acid derivatives is demonstrated. Thus, a set of lipases were screened and manipulated in either the esterification or hydrolysis mode for the enantioselective kinetic resolution of these racemates in non-standard organic solvents. The accurate determination of the enantiomeric excesses of both substrate and product during such reaction is demonstrated. This was based on the development of a direct and reliable enantioselective high performance liquid chromatography (HPLC) procedure for the simultaneous baseline separation of both substrate and product in one run without derivatization. This was achieved using the immobilized chiral stationary phase namely Chiralpak IB, a 3,5-dimethylphenylcarbamate derivative of cellulose (the immobilized version of Chiralcel OD) which proved to be versatile for the monitoring of the lipase-catalyzed kinetic resolution of racemates in non-standard organic solvents.

  5. Mutations in the VNTR of the carboxyl-ester lipase gene (CEL) are a rare cause of monogenic diabetes.

    PubMed

    Torsvik, Janniche; Johansson, Stefan; Johansen, Anders; Ek, Jakob; Minton, Jayne; Raeder, Helge; Ellard, Sian; Hattersley, Andrew; Pedersen, Oluf; Hansen, Torben; Molven, Anders; Njølstad, Pål R

    2010-01-01

    We have previously shown that heterozygous single-base deletions in the carboxyl-ester lipase (CEL) gene cause exocrine and endocrine pancreatic dysfunction in two multigenerational families. These deletions were found in the first and fourth repeats of a variable number of tandem repeats (VNTR), which has proven challenging to sequence due to high GC-content and considerable length variation. We have therefore developed a screening method consisting of a multiplex PCR followed by fragment analysis. The method detected putative disease-causing insertions and deletions in the proximal repeats of the VNTR, and determined the VNTR-length of each allele. When blindly testing 56 members of the two families with known single-base deletions in the CEL VNTR, the method correctly assessed the mutation carriers. Screening of 241 probands from suspected maturity-onset diabetes of the young (MODY) families negative for mutations in known MODY genes (95 individuals from Denmark and 146 individuals from UK) revealed no deletions in the proximal repeats of the CEL VNTR. However, we found one Danish patient with a short, novel CEL allele containing only three VNTR repeats (normal range 7-23 in healthy controls). This allele co-segregated with diabetes or impaired glucose tolerance in the patient's family as six of seven mutation carriers were affected. We also identified individuals who had three copies of a complete CEL VNTR. In conclusion, the CEL gene is highly polymorphic, but mutations in CEL are likely to be a rare cause of monogenic diabetes.

  6. Esterification of oleic acid with methanol by immobilized lipase on wrinkled silica nanoparticles with highly ordered, radially oriented mesochannels.

    PubMed

    Pang, Jinli; Zhou, Guowei; Liu, Ruirui; Li, Tianduo

    2016-02-01

    Mesoporous silica nanoparticles with a wrinkled structure (wrinkled silica nanoparticles, WSNs) having highly ordered, radially oriented mesochannels were synthesized by a solvothermal method. The method used a mixture of cyclohexane, ethanol, and water as solvent, tetraethoxysilane (TEOS) as source of inorganic silica, ammonium hydroxide as hydrolysis additive, cetyltrimethylammonium bromide (CTAB) as surfactant, and polyvinylpyrrolidone (PVP) as stabilizing agent of particle growth. Particle size (240nm to 540nm), specific surface areas (490m(2)g(-1) to 634m(2)g(-1)), surface morphology (radial wrinkled structures), and pore structure (radially oriented mesochannels) of WSN samples were varied using different molar ratios of CTAB to PVP. Using synthesized WSN samples with radially oriented mesochannels as support, we prepared immobilized Candida rugosa lipase (CRL) as a new biocatalyst for biodiesel production through the esterification of oleic acid with methanol. These results suggest that WSNs with highly ordered, radially oriented mesochannels have promising applications in biocatalysis, with the highest oleic acid conversion rate of about 86.4% under the optimum conditions.

  7. Structured lipids via lipase-catalyzed incorporation of eicosapentaenoic acid into borage (Borago officinalis L.) and evening primrose (Oenothera biennis L.) oils.

    PubMed

    Senanayake, S P J Namal; Shahidi, Fereidoon

    2002-01-30

    Enzymatic acidolysis of borage oil (BO) or evening primrose oil (EPO) with eicosapentaenoic acid (20:5n-3; EPA) was studied. Of the six lipases that were tested in the initial screening, nonspecific lipase PS-30 from Pseudomonas sp. resulted in the highest incorporation of EPA into both oils. This enzyme was further studied for the influence of enzyme load, temperature, time, type of organic solvent, and mole ratio of substrates. The products from the acidolysis reaction were analyzed by gas chromatography (GC). The highest incorporation of EPA in both oils occurred at 45-55 degrees C and at 150-250 enzyme activity units. One unit of lipase activity was defined as nanomoles of fatty acids (oleic acid equivalents) produced per minute per gram of enzyme. Time course studies indicated that EPA incorporation was increased up to 26.8 and 25.2% (after 24 h) in BO and EPO, respectively. Among the solvents examined, n-hexane served best for the acidolysis of EPA with both oils. The effect of the mole ratio of oil to EPA was studied from 1:1 to 1:3. As the mole ratio of EPA increased, the incorporation increased from 25.2-26.8 to 37.4-39.9% (after 24 h). The highest EPA incorporations of 39.9 and 37.4% in BO and EPO, respectively, occurred at the stoichiometric mole ratio of 1:3 for oil to EPA.

  8. In vitro inhibitory effect on pancreatic lipase activity of subfractions from ethanol extracts of fermented Oats (Avena sativa L.) and synergistic effect of three phenolic acids.

    PubMed

    Cai, Shengbao; Wang, Ou; Wang, Mengqian; He, Jianfeng; Wang, Yong; Zhang, Di; Zhou, Feng; Ji, Baoping

    2012-07-25

    The purpose of the present work is to study the pancreatic lipase inhibitory effects of different subfractions (n-hexane, ethyl acetate (EA), n-butanol, and water) from ethanol extracts of nonfermented and fungi-fermented oats and to delineate the interactions of three primary phenolic acids in the EA subfractions. The EA subfraction showed the highest inhibitory effect on pancreatic lipase activity at 1.5 mg/mL compared to the other subfractions, regardless of whether the oats were fermented. Meanwhile, both of the EA subfractions of two fungi-fermented oats demonstrated more effective inhibitory activity than that of nonfermented oats. A positive correlation between the total phenolics content and inhibitory activity was found. The inhibitory ability of the EA subfraction from nonfermented or fermented oats also displayed a dose-dependent effect. The standards of caffeic, ferulic, and p-coumaric acids, mainly included in EA subfractions of fermented oats, also displayed a dose-dependent inhibitory effect. A synergistic effect of each binary combination of p-coumaric, ferulic, and caffeic acids was observed, especially at 150.0 μg/mL. Those results indicate that fungi-fermented oats have a more effective inhibitory ability on pancreatic lipase and polyphenols may be the most effective component and could be potentially used for dietary therapy of obesity.

  9. Lipase-catalyzed esterification of ferulic Acid with oleyl alcohol in ionic liquid/isooctane binary systems.

    PubMed

    Chen, Bilian; Liu, Huanzhen; Guo, Zheng; Huang, Jian; Wang, Minzi; Xu, Xuebing; Zheng, Lifei

    2011-02-23

    Lipase-catalyzed synthesis of ferulic acid oleyl alcohol ester in an ionic liquid (IL)/isooctane system was investigated. Considerable bioconversion and volumetric productivity were achieved in inexpensive 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF(6)]) and 1-methyl-3-octylimidazolium hexafluorophosphate ([Omim][PF(6)]) mediated systems, and thus, the two types of ILs were selected for further optimization of variables. The results showed that, before reaching a maximum, the increase of ferulic acid concentration, temperature, or enzyme dosage led to an increase in volumetric productivity. Variations of the ratios of IL/isooctane and concentrations of oleyl alcohol also profoundly affected the volumetric productivity. To a higher extent, [Hmim][PF(6)]/isooctane and [Omim][PF(6)]/isooctane show similar reaction behaviors. Under the optimized reaction conditions (60 °C, 150 mg of Novozym 435 and 100 mg of molecular sieves), up to 48.50 mg/mL productivity of oleyl feruleate could be achieved for the [Hmim][PF(6)]/isooctane (0.5 mL/1.5 mL) system with a substrate concentration of ferulic acid of 0.08 mmol/mL and oleyl alcohol of 0.32 mmol; while an optimum volumetric productivity of 26.92 mg/mL was obtained for the [Omim][PF(6)]/ isooctane (0.5 mL/1.5 mL) system under a similar reaction condition other than the substrate concentrations of ferulic acid at 0.05 mmol/mL and oleyl alcohol at 0.20 mmol.

  10. [Prevention of atherosclerosis. The positional specificity of blood triglycerides and lipases, the particular milk lipids, and the modification of the fatty acids of vegetable oils and animal fats].

    PubMed

    Titov, V N; Krylin, V V; Shiriaeva, Iu K

    2011-03-01

    Milk is a biological medium that bears no resemblance to any of the biological fluids and tissues in primates and mammals in the positional composition of fatty acids (FA) in triglycerides. This is determined by the fact that at the very early phylogenesis of mammals, milk is to ensure a high postnatal bioavailability (absorption) of saturated palmitic FA, a substrate for neonatal energy supply despite all obstacles that are formed in the baby's intestine in vivo. Milk is destined for infant nutrition in the biology-destined period (not more than a year); assimilation of triglycerides that are so structurally unusual requires a) high isomerization activity in the enterocytes and b) the ability of blood lipases to hydrolyze palmitate-oleate-palmitate triglycerides as a component of oleic very-low-density lipoproteins. After the period permitted by nature, there is virtually no possibility to physiologically consume milk that contains structurally unusual triglycerides. The use of whole milk and its products by adults impairs the active, receptor cell absorption of FAs as ligand lipoproteins via apoE/B-100-endocytosis and enhances the generation of small, dense low-density lipoproteins as biological debris. The impaired biological function of endoecology and the debris accumulation of the intercellular medium lead to the activation of atheromatosis, atherothrombosis, and coronary sclerosis. Nature has given no sanction for turning the mammals that are not on milk to those on milk for whole life. Up to one year of age, the baby has in vivo conditions for the absorption and hydrolysis of triglycerides with palmitic FA at the sn-2 position. After one year of age, the expression of these lipases and coenzymes is over; re-expression occurs only with the activation of the biological function of locomotion - long-term strenuous physical activity. High physical activity expresses other genes, enzymes, coenzymes, and carrier proteins, which activate the hydrolysis of

  11. Substrate specificity of lipoprotein lipase and endothelial lipase: studies of lid chimeras.

    PubMed

    Griffon, Nathalie; Budreck, Elaine C; Long, Christopher J; Broedl, Uli C; Marchadier, Dawn H L; Glick, Jane M; Rader, Daniel J

    2006-08-01

    The triglyceride (TG) lipase gene subfamily, consisting of LPL, HL, and endothelial lipase (EL), plays a central role in plasma lipoprotein metabolism. Compared with LPL and HL, EL is relatively more active as a phospholipase than as a TG lipase. The amino acid loop or "lid" covering the catalytic site has been implicated as the basis for the difference in substrate specificity between HL and LPL. To determine the role of the lid in the substrate specificity of EL, we studied EL in comparison with LPL by mutating specific residues of the EL lid and exchanging their lids. Mutation studies showed that amphipathic properties of the lid contribute to substrate specificity. Exchanging lids between LPL and EL only partially shifted the substrate specificity of the enzymes. Studies of a double chimera possessing both the lid and the C-terminal domain (C-domain) of EL in the LPL backbone showed that the role of the lid in determining substrate specificity does not depend on the nature of the C-domain of the lipase. Using a kinetic assay, we showed an additive effect of the EL lid on the apparent affinity for HDL(3) in the presence of the EL C-domain.

  12. Evaluation of Expression of Lipases and Phospholipases of Malassezia restricta in Patients with Seborrheic Dermatitis

    PubMed Central

    Lee, Yang Won; Lee, Shin Yung; Lee, Younghoon

    2013-01-01

    Background Malassezia species (spp.) are cutaneous opportunistic pathogens and associated with various dermatological diseases including seborrheic dermatitis, dandruff and atopic dermatitis. Almost all Malassezia spp. are obligatorily lipid-dependent, which might be caused by lack of the myristic acid synthesis. Recent genome analysis of M. restricta and M. globosa suggested that the absence of a gene encoding fatty acid synthesis might be compensated by abundant genes encoding hydrolases, which produce fatty acids, and that lipases and phospholipases may play a role in virulence of the fungus. Objective The current study aimed to investigate the contribution of lipases and phospholipases in virulence of the M. restricta as being the most frequently isolated Malassezia spp. from the human skin. Methods Swap samples of two different body sites of at least 18 patients with seborrheic dermatitis were obtained and in vivo expression of lipases and phospholipases of M. restricta was analyzed by the gene specific two-step nested RT-PCR. Results The results of the current study suggest that majority of the patients display expression of lipase RES_0242. Conclusion These data imply a possible role of lipase in the host environment to produce free fatty acids for the fungus. PMID:24003273

  13. Screening for hydrolytic enzymes reveals Ayr1p as a novel triacylglycerol lipase in Saccharomyces cerevisiae.

    PubMed

    Ploier, Birgit; Scharwey, Melanie; Koch, Barbara; Schmidt, Claudia; Schatte, Jessica; Rechberger, Gerald; Kollroser, Manfred; Hermetter, Albin; Daum, Günther

    2013-12-13

    Saccharomyces cerevisiae, as well as other eukaryotes, preserves fatty acids and sterols in a biologically inert form, as triacylglycerols and steryl esters. The major triacylglycerol lipases of the yeast S. cerevisiae identified so far are Tgl3p, Tgl4p, and Tgl5p (Athenstaedt, K., and Daum, G. (2003) YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J. Biol. Chem. 278, 23317-23323; Athenstaedt, K., and Daum, G. (2005) Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae, are localized to lipid particles. J. Biol. Chem. 280, 37301-37309). We observed that upon cultivation on oleic acid, triacylglycerol mobilization did not come to a halt in a yeast strain deficient in all currently known triacylglycerol lipases, indicating the presence of additional not yet characterized lipases/esterases. Functional proteome analysis using lipase and esterase inhibitors revealed a subset of candidate genes for yet unknown hydrolytic enzymes on peroxisomes and lipid droplets. Based on the conserved GXSXG lipase motif, putative functions, and subcellular localizations, a selected number of candidates were characterized by enzyme assays in vitro, gene expression analysis, non-polar lipid analysis, and in vivo triacylglycerol mobilization assays. These investigations led to the identification of Ayr1p as a novel triacylglycerol lipase of yeast lipid droplets and confirmed the hydrolytic potential of the peroxisomal Lpx1p in vivo. Based on these results, we discuss a possible link between lipid storage, lipid mobilization, and peroxisomal utilization of fatty acids as a carbon source.

  14. A recombined allele of the lipase gene CEL and its pseudogene CELP confers susceptibility to chronic pancreatitis

    PubMed Central

    Fjeld, Karianne; Johansson, Bente B.; Kirsten, Holger; Ruffert, Claudia; Masson, Emmanuelle; Steine, Solrun J.; Bugert, Peter; Cnop, Miriam; Grützmann, Robert; Mayerle, Julia; Mössner, Joachim; Ringdal, Monika; Schulz, Hans-Ulrich; Sendler, Matthias; Simon, Peter; Sztromwasser, Paweł; Torsvik, Janniche; Scholz, Markus; Tjora, Erling; Férec, Claude; Witt, Heiko; Lerch, Markus M.; Njølstad, Pål R.; Johansson, Stefan; Molven, Anders

    2015-01-01

    Carboxyl-ester lipase is a digestive pancreatic enzyme encoded by the highly polymorphic CEL gene1. Mutations in CEL cause maturity-onset diabetes of the young (MODY) with pancreatic exocrine dysfunction2. Here we identified a hybrid allele (CEL-HYB), originating from a crossover between CEL and its neighboring pseudogene CELP. In a discovery cohort of familial chronic pancreatitis cases, the carrier frequency of CEL-HYB was 14.1% (10/71) compared with 1.0% (5/478) in controls (odds ratio [OR] = 15.5, 95% confidence interval [CI] = 5.1-46.9, P = 1.3 × 10−6). Three replication studies in non-alcoholic chronic pancreatitis cohorts identified CEL-HYB in a total of 3.7% (42/1,122) cases and 0.7% (30/4,152) controls (OR = 5.2, 95% CI = 3.2-8.5, P = 1.2 × 10−11; formal meta-analysis). The allele was also enriched in alcoholic chronic pancreatitis. Expression of CEL-HYB in cellular models revealed reduced lipolytic activity, impaired secretion, prominent intracellular accumulation and induced autophagy. The hybrid variant of CEL is the first chronic pancreatitis gene identified outside the protease/antiprotease system of pancreatic acinar cells. PMID:25774637

  15. Role of lipase from community-associated methicillin-resistant Staphylococcus aureus strain USA300 in hydrolyzing triglycerides into growth-inhibitory free fatty acids.

    PubMed

    Cadieux, Brigitte; Vijayakumaran, Vithooshan; Bernards, Mark A; McGavin, Martin J; Heinrichs, David E

    2014-12-01

    Part of the human host innate immune response involves the secretion of bactericidal lipids on the skin and delivery of triglycerides into abscesses to control invading pathogens. Two Staphylococcus aureus lipases, named SAL1 and SAL2, were identified in the community-associated methicillin-resistant S. aureus strain USA300, which, presumably, are produced and function to degrade triglycerides to release free fatty acids. We show that the SAL2 lipase is one of the most abundant proteins secreted by USA300 and is proteolytically processed from the 72-kDa proSAL2 to the 44-kDa mature SAL2 by the metalloprotease aureolysin. We show that spent culture supernatants had lipase activity on both short- and long-chain fatty acid substrates and that deletion of gehB, encoding SAL2, resulted in the complete loss of these activities. With the use of gas chromatography-mass spectrometry, we show that SAL2 hydrolyzed trilinolein to linoleic acid, a fatty acid with known antistaphylococcal properties. When added to cultures of USA300, trilinolein and, to a lesser extent, triolein inhibited growth in a SAL2-dependent manner. This effect was shown to be due to the enzymatic activity of SAL2 on these triglycerides, since the catalytically inactive SAL2 Ser412Ala mutant was incapable of hydrolyzing the triglycerides or yielding delayed growth in their presence. Overall, these results reveal that SAL2 hydrolyzes triglycerides of both short- and long-chain fatty acids and that the released free fatty acids have the potential to cause significant delays in growth, depending on the chemical nature of the free fatty acid.

  16. Wolman disease/cholesteryl ester storage disease: efficacy of plant-produced human lysosomal acid lipase in mice.

    PubMed

    Du, Hong; Cameron, Terri L; Garger, Stephen J; Pogue, Gregory P; Hamm, Lee A; White, Earl; Hanley, Kathleen M; Grabowski, Gregory A

    2008-08-01

    Lysosomal acid lipase (LAL) is an essential enzyme that hydrolyzes triglycerides (TGs) and cholesteryl esters (CEs) in lysosomes. Genetic LAL mutations lead to Wolman disease (WD) and cholesteryl ester storage disease (CESD). An LAL-null (lal(-/-)) mouse model resembles human WD/CESD with storage of CEs and TGs in multiple organs. Human LAL (hLAL) was expressed in Nicotiana benthamiana using the GENEWARE expression system (G-hLAL). Purified G-hLAL showed mannose receptor-dependent uptake into macrophage cell lines (J774E). Intraperitoneal injection of G-hLAL produced peak activities in plasma at 60 min and in the liver and spleen at 240 min. The t(1/2) values were: approximately 90 min (plasma), approximately 14 h (liver), and approximately 32 h (spleen), with return to baseline by approximately 150 h in liver and approximately 200 h in spleen. Ten injections of G-hLAL (every 3 days) into lal(-/-) mice produced normalization of hepatic color, decreases in hepatic cholesterol and TG contents, and diminished foamy macrophages in liver, spleen, and intestinal villi. All injected lal(-/-) mice developed anti-hLAL protein antibodies, but suffered no adverse events. These studies demonstrate the feasibility of using plant-expressed, recombinant hLAL for the enzyme therapy of human WD/CESD with general implications for other lysosomal storage diseases.

  17. Wolman disease/cholesteryl ester storage disease: efficacy of plant-produced human lysosomal acid lipase in mice*

    PubMed Central

    Du, Hong; Cameron, Terri L.; Garger, Stephen J.; Pogue, Gregory P.; Hamm, Lee A.; White, Earl; Hanley, Kathleen M.; Grabowski, Gregory A.

    2008-01-01

    Lysosomal acid lipase (LAL) is an essential enzyme that hydrolyzes triglycerides (TGs) and cholesteryl esters (CEs) in lysosomes. Genetic LAL mutations lead to Wolman disease (WD) and cholesteryl ester storage disease (CESD). An LAL-null (lal−/−) mouse model resembles human WD/CESD with storage of CEs and TGs in multiple organs. Human LAL (hLAL) was expressed in Nicotiana benthamiana using the GENEWARE® expression system (G-hLAL). Purified G-hLAL showed mannose receptor-dependent uptake into macrophage cell lines (J774E). Intraperitoneal injection of G-hLAL produced peak activities in plasma at 60 min and in the liver and spleen at 240 min. The t1/2 values were: ∼90 min (plasma), ∼14 h (liver), and ∼32 h (spleen), with return to baseline by ∼150 h in liver and ∼200 h in spleen. Ten injections of G-hLAL (every 3 days) into lal−/− mice produced normalization of hepatic color, decreases in hepatic cholesterol and TG contents, and diminished foamy macrophages in liver, spleen, and intestinal villi. All injected lal−/− mice developed anti-hLAL protein antibodies, but suffered no adverse events. These studies demonstrate the feasibility of using plant-expressed, recombinant hLAL for the enzyme therapy of human WD/CESD with general implications for other lysosomal storage diseases. PMID:18413899

  18. Molecular cloning and transcript expression of genes encoding two types of lipoprotein lipase in the ovary of cutthroat trout, Oncorhynchus clarki.

    PubMed

    Ryu, Yong-Woon; Tanaka, Ricako; Kasahara, Ayumi; Ito, Yuta; Hiramatsu, Naoshi; Todo, Takashi; Sullivan, Craig V; Hara, Akihiko

    2013-03-01

    Large amounts of neutral lipids (NLs) are stored as lipid droplets in the ooplasm of fish oocytes, providing an essential energy resource for developing embryos and larvae. However, little is known about the origin of such lipids or about mechanisms underlying their uptake and accumulation in oocytes. We have proposed a model for this lipidation of teleost oocytes, as follows: very low density lipoprotein (Vldl) is metabolized by lipoprotein lipase (Lpl) outside and/or inside of the oocyte and the resulting fatty acids (FAs) are then utilized for de novo biosynthesis of NLs. As a first step toward verification of this model, cDNAs for genes encoding two types of Lpl, lpl and lpl2, were cloned from the ovary of cutthroat trout, Oncorhynchus clarki. Examination of Lpl polypeptide sequences deduced from the cDNAs revealed features similar to LPLs/Lpls in other species, including several conserved structural and functional domains. Both types of lpl mRNA were highly expressed in lipid storage tissues (e.g., adipose tissue, muscle, and ovary) and were predominantly expressed in the granulosa cells of ovarian follicles. Ovarian lpl1 mRNA levels showed a remarkable peak in April (early oocyte lipid droplet stage) and then decreased to low values sustained until November (mid-vitellogenesis), after which time a small peak in lpl1 gene expression was observed in December (late vitellogenesis). The mRNA levels of lpl2 also were elevated in April and were highest in June (late lipid droplet stage), but did not show other pronounced changes. These results suggest that, in the cutthroat trout, Vldl is metabolized by the action of Lpls in the granulosa cell layer to generate free FAs for uptake and biosynthesis of neutral lipids by growing oocytes.

  19. A recombined allele of the lipase gene CEL and its pseudogene CELP confers susceptibility to chronic pancreatitis.

    PubMed

    Fjeld, Karianne; Weiss, Frank Ulrich; Lasher, Denise; Rosendahl, Jonas; Chen, Jian-Min; Johansson, Bente B; Kirsten, Holger; Ruffert, Claudia; Masson, Emmanuelle; Steine, Solrun J; Bugert, Peter; Cnop, Miriam; Grützmann, Robert; Mayerle, Julia; Mössner, Joachim; Ringdal, Monika; Schulz, Hans-Ulrich; Sendler, Matthias; Simon, Peter; Sztromwasser, Paweł; Torsvik, Janniche; Scholz, Markus; Tjora, Erling; Férec, Claude; Witt, Heiko; Lerch, Markus M; Njølstad, Pål R; Johansson, Stefan; Molven, Anders

    2015-05-01

    Carboxyl ester lipase is a digestive pancreatic enzyme encoded by the CEL gene. Mutations in CEL cause maturity-onset diabetes of the young as well as pancreatic exocrine dysfunction. Here we describe a hybrid allele (CEL-HYB) originating from a crossover between CEL and its neighboring pseudogene, CELP. In a discovery series of familial chronic pancreatitis cases, we observed CEL-HYB in 14.1% (10/71) of cases compared to 1.0% (5/478) of controls (odds ratio (OR) = 15.5; 95% confidence interval (CI) = 5.1-46.9; P = 1.3 × 10(-6) by two-tailed Fisher's exact test). In three replication studies of nonalcoholic chronic pancreatitis, we identified CEL-HYB in a total of 3.7% (42/1,122) cases and 0.7% (30/4,152) controls (OR = 5.2; 95% CI = 3.2-8.5; P = 1.2 × 10(-11); formal meta-analysis). The allele was also enriched in alcoholic chronic pancreatitis. Expression of CEL-HYB in cellular models showed reduced lipolytic activity, impaired secretion, prominent intracellular accumulation and induced autophagy. These findings implicate a new pathway distinct from the protease-antiprotease system of pancreatic acinar cells in chronic pancreatitis.

  20. Phytanic acid, a novel activator of uncoupling protein-1 gene transcription and brown adipocyte differentiation.

    PubMed Central

    Schlüter, Agatha; Barberá, Maria José; Iglesias, Roser; Giralt, Marta; Villarroya, Francesc

    2002-01-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a phytol-derived branched-chain fatty acid present in dietary products. Phytanic acid increased uncoupling protein-1 (UCP1) mRNA expression in brown adipocytes differentiated in culture. Phytanic acid induced the expression of the UCP1 gene promoter, which was enhanced by co-transfection with a retinoid X receptor (RXR) expression vector but not with other expression vectors driving peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma or a form of RXR devoid of ligand-dependent sensitivity. The effect of phytanic acid on the UCP1 gene required the 5' enhancer region of the gene and the effects of phytanic acid were mediated in an additive manner by three binding sites for RXR. Moreover, phytanic acid activates brown adipocyte differentiation: long-term exposure of brown preadipocytes to phytanic acid promoted the acquisition of the brown adipocyte morphology and caused a co-ordinate induction of the mRNAs for gene markers of brown adipocyte differentiation, such as UCP1, adipocyte lipid-binding protein aP2, lipoprotein lipase, the glucose transporter GLUT4 or subunit II of cytochrome c oxidase. In conclusion, phytanic acid is a natural product of phytol metabolism that activates brown adipocyte thermogenic function. It constitutes a potential nutritional signal linking dietary status to adaptive thermogenesis. PMID:11829740

  1. Production of Omega-3 Fatty Acid Ethyl Esters from Menhaden Oil Using Proteus vulgaris Lipase-Mediated One-Step Transesterification and Urea Complexation.

    PubMed

    Kim, Soo-Jin; Kim, Hyung Kwoun

    2016-05-01

    An organic solvent-stable lipase from Proteus vulgaris K80 was used to produce the omega-3 polyunsaturated fatty acid ethyl esters (ω-3 PUFA EEs). First, the lyophilized recombinant lipase K80 (LyoK80) was used to perform the transesterification reaction of menhaden oil and ethanol. LyoK80 produced the ω-3 PUFA EEs with a conversion yield of 82 % in the presence of 20 % water content via a three-step ethanol-feeding process; however, in a non-aqueous condition, LyoK80 produced only a slight amount of the ω-3 PUFA EEs. To enhance its reaction properties, the lipase K80 was immobilized on a hydrophobic bead to derive ImmK80; the biochemical properties and substrate specificity of ImmK80 are similar to those of LyoK80. ImmK80 was then used to produce ω-3 PUFA EEs in accordance with the same transesterification reaction. Unlike LyoK80, ImmK80 achieved a high ω-3 PUFA EE conversion yield of 86 % under a non-aqueous system via a one-step ethanol-feeding reaction. The ω-3 PUFA EEs were purified up to 92 % using a urea complexation method.

  2. Lipase catalyzed synthesis of neutral glycerides rich in micronutrients from rice bran oil fatty acid distillate.

    PubMed

    Nandi, Sumit; Gangopadhyay, Sarbani; Ghosh, Santinath

    2008-01-01

    Neutral glycerides with micronutrients like sterols, tocopherols and squalene may be prepared from cheap raw material like rice bran oil fatty acid distillate (RBO FAD). RBO FAD is an important byproduct of vegetable oil refining industries in the physical refining process. Glycerides like triacylglycerols (TAG), diacylglycerols (DAG) and monoacylglycerols (MAG) containing significant amounts of unsaponifiable matter like sterols, tocopherols and hydrocarbons (mainly squalene) may certainly be considered as novel functional food ingredients. Fatty acids present in RBO FAD were esterified with glycerol of varying amount (1:0.33, 1:0.5, 1:1 and 1:1.5 of FAD : glycerol ratio) for 8 h using non-specific enzyme NS 40013 (Candida antartica). After esterification the product mixture containing mono, di- and triglycerides was purified by molecular distillation to remove excess free fatty acids and also other volatile undesirable components. The purified product containing sterols, tocopherols and squalene can be utilized in various food formulations.

  3. Marine invertebrate lipases: Comparative and functional genomic analysis.

    PubMed

    Rivera-Perez, Crisalejandra

    2015-09-01

    Lipases are key enzymes involved in lipid digestion, storage and mobilization of reserves during fasting or heightened metabolic demand. This is a highly conserved process, essential for survival. The genomes of five marine invertebrate species with distinctive digestive system were screened for the six major lipase families. The two most common families in marine invertebrates, the neutral an acid lipases, are also the main families in mammals and insects. The number of lipases varies two-fold across analyzed genomes. A high degree of orthology with mammalian lipases was observed. Interestingly, 19% of the marine invertebrate lipases have lost motifs required for catalysis. Analysis of the lid and loop regions of the neutral lipases suggests that many marine invertebrates have a functional triacylglycerol hydrolytic activity as well as some acid lipases. A revision of the expression profiles and functional activity on sequences in databases and scientific literature provided information regarding the function of these families of enzymes in marine invertebrates.

  4. Inhibition of Gastric Lipase as a Mechanism for Body Weight and Plasma Lipids Reduction in Zucker Rats Fed a Rosemary Extract Rich in Carnosic Acid

    PubMed Central

    Romo Vaquero, María; Yáñez-Gascón, María-Josefa; García Villalba, Rocío; Larrosa, Mar; Fromentin, Emilie; Ibarra, Alvin; Roller, Marc; Tomás-Barberán, Francisco; Espín de Gea, Juan Carlos; García-Conesa, María-Teresa

    2012-01-01

    Background Rosemary (Rosmarinus officinalis L.) extracts (REs) exhibit hepatoprotective, anti-obesity and anti-inflammatory properties and are widely used in the food industry. REs are rich in carnosic acid (CA) and carnosol which may be responsible for some of the biological activities of REs. The aim of this study was to investigate whether inhibition of lipase activity in the gut may be a mechanism by which a RE enriched in CA (40%) modulates body weight and lipids levels in a rat model of metabolic disorders and obesity. Methods and Principal Findings RE was administered for 64 days to lean (fa/+) and obese (fa/fa) female Zucker rats and body weight, food intake, feces weight and blood biochemical parameters were monitored throughout the study. Lipase activity (hydrolysis of p-nitrophenylbutyrate) was measured in the gastrointestinal tract at the end of the study and the contents of CA, carnosol and methyl carnosate were also determined. Sub-chronic administration of RE moderately reduced body weight gain in both lean and obese animals but did not affect food intake. Serum triglycerides, cholesterol and insulin levels were also markedly decreased in the lean animals supplemented with RE. Importantly, lipase activity was significantly inhibited in the stomach of the RE-supplemented animals where the highest content of intact CA and carnosol was detected. Conclusions Our results confirm that long-term administration of RE enriched in CA moderates weight gain and improves the plasma lipids profile, primarily in the lean animals. Our data also suggest that these effects may be caused, at least in part, by a significant inhibition of gastric lipase and subsequent reduction in fat absorption. PMID:22745826

  5. Comparative genomics and experimental promoter analysis reveal functional liver-specific elements in mammalian hepatic lipase genes

    PubMed Central

    van Deursen, Diederik; Botma, Gert-Jan; Jansen, Hans; Verhoeven, Adrie JM

    2007-01-01

    Background Mammalian hepatic lipase (HL) genes are transcribed almost exclusively in hepatocytes. The basis for this liver-restricted expression is not completely understood. We hypothesized that the responsible cis-acting elements are conserved among mammalian HL genes. To identify these elements, we made a genomic comparison of 30 kb of 5'-flanking region of the rat, mouse, rhesus monkey, and human HL genes. The in silico data were verified by promoter-reporter assays in transfected hepatoma HepG2 and non-hepatoma HeLa cells using serial 5'-deletions of the rat HL (-2287/+9) and human HL (-685/+13) promoter region. Results Highly conserved elements were present at the proximal promoter region, and at 14 and 22 kb upstream of the transcriptional start site. Both of these upstream elements increased transcriptional activity of the human HL (-685/+13) promoter region 2–3 fold. Within the proximal HL promoter region, conserved clusters of transcription factor binding sites (TFBS) were identified at -240/-200 (module A), -80/-40 (module B), and -25/+5 (module C) by the rVista software. In HepG2 cells, modules B and C, but not module A, were important for basal transcription. Module B contains putative binding sites for hepatocyte nuclear factors HNF1α. In the presence of module B, transcription from the minimal HL promoter was increased 1.5–2 fold in HepG2 cells, but inhibited 2–4 fold in HeLa cells. Conclusion Our data demonstrate that searching for conserved non-coding sequences by comparative genomics is a valuable tool in identifying candidate enhancer elements. With this approach, we found two putative enhancer elements in the far upstream region of the HL gene. In addition, we obtained evidence that the -80/-40 region of the HL gene is responsible for enhanced HL promoter activity in hepatoma cells, and for silencing HL promoter activity in non-liver cells. PMID:17428321

  6. Hormone-sensitive lipase activity and triacylglycerol hydrolysis are decreased in rat soleus muscle by cyclopiazonic acid.

    PubMed

    Watt, Matthew J; Steinberg, Gregory R; Heigenhauser, G J F; Spriet, Lawrence L; Dyck, David J

    2003-08-01

    Cyclopiazonic acid (CPA) is a sarcoplasmic reticulum Ca2+-ATPase inhibitor that increases intracellular calcium. The role of CPA in regulating the oxidation and esterification of palmitate, the hydrolysis of intramuscular lipids, and the activation of hormone-sensitive lipase (HSL) was examined in isolated rat soleus muscles at rest. CPA (40 micro M) was added to the incubation medium to levels that resulted in subcontraction increases in muscle tension, and lipid metabolism was monitored using the previously described pulse-chase procedure. CPA did not alter the cellular energy state, as reflected by similar muscle contents of ATP, phosphocreatine, free AMP, and free ADP. CPA increased total palmitate uptake into soleus muscle (11%, P < 0.05) and was without effect on palmitate oxidation. This resulted in greater esterification of exogenous palmitate into the triacylglycerol (18%, P < 0.05) and phospholipid (89%, P < 0.05) pools. CPA decreased (P < 0.05) intramuscular lipid hydrolysis, and this occurred as a result of reduced HSL activity (20%, P < 0.05). Incubation of muscles with 3 mM caffeine, which is also known to increase Ca2+ without affecting the cellular energy state, reduced HSL activity (24%, P < 0.05). KN-93, a calcium/calmodulin-dependent kinase inhibitor (CaMKII), blocked the effects of CPA and caffeine, and HSL activity returned to preincubation values. The results of the present study demonstrate that CPA simultaneously decreases intramuscular triacylglycerol (IMTG) hydrolysis and promotes lipid storage in isolated, intact soleus muscle. The decreased IMTG hydrolysis is likely mediated by reduced HSL activity, possibly via the CaMKII pathway. These responses are not consistent with the increased hydrolysis and decreased esterification observed in contracting muscle when substrate availability and the hormonal milieu are tightly controlled. It is possible that more powerful signals or a higher [Ca2+] may override the lipid-storage effect of the CPA

  7. (4-Phenoxyphenyl)tetrazolecarboxamides and related compounds as dual inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL).

    PubMed

    Holtfrerich, Angela; Hanekamp, Walburga; Lehr, Matthias

    2013-05-01

    Inhibitors of the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), the principle enzymes involved in the degradation of endogenous cannabinoids like anandamide and 2-arachidonoylglycerol, have potential utility in the treatment of several disorders including pain, inflammation and anxiety. In the present study, the effectivity and selectivity of eight known FAAH and MAGL inhibitors for inhibition of the appropriate enzyme were measured applying in vitro assays, which work under comparable conditions. Because many of the known FAAH and MAGL inhibitors simply consist of a lipophilic scaffold to which a heterocyclic system is bound, furthermore, different heterocyclic structures were evaluated for their contribution to enzyme inhibition by attaching them to the same lipophilic backbone, namely 4-phenoxybenzene. One of the most active compound synthesized during this investigation was N,N-dimethyl-5-(4-phenoxyphenyl)-2H-tetrazole-2-carboxamide (16) (IC50 FAAH: 0.012 μM; IC50 MAGL: 0.028 μM). This inhibitor was systematically modified in the lipophilic 4-phenoxyphenyl region. Structure-activity relationship studies revealed that the inhibitory potency against FAAH and MAGL, respectively, could still be increased by replacement of the phenoxy residue of 16 by 3-chlorophenoxy (45) or pyrrol-1-yl groups (49). Finally, the tetrazolecarboxamide 16 and some related compounds were tested for metabolic stability with rat liver S9 fractions showing that these kind of FAAH/MAGL inhibitors are readily inactivated by cleavage of the bond between the tetrazole ring and its carboxamide substituent.

  8. Molecular and enzymatic characterization of a subfamily I.4 lipase from an edible oil-degrader Bacillus sp. HH-01.

    PubMed

    Kamijo, Takashi; Saito, Akihiro; Ema, Sadaharu; Yoh, Inchi; Hayashi, Hiroko; Nagata, Ryo; Nagata, Yoshiho; Ando, Akikazu

    2011-02-01

    An edible-oil degrading bacterial strain HH-01 was isolated from oil plant gummy matter and was classified as a member of the genus Bacillus on the basis of the nucleotide sequence of the 16S rRNA gene. A putative lipase gene and its flanking regions were cloned from the strain based on its similarity to lipase genes from other Bacillus spp. The deduced product was composed of 214 amino acids and the putative mature protein, consisting of 182 amino acids, exhibited 82% amino acid sequence identity with the subfamily I.4 lipase LipA of Bacillus subtilis 168. The recombinant product was successfully overproduced as a soluble form in Escherichia coli and showed lipase activity. The gene was, therefore, designated as lipA of HH-01. HH-01 LipA was stable at pH 4-11 and up to 30°C, and its optimum pH and temperature were 8-9 and 30°C, respectively. The enzyme showed preferential hydrolysis of the 1(3)-position ester bond in trilinolein. The activity was, interestingly, enhanced by supplementing with 1 mM CoCl(2), in contrast to other Bacillus lipases. The lipA gene seemed to be constitutively transcribed during the exponential growth phase, regardless of the presence of edible oil.

  9. Incorporation of omega-3 polyunsaturated fatty acids into soybean lecithin: effect of amines and divalent cations on transesterification by lipases.

    PubMed

    Marsaoui, Nabil; Laplante, Serge; Raies, Aly; Naghmouchi, Karim

    2013-12-01

    The transesterification of soybean lecithin with methyl esters of EPA and DHA in an organic solvent (hexane) using various commercially available lipases was studied. Lipases produced by Candida antarctica, Pseudomonas fluorescens, Burkholderia cepacia, Mucor miehei, Thermomyces lanuginosus and Rhizomucor miehei were compared, in the absence or presence of histidine, arginine, urea, Ca²⁺, Mg²⁺, or a combination of urea and divalent cations (additives at 5 % of the total lipid mass). Transesterification using the R. miehei enzyme reached 11.32 and 12.30 % in the presence of Ca²⁺ or Mg²⁺ respectively, and 8.58 and 9.31 % when urea was also added. These were the greatest degrees of transesterification obtained. The results suggest the potential use of this immobilized lipase as a catalyst for interesterification reactions in organic solvent systems with low water content.

  10. Continuous lipase-catalyzed esterification of soybean fatty acids under ultrasound irradiation.

    PubMed

    Trentin, Claudia M; Scherer, Robison P; Dalla Rosa, C; Treichel, H; Oliveira, D; Oliveira, J Vladimir

    2014-05-01

    This work investigates the continuous production of alkyl esters from soybean fatty acid (FA) charges using immobilized Novozym 435 as catalyst. The experiments were performed in a packed-bed bioreactor evaluating the effects of FA charge to alcohol (methanol and ethanol) molar ratio, from 1:1 to 1:6, substrate flow rate in the range of 0.5-2.5 mL/min and output irradiation power up to 154 W, at fixed temperature of 65 °C, on the reaction conversion. Results showed that almost complete conversions to fatty acids ethyl esters were achieved at mild ultrasonic power (61.6 W), FA to ethanol molar ratio of 1:6, operating temperature (65 °C) and remained nearly constant for long-term reactions without negligible enzyme activity losses.

  11. Expression of a lipid-inducible, self-regulating form of Yarrowia lipolytica lipase LIP2 in Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Yarrowia lipolytica lipase 2 gene (YlLIP2) was cloned into galactose- and fatty acid-inducible Saccharomyces cerevisiae expression vectors and used to generate yeast strains that secrete active LIP2 enzyme activity, as evidenced by results from gene expression analysis and tributyrin turbidity c...

  12. Cloning, sequencing and characterization of lipase from a polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipase gene (lip) of a biodegradable polyhydroxyalkanoate- (PHA-) synthesizing bacterium P. resinovorans NRRL B-2649 was cloned, sequenced and characterized by using consensus primers and PCR-based genome walking method. The ORF of the putative Lip (314 amino acids) and its active site (Ser111, Asp...

  13. The production and characterization of a new active lipase from Acremonium alcalophilum using a plant bioreactor

    PubMed Central

    2013-01-01

    Background Microorganisms are the most proficient decomposers in nature, using secreted enzymes in the hydrolysis of lignocellulose. As such, they present the most abundant source for discovery of new enzymes. Acremonium alcalophilum is the only known cellulolytic fungus that thrives in alkaline conditions and can be cultured readily in the laboratory. Its optimal conditions for growth are 30°C and pH 9.0-9.2. The genome sequence of Acremonium alcalophilum has revealed a large number of genes encoding biomass-degrading enzymes. Among these enzymes, lipases are interesting because of several industrial applications including biofuels, detergent, food processing and textile industries. Results We identified a lipA gene in the genome sequence of Acremonium alcalophilum, encoding a protein with a predicted lipase domain with weak sequence identity to characterized enzymes. Unusually, the predicted lipase displays ≈ 30% amino acid sequence identity to both feruloyl esterase and lipase of Aspergillus niger. LipA, when transiently produced in Nicotiana benthamiana, accumulated to over 9% of total soluble protein. Plant-produced recombinant LipA is active towards p-nitrophenol esters of various carbon chain lengths with peak activity on medium-chain fatty acid (C8). The enzyme is also highly active on xylose tetra-acetate and oat spelt xylan. These results suggests that LipA is a novel lipolytic enzyme that possesses both lipase and acetylxylan esterase activity. We determined that LipA is a glycoprotein with pH and temperature optima at 8.0 and 40°C, respectively. Conclusion Besides being the first heterologous expression and characterization of a gene coding for a lipase from A. alcalophilum, this report shows that LipA is very versatile exhibiting both acetylxylan esterase and lipase activities potentially useful for diverse industry sectors, and that tobacco is a suitable bioreactor for producing fungal proteins. PMID:23915965

  14. Mutations in the lipase-H gene causing autosomal recessive hypotrichosis and woolly hair.

    PubMed

    Mehmood, Sabba; Jan, Abid; Muhammad, Dost; Ahmad, Farooq; Mir, Hina; Younus, Muhammad; Ali, Ghazanfar; Ayub, Muhammad; Ansar, Muhammad; Ahmad, Wasim

    2015-08-01

    Hypotrichosis is characterised by sparse scalp hair, sparse to absent eyebrows and eyelashes, or absence of hair from other parts of the body. In few cases, the condition is associated with tightly curled woolly scalp hair. The present study searched for disease-causing sequence variants in the genes in four Pakistani lineal consanguineous families exhibiting features of hypotrichosis or woolly hair. A haplotype analysis established links in all four families to the LIPH gene located on chromosome 3q27.2. Subsequently, sequencing LIPH identified a novel non-sense mutation (c.328C>T; p.Arg110*) in one and a previously reported 2-bp deletion mutation (c.659_660delTA, p.Ile220ArgfsX29) in three other families.

  15. Biochemical characterization of Yarrowia lipolytica LIP8, a secreted lipase with a cleavable C-terminal region.

    PubMed

    Kamoun, Jannet; Schué, Mathieu; Messaoud, Wala; Baignol, Justine; Point, Vanessa; Mateos-Diaz, Eduardo; Mansuelle, Pascal; Gargouri, Youssef; Parsiegla, Goetz; Cavalier, Jean-François; Carrière, Frédéric; Aloulou, Ahmed

    2015-02-01

    Yarrowia lipolytica is a lipolytic yeast possessing 16 paralog genes coding for lipases. Little information on these lipases has been obtained and only the major secreted lipase, namely YLLIP2, had been biochemically and structurally characterized. Another secreted lipase, YLLIP8, was isolated from Y. lipolytica culture medium and compared with the recombinant enzyme produced in Pichia pastoris. N-terminal sequencing showed that YLLIP8 is produced in its active form after the cleavage of a signal peptide. Mass spectrometry analysis revealed that YLLIP8 recovered from culture medium lacks a C-terminal part of 33 amino acids which are present in the coding sequence. A 3D model of YLLIP8 built from the X-ray structure of the homologous YLLIP2 lipase shows that these truncated amino acids in YLLIP8 belong to an additional C-terminal region predicted to be mainly helical. Western blot analysis shows that YLLIP8 C-tail is rapidly cleaved upon enzyme secretion since both cell-bound and culture supernatant lipases lack this extension. Mature recombinant YLLIP8 displays a true lipase activity on short-, medium- and long-chain triacylglycerols (TAG), with an optimum activity at alkaline pH on medium chain TAG. It has no apparent regioselectivity in TAG hydrolysis, thus generating glycerol and FFAs as final lipolysis products. YLLIP8 properties are distinct from those of the 1,3-regioselective YLLIP2, acting optimally at acidic pH. These lipases are tailored for complementary roles in fatty acid uptake by Y. lipolytica.

  16. Expression of an Organic Solvent Stable Lipase from Staphylococcus epidermidis AT2

    PubMed Central

    Rahman, Raja Noor Zaliha Raja Abd.; Kamarudin, Nor Hafizah Ahmad; Yunus, Jalimah; Salleh, Abu Bakar; Basri, Mahiran

    2010-01-01

    An organic solvent tolerant lipase gene from Staphylococcus epidermidis AT2 was successfully cloned and expressed with pTrcHis2 in E. coli TOP10. Sequence analysis revealed an open reading frame (ORF) of 1,933 bp in length which coded for a polypeptide of 643 amino acid residues. The polypeptide comprised of a signal peptide (37 amino acids), pro-peptide and a mature protein of 390 amino acids. Expression of AT2 lipase resulted in an 18-fold increase in activity, upon the induction of 0.6 mM IPTG after a 10 h incubation period. Interestingly, this lipase was stable in various organic solvents (25% (v/v), mainly toluene, octanol, p-xylene and n-hexane). Literature shows that most of the organic solvent stable bacterial lipases were produced by Pseudomonas sp. and Bacillus sp., but very few from Staphylococcus sp. This lipase demonstrates great potential to be employed in various industrial applications. PMID:20957088

  17. Molecular characterization of a proteolysis-resistant lipase from Bacillus pumilus SG2.

    PubMed

    Sangeetha, R; Arulpandi, I; Geetha, A

    2014-01-01

    Proteolysis-resistant lipases can be well exploited by industrial processes which employ both lipase and protease as biocatalysts. A proteolysis resistant lipase from Bacillus pumilus SG2 was isolated, purified and characterized earlier. The lipase was resistant to native and commercial proteases. In the present work, we have characterized the lip gene which encodes the proteolysis-resistant lipase from Bacillus pumilus SG2. The parameters and structural details of lipase were analysed. The lip gene consisted of 650 bp. The experimental molecular weight of SG2 lipase was nearly double that of its theoretical molecular weight, thus suggesting the existence of the functional lipase as a covalent dimer. The proteolytic cleavage sites of the lipase would have been made inaccessible by dimerisation, thus rendering the lipase resistant to protease.

  18. A lipase with broad solvent stability from Burkholderia cepacia RQ3: isolation, characteristics and application for chiral resolution of 1-phenylethanol.

    PubMed

    Xie, Chengjia; Wu, Bin; Qin, Song; He, Bingfang

    2016-01-01

    Using both polar and low polar organic solvents (DMSO and toluene) as screening stress, a solvent-stable bacterium Burkholderia cepacia RQ3 was newly isolated. An organic solvent-stable lipase from strain RQ3 was purified in a single step with 50.1% recovery by hydrophobic chromatography. The purified lipase was homogenous on SDS-PAGE and had an apparent molecular mass of 33 kDa. The gene of lipase RQ3 with an open reading frame of 1095 bp encoding 364-amino acid residues was cloned. The optimal pH and temperature for lipase activity were 9.0 and 40 °C. The lipase was stable in a wide pH range of 6.0-10.0 and at temperature below 50 °C. Strikingly, all the tested hydrophilic and hydrophobic organic solvents significantly extended the half-life of lipase RQ3 compared with that in a solvent-free system, which indicated that lipase RQ3 showed a broad solvent tolerance to various organic solvents. The lipase demonstrated excellent enantioselective transesterification toward the (S)-1-phenylethanol with a theoretical conversion yield of 50% and ee p of 99.9%, which made it an exploitable biocatalyst for organic synthesis and pharmaceutical industries.

  19. Amino acid regulation of gene expression.

    PubMed Central

    Fafournoux, P; Bruhat, A; Jousse, C

    2000-01-01

    The impact of nutrients on gene expression in mammals has become an important area of research. Nevertheless, the current understanding of the amino acid-dependent control of gene expression is limited. Because amino acids have multiple and important functions, their homoeostasis has to be finely maintained. However, amino-acidaemia can be affected by certain nutritional conditions or various forms of stress. It follows that mammals have to adjust several of their physiological functions involved in the adaptation to amino acid availability by regulating the expression of numerous genes. The aim of the present review is to examine the role of amino acids in regulating mammalian gene expression and protein turnover. It has been reported that some genes involved in the control of growth or amino acid metabolism are regulated by amino acid availability. For instance, limitation of several amino acids greatly increases the expression of the genes encoding insulin-like growth factor binding protein-1, CHOP (C/EBP homologous protein, where C/EBP is CCAAT/enhancer binding protein) and asparagine synthetase. Elevated mRNA levels result from both an increase in the rate of transcription and an increase in mRNA stability. Several observations suggest that the amino acid regulation of gene expression observed in mammalian cells and the general control process described in yeast share common features. Moreover, amino acid response elements have been characterized in the promoters of the CHOP and asparagine synthetase genes. Taken together, the results discussed in the present review demonstrate that amino acids, by themselves, can, in concert with hormones, play an important role in the control of gene expression. PMID:10998343

  20. The surface-associated protein of Staphylococcus saprophyticus is a lipase.

    PubMed

    Sakinc, Türkan; Woznowski, Magdalena; Ebsen, Michael; Gatermann, Sören G

    2005-10-01

    Staphylococcus saprophyticus surface-associated protein (Ssp) was the first surface protein described for this organism. Ssp-positive strains display a fuzzy layer of surface-associated material in electron micrographs, whereas Ssp-negative strains appear to be smooth. The physiologic function of Ssp, however, has remained elusive. To clone the associated gene, we determined the N-terminal sequence, as well as an internal amino acid sequence, of the purified protein. We derived two degenerate primers from these peptide sequences, which we used to identify the ssp gene from genomic DNA of S. saprophyticus 7108. The gene was cloned by PCR techniques and was found to be homologous to genes encoding staphylococcal lipases. In keeping with this finding, strains 7108 and 9325, which are Ssp positive, showed lipase activity on tributyrylglycerol agar plates, whereas the Ssp-negative strain CCM883 did not. Association of enzyme activity with the cloned DNA was proven by introducing the gene into Staphylococcus carnosus TM300. When wild-type strain 7108 and an isogenic mutant were analyzed by transmission electron microscopy, strain 7108 exhibited the fuzzy surface layer, whereas the mutant appeared to be smooth. Lipase activity and the surface appendages could be restored by reintroduction of the cloned gene into the mutant. Experiments using immobilized collagen type I did not provide evidence for the involvement of Ssp in adherence to this matrix protein. Our experiments thus provided evidence that Ssp is a surface-associated lipase of S. saprophyticus.

  1. Organic Solvent Tolerant Lipases and Applications

    PubMed Central

    Kanwar, Shamsher S.

    2014-01-01

    Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s) could be performed in water-restricted organic media as organic solvent(s) not only improve(s) the solubility of substrate and reactant in reaction mixture but also permit(s) the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented. PMID:24672342

  2. A study of the relationship between bile salts, bile salt-stimulated lipase, and free fatty acids in breast milk: normal infants and those with breast milk jaundice.

    PubMed

    Forsyth, J S; Donnet, L; Ross, P E

    1990-08-01

    Breast milk jaundice has been reported to be associated with increased lipase activity and elevated free fatty acid (FFA) concentrations within breast milk. We have previously shown that bile salts are present in small concentrations in breast milk and the aim of this study was to examine the relationship of bile salt-stimulated lipase (BSSL) activity, FFA concentration, and bile salt concentration in milks of normal infants and the milk of infants with breast milk jaundice. Mothers of healthy newborn infants were recruited in the early newborn period and 42 provided breast milk samples at 2 weeks, 30 at 6 weeks, 16 at 10 weeks, and 13 at 14 weeks postnatally. We initially studied the effect of lactation on bile salts and found there was a significant decline in both cholate and chenodeoxycholate levels with duration of lactation (p less than 0.05). There was also a significant fall in BSSL activity with duration of lactation (p less than 0.05), but no correlation was found between BSSL activity and bile salt concentration. FFA concentrations were similar throughout lactation and were not related to either BSSL activity or bile salt concentration. There was a significant increase in the concentration of cholate and the cholate-to-chenodeoxycholate ratio in the milks of 12 infants with breast milk jaundice compared with normal milks, the BSSL activity was similar and contrary to previous reports, the FFA concentration was not increased in the milks of infants with breast milk jaundice.

  3. Inhibitory activity of chlorogenic acids in decaffeinated green coffee beans against porcine pancreas lipase and effect of a decaffeinated green coffee bean extract on an emulsion of olive oil.

    PubMed

    Narita, Yusaku; Iwai, Kazuya; Fukunaga, Taiji; Nakagiri, Osamu

    2012-01-01

    A decaffeinated green coffee bean extract (DGCBE) inhibited porcine pancreas lipase (PPL) activity with an IC50 value of 1.98 mg/mL. Six different chlorogenic acids in DGCBE contributed to this PPL inhibition, accounting for 91.8% of the inhibitory activity. DGCBE increased the droplet size and decreased the specific surface area of an olive oil emulsion.

  4. Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome.

    PubMed

    Privé, Florence; Newbold, C Jamie; Kaderbhai, Naheed N; Girdwood, Susan G; Golyshina, Olga V; Golyshin, Peter N; Scollan, Nigel D; Huws, Sharon A

    2015-07-01

    Improving the health beneficial fatty acid content of meat and milk is a major challenge requiring an increased understanding of rumen lipid metabolism. In this study, we isolated and characterized rumen bacterial lipases/esterases using functional metagenomics. Metagenomic libraries were constructed from DNA extracted from strained rumen fluid (SRF), solid-attached bacteria (SAB) and liquid-associated rumen bacteria (LAB), ligated into a fosmid vector and subsequently transformed into an Escherichia coli host. Fosmid libraries consisted of 7,744; 8,448; and 7,680 clones with an average insert size of 30 to 35 kbp for SRF, SAB and LAB, respectively. Transformants were screened on spirit blue agar plates containing tributyrin for lipase/esterase activity. Five SAB and four LAB clones exhibited lipolytic activity, and no positive clones were found in the SRF library. Fosmids from positive clones were pyrosequenced and twelve putative lipase/esterase genes and two phospholipase genes retrieved. Although the derived proteins clustered into diverse esterase and lipase families, a degree of novelty was seen, with homology ranging from 40 to 78% following BlastP searches. Isolated lipases/esterases exhibited activity against mostly short- to medium-chain substrates across a range of temperatures and pH. The function of these novel enzymes recovered in ruminal metabolism needs further investigation, alongside their potential industrial uses.

  5. Lipase A gene transcription in Pseudomonas alcaligenes is under control of RNA polymerase σ54 and response regulator LipR.

    PubMed

    Krzeslak, Joanna; Papaioannou, Evelina; van Merkerk, Ronald; Paal, Krisztina A; Bischoff, Rainer; Cool, Robbert H; Quax, Wim J

    2012-04-01

    Initial analysis has shown that the transcription of the Pseudomonas alcaligenes lipA gene, which encodes an extracellular lipase, is governed by the LipQR two-component system consisting of sensor kinase LipQ and DNA-binding regulator LipR. This study further analyzes lipA gene expression and demonstrates that the RNA polymerase σ54 is involved in the transcription. Purified LipR has an ATPase activity that is stimulated by the presence of lipA promoter DNA. Surface plasmon resonance measurements with purified and in vitro phosphorylated LipR reveal that phosphorylation of LipR is required for specific binding to the upstream activating sequence of the lipA promoter. Furthermore, mass spectrometric analysis combined with mutagenesis demonstrates that Asp52 is the phosphorylated aspartate. This analysis exposes LipR as a prominent member of the growing family of bacterial enhancer-binding proteins.

  6. Molecular cloning and heterologous expression of a true lipase in Pichia pastoris isolated via a metagenomic approach.

    PubMed

    Zheng, Jianhua; Liu, Liguo; Liu, Cuina; Jin, Qi

    2012-01-01

    Lipases are important enzymes for various biotechnological applications. By using functional expression screening, lipZ03, a novel lipase gene, was isolated from a soil-derived metagenomic library. The gene was supposed to encode a protein of 617 amino acids with a C-terminal targeting signal region and four potential N-linked glycosylation sites. The protein sequence shared a conserved GXSXG motif (X represents any amino acid residue) with other microbial lipases. Gene lipZ03 was expressed in Pichia pastoris and the molecular weight was estimated to be approximately 65 kDa by electrophoresis. The optimum reaction temperature and pH value for LipZ03 was 50°C and 9.0, respectively. The enzyme was highly stable in the temperature range of 40-60°C and under alkaline conditions (pH 8-10). Lipolytic activity was significantly enhanced by Ca(2+) and Mg(2+) ions, but dramatically inhibited by Cu(2+), Ni(2+) and Hg(2+) ions and EDTA. The purified enzyme preferentially hydrolyzed relatively long-chain triacylglycerols and was a true lipase rather than an esterase. Using a multi-stepwise methanol supply, the purified LipZ03 achieved a conversion yield of biodiesel production up to 74% after 36 h. Some interesting characteristics described here showed that the recombinant lipase may have potential to be a useful enzyme in industrial applications.

  7. In vitro stability evaluation of coated lipase

    PubMed Central

    Liu, Lu Jie; Zhu, Jia; Wang, Bin; Cheng, Chu; Du, Yong Jie; Wang, Min Qi

    2017-01-01

    Objective The study was conducted to evaluate the stability of commercial coated lipase (CT-LIP) in vitro. Methods The capsules were tested under different conditions with a range of temperature, pH, dry heat treatment and steaming treatment, simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) in this work, respectively. Free lipase (uncoated lipase, UC-LIP) was the control group. Lipase relative activities measured in various treatments were used as a reference frame to characterize the stability. Results The lipase activities were decreased with increasing temperatures (p<0.05), and there was a markedly decline (p<0.01) in lipase comparative activities of UC-LIP at 80°C compared with CT-LIP group. Higher relative activities of lipase were observed in CT-LIP group compared with the free one under acidic ambient (pH 3 to 7) and an alkaline medium (pH 8 to 12). Residual lipase activities of CT-LIP group were increased (p<0.05) by 5.67% and 35.60% in dry heat and hydrothermal treatments, respectively. The lipase relative activity profile of CT-LIP was raised at first and dropped subsequently (p<0.05) compared with constantly reduced tendency of UC-LIP exposed to both SGF and SIF. Conclusion The results suggest that the CT-LIP possesses relatively higher stability in comparison with the UC-LIP in vitro. The CT-LIP could retain the potential property to provide sustained release of lipase and thus improved its bioavailability in the gastrointestinal tract. PMID:27507179

  8. Enzymatic Synthesis of Structured Lipids using a Novel Cold-Active Lipase from Pichia lynferdii NRRL Y-7723

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structured lipids (SL) were synthesized by the acidolysis of borage oil with caprylic acid using lipases. Six commercial lipases from different sources and a novel lipase from Pichia lynferdii NRRL Y-7723 were screened for their acidolysis activities and Lipozyme RM IM and NRRL Y-7723 lipase were s...

  9. Acylation of Antioxidant of Bamboo Leaves with Fatty Acids by Lipase and the Acylated Derivatives’ Efficiency in the Inhibition of Acrylamide Formation in Fried Potato Crisps

    PubMed Central

    Ma, Xiang; Wang, Erpei; Lu, Yuyun; Wang, Yong; Ou, Shiyi; Yan, Rian

    2015-01-01

    This study selectively acylated the primary hydroxyl groups on flavonoids in antioxidant of bamboo leaves (AOB) using lauric acid with Candida antarctica lipase B in tert-amyl-alcohol. The separation and isolation of acylated derivatives were performed using silica gel column chromatography with a mixture of dichloromethane/diethyl ether/methanol as eluents. Both thin layer chromatography and high-performance liquid chromatography analyses confirmed the high efficiency of the isolation process with the purified orientin-6″-laurate, isoorientin-6″-laurate, vitexin-6″-laurate, and isovitexin-6″-laurate that were obtained. The addition of AOB and acylated AOB reduced acrylamide formation in fried potato crisps. Results showed that 0.05% AOB and 0.05% and 0.1% acylated AOB groups significantly (p < 0.05) reduced the content of acrylamide in potato crisps by 30.7%, 44.5%, and 46.9%, respectively. PMID:26098744

  10. Acylation of Antioxidant of Bamboo Leaves with Fatty Acids by Lipase and the Acylated Derivatives' Efficiency in the Inhibition of Acrylamide Formation in Fried Potato Crisps.

    PubMed

    Ma, Xiang; Wang, Erpei; Lu, Yuyun; Wang, Yong; Ou, Shiyi; Yan, Rian

    2015-01-01

    This study selectively acylated the primary hydroxyl groups on flavonoids in antioxidant of bamboo leaves (AOB) using lauric acid with Candida antarctica lipase B in tert-amyl-alcohol. The separation and isolation of acylated derivatives were performed using silica gel column chromatography with a mixture of dichloromethane/diethyl ether/methanol as eluents. Both thin layer chromatography and high-performance liquid chromatography analyses confirmed the high efficiency of the isolation process with the purified orientin-6″-laurate, isoorientin-6″-laurate, vitexin-6″-laurate, and isovitexin-6″-laurate that were obtained. The addition of AOB and acylated AOB reduced acrylamide formation in fried potato crisps. Results showed that 0.05% AOB and 0.05% and 0.1% acylated AOB groups significantly (p < 0.05) reduced the content of acrylamide in potato crisps by 30.7%, 44.5%, and 46.9%, respectively.

  11. Lysosomal Acid Lipase Deficiency in 23 Spanish Patients: High Frequency of the Novel c.966+2T>G Mutation in Wolman Disease.

    PubMed

    Ruiz-Andrés, Carla; Sellés, Elena; Arias, Angela; Gort, Laura

    2017-02-21

    Lysosomal acid lipase (LAL) is a lysosomal key enzyme involved in the intracellular hydrolysis of cholesteryl esters and triglycerides. Patients with very low residual LAL activity present with the infantile severe form Wolman disease (WD), while patients with some residual activity develop the less severe disorder known as Cholesteryl ester storage disorder (CESD). We present the clinical, biochemical, and molecular findings of 23 Spanish patients (22 families) with LAL deficiency. We identified eight different mutations, four of them not previously reported. The novel c.966+2T>G mutation accounted for 75% of the Wolman disease alleles, and the frequent CESD associated c.894G>A mutation accounted for 55% of the CESD alleles in our cohort. Haplotype analysis showed that both mutations co-segregated with a unique haplotype suggesting a common ancestor. Our study contributes to the LAL deficiency acknowledgement with novel mutations and with high frequencies of some unknown mutations for WD.

  12. Use of a fluorescent radiolabeled triacylglycerol as a substrate for lipoprotein lipase and hepatic triglyceride lipase

    SciTech Connect

    Dousset, N.; Negre, A.; Salvayre, R.; Rogalle, P.; Dang, Q.Q.; Douste-Blazy, L.

    1988-06-01

    A fluorescent radiolabeled triacylglycerol has been synthesized by using a fluorescent fatty acid (pyrene decanoic acid) and a radiolabeled oleic acid. This analog of the natural substrate, 1(3)pyrene decanoic-2,3 (1,2)-dioleoyl-sn-glycerol, has been tested as substrate for determining lipoprotein lipase and hepatic triacylglycerol lipase activities in post-heparin plasma. Optimal conditions for the determination of the two post-heparin plasma lipases were similar to those using radiolabeled triolein. Using this substrate, both post-heparin lipases exhibited their characteristic properties (pH optimum and effect of inhibitors) and attacked external ester bonds (1 or 3) containing pyrene decanoic and oleic acids at a similar rate.

  13. Cloning and characterization of newly isolated lipase from Enterobacter sp. Bn12.

    PubMed

    Farrokh, Parisa; Yakhchali, Bagher; Karkhane, Ali Asghar

    2014-01-01

    A mesophilic Enterobacter sp. Bn12 producing an alkaline thermostable lipase was isolated from soil in Tehran, Iran. The lipase gene (ELBn12) was identified from a genomic library. Sequence analysis of the DNA fragment revealed an open reading frame of 879 bp encoding a lipase with a molecular mass of 31.3 kDa. The deduced amino acid sequence showed 96% identity with a lipase of Enterobacter sp. Ag1 and the identity of their DNA sequences was 88.9%. ELBn12 belongs to the lipase subfamily I.1 and its catalytic triad consists of Ser82, Asp237 and His259. The lipase was expressed in Escherichia coli (BL21) pLysS and partially purified by anion exchange chromatography. The maximum activity of ELBn12 was obtained at temperature of 60 °C and pH 8.0 towards tricaprylin (C8) and its specific activity was around 2900 U/mg. ELBn12 was stable within a broad pH range from 6.0 to 11.0. The enzyme showed high stability in both polar and nonpolar organic solvents at 50% (v/v). The lipase activity was enhanced in the presence of 10 mM of Ca(2+), Mg(2+) and K(+), while heavy metals (Fe(3+) and Zn(2+)) had strong inhibitory effect. ELBn12 showed high activity in the presence of 1% (w/v) nonionic surfactants, however ionic surfactants inhibited the lipolytic activity. ELBn12 characteristics show that it has a potential to be used in various industrial processes.

  14. Cloning and characterization of newly isolated lipase from Enterobacter sp. Bn12

    PubMed Central

    Farrokh, Parisa; Yakhchali, Bagher; Karkhane, Ali Asghar

    2014-01-01

    A mesophilic Enterobacter sp. Bn12 producing an alkaline thermostable lipase was isolated from soil in Tehran, Iran. The lipase gene (ELBn12) was identified from a genomic library. Sequence analysis of the DNA fragment revealed an open reading frame of 879 bp encoding a lipase with a molecular mass of 31.3 kDa. The deduced amino acid sequence showed 96% identity with a lipase of Enterobacter sp. Ag1 and the identity of their DNA sequences was 88.9%. ELBn12 belongs to the lipase subfamily I.1 and its catalytic triad consists of Ser82, Asp237 and His259. The lipase was expressed in Escherichia coli (BL21) pLysS and partially purified by anion exchange chromatography. The maximum activity of ELBn12 was obtained at temperature of 60 °C and pH 8.0 towards tricaprylin (C8) and its specific activity was around 2900 U/mg. ELBn12 was stable within a broad pH range from 6.0 to 11.0. The enzyme showed high stability in both polar and nonpolar organic solvents at 50% (v/v). The lipase activity was enhanced in the presence of 10 mM of Ca2+, Mg2+ and K+, while heavy metals (Fe3+ and Zn2+) had strong inhibitory effect. ELBn12 showed high activity in the presence of 1% (w/v) nonionic surfactants, however ionic surfactants inhibited the lipolytic activity. ELBn12 characteristics show that it has a potential to be used in various industrial processes. PMID:25242958

  15. Expression, purification and characterization of a functional, recombinant, cold-active lipase (LipA) from psychrotrophic Yersinia enterocolitica.

    PubMed

    Ji, Xiuling; Li, Shan; Wang, Baoqiang; Zhang, Qi; Lin, Lianbing; Dong, Zhiyang; Wei, Yunlin

    2015-11-01

    A novel cold-active lipase gene encoding 294 amino acid residues was obtained from the Yersinia enterocolitica strain KM1. Sequence alignment and phylogenetic analysis revealed that this novel lipase is a new member of the bacterial lipase family I.1. The lipase shares the conserved GXSXG motif and catalytic triad Ser85-Asp239-His261. The recombinant protein LipA was solubly and heterogeneously expressed in Escherichia coli, purified by Ni-affinity chromatography, and then characterized. LipA was active over a broad range spanning 15-60°C with an optimum activity at 25°C and across a wide pH range from 5.0 to 11.0 with an optimum activity at pH 7.5. The molecular weight was estimated to be 34.2 KDa. The lipase could be activated by Mg(2+) and a low concentration (10%) of ethanol, dimethyl sulfoxide, methanol and acetonitrile, whereas it was strongly inhibited by Zn(2+), Cu(2+) and Mn(2+). This cold-active lipase may be a good candidate for detergents and biocatalysts at low temperature.

  16. Production of Truncated Candida antarctica Lipase B Gene Using Automated PCR Gene Assembly Protocol and Expression in Yeast for use in Ethanol and Biodiesel Production.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An improved column-based process for production of biodiesel was developed using a column containing a strongly basic anion-exchange resin in sequence with a column containing a resin to which a lipase biocatalyst is bound. Currently most biodiesel is produced by transesterification of triglyceride...

  17. Streptozotocin-Induced Diabetes Decreases Mammary Gland Lipoprotein Lipase Activity and Messenger Ribonucleic Acid in Pregnant and Nonpregnant Rats

    PubMed Central

    Blanco-Dolado, Laura; Martín-Hidalgo, Antonia; Herrera, Emilio

    2002-01-01

    Diabetes mellitus is associated with a reduction of lipoprotein lipase (LPL) activity in adipose tissue and development of hypertriglyceridemia. To determine how a condition of severe insulin deficiency affects mammary gland LPL activity and mRNA expression during late pregnancy, streptozotocin (STZ) treated (40 mg/kg) and non-treated (control) virgin and 20 day pregnant rats were studied. In control rats, both LPL activity and mRNA were higher in pregnant than in virgin rats. When compared to control rats, STZ-treated rats, either pregnant or virgin, showed decreased LPL activity and mRNA content. Furthermore, mammary gland LPL activity was linearly correlated with mRNA content, and either variable was linearly correlated with plasma insulin levels. Thus, insulin deficiency impairs the expression of LPL in mammary glands, revealing the role of insulin as a modulator of the enzyme at the mRNA expression level. PMID:11900280

  18. A spectrophotometric assay for lipase activity utilizing immobilized triacylglycerols.

    PubMed

    Safarík, I

    1991-01-01

    New substrates for the determination of lipase activity have been developed. Triacylglycerols were immobilized by adsorption on an appropriate carrier or adsorbent yielding a lipase substrate in a powder form. The adsorbed triacylglycerols were easily hydrolyzed by lipases present in a reaction mixture. The released fatty acids were extracted with benzene and converted to the corresponding Cu (II) salts (copper soaps) which were measured spectrophotometrically.

  19. Comparative and functional genomics of lipases in holometabolous insects.

    PubMed

    Horne, Irene; Haritos, Victoria S; Oakeshott, John G

    2009-08-01

    Lipases have key roles in insect lipid acquisition, storage and mobilisation and are also fundamental to many physiological processes underpinning insect reproduction, development, defence from pathogens and oxidative stress, and pheromone signalling. We have screened the recently sequenced genomes of five species from four orders of holometabolous insects, the dipterans Drosophila melanogaster and Anopheles gambiae, the hymenopteran Apis mellifera, the moth Bombyx mori and the beetle Tribolium castaneum, for the six major lipase families that are also found in other organisms. The two most numerous families in the insects, the neutral and acid lipases, are also the main families in mammals, albeit not in Caenorhabditis elegans, plants or microbes. Total numbers of the lipases vary two-fold across the five insect species, from numbers similar to those in mammals up to numbers comparable to those seen in C. elegans. Whilst there is a high degree of orthology with mammalian lipases in the other four families, the great majority of the insect neutral and acid lipases have arisen since the insect orders themselves diverged. Intriguingly, about 10% of the insect neutral and acid lipases have lost motifs critical for catalytic function. Examination of the length of lid and loop regions of the neutral lipase sequences suggest that most of the insect lipases lack triacylglycerol (TAG) hydrolysis activity, although the acid lipases all have intact cap domains required for TAG hydrolysis. We have also reviewed the sequence databases and scientific literature for insights into the expression profiles and functions of the insect neutral and acid lipases and the orthologues of the mammalian adipose triglyceride lipase which has a pivotal role in lipid mobilisation. These data suggest that some of the acid and neutral lipase diversity may be due to a requirement for rapid accumulation of dietary lipids. The different roles required of lipases at the four discrete life stages of

  20. Biodegradation of waste greases and biochemical properties of a novel lipase from Pseudomonas synxantha PS1.

    PubMed

    Cai, Xianghai; Chen, Siqi; Yang, Hong; Wang, Wei; Lin, Lin; Shen, Yaling; Wei, Wei; Wei, Dong-Zhi

    2016-07-01

    A lipase-producing bacterial strain was isolated from oil-well-produced water in Shengli oilfield (Shandong province, China) and was identified as Pseudomonas synxantha by 16S rDNA sequence analysis (named Pseudomonas synxantha PS1). Strain PS1 showed a maximum lipase activity of 10.8 U/mL after culturing for 48 h at 30 °C, with lactose (4 g/L) as carbon source, tryptone (8 g/L) as nitrogen source, olive oil (0.5%, v/v) as inductor, and the initial pH 8.0. Meanwhile, the lipase gene from P. synxantha PS1 was cloned and expressed in Escherichia coli BL21 with the vector pET28a. The novel gene (lipPS1) has an open reading frame of 1425 bp and encodes a 474 aa lipase (LipPS1) sharing the most identity (87%) with the lipase in Pseudomonas fluorescens. LipPS1 preferably acted on substrates with a long chain (C10-C18) of fatty acids. The optimum pH and temperature of the recombinant enzyme were 8.0 and 40 °C, respectively, towards the optimum substrate p-nitrophenyl palmitate. The LipPS1 showed remarkable stability under alkaline conditions and was stable at pH 7.0-10.0 (retaining more than 60% activity). From the organic solvents tests, the lipase was activated by 15% (v/v) methanol (112%), 15% ethanol (127%), and 15% n-butyl alcohol (116%). LipPS1 presented strong biodegradability of waste grease; 93% of waste grease was hydrolyzed into fatty acid after 12 h at 30 °C. This is the first report of the lipase activity and lipase gene obtained from P. synxantha (including wild strain and recombinant strain) and of the recombinant LipPS1 with the detailed enzymatic properties. Also a preliminary study of the biodegradability of waste greases shows the potential value in industry applications.

  1. Characterization of the bovine gene LIPE and possible influence on fatty acid composition of meat

    PubMed Central

    Goszczynski, Daniel Estanislao; Mazzucco, Juliana Papaleo; Ripoli, María Verónica; Villarreal, Edgardo Leopoldo; Rogberg-Muñoz, Andrés; Mezzadra, Carlos Alberto; Melucci, Lilia Magdalena; Giovambattista, Guillermo

    2014-01-01

    LIPE is an intracellular neutral lipase, which is capable of hydrolyzing a variety of esters and plays a key role in the mobilization of fatty acids from diacylglycerols. The objectives of this study were to characterize the genetic polymorphism of bovine LIPE gene and to evaluate the possible association between three SNPs in the coding regions of this gene with the fatty acid composition of meat in a cattle population. Forty-three unrelated animals from different cattle breeds were re-sequenced and 21 SNPs were detected over approximately 2600 bp, five of these SNPs were novel. Three SNPs were selected, on the basis of evolutionary conservation, to perform validation and association studies in a crossbred cattle population. Our results may suggest a possible association of SNP1 with contents of oleic acid and total monounsaturated fatty acids (p < 0.01), and SNP2 and SNP3 with Heneicosylic acid content (p < 0.01), may be helpful to improve the quality of meat and improve health. PMID:25606458

  2. Genetic and biochemical characterization of a new extracellular lipase from Streptomyces cinnamomeus.

    PubMed Central

    Sommer, P; Bormann, C; Götz, F

    1997-01-01

    Streptomyces cinnamomeus Tü89 secretes a 30-kDa esterase and a 50-kDa lipase. The lipase-encoding gene, lipA, was cloned from genomic DNA into Streptomyces lividans TK23 with plasmid vector pIJ702. Two lipase-positive clones were identified; each recombinant plasmid had a 5.2-kb MboI insert that contained the complete lipA gene. The two plasmids differed in the orientation of the insert and the degree of lipolytic activity produced. The lipA gene was sequenced; lipA encodes a proprotein of 275 amino acids (29,213 Da) with a pI of 5.35. The LipA signal peptide is 30 amino acids long, and the mature lipase sequence is 245 amino acids long (26.2 kDa) and contains six cysteine residues. The conserved catalytic serine residue of LipA is in position 125. Sequence similarity of the mature lipases (29% identity, 60% similarity) was observed mainly in the N-terminal 104 amino acids with the group II Pseudomonas lipases; no similarity to the two Streptomyces lipase sequences was found. lipA was also expressed in Escherichia coli under the control of lacZ promoter. In the presence of the inducer isopropyl-beta-D-thiogalactopyranoside (IPTG), growth of the E. coli clone was severely affected, and the cells lysed in liquid medium. Lipase activity in the E. coli clone was found mainly in the pellet fraction. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, three additional protein bands of 50, 29, and 27 kDa were visible. The 27-kDa protein showed lipolytic activity and represents the mature lipase; the 29- and 50-kDa forms showed no activity and very probably represent the unprocessed form and a dimeric misfolded form, respectively. For higher expression of lipA in S. lividans, the gene was cloned next to the strong aphII promoter. In contrast to the lipA-expressing E. coli clone, S. cinnamomeus and the corresponding S. lividans clone secreted only an active protein of 50 kDa. The lipase showed highest activity with C6 and C18 triglycerides; no activity

  3. Gastric lipase: localization of the enzyme in the stomach

    SciTech Connect

    DeNigris, S.J.; Hamosh, M.; Hamosh, P.; Kasbekar, D.K.

    1986-03-05

    Isolated gastric glands prepared from human and rabbit stomach secrete lipase in response to secretagogues. They have investigated the localization of this enzyme in three species (rabbit, baboon, guinea pig). Gastric mucosa was sampled from the cardia (C), fundus-smooth (FS), fundus-ruggae (FR) and the antral area (A). Lipase activity was measured in mucosal homogenates using /sup 3/H-triolein as substrate and is expressed in units (U) = nmols free fatty acid released/min/mg wet weight. The localization of lipase is compared with that of pepsin (measured by hydrolysis of 2% hemoglobin at pH 1.8 and expressed in I.U.). Lipase is localized in a well defined area in the rabbit and is diffusely distributed in both guinea pig and baboon. The distribution of lipase and pepsin containing cells differs in all three species. The cellular origin of gastric lipase remains to be determined.

  4. The acidic domain of the endothelial membrane protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain.

    PubMed

    Mysling, Simon; Kristensen, Kristian Kølby; Larsson, Mikael; Beigneux, Anne P; Gårdsvoll, Henrik; Fong, Loren G; Bensadouen, André; Jørgensen, Thomas Jd; Young, Stephen G; Ploug, Michael

    2016-01-03

    GPIHBP1 is a glycolipid-anchored membrane protein of capillary endothelial cells that binds lipoprotein lipase (LPL) within the interstitial space and shuttles it to the capillary lumen. The LPL•GPIHBP1 complex is responsible for margination of triglyceride-rich lipoproteins along capillaries and their lipolytic processing. The current work conceptualizes a model for the GPIHBP1•LPL interaction based on biophysical measurements with hydrogen-deuterium exchange/mass spectrometry, surface plasmon resonance, and zero-length cross-linking. According to this model, GPIHBP1 comprises two functionally distinct domains: (1) an intrinsically disordered acidic N-terminal domain; and (2) a folded C-terminal domain that tethers GPIHBP1 to the cell membrane by glycosylphosphatidylinositol. We demonstrate that these domains serve different roles in regulating the kinetics of LPL binding. Importantly, the acidic domain stabilizes LPL catalytic activity by mitigating the global unfolding of LPL's catalytic domain. This study provides a conceptual framework for understanding intravascular lipolysis and GPIHBP1 and LPL mutations causing familial chylomicronemia.

  5. 13C NMR quantification of mono and diacylglycerols obtained through the solvent-free lipase-catalyzed esterification of saturated fatty acids.

    PubMed

    Fernandes, Jane Luiza Nogueira; de Souza, Rodrigo Octavio Mendonça Alves; de Vasconcellos Azeredo, Rodrigo Bagueira

    2012-06-01

    In the present investigation, we studied the enzymatic synthesis of monoacylglycerols (MAG) and diacylglycerols (DAG) via the esterification of saturated fatty acids (stearic, palmitic and an industrial residue containing 87% palmitic acid) and glycerol in a solvent-free system. Three immobilized lipases (Lipozyme RM IM, Lipozyme TL IM and Novozym 435) and different reaction conditions were evaluated. Under the optimal reaction conditions, esterifications catalyzed by Lipozyme RM IM resulted in a mixture of MAG and DAG at high conversion rates for all of the substrates. In addition, except for the reaction of industrial residue at atmospheric pressure, all of these products met the World Health Organization and European Union directives for acylglycerol mixtures for use in food applications. The products were quantified by (13)C NMR, with the aid of an external reference signal which was generated from a sealed coaxial tube filled with acetonitrile-d3. After calibrating the area of this signal using the classical external reference method, the same coaxial tube was used repeatedly to quantify the reaction products.

  6. Island Cotton Enhanced Disease Susceptibility 1 Gene Encoding a Lipase-Like Protein Plays a Crucial Role in Response to Verticillium dahliae by Regulating the SA Level and H2O2 Accumulation

    PubMed Central

    Yan, Zhang; Xingfen, Wang; Wei, Rong; Jun, Yang; Zhiying, Ma

    2016-01-01

    Cotton is one of the most economically important crops, but most cultivated varieties lack adequate innate immunity or resistance to Verticillium wilt. This results in serious losses to both yield and fiber quality. To identify the genetic resources for innate immunity and understand the pathways for pathogen defenses in this crop, here we focus on orthologs of the central Arabidopsis thaliana defense regulator Enhanced Disease Susceptibility 1 (EDS1). The full-length cDNA of GbEDS1 was obtained by screening the full-length cDNA library of Gossypium barbadense combining with RACE strategy. Its open reading frame is 1848 bp long, encoding 615 amino acid residues. Sequence analysis showed that GbEDS1 contains a conserved N-terminal lipase domain and an EDS1-specific KNEDT motif. Expression profiling indicated that the gene is induced by Verticillium dahliae as well as salicylic acid (SA) treatment. Subcellular localization assays revealed that GbEDS1 is located in the cell cytoplasm and nucleus. Overexpression of GbEDS1 in Arabidopsis dramatically up-regulated SA and H2O2 production, resulting in enhanced disease resistance to V. dahliae. Silencing of GbEDS1 in G. barbadense significantly decreased SA and H2O2 accumulation, leading to the cotton more susceptibility. Moreover, combining the gene expression results from transgenic Arabidopsis and silenced-GbEDS1 cotton, it indicated that GbEDS1 could activate GbNDR1 and GbBAK1 expression. These findings not only broaden our knowledge about the biological role of GbEDS1, but also provide new insights into the defense mechanisms of GbEDS1 against V. dahliae in cotton. PMID:28018374

  7. Identification and localization of a lipase-like acyltransferase in phenylpropanoid metabolism of tomato (Solanum lycopersicum).

    PubMed

    Teutschbein, Jenny; Gross, Wiltrud; Nimtz, Manfred; Milkowski, Carsten; Hause, Bettina; Strack, Dieter

    2010-12-03

    We have isolated an enzyme classified as chlorogenate: glucarate caffeoyltransferase (CGT) from seedlings of tomato (Solanum lycopersicum) that catalyzes the formation of caffeoylglucarate and caffeoylgalactarate using chlorogenate (5-O-caffeoylquinate) as acyl donor. Peptide sequences obtained by trypsin digestion and spectrometric sequencing were used to isolate the SlCGT cDNA encoding a protein of 380 amino acids with a putative targeting signal of 24 amino acids indicating an entry of the SlCGT into the secretory pathway. Immunogold electron microscopy revealed the localization of the enzyme in the apoplastic space of tomato leaves. Southern blot analysis of genomic cDNA suggests that SlCGT is encoded by a single-copy gene. The SlCGT cDNA was functionally expressed in Nicotiana benthamiana leaves and proved to confer chlorogenate-dependent caffeoyltransferase activity in the presence of glucarate. Sequence comparison of the deduced amino acid sequence identified the protein unexpectedly as a GDSL lipase-like protein, representing a new member of the SGNH protein superfamily. Lipases of this family employ a catalytic triad of Ser-Asp-His with Ser as nucleophile of the GDSL motif. Site-directed mutagenesis of each residue of the assumed respective SlCGT catalytic triad, however, indicated that the catalytic triad of the GDSL lipase is not essential for SlCGT enzymatic activity. SlCGT is therefore the first example of a GDSL lipase-like protein that lost hydrolytic activity and has acquired a completely new function in plant metabolism, functioning in secondary metabolism as acyltransferase in synthesis of hydroxycinnamate esters by employing amino acid residues different from the lipase catalytic triad.

  8. Endothelial lipase is a major determinant of HDL level

    SciTech Connect

    Ishida, Tatsuro; Choi, Sungshin; Kundu, Ramendra K.; Hirata, Ken-Ichi; Rubin, Edward M.; Cooper, Allen D.; Quertermous, Thomas

    2003-01-30

    lipase (44 percent identity) and hepatic lipase (41 percent identity), two well-characterized lipases that function at vascular endothelial surfaces. Critical motifs associated with lipase activity (GXSXG and the catalytic triad S169, D193, H274), and with heparin binding were strongly conserved. Interestingly, in contrast to both lipoprotein lipase and hepatic lipase, endothelial lipase has little triglyceride hydrolase activity in vitro but instead cleaves fatty acids from the sn-1 position of phosphatidylcho-line. In in vitro assays the enzyme is most active on lipids presented in HDL, although it will release fatty acids from all classes of lipoproteins. Consistent with this finding, adenovirus-mediated overexpression of endothelial lipase in LDL receptor-deficient mice reduced plasma concentrations of VLDL and LDL cholesterol by about 50 percent, whereas HDL-C decreased to almost zero in these animals. These data suggested that endothelial lipase may play a role in HDL catabolism.

  9. Activation of a bacterial lipase by its chaperone.

    PubMed Central

    Hobson, A H; Buckley, C M; Aamand, J L; Jørgensen, S T; Diderichsen, B; McConnell, D J

    1993-01-01

    The gene lipA of Pseudomonas cepacia DSM 3959 encodes a prelipase from which a signal peptide is cleaved during secretion, producing a mature extracellular lipase. Expression of lipase in several heterologous hosts depends on the presence of another gene, limA, in cis or in trans. Lipase protein has been overproduced in Escherichia coli in the presence and absence of the lipase modulator gene limA. Therefore, limA is not required for the transcription of lipA or for the translation of the lipA mRNA. However, no lipase activity is observed in the absence of limA. limA has been overexpressed and encodes a 33-kDa protein, Lim. If lipase protein is denatured in 8 M urea and the urea is removed by dialysis, lipase activity is quantitatively recovered provided Lim protein is present during renaturation. Lip and Lim proteins form a complex precipitable either by an anti-lipase or anti-Lim antibody. The Lim protein has therefore the properties of a chaperone. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7685908

  10. Expression and biochemical characterization of cold-adapted lipases from Antarctic Bacillus pumilus strains.

    PubMed

    Litantra, Ribka; Lobionda, Stefani; Yim, Joung Han; Kim, Hyung Kwoun

    2013-09-28

    Two lipase genes (bpl1 and bpl3) from Antarctic Bacillus pumilus strains were expressed in Bacillus subtilis. Both recombinant lipases BPL1 and BPL2 were secreted to the culture medium and their activities reached 3.5 U/ml and 5.0 U/ml, respectively. Their molecular masses apparent using SDS-PAGE were 23 kDa for BPL1 and 19 kDa for BPL3. Both lipases were purified to homogeneity using ammonium sulfate precipitation and HiTrap SP FF column and Superose 12 column chromatographies. The final specific activities were estimated to be 328 U/mg for BPL1 and 310 U/mg for BPL3. Both lipases displayed an optimum temperature of 35°C, similar to other mesophilic enzymes. However, they maintained as much as 70% and 80% of the maximum activities at 10°C. Accordingly, their calculated activation energy at a temperature range of 10-35°C was 5.32 kcal/mol for BPL1 and 4.26 kcal/mol for BPL3, typical of cold-adapted enzymes. The optimum pH of BPL1 and BPL3 was 8.5 and 8.0, respectively, and they were quite stable at pH 7.0-11.0, showing their strong alkaline tolerance. Both lipases had a preference toward medium chain length (C6-C10) fatty acid substrates. These results indicate the potential for the two Antarctic B. pumilus lipases as catalysts in bioorganic synthesis, food, and detergent industries.

  11. Lipase-catalyzed esterification of ferulic acid with lauryl alcohol in ionic liquids and antibacterial properties in vitro against three food-related bacteria.

    PubMed

    Shi, Yu-Gang; Wu, Yu; Lu, Xu-Yang; Ren, Yue-Ping; Wang, Qi; Zhu, Chen-Min; Yu, Di; Wang, He

    2017-04-01

    Lauryl ferulate (LF) was synthesized through lipase-catalyzed esterification of ferulic acid (FA) with lauryl alcohol in a novel ionic liquid ([(EO)-3C-im][NTf2]), and its antibacterial activities was evaluated in vitro against three food-related bacteria. [(EO)-3C-im][NTf2] was first synthesized through incorporating alkyl ether moiety into the double imidazolium ring. [(EO)-3C-im][NTf2] containing hexane was found to be the most suitable for this reaction. The effects of various parameters were studied, and the maximum yield of LF (90.1%) was obtained in the optimum reaction conditions, in [(EO)-3C-im][NTf2]/hexane (VILs:Vhexane=1:1) system, 0.08mmol/mL of FA concentration, 50mg/mL Novozym 435, 60°C. LF exhibited a stronger antibacterial activity against Gram-negative (25 mm) than Gram-positive (21.5-23.2 mm) bacteria. The lowest MIC value was seen for E. coli (1.25mM), followed by L. Monocytogenes (2.5mM) and S.aureus (5mM). The MBCs for L. Monocytogenes, S.aureus and E. coli were 10, 20 and 5mM.

  12. Cholestane-3β,5α,6β-triol: high levels in Niemann-Pick type C, cerebrotendinous xanthomatosis, and lysosomal acid lipase deficiency.

    PubMed

    Pajares, Sonia; Arias, Angela; García-Villoria, Judit; Macías-Vidal, Judit; Ros, Emilio; de las Heras, Javier; Girós, Marisa; Coll, Maria J; Ribes, Antonia

    2015-10-01

    Niemann-Pick type C (NPC) is a progressive neurodegenerative disease characterized by lysosomal/endosomal accumulation of unesterified cholesterol and glycolipids. Recent studies have shown that plasma cholestane-3β,5α,6β-triol (CT) and 7-ketocholesterol (7-KC) could be potential biomarkers for the diagnosis of NPC patients. We aimed to know the sensitivity and specificity of these biomarkers for the diagnosis of NPC compared with other diseases that can potentially lead to oxysterol alterations. We studied 107 controls and 122 patients including 16 with NPC, 3 with lysosomal acid lipase (LAL) deficiency, 8 with other lysosomal diseases, 5 with galactosemia, 11 with cerebrotendinous xanthomatosis (CTX), 3 with Smith-Lemli-Opitz, 14 with peroxisomal biogenesis disorders, 19 with unspecific hepatic diseases, 13 with familial hypercholesterolemia, and 30 with neurological involvement and no evidence of an inherited metabolic disease. CT and 7-KC were analyzed by HPLC-ESI-MS/MS as mono-dimethylglycine derivatives. Levels of 7-KC were high in most of the studied diseases, whereas those of CT were only high in NPC, LAL, and CTX patients. Consequently, although CT is a sensitive biomarker of NPC disease, including those cases with doubtful filipin staining, it is not specific. 7-KC is a very unspecific biomarker.

  13. The near-ideal catalytic property of Candida antarctica lipase A to highly concentrate n-3 polyunsaturated fatty acids in monoacylglycerols via one-step ethanolysis of triacylglycerols.

    PubMed

    He, Yongjin; Li, Jingbo; Kodali, Sitharam; Chen, Bilian; Guo, Zheng

    2016-11-01

    Declining quantity/quality of available n-3 polyunsaturated fatty acids (n-3 PUFAs) resources demand innovative technology to concentrate n-3 PUFAs from low quality oils into value-added products/health-beneficial ingredients rich in n-3 PUFAs. This work proposed the catalytic property and specificity of an ideal enzyme required to tackle this task and identified Candida antarctica lipase A (CAL-A) is such a near-ideal enzyme in practice, which concentrates n-3 PUFAs from 25% to 27% in oils to a theoretically closer value 90% in monoacylglycerols (MAGs) via one-step enzymatic ethanolysis. Non-regiospecificity and high non-n-3 PUFAs preference of CAL-A are the catalytic feature to selectively cleave non-n-3 PUFAs in all 3 positions of triacylglycerols (TAGs); while high ethanol/TAGs ratio, low operation temperature and high tolerance to polar ethanol are essential conditions beyond biocatalyst itself. C-13 Nuclear magnetic resonance ((13)C NMR) analysis and competitive factor estimation verified the hypothesis and confirmed the plausible suggestion of catalytic mechanism of CAL-A.

  14. Arabidopsis Lipins, PDAT1 Acyltransferase, and SDP1 Triacylglycerol Lipase Synergistically Direct Fatty Acids toward β-Oxidation, Thereby Maintaining Membrane Lipid Homeostasis[C][W

    PubMed Central

    Fan, Jilian; Yan, Chengshi; Roston, Rebecca; Shanklin, John

    2014-01-01

    Triacylglycerol (TAG) metabolism is a key aspect of intracellular lipid homeostasis in yeast and mammals, but its role in vegetative tissues of plants remains poorly defined. We previously reported that PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1 (PDAT1) is crucial for diverting fatty acids (FAs) from membrane lipid synthesis to TAG and thereby protecting against FA-induced cell death in leaves. Here, we show that overexpression of PDAT1 enhances the turnover of FAs in leaf lipids. Using the trigalactosyldiacylglycerol1-1 (tgd1-1) mutant, which displays substantially enhanced PDAT1-mediated TAG synthesis, we demonstrate that disruption of SUGAR-DEPENDENT1 (SDP1) TAG lipase or PEROXISOMAL TRANSPORTER1 (PXA1) severely decreases FA turnover, leading to increases in leaf TAG accumulation, to 9% of dry weight, and in total leaf lipid, by 3-fold. The membrane lipid composition of tgd1-1 sdp1-4 and tgd1-1 pxa1-2 double mutants is altered, and their growth and development are compromised. We also show that two Arabidopsis thaliana lipin homologs provide most of the diacylglycerol for TAG synthesis and that loss of their functions markedly reduces TAG content, but with only minor impact on eukaryotic galactolipid synthesis. Collectively, these results show that Arabidopsis lipins, along with PDAT1 and SDP1, function synergistically in directing FAs toward peroxisomal β-oxidation via TAG intermediates, thereby maintaining membrane lipid homeostasis in leaves. PMID:25293755

  15. Cholestane-3β,5α,6β-triol: high levels in Niemann-Pick type C, cerebrotendinous xanthomatosis, and lysosomal acid lipase deficiency[S

    PubMed Central

    Pajares, Sonia; Arias, Angela; García-Villoria, Judit; Macías-Vidal, Judit; Ros, Emilio; de las Heras, Javier; Girós, Marisa; Coll, Maria J.; Ribes, Antonia

    2015-01-01

    Niemann-Pick type C (NPC) is a progressive neurodegenerative disease characterized by lysosomal/endosomal accumulation of unesterified cholesterol and glycolipids. Recent studies have shown that plasma cholestane-3β,5α,6β-triol (CT) and 7-ketocholesterol (7-KC) could be potential biomarkers for the diagnosis of NPC patients. We aimed to know the sensitivity and specificity of these biomarkers for the diagnosis of NPC compared with other diseases that can potentially lead to oxysterol alterations. We studied 107 controls and 122 patients including 16 with NPC, 3 with lysosomal acid lipase (LAL) deficiency, 8 with other lysosomal diseases, 5 with galactosemia, 11 with cerebrotendinous xanthomatosis (CTX), 3 with Smith-Lemli-Opitz, 14 with peroxisomal biogenesis disorders, 19 with unspecific hepatic diseases, 13 with familial hypercholesterolemia, and 30 with neurological involvement and no evidence of an inherited metabolic disease. CT and 7-KC were analyzed by HPLC-ESI-MS/MS as mono-dimethylglycine derivatives. Levels of 7-KC were high in most of the studied diseases, whereas those of CT were only high in NPC, LAL, and CTX patients. Consequently, although CT is a sensitive biomarker of NPC disease, including those cases with doubtful filipin staining, it is not specific. 7-KC is a very unspecific biomarker. PMID:26239048

  16. Optimization of culture conditions for production of a novel cold-active lipase from Pichia lynferdii NRRL Y-7723

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipases with abnormal properties such as thermo stability, alkalinity, acidity and cold-activity receive industrial attention because of their usability under restricted reaction conditions. Most microbial cold-active lipases originate from psychrotrophic and psychrophilic microorganisms found in An...

  17. Inhibitory activity of benzophenones from Anemarrhena asphodeloides on pancreatic lipase.

    PubMed

    Jo, Yang Hee; Kim, Seon Beom; Ahn, Jong Hoon; Liu, Qing; Hwang, Bang Yeon; Lee, Mi Kyeong

    2013-04-01

    Pancreatic lipase is a key enzyme for lipid absorption by hydrolysis of total dietary fats. Therefore, inhibition of pancreatic lipase is suggested to be an effective therapy in the regulation of obesity. The EtOAc-soluble fraction of Anemarrhena asphodeloides rhizomes significantly inhibited pancreatic lipase activity as assessed using porcine pancreatic lipase as an in vitro assay system. Further fractionation of the EtOAc-soluble fraction of A. asphodeloides led to the isolation of a new benzophenone glycoside, zimoside A (1), together with the eleven known compounds iriflophenone (2), 2,4',6-trihydroxy-4-methoxybenzophenone (3), foliamangiferoside A (4), (2,3-dihydroxy-4-methoxyphenyl)(4-hydroxyphenyl)-methanone (5), 1,4,5,6,-tetrahydroxyxanthone (6), isosakuranetin (7), 4-hydroxybenzoic acid (8), 4-hydroxyacetophenone (9), vanillic acid (10), tyrosol (11) and 5-hydroxymethyl-2-furaldehyde (12). Among the isolated compounds, 3, 5 and 10 showed significant inhibition of pancreatic lipase activity.

  18. Positive association of the hepatic lipase gene polymorphism c.514C > T with estrogen replacement therapy response

    PubMed Central

    2011-01-01

    Background Hepatic lipase (HL), an enzyme present in the hepatic sinusoids, is responsible for the lipolysis of lipoproteins. Human HL contains four polymorphic sites: G-250A, T-710C, A-763G, and C-514T single-nucleotide polymorphism (SNPs). The last polymorphism is the focus of the current study. The genotypes associated with the C-514T polymorphism are CC (normal homozygous - W), CT (heterozygous - H), and TT (minor-allele homozygous - M). HL activity is significantly impaired in individuals of the TT and CT genotypes. A total of 58 post-menopausal women were studied. The subjects were hysterectomized women receiving hormone replacement therapy consisting of 0.625 mg of conjugated equine estrogen once a day. The inclusion criteria were menopause of up to three years and normal blood tests, radiographs, cervical-vaginal cytology, and densitometry. DNA was extracted from the buccal and blood cells of all 58 patients using a commercially available kit (GFX® - Amersham-Pharmacia, USA). Results Statistically significant reductions in triglycerides (t = 2.16; n = 58; p = 0.03) but not in total cholesterol (t = 0.14; n = 58; p = 0.89) were found after treatment. This group of good responders were carriers of the T allele; the CT and TT genotypes were present significantly more frequently than in the group of non-responders (p = 0.02 or p = 0.07, respectively). However, no significant difference in HDL-C (t = 0.94; n = 58; p = 0.35) or LDL-C (t = -0.83; n = 58; p = 0.41) was found in these patients. Conclusions The variation in lipid profile associated with the C-514T polymorphism is significant, and the T allele is associated with the best response to ERT. PMID:22047520

  19. Impact of Lipoprotein Lipase Gene Polymorphism, S447X, on Postprandial Triacylglycerol and Glucose Response to Sequential Meal Ingestion

    PubMed Central

    Shatwan, Israa M.; Minihane, Anne-Marie; Williams, Christine M.; Lovegrove, Julie A.; Jackson, Kim G.; Vimaleswaran, Karani S.

    2016-01-01

    Lipoprotein lipase (LPL) is a key rate-limiting enzyme for the hydrolysis of triacylglycerol (TAG) in chylomicrons and very low-density lipoprotein. Given that postprandial assessment of lipoprotein metabolism may provide a more physiological perspective of disturbances in lipoprotein homeostasis compared to assessment in the fasting state, we have investigated the influence of two commonly studied LPL polymorphisms (rs320, HindIII; rs328, S447X) on postprandial lipaemia, in 261 participants using a standard sequential meal challenge. S447 homozygotes had lower fasting HDL-C (p = 0.015) and a trend for higher fasting TAG (p = 0.057) concentrations relative to the 447X allele carriers. In the postprandial state, there was an association of the S447X polymorphism with postprandial TAG and glucose, where S447 homozygotes had 12% higher TAG area under the curve (AUC) (p = 0.037), 8.4% higher glucose-AUC (p = 0.006) and 22% higher glucose-incremental area under the curve (IAUC) (p = 0.042). A significant gene–gender interaction was observed for fasting TAG (p = 0.004), TAG-AUC (Pinteraction = 0.004) and TAG-IAUC (Pinteraction = 0.016), where associations were only evident in men. In conclusion, our study provides novel findings of an effect of LPL S447X polymorphism on the postprandial glucose and gender-specific impact of the polymorphism on fasting and postprandial TAG concentrations in response to sequential meal challenge in healthy participants. PMID:26999119

  20. trans-10,cis-12 Conjugated linoleic acid inhibits lipoprotein lipase but increases the activity of lipogenic enzymes in adipose tissue from hamsters fed an atherogenic diet.

    PubMed

    Zabala, Amaia; Churruca, Itziar; Fernández-Quintela, Alfredo; Rodríguez, Víctor M; Macarulla, M Teresa; Martínez, J Alfredo; Portillo, María P

    2006-06-01

    The aim of the present work was to investigate the effects of trans-10,cis-12 conjugated linoleic acid (CLA) on the activity and expression of lipogenic enzymes and lipoprotein lipase (LPL), as well as on the expression of transcriptional factors controlling these enzymes, in adipose tissue from hamsters, and to evaluate the involvement of these changes in the body fat-reducing effect of this CLA isomer. Thirty male hamsters were divided into three groups and fed atherogenic diets supplemented with 0 (linoleic group), 5 or 10 g trans-10,cis-12 CLA/kg diet, for 6 weeks. Body and adipose tissue weights, food intake and serum insulin were measured. Total and heparin-releasable LPL and lipogenic enzyme activities (acetyl-CoA carboxylase (ACC); fatty acid synthase (FAS); glucose-6-phosphate dehydrogenase (G6PDH); and malic enzyme (ME)) were assessed. ACC, FAS, LPL, sterol regulatory element-binding proteins (SREBP-1a), SREBP-1c and PPARgamma mRNA levels were also determined by real-time PCR. CLA did not modify food intake, body weight and serum insulin level. CLA feeding reduced adipose tissue weight, LPL activity and expression, and increased lipogenic enzyme activities, despite a significant reduction in ACC and FAS mRNA levels. The expression of the three transcriptional factors analysed (SREBP-1a, SREBP-1c and PPARgamma) was also reduced. These results appear to provide a framework for partially understanding the reduction in body fat induced by CLA. Inhibition of LPL activity seems to be an important mechanism underlying body fat reduction in hamsters. Further research is needed to better characterize the effects of CLA on lipogenesis and the role of these effects in CLA action.

  1. Glycyrrhizic acid improved lipoprotein lipase expression, insulin sensitivity, serum lipid and lipid deposition in high-fat diet-induced obese rats

    PubMed Central

    2010-01-01

    Background The metabolic syndrome, known also as the insulin resistance syndrome, refers to the clustering of several risk factors for atherosclerotic cardiovascular disease. Dyslipidaemia is a hallmark of the syndrome and is associated with a whole body reduction in the activity of lipoprotein lipase (LPL), an enzyme under the regulation of the class of nuclear receptors known as peroxisome proliferator-activated receptor (PPAR). Glycyrrhizic acid (GA), a triterpenoid saponin, is the primary bioactive constituent of the roots of the shrub Glycyrrhiza glabra. Studies have indicated that triterpenoids could act as PPAR agonists and GA is therefore postulated to restore LPL expression in the insulin resistant state. Results Oral administration of 100 mg/kg of GA to high-fat diet-induced obese rats for 28 days led to significant reduction in blood glucose concentration and improvement in insulin sensitivity as indicated by the homeostasis model assessment of insulin resistance (HOMA-IR) (p < 0.05). LPL expression was up-regulated in the kidney, heart, quadriceps femoris, abdominal muscle and the visceral and subcutaneous adipose tissues but down-regulated in the liver - a condition in reverse to that seen in high-fat diet-induced obese rats without GA. With regard to lipid metabolism, GA administration led to significant hypotriglyceridemic and HDL-raising effects (p < 0.05), with a consistent reduction in serum free fatty acid, total cholesterol and LDL cholesterol and significant decrease in tissue lipid deposition across all studied tissue (p < 0.01). Conclusion In conclusion, GA may be a potential compound in improving dyslipidaemia by selectively inducing LPL expression in non-hepatic tissues. Such up-regulation was accompanied by a GA-mediated improvement in insulin sensitivity, which may be associated with a decrease in tissue lipid deposition. The HDL-raising effect of GA suggests the antiatherosclerotic properties of GA. PMID:20670429

  2. Diabetes and pancreatic exocrine dysfunction due to mutations in the carboxyl ester lipase gene-maturity onset diabetes of the young (CEL-MODY): a protein misfolding disease.

    PubMed

    Johansson, Bente B; Torsvik, Janniche; Bjørkhaug, Lise; Vesterhus, Mette; Ragvin, Anja; Tjora, Erling; Fjeld, Karianne; Hoem, Dag; Johansson, Stefan; Ræder, Helge; Lindquist, Susanne; Hernell, Olle; Cnop, Miriam; Saraste, Jaakko; Flatmark, Torgeir; Molven, Anders; Njølstad, Pål R

    2011-10-07

    CEL-maturity onset diabetes of the young (MODY), diabetes with pancreatic lipomatosis and exocrine dysfunction, is due to dominant frameshift mutations in the acinar cell carboxyl ester lipase gene (CEL). As Cel knock-out mice do not express the phenotype and the mutant protein has an altered and intrinsically disordered tandem repeat domain, we hypothesized that the disease mechanism might involve a negative effect of the mutant protein. In silico analysis showed that the pI of the tandem repeat was markedly increased from pH 3.3 in wild-type (WT) to 11.8 in mutant (MUT) human CEL. By stably overexpressing CEL-WT and CEL-MUT in HEK293 cells, we found similar glycosylation, ubiquitination, constitutive secretion, and quality control of the two proteins. The CEL-MUT protein demonstrated, however, a high propensity to form aggregates found intracellularly and extracellularly. Different physicochemical properties of the intrinsically disordered tandem repeat domains of WT and MUT proteins may contribute to different short and long range interactions with the globular core domain and other macromolecules, including cell membranes. Thus, we propose that CEL-MODY is a protein misfolding disease caused by a negative gain-of-function effect of the mutant proteins in pancreatic tissues.

  3. Isolation and characterization of novel lipases from a metagenomic library of the microbial community in the pitcher fluid of the carnivorous plant Nepenthes hybrida.

    PubMed

    Morohoshi, Tomohiro; Oikawa, Manabu; Sato, Shoko; Kikuchi, Noriko; Kato, Norihiro; Ikeda, Tsukasa

    2011-10-01

    Members of the genus Nepenthes are carnivorous plants that use the pitfall method of insect capture as a supplementary nutritional source. We extracted metagenomic DNA from the microbial community found in the pitcher fluid of Nepenthes and constructed a plasmid-based metagenomic library. An activity-based screening method enabled the isolation of two lipase genes, lip1 and lip2. Both Lip1 and Lip2 belong to a novel family or subfamily of lipases and show lipase activities in acidic conditions, such as those found in pitcher fluid. This study was conducted under the assumption that the secreted Lip1 and Lip2 were capable of enzymatic activity in the acidic pitcher fluid.

  4. Long-Term Retrospective Analysis of Gene Therapy with Alipogene Tiparvovec and Its Effect on Lipoprotein Lipase Deficiency-Induced Pancreatitis.

    PubMed

    Gaudet, Daniel; Stroes, Erik S; Méthot, Julie; Brisson, Diane; Tremblay, Karine; Bernelot Moens, Sophie J; Iotti, Giorgio; Rastelletti, Irene; Ardigo, Diego; Corzo, Deyanira; Meyer, Christian; Andersen, Marc; Ruszniewski, Philippe; Deakin, Mark; Bruno, Marco J

    2016-11-01

    Alipogene tiparvovec (Glybera) is a gene therapy product approved in Europe under the "exceptional circumstances" pathway as a treatment for lipoprotein lipase deficiency (LPLD), a rare genetic disease resulting in chylomicronemia and a concomitantly increased risk of acute and recurrent pancreatitis, with potentially lethal outcome. This retrospective study analyzed the frequency and severity of pancreatitis in 19 patients with LPLD up to 6 years after a single treatment with alipogene tiparvovec. An independent adjudication board of three pancreas experts, blinded to patient identification and to pre- or post-gene therapy period, performed a retrospective review of data extracted from the patients' medical records and categorized LPLD-related acute abdominal pain events requiring hospital visits and/or hospitalizations based on the adapted 2012 Atlanta diagnostic criteria for pancreatitis. Both entire disease time period data and data from an equal time period before and after gene therapy were analyzed. Events with available medical record information meeting the Atlanta diagnostic criteria were categorized as definite pancreatitis; events treated as pancreatitis but with variable levels of laboratory and imaging data were categorized as probable pancreatitis or acute abdominal pain events. A reduction of approximately 50% was observed in all three categories of the adjudicated post-gene therapy events. Notably, no severe pancreatitis and only one intensive care unit admission was observed in the post-alipogene tiparvovec period. However, important inter- and intraindividual variations in the pre- and post-gene therapy incidence of events were observed. There was no relationship between the posttreatment incidence of events and the number of LPL gene copies injected, the administration of immunosuppressive regimen or the percent triglyceride decrease achieved at 12 weeks (primary end point in the prospective clinical studies). Although a causal relationship

  5. Mapping of glutamic acid decarboxylase (GAD) genes

    SciTech Connect

    Edelhoff, S.; Adler, D.A.; Disteche, C.M.; Grubin, C.E.; Karlsen, A.E.; Lernmark, A.; Foster, D. )

    1993-07-01

    Glutamic acid decarboxylase (GAD) catalyzes the synthesis of [gamma]-aminobutyric acid (GABA), which is known as a major inhibitory neurotransmitter in the central nervous system (CNS), but is also present outside the CNS. Recent studies showed that GAD is the major target of autoantibodies associated with the development of insulin-dependent diabetes mellitus and of the rare stiff man syndrome. Studies of GAD expression have demonstrated multiple transcripts, suggesting several isoforms of GAD. In this study, three different genes were mapped by in situ hybridization to both human and mouse chromosomes. The GAD1 gene was mapped to human chromosome 2q31 and to mouse chromosome 2D in a known region of conservation between human and mouse. GAD2, previously mapped to human chromosome 10p11.2-p12, was mapped to mouse chromosome 2A2-B, which identifies a new region of conservation between human and mouse chromosomes. A potential GAD3 transcript was mapped to human chromosome 22q13 and to mouse chromosome 15E in a known region of conservation between human and mouse. It is concluded that the GAD genes may form a family with as many as three related members. 30 refs., 5 figs.

  6. Inhibition of fatty acid amide hydrolase and monoacylglycerol lipase by the anandamide uptake inhibitor VDM11: evidence that VDM11 acts as an FAAH substrate.

    PubMed

    Vandevoorde, Séverine; Fowler, Christopher J

    2005-08-01

    There is some dispute concerning the extent to which the uptake inhibitor VDM11 (N-(4-hydroxy-2-methylphenyl) arachidonoyl amide) is capable of inhibiting the metabolism of the endocannabinoid anandamide (AEA) by fatty acid amide hydrolase (FAAH). In view of a recent study demonstrating that the closely related compound AM404 (N-(4-hydroxyphenyl)arachidonylamide) is a substrate for FAAH, we re-examined the interaction of VDM11 with FAAH. In the presence of fatty acid-free bovine serum albumin (BSA, 0.125% w v(-1)), both AM404 and VDM11 inhibited the metabolism of AEA by rat brain FAAH with similar potencies (IC(50) values of 2.1 and 2.6 microM, respectively). The compounds were about 10-fold less potent as inhibitors of the metabolism of 2-oleoylglycerol (2-OG) by cytosolic monoacylglycerol lipase (MAGL). The potency of VDM11 towards FAAH was dependent upon the assay concentration of fatty acid-free bovine serum albumin (BSA). Thus, in the absence of fatty acid-free BSA, the IC(50) value for inhibition of FAAH was reduced by a factor of about two (from 2.9 to 1.6 microM). A similar reduction in the IC(50) value for the inhibition of membrane bound MAGL by both this compound (from 14 to 6 microM) and by arachidonoyl serinol (from 24 to 13 microM) was seen. An HPLC assay was set up to measure 4-amino-m-cresol, the hypothesised product of FAAH-catalysed VDM11 hydrolysis. 4-Amino-m-cresol was eluted with a retention time of approximately 2.4 min, but showed a time-dependent degradation to compounds eluting at peaks of approximately 5.6 and approximately 8 min. Peaks with the same retention times were also found following incubation of the membranes with VDM11, but were not seen when the membranes were preincubated with the FAAH inhibitors URB597 (3'-carbamoyl-biphenyl-3-yl-cyclohexylcarbamate) and CAY10401 (1-oxazolo[4,5-b]pyridin-2-yl-9-octadecyn-1-one) prior to addition of VDM11. The rate of metabolism of VDM11 was estimated to be roughly 15-20% of that for

  7. PRD125, a potent and selective inhibitor of sterol O-acyltransferase 2 markedly reduces hepatic cholesteryl ester accumulation and improves liver function in lysosomal acid lipase-deficient mice.

    PubMed

    Lopez, Adam M; Chuang, Jen-Chieh; Posey, Kenneth S; Ohshiro, Taichi; Tomoda, Hiroshi; Rudel, Lawrence L; Turley, Stephen D

    2015-11-01

    In most organs, the bulk of cholesterol is unesterified, although nearly all possess a varying capability of esterifying cholesterol through the action of either sterol O-acyltransferase (SOAT) 1 or, in the case of hepatocytes and enterocytes, SOAT2. Esterified cholesterol (EC) carried in plasma lipoproteins is hydrolyzed by lysosomal acid lipase (LAL) when they are cleared from the circulation. Loss-of-function mutations in LIPA, the gene that encodes LAL, result in Wolman disease or cholesteryl ester storage disease (CESD). Hepatomegaly and a massive increase in tissue EC levels are hallmark features of both disorders. While these conditions can be corrected with enzyme replacement therapy, the question arose as to whether pharmacological inhibition of SOAT2 might reduce tissue EC accretion in CESD. When weaned at 21 days, Lal(-/-) mice, of either gender, had a whole liver cholesterol content that was 12- to 13-fold more than that of matching Lal(+/+) littermates (23 versus 1.8 mg, respectively). In Lal(-/-) males given the selective SOAT2 inhibitor PRD125 1,11-O-o-methylbenzylidene-7-O-p-cyanobenzoyl-1,7,11-trideacetylpyripyropene A in their diet (∼10 mg/day per kg body weight) from 21 to 53 days, whole liver cholesterol content was 48.6 versus 153.7 mg in untreated 53-day-old Lal(-/-) mice. This difference reflected a 59% reduction in hepatic EC concentration (mg/g), combined with a 28% fall in liver mass. The treated mice also showed a 63% reduction in plasma alanine aminotransferase activity, in parallel with decisive falls in hepatic mRNA expression levels for multiple proteins that reflect macrophage presence and inflammation. These data implicate SOAT2 as a potential target in CESD management.

  8. PRD125, a Potent and Selective Inhibitor of Sterol O-Acyltransferase 2 Markedly Reduces Hepatic Cholesteryl Ester Accumulation and Improves Liver Function in Lysosomal Acid Lipase-Deficient Mice

    PubMed Central

    Lopez, Adam M.; Chuang, Jen-Chieh; Posey, Kenneth S.; Ohshiro, Taichi; Tomoda, Hiroshi; Rudel, Lawrence L.

    2015-01-01

    In most organs, the bulk of cholesterol is unesterified, although nearly all possess a varying capability of esterifying cholesterol through the action of either sterol O-acyltransferase (SOAT) 1 or, in the case of hepatocytes and enterocytes, SOAT2. Esterified cholesterol (EC) carried in plasma lipoproteins is hydrolyzed by lysosomal acid lipase (LAL) when they are cleared from the circulation. Loss-of-function mutations in LIPA, the gene that encodes LAL, result in Wolman disease or cholesteryl ester storage disease (CESD). Hepatomegaly and a massive increase in tissue EC levels are hallmark features of both disorders. While these conditions can be corrected with enzyme replacement therapy, the question arose as to whether pharmacological inhibition of SOAT2 might reduce tissue EC accretion in CESD. When weaned at 21 days, Lal−/− mice, of either gender, had a whole liver cholesterol content that was 12- to 13-fold more than that of matching Lal+/+ littermates (23 versus 1.8 mg, respectively). In Lal−/− males given the selective SOAT2 inhibitor PRD125 1,11-O-o-methylbenzylidene-7-O-p-cyanobenzoyl-1,7,11-trideacetylpyripyropene A in their diet (∼10 mg/day per kg body weight) from 21 to 53 days, whole liver cholesterol content was 48.6 versus 153.7 mg in untreated 53-day-old Lal−/− mice. This difference reflected a 59% reduction in hepatic EC concentration (mg/g), combined with a 28% fall in liver mass. The treated mice also showed a 63% reduction in plasma alanine aminotransferase activity, in parallel with decisive falls in hepatic mRNA expression levels for multiple proteins that reflect macrophage presence and inflammation. These data implicate SOAT2 as a potential target in CESD management. PMID:26283692

  9. Deletion of sterol O-acyltransferase 2 (SOAT2) function in mice deficient in lysosomal acid lipase (LAL) dramatically reduces esterified cholesterol sequestration in the small intestine and liver.

    PubMed

    Lopez, Adam M; Posey, Kenneth S; Turley, Stephen D

    2014-11-07

    Sterol O-acyltransferase 2 (SOAT2), also known as ACAT2, is the major cholesterol esterifying enzyme in the liver and small intestine (SI). Esterified cholesterol (EC) carried in certain classes of plasma lipoproteins is hydrolyzed by lysosomal acid lipase (LAL) when they are cleared from the circulation. Loss-of-function mutations in LIPA, the gene that encodes LAL, result in Wolman disease (WD) or cholesteryl ester storage disease (CESD). Hepatomegaly and a massive increase in tissue EC levels are hallmark features of both disorders. While these conditions can be corrected with enzyme replacement therapy, the question arose as to what effect the loss of SOAT2 function might have on tissue EC sequestration in LAL-deficient mice. When weaned at 21 days, Lal(-)(/)(-):Soat2(+)(/)(+) mice had a whole liver cholesterol content (mg/organ) of 24.7 mg vs 1.9mg in Lal(+/+):Soat2(+/+) littermates, with almost all the excess sterol being esterified. Over the next 31 days, liver cholesterol content in the Lal(-)(/)(-):Soat2(+)(/)(+) mice increased to 145 ± 2 mg but to only 29 ± 2 mg in their Lal(-)(/)(-):Soat2(-)(/)(-) littermates. The level of EC accumulation in the SI of the Lal(-)(/)(-):Soat2(-)(/)(-) mice was also much less than in their Lal(-)(/)(-):Soat2(+)(/)(+) littermates. In addition, there was a >70% reduction in plasma transaminase activities in the Lal(-)(/)(-):Soat2(-)(/)(-) mice. These studies illustrate how the severity of disease in a mouse model for CESD can be substantially ameliorated by elimination of SOAT2 function.

  10. Effect of chain length of alcohol on the lipase-catalyzed esterification of propionic acid in supercritical carbon dioxide.

    PubMed

    Varma, Mahesh N; Madras, Giridhar

    2010-04-01

    The esterification of propionic acid was investigated using three different alcohols, namely, isopropyl alcohol, isobutyl alcohol, and isoamyl alcohol. The variation of conversion with time for the synthesis of isoamyl propionate was investigated in the presence of five enzymes. Novozym 435 showed the highest activity, and this was used as the enzyme for investigating the various parameters that influence the esterification reaction. The Ping-Pong Bi-Bi model with inhibition by both acid and alcohol was used to model the experimental data and determine the kinetics of the esterification reaction.

  11. Lipase-catalyzed production of a bioactive fatty amide derivative of 7,10-dihydroxy-8(E)-octadecenoic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty amides are of considerable interest due to their wide ranging industrial applications in detergents, shampoo, cosmetics and surfactant formulations. They are produced commercially from fatty acids by reacting with anhydrous ammonia at approximately 200 deg C and 345-690 KPa pressure. We inve...

  12. Full Fatty Acid Amide Hydrolase Inhibition Combined with Partial Monoacylglycerol Lipase Inhibition: Augmented and Sustained Antinociceptive Effects with Reduced Cannabimimetic Side Effects in Mice

    PubMed Central

    Ghosh, Sudeshna; Kinsey, Steven G.; Liu, Qing-song; Hruba, Lenka; McMahon, Lance R.; Grim, Travis W.; Merritt, Christina R.; Wise, Laura E.; Abdullah, Rehab A.; Selley, Dana E.; Sim-Selley, Laura J.; Cravatt, Benjamin F.

    2015-01-01

    Inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the primary hydrolytic enzymes for the respective endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonylglycerol (2-AG), produces antinociception but with minimal cannabimimetic side effects. Although selective inhibitors of either enzyme often show partial efficacy in various nociceptive models, their combined blockade elicits augmented antinociceptive effects, but side effects emerge. Moreover, complete and prolonged MAGL blockade leads to cannabinoid receptor type 1 (CB1) receptor functional tolerance, which represents another challenge in this potential therapeutic strategy. Therefore, the present study tested whether full FAAH inhibition combined with partial MAGL inhibition would produce sustained antinociceptive effects with minimal cannabimimetic side effects. Accordingly, we tested a high dose of the FAAH inhibitor PF-3845 (N-​3-​pyridinyl-​4-​[[3-​[[5-​(trifluoromethyl)-​2-​pyridinyl]oxy]phenyl]methyl]-​1-​piperidinecarboxamide; 10 mg/kg) given in combination with a low dose of the MAGL inhibitor JZL184 [4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate] (4 mg/kg) in mouse models of inflammatory and neuropathic pain. This combination of inhibitors elicited profound increases in brain AEA levels (>10-fold) but only 2- to 3-fold increases in brain 2-AG levels. This combination produced significantly greater antinociceptive effects than single enzyme inhibition and did not elicit common cannabimimetic effects (e.g., catalepsy, hypomotility, hypothermia, and substitution for Δ9-tetrahydrocannabinol in the drug-discrimination assay), although these side effects emerged with high-dose JZL184 (i.e., 100 mg/kg). Finally, repeated administration of this combination did not lead to tolerance to its antiallodynic actions in the carrageenan assay or CB1 receptor functional tolerance. Thus, full FAAH inhibition combined

  13. Influence of the degree of unsaturation of the acyl side chain upon the interaction of analogues of 1-arachidonoylglycerol with monoacylglycerol lipase and fatty acid amide hydrolase.

    PubMed

    Vandevoorde, Séverine; Saha, Bijali; Mahadevan, Anu; Razdan, Raj K; Pertwee, Roger G; Martin, Billy R; Fowler, Christopher J

    2005-11-11

    Little is known as to the structural requirements of the acyl side chain for interaction of acylglycerols with monoacylglycerol lipase (MAGL), the enzyme chiefly responsible for the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain. In the present study, a series of twelve analogues of 1-AG (the more stable regioisomer of 2-AG) were investigated with respect to their ability to inhibit the metabolism of 2-oleoylglycerol by cytosolic and membrane-bound MAGL. In addition, the ability of the compounds to inhibit the hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) was investigated. For cytosolic MAGL, compounds with 20 carbon atoms in the acyl chain and 2-5 unsaturated bonds inhibited the hydrolysis of 2-oleoylglycerol with similar potencies (IC50 values in the range 5.1-8.2 microM), whereas the two compounds with a single unsaturated bond were less potent (IC50 values 19 and 21 microM). The fully saturated analogue 1-monoarachidin did not inhibit the enzyme, whereas the lower side chain analogues 1-monopalmitin and 1-monomyristin inhibited the enzyme with IC50 values of 12 and 32 microM, respectively. The 22-carbon chain analogue of 1-AG was also potent (IC50 value 4.5 microM). Introduction of an alpha-methyl group for the C20:4, C20:3, and C22:4 compounds did not affect potency in a consistent manner. For the FAAH and the membrane-bound MAGL, there was no obvious relationship between the degree of unsaturation of the acyl side chain and the ability to inhibit the enzymes. It is concluded that increasing the number of unsaturated bonds on the acyl side chain of 1-AG from 1 to 5 has little effect on the affinity of acylglycerols for cytosolic MAGL.

  14. Polymorphisms of the lipoprotein lipase gene as genetic markers for stroke in colombian population: a case control study

    PubMed Central

    Vargas Castellanos, Clara Inés; Silva Sieger, Federico Arturo

    2016-01-01

    Abstract Objective: To analyze if there is an association between the presence of polymorphisms in the LPL gene (rs320, rs285 and rs328) with development of acute ischemic stroke in Colombian population. Methods: In a case control design, 133 acute ischemic stroke patients (clinical diagnosis and x-ray CT) and 269 subjects without stroke as controls were studied. PCR -RFLP technique was used to detect rs320, rs285 and rs328 polymorphisms in the LPL gene. Results: In the present research was not found any association between any of the LPL gene polymorphism and acute ischemic stroke in the population studied; the allele and genotypic frequencies of the studied polymorphisms were similar in cases and controls and followed the Hardy-Weinberg equilibrium. The study was approved by the IRB and each subject signed the informed consent. Conclusion: LPL gene polymorphisms are not genetic markers for the development of stroke in the Colombian sample used. PMID:28293042

  15. Competition of Thermomyces lanuginosus lipase with its hydrolysis products at the oil-water interface.

    PubMed

    Muth, Marco; Rothkötter, Stefanie; Paprosch, Steven; Schmid, Reiner P; Schnitzlein, Klaus

    2017-01-01

    Lipase-catalyzed hydrolysis of triglycerides yields glycerol and free fatty-acids, provided that the enzyme is non-regioselective. For an Sn-1,3 regioselective enzyme, such as lipase from Thermomyces lanuginosus, the final product is no longer glycerol but Sn-2 monoglyceride instead. However, surface active molecules generated by lipolysis may have a detrimental effect on the interfacial biocatalysis since it is known that low molecular weight surfactants can displace proteins from interfaces. By using drop profile analysis tensiometry, we evaluated the interfacial properties of the lipase-generated molecules and their competitive effect on the adsorption behavior of the lipase and on the proceeding lipolysis. Our results show that even at concentration ratios of 8.64×10(-4)M (Sn-2 monoglyceride) to 2.5×10(-7)M (lipase), the final interfacial pressure values are very similar as for the system containing the lipase alone (i.e. ∼26 mN/m). This is a strong indication that monoglycerides, as the most interfacially active products generated during regioselective lipolysis, are expelled from the oil-water interface by the lipase. We attribute this effect to intermolecular lipase-lipase interactions, resulting in a low desorption probability of the lipase. For low oleic acid concentrations, the interfacial tension is solely determined by the lipase, while for higher concentrations, lipase and oleic acid both contribute to the tension values. We propose a hypothesis based on the preferential interaction of oleic acid molecules with hydrophobic sites on the lipase. The pH dependence of the adsorption rate and the interfacial activity of the lipase were also investigated.

  16. Dry fermented sausages elaborated with lipase from Candida cylindracea. Comparison with traditional formulations.

    PubMed

    Zalacain, I; Zapelena, M J; Astiasarán, I; Bello, J

    1995-01-01

    The addition of microbial lipase to fermented sausages was studied. A sausage with lipase from Candida cylindracea and a control sausage with starter (Lactobacillus plantarum and Staphylococcus carnosus) were produced in a pilot plant. The acidity value and the amounts of the different free fatty acids (FFA) showed a higher intensity of lipolytic activity in sausages with lipase than in sausages with starter. In sausages with lipase, the percentage of saturated FFA was greater and that of polyunsaturated FFA was lower than in sausage with starter. Mono-unsaturated FFA percentage was similar in both sausages. TBA and peroxide values indicated that the increase of FFA produced by lipase action did not increase the rancidity. A slight increase in acetic, propionic and butyric acids was observed in sausage with lipase but this was not sufficient to develop excessive acidity in the product.

  17. Mechanism of acetaldehyde-induced deactivation of microbial lipases

    PubMed Central

    2011-01-01

    Background Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Results Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Conclusions Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the enzymes. Lyophilization of

  18. Lipase-catalyzed ethanolysis of borage oil: a kinetic study.

    PubMed

    Torres, Carlos F; Hill, Charles G; Otero, Cristina

    2004-01-01

    Ethanolysis of borage oil catalyzed by two commercial lipases (from Pseudomonas cepacia and Candida antarctica) was studied using two different methodologies. Multiresponse models derived from a generalized Michaelis-Menten mechanism were utilized to describe the rates of formation of ethyl esters of the primary fatty acids present in the precursor oil. The relative rate constants determined for each of the fatty acid residues indicated that both lipases discriminate against release of gamma-linolenic acid residues under the reaction conditions studied. However, both lipases also released some of the residues located at the sn-2 position, indicating that for the experimental conditions studied, both lipases are nonspecific. Moreover, inactivation of Novozym 435 was rapid. Because the half-life of this enzyme (ca. 2.2 h) is comparable to the half-life of the reaction, the intrinsic reaction rate and enzyme deactivation must both be considered in modeling the kinetics.

  19. A Novel Lipase as Aquafeed Additive for Warm-Water Aquaculture

    PubMed Central

    Yang, Yalin; Huang, Lu; Zhou, Zhigang

    2015-01-01

    A novel Acinetobacter lipase gene lipG1was cloned from DNA extracted from intestinal sample of common carp (Cyprinus carpio), and expressed in E. coli BL21. The encoded protein was 406 amino acids in length. Phylogenetic analysis indicated that LipG1 and its relatives comprised a novel group of true lipases produced by Gram-negative bacteria. LipG1 showed maximal activity at 40℃ and pH 8.0 when pNP decanoate (C10) was used as the substrate, and remained high activity between 20℃ and 35℃. Activity of the lipase was promoted by Ca2+ and Mg2+, and inhibited by Zn2+ and Cu2+. Moreover, LipG1 is stable with proteases, most commercial detergents and organic solvents. Substrate specificity test indicated that LipG1can hydrolyse pNP esters with acyl chain length from C2 to C16, with preference for medium-chain pNP esters (C8, C10). Lastly, LipG1was evaluated as an aquafeed additive for juvenile common carp (Cyprinus carpio). Results showed that supplementation of LipG1significantly improved the gut and heptaopancreas lipase activity of fish fed with palm oil diet. Consistently, improved feed conversion ratio and growth performance were recorded in the LipG1 feeding group, to levels comparable to the group of fish fed with soybean oil diet. Collectively, LipG1 exhibited good potential as an aquafeed additive enzyme, and deserves further characterization as the representative of a novel group of lipases. PMID:26147311

  20. A Novel Lipase as Aquafeed Additive for Warm-Water Aquaculture.

    PubMed

    Ran, Chao; He, Suxu; Yang, Yalin; Huang, Lu; Zhou, Zhigang

    2015-01-01

    A novel Acinetobacter lipase gene lipG1 was cloned from DNA extracted from intestinal sample of common carp (Cyprinus carpio), and expressed in E. coli BL21. The encoded protein was 406 amino acids in length. Phylogenetic analysis indicated that LipG1 and its relatives comprised a novel group of true lipases produced by Gram-negative bacteria. LipG1 showed maximal activity at 40℃ and pH 8.0 when pNP decanoate (C10) was used as the substrate, and remained high activity between 20℃ and 35℃. Activity of the lipase was promoted by Ca2+ and Mg2+, and inhibited by Zn2+ and Cu2+. Moreover, LipG1 is stable with proteases, most commercial detergents and organic solvents. Substrate specificity test indicated that LipG1 can hydrolyse pNP esters with acyl chain length from C2 to C16, with preference for medium-chain pNP esters (C8, C10). Lastly, LipG1 was evaluated as an aquafeed additive for juvenile common carp (Cyprinus carpio). Results showed that supplementation of LipG1 significantly improved the gut and heptaopancreas lipase activity of fish fed with palm oil diet. Consistently, improved feed conversion ratio and growth performance were recorded in the LipG1 feeding group, to levels comparable to the group of fish fed with soybean oil diet. Collectively, LipG1 exhibited good potential as an aquafeed additive enzyme, and deserves further characterization as the representative of a novel group of lipases.

  1. Lipase activity of Mucor pusillus.

    PubMed

    Somkuti, G A; Babel, F J

    1968-04-01

    Two strains of Mucor pusillus were examined for their ability to synthesize lipase in a complex medium used in the production of milk-clotting protease. Lipase activity of both strains reached maximal after 6 days of incubation under submerged conditions at 35 C. Lipase secreted into the medium hydrolyzed butterfat and vegetable lipids, as well as selected synthetic triglycerides. About 50% of lipase activity was destroyed after a 45-min heat treatment at 58 C.

  2. Mouse Vk gene classification by nucleic acid sequence similarity.

    PubMed

    Strohal, R; Helmberg, A; Kroemer, G; Kofler, R

    1989-01-01

    Analyses of immunoglobulin (Ig) variable (V) region gene usage in the immune response, estimates of V gene germline complexity, and other nucleic acid hybridization-based studies depend on the extent to which such genes are related (i.e., sequence similarity) and their organization in gene families. While mouse Igh heavy chain V region (VH) gene families are relatively well-established, a corresponding systematic classification of Igk light chain V region (Vk) genes has not been reported. The present analysis, in the course of which we reviewed the known extent of the Vk germline gene repertoire and Vk gene usage in a variety of responses to foreign and self antigens, provides a classification of mouse Vk genes in gene families composed of members with greater than 80% overall nucleic acid sequence similarity. This classification differed in several aspects from that of VH genes: only some Vk gene families were as clearly separated (by greater than 25% sequence dissimilarity) as typical VH gene families; most Vk gene families were closely related and, in several instances, members from different families were very similar (greater than 80%) over large sequence portions; frequently, classification by nucleic acid sequence similarity diverged from existing classifications based on amino-terminal protein sequence similarity. Our data have implications for Vk gene analyses by nucleic acid hybridization and describe potentially important differences in sequence organization between VH and Vk genes.

  3. Polyphenolic Compounds as Pancreatic Lipase Inhibitors.

    PubMed

    Buchholz, Tina; Melzig, Matthias F

    2015-07-01

    Obesity and its associated diseases such as diabetes mellitus and coronary heart diseases are a major challenge for our society. An important target for the treatment of obesity includes the development of inhibitors of nutrient digestion and absorption. Inhibition of pancreatic lipase and the associated reduction of lipid absorption is an attractive approach for the discovery of potent agents. Currently, the only clinically approved pharmacologic agent as pancreatic lipase inhibitor is Orlistat. However, its usage is compromised by unpleasant gastrointestinal adverse reactions (oily stools, oily spotting, flatulence). The use of botanical materials as a potential source of new drugs is of increasing importance and application. Natural products that are interesting for obesity treatment are generally considered to have less toxic and side effects than totally synthetic drugs. One of the most important sources of potential pancreatic lipase inhibitors represents the class of polyphenols. This article summarizes most studied subclasses of polyphenols including flavonoids, hydroxycinnamic acids, hydroxybenzoic acids and lignans with pancreatic lipase inhibitory effects. A structural comparison of potent inhibitors shows an increased inhibitory effect depending on number and position of phenolic hydroxyl groups, degree of polymerization and elimination of glycosylation during digestion.

  4. SECRETION OF LIPASES IN THE DIGESTIVE TRACT OF THE CRICKET Gryllus bimaculatus.

    PubMed

    Weidlich, Sandy; Hoffmann, Klaus H; Woodring, Joseph

    2015-12-01

    Little is known concerning the sites and the ratios of the lipase secretions in insects, therefore we undertook an examination of the lipase secretion of fed and unfed adult female Gryllus bimaculatus. The ratio of triacylglyceride lipase, diacylglyceride lipase, and phosphatidylcholine lipase secreted by fed females in the caecum and ventriculus is 1:1.4:0.4. These activities decrease in the caecum by 30-40% in unfed females. The total lipase activity (TLA) in the caecum is about 10 times that in the ventriculus. Minimal lipase secretion occurs before and during the final moult, and remains at this level in unfed crickets, indicating a basal secretion rate. In 2-day-old fed females, about 10% of the TLA in the entire gut is found in the crop, about 70% in the caecum, 20% in the ventriculus, and 3% in the ileum. Lipases in the ventriculus are recycled back to the caecum and little is lost in the feces. Oleic acid stimulated in vitro lipase secretion, but lipids did not. Feeding stimulated lipase secretion, starvation reduced lipase secretion, but this does not prove a direct prandal regulation of secretion, because feeding also induced a size and volume increase of the caecum.

  5. Characterization and expression analysis of a gene encoding a secreted lipase-like protein expressed in the salivary glands of larval Hessian fly, Mayetiola destructor (Say)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Hessian fly is a destructive pest of wheat particularly in the soft-winter-wheat region of the United States. In a salivary gland transcriptomics study we identified a full-length cDNA encoding a lipase-like protein expressed in the salivary glands of the larval Hessian fly, Mayetiola destructo...

  6. Production of biodiesel by transesterification of corn and soybean oils with ethanol or butanol using resin-bound truncated Candida antarctica lipase B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzymatic catalysts, such as lipases, have advantages over chemical catalysts for transesterification of triglycerides to produce biodiesel. A gene encoding a synthetic truncated Candida antarctica lipase B (CALB) was generated via automated PCR and expressed in Saccharomyces cerevisiae. Western b...

  7. Lipase applications in oil hydrolysis with a case study on castor oil: a review.

    PubMed

    Goswami, Debajyoti; Basu, Jayanta Kumar; De, Sirshendu

    2013-03-01

    Lipase (triacylglycerol acylhydrolase) is a unique enzyme which can catalyze various types of reactions such as hydrolysis, esterification, alcoholysis etc. In particular, hydrolysis of vegetable oil with lipase as a catalyst is widely studied. Free lipase, lipase immobilized on suitable support, lipase encapsulated in a reverse micelle and lipase immobilized on a suitable membrane to be used in membrane reactor are the most common ways of employing lipase in oil hydrolysis. Castor oil is a unique vegetable oil as it contains high amounts (90%) of a hydroxy monounsaturated fatty acid named ricinoleic acid. This industrially important acid can be obtained by hydrolysis of castor oil. Different conventional hydrolysis processes have certain disadvantages which can be avoided by a lipase-catalyzed process. The degree of hydrolysis varies widely for different lipases depending on the operating range of process variables such as temperature, pH and enzyme loading. Immobilization of lipase on a suitable support can enhance hydrolysis by suppressing thermal inactivation and estolide formation. The presence of metal ions also affects lipase-catalyzed hydrolysis of castor oil. Even a particular ion has different effects on the activity of different lipases. Hydrophobic organic solvents perform better than hydrophilic solvents during the reaction. Sonication considerably increases hydrolysis in case of lipolase. The effects of additives on the same lipase vary with their types. Nonionic surfactants enhance hydrolysis whereas cationic and anionic surfactants decrease it. A single variable optimization method is used to obtain optimum conditions. In order to eliminate its disadvantages, a statistical optimization method is used in recent studies. Statistical optimization shows that interactions between any two of the following pH, enzyme concentration and buffer concentration become significant in presence of a nonionic surfactant named Span 80.

  8. A double blind lipase for lipase comparison of a high lipase and standard pancreatic enzyme preparation in cystic fibrosis.

    PubMed Central

    Bowler, I M; Wolfe, S P; Owens, H M; Sheldon, T A; Littlewood, J M; Walters, M P

    1993-01-01

    A standard acid resistant microsphere pancreatic enzyme preparation was compared with identical capsules half filled with mini-tablets of a new high lipase preparation in a randomised double blind crossover study in children with cystic fibrosis. Each patient received his/her usual number of capsules and the same dose of lipase during each period of the study. Eighteen patients completed the study. There were fewer gastrointestinal symptoms when pancreatic enzyme was supplied as the high lipase preparation. There was also a significant improvement in fat absorption (17%, 95% confidence interval (CI) 6 to 27), reduction in faecal fat output (15.8 g/day, 95% CI 6.4 to 22.5), and faecal energy loss (789 kJ/day, 95% CI 211 to 1384). It is concluded that half filled capsules of the new high lipase preparation are more effective than the standard preparation and it is likely that filled capsules would allow patients to use fewer than half the number of pancreatic enzyme capsules. PMID:7683190

  9. Dietary conjugated linoleic acid modify gene expression in liver, muscles, and fat tissues of finishing pigs.

    PubMed

    Tous, N; Theil, P K; Lauridsen, C; Lizardo, R; Vilà, B; Esteve-Garcia, E

    2012-12-01

    The aim of this study was to investigate underlying mechanisms of dietary conjugated linoleic acid (CLA) on lipid metabolism in various tissues of pigs. Sixteen gilts (73 ± 3 kg) were fed a control (containing sunflower oil) or an experimental diet in which 4% of sunflower oil was replaced by CLA, and slaughtered at an average BW of 117 ± 4.9 kg. Transcription of peroxisome proliferator-activated receptor alpha (PPARα), peroxisome proliferator-activated receptor gamma (PPARγ), fatty acid synthase (FAS), sterol regulatory element binding protein (SREBP1), acetyl-CoA carboxylase (ACC), lipoprotein lipase (LPL), delta-6-desaturase (D6D), and stearoyl CoA desaturase (SCD) were determined by real-time PCR in longissimus thoracis (LT) and semimembranosus (SM) muscles, LT subcutaneous and SM intermuscular fat, and in the liver. Fatty acid (FA) composition was analyzed using gas chromatography in these tissues, except for SM intermuscular fat. Dietary CLA increased PPARγ in LT muscle (P < 0.05), whereas CLA reduced PPARα transcription in all tissues studied (P < 0.05) with the exception of intermuscular fat. Transcription of genes related to FA synthesis was reduced by CLA in SM muscle and liver (SREBP1, both P < 0.1; ACC, P < 0.01 in SM; and FAS, P < 0.01 in liver), whereas CLA reduced (P < 0.05) LPL and D6D transcriptions in SM muscle and reduced (P < 0.05) SCD in liver but increased (P < 0.05) SCD in LT muscle and intermuscular fat. Saturated FA were increased in all studied tissues (P < 0.01), while monosaturated and polyunsaturated FA were reduced in a tissue-specific way by CLA. It was concluded that dietary CLA affected transcription of genes and fat metabolism in a tissue-specific manner.

  10. Importance of the residue Asp 290 on chain length selectivity and catalytic efficiency of recombinant Staphylococcus simulans lipase expressed in E. coli.

    PubMed

    Sayari, Adel; Mosbah, Habib; Gargouri, Youssef

    2007-05-01

    In addition to their physiological importance, microbial lipases, like staphylococcal ones, are of considerable commercial interest for biotechnological applications such as detergents, food production, and pharmaceuticals and industrial synthesis of fine chemicals. The gene encoding the extracellular lipase of Staphylococcus simulans (SSL) was subcloned in the pET-14b expression vector and expressed in Esherichia coli BL21 (DE3). The wild-type SSL was expressed as amino terminal His6-tagged recombinant protein. One-step purification of the recombinant lipase was achieved with nickel metal affinity column. The purified His-tagged SSL (His6-SSL) is able to hydrolyse triacylglycerols without chain length selectivity. The major differences among lipases are reflected in their chemical specificity in the hydrolysis of peculiar ester bonds, and their respective capacity to hydrolyse substrates having different physico-chemical properties. It has been proposed, using homology alignment, that the region around the residue 290 of Staphylococcus hyicus lipase could be involved in the selection of the substrate. To evaluate the importance of this environment, the residue Asp290 of Staphylococcus simulans lipase was mutated to Ala using site-directed mutagenesis. The mutant expression plasmid was also overexpressed in Esherichia coli and purified with a nickel metal affinity column. The substitution of Asp290 by Ala was accompanied by a significant shift of the acyl-chain length specificity of the mutant towards short chain fatty acid esters. Kinetic studies of wild-type SSL and its mutant D290A were carried out, and show essentially that the catalytic efficiency (k cat /K M ) of the mutant was affected. Our results confirmed that Asp290 is important for the chain length selectivity and catalytic efficiency of Staphylococcus simulans lipase.

  11. New member of the hormone-sensitive lipase family from the permafrost microbial community.

    PubMed

    Petrovskaya, Lada E; Novototskaya-Vlasova, Ksenia A; Gapizov, Sultan Sh; Spirina, Elena V; Durdenko, Ekaterina V; Rivkina, Elizaveta M

    2016-10-18

    Siberian permafrost is a unique environment inhabited with diverse groups of microorganisms. Among them, there are numerous producers of biotechnologically relevant enzymes including lipases and esterases. Recently, we have constructed a metagenomic library from a permafrost sample and identified in it several genes coding for potential lipolytic enzymes. In the current work, properties of the recombinant esterases obtained from this library are compared with the previously characterized lipase from Psychrobacter cryohalolentis and other representatives of the hormone-sensitive lipase family.

  12. Cloning, Expression, and Characterization of a Cold-Active and Organic Solvent-Tolerant Lipase from Aeromicrobium sp. SCSIO 25071.

    PubMed

    Su, Hongfei; Mai, Zhimao; Yang, Jian; Xiao, Yunzhu; Tian, Xinpeng; Zhang, Si

    2016-06-28

    The gene encoding lipase (Lip98) from Aeromicrobium sp. SCSIO 25071 was cloned and functionally expressed in Escherichia coli. Lip98 amino acid sequence shares the highest (49%) identity to Rhodococcus jostii RHA1 lipase and contains a novel motif (GHSEG), which is different from other clusters in the lipase superfamily. The recombinant lipase was purified to homogeneity with Ni-NTA affinity chromatography. Lip98 showed an apparent molecular mass of 30 kDa on SDS gel. The optimal temperature and pH value for enzymatic activity were recorded at 30°C and 7.5, respectively. Lip98 exhibited high activity at low temperatures with 35% maximum activity at 0°C and good stability at temperatures below 35°C. Its calculated activation energy was 4.12 kcal/mol at the low temperature range of 15-30°C. Its activity was slightly affected by some metal ions such as K(+), Ca(2+), and Na(+). The activity of Lip98 was increased by various organic solvents such as DMSO, ethanol, acetone, and hexane with the concentration of 30% (v/v) and retained more than 30% residual activity in neat organic solvent. The unique characteristics of Lip98 imply that it is a promising candidate for industrial application as a nonaqueous biocatalyst and food additive.

  13. Injection of phosphatidylcholine and deoxycholic acid regulates gene expression of lipolysis-related factors, pro-inflammatory cytokines, and hormones on mouse fat tissue.

    PubMed

    Won, Tae Joon; Nam, Yunsung; Lee, Ho Sung; Chung, Sujin; Lee, Jong Hyuk; Chung, Yoon Hee; Park, Eon Sub; Hwang, Kwang Woo; Jeong, Ji Hoon

    2013-10-01

    Injection of phosphatidylcholine (PC) and deoxycholic acid (DA) preparation is widely used as an alternative to liposuction for the reduction of subcutaneous fat. Nevertheless, its physiological effects and mechanism of action are not yet fully understood. In this report, PC and deoxycholic acid (DA) were respectively injected into adipose tissue. PC decreased tissue mass on day 7, but DA did not. On the other hand, a decrement of DNA mass was observed only in DA-injected tissue on day 7. Both PC and DA reduced the mRNA expression of adipose tissue hormones, such as adiponectin, leptin, and resistin. In lipolysis-related gene expression profiles, PC increased hormone-sensitive lipase (HSL) transcription and decreased the expression other lipases, perilipin, and the lipogenic marker peroxisome proliferator-activated receptor-γ (PPARγ); DA treatment diminished them all, including HSL. Meanwhile, the gene expression of pro-inflammatory cytokines and a chemokine was greatly elevated in both PC-injected and DA-injected adipose tissue. Microscopic observation showed that PC induced lipolysis with mild PMN infiltration on day 7. However, DA treatment did not induce lipolysis but induced much amount of PMN infiltration. In conclusion, PC alone might induce lipolysis in adipose tissue, whereas DC alone might induce tissue damage.

  14. Tetracycline Inhibition of a Lipase from Corynebacterium acnes

    PubMed Central

    Weaber, K.; Freedman, R.; Eudy, W. W.

    1971-01-01

    A lipase which hydrolyzes triglycerides (tricaprylin and trilaurin) and naphthyl laurate was obtained from the broth of Corynebacterium acnes cultures by ammonium sulfate fractionation. Ca2+ and sodium taurocholate stimulated activity of the enzyme. Ethylenediaminetetraacetic acid (EDTA) did not inhibit activity of the Ca2+-activated enzyme, but lipolytic activity was inhibited by EDTA in the absence of Ca2+. Tetracycline (10−4m) produced a slight inhibition of the lipase activity with 5 × 10−5m or less showing no effect on the lipase activity. However, complete inhibition by tetracycline at 10−4m was observed for Ca2+-activated enzyme. Tetracycline inhibition of the C. acnes lipase could be demonstrated at concentrations as low as 10−6m. PMID:4252558

  15. Cellulose binding domain assisted immobilization of lipase (GSlip-CBD) onto cellulosic nanogel: characterization and application in organic medium.

    PubMed

    Kumar, Ashok; Zhang, Shaowei; Wu, Gaobing; Wu, Cheng Chao; Chen, JunPeng; Baskaran, R; Liu, Ziduo

    2015-12-01

    A cbd gene was cloned into the C-terminal region of a lip gene from Geobacillus stearothermophilus. The native lipase (43.5 kDa) and CBD-Lip fusion protein (60.2 kDa) were purified to homogeneity by SDS-PAGE. A highly stable cellulosic nanogel was prepared by controlled hydrolysis of microcrystalline cellulose onto which the CBD-lip fusion protein was immobilized through bio-affinity based binding. The nanogel-bound lipase showed optimum activity at 55 °C, and it remains stable and active at pH 10-10.5. Furthermore, the immobilized lipase showed an over two-fold increase of relative activity in the presence of DMSO, isopropanol, isoamyl alcohol and n-butanol, but a mild activity decrease at a low concentration of methanol and ethanol. The immobilized biocatalyst retained ~50% activity after eight repetitive hydrolytic cycles. Enzyme kinetic studies of the immobilized lipase showed a 1.24 fold increase in Vmax and 5.25 fold increase in kcat towards p-NPP hydrolysis. Additionally, the nanogel bound lipase was tested to synthesize a biodiesel ester, ethyl oleate in DMSO. Kinetic analysis showed the km 100.5 ± 4.3 mmol and Vmax 0.19 ± 0.015 mmolmin(-1) at varied oleic acid concentration. Also, the values of km and Vmax at varying concentration of ethanol were observed to be 95.9 ± 13.9 mmol and 0.22 ± 0.013 mmolmin(-1) respectively. The maximum yield of ethyl oleate 111.2 ± 1.24 mM was obtained under optimized reaction conditions in organic medium. These results suggest that this immobilized biocatalyst can be used as an efficient tool for the biotransformation reactions on an industrial scale.

  16. Gene Expressions for Signal Transduction under Acidic Conditions

    PubMed Central

    Fukamachi, Toshihiko; Ikeda, Syunsuke; Wang, Xin; Saito, Hiromi; Tagawa, Masatoshi; Kobayashi, Hiroshi

    2013-01-01

    Although it is now well known that some diseased areas, such as cancer nests, inflammation loci, and infarction areas, are acidified, little is known about cellular signal transduction, gene expression, and cellular functions under acidic conditions. Our group showed that different signal proteins were activated under acidic conditions compared with those observed in a typical medium of around pH 7.4 that has been used until now. Investigations of gene expression under acidic conditions may be crucial to our understanding of signal transduction in acidic diseased areas. In this study, we investigated gene expression in mesothelioma cells cultured at an acidic pH using a DNA microarray technique. After 24 h culture at pH 6.7, expressions of 379 genes were increased more than twofold compared with those in cells cultured at pH 7.5. Genes encoding receptors, signal proteins including transcription factors, and cytokines including growth factors numbered 35, 32, and 17 among the 379 genes, respectively. Since the functions of 78 genes are unknown, it can be argued that cells may have other genes for signaling under acidic conditions. The expressions of 37 of the 379 genes were observed to increase after as little as 2 h. After 24 h culture at pH 6.7, expressions of 412 genes were repressed more than twofold compared with those in cells cultured at pH 7.5, and the 412 genes contained 35, 76, and 7 genes encoding receptors, signal proteins including transcription factors, and cytokines including growth factors, respectively. These results suggest that the signal pathways in acidic diseased areas are different, at least in part, from those examined with cells cultured at a pH of around 7.4. PMID:24705103

  17. Biodiesel production from different algal oil using immobilized pure lipase and tailor made rPichia pastoris with Cal A and Cal B genes.

    PubMed

    Bharathiraja, B; Ranjith Kumar, R; PraveenKumar, R; Chakravarthy, M; Yogendran, D; Jayamuthunagai, J

    2016-08-01

    In this investigation, oil extraction was performed in marine macroalgae Gracilaria edulis, Enteromorpha compressa and Ulva lactuca. The algal biomass was characterized by Scanning Electron Microscopy and Fourier Transform-Infra Red Spectroscopy. Six different pre-treatment methods were carried out to evaluate the best method for maximum oil extraction. Optimization of extraction parameters were performed and high oil yield was obtained at temperature 55°C, time 150min, particle size 0.10mm, solvent-to-solid ratio 6:1 and agitation rate 500rpm. After optimization, 9.5%, 12.18% and 10.50 (g/g) of oil extraction yield was achieved from the respective algal biomass. The rate constant for extraction was obtained as first order kinetics, by differential method. Stable intracellular Cal A and Cal B lipase producing recombinant Pichia pastoris was constructed and used as biocatalyst for biodiesel production. Comparative analysis of lipase activity and biodiesel yield was made with immobilized Candida antarctica lipase.

  18. Enhancing functional production of a chaperone-dependent lipase in Escherichia coli using the dual expression cassette plasmid

    PubMed Central

    2012-01-01

    Abstracts Background The lipase subfamilies I.1 and I.2 show more than 33% homology in the amino acid sequences and most members share another common property that their genes are clustered with the secondary genes whose protein products are required for folding the lipase into an active conformation and secretion into the culture medium. In previous studies, the lipase (LipA) and its chaperone (LipB) from Ralstonia sp. M1 were overexpressed in E. coli and the lipase was successfully refolded in vitro. The purpose of this study was to enhance the production of the active lipase LipA from Ralstonia sp. M1 in the heterologous host E. coli without in vitro refolding process, using two-plasmid co-expression systems and dual expression cassette plasmid systems. Results To produce more active lipase from Ralstonia sp. M1 in E. coli without in vitro refolding process but with the help of overexpression of the chaperone (LipB1 and LipB3 corresponding to 56-aa truncated and 26-aa truncated chaperone LipB), six different expression systems including 2 two-plasmid co-expression systems (E. coli BL21/pELipABa + pELipB1k and BL21/pELipABa + pELipB3k) and 4 dual expression cassette plasmid systems (BL21/pELipAB-LipB1a, BL21/pELipAB-LipB3a, BL21/pELipA-LipB1a, and BL21/pELipA-LipB3a) were constructed. The two-plasmid co-expression systems (E. coli BL21/pELipABa + pELipB1k and BL21/pELipABa + pELipB3k) produced the active lipase at a level of 4 times as high as the single expression cassette plasmid system E. coli BL21/pELipABa did. For the first time, the dual expression cassette plasmid systems BL21/pELipAB-LipB1a and BL21/pELipAB-LipB3a yielded 29- and 19-fold production of the active lipase in comparison with the single expression cassette plasmid system E. coli BL21/pELipABa, respectively. Although the lipase amount was equally expressed in all these expression systems (40% of total cellular protein) and only a small fraction of the overexpressed lipase was folded in vivo

  19. Discrimination of thermostable and thermophilic lipases using support vector machines.

    PubMed

    Zhao, Wei; Wang, Xunzhang; Deng, Riqiang; Wang, Jinwen; Zhou, Hongbo

    2011-07-01

    Discriminating thermophilic lipases from their similar thermostable counterparts is a challenging task and it would help to design stable proteins. In this study, the distributions of N (N=2, 3) neighboring amino acids and the non-adjacent di-residue coupling patterns in the sequences of 65 thermostable and 77 thermophilic lipases had been systematically analyzed. It was found that the hydrophobic residues Leu, Pro, Met, Phe, Trp, as well as the polar residue Tyr had higher occurrence in thermophilic lipases than thermostable ones. The occurrence frequencies of KC EE KE RE, VE, YI, EK, VK, EV, YV, EY, KY, VY and YY in thermophilic proteins were significantly higher, while the occurrence frequencies of QC, QH, QN, HQ, MQ, NQ, QQ, TQ, QS and QT were significantly lower. CXP or CPX showed significantly positive to lipase thermostability, while XXQ or QXX showed significantly negative to lipase thermostability. Non-adjacent di-residue coupling patterns of PR14, RY32, YR47, LE53, LE64, PP64, RP70 and PP101 were significantly different in thermophilic lipases and their thermostable counterparts. The composition of dipeptide, tripeptide and non-adjacent di-residue patterns contained more information than amino acid composition. A statistical method based on support vector machines (SVMs) was developed for discriminating thermophilic and thermostable lipases. The accuracy of this method for the training dataset was 97.17?. Furthermore, the highest accuracy of the method for testing datasets was 98.41?. The influence of some specific patterns on lipase thermostability was also discussed.

  20. Plant lipases: partial purification of Carica papaya lipase.

    PubMed

    Rivera, Ivanna; Mateos-Díaz, Juan Carlos; Sandoval, Georgina

    2012-01-01

    Lipases from plants have very interesting features for application in different fields. This chapter provides an overview on some of the most important aspects of plant lipases, such as sources, applications, physiological functions, and specificities. Lipases from laticifers and particularly Carica papaya lipase (CPL) have emerged as a versatile autoimmobilized biocatalyst. However, to get a better understanding of CPL biocatalytic properties, the isolation and purification of individual C. papaya lipolytic enzymes become necessary. In this chapter, a practical protocol for partial purification of the latex-associated lipolytic activity from C. papaya is given.

  1. Effects of methanol on lipases: molecular, kinetic and process issues in the production of biodiesel.

    PubMed

    Lotti, Marina; Pleiss, Jürgen; Valero, Francisco; Ferrer, Pau

    2015-01-01

    The biotechnological production of biodiesel is based on transesterification/esterification reactions between a source of fatty acids and a short-chain alcohol, usually methanol, catalysed by enzymes belonging to the class known as lipases. Several lipases used in industrial processes, although stable in the presence of other organic solvents, are inactivated by methanol at or below the concentration optimal for biodiesel production, making it necessary to use stepwise methanol feeding or pre-treatment of the enzyme. In this review article we focus on what is currently know about methanol inactivation of lipases, a phenomenon which is not common to all lipase enzymes, with the goal of improving the biocatalytic process. We suggest that different mechanisms can lead to inactivation of different lipases, in particular substrate inhibition and protein unfolding. Attempts to improve the performances of methanol sensitive lipases by mutagenesis as well as process engineering approaches are also summarized.

  2. Collagen-Immobilized Lipases Show Good Activity and Reusability for Butyl Butyrate Synthesis.

    PubMed

    Dewei, Song; Min, Chen; Haiming, Cheng

    2016-11-01

    Candida rugosa lipases were immobilized onto collagen fibers through glutaraldehyde cross-linking method. The immobilization process has been optimized. Under the optimal immobilization conditions, the activity of the collagen-immobilized lipase reached 340 U/g. The activity was recovered of 28.3 % by immobilization. The operational stability of the obtained collagen-immobilized lipase for hydrolysis of olive oil emulsion was determined. The collagen-immobilized lipase showed good tolerance to temperature and pH variations in comparison to free lipase. The collagen-immobilized lipase was also applied as biocatalyst for synthesis of butyl butyrate from butyric acid and 1-butanol in n-hexane. The conversion yield was 94 % at the optimal conditions. Of its initial activity, 64 % was retained after 5 cycles for synthesizing butyl butyrate in n-hexane.

  3. High milk lipase activity associated with breast milk jaundice.

    PubMed

    Poland, R L; Schultz, G E; Garg, G

    1980-12-01

    Human milk samples that inhibit bilirubin-UDP-glucuronyl transferase (UDPGT) activity in vitro have been associated with prolonged unconjugated hyperbilirubinemia in newborn infants. We measured the concentration of nonesterified fatty acids (total and individual fatty acids), total fat and protein, and lipase activities (with and without bile salt stimulation) in milk samples from two groups of women. Women whose infants had prolonged unconjugated hyperbilirubinemia and whose milk inhibited the activity of UDPGT were in the first group (N = 9). Volunteers with healthy infants acted as controls. Inhibitory milk contained significantly more nonesterified fatty acids (total, palmitic, and oleic) than did controls. Fat and protein concentrations and bile salt-stimulated lipase activities were similar in the two groups. Unstimulated lipase activity was higher in the inhibitory milks (11.9 +/- 0.8 mM x min-1 x ml-1) than in the controls (6.0 +/- 0.1 mM x min-1 x ml-1) (P less than 0.01). The specific activity (mM x min-1 x mg protein) of unstimulated lipase was also significantly higher in the inhibitory milks (P less than 0.0001). The high nonesterified fatty acid levels in inhibitory milks is accounted for by the elevated unstimulated lipase activities. How these circumstances lead to jaundice in the infants remains to be shown.

  4. Tetrahydrolipstatin Inhibition, Functional Analyses, and Three-dimensional Structure of a Lipase Essential for Mycobacterial Viability

    SciTech Connect

    Crellin, Paul K.; Vivian, Julian P.; Scoble, Judith; Chow, Frances M.; West, Nicholas P.; Brammananth, Rajini; Proellocks, Nicholas I.; Shahine, Adam; Le Nours, Jerome; Wilce, Matthew C.J.; Britton, Warwick J.; Coppel, Ross L.; Rossjohn, Jamie; Beddoe, Travis

    2010-09-17

    The highly complex and unique mycobacterial cell wall is critical to the survival of Mycobacteria in host cells. However, the biosynthetic pathways responsible for its synthesis are, in general, incompletely characterized. Rv3802c from Mycobacterium tuberculosis is a partially characterized phospholipase/thioesterase encoded within a genetic cluster dedicated to the synthesis of core structures of the mycobacterial cell wall, including mycolic acids and arabinogalactan. Enzymatic assays performed with purified recombinant proteins Rv3802c and its close homologs from Mycobacterium smegmatis (MSMEG{_}6394) and Corynebacterium glutamicum (NCgl2775) show that they all have significant lipase activities that are inhibited by tetrahydrolipstatin, an anti-obesity drug that coincidently inhibits mycobacterial cell wall biosynthesis. The crystal structure of MSMEG{_}6394, solved to 2.9 {angstrom} resolution, revealed an {alpha}/{beta} hydrolase fold and a catalytic triad typically present in esterases and lipases. Furthermore, we demonstrate direct evidence of gene essentiality in M. smegmatis and show the structural consequences of loss of MSMEG{_}6394 function on the cellular integrity of the organism. These findings, combined with the predicted essentiality of Rv3802c in M. tuberculosis, indicate that the Rv3802c family performs a fundamental and indispensable lipase-associated function in mycobacteria.

  5. Lingual lipase activity in the orosensory detection of fat by humans.

    PubMed

    Kulkarni, Bhushan V; Mattes, Richard D

    2014-06-15

    Lingual lipase generates nonesterified fatty acids (NEFA) from dietary fats during oral processing by lipolysis. Lingual lipase in rodents has strong lipolytic activity and plays a critical role in oral detection of fats. The functional activity of lingual lipase during oral processing of high-fat foods in humans remains poorly characterized. Five commonly consumed high-fat foods varying in physical states and fatty acid composition (almond, almond butter, olive oil, walnut, and coconut) were masticated by 15 healthy human subjects at the rate of one chew per second with and without lipase inhibitor orlistat. Salivary NEFA concentrations were measured. To determine the role of lingual lipase in oral fat detection, sensory ratings were obtained from the same 15 human subjects for almond butter with and without orlistat. Lingual lipase was active during oral processing of almond and coconut. No activity of lingual lipase was detected during processing of almond butter. There was only weak evidence lingual lipase is a determinant of oral fat detection. Lingual lipase may only contribute to NEFA generation and oral fat detection of fatty foods that require stronger oral processing effort.

  6. Lingual lipase activity in the orosensory detection of fat by humans

    PubMed Central

    Kulkarni, Bhushan V.

    2014-01-01

    Lingual lipase generates nonesterified fatty acids (NEFA) from dietary fats during oral processing by lipolysis. Lingual lipase in rodents has strong lipolytic activity and plays a critical role in oral detection of fats. The functional activity of lingual lipase during oral processing of high-fat foods in humans remains poorly characterized. Five commonly consumed high-fat foods varying in physical states and fatty acid composition (almond, almond butter, olive oil, walnut, and coconut) were masticated by 15 healthy human subjects at the rate of one chew per second with and without lipase inhibitor orlistat. Salivary NEFA concentrations were measured. To determine the role of lingual lipase in oral fat detection, sensory ratings were obtained from the same 15 human subjects for almond butter with and without orlistat. Lingual lipase was active during oral processing of almond and coconut. No activity of lingual lipase was detected during processing of almond butter. There was only weak evidence lingual lipase is a determinant of oral fat detection. Lingual lipase may only contribute to NEFA generation and oral fat detection of fatty foods that require stronger oral processing effort. PMID:24694384

  7. Addition of lipase from Candida cylindracea to a traditional formulation of a dry fermented sausage.

    PubMed

    Zalacain, I; Zapelena, M J; Astiasaran, I; Bello, J

    1996-01-01

    The objective of this work was to study the manufacture of sausage containing a traditional starter culture (Lactobacillus plantarum and Staphylococcus carnosus) together with an enzyme lipase from Candida cylindracea as compared with that of a sausage with only starter. The acidity value showed more intense lipolysis in the sausage with lipase with this increase being especially important in the second week of drying. In spite of this, there was no significant (p > 0.05) increase in the oxidative rancidity processes in this sausage. The analysis of short chain fatty acids suggested the enzyme and starter together produced a greater amount of such acids than did the enzyme or the starter separately. Almost all free fatty acids showed significantly higher values in the sausage with lipase with the exception of linolenic acid. The addition of enzyme lipase produced a higher proportion of free saturated acids and a lower proportion of polyunsaturated acids during the drying of the sausage.

  8. Active-site titration analysis of surface influence on immobilized Candida antarctica Lipase B activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Matrix morphology and surface polarity effects were investigated for Candida antarctica lipase B immobilization. Measurements of the amount of lipase immobilized (bicinchoninic acid method) and the catalyst’s tributyrin hydrolysis activity, coupled with a determination of the lipase’s functional fr...

  9. Functional expression of a novel alkaline-adapted lipase of Bacillus amyloliquefaciens from stinky tofu brine and development of immobilized enzyme for biodiesel production.

    PubMed

    Cai, Xianghai; Ma, Jing; Wei, Dong-Zhi; Lin, Jin-Ping; Wei, Wei

    2014-11-01

    Using enrichment procedures, a lipolytic strain was isolated from a stinky tofu brine and was identified as Bacillus amyloliquefaciens (named B. amyloliquefaciens Nsic-8) by morphological, physiological, biochemical tests and 16S rDNA sequence analysis. Meanwhile, the key enzyme gene (named lip BA) involved in ester metabolism was obtained from Nsic-8 with the assistance of homology analysis. The novel gene has an open reading frame of 645 bp, and encodes a 214-amino-acid lipase (LipBA). The deduced amino acid sequence shows the highest identity with the lipase from B. amyloliquefaciens IT-45 (NCBI database) and belongs to the family of triacylglycerol lipase (EC 3.1.1.3). The lipase gene was expressed in Escherichia coli BL21(DE3) using plasmid pET-28a. The enzyme activity and specific activity were 250 ± 16 U/ml and 1750 ± 153 U/mg, respectively. The optimum pH and temperature of the recombinant enzyme were 9.0 and 40 °C respectively. LipBA showed much higher stability under alkaline conditions and was stable at pH 7.0-11.0. The Km and Vmax values of purified LipBA using 4-nitrophenyl palmitate as the substrate were 1.04 ± 0.06 mM and 119.05 ± 7.16 μmol/(ml min), respectively. After purification, recombinant lipase was immobilized with the optimal conditions (immobilization time 3 h at 30 °C, with 92 % enzyme recovery) and the immobilized enzyme was applied in biodiesel production. This is the first report of the lipase activity and lipase gene obtained from B. amyloliquefaciens (including wild strain and recombinant strain) and the recombinant LipBA with the detailed enzymatic properties. Also the preliminary study of the transesterification shows the potential value in biodiesel production applications.

  10. Biodiesel production by transesterification using immobilized lipase.

    PubMed

    Narwal, Sunil Kumar; Gupta, Reena

    2013-04-01

    Biodiesel can be produced by transesterification of vegetable or waste oil catalysed by lipases. Biodiesel is an alternative energy source to conventional fuel. It combines environmental friendliness with biodegradability, low toxicity and renewability. Biodiesel transesterification reactions can be broadly classified into two categories: chemical and enzymatic. The production of biodiesel using the enzymatic route eliminates the reactions catalysed under acid or alkali conditions by yielding product of very high purity. The modification of lipases can improve their stability, activity and tolerance to alcohol. The cost of lipases and the relatively slower reaction rate remain the major obstacles for enzymatic production of biodiesel. However, this problem can be solved by immobilizing the enzyme on a suitable matrix or support, which increases the chances of re-usability. The main factors affecting biodiesel production are composition of fatty acids, catalyst, solvents, molar ratio of alcohol and oil, temperature, water content, type of alcohol and reactor configuration. Optimization of these parameters is necessary to reduce the cost of biodiesel production.

  11. Gene quantification by the NanoGene assay is resistant to inhibition by humic acids.

    PubMed

    Kim, Gha-Young; Wang, Xiaofang; Ahn, Hosang; Son, Ahjeong

    2011-10-15

    NanoGene assay is a magnetic bead and quantum dot nanoparticles based gene quantification assay. It relies on a set of probe and signaling probe DNAs to capture the target DNA via hybridization. We have demonstrated the inhibition resistance of the NanoGene assay using humic acids laden genomic DNA (gDNA). At 1 μg of humic acid per mL, quantitiative PCR (qPCR) was inhibited to 0% of its quantification capability whereas NanoGene assay was able to maintain more than 60% of its quantification capability. To further increase the inhibition resistance of NanoGene assay at high concentration of humic acids, we have identified the specific mechanisms that are responsible for the inhibition. We examined five potential mechanisms with which the humic acids can partially inhibit our NanoGene assay. The mechanisms examined were (1) adsorption of humic acids on the particle surface; (2) particle aggregation induced by humic acids; (3) fluorescence quenching of quantum dots by humic acids during hybridization; (4) humic acids mimicking of target DNA; and (5) nonspecific binding between humic acids and target gDNA. The investigation showed that no adsorption of humic acids onto the particles' surface was observed for the humic acids' concentration. Particle aggregation and fluorescence quenching were also negligible. Humic acids also did not mimic the target gDNA except 1000 μg of humic acids per mL and hence should not contribute to the partial inhibition. Four of the above mechanisms were not related to the inhibition effect of humic acids particularly at the environmentally relevant concentrations (<100 μg/mL). However, a substantial amount of nonspecific binding was observed between the humic acids and target gDNA. This possibly results in lesser amount of target gDNA being captured by the probe and signaling DNA.

  12. Novel organic solvent-tolerant esterase isolated by metagenomics: insights into the lipase/esterase classification.

    PubMed

    Berlemont, Renaud; Spee, Olivier; Delsaute, Maud; Lara, Yannick; Schuldes, Jörg; Simon, Carola; Power, Pablo; Daniel, Rolf; Galleni, Moreno

    2013-01-01

    in order to isolate novel organic solvent-tolerant (OST) lipases, a metagenomic library was built using DNA derived from a temperate forest soil sample. A two-step activity-based screening allowed the isolation of a lipolytic clone active in the presence of organic solvents. Sequencing of the plasmid pRBest recovered from the positive clone revealed the presence of a putative lipase/esterase encoding gene. The deduced amino acid sequence (RBest1) contains the conserved lipolytic enzyme signature and is related to the previously described OST lipase from Lysinibacillus sphaericus 205y, which is the sole studied prokaryotic enzyme belonging to the 4.4 α/β hydrolase subgroup (abH04.04). Both in vivo and in vitro studies of the substrate specificity of RBest1, using triacylglycerols or nitrophenyl-esters, respectively, revealed that the enzyme is highly specific for butyrate (C4) compounds, behaving as an esterase rather than a lipase. The RBest1 esterase was purified and biochemically characterized. The optimal esterase activity was observed at pH 6.5 and at temperatures ranging from 38 to 45 °C. Enzymatic activity, determined by hydrolysis of p-nitrophenyl esters, was found to be affected by the presence of different miscible and non-miscible organic solvents, and salts. Noteworthy, RBest1 remains significantly active at high ionic strength. These findings suggest that RBest1 possesses the ability of OST enzymes to molecular adaptation in the presence of organic compounds and resistance of halophilic proteins.

  13. Screening of lipase inhibitors from Scutellaria baicalensis extract using lipase immobilized on magnetic nanoparticles and study on the inhibitory mechanism.

    PubMed

    Wan, Li-Hong; Jiang, Xiao-Lan; Liu, Yi-Ming; Hu, Jin-Jie; Liang, Jian; Liao, Xun

    2016-03-01

    Scutellaria baicalensis is a traditional Chinese medicinal plant possessing a wide variety of biological activities. In this work, lipase immobilized on magnetic nanoparticles (LMNPs) was used as solid phase extract absorbent for screening of lipase inhibitors from this plant. Three flavonoids were found to bind to LMNPs and were identified as baicalin, wogonin, and oroxylin A by liquid chromatography-mass spectrometry (HPLC-MS). Their IC50 values were determined to be 229.22 ± 12.67, 153.71 ± 9.21, and 56.07 ± 4.90 μM, respectively. Fluorescence spectroscopy and molecular docking were used to probe the interactions between these flavonoids and lipase. All the flavonoids quenched the fluorescence of lipase statically by forming new complexes, implying their affinities with the enzyme. The thermodynamic analysis suggested that van der Waals force and hydrogen bond were the main forces between wogonin and lipase, while hydrophobic force was the main force for the other two flavonoids. The results from a molecular docking study further revealed that all of them could insert into the pocket of lipase binding to a couple of amino acid residues.

  14. Characterization of the human lipoprotein lipase (LPL) promoter: evidence of two cis-regulatory regions, LP-alpha and LP-beta, of importance for the differentiation-linked induction of the LPL gene during adipogenesis.

    PubMed Central

    Enerbäck, S; Ohlsson, B G; Samuelsson, L; Bjursell, G

    1992-01-01

    When preadipocytes differentiate into adipocytes, several differentiation-linked genes are activated. Lipoprotein lipase (LPL) is one of the first genes induced during this process. To investigate early events in adipocyte development, we have focused on the transcriptional activation of the LPL gene. For this purpose, we have cloned and fused different parts of intragenic and flanking sequences with a chloramphenicol acetyltransferase reporter gene. Transient transfection experiments and DNase I hypersensitivity assays indicate that several positive as well as negative elements contribute to transcriptional regulation of the LPL gene. When reporter gene constructs were stably introduced into preadipocytes, we were able to monitor and compare the activation patterns of different promoter deletion mutants at selected time points representing the process of adipocyte development. We could delimit two cis-regulatory elements important for gradual activation of the LPL gene during adipocyte development in vitro. These elements, LP-alpha (-702 to -666) and LP-beta (-468 to -430), contain a striking similarity to a consensus sequence known to bind the transcription factors HNF-3 and fork head. Results of gel mobility shift assays and DNase I and exonuclease III in vitro protection assays indicate that factors with DNA-binding properties similar to those of the HNF-3/fork head family of transcription factors are present in adipocytes and interact with LP-alpha and LP-beta. We also demonstrate that LP-alpha and LP-beta were both capable of conferring a differentiation-linked expression pattern to a heterolog promoter, thus mimicking the expression of the endogenous LPL gene during adipocyte differentiation. These findings indicate that interactions with LP-alpha and LP-beta could be a part of a differentiation switch governing induction of the LPL gene during adipocyte differentiation. Images PMID:1406652

  15. Novel acid resistance genes from the metagenome of the Tinto River, an extremely acidic environment.

    PubMed

    Guazzaroni, María-Eugenia; Morgante, Verónica; Mirete, Salvador; González-Pastor, José E

    2013-04-01

    Microorganisms that thrive in acidic environments are endowed with specialized molecular mechanisms to survive under this extremely harsh condition. In this work, we performed functional screening of six metagenomic libraries from planktonic and rhizosphere microbial communities of the Tinto River, an extremely acidic environment, to identify genes involved in acid resistance. This approach has revealed 15 different genes conferring acid resistance to Escherichia coli, most of which encoding putative proteins of unknown function or previously described proteins not known to be related to acid resistance. Moreover, we were able to assign function to one unknown and three hypothetical proteins. Among the recovered genes were the ClpXP protease, the transcriptional repressor LexA and nucleic acid-binding proteins such as an RNA-binding protein, HU and Dps. Furthermore, nine of the retrieved genes were cloned and expressed in Pseudomonas putida and Bacillus subtilis and, remarkably, most of them were able to expand the capability of these bacteria to survive under severe acid stress. From this set of genes, four presented a broad-host range as they enhance the acid resistance of the three different organisms tested. These results expand our knowledge about the different strategies used by microorganisms to survive under extremely acid conditions.

  16. Phosphatidic acid metabolism in rat liver cell nuclei.

    PubMed

    Gaveglio, Virginia L; Pasquaré, Susana J; Giusto, Norma M

    2013-04-02

    The aim of the present research was to analyze the pathways for phosphatidic acid metabolism in purified nuclei from liver. Lipid phosphate phosphatase, diacylglycerol lipase, monoacylglycerol lipase and PA-phospholipase type A activities were detected. The presence of lysophosphatidic acid significantly reduced DAG production while sphingosine 1-phoshate and ceramide 1-phosphate reduced MAG formation from PA. Using different enzymatic modulators (detergents and ions) an increase in the PA metabolism by phospholipase type A was observed. Our findings evidence an active PA metabolism in purified liver nuclei which generates important lipid second messengers, and which could thus be involved in nuclear processes such as gene transcription.

  17. Lipase cocktail for efficient conversion of oils containing phospholipids to biodiesel.

    PubMed

    Amoah, Jerome; Ho, Shih-Hsin; Hama, Shinji; Yoshida, Ayumi; Nakanishi, Akihito; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2016-07-01

    The presence of phospholipid has been a challenge in liquid enzymatic biodiesel production. Among six lipases that were screened, lipase AY had the highest hydrolysis activity and a competitive transesterification activity. However, it yielded only 21.1% FAME from oil containing phospholipids. By replacing portions of these lipases with a more robust bioFAME lipase, CalT, the combination of lipase AY-CalT gave the highest FAME yield with the least amounts of free fatty acids and partial glycerides. A higher methanol addition rate reduced FAME yields for lipase DF-CalT and A10D-CalT combinations while that of lipase AY-CalT combination improved. Optimizing the methanol addition rate for lipase AY-CalT resulted in a FAME yield of 88.1% at 2h and more than 95% at 6h. This effective use of lipases could be applied for the rapid and economic conversion of unrefined oils to biodiesel.

  18. Characterization of biotechnologically relevant extracellular lipase produced by Aspergillus terreus NCFT 4269.10.

    PubMed

    Sethi, Bijay Kumar; Nanda, Prativa Kumari; Sahoo, Santilata

    2016-01-01

    Enzyme production by Aspergillus terreus NCFT 4269.10 was studied under liquid static surface and solid-state fermentation using mustard oil cake as a substrate. The maximum lipase biosynthesis was observed after incubation at 30°C for 96h. Among the domestic oils tested, the maximum lipase biosynthesis was achieved using palm oil. The crude lipase was purified 2.56-fold to electrophoretic homogeneity, with a yield of 8.44%, and the protein had a molecular weight of 46.3kDa as determined by SDS-PAGE. Enzyme characterization confirmed that the purified lipase was most active at pH 6.0, temperature of 50°C, and substrate concentration of 1.5%. The enzyme was thermostable at 60°C for 1h, and the optimum enzyme-substrate reaction time was 30min. Sodium dodecyl sulfate and commercial detergents did not significantly affect lipase activity during 30-min incubation at 30°C. Among the metal ions tested, the maximum lipase activity was attained in the presence of Zn(2+), followed by Mg(2+) and Fe(2+). Lipase activity was not significantly affected in the presence of ethylenediaminetetraacetic acid, sodium lauryl sulfate and Triton X-100. Phenylmethylsulfonyl fluoride (1mM) and the reducing, β-mercaptoethanol significantly inhibited lipase activity. The remarkable stability in the presence of detergents, additives, inhibitors and metal ions makes this lipase unique and a potential candidate for significant biotechnological exploitation.

  19. Biodiesel production from microalgae oil catalyzed by a recombinant lipase.

    PubMed

    Huang, Jinjin; Xia, Ji; Jiang, Wei; Li, Ying; Li, Jilun

    2015-03-01

    A recombinant Rhizomucor miehei lipase was constructed and expressed in Pichia pastoris. The target enzyme was termed Lipase GH2 and it can be used as a free enzyme for catalytic conversion of microalgae oil mixed with methanol or ethanol for biodiesel production in an n-hexane solvent system. Conversion rates of two major types of biodiesel, fatty acid methyl ester (FAME) and fatty acid ethyl ester (FAEE), reached maximal values (>90%) after 24h. The process of FAME production is generally more simple and economical than that of FAEE production, even though the two processes show similar conversion rates. In spite of the damaging effect of ethanol on enzyme activity, we successfully obtained ethyl ester by the enzymatic method. Our findings indicate that Lipase GH2 is a useful catalyst for conversion of microalgae oil to FAME or FAEE, and this system provides efficiency and reduced costs in biodiesel production.

  20. Lipase expression in Pseudomonas alcaligenes is under the control of a two-component regulatory system.

    PubMed

    Krzeslak, Joanna; Gerritse, Gijs; van Merkerk, Ronald; Cool, Robbert H; Quax, Wim J

    2008-03-01

    Preliminary observations in a large-scale fermentation process suggested that the lipase expression of Pseudomonas alcaligenes can be switched on by the addition of certain medium components, such as soybean oil. In an attempt to elucidate the mechanism of induction of lipase expression, we have set up a search method for genes controlling lipase expression by use of a cosmid library containing fragments of P. alcaligenes genomic DNA. A screen for lipase hyperproduction resulted in the selection of multiple transformants, of which the best-producing strains comprised cosmids that shared an overlapping genomic fragment. Within this fragment, two previously unidentified genes were found and named lipQ and lipR. Their encoded proteins belong to the NtrBC family of regulators that regulate gene expression via binding to a specific upstream activator sequence (UAS). Such an NtrC-like UAS was identified in a previous study in the P. alcaligenes lipase promoter, strongly suggesting that LipR acts as a positive regulator of lipase expression. The regulating role could be confirmed by down-regulated lipase expression in a strain with an inactivated lipR gene and a threefold increase in lipase yield in a large-scale fermentation when expressing the lipQR operon from the multicopy plasmid pLAFR3. Finally, cell extracts of a LipR-overexpressing strain caused a retardation of the lipase promoter fragment in a band shift assay. Our results indicate that lipase expression in Pseudomonas alcaligenes is under the control of the LipQR two-component system.

  1. Synthesis of a novel biologically active amide ester of 7,10-dihydroxy-8(E)-octadecanoic acid (DOD) using lipase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxy fatty acids (HFA) are known to have industrial potential because of their special properties such as high viscosity and reactivity. Among the hydroxy fatty acids, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) was successfully produced from oleic acid and lipid containing oleic acid by a bacter...

  2. Differences in hydrolytic abilities of two crude lipases from Geotrichum candidum 4013.

    PubMed

    Brabcová, Jana; Zarevúcka, Marie; Macková, Martina

    2010-12-01

    The fungus Geotrichum candidum 4013 produces two types of lipases (extracellular and cell-bound). Both enzymes were tested for their hydrolytic ability to p-nitrophenyl esters and compounds having a structure similar to the original substrate (triacylglycerols). Higher lipolytic activity of extracellular lipase was observed when triacylglycerols of medium- (C12) and long- (C18) chain fatty acids were used as substrates. Cell-bound lipase preferentially hydrolysed trimyristate (C14). The differences in the abilities of these two enzymes to hydrolyse p-nitrophenyl esters were observed as well. The order of extracellular lipase hydrolysis relation velocity was as follows: p-nitrophenyl decanoate > p-nitrophenyl caprylate > p-nitrophenyl laurate > p-nitrophenyl palmitate > p-nitrophenyl stearate. The cell-bound lipase indicates preference for p-nitrophenyl palmitate. The most striking differences in the ratios between the activity of both lipases (extracellular : cell-bound) towards different fatty acid methyl esters were 2.2 towards methyl hexanoate and 0.46 towards methyl stearate (C18). The Michaelis constant (K(m) ) and maximum reaction rate (V(max) ) for p-nitrophenyl palmitate hydrolysis of cell-bound lipase were significantly higher (K(m) 2.462 mM and V(max) 0.210 U/g/min) than those of extracellular lipase (K(m) 0.406 mM and V(max) 0.006 U/g/min).

  3. Inhibition of Propionibacterium acnes lipase by extracts of Indian medicinal plants.

    PubMed

    Patil, V; Bandivadekar, A; Debjani, D

    2012-06-01

    Lipases play an important role in pathogenesis of acne by hydrolysing sebum triglycerides and releasing irritating free fatty acids in the pilosebaceous follicles. Lipase is a strong chemotactic and proinflammatory antigen. Therefore, lipase has generated a high interest as a pharmacological target for antiacne drugs. The aim of this study was to identify inhibitory effects of plant extracts on the lipase activity of Propionibacterium acnes. Colorimetric microassay was used to determine lipase activity. Extracts from Terminalia chebula and Embelia ribes showed lower IC(50) value (1 μg mL(-1) ) for lipase inhibition as compared to Vitex negundo and Picrorhiza kurroa (19 and 47 μg mL(-1) , respectively). The active component responsible for lipase inhibition was isolated. This study reports for the first time the novel antilipase activity of chebulagic acid (IC(50) : 60 μmol L(-1) ) with minimum inhibitory concentration value of 12.5 μg mL(-1) against P. acnes. The inhibitory potential of plant extracts was further confirmed by plate assay. The organism was grown in the presence of subinhibitory concentrations of extracts from P. kurroa, V. negundo, T. chebula, E. ribes and antibiotics such as clindamycin and tetracycline. Extract from T. chebula showed significant inhibition of lipase activity and number of P. acnes.

  4. Production of γ-linolenic acid and stearidonic acid by Synechococcus sp. PCC7002 containing cyanobacterial fatty acid desaturase genes

    NASA Astrophysics Data System (ADS)

    Dong, Xuewei; He, Qingfang; Peng, Zhenying; Yu, Jinhui; Bian, Fei; Li, Youzhi; Bi, Yuping

    2016-07-01

    Genetic modification is useful for improving the nutritional qualities of cyanobacteria. To increase the total unsaturated fatty acid content, along with the ratio of ω-3/ω-6 fatty acids, genetic engineering can be used to modify fatty acid metabolism. Synechococcus sp. PCC7002, a fast-growing cyanobacterium, does not contain a Δ6 desaturase gene and is therefore unable to synthesize γ-linolenic acid (GLA) and stearidonic acid (SDA), which are important in human health. In this work, we constructed recombinant vectors Syd6D, Syd15D and Syd6Dd15D to express the Δ15 desaturase and Δ6 desaturase genes from Synechocystis PCC6803 in Synechococcus sp. PCC7002, with the aim of expressing polyunsaturated fatty acids. Overexpression of the Δ15 desaturase gene in Synechococcus resulted in 5.4 times greater accumulation of α-linolenic acid compared with the wild-type while Δ6 desaturase gene expression produced both GLA and SDA. Co-expression of the two genes resulted in low-level accumulation of GLA but much larger amounts of SDA, accounting for as much to 11.64% of the total fatty acid content.

  5. Identification, cloning and characterization of a GDSL lipase secreted into the nectar of Jacaranda mimosifolia.

    PubMed

    Kram, Brian W; Bainbridge, Elizabeth A; Perera, M Ann D N; Carter, Clay

    2008-09-01

    The presence and function of several proteins secreted into floral nectars has been described in recent years. Here we report the presence of at least eight distinct proteins secreted into the floral nectar of the tropical tree Jacaranda mimosifolia (Bignoniaceae). Steps were initiated to identify and characterize these proteins in order to determine potential functions. The N-terminal sequence of the major Jacaranda nectar protein, JNP1, at 43 kDa contained similarity with members of the plant GDSL lipase/esterase gene family. Based upon this sequence, a full-length cDNA was isolated and predicted to encode a mature protein of 339 amino acids with a molecular mass of 37 kDa. Both raw nectar and heterologously expressed JNP1 displayed lipase/esterase activities. Interestingly, J. mimosifolia flowers produce an opaque, white colored nectar containing spherical, lipophilic particles approximately 5 microm in diameter and smaller. GS-MS analysis also identified the accumulation of free fatty acids within the nectar. It is proposed that JNP1 hydrolyzes Jacaranda nectar lipids with the concomitant release of free fatty acids. Potential functions of JNP1 in relation to pollinator attraction and prevention of microbial growth within nectar are briefly discussed.

  6. The rs2070895 (-250G/A) Single Nucleotide Polymorphism in Hepatic Lipase (HL) Gene and the Risk of Coronary Artery Disease in North Indian Population: A Case-Control Study

    PubMed Central

    Verma, Dileep Kumar; Sethi, Rishi; Singh, Shraddha; Krishna, Akhilesh

    2016-01-01

    Introduction Several Single Nucleotide Polymorphisms (SNPs) in lipid transport genes have been shown to be associated with Coronary Artery Disease (CAD). The Hepatic Lipase (HL)glycoprotein is a key component that catalyzes the hydrolysis of triglycerides and phospholipids in all major classes of lipoproteins. Aim We studied whether the HL gene-250G/A polymorphism affect blood lipid level and the CAD in a North Indian population. Materials and Methods A total number of 477 subjects were enrolled in the study after approval of the Institutional Ethics Committee. Out of 477 subjects, 233 were with coronary artery disease as study group and 244 subjects without coronary artery disease as control group. All subjects recruited with matched ethnicity in age group of 40-70 years. Blood samples were collected in EDTA vials and genomic DNA was extracted from blood using the phenol-chloroform method. Lipid profile was estimated by using a commercially available kit. Polymorphisms in the HL (-250 G/A) gene were analysed by using restriction fragment length polymorphism-polymerase chain reaction (PCR-RFLP) method. The effect of this polymorphism on plasma lipids, lipoproteins and coronary artery disease was determined. Results In Human Hepatic Lipase (LIPC)-250G/A genotype, the frequencies of GG, GA and AA genotype in CAD group was 80.69%, 15.45% and 3.86%, respectively; in the control group, the corresponding frequencies were 90.16%, 9.02% and 0.82%, respectively. A significant difference was found in the genotype (LIPC-250G/A) distribution between the two groups. Further logistic regression analysis indicated that the GA and AA genotypes in SNP-250G/A were significantly associated with CAD in all genetic models (In codominant model- GA vs. GG, OR=1.91, 95% CI=1. 09-3.37, p=0. 03 and AA vs. GG, OR= 5.26, 95% CI= 1.10-24.60, p=0.04; in dominant model- GA+AA vs. GG, OR=2.19, p=0.004 and in recessive model- AA vs. GG+GA, OR=5.26, p=0.04 whereas, A allele at nucleotide -250G/A in

  7. Effects of oral eicosapentaenoic acid versus docosahexaenoic acid on human peripheral blood mononuclear cell gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have beneficial effects on inflammation and cardiovascular disease (CVD). Our aim was to assess the effect of a six-week supplementation with either olive oil, EPA, or DHA on gene expression in peripheral blood mononuclear cells (...

  8. Role of Met93 and Thr96 in the lid hinge region of Rhizopus chinensis lipase.

    PubMed

    Zhu, Shan-Shan; Li, Ming; Yu, Xiaowei; Xu, Yan

    2013-05-01

    We engineered Rhizopus chinensis lipase to study its critical amino acid role in catalytic properties. Based on the amino acid sequence and three-dimensional model of the lipase, residues located in its lid hinge region (Met93 and Thr96) were replaced with corresponding amino acid residues (Ile93 and Asn96) found in the lid hinge region of Rhizopus oryzae lipase. The substitutions in the lid hinge region affected not only substrate specificity but also the thermostability of the lipase. Both lipases preferred p-nitrophenyl laurate and glyceryl trilaurate (C12). However, the variant S4-3O showed a slight decline in activity toward long-chain fatty acid (C16-C18). When enzymes activities decreased by half, the temperature of the variant (45 °C) was 22 °C lower than the parent (67 °C), probably substantially destabilized the structure of the lid region. The interfacial kinetic analysis of S4-3O suggested that the lower catalytic efficiency was due to a higher K m* value. According to the lipase structure investigated, Ile93Met played a role of narrowing the size of the hydrophobic patch, which affected the substrate binding affinity, and Asn96Thr destabilized the structure of the lipase by disrupting the H-bond interaction in the lid region.

  9. Antioxidant property and [Formula: see text]-glucosidase, [Formula: see text]-amylase and lipase inhibiting activities of Flacourtia inermis fruits: characterization of malic acid as an inhibitor of the enzymes.

    PubMed

    Alakolanga, A G A W; Kumar, N Savitri; Jayasinghe, Lalith; Fujimoto, Yoshinori

    2015-12-01

    Flacourtia inermis Roxb. (Flacourtiaceae), is a moderate sized tree cultivated in Sri Lanka for its fruits known as Lovi. The current study was undertaken to study the biological activity of extracts of the fruits in an attempt to increase the value of the under exploited fruit crops. Fruits of F. inermis were found to be rich in phenolics and anthocyanins. Polyphenol content of the fruits was determined to be 1.28 g gallic acid equivalents per 100 g of fresh fruit and anthocyanin content was estimated as 108 mg cyanidin-3-glucoside equivalents per 100 g of fresh fruits. The EtOAc extract showed moderate antioxidant activity in the DPPH radical scavenging assay with IC50 value of 66.2 ppm. The EtOAc and MeOH extracts of the fruits also exhibited inhibitory activities toward α-glucosidase, α-amylase and lipase enzymes with IC50values ranging from 549 to 710 ppm, 1021 to 1949 ppm and 1290 to 2096 ppm, respectively. The active principle for the enzyme inhibition was isolated through activity-guided fractionation and was characterized as (S)-malic acid. The results of this study indicate that F. inermis fruits have the potential to be used in health foods and in nutritional supplements.

  10. Fatty Acid-binding Proteins Interact with Comparative Gene Identification-58 Linking Lipolysis with Lipid Ligand Shuttling*

    PubMed Central

    Hofer, Peter; Boeszoermenyi, Andras; Jaeger, Doris; Feiler, Ursula; Arthanari, Haribabu; Mayer, Nicole; Zehender, Fabian; Rechberger, Gerald; Oberer, Monika; Zimmermann, Robert; Lass, Achim; Haemmerle, Guenter; Breinbauer, Rolf; Zechner, Rudolf; Preiss-Landl, Karina

    2015-01-01

    The coordinated breakdown of intracellular triglyceride (TG) stores requires the exquisitely regulated interaction of lipolytic enzymes with regulatory, accessory, and scaffolding proteins. Together they form a dynamic multiprotein network designated as the “lipolysome.” Adipose triglyceride lipase (Atgl) catalyzes the initiating step of TG hydrolysis and requires comparative gene identification-58 (Cgi-58) as a potent activator of enzyme activity. Here, we identify adipocyte-type fatty acid-binding protein (A-Fabp) and other members of the fatty acid-binding protein (Fabp) family as interaction partners of Cgi-58. Co-immunoprecipitation, microscale thermophoresis, and solid phase assays proved direct protein/protein interaction between A-Fabp and Cgi-58. Using nuclear magnetic resonance titration experiments and site-directed mutagenesis, we located a potential contact region on A-Fabp. In functional terms, A-Fabp stimulates Atgl-catalyzed TG hydrolysis in a Cgi-58-dependent manner. Additionally, transcriptional transactivation assays with a luciferase reporter system revealed that Fabps enhance the ability of Atgl/Cgi-58-mediated lipolysis to induce the activity of peroxisome proliferator-activated receptors. Our studies identify Fabps as crucial structural and functional components of the lipolysome. PMID:25953897

  11. Rationale behind the near-ideal catalysis of Candida antarctica lipase A (CAL-A) for highly concentrating ω-3 polyunsaturated fatty acids into monoacylglycerols.

    PubMed

    He, Yongjin; Li, Jingbo; Kodali, Sitharam; Chen, Bilian; Guo, Zheng

    2017-03-15

    Dramatic decline in the quality and quantity of ω-3 PUFAs from marine resource demands new environmental-friendly technology to produce high quality ω-3 PUFAs concentrates in a better bioavailable form. Accordingly this work demonstrated an exceptionally highly efficient non-aqueous approach that non-regiospecific and non ω-3 PUFAs preferential Candida antarctica lipase A (CAL-A), functioning as a near-ideal biocatalyst, is capable to directly concentrate ω-3 PUFAs from 20% to 30% in oils to up to >90% in monoacylglycerols form through one step reaction. The rationale behind the experimental observation is justified and the catalytic property and specificity of an ideal enzyme tackling this task are defined. High selectivity and efficiency, excellent reusability of biocatalyst, general applicability for concentrating ω-3 PUFAs from both fish and microalgae oils, simple process for product recovery (e.g. by short path distillation), make this novel approach a highly industrially relevant and with potential application in food and drug industries.

  12. Cyclopiazonic acid biosynthesis gene cluster gene cpaM is required for speradine A biosynthesis.

    PubMed

    Tokuoka, Masafumi; Kikuchi, Tomoki; Shinohara, Yasutomo; Koyama, Akifumi; Iio, Shin-Ichiro; Kubota, Takaaki; Kobayashi, Jun'ichi; Koyama, Yasuji; Totsuka, Akira; Shindo, Hitoshi; Sato, Kazuo

    2015-01-01

    Speradine A is a derivative of cyclopiazonic acid (CPA) found in culture of an Aspergillus tamarii isolate. Heterologous expression of a predicted methyltransferase gene, cpaM, in the cpa biosynthesis gene cluster of A. tamarii resulted in the speradine A production in a 2-oxoCPA producing A. oryzae strain, indicating cpaM is involved in the speradine A biosynthesis.

  13. Control of mammalian gene expression by amino acids, especially glutamine.

    PubMed

    Brasse-Lagnel, Carole; Lavoinne, Alain; Husson, Annie

    2009-04-01

    Molecular data rapidly accumulating on the regulation of gene expression by amino acids in mammalian cells highlight the large variety of mechanisms that are involved. Transcription factors, such as the basic-leucine zipper factors, activating transcription factors and CCAAT/enhancer-binding protein, as well as specific regulatory sequences, such as amino acid response element and nutrient-sensing response element, have been shown to mediate the inhibitory effect of some amino acids. Moreover, amino acids exert a wide range of effects via the activation of different signalling pathways and various transcription factors, and a number of cis elements distinct from amino acid response element/nutrient-sensing response element sequences were shown to respond to changes in amino acid concentration. Particular attention has been paid to the effects of glutamine, the most abundant amino acid, which at appropriate concentrations enhances a great number of cell functions via the activation of various transcription factors. The glutamine-responsive genes and the transcription factors involved correspond tightly to the specific effects of the amino acid in the inflammatory response, cell proliferation, differentiation and survival, and metabolic functions. Indeed, in addition to the major role played by nuclear factor-kappaB in the anti-inflammatory action of glutamine, the stimulatory role of activating protein-1 and the inhibitory role of C/EBP homology binding protein in growth-promotion, and the role of c-myc in cell survival, many other transcription factors are also involved in the action of glutamine to regulate apoptosis and intermediary metabolism in different cell types and tissues. The signalling pathways leading to the activation of transcription factors suggest that several kinases are involved, particularly mitogen-activated protein kinases. In most cases, however, the precise pathways from the entrance of the amino acid into the cell to the activation of gene

  14. Lipase inactivation in wheat germ by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj Kumar; Kudachikar, V. B.; Kumar, Sourav

    2013-05-01

    An attempt was made to improve the shelf life of wheat germ by optimizing processing conditions involving γ-irradiation. Studies were carried out to investigate the effect of γ-irradiation (0-30 kGy doses) on the chemical composition of wheat germ with respect to variation in moisture, total ash, crude fat, free fatty acid, protein and lipase activity. The results demonstrate that shelf stability of wheat germ was achieved by inactivation of lipase at doses of γ-irradiation greater than 12 kGy.

  15. Isolation and identification of a novel, lipase-producing bacterium, Pseudomnas aeruginosa KM110

    PubMed Central

    Mobarak-Qamsari, E; Kasra-Kermanshahi, R; Moosavi-nejad, Z

    2011-01-01

    Background and Objectives Lipases are particularly important due to the fact that they specifically hydrolyze acyl glycerol, oils and greases, which is of great interest for different industrial applications. Materialst and Methods In this study, several lipase-producing bacteria were isolated from wastewater of an oil processing plant. The strain possessing the highest lipase activity was identified both biochemically and sequencing of 16S rRNA gene. Then we increase lipase activity by improving conditions of production medium. Also, lipase from this strain was preliminarily characterized for use in industrial application. Results The 16S rRNA sequensing revealed it as a new strain of Pseudomonas aeruginosa and the type strain was KM110. An overall 3-fold enhanced lipase production (0.76 U mL−1) was achieved after improving conditions of production medium. The olive oil and peptone was found to be the most suitable substrate for maximum enzyme production. Also the enzyme exhibited maximum lipolytic activity at 45°C where it was also stably maintained. At pH 8.0, the lipase had the highest stability but no activity. It was active over a pH range of 7.0–10.0. The lipase activity was inhibited by Zn2+ & Cu2+ (32 and 27%, respectively) at 1mM. The enzyme lost 29% of its initial activity in 1.0% SDS concentration, whereas, Triton X-100, Tween-80 & DMSO did not significantly inhibit lipase activity. Conclusions Based on the findings of present study, lipase of P. aeruginosa KM110 is a potential alkaline lipase and a candidate for industrial applications such as detergent, leather and fine chemical industries. PMID:22347589

  16. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Lipase test system. (a) Identification. A lipase test system is a device intended to measure the activity of the enzymes lipase in serum. Lipase measurements are used in diagnosis and treatment of...

  17. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Lipase test system. (a) Identification. A lipase test system is a device intended to measure the activity of the enzymes lipase in serum. Lipase measurements are used in diagnosis and treatment of...

  18. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Lipase test system. (a) Identification. A lipase test system is a device intended to measure the activity of the enzymes lipase in serum. Lipase measurements are used in diagnosis and treatment of...

  19. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Lipase test system. (a) Identification. A lipase test system is a device intended to measure the activity of the enzymes lipase in serum. Lipase measurements are used in diagnosis and treatment of...

  20. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Lipase test system. (a) Identification. A lipase test system is a device intended to measure the activity of the enzymes lipase in serum. Lipase measurements are used in diagnosis and treatment of...

  1. Monoacylglycerol Lipase Regulates Fever Response.

    PubMed

    Sanchez-Alavez, Manuel; Nguyen, William; Mori, Simone; Moroncini, Gianluca; Viader, Andreu; Nomura, Daniel K; Cravatt, Benjamin F; Conti, Bruno

    2015-01-01

    Cyclooxygenase inhibitors such as ibuprofen have been used for decades to control fever through reducing the levels of the pyrogenic lipid transmitter prostaglandin E2 (PGE2). Historically, phospholipases have been considered to be the primary generator of the arachidonic acid (AA) precursor pool for generating PGE2 and other eicosanoids. However, recent studies have demonstrated that monoacyglycerol lipase (MAGL), through hydrolysis of the endocannabinoid 2-arachidonoylglycerol, provides a major source of AA for PGE2 synthesis in the mammalian brain under basal and neuroinflammatory states. We show here that either genetic or pharmacological ablation of MAGL leads to significantly reduced fever responses in both centrally or peripherally-administered lipopolysaccharide or interleukin-1β-induced fever models in mice. We also show that a cannabinoid CB1 receptor antagonist does not attenuate these anti-pyrogenic effects of MAGL inhibitors. Thus, much like traditional nonsteroidal anti-inflammatory drugs, MAGL inhibitors can control fever, but appear to do so through restricted control over prostaglandin production in the nervous system.

  2. Lipase-catalyzed polyester synthesis – A green polymer chemistry

    PubMed Central

    Kobayashi, Shiro

    2010-01-01

    This article is a short comprehensive review describing in vitro polyester synthesis catalyzed by a hydrolysis enzyme of lipase, most of which has been developed for these two decades. Polyesters are prepared by repeated ester bond-formation reactions; they include two major modes, ring-opening polymerization (ROP) of cyclic monomers such as cyclic esters (lactones) and condensation polymerization via the reaction between a carboxylic acid or its ester group and an alcohol group. Polyester synthesis is, therefore, a reaction in reverse way of in vivo lipase catalysis of ester bond-cleavage with hydrolysis. The lipase-catalyzed polymerizations show very high chemo-, regio-, and enantio-selectivities and involve various advantageous characteristics. Lipase is robust and compatible with other chemical catalysts, which allows novel chemo-enzymatic processes. New syntheses of a variety of functional polyesters and a plausible reaction mechanism of lipase catalysis are mentioned. The polymerization characteristics are of green nature currently demanded for sustainable society, and hence, desirable for conducting ‘green polymer chemistry’. PMID:20431260

  3. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    PubMed

    Dai, Zhimin; Guo, Xue; Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  4. Identification of Nitrogen-Fixing Genes and Gene Clusters from Metagenomic Library of Acid Mine Drainage

    PubMed Central

    Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community. PMID:24498417

  5. Cadmium Induces Retinoic Acid Signaling by Regulating Retinoic Acid Metabolic Gene Expression*

    PubMed Central

    Cui, Yuxia; Freedman, Jonathan H.

    2009-01-01

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, β,β-carotene 15,15′-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1–6 cells. In C. elegans, bcmo-1 was expressed in the intestine and was cadmium inducible. Similarly, in Hepa 1–6 cells, Bcmo1 was induced by cadmium. Retinoic acid-mediated signaling increased after 24-h exposures to 5 and 10 μm cadmium in Hepa 1–6 cells. Examination of gene expression demonstrated that the induction of retinoic acid signaling by cadmium may be mediated by overexpression of Bcmo1. Furthermore, cadmium inhibited the expression of Cyp26a1 and Cyp26b1, which are involved in retinoic acid degradation. These results indicate that cadmium-induced teratogenicity may be due to the ability of the metal to increase the levels of retinoic acid by disrupting the expression of retinoic acid-metabolizing genes. PMID:19556237

  6. Screening and characterization of a thermostable lipase from marine Streptomyces sp. strain W007.

    PubMed

    Yuan, Dongjuan; Lan, Dongming; Xin, Ruipu; Yang, Bo; Wang, Yonghua

    2016-01-01

    A screening method along with the combination of genome sequence of microorganism, pairwise alignment, and lipase classification was used to search the thermostable lipase. Then, a potential thermostable lipase (named MAS1) from marine Streptomyces sp. strain W007 was expressed in Pichia pastoris X-33, and the biochemical properties were characterized. Lipase MAS1 belongs to the subfamily I.7, and it has 38% identity to the well-characterized Bacillus subtilis thermostable lipases in the subfamily I.4. The purified enzyme was estimated to be 29 kDa. The enzyme showed optimal temperature at 40 °C, and retained more than 80% of initial activity after 1 H incubation at 60 °C, suggesting that MAS1 was a thermostable lipase. MAS1 was an alkaline enzyme with optimal pH value at 7.0 and had stable activity for 12 H of incubation at pH 6.0-9.0. It was stable and retained about 90% of initial activity in the presence of Cu(2+) , Ca(2+) , Ni(2+) , and Mg(2+) , whereas 89.05% of the initial activity was retained when ethylene diamine tetraacetic acid was added. MAS1 showed the tolerance to organic solvents, but was inhibited by various surfactants. MAS1 was verified to be a triglyceride lipase and could hydrolyze triacylglycerol and diacylglycerol. The result represents a good example for researchers to discover thermostable lipase for industrial application.

  7. Lipases in Medicine: An Overview.

    PubMed

    Loli, Heni; Narwal, Sunil Kumar; Saun, Nitin Kumar; Gupta, Reena

    2015-01-01

    Lipases are part of the family of hydrolases that act on carboxylic ester bonds. They are involved in catalyzing the hydrolysis of triglycerides (TG) into chylomicrons and very low density lipoprotein (VLDL) particles. Uses of lipases are evolving rapidly and currently they are reported to show high potential in medicine. Intensive study and investigations have led researchers to explore lipases for their use in substitution therapy, where in enzyme deficiency during diseased conditions is compensated by their external administration. In our body, they are used to break down fats present in food so that they can be absorbed in the intestine and deficiency of lipases leads to malabsorption of fats and fat-soluble vitamins. Lipases help a person who has cystic fibrosis, Alzheimer's disease, atherosclerosis and act as a candidate target for cancer prevention and therapy. They act as diagnostic tool and their presence or increasing levels can indicate certain infection or disease. Obesity causes metabolic disease and is a serious health problem around the world. Thus inhibiting digestive lipase to reduce fat absorption has become the main pharmacological approach to the treatment of obesity in recent years.

  8. Mono-estolide synthesis from trans-8-hydroxy fatty acids by lipases in solvent-free media and their physical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas aeruginosa 42A2 is known to produce two hydroxy-fatty acids, 10(S)-hydroxy-8(E)-octadecenoic and 7,10(S,S)-dihydroxy-8(E)-octadecenoic acids, when cultivated in a mineral medium using oleic acid as a single carbon source. These compounds were purified, 91 and 96 % respectively, to produc...

  9. Association between two common polymorphisms (single nucleotide polymorphism -250G/A and -514C/T) of the hepatic lipase gene and coronary artery disease in type 2 diabetic patients

    PubMed Central

    Mohammadzadeh, Ghorban; Ghaffari, Mohammad-Ali; Bazyar, Mohammad; Kheirollah, Alireza

    2016-01-01

    Background: Variations in the hepatic lipase (HL) gene are the potential candidate for coronary artery disease (CAD) especially in type 2 diabetes mellitus (T2DM) in diverse populations. We assessed the association of -514C/T and -250G/A polymorphisms in HL (LIPC) gene with CAD risk in Iranian population with type 2 diabetes. Materials and Methods: We evaluated 322 type 2 diabetic patients, 166 patients with normal angiograms as controls and 156 patients those identified with CAD undergoing their first coronary angiography as CAD cases. Genotyping of -514C/T and -250G/A polymorphisms in the promoter of the LIPC gene were studied by polymerase chain reaction (PCR)-restriction fragment length polymorphism technique. Results: Genotype distributions in CAD cases (73.7%, 20.5%, and 5.8% for −250G/A) and (62.2%, 32.7%, and 5.1% for -514C/T) were significantly different from those in controls (60.8%, 37.4%, and 1.8% for -250G/A) and (51.2%, 48.2%, and 0.6% for -514C/T). CAD cases had lower A-allele frequency than controls (0.131 vs. 0.196, P = 0.028). The odds ratio for the presence of -250 (GG + GA) genotype and A allele in CAD cases were 2.206 (95% confidence interval [CI] =1.33–3.65, P = 0.002) and 1.609 (95% CI = 1.051 −2.463, P = 0.029) respectively. Haplotype analysis demonstrated a significant association between especially LIPC double mutant (−250 A/-514 T) haplotype and presence of CAD. Conclusion: Our findings indicated that -250 G/A polymorphism rather than -514 C/T polymorphism of LIPC gene is more associated with the increased risk of CAD particularly in women with T2DM. PMID:27014654

  10. Tomato ABSCISIC ACID STRESS RIPENING (ASR) gene family revisited.

    PubMed

    Golan, Ido; Dominguez, Pia Guadalupe; Konrad, Zvia; Shkolnik-Inbar, Doron; Carrari, Fernando; Bar-Zvi, Dudy

    2014-01-01

    Tomato ABSCISIC ACID RIPENING 1 (ASR1) was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity) stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca. 110 amino acid residues each), whereas ASR4 encodes a 297-residue polypeptide. Information on the expression of the tomato ASR gene family is scarce. We used quantitative RT-PCR to assay the expression of this gene family in plant development and in response to salt and osmotic stresses. ASR1 and ASR4 were the main expressed genes in all tested organs and conditions, whereas ASR2 and ASR3/5 expression was two to three orders of magnitude lower (with the exception of cotyledons). ASR1 is expressed in all plant tissues tested whereas ASR4 expression is limited to photosynthetic organs and stamens. Essentially, ASR1 accounted for most of ASR gene expression in roots, stems and fruits at all developmental stages, whereas ASR4 was the major gene expressed in cotyledons and young and fully developed leaves. Both ASR1 and ASR4 were expressed in flower organs, with ASR1 expression dominating in stamens and pistils, ASR4 in sepals and petals. Steady-state levels of ASR1 and ASR4 were upregulated in plant vegetative organs following exposure to salt stress, osmotic stress or the plant abiotic stress hormone abscisic acid (ABA). Tomato plants overexpressing ASR1 displayed enhanced survival rates under conditions of water stress, whereas ASR1-antisense plants displayed marginal hypersensitivity to water withholding.

  11. Crystal structure of a triacylglycerol lipase from Penicillium expansum at 1.3 A determined by sulfur SAD

    SciTech Connect

    Bian, Chuanbing; Yuan, Cai; Chen, Liqing; Meehan, Edward J.; Jiang, Longguang; Huang, Zixiang; Lin, Lin; Huang, Mingdong

    2010-04-05

    Triacylglycerol lipases (EC 3.1.1.3) are present in many different organisms including animals, plants, and microbes. Lipases catalyze the hydrolysis of long-chain triglycerides into fatty acids and glycerol at the interface between the water insoluble substrate and the aqueous phase. Lipases can also catalyze the reverse esterification reaction to form glycerides under certain conditions. Lipases of microbial origin are of considerable commercial interest for wide variety of biotechnological applications in industries, including detergent, food, cosmetic, pharmaceutical, fine chemicals, and biodiesel. Nowadays, microbial lipases have become one of the most important industrial enzymes. PEL (Penicillium expansum lipase) is a fungal lipase from Penicillium expansum strain PF898 isolated from Chinese soil that has been subjected to several generations of mutagenesis to increase its enzymatic activity. PEL belongs to the triacylglycerol lipases family, and its catalytic characteristics have been studied. The enzyme has been used in Chinese laundry detergent industry for several years (http://www.leveking.com). However, the poor thermal stability of the enzyme limits its application. To further study and improve this enzyme, PEL was cloned and sequenced. Furthermore, it was overexpressed in Pichia pastoris. PEL contains GHSLG sequence, which is the lipase consensus sequence Gly-X1-Ser-X2-Gly, but has a low amino acid sequence identities to other lipases. The most similar lipases are Rhizomucor miehei (PML) and Rhizopus niveus (PNL) with a 21% and 20% sequence identities to PEL, respectively. Interestingly, the similarity of PEL with the known esterases is somewhat higher with 24% sequence identity to feruloyl esterase A. Here, we report the 1.3 {angstrom} resolution crystal structure of PEL determined by sulfur SAD phasing. This structure not only presents a new lipase structure at high resolution, but also provides a structural platform to analyze the published

  12. Lipase-catalyzed domino kinetic resolution/intramolecular Diels-Alder reaction: one-pot synthesis of optically active 7-oxabicyclo[2.2.1]heptenes from furfuryl alcohols and beta-substituted acrylic acids.

    PubMed

    Akai, Shuji; Naka, Tadaatsu; Omura, Sohei; Tanimoto, Kouichi; Imanishi, Masashi; Takebe, Yasushi; Matsugi, Masato; Kita, Yasuyuki

    2002-09-16

    The first lipase-catalyzed domino reaction is described in which the acyl moiety formed during the enzymatic kinetic resolution of furfuryl alcohols (+/-)-3 with a 1-ethoxyvinyl ester 2 was utilized as a part of the constituent structure for the subsequent Diels-Alder reaction. The preparation of ester 2 from carboxylic acid 1 and the subsequent domino reaction were carried out in a one-pot reaction. Therefore, this procedure provides a convenient preparation of the optically active 7-oxabicyclo[2.2.1]heptene derivatives 5, which has five chiral, non-racemic carbon centers, from achiral 1 and racemic 3. The overall efficiency of this process was dependent on the substituent at the C-3 position of 3, and the use of the 3-methylfurfuryl derivatives, (+/-)-3 b and (+/-)-3 f, exclusively produced diastereoselectivity with excellent enantioselectivity to give (2R)-syn-5 (91->/=99 % ee) and (S)-3 (96->/=99 % ee). Similar procedures starting from the 3-bromofurfuryl alcohols (+/-)-3 h-j provided the cycloadducts (2R)-syn-5 j-q (93->/=99 % ee), in which the bromo group was utilized for the installation of bulky substituents to the 7-oxabicycloheptene core.

  13. Synthesis of naringin 6"-ricinoleate using immobilized lipase

    PubMed Central

    2012-01-01

    Abstract Background Naringin is an important flavanone with several biological activities, including antioxidant action. However, this compound shows low solubility in lipophilic preparations, such as is used in the cosmetic and food industries. One way to solve this problem is to add fatty acids to the flavonoid sugar unit using immobilized lipase. However, there is limited research regarding hydroxylation of unsaturated fatty acids as an answer to the low solubility challenge. In this work, we describe the reaction of naringin with castor oil containing ricinoleic acid, castor oil's major fatty acid component, using immobilized lipase from Candida antarctica. Analysis of the 1H and 13 C NMR (1D and 2D) spectra and literature comparison were used to characterise the obtained acyl derivative. Results After allowing the reaction to continue for 120 hours (in acetone media, 50°C), the major product obtained was naringin 6″-ricinoleate. In this reaction, either castor oil or pure ricinoleic acid was used as the acylating agent, providing a 33% or 24% yield, respectively. The chemical structure of naringin 6″-ricinoleate was determined using NMR analysis, including bidimensional (2D) experiments. Conclusion Using immobilized lipase from C. antarctica, the best conversion reaction was observed using castor oil containing ricinoleic acid as the acylating agent rather than an isolated fatty acid. Graphical abstract PMID:22578215

  14. Glycerol acyl-transfer kinetics of a circular permutated Candida antarctica Lipase B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triacylglycerols containing a high abundance of unusual fatty acids, such as y-linolenic acid, or novel arylaliphatic acids, such as ferulic acid, are useful in pharmaceutical and cosmeceutical applications. Candida antarctica lipase B (CALB) is quite often used for non-aqueous synthesis, although ...

  15. Enzymatic modification of cassava starch by bacterial lipase.

    PubMed

    Rajan, Akhila; Abraham, T Emilia

    2006-06-01

    Enzymatic modification of starch using long chain fatty acid makes it thermoplastic suitable for a myriad of industrial applications. An industrial lipase preparation produced by Burkholderia cepacia (lipase PS) was used for modification of cassava starch with two acyl donors, lauric acid and palmitic acid. Reactions performed with palmitic acid by liquid-state and microwave esterification gave a degree of substitution (DS) of 62.08% (DS 1.45) and 42.06% (DS 0.98), respectively. Thermogravimetric analysis showed that onset of decomposition is at a higher temperature (above 600 degrees Celsius) for modified starch than the unmodified starch (280 degrees Celsius). Modified starch showed reduction in alpha-amylase digestibility compared to native starch (76.5-18%). Swelling power lowered for modified starch as esterification renders starch more hydrophobic, making it suitable for biomedical applications as materials for bone fixation and replacements, carriers for controlled release of drugs and bioactive agents. Thus enzymatic esterification is ecofriendly.

  16. Repeats in transforming acidic coiled-coil (TACC) genes.

    PubMed

    Trivedi, Seema

    2013-06-01

    Transforming acidic coiled-coil proteins (TACC1, 2, and 3) are essential proteins associated with the assembly of spindle microtubules and maintenance of bipolarity. Dysregulation of TACCs is associated with tumorigenesis, but studies of microsatellite instability in TACC genes have not been extensive. Microsatellite or simple sequence repeat instability is known to cause many types of cancer. The present in silico analysis of SSRs in human TACC gene sequences shows the presence of mono- to hexa-nucleotide repeats, with the highest densities found for mono- and di-nucleotide repeats. Density of repeats is higher in introns than in exons. Some of the repeats are present in regulatory regions and retained introns. Human TACC genes show conservation of many repeat classes. Microsatellites in TACC genes could be valuable markers for monitoring numerical chromosomal aberrations and or cancer.

  17. Controlled lid-opening in Thermomyces lanuginosus lipase- An engineered switch for studying lipase function.

    PubMed

    Skjold-Jørgensen, Jakob; Vind, Jesper; Moroz, Olga V; Blagova, Elena; Bhatia, Vikram K; Svendsen, Allan; Wilson, Keith S; Bjerrum, Morten J

    2017-01-01

    Here, we present a lipase mutant containing a biochemical switch allowing a controlled opening and closing of the lid independent of the environment. The closed form of the TlL mutant shows low binding to hydrophobic surfaces compared to the binding observed after activating the controlled switch inducing lid-opening. We directly show that lipid binding of this mutant is connected to an open lid conformation demonstrating the impact of the exposed amino acid residues and their participation in binding at the water-lipid interface. The switch was created by introducing two cysteine residues into the protein backbone at sites 86 and 255. The crystal structure of the mutant shows the successful formation of a disulfide bond between C86 and C255 which causes strained closure of the lid-domain. Control of enzymatic activity and binding was demonstrated on substrate emulsions and natural lipid layers. The locked form displayed low enzymatic activity (~10%) compared to wild-type. Upon release of the lock, enzymatic activity was fully restored. Only 10% binding to natural lipid substrates was observed for the locked lipase compared to wild-type, but binding was restored upon adding reducing agent. QCM-D measurements revealed a seven-fold increase in binding rate for the unlocked lipase. The TlL_locked mutant shows structural changes across the protein important for understanding the mechanism of lid-opening and closing. Our experimental results reveal sites of interest for future mutagenesis studies aimed at altering the activation mechanism of TlL and create perspectives for generating tunable lipases that activate under controlled conditions.

  18. Partial Optimization of the 5-Terminal Codon Increased a Recombination Porcine Pancreatic Lipase (opPPL) Expression in Pichia pastoris

    PubMed Central

    Zhao, Hua; Chen, Dan; Tang, Jiayong; Jia, Gang; Long, Dingbiao; Liu, Guangmang; Chen, Xiaoling; Shang, Haiying

    2014-01-01

    Pancreatic lipase plays a key role in intestinal digestion of feed fat, and is often deficient in young animals such as weaning piglets. The objective of this study was to express and characterize a partial codon optimized porcine pancreatic lipase (opPPL). A 537 bp cDNA fragment encoding N-terminus amino acid residue of the mature porcine pancreatic lipase was synthesized according to the codon bias of Pichia pastoris and ligated to the full-length porcine pancreatic lipase cDNA fragment. The codon optimized PPL was cloned into the pPICZαA (Invitrogen, Beijing, China) vector. After the resultant opPPL/pPICZαΑ plasmid was transformed into P.pastoris, the over-expressed extracellular opPPL containing a His-tag to the C terminus was purified using Ni Sepharose affinity column (GE Healthcare, Piscataway, NJ, USA), and was characterized against the native enzyme (commercial PPL from porcine pancreas, Sigma). The opPPL exhibited a molecular mass of approximately 52 kDa, and showed optimal temperature (40°C), optimal pH (8.0), Km (0.041 mM), and Vmax (2.008 µmol.mg protein −1.min−1) similar to those of the commercial enzyme with p-NPP as the substrate. The recombinant enzyme was stable at 60°C, but lost 80% (P<0.05) of its activity after exposure to heat ≥60°C for 20 min. The codon optimization increased opPPL yield for ca 4 folds (146 mg.L−1 vs 36 mg.L−1) and total enzyme activity increased about 5 folds (1900 IU.L−1 vs 367 IU.L−1) compared with those native naPPL/pPICZαΑ tranformant. Comparison of gene copies and mRNA profiles between the two strains indicated the increased rePPL yields may partly be ascribed to the increased protein translational efficiency after codon optimization. In conclusion, we successfully optimized 5-terminal of porcine pancreatic lipase encoding gene and over-expressed the gene in P. pastoris as an extracellular, functional enzyme. The recombination enzyme demonstrates a potential for future use as an animal feed

  19. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p.

    PubMed

    Kawahata, Miho; Masaki, Kazuo; Fujii, Tsutomu; Iefuji, Haruyuki

    2006-09-01

    Using two types of genome-wide analysis to investigate yeast genes involved in response to lactic acid and acetic acid, we found that the acidic condition affects metal metabolism. The first type is an expression analysis using DNA microarrays to investigate 'acid shock response' as the first step to adapt to an acidic condition, and 'acid adaptation' by maintaining integrity in the acidic condition. The other is a functional screening using the nonessential genes deletion collection of Saccharomyces cerevisiae. The expression analysis showed that genes involved in stress response, such as YGP1, TPS1 and HSP150, were induced under the acid shock response. Genes such as FIT2, ARN1 and ARN2, involved in metal metabolism regulated by Aft1p, were induced under the acid adaptation. AFT1 was induced under acid shock response and under acid adaptation with lactic acid. Moreover, green fluorescent protein-fused Aft1p was localized to the nucleus in cells grown in media containing lactic acid, acetic acid, or hydrochloric acid. Both analyses suggested that the acidic condition affects cell wall architecture. The depletion of cell-wall components encoded by SED1, DSE2, CTS1, EGT2, SCW11, SUN4 and YNL300W and histone acetyltransferase complex proteins encoded by YID21, EAF3, EAF5, EAF6 and YAF9 increased resistance to lactic acid. Depletion of the cell-wall mannoprotein Sed1p provided resistance to lactic acid, although the expression of SED1 was induced by exposure to lactic acid. Depletion of vacuolar membrane H+-ATPase and high-osmolarity glycerol mitogen-activated protein kinase proteins caused acid sensitivity. Moreover, our quantitative PCR showed that expression of PDR12 increased under acid shock response with lactic acid and decreased under acid adaptation with hydrochloric acid.

  20. [The relation between gene of lipoprotein-lipase and carrier protein of cholesterol ethers and life duration in patients with chronic cerebral ischemia].

    PubMed

    Kostomarov, I V; Vodolagina, N N; Malygina, N A; Mitina, Z S

    2008-01-01

    Comparative analysis of frequency distribution of genotypes and alleles of HindIII-polymorphism of gene LPL and TaqIB-polymorphism of gene CETP in 267 patients of various ages with chronic cerebral ischemia (CCI) was performed. Relation between age and polymorphous variants of genes LPL and CETP was noticed. It was shown that genotype of H+H+ HindIII-polymorphism of and genotype B1B1 TaqIB-polymorphism of gene CETP were found more frequently in more young patients with chronic cerebral ischemia (CCI). Since there is an association of these genotypes with atherogenic dislipidemias, they apparently can be considered as risk factors of CCI development. On the contrary, genotype of gene LPL and B2 allele of gene CETP in patients elder 90 years (long-livers) are found significantly more frequently than in younger patients, that makes possible to consider they as markers of favorable course of disease and patients' long life.

  1. The role of lipases in the removal of dormancy in apple seeds.

    PubMed

    Zarska-Maciejewska, B; St Lewak

    1976-01-01

    It was found that the temperature optimum for apple (Malus domestica Borb.) seed acid lipase is the same as that for seed after-ripening process. The activity of the enzyme occurs between the 40th and 70th days of stratification, whereas the activity of alkaline lipase very low at that time appears about 20 days later. The changes of both enzyme activities were also studied during dark and light culture of embryos isolated from seeds after different times of stratification. Only the alkaline enzyme activity is under the control of light. It was concluded that essentially the same process, i.e. the hydrolysis of reserve fats is catalysed by two different enzymes: acid lipase acting during the cold-mediated breaking of embryo dormancy and alkaline lipase acting during the germination of dormant embryos, thus being under light control.

  2. Single amino acid polymorphism in aldehyde dehydrogenase gene superfamily.

    PubMed

    Priyadharshini Christy, J; George Priya Doss, C

    2015-01-01

    The aldehyde dehydrogenase gene superfamily comprises of 19 genes and 3 pseudogenes. These superfamily genes play a vital role in the formation of molecules that are involved in life processes, and detoxification of endogenous and exogenous aldehydes. ALDH superfamily genes associated mutations are implicated in various diseases, such as pyridoxine-dependent seizures, gamma-hydroxybutyric aciduria, type II Hyperprolinemia, Sjogren-Larsson syndrome including cancer and Alzheimer's disease. Accumulation of large DNA variations data especially Single Amino acid Polymorphisms (SAPs) in public databases related to ALDH superfamily genes insisted us to conduct a survey on the disease associated mutations and predict their function impact on protein structure and function. Overall this study provides an update and highlights the importance of pathogenic mutations in associated diseases. Using KD4v and Project HOPE a computational based platform, we summarized all the deleterious properties of SAPs in ALDH superfamily genes by the providing valuable insight into structural alteration rendered due to mutation. We hope this review might provide a way to define the deleteriousness of a SAP and helps to understand the molecular basis of the associated disease and also permits precise diagnosis and treatment in the near future.

  3. Differences in lipid distribution and expression of peroxisome proliferator-activated receptor gamma and lipoprotein lipase genes in torafugu and red seabream.

    PubMed

    Kaneko, Gen; Yamada, Toshihiro; Han, Yuna; Hirano, Yuki; Khieokhajonkhet, Anurak; Shirakami, Hirohito; Nagasaka, Reiko; Kondo, Hidehiro; Hirono, Ikuo; Ushio, Hideki; Watabe, Shugo

    2013-04-01

    Lipid content is one of the major determinants of the meat quality in fish. However, the mechanisms underlying the species-specific distribution of lipid are still poorly understood. The present study was undertaken to investigate the mechanisms associated with lipid accumulation in two species of fish: torafugu (a puffer fish) and red seabream. The lipid content of liver and carcass were 67.0% and 0.8% for torafugu, respectively, and 8.8% and 7.3% for red seabream, respectively. Visceral adipose tissue was only apparent in the red seabream and accounted for 73.3% of its total lipid content. Oil red O staining confirmed this species-specific lipid distribution, and further demonstrated that the lipid in the skeletal muscle of the red seabream was mainly localized in the myosepta. We subsequently cloned cDNAs from torafugu encoding lipoprotein lipase 1 (LPL1) and LPL2, important enzymes for the uptake of lipids from blood circulation system into various tissues. The relative mRNA levels of peroxisome proliferator-activated receptor gamma (PPARγ) and the LPLs of torafugu were determined by quantitative real-time PCR together with their counterparts in red seabream previously reported. The relative mRNA levels of PPARγ and LPL1 correlated closely to the lipid distribution of both fish, being significantly higher in liver than skeletal muscle in torafugu, whereas the highest in the adipose tissue, followed by liver and skeletal muscle in red seabream. However, the relative mRNA levels of LPL2 were tenfold lower than LPL1 in both species and only correlated to lipid distribution in torafugu, suggesting that LPL2 has only a minor role in lipid accumulation. In situ hybridization revealed that the transcripts of LPL1 co-localized with lipids in the adipocytes located along the myosepta of the skeletal muscle of red seabream. These results suggest that the transcriptional regulation of PPARγ and LPL1 is responsible for the species-specific lipid distribution of torafugu

  4. Differential Gene Expression of Longan Under Simulated Acid Rain Stress.

    PubMed

    Zheng, Shan; Pan, Tengfei; Ma, Cuilan; Qiu, Dongliang

    2017-03-16

    Differential gene expression profile was studied in Dimocarpus longan Lour. in response to treatments of simulated acid rain with pH 2.5, 3.5, and a control (pH 5.6) using differential display reverse transcription polymerase chain reaction (DDRT-PCR). Results showed that mRNA differential display conditions were optimized to find an expressed sequence tag (EST) related with acid rain stress. The potential encoding products had 80% similarity with a transcription initiation factor IIF of Gossypium raimondii and 81% similarity with a protein product of Theobroma cacao. This fragment is the transcription factor activated by second messenger substances in longan leaves after signal perception of acid rain.

  5. Identification of genes regulated by UV/salicylic acid.

    SciTech Connect

    Paunesku, T.; Chang-Liu, C.-M.; Shearin-Jones, P.; Watson, C.; Milton, J.; Oryhon, J.; Salbego, D.; Milosavljevic, A.; Woloschak, G. E.; CuraGen Corp.

    2000-02-01

    Purpose : Previous work from the authors' group and others has demonstrated that some of the effects of UV irradiation on gene expression are modulated in response to the addition of salicylic acid to irradiated cells. The presumed effector molecule responsible for this modulation is NF-kappaB. In the experiments described here, differential-display RT-PCR was used to identify those cDNAs that are differentially modulated by UV radiation with and without the addition of salicylic acid. Materials and methods : Differential-display RT-PCR was used to identify differentially expressed genes. Results : Eight such cDNAs are presented: lactate dehydrogenase (LDH-beta), nuclear encoded mitochondrial NADH ubiquinone reductase 24kDa (NDUFV2), elongation initiation factor 4B (eIF4B), nuclear dots protein SP100, nuclear encoded mitochondrial ATPase inhibitor (IF1), a cDNA similar to a subunit of yeast CCAAT transcription factor HAP5, and two expressed sequence tags (AA187906 and AA513156). Conclusions : Sequences of four of these genes contained NF-kappaB DNA binding sites of the type that may attract transrepressor p55/p55 NF-kappaB homodimers. Down-regulation of these genes upon UV irradiation may contribute to increased cell survival via suppression of p53 independent apoptosis.

  6. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    PubMed

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  7. The role of registries in rare genetic lipid disorders: Review and introduction of the first global registry in lipoprotein lipase deficiency.

    PubMed

    Steinhagen-Thiessen, Elisabeth; Stroes, Erik; Soran, Handrean; Johnson, Colin; Moulin, Philippe; Iotti, Giorgio; Zibellini, Marco; Ossenkoppele, Bas; Dippel, Michaela; Averna, Maurizio R

    2016-08-21

    A good understanding of the natural history of rare genetic lipid disorders is a pre-requisite for successful patient management. Disease registries have been helpful in this regard. Lipoprotein Lipase Deficiency (LPLD) is a rare, autosomal-recessive lipid disorder characterized by severe hypertriglyceridemia and a very high risk for recurrent acute pancreatitis, however, only limited data are available on its natural course. Alipogene tiparvovec (Glybera(®)) is the first gene therapy to receive Marketing Authorization in the European Union; GENIALL (GENetherapy In the MAnagement of Lipoprotein Lipase Deficiency), a 15-year registry focusing on LPLD was launched in 2014 as part of its Risk Management Plan. The aim of this publication is to introduce the GENIALL Registry within a structured literature review of registries in rare genetic lipid disorders. A total of 11 relevant initiatives/registries were identified (homozygous Familial Hypercholesterolemia (hoFH) [n = 5]; LPLD [n = 1]; Lysosomal Acid Lipase Deficiency [LALD, n = 1], detection of mutations in genetic lipid disorders [n = 4]). Besides one product registry in hoFH and the LALD registry, all other initiatives are local or country-specific. GENIALL is the first global prospective registry in LPLD that will collect physician and patient generated data on the natural course of LPLD, as well as long-term outcomes of gene therapy.

  8. The Lp_3561 and Lp_3562 Enzymes Support a Functional Divergence Process in the Lipase/Esterase Toolkit from Lactobacillus plantarum.

    PubMed

    Esteban-Torres, María; Reverón, Inés; Santamaría, Laura; Mancheño, José M; de Las Rivas, Blanca; Muñoz, Rosario

    2016-01-01

    Lactobacillus plantarum species is a good source of esterases since both lipolytic and esterase activities have been described for strains of this species. No fundamental biochemical difference exists among esterases and lipases since both share a common catalytic mechanism. L. plantarum WCFS1 possesses a protein, Lp_3561, which is 44% identical to a previously described lipase, Lp_3562. In contrast to Lp_3562, Lp_3561 was unable to degrade esters possessing a chain length higher than C4 and the triglyceride tributyrin. As in other L. plantarum esterases, the electrostatic potential surface around the active site in Lp_3561 is predicted to be basic, whereas it is essentially neutral in the Lp_3562 lipase. The fact that the genes encoding both proteins were located contiguously in the L. plantarum WCFS1 genome, suggests that they originated by tandem duplication, and therefore are paralogs as new functions have arisen during evolution. The presence of the contiguous lp_3561 and lp_3562 genes was studied among L. plantarum strains. They are located in a 8,903 bp DNA fragment that encodes proteins involved in the catabolism of sialic acid and are predicted to increase bacterial adaptability under certain growth conditions.

  9. The Lp_3561 and Lp_3562 Enzymes Support a Functional Divergence Process in the Lipase/Esterase Toolkit from Lactobacillus plantarum

    PubMed Central

    Esteban-Torres, María; Reverón, Inés; Santamaría, Laura; Mancheño, José M.; de las Rivas, Blanca; Muñoz, Rosario

    2016-01-01

    Lactobacillus plantarum species is a good source of esterases since both lipolytic and esterase activities have been described for strains of this species. No fundamental biochemical difference exists among esterases and lipases since both share a common catalytic mechanism. L. plantarum WCFS1 possesses a protein, Lp_3561, which is 44% identical to a previously described lipase, Lp_3562. In contrast to Lp_3562, Lp_3561 was unable to degrade esters possessing a chain length higher than C4 and the triglyceride tributyrin. As in other L. plantarum esterases, the electrostatic potential surface around the active site in Lp_3561 is predicted to be basic, whereas it is essentially neutral in the Lp_3562 lipase. The fact that the genes encoding both proteins were located contiguously in the L. plantarum WCFS1 genome, suggests that they originated by tandem duplication, and therefore are paralogs as new functions have arisen during evolution. The presence of the contiguous lp_3561 and lp_3562 genes was studied among L. plantarum strains. They are located in a 8,903 bp DNA fragment that encodes proteins involved in the catabolism of sialic acid and are predicted to increase bacterial adaptability under certain growth conditions. PMID:27486450

  10. Conversion of a Rhizopus chinensis lipase into an esterase by lid swapping.

    PubMed

    Yu, Xiao-Wei; Zhu, Shan-Shan; Xiao, Rong; Xu, Yan

    2014-06-01

    In an effort to explore the feasibility of converting a lipase into an esterase by modifying the lid region, we designed and characterized two novel Rhizopus chinensis lipase variants by lid swapping. The substrate specificity of an R. chinensis lipase was successfully modified toward water-soluble substrates, that is, turned into an esterase, by replacing the hydrophobic lid with a hydrophilic lid from ferulic acid esterase from Aspergillus niger Meanwhile, as a comparison, the lid of R. chinensis lipase was replaced by a hydrophobic lid from Rhizomucor miehei lipase, which did not alter its substrate specificity but led to a 5.4-fold higher catalytic efficiency (k*cat/K*m) toward p-nitrophenyl laurate. Based on the analysis of structure-function relationships, it suggests that the amphipathic nature of the lid is very important for the substrate specificity. This study provides new insight into the structural basis of lipase specificities and a way to tune the substrate preference of lipases.

  11. The bovine fatty acid binding protein 4 gene is significantly associated with marbling and subcutaneous fat depth in Wagyu x Limousin F2 crosses.

    PubMed

    Michal, J J; Zhang, Z W; Gaskins, C T; Jiang, Z

    2006-08-01

    Fatty acid binding protein 4 (FABP4), which is expressed in adipose tissue, interacts with peroxisome proliferator-activated receptors and binds to hormone-sensitive lipase and therefore, plays an important role in lipid metabolism and homeostasis in adipocytes. The objective of this study was to investigate associations of the bovine FABP4 gene with fat deposition. Both cDNA and genomic DNA sequences of the bovine gene were retrieved from the public databases and aligned to determine its genomic organization. Primers targeting two regions of the FABP4 gene were designed: from nucleotides 5433-6106 and from nucleotides 7417-7868 (AAFC01136716). Direct sequencing of polymerase chain reaction (PCR) products on two DNA pools from high- and low-marbling animals revealed two single nucleotide polymorphisms (SNPs): AAFC01136716.1:g.7516G>C and g.7713G>C. The former SNP, detected by PCR-restriction fragment length polymorphism using restriction enzyme MspA1I, was genotyped on 246 F2 animals in a Waygu x Limousin F2 reference population. Statistical analysis showed that the FABP4 genotype significantly affected marbling score (P = 0.0398) and subcutaneous fat depth (P = 0.0246). The FABP4 gene falls into a suggestive/significant quantitative trait loci interval for beef marbling that was previously reported on bovine chromosome 14 in three other populations.

  12. Nucleic acid modifications in regulation of gene expression

    PubMed Central

    Chen, Kai; Zhao, Boxuan Simen; He, Chuan

    2016-01-01

    Nucleic acids carry a wide range of different chemical modifications. In contrast to previous views that these modifications are static and only play fine-tuning functions, recent research advances paint a much more dynamic picture. Nucleic acids carry diverse modifications and employ these chemical marks to exert essential or critical influences in a variety of cellular processes in eukaryotic organisms. This review covers several nucleic acid modifications that play important regulatory roles in biological systems, especially in regulation of gene expression: 5-methylcytosine (5mC) and its oxidative derivatives, and N6 -methyladenine (6mA) in DNA; N6 -methyladenosine (m6A), pseudouridine (), and 5-methylcytosine (m5C) in messenger RNA and long non-coding RNA. Modifications in other non-coding RNAs, such as tRNA, miRNA, and snRNA, are also briefly summarized. We provide brief historical perspective of the field, and highlight recent progress in identifying diverse nucleic acid modifications and exploring their functions in different organisms. Overall, we believe that work in this field will yield additional layers of both chemical and biological complexity as we continue to uncover functional consequences of known nucleic acid modifications and discover new ones. PMID:26933737

  13. Lipase-catalyzed synthesis of monoacylglycerol in a homogeneous system.

    PubMed

    Monteiro, Julieta B; Nascimento, Maria G; Ninow, Jorge L

    2003-04-01

    The 1,3-regiospecifique lipase, Lipozyme IM, catalyzed the esterification of lauric acid and glycerol in a homogeneous system. To overcome the drawback of the insolubility of glycerol in hexane, which is extensively used in enzymatic synthesis, a mixture of n-hexane/tert-butanol (1:1, v/v) was used leading to a monophasic system. The conversion of lauric acid into monolaurin was 65% in 8 h, when a molar ratio of glycerol to fatty acid (5:1) was used with the fatty acid at 0.1 M, and the phenomenon of acyl migration was minimized.

  14. [Acquired partial lipodystrophy. Insulin resistance, hepatic lipase activity and small and dense LDL particles].

    PubMed

    Paglione, A M; Ferrari, N; Berg, G; Frechtel, G; Taverna, M; Fasulo, V; Lopez, G I; Gomez, R M; Bruno, O; Ruiz, M; Wikinski, R L

    2001-01-01

    Partial lipodystrophy (PLD) is an infrequent condition characterized by symmetric loss of subcutaneous adipose tissue in the upper or lower part of the body, although occasionally it affects only the extremities. In all cases it appears along with acantosis nigricans (AN), insulin resistance and impairment in the metabolism of lipids and carbohydrates. The case depicted pertains to a 49 year old female with no family history involving loss of adipose tissue in face and upper body. No fat in lower part of body was observed. The patient showed facial thinning at age 8, AN at 11 and gestational diabetes during her fourth pregnancy at 33. At present, the patient presents severe hyperglycemia and hyperinsulinemia with a marked insulin resistance. Type IV hyperlipoproteinemia (OMS), declined C-HDL and Apo A1 and low C-LDL but with a high proportion of small and dense LDL particles were present. Non esterified fatty acids were high. Lipoprotein lipase and hepatic lipase activities are in the lower limit and increased respectively. Fraction C3 of the complement was diminished. No mutations were observed either in codons 170, 809 and 972 of the IRS-1 receptor or in codon 276 of the adrenergic beta 2 gene.

  15. Biochemical Characterization and Molecular Modeling of Pancreatic Lipase from a Cartilaginous Fish, the Common Stingray (Dasyatis pastinaca).

    PubMed

    Bouchaâla, Emna; BouAli, Madiha; Ben Ali, Yassine; Miled, Nabil; Gargouri, Youssef; Fendri, Ahmed

    2015-05-01

    In order to identify fish enzymes displaying novel biochemical properties, we have chosen the common stingray (Dasyatis pastinaca), one of the most primitive living jawed aquatic vertebrates as a starting biological material to purify a lipase. A stingray pancreatic lipase (SPL) was purified from delipidated pancreatic powder. The SPL molecular weight was around 55 kDa which is slightly higher than that of known classical pancreatic lipases (50 kDa). This increase in the molecular weight was due to glycosylation. Like classic pancreatic lipases, SPL was found to be much more active on short-chain triacylglycerols than on long-chain ones. Natural detergents act as inhibitors of the SPL activity. This inhibition can be reversed by the addition of stingray colipase. Starting from total pancreatic messenger RNAs (mRNAs), partial stingray pancreatic lipase complementary DNA (cDNA) was synthesized by reverse transcriptase-polymerase chain reaction (RT-PCR) and cloned into the PGEM-T vector. Partial amino acid sequence of the SPL was homologous to that of Japanese eel, porcine, and human pancreatic lipases. A 3D structure model of the sequenced part of SPL was built using the 3D structure of porcine pancreatic lipase as template, since both lipases shared an amino acid sequence identity of 60%.

  16. Cloning and functional characterization of the ovine Hormone Sensitive Lipase (HSL) full-length cDNAs: an integrated approach.

    PubMed

    Lampidonis, Antonis D; Argyrokastritis, Alexandros; Stravopodis, Dimitrios J; Voutsinas, Gerassimos E; Ntouroupi, Triantafyllia G; Margaritis, Lukas H; Bizelis, Iosif; Rogdakis, Emmanuel

    2008-06-15

    Hormone Sensitive Lipase (HSL) is a highly regulated enzyme that mediates lipolysis in adipocytes. HSL enzymatic activity is increased by adrenergic agonists, such as catecholamines and glucagons, which induce cyclic AMP (cAMP) intracellular production, subsequently followed by the activation of Protein Kinase A (PKA) and its downstream signalling cascade reactions. Since HSL constitutes the key enzyme in the regulation of lipid stores and the only enzyme being subjected to hormonal regulation [in terms of the recently identified Adipose Triglyceride Lipase (ATGL)], the ovine Hormone Sensitive Lipase (ovHSL) full-length cDNA clones were isolated, using a Polymerase Chain Reaction-based (PCR) strategy. The two isolated isoforms ovHSL-A and ovHSL-B contain two highly homologous Open Reading Frame (ORF) regions of 2.089 Kb and 2.086 Kb, respectively, the latter having been missed the 688th triplet coding for glutamine (DeltaQ(688)). The putative 695 and 694 amino acid respective sequences bear strong homologies with other HSL protein family members. Southern blotting analysis revealed that HSL is represented as a single copy gene in the ovine genome, while Reverse Transcription-PCR (RT-PCR) approaches unambiguously dictated its variable transcriptional expression profile in the different tissues examined. Interestingly, as undoubtedly corroborated by both RT-PCR and Western blotting analysis, ovHSL gene expression is notably enhanced in the adipose tissue during the fasting period, when lipolysis is highly increased in ruminant species. Based on the crystal structure of an Archaeoglobus fulgidus enzyme, a three-dimensional (3D) molecular model of the ovHSL putative catalytic domain was constructed, thus providing an inchoative insight into understanding the enzymatic activity and functional regulation mechanisms of the ruminant HSL gene product(s).

  17. Burkholderia cepacia lipase is a promising biocatalyst for biofuel production.

    PubMed

    Sasso, Francesco; Natalello, Antonino; Castoldi, Simone; Lotti, Marina; Santambrogio, Carlo; Grandori, Rita

    2016-07-01

    Lipases resistant to inhibition and denaturation by methanol are valuable tools for biotechnological applications, in particular for biofuel production. Microbial lipases have attracted a great deal of interest because of their stability at high concentrations of organic solvents. Burkholderia cepacia lipase (BCL) is tested here for robustness towards methanol in terms of conformational stability and catalytic activity in transesterification assays. This lipase turns out to be even more tolerant than the homologous and better characterized enzyme from Burkholderia glumae. BCL unfolding transition, as monitored by far-UV circular dichroism (CD) and intrinsic fluorescence, displays a Tm above 60°C in the presence of 50% methanol. The protein unfolds at low pH, and the organic solvent affects the nature of the denatured state under acidic conditions. The protein performs well in transesterification assays upon prolonged incubations at high methanol concentrations. BCL is highly tolerant to methanol and displays particularly high conformational stability under conditions employed for transesterification reactions. These features depict BCL as a promising enzyme for biofuel industry.

  18. Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer

    PubMed Central

    Getino, María; Sanabria-Ríos, David J.; Fernández-López, Raúl; Campos-Gómez, Javier; Sánchez-López, José M.; Fernández, Antonio; Carballeira, Néstor M.

    2015-01-01

    ABSTRACT Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic resistance genes among human pathogens. Antibiotic resistance spread could be halted or diminished by molecules that interfere with the conjugation process. In this work, synthetic 2-alkynoic fatty acids were identified as a novel class of conjugation inhibitors. Their chemical properties were investigated by using the prototype 2-hexadecynoic acid and its derivatives. Essential features of effective inhibitors were the carboxylic group, an optimal long aliphatic chain of 16 carbon atoms, and one unsaturation. Chemical modification of these groups led to inactive or less-active derivatives. Conjugation inhibitors were found to act on the donor cell, affecting a wide number of pathogenic bacterial hosts, including Escherichia, Salmonella, Pseudomonas, and Acinetobacter spp. Conjugation inhibitors were active in inhibiting transfer of IncF, IncW, and IncH plasmids, moderately active against IncI, IncL/M, and IncX plasmids, and inactive against IncP and IncN plasmids. Importantly, the use of 2-hexadecynoic acid avoided the spread of a derepressed IncF plasmid into a recipient population, demonstrating the feasibility of abolishing the dissemination of antimicrobial resistances by blocking bacterial conjugation. PMID:26330514

  19. Mining the bitter melon (momordica charantia l.) seed transcriptome by 454 analysis of non-normalized and normalized cDNA populations for conjugated fatty acid metabolism-related genes

    PubMed Central

    2010-01-01

    Background Seeds of Momordica charantia (bitter melon) produce high levels of eleostearic acid, an unusual conjugated fatty acid with industrial value. Deep sequencing of non-normalized and normalized cDNAs from developing bitter melon seeds was conducted to uncover key genes required for biotechnological transfer of conjugated fatty acid production to existing oilseed crops. It is expected that these studies will also provide basic information regarding the metabolism of other high-value novel fatty acids. Results Deep sequencing using 454 technology with non-normalized and normalized cDNA libraries prepared from bitter melon seeds at 18 DAP resulted in the identification of transcripts for the vast majority of known genes involved in fatty acid and triacylglycerol biosynthesis. The non-normalized library provided a transcriptome profile of the early stage in seed development that highlighted the abundance of transcripts for genes encoding seed storage proteins as well as for a number of genes for lipid metabolism-associated polypeptides, including Δ12 oleic acid desaturases and fatty acid conjugases, class 3 lipases, acyl-carrier protein, and acyl-CoA binding protein. Normalization of cDNA by use of a duplex-specific nuclease method not only increased the overall discovery of genes from developing bitter melon seeds, but also resulted in the identification of 345 contigs with homology to 189 known lipid genes in Arabidopsis. These included candidate genes for eleostearic acid metabolism such as diacylglycerol acyltransferase 1 and 2, and a phospholipid:diacylglycerol acyltransferase 1-related enzyme. Transcripts were also identified for a novel FAD2 gene encoding a functional Δ12 oleic acid desaturase with potential implications for eleostearic acid biosynthesis. Conclusions 454 deep sequencing, particularly with normalized cDNA populations, was an effective method for mining of genes associated with eleostearic acid metabolism in developing bitter melon seeds

  20. Lipase-catalyzed synthesis of cocoa butter equivalent from palm olein and saturated fatty acid distillate from palm oil physical refinery.

    PubMed

    Mohamed, Ibrahim O

    2012-11-01

    Cocoa butter equivalent was prepared by enzymatic acidolysis reaction of substrate consisting of refined palm olein oil and palmitic-stearic fatty acid mixture. The reactions were performed in a batch reactor at a temperature of 60 °C in an orbital shaker operated at 160 RPM. Different mass ratios of substrates were explored and the compositions of the five major triacylglycerol (TAG) of the structured lipids were identified and quantified using cocoa butter-certified reference material IRMM-801. The reaction resulted in production of cococa butter equivent with TAG compostion (POP 26.6 %, POS 42.1, POO 7.5, SOS 18.0 %, and SOO 5.8 %) and melting temperature between 34.7 and 39.6 °C which is close to that of the cocoa butter. The result of this research demonstrated the potential use of saturated fatty acid distillate (palmitic and stearic fatty acids) obtained from palm oil physical refining process into a value-added product.

  1. Deciphering the toxicity of bisphenol a to Candida rugosa lipase through spectrophotometric methods.

    PubMed

    Zhang, Rui; Zhao, Lining; Liu, Rutao

    2016-10-01

    Bisphenol A is widely used in the manufacture of food packaging and beverage containers and can invade our food and cause contamination. Candida rugose lipase has been a versatile enzyme for biocatalysis and biotransformations to produce useful materials for food, pharmaceutical and flavor. The interactions between bisphenol A and Candida rugosa lipase in vitro were studied by UV-vis, steady-state fluorescence, circular dichroism, synchronous fluorescence, light scattering spectra, molecular docking and enzyme activity assay to better understand the toxicity and toxic mechanisms of bisphenol A. The intrinsic fluorescence of the tryptophan amino acid residue and the secondary structure of the globular protein candida rugose lipase were made use of to thoroughly investigate the structural changes caused by bisphenol A. The results of the fluorescence indicated that bisphenol A interacted with candida rugose lipase and made tryptophan be exposed to a hydrophobic environment. Multi-spectroscopic measurements showed that the addition of bisphenol A increased the intrinsic fluorescence of Candida rugosa lipase, loosened its skeleton structure and changed its secondary structure. Also, the increased activity of Candida rugosa lipase revealed that the position or the structure of the catalytic triad of Candida rugosa lipase may be changed. The molecular docking results showed that bisphenol A bound with the residue Serine 209 which could be another reason for the increased activity of Candida rugosa lipase. Moreover, as can be seen from the results of resonance light scattering and dynamic light scattering, the volume of the Candida rugosa lipase was decreased and the lid may be stripped.

  2. Characterization of biotechnologically relevant extracellular lipase produced by Aspergillus terreus NCFT 4269.10

    PubMed Central

    Sethi, Bijay Kumar; Nanda, Prativa Kumari; Sahoo, Santilata

    2016-01-01

    Enzyme production by Aspergillus terreus NCFT 4269.10 was studied under liquid static surface and solid-state fermentation using mustard oil cake as a substrate. The maximum lipase biosynthesis was observed after incubation at 30 °C for 96 h. Among the domestic oils tested, the maximum lipase biosynthesis was achieved using palm oil. The crude lipase was purified 2.56-fold to electrophoretic homogeneity, with a yield of 8.44%, and the protein had a molecular weight of 46.3 kDa as determined by SDS-PAGE. Enzyme characterization confirmed that the purified lipase was most active at pH 6.0, temperature of 50 °C, and substrate concentration of 1.5%. The enzyme was thermostable at 60 °C for 1 h, and the optimum enzyme–substrate reaction time was 30 min. Sodium dodecyl sulfate and commercial detergents did not significantly affect lipase activity during 30-min incubation at 30 °C. Among the metal ions tested, the maximum lipase activity was attained in the presence of Zn2+, followed by Mg2+ and Fe2+. Lipase activity was not significantly affected in the presence of ethylenediaminetetraacetic acid, sodium lauryl sulfate and Triton X-100. Phenylmethylsulfonyl fluoride (1 mM) and the reducing, β-mercaptoethanol significantly inhibited lipase activity. The remarkable stability in the presence of detergents, additives, inhibitors and metal ions makes this lipase unique and a potential candidate for significant biotechnological exploitation. PMID:26887237

  3. Cationic liposome–nucleic acid complexes for gene delivery and gene silencing

    PubMed Central

    Ewert, Kai K.; Majzoub, Ramsey N.; Leal, Cecília

    2014-01-01

    Cationic liposomes (CLs) are studied worldwide as carriers of DNA and short interfering RNA (siRNA) for gene delivery and gene silencing, and related clinical trials are ongoing. Optimization of transfection efficiency and silencing efficiency by cationic liposome carriers requires a comprehensive understanding of the structures of CL–nucleic acid complexes and the nature of their interactions with cell membranes as well as events leading to release of active nucleic acids within the cytoplasm. Synchrotron x-ray scattering has revealed that CL–nucleic acid complexes spontaneously assemble into distinct liquid crystalline phases including the lamellar, inverse hexagonal, hexagonal, and gyroid cubic phases, and fluorescence microscopy has revealed CL–DNA pathways and interactions with cells. The combining of custom synthesis with characterization techniques and gene expression and silencing assays has begun to unveil structure–function relations in vitro. As a recent example, this review will briefly describe experiments with surface-functionalized PEGylated CL–DNA nanoparticles. The functionalization, which is achieved through custom synthesis, is intended to address and overcome cell targeting and endosomal escape barriers to nucleic acid delivery faced by PEGylated nanoparticles designed for in vivo applications. PMID:25587216

  4. Higher transcription levels in ascorbic acid biosynthetic and recycling genes were associated with higher ascorbic acid accumulation in blueberry.

    PubMed

    Liu, Fenghong; Wang, Lei; Gu, Liang; Zhao, Wei; Su, Hongyan; Cheng, Xianhao

    2015-12-01

    In our preliminary study, the ripe fruits of two highbush blueberry (Vaccinium corymbosum L.) cultivars, cv 'Berkeley' and cv 'Bluecrop', were found to contain different levels of ascorbic acid. However, factors responsible for these differences are still unknown. In the present study, ascorbic acid content in fruits was compared with expression profiles of ascorbic acid biosynthetic and recycling genes between 'Bluecrop' and 'Berkeley' cultivars. The results indicated that the l-galactose pathway was the predominant route of ascorbic acid biosynthesis in blueberry fruits. Moreover, higher expression levels of the ascorbic acid biosynthetic genes GME, GGP, and GLDH, as well as the recycling genes MDHAR and DHAR, were associated with higher ascorbic acid content in 'Bluecrop' compared with 'Berkeley', which indicated that a higher efficiency ascorbic acid biosynthesis and regeneration was likely to be responsible for the higher ascorbic acid accumulation in 'Bluecrop'.

  5. A gene network engineering platform for lactic acid bacteria.

    PubMed

    Kong, Wentao; Kapuganti, Venkata S; Lu, Ting

    2016-02-29

    Recent developments in synthetic biology have positioned lactic acid bacteria (LAB) as a major class of cellular chassis for applications. To achieve the full potential of LAB, one fundamental prerequisite is the capacity for rapid engineering of complex gene networks, such as natural biosynthetic pathways and multicomponent synthetic circuits, into which cellular functions are encoded. Here, we present a synthetic biology platform for rapid construction and optimization of large-scale gene networks in LAB. The platform involves a copy-controlled shuttle for hosting target networks and two associated strategies that enable efficient genetic editing and phenotypic validation. By using a nisin biosynthesis pathway and its variants as examples, we demonstrated multiplex, continuous editing of small DNA parts, such as ribosome-binding sites, as well as efficient manipulation of large building blocks such as genes and operons. To showcase the platform, we applied it to expand the phenotypic diversity of the nisin pathway by quickly generating a library of 63 pathway variants. We further demonstrated its utility by altering the regulatory topology of the nisin pathway for constitutive bacteriocin biosynthesis. This work demonstrates the feasibility of rapid and advanced engineering of gene networks in LAB, fostering their applications in biomedicine and other areas.

  6. Operon for Biosynthesis of Lipstatin, the Beta-Lactone Inhibitor of Human Pancreatic Lipase

    PubMed Central

    Bai, Tingli; Zhang, Daozhong; Lin, Shuangjun; Long, Qingshan; Wang, Yemin; Ou, Hongyu; Kang, Qianjin; Deng, Zixin; Liu, Wen

    2014-01-01

    Lipstatin, isolated from Streptomyces toxytricini as a potent and selective inhibitor of human pancreatic lipase, is a precursor for tetrahydrolipstatin (also known as orlistat, Xenical, and Alli), the only FDA-approved antiobesity medication for long-term use. Lipstatin features a 2-hexyl-3,5-dihydroxy-7,10-hexadecadienoic-β-lactone structure with an N-formyl-l-leucine group attached as an ester to the 5-hydroxy group. It has been suggested that the α-branched 3,5-dihydroxy fatty acid β-lactone moiety of lipstatin in S. toxytricini is derived from Claisen condensation between two fatty acid substrates, which are derived from incomplete oxidative degradation of linoleic acid based on feeding experiments. In this study, we identified a six-gene operon (lst) that was essential for the biosynthesis of lipstatin by large-deletion, complementation, and single-gene knockout experiments. lstA, lstB, and lstC, which encode two β-ketoacyl–acyl carrier protein synthase III homologues and an acyl coenzyme A (acyl-CoA) synthetase homologue, were indicated to be responsible for the generation of the α-branched 3,5-dihydroxy fatty acid backbone. Subsequently, the nonribosomal peptide synthetase (NRPS) gene lstE and the putative formyltransferase gene lstF were involved in decoration of the α-branched 3,5-dihydroxy fatty acid chain with an N-formylated leucine residue. Finally, the 3β-hydroxysteroid dehydrogenase-homologous gene lstD might be responsible for the reduction of the β-keto group of the biosynthetic intermediate, thereby facilitating the formation of the unique β-lactone ring. PMID:25239907

  7. Estolides synthesis catalyzed by immobilized lipases.

    PubMed

    Aguieiras, Erika C G; Veloso, Cláudia O; Bevilaqua, Juliana V; Rosas, Danielle O; da Silva, Mônica A P; Langone, Marta A P

    2011-01-01

    Estolides are vegetable-oil-based lubricants obtained from oleic acid or any source of hydroxy fatty acids. In this work, the estolides synthesis from oleic acid and methyl ricinoleate (biodiesel from castor oil), using immobilized commercial lipases (Novozym 435, Lipozyme RM-IM, and Lipozyme TL-IM) in a solvent-free medium was investigated. Acid value was used to monitor the reaction progress by determining the consumption of acid present in the medium. Novozym 435 showed the best performance. Water removal improved the conversion. Novozym 435 was more active at atmospheric pressure. Novozym 435 was reused four times with conversion reaching 15% after the fourth reaction at 80°C. Estolides produced under the reaction conditions used in this work presented good properties, such as, low temperature properties as pour point (-24°C), viscosity (23.9 cSt at 40°C and 5.2 cSt at 100°C), and viscosity index (153).

  8. Estolides Synthesis Catalyzed by Immobilized Lipases

    PubMed Central

    Aguieiras, Erika C. G.; Veloso, Cláudia O.; Bevilaqua, Juliana V.; Rosas, Danielle O.; da Silva, Mônica A. P.; Langone, Marta A. P.

    2011-01-01

    Estolides are vegetable-oil-based lubricants obtained from oleic acid or any source of hydroxy fatty acids. In this work, the estolides synthesis from oleic acid and methyl ricinoleate (biodiesel from castor oil), using immobilized commercial lipases (Novozym 435, Lipozyme RM-IM, and Lipozyme TL-IM) in a solvent-free medium was investigated. Acid value was used to monitor the reaction progress by determining the consumption of acid present in the medium. Novozym 435 showed the best performance. Water removal improved the conversion. Novozym 435 was more active at atmospheric pressure. Novozym 435 was reused four times with conversion reaching 15% after the fourth reaction at 80°C. Estolides produced under the reaction conditions used in this work presented good properties, such as, low temperature properties as pour point (−24°C), viscosity (23.9 cSt at 40°C and 5.2 cSt at 100°C), and viscosity index (153). PMID:21755040

  9. Lipase-catalysed ester synthesis in solvent-free oil system: is it esterification or transesterification?

    PubMed

    Sun, Jingcan; Yu, Bin; Curran, Philip; Liu, Shao-Quan

    2013-12-01

    Ester synthesis was carried out in a solvent-free system of lipase, coconut oil and ethanol or fusel alcohols to ascertain the reaction mechanism. During ester formation, octanoic and decanoic acids increased initially and then decreased gradually, indicating that ester production was a two-step reaction consisting of hydrolysis and esterification, rather than alcoholysis. With ethanol as the alcohol substrate, added butyric acid inhibited ester synthesis. However, when fusel alcohols were used as the alcohol substrate, no significant inhibitory effect by butyric acid was observed. Added octanoic acid did not show any adverse effect on the synthesis of corresponding esters. The results suggest that polarity of the reactants determines lipase activity. This study provides the first evidence on the mechanism of immobilised lipase-catalysed ester synthesis in a solvent-free system involving both hydrolysis and esterification.

  10. Purification and characterization of solvent tolerant lipase from Bacillus sp. for methyl ester production from algal oil.

    PubMed

    Sivaramakrishnan, Ramachandran; Incharoensakdi, Aran

    2016-05-01

    Lipase from Bacillus sp. isolated from the oil contaminated soil was purified by ammonium sulphate precipitation and ion-exchange chromatography with a 5.1-fold purification and 10.5% yield. SDS-PAGE analysis of the enzyme revealed the molecular mass of 24 kDa. The optimum pH and temperature for lipase activity were 6.5 and 37°C, respectively. The isolated lipase was stimulated by pretreatment with methanol and ethanol as well as by divalent metal ions Ca(2+), Mg(2+) and Mn(2+). The enzyme showed high activity towards oleic rich oils. The enzyme immobilized on celite could retain 90% lipase activity after eight cycles. Transesterification of Botryococcus sp. oil using the immobilized enzyme for 40 h resulted in 80% yield of fatty acid methyl esters which had good properties for use as biodiesel. Overall results suggested that the solvent tolerant Bacillus lipase can be a potential biocatalyst for methyl ester production.

  11. Clustered Genes Involved in Cyclopiazonic Acid Production are Next to the Aflatoxin Biosynthesis Gene Cluster in Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclopiazonic acid (CPA), an indole-tetramic acid toxin, is produced by many species of Aspergillus and Penicillium. In addition to CPA Aspergillus flavus produces polyketide-derived carcinogenic aflatoxins (AFs). AF biosynthesis genes form a gene cluster in a subtelomeric region. Isolates of A. fla...

  12. Dieselzymes: development of a stable and methanol tolerant lipase for biodiesel production by directed evolution

    PubMed Central

    2013-01-01

    Background Biodiesels are methyl esters of fatty acids that are usually produced by base catalyzed transesterification of triacylglyerol with methanol. Some lipase enzymes are effective catalysts for biodiesel synthesis and have many potential advantages over traditional base or acid catalyzed transesterification. Natural lipases are often rapidly inactivated by the high methanol concentrations used for biodiesel synthesis, however, limiting their practical use. The lipase from Proteus mirabilis is a particularly promising catalyst for biodiesel synthesis as it produces high yields of methyl esters even in the presence of large amounts of water and expresses very well in Escherichia coli. However, since the Proteus mirabilis lipase is only moderately stable and methanol tolerant, these properties need to be improved before the enzyme can be used industrially. Results We employed directed evolution, resulting in a Proteus mirabilis lipase variant with 13 mutations, which we call Dieselzyme 4. Dieselzyme 4 has greatly improved thermal stability, with a 30-fold increase in the half-inactivation time at 50°C relative to the wild-type enzyme. The evolved enzyme also has dramatically increased methanol tolerance, showing a 50-fold longer half-inactivation time in 50% aqueous methanol. The immobilized Dieselzyme 4 enzyme retains the ability to synthesize biodiesel and has improved longevity over wild-type or the industrially used Brukholderia cepacia lipase during many cycles of biodiesel synthesis. A crystal structure of Dieselzyme 4 reveals additional hydrogen bonds and salt bridges in Dieselzyme 4 compared to the wild-type enzyme, suggesting that polar interactions may become particularly stabilizing in the reduced dielectric environment of the oil and methanol mixture used for biodiesel synthesis. Conclusions Directed evolution was used to produce a stable lipase, Dieselzyme 4, which could be immobilized and re-used for biodiesel synthesis. Dieselzyme 4 outperforms

  13. Amino acid regulation of mammalian gene expression in the intestine.

    PubMed

    Brasse-Lagnel, Carole G; Lavoinne, Alain M; Husson, Annie S

    2010-07-01

    Some amino acids exert a wide range of regulatory effects on gene expression via the activation of different signalling pathways and transcription factors, and a number of cis elements were shown to respond to changes in amino acid concentration. Particular attention has been paid to the effects of glutamine and arginine, which modulate a number of cell functions through the activation of various pathways in different tissues. In the intestine, appropriate concentrations of both arginine and/or glutamine contribute to facilitate cell proliferation, to limit the inflammatory response and apoptosis, and to modulate intermediary metabolism through specific transcription factors. Particularly, besides its role as a major fuel for enterocytes, the regulatory effects of glutamine have been extensively studied and the molecular mechanisms involved appear diversified and complex. Indeed, in addition to a major role of NF-kappaB in its anti-inflammatory action and a stimulatory role of AP-1 in its growth-promoting action and cell survival, the involvement of some other transcription factors, such as PPAR-gamma or HSF-1, was shown to maintain intestinal cell integrity. The signalling pathways leading to the activation of transcription factors imply several kinases, particularly MAP kinases in the effect of glutamine and p70 S6 kinase for those of arginine, but in most cases the precise pathways from the entrance of the aminoacid into the cell to the activation of gene transcription has remained elusive.

  14. Lipolysis of Visceral Adipocyte Triglyceride by Pancreatic Lipases Converts Mild Acute Pancreatitis to Severe Pancreatitis Independent of Necrosis and Inflammation

    PubMed Central

    Patel, Krutika; Trivedi, Ram N.; Durgampudi, Chandra; Noel, Pawan; Cline, Rachel A.; DeLany, James P.; Navina, Sarah; Singh, Vijay P.

    2016-01-01

    Visceral fat necrosis has been associated with severe acute pancreatitis (SAP) for over 100 years; however, its pathogenesis and role in SAP outcomes are poorly understood. Based on recent work suggesting that pancreatic fat lipolysis plays an important role in SAP, we evaluated the role of pancreatic lipases in SAP-associated visceral fat necrosis, the inflammatory response, local injury, and outcomes of acute pancreatitis (AP). For this, cerulein pancreatitis was induced in lean and obese mice, alone or with the lipase inhibitor orlistat and parameters of AP induction (serum amylase and lipase), fat necrosis, pancreatic necrosis, and multisystem organ failure, and inflammatory response were assessed. Pancreatic lipases were measured in fat necrosis and were overexpressed in 3T3-L1 cells. We noted obesity to convert mild cerulein AP to SAP with greater cytokines, unsaturated fatty acids (UFAs), and multisystem organ failure, and 100% mortality without affecting AP induction or pancreatic necrosis. Increased pancreatic lipase amounts and activity were noted in the extensive visceral fat necrosis of dying obese mice. Lipase inhibition reduced fat necrosis, UFAs, organ failure, and mortality but not the parameters of AP induction. Pancreatic lipase expression increased lipolysis in 3T3-L1 cells. We conclude that UFAs generated via lipolysis of visceral fat by pancreatic lipases convert mild AP to SAP independent of pancreatic necrosis and the inflammatory response. PMID:25579844

  15. Lipase-Secreting Bacillus Species in an Oil-Contaminated Habitat: Promising Strains to Alleviate Oil Pollution.

    PubMed

    Lee, Li Pin; Karbul, Hudzaifah Mohamed; Citartan, Marimuthu; Gopinath, Subash C B; Lakshmipriya, Thangavel; Tang, Thean-Hock

    2015-01-01

    Lipases are of great interest for different industrial applications due to their diversity and versatility. Among different lipases, microbial lipases are preferable due to their broad substrate specificity, and higher stability with lower production costs compared to the lipases from plants and animals. In the past, a vast number of bacterial species have been reported as potential lipases producers. In this study, the lipases-producing bacterial species were isolated from an oil spillage area in the conventional night market. Isolated species were identified as Bacillus species by biochemical tests which indicate their predominant establishment, and further screened on the agar solid surfaces using lipid and gelatin as the substrates. Out of the ten strains tested, four potential strains were subjected to comparison analysis of the lipolytic versus proteolytic activities. Strain 10 exhibited the highest lipolytic and proteolytic activity. In all the strains, the proteolytic activity is higher than the lipolytic activity except for strain 8, suggesting the possibility for substrate-based extracellular gene induction. The simultaneous secretion of both the lipase and protease is a mean of survival. The isolated bacterial species which harbour both lipase and protease enzymes could render potential industrial-based applications and solve environmental issues.

  16. Lipase-Secreting Bacillus Species in an Oil-Contaminated Habitat: Promising Strains to Alleviate Oil Pollution

    PubMed Central

    Lee, Li Pin; Karbul, Hudzaifah Mohamed; Citartan, Marimuthu; Gopinath, Subash C. B.; Lakshmipriya, Thangavel; Tang, Thean-Hock

    2015-01-01

    Lipases are of great interest for different industrial applications due to their diversity and versatility. Among different lipases, microbial lipases are preferable due to their broad substrate specificity, and higher stability with lower production costs compared to the lipases from plants and animals. In the past, a vast number of bacterial species have been reported as potential lipases producers. In this study, the lipases-producing bacterial species were isolated from an oil spillage area in the conventional night market. Isolated species were identified as Bacillus species by biochemical tests which indicate their predominant establishment, and further screened on the agar solid surfaces using lipid and gelatin as the substrates. Out of the ten strains tested, four potential strains were subjected to comparison analysis of the lipolytic versus proteolytic activities. Strain 10 exhibited the highest lipolytic and proteolytic activity. In all the strains, the proteolytic activity is higher than the lipolytic activity except for strain 8, suggesting the possibility for substrate-based extracellular gene induction. The simultaneous secretion of both the lipase and protease is a mean of survival. The isolated bacterial species which harbour both lipase and protease enzymes could render potential industrial-based applications and solve environmental issues. PMID:26180812

  17. [Gene cloning and bioinformatics analysis of new gene for chlorogenic acid biosynthesis of Lonicera hypoglauca].

    PubMed

    Yu, Shu-lin; Huang, Lu-qi; Yuan, Yuan; Qi, Lin-jie; Liu, Da-hui

    2015-03-01

    To obtain the key genes for chlorogenic acid biosynthesis of Lonicera hypoglauca, four new genes ware obtained from the our dataset of L. hypoglauca. And we also predicted the structure and function of LHPAL4, LHHCT1 , LHHCT2 and LHHCT3 proteins. The phylogenetic tree showed that LHPAL4 was closely related with LHPAL1, LHHCT1 was closely related with LHHCT3, LHHCT2 clustered into a single group. By Real-time PCR to detect the gene expressed level in different organs of L. hypoglauca, we found that the transcripted level of LHPAL4, LHHCT1 and LHHCT3 was the highest in defeat flowers, and the transcripted level of LHHCT2 was the highest in leaves. These result provided a basis to further analysis the mechanism of active ingredients in different organs, as well as the element for in vitro biosynthesis of active ingredients.

  18. Lipase-catalyzed hydrolysis of TG containing acetylenic FA.

    PubMed

    Jie, Marcel S F Lie Ken; Fua, Xun; Lau, Maureen M L; Chye, M L

    2002-10-01

    Hydrolysis of symmetrical acetylenic TG of type AAA [viz., glycerol tri-(4-decynoate), glycerol tri-(6-octadecynoate), glycerol tri-(9-octadecynoate), glycerol tri-(10-undecynoate), and glycerol tri-(13-docosynoate)] in the presence of eight microbial lipases was studied. Novozyme 435 (Candida antarctica), an efficient enzyme for esterification, showed a significant resistance in the hydrolysis of glycerol tri-(9-octadecynoate) and glycerol tri-(13-docosynoate). Hydrolysis of acetylenic TG with Lipolase 100T (Humicola lanuginosa) was rapidly accomplished. Lipase PS-D (Pseudomonas cepacia) showed a fair resistance toward the hydrolysis of glycerol tri-(6-octadecynoate) only, which reflected its ability to recognize the delta6 positional isomer of 18:1. Lipase CCL (Candida cylindracea, syn. C. rugosa) and AY-30 (C. rugosa) were able to catalyze the release of 10-undecynoic acid and 9-octadecynoic acid from the corresponding TG, but less readily the 13-docosynoic acid in the case of glycerol tri-(13-docosynoate). The two lipases CCL and AY-30 were able to distinguish the small difference in structure of fatty acyl moieties in the TG substrate. To confirm this trend, three regioisomers of mixed acetylenic TG of type ABC (containing one each of delta6, delta9, and delta13 acetylenic FA in various positions) were prepared and hydrolyzed with CCL and AY-40. The results reconfirmed the observation that AY-30 and CCL were able to distinguish the slight differences in the molecular structure (position of the acetylenic bond and chain length) of the acyl groups in the TG during the hydrolysis of such TG substrates.

  19. Lipase-catalyzed acidolysis of palm mid fraction oil with palmitic and stearic Fatty Acid mixture for production of cocoa butter equivalent.

    PubMed

    Mohamed, Ibrahim O

    2013-10-01

    Cocoa butter equivalent (CBE) was prepared by enzymatic acidolysis reaction of substrate consisting of refined palm mid fraction oil and palmitic-stearic fatty acid mixture. The reactions were performed in a batch reactor at a temperature of 60 °C in an orbital shaker operated at 160 RPM. Different mass ratios of substrates were explored, and the composition of the five major triacylglycerols (TAGs) of the structured lipids was identified and quantified using cocoa butter certified reference material IRMM-801. The reaction resulted in production of cocoa butter equivalent with the TAGs' composition (1,3-dipalmitoyl-2-oleoyl-glycerol 30.7%, 1-palmitoyl-2-oleoyl-3-stearoyl-rac-glycerol 40.1%, 1-palmitoy-2,3- dioleoyl glycerol 9.0%, 1,3-distearoyl-2-oleoyl-glycerol 14.5 %, and 1-stearoyl-2,3-dioleoyl glycerol 5.7%) and with onset melting temperature of 31.6 °C and peak temperature of 40.4 °C which are close to those of cocoa butter. The proposed kinetics model for the acidolysis reaction presented the experimental data very well. The results of this research showed that palm mid fraction oil TAGs could be restructured to produce value added product such as CBE.

  20. [Identification of catalytically active groups of wheat (Triticum aestivum L.) germ lipase].

    PubMed

    Korneeva, O S; Popova, T N; Kapranchikov, V S; Motina, E A

    2008-01-01

    The active site of wheat germ lipase was studied by the Dixon method and chemical modification. The profile of curve logV = f(pH), pK and ionization heat values, lipase photoinactivation, and lipase inactivation with diethylpyrocarbonate and dicyclohexylcarbodiimide led us to assume that the active site of the enzyme comprises the carboxylic group of aspartic or glutamic acid and the imidazole group of histidine. Apparently, the OH-group of serine plays a key role in catalysis: as a result of incubation for 1 h in the presence of phenylmethylsulfonyl fluoride, the enzyme activity decreased by more than 70%. It is shown that ethylenediamine tetraacetate is a noncompetitive inhibitor of lipase. Wheat germs are very healthful because they are rich in vitamins, essential amino acids, and proteins. For this reason, wheat germs are widely used in food, medical, and feed mill industries [1-3]. However, their use is limited by instability during storage, which is largely determined by the effect of hydrolytic and redox enzymes. Representative enzymes of this group are lipase (glycerol ester hydrolase, EC 3.1.1.3), which hydrolyzes triglycerides of higher fatty acids, and lipoxygenase (EC 1.13.11.13), which oxidizes polyunsaturated higher fatty acids.

  1. Bacterial diversity and bioprospecting for cold-active lipases, amylases and proteases, from culturable bacteria of kongsfjorden and Ny-alesund, Svalbard, Arctic.

    PubMed

    Srinivas, T N R; Nageswara Rao, S S S; Vishnu Vardhan Reddy, P; Pratibha, M S; Sailaja, B; Kavya, B; Hara Kishore, K; Begum, Z; Singh, S M; Shivaji, S

    2009-11-01

    Culturable bacterial diversity of seven marine sediment samples of Kongsfjorden and a sediment and a soil sample from Ny-Alesund, Svalbard, Arctic was studied. The bacterial abundance in the marine sediments of Kongsfjorden varied marginally (0.5 x 10(3)-1.3 x 10(4) cfu/g sediment) and the bacterial number in the two samples collected from the shore of Ny-Alesund also was very similar (0.6 x 10(4) and 3.4 x 10(4), respectively). From the nine samples a total of 103 bacterial isolates were obtained and these isolates could be grouped in to 47 phylotypes based on the 16S rRNA gene sequence belonging to 4 phyla namely Actinobacteria, Bacilli, Bacteroidetes and Proteobacteria. Representatives of the 47 phylotypes varied in their growth temperature range (4-37 degrees C), in their tolerance to NaCl (0.3-2 M NaCl) and growth pH range (2-11). Representatives of 26 phylotypes exhibited amylase and lipase activity either at 5 or 20 degrees C or at both the temperatures. A few of the representatives exhibited amylase and/or lipase activity only at 5 degrees C. None of the phylotypes exhibited protease activity. Most of the phylotypes (38) were pigmented. Fatty acid profile studies indicated that short chain fatty acids, unsaturated fatty acids, branched fatty acids, the cyclic and the cis fatty acids are predominant in the psychrophilic bacteria.

  2. Molecular cloning, genomic organization, and expression of a testicular isoform of hormone-sensitive lipase

    SciTech Connect

    Holst, L.S.; Laurell, H.; Holm, C.

    1996-08-01

    By catalyzing the rate-limiting step in adipose tissue lipolysis, hormone-sensitive lipase (HSL) is an important regulator of energy homeostasis. The role and importance of HSL in tissues other than adipose are poorly understood. We report here the cloning and expression of a testicular isoform, designated HSL{sub tes}. Due to an addition of amino acids at the NH{sub 2}-termini, rat and human HSL{sub tes} consist of 1068 and 1076 amino acids, respectively, compared to the 768 and 775 amino acids, respectively, of the adipocyte isoform (HSL{sub adi}). A novel exon of 1.2 kb, encoding the human testis-specific amino acids, was isolated and mapped to the HSL gene, 16 kb upstream of the exons encoding HSL{sub adi}. The transcribed mRNA of 3.9 kb was specifically expressed in testis. No significant similarity with other known proteins was found for the testis-specific sequence. The amino acid composition differs from the HSL{sub adi} sequence, with a notable hydrophilic character and a high content of prolines and glutamines. COS cells, transfected by the 3.9-kb human testis cDNA, expressed a protein of the expected molecular mass (M{sub r} {approximately}120,000) that exhibited catalytic activity similar to that of HSL{sub adi}. Immunocytochemistry localized HSL to elongating spermatids and spermatozoa; HSL was not detected in interstitial cells. 34 refs., 5 figs.

  3. Effects of polyunsaturated fatty acids from plant oils and algae on milk fat yield and composition are associated with mammary lipogenic and SREBF1 gene expression.

    PubMed

    Angulo, J; Mahecha, L; Nuernberg, K; Nuernberg, G; Dannenberger, D; Olivera, M; Boutinaud, M; Leroux, C; Albrecht, E; Bernard, L

    2012-12-01

    The main aim of the present study was to examine the effects of long-term supplementing diets with saturated or unprotected polyunsaturated fatty acids from two different plant oils rich in either n-3 or n-6 fatty acids (FAs) plus docosahexaenoic acid (DHA)-rich algae on mammary gene expression and milk fat composition in lactating dairy cows. Gene expression was determined from mammary tissue and milk epithelial cells. Eighteen primiparous German Holstein dairy cows in mid-lactation were randomly assigned into three dietary treatments that consist of silage-based diets supplemented with rumen-stable fractionated palm fat (SAT; 3.1% of the basal diet dry matter, DM), or a mixture of linseed oil (2.7% of the basal diet DM) plus DHA-rich algae (LINA; 0.4% of the basal diet DM) or a mixture of sunflower oil (2.7% of the basal diet DM) plus DHA-rich algae (SUNA; 0.4% of the basal diet DM), for a period of 10 weeks. At the end of the experimental period, the cows were slaughtered and mammary tissues were collected to study the gene expression of lipogenic enzymes. During the last week, the milk yield and composition were determined, and milk was collected for FA measurements and the isolation of milk purified mammary epithelial cells (MECs). Supplementation with plant oils and DHA-rich algae resulted in milk fat depression (MFD; yield and percentage). The secretion of de novo FAs in the milk was reduced, whereas the secretion of trans-10,cis-12-CLA and DHA were increased. These changes in FA secretions were associated in mammary tissue with a joint down-regulation of mammary lipogenic enzyme gene expression (stearoyl-CoA desaturase, SCD1; FA synthase, FASN) and expression of the regulatory element binding transcription factor (SREBF1), whereas no effect was observed on lipoprotein lipase (LPL) and glycerol-3-phosphate acyltransferase 1, mitochondrial (GPAM). A positive relationship between mammary SCD1 and SREBF1 mRNA abundances was observed, suggesting a similar

  4. Oxalic acid production by citric acid-producing Aspergillus niger overexpressing the oxaloacetate hydrolase gene oahA.

    PubMed

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2014-05-01

    The filamentous fungus Aspergillus niger is used worldwide in the industrial production of citric acid. However, under specific cultivation conditions, citric acid-producing strains of A. niger accumulate oxalic acid as a by-product. Oxalic acid is used as a chelator, detergent, or tanning agent. Here, we sought to develop oxalic acid hyperproducers using A. niger as a host. To generate oxalic acid hyperproducers by metabolic engineering, transformants overexpressing the oahA gene, encoding oxaloacetate hydrolase (OAH; EC 3.7.1.1), were constructed in citric acid-producing A. niger WU-2223L as a host. The oxalic acid production capacity of this strain was examined by cultivation of EOAH-1 under conditions appropriate for oxalic acid production with 30 g/l glucose as a carbon source. Under all the cultivation conditions tested, the amount of oxalic acid produced by EOAH-1, a representative oahA-overexpressing transformant, exceeded that produced by A. niger WU-2223L. A. niger WU-2223L and EOAH-1 produced 15.6 and 28.9 g/l oxalic acid, respectively, during the 12-day cultivation period. The yield of oxalic acid for EOAH-1 was 64.2 % of the maximum theoretical yield. Our method for oxalic acid production gave the highest yield of any study reported to date. Therefore, we succeeded in generating oxalic acid hyperproducers by overexpressing a single gene, i.e., oahA, in citric acid-producing A. niger as a host.

  5. Apolipoprotein A5 and lipoprotein lipase interact to modulate anthropometric measures in Hispanics of Caribbean origin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apolipoprotein A5 (APOA5) and lipoprotein lipase (LPL) proteins interact functionally to regulate lipid metabolism, and single nucleotide polymorphisms (SNPs) for each gene have also been associated independently with obesity risk. Evaluating gene combinations may be more effective than single SNP a...

  6. Synthesis of 4-nitrophenyl acetate using molecular sieve-immobilized lipase from Bacillus coagulans.

    PubMed

    Raghuvanshi, Shilpa; Gupta, Reena

    2009-03-01

    Extracellular lipase from Bacillus coagulans BTS-3 was immobilized on (3 A x 1.5 mm) molecular sieve. The molecular sieve showed approximately 68.48% binding efficiency for lipase (specific activity 55 IU mg(-1)). The immobilized enzyme achieved approx 90% conversion of acetic acid and 4-nitrophenol (100 mM each) into 4-nitrophenyl acetate in n-heptane at 65 degrees C in 3 h. When alkane of C-chain length other than n-heptane was used as the organic solvent, the conversion of 4-nitrophenol and acetic acid was found to decrease. About 88.6% conversion of the reactants into ester was achieved when reactants were used at molar ratio of 1:1. The immobilized lipase brought about conversion of approximately 58% for esterification of 4-nitrophenol and acetic acid into 4-nitrophenyl acetate at a temperature of 65 degrees C after reuse for 5 cycles.

  7. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    SciTech Connect

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.; Culley, David E.; Deng, Shuang; Collett, James R.; Umemura, Myco; Koike, Hideaki; Baker, Scott E.; Machida, Masa

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes we successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.

  8. Lipase assay in soils by copper soap colorimetry.

    PubMed

    Saisuburamaniyan, N; Krithika, L; Dileena, K P; Sivasubramanian, S; Puvanakrishnan, R

    2004-07-01

    A simple and sensitive method for the estimation of lipase activity in soils is reported. In this method, 50mg of soil is incubated with emulsified substrate, the fatty acids liberated are treated with cupric acetate-pyridine reagent, and the color developed is measured at 715 nm. Use of olive oil in this protocol leads to an estimation of true lipase activity in soils. The problem of released fatty acids getting adsorbed onto the soil colloids is obviated by the use of isooctane, and separate standards for different soils need not be developed. Among the various surfactants used for emulsification, polyvinyl alcohol is found to be the most effective. Incubation time of 20 min, soil concentration of 50 mg, pH 6.5, and incubation temperature of 37 degrees C were found to be the most suitable conditions for this assay. During the process of enrichment of the soils with oil, interference by the added oil is avoided by the maintenance of a suitable control, wherein 50 mg of soil is added after stopping the reaction. This assay is sensitive and it could be adopted to screen for lipase producers from enriched soils and oil-contaminated soils before resorting to isolation of the microbes by classical screening methods.

  9. Effect of a long-chain n-3 polyunsaturated fatty acid-enriched diet on adipose tissue lipid profiles and gene expression in Holstein dairy cows.

    PubMed

    Elis, Sebastien; Desmarchais, Alice; Freret, Sandrine; Maillard, Virginie; Labas, Valérie; Cognié, Juliette; Briant, Eric; Hivelin, Celine; Dupont, Joëlle; Uzbekova, Svetlana

    2016-12-01

    was reflected on lipolytic activity at the protein level (i.e., protein expression of fatty acid binding protein 4, phosphorylated perilipin 1, and phosphorylated hormone-sensitive lipase). This increase in lipolysis is relevant to the decrease in triglycerides observed in these samples. Gene expression analyses between n-3 and control AT samples also suggested that the n-3 diet could modulate the secretory functions of AT, possibly by affecting adipokine expression; however, this has to be confirmed at the protein level.

  10. Biodiesel production with special emphasis on lipase-catalyzed transesterification.

    PubMed

    Bisen, Prakash S; Sanodiya, Bhagwan S; Thakur, Gulab S; Baghel, Rakesh K; Prasad, G B K S

    2010-08-01

    The production of biodiesel by transesterification employing acid or base catalyst has been industrially accepted for its high conversion and reaction rates. Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have led to the search for alternative production methods. Recently, enzymatic transesterification involving lipases has attracted attention for biodiesel production as it produces high purity product and enables easy separation from the byproduct, glycerol. The use of immobilized lipases and immobilized whole cells may lower the overall cost, while presenting less downstream processing problems, to biodiesel production. The present review gives an overview on biodiesel production technology and analyzes the factors/methods of enzymatic approach reported in the literature and also suggests suitable method on the basis of evidence for industrial production of biodiesel.

  11. Covalent immobilization of Pseudomonas cepacia lipase on semiconducting materials

    NASA Astrophysics Data System (ADS)

    Fernandez, Renny Edwin; Bhattacharya, Enakshi; Chadha, Anju

    2008-05-01

    Lipase from Pseudomonas cepacia was covalently immobilized on crystalline silicon, porous silicon and silicon nitride surfaces. The various stages of immobilization were characterized using FTIR (Fourier transform infrared) spectroscopy. The surface topography of the enzyme immobilized surfaces was investigated using scanning electron microscopy (SEM). The quantity of the immobilized active enzyme was estimated by the para-nitrophenyl palmitate (pNPP) assay. The immobilized lipase was used for triglyceride hydrolysis and the acid produced was detected by a pH sensitive silicon nitride surface as a shift in the C- V (capacitance-voltage) characteristics of an electrolyte-insulator-semiconductor capacitor (EISCAP) thus validating the immobilization method for use as a biosensor.

  12. Ultrasound-assisted hydrolysis of waste cooking oil catalyzed by homemade lipases.

    PubMed

    Mulinari, J; Venturin, B; Sbardelotto, M; Dall Agnol, A; Scapini, T; Camargo, A F; Baldissarelli, D P; Modkovski, T A; Rossetto, V; Dalla Rosa, C; Reichert, F W; Golunski, S M; Vieitez, I; Vargas, G D L P; Dalla Rosa, C; Mossi, A J; Treichel, H

    2017-03-01

    This study aimed to evaluate the waste cooking oil (WCO) hydrolysis in ultrasonic system using lipase as catalyst. Lipase was produced by the fungus Aspergillus niger via solid state fermentation (SSF) using canola meal as substrate. Prior to the hydrolysis reaction, the lipase behavior when subjected to ultrasound was evaluated by varying the temperature of the ultrasonic bath, the exposure time and the equipment power. Having optimized the treatment on ultrasound, the WCO hydrolysis reaction was carried out by evaluating the oil:water ratio and the lipase concentration. For a greater homogenization of the reaction medium, a mechanical stirrer at 170rpm was used. All steps were analyzed by experimental design technique. The lipase treatment in ultrasound generated an increase of about 320% in its hydrolytic activity using 50% of ultrasonic power for 25min. at 45°C. The results of the experimental design conducted for ultrasound-assisted hydrolysis showed that the best condition was using an oil:water ratio of 1:3 (v:v) and enzyme concentration of 15% (v/v), generating 62.67μmol/mL of free fatty acids (FFA) in 12h of reaction. Thus, the use of Aspergillus niger lipase as a catalyst for hydrolysis reaction of WCO can be considered as a possible pretreatment technique of the oil in order to accelerate its degradation.

  13. Effect of lipase addition on hydrolysis and biomethane production of Chinese food waste.

    PubMed

    Meng, Ying; Li, Sang; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Li, Xiujin

    2015-03-01

    The lipase obtained from Aspergillums niger was applied to promote the hydrolysis of food waste for achieving high biomethane production. Two strategies of lipase additions were investigated. One (Group A) was to pre-treat food waste to pre-decompose lipid to fatty acids before anaerobic digestion, and another one (Group B) was to add lipase to anaerobic digester directly to degrade lipid inside digester. The lipase was used at the concentrations of 0.1%, 0.5%, and 1.0% (w/v). The results showed that Group A achieved higher biomethane production, TS and VS reductions than those of Group B. At 0.5% lipase concentration, Group A obtained experimental biomethane yield of 500.1 mL/g VS(added), 4.97-26.50% higher than that of Group B. The maximum Bd of 73.8% was also achieved in Group A. Therefore, lipase pre-treatment strategy is recommended. This might provide one of alternatives for efficient biomethane production from food waste and mitigating environmental impact associated.

  14. Application of a statistically enhanced, novel, organic solvent stable lipase from Bacillus safensis DVL-43.

    PubMed

    Kumar, Davender; Parshad, Rajinder; Gupta, Vijay Kumar

    2014-05-01

    This paper presents the molecular identification of a newly isolated bacterial strain producing a novel and organic solvent stable lipase, statistical optimization of fermentation medium, and its application in the synthesis of ethyl laurate. On the basis of nucleotide homology and phylogenetic analysis of 16S rDNA sequence, the strain was identified as Bacillus safensis DVL-43 (Gen-bank accession number KC156603). Optimization of fermentation medium using Plackett-Burman design and response surface methodology led to 11.4-fold increase in lipase production. The lipase from B. safensis DVL-43 exhibited excellent stability in various organic solvents. The enzyme retained 100% activity after 24h incubation in xylene, DMSO and toluene, each solvent being used at a concentration of 25% (v/v). The use of partially purified DVL-43 lipase as catalyst in the synthesis of ethyl laurate, an esterification product of lauric acid and ethanol, resulted in 80% esterification in 12h under optimized conditions. The formation of ethyl laurate was confirmed using TLC and (1)H NMR. Organic solvent stable lipases exhibiting potential application in enzymatic esterification are in great demand in flavor, fine chemicals and pharma industries. We could not find any report on lipase production from B. safensis strain and its application in esterification.

  15. Lipase-nanoporous gold biocomposite modified electrode for reliable detection of triglycerides.

    PubMed

    Wu, Chao; Liu, Xueying; Li, Yufei; Du, Xiaoyu; Wang, Xia; Xu, Ping

    2014-03-15

    For triglycerides biosensor design, protein immobilization is necessary to create the interface between the enzyme and the electrode. In this study, a glassy carbon electrode (GCE) was modified with lipase-nanoporous gold (NPG) biocomposite (denoted as lipase/NPG/GCE). Due to highly conductive, porous, and biocompatible three-dimensional structure, NPG is suitable for enzyme immobilization. In cyclic voltammetry experiments, the lipase/NPG/GCE bioelectrode displayed surface-confined reaction in a phosphate buffer solution. Linear responses were obtained for tributyrin concentrations ranging from 50 to 250 mg dl(-1) and olive oil concentrations ranging from 10 to 200 mg dl(-1). The value of apparent Michaelis-Menten constant for tributyrin was 10.67 mg dl(-1) and the detection limit was 2.68 mg dl(-1). Further, the lipase/NPG/GCE bioelectrode had strong anti-interference ability against urea, glucose, cholesterol, and uric acid as well as a long shelf-life. For the detection of triglycerides in human serum, the values given by the lipase/NPG/GCE bioelectrode were in good agreement with those of an automatic biochemical analyzer. These properties along with a long self-life make the lipase/NPG/GCE bioelectrode an excellent choice for the construction of triglycerides biosensor.

  16. Immobilization of Yarrowia lipolytica lipase Ylip2 for the biocatalytic synthesis of phytosterol ester in a water activity controlled reactor.

    PubMed

    Cui, Caixia; Guan, Nan; Xing, Chen; Chen, Biqiang; Tan, Tianwei

    2016-10-01

    In this work, phytosterol ester was synthesized using Yarrowia lipolytica lipase Ylip2 that had been immobilized on inorganic support in a solvent-free system and reacted in a computer-aided water activity controlled bioreactor. The immobilization of Ylip2 on celite led to a remarkable increase in the phytosterol conversion compared to that of free lipase. An investigation of the reaction conditions were oleic acid as the fatty acid variety, 10,000U/g substrate, and a temperature of 50°C for phytosterol ester synthesis. Controlling of the water activity at a set point was accomplished by the introduction of dry air through the reaction medium at a digital feedback controlled flow rate. For the esterification of phytosterol ester, a low (15%) water activity resulted in a considerable improvement in phytosterol conversion (91.1%) as well as a decreased reaction time (78h). Furthermore, Ylip2 lipase immobilized on celite retained 90% esterification activity for the synthesis of phytosterol oleate after reused 8 cycles, while free lipase was only viable for 5 batches with 90% esterification activity remained. Finally, the phytosterol oleate space time yield increased from 1.65g/L/h with free lipase to 2.53g/L/h with immobilized lipase. These results illustrate that the immobilized Yarrowia lipolytica lipase Ylip2 in a water activity controlled reactor has great potential for the application in phytosterol esters synthesis.

  17. Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production.

    PubMed

    Tran, Dang-Thuan; Chen, Ching-Lung; Chang, Jo-Shu

    2012-04-15

    In this work, lipase produced from an isolated strain Burkholderia sp. C20 was immobilized on magnetic nanoparticles to catalyze biodiesel synthesis. Core-shell nanoparticles were synthesized by coating Fe(3)O(4) core with silica shell. The nanoparticles treated with dimethyl octadecyl [3-(trimethoxysilyl) propyl] ammonium chloride were used as immobilization supporters. The Burkholderia lipase was then bound to the synthesized nanoparticles for immobilization. The protein binding efficiency on alkyl-functionalized Fe(3)O(4)-SiO(2) was estimated as 97%, while the efficiency was only 76% on non-modified Fe(3)O(4)-SiO(2). Maximum adsorption capacity of lipase on alkyl-functionalized Fe(3)O(4)-SiO(2) was estimated as 29.45 mg g(-1) based on Langmuir isotherm. The hydrolytic kinetics (using olive oil as substrate) of the lipase immobilized on alkyl-grafted Fe(3)O(4)-SiO(2) followed Michaelis-Menten model with a maximum reaction rate and a Michaelis constant of 6251 Ug(-1) and 3.65 mM, respectively. Physical and chemical properties of the nanoparticles and the immobilized lipase were characterized by Brunauer-Emmett-Teller (BET) analysis, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FT-IR). Moreover, the immobilized lipase was used to catalyze the transesterification of olive oil with methanol to produce fatty acid methyl esters (FAMEs), attaining a FAMEs conversion of over 90% within 30 h in batch operation when 11 wt% immobilized lipase was employed. The immobilized lipase could be used for ten cycles without significant loss in its transesterification activity.

  18. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in s...

  19. Fatty acid transport and activation and the expression patterns of genes involved in fatty acid trafficking.

    PubMed

    Sandoval, Angel; Fraisl, Peter; Arias-Barrau, Elsa; Dirusso, Concetta C; Singer, Diane; Sealls, Whitney; Black, Paul N

    2008-09-15

    These studies defined the expression patterns of genes involved in fatty acid transport, activation and trafficking using quantitative PCR (qPCR) and established the kinetic constants of fatty acid transport in an effort to define whether vectorial acylation represents a common mechanism in different cell types (3T3-L1 fibroblasts and adipocytes, Caco-2 and HepG2 cells and three endothelial cell lines (b-END3, HAEC, and HMEC)). As expected, fatty acid transport protein (FATP)1 and long-chain acyl CoA synthetase (Acsl)1 were the predominant isoforms expressed in adipocytes consistent with their roles in the transport and activation of exogenous fatty acids destined for storage in the form of triglycerides. In cells involved in fatty acid processing including Caco-2 (intestinal-like) and HepG2 (liver-like), FATP2 was the predominant isoform. The patterns of Acsl expression were distinct between these two cell types with Acsl3 and Acsl5 being predominant in Caco-2 cells and Acsl4 in HepG2 cells. In the endothelial lines, FATP1 and FATP4 were the most highly expressed isoforms; the expression patterns for the different Acsl isoforms were highly variable between the different endothelial cell lines. The transport of the fluorescent long-chain fatty acid C(1)-BODIPY-C(12) in 3T3-L1 fibroblasts and 3T3-L1 adipocytes followed typical Michaelis-Menten kinetics; the apparent efficiency (k(cat)/K(T)) of this process increases over 2-fold (2.1 x 10(6)-4.5 x 10(6)s(-1)M(-1)) upon adipocyte differentiation. The V(max) values for fatty acid transport in Caco-2 and HepG2 cells were essentially the same, yet the efficiency was 55% higher in Caco-2 cells (2.3 x 10(6)s(-1)M(-1) versus 1.5 x 10(6)s(-1)M(-1)). The kinetic parameters for fatty acid transport in three endothelial cell types demonstrated they were the least efficient cell types for this process giving V(max) values that were nearly 4-fold lower than those defined form 3T3-L1 adipocytes, Caco-2 cells and HepG2 cells. The

  20. Associations of Rs3744841 and Rs3744843 Polymorphisms in Endothelial Lipase Gene with Risk of Coronary Artery Disease and Lipid Levels in a Chinese Population

    PubMed Central

    Ma, Chunyan; Shi, Ganwei; Weng, Weijin; Xue, Sheliang

    2016-01-01

    Objective The aim of the present study was to assess the association between the 2037T/C and 2237G/A polymorphisms in the EL gene and the risk of CAD and lipid levels in a Chinese population. Methods A case-control study including 706 patients with CAD and 315 controls was performed. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used to identify the genotypes. Results The EL 2037 T/C polymorphism was associated with CAD risk and HDL-C levels. No significant differences were found between the EL 2237 G/A genotypes and CAD risk and lipid levels in the whole population. However, carriers of the 2237 A allele had higher Apo A1 levels than those with the 2237 GG genotype and in the CAD subgroup (P = 0.044). The CAD cases have a significantly lower frequency of the C-G haplotypes than the controls, and the T-A haplotype was significantly more common in the CAD patients than in the controls. Conclusions Our study concluded that the EL 2037 T/C polymorphism was associated with CAD risk and HDL-C levels, and that the C allele might be a protective factor against CAD in the Chinese Han population. In addition, the EL 2237 A allele might be associated with an increased Apo A1 level in CAD subjects. PMID:27612170

  1. Hydrolysis of fluorescent pyrenetriacylglycerols by lipases from human stomach and gastric juice.

    PubMed

    Nègre, A; Salvayre, R; Dousset, N; Rogalle, P; Dang, Q Q; Douste-Blazy, L

    1988-11-25

    Fluorescent triacylglycerols containing pyrenedecanoic (P10) and pyrenebutanoic (P4) acids were synthesized and their hydrolysis by lipases from human gastric juice and stomach homogenate was investigated. The existence in stomach homogenate of four different lipolytic enzymes hydrolyzing fluorescent triacylglycerols is suggested by the comparison of various enzymatic properties: acyl chain length specificity, heat inactivation and effect of detergents (Triton X-100 and taurocholate), serum albumin, diethyl-para-nitrophenyl phosphate (E600) and other inhibitors. (1) The acid pH4-lipase hydrolyzes P10-triacylglycerols but not P4-triacylglycerol and exhibited the characteristic properties of the lysosomal lipase: the maximal activating effect of detergents occurs at relatively high concentrations (the substrate/detergent optimal molar ratios were 1:5 and 1:25 for triacylglycerols/taurocholate and triacylglycerols/Triton X-100, respectively); its activity was strongly inhibited by para-chloromercuribenzoate (2.5 mmol/l), but was not significantly affected by serum albumin and E600 (10(-2) mmol/l). (2) The neutral pH7-lipase hydrolyzes P10-triacylglycerols but not P4-triacylglycerol. It is resistant to E600 and heat-stable, similarly to the acid pH4-lipase, but it is well discriminated from the acid enzyme by its substrate/detergent optimal molar ratios (1:2 and 1:3 for triacylglycerols/taurocholate and triacylglycerols/Triton X-100, respectively), whereas higher detergent concentrations, optimal for the acid lipase, are strongly inhibitory for the neutral enzyme. (3) The pH5-lipase present in gastric juice as well as in stomach homogenate exhibited properties obviously discriminating it from the other lipolytic enzymes from stomach homogenate: broad substrate specificity for P10- as well as P4-triacylglycerols, activation by low concentrations of amphiphiles (with optimal ratios triacylglycerols/taurocholate, triacylglycerols/taurocholate and triacylglycerols

  2. Structural gene and complete amino acid sequence of Vibrio alginolyticus collagenase.

    PubMed Central

    Takeuchi, H; Shibano, Y; Morihara, K; Fukushima, J; Inami, S; Keil, B; Gilles, A M; Kawamoto, S; Okuda, K

    1992-01-01

    The DNA encoding the collagenase of Vibrio alginolyticus was cloned, and its complete nucleotide sequence was determined. When the cloned gene was ligated to pUC18, the Escherichia coli expression vector, bacteria carrying the gene exhibited both collagenase antigen and collagenase activity. The open reading frame from the ATG initiation codon was 2442 bp in length for the collagenase structural gene. The amino acid sequence, deduced from the nucleotide sequence, revealed that the mature collagenase consists of 739 amino acids with an Mr of 81875. The amino acid sequences of 20 polypeptide fragments were completely identical with the deduced amino acid sequences of the collagenase gene. The amino acid composition predicted from the DNA sequence was similar to the chemically determined composition of purified collagenase reported previously. The analyses of both the DNA and amino acid sequences of the collagenase gene were rigorously performed, but we could not detect any significant sequence similarity to other collagenases. Images Fig. 2. PMID:1311172

  3. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme preparation obtained from edible forestomach tissue of calves, kids, or lambs, or from animal pancreatic tissue. The enzyme preparation may be produced as a tissue preparation or as an aqueous extract. Its characterizing...

  4. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme... tissue. The enzyme preparation may be produced as a tissue preparation or as an aqueous extract. Its characterizing enzyme activity is that of a triacylglycerol hydrolase (EC 3.1.1.3). (b) The ingredient meets...

  5. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme... tissue. The enzyme preparation may be produced as a tissue preparation or as an aqueous extract. Its characterizing enzyme activity is that of a triacylglycerol hydrolase (EC 3.1.1.3). (b) The ingredient meets...

  6. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme... tissue. The enzyme preparation may be produced as a tissue preparation or as an aqueous extract. Its characterizing enzyme activity is that of a triacylglycerol hydrolase (EC 3.1.1.3). (b) The ingredient meets...

  7. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme... tissue. The enzyme preparation may be produced as a tissue preparation or as an aqueous extract. Its characterizing enzyme activity is that of a triacylglycerol hydrolase (EC 3.1.1.3). (b) The ingredient meets...

  8. Lipase production by yeasts from extra virgin olive oil.

    PubMed

    Ciafardini, G; Zullo, B A; Iride, A

    2006-02-01

    Newly produced olive oil has an opalescent appearance due to the presence of solid particles and micro-drops of vegetation water from the fruits. Some of our recent microbiological research has shown that a rich micro-flora is present in the suspended fraction of the freshly produced olive oil capable of improving the quality of the oil through the hydrolysis of the oleuropein. Present research however has, for the first time, demonstrated the presence of lipase-positive yeasts in some samples of extra virgin olive oil which can lower the quality of the oil through the hydrolysis of the triglycerides. The tests performed with yeasts of our collection, previously isolated from olive oil, demonstrated that two lipase-producing yeast strains named Saccharomyces cerevisiae 1525 and Williopsis californica 1639 were able to hydrolyse different specific synthetic substrates represented by p-nitrophenyl stearate, 4-nitrophenyl palmitate, tripalmitin and triolein as well as olive oil triglycerides. The lipase activity in S. cerevisiae 1525 was confined to the whole cells, whereas in W. californica 1639 it was also detected in the extracellular fraction. The enzyme activity in both yeasts was influenced by the ratio of the aqueous to the organic phase reaching its maximum value in S. cerevisiae 1525 when the water added to the olive oil was present in a ratio of 0.25% (v/v), whereas in W. californica 1639 the optimal ratio was 1% (v/v). Furthermore, the free fatty acids of olive oil proved to be good inducers of lipase activity in both yeasts. The microbiological analysis carried out on commercial extra virgin olive oil, produced in four different geographic areas, demonstrated that the presence of lipase-producing yeast varied from zero to 56% of the total yeasts detected, according to the source of oil samples. The discovery of lipase-positive yeasts in some extra virgin olive oils leads us to believe that yeasts are able to contribute in a positive or negative way towards

  9. The PH gene determines fruit acidity and contributes to the evolution of sweet melons.

    PubMed

    Cohen, Shahar; Itkin, Maxim; Yeselson, Yelena; Tzuri, Galil; Portnoy, Vitaly; Harel-Baja, Rotem; Lev, Shery; Sa'ar, Uzi; Davidovitz-Rikanati, Rachel; Baranes, Nadine; Bar, Einat; Wolf, Dalia; Petreikov, Marina; Shen, Shmuel; Ben-Dor, Shifra; Rogachev, Ilana; Aharoni, Asaph; Ast, Tslil; Schuldiner, Maya; Belausov, Eduard; Eshed, Ravit; Ophir, Ron; Sherman, Amir; Frei, Benedikt; Neuhaus, H Ekkehard; Xu, Yimin; Fei, Zhangjun; Giovannoni, Jim; Lewinsohn, Efraim; Tadmor, Yaakov; Paris, Harry S; Katzir, Nurit; Burger, Yosef; Schaffer, Arthur A

    2014-06-05

    Taste has been the subject of human selection in the evolution of agricultural crops, and acidity is one of the three major components of fleshy fruit taste, together with sugars and volatile flavour compounds. We identify a family of plant-specific genes with a major effect on fruit acidity by map-based cloning of C. melo PH gene (CmPH) from melon, Cucumis melo taking advantage of the novel natural genetic variation for both high and low fruit acidity in this species. Functional silencing of orthologous PH genes in two distantly related plant families, cucumber and tomato, produced low-acid, bland tasting fruit, showing that PH genes control fruit acidity across plant families. A four amino-acid duplication in CmPH distinguishes between primitive acidic varieties and modern dessert melons. This fortuitous mutation served as a preadaptive antecedent to the development of sweet melon cultigens in Central Asia over 1,000 years ago.

  10. Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene.

    PubMed

    An, Jieun; Kwon, Hyeji; Kim, Eunjung; Lee, Young Mi; Ko, Hyeok Jin; Park, Hongjae; Choi, In-Geol; Kim, Sooah; Kim, Kyoung Heon; Kim, Wankee; Choi, Wonja

    2015-03-01

    Screening a library of overexpressing mutant alleles of the TATA-binding gene SPT15 yielded two Saccharomyces cerevisiae strains (MRRC 3252 and 3253) with enhanced tolerance to acetic acid. They were also tolerant to propionic acid and hydrogen peroxide. Transcriptome profile analysis identified 58 upregulated genes and 106 downregulated genes in MRRC 3252. Stress- and protein synthesis-related transcription factors were predominantly enriched in the upregulated and downregulated genes respectively. Eight deletion mutants for some of the highly downregulated genes were acetic acid-tolerant. The level of intracellular reactive oxygen species was considerably lessened in MRRC 3252 and 3253 upon exposure to acetic acid. Metabolome profile analysis revealed that intracellular concentrations of 5 and 102 metabolites were increased and decreased, respectively, in MRRC 3252, featuring a large increase of urea and a significant decrease of amino acids. The dur1/2Δmutant, in which the urea degradation gene DUR1/2 is deleted, displayed enhanced tolerance to acetic acid. Enhanced tolerance to acetic acid was also observed on the medium containing a low concentration of amino acids. Taken together, this study identified two SPT15 alleles, nine gene deletions and low concentration of amino acids in the medium that confer enhanced tolerance to acetic acid.

  11. Cross-validated stable-isotope dilution GC-MS and LC-MS/MS assays for monoacylglycerol lipase (MAGL) activity by measuring arachidonic acid released from the endocannabinoid 2-arachidonoyl glycerol.

    PubMed

    Kayacelebi, Arslan Arinc; Schauerte, Celina; Kling, Katharina; Herbers, Jan; Beckmann, Bibiana; Engeli, Stefan; Jordan, Jens; Zoerner, Alexander A; Tsikas, Dimitrios

    2017-03-15

    2-Arachidonoyl glycerol (2AG) is an endocannabinoid that activates cannabinoid (CB) receptors CB1 and CB2. Monoacylglycerol lipase (MAGL) inactivates 2AG through hydrolysis to arachidonic acid (AA) and glycerol, thus modulating the activity at CB receptors. In the brain, AA released from 2AG by the action of MAGL serves as a substrate for cyclooxygenases which produce pro-inflammatory prostaglandins. Here we report stable-isotope GC-MS and LC-MS/MS assays for the reliable measurement of MAGL activity. The assays utilize deuterium-labeled 2AG (d8-2AG; 10μM) as the MAGL substrate and measure deuterium-labeled AA (d8-AA; range 0-1μM) as the MAGL product. Unlabelled AA (d0-AA, 1μM) serves as the internal standard. d8-AA and d0-AA are extracted from the aqueous buffered incubation mixtures by ethyl acetate. Upon solvent evaporation the residue is reconstituted in the mobile phase prior to LC-MS/MS analysis or in anhydrous acetonitrile for GC-MS analysis. LC-MS/MS analysis is performed in the negative electrospray ionization mode by selected-reaction monitoring the mass transitions [M-H](-)→[M-H - CO2](-), i.e., m/z 311→m/z 267 for d8-AA and m/z 303→m/z 259 for d0-AA. Prior to GC-MS analysis d8-AA and d0-AA were converted to their pentafluorobenzyl (PFB) esters by means of PFB-Br. GC-MS analysis is performed in the electron-capture negative-ion chemical ionization mode by selected-ion monitoring the ions [M-PFB](-), i.e., m/z 311 for d8-AA and m/z 303 for d0-AA. The GC-MS and LC-MS/MS assays were cross-validated. Linear regression analysis between the concentration (range, 0-1μM) of d8-AA measured by LC-MS/MS (y) and that by GC-MS (x) revealed a straight line (r(2)=0.9848) with the regression equation y=0.003+0.898x, indicating a good agreement. In dog liver, we detected MAGL activity that was inhibitable by the MAGL inhibitor JZL-184. Exogenous eicosatetraynoic acid is suitable as internal standard for the quantitative determination of d8-AA produced from d8

  12. Preliminary studies on immobilization of lipase using chicken eggshell

    NASA Astrophysics Data System (ADS)

    Salleh, S.; Serri, N. A.; Hena, S.; Tajarudin, H. A.

    2016-06-01

    A few advantages of enzyme immobilization are reusability of expensive enzyme, improvement of stability and activity compared to crude enzyme. Various organic components can be used as carrier for enzyme immobilization such as chicken eggshell. It can be used as a carrier for immobilization as its mineral component mostly contains of calcium carbonate. In the present study, Tributyrin method was used to test enzyme activity of Rhizomucour Miehei, Candida Antarctica and Candida Rugosa. Rhizomucour Miehei shows the highest enzyme activity (360.8 mol/min/mL lipase) and was used in further experiment. Experiment was continued to study incubation time for lipase immobilization on eggshell (1-4 hours) and reaction time of esterification of sugar ester (0-72 hours). Two hours incubation time for lipase immobilization was observed and gives the highest yield of sugar ester (78.13%). Fructose and stearic acid as substrate was used for the production of sugar ester. The highest percentage of sugar ester production was shown at 36 hours of reaction time.

  13. The rice OsLpa1 gene encodse a novel protein involved in phytic acid metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rice low phytic acid 1 (OsLpa1) gene was originally identified using a forward genetics approach. Mutation of this gene resulted in a 45% reduction in rice seed phytic acid with a molar-equivalent increase in inorganic phosphorus; however, the rice lpa1 mutant does not appear to differ significa...

  14. Reduced fat mass in rats fed a high oleic acid-rich safflower oil diet is associated with changes in expression of hepatic PPARalpha and adipose SREBP-1c-regulated genes.

    PubMed

    Hsu, Shan-Ching; Huang, Ching-Jang

    2006-07-01

    PPARs and sterol regulatory element-binding protein-1c (SREPB-1c) are fatty acid-regulated transcription factors that control lipid metabolism at the level of gene expression. This study compared a high oleic acid-rich safflower oil (ORSO) diet and a high-butter diet for their effect on adipose mass and expressions of genes regulated by PPAR and SREPB-1c in rats. Four groups of Wistar rats were fed 30S (30% ORSO), 5S (5% ORSO), 30B (29% butter + 1% ORSO), or 5B (4% butter plus 1% ORSO) diets for 15 wk. Compared with the 30B group, the 30S group had less retroperitoneal white adipose tissue (RWAT) mass and lower mRNA expressions of lipoprotein lipase, adipocyte fatty acid-binding protein, fatty acid synthase, acetyl CoA carboxylase, and SREBP-1c in the RWAT, higher mRNA expressions of acyl CoA oxidase, carnitine palmitoyl-transferase 1A, fatty acid binding protein, and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in the liver (P < 0.05). The 18:2(n-6) and 20:4(n-6) contents in the liver and RWAT of the 30S group were >2 fold those of the 30B group (P < 0.05). These results suggested that the smaller RWAT mass in rats fed the high-ORSO diet might be related to the higher tissue 18:2(n-6) and 20:4(n-6). This in turn could upregulate the expressions of fatty acid catabolic genes through the activation of PPARalpha in the liver and downregulate the expressions of lipid storage and lipogenic gene through the suppression of SREBP-1c in the RWAT.

  15. Isolation and characterization of novel thermophilic lipase-secreting bacteria.

    PubMed

    Rabbani, Mohammed; Bagherinejad, Mohammad Reza; Sadeghi, Hamid MirMohammad; Shariat, Ziaedin Samsam; Etemadifar, Zahra; Moazen, Fatemeh; Rahbari, Manizheh; Mafakher, Ladan; Zaghian, Saeideh

    2013-12-01

    The purpose of the present study was to screen and identify the lipase-producing microorganisms from various regions of Iran. Samples collected from hot spring, Persian Gulf, desert area and oil-contaminated soil, were analyzed for thermophilic extracellular-lipase producing organisms. Six strains with high activity on rhodamine B plates were selected for chemical identification and further study. Among these isolated bacteria, four strains show higher activity in pH-Stat method at 55 °C. These strains were identified by PCR amplification of 16s rRNA genes using universal primers. Fermentation increased the activity up to 50%. The growth medium, designed for lipase production, increased the activity up to 4.55 folds. The crude supernatant of ZR-5 after fermentation and separation the cells, was lyophilized and the activity was measured. Total activity of this strain was 12 kU/g that shows its potential for industrial uses. Further study is required for purification of enzyme and calculation its specific activity. Immobilization is another approach should be considered.

  16. Isolation and characterization of novel thermophilic lipase-secreting bacteria

    PubMed Central

    Rabbani, Mohammed; Bagherinejad, Mohammad Reza; Sadeghi, Hamid MirMohammad; Shariat, Ziaedin Samsam; Etemadifar, Zahra; Moazen, Fatemeh; Rahbari, Manizheh; Mafakher, Ladan; Zaghian, Saeideh

    2013-01-01

    The purpose of the present study was to screen and identify the lipase-producing microorganisms from various regions of Iran. Samples collected from hot spring, Persian Gulf, desert area and oil-contaminated soil, were analyzed for thermophilic extracellular-lipase producing organisms. Six strains with high activity on rhodamine B plates were selected for chemical identification and further study. Among these isolated bacteria, four strains show higher activity in pH-Stat method at 55 °C. These strains were identified by PCR amplification of 16s rRNA genes using universal primers. Fermentation increased the activity up to 50%. The growth medium, designed for lipase production, increased the activity up to 4.55 folds. The crude supernatant of ZR-5 after fermentation and separation the cells, was lyophilized and the activity was measured. Total activity of this strain was 12 kU/g that shows its potential for industrial uses. Further study is required for purification of enzyme and calculation its specific activity. Immobilization is another approach should be considered. PMID:24688500

  17. Molecular evolution of monotreme and marsupial whey acidic protein genes.

    PubMed

    Sharp, Julie A; Lefèvre, Christophe; Nicholas, Kevin R

    2007-01-01

    Whey acidic protein (WAP), a major whey protein present in milk of a number of mammalian species has characteristic cysteine-rich domains known as four-disulfide cores (4-DSC). Eutherian WAP, expressed in the mammary gland throughout lactation, has two 4-DSC domains, (DI-DII) whereas marsupial WAP, expressed only during mid-late lactation, contains an additional 4-DSC (DIII), and has a DIII-D1-DII configuration. We report the expression and evolution of echidna (Tachyglossus aculeatus) and platypus (Onithorhynchus anatinus) WAP cDNAs. Predicted translation of monotreme cDNAs showed echidna WAP contains two 4-DSC domains corresponding to DIII-DII, whereas platypus WAP contains an additional domain at the C-terminus with homology to DII and has the configuration DIII-DII-DII. Both monotreme WAPs represent new WAP protein configurations. We propose models for evolution of the WAP gene in the mammalian lineage either through exon loss from an ancient ancestor or by rapid evolution via the process of exon shuffling. This evolutionary outcome may reflect differences in lactation strategy between marsupials, monotremes, and eutherians, and give insight to biological function of the gene products. WAP four-disulfide core domain 2 (WFDC2) proteins were also identified in echidna, platypus and tammar wallaby (Macropus eugenii) lactating mammary cells. WFDC2 proteins are secreted proteins not previously associated with lactation. Mammary gland expression of tammar WFDC2 during the course of lactation showed WFDC2 was elevated during pregnancy, reduced in early lactation and absent in mid-late lactation.

  18. Hyaluronic acid enhances gene delivery into the cochlea.

    PubMed

    Shibata, Seiji B; Cortez, Sarah R; Wiler, James A; Swiderski, Donald L; Raphael, Yehoash

    2012-03-01

    Cochlear gene therapy can be a new avenue for the treatment of severe hearing loss by inducing regeneration or phenotypic rescue. One necessary step to establish this therapy is the development of a safe and feasible inoculation surgery, ideally without drilling the bony cochlear wall. The round window membrane (RWM) is accessible in the middle-ear space, but viral vectors placed on this membrane do not readily cross the membrane to the cochlear tissues. In an attempt to enhance permeability of the RWM, we applied hyaluronic acid (HA), a nontoxic and biodegradable reagent, onto the RWM of guinea pigs, prior to delivering an adenovirus carrying enhanced green fluorescent protein (eGFP) reporter gene (Ad-eGFP) at the same site. We examined distribution of eGFP in the cochlea 1 week after treatment, comparing delivery of the vector via the RWM, with or without HA, to delivery by a cochleostomy into the perilymph. We found that cochlear tissue treated with HA-assisted delivery of Ad-eGFP demonstrated wider expression of transgenes in cochlear cells than did tissue treated by cochleostomy injection. HA-assisted vector delivery facilitated expression in cells lining the scala media, which are less accessible and not transduced after perilymphatic injection. We assessed auditory function by measuring auditory brainstem responses and determined that thresholds were significantly better in the ears treated with HA-assisted Ad-eGFP placement on the RWM as compared with cochleostomy. Together, these data demonstrate that HA-assisted delivery of viral vectors provides an atraumatic and clinically feasible method to introduce transgenes into cochlear cells, thereby enhancing both research methods and future clinical application.

  19. Discrimination against diacylglycerol ethers in lipase-catalysed ethanolysis of shark liver oil.

    PubMed

    Fernández, Óscar; Vázquez, Luis; Reglero, Guillermo; Torres, Carlos F

    2013-01-15

    Lipase-catalysed ethanolysis of squalene-free shark liver oil was investigated. The mentioned shark liver oil was comprised mainly of diacylglycerol ether and triacylglycerols. In order to test discrimination against diacylglycerol ether, up to 10 different lipases were compared. The ratio of oil to ethanol and lipase stability were also evaluated. Surprisingly, lipase from Pseudomonas stutzeri was the fastest biocatalyst among all assayed, although poor discrimination against diacylglycerol ether was observed. The best results in terms of selectivity and stability were obtained with immobilised lipase from Candida antarctica (Novozym 435). Ethanolysis reaction after 24h in the presence of Novozym 435 produced total disappearance of triacylglycerol and a final reaction mixture comprised mainly of diacylglycerol ethers (10.6%), monoacylglycerol ethers (32.9%) and fatty acid ethyl esters (46.0%). In addition, when an excess of ethanol was used, diacylglycerol ethers completely disappeared after 15 h, giving a final product mainly composed of monoacylglycerol ethers (36.6%) and fatty acid ethyl esters (46.4%).

  20. Biodiesel production using lipase immobilized on epoxychloropropane-modified Fe3O4 sub-microspheres.

    PubMed

    Zhang, Qian; Zheng, Zhong; Liu, Changxia; Liu, Chunqiao; Tan, Tianwei

    2016-04-01

    Superparamagnetic Fe3O4 sub-microspheres with diameters of approximately 200 nm were prepared via a solvothermal method, and then modified with epoxychloropropane. Lipase was immobilized on the modified sub-microspheres. The immobilized lipase was used in the production of biodiesel fatty acid methyl esters (FAMEs) from acidified waste cooking oil (AWCO). The effects of the reaction conditions on the biodiesel yield were investigated using a combination of response surface methodology and three-level/three-factor Box-Behnken design (BBD). The optimum synthetic conditions, which were identified using Ridge max analysis, were as follows: immobilized lipase:AWCO mass ratio 0.02:1, fatty acid:methanol molar ratio 1:1.10, hexane:AWCO ratio 1.33:1 (mL/g), and temperature 40 °C. A 97.11% yield was obtained under these conditions. The BBD and experimental data showed that the immobilized lipase could generate biodiesel over a wide temperature range, from 0 to 40 °C. Consistently high FAME yields, in excess of 80%, were obtained when the immobilized lipase was reused in six replicate trials at 10 and 20 °C.

  1. A broad pH range indicator-based spectrophotometric assay for true lipases using tributyrin and tricaprylin[S

    PubMed Central

    Camacho-Ruiz, María de los Angeles; Mateos-Díaz, Juan Carlos; Carrière, Frédéric; Rodriguez, Jorge A.

    2015-01-01

    A continuous assay is proposed for the screening of acidic, neutral, or alkaline lipases using microtiter plates, emulsified short- and medium-chain TGs, and a pH indicator. The lipase activity measurement is based on the decrease of the pH indicator optical density due to protonation which is caused by the release of FFAs during the hydrolysis of TGs and thus acidification. Purified lipases with distinct pH optima and an esterase were used to validate the method. The rate of lipolysis was found to be linear with time and proportional to the amount of enzyme added in each case. Specific activities measured with this microplate assay method were lower than those obtained by the pH-stat technique. Nevertheless, the pH-dependent profiles of enzymatic activity were similar with both assays. In addition, the substrate preference of each enzyme tested was not modified and this allowed discriminating lipase and esterase activities using tributyrin (low water solubility) and tricaprylin (not water soluble) as substrates. This continuous lipase assay is compatible with a high sample throughput and can be applied for the screening of lipases and lipase inhibitors from biological samples. PMID:25748441

  2. High-throughput screening method for lipases/esterases.

    PubMed

    Mateos-Díaz, Eduardo; Rodríguez, Jorge Alberto; de Los Ángeles Camacho-Ruiz, María; Mateos-Díaz, Juan Carlos

    2012-01-01

    High-throughput screening (HTS) methods for lipases and esterases are generally performed by using synthetic chromogenic substrates (e.g., p-nitrophenyl, resorufin, and umbelliferyl esters) which may be misleading since they are not their natural substrates (e.g., partially or insoluble triglycerides). In previous works, we have shown that soluble nonchromogenic substrates and p-nitrophenol (as a pH indicator) can be used to quantify the hydrolysis and estimate the substrate selectivity of lipases and esterases from several sources. However, in order to implement a spectrophotometric HTS method using partially or insoluble triglycerides, it is necessary to find particular conditions which allow a quantitative detection of the enzymatic activity. In this work, we used Triton X-100, CHAPS, and N-lauroyl sarcosine as emulsifiers, β-cyclodextrin as a fatty acid captor, and two substrate concentrations, 1 mM of tributyrin (TC4) and 5 mM of trioctanoin (TC8), to improve the test conditions. To demonstrate the utility of this method, we screened 12 enzymes (commercial preparations and culture broth extracts) for the hydrolysis of TC4 and TC8, which are both classical substrates for lipases and esterases (for esterases, only TC4 may be hydrolyzed). Subsequent pH-stat experiments were performed to confirm the preference of substrate hydrolysis with the hydrolases tested. We have shown that this method is very useful for screening a high number of lipases (hydrolysis of TC4 and TC8) or esterases (only hydrolysis of TC4) from wild isolates or variants generated by directed evolution using nonchromogenic triglycerides directly in the test.

  3. Identification of a 12-gene fusaric acid biosynthetic gene cluster in Fusarium species through comparative and functional genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In fungi, genes involved in biosynthesis of a secondary metabolite (SM) are often located adjacent to one another in the genome and are coordinately regulated. These SM biosynthetic gene clusters typically encode enzymes, one or more transcription factors, and a transport protein. Fusaric acid is a ...

  4. The forage type (grazing versus hay pasture) fed to ewes and the lamb sex affect fatty acid profile and lipogenic gene expression in the longissimus muscle of suckling lambs.

    PubMed

    Dervishi, E; Joy, M; Alvarez-Rodriguez, J; Serrano, M; Calvo, J H

    2012-01-01

    Meat intramuscular fat (IMF) contributes to meat quality and consumer acceptance. Molecular events that occur during IMF deposition and the identification of genes that are differentially expressed during this process are important to the design of an optimal nutrition plan for animals. In the present study, we examined the effect of the forage type (grazing vs. hay pasture) fed to ewes and the effect of lamb sex on the LM fatty acid (FA) profile and gene expression of suckling lambs (10 to 12 kg of BW at slaughter); ewes received pasture hay (PH) or grazed pasture (GRE). Forage type had a significant effect on IMF FA profile. Ewes grazing green forage (GRE) promoted the formation and deposition of vaccenic acid (C18:1n-7), CLA, and PUFA n-3 in LM from their suckling lambs (P < 0.05). We found that forage type affected the expression of the sterol regulatory element binding transcription factor 1 (SREBF1) gene in females. However, in males, it modulated stearoyl CoA desaturase (SCD) gene expression (P < 0.05). Moreover, our results showed that females, independent of the diet of the ewes (PH or GRE), are predisposed to develop fat and to upregulate the expression of key genes of transcriptional factors PPARA, CEBPB, SREBF1, and lipoprotein lipase (LPL) and SCD (P < 0.05). The data suggest that SREBF1, SCD, and most likely CEBPB gene expression in young suckling lambs is modulated by both lamb sex and forage type fed to ewes. Fatty acid indicators PUFA, n-6/n-3, CLA, and SFA are closely related to LPL, SCD, PPARA, and CEBPB gene expression depending on animal sex or the diet of ewes. This study suggests that grazing pasture affects FA composition promoting greater vaccenic, CLA, and total PUFA n-3 FA in female and male suckling lambs, and it is mediated through the regulation of lipogenic enzyme expression.

  5. Adipose Triglyceride Lipase, Not Hormone-Sensitive Lipase, Is the Primary Lipolytic Enzyme in Fasting Elephant Seals (Mirounga angustirostris).

    PubMed

    Fowler, Melinda A; Costa, Daniel P; Crocker, Daniel E; Shen, Wen-Jun; Kraemer, Fredric B

    2015-01-01

    Little is known about the mechanisms that allow capital breeders to rapidly mobilize large amounts of body reserves. Northern elephant seals (Mirounga angustirostris) utilize fat reserves for maternal metabolism and to create high fat milk for the pup. Hormone-sensitive lipase (HSL) has been hypothesized to be an important lipolytic enzyme in fasting seals, but the activity of HSL and adipose triglyceride lipase (ATGL) has not been quantified in fasting adult seals, nor has their relationship to milk lipid content been assessed. Blubber and milk samples were obtained from 18 early lactation and 19 late lactation females, as well as blubber from five early and five late molting female seals. Blubber lipolytic activity was assessed with radiometric assays. HSL activity was negligible in seal blubber at all fasting stages. Total triglyceride lipase activity was stable among early and late lactation and early molt but increased in late molting seals. Relative abundance of ATGL protein increased across fasting, but neither activity nor relative protein levels were related to circulating nonesterified fatty acids or milk lipid content, suggesting the possibility of other regulatory pathways between lipolytic activity and milk lipid content. These results demonstrate that HSL is not the primary lipolytic enzyme in fasting adult female seals and that ATGL contributes more to lipolysis than HSL.

  6. Molecular characterization of the acid-inducible asr gene of Escherichia coli and its role in acid stress response.

    PubMed

    Seputiene, Vaida; Motiejūnas, Domantas; Suziedelis, Kestutis; Tomenius, Henrik; Normark, Staffan; Melefors, Ojar; Suziedeliene, Edita

    2003-04-01

    Enterobacteria have developed numerous constitutive and inducible strategies to sense and adapt to an external acidity. These molecular responses require dozens of specific acid shock proteins (ASPs), as shown by genomic and proteomic analysis. Most of the ASPs remain poorly characterized, and their role in the acid response and survival is unknown. We recently identified an Escherichia coli gene, asr (acid shock RNA), encoding a protein of unknown function, which is strongly induced by high environmental acidity (pH < 5.0). We show here that Asr is required for growth at moderate acidity (pH 4.5) as well as for the induction of acid tolerance at moderate acidity, as shown by its ability to survive subsequent transfer to extreme acidity (pH 2.0). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western analysis of acid-shocked E. coli cells harboring a plasmid-borne asr gene demonstrated that the Asr protein is synthesized as a precursor with an apparent molecular mass of 18 kDa. Mutational studies of the asr gene also demonstrated the Asr preprotein contains 102 amino acids. This protein is subjected to an N-terminal cleavage of the signal peptide and a second processing event, yielding 15- and 8-kDa products, respectively. Only the 8-kDa polypeptide was detected in acid-shocked cells containing only the chromosomal copy of the asr gene. N-terminal sequencing and site-directed mutagenesis revealed the two processing sites in the Asr protein precursor. Deletion of amino acids encompassing the processing site required for release of the 8-kDa protein resulted in an acid-sensitive phenotype similar to that observed for the asr null mutant, suggesting that the 8-kDa product plays an important role in the adaptation to acid shock. Analysis of Asr:PhoA fusions demonstrated a periplasmic location for the Asr protein after removal of the signal peptide. Homologues of the asr gene from other Enterobacteriaceae were cloned and shown to be induced in E. coli

  7. Selenium promotes adipogenic determination and differentiation of chicken embryonic fibroblasts with regulation of genes involved in fatty acid uptake, triacylglycerol synthesis and lipolysis.

    PubMed

    Hassan, Aishlin; Ahn, Jinsoo; Suh, Yeunsu; Choi, Young Min; Chen, Paula; Lee, Kichoon

    2014-08-01

    Selenium (Se) has been utilized in the differentiation of primary pig and rat preadipocytes, indicating that it may have proadipogenic potential; however, some studies have also demonstrated that Se has antiadipogenic activity. In this study, chicken embryonic fibroblasts (CEFs) were used to investigate the role of Se in adipogenesis in vitro and in ovo. Se supplementation increased lipid droplet accumulation and inhibited proliferation of cultured CEFs isolated from 6-day-old embryos dose-dependently. This suggests that Se may play a role in cell cycle inhibition, thereby promoting the differentiation of fibroblasts to adipocytes. Se did not stimulate adipogenic differentiation of CEFs isolated from 9- to 12-day-old embryos, implying a permissive stage of adipogenic determination by Se at earlier embryonic ages. Microarray analysis comparing control and Se treatments on CEFs from 6-day-old embryos and confirmatory analysis by quantitative real-time polymerase chain reaction revealed that genes involved in adipocyte determination and differentiation, fatty acid uptake and triacylglycerol synthesis were up-regulated. In addition, up-regulation of an anti-lipolytic G0/G1 switch gene 2 and down-regulation of a prolipolytic monoglyceride lipase may lead to inhibition of lipolysis by Se. Both osteogenic and myogenic genes were down-regulated, and several genes related to oxidative stress response during adipogenesis were up-regulated. In ovo injection of Se at embryonic day 8 increased adipose tissue mass by 30% and caused adipocyte hypertrophy in 17-day-old chicken embryos, further supporting the proadipogenic role of Se during the embryonic development of chickens. These results suggest that Se plays a significant role in several mechanisms related to adipogenesis.

  8. The effect of gestational age on expression of genes involved in uptake, trafficking and synthesis of fatty acids in the rat placenta.

    PubMed

    Rodríguez-Cruz, Maricela; González, Raúl Sánchez; Maldonado, Jorge; López-Alarcón, Mardia; Bernabe-García, Mariela

    2016-10-15

    Gestation triggers a tight coordination among maternal tissues to provide fatty acids (FA) to the fetus through placental transport; however, there is insufficient evidence regarding regulation of proteins involved in placental transport of FA according to gestational age. The aim of this study was to determine the role of gestational age on the expression of genes involved in FA uptake, trafficking and synthesis in the rat placenta to support fetal demands. Gene expression of encoding proteins for placental transport and synthesis of FA was measured in placenta. Also, FA composition was measured in placenta, fetuses and newborns. mRNA expression of lipoprotein lipase (lpl) and fatp-1 (for uptake) was 4.4- and 1.43-fold higher, respectively, during late gestation than at P14, but expression of p-fabp-pm decreased 0.37-fold at late pregnancy in comparison with P14. Only mRNA fabp-4 member for trafficking of FA was 2.95-fold higher at late gestation than at P14. mRNA of fasn and elovl-6 participating in saturated FA and enzymes for the polyunsaturated FA synthesis were downregulated during late gestation and their regulator srebf-1c increased at P16. This study suggests that gestational age has an effect on expression of some genes involved in uptake, trafficking and synthesis of FA in the rat placenta; mRNA expression of lpl and, fatp-1 for uptake and fabp-4 implicated in trafficking was expressed at high levels at late gestation. In addition, placenta expresses the mRNAs involved in FA synthesis; these genes were expressed at low levels at late gestation. Additionally, mRNAs of Srebf-1c transcriptional regulator of desaturases and elongases was highly expressed during late gestation. Finally, these changes in the rat placenta allowed the placenta to partially supply saturated and monounsaturated FA to the fetus.

  9. Alterations in endocannabinoid tone following chemotherapy-induced peripheral neuropathy: Effects of endocannabinoid deactivation inhibitors targeting fatty-acid amide hydrolase and monoacylglycerol lipase in comparison to reference analgesics following cisplatin treatment

    PubMed Central

    Guindon, Josée; Lai, Yvonne; Takacs, Sara M.; Bradshaw, Heather B.; Hohmann, Andrea G.

    2012-01-01

    SUMMARY Cisplatin, a platinum-derived chemotherapeutic agent, produces mechanical and cold allodynia reminiscent of chemotherapy-induced neuropathy in humans. The endocannabinoid system represents a novel target for analgesic drug development. The endocannabinoid consists of endocannabinoids (e.g. anandamide (AEA) and 2-arachidonoylglycerol (2-AG)), cannabinoid receptors (e.g. CB1 and CB2) and the enzymes controlling endocannabinoid synthesis and degradation. AEA is hydrolyzed by fatty-acid amide hydrolase (FAAH) whereas 2-AG is hydrolyzed primarily by monoacylglycerol lipase (MGL). We compared effects of brain permeant (URB597) and impermeant (URB937) inhibitors of FAAH with an irreversible inhibitor of MGL (JZL184) on cisplatin-evoked behavioral hypersensitivities. Endocannabinoid modulators were compared with agents used clinically to treat neuropathy (i.e. the opioid analgesic morphine, the anticonvulsant gabapentin and the tricyclic antidepressant amitriptyline). Cisplatin produced robust mechanical and cold allodynia but did not alter responsiveness to heat. After neuropathy was fully established, groups received acute intraperitoneal (i.p.) injections of vehicle, amitriptyline (30 mg/kg), gabapentin (100 mg/kg), morphine (6 mg/kg), URB597 (0.1 or 1 mg/kg), URB937 (0.1 or 1 mg/kg) or JZL184 (1, 3 or 8 mg/kg). Pharmacological specificity was assessed by coadministering each endocannabinoid modulator with either a CB1 (AM251 3 mg/kg), CB2 (AM630 3 mg/kg), TRPV1 (AMG9810 3 mg/kg) or TRPA1 (HC030031 8 mg/kg) antagonist. Effects of cisplatin on endocannabinoid levels and transcription of receptors (CB1, CB2, TRPV1, TRPA1) and enzymes (FAAH, MGL) linked to the endocannabinoid system were also assessed. URB597, URB937, JZL184 and morphine reversed cisplatin-evoked mechanical and cold allodynia to pre-cisplatin levels. By contrast, gabapentin only partially reversed the neuropathy while amitriptyline, administered acutely, was ineffective. CB1 or CB2 antagonist

  10. The PH gene determines fruit acidity and contributes to the evolution of sweet melons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acids are one of the three major components of fleshy fruit taste, together with sugars and volatile flavor compounds. However, the molecular-genetic control of acid accumulation in fruit is poorly understood and, to date, no genes responsible for acid accumulation in fleshy fruit have been function...

  11. Advances in lipase-catalyzed esterification reactions.

    PubMed

    Stergiou, Panagiota-Yiolanda; Foukis, Athanasios; Filippou, Michalis; Koukouritaki, Maria; Parapouli, Maria; Theodorou, Leonidas G; Hatziloukas, Efstathios; Afendra, Amalia; Pandey, Ashok; Papamichael, Emmanuel M

    2013-12-01

    Lipase-catalyzed esterification reactions are among the most significant chemical and biochemical processes of industrial relevance. Lipases catalyze hydrolysis as well as esterification reactions. Enzyme-catalyzed esterification has acquired increasing attention in many applications, due to the significance of the derived products. More specifically, the lipase-catalyzed esterification reactions attracted research interest during the past decade, due to an increased use of organic esters in biotechnology and the chemical industry. Lipases, as hydrolyzing agents are active in environments, which contain a minimum of two distinct phases, where all reactants are partitioned between these phases, although their distribution is not fixed and changes as the reaction proceeds. The kinetics of the lipase-catalyzed reactions is governed by a number of factors. This article presents a thorough and descriptive evaluation of the applied trends and perspectives concerning the enzymatic esterification, mainly for biofuel production; an emphasis is given on essential factors, which affect the lipase-catalyzed esterification reaction. Moreover, the art of using bacterial and/or fungal strains for whole cell biocatalysis purposes, as well as carrying out catalysis by various forms of purified lipases from bacterial and fungal sources is also reviewed.

  12. Purification of extracellular lipase from Pseudomonas aeruginosa.

    PubMed Central

    Stuer, W; Jaeger, K E; Winkler, U K

    1986-01-01

    Lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) was excreted by Pseudomonas aeruginosa PAC1R during the late logarithmic growth phase. Characterization of cell-free culture supernatants by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of significant amounts of lipopolysaccharide, part of which seemed to be tightly bound to lipase. After concentration of culture supernatants by ultrafiltration, lipase-lipopolysaccharide complexes were dissociated by treatment with EDTA-Tris buffer and subsequent sonication in the presence of the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. The solubilized lipase was purified by isoelectric focusing in an agarose gel containing the same detergent; the lipase activity appeared in a single peak corresponding to a distinct band in the silver-stained gel. The isoelectric point was 5.8. Analysis of purified lipase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and scanning revealed an apparent molecular weight of 29,000 and a specific activity of 760 mu kat/mg of protein. Estimations based on these data showed that a single P. aeruginosa cell excreted about 200 molecules of lipase, each having a molecular activity of 2.2 X 10(4) per s. Images PMID:3096967

  13. Biosynthesis of Essential Polyunsaturated Fatty Acids in Wheat Triggered by Expression of Artificial Gene

    PubMed Central

    Mihálik, Daniel; Klčová, Lenka; Ondreičková, Katarína; Hudcovicová, Martina; Gubišová, Marcela; Klempová, Tatiana; Čertík, Milan; Pauk, János; Kraic, Ján

    2015-01-01

    The artificial gene D6D encoding the enzyme ∆6desaturase was designed and synthesized using the sequence of the same gene from the fungus Thamnidium elegans. The original start codon was replaced by the signal sequence derived from the wheat gene for high-molecular-weight glutenin subunit and the codon usage was completely changed for optimal expression in wheat. Synthesized artificial D6D gene was delivered into plants of the spring wheat line CY-45 and the gene itself, as well as transcribed D6D mRNA were confirmed in plants of T0 and T1 generations. The desired product of the wheat genetic modification by artificial D6D gene was the γ-linolenic acid. Its presence was confirmed in mature grains of transgenic wheat plants in the amount 0.04%–0.32% (v/v) of the total amount of fatty acids. Both newly synthesized γ-linolenic acid and stearidonic acid have been detected also in leaves, stems, roots, awns, paleas, rachillas, and immature grains of the T1 generation as well as in immature and mature grains of the T2 generation. Contents of γ-linolenic acid and stearidonic acid varied in range 0%–1.40% (v/v) and 0%–1.53% (v/v) from the total amount of fatty acids, respectively. This approach has opened the pathway of desaturation of fatty acids and production of essential polyunsaturated fatty acids in wheat. PMID:26694368

  14. Synthesis of hepatic lipase in liver and extrahepatic tissues

    SciTech Connect

    Doolittle, M.H.; Wong, H.; Davis, R.C.; Schotz, M.C.

    1987-11-01

    Immunoprecipitations of hepatic lipase from pulse-labeled rat liver have demonstrated that hepatic lipase is synthesized in two distinct molecular weight forms, HL-I (Mr = 51,000) and HL-II (Mr = 53,000). Both forms are immunologically related to purified hepatic lipase, but not to lipoprotein lipase. HL-I and HL-II are also kinetically related and represent different stages of intracellular processing. Glycosidase experiments suggest that HL-I is the high mannose microsomal form of the mature, sialylated HL-II enzyme. Hepatic lipase activity was detected in liver and adrenal gland but was absent in brain, heart, kidney, testes, small intestine, lung, and spleen. The adrenal and liver lipase activities were inhibited in a similar dose-dependent manner by hepatic lipase antiserum. Immunoblot analysis of partially purified adrenal lipase showed an immunoreactive band co-migrating with HL-II at 53,000 daltons which was absent in a control blot treated with preimmune serum. Adrenal lipase and authentic hepatic lipase yielded similar peptide maps, confirming the presence of the lipase in adrenal gland. However, incorporation of L-(/sup 35/S)methionine into immunoprecipitable hepatic lipase was not detected in this tissue. In addition, Northern blot analysis showed the presence of hepatic lipase mRNA in liver but not adrenal gland. The presence of hepatic lipase in adrenal gland in the absence of detectable synthesis or messenger suggests that hepatic lipase originates in liver and is transported to this extrahepatic site.

  15. A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in Chlamydomonas reinhardtii.

    PubMed

    Li, Xiaobo; Moellering, Eric R; Liu, Bensheng; Johnny, Cassandra; Fedewa, Marie; Sears, Barbara B; Kuo, Min-Hao; Benning, Christoph

    2012-11-01

    Following N deprivation, microalgae accumulate triacylglycerols (TAGs). To gain mechanistic insights into this phenomenon, we identified mutants with reduced TAG content following N deprivation in the model alga Chlamydomonas reinhardtii. In one of the mutants, the disruption of a galactoglycerolipid lipase-encoding gene, designated PLASTID GALACTOGLYCEROLIPID DEGRADATION1 (PGD1), was responsible for the primary phenotype: reduced TAG content, altered TAG composition, and reduced galactoglycerolipid turnover. The recombinant PGD1 protein, which was purified from Escherichia coli extracts, hydrolyzed monogalactosyldiacylglycerol into its lyso-lipid derivative. In vivo pulse-chase labeling identified galactoglycerolipid pools as a major source of fatty acids esterified in TAGs following N deprivation. Moreover, the fatty acid flux from plastid lipids to TAG was decreased in the pgd1 mutant. Apparently, de novo-synthesized fatty acids in Chlamydomonas reinhardtii are, at least partially, first incorporated into plastid lipids before they enter TAG synthesis. As a secondary effect, the pgd1 mutant exhibited a loss of viability following N deprivation, which could be avoided by blocking photosynthetic electron transport. Thus, the pgd1 mutant provides evidence for an important biological function of TAG synthesis following N deprivation, namely, relieving a detrimental overreduction of the photosynthetic electron transport chain.

  16. Effects of Addition of Linseed and Marine Algae to the Diet on Adipose Tissue Development, Fatty Acid Profile, Lipogenic Gene Expression, and Meat Quality in Lambs

    PubMed Central

    Urrutia, Olaia; Mendizabal, José Antonio; Insausti, Kizkitza; Soret, Beatriz; Purroy, Antonio; Arana, Ana

    2016-01-01

    This study examined the effect of linseed and algae on growth and carcass parameters, adipocyte cellularity, fatty acid profile and meat quality and gene expression in subcutaneous and intramuscular adipose tissues (AT) in lambs. After weaning, 33 lambs were fed three diets up to 26.7 ± 0.3 kg: Control diet (barley and soybean); L diet (barley, soybean and 10% linseed) and L-A diet (barley, soybean, 5% linseed and 3.89% algae). Lambs fed L-A diet showed lower average daily gain and greater slaughter age compared to Control and L (P < 0.001). Carcass traits were not affected by L and L-A diets, but a trend towards greater adipocyte diameter was observed in L and L-A in the subcutaneous AT (P = 0.057). Adding either linseed or linseed and algae increased α-linolenic acid and eicosapentaenoic acid contents in both AT (P < 0.001); however, docosahexaenoic acid was increased by L-A (P < 0.001). The n-6/n-3 ratio decreased in L and L-A (P < 0.001). Algae had adverse effects on meat quality, with greater lipid oxidation and reduced ratings for odor and flavor. The expression of lipogenic genes was downregulated in the subcutaneous AT (P < 0.05): acetyl-CoA carboxylase 1 (ACACA) in L and L-A and lipoprotein lipase (LPL) and stearoyl-CoA desaturase (SCD) in L-A. Fatty acid desaturase 1 (FADS1), fatty acid desaturase 2 (FADS2) and fatty acid elongase 5 (ELOVL5) were unaffected. In the subcutaneous AT, supplementing either L or L-A increased peroxisome proliferator-activated receptor gamma (PPARG) and CAAT-enhancer binding protein alpha (CEBPA) (P < 0.05), although it had no effect on sterol regulatory element-binding factor 1 (SREBF1). In the intramuscular AT, expression of ACACA, SCD, FADS1 and FADS2 decreased in L and L-A (P < 0.001) and LPL in L (P < 0.01), but PPARG, CEBPA and SREBF1 were unaffected. PMID:27253325

  17. Enzymatic Synthesis of Isopropyl Acetate by Immobilized Bacillus cereus Lipase in Organic Medium

    PubMed Central

    Verma, Madan Lal; Azmi, Wamik; Kanwar, Shamsher Singh

    2011-01-01

    Selective production of fragrance fatty acid ester from isopropanol and acetic acid has been achieved using silica-immobilized lipase of Bacillus cereus MTCC 8372. A purified thermoalkalophilic extracellular lipase was immobilized by adsorption onto the silica. The effects of various parameters like molar ratio of substrates (isopropanol and acetic acid; 25 to 100 mM), concentration of biocatalyst (25–125 mg/mL), reaction time, reaction temperature, organic solvents, molecular sieves, and initial water activity were studied for optimal ester synthesis. Under optimized conditions, 66.0 mM of isopropyl acetate was produced when isopropanol and acetic acid were used at 100 mM: 75 mM in 9 h at 55°C in n-heptane under continuous shaking (160 rpm) using bound lipase (25 mg). Addition of molecular sieves (3 Å × 1.5 mm) resulted in a marked increase in ester synthesis (73.0 mM). Ester synthesis was enhanced by water activity associated with pre-equilibrated saturated salt solution of LiCl. The immobilized lipase retained more than 50% of its activity after the 6th cycle of reuse. PMID:21603222

  18. Oyster mushroom’s lipase enzyme entrapment on calcium alginate as biocatalyst in the synthesis of lauryl diethanolamide

    NASA Astrophysics Data System (ADS)

    Wijayati, N.; Masubah, K.; Supartono

    2017-02-01

    Lipase is an enzyme with large biotechnology applications, such as hydrolysis in the food industry, applications in chemical industry, synthesis of polymers and surfactants. Lipase was isolated from oyster mushroom with activity 0,93 U/mg and protein content 1,1234 mg/mL. Lipase was immobilized by entrapment method in a matrix of Ca-alginate. This report describes that we have developed for the synthesis of lauryl diethanolamide The result showed that the optimum condition of lipase immobilization was achieved on 3% Na-alginate solution with protein content 0,84 mg/mL and the activity 3,33 U/mg. An amide (22.911%) formed from the amidation of lauric acid and diethanolamine.

  19. Effect of salt solutions applied during wheat conditioning on lipase activity and lipid stability of whole wheat flour.

    PubMed

    Doblado-Maldonado, Andrés F; Arndt, Elizabeth A; Rose, Devin J

    2013-09-01

    Lipolytic activity in whole wheat flour (WWF) is largely responsible for the loss in baking quality during storage. Metal ions affect the activity of seed lipases; however, no previous studies have applied this information to WWF in a way that reduces lipase activity, is practical for commercial manufacture, and uses common food ingredients. NaCl, KCl, Ca-propionate, or FeNa-ethylenediaminetetraacetic acid (FeNa-EDTA) were applied to hard red winter (HRW) and hard white spring (HWS) wheats during conditioning as aqueous solutions at concentrations that would be acceptable in baked goods. Salts affected lipase activity to different degrees depending on the type of wheat used. Inhibition was greater in HRW compared with HWS WWF, probably due to higher lipase activity in HRW wheat. In HRW WWF, 1% NaCl (flour weight) reduced hydrolytic and oxidative rancidity and resulted in higher loaf volume and lower firmness than untreated WWF after 24 weeks of storage.

  20. Cocoa pod husk: A new source of CLEA-lipase for preparation of low-cost biodiesel: An optimized process.

    PubMed

    Khanahmadi, Soofia; Yusof, Faridah; Chyuan Ong, Hwai; Amid, Azura; Shah, Harmen

    2016-08-10

    Enzymatic reactions involving lipases as catalyst in transesterification can be an excellent alternative to produce environmental-friendly biodiesel. In this study, lipase extracted from Cocoa Pod Husk (CPH) and immobilized through cross linked enzyme aggregate (CLEA) technology catalysed the transesterification of Jatropha curcas oil successfully. Face centered central composite design (FCCCD) under response surface methodology (RSM) was used to get the optimal conditions of 3% (w/w) enzyme loading, 4h reaction time and 1:6 oil/ethanol ratio to achieve the highest conversion of free fatty acid and glycerides into biodiesel (93%). The reusability of CLEA-lipase was tested and after seven cycles, the conversion percentage reduced to 58%. The results revealed that CLEA lipase from CPH is a potential catalyst for biodiesel production.

  1. Cell Surface Display and Characterization of Rhizopus oryzae Lipase in Pichia pastoris Using Sed1p as an Anchor Protein.

    PubMed

    Li, Wenqian; Shi, Hao; Ding, Huaihai; Wang, Liangliang; Zhang, Yu; Li, Xun; Wang, Fei

    2015-07-01

    It has been investigated to conduct the surface displaying of lipase from Rhizopus oryzae onto the cells of Pichia pastoris yeast using Sed1p as an anchor protein. A yeast cell surface display plasmid pPICZαA-rol-histag-sed1p was constructed by fusing rol and sed1p gene fragments into the plasmid pPICZαA, followed by introducing recombinant plasmid into P. pastoris cells. Surface display levels were monitored by Western Blot and immunofluorescence microscopy. The activity of displaying lipase obtained from recombinant mutS reached at 60 U/g-dry cell. In addition, the displaying lipase was stable in broad ranges of temperatures and pH, with the optimum temperature at 40 °C and pH 7.5. These results indicate that the P. pastoris displaying lipase may have potential in whole-cell biocatalyst.

  2. Acid environments affect biofilm formation and gene expression in isolates of Salmonella enterica Typhimurium DT104.

    PubMed

    O'Leary, Denis; McCabe, Evonne M; McCusker, Matthew P; Martins, Marta; Fanning, Séamus; Duffy, Geraldine

    2015-08-03

    The aim of this study was to examine the survival and potential virulence of biofilm-forming Salmonella Typhimurium DT104 under mild acid conditions. Salmonella Typhimurium DT104 employs an acid tolerance response (ATR) allowing it to adapt to acidic environments. The threat that these acid adapted cells pose to food safety could be enhanced if they also produce biofilms in acidic conditions. The cells were acid-adapted by culturing them in 1% glucose and their ability to form biofilms on stainless steel and on the surface of Luria Bertani (LB) broth at pH7 and pH5 was examined. Plate counts were performed to examine cell survival. RNA was isolated from cells to examine changes in the expression of genes associated with virulence, invasion, biofilm formation and global gene regulation in response to acid stress. Of the 4 isolates that were examined only one (1481) that produced a rigid biofilm in LB broth at pH7 also formed this same structure at pH5. This indicated that the lactic acid severely impeded the biofilm producing capabilities of the other isolates examined under these conditions. Isolate 1481 also had higher expression of genes associated with virulence (hilA) and invasion (invA) with a 24.34-fold and 13.68-fold increase in relative gene expression respectively at pH5 compared to pH7. Although genes associated with biofilm formation had increased expression in response to acid stress for all the isolates this only resulted in the formation of a biofilm by isolate 1481. This suggests that in addition to the range of genes associated with biofilm production at neutral pH, there are genes whose protein products specifically aid in biofilm production in acidic environments. Furthermore, it highlights the potential for the use of lactic acid for the inhibition of Salmonella biofilms.

  3. From Structure to Catalysis: Recent Developments in the Biotechnological Applications of Lipases

    PubMed Central

    Anobom, Cristiane D.; Pinheiro, Anderson S.; De-Andrade, Rafael A.; Aguieiras, Erika C. G.; Andrade, Guilherme C.; Moura, Marcelo V.; Almeida, Rodrigo V.; Freire, Denise M.

    2014-01-01

    Microbial lipases are highly appreciated as biocatalysts due to their peculiar characteristics such as the ability to utilize a wide range of substrates, high activity and stability in organic solvents, and regio- and/or enantioselectivity. These enzymes are currently being applied in a variety of biotechnological processes, including detergent preparation, cosmetics and paper production, food processing, biodiesel and biopolymer synthesis, and the biocatalytic resolution of pharmaceutical derivatives, esters, and amino acids. However, in certain segments of industry, the use of lipases is still limited by their high cost. Thus, there is a great interest in obtaining low-cost, highly active, and stable lipases that can be applied in several different industrial branches. Currently, the design of specific enzymes for each type of process has been used as an important tool to address the limitations of natural enzymes. Nowadays, it is possible to “order” a “customized” enzyme that has ideal properties for the development of the desired bioprocess. This review aims to compile recent advances in the biotechnological application of lipases focusing on various methods of enzyme improvement, such as protein engineering (directed evolution and rational design), as well as the use of structural data for rational modification of lipases in order to create higher active and selective biocatalysts. PMID:24783219

  4. Neutrophil chemotaxis by Propionibacterium acnes lipase and its inhibition.

    PubMed Central

    Lee, W L; Shalita, A R; Suntharalingam, K; Fikrig, S M

    1982-01-01

    The chemoattraction of Propionibacterium acnes lipase for neutrophils and the effect of lipase inhibitor and two antibiotic agents on the chemotaxis were evaluated. Of the various fractions tested, partially purified lipase (fraction 2c) was the most active cytotaxin produced by P. acnes. Serum mediators were not required for the generation of chemotaxis by lipase in vitro. Diisopropyl phosphofluoridate at low concentration (10(-4) mM) completely inhibited lipase activity as well as polymorphonuclear leukocyte chemotaxis generated by lipase. Tetracycline hydrochloride and erythromycin base at concentrations of 10(-1) mM and 1 mM, respectively, caused 100% inhibition of PMN migration toward lipase or zymosan-activated serum. The inhibiting activity of the antibiotics was directed against cells independently of any effect on lipase. Chemotaxis by P. acnes lipase suggests a wider role for this enzyme in the inflammatory process and the pathogenesis of acne vulgaris. Images PMID:7054130

  5. Heterologous Expression of an Alkali and Thermotolerant Lipase from Talaromyces thermophilus in Trichoderma reesei.

    PubMed

    Zhang, Xu; Li, Xueqi; Xia, Liming

    2015-07-01

    To heterologously express a Talaromyces thermophilus lipase gene in Trichoderma reesei, an efficient binary vector pChph-pCBH1sigpro-ttl which includes a newly designed cbh1 promoter and hygromycin-resistant marker was constructed. This plasmid was then transformed into T. reesei via improved Agrobacterium EHA 105-mediated transformation. After modification of co-culture conditions and enzymolysis treatment of conidia, 258 transformants were produced. A two-step screening method based on antibiotic resistance and capacity to utilize lactose and tributyrin was introduced to further select promising candidates, which would be additionally verified by PCR analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and lipase activity assay. Lipase production was carried out in shaking flasks, and the activity reached 241 IU/mL (7415.4 IU/mg) after 84-h fermentation. It was found that this lipase performed high alkali and thermostable tolerance with the optimal pH 9.5 and temperature 60 °C, and it could retain more than 70 % activity after being disposed in pH 11 or 70 °C for 1 h. This study herein would benefit the genetic engineering of T. reesei and the industrial application of this important fungal lipase.

  6. Lipase coated clusters of iron oxide nanoparticles for biodiesel synthesis in a solvent free medium.

    PubMed

    Mukherjee, Joyeeta; Gupta, Munishwar Nath

    2016-06-01

    Methyl or ethyl esters of long chain fatty acids are called biodiesel. Biodiesel is synthesized by the alcoholysis of oils/fats. In this work, lipase from Thermomyces lanuginosus was precipitated over the clusters of Fe3O4 nanoparticles. This biocatalyst preparation was used for obtaining biodiesel from soybean oil. After optimization of both immobilization conditions and process parameters, complete conversion to biodiesel was obtained in 3h and on lowering the enzyme amount, as little as 1.7U of lipase gave 96% conversion in 7h. The solvent free media with oil:ethanol (w/w) of 1:4 and 40°C with 2% (w/w) water along with 20% (w/w) silica (for facilitating acyl migration) were employed for reaching this high % of conversion. The biocatalyst design enables one to use a rather small amount of lipase. This should help in switching over to a biobased production of biodiesel.

  7. Lipase catalyzed synthesis of silicone polyesters.

    PubMed

    Poojari, Yadagiri; Clarson, Stephen J

    2009-11-28

    Immobilized Candida antarctica lipase B (CALB) was successfully employed as a catalyst to synthesize silicone aromatic polyesters by the transesterification of dimethyl terephthalate with alpha,omega-bis(hydroxyalkyl)-terminated poly(dimethylsiloxane) in toluene under mild reaction conditions.

  8. Lipase and phospholipase biosensors: a review.

    PubMed

    Herrera-López, Enrique J

    2012-01-01

    Recent advances in the field of biology, electronics, and nanotechnology have improved the development of biosensors. A biosensor is a device composed of a biological recognition element and a sensor element. Biosensor applications are becoming increasingly important in areas such as biotechnology, pharmaceutics, food, and environment. Lipases and phospholipases are enzymes which have been used widely in food industry, oleochemical industry, biodegradable polymers, detergents, and other applications. In the medical industry, lipases and phospholipases are used as diagnostic tools to detect triglycerides, cholesterol, and phospholipids levels in blood samples. Therefore, the development of lipase and phospholipase biosensors is of paramount importance in the clinical area. This chapter introduces the reader into the preliminaries of biosensor and reviews recent developments of lipase and phospholipase biosensors.

  9. Production of lipase from Pseudomonas gessardii using blood tissue lipid and thereof for the hydrolysis of blood cholesterol and triglycerides and lysis of red blood cells.

    PubMed

    Ramani, K; Sekaran, G

    2012-08-01

    The study demonstrates the production of lipase (LIP) from Pseudomonas gessardii using blood tissue lipid as the substrate for the hydrolysis of blood cholesterol and triglycerides. The lipase was purified with the specific activity of 828 U/mg protein and the molecular weight of 56 kDa. The maximum lipase activity was observed at the pH 7.0 and the temperature 37 °C. The amino acid composition of purified lipase was determined by HPLC. The mesoporous activated carbon (MAC) was used for the immobilization of lipase for the repeated use of the enzyme catalyst. The K (m) value of immobilized lipase (MAC-LIP) and the free lipase (LIP) was 0.182 and 1.96 mM, respectively. The V (max) value of MAC-LIP and LIP was 1.33 and 1.26 mM/min, respectively. The MAC and MAC-LIP were characterized by scanning electron microscopy (SEM). The hydrolysis study showed 78 and 100% hydrolysis of triglycerides and cholesterol, respectively, for LIP and 84 and 100% hydrolysis of triglycerides and cholesterol, respectively, for MAC-LIP at the reaction time of 1 h. The effect of lipase on cell wall lysis was carried out on the RBCs of blood plasma. Interestingly, 99.9% lysis of RBCs was observed within 2 h. SEM images and phase contrast microscopy confirmed the lysis of RBCs. This work provides a potential biocatalyst for the hydrolysis of blood cholesterol and triglycerides.

  10. Cloning of L-amino acid deaminase gene from Proteus vulgaris.

    PubMed

    Takahashi, E; Ito, K; Yoshimoto, T

    1999-12-01

    The L-amino acid degrading enzyme gene from Proteus vulgaris was cloned and the nucleotide sequence of the enzyme gene was clarified. An open reading frame of 1,413 bp starting at an ATG methionine codon was found, which encodes a protein of 471 amino acid residues, the calculated molecular weight of which is 51,518. The amino acid sequence of P. vulgaris was 58.6% identical with the L-amino acid deaminase of P. mirabilis. A significantly conserved sequence was found around the FAD-binding sequence of flavo-proteins. The partially purified wild and recombinant enzymes had the same substrate specificity for L-amino acids to form the respective keto-acids, however not for D-amino acids.

  11. Synthesis of glycerides containing n-3 fatty acids and conjugated linoleic acid by solvent-free acidolysis of fish oil.

    PubMed

    Garcia, H S; Arcos, J A; Ward, D J; Hill, C G

    2000-12-05

    Menhaden oil, a rich source of n-3 fatty acids, was interesterified with conjugated linoleic acid (CLA) in a reaction medium composed solely of substrates and either free or immobilized commercial lipase preparations. Of five lipases tested, an immobilized preparation from Mucor miehei provided the fastest rate of incorporation of CLA into fish oil acylglycerols; however, and as observed with most of the lipases utilized, a significant proportion of the n-3 fatty acid residues were liberated in the process. A soluble lipase from Candida rugosa converted free CLA to acylglycerol residues while leaving the n-3 fatty acid residues virtually untouched. Even though the reaction rate was slower for this enzyme than for the other four lipase preparations, the specificity of the free C. rugosa lipase gives it the greatest potential for commercial use in preparing fish oils enriched in CLA residues but still retaining their original n-3 fatty acid residues.

  12. Zoledronic acid and geranylgeraniol regulate cellular behaviour and angiogenic gene expression in human gingival fibroblasts.

    PubMed

    Zafar, S; Coates, D E; Cullinan, M P; Drummond, B K; Milne, T; Seymour, G J

    2014-10-01

    The mevalonate pathway (MVP) and the anti-angiogenic effect of bisphosphonates have been shown to play a role in the pathogenesis of bisphosphonate-related osteonecrosis of the jaw (BRONJ). This study determined the effect of the bisphosphonate, zoledronic acid and the replenishment of the MVP by geranylgeraniol on human gingival fibroblasts. Cell viability, apoptosis, morphological analysis using transmission electron microscopy, and gene expression for vascular endothelial growth factor A, bone morphogenic protein 2, ras homologue gene family member B, epiregulin and interferon-alpha were conducted. Results showed cellular viability was decreased in the presence of zoledronic acid and the co-addition of zoledronic acid with geranylgeraniol restored cell viability to control levels. Caspase 3/7 was detected in zoledronic-acid-treated cells indicating apoptosis. Transmission electron microscopy revealed dilation of the rough endoplasmic reticulum with zoledronic acid and the appearance of multiple lipid-like vesicles following the addition of geranylgeraniol. Zoledronic acid significantly (P < 0.05, FR > ± 2) up-regulated vascular endothelial growth factor A, bone morphogenic protein 2, ras homologue gene family member B and epiregulin at one or more time points but not interferon-alpha. Addition of geranylgeraniol resulted in a reduction in the expression of all five genes compared with zoledronic-acid-treated human gingival fibroblasts. The study concluded geranylgeraniol partially reversed the effects of zoledronic acid in human gingival fibroblasts both at the cellular and genetic levels, suggesting the regulation of these genes is mediated via the mevalonate pathway.

  13. Nucleic acid binding property of the gene products of rice stripe virus.

    PubMed

    Liang, Delin; Ma, Xiangqiang; Qu, Zhicai; Hull, Roger

    2005-10-01

    GST fusion proteins of the six gene products from RNAs 2,3 and 4 of the tenuivirus, Rice stripe virus (RSV), were used to study the nucleic acid binding activities in vitro. Three of the proteins, p3, pc3 and pc4, bound both single- and double-stranded cDNA of RSV RNA4 and also RNA3 transcribed from its cDNA clone, while p2, pc2-N (the N-terminal part of pc2) nor p4 bound the cDNA or RNA transcript. The binding activity of p3 is located in the carboxyl-terminus amino acid 154-194, which contains basic amino acid rich beta-sheets. The acidic amino acid-rich amino-terminus (amino acids 1-100) of p3 did not have nucleic acid binding activity. The related analogous gene product of the tenuivirus, Rice hoja blanca virus, is a suppressor of gene silencing and the possibility of the nucleic acid binding ability of RSV p3 being associated with this property is discussed. The C-terminal part of the RSV nucleocapsid protein, which also contains a basic region, binds nucleic acids, which is consistent with its function. The central and C-terminal regions of pc4 bind nucleic acid. It has been suggested that this protein is a cell-to-cell movement protein and nucleic acid binding would be in accord with this function.

  14. Utilization of agroindustrial residues for lipase production by solid-state fermentation

    PubMed Central

    Damaso, Mônica Caramez Triches; Passianoto, Moisés Augusto; de Freitas, Sidinéa Cordeiro; Freire, Denise Maria Guimarães; Lago, Regina Celi Araujo; Couri, Sonia

    2008-01-01

    The aim of this work was to produce lipases by solid-state fermentation (SSF) using, as substrate, agroindustrial residue supplemented with by-products from corn oil refining process or olive oil. For a group of ten fungi strains selected in the first steps, the lipase activity obtained by SSF varied from 7.7 to 58.6 U/g of dry substrate (gds). Among the evaluated strains, the Aspergillus niger mutant 11T53A14 was selected by presenting the best enzymatic production. For the fermentation tests, two substrates were also investigated: wheat bran and corn cob, both supplemented with olive oil. The best results were obtained with wheat bran. Additionally, three industrial by-products from corn oil refining (soapstock, stearin and fatty acids) were evaluated as substitutes to the olive oil in the function of lipases production inducer. Among them, soapstock and stearin were the best inducers, whereas fatty acids presented an inhibitor effect. The highest lipase activities using soapstock, stearin and fatty acids were 62.7 U/gds, 37.7 U/gds and 4.1 U/gds, respectively. PMID:24031288

  15. Homogenization and lipase treatment of milk and resulting methyl ketone generation in blue cheese.

    PubMed

    Cao, Mingkai; Fonseca, Leorges M; Schoenfuss, Tonya C; Rankin, Scott A

    2014-06-25

    A specific range of methyl ketones contribute to the distinctive flavor of traditional blue cheeses. These ketones are metabolites of lipid metabolism by Penicillium mold added to cheese for this purpose. Two processes, namely, the homogenization of milk fat and the addition of exogenous lipase enzymes, are traditionally applied measures to control the formation of methyl ketones in blue cheese. There exists little scientific validation of the actual effects of these treatments on methyl ketone development. The present study evaluated the effects of milk fat homogenization and lipase treatments on methyl ketone and free fatty acid development using sensory methods and the comparison of selected volatile quantities using gas chromatography. Initial work was conducted using a blue cheese system model; subsequent work was conducted with manufactured blue cheese. In general, there were modest effects of homogenization and lipase treatments on free fatty acid (FFA) and methyl ketone concentrations in blue cheese. Blue cheese treatments involving Penicillium roqueforti lipase with homogenized milk yielded higher FFA and methyl ketone levels, for example, a ∼20-fold increase for hexanoic acid and a 3-fold increase in 2-pentanone.

  16. Isolation identification and biochemical characterization of a novel halo-tolerant lipase from the metagenome of the marine sponge Haliclona simulans

    PubMed Central

    2012-01-01

    Background Lipases (EC 3.1.1.3) catalyze the hydrolysis of triacyl glycerol to glycerol and are involved in the synthesis of both short chain and long chain acylglycerols. They are widely used industrially in various applications, such as baking, laundry detergents and as biocatalysts in alternative energy strategies. Marine ecosystems are known to represent a large reservoir of biodiversity with respect to industrially useful enzymes. However the vast majority of microorganisms within these ecosystems are not readily culturable. Functional metagenomic based approaches provide a solution to this problem by facilitating the identification of novel enzymes such as the halo-tolerant lipase identified in this study from a marine sponge metagenome. Results A metagenomic library was constructed from the marine sponge Haliclona simulans in the pCC1fos vector, containing approximately 48,000 fosmid clones. High throughput plate screening on 1% tributyrin agar resulted in the identification of 58 positive lipase clones. Following sequence analysis of the 10 most highly active fosmid clones the pCC1fos53E1 clone was found to contain a putative lipase gene lpc53E1, encoded by 387 amino acids and with a predicted molecular mass of 41.87 kDa. Sequence analysis of the predicted amino acid sequence of Lpc53E1 revealed that it is a member of the group VIII family of lipases possessing the SXTK motif, related to type C β-lactamases. Heterologous expression of lpc53E1 in E. coli and the subsequent biochemical characterization of the recombinant protein, showed an enzyme with the highest substrate specificity for long chain fatty acyl esters. Optimal activity was observed with p- nitrophenyl palmitate (C16) at 40°C, in the presence of 5 M NaCl at pH 7; while in addition the recombinant enzyme displayed activity across broad pH (3–12) and temperature (4 -60°C) ranges and high levels of stability in the presence of various solvents at NaCl concentrations as high as 5 M and at

  17. Regulation of adipose triglyceride lipase by rosiglitazone

    PubMed Central

    Liu, L.-F.; Purushotham, A.; Wendel, A. A.; Koba, K.; DeIuliis, J.; Lee, K.; Belury, M. A.

    2013-01-01

    Aim To elucidate the mechanism by which rosiglitazone regulates adipose triglyceride lipase (ATGL). Methods Male C57Bl/6 mice were treated with rosiglitazone daily (10 mg/kg body weight), and adipose tissues were weighed and preserved for mRNA and protein analysis of ATGL. In parallel, preadipocyte (3T3-L1) cells were differentiated with insulin/dexamethasone/3-isobutyl-1-methlxanthine cocktail or rosiglitazone, and ATGL levels were measured with real-time PCR, western blotting and immunohistochemistry. Results Rosiglitazone concomitantly promoted differentiation of pre-adipocytes to functional adipocytes and induced mRNA levels of ATGL. The peroxisome proliferator-activated receptor-γ (PPARγ) antagonist bisphenol A diglycidyl ether significantly abrogated the induction of mRNA, but not protein levels of ATGL by rosiglitazone in differentiated 3T3-L1 adipocytes. In the presence of epinephrine rosiglitazone stimulated free fatty acid release and increased diacylglycerol acyltransferase-1 (DGAT-1) mRNA suggest that ATGL and DGAT-1 may be cooperatively involved in rosiglitazone-stimulated triglyceride hydrolysis and fatty acid re-esterification in 3T3-L1 adipocytes. Treatment of 3T3-L1 adipocytes with rosiglitazone or insulin did not appear to alter localization of ATGL staining surrounding lipid droplets. Finally, we found that rosiglitazone increased ATGL mRNA levels in 3T3-L1 adipocytes in the presence of cycloheximide, an inhibitor of protein synthesis, suggesting that rosiglitazone regulation of ATGL occurs at the transcriptional level. Conclusions Rosiglitazone directly regulates transcription of ATGL, likely through a PPARγ-mediated mechanism. PMID:18643838

  18. Therapeutic potential of monoacylglycerol lipase inhibitors.

    PubMed

    Mulvihill, Melinda M; Nomura, Daniel K

    2013-03-19

    Marijuana and aspirin have been used for millennia to treat a wide range of maladies including pain and inflammation. Both cannabinoids, like marijuana, that exert anti-inflammatory action through stimulating cannabinoid receptors, and cyclooxygenase (COX) inhibitors, like aspirin, that suppress pro-inflammatory eicosanoid production have shown beneficial outcomes in mouse models of neurodegenerative diseases and cancer. Both cannabinoids and COX inhibitors, however, have untoward effects that discourage their chronic usage, including cognitive deficits and gastrointestinal toxicity, respectively. Recent studies have uncovered that the serine hydrolase monoacylglycerol lipase (MAGL) links the endocannabinoid and eicosanoid systems together through hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-AG) to provide the major arachidonic acid (AA) precursor pools for pro-inflammatory eicosanoid synthesis in specific tissues. Studies in recent years have shown that MAGL inhibitors elicit anti-nociceptive, anxiolytic, and anti-emetic responses and attenuate precipitated withdrawal symptoms in addiction paradigms through enhancing endocannabinoid signaling. MAGL inhibitors have also been shown to exert anti-inflammatory action in the brain and protect against neurodegeneration through lowering eicosanoid production. In cancer, MAGL inhibitors have been shown to have anti-cancer properties not only through modulating the endocannabinoid-eicosanoid network, but also by controlling fatty acid release for the synthesis of protumorigenic signaling lipids. Thus, MAGL serves as a critical node in simultaneously coordinating multiple lipid signaling pathways in both physiological and disease contexts. This review will discuss the diverse (patho)physiological roles of MAGL and the therapeutic potential of MAGL inhibitors in treating a vast array of complex human diseases.

  19. Monoacylglycerol Lipase: A Novel Potential Therapeutic Target and Prognostic Indicator for Hepatocellular Carcinoma

    PubMed Central

    Zhang, Junyong; Liu, Zuojin; Lian, Zhengrong; Liao, Rui; Chen, Yi; Qin, Yi; Wang, Jinlong; Jiang, Qing; Wang, Xiaobo; Gong, Jianping

    2016-01-01

    Monoacylglycerol lipase (MAGL) is a key enzyme in lipid metabolism that is demonstrated to be involved in tumor progression through both energy supply of fatty acid (FA) oxidation and enhancing cancer cell malignance. The aim of this study was to investigate whether MAGL could be a potential therapeutic target and prognostic indicator for hepatocellular carcinoma (HCC). To evaluate the relationship between MAGL levels and clinical characteristics, a tissue microarray (TMA) of 353 human HCC samples was performed. MAGL levels in HCC samples were closely linked to the degree of malignancy and patient prognosis. RNA interference, specific pharmacological inhibitor JZL-184 and gene knock-in of MAGL were utilized to investigate the effects of MAGL on HCC cell proliferation, apoptosis, and invasion. MAGL played important roles in both proliferation and invasion of HCC cells through mechanisms that involved prostaglandin E2 (PGE2) and lysophosphatidic acid (LPA). JZL-184 administration significantly inhibited tumor growth in mice. Furthermore, we confirmed that promoter methylation of large tumor suppressor kinase 1 (LATS1) resulted in dysfunction of the Hippo signal pathway, which induced overexpression of MAGL in HCC. These results indicate that MAGL could be a potentially novel therapeutic target and prognostic indicator for HCC. PMID:27767105

  20. Oleic acid attenuates trans-10,cis-12 conjugated linoleic acid-mediated inflammatory gene expression in human adipocytes.

    PubMed

    Reardon, Meaghan; Gobern, Semone; Martinez, Kristina; Shen, Wan; Reid, Tanya; McIntosh, Michael

    2012-11-01

    The weight loss supplement conjugated linoleic acid (CLA) consists of an equal mixture of trans-10,cis-12 (10,12) and cis-9,trans-11 (9,11) isomers. However, high levels of mixed CLA isomers, or the 10,12 isomer, causes chronic inflammation, lipodystrophy, or insulin resistance. We previously demonstrated that 10,12 CLA decreases de novo lipid synthesis along with the abundance and activity of stearoyl-CoA desaturase (SCD)-1, a δ-9 desaturase essential for the synthesis of monounsaturated fatty acids (MUFA). Thus, we hypothesized that the 10,12 CLA-mediated decrease in SCD-1, with the subsequent decrease in MUFA, was responsible for the observed effects. To test this hypothesis, 10,12 CLA-treated human adipocytes were supplemented with oleic acid for 12 h to 7 days, and inflammatory gene expression, insulin-stimulated glucose uptake, and lipid content were measured. Oleic acid reduced inflammatory gene expression in a dose-dependent manner, and restored the lipid content of 10,12 CLA-treated adipocytes without improving insulin-stimulated glucose uptake. In contrast, supplementation with stearic acid, a substrate for SCD-1, or 9,11 CLA did not prevent inflammatory gene expression by 10,12 CLA. Notably, 10,12 CLA impacted the expression of several G-protein coupled receptors that was attenuated by oleic acid. Collectively, these data show that oleic acid attenuates 10,12 CLA-induced inflammatory gene expression and lipid content, possibly by alleviating cell stress caused by the inhibition of MUFA needed for phospholipid and neutral lipid synthesis.

  1. Production and Characterization of Lipases by Two New Isolates of Aspergillus through Solid-State and Submerged Fermentation

    PubMed Central

    Colla, Luciane Maria; Ficanha, Aline M. M.; Rizzardi, Juliana; Bertolin, Telma Elita; Reinehr, Christian Oliveira; Costa, Jorge Alberto Vieira

    2015-01-01

    Due to the numerous applications of lipases in industry, there is a need to study their characteristics, because lipases obtained from different sources may present different properties. The aim of this work was to accomplish the partial characterization of lipases obtained through submerged fermentation and solid-state fermentation by two species of Aspergillus. Fungal strains were isolated from a diesel-contaminated soil and selected as good lipases producers. Lipases obtained through submerged fermentation presented optimal activities at 37°C and pH 7.2 and those obtained through solid-state fermentation at 35°C and pH 6.0. The enzymes produced by submerged fermentation were more temperature-stable than those obtained by solid-state fermentation, presenting 72% of residual activity after one hour of exposition at 90°C. Lipases obtained through submerged fermentation had 80% of stability in acidic pH and those obtained through solid-state fermentation had stability greater than 60% in alkaline pH. PMID:26180809

  2. Purification and biochemical characterization of a novel alkaline (phospho)lipase from a newly isolated Fusarium solani strain.

    PubMed

    Jallouli, Raida; Khrouf, Fatma; Fendri, Ahmed; Mechichi, Tahar; Gargouri, Youssef; Bezzine, Sofiane

    2012-12-01

    An extracellular lipase from Fusarium solani strain (F. solani lipase (FSL)) was purified to homogeneity by ammonium sulphate precipitation, gel filtration and anion exchange chromatography. The purified enzyme has a molecular mass of 30 kDa as estimated by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The 12 NH(2)-terminal amino acid residues showed a high degree of homology with a putative lipase from the fungus Necteria heamatoccocae. It is a serine enzyme, like all known lipases from different origins. Interestingly, FSL has not only lipase activity but also a high phospholipase activity which requires the presence of Ca(2+) and bile salts. The specific activities of FSL were about 1,610 and 2,414 U/mg on olive oil emulsion and egg-yolk phosphatidylcholine as substrates, respectively, at pH 8.0 and 37 °C. The (phospho)lipase enzyme was stable in the pH range of 5-10 and at temperatures below 45 °C.

  3. Concentration, characterization and application of lipases from Sporidiobolus pararoseus strain

    PubMed Central

    Smaniotto, Alessandra; Skovronski, Aline; Rigo, Elisandra; Tsai, Siu Mui; Durrer, Ademir; Foltran, Lillian Liva; Paroul, Natália; Di Luccio, Marco; Oliveira, J. Vladimir; de Oliveira, Débora; Treichel, Helen

    2014-01-01

    Lipases produced by a newly isolated Sporidiobolus pararoseus strain have potential catalytic ability for esterification reactions. After production, the enzymatic extracts (conventional crude and precipitated, ‘CC’ and ‘CP’, and industrial crude and precipitated, ‘IC’ e ‘IP’) were partially characterized. The enzymes presented, in general, higher specificity for short chain alcohols and fatty acids. The precipitated extract showed a good thermal stability, higher than that for crude enzymatic extracts. The ‘CC’ and ‘CP’ enzymes presented high activities after exposure to pH 6.5 and 40 °C. On the other hand, the ‘IC’ and ‘IP’ extracts kept their activities in a wide range of pH memory but presented preference for higher reaction temperatures. Preliminary studies of application of the crude lipase extract in the enzymatic production of geranyl propionate using geraniol and propionic acid as substrates in solvent-free system led to a reaction conversion of 42 ± 1.5%. PMID:24948948

  4. Lipoprotein electrostatic properties regulate hepatic lipase association and activity.

    PubMed

    Boucher, Jonathan G; Nguyen, Trang; Sparks, Daniel L

    2007-12-01

    The effect of lipoprotein electrostatic properties on the catalytic regulation of hepatic lipase (HL) was investigated. Enrichment of serum or very low density lipoprotein (VLDL) with oleic acid increased lipoprotein negative charge and stimulated lipid hydrolysis by HL. Similarly, enrichment of serum or isolated lipoproteins with the anionic phospholipids phosphatidylinositol (PI), phosphatidic acid, or phosphatidylserine also increased lipoprotein negative charge and stimulated hydrolysis by HL. Anionic lipids had a small effect on phospholipid hydrolysis, but significantly stimulated triacylglyceride (TG) hydrolysis. High density lipoprotein (HDL) charge appears to have a specific effect on lipolysis. Enrichment of HDL with PI significantly stimulated VLDL-TG hydrolysis by HL. To determine whether HDL charge affects the association of HL with HDL and VLDL, HL-lipoprotein interactions were probed immunochemically. Under normal circumstances, HL associates with HDL particles, and only small amounts bind to VLDL. PI enrichment of HDL blocked the binding of HL with HDL. These data indicate that increasing the negative charge of HDL stimulates VLDL-TG hydrolysis by reducing the association of HL with HDL. Therefore, HDL controls the hydrolysis of VLDL by affecting the interlipoprotein association of HL. Lipoprotein electrostatic properties regulate lipase association and are an important regulator of the binding and activity of lipolytic enzymes.

  5. EARLY GENE EXPRESSION CHANGES IN THE LIVERS OF MICE EXPOSED TO DICHOLORACETC ACID

    EPA Science Inventory

    EARLY GENE EXPRESSION CHANGES IN THE LIVERS OF MICE EXPOSED TO DICHLOROACETIC ACID

    Dichloroacetic acid COCA) is a major by-product ofwater disinfection by cWorination. Several
    studies have shown that DCA induces liver tumors in rodents when administered in drinkmg wate...

  6. recA gene product is responsible for inhibition of deoxyribonucleic acid synthesis after ultraviolet irradiation.

    PubMed Central

    Trgovcević, Z; Petranović, D; Petranović, M; Salaj-Smic, E

    1980-01-01

    Deoxyribonucleic acid synthesis after ultraviolet irradiation was studied in wild-type, uvrA, recB, recA recB, and recA Escherichia coli strains. Inhibition of deoxyribonucleic acid synthesis, which occurs almost immediately after exposing the cells to ultraviolet radiation, depends on the functional gene recA. PMID:6997276

  7. MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION

    EPA Science Inventory


    MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION

    Dichloroacetic acid (DCA) is a major by-product of water disinfection by chlorination. Several studies have demonstrated the hepatocarcinogenicity of DCA in rodents when administered in dri...

  8. EARLY GENE EXPRESSION CHANGES IN THE LIVERS OF MICE EXPOSED TO DICHLOROACETIC ACID

    EPA Science Inventory

    EARLY GENE EXPRESSION CHANGES IN THE LIVERS OF MICE EXPOSED TO DICHLOROACETIC ACID

    Dichloroacetic acid (DCA) is a major by-product of water disinfection by chlorination. Several studies have shown that DCA induces liver tumors in rodents when administered in drinking wate...

  9. Characterization of an organic solvent-tolerant lipase from Haloarcula sp. G41 and its application for biodiesel production.

    PubMed

    Li, Xin; Yu, Hui-Ying

    2014-11-01

    A haloarchaeal strain G41 showing lipolytic activity was isolated from the saline soil of Yuncheng Salt Lake, China. Biochemical and physiological characterizations along with 16S rRNA gene sequence analysis placed the isolate in the genus Haloarcula. Lipase production was strongly influenced by the salinity of growth medium with maximum in the presence of 20% NaCl or 15% Na2SO4. The lipase was purified to homogeneity with a molecular mass of 45 kDa. Substrate specificity test revealed that it preferred long-chain p-nitrophenyl esters. The lipase was highly active and stable over broad ranges of temperature (30-80 °C), pH (6.0-11.0), and NaCl concentration (10-25%), with an optimum at 70 °C, pH 8.0, and 15% NaCl, showing thermostable, alkali-stable, and halostable properties. Enzyme inhibition studies indicated that the lipase was a metalloenzyme, with serine and cysteine residues essential for enzyme function. Moreover, it displayed high stability and activation in the presence of hydrophobic organic solvents with log Pow ≥ 2.73. The free and immobilized lipases from strain G41 were applied for biodiesel production, and 80.5 and 89.2% of yields were achieved, respectively. This study demonstrated the feasibility of using lipases from halophilic archaea for biodiesel production.

  10. Regulation of the expression of key genes involved in HDL metabolism by unsaturated fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to determine the effects, and possible mechanisms of action, of unsaturated fatty acids on the expression of genes involved in HDL metabolism in HepG2 cells. The mRNA concentration of target genes was assessed by real time PCR. Protein concentrations were determined by wes...

  11. Prediction of Bacillus weihenstephanensis acid resistance: the use of gene expression patterns to select potential biomarkers.

    PubMed

    Desriac, N; Postollec, F; Coroller, L; Sohier, D; Abee, T; den Besten, H M W

    2013-10-01

    Exposure to mild stress conditions can activate stress adaptation mechanisms and provide cross-resistance towards otherwise lethal stresses. In this study, an approach was followed to select molecular biomarkers (quantitative gene expressions) to predict induced acid resistance after exposure to various mild stresses, i.e. exposure to sublethal concentrations of salt, acid and hydrogen peroxide during 5 min to 60 min. Gene expression patterns of unstressed and mildly stressed cells of Bacillus weihenstephanensis were correlated to their acid resistance (3D value) which was estimated after exposure to lethal acid conditions. Among the twenty-nine candidate biomarkers, 12 genes showed expression patterns that were correlated either linearly or non-linearly to acid resistance, while for the 17 other genes the correlation remains to be determined. The selected genes represented two types of biomarkers, (i) four direct biomarker genes (lexA, spxA, narL, bkdR) for which expression patterns upon mild stress treatment were linearly correlated to induced acid resistance; and (ii) nine long-acting biomarker genes (spxA, BcerKBAB4_0325, katA, trxB, codY, lacI, BcerKBAB4_1716, BcerKBAB4_2108, relA) which were transiently up-regulated during mild stress exposure and correlated to increased acid resistance over time. Our results highlight that mild stress induced transcripts can be linearly or non-linearly correlated to induced acid resistance and both approaches can be used to find relevant biomarkers. This quantitative and systematic approach opens avenues to select cellular biomarkers that could be incremented in mathematical models to predict microbial behaviour.

  12. Regulation of hepatic gene expression by saturated fatty acids.

    PubMed

    Vallim, T; Salter, A M

    2010-01-01

    Diets rich in saturated fatty acids have long been associated with increased plasma cholesterol concentrations and hence increased risk of cardiovascular disease. More recently, they have also been suggested to promote the development of non-alcoholic fatty liver disease. While there is now considerable evidence to suggest that polyunsaturated fatty acids exert many of their effects through regulating the activity of transcription factors, including peroxisome proliferator activated receptors, sterol regulatory binding proteins (SREBPs) and liver X receptor, our understanding of how saturated fatty acids act is still limited. Here we review the potential mechanisms whereby saturated fatty acids modulate hepatic lipid metabolism thereby impacting on the synthesis, storage and secretion of lipids. Evidence is presented that their effects are, at least partly, mediated through modulation of the activity of the SREBP family of transcription factors.

  13. Properties of bacteriophage T4 mutants defective in gene 30 (deoxyribonucleic acid ligase) and the rII gene.

    PubMed

    Karam, J D; Barker, B

    1971-02-01

    In Escherichia coli K-12 strains infected with phage T4 which is defective in gene 30 [deoxyribonucleic acid (DNA) ligase] and in the rII gene (product unknown), near normal levels of DNA and viable phage were produced. Growth of such T4 ligase-rII double mutants was less efficient in E. coli B strains which show the "rapidlysis" phenotype of rII mutations. In pulse-chase experiments coupled with temperature shifts and with inhibition of DNA synthesis, it was observed that DNA synthesized by gene 30-defective phage is more susceptible to breakdown in vivo when the phage is carrying a wild-type rII gene. Breakdown was delayed or inhibited by continued DNA synthesis. Mutations of the rII gene decreased but did not completely abolish the breakdown. T4 ligase-rII double mutants had normal sensitivity to ultraviolet irradiation.

  14. Molecular cloning and characterization of the glyceraldehyde-3-phosphate dehydrogenase gene from Penicillium expansum PE-12.

    PubMed

    Zhang, T; Qi, Z; Yu, Q S; Tang, K X

    2013-07-15

    Penicillium expansum produces large amounts of lipase, which is widely used in laundry detergent and leather industry. We isolated the glyceraldehyde-3-phosphate dehydrogenase gene (PeGPD) from P. expansum PE-12 through reverse transcriptase PCR and 5'-3' rapid amplification of cDNA ends (RACE-PCR). The gene is 1266 bp long, including an ORF of 1014 bp, encoding a polypeptide chain of 337 amino acids. A phylogenetic tree based on GPD proteins showed that P. expansum is close to Aspergillus species, but comparatively distant from P. marneffei. Southern blot results revealed a single copy of PeGPD, and expression analysis gave evidence of high expression levels. PeGPD genes have potential for genetic engineering of P. expansum for industrial lipase production.

  15. Effect of ration size on fillet fatty acid composition, phospholipid allostasis and mRNA expression patterns of lipid regulatory genes in gilthead sea bream (Sparus aurata).

    PubMed

    Benedito-Palos, Laura; Calduch-Giner, Josep A; Ballester-Lozano, Gabriel F; Pérez-Sánchez, Jaume

    2013-04-14

    The effect of ration size on muscle fatty acid (FA) composition and mRNA expression levels of key regulatory enzymes of lipid and lipoprotein metabolism have been addressed in juveniles of gilthead sea bream fed a practical diet over the course of an 11-week trial. The experimental setup included three feeding levels: (i) full ration until visual satiety, (ii) 70 % of satiation and (iii) 70 % of satiation with the last 2 weeks at the maintenance ration. Feed restriction reduced lipid content of whole body by 30 % and that of fillet by 50 %. In this scenario, the FA composition of fillet TAG was not altered by ration size, whereas that of phospholipids was largely modified with a higher retention of arachidonic acid and DHA. The mRNA transcript levels of lysophosphatidylcholine acyltransferases, phosphatidylethanolamine N-methyltransferase and FA desaturase 2 were not regulated by ration size in the present experimental model. In contrast, mRNA levels of stearoyl-CoA desaturases were markedly down-regulated by feed restriction. An opposite trend was found for a muscle-specific lipoprotein lipase, which is exclusive of fish lineage. Several upstream regulatory transcriptions were also assessed, although nutritionally mediated changes in mRNA transcripts were almost reduced to PPARα and β, which might act in a counter-regulatory way on lipolysis and lipogenic pathways. This gene expression pattern contributes to the construction of a panel of biomarkers to direct marine fish production towards muscle lean phenotypes with increased retentions of long-chain PUFA.

  16. The phenotype enhancement method identifies the Xcp outer membrane secretion machinery from Pseudomonas alcaligenes as a bottleneck for lipase production.

    PubMed

    Gerritse, G; Ure, R; Bizoullier, F; Quax, W J

    1998-09-17

    Pseudomonas alcaligenes M-1 has been selected from an intensive screening for micro-organisms that can naturally produce a lipase active in detergent formulations. The lipase expression has been increased to allow high level secretion from Pseudomonas alcaligenes, via the introduction of multi-copy plasmids. In order to improve the lipase yield further, the phenotype enhancement method has been developed. This idea comprises the reintroduction of a cosmid library with random chromosomal fragments in a P. alcaligenes strain with already high lipase productivity. One of the strains which showed an enhanced lipase production appeared to contain a cosmid encoding the outer membrane secretion genes. These xcp-genes are clustered in two divergently transcribed operons similar to the situation in Pseudomonas aeruginosa. Remarkably and dissimilar to P. aeruginosa, in between the two xcp gene clusters, two reading frames of unknown function--OrfV and OrfX--are present. For OrfX no equivalent can be found in the known protein data bases. On the other hand, OrfV shows homology to the regulatory proteins MalT and AcoK. Some evidence is provided that suggests that OrfV acts as a regulator of the xcp operons. A model is proposed for the regulation of the secretion system from P. alcaligenes.

  17. Minimal Streptomyces sp. strain C5 daunorubicin polyketide biosynthesis genes required for aklanonic acid biosynthesis.

    PubMed Central

    Rajgarhia, V B; Strohl, W R

    1997-01-01

    The structure of the Streptomyces sp. strain C5 daunorubicin type II polyketide synthase (PKS) gene region is different from that of other known type II PKS gene clusters. Directly downstream of the genes encoding ketoacylsynthase alpha and beta (KS alpha, KS beta) are two genes (dpsC, dpsD) encoding proteins of unproven function, both absent from other type II PKS gene clusters. Also in contrast to other type II PKS clusters, the gene encoding the acyl carrier protein (ACP), dpsG, is located about 6.8 kbp upstream of the genes encoding the daunorubicin KS alpha and KS beta. In this work, we demonstrate that the minimal genes required to produce aklanonic acid in heterologous hosts are dpsG (ACP), dauI (regulatory activator), dpsA (KS alpha), dpsB (KS beta), dpsF (aromatase), dpsE (polyketide reductase), and dauG (putative deoxyaklanonic acid oxygenase). The two unusual open reading frames, dpsC (KASIII homolog lacking a known active site) and dpsD (acyltransferase homolog), are not required to synthesize aklanonic acid. Additionally, replacement of dpsD or dpsCD in Streptomyces sp. strain C5 with a neomycin resistance gene (aphI) results in mutant strains that still produced anthracyclines. PMID:9098068

  18. Adipose triglyceride lipase is implicated in fuel- and non-fuel-stimulated insulin secretion.

    PubMed

    Peyot, Marie-Line; Guay, Claudiane; Latour, Martin G; Lamontagne, Julien; Lussier, Roxane; Pineda, Marco; Ruderman, Neil B; Haemmerle, Guenter; Zechner, Rudolf; Joly, Erik; Madiraju, S R Murthy; Poitout, Vincent; Prentki, Marc

    2009-06-19

    Reduced lipolysis in hormone-sensitive lipase-deficient mice is associated with impaired glucose-stimulated insulin secretion (GSIS), suggesting that endogenous beta-cell lipid stores provide signaling molecules for insulin release. Measurements of lipolysis and triglyceride (TG) lipase activity in islets from HSL(-/-) mice indicated the presence of other TG lipase(s) in the beta-cell. Using real time-quantitative PCR, adipose triglyceride lipase (ATGL) was found to be the most abundant TG lipase in rat islets and INS832/13 cells. To assess its role in insulin secretion, ATGL expression was decreased in INS832/13 cells (ATGL-knockdown (KD)) by small hairpin RNA. ATGL-KD increased the esterification of free fatty acid (FFA) into TG. ATGL-KD cells showed decreased glucose- or Gln + Leu-induced insulin release, as well as reduced response to KCl or palmitate at high, but not low, glucose. The K(ATP)-independent/amplification pathway of GSIS was considerably reduced in ATGL-KD cells. ATGL(-/-) mice were hypoinsulinemic and hypoglycemic and showed decreased plasma TG and FFAs. A hyperglycemic clamp revealed increased insulin sensitivity and decreased GSIS and arginine-induced insulin secretion in ATGL(-/-) mice. Accordingly, isolated islets from ATGL(-/-) mice showed reduced insulin secretion in response to glucose, glucose + palmitate, and KCl. Islet TG content and FFA esterification into TG were increased by 2-fold in ATGL(-/-) islets, but glucose usage and oxidation were unaltered. The results demonstrate the importance of ATGL and intracellular lipid signaling for fuel- and non-fuel-induced insulin secretion.

  19. Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model.

    PubMed Central

    Schulz, T.; Pleiss, J.; Schmid, R. D.

    2000-01-01

    The lipase from Pseudomonas cepacia represents a widely applied catalyst for highly enantioselective resolution of chiral secondary alcohols. While its stereopreference is determined predominantly by the substrate structure, stereoselectivity depends on atomic details of interactions between substrate and lipase. Thirty secondary alcohols with published E values using P. cepacia lipase in hydrolysis or esterification reactions were selected, and models of their octanoic acid esters were docked to the open conformation of P. cepacia lipase. The two enantiomers of 27 substrates bound preferentially in either of two binding modes: the fast-reacting enantiomer in a productive mode and the slow-reacting enantiomer in a nonproductive mode. Nonproductive mode of fast-reacting enantiomers was prohibited by repulsive interactions. For the slow-reacting enantiomers in the productive binding mode, the substrate pushes the active site histidine away from its proper orientation, and the distance d(H(N epsilon) - O(alc)) between the histidine side chain and the alcohol oxygen increases, d(H(N epsilon) - O(alc)) was correlated to experimentally observed enantioselectivity: in substrates for which P. cepacia lipase has high enantioselectivity (E > 100), d(H(N epsilon) - O(alc)) is >2.2 A for slow-reacting enantiomers, thus preventing efficient catalysis of this enantiomer. In substrates of low enantioselectivity (E < 20), the distance d(H(N epsilon) - O(alc)) is less than 2.0 A, and slow- and fast-reacting enantiomers are catalyzed at similar rates. For substrates of medium enantioselectivity (20 < E < 100), d(H(N epsilon) - O(alc)) is around 2.1 A. This simple model can be applied to predict enantioselectivity of P. cepacia lipase toward a broad range of secondary alcohols. PMID:10892799

  20. Adipose Triglyceride Lipase Is Implicated in Fuel- and Non-fuel-stimulated Insulin Secretion*

    PubMed Central

    Peyot, Marie-Line; Guay, Claudiane; Latour, Martin G.; Lamontagne, Julien; Lussier, Roxane; Pineda, Marco; Ruderman, Neil B.; Haemmerle, Guenter; Zechner, Rudolf; Joly, Érik; Madiraju, S. R. Murthy; Poitout, Vincent; Prentki, Marc

    2009-01-01

    Reduced lipolysis in hormone-sensitive lipase-deficient mice is associated with impaired glucose-stimulated insulin secretion (GSIS), suggesting that endogenous β-cell lipid stores provide signaling molecules for insulin release. Measurements of lipolysis and triglyceride (TG) lipase activity in islets from HSL−/− mice indicated the presence of other TG lipase(s) in the β-cell. Using real time-quantitative PCR, adipose triglyceride lipase (ATGL) was found to be the most abundant TG lipase in rat islets and INS832/13 cells. To assess its role in insulin secretion, ATGL expression was decreased in INS832/13 cells (ATGL-knockdown (KD)) by small hairpin RNA. ATGL-KD increased the esterification of free fatty acid (FFA) into TG. ATGL-KD cells showed decreased glucose- or Gln + Leu-induced insulin release, as well as reduced response to KCl or palmitate at high, but not low, glucose. The KATP-independent/amplification pathway of GSIS was considerably reduced in ATGL-KD cells. ATGL−/− mice were hypoinsulinemic and hypoglycemic and showed decreased plasma TG and FFAs. A hyperglycemic clamp revealed increased insulin sensitivity and decreased GSIS and arginine-induced insulin secretion in ATGL−/− mice. Accordingly, isolated islets from ATGL−/− mice showed reduced insulin secretion in response to glucose, glucose + palmitate, and KCl. Islet TG content and FFA esterification into TG were increased by 2-fold in ATGL−/− islets, but glucose usage and oxidation were unaltered. The results demonstrate the importance of ATGL and intracellular lipid signaling for fuel- and non-fuel-induced insulin secretion. PMID:19389712

  1. Conjugated linoleic acid-induced milk fat depression in lactating ewes is accompanied by reduced expression of mammary genes involved in lipid synthesis.

    PubMed

    Hussein, M; Harvatine, K H; Weerasinghe, W M P B; Sinclair, L A; Bauman, D E

    2013-06-01

    Conjugated linoleic acids (CLA) are produced during rumen biohydrogenation and exert a range of biological effects. The trans-10,cis-12 CLA isomer is a potent inhibitor of milk fat synthesis in lactating dairy cows and some aspects of the mechanism have been established. Conjugated linoleic acid-induced milk fat depression has also been observed in small ruminants and our objective was to examine the molecular mechanism in lactating ewes. Multiparous lactating ewes were fed a basal ration (0.55:0.45 concentrate-to-forage ratio; dry matter basis) and randomly allocated to 2 dietary CLA levels (n=8 ewes/treatment). Treatments were zero CLA (control) or 15 g/d of lipid-encapsulated CLA supplement containing cis-9,trans-11 and trans-10,cis-12 CLA isomers in equal proportions. Treatments were fed for 10 wk and the CLA supplement provided 1.5 g of trans-10,cis-12/d. No treatment effects were observed on milk yield or milk composition for protein or lactose at wk 10 of the study. In contrast, CLA treatment significantly decreased both milk fat percentage and milk fat yield (g/d) by about 23%. The de novo synthesized fatty acids (FA; C16) was increased (10%) for the CLA treatment. In agreement with the reduced de novo FA synthesis, mRNA abundance of acetyl-coenzyme A carboxylase α, FA synthase, stearoyl-CoA desaturase 1, and glycerol-3-phosphate acyltransferase 6 decreased by 25 to 40% in the CLA-treated group. Conjugated linoleic acid treatment did not significantly reduce the mRNA abundance of enzymes involved in NADPH production, but the mRNA abundance for sterol regulatory element-binding factor 1 and insulin-induced gene 1, genes involved in regulation of transcription of lipogenic enzymes, was decreased by almost 30 and 55%, respectively, with CLA treatment. Furthermore, mRNA abundance of lipoprotein lipase decreased by almost 40% due to CLA treatment

  2. Gene Expression Analysis of Alfalfa Seedlings Response to Acid-Aluminum

    PubMed Central

    Lv, Aimin; Wang, Shengyin; Huang, Bingru

    2016-01-01

    Acid-Aluminum (Al) is toxic to plants and greatly affects crop production worldwide. To understand the responses of plants to acid soils and Aluminum toxicity, we examined global gene expression using microarray data in alfalfa seedlings with the treatment of acid-Aluminum. 3,926 genes that were identified significantly up- or downregulated in response to Al3+ ions with pH 4.5 treatment, 66.33% of which were found in roots. Their functional categories were mainly involved with phytohormone regulation, reactive oxygen species, and transporters. Both gene ontology (GO) enrichment and KEGG analysis indicated that phenylpropanoid biosynthesis, phenylalanine metabolism, and flavonoid biosynthesis played a critical role on defense to Aluminum stress in alfalfa. In addition, we found that transcription factors such as the MYB and WRKY family proteins may be also involved in the regulation of reactive oxygen species reactions and flavonoid biosynthesis. Thus, the finding of global gene expression profile provided insights into the mechanisms of plant defense to acid-Al stress in alfalfa. Understanding the key regulatory genes and pathways would be advantageous for improving crop production not only in alfalfa but also in other crops under acid-Aluminum stress. PMID:28074175

  3. Folic acid rivals methylenetetrahydrofolate reductase (MTHFR) gene-silencing effect on MEPM cell proliferation and apoptosis.

    PubMed

    Xiao, Wen-Lin; Wu, Min; Shi, Bing

    2006-11-01

    It's clear that environmental factors play a role in the aetiology of orofacial clefting (OFC) and an important area of future research will be to unravel interactions that occur between candidate genes and environmental factors during early development of the embryo. Periconceptional folic acid supplementation may reduce the risk of OFC. Polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene reduce availability of 5-methylenetetrahydrofolate, the predominant circulating form of folic acid. To determine the effect of MTHFR gene mutation on murine embryonic palatal mesenchymal (MEPM) cells and the interaction with folic acid supplement, we used RNAi study in the primary cultures of MEPM cells. The cells of MTHFR gene silencing grew slower and the apoptosis cell number was more than the cells of control. Supplement with 20 microg/ml folic acid was the best to preventing teratogenic effect of MTHFR gene silencing. By flow cytometry analysis of cell cycle, results were shown that the MEPM cells were retarded in G(0)/G(1) after MTHFR gene silencing. While using 20 microg/ml folic acid supplements could make cell transit the G(1)/S restriction point and the cells growth was close to normal level.

  4. Activities of amylase, proteinase, and lipase enzymes from Lactococcus chungangensis and its application in dairy products.

    PubMed

    Konkit, Maytiya; Kim, Wonyong

    2016-07-01

    Several enzymes are involved in the process of converting milk to lactic acid and coagulated milk to curd and, therefore, are important in dairy fermented products. Amylase, proteinase, and lipase are enzymes that play an important role in degrading milk into monomeric molecules such as oligosaccharides, amino acids, and fatty acids, which are the main molecules responsible for flavors in cheese. In the current study, we determined the amylase, proteinase, and lipase activities of Lactococcus chungangensis CAU 28(T), a bacterial strain of nondairy origin, and compared them with those of the reference strain, Lactococcus lactis ssp. lactis KCTC 3769(T), which is commonly used in the dairy industry. Lactococcus chungangensis CAU 28(T) and L. lactis ssp. lactis KCTC 3769(T) were both found to have amylase, proteinase, and lipase activities in broth culture, cream cheese, and yogurt. Notably, the proteinase and lipase activities of L. chungangensis CAU 28(T) were higher than those of L. lactis ssp. lactis KCTC 3769(T), with proteinase activity of 10.50 U/mL in tryptic soy broth and 8.64 U/mL in cream cheese, and lipase activity of 100 U/mL of tryptic soy broth, and 100 U/mL of cream cheese. In contrast, the amylase activity was low, with 5.28 U/mL in tryptic soy broth and 8.86 U/mL in cream cheese. These enzyme activities in L. chungangensis CAU 28(T) suggest that this strain has potential to be used for manufacturing dairy fermented products, even though the strain is of nondairy origin.

  5. Gene expression levels are correlated with synonymous codon usage, amino acid composition, and gene architecture in the red flour beetle, Tribolium castaneum.

    PubMed

    Williford, Anna; Demuth, Jeffery P

    2012-12-01

    Gene expression levels correlate with multiple aspects of gene sequence and gene structure in phylogenetically diverse taxa, suggesting an important role of gene expression levels in the evolution of protein-coding genes. Here we present results of a genome-wide study of the influence of gene expression on synonymous codon usage, amino acid composition, and gene structure in the red flour beetle, Tribolium castaneum. Consistent with the action of translational selection, we find that synonymous codon usage bias increases with gene expression. However, the correspondence between tRNA gene copy number and optimal codons is weak. At the amino acid level, translational selection is suggested by the positive correlation between tRNA gene numbers and amino acid usage, which is stronger for highly expressed genes. In addition, there is a clear trend for increased use of metabolically cheaper, less complex amino acids as gene expression increases. tRNA gene numbers also correlate negatively with amino acid size/complexity (S/C) score indicating the coupling between translational selection and selection to minimize the use of large/complex amino acids. Interestingly, the analysis of 10 additional genomes suggests that the correlation between tRNA gene numbers and amino acid S/C score is widespread and might be explained by selection against negative consequences of protein misfolding. At the level of gene structure, three major trends are detected: 1) complete coding region length increases across low and intermediate expression levels but decreases in highly expressed genes; 2) the average intron size shows the opposite trend, first decreasing with expression, followed by a slight increase in highly expressed genes; and 3) intron density remains nearly constant across all expression levels. These changes in gene architecture are only in partial agreement with selection favoring reduced cost of biosynthesis.

  6. Regulatory Genes Controlling Fatty Acid Catabolism and Peroxisomal Functions in the Filamentous Fungus Aspergillus nidulans†

    PubMed Central

    Hynes, Michael J.; Murray, Sandra L.; Duncan, Anna; Khew, Gillian S.; Davis, Meryl A.

    2006-01-01

    The catabolism of fatty acids is important in the lifestyle of many fungi, including plant and animal pathogens. This has been investigated in Aspergillus nidulans, which can grow on acetate and fatty acids as sources of carbon, resulting in the production of acetyl coenzyme A (CoA). Acetyl-CoA is metabolized via the glyoxalate bypass, located in peroxisomes, enabling gluconeogenesis. Acetate induction of enzymes specific for acetate utilization as well as glyoxalate bypass enzymes is via the Zn2-Cys6 binuclear cluster activator FacB. However, enzymes of the glyoxalate bypass as well as fatty acid beta-oxidation and peroxisomal proteins are also inducible by fatty acids. We have isolated mutants that cannot grow on fatty acids. Two of the corresponding genes, farA and farB, encode two highly conserved families of related Zn2-Cys6 binuclear proteins present in filamentous ascomycetes, including plant pathogens. A single ortholog is found in the yeasts Candida albicans, Debaryomyces hansenii, and Yarrowia lipolytica, but not in the Ashbya, Kluyveromyces, Saccharomyces lineage. Northern blot analysis has shown that deletion of the farA gene eliminates induction of a number of genes by both short- and long-chain fatty acids, while deletion of the farB gene eliminates short-chain induction. An identical core 6-bp in vitro binding site for each protein has been identified in genes encoding glyoxalate bypass, beta-oxidation, and peroxisomal functions. This sequence is overrepresented in the 5′ region of genes predicted to be fatty acid induced in other filamentous ascomycetes, C. albicans, D. hansenii, and Y. lipolytica, but not in the corresponding genes in Saccharomyces cerevisiae. PMID:16682457