Science.gov

Sample records for acid lipase lal

  1. Deletion of sterol O-acyltransferase 2 (SOAT2) function in mice deficient in lysosomal acid lipase (LAL) dramatically reduces esterified cholesterol sequestration in the small intestine and liver

    PubMed Central

    Lopez, Adam M.; Posey, Kenneth S.; Turley, Stephen D.

    2014-01-01

    Sterol O-acyltransferase 2 (SOAT2), also known as ACAT2, is the major cholesterol esterifying enzyme in the liver and small intestine (SI). Esterified cholesterol (EC) carried in certain classes of plasma lipoproteins is hydrolyzed by lysosomal acid lipase (LAL) when they are cleared from the circulation. Loss-of-function mutations in LIPA, the gene that encodes LAL, result in Wolman disease (WD) or cholesteryl ester storage disease (CESD). Hepatomegaly and a massive increase in tissue EC levels are hallmark features of both disorders. While these conditions can be corrected with enzyme replacement therapy, the question arose as to what effect the loss of SOAT2 function might have on tissue EC sequestration in LAL-deficient mice. When weaned at 21 days, Lal−/−:Soat2+/+ mice had a whole liver cholesterol content (mg/organ) of 24.7 mg vs. 1.9 mg in Lal+/+:Soat2+/+ littermates, with almost all the excess sterol being esterified. Over the next 31 days, liver cholesterol content in the Lal−/−:Soat2+/+ mice increased to 145 ± 2 mg but to only 29 ± 2 mg in their Lal−/−:Soat2−/− littermates. The level of EC accumulation in the SI of the Lal−/−:Soat2−/− mice was also much less than in their Lal−/−:Soat2+/+ littermates. In addition, there was a >70% reduction in plasma transaminase activities in the Lal−/−:Soat2−/− mice. These studies illustrate how the severity of disease in a mouse model for CESD can be substantially ameliorated by elimination of SOAT2 function. PMID:25450374

  2. Acid Lipase Disease

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Acid Lipase Disease Information Page Synonym(s): Cholesterol Ester Storage ... Trials Related NINDS Publications and Information What is Acid Lipase Disease ? Acid lipase disease or deficiency occurs ...

  3. Lysosomal Acid Lipase Hydrolyzes Retinyl Ester and Affects Retinoid Turnover*

    PubMed Central

    Grumet, Lukas; Eichmann, Thomas O.; Zierler, Kathrin A.; Leopold, Christina; Moustafa, Tarek; Radovic, Branislav; Romauch, Matthias; Yan, Cong; Haemmerle, Guenter; Zechner, Rudolf; Fickert, Peter; Lass, Achim

    2016-01-01

    Lysosomal acid lipase (LAL) is essential for the clearance of endocytosed cholesteryl ester and triglyceride-rich chylomicron remnants. Humans and mice with defective or absent LAL activity accumulate large amounts of cholesteryl esters and triglycerides in multiple tissues. Although chylomicrons also contain retinyl esters (REs), a role of LAL in the clearance of endocytosed REs has not been reported. In this study, we found that murine LAL exhibits RE hydrolase activity. Pharmacological inhibition of LAL in the human hepatocyte cell line HepG2, incubated with chylomicrons, led to increased accumulation of REs in endosomal/lysosomal fractions. Furthermore, pharmacological inhibition or genetic ablation of LAL in murine liver largely reduced in vitro acid RE hydrolase activity. Interestingly, LAL-deficient mice exhibited increased RE content in the duodenum and jejunum but decreased RE content in the liver. Furthermore, LAL-deficient mice challenged with RE gavage exhibited largely reduced post-prandial circulating RE content, indicating that LAL is required for efficient nutritional vitamin A availability. In summary, our results indicate that LAL is the major acid RE hydrolase and required for functional retinoid homeostasis. PMID:27354281

  4. Lysosomal Acid Lipase Hydrolyzes Retinyl Ester and Affects Retinoid Turnover.

    PubMed

    Grumet, Lukas; Eichmann, Thomas O; Taschler, Ulrike; Zierler, Kathrin A; Leopold, Christina; Moustafa, Tarek; Radovic, Branislav; Romauch, Matthias; Yan, Cong; Du, Hong; Haemmerle, Guenter; Zechner, Rudolf; Fickert, Peter; Kratky, Dagmar; Zimmermann, Robert; Lass, Achim

    2016-08-19

    Lysosomal acid lipase (LAL) is essential for the clearance of endocytosed cholesteryl ester and triglyceride-rich chylomicron remnants. Humans and mice with defective or absent LAL activity accumulate large amounts of cholesteryl esters and triglycerides in multiple tissues. Although chylomicrons also contain retinyl esters (REs), a role of LAL in the clearance of endocytosed REs has not been reported. In this study, we found that murine LAL exhibits RE hydrolase activity. Pharmacological inhibition of LAL in the human hepatocyte cell line HepG2, incubated with chylomicrons, led to increased accumulation of REs in endosomal/lysosomal fractions. Furthermore, pharmacological inhibition or genetic ablation of LAL in murine liver largely reduced in vitro acid RE hydrolase activity. Interestingly, LAL-deficient mice exhibited increased RE content in the duodenum and jejunum but decreased RE content in the liver. Furthermore, LAL-deficient mice challenged with RE gavage exhibited largely reduced post-prandial circulating RE content, indicating that LAL is required for efficient nutritional vitamin A availability. In summary, our results indicate that LAL is the major acid RE hydrolase and required for functional retinoid homeostasis. PMID:27354281

  5. Clinical Features of Lysosomal Acid Lipase Deficiency

    PubMed Central

    Burton, Barbara K.; Deegan, Patrick B.; Enns, Gregory M.; Guardamagna, Ornella; Horslen, Simon; Hovingh, Gerard K.; Lobritto, Steve J.; Malinova, Vera; McLin, Valerie A.; Raiman, Julian; Di Rocco, Maja; Santra, Saikat; Sharma, Reena; Sykut-Cegielska, Jolanta; Whitley, Chester B.; Eckert, Stephen; Valayannopoulos, Vassili; Quinn, Anthony G.

    2015-01-01

    Abstract Objective: The aim of this study was to characterize key clinical manifestations of lysosomal acid lipase deficiency (LAL D) in children and adults. Methods: Investigators reviewed medical records of LAL D patients ages ≥5 years, extracted historical data, and obtained prospective laboratory and imaging data on living patients to develop a longitudinal dataset. Results: A total of 49 patients were enrolled; 48 had confirmed LAL D. Mean age at first disease-related abnormality was 9.0 years (range 0–42); mean age at diagnosis was 15.2 years (range 1–46). Twenty-nine (60%) were male patients, and 27 (56%) were <20 years of age at the time of consent/assent. Serum transaminases were elevated in most patients with 458 of 499 (92%) of alanine aminotransferase values and 265 of 448 (59%) of aspartate aminotransferase values above the upper limit of normal. Most patients had elevated low-density lipoprotein (64% patients) and total cholesterol (63%) at baseline despite most being on lipid-lowering therapies, and 44% had high-density lipoprotein levels below the lower limit of normal. More than half of the patients with liver biopsies (n = 31, mean age 13 years) had documented evidence of steatosis (87%) and/or fibrosis (52%). Imaging assessments revealed that the median liver volume was ∼1.15 multiples of normal (MN) and median spleen volume was ∼2.2 MN. Six (13%) patients had undergone a liver transplant (ages 9–43.5 years). Conclusion: This study provides the largest longitudinal case review of patients with LAL D and confirms that LAL D is predominantly a pediatric disease causing early and progressive hepatic dysfunction associated with dyslipidemia that often leads to liver failure and transplantation. PMID:26252914

  6. Myeloid-derived suppressor cells are involved in lysosomal acid lipase deficiency-induced endothelial cell dysfunctions.

    PubMed

    Zhao, Ting; Ding, Xinchun; Du, Hong; Yan, Cong

    2014-08-15

    The underlying mechanisms that lysosomal acid lipase (LAL) deficiency causes infiltration of myeloid-derived suppressor cells (MDSCs) in multiple organs and subsequent inflammation remain incompletely understood. Endothelial cells (ECs), lining the inner layer of blood vessels, constitute barriers regulating leukocytes transmigration to the site of inflammation. Therefore, we hypothesized that ECs are dysfunctional in LAL-deficient (lal(-/-)) mice. We found that Ly6G(+) cells transmigrated more efficiently across lal(-/-) ECs than wild-type (lal(+/+)) ECs, which were associated with increased levels of PECAM-1 and MCP-1 in lal(-/-) ECs. In addition, lal(-/-) ECs showed enhanced migration and proliferation, decreased apoptosis, but impaired tube formation and angiogenesis. lal(-/-) ECs also suppressed T cell proliferation in vitro. Interestingly, lal(-/-) Ly6G(+) cells promoted in vivo angiogenesis (including a tumor model), EC tube formation, and proliferation. Finally, the mammalian target of rapamycin (mTOR) pathway was activated in lal(-/-) ECs, and inhibition of mTOR reversed EC dysfunctions, including decreasing Ly6G(+) cell transmigration, delaying migration, and relieving suppression of T cell proliferation, which was mediated by decreasing production of reactive oxygen species. Our results indicate that LAL regulates EC functions through interaction with MDSCs and modulation of the mTOR pathway, which may provide a mechanistic basis for targeting MDSCs or mTOR to rejuvenate EC functions in LAL deficiency-related diseases. PMID:25000979

  7. Low Serum Lysosomal Acid Lipase Activity Correlates with Advanced Liver Disease

    PubMed Central

    Shteyer, Eyal; Villenchik, Rivka; Mahamid, Mahmud; Nator, Nidaa; Safadi, Rifaat

    2016-01-01

    Fatty liver has become the most common liver disorder and is recognized as a major health burden in the Western world. The causes for disease progression are not fully elucidated but lysosomal impairment is suggested. Here we evaluate a possible role for lysosomal acid lipase (LAL) activity in liver disease. To study LAL levels in patients with microvesicular, idiopathic cirrhosis and nonalcoholic fatty liver disease (NAFLD). Medical records of patients with microvesicular steatosis, cryptogenic cirrhosis and NAFLD, diagnosed on the basis of liver biopsies, were included in the study. Measured serum LAL activity was correlated to clinical, laboratory, imaging and pathological data. No patient exhibited LAL activity compatible with genetic LAL deficiency. However, serum LAL activity inversely predicted liver disease severity. A LAL level of 0.5 was the most sensitive for detecting both histologic and noninvasive markers for disease severity, including lower white blood cell count and calcium, and elevated γ-glutamyltransferase, creatinine, glucose, glycated hemoglobin, uric acid and coagulation function. Serum LAL activity <0.5 indicates severe liver injury in patients with fatty liver and cirrhosis. Further studies should define the direct role of LAL in liver disease severity and consider the possibility of replacement therapy. PMID:26927097

  8. Purification, characterization and molecular cloning of human hepatic lysosomal acid lipase.

    PubMed

    Ameis, D; Merkel, M; Eckerskorn, C; Greten, H

    1994-02-01

    Lysosomal acid lipase (LAL) is a hydrolase essential for the intracellular degradation of cholesteryl esters and triacylglycerols. This report describes a multi-step procedure for the purification of LAL from human liver. After solubilization with non-ionic detergent, acid hydrolase activity was purified 17000-fold to apparent homogeneity by sequential chromatography on Concanavalin A Sepharose, carboxymethyl-cellulose, phenyl Superose, Mono S cation exchange and Superose 12 gel-filtration columns. This procedure yielded two silver-staining protein bands of 56 kDa and 41 kDa on SDS/PAGE. Size-exclusion chromatography of the 41-kDa protein indicated that the enzyme was catalytically competent as a monomer of approximately 38 kDa. When assayed in the presence of cholesteryl oleate or trioleoylglycerol, purified acid lipase had Vmax values of 4390 nmol fatty acid.min-1.mg protein and 4756 nmol fatty acid.min-1.mg protein-1, and apparent Km values of 0.142 mM and 0.138 mM, respectively. The purified enzyme was most active at low pH (4.5-5.0) and required non-ionic detergent and ethylene glycol for optimal stability. Incubation of the 41-kDa acid lipase with endoglucosaminidase H reduced the molecular mass by 4-6 kDa, demonstrating Asn-linked glycosylation with high-mannose oligosaccharides. Deglycosylation did not affect enzymic activity, indicating that carbohydrates are not required for LAL activity. Based on partial peptide sequence, an oligonucleotide was synthesized and utilized to isolate LAL cDNA clones from a human liver cDNA library. A full-length LAL cDNA contained 2626 nucleotides and coded for a predicted protein of 372 amino acids, preceded by a 27 residue hydrophobic signal peptide. Hepatic LAL differed from fibroblast acid lipase at the N-terminus and revealed extensive similarities with human gastric lipase and rat lingual lipase, confirming a gene family of acid lipases. Northern hybridization using the complete LAL cDNA as a radiolabeled probe

  9. Extended use of a selective inhibitor of acid lipase for the diagnosis of Wolman disease and cholesteryl ester storage disease.

    PubMed

    Civallero, G; De Mari, J; Bittar, C; Burin, M; Giugliani, R

    2014-04-10

    Lysosomal acid lipase (LAL) deficiency produces two well defined inborn disorders, Wolman disease (WD) and cholesteryl ester storage disease (CESD). WD is a severe, early-onset condition involving massive storage of triglycerides and cholesteryl esters in the liver, with death usually occurring before one year of life. CESD is a more attenuated, later-onset disease that leads to a progressive and variable liver dysfunction. Diagnosis of LAL deficiency is mainly based on the enzyme assay of LAL activity in fibroblasts. Recently, a selective acid lipase inhibitor was used for the determination of enzyme activity in dried-blood filter paper (DBFP) samples. To extend and to validate these studies, we tested LAL activity with selective inhibition on DBFP samples, leukocytes and fibroblasts. Our results showed a clear discrimination between patients with LAL deficiency and healthy controls when using DBFP, leukocytes or fibroblasts (p<0.001). Deficiency of LAL was also demonstrated in individuals referred to our laboratory with suspected clinical diagnosis of WD, CESD, and Niemann-Pick type B. We conclude that the assay of LAL using selective inhibitor is a reliable and useful method for the identification of LAL deficiency, not only in DBFP samples but also in leukocytes and fibroblasts. This is important as enzyme replacement therapy for LAL deficiency is currently being developed, making the correct diagnosis a critical issue.

  10. Hepatic entrapment of esterified cholesterol drives continual expansion of whole body sterol pool in lysosomal acid lipase-deficient mice.

    PubMed

    Aqul, Amal; Lopez, Adam M; Posey, Kenneth S; Taylor, Anna M; Repa, Joyce J; Burns, Dennis K; Turley, Stephen D

    2014-10-15

    Cholesteryl ester storage disease (CESD) results from loss-of-function mutations in LIPA, the gene that encodes lysosomal acid lipase (LAL). Hepatomegaly and deposition of esterified cholesterol (EC) in multiple organs ensue. The present studies quantitated rates of synthesis, absorption, and disposition of cholesterol, and whole body cholesterol pool size in a mouse model of CESD. In 50-day-old lal(-/-) and matching lal(+/+) mice fed a low-cholesterol diet, whole animal cholesterol content equalled 210 and 50 mg, respectively, indicating that since birth the lal(-/-) mice sequestered cholesterol at an average rate of 3.2 mg·day(-1)·animal(-1). The proportion of the body sterol pool contained in the liver of the lal(-/-) mice was 64 vs. 6.3% in their lal(+/+) controls. EC concentrations in the liver, spleen, small intestine, and lungs of the lal(-/-) mice were elevated 100-, 35-, 15-, and 6-fold, respectively. In the lal(-/-) mice, whole liver cholesterol synthesis increased 10.2-fold, resulting in a 3.2-fold greater rate of whole animal sterol synthesis compared with their lal(+/+) controls. The rate of cholesterol synthesis in the lal(-/-) mice exceeded that in the lal(+/+) controls by 3.7 mg·day(-1)·animal(-1). Fractional cholesterol absorption and fecal bile acid excretion were unchanged in the lal(-/-) mice, but their rate of neutral sterol excretion was 59% higher than in their lal(+/+) controls. Thus, in this model, the continual expansion of the body sterol pool is driven by the synthesis of excess cholesterol, primarily in the liver. Despite the severity of their disease, the median life span of the lal(-/-) mice was 355 days.

  11. Novel treatment options for lysosomal acid lipase deficiency: critical appraisal of sebelipase alfa

    PubMed Central

    Su, Kim; Donaldson, Emma; Sharma, Reena

    2016-01-01

    Lysosomal acid lipase deficiency (LAL-D) is a rare disorder of cholesterol metabolism with an autosomal recessive mode of inheritance. The absence or deficiency of the LAL enzyme gives rise to pathological accumulation of cholesterol esters in various tissues. A severe LAL-D phenotype manifesting in infancy is associated with adrenal calcification and liver and gastrointestinal involvement with characteristic early mortality. LAL-D presenting in childhood and adulthood is associated with hepatomegaly, liver fibrosis, cirrhosis, and premature atherosclerosis. There are currently no curative pharmacological treatments for this life-threatening condition. Supportive management with lipid-modifying agents does not ameliorate disease progression. Hematopoietic stem cell transplantation as a curative measure in infantile disease has mixed success and is associated with inherent risks and complications. Sebelipase alfa (Kanuma) is a recombinant human LAL protein and the first enzyme replacement therapy for the treatment of LAL-D. Clinical trials have been undertaken in infants with rapidly progressive LAL-D and in children and adults with later-onset LAL-D. Initial data have shown significant survival benefits in the infant group and improvements in biochemical parameters in the latter. Sebelipase alfa has received marketing authorization in the United States and Europe as long-term therapy for all affected individuals. The availability of enzyme replacement therapy for this rare and progressive disorder warrants greater recognition and awareness by physicians. PMID:27799810

  12. Lysosomal acid lipase deficiency: diagnosis and treatment of Wolman and Cholesteryl Ester Storage Diseases.

    PubMed

    Porto, Anthony F

    2014-09-01

    Lysosomal acid lipase (LAL) is responsible for the hydrolysis of cholesterol esters and triglycerides. LAL is coded by the LIPA gene on chromosome 10q23.31. Its deficiency leads to two autosomal recessive disorders, Wolman disease (WD) and Cholesteryl Ester Storage Disease (CESD). WD has an estimated incidence of 1 in 500,000 live births and is the result of a complete loss of LAL and presents in infancy with vomiting, diarrhea, poor weight gain and hepatomegaly subsequently leading to death. CESD is the result of partial loss of LAL and its presentation is more variable. Patients may be asymptomatic or present with nonspecific gastrointestinal symptoms, hepatomegaly, elevated transaminases and dystipidemia which may be confused with the diagnosis of Non-alcoholic Fatty Liver Disease. CESD is currently underdiagnosed and has an estimated prevalence as high as I in 40,000 individuals. Radiologic findings in WD is calcification of the adrenal glands. Hepatomegaly is noted on CT scan in both WD and CESD. MRI may demonstrate accumulation of cholesterol esters and may be useful to study effects of potential medical therapies. The diagnosis of WD and CESD is based on LIPA gene sequencing and the measurement of LAL levels in peripheral blood leukocytes. Treatment of LAL deficiency is currently limited to control of cholesterol levels and to prevent premature atherosclerosis. Use of enzyme replacement therapy with recombinant human LAL in short-term studies has shown to be safe and effective. PMID:25345094

  13. Does Lysosomial Acid Lipase Reduction Play a Role in Adult Non-Alcoholic Fatty Liver Disease?

    PubMed Central

    Baratta, Francesco; Pastori, Daniele; Polimeni, Licia; Tozzi, Giulia; Violi, Francesco; Angelico, Francesco; Del Ben, Maria

    2015-01-01

    Lysosomal Acid Lipase (LAL) is a key enzyme involved in lipid metabolism, responsible for hydrolysing the cholesteryl esters and triglycerides. Wolman Disease represents the early onset phenotype of LAL deficiency rapidly leading to death. Cholesterol Ester Storage Disease is a late onset phenotype that occurs with fatty liver, elevated aminotransferase levels, hepatomegaly and dyslipidaemia, the latter characterized by elevated LDL-C and low HDL-C. The natural history and the clinical manifestations of the LAL deficiency in adults are not well defined, and the diagnosis is often incidental. LAL deficiency has been suggested as an under-recognized cause of dyslipidaemia and fatty liver. Therefore, LAL activity may be reduced also in non-obese patients presenting non-alcoholic fatty liver disease (NAFLD), unexplained persistently elevated liver transaminases or with elevation in LDL cholesterol. In these patients, it could be indicated to test LAL activity. So far, very few studies have been performed to assess LAL activity in representative samples of normal subjects or patients with NAFLD. Moreover, no large study has been carried out in adult subjects with NAFLD or cryptogenic cirrhosis. PMID:26602919

  14. Lung Epithelial Cell-Specific Expression of Human Lysosomal Acid Lipase Ameliorates Lung Inflammation and Tumor Metastasis in Lipa(-/-) Mice.

    PubMed

    Zhao, Ting; Ding, Xinchun; Du, Hong; Yan, Cong

    2016-08-01

    Lysosomal acid lipase (LAL), a key enzyme in the metabolic pathway of neutral lipids, has a close connection with inflammation and tumor progression. One major manifestation in LAL-deficient (Lipa(-/-)) mice is an increase of tumor growth and metastasis associated with expansion of myeloid-derived suppressor cells. In the lung, LAL is highly expressed in alveolar type II epithelial cells. To assess how LAL in lung epithelial cells plays a role in this inflammation-related pathogenic process, lung alveolar type II epithelial cell-specific expression of human LAL (hLAL) in Lipa(-/-) mice was established by crossbreeding of CCSP-driven rtTA transgene and (TetO)7-CMV-hLAL transgene into Lipa(-/-) mice (CCSP-Tg/KO). hLAL expression in lung epithelial cells not only reduced tumor-promoting myeloid-derived suppressor cells in the lung, but also down-regulated the synthesis and secretion of tumor-promoting cytokines and chemokines into the bronchoalveolar lavage fluid of Lipa(-/-) mice. hLAL expression reduced the immunosuppressive functions of bronchoalveolar lavage fluid cells, inhibited bone marrow cell transendothelial migration, and inhibited endothelial cell proliferation and migration in Lipa(-/-) mice. As a result, hLAL expression in CCSP-Tg/KO mice corrected pulmonary damage, and inhibited tumor cell proliferation and migration in vitro, and tumor metastasis to the lung in vivo. These results support a concept that LAL is a critical metabolic enzyme in lung epithelial cells that regulates lung homeostasis, immune response, and tumor metastasis. PMID:27461363

  15. Thiadiazole Carbamates: Potent Inhibitors of Lysosomal Acid Lipase and Potential Niemann-Pick Type C Disease Therapeuticsa

    PubMed Central

    Rosenbaum, Anton I.; Cosner, Casey C.; Mariani, Christopher J.; Maxfield, Frederick R.; Wiest, Olaf; Helquist, Paul

    2010-01-01

    Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized at the cellular level by abnormal accumulation of cholesterol and other lipids in lysosomal storage organelles. Lysosomal acid lipase (LAL) has been recently identified as a potential therapeutic target for NPC. LAL can be specifically inhibited by a variety of 3,4-disubstituted thiadiazole carbamates. An efficient synthesis of the C(3) oxygenated/C(4) aminated analogues has been developed that furnishes the products in high yields and high degrees of purity. Common intermediates can also be used for the synthesis of the C(3) carbon substituted derivatives. Herein we tested various thiadiazole carbamates, amides, esters, and ketones for inhibition of LAL. In addition, we tested a diverse selection of commercially available non-thiadiazole carbamates. Our studies show that, among the compounds examined herein, only thiadiazole carbamates are effective inhibitors of LAL. We present a mechanism for LAL inhibition by these compounds whereby LAL transiently carbamoylates the enzyme similarly to previously described inhibition of acetylcholinesterase by rivastigmine and other carbamates as well as acylation of various lipases by orlistat. PMID:20557099

  16. Lysosomal acid lipase: at the crossroads of normal and atherogenic cholesterol metabolism

    PubMed Central

    Dubland, Joshua A.; Francis, Gordon A.

    2015-01-01

    Unregulated cellular uptake of apolipoprotein B-containing lipoproteins in the arterial intima leads to the formation of foam cells in atherosclerosis. Lysosomal acid lipase (LAL) plays a crucial role in both lipoprotein lipid catabolism and excess lipid accumulation as it is the primary enzyme that hydrolyzes cholesteryl esters derived from both low density lipoprotein (LDL) and modified forms of LDL. Evidence suggests that as atherosclerosis progresses, accumulation of excess free cholesterol in lysosomes leads to impairment of LAL activity, resulting in accumulation of cholesteryl esters in the lysosome as well as the cytosol in foam cells. Impaired metabolism and release of cholesterol from lysosomes can lead to downstream defects in ATP-binding cassette transporter A1 regulation, needed to offload excess cholesterol from plaque foam cells. This review focuses on the role LAL plays in normal cholesterol metabolism and how the associated changes in its enzymatic activity may ultimately contribute to atherosclerosis progression. PMID:25699256

  17. Lysosomal Acid Lipase Activity Is Reduced Both in Cryptogenic Cirrhosis and in Cirrhosis of Known Etiology

    PubMed Central

    Vespasiani-Gentilucci, Umberto; Gallo, Paolo; Piemonte, Fiorella; Riva, Elisabetta; Porcari, Aldostefano; Vorini, Ferruccio; Tozzi, Giulia; Piccioni, Livia; Galati, Giovanni; De Vincentis, Antonio; Carotti, Simone; Morini, Sergio; D’Amico, Jessica; Angeletti, Silvia; Pedone, Claudio; Picardi, Antonio

    2016-01-01

    Lysosomal acid lipase deficiency (LAL-d) is a rare autosomal recessive disease in which LAL activity is almost absent, with consequent massive microvesicular steatosis evolving to cirrhosis and liver failure. We aimed to determine LAL-activity, and to investigate the most common single nucleotide polymorphism (SNP) affecting the LIPA gene and responsible for 50–70% of LAL-d cases (rs116928232 c.894G>A), in patients with cryptogenic cirrhosis. Sixty-three patients with cryptogenic cirrhosis, 88 cirrhotics of known etiology, and 97 healthy subjects were enrolled. LAL-activity was determined in dried-blood-spot (DBS). The c.894G>A mutation was analyzed by pyrosequencing method in SNP mode. LAL-activity was severely reduced in patients with cryptogenic cirrhosis with respect to healthy subjects [0.62 (0.44–0.86) Vs 0.96 (0.75–1.25) nmol/spot/h, p<0.001)], but it was also reduced in known-etiology cirrhotics [0.54 (0.42–0.79) nmol/spot/h, p<0.001 Vs healthy subjects; p = 0.5 Vs cryptogenic cirrhotics]. Fourteen percent of cryptogenic cirrhotics and 20% of known-etiology cirrhotics showed a LAL-activity in the range of heterozygous carriers of LIPA gene mutations (0.15–0.40 nmol/spot/h). However, none of the subjects with reduced LAL-activity carried the c.894G>A SNP except for one patient with HCV cirrhosis. By multivariate analysis, LAL-activity was not associated with age, sex, liver enzymes, liver function or lipid parameters, while it was independently associated with white blood cell (β = 0.2; p<0.01) and platelet (β = 0.4; p<0.001) counts and with the condition of cirrhosis (β = -0.2; p = 0.04). Conclusion Liver cirrhosis is characterized by a severe acquired reduction of LAL-activity, the precise causes and consequences of which need to be further addressed. DBS-determined lysosomal enzyme activities seem to be affected by white blood cell and platelet counts, and the specificity of these tests can be reduced when applied to determined populations

  18. Lysosomal acid lipase deficiency--an under-recognized cause of dyslipidaemia and liver dysfunction.

    PubMed

    Reiner, Željko; Guardamagna, Ornella; Nair, Devaki; Soran, Handrean; Hovingh, Kees; Bertolini, Stefano; Jones, Simon; Ćorić, Marijana; Calandra, Sebastiano; Hamilton, John; Eagleton, Terence; Ros, Emilio

    2014-07-01

    Lysosomal acid lipase deficiency (LAL-D) is a rare autosomal recessive lysosomal storage disease caused by deleterious mutations in the LIPA gene. The age at onset and rate of progression vary greatly and this may relate to the nature of the underlying mutations. Patients presenting in infancy have the most rapidly progressive disease, developing signs and symptoms in the first weeks of life and rarely surviving beyond 6 months of age. Children and adults typically present with some combination of dyslipidaemia, hepatomegaly, elevated transaminases, and microvesicular hepatosteatosis on biopsy. Liver damage with progression to fibrosis, cirrhosis and liver failure occurs in a large proportion of patients. Elevated low-density lipoprotein cholesterol levels and decreased high-density lipoprotein cholesterol levels are common features, and cardiovascular disease may manifest as early as childhood. Given that these clinical manifestations are shared with other cardiovascular, liver and metabolic diseases, it is not surprising that LAL-D is under-recognized in clinical practice. This article provides practical guidance to lipidologists, endocrinologists, cardiologists and hepatologists on how to recognize individuals with this life-limiting disease. A diagnostic algorithm is proposed with a view to achieving definitive diagnosis using a recently developed blood test for lysosomal acid lipase. Finally, current management options are reviewed in light of the ongoing development of enzyme replacement therapy with sebelipase alfa (Synageva BioPharma Corp., Lexington, MA, USA), a recombinant human lysosomal acid lipase enzyme. PMID:24792990

  19. Clinical Effect and Safety Profile of Recombinant Human Lysosomal Acid Lipase in Patients with Cholesteryl Ester Storage Disease

    PubMed Central

    Balwani, Manisha; Breen, Catherine; Enns, Gregory M; Deegan, Patrick B; Honzík, Tomas; Jones, Simon; Kane, John P; Malinova, Vera; Sharma, Reena; Stock, Eveline O; Valayannopoulos, Vassili; Wraith, J Edmond; Burg, Jennifer; Eckert, Stephen; Schneider, Eugene; Quinn, Anthony G

    2013-01-01

    Background & Aims Cholesteryl Ester Storage Disease, an inherited deficiency of lysosomal acid lipase, is an underappreciated cause of progressive liver disease with no approved therapy. Presenting features include dyslipidemia, elevated transaminases, and hepatomegaly. Methods To assess the clinical effects and safety of the recombinant human lysosomal acid lipase, sebelipase alfa, 9 patients received 4 once-weekly infusions (0.35, 1, or 3 mg·kg−1) in LAL-CL01 which is the first human study of this investigational agent. Patients completing LAL-CL01 were eligible to enroll in the extension study (LAL-CL04) in which they again received 4 once-weekly infusions of sebelipase alfa (0.35, 1, or 3 mg·kg−1) before transitioning to long term every other week infusions (1 or 3 mg·kg−1). Results Sebelipase alfa was well-tolerated with mostly mild adverse events unrelated sebelipase alfa. No anti-drug antibodies were detected. Transaminases decreased in patients in LAL-CL01 and increased between studies. In 7 patients receiving ongoing sebelipase alfa treatment in LAL-CL04, mean±SD decreases for alanine transaminase and aspartate aminotransferase at week 12 compared to the baseline values in LAL-CL01 were 46±21U/L (-52%) and 21±14U/L (-36%), respectively (p<0.05). Through week 12 of LAL-CL04, these 7 patients also showed mean decreases from baseline in total cholesterol of 44±41mg/dL (-22%; p=0.047), low density lipoprotein-cholesterol of 29±31mg/dL (-27%; p=0.078), and triglycerides of 50±38mg/dL (-28%, p=0.016) and increases in high density lipoprotein-cholesterol of 5mg/dL (15%; p=0.016). Conclusions These data establish that sebelipase alfa, an investigational enzyme replacement, in patients with Cholesteryl Ester Storage Disease is well tolerated, rapidly decreases serum transaminases and that these improvements are sustained with long term dosing and are accompanied by improvements in serum lipid profile. PMID:23348766

  20. Design and synthesis of boronic acid inhibitors of endothelial lipase.

    PubMed

    O'Connell, Daniel P; LeBlanc, Daniel F; Cromley, Debra; Billheimer, Jeffrey; Rader, Daniel J; Bachovchin, William W

    2012-02-01

    Endothelial lipase (EL) and lipoprotein lipase (LPL) are homologous lipases that act on plasma lipoproteins. EL is predominantly a phospholipase and appears to be a key regulator of plasma HDL-C. LPL is mainly a triglyceride lipase regulating (V)LDL levels. The existing biological data indicate that inhibitors selective for EL over LPL should have anti-atherogenic activity, mainly through increasing plasma HDL-C levels. We report here the synthesis of alkyl, aryl, or acyl-substituted phenylboronic acids that inhibit EL. Many of the inhibitors evaluated proved to be nearly equally potent against both EL and LPL, but several exhibited moderate to good selectivity for EL. PMID:22225633

  1. PRD125, a potent and selective inhibitor of sterol O-acyltransferase 2 markedly reduces hepatic cholesteryl ester accumulation and improves liver function in lysosomal acid lipase-deficient mice.

    PubMed

    Lopez, Adam M; Chuang, Jen-Chieh; Posey, Kenneth S; Ohshiro, Taichi; Tomoda, Hiroshi; Rudel, Lawrence L; Turley, Stephen D

    2015-11-01

    In most organs, the bulk of cholesterol is unesterified, although nearly all possess a varying capability of esterifying cholesterol through the action of either sterol O-acyltransferase (SOAT) 1 or, in the case of hepatocytes and enterocytes, SOAT2. Esterified cholesterol (EC) carried in plasma lipoproteins is hydrolyzed by lysosomal acid lipase (LAL) when they are cleared from the circulation. Loss-of-function mutations in LIPA, the gene that encodes LAL, result in Wolman disease or cholesteryl ester storage disease (CESD). Hepatomegaly and a massive increase in tissue EC levels are hallmark features of both disorders. While these conditions can be corrected with enzyme replacement therapy, the question arose as to whether pharmacological inhibition of SOAT2 might reduce tissue EC accretion in CESD. When weaned at 21 days, Lal(-/-) mice, of either gender, had a whole liver cholesterol content that was 12- to 13-fold more than that of matching Lal(+/+) littermates (23 versus 1.8 mg, respectively). In Lal(-/-) males given the selective SOAT2 inhibitor PRD125 1,11-O-o-methylbenzylidene-7-O-p-cyanobenzoyl-1,7,11-trideacetylpyripyropene A in their diet (∼10 mg/day per kg body weight) from 21 to 53 days, whole liver cholesterol content was 48.6 versus 153.7 mg in untreated 53-day-old Lal(-/-) mice. This difference reflected a 59% reduction in hepatic EC concentration (mg/g), combined with a 28% fall in liver mass. The treated mice also showed a 63% reduction in plasma alanine aminotransferase activity, in parallel with decisive falls in hepatic mRNA expression levels for multiple proteins that reflect macrophage presence and inflammation. These data implicate SOAT2 as a potential target in CESD management. PMID:26283692

  2. Sebelipase alfa over 52 weeks reduces serum transaminases, liver volume and improves serum lipids in patients with lysosomal acid lipase deficiency

    PubMed Central

    Valayannopoulos, Vassili; Malinova, Vera; Honzík, Tomas; Balwani, Manisha; Breen, Catherine; Deegan, Patrick B.; Enns, Gregory M.; Jones, Simon A.; Kane, John P.; Stock, Eveline O.; Tripuraneni, Radhika; Eckert, Stephen; Schneider, Eugene; Hamilton, Gavin; Middleton, Michael S.; Sirlin, Claude; Kessler, Bruce; Bourdon, Christopher; Boyadjiev, Simeon A.; Sharma, Reena; Twelves, Chris; Whitley, Chester B.; Quinn, Anthony G.

    2014-01-01

    Background and aims Lysosomal Acid Lipase Deficiency is an autosomal recessive enzyme deficiency resulting in lysosomal accumulation of cholesteryl esters and triglycerides. LAL-CL04, an ongoing extension study, investigates the long-term effects of sebelipase alfa, a recombinant human lysosomal acid lipase. Methods Sebelipase alfa (1 mg/kg or 3 mg/kg) was infused every-other-week to eligible subjects. Safety and tolerability assessments, including liver function, lipid profiles and liver volume assessment, were carried out at regular intervals. Results 216 infusions were administered to eight adult subjects through Week 52 during LAL-CL04. At Week 52, mean alanine aminotransferase and aspartate aminotransferase were normal with mean change from baseline of −58% and −40%. Mean change for low density lipoprotein, total cholesterol, triglyceride and high-density lipoprotein were −60%, −39%, −36%, and +29%, respectively. Mean liver volume by magnetic resonance imaging and hepatic proton density fat fraction decreased (12% and 55%, respectively). Adverse events were mainly mild and unrelated to sebelipase alfa. Infusion-related reactions were uncommon: three events of moderate severity were reported in two subjects; one patient's event was suggestive of hypersensitivity-like reaction, but additional testing did not confirm this, and the subject has successfully re-started sebelipase alfa. Of samples tested to date, no anti-drug antibodies have been detected. Conclusions Long-term dosing with sebelipase alfa in Lysosomal Acid Lipase-Deficient patients is well tolerated and produces sustained reductions in transaminases, improvements in serum lipid profile and reduction in hepatic fat fraction. A randomized, placebo-controlled phase 3 trial in children and adults is underway (ARISE: NCT01757184). PMID:24993530

  3. Fatty Acid Signaling: The New Function of Intracellular Lipases

    PubMed Central

    Papackova, Zuzana; Cahova, Monika

    2015-01-01

    Until recently, intracellular triacylglycerols (TAG) stored in the form of cytoplasmic lipid droplets have been considered to be only passive “energy conserves”. Nevertheless, degradation of TAG gives rise to a pleiotropic spectrum of bioactive intermediates, which may function as potent co-factors of transcription factors or enzymes and contribute to the regulation of numerous cellular processes. From this point of view, the process of lipolysis not only provides energy-rich equivalents but also acquires a new regulatory function. In this review, we will concentrate on the role that fatty acids liberated from intracellular TAG stores play as signaling molecules. The first part provides an overview of the transcription factors, which are regulated by fatty acids derived from intracellular stores. The second part is devoted to the role of fatty acid signaling in different organs/tissues. The specific contribution of free fatty acids released by particular lipases, hormone-sensitive lipase, adipose triacylglycerol lipase and lysosomal lipase will also be discussed. PMID:25674855

  4. Synthesis of rosin acid starch catalyzed by lipase.

    PubMed

    Lin, Rihui; Li, He; Long, Han; Su, Jiating; Huang, Wenqin

    2014-01-01

    Rosin, an abundant raw material from pine trees, was used as a starting material directly for the synthesis of rosin acid starch. The esterification reaction was catalyzed by lipase (Novozym 435) under mild conditions. Based on single factor experimentation, the optimal esterification conditions were obtained as follows: rosin acid/anhydrous glucose unit in the molar ratio 2:1, reaction time 4 h at 45°C, and 15% of lipase dosage. The degree of substitution (DS) reaches 0.098. Product from esterification of cassava starch with rosin acid was confirmed by FTIR spectroscopy and iodine coloration analysis. Scanning electron microscopy and X-ray diffraction analysis showed that the morphology and crystallinity of the cassava starch were largely destroyed. Thermogravimetric analysis indicated that thermal stability of rosin acid starch decreased compared with native starch.

  5. Lysosomal acid lipase deficiency in rats: Lipid analyses and lipase activities in liver and spleen

    SciTech Connect

    Kuriyama, M.; Yoshida, H.; Suzuki, M.; Fujiyama, J.; Igata, A. )

    1990-09-01

    We report the biological characterization of an animal model of a genetic lipid storage disease analogous to human Wolman's disease. Affected rats accumulated cholesteryl esters (13.3-fold), free cholesterol (2.8-fold), and triglycerides (5.4-fold) in the liver, as well as cholesteryl esters (2.5-fold) and free cholesterol (1.33-fold) in the spleen. Triglycerides did not accumulate, and the levels actually decreased in the spleen. Analysis of the fatty acid composition of the cholesteryl esters and triglycerides showed high percentages of linoleic acid (18:2) and arachidonic acid (20:4) in both organs, especially in the liver. No accumulation of phospholipids, neutral glycosphingolipids, or gangliosides was found in the affected rats. Acid lipase activity for (14C)triolein, (14C)cholesteryl oleate, and 4-methyl-umbelliferyl oleate was deficient in both the liver and spleen of affected rats. Lipase activity at neutral pH was normal in both liver and spleen. Heterozygous rats showed intermediate utilization of these substrates in both organs at levels between those for affected rats and those for normal controls, although they did not accumulate any lipids. These data suggest that these rats represent an animal counterpart of Wolman's disease in humans.

  6. Endothelial lipase modulates pressure overload-induced heart failure through alternative pathway for fatty acid uptake.

    PubMed

    Nakajima, Hideto; Ishida, Tatsuro; Satomi-Kobayashi, Seimi; Mori, Kenta; Hara, Tetsuya; Sasaki, Naoto; Yasuda, Tomoyuki; Toh, Ryuji; Tanaka, Hidekazu; Kawai, Hiroya; Hirata, Ken-ichi

    2013-05-01

    Lipoprotein lipase has been considered as the only enzyme capable of generating lipid-derived fatty acids for cardiac energy. Endothelial lipase is another member of the triglyceride lipase family and hydrolyzes high-density lipoproteins. Although endothelial lipase is expressed in the heart, its function remains unclear. We assessed the role of endothelial lipase in the genesis of heart failure. Pressure overload-induced cardiac hypertrophy was generated in endothelial lipase(-/-) and wild-type mice by ascending aortic banding. Endothelial lipase expression in cardiac tissues was markedly elevated in the early phase of cardiac hypertrophy in wild-type mice, whereas lipoprotein lipase expression was significantly reduced. Endothelial lipase(-/-) mice showed more severe systolic dysfunction with left-ventricular dilatation compared with wild-type mice in response to pressure overload. The expression of mitochondrial fatty acid oxidation-related genes, such as carnitine palmitoyltransferase-1 and medium-chain acyl coenzyme A dehydrogenase, was significantly lower in the heart of endothelial lipase(-/-) mice than in wild-type mice. Also, endothelial lipase(-/-) mice had lower myocardial adenosine triphosphate levels than wild-type mice after aortic banding. In cultured cardiomyocytes, endothelial lipase was upregulated by inflammatory stimuli, whereas lipoprotein lipase was downregulated. Endothelial lipase-overexpression in cardiomyocytes resulted in an upregulation of fatty acid oxidation-related enzymes and intracellular adenosine triphosphate accumulation in the presence of high-density lipoprotein. Endothelial lipase may act as an alternative candidate to provide fatty acids to the heart and regulate cardiac function. This effect seemed relevant particularly in the diseased heart, where lipoprotein lipase action is downregulated. PMID:23460280

  7. Cholestane-3β,5α,6β-triol: high levels in Niemann-Pick type C, cerebrotendinous xanthomatosis, and lysosomal acid lipase deficiency[S

    PubMed Central

    Pajares, Sonia; Arias, Angela; García-Villoria, Judit; Macías-Vidal, Judit; Ros, Emilio; de las Heras, Javier; Girós, Marisa; Coll, Maria J.; Ribes, Antonia

    2015-01-01

    Niemann-Pick type C (NPC) is a progressive neurodegenerative disease characterized by lysosomal/endosomal accumulation of unesterified cholesterol and glycolipids. Recent studies have shown that plasma cholestane-3β,5α,6β-triol (CT) and 7-ketocholesterol (7-KC) could be potential biomarkers for the diagnosis of NPC patients. We aimed to know the sensitivity and specificity of these biomarkers for the diagnosis of NPC compared with other diseases that can potentially lead to oxysterol alterations. We studied 107 controls and 122 patients including 16 with NPC, 3 with lysosomal acid lipase (LAL) deficiency, 8 with other lysosomal diseases, 5 with galactosemia, 11 with cerebrotendinous xanthomatosis (CTX), 3 with Smith-Lemli-Opitz, 14 with peroxisomal biogenesis disorders, 19 with unspecific hepatic diseases, 13 with familial hypercholesterolemia, and 30 with neurological involvement and no evidence of an inherited metabolic disease. CT and 7-KC were analyzed by HPLC-ESI-MS/MS as mono-dimethylglycine derivatives. Levels of 7-KC were high in most of the studied diseases, whereas those of CT were only high in NPC, LAL, and CTX patients. Consequently, although CT is a sensitive biomarker of NPC disease, including those cases with doubtful filipin staining, it is not specific. 7-KC is a very unspecific biomarker. PMID:26239048

  8. Cholestane-3β,5α,6β-triol: high levels in Niemann-Pick type C, cerebrotendinous xanthomatosis, and lysosomal acid lipase deficiency.

    PubMed

    Pajares, Sonia; Arias, Angela; García-Villoria, Judit; Macías-Vidal, Judit; Ros, Emilio; de las Heras, Javier; Girós, Marisa; Coll, Maria J; Ribes, Antonia

    2015-10-01

    Niemann-Pick type C (NPC) is a progressive neurodegenerative disease characterized by lysosomal/endosomal accumulation of unesterified cholesterol and glycolipids. Recent studies have shown that plasma cholestane-3β,5α,6β-triol (CT) and 7-ketocholesterol (7-KC) could be potential biomarkers for the diagnosis of NPC patients. We aimed to know the sensitivity and specificity of these biomarkers for the diagnosis of NPC compared with other diseases that can potentially lead to oxysterol alterations. We studied 107 controls and 122 patients including 16 with NPC, 3 with lysosomal acid lipase (LAL) deficiency, 8 with other lysosomal diseases, 5 with galactosemia, 11 with cerebrotendinous xanthomatosis (CTX), 3 with Smith-Lemli-Opitz, 14 with peroxisomal biogenesis disorders, 19 with unspecific hepatic diseases, 13 with familial hypercholesterolemia, and 30 with neurological involvement and no evidence of an inherited metabolic disease. CT and 7-KC were analyzed by HPLC-ESI-MS/MS as mono-dimethylglycine derivatives. Levels of 7-KC were high in most of the studied diseases, whereas those of CT were only high in NPC, LAL, and CTX patients. Consequently, although CT is a sensitive biomarker of NPC disease, including those cases with doubtful filipin staining, it is not specific. 7-KC is a very unspecific biomarker.

  9. Lipoproteini lipase-derived fatty acids: physiology and dysfunction.

    PubMed

    Lee, Jee; Goldberg, Ira J

    2007-12-01

    Under normal circumstances, most energy substrate used for heart contraction derives from fatty acids in the form of nonesterified fatty acids bound to albumin or fatty acids derived from lipolysis of lipoprotein-bound triglyceride by lipoprotein lipase (LpL). By creating LpL knockout mice (hLpL0), we learned that loss of cardiac LpL leads to myocardial dysfunction; therefore, neither nonesterified fatty acids nor increased glucose metabolism can replace LpL actions. hLpL0 mice do not survive abdominal aortic constriction and they develop more heart failure with hypertension. Conversely, we created a mouse overexpressing cardiomyocyte-anchored LpL. This transgene produced cardiac lipotoxicity and dilated cardiomyopathy. Methods to alter this phenotype and the causes of other models of lipotoxicity are currently being studied and will provide further insight into the physiology of lipid metabolism in the heart. PMID:18367009

  10. Retinal pigment epithelial acid lipase activity and lipoprotein receptors: effects of dietary omega-3 fatty acids.

    PubMed Central

    Elner, Victor M

    2002-01-01

    PURPOSE: To show that fish oil-derived omega-3 polyunsaturated fatty acids, delivered to the retinal pigment epithelium (RPE) by circulating low-density lipoproteins (LDL), enhance already considerable RPE lysosomal acid lipase activity, providing for more efficient hydrolysis of intralysosomal RPE lipids, an effect that may help prevent development of age-related macular degeneration (ARMD). METHODS: Colorimetric biochemical and histochemical techniques were used to demonstrate RPE acid lipase in situ, in vitro, and after challenge with phagocytic stimuli. Receptor-mediated RPE uptake of fluorescently labeled native, aceto-acetylated, and oxidized LDL was studied in vitro and in vivo. LDL effects on RPE lysosomal enzymes were assessed. Lysosomal enzyme activity was compared in RPE cells from monkeys fed diets rich in fish oil to those from control animals and in cultured RPE cells exposed to sera from these monkeys. RESULTS: RPE acid lipase activity was substantial and comparable to that of mononuclear phagocytes. Acid lipase activity increased significantly following phagocytic challenge with photoreceptor outer segment (POS) membranes. Receptor-mediated RPE uptake of labeled lipoproteins was determined in vitro. Distinctive uptake of labeled lipoproteins occurred in RPE cells and mononuclear phagocytes in vivo. Native LDL enhanced RPE lysosomal enzyme activity. RPE lysosomal enzymes increased significantly in RPE cells from monkeys fed fish oil-rich diets and in cultured RPE cells exposed to their sera. CONCLUSIONS: RPE cells contain substantial acid lipase for efficient metabolism of lipids imbibed by POS phagocytosis and LDL uptake. Diets rich in fish oil-derived omega-3 fatty acids, by enhancing acid lipase, may reduce RPE lipofuscin accumulation, RPE oxidative damage, and the development of ARMD. PMID:12545699

  11. Acid Lipase from Candida viswanathii: Production, Biochemical Properties, and Potential Application

    PubMed Central

    de Almeida, Alex Fernando; Carmona, Eleonora Cano

    2013-01-01

    Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (YL/S = 1.381 g/g), lipase yield (YL/S = 6.892 U/g), and biomass productivity (PX = 0.282 g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield (YL/S) of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties. PMID:24350270

  12. Acid lipase from Candida viswanathii: production, biochemical properties, and potential application.

    PubMed

    de Almeida, Alex Fernando; Tauk-Tornisielo, Sâmia Maria; Carmona, Eleonora Cano

    2013-01-01

    Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (Y L/S = 1.381 g/g), lipase yield (Y L/S = 6.892 U/g), and biomass productivity (P X = 0.282 g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield (Y L/S ) of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties. PMID:24350270

  13. Acid lipase from Candida viswanathii: production, biochemical properties, and potential application.

    PubMed

    de Almeida, Alex Fernando; Tauk-Tornisielo, Sâmia Maria; Carmona, Eleonora Cano

    2013-01-01

    Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (Y L/S = 1.381 g/g), lipase yield (Y L/S = 6.892 U/g), and biomass productivity (P X = 0.282 g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield (Y L/S ) of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties.

  14. Enhancement of lipase catalyzed-fatty acid methyl esters production from waste activated bleaching earth by nullification of lipase inhibitors.

    PubMed

    Dwiarti, Lies; Ali, Ehsan; Park, Enoch Y

    2010-01-01

    This study sought to identify inhibitory factors of lipase catalyzed-fatty acid methyl esters (FAME) production from waste activated bleaching earth (wABE). During the vegetable oil refinery process, activated bleaching earth (ABE) is used for removing the impure compounds, but adsorbs vegetable oil up to 35-40% as on a weight basis, and then the wABE is discarded as waste material. The impurities were extracted from the wABE with methanol and evaluated by infra-red (IR) spectroscopy, which revealed that some were chlorophyll-plant pigments. The chlorophylls inhibited the lipase during FAME conversion from wABE. The inhibition by a mixture of chlorophyll a and b was found to be competitive. The inhibition of the enzymatic hydrolysis of waste vegetable oil contained in wABE by chlorophyll a alone was competitive, while the inhibition by chlorophyll b alone was non-competitive. Furthermore, the addition of a small amount of alkali nullified this inhibitory effect and accelerated the FAME production rate. When 0.9% KOH (w/w wABE) was added to the transesterification reaction with only 0.05% lipase (w/w wABE), the maximum FAME production rate improved 120-fold, as compared to that without the addition of KOH. The alkali-combined lipase significantly enhanced the FAME production rate from wABE, in spite of the presence of the plant pigments, and even when a lower amount of lipase was used as a catalyst.

  15. A computational search for lipases that can preferentially hydrolyze long-chain omega-3 fatty acids from fish oil triacylglycerols.

    PubMed

    Kamal, Md Zahid; Barrow, Colin J; Rao, Nalam Madhusudhana

    2015-04-15

    Consumption of long-chain omega-3 fatty acids is known to decrease the risk of major cardiovascular events. Lipases, a class of triacylglycerol hydrolases, have been extensively tested to concentrate omega-3 fatty acids from fish oils, under mild enzymatic conditions. However, no lipases with preference for omega-3 fatty acids selectivity have yet been discovered or developed. In this study we performed an exhaustive computational study of substrate-lipase interactions by docking, both covalent and non-covalent, for 38 lipases with a large number of structured triacylglycerols containing omega-3 fatty acids. We identified some lipases that have potential to preferentially hydrolyze omega-3 fatty acids from structured triacylglycerols. However omega-3 fatty acid preferences were found to be modest. Our study provides an explanation for absence of reports of lipases with omega-3 fatty acid hydrolyzing ability and suggests methods for developing these selective lipases.

  16. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    PubMed

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %.

  17. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    PubMed

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %. PMID:17898456

  18. Fatty acid preference of mycelium-bound lipase from a locally isolated strain of Geotrichum candidum.

    PubMed

    Loo, Joo Ling; Lai, Oi Mlng; Long, Kamariah; Ghazali, Hasanah Mohd

    2007-12-01

    Mycelium-bound lipase (MBL) was prepared using a strain of Geotrichum candidum isolated from local soil. At the time of maximum lipase activity (54 h), the mycelia to which the lipase was bound were harvested by filtration and centrifugation. Dry MBL was prepared by lyophilizing the mycelia obtained. The yield of MBL was 3.66 g/l with a protein content of 44.11 mg/g. The lipase activity and specific lipase activity were 22.59 and 510 U/g protein, respectively. The moisture content of the MBL was 3.85%. The activity of free (extracellular) lipase in the culture supernatant (after removal of mycelia) was less than 0.2 U/ml. The MBL showed selectivity for oleic acid over palmitic acid during hydrolysis of palm olein, indicating that the lipase from G. candidum displayed high substrate selectivity for unsaturated fatty acid containing a cis-9 double bond, even in crude form. This unique specificity of MBL could be a direct, simple and inexpensive way in the fats and oil industry for the selective hydrolysis or transesterification of cis-9 fatty acid residues in natural triacylglycerols.

  19. [Lysosomal acid lipase deficiency. Overview of Czech patients].

    PubMed

    Elleder, M; Poupĕtová, H; Ledvinová, J; Hyánek, J; Zeman, J; Sýkora, J; Stozický, F; Chlumská, A; Lohse, P

    1999-11-29

    Lysosomal lipase deficiency is a hereditary autosomal recessive enzymopathy leading to lysosomal storage of triacylglycerols (TAG) and cholesterol esters (CE). In particular cells with a permanently high receptor-mediated LDL endocytosis are affected (liver, kidneys). There are two basic phenotypes. The fatal infantile phenotype (Wolman's disease) with generalized storage of both types of apolar lipids. This form was diagnosed in this country only once. The opposite is the protracted, oligosymptomatic form encountered in all age groups. It is characterized by the storage of CE (which gave this entity the name of cholesteryl storage disease--CESD). Its main sign is affection of the liver (hepatomegaly, hepatopathy), which in some instances may lead to organ failure, directly or after cirrhotic transformation. Furthermore there is permanent hypercholesterolaemia (high LDL cholesterol) due to increased VLDL synthesis by hepatocytes, low HDL cholesterol and variably raised TAG. This constellation of blood lipids is a risk factor for the development of atherosclerosis. In the course of 25 years in the Czech Republic 13 cases of CESD were diagnosed in 11 families. Ten of these cases were characterized by clinically manifest hepatopathy with hepatomegaly, detected incidentally during medical examinations (at the age of 2-14 years). In three adult patients with permanent hypercholesterolaemia the storage process was subclinical and the diagnosis was established quite incidentally by examination of non-specific secondary and tertiary manifestations of the disease. The diagnosis was established in all cases of CESD at the tissue level (liver biopsy), at the biochemical (acid lipase deficiency) and molecular genetic level (mutation in enzyme locus). In all instances mutation of G934A was found leading to reduction and loss of the eighth exon. This mutation was present in five patients in a homozygous state. Six mutations were heterozygous. In one instance for technical

  20. Improvement of catalytic activity of lipase in the presence of calix[4]arene valeric acid or hydrazine derivative.

    PubMed

    Akoz, Enise; Sayin, Serkan; Kaplan, Selcuk; Yilmaz, Mustafa

    2015-03-01

    Sol-gel encapsulation is a simple but powerful method to enhance the enantioselectivity of lipase-catalyzed transformations in an isooctane/aqueous buffer solution. Candida rugosa lipase was encapsulated according to a sol-gel procedure in the presence and absence of calix[4]arene hydrazine or carboxylic acid derivatives with Fe3O4 magnetic nanoparticles as an additive. The activity of the encapsulated lipases was evaluated for the enantioselective hydrolysis of racemic Naproxen methyl ester and the hydrolysis of p-Nitrophenylpalmitate. The results indicate that the encapsulated lipase without calix[4]arene derivative has lower conversion and enantioselectivity compared to the encapsulated lipase with calix[4]arene derivative. It was found that the calix[4]arene hydrazine and carboxylic acid-based encapsulated lipases have excellent activity and enantioselectivity (E >300) compared to encapsulated lipase without the calix[4]arene derivatives.

  1. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases.

    PubMed

    Sóti, Péter Lajos; Weiser, Diana; Vigh, Tamás; Nagy, Zsombor Kristóf; Poppe, László; Marosi, György

    2016-03-01

    Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150).

  2. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases.

    PubMed

    Sóti, Péter Lajos; Weiser, Diana; Vigh, Tamás; Nagy, Zsombor Kristóf; Poppe, László; Marosi, György

    2016-03-01

    Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150). PMID:26724947

  3. Geotrichum candidum NRRL Y-553 lipase: purification, characterization and fatty acid specificity.

    PubMed

    Baillargeon, M W; McCarthy, S G

    1991-10-01

    Lipases from Geotrichum candidum NRRL Y-553 are of interest because of their unique specificity for cis-9-unsaturated fatty acids relative to both stearic and palmitic acids. The lipases were partially purified by chromatography on Octyl Sepharose, AG MP-1 macroporous anion exchanger, and chromatofocusing resin. The preparation was found to contain multiple, glycosylated lipases varying slightly in pI (pI 4.88, 4.78, 4.65, 4.57 and 4.52) as judged by both activity and silver staining. The molecular mass determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis was 64 kilodaltons for the main species, with minor species of 60 and 57 kilodaltons present as well. The specificity of the crude lipases for hydrolysis of 4-methylumbelliferyl esters of oleic vs. palmitic acid was 20-to-1. The specificity of the purified, partially separated lipases was similar to that of the crude preparation. Thus the lipases could be used even in crude form for the hydrolysis and restructuring of triacylglycerols on a large scale. PMID:1795605

  4. [Prediction of lipases types by different scale pseudo-amino acid composition].

    PubMed

    Zhang, Guangya; Li, Hongchun; Gao, Jiaqiang; Fang, Baishan

    2008-11-01

    Lipases are widely used enzymes in biotechnology. Although they catalyze the same reaction, their sequences vary. Therefore, it is highly desired to develop a fast and reliable method to identify the types of lipases according to their sequences, or even just to confirm whether they are lipases or not. By proposing two scales based pseudo amino acid composition approaches to extract the features of the sequences, a powerful predictor based on k-nearest neighbor was introduced to address the problems. The overall success rates thus obtained by the 10-fold cross-validation test were shown as below: for predicting lipases and nonlipase, the success rates were 92.8%, 91.4% and 91.3%, respectively. For lipase types, the success rates were 92.3%, 90.3% and 89.7%, respectively. Among them, the Z scales based pseudo amino acid composition was the best, T scales was the second. They outperformed significantly than 6 other frequently used sequence feature extraction methods. The high success rates yielded for such a stringent dataset indicate predicting the types of lipases is feasible and the different scales pseudo amino acid composition might be a useful tool for extracting the features of protein sequences, or at lease can play a complementary role to many of the other existing approaches. PMID:19256347

  5. Enzymatic enrichment of polyunsaturated fatty acids using novel lipase preparations modified by combination of immobilization and fish oil treatment.

    PubMed

    Yan, Jinyong; Liu, Sanxiong; Hu, Jiang; Gui, Xiaohua; Wang, Guilong; Yan, Yunjun

    2011-07-01

    Novel modification methods for lipase biocatalysts effective in hydrolysis of fish oil for enrichment of polyunsaturated fatty acids (PUFAs) were described. Based on conventional immobilization in single aqueous medium, immobilization of lipase in two phase medium composed of buffer and octane was employed. Furthermore, immobilization (in single aqueous or in two phase medium) coupled to fish oil treatment was integrated. Among these, lipase immobilized in two phase medium coupled to fish oil treatment (IMLAOF) had advantages over other modified lipases in initial reaction rate and hydrolysis degree. The hydrolysis degree increased from 12% with the free lipase to 40% with IMLAOF. Strong polar and hydrophobic solvents had negative impact on immobilization-fish oil treatment lipases, while low polar solvents were helpful to maintain the modification effect of immobilization-fish oil treatment. After five cycles of usage, the immobilization-fish oil treatment lipases still maintained more than 80% of relative hydrolysis degree.

  6. Lipoprotein lipase variants interact with polyunsaturated fatty acids to modulate obesity traits in Puerto Ricans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipoprotein lipase (LPL) is a candidate gene for obesity based on its role in triglyceride hydrolysis and the partitioning of fatty acids towards storage or oxidation. Whether dietary fatty acids modify LPL associated obesity risk is unknown. We examined five single nucleotide polymorphisms (SNPs) (...

  7. Characterization of a salicylic acid- and pathogen-induced lipase-like gene in Chinese cabbage.

    PubMed

    Lee, Kyung-Ah; Cho, Tae-Ju

    2003-09-30

    A cDNA clone for a salicylic acid-induced gene in Chinese cabbage (Brassica rapa subsp. pekinensis) was isolated and characterized. The cabbage gene, designated Br-sil1 (for Brassica rapa salicylate-induced lipase-like 1 gene), encodes a putative lipase that has the family II lipase motif GDSxxDxG around the active site serine. A database search showed that plant genomes have a large number of genes that contain the family II lipase motif. The lipase-like proteins include a myrosinase-associated protein, an anther-specific proline-rich protein APG, a pollen coat protein EXL, and an early nodule-specific protein. The Br-sil1 gene is strongly induced by salicylic acid and a nonhost pathogen, Pseudomonas syringae pv. tomato, that elicits a hypersensitive response in Chinese cabbage. Treatment of the cabbage leaves with BTH, methyl jasmonate, or ethephon showed that the Br-sil1 gene expression is induced by BTH, but not by methyl jasmonate or ethylene. This indicates that the cabbage gene is activated via a salicylic acid-dependent signaling pathway. An examination of the tissue-specific expression revealed that the induction of the Br-sil1 gene expression by BTH occurs in leaves and stems, but not in roots and flowers. Without the BTH treatment, however, the Br-sil1 gene is not expressed in any of the tissues that were examined.

  8. Surface modification of magnetite nanoparticles using gluconic acid and their application in immobilized lipase.

    PubMed

    Sui, Ying; Cui, Yu; Nie, Yong; Xia, Guang-Ming; Sun, Guo-Xin; Han, Jing-Tian

    2012-05-01

    Superparamagnetic magnetite nanoparticles (SMN) were surface-modified with gluconic acid (GLA) to improve their hydrophilicity and bio-affinity. Gluconic acid was successfully coated on the surface of magnetite nanoparticles and characterized using Fourier transform infrared spectroscopy (FT-IR). With water-soluble carbodiimide (EDC) as the coupling reagent, lipase was successfully immobilized onto the hydroxyl-functionalized magnetic nanoparticles. The immobilized lipase had better resistance to temperature and pH inactivation in comparison to the free form and hence widened the reaction pH and temperature range. Thermostability and storage stability of the enzyme improved upon covalent immobilization. Immobilized lipase showed higher activity after recycling when compared to the free one and could be recovered by magnetic separation.

  9. Effect of Plant Oils upon Lipase and Citric Acid Production in Yarrowia lipolytica Yeast

    PubMed Central

    Darvishi, Farshad; Nahvi, Iraj; Zarkesh-Esfahani, Hamid; Momenbeik, Fariborz

    2009-01-01

    The nonconventional yeast Yarrowia lipolytica degrades very efficiently hydrophobic substrates to produce organic acids, single-cell oil, lipases, and so forth. The aim of this study was to investigate the biochemical behavior and simultaneous production of valuable metabolites such as lipase, citric acid (CA), and single-cell protein (SCP) by Yarrowia lipolytica DSM 3286 grown on various plant oils as sole carbon source. Among tested plant oils, olive oil proved to be the best medium for lipase and CA production. The Y. lipolytica DSM 3286 produced 34.6 ± 0.1 U/mL of lipase and also CA and SCP as by-product on olive oil medium supplemented with yeast extract. Urea, as organic nitrogen, was the best nitrogen source for CA production. The results of this study suggest that the two biotechnologically valuable products, lipase and CA, could be produced simultaneously by this strain using renewable low-cost substrates such as plant oils in one procedure. PMID:19826636

  10. Role of lipase in the regulation of postprandial gastric acid secretion and emptying of fat in humans: a study with orlistat, a highly specific lipase inhibitor

    PubMed Central

    Borovicka, J; Schwizer, W; Guttmann, G; Hartmann, D; Kosinski, M; Wastiel, C; Bischof-Delaloye, A; Fried, M

    2000-01-01

    BACKGROUND AND AIMS—To investigate the importance of lipase on gastric functions, we studied the effects of orlistat, a potent and specific inhibitor of lipase, on postprandial gastric acidity and gastric emptying of fat.
METHODS—Fourteen healthy volunteers participated in a double blind, placebo controlled, randomised study. In a two way cross over study with two test periods of five days, separated by at least 14 days, orlistat 120 mg three times daily or placebo was given with standardised daily meals. In previous experiments we found that this dose almost completely inhibited postprandial duodenal lipase activity. Subjects underwent 28 hour intragastric pH-metry on day 4, and a gastric emptying study with a mixed meal (800 kcal) labelled with 999mTc sulphur colloid (solids) and 111Inthiocyanate (fat) on day 5. Gastric pH data were analysed for three postprandial hours and the interdigestive periods.
RESULTS—Orlistat inhibited almost completely (by 75%) lipase activity and accelerated gastric emptying of both the solid (by 52%) and fat (by 44%) phases of the mixed meal (p<0.03). Orlistat increased postprandial gastric acidity (from a median pH of 3.3 to 2.7; p<0.01). Postprandial cholecystokinin release was lower with orlistat (p<0.03).
CONCLUSION—Lipase has an important role in the regulation of postprandial gastric acid secretion and fat emptying in humans. These effects might be explained by lipolysis induced release of cholecystokinin.


Keywords: lipase; orlistat; gastric secretion; gastric emptying; pH-metry PMID:10807887

  11. Production of fatty acid butyl esters using the low cost naturally immobilized Carica papaya lipase.

    PubMed

    Su, Erzheng; Wei, Dongzhi

    2014-07-01

    In this work, the low cost naturally immobilized Carica papaya lipase (CPL) was investigated for production of fatty acid butyl esters (FABE) to fulfill the aim of reducing the lipase cost in the enzymatic butyl-biodiesel process. The CPL showed specificities to different alcohol acyl acceptors. Alcohols with more than three carbon atoms did not have negative effects on the CPL activity. The CPL catalyzed butanolysis for FABE production was systematically investigated. The reaction solvent, alcohol/oil molar ratio, enzyme amount, reaction temperature, and water activity all affected the butanolysis process. Under the optimized conditions, the highest conversion of 96% could be attained in 24 h. These optimal conditions were further applied to CPL catalyzed butanolysis of other vegetable oils. All of them showed very high conversion. The CPL packed-bed reactor was further developed, and could be operated continuously for more than 150 h. All of these results showed that the low cost Carica papaya lipase can be used as a promising lipase for biodiesel production.

  12. Optimization of Serratia marcescens lipase production for enantioselective hydrolysis of 3-phenylglycidic acid ester.

    PubMed

    Gao, Li; Xu, Jian-He; Li, Xin-Jun; Liu, Zuo-Zhen

    2004-12-01

    Lipase production and cell growth of Serratia marcescens ECU1010 were optimized in shake flasks, with lipase production being enhanced 9.5-fold (4,780 U/l) compared with the initial activity (500 U/l). Optimal carbon and nitrogen sources were Tween-80 and peptone, and the optimal ratio of Tween-80 to peptone was 1:3. The optimized cultivation conditions were 25 degrees C and pH 6.5. Lipase activity, particularly specific activity, could be improved by decreasing the cultivation temperature from 35 to 25 degrees C. Enzyme stability was significantly improved by simple immobilization with synthetic adsorption resin no. 8244. After five reaction cycles, enzyme activity decreased only very slightly, while enantioselectivity of the preparation remained constant, and the ees (enantiomeric excess of the remaining substrate) achieved in all cases was higher than 97%. The resin-8244-lipase preparation can be used for efficient enantioselective hydrolysis of trans-3-(4'-methoxyphenyl)glycidic acid methyl ester [(+/-)-MPGM], a key intermediate in the synthesis of Diltiazem.

  13. Biocatalytic potential of lipase from Staphylococcus sp. MS1 for transesterification of jatropha oil into fatty acid methyl esters.

    PubMed

    Sharma, Monika; Singh, Shelley Sardul; Maan, Pratibha; Sharma, Rohit

    2014-11-01

    An extracellular lipase producing isolate Staphylococcus sp. MS1 was optimized for lipase production and its biocatalytic potential was assessed. Medium with tributyrin (0.25 %) and without any exogenous inorganic nitrogen source was found to be optimum for lipase production from Staphylococcus sp. MS1. The optimum pH and temperature for lipase production were found to be pH 7 and 37 °C respectively, showing lipase activity of 37.91 U. It showed good lipase production at pH 6-8. The lipase was found to be stable in organic solvents like hexane and petroleum ether, showing 98 and 88 % residual activity respectively. The biotransformation using the concentrated enzyme in petroleum ether resulted in the synthesis of fatty acid methyl esters like methyl oleate, methyl palmitate and methyl stearate. Thus, the lipase under study has got the potential to bring about transesterification of oils into methyl esters which can be exploited for various biotechnological applications. PMID:25115850

  14. Esterification of polyglycerol with polycondensed ricinoleic acid catalysed by immobilised Rhizopus oryzae lipase.

    PubMed

    Ortega, S; Máximo, M F; Montiel, M C; Murcia, M D; Arnold, G; Bastida, J

    2013-09-01

    The enzymatic method for synthesising polyglycerol polyricinoleate (PGPR), a food additive named E-476, was successfully carried out in the presence of immobilised Rhizopus oryzae lipase in a solvent-free medium. The great advantage of using the commercial preparation of R. oryzae lipase is that it is ten times cheaper than the commercial preparation of R. arrhizus lipase, the biocatalyst used in previous studies. The reaction, which is really a reversal of hydrolysis, takes place in the presence of a very limited amount of aqueous phase. Immobilisation of the lipase by physical adsorption onto an anion exchange resin provided good results in terms of activity, enzyme stability and reuse of the immobilised derivative. It has been established that the adsorption of R. oryzae lipase on Lewatit MonoPlus MP 64 follows a pseudo-second order kinetics, which means that immobilisation is a process of chemisorption, while the equilibrium adsorption follows a Langmuir isotherm. The use of this immobilised derivative as catalyst for obtaining PGPR under a controlled atmosphere in a vacuum reactor, with a dry nitrogen flow intake, allowed the synthesis of a product with an acid value lower than 6 mg KOH/g, which complies with the value established by the European Commission Directive. This product also fulfils the European specifications regarding the hydroxyl value and refractive index given for this food additive, one of whose benefits, as proved in our experiments, is that it causes a drastic decrease in the viscosity (by 50 %) and yield stress (by 82 %) of chocolate, comparable to the impact of customary synthesised PGPR.

  15. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    PubMed Central

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M.J.

    2011-01-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. PMID:21915852

  16. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters.

    PubMed

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M J

    2012-02-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel.

  17. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase

    PubMed Central

    Sahonero-Canavesi, Diana X.; Sohlenkamp, Christian; Sandoval-Calderón, Mario; Lamsa, Anne; Pogliano, Kit; López-Lara, Isabel M.; Geiger, Otto

    2016-01-01

    Summary Phospholipids are well known for their membrane forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth. PMID:25711932

  18. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase.

    PubMed

    Sahonero-Canavesi, Diana X; Sohlenkamp, Christian; Sandoval-Calderón, Mario; Lamsa, Anne; Pogliano, Kit; López-Lara, Isabel M; Geiger, Otto

    2015-09-01

    Phospholipids are well known for their membrane-forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth.

  19. Two-step synthesis of fatty acid ethyl ester from soybean oil catalyzed by Yarrowia lipolytica lipase

    PubMed Central

    2011-01-01

    Background Enzymatic biodiesel production by transesterification in solvent media has been investigated intensively, but glycerol, as a by-product, could block the immobilized enzyme and excess n-hexane, as a solution aid, would reduce the productivity of the enzyme. Esterification, a solvent-free and no-glycerol-release system for biodiesel production, has been developed, and two-step catalysis of soybean oil, hydrolysis followed by esterification, with Yarrowia lipolytica lipase is reported in this paper. Results First, soybean oil was hydrolyzed at 40°C by 100 U of lipase broth per 1 g of oil with approximately 30% to 60% (vol/vol) water. The free fatty acid (FFA) distilled from this hydrolysis mixture was used for the esterification of FFA to fatty acid ethyl ester by immobilized lipase. A mixture of 2.82 g of FFA and equimolar ethanol (addition in three steps) were shaken at 30°C with 18 U of lipase per 1 gram of FFA. The degree of esterification reached 85% after 3 hours. The lipase membranes were taken out, dehydrated and subjected to fresh esterification so that over 82% of esterification was maintained, even though the esterification was repeated every 3 hours for 25 batches. Conclusion The two-step enzymatic process without glycerol released and solvent-free demonstrated higher efficiency and safety than enzymatic transesterification, which seems very promising for lipase-catalyzed, large-scale production of biodiesel, especially from high acid value waste oil. PMID:21366905

  20. Enantioselective esterification of (R,S)-2-methylalkanoic acid with Carica papaya lipase in organic solvents.

    PubMed

    Chang, Chun-Sheng; Ho, Ssu-Ching

    2011-11-01

    Isooctane was the best reaction medium for the enantioselective esterification of (R,S)-2-methylalkanoic acid with n-butanol using Carica papaya lipase as catalyst. Increasing linear alkyl-chain length of racemic 2-methylalkanoic acids from ethyl to hexyl increased the enantioselectivity (E) from 2.1 to 98.2 for the esterification of racemic 2-methylalkanoic acids with n-butanol at 35°C. Decreasing reaction temperature from 40 to 20°C increased the enantioselectivity (E) from 14 to 33 for the esterification of racemic 2-methylhexanoic acids with n-butanol. We obtained a maximum enantioselectivity, of E = 24.3, for the enantioselective esterification of racemic 2-methylhexanoic acids with n-butanol in isooctane at water activity 0.33, and at 35°C.

  1. Synthesis of ascorbyl oleate by transesterification of olive oil with ascorbic acid in polar organic media catalyzed by immobilized lipases.

    PubMed

    Moreno-Perez, Sonia; Filice, Marco; Guisan, Jose M; Fernandez-Lorente, Gloria

    2013-09-01

    The reaction of transesterification between oils (e.g., olive oil) and ascorbic acid in polar anhydrous media (e.g., tert-amyl alcohol) catalyzed by immobilized lipases for the preparation of natural liposoluble antioxidants (e.g., ascorbyl oleate) was studied. Three commercial lipases were tested: Candida antarctica B lipase (CALB), Thermomyces lanuginosus lipase (TLL) and Rhizomucor miehei lipase (RML). Each lipase was immobilized by three different protocols: hydrophobic adsorption, anionic exchange and multipoint covalent attachment. The highest synthetic yields were obtained with CALB adsorbed on hydrophobic supports (e.g., the commercial derivative Novozym 435). The rates and yields of the synthesis of ascorbyl oleate were higher when using the solvent dried with molecular sieves, at high temperatures (e.g. 45°C) and with a small excess of oil (2 mol of oil per mol of ascorbic acid). The coating of CALB derivatives with polyethyleneimine (PEI) improved its catalytic behavior and allowed the achievement of yields of up to 80% of ascorbyl oleate in less than 24h. CALB adsorbed on a hydrophobic support and coated with PEI was 2-fold more stable than a non-coated derivative and one hundred-fold more stable than the best TLL derivative. The best CALB derivative exhibited a half-life of 3 days at 75°C in fully anhydrous media, and this derivative maintained full activity after 28 days at 45°C in dried tert-amyl alcohol.

  2. Kinetic modeling, production and characterization of an acidic lipase produced by Enterococcus durans NCIM5427 from fish waste.

    PubMed

    Ramakrishnan, Vrinda; Goveas, Louella Concepta; Halami, Prakash M; Narayan, Bhaskar

    2015-03-01

    Enterococcus durans NCIM5427 (ED-27), capable of producing an intracellular acid stable lipase, was isolated from fish processing waste. Its growth and subsequent lipase production was optimized by Box Behneken design (optimized conditions: 5 % v/v fish waste oil (FWO), 0.10 mg/ml fish waste protein hydrolysates (FWPH) at 48 h of fermentation time). Under optimized conditions, ED-27 showed a 3.0 fold increase (207.6 U/ml to 612.53 U/ml) in lipase production, as compared to un-optimized conditions. Cell growth and lipase production was modeled using Logistic and Luedeking-Piret model, respectively; and lipase production by ED-27 was found to be growth-associated. Lipase produced by ED-27 showed stability at low pH ranges from 2 to 5 with its optimal activity at 30 °C , pH 4.6; showed metal ion dependent activity wherein its catalytic activity was activated by barium, sodium, lithium and potassium (10 mM); reduced by calcium and magnesium (10 mM). However, iron and mercury (5 mM) completely inactivated the enzyme. In addition, modifying agents like SDS, DTT, β-ME (1%v/v) increased activity of lipase of ED-27; while, PMSF, DEPC and ascorbic acid resulted in a marked decrease. ED-27 had maximum cell growth of 9.90309 log CFU/ml under optimized conditions as compared to 13 log CFU/ml in MRS. The lipase produced has potential application in poultry and slaughterhouse waste management. PMID:25745201

  3. 3-d structure-based amino acid sequence alignment of esterases, lipases and related proteins

    SciTech Connect

    Gentry, M.K.; Doctor, B.P.; Cygler, M.; Schrag, J.D.; Sussman, J.L.

    1993-05-13

    Acetylcholinesterase and butyrylcholinesterase, enzymes with potential as pretreatment drugs for organophosphate toxicity, are members of a larger family of homologous proteins that includes carboxylesterases, cholesterol esterases, lipases, and several nonhydrolytic proteins. A computer-generated alignment of 18 of the proteins, the acetylcholinesases, butyrylcholinesterases, carboxylesterases, some esterases, and the nonenzymatic proteins has been previously presented. More recently, the three-dimensional structures of two enzymes enzymes in this group, acetylcholinesterase from Torpedo californica and lipase from Geotrichum candidum, have been determined. Based on the x-ray structures and the superposition of these two enzymes, it was possible to obtain an improved amino acid sequence alignment of 32 members of this family of proteins. Examination of this alignment reveals that 24 amino acids are invariant in all of the hydrolytic proteins, and an additional 49 are well conserved. Conserved amino acids include those of the active site, the disulfide bridges, the salt bridges, in the core of the proteins, and at the edges of secondary structural elements. Comparison of the three-dimensional structures makes it possible to find a well-defined structural basis for the conservation of many of these amino acids.

  4. Solvent-free lipase-catalyzed synthesis of a novel hydroxyl-fatty acid derivative of kojic acid.

    PubMed

    El-Boulifi, Noureddin; Ashari, Siti Efliza; Serrano, Marta; Aracil, Jose; Martínez, Mercedes

    2014-02-01

    The aim of this work was the synthesis of a novel hydroxyl-fatty acid derivative of kojic acid rich in kojic acid monoricinoleate (KMR) which can be widely used in the cosmetic and food industry. The synthesis of KMR was carried out by lipase-catalysed esterification of ricinoleic and kojic acids in solvent-free system. Three immobilized lipases were tested and the best KMR yields were attained with Lipozyme TL IM and Novozym 435. Since Lipozyme TL IM is the cheapest, it was selected to optimize the reaction conditions. The optimal reaction conditions were 80 °C for the temperature, 1:1 for the alcohol/acid molar ratio, 600 rpm for stirring speed and 7.8% for the catalyst concentration. Under these conditions, the reaction was scaled up in a 5×10⁻³ m³ stirred tank reactor. ¹H-¹³C HMBC-NMR showed that the primary hydroxyl group of kojic acid was regioselectively esterified. The KMR has more lipophilicity than kojic acid and showed antioxidant activity that improves the oxidation stability of biodiesel.

  5. The short form of the recombinant CAL-A-type lipase UM03410 from the smut fungus Ustilago maydis exhibits an inherent trans-fatty acid selectivity.

    PubMed

    Brundiek, Henrike; Saß, Stefan; Evitt, Andrew; Kourist, Robert; Bornscheuer, Uwe T

    2012-04-01

    The Ustilago maydis lipase UM03410 belongs to the mostly unexplored Candida antarctica lipase (CAL-A) subfamily. The two lipases with [corrected] the highest identity are a lipase from Sporisorium reilianum and the prototypic CAL-A. In contrast to the other CAL-A-type lipases, this hypothetical U. maydis lipase is annotated to possess a prolonged N-terminus of unknown function. Here, we show for the first time the recombinant expression of two versions of lipase UM03410: the full-length form (lipUMf) and an Nterminally truncated form (lipUMs). For comparison to the prototype, the expression of recombinant CAL-A in E. coli was investigated. Although both forms of lipase UM03410 could be expressed functionally in E. coli, the N-terminally truncated form (lipUMs) demonstrated significantly higher activities towards p-nitrophenyl esters. The functional expression of the N-terminally truncated lipase was further optimized by the appropriate choice of the E. coli strain, lowering the cultivation temperature to 20 °C and enrichment of the cultivation medium with glucose. Primary characteristics of the recombinant lipase are its pH optimum in the range of 6.5-7.0 and its temperature optimum at 55 °C. As is typical for lipases, lipUM03410 shows preference for long chain fatty acid esters with myristic acid ester (C14:0 ester) being the most preferred one.More importantly, lipUMs exhibits an inherent preference for C18:1Δ9 trans and C18:1Δ11 trans-fatty acid esters similar to CAL-A. Therefore, the short form of this U. maydis lipase is the only other currently known lipase with a distinct trans-fatty acid selectivity.

  6. Branched Fatty Acid Esters of Hydroxy Fatty Acids Are Preferred Substrates of the MODY8 Protein Carboxyl Ester Lipase.

    PubMed

    Kolar, Matthew J; Kamat, Siddhesh S; Parsons, William H; Homan, Edwin A; Maher, Tim; Peroni, Odile D; Syed, Ismail; Fjeld, Karianne; Molven, Anders; Kahn, Barbara B; Cravatt, Benjamin F; Saghatelian, Alan

    2016-08-23

    A recently discovered class of endogenous mammalian lipids, branched fatty acid esters of hydroxy fatty acids (FAHFAs), possesses anti-diabetic and anti-inflammatory activities. Here, we identified and validated carboxyl ester lipase (CEL), a pancreatic enzyme hydrolyzing cholesteryl esters and other dietary lipids, as a FAHFA hydrolase. Variants of CEL have been linked to maturity-onset diabetes of the young, type 8 (MODY8), and to chronic pancreatitis. We tested the FAHFA hydrolysis activity of the CEL MODY8 variant and found a modest increase in activity as compared with that of the normal enzyme. Together, the data suggest that CEL might break down dietary FAHFAs. PMID:27509211

  7. Isolation of lipase and citric acid producing yeasts from agro-industrial wastewater.

    PubMed

    Mafakher, Ladan; Mirbagheri, Maryam; Darvishi, Farshad; Nahvi, Iraj; Zarkesh-Esfahani, Hamid; Emtiazi, Giti

    2010-09-30

    Production of agro-industrial waste pollutants has become a major problem for many industries. However, agro-industrial wastes also can provide alternative substrates for industry and their utilization in this manner may help solve pollution problems. The aim of this study was to isolate yeasts from wastewater treatment plants that could be used to remove pollutants such as glycerol, paraffin and crude oil from the agro-industrial wastewater. In this study a total of 300 yeast isolates were obtained from samples of agro-industrial wastes, and two strains (M1 and M2) were investigated for their ability to produce valuable products such as lipase and citric acid. Identification tests showed that these isolates belonged to the species Yarrowia lipolytica. The Y. lipolytica M1 and M2 strains produced maximum levels of lipase (11 and 8.3 U/ml, respectively) on olive oil, and high levels of citric acid (27 and 8 g/l, respectively) on citric acid fermentation medium.

  8. Characterization of lipases from the lipid bodies and microsomal membranes of erucic acid-free oilseed-rape (Brassica napus) cotyledons.

    PubMed Central

    Hills, M J; Murphy, D J

    1988-01-01

    Lipase (triacylglycerol lipase, EC 3.1.1.3) activities have been reported previously in the lipid body and microsomal membranes of oilseed-rape (Brassica napus cv. Andor) seedlings, but conflicting data made it unclear whether there was one lipase in the lipid bodies, with the microsomal activity being attributable to fragments of lipid-body membrane, or if there were two separate lipase activities. In the present study, simultaneous characterization of the lipases under identical conditions showed they differed substantially in their pH-activity curves, kinetics and substrate specificities. (1) The kinetics of the microsomal lipase showed that the rate of lipolysis reached a plateau at concentrations above 5 mM, whereas the lipid-body lipase showed a linear increase in activity with substrate concentration up to 20 mM. (2) The pH optimum of the microsomal lipase was 7.5, whereas that of the lipid-body lipase was 9.0. The microsomal lipase was greatly inhibited at higher pH values, whereas the lipid-body lipase was much less affected. (3) Activity of the microsomal lipase was greatly diminished when substrates with longer chain length were used, and enhanced 4-fold if the substrates contained a single double bond. The lipid-body lipase was relatively unaffected by the type of fatty acid in the triacylglycerol. (4) SDS/polyacrylamide-gel electrophoresis showed little or no cross-contamination of the lipid-body and microsomal fractions. (5) The microsomal lipase activity comprised 75-80% of the total extracted. Images Fig. 5. PMID:2833225

  9. Predicting lipase types by improved Chou's pseudo-amino acid composition.

    PubMed

    Zhang, Guang-Ya; Li, Hong-Chun; Gao, Jia-Qiang; Fang, Bai-Shan

    2008-01-01

    By proposing a improved Chou's pseudo amino acid composition approach to extract the features of the sequences, a powerful predictor based on k-nearest neighbor was introduced to identify the types of lipases according to their sequences. To avoid redundancy and bias, demonstrations were performed on a dataset where none of the proteins has > or =25% sequence identity to any other. The overall success rate thus obtained by the 10-fold cross-validation test was over 90%, indicating that the improved Chou's pseudo amino acid composition might be a useful tool for extracting the features of protein sequences, or at lease can play a complementary role to many of the other existing approaches. PMID:19075826

  10. Intercellular transport of lysosomal acid lipase mediates lipoprotein cholesteryl ester metabolism in a human vascular endothelial cell-fibroblast coculture system.

    PubMed Central

    Sando, G N; Ma, G P; Lindsley, K A; Wei, Y P

    1990-01-01

    We present results from studies of human cell culture models to support the premise that the extracellular transport of lysosomal acid lipase has a function in lipoprotein cholesteryl ester metabolism in vascular tissue. Vascular endothelial cells secreted a higher fraction of cellular acid lipase than did smooth muscle cells and fibroblasts. Acid lipase and lysosomal beta-hexosaminidase were secreted at approximately the same rate from the apical and basolateral surface of an endothelial cell monolayer. Stimulation of secretion with NH4Cl did not affect the polarity. We tested for the ability of secreted endothelial lipase to interact with connective tissue cells and influence lipoprotein cholesterol metabolism in a coculture system in which endothelial cells on a micropore filter were suspended above a monolayer of acid lipase-deficient (Wolman disease) fibroblasts. After 5-7 d, acid lipase activity in the fibroblasts reached 10%-20% of the level in normal cells; cholesteryl esters that had accumulated from growth in serum were cleared. Addition of mannose 6-phosphate to the coculture medium blocked acid lipase uptake and cholesterol clearance, indicating that lipase released from endothelial cells was packaged into fibroblast lysosomes by a phosphomannosyl receptor-mediated pathway. Supplementation of the coculture medium with serum was not required for lipase uptake and cholesteryl ester hydrolysis by the fibroblasts, but was necessary for cholesterol clearance. Results from our coculture model suggest that acid lipase may be transported from intact endothelium to cells in the lumen or the wall of a blood vessel. We postulate that delivery of acid hydrolases and lipoproteins to a common endocytic compartment may occur and have an impact on cellular lipoprotein processing. PMID:2150334

  11. Asymmetric synthesis of aromatic β-amino acids using ω-transaminase: Optimizing the lipase concentration to obtain thermodynamically unstable β-keto acids.

    PubMed

    Mathew, Sam; Jeong, Seong-Su; Chung, Taeowan; Lee, Sang-Hyeup; Yun, Hyungdon

    2016-01-01

    Synthesized aromatic β-amino acids have recently attracted considerable attention for their application as precursors in many pharmacologically relevant compounds. Previous studies on asymmetric synthesis of aromatic β-amino acids using ω-transaminases could not be done efficiently due to the instability of β-keto acids. In this study, a strategy to circumvent the instability problem of β-keto acids was utilized to generate β-amino acids efficiently via asymmetric synthesis. In this work, thermodynamically stable β-ketoesters were initially converted to β-keto acids using lipase, and the β-keto acids were subsequently aminated using ω-transaminase. By optimizing the lipase concentration, we successfully overcame the instability problem of β-keto acids and enhanced the production of β-amino acids. This strategy can be used as a general approach to efficiently generate β-amino acids from β-ketoesters.

  12. Studies of optimum conditions for covalent immobilization of Candida rugosa lipase on poly(gamma-glutamic acid) by RSM.

    PubMed

    Chang, S-W; Shaw, J-F; Yang, K-H; Chang, S-F; Shieh, C-J

    2008-05-01

    Poly(gamma-glutamic acid) (gamma-PGA) is a material of polymer. Immobilization of Candida rugosa lipase (Lipase AY-30) by covalent binding on gamma-PGA led to a markedly improved performance of the enzyme. Response surface methodology (RSM) and 3-level-3-factor fractional factorial design were employed to evaluate the effects of immobilization parameters, such as immobilization time (2-6h), immobilization temperature (0-26 degrees C), and enzyme/support ratio (0.1-0.5, w/w). Based on the analysis of ridge max, the optimum immobilization conditions were as follows: immobilization time 2.3h, immobilization temperature 13.3 degrees C, and enzyme/support ratio 0.41 (w/w); the highest lipase activity obtained was 1196 U/mg-protein.

  13. Yarrowia lipolytica lipase Lip2: an efficient enzyme for the production of concentrates of docosahexaenoic acid ethyl ester.

    PubMed

    Casas-Godoy, Leticia; Meunchan, Muchalin; Cot, Marlène; Duquesne, Sophie; Bordes, Florence; Marty, Alain

    2014-06-20

    The production of Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) rich in cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) was studied using lipase-catalysed hydrolysis of a mixture of ethyl esters from tuna oil. Lipases from Yarrowia lipolytica (YLL2), Thermomyces lanuginosus (TLL) and Candida rugosa (CRL1, CRL3 and CRL4) were tested. C. rugosa lipases discriminated esters on the basis of their chain length, with less affinity for γ-linolenate, 11-eicosenoate, arachidonate, EPA, DPA and DHA ethyl esters. However, YLL2 and TLL improved discrimination towards DHA, as enzyme selectivity was shown to be mainly based on the position of the double bond closest to the carboxylic group. From the point of view of kinetics, purity and yield, YLL2 was the most effective lipase for DHA purification. Using this enzyme in an open reactor process resulted in the highest concentrations of DHA ethyl ester (77%) and ω-3 esters (81%) with a recovery of 94% and 77% respectively. PMID:24657346

  14. Immobilized MAS1 lipase showed high esterification activity in the production of triacylglycerols with n-3 polyunsaturated fatty acids.

    PubMed

    Wang, Xiumei; Li, Daoming; Qu, Man; Durrani, Rabia; Yang, Bo; Wang, Yonghua

    2017-02-01

    Immobilization of lipase MAS1 from marine Streptomyces sp. strain W007 and its application in catalyzing esterification of n-3 polyunsaturated fatty acids (PUFA) with glycerol were investigated. The resin XAD1180 was selected as a suitable support for the immobilization of lipase MAS1, and its absorption ability was 75mg/g (lipase/resin ratio) with initial buffer pH value of 8.0. The thermal stability of immobilized MAS1 was improved significantly compared with that of the free lipase. Immobilized MAS1 had no regiospecificity in the hydrolysis of triolein. The highest esterification degree (99.31%) and TAG content (92.26%) by immobilized MAS1-catalyzed esterification were achieved under the optimized conditions, which were significantly better than those (82.16% and 47.26%, respectively) by Novozym 435. More than 92% n-3 PUFA was incorporated into TAG that had similar fatty acids composition to the substrate (n-3 PUFA). The immobilized MAS1 exhibited 50% of its initial activity after being used for five cycles. PMID:27596418

  15. Fatty acid specificity of hormone-sensitive lipase. Implication in the selective hydrolysis of triacylglycerols.

    PubMed

    Raclot, T; Holm, C; Langin, D

    2001-12-01

    The selective mobilization of fatty acids from white fat cells depends on their molecular structure, in particular the degree of unsaturation. The present study was designed to examine if the release of fatty acids by hormone-sensitive lipase (HSL) in vitro i) is influenced by the amount of unsaturation, ii) depends on the temperature, and iii) could explain the selective pattern of fatty acid mobilization and notably the preferential mobilization of certain highly unsaturated fatty acids. Recombinant rat and human HSL were incubated with a lipid emulsion. The hydrolysis of 35 individual fatty acids, ranging in chain length from 12 to 24 carbon atoms and in unsaturation from 0 to 6 double bonds was measured. Fatty acid composition of in vitro released NEFA was compared with that of fat cell triacylglycerols (TAG), the ratio % NEFA/% TAG being defined as the relative hydrolysis. The relative hydrolysis of individual fatty acids differed widely, ranging from 0.44 (24:1n-9) to 1.49 (18:1n-7) with rat HSL, and from 0.38 (24:1n-9) to 1.67 (18:1n-7) with human HSL. No major difference was observed between rat and human HSL. The relative release was dependent on the number of double bonds according to chain length. The amount of fatty acid released by recombinant rat HSL was decreased but remained robust at 4 degrees C compared with 37 degrees C, and the relative hydrolysis of some individual fatty acids was affected. The relative hydrolysis of fatty acids moderately, weakly, and highly mobilized by adipose tissue in vivo was similar and close to unity in vitro. We conclude that i) the release of fatty acids by HSL is only slightly affected by their degree of unsaturation, ii) the ability of HSL to efficiently and selectively release fatty acids at low temperature could reflect a cold adaptability for poikilotherms or hibernators when endogenous lipids are needed, and iii) the selectivity of fatty acid hydrolysis by HSL does not fully account for the selective pattern of

  16. Efficient bifunctional catalyst lipase/organophosphonic acid-functionalized silica for biodiesel synthesis by esterification of oleic acid with ethanol.

    PubMed

    Yin, Ping; Chen, Wen; Liu, Wei; Chen, Hou; Qu, Rongjun; Liu, Xiguang; Tang, Qinghua; Xu, Qiang

    2013-07-01

    An efficient bifunctional catalyst lipase/organophosphonic acid-functionalized silica (SG-T-P-LS) has been successfully developed, and biodiesel production of fatty acid ethyl ester (FAEE) from free fatty acid (FFA) oleic acid with short-chain alcohol ethanol catalyzed by SG-T-P-LS was investigated. The process optimization using response surface methodology (RSM) was performed and the interactions between the operational variables were elucidated, and it was found that the molar ratio of alcohol to acid was the most significant factor. The optimum values for maximum conversion ratio can be obtained by using a Box-Behnken center-united design, and the conversion ratio could reach 89.94 ± 0.42% under the conditions that ethanol/acid molar ratio was 1.05:1 and SG-T-P-LS to FFA weight ratio was 14.9 wt.% at 28.6°C. The research results show that SG-T-P and LS-20 could work cooperatively to promote the esterification reaction, and the bifunctional catalyst SG-T-P-LS is a potential catalyst for biodiesel production.

  17. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids

    SciTech Connect

    Saxena, U.; Witte, L.D.; Goldberg, I.J.

    1989-03-15

    Lipoprotein lipase (LPL) bound to the lumenal surface of vascular endothelial cells is responsible for the hydrolysis of triglycerides in plasma lipoproteins. Studies were performed to investigate whether human plasma lipoproteins and/or free fatty acids would release LPL which was bound to endothelial cells. Purified bovine milk LPL was incubated with cultured porcine aortic endothelial cells resulting in the association of enzyme activity with the cells. When the cells were then incubated with media containing chylomicrons or very low density lipoproteins (VLDL), a concentration-dependent decrease in the cell-associated LPL enzymatic activity was observed. In contrast, incubation with media containing low density lipoproteins or high density lipoproteins produced a much smaller decrease in the cell-associated enzymatic activity. The addition of increasing molar ratios of oleic acid:bovine serum albumin to the media also reduced enzyme activity associated with the endothelial cells. To determine whether the decrease in LPL activity was due to release of the enzyme from the cells or inactivation of the enzyme, studies were performed utilizing radioiodinated bovine LPL. Radiolabeled LPL protein was released from endothelial cells by chylomicrons, VLDL, and by free fatty acids (i.e. oleic acid bound to bovine serum albumin). The release of radiolabeled LPL by VLDL correlated with the generation of free fatty acids from the hydrolysis of VLDL triglyceride by LPL bound to the cells. Inhibition of LPL enzymatic activity by use of a specific monoclonal antibody, reduced the extent of release of /sup 125/I-LPL from the endothelial cells by the added VLDL. These results demonstrated that LPL enzymatic activity and protein were removed from endothelial cells by triglyceride-rich lipoproteins (chylomicrons and VLDL) and oleic acid.

  18. Potential of essential fatty acid deficiency with extremely low fat diet in lipoprotein lipase deficiency during pregnancy: A case report

    PubMed Central

    Tsai, Elaine C; Brown, Judy A; Veldee, Megan Y; Anderson, Gregory J; Chait, Alan; Brunzell, John D

    2004-01-01

    Background Pregnancy in patients with lipoprotein lipase deficiency is associated with high risk of maternal pancreatitis and fetal death. A very low fat diet (< 10% of calories) is the primary treatment modality for the prevention of acute pancreatitis, a rare but potentially serious complication of severe hypertriglyceridemia. Since pregnancy can exacerbate hypertriglyceridemia in the genetic absence of lipoprotein lipase, a further reduction of dietary fat intake to < 1–2% of total caloric intake may be required during the pregnancy, along with the administration of a fibrate. It is uncertain if essential fatty acid deficiency will develop in the mother and fetus with this extremely low fat diet, or whether fibrates will cross the placenta and concentrate in the fetus. Case presentation A 23 year-old gravida 1 woman with primary lipoprotein lipase deficiency was seen at 7 weeks of gestation in the Lipid Clinic for management of severe hypertriglyceridemia that had worsened with pregnancy. While on her habitual fat intake of 10% of total calories, her pregnancy resulted in an exacerbation of the hypertriglyceridemia, which prompted further restriction of fat intake to < 2% of total calories, as well as administration of gemfibrozil at a lower than average dose. The level of gemfibrozil, as the active metabolite, in the venous and arterial fetal cord blood was within the expected therapeutic range for adults. The clinical signs and a biomarker of essential fatty acid deficiency, namely the ratio of 20:3 [n-9] to 20:4 [n-6] fatty acids, were closely monitored throughout her pregnancy. Despite her extremely low fat diet, the levels of essential fatty acids measured in the mother and in the fetal blood immediately postpartum were normal. Normal essential fatty acid levels may have been achieved by the topical application of sunflower oil. Conclusions An extremely low fat diet in combination with topical sunflower oil and gemfibrozil administration was safely

  19. Screening of microbial lipases and evalutaion of their potential to produce glycerides with high gamma linolenic acid concentration.

    PubMed

    Fregolente, Patricia B L; Fregolente, Leonardo V; Maciel, Maria R W; Carvalho, Patricia O

    2009-10-01

    Gamma linolenic acid (GLA, 18:3, cis- 6,9,12- octadecatrienoic acid), an important compound in n- 6 eicosanoid family biosynthesis, occurs in the lipids of a few plant and microbial sources. This study focused on the screening of microbial strains with suitable lipase activity for enrichment of GLA by selective hydrolysis of the borage oil (21.6 % of GLA/total fatty acids). Firstly, 352 microrganisms were tested for their lipolytic capacity using screening techniques on agar plates containing borage oil, strains were then selected and screened for their activity (U/mg) using both submerged fermentation (SmF) and solid state fermentation (SSF). The rate of hydrolysis and the selective preference of these hydrolytic enzymes towards fatty acids, with a special focus on enrichment of GLA were studied and compared with those obtained by two commercially-available lipases. Only one of the lipases tested during this study displayed selectivity, discriminating the GLA during the hydrolysis reaction. Using the enzymatic extract from Geotrichum candidum as a biocatalyst of the reaction, it was possible to obtain a percentage of 41.7% of GLA in acylglycerols fraction when the borage oil was treated in a fixed-bed reactor for 24 hours at 30ºC. PMID:24031421

  20. Lipase-catalyzed process in an anhydrous medium with enzyme reutilization to produce biodiesel with low acid value.

    PubMed

    Azócar, Laura; Ciudad, Gustavo; Heipieper, Hermann J; Muñoz, Robinson; Navia, Rodrigo

    2011-12-01

    One major problem in the lipase-catalyzed production of biodiesel or fatty acid methyl esters (FAME) is the high acidity of the product, mainly caused by water presence, which produces parallel hydrolysis and esterification reactions instead of transesterification to FAME. Therefore, the use of reaction medium in absence of water (anhydrous medium) was investigated in a lipase-catalyzed process to improve FAME yield and final product quality. FAME production catalyzed by Novozym 435 was carried out using waste frying oil (WFO) as raw material, methanol as acyl acceptor, and 3Å molecular sieves to extract the water. The anhydrous conditions allowed the esterification of free fatty acids (FFA) from feedstock at the initial reaction time. However, after the initial esterification process, water absence avoided the consecutives reactions of hydrolysis and esterification, producing FAME mainly by transesterification. Using this anhydrous medium, a decreasing in both the acid value and the diglycerides content in the product were observed, simultaneously improving FAME yield. Enzyme reuse in the anhydrous medium was also studied. The use of the moderate polar solvent tert-butanol as a co-solvent led to a stable catalysis using Novozym 435 even after 17 successive cycles of FAME production under anhydrous conditions. These results indicate that a lipase-catalyzed process in an anhydrous medium coupled with enzyme reuse would be suitable for biodiesel production, promoting the use of oils of different origin as raw materials.

  1. Fatty acid steryl, stanyl, and steroid esters by esterification and transesterification in vacuo using Candida rugosa lipase as catalyst.

    PubMed

    Weber, N; Weitkamp, P; Mukherjee, K D

    2001-01-01

    Sterols (sitosterol, cholesterol, stigmasterol, ergosterol, and 7-dehydrocholesterol) and sitostanol have been converted in high to near-quantitative yields to the corresponding long-chain acyl esters via esterification with fatty acids or transesterification with methyl esters of fatty acids or triacylglycerols using lipase from Candida rugosa as biocatalyst in vacuo (20-40 mbar) at 40 degrees C. Neither organic solvent nor water is added in these reactions. Under similar conditions, cholesterol has been converted to cholesteryl butyrate and steroids (5alpha-pregnan-3beta-ol-20-one or 5-pregnen-3beta-ol-20-one) have been converted to their propionic acid esters, both in moderate to high yields, via transesterification with tributyrin and tripropionin, respectively. Reaction parameters studied in esterification include the temperature and the molar ratio of the substrates as well as the amount and reuse properties of the C. rugosa lipase. Lipases from porcine pancreas, Rhizopus arrhizus, and Chromobacterium viscosum are quite ineffective as biocatalysts for the esterification of cholesterol with oleic acid under the above conditions.

  2. Screening of microbial lipases and evalutaion of their potential to produce glycerides with high gamma linolenic acid concentration

    PubMed Central

    Fregolente, Patricia B.L.; Fregolente, Leonardo V.; Maciel, Maria R.W.; Carvalho, Patricia O.

    2009-01-01

    Gamma linolenic acid (GLA, 18:3, cis- 6,9,12- octadecatrienoic acid), an important compound in n- 6 eicosanoid family biosynthesis, occurs in the lipids of a few plant and microbial sources. This study focused on the screening of microbial strains with suitable lipase activity for enrichment of GLA by selective hydrolysis of the borage oil (21.6 % of GLA/total fatty acids). Firstly, 352 microrganisms were tested for their lipolytic capacity using screening techniques on agar plates containing borage oil, strains were then selected and screened for their activity (U/mg) using both submerged fermentation (SmF) and solid state fermentation (SSF). The rate of hydrolysis and the selective preference of these hydrolytic enzymes towards fatty acids, with a special focus on enrichment of GLA were studied and compared with those obtained by two commercially-available lipases. Only one of the lipases tested during this study displayed selectivity, discriminating the GLA during the hydrolysis reaction. Using the enzymatic extract from Geotrichum candidum as a biocatalyst of the reaction, it was possible to obtain a percentage of 41.7% of GLA in acylglycerols fraction when the borage oil was treated in a fixed-bed reactor for 24 hours at 30ºC. PMID:24031421

  3. Screening of microbial lipases and evalutaion of their potential to produce glycerides with high gamma linolenic acid concentration.

    PubMed

    Fregolente, Patricia B L; Fregolente, Leonardo V; Maciel, Maria R W; Carvalho, Patricia O

    2009-10-01

    Gamma linolenic acid (GLA, 18:3, cis- 6,9,12- octadecatrienoic acid), an important compound in n- 6 eicosanoid family biosynthesis, occurs in the lipids of a few plant and microbial sources. This study focused on the screening of microbial strains with suitable lipase activity for enrichment of GLA by selective hydrolysis of the borage oil (21.6 % of GLA/total fatty acids). Firstly, 352 microrganisms were tested for their lipolytic capacity using screening techniques on agar plates containing borage oil, strains were then selected and screened for their activity (U/mg) using both submerged fermentation (SmF) and solid state fermentation (SSF). The rate of hydrolysis and the selective preference of these hydrolytic enzymes towards fatty acids, with a special focus on enrichment of GLA were studied and compared with those obtained by two commercially-available lipases. Only one of the lipases tested during this study displayed selectivity, discriminating the GLA during the hydrolysis reaction. Using the enzymatic extract from Geotrichum candidum as a biocatalyst of the reaction, it was possible to obtain a percentage of 41.7% of GLA in acylglycerols fraction when the borage oil was treated in a fixed-bed reactor for 24 hours at 30ºC.

  4. Radical scavenging activity of lipophilized products from lipase-catalyzed transesterification of triolein with cinnamic and ferulic acids.

    PubMed

    Choo, Wee-Sim; Birch, Edward John

    2009-02-01

    Lipase-catalyzed transesterification of triolein with cinnamic and ferulic acids using an immobilized lipase from Candida antarctica (E.C. 3.1.1.3) was conducted to evaluate the antioxidant activity of the lipophilized products as model systems for enhanced protection of unsaturated oil. The lipophilized products were identified using ESI-MS. Free radical scavenging activity was determined using the DPPH radical method. The polarity of the solvents proved important in determining the radical scavenging activity of the substrates. Ferulic acid showed much higher radical scavenging activity than cinnamic acid, which has limited activity. The esterification of cinnamic acid and ferulic acid with triolein resulted in significant increase and decrease in the radical scavenging activity, respectively. These opposite effects were due to the effect of addition of electron-donating alkyl groups on the predominant mechanism of reaction (hydrogen atom transfer or electron transfer) of a species with DPPH. The effect of esterification of cinnamic acid was confirmed using ethyl cinnamate which greatly enhances the radical scavenging activity. Although, compared to the lipophilized cinnamic acid product, the activity was lower. The radical scavenging activity of the main component isolated from lipophilized cinnamic acid product using solid phase extraction, monocinnamoyl dioleoyl glycerol, was as good as the unseparated mixture of lipophilized product. Based on the ratio of a substrate to DPPH concentration, lipophilized ferulic acid was a much more efficient radical scavenger than lipophilized cinnamic acid.

  5. Lipase-Catalyzed Production of 6-O-cinnamoyl-sorbitol from D-sorbitol and Cinnamic Acid Esters.

    PubMed

    Kim, Jung-Ho; Bhatia, Shashi Kant; Yoo, Dongwon; Seo, Hyung Min; Yi, Da-Hye; Kim, Hyun Joong; Lee, Ju Hee; Choi, Kwon-Young; Kim, Kwang Jin; Lee, Yoo Kyung; Yang, Yung-Hun

    2015-05-01

    To overcome the poor properties of solubility and stability of cinnamic acid, cinnamate derivatives with sugar alcohols were produced using the immobilized Candida antarctica lipase with vinyl cinnamate and D-sorbitol as substrate at 45 °C. Immobilized C. antarctica lipase was found to synthesize 6-O-cinnamoyl-sorbitol and confirmed by HPLC and (1)H-NMR and had a preference for vinyl cinnamate over other esters such as allyl-, ethyl-, and isobutyl cinnamate as co-substrate with D-sorbitol. Contrary to D-sorbitol, vinyl cinnamate, and cinnamic acid, the final product 6-O-cinnamoyl-sorbitol was found to have radical scavenging activity. This would be the first report on the biosynthesis of 6-O-cinnamoyl-sorbitol with immobilized enzyme from C. antarctica.

  6. Stepwise esterification of phytosterols with conjugated linoleic acid catalyzed by Candida rugosa lipase in solvent-free medium.

    PubMed

    Torres, Carlos F; Torrelo, Guzman; Vazquez, Luis; Señorans, F Javier; Reglero, Guillermo

    2008-12-01

    We conducted a near quantitative esterification of phytosterols from soybean oil deodorizer distillate with conjugated linoleic acid. We used a 1:1 molar ratio of sterols to conjugated linoleic acid. For that matter, stepwise addition of sterols was investigated. Total sterols were divided into several portions and added sequentially to the reaction mixture. Using this methodology, purities of up to 80% steryl esters were obtained that consumed more than 90% of the total conjugated linoleic acid. In addition, the effects of temperature, amount, and stability of lipase were also evaluated. PMID:19134551

  7. Nitrogen dioxide induced changes in level of free fatty acids, triglyceride, esterified fatty acid, ganglioside and lipase activity in the guinea pig brain

    SciTech Connect

    Farahani, H.; Hasan, M. )

    1992-02-01

    The biochemical response to controlled inhalation of nitrogen dioxide (NO2) was studied in 18 male guinea pigs. Animals were exposed to 2.5, 5.0, and 10 ppm NO2 for 2h daily for 35 consecutive days, and the results compared with six control animals exposed to filtered air for 2h daily for same period. Five biochemical parameters, including triglyceride, free fatty acids, esterified fatty acid, ganglioside and lipase activity were measured immediately after the last day of exposure. At 2.5 ppm NO2 inhalation no significant changes occurred in any region of the central nervous system (CNS). While as the dose concentration was increased to 5 and 10 ppm nitrogen dioxide, significant dose-related alteration were observed in the levels of triglyceride, free fatty acid, esterified fatty acid, ganglioside and lipase activity in the different regions of the guinea pig CNS.

  8. Dietary lipid levels impact lipoprotein lipase, hormone-sensitive lipase, and fatty acid synthetase gene expression in three tissues of adult GIFT strain of Nile tilapia, Oreochromis niloticus.

    PubMed

    Tian, Juan; Wu, Fan; Yang, Chang-Geng; Jiang, Ming; Liu, Wei; Wen, Hua

    2015-02-01

    The objective of this study was to assess the effects of dietary lipids on growth performance, body composition, serum parameters, and expression of genes involved in lipid metabolism in adult genetically improved farmed tilapia (GIFT strain) of Nile tilapia, Oreochromis niloticus. We randomly assigned adult male Nile tilapia (average initial body weight = 220.00 ± 9.54 g) into six groups consisting of four replicates (20 fish per replicate). Fish in each group were hand-fed a semi-purified diets containing different lipid levels [3.3 (the control group), 28.4, 51.4, 75.4, 101.9, and 124.1 g kg(-1)] for 8 weeks. The results indicated that there was no obvious effect in feeding rate among all groups (P > 0.05). The highest weight gain, specific growth rate, and protein efficiency ratio in 75.4 g kg(-1) diet group were increased by 23.31, 16.17, and 22.02 % than that of fish in the control group (P < 0.05). Protein retention ratio was highest in 51.4 g kg(-1) diet group. The results revealed that the optimum dietary lipid level for maximum growth performance is 76.6-87.9 g kg(-1). Increasing dietary lipid levels contributed to increased tissue and whole body lipid levels. Saturated and monounsaturated fatty acids (MUFAs) decreased, and polyunsaturated fatty acids increased with increasing dietary lipid levels. With the exception of MUFAs, the fatty acid profiles of liver and muscle were similar. Dietary lipid levels were negatively correlated with low-density lipoprotein- cholesterol content and positively with triacylglycerol and glucose contents. In the lipid-fed groups, there was a significant down-regulation of fatty acid synthase (FAS) mRNA in liver, muscle, and visceral adipose tissues. There was a rapid up-regulation of lipoprotein lipase (LPL) mRNA in muscle and liver with increasing dietary lipid levels. In visceral adipose tissue, LPL mRNA was significantly down-regulated in the lipid-fed groups. Dietary lipids increased hormone-sensitive lipase (HSL) m

  9. Inhibitors of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase: New Targets for Future Antidepressants.

    PubMed

    Ogawa, Shintaro; Kunugi, Hiroshi

    2015-01-01

    Cannabis and analogs of Δ9-tetrahydrocannabinol have been used for therapeutic purposes, but their therapeutic use remains limited because of various adverse effects. Endogenous cannabinoids have been discovered, and dysregulation of endocannabinoid signaling is implicated in the pathophysiology of major depressive disorder (MDD). Recently, endocannabinoid hydrolytic enzymes such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have become new therapeutic targets in the treatment of MDD. Several FAAH or MAGL inhibitors are reported to have no cannabimimetic side effects and, therefore, are new potential therapeutic options for patients with MDD who are resistant to first-line antidepressants (selective serotonin and serotonin-norepinephrine reuptake inhibitors). In this review, we focus on the possible relationships between MDD and the endocannabinoid system as well as the inhibitors' therapeutic potential. MAGL inhibitors may reduce inflammatory responses through activation of cannabinoid receptor type 2. In the hypothalamic-pituitary-adrenal axis, repeated FAAH inhibitor administration may be beneficial for reducing circulating glucocorticoid levels. Both FAAH and MAGL inhibitors may contribute to dopaminergic system regulation. Recently, several new inhibitors have been developed with strong potency and selectivity. FAAH inhibitor, MAGL inhibitor, or dual blocker use would be promising new treatments for MDD. Further pre-clinical studies and clinical trials using these inhibitors are warranted. PMID:26630956

  10. Inhibitors of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase: New Targets for Future Antidepressants

    PubMed Central

    Ogawa, Shintaro; Kunugi, Hiroshi

    2015-01-01

    Cannabis and analogs of Δ9-tetrahydrocannabinol have been used for therapeutic purposes, but their therapeutic use remains limited because of various adverse effects. Endogenous cannabinoids have been discovered, and dysregulation of endocannabinoid signaling is implicated in the pathophysiology of major depressive disorder (MDD). Recently, endocannabinoid hydrolytic enzymes such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have become new therapeutic targets in the treatment of MDD. Several FAAH or MAGL inhibitors are reported to have no cannabimimetic side effects and, therefore, are new potential therapeutic options for patients with MDD who are resistant to first-line antidepressants (selective serotonin and serotonin-norepinephrine reuptake inhibitors). In this review, we focus on the possible relationships between MDD and the endocannabinoid system as well as the inhibitors’ therapeutic potential. MAGL inhibitors may reduce inflammatory responses through activation of cannabinoid receptor type 2. In the hypothalamic–pituitary–adrenal axis, repeated FAAH inhibitor administration may be beneficial for reducing circulating glucocorticoid levels. Both FAAH and MAGL inhibitors may contribute to dopaminergic system regulation. Recently, several new inhibitors have been developed with strong potency and selectivity. FAAH inhibitor, MAGL inhibitor, or dual blocker use would be promising new treatments for MDD. Further pre-clinical studies and clinical trials using these inhibitors are warranted. PMID:26630956

  11. Study of reaction parameters and kinetics of esterification of lauric acid with butanol by immobilized Candida antarctica lipase.

    PubMed

    Shankar, Sini; Agarwal, Madhu; Chaurasia, S P

    2013-12-01

    Esterification of lauric acid with n-butanol, catalyzed by immobilized Candida antarctica lipase (CAL) in aqueous-organic biphasic solvent system was studied. Effects of various reaction parameters on esterification were investigated, such as type and amount of solvent, amount of buffer, pH, temperature, speed of agitation, amount of enzyme, butanol and lauric acid. The most suitable reaction conditions for esterification were observed at 50 degrees C and pH 7.0 using 5000 micromoles of lauric acid, 7000 pmoles of butanol, 0.25 ml phosphate buffer, 1 ml of isooctane as the solvent and 50 mg of immobilized enzyme in the reaction medium at agitation speed of 150 rpm. Maximum esterification of 96.36% was acheived in 600 min of reaction time at n-butanol to lauric acid molar ratio of 1: 0.7. Kinetic study for the esterification of lauric acid with n-butanol using immobilized CAL was carried out and the kinetic constants were estimated by using non-linear regression method. The estimated value of Michaelis kinetic constants for butanol (KmBt) and acid (KmAc) were 451.56 (M) and 4.7 x 10(-7)(M), respectively and the value of dissociation constant (KBt) of the butanol-lipase complex was 9.41 x 10(7)(M). The estimated constants agreed fairly well with literature data.

  12. Synthesis of some glucose-fatty acid esters by lipase from Candida antarctica and their emulsion functions.

    PubMed

    Ren, Kangzi; Lamsal, Buddhi P

    2017-01-01

    The synthesis of glucose esters with palmitic acid, lauric acid and hexanoic acid using lipase enzyme was studied and their emulsion functionality in oil-in-water system were compared. Reactions at 3:1M ratio of fatty acids-to-glucose had the highest conversion percentages (over 90% for each of the fatty acid). Initial conversion rate increased as substrate solubility increased. Ester bond formation was confirmed by nuclear magnetic resonance technique that the chemical shifts of glucose H-6 and α-carbon protons of fatty acids in the ester molecules shifted to the higher fields. Contact angle of water on esters' pelleted surface increased as the hydrophobicity increased. Glucose esters' and commercial sucrose esters' functionality as emulsifiers were compared. Glucose esters delayed, but did not prevent coalescence, because the oil droplets diameter doubled during 7days. Sucrose esters prevented coalescence during 7days since the droplets diameter did not have significant change. PMID:27507510

  13. Expression of lipases and lipid receptors in sperm storage tubules and possible role of fatty acids in sperm survival in the hen oviduct.

    PubMed

    Huang, A; Isobe, N; Obitsu, T; Yoshimura, Y

    2016-04-15

    The aim of this study was to determine the role of fatty acids for sperm survival in the sperm storage tubules (SSTs) of the hen oviduct. The mucosa tissues of uterovaginal junction (UVJ) of White Leghorn laying hens with or without artificial insemination using semen from Barred Plymouth Rock roosters were collected. The lipid density in the epithelium of UVJ and SST was analyzed by Sudan black B staining. The expressions of genes encoding lipid receptors and lipases were assayed by polymerase chain reaction in UVJ mucosa and SST cells isolated by laser microdissection. Fatty acid composition was analyzed by gas chromatography, and sperm were cultured with or without the identified predominant fatty acids for 24 hours to examine their effect on sperm viability. The lipid droplets were localized in the epithelium of UVJ mucosa and SSTs. The expression of genes encoding very low-density lipoprotein receptor(VLDLR), low-density lipoprotein receptor (LDLR), and fatty acid translocase (FAT/CD36) were found in SST cells. Expression of genes encoding endothelial lipase (EL), lipase H (LIPH), adipose triglyceride lipase (ATGL), and lipoprotein lipase (LPL) were found in UVJ. In contrast, only ATGL was found in SST cells, and its expression was significantly upregulated after artificial insemination. In UVJ mucosal tissues, five fatty acids, namely myristic acid (C14), palmitic acid (C16), stearic acid (C18), oleic acid (C18:1n9), and linoleic acid (C18:2n6), were identified as predominant fatty acids. The viability of sperm cultured with 1 mM oleic acid or linoleic acid was significantly higher than the sperm in the control culture without fatty acids. These results suggest that lipids in the SST cells may be degraded by ATGL, and fatty acids including oleic acid and linoleic acid may be released into the SST lumen to support sperm survival. PMID:26777559

  14. The combined use of whole Cuphea seeds containing medium chain fatty acids and an exogenous lipase in piglet nutrition.

    PubMed

    Dierick, N A; Decuypere, J A; Degeyter, I

    2003-02-01

    In search for an alternative for nutritional antimicrobials in piglet feeding, the effects of adding whole Cuphea seeds, as a natural source of medium chain fatty acids (MCFA), with known antimicrobial effects, and an exogenous lipase to a weaner diet were studied. The foregut flora, the gut morphology, some digestive parameters and the zootechnical performance of weaned piglets were investigated. Thirty newly weaned piglets, initial weight 7.0 +/- 0.4 kg, were divided according to litter, sex and weight in two groups (control diet; Cuphea + lipase diet). The Cuphea seeds (lanceolata and ignea) (50 g kg(-1)) were substituted for soybean oil (15 g kg(-1)), Alphacell (25 g kg(-1)) and soy protein isolate (10 g kg(-1)) in the control diet. Also 500 mg kg(-1) microbial lipase was added to the Cuphea diet. The piglets were weighted individually on days 0, 3. 7, 14 and 16. Feed intake was recorded per pen during days 0 to 3, 3 to 7, 7 to 14 and 14 to 16. On day 7 five piglets of each experimental group were euthanized for counting the gastric and small intestinal gut flora and for gut morphology at two sites of the small intestine (proximal, distal). The results indicate a trend towards improved performances parameters by feeding Cuphea + lipase. The enzymic released MCFA (1.7 g kg(-1) fresh gastric contents) tended to decrease the number of Coliforms in the proximal small intestine, but increased the number in the stomach and distal small intestine. With Culphea, the number of Streptococci was significantly lower in small intestine, but not in the stomach, while the number of Lactobacilli was significantly lower in the distal small intestine and tended to be lower in the stomach and proximal small intestine. No differences between the diets were noted for the total anaerobic microbial load in the stomach or in the gut. Feeding Cuphea + lipase resulted in a significantly greater villus height (distal small intestine) and a lesser crypt depth (proximal and distal small

  15. Medium chain and behenic acid incorporated structured lipids from sal, mango and kokum fats by lipase acidolysis.

    PubMed

    Bebarta, Biranchi; M, Jhansi; Kotasthane, Pranitha; Sunkireddy, Yella Reddy

    2013-01-15

    Medium chain (MC) and behenic fatty acids were incorporated into kokum, sal and mango fats using 1,3-specific lipase catalysed acidolysis. The incorporation of fatty acids increased with increase in concentration of fatty acids and duration of reaction. The order of incorporation of fatty acids was C22:0>C10:0>C8:0, to the extent of 53%, 42.5%, 35.8%, respectively, after 16 h, using kokum as substrate. The same trend was observed with sal or mango fats as substrates though the percentages incorporated were different. The modified products with higher contents of MC were liquids with no solid fats, even at 0°C, and which showed low cloud point due to an increase in triacylglycerols containing lower chain fatty acids. The modified products after incorporating both MC and C22:0 showed long melting ranges and were suitable for use in bakery, confectionery, etc. as vanaspati substitutes.

  16. A novel oriented immobilized lipase on magnetic nanoparticles in reverse micelles system and its application in the enrichment of polyunsaturated fatty acids.

    PubMed

    Liu, Tao; Zhao, Yuandi; Wang, Xiaofeng; Li, Xiang; Yan, Yunjun

    2013-03-01

    A novel oriented immobilized lipase was derived from Yarrowia lipolytica lipase LIP2 covalently immobilized on functionalized Fe3O4 magnetic nanoparticles (MNPs) in reverse micelles system (RMS). The activity recovery reached 382% compared with 29% in aqueous phase, and further ran up to 1425% under optimum conditions. (3-Aminopropyl) triethoxysilane (APTES) coated Fe3O4 nanoparticles were characterized by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD). A significant alteration in the secondary structure of the lipase in RMS with a 15.5% increase of α-helix content and a 12.5% decrease of β-sheet content was detected by circular dichroism (CD). The immobilized lipase was employed to enrich polyunsaturated fatty acids in fish oil, a 90% increase of DHA content was obtained after 12h, and after 20 cycles of successive usage, it still remained over 80% of relative hydrolysis degree, which shows a good recyclability. PMID:23395761

  17. Synthesis of aliphatic esters of cinnamic acid as potential lipophilic antioxidants catalyzed by lipase B from Candida antarctica.

    PubMed

    Jakovetić, Sonja M; Jugović, Branimir Z; Gvozdenović, Milica M; Bezbradica, Dejan I; Antov, Mirjana G; Mijin, Dušan Z; Knežević-Jugović, Zorica D

    2013-08-01

    Immobilized lipase from Candida antarctica (Novozyme 435) was tested for the synthesis of various phenolic acid esters (ethyl and n-butyl cinnamate, ethyl p-coumarate and n-butyl p-methoxycinnamate). The second-order kinetic model was used to mathematically describe the reaction kinetics and to compare present processes quantitatively. It was found that the model agreed well with the experimental data. Further, the effect of alcohol type on the esterification of cinnamic acid was investigated. The immobilized lipase showed more ability to catalyze the synthesis of butyl cinnamate. Therefore, the process was optimized for the synthesis of butyl cinnamate as a function of solvent polarity (logP) and amount of biocatalyst. The highest ester yield of 60.7 % was obtained for the highest enzyme concentration tested (3 % w/w), but the productivity was for 34 % lower than the corresponding value obtained for the enzyme concentration of 1 % (w/w). The synthesized esters were purified, identified, and screened for antioxidant activities. Both DPPH assay and cyclic voltammetry measurement have shown that cinnamic acid esters have better antioxidant properties than cinnamic acid itself.

  18. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media.

    PubMed

    Ng, Choong Hey; Yang, Kun-Lin

    2016-01-01

    Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp. PMID:26672465

  19. Mechanism for release of arachidonic acid during guinea pig platelet aggregation: a role for the diacylglycerol lipase inhibitor RHC 80267

    SciTech Connect

    Amin, D.

    1986-01-01

    The mechanism of the release of arachidonic acid from phospholipids after the stimulation of guinea pig platelets with collagen, thrombin and platelet activating factor (PAF) was studied. RHC 80267, a diacylglycerol lipase inhibitor, and indomethacin, a cyclooxygenase inhibitor, were used. Various in vitro assays for enzymes involved in arachidonic acid release and metabolism were conducted. Platelet aggregation and simultaneous release of ADP from platelets were monitored using a Chrono-log Lumiaggregometer. Platelets were labeled with (/sup 14/C)arachidonic acid to facilitate sensitive determination of small changes in platelet phospholipids during platelet aggregation. In the present investigation it is shown that collagen, thrombin and PAF increased phospholipase C activity. It was also discovered that cyclooxygenase products were responsible for further stimulation (a positive feed-back) of phospholipase C activity, while diacylglycerol provided a negative feed-back control over receptor-stimulated phospholipase C activity and inhibited ADP release. The guinea pig platelet is an ideal model to study phospholipase C-diacylglycerol lipase pathway for the release of arachidonic acid from platelet phospholipids because it does not have any phospholipase A/sub 2/ activity. It was observed that cyclooxygenase products were responsible for collagen-induced guinea pig platelet aggregation. Indomethacin completely inhibited collagen-induced platelet aggregation, was less effective against thrombin, and had no effect on PAF-induced platelet aggregation. On the other hand, RHC 80267 was a powerful inhibitor of aggregation and ADP release induced by all three of these potent aggregating agents.

  20. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase

    SciTech Connect

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M.; Brown, Robert J.

    2014-09-05

    Highlights: • Lipoprotein hydrolysis products were produced by lipoprotein lipase. • Hydrolysis products lowers expression of macrophage cholesterol transporters. • Hydrolysis products reduces expression of select nuclear receptors. • Fatty acid products lowers cholesterol transporters and select nuclear receptors. • Fatty acid products reduces cholesterol efflux from macrophages. - Abstract: Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL.

  1. Role of lipase-generated free fatty acids in converting mesenteric lymph from a noncytotoxic to a cytotoxic fluid.

    PubMed

    Qin, Xiaofa; Dong, Wei; Sharpe, Susan M; Sheth, Sharvil U; Palange, David C; Rider, Therese; Jandacek, Ronald; Tso, Patrick; Deitch, Edwin A

    2012-10-15

    Recent studies have shown that mesenteric lymph plays a very important role in the development of multiple-organ dysfunction syndrome under critical conditions. Great efforts have been made to identify the biologically active molecules in the lymph. We used a trauma-hemorrhagic shock (T/HS) model and the superior mesenteric artery occlusion (SMAO) model, representing a global and a localized intestinal ischemia-reperfusion insult, respectively, to investigate the role of free fatty acids (FFAs) in the cytotoxicity of mesenteric lymph in rats. Lymph was collected before, during, and after (post) shock or SMAO. The post-T/HS and SMAO lymph, but not the sham lymph, manifested cytotoxicity for human umbilical vein endothelial cells (HUVECs). HUVEC cytotoxicity was associated with increased FFAs, especially the FFA-to-protein ratio. Addition of albumin, especially delipidated albumin, reduced this cytotoxicity. Lipase treatment of trauma-sham shock (T/SS) lymph converted it from a noncytotoxic to a cytotoxic fluid, and its toxicity correlated with the FFA-to-protein ratio in a fashion similar to that of the T/HS lymph, further suggesting that FFAs were the key components leading to HUVEC cytotoxicity. Analysis of lymph by gas chromatography revealed that the main FFAs in the post-T/HS or lipase-treated T/SS lymph were palmitic, stearic, oleic, and linoleic acids. When added to the cell culture at levels comparable to those in T/HS lymph, all these FFAs were cytotoxic, with linoleic acid being the most potent. In conclusion, this study suggests that lipase-generated FFAs are the key components resulting in the cytotoxicity of T/HS and SMAO mesenteric lymph.

  2. Lipase-catalyzed enantioselective synthesis of (R,R)-lactide from alkyl lactate to produce PDLA (poly D-lactic acid) and stereocomplex PLA (poly lactic acid).

    PubMed

    Jeon, Byoung Wook; Lee, Jumin; Kim, Hyun Sook; Cho, Dae Haeng; Lee, Hyuk; Chang, Rakwoo; Kim, Yong Hwan

    2013-10-20

    R-lactide, a pivotal monomer for the production of poly (D-lactic acid) (PDLA) or stereocomplex poly (lactic acid) (PLA) was synthesized from alkyl (R)-lactate through a lipase-catalyzed reaction without racemization. From among several types of lipase, only lipase B from Candida antarctica (Novozym 435; CAL-B) was effective in the reaction that synthesized (R,R)-lactide. Enantiopure (R,R)-lactide, which consisted of over 99% enantiomeric excess, was synthesized from methyl (R)-lactate through CAL-B catalysis. Removal of the methanol by-product was critical to obtain a high level of lactide conversion. The (R,R)-lactide yield was 56% in a reaction containing 100 mg of Novozym 435, 10 mM methyl (R)-lactate and 1500 mg of molecular sieve 5A in methyl tert-butyl ether (MTBE). The important monomer (R,R)-lactide that is required for the production of the widely recognized bio-plastic PDLA and the PLA stereocomplex can be obtained using this novel synthetic method.

  3. Biodiesel production with immobilized lipase: A review.

    PubMed

    Tan, Tianwei; Lu, Jike; Nie, Kaili; Deng, Li; Wang, Fang

    2010-01-01

    Fatty acid alkyl esters, also called biodiesel, are environmentally friendly and show great potential as an alternative liquid fuel. Biodiesel is produced by transesterification of oils or fats with chemical catalysts or lipase. Immobilized lipase as the biocatalyst draws high attention because that process is "greener". This article reviews the current status of biodiesel production with immobilized lipase, including various lipases, immobilization methods, various feedstocks, lipase inactivation caused by short chain alcohols and large scale industrialization. Adsorption is still the most widely employed method for lipase immobilization. There are two kinds of lipase used most frequently especially for large scale industrialization. One is Candida antartica lipase immobilized on acrylic resin, and the other is Candida sp. 99-125 lipase immobilized on inexpensive textile membranes. However, to further reduce the cost of biodiesel production, new immobilization techniques with higher activity and stability still need to be explored. PMID:20580809

  4. Biodiesel production with immobilized lipase: A review.

    PubMed

    Tan, Tianwei; Lu, Jike; Nie, Kaili; Deng, Li; Wang, Fang

    2010-01-01

    Fatty acid alkyl esters, also called biodiesel, are environmentally friendly and show great potential as an alternative liquid fuel. Biodiesel is produced by transesterification of oils or fats with chemical catalysts or lipase. Immobilized lipase as the biocatalyst draws high attention because that process is "greener". This article reviews the current status of biodiesel production with immobilized lipase, including various lipases, immobilization methods, various feedstocks, lipase inactivation caused by short chain alcohols and large scale industrialization. Adsorption is still the most widely employed method for lipase immobilization. There are two kinds of lipase used most frequently especially for large scale industrialization. One is Candida antartica lipase immobilized on acrylic resin, and the other is Candida sp. 99-125 lipase immobilized on inexpensive textile membranes. However, to further reduce the cost of biodiesel production, new immobilization techniques with higher activity and stability still need to be explored.

  5. Catalysis of the hydrolysis of ethyl mandelate and esterification of alpha-bromopropionic acid by lipase in microemulsions.

    PubMed

    Xiao, H; Liu, J; Li, Z

    1993-01-01

    Candida cyclindracea lipase (CCL) was added to "sodium dodecyl sulfonate (AS)/n-butanol/n-octane/n-octane" water-in-oil microemulsion to catalyze the hydrolysis of ethyl mandelate and the esterification of alpha-bromopropionic acid with n-butanol, respectively. The catalytic activity of CCL in the above microemulsions was higher than that in the traditional oil/water biphasic systems. After hydrolysis for 48 h, the conversion rate of the reaction reached 90% and S-mandelic acid, [alpha]D20-149.8 (C10; H2O), optical purity ca. 97%, was isolated. While after esterification for 6 h, the conversion rate of the reaction reached 45%, and butyl-(R)-alpha-bromopropionate, [alpha]D20 18.2 (Cl; CHCl3), optical purity ca. 99%, was obtained.

  6. Enhanced catalysis and enantioselective resolution of racemic naproxen methyl ester by lipase encapsulated within iron oxide nanoparticles coated with calix[8]arene valeric acid complexes.

    PubMed

    Sayin, Serkan; Akoz, Enise; Yilmaz, Mustafa

    2014-09-14

    In this study, two types of nanoparticles have been used as additives for the encapsulation of Candida rugosa lipase via the sol-gel method. In one case, the nanoparticles were covalently linked with a new synthesized calix[8]arene octa valeric acid derivative (C[8]-C4-COOH) to produce new calix[8]arene-adorned magnetite nanoparticles (NP-C[8]-C4-COOH), and then NP-C[8]-C4-COOH was used as an additive in the sol-gel encapsulation process. In the other case, iron oxide nanoparticles were directly added into the sol-gel encapsulation process in order to interact electrostatically with both C[8]-C4-COOH and Candida rugosa lipase. The catalytic activities and enantioselectivities of two novel encapsulated lipases (Enc-NP-C[8]-C4-COOH and Enc-C[8]-C4-COOH@Fe3O4) in the hydrolysis reaction of racemic naproxen methyl ester were evaluated. The results showed that the activity and enantioselectivity of the lipase were improved when the lipase was encapsulated in the presence of calixarene-based additives. Indeed, the encapsulated lipases have an excellent rate of enantioselectivity, with E = 371 and 265, respectively, as compared to the free enzyme (E = 137). The lipases encapsulated with C[8]-C4-COOH and iron oxide nanoparticles (Enc-C[8]-C4-COOH@Fe3O4) retained more than 86% of their initial activities after 5 repeated uses and 92% with NP-C[8]-C4-COOH.

  7. Study of Molecular Conformation and Activity-Related Properties of Lipase Immobilized onto Core-Shell Structured Polyacrylic Acid-Coated Magnetic Silica Nanocomposite Particles.

    PubMed

    Esmaeilnejad-Ahranjani, Parvaneh; Kazemeini, Mohammad; Singh, Gurvinder; Arpanaei, Ayyoob

    2016-04-01

    A facile approach for the preparation of core-shell structured poly(acrylic acid) (PAA)-coated Fe3O4 cluster@SiO2 nanocomposite particles as the support materials for the lipase immobilization is reported. Low- or high-molecular-weight (1800 and 100,000, respectively) PAA molecules were covalently attached onto the surface of amine-functionalized magnetic silica nanoacomposite particles. The successful preparation of particles were verified by scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), zeta potential measurement, and Fourier-transform infrared (FTIR) techniques. Once lipase is covalently immobilized onto the particles with an average diameter of 210 ± 50 nm, resulting from high binding sites concentrations on the low- and high-molecular-weight PAA-coated particles, high lipase immobilization efficiencies (86.2% and 89.9%, respectively), and loading capacities (786 and 816 mg g(-1), respectively) are obtained. Results from circular dichroism (CD) analysis and catalytic activity tests reveal an increase in the β-sheet content of lipase molecules upon immobilization, along with an enhancement in their activities and stabilities. The lipases immobilized onto the low- and high-molecular-weight PAA-coated particles show maximum activities at 55 and 50 °C, respectively, which are ∼28% and ∼15% higher than that of the free lipase at its own optimum temperature (40 °C), respectively. The immobilized lipases exhibit excellent performance at broader temperature and pH ranges and high thermal and storage stabilities, as well as superior reusability. These prepared magnetic nanocomposite particles can be offered as suitable support materials for efficient immobilization of enzymes and improvement of the immobilized enzymes properties.

  8. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase.

    PubMed

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M; Brown, Robert J

    2014-09-01

    Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL.

  9. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase.

    PubMed

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M; Brown, Robert J

    2014-09-01

    Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL. PMID:25130461

  10. Measurement Uncertainty of Chromogenic LAL Assays: Reaction Time and Proportion of Endotoxin and LAL Reagent Affect Release of p-Nitroaniline.

    PubMed

    Ostronoff, Celina Silva; Lourenço, Felipe Rebello

    2015-01-01

    Limulus Amebocyte Lysate (LAL) assays are widely used for detection and quantification of bacterial endotoxins in pharmaceuticals and medical devices. However, there are only a few studies on the measurement uncertainty of LAL assays. The aim of this work was to identify and quantify the main sources of measurement uncertainty for end point and kinetic-chromogenic LAL assays. Response surface methodology was used to study how the release of p-nitroaniline (pNA) is affected by reaction time and proportion of endotoxin and LAL reagent in end point and kinetic-chromogenic LAL assays, respectively. Increased release of pNA was observed when reaction time was increased. In addition, if different volumes of sample (or endotoxin standard) and LAL reagent are used, the pNA release rate will be affected. These results may be due to the increased interaction between the bacterial endotoxin and LAL-activated enzyme. Final measurement uncertainties (95% confidence interval) were 90-120% and 90-127% of bacterial endotoxin content for end point and kinetic-chromogenic assays, respectively. These values are reasonable for the scope of the method and allow the application of these measurement uncertainties in routine analysis of pharmaceuticals and medical devices.

  11. Effect of intrajejunal acidity on lipid digestion and aqueous solubilisation of bile acids and lipids in health, using a new simple method of lipase inactivation.

    PubMed Central

    Zentler-Munro, P L; Fine, D R; Fitzpatrick, W J; Northfield, T C

    1984-01-01

    We have investigated whether acid-mediated bile acid precipitation, pancreatic enzyme inactivation, and fatty acid partitioning occur in health when intraluminal pH falls below 5. In order to assess lipolysis and aqueous solubilisation of lipid, we first developed a new technique for inactivating lipase in jejunal aspirate (acid inactivation), and showed it to be more effective and simpler than the established technique (heat inactivation). We then studied 14 healthy subjects, aspirating jejunal content for three hours after a liquid meal, and pooling according to pH. Eighteen per cent of the total aspirate was collected at pH less than 5 compared with 56% at pH greater than 6 (p less than 0.01). Forty eight per cent of the bile acids were precipitated at pH less than 5 compared with 18% at pH greater than 6 (p less than 0.01), leading to a reduction in aqueous phase bile acid concentration at low pH (2.1 mmol/l at pH less than 5 vs 5.8 mmol/l at pH greater than 6, p less than 0.01). Lipase activity was reduced at low pH (133 IU/l at pH less than 5 vs 182 IU/l at pH greater than 6, p less than 0.01), leading to reduced lipolysis at low pH (14% at pH less than 5 vs 32% at pH greater than 6, p less than 0.01). Aqueous phase lipid concentration was reduced at low pH (3.5 mmol/l at pH less than 5 vs 12.5 mmol/l at pH greater than 6, p less than 0.01). This reduction was less dependent on bile acid precipitation than on lipase inactivation and fatty acid partitioning. We conclude that intraluminal acidity influences aqueous solubilisation of bile acids and lipid in health. PMID:6714793

  12. Candida rugosa Lipase Immobilized onto Acid-Functionalized Multi-walled Carbon Nanotubes for Sustainable Production of Methyl Oleate.

    PubMed

    Che Marzuki, Nur Haziqah; Mahat, Naji Arafat; Huyop, Fahrul; Buang, Nor Aziah; Wahab, Roswanira Abdul

    2015-10-01

    The chemical production of methyl oleate using chemically synthesized fatty acid alcohols and other toxic chemicals may lead to significant environmental hazards to mankind. Being a highly valuable fatty acid replacement raw material in oleochemical industry, the mass production of methyl oleate via environmentally favorable processes is of concern. In this context, an alternative technique utilizing Candida rugosa lipase (CRL) physically adsorbed on multi-walled carbon nanotubes (MWCNTs) has been suggested. In this study, the acid-functionalized MWCNTs prepared using a mixture of HNO3 and H2SO4 (1:3 v/v) was used as support for immobilizing CRL onto MWCNTs (CRL-MWCNTs) as biocatalysts. Enzymatic esterification was performed and the efficiency of CRL-MWCNTs was evaluated against the free CRL under varying conditions, viz. temperature, molar ratio of acid/alcohol, solvent log P, and enzyme loading. The CRL-MWCNTs resulted in 30-110 % improvement in the production of methyl oleate over the free CRL. The CRL-MWCNTs attained its highest yield (84.17 %) at 50 °C, molar ratio of acid/alcohol of 1:3, 3 mg/mL of enzyme loading, and iso-octane (log P 4.5) as solvent. Consequently, physical adsorption of CRL onto acid-functionalized MWCNTs has improved the activity and stability of CRL and hence provides an environmentally friendly means for the production of methyl oleate.

  13. High-yield preparation of wax esters via lipase-catalyzed esterification using fatty acids and alcohols from crambe and camelina oils.

    PubMed

    Steinke, G; Weitkamp, P; Klein, E; Mukherjee, K D

    2001-02-01

    Fatty acids obtained from seed oils of crambe (Crambe abyssinica) and camelina (Camelina sativa) via alkaline saponification or steam splitting were esterified using lipases as biocatalysts with oleyl alcohol and the alcohols derived from crambe and camelina oils via hydrogenolysis of their methyl esters. Long-chain wax esters were thus obtained in high yields when Novozym 435 (immobilized lipase B from Candida antarctica) and papaya (Carica papaya) latex lipase were used as biocatalysts and vacuum was applied to remove the water formed. The highest conversions to wax esters were obtained with Novozym 435 (> or =95%) after 4-6 h of reaction, whereas with papaya latex lipase such a high degree of conversion was attained after 24 h. Products obtained from stoichiometric amounts of substrates were almost exclusively (>95%) composed of wax esters having compositions approaching that of jojoba (Simmondsia chinensis) oil, especially when crambe fatty acids in combination with camelina alcohols or camelina fatty acids in combination with crambe alcohols were used as substrates.

  14. Immobilized lipase from Schizophyllum commune ISTL04 for the production of fatty acids methyl esters from cyanobacterial oil.

    PubMed

    Singh, Jyoti; Singh, Manoj Kumar; Kumar, Madan; Thakur, Indu Shekhar

    2015-01-01

    Novel lipase from model mushroom Schizophyllum commune strain ISTL04 produced by solid state fermentation of Leucaena leucocephala seeds, was immobilized onto Celite for enzymatic FAMEs production from cyanobacterial endolith Leptolyngbya ISTCY101. The isolate showed vigorous growth and produced remarkable lipase activity of 146.5 U g(-1) dry solid substrate, without any external lipase inducer. Single-factor experiments were carried out to study the effects of various reaction parameters on the FAMEs yield. The best conditions for enzymatic transesterification as revealed by the results were: 1:3 oil to methanol molar ratio, added at 3h intervals, 12% water content, 1581.5 U g(-1) immobilized lipase, temperature 45 °C, and time 24h. Under these conditions, the maximum FAMEs yield reached 94%. The immobilized lipase was able to produce >90% of the relative FAMEs yield after four repeated transesterification cycles. This immobilized lipase exhibited potential for application in biodiesel industry. PMID:25670399

  15. Lipoprotein lipase variants interact with polyunsaturated fatty acids for obesity traits in women: Replication in two populations

    PubMed Central

    Ma, Y.; Tucker, K.L.; Smith, C.E.; Lee, Y.C.; Huang, T.; Richardson, K.; Parnell, L.D.; Lai, C.Q.; Young, K.L.; Justice, A.E.; Shao, Y.; North, K.E.; Ordovás, J.M.

    2015-01-01

    Background and aims Lipoprotein lipase (LPL) is a candidate gene for obesity based on its role in triglyceride hydrolysis and the partitioning of fatty acids towards storage or oxidation. Whether dietary fatty acids modify LPL associated obesity risk is unknown. Methods and results We examined five single nucleotide polymorphisms (SNPs) (rs320, rs2083637, rs17411031, rs13702, rs2197089) for potential interaction with dietary fatty acids for obesity traits in 1171 participants (333 men and 838 women, aged 45–75 y) of the Boston Puerto Rican Health Study (BPRHS). In women, SNP rs320 interacted with dietary polyunsaturated fatty acids (PUFA) for body mass index (BMI) (P = 0.002) and waist circumference (WC) (P = 0.001) respectively. Higher intake of PUFA was associated with lower BMI and WC in homozygotes of the major allele (TT) (P = 0.01 and 0.005) but not in minor allele carriers (TG and GG). These interactions were replicated in an independent population, African American women of the Atherosclerosis Risk in Communities (ARIC) study (n = 1334). Conclusion Dietary PUFA modulated the association of LPL rs320 with obesity traits in two independent populations. These interactions may be relevant to the dietary management of obesity, particularly in women. PMID:25156894

  16. Lipase test

    MedlinePlus

    ... the bowel (bowel obstruction) Celiac disease Duodenal ulcer Cancer of the pancreas Infection or swelling of the pancreas This test may also be done for familial lipoprotein lipase deficiency . Risks ... Update Date 2/4/2015 Updated ...

  17. Endotoxin recovery using limulus amebocyte lysate (LAL) assay.

    PubMed

    Bolden, Jay S; Warburton, Rob E; Phelan, Robert; Murphy, Marie; Smith, Kelly R; De Felippis, Michael R; Chen, Dayue

    2016-09-01

    A phenomenon initially reported by Chen and Vinther in 2013 [1], and now commonly referred to as low endotoxin recovery (LER), has prompted the Food and Drug Administration (FDA) to request specific data demonstrating the capability of the LAL BET method (i.e., USP <85>) to recover endotoxin from spiked samples over time. The results of these spike/hold recovery studies are expected to be included in the Biologics License Applications (BLA) for review by the Center for Drug Evaluation and Research (CDER) Hughes (2014) and Hughes et al. (2015) [2,3]. Such studies involve spiking a known amount of a surrogate endotoxin, such as purified lipopolysaccharide (LPS), into undiluted biological products and then testing at different time points to determine the recovery over time. We report here the experience and learning gained from conducting spike/hold recovery studies for a monoclonal antibody (Mab) product. Results from initial hold studies spiked with purified LPS showed rapid loss of endotoxin activity in the drug substance (DS) and significant batch-to-batch variation in the drug product (DP). After careful review and examination of the experimental details, it was determined that the study design and execution differed from the routine batch release USP <85> BET method with regard to mixing time and sampling scheme. The hold study design was subsequently revised so that the mixing time and sampling were the same as the verified USP <85> BET method used for routine batch release testing. The spike/hold recovery studies were repeated and the results demonstrated that LPS could be consistently recovered over time. These findings highlight the importance of carefully controlling sample preparation procedures in a spike/hold recovery study in order to demonstrate the suitability of using the LAL BET method for endotoxin detection. PMID:27470947

  18. Simple amino acid tags improve both expression and secretion of Candida antarctica lipase B in recombinant Escherichia coli.

    PubMed

    Kim, Sun-Ki; Park, Yong-Cheol; Lee, Hyung Ho; Jeon, Seung Taeg; Min, Won-Ki; Seo, Jin-Ho

    2015-02-01

    Escherichia coli is the best-established microbial host strain for production of proteins and chemicals, but has a weakness for not secreting high amounts of active heterologous proteins to the extracellular culture medium, of which origins belong to whether prokaryotes or eukaryotes. In this study, Candida antarctica lipase B (CalB), a popular eukaryotic enzyme which catalyzes a number of biochemical reactions and barely secreted extracellularly, was expressed functionally at a gram scale in culture medium by using a simple amino acid-tag system of E. coli. New fusion tag systems consisting of a pelB signal sequence and various anion amino acid tags facilitated both intracellular expression and extracellular secretion of CalB. Among them, the N-terminal five aspartate tag changed the quaternary structure of the dimeric CalB and allowed production of 1.9 g/L active CalB with 65 U/mL activity in culture medium, which exhibited the same enzymatic properties as the commercial CalB. This PelB-anion amino acid tag-based expression system for CalB can be extended to production of other industrial proteins hardly expressed and exported from E. coli, thereby increasing target protein concentrations and minimizing purification steps. PMID:25182473

  19. Secretion of fatty acid binding protein aP2 from adipocytes through a nonclassical pathway in response to adipocyte lipase activity

    PubMed Central

    Ertunc, Meric Erikci; Sikkeland, Jørgen; Fenaroli, Federico; Griffiths, Gareth; Daniels, Mathew P.; Cao, Haiming; Saatcioglu, Fahri; Hotamisligil, Gökhan S.

    2015-01-01

    Adipocyte fatty acid binding protein 4, aP2, contributes to the pathogenesis of several common diseases including type 2 diabetes, atherosclerosis, fatty liver disease, asthma, and cancer. Although the biological functions of aP2 have classically been attributed to its intracellular action, recent studies demonstrated that aP2 acts as an adipokine to regulate systemic metabolism. However, the mechanism and regulation of aP2 secretion remain unknown. Here, we demonstrate a specific role for lipase activity in aP2 secretion from adipocytes in vitro and ex vivo. Our results show that chemical inhibition of lipase activity, genetic deficiency of adipose triglyceride lipase and, to a lesser extent, hormone-sensitive lipase blocked aP2 secretion from adipocytes. Increased lipolysis and lipid availability also contributed to aP2 release as determined in perilipin1-deficient adipose tissue explants ex vivo and upon treatment with lipids in vivo and in vitro. In addition, we identify a nonclassical route for aP2 secretion in exosome-like vesicles and show that aP2 is recruited to this pathway upon stimulation of lipolysis. Given the effect of circulating aP2 on glucose metabolism, these data support that targeting aP2 or the lipolysis-dependent secretory pathway may present novel mechanistic and translational opportunities in metabolic disease. PMID:25535287

  20. Pancreatic lipase selectively hydrolyses DPA over EPA and DHA due to location of double bonds in the fatty acid rather than regioselectivity.

    PubMed

    Akanbi, Taiwo O; Sinclair, Andrew J; Barrow, Colin J

    2014-10-01

    The enzymatic hydrolysis of canola, anchovy and seal oils with different types and amounts of polyunsaturated fatty acids was measured using porcine pancreatic lipase (PPL) to establish the fatty acid selectivity of PPL. Substrates were subjected to the same conditions of hydrolysis, with percent hydrolysis monitored using Iatroscan and fatty acid selectivity monitored using gas chromatography (GC). Regardless of their distribution on the glycerol backbone, as monitored by (13)C nuclear magnetic resonance (NMR), α-linolenic acid (ALA) and docosapentaenoic acid (DPA) were rapidly cleaved by PPL while eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and stearidonic acid (STA) were hydrolysed more slowly. Results show that PPL preferentially hydrolyses ALA and DPA over EPA, DHA and STA, and this selectivity is due to fatty acid rather than regioselectivity. The primary structural factor associated with resistance to PPL appears to be the distance of the first double bond from the ester linkage being hydrolysed.

  1. Esterification of oleic acid with methanol by immobilized lipase on wrinkled silica nanoparticles with highly ordered, radially oriented mesochannels.

    PubMed

    Pang, Jinli; Zhou, Guowei; Liu, Ruirui; Li, Tianduo

    2016-02-01

    Mesoporous silica nanoparticles with a wrinkled structure (wrinkled silica nanoparticles, WSNs) having highly ordered, radially oriented mesochannels were synthesized by a solvothermal method. The method used a mixture of cyclohexane, ethanol, and water as solvent, tetraethoxysilane (TEOS) as source of inorganic silica, ammonium hydroxide as hydrolysis additive, cetyltrimethylammonium bromide (CTAB) as surfactant, and polyvinylpyrrolidone (PVP) as stabilizing agent of particle growth. Particle size (240nm to 540nm), specific surface areas (490m(2)g(-1) to 634m(2)g(-1)), surface morphology (radial wrinkled structures), and pore structure (radially oriented mesochannels) of WSN samples were varied using different molar ratios of CTAB to PVP. Using synthesized WSN samples with radially oriented mesochannels as support, we prepared immobilized Candida rugosa lipase (CRL) as a new biocatalyst for biodiesel production through the esterification of oleic acid with methanol. These results suggest that WSNs with highly ordered, radially oriented mesochannels have promising applications in biocatalysis, with the highest oleic acid conversion rate of about 86.4% under the optimum conditions. PMID:26652346

  2. In silico characterization of thermostable lipases.

    PubMed

    Chakravorty, Debamitra; Parameswaran, Saravanan; Dubey, Vikash Kumar; Patra, Sanjukta

    2011-01-01

    Thermostable lipases are of high priority for industrial applications as they are endowed with the capability of carrying out diversified reactions at elevated temperatures. Extremophiles are their potential source. Sequence and structure annotation of thermostable lipases can elucidate evolution of lipases from their mesophilic counterparts with enhanced thermostability hence better industrial potential. Sequence analysis highlighted the conserved residues in bacterial and fungal thermostable lipases. Higher frequency of AXXXA motif and poly Ala residues in lid domain of thermostable Bacillus lipases were distinguishing characteristics. Comparison of amino acid composition among thermostable and mesostable lipases brought into light the role of neutral, charged and aromatic amino acid residues in enhancement of thermostability. Structural annotation of thermostable lipases with that of mesostable lipases revealed some striking features which are increment of gamma turns in thermostable lipases; being first time reported in our paper, longer beta strands, lesser beta-branched residues in helices, increase in charged-neutral hydrogen bonding pair, hydrophobic-hydrophobic contact and differences in the N-cap and C-cap residues of the α helices. Conclusively, it can be stated that subtle changes in the arrangement of amino acid residues in the tertiary structure of lipases contributes to enhanced thermostability.

  3. Structured lipids via lipase-catalyzed incorporation of eicosapentaenoic acid into borage (Borago officinalis L.) and evening primrose (Oenothera biennis L.) oils.

    PubMed

    Senanayake, S P J Namal; Shahidi, Fereidoon

    2002-01-30

    Enzymatic acidolysis of borage oil (BO) or evening primrose oil (EPO) with eicosapentaenoic acid (20:5n-3; EPA) was studied. Of the six lipases that were tested in the initial screening, nonspecific lipase PS-30 from Pseudomonas sp. resulted in the highest incorporation of EPA into both oils. This enzyme was further studied for the influence of enzyme load, temperature, time, type of organic solvent, and mole ratio of substrates. The products from the acidolysis reaction were analyzed by gas chromatography (GC). The highest incorporation of EPA in both oils occurred at 45-55 degrees C and at 150-250 enzyme activity units. One unit of lipase activity was defined as nanomoles of fatty acids (oleic acid equivalents) produced per minute per gram of enzyme. Time course studies indicated that EPA incorporation was increased up to 26.8 and 25.2% (after 24 h) in BO and EPO, respectively. Among the solvents examined, n-hexane served best for the acidolysis of EPA with both oils. The effect of the mole ratio of oil to EPA was studied from 1:1 to 1:3. As the mole ratio of EPA increased, the incorporation increased from 25.2-26.8 to 37.4-39.9% (after 24 h). The highest EPA incorporations of 39.9 and 37.4% in BO and EPO, respectively, occurred at the stoichiometric mole ratio of 1:3 for oil to EPA. PMID:11804516

  4. Structured lipids via lipase-catalyzed incorporation of eicosapentaenoic acid into borage (Borago officinalis L.) and evening primrose (Oenothera biennis L.) oils.

    PubMed

    Senanayake, S P J Namal; Shahidi, Fereidoon

    2002-01-30

    Enzymatic acidolysis of borage oil (BO) or evening primrose oil (EPO) with eicosapentaenoic acid (20:5n-3; EPA) was studied. Of the six lipases that were tested in the initial screening, nonspecific lipase PS-30 from Pseudomonas sp. resulted in the highest incorporation of EPA into both oils. This enzyme was further studied for the influence of enzyme load, temperature, time, type of organic solvent, and mole ratio of substrates. The products from the acidolysis reaction were analyzed by gas chromatography (GC). The highest incorporation of EPA in both oils occurred at 45-55 degrees C and at 150-250 enzyme activity units. One unit of lipase activity was defined as nanomoles of fatty acids (oleic acid equivalents) produced per minute per gram of enzyme. Time course studies indicated that EPA incorporation was increased up to 26.8 and 25.2% (after 24 h) in BO and EPO, respectively. Among the solvents examined, n-hexane served best for the acidolysis of EPA with both oils. The effect of the mole ratio of oil to EPA was studied from 1:1 to 1:3. As the mole ratio of EPA increased, the incorporation increased from 25.2-26.8 to 37.4-39.9% (after 24 h). The highest EPA incorporations of 39.9 and 37.4% in BO and EPO, respectively, occurred at the stoichiometric mole ratio of 1:3 for oil to EPA.

  5. In vitro inhibitory effect on pancreatic lipase activity of subfractions from ethanol extracts of fermented Oats (Avena sativa L.) and synergistic effect of three phenolic acids.

    PubMed

    Cai, Shengbao; Wang, Ou; Wang, Mengqian; He, Jianfeng; Wang, Yong; Zhang, Di; Zhou, Feng; Ji, Baoping

    2012-07-25

    The purpose of the present work is to study the pancreatic lipase inhibitory effects of different subfractions (n-hexane, ethyl acetate (EA), n-butanol, and water) from ethanol extracts of nonfermented and fungi-fermented oats and to delineate the interactions of three primary phenolic acids in the EA subfractions. The EA subfraction showed the highest inhibitory effect on pancreatic lipase activity at 1.5 mg/mL compared to the other subfractions, regardless of whether the oats were fermented. Meanwhile, both of the EA subfractions of two fungi-fermented oats demonstrated more effective inhibitory activity than that of nonfermented oats. A positive correlation between the total phenolics content and inhibitory activity was found. The inhibitory ability of the EA subfraction from nonfermented or fermented oats also displayed a dose-dependent effect. The standards of caffeic, ferulic, and p-coumaric acids, mainly included in EA subfractions of fermented oats, also displayed a dose-dependent inhibitory effect. A synergistic effect of each binary combination of p-coumaric, ferulic, and caffeic acids was observed, especially at 150.0 μg/mL. Those results indicate that fungi-fermented oats have a more effective inhibitory ability on pancreatic lipase and polyphenols may be the most effective component and could be potentially used for dietary therapy of obesity.

  6. Properties of salt-resistant lipase and lipoprotein lipase purified from human post-heparin plasma.

    PubMed Central

    Ostlund-Lindqvist, A M

    1979-01-01

    Lipoprotein lipase and salt-resistant lipase were isolated from human post-heparin plasma. The proteins of human post-plasma lipoprotein lipase and salt-resistant lipase were identified and demonstrated to be immunologically different. Significant differences between the two enzymes in their relative amino acid composition were demonstrated, which indicates that the two enzymes are different proteins. When analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the enzymes seemed to have monomer molecular weights similar to that of lipoprotein lipase purified from bovine milk. Images Fig. 1. Fig. 3. PMID:113002

  7. Role of lipase from community-associated methicillin-resistant Staphylococcus aureus strain USA300 in hydrolyzing triglycerides into growth-inhibitory free fatty acids.

    PubMed

    Cadieux, Brigitte; Vijayakumaran, Vithooshan; Bernards, Mark A; McGavin, Martin J; Heinrichs, David E

    2014-12-01

    Part of the human host innate immune response involves the secretion of bactericidal lipids on the skin and delivery of triglycerides into abscesses to control invading pathogens. Two Staphylococcus aureus lipases, named SAL1 and SAL2, were identified in the community-associated methicillin-resistant S. aureus strain USA300, which, presumably, are produced and function to degrade triglycerides to release free fatty acids. We show that the SAL2 lipase is one of the most abundant proteins secreted by USA300 and is proteolytically processed from the 72-kDa proSAL2 to the 44-kDa mature SAL2 by the metalloprotease aureolysin. We show that spent culture supernatants had lipase activity on both short- and long-chain fatty acid substrates and that deletion of gehB, encoding SAL2, resulted in the complete loss of these activities. With the use of gas chromatography-mass spectrometry, we show that SAL2 hydrolyzed trilinolein to linoleic acid, a fatty acid with known antistaphylococcal properties. When added to cultures of USA300, trilinolein and, to a lesser extent, triolein inhibited growth in a SAL2-dependent manner. This effect was shown to be due to the enzymatic activity of SAL2 on these triglycerides, since the catalytically inactive SAL2 Ser412Ala mutant was incapable of hydrolyzing the triglycerides or yielding delayed growth in their presence. Overall, these results reveal that SAL2 hydrolyzes triglycerides of both short- and long-chain fatty acids and that the released free fatty acids have the potential to cause significant delays in growth, depending on the chemical nature of the free fatty acid. PMID:25225262

  8. Role of lipase from community-associated methicillin-resistant Staphylococcus aureus strain USA300 in hydrolyzing triglycerides into growth-inhibitory free fatty acids.

    PubMed

    Cadieux, Brigitte; Vijayakumaran, Vithooshan; Bernards, Mark A; McGavin, Martin J; Heinrichs, David E

    2014-12-01

    Part of the human host innate immune response involves the secretion of bactericidal lipids on the skin and delivery of triglycerides into abscesses to control invading pathogens. Two Staphylococcus aureus lipases, named SAL1 and SAL2, were identified in the community-associated methicillin-resistant S. aureus strain USA300, which, presumably, are produced and function to degrade triglycerides to release free fatty acids. We show that the SAL2 lipase is one of the most abundant proteins secreted by USA300 and is proteolytically processed from the 72-kDa proSAL2 to the 44-kDa mature SAL2 by the metalloprotease aureolysin. We show that spent culture supernatants had lipase activity on both short- and long-chain fatty acid substrates and that deletion of gehB, encoding SAL2, resulted in the complete loss of these activities. With the use of gas chromatography-mass spectrometry, we show that SAL2 hydrolyzed trilinolein to linoleic acid, a fatty acid with known antistaphylococcal properties. When added to cultures of USA300, trilinolein and, to a lesser extent, triolein inhibited growth in a SAL2-dependent manner. This effect was shown to be due to the enzymatic activity of SAL2 on these triglycerides, since the catalytically inactive SAL2 Ser412Ala mutant was incapable of hydrolyzing the triglycerides or yielding delayed growth in their presence. Overall, these results reveal that SAL2 hydrolyzes triglycerides of both short- and long-chain fatty acids and that the released free fatty acids have the potential to cause significant delays in growth, depending on the chemical nature of the free fatty acid.

  9. Functional characterization of a novel aspartic acid rich lipase, TALipC, from Trichosporon asahii MSR54: solvent-dependent enantio inversion during esterification of 1-phenylethanol.

    PubMed

    Kumari, Arti; Gupta, Rani

    2015-01-01

    A novel lipase gene TAlipC was isolated from Trichosporon asahii MSR54 and functionally expressed in Pichia pastoris. The protein was His-tagged and purified to homogeneity by affinity chromatography. Sequence comparison revealed a high homology with lipases from Cryptococcus sp. It had a GX type oxyanion hole and a GHSLG-type conserved penta-peptide similar to those in the lipases from Yarrowia lipolytica. The enzyme had optimal activity at pH 8 and 50 °C. It was specific for long chain fatty acid groups of p-nitrophenol esters and triacylglycerols, showing regio- and enantio-selectivity. It was activated by Mg(2+) ions (20 mM) and had a predicted Mg-binding domain at the aspartic acid-rich C-terminal. Solvent-based enantio- inversion was the key feature of the enzyme where it showed (S)-selectivity in 1,4-dioxane and 2-propanol and (R)-selectivity in hexane during chiral separation of (±)1-phenylethanol by esterification.

  10. Long-chain ethers as solvents can amplify the enantioselectivity of the Carica papaya lipase-catalyzed transesterification of 2-(substituted phenoxy)propanoic acid esters.

    PubMed

    Miyazawa, Toshifumi; Iguchi, Wakana

    2013-10-01

    The enantioselectivity of the transesterification of the 2,2,2-trifluoroethyl esters of 2-(substituted phenoxy)propanoic acids, as catalyzed by the lipase from Carica papaya, was greatly improved by using long-chain ethers, such as di-n-hexyl ether, as solvents instead of the conventional diisopropyl ether. Thus, for example, the E value was enhanced from 21 [in diisopropyl ether (0.8 ml)] to 57 [in di-n-hexyl ether (0.8 ml)] in the reaction of 2,2,2-trifluoroethyl(RS)-2-phenoxypropanoate (0.1 mmol) with methanol (0.4 mmol) in the presence of the plant lipase preparation (10 mg); it was also improved from 13 (in diisopropyl ether) to 44 (in di-n-hexyl ether) in the reaction of 2,2,2-trifluoroethyl(RS)-2-(2-chlorophenoxy)propanoate with methanol under the same reaction conditions.

  11. Dr. Ravindra Lal follows a live downlink of experiments operations on shuttle

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Dr. Ravindra Lal, principal investigator for a crystal growth experiment for Spacelab 3, follows a live downlink of the experiments operations in the shuttle science module. He is in the payload operations control center (POCC) in JSC's mission control center.

  12. Gallic acid-based alkyl esters synthesis in a water-free system by celite-bound lipase of Bacillus licheniformis SCD11501.

    PubMed

    Sharma, Shivika; Kanwar, Shamsher S; Dogra, Priyanka; Chauhan, Ghanshyam S

    2015-01-01

    Gallic acid (3, 4, 5- trihydroxybenzoic acid) is an important antioxidant, anti-inflammatory, and radical scavenging agent. In the present study, a purified thermo-tolerant extra-cellular lipase of Bacillus licheniformis SCD11501 was successfully immobilized by adsorption on Celite 545 gel matrix followed by treatment with a cross-linking agent, glutaraldehyde. The celite-bound lipase treated with glutaraldehyde showed 94.8% binding/retention of enzyme activity (36 U/g; specific activity 16.8 U/g matrix; relative increase in enzyme activity 64.7%) while untreated matrix resulted in 88.1% binding/retention (28.0 U/g matrix; specific activity 8.5 U/g matrix) of lipase. The celite-bound lipase was successfully used to synthesis methyl gallate (58.2%), ethyl gallate (66.9%), n-propyl gallate (72.1%), and n-butyl gallate (63.8%) at 55(o) C in 10 h under shaking (150 g) in a water-free system by sequentially optimizing various reaction parameters. The low conversion of more polar alcohols such as methanol and ethanol into their respective gallate esters might be due to the ability of these alcohols to severely remove water from the protein hydration shell, leading to enzyme inactivation. Molecular sieves added to the reaction mixture resulted in enhanced yield of the alkyl ester(s). The characterization of synthesised esters was done through fourier transform infrared (FTIR) spectroscopy and (1) H NMR spectrum analysis.

  13. Genomics and genetics of Sulfolobus islandicus LAL14/1, a model hyperthermophilic archaeon

    PubMed Central

    Jaubert, Carole; Danioux, Chloë; Oberto, Jacques; Cortez, Diego; Bize, Ariane; Krupovic, Mart; She, Qunxin; Forterre, Patrick; Prangishvili, David; Sezonov, Guennadi

    2013-01-01

    The 2 465 177 bp genome of Sulfolobus islandicus LAL14/1, host of the model rudivirus SIRV2, was sequenced. Exhaustive comparative genomic analysis of S. islandicus LAL14/1 and the nine other completely sequenced S. islandicus strains isolated from Iceland, Russia and USA revealed a highly syntenic common core genome of approximately 2 Mb and a long hyperplastic region containing most of the strain-specific genes. In LAL14/1, the latter region is enriched in insertion sequences, CRISPR (clustered regularly interspaced short palindromic repeats), glycosyl transferase genes, toxin–antitoxin genes and MITE (miniature inverted-repeat transposable elements). The tRNA genes of LAL14/1 are preferential targets for the integration of mobile elements but clusters of atypical genes (CAG) are also integrated elsewhere in the genome. LAL14/1 carries five CRISPR loci with 10 per cent of spacers matching perfectly or imperfectly the genomes of archaeal viruses and plasmids found in the Icelandic hot springs. Strikingly, the CRISPR_2 region of LAL14/1 carries an unusually long 1.9 kb spacer interspersed between two repeat regions and displays a high similarity to pING1-like conjugative plasmids. Finally, we have developed a genetic system for S. islandicus LAL14/1 and created ΔpyrEF and ΔCRISPR_1 mutants using double cross-over and pop-in/pop-out approaches, respectively. Thus, LAL14/1 is a promising model to study virus–host interactions and the CRISPR/Cas defence mechanism in Archaea. PMID:23594878

  14. Lipoprotein Lipase, Tissue Expression and Effects on Genes Related to Fatty Acid Synthesis in Goat Mammary Epithelial Cells

    PubMed Central

    Zhao, Wang-Sheng; Hu, Shi-Liang; Yu, Kang; Wang, Hui; Wang, Wei; Loor, Juan; Luo, Jun

    2014-01-01

    Lipoprotein lipase (LPL) serves as a central factor in hydrolysis of triacylglycerol and uptake of free fatty acids from the plasma. However, there are limited data concerning the action of LPL on the regulation of milk fat synthesis in goat mammary gland. In this investigation, we describe the cloning and sequencing of the LPL gene from Xinong Saanen dairy goat mammary gland, along with a study of its phylogenetic relationships. Sequence analysis showed that goat LPL shares similarities with other species including sheep, bovine, human and mouse. LPL mRNA expression in various tissues determined by RT-qPCR revealed the highest expression in white adipose tissue, with lower expression in heart, lung, spleen, rumen, small intestine, mammary gland, and kidney. Expression was almost undetectable in liver and muscle. The expression profiles of LPL gene in mammary gland at early, peak, mid, late lactation, and the dry period were also measured. Compared with the dry period, LPL mRNA expression was markedly greater at early lactation. However, compared with early lactation, the expression was lower at peak lactation and mid lactation. Despite those differences, LPL mRNA expression was still greater at peak, mid, and late lactation compared with the dry period. Using goat mammary epithelial cells (GMEC), the in vitro knockdown of LPL via shRNA or with Orlistat resulted in a similar degree of down-regulation of LPL (respectively). Furthermore, knockdown of LPL was associated with reduced mRNA expression of SREBF1, FASN, LIPE and PPARG but greater expression of FFAR3. There was no effect on ACACA expression. Orlistat decreased expression of LIPE, FASN, ACACA, and PPARG, and increased FFAR3 and SREBF1 expression. The pattern of LPL expression was similar to the changes in milk fat percentage in lactating goats. Taken together, results suggest that LPL may play a crucial role in fatty acid synthesis. PMID:25501331

  15. Substrate specificities of bacterial polyhydroxyalkanoate depolymerases and lipases: bacterial lipases hydrolyze poly(omega-hydroxyalkanoates).

    PubMed Central

    Jaeger, K E; Steinbüchel, A; Jendrossek, D

    1995-01-01

    The substrate specificities of extracellular lipases purified from Bacillus subtilis, Pseudomonas aeruginosa, Pseudomonas alcaligenes, Pseudomonas fluorescens, and Burkholderia cepacia (former Pseudomonas cepacia) and of extracellular polyhydroxyalkanoate (PHA) depolymerases purified from Comamonas sp., Pseudomonas lemoignei, and P. fluorescens GK13, as well as that of an esterase purified from P. fluorescens GK 13, to various polyesters and to lipase substrates were analyzed. All lipases and the esterase of P. fluorescens GK13 but none of the PHA depolymerases tested hydrolyzed triolein, thereby confirming a functional difference between lipases and PHA depolymerases. However, most lipases were able to hydrolyze polyesters consisting of an omega-hydroxyalkanoic acid such as poly(6-hydroxyhedxanoate) or poly(4-hydroxybutyrate). The dimeric ester of hydroxyhexanoate was the main product of enzymatic hydrolysis of polycaprolactone by P. aeruginosa lipase. Polyesters containing side chains in the polymer backbone such as poly (3-hydroxybutyrate) and other poly(3-hydroxyalkanoates) were not or were only slightly hydrolyzed by the lipases tested. PMID:7487042

  16. Production of Omega-3 Fatty Acid Ethyl Esters from Menhaden Oil Using Proteus vulgaris Lipase-Mediated One-Step Transesterification and Urea Complexation.

    PubMed

    Kim, Soo-Jin; Kim, Hyung Kwoun

    2016-05-01

    An organic solvent-stable lipase from Proteus vulgaris K80 was used to produce the omega-3 polyunsaturated fatty acid ethyl esters (ω-3 PUFA EEs). First, the lyophilized recombinant lipase K80 (LyoK80) was used to perform the transesterification reaction of menhaden oil and ethanol. LyoK80 produced the ω-3 PUFA EEs with a conversion yield of 82 % in the presence of 20 % water content via a three-step ethanol-feeding process; however, in a non-aqueous condition, LyoK80 produced only a slight amount of the ω-3 PUFA EEs. To enhance its reaction properties, the lipase K80 was immobilized on a hydrophobic bead to derive ImmK80; the biochemical properties and substrate specificity of ImmK80 are similar to those of LyoK80. ImmK80 was then used to produce ω-3 PUFA EEs in accordance with the same transesterification reaction. Unlike LyoK80, ImmK80 achieved a high ω-3 PUFA EE conversion yield of 86 % under a non-aqueous system via a one-step ethanol-feeding reaction. The ω-3 PUFA EEs were purified up to 92 % using a urea complexation method.

  17. Lipase catalyzed synthesis of neutral glycerides rich in micronutrients from rice bran oil fatty acid distillate.

    PubMed

    Nandi, Sumit; Gangopadhyay, Sarbani; Ghosh, Santinath

    2008-01-01

    Neutral glycerides with micronutrients like sterols, tocopherols and squalene may be prepared from cheap raw material like rice bran oil fatty acid distillate (RBO FAD). RBO FAD is an important byproduct of vegetable oil refining industries in the physical refining process. Glycerides like triacylglycerols (TAG), diacylglycerols (DAG) and monoacylglycerols (MAG) containing significant amounts of unsaponifiable matter like sterols, tocopherols and hydrocarbons (mainly squalene) may certainly be considered as novel functional food ingredients. Fatty acids present in RBO FAD were esterified with glycerol of varying amount (1:0.33, 1:0.5, 1:1 and 1:1.5 of FAD : glycerol ratio) for 8 h using non-specific enzyme NS 40013 (Candida antartica). After esterification the product mixture containing mono, di- and triglycerides was purified by molecular distillation to remove excess free fatty acids and also other volatile undesirable components. The purified product containing sterols, tocopherols and squalene can be utilized in various food formulations. PMID:18838832

  18. Lipase catalyzed synthesis of neutral glycerides rich in micronutrients from rice bran oil fatty acid distillate.

    PubMed

    Nandi, Sumit; Gangopadhyay, Sarbani; Ghosh, Santinath

    2008-01-01

    Neutral glycerides with micronutrients like sterols, tocopherols and squalene may be prepared from cheap raw material like rice bran oil fatty acid distillate (RBO FAD). RBO FAD is an important byproduct of vegetable oil refining industries in the physical refining process. Glycerides like triacylglycerols (TAG), diacylglycerols (DAG) and monoacylglycerols (MAG) containing significant amounts of unsaponifiable matter like sterols, tocopherols and hydrocarbons (mainly squalene) may certainly be considered as novel functional food ingredients. Fatty acids present in RBO FAD were esterified with glycerol of varying amount (1:0.33, 1:0.5, 1:1 and 1:1.5 of FAD : glycerol ratio) for 8 h using non-specific enzyme NS 40013 (Candida antartica). After esterification the product mixture containing mono, di- and triglycerides was purified by molecular distillation to remove excess free fatty acids and also other volatile undesirable components. The purified product containing sterols, tocopherols and squalene can be utilized in various food formulations.

  19. Inhibition of Gastric Lipase as a Mechanism for Body Weight and Plasma Lipids Reduction in Zucker Rats Fed a Rosemary Extract Rich in Carnosic Acid

    PubMed Central

    Romo Vaquero, María; Yáñez-Gascón, María-Josefa; García Villalba, Rocío; Larrosa, Mar; Fromentin, Emilie; Ibarra, Alvin; Roller, Marc; Tomás-Barberán, Francisco; Espín de Gea, Juan Carlos; García-Conesa, María-Teresa

    2012-01-01

    Background Rosemary (Rosmarinus officinalis L.) extracts (REs) exhibit hepatoprotective, anti-obesity and anti-inflammatory properties and are widely used in the food industry. REs are rich in carnosic acid (CA) and carnosol which may be responsible for some of the biological activities of REs. The aim of this study was to investigate whether inhibition of lipase activity in the gut may be a mechanism by which a RE enriched in CA (40%) modulates body weight and lipids levels in a rat model of metabolic disorders and obesity. Methods and Principal Findings RE was administered for 64 days to lean (fa/+) and obese (fa/fa) female Zucker rats and body weight, food intake, feces weight and blood biochemical parameters were monitored throughout the study. Lipase activity (hydrolysis of p-nitrophenylbutyrate) was measured in the gastrointestinal tract at the end of the study and the contents of CA, carnosol and methyl carnosate were also determined. Sub-chronic administration of RE moderately reduced body weight gain in both lean and obese animals but did not affect food intake. Serum triglycerides, cholesterol and insulin levels were also markedly decreased in the lean animals supplemented with RE. Importantly, lipase activity was significantly inhibited in the stomach of the RE-supplemented animals where the highest content of intact CA and carnosol was detected. Conclusions Our results confirm that long-term administration of RE enriched in CA moderates weight gain and improves the plasma lipids profile, primarily in the lean animals. Our data also suggest that these effects may be caused, at least in part, by a significant inhibition of gastric lipase and subsequent reduction in fat absorption. PMID:22745826

  20. In situ localization of the genetic locus encoding the lysosomal acid lipase/cholesteryl esterase (LIPA) deficient in wolman disease to chromosome 10q23. 2-q23. 3

    SciTech Connect

    Anderson, R.A.; Rao, N.; Byrum, R.S.; Rothschild, C.B.; Bowden, D.W.; Hayworth, R.; Pettenati, M. )

    1993-01-01

    Human acid lipase/cholesteryl esterase (EC 3.1.1.13) is a 46-kDa glycoprotein required for the lysosomal hydrolysis of cholesteryl esters and triglycerides that cells acquire through the receptor-mediated endocytosis of low-density lipoproteins. This activity is essential in the provision of free cholesterol for cell metabolism as well as for the feedback signal that modulates endogenous cellular cholesterol production. The extremely low level of lysosomal acid lipase in patients afflicted with the hereditary, allelic lysosomal storage disorders Woman disease (WD) and cholesteryl ester storage disease (CESD) (MIM Number 278000 (6)) is associated with the massive intralysosomal lipid storage and derangements in the regulation of cellular cholesterol production (10). Both WD and CESD cells lack a specific acid lipase isoenzyme and it is thought that the different mutations associated with WD and CESD are in the structural gene for this isoenzyme, LIPA. Analysis of the activity of the acid lipase isoenzyme in cell extracts from human-Chinese hamster somatic cell hybrids (4, 11) demonstrated the concordant segregation of the gene locus for lysosomal acid lipase with the glutamate oxaloacetate transaminase-1 (GOT1) enzyme marker for human chromosome 10 which was subsequently localized to 10q24.1 q25.1 (8). 11 refs., 1 figs.

  1. Hormone-sensitive lipase activity and triacylglycerol hydrolysis are decreased in rat soleus muscle by cyclopiazonic acid.

    PubMed

    Watt, Matthew J; Steinberg, Gregory R; Heigenhauser, G J F; Spriet, Lawrence L; Dyck, David J

    2003-08-01

    Cyclopiazonic acid (CPA) is a sarcoplasmic reticulum Ca2+-ATPase inhibitor that increases intracellular calcium. The role of CPA in regulating the oxidation and esterification of palmitate, the hydrolysis of intramuscular lipids, and the activation of hormone-sensitive lipase (HSL) was examined in isolated rat soleus muscles at rest. CPA (40 micro M) was added to the incubation medium to levels that resulted in subcontraction increases in muscle tension, and lipid metabolism was monitored using the previously described pulse-chase procedure. CPA did not alter the cellular energy state, as reflected by similar muscle contents of ATP, phosphocreatine, free AMP, and free ADP. CPA increased total palmitate uptake into soleus muscle (11%, P < 0.05) and was without effect on palmitate oxidation. This resulted in greater esterification of exogenous palmitate into the triacylglycerol (18%, P < 0.05) and phospholipid (89%, P < 0.05) pools. CPA decreased (P < 0.05) intramuscular lipid hydrolysis, and this occurred as a result of reduced HSL activity (20%, P < 0.05). Incubation of muscles with 3 mM caffeine, which is also known to increase Ca2+ without affecting the cellular energy state, reduced HSL activity (24%, P < 0.05). KN-93, a calcium/calmodulin-dependent kinase inhibitor (CaMKII), blocked the effects of CPA and caffeine, and HSL activity returned to preincubation values. The results of the present study demonstrate that CPA simultaneously decreases intramuscular triacylglycerol (IMTG) hydrolysis and promotes lipid storage in isolated, intact soleus muscle. The decreased IMTG hydrolysis is likely mediated by reduced HSL activity, possibly via the CaMKII pathway. These responses are not consistent with the increased hydrolysis and decreased esterification observed in contracting muscle when substrate availability and the hormonal milieu are tightly controlled. It is possible that more powerful signals or a higher [Ca2+] may override the lipid-storage effect of the CPA

  2. Effect of preduodenal lipase inhibition in suckling rats on dietary octanoic acid (C8:0) gastric absorption and plasma octanoylated ghrelin concentration.

    PubMed

    Lemarié, F; Cavalier, J-F; Garcia, C; Boissel, F; Point, V; Catheline, D; Legrand, P; Carrière, F; Rioux, V

    2016-09-01

    Part of medium chain fatty acids (MCFAs) coming from dietary triglycerides (TGs) can be directly absorbed through the gastric mucosa after the action of preduodenal lipase (lingual lipase in the rat). MCFA gastric absorption, particularly that of octanoic acid (C8:0), may have a physiological importance in the octanoylation of ghrelin, the orexigenic gastric peptide acting as an endogenous ligand of the hypothalamic growth hormone secretagogue receptor 1a (GHSR-1a). However, the amount of C8:0 absorbed in the stomach and its metabolic fate still haven't been clearly characterized. The purpose of the present study was to further characterize and quantify the importance of preduodenal lipase activity on the release and gastric absorption of dietary C8:0 and on the subsequent ghrelin octanoylation in the stomach mucosa. Fifteen days old rats received fat emulsions containing triolein or [1,1,1-(13)C]-Tri-C8:0 and a specific inhibitor of preduodenal lipase, 5-(2-(benzyloxy)ethoxy)-3-(3-phenoxyphenyl)-1,3,4-oxadiazol-2(3H)-one or BemPPOX. The fate of the (13)C-C8:0 was followed in rat tissues after 30 and 120min of digestion and octanoylated ghrelin was measured in the plasma. This work (1) demonstrates that part of C8:0 coming from Tri-C8:0 is directly absorbed at the gastric level, (2) allows the estimation of C8:0 gastric absorption level (1.3% of the (13)C-C8:0 in sn-3 position after 30min of digestion), as well as (3) the contribution of rat lingual lipase to total lipolysis and to duodenal absorption of dietary FAs (at least 30%), (4) shows no short-term effect of dietary Tri-C8:0 consumption and subsequent increase of C8:0 gastric tissue content on plasma octanoylated ghrelin concentration. PMID:27317984

  3. Continuous lipase-catalyzed esterification of soybean fatty acids under ultrasound irradiation.

    PubMed

    Trentin, Claudia M; Scherer, Robison P; Dalla Rosa, C; Treichel, H; Oliveira, D; Oliveira, J Vladimir

    2014-05-01

    This work investigates the continuous production of alkyl esters from soybean fatty acid (FA) charges using immobilized Novozym 435 as catalyst. The experiments were performed in a packed-bed bioreactor evaluating the effects of FA charge to alcohol (methanol and ethanol) molar ratio, from 1:1 to 1:6, substrate flow rate in the range of 0.5-2.5 mL/min and output irradiation power up to 154 W, at fixed temperature of 65 °C, on the reaction conversion. Results showed that almost complete conversions to fatty acids ethyl esters were achieved at mild ultrasonic power (61.6 W), FA to ethanol molar ratio of 1:6, operating temperature (65 °C) and remained nearly constant for long-term reactions without negligible enzyme activity losses.

  4. Continuous lipase-catalyzed esterification of soybean fatty acids under ultrasound irradiation.

    PubMed

    Trentin, Claudia M; Scherer, Robison P; Dalla Rosa, C; Treichel, H; Oliveira, D; Oliveira, J Vladimir

    2014-05-01

    This work investigates the continuous production of alkyl esters from soybean fatty acid (FA) charges using immobilized Novozym 435 as catalyst. The experiments were performed in a packed-bed bioreactor evaluating the effects of FA charge to alcohol (methanol and ethanol) molar ratio, from 1:1 to 1:6, substrate flow rate in the range of 0.5-2.5 mL/min and output irradiation power up to 154 W, at fixed temperature of 65 °C, on the reaction conversion. Results showed that almost complete conversions to fatty acids ethyl esters were achieved at mild ultrasonic power (61.6 W), FA to ethanol molar ratio of 1:6, operating temperature (65 °C) and remained nearly constant for long-term reactions without negligible enzyme activity losses. PMID:24078183

  5. Biodegradable products by lipase biocatalysis.

    PubMed

    Linko, Y Y; Lämsä, M; Wu, X; Uosukainen, E; Seppälä, J; Linko, P

    1998-11-18

    The interest in the applications of biocatalysis in organic syntheses has rapidly increased. In this context, lipases have recently become one of the most studied groups of enzymes. We have demonstrated that lipases can be used as biocatalyst in the production of useful biodegradable compounds. A number of examples are given. 1-Butyl oleate was produced by direct esterification of butanol and oleic acid to decrease the viscosity of biodiesel in winter use. Enzymic alcoholysis of vegetable oils without additional organic solvent has been little investigated. We have shown that a mixture of 2-ethyl-1-hexyl esters can be obtained in a good yield by enzymic transesterification from rapeseed oil fatty acids for use as a solvent. Trimethylolpropane esters were also similarly synthesized as lubricants. Finally, the discovery that lipases can also catalyze ester syntheses and transesterification reactions in organic solvent systems has opened up the possibility of enzyme catalyzed production of biodegradable polyesters. In direct polyesterification of 1,4-butanediol and sebacic acid, polyesters with a mass average molar mass of the order of 56,000 g mol-1 or higher, and a maximum molar mass of about 130,000 g mol-1 were also obtained by using lipase as biocatalyst. Finally, we have demonstrated that also aromatic polyesters can be synthesized by lipase biocatalysis, a higher than 50,000 g mol-1 mass average molar mass of poly(1,6-hexanediyl isophthalate) as an example. PMID:9866859

  6. Isolation and biochemical characterization of Bacillus pumilus lipases from the Antarctic.

    PubMed

    Arifin, Arild Ranlym; Kim, Soon-Ja; Yim, Joung Han; Suwanto, Antonius; Kim, Hyung Kwoun

    2013-05-01

    Lipase-producing bacterial strains were isolated from Antarctic soil samples using the tricaprylin agar plate method. Seven strains with relatively strong lipase activities were selected. All of them turned out to be Bacillus pumilus strains by the 16S rRNA gene sequence analysis. Their corresponding lipase genes were cloned, sequenced, and compared. Finally, three different Bacillus pumilus lipases (BPL1, BPL2, and BPL3) were chosen. Their amino acid sequence identities were in the range of 92-98% with the previous Bacillus pumilus lipases. Their optimum temperatures and pHs were measured to be 40 degrees C and pH 9. Lipase BPL1 and lipase BPL2 were stable up to 30 degrees C, whereas lipase BPL3 was stable up to 20 degrees C. Lipase BPL2 was stable within a pH range of 6-10, whereas lipase BPL1 and lipase BPL3 were stable within a pH range of 5-11, showing strong alkaline tolerance. All these lipases exhibited high hydrolytic activity toward pnitrophenyl caprylate (C8). In addition, lipase BPL1 showed high hydrolytic activity toward tributyrin, whereas lipase BPL2 and lipase BPL3 hydrolyzed tricaprylin and castor oil preferentially. These results demonstrated that the three Antarctic Bacillus lipases were alkaliphilic and had a substrate preference toward short- and mediumchain triglycerides. These Antarctic Bacillus lipases might be used in detergent and food industries. PMID:23648856

  7. Bound Phenolics of Quinoa Seeds Released by Acid, Alkaline, and Enzymatic Treatments and Their Antioxidant and α-Glucosidase and Pancreatic Lipase Inhibitory Effects.

    PubMed

    Tang, Yao; Zhang, Bing; Li, Xihong; Chen, Peter X; Zhang, Hua; Liu, Ronghua; Tsao, Rong

    2016-03-01

    Unextractable phenolics from plant foods and their role in health benefits have become increasingly important. Meal residues of three quinoa seeds free of fat and extractable phenolics were subjected to acid, alkaline, and enzymatic hydrolyses. The total and individual phenolic compounds released were analyzed, and 19 phenolics, predominantly phenolic acids and several flavonoids, were identified. The concentration of bound phenolics was highest in black quinoa followed by red and white, regardless of the hydrolysis method. Higher phenolic contents also showed stronger antioxidant activities and inhibition of α-glucosidase and pancreatic lipase activities. Carbohydrases, that is, pectinase, xylanase and feruloyl esterase, which effectively liberated bound phenolics are known to be secreted by colonic bacteria, suggesting potential antioxidant and anti-inflammatory effects by these compounds in the large intestine during colonic fermentation. These results can also be applied to treat foods high in bound phenolics to enhance bioaccessibility.

  8. Bound Phenolics of Quinoa Seeds Released by Acid, Alkaline, and Enzymatic Treatments and Their Antioxidant and α-Glucosidase and Pancreatic Lipase Inhibitory Effects.

    PubMed

    Tang, Yao; Zhang, Bing; Li, Xihong; Chen, Peter X; Zhang, Hua; Liu, Ronghua; Tsao, Rong

    2016-03-01

    Unextractable phenolics from plant foods and their role in health benefits have become increasingly important. Meal residues of three quinoa seeds free of fat and extractable phenolics were subjected to acid, alkaline, and enzymatic hydrolyses. The total and individual phenolic compounds released were analyzed, and 19 phenolics, predominantly phenolic acids and several flavonoids, were identified. The concentration of bound phenolics was highest in black quinoa followed by red and white, regardless of the hydrolysis method. Higher phenolic contents also showed stronger antioxidant activities and inhibition of α-glucosidase and pancreatic lipase activities. Carbohydrases, that is, pectinase, xylanase and feruloyl esterase, which effectively liberated bound phenolics are known to be secreted by colonic bacteria, suggesting potential antioxidant and anti-inflammatory effects by these compounds in the large intestine during colonic fermentation. These results can also be applied to treat foods high in bound phenolics to enhance bioaccessibility. PMID:26853559

  9. Organic Solvent Tolerant Lipases and Applications

    PubMed Central

    Kanwar, Shamsher S.

    2014-01-01

    Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s) could be performed in water-restricted organic media as organic solvent(s) not only improve(s) the solubility of substrate and reactant in reaction mixture but also permit(s) the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented. PMID:24672342

  10. Inhibitory activity of chlorogenic acids in decaffeinated green coffee beans against porcine pancreas lipase and effect of a decaffeinated green coffee bean extract on an emulsion of olive oil.

    PubMed

    Narita, Yusaku; Iwai, Kazuya; Fukunaga, Taiji; Nakagiri, Osamu

    2012-01-01

    A decaffeinated green coffee bean extract (DGCBE) inhibited porcine pancreas lipase (PPL) activity with an IC50 value of 1.98 mg/mL. Six different chlorogenic acids in DGCBE contributed to this PPL inhibition, accounting for 91.8% of the inhibitory activity. DGCBE increased the droplet size and decreased the specific surface area of an olive oil emulsion.

  11. Inhibitory activity of chlorogenic acids in decaffeinated green coffee beans against porcine pancreas lipase and effect of a decaffeinated green coffee bean extract on an emulsion of olive oil.

    PubMed

    Narita, Yusaku; Iwai, Kazuya; Fukunaga, Taiji; Nakagiri, Osamu

    2012-01-01

    A decaffeinated green coffee bean extract (DGCBE) inhibited porcine pancreas lipase (PPL) activity with an IC50 value of 1.98 mg/mL. Six different chlorogenic acids in DGCBE contributed to this PPL inhibition, accounting for 91.8% of the inhibitory activity. DGCBE increased the droplet size and decreased the specific surface area of an olive oil emulsion. PMID:23221697

  12. Secreted Fungal Effector Lipase Releases Free Fatty Acids to Inhibit Innate Immunity-Related Callose Formation during Wheat Head Infection[W][OPEN

    PubMed Central

    Blümke, Antje; Falter, Christian; Herrfurth, Cornelia; Sode, Björn; Bode, Rainer; Schäfer, Wilhelm; Feussner, Ivo; Voigt, Christian A.

    2014-01-01

    The deposition of the (1,3)-β-glucan cell wall polymer callose at sites of attempted penetration is a common plant defense response to intruding pathogens and part of the plant’s innate immunity. Infection of the Fusarium graminearum disruption mutant Δfgl1, which lacks the effector lipase FGL1, is restricted to inoculated wheat (Triticum aestivum) spikelets, whereas the wild-type strain colonized the whole wheat spike. Our studies here were aimed at analyzing the role of FGL1 in establishing full F. graminearum virulence. Confocal laser-scanning microscopy revealed that the Δfgl1 mutant strongly induced the deposition of spot-like callose patches in vascular bundles of directly inoculated spikelets, while these callose deposits were not observed in infections by the wild type. Elevated concentrations of the polyunsaturated free fatty acids (FFAs) linoleic and α-linolenic acid, which we detected in F. graminearum wild type-infected wheat spike tissue compared with Δfgl1-infected tissue, provided clear evidence for a suggested function of FGL1 in suppressing callose biosynthesis. These FFAs not only inhibited plant callose biosynthesis in vitro and in planta but also partially restored virulence to the Δfgl1 mutant when applied during infection of wheat spikelets. Additional FFA analysis confirmed that the purified effector lipase FGL1 was sufficient to release linoleic and α-linolenic acids from wheat spike tissue. We concluded that these two FFAs have a major function in the suppression of the innate immunity-related callose biosynthesis and, hence, the progress of F. graminearum wheat infection. PMID:24686113

  13. Acylation of Antioxidant of Bamboo Leaves with Fatty Acids by Lipase and the Acylated Derivatives' Efficiency in the Inhibition of Acrylamide Formation in Fried Potato Crisps.

    PubMed

    Ma, Xiang; Wang, Erpei; Lu, Yuyun; Wang, Yong; Ou, Shiyi; Yan, Rian

    2015-01-01

    This study selectively acylated the primary hydroxyl groups on flavonoids in antioxidant of bamboo leaves (AOB) using lauric acid with Candida antarctica lipase B in tert-amyl-alcohol. The separation and isolation of acylated derivatives were performed using silica gel column chromatography with a mixture of dichloromethane/diethyl ether/methanol as eluents. Both thin layer chromatography and high-performance liquid chromatography analyses confirmed the high efficiency of the isolation process with the purified orientin-6″-laurate, isoorientin-6″-laurate, vitexin-6″-laurate, and isovitexin-6″-laurate that were obtained. The addition of AOB and acylated AOB reduced acrylamide formation in fried potato crisps. Results showed that 0.05% AOB and 0.05% and 0.1% acylated AOB groups significantly (p < 0.05) reduced the content of acrylamide in potato crisps by 30.7%, 44.5%, and 46.9%, respectively. PMID:26098744

  14. Acylation of Antioxidant of Bamboo Leaves with Fatty Acids by Lipase and the Acylated Derivatives’ Efficiency in the Inhibition of Acrylamide Formation in Fried Potato Crisps

    PubMed Central

    Ma, Xiang; Wang, Erpei; Lu, Yuyun; Wang, Yong; Ou, Shiyi; Yan, Rian

    2015-01-01

    This study selectively acylated the primary hydroxyl groups on flavonoids in antioxidant of bamboo leaves (AOB) using lauric acid with Candida antarctica lipase B in tert-amyl-alcohol. The separation and isolation of acylated derivatives were performed using silica gel column chromatography with a mixture of dichloromethane/diethyl ether/methanol as eluents. Both thin layer chromatography and high-performance liquid chromatography analyses confirmed the high efficiency of the isolation process with the purified orientin-6″-laurate, isoorientin-6″-laurate, vitexin-6″-laurate, and isovitexin-6″-laurate that were obtained. The addition of AOB and acylated AOB reduced acrylamide formation in fried potato crisps. Results showed that 0.05% AOB and 0.05% and 0.1% acylated AOB groups significantly (p < 0.05) reduced the content of acrylamide in potato crisps by 30.7%, 44.5%, and 46.9%, respectively. PMID:26098744

  15. Enzymatic Synthesis of Structured Lipids using a Novel Cold-Active Lipase from Pichia lynferdii NRRL Y-7723

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structured lipids (SL) were synthesized by the acidolysis of borage oil with caprylic acid using lipases. Six commercial lipases from different sources and a novel lipase from Pichia lynferdii NRRL Y-7723 were screened for their acidolysis activities and Lipozyme RM IM and NRRL Y-7723 lipase were s...

  16. Use of a fluorescent radiolabeled triacylglycerol as a substrate for lipoprotein lipase and hepatic triglyceride lipase

    SciTech Connect

    Dousset, N.; Negre, A.; Salvayre, R.; Rogalle, P.; Dang, Q.Q.; Douste-Blazy, L.

    1988-06-01

    A fluorescent radiolabeled triacylglycerol has been synthesized by using a fluorescent fatty acid (pyrene decanoic acid) and a radiolabeled oleic acid. This analog of the natural substrate, 1(3)pyrene decanoic-2,3 (1,2)-dioleoyl-sn-glycerol, has been tested as substrate for determining lipoprotein lipase and hepatic triacylglycerol lipase activities in post-heparin plasma. Optimal conditions for the determination of the two post-heparin plasma lipases were similar to those using radiolabeled triolein. Using this substrate, both post-heparin lipases exhibited their characteristic properties (pH optimum and effect of inhibitors) and attacked external ester bonds (1 or 3) containing pyrene decanoic and oleic acids at a similar rate.

  17. New lipase assay using Pomegranate oil coating in microtiter plates.

    PubMed

    Ülker, Serdar; Placidi, Camille; Point, Vanessa; Gadenne, Benoît; Serveau-Avesque, Carole; Canaan, Stéphane; Carrière, Frédéric; Cavalier, Jean-François

    2016-01-01

    Lipases play various roles in fat digestion, lipoprotein metabolism, and in the mobilization of fat stored in lipid bodies in animals, plants and microorganisms. In association with these physiological functions, there is an important field of research for discovering lipase inhibitors and developing new treatments of diseases such as obesity, atherosclerosis, diabetes and tuberculosis. In this context, the development of convenient, specific and sensitive analytical methods for the detection and assay of lipases and/or lipase inhibitors is of major importance. It is shown here that purified triacylglycerols (TAGs) from Punica granatum (Pomegranate) seed oil coated on microtiter plates can be used for the continuous assay of lipase activity by recording the variations with time of the UV absorption spectra at 275 nm. UV absorption is due the release of punicic acid (9Z,11E,13Z-octadeca-9,11,13-trienoic acid), a conjugated triene contained in Pomegranate oil. This new microtiter plate assay allows to accurately measure the activity of a wider range of lipases compared to the similar assay previously developed with Tung oil containing α-eleostearic acid (9Z,11E,13E-octadeca-9,11,13-trienoic acid), including the LipY lipase from Mycobacterium tuberculosis. Although punicic acid is a diastereoisomer of α-eleostearic acid, the Δ(13)cis double bound found in punicic acid gives a different structure to the acyl chain that probably favours the interaction of Pomegranate TAGs with the lipase active site. The microplate lipase assay using Pomegranate TAGs shows high sensitivity, reproducibility and remarkable relevance for the high-speed screening of lipases and/or lipase inhibitors directly from raw culture media without any purification step.

  18. New lipase assay using Pomegranate oil coating in microtiter plates.

    PubMed

    Ülker, Serdar; Placidi, Camille; Point, Vanessa; Gadenne, Benoît; Serveau-Avesque, Carole; Canaan, Stéphane; Carrière, Frédéric; Cavalier, Jean-François

    2016-01-01

    Lipases play various roles in fat digestion, lipoprotein metabolism, and in the mobilization of fat stored in lipid bodies in animals, plants and microorganisms. In association with these physiological functions, there is an important field of research for discovering lipase inhibitors and developing new treatments of diseases such as obesity, atherosclerosis, diabetes and tuberculosis. In this context, the development of convenient, specific and sensitive analytical methods for the detection and assay of lipases and/or lipase inhibitors is of major importance. It is shown here that purified triacylglycerols (TAGs) from Punica granatum (Pomegranate) seed oil coated on microtiter plates can be used for the continuous assay of lipase activity by recording the variations with time of the UV absorption spectra at 275 nm. UV absorption is due the release of punicic acid (9Z,11E,13Z-octadeca-9,11,13-trienoic acid), a conjugated triene contained in Pomegranate oil. This new microtiter plate assay allows to accurately measure the activity of a wider range of lipases compared to the similar assay previously developed with Tung oil containing α-eleostearic acid (9Z,11E,13E-octadeca-9,11,13-trienoic acid), including the LipY lipase from Mycobacterium tuberculosis. Although punicic acid is a diastereoisomer of α-eleostearic acid, the Δ(13)cis double bound found in punicic acid gives a different structure to the acyl chain that probably favours the interaction of Pomegranate TAGs with the lipase active site. The microplate lipase assay using Pomegranate TAGs shows high sensitivity, reproducibility and remarkable relevance for the high-speed screening of lipases and/or lipase inhibitors directly from raw culture media without any purification step. PMID:26343557

  19. The acidic domain of the endothelial membrane protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain

    PubMed Central

    Mysling, Simon; Kristensen, Kristian Kølby; Larsson, Mikael; Beigneux, Anne P; Gårdsvoll, Henrik; Fong, Loren G; Bensadouen, André; Jørgensen, Thomas JD; Young, Stephen G; Ploug, Michael

    2016-01-01

    GPIHBP1 is a glycolipid-anchored membrane protein of capillary endothelial cells that binds lipoprotein lipase (LPL) within the interstitial space and shuttles it to the capillary lumen. The LPL•GPIHBP1 complex is responsible for margination of triglyceride-rich lipoproteins along capillaries and their lipolytic processing. The current work conceptualizes a model for the GPIHBP1•LPL interaction based on biophysical measurements with hydrogen-deuterium exchange/mass spectrometry, surface plasmon resonance, and zero-length cross-linking. According to this model, GPIHBP1 comprises two functionally distinct domains: (1) an intrinsically disordered acidic N-terminal domain; and (2) a folded C-terminal domain that tethers GPIHBP1 to the cell membrane by glycosylphosphatidylinositol. We demonstrate that these domains serve different roles in regulating the kinetics of LPL binding. Importantly, the acidic domain stabilizes LPL catalytic activity by mitigating the global unfolding of LPL's catalytic domain. This study provides a conceptual framework for understanding intravascular lipolysis and GPIHBP1 and LPL mutations causing familial chylomicronemia. DOI: http://dx.doi.org/10.7554/eLife.12095.001 PMID:26725083

  20. The acidic domain of the endothelial membrane protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain.

    PubMed

    Mysling, Simon; Kristensen, Kristian Kølby; Larsson, Mikael; Beigneux, Anne P; Gårdsvoll, Henrik; Fong, Loren G; Bensadouen, André; Jørgensen, Thomas Jd; Young, Stephen G; Ploug, Michael

    2016-01-01

    GPIHBP1 is a glycolipid-anchored membrane protein of capillary endothelial cells that binds lipoprotein lipase (LPL) within the interstitial space and shuttles it to the capillary lumen. The LPL•GPIHBP1 complex is responsible for margination of triglyceride-rich lipoproteins along capillaries and their lipolytic processing. The current work conceptualizes a model for the GPIHBP1•LPL interaction based on biophysical measurements with hydrogen-deuterium exchange/mass spectrometry, surface plasmon resonance, and zero-length cross-linking. According to this model, GPIHBP1 comprises two functionally distinct domains: (1) an intrinsically disordered acidic N-terminal domain; and (2) a folded C-terminal domain that tethers GPIHBP1 to the cell membrane by glycosylphosphatidylinositol. We demonstrate that these domains serve different roles in regulating the kinetics of LPL binding. Importantly, the acidic domain stabilizes LPL catalytic activity by mitigating the global unfolding of LPL's catalytic domain. This study provides a conceptual framework for understanding intravascular lipolysis and GPIHBP1 and LPL mutations causing familial chylomicronemia. PMID:26725083

  1. Lipase-catalyzed preparation of diacylglycerol-enriched oil from high-acid rice bran oil in solvent-free system.

    PubMed

    Song, Zhihua; Liu, Yuanfa; Jin, Qingzhe; Li, Lei; Wang, Xingguo; Huang, Jianhua; Liu, Ruijie

    2012-09-01

    The ability of immobilized lipase from Rhizomucor miehei (Lipozyme RM IM) to catalyze the reaction of high-acid rice bran oil (RBO) and monoglyceride (MG) for diacylglycerol-enriched rice bran oil (RBO-DG) preparation was investigated. The effects of substrate ratio, reaction temperature, time, and enzyme load on the respective content of free fatty acid (FFA) and DG in the final RBO-DG products was investigated. Enzyme screening on the reaction was also investigated. Response surface methodology (RSM) was used to optimize the effects of the reaction temperature (50-70 °C), the enzyme load (2-6 %; relative to the weight of total substrates), and the reaction time (4-8 h) on the respective content of FFA and DG. Validation of the RSM model was verified by the good agreement between the experimental and the predicted values. The optimum preparation conditions were as follows: MG/RBO, 0.25; temperature, 56 °C; enzyme load, 4.77 %; and reaction time, 5.75 h. Under the suggested conditions, the respective content of FFA and DG was 0.28 and 27.98 %, respectively. Repeated reaction tests indicated that Lipozyme RM IM could be used nine times under the optimum conditions with 90 % of its original catalytic activity still retained.

  2. The acidic domain of the endothelial membrane protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain.

    PubMed

    Mysling, Simon; Kristensen, Kristian Kølby; Larsson, Mikael; Beigneux, Anne P; Gårdsvoll, Henrik; Fong, Loren G; Bensadouen, André; Jørgensen, Thomas Jd; Young, Stephen G; Ploug, Michael

    2016-01-03

    GPIHBP1 is a glycolipid-anchored membrane protein of capillary endothelial cells that binds lipoprotein lipase (LPL) within the interstitial space and shuttles it to the capillary lumen. The LPL•GPIHBP1 complex is responsible for margination of triglyceride-rich lipoproteins along capillaries and their lipolytic processing. The current work conceptualizes a model for the GPIHBP1•LPL interaction based on biophysical measurements with hydrogen-deuterium exchange/mass spectrometry, surface plasmon resonance, and zero-length cross-linking. According to this model, GPIHBP1 comprises two functionally distinct domains: (1) an intrinsically disordered acidic N-terminal domain; and (2) a folded C-terminal domain that tethers GPIHBP1 to the cell membrane by glycosylphosphatidylinositol. We demonstrate that these domains serve different roles in regulating the kinetics of LPL binding. Importantly, the acidic domain stabilizes LPL catalytic activity by mitigating the global unfolding of LPL's catalytic domain. This study provides a conceptual framework for understanding intravascular lipolysis and GPIHBP1 and LPL mutations causing familial chylomicronemia.

  3. Gastric lipase: localization of the enzyme in the stomach

    SciTech Connect

    DeNigris, S.J.; Hamosh, M.; Hamosh, P.; Kasbekar, D.K.

    1986-03-05

    Isolated gastric glands prepared from human and rabbit stomach secrete lipase in response to secretagogues. They have investigated the localization of this enzyme in three species (rabbit, baboon, guinea pig). Gastric mucosa was sampled from the cardia (C), fundus-smooth (FS), fundus-ruggae (FR) and the antral area (A). Lipase activity was measured in mucosal homogenates using /sup 3/H-triolein as substrate and is expressed in units (U) = nmols free fatty acid released/min/mg wet weight. The localization of lipase is compared with that of pepsin (measured by hydrolysis of 2% hemoglobin at pH 1.8 and expressed in I.U.). Lipase is localized in a well defined area in the rabbit and is diffusely distributed in both guinea pig and baboon. The distribution of lipase and pepsin containing cells differs in all three species. The cellular origin of gastric lipase remains to be determined.

  4. Arabidopsis Lipins, PDAT1 Acyltransferase, and SDP1 Triacylglycerol Lipase Synergistically Direct Fatty Acids toward β-Oxidation, Thereby Maintaining Membrane Lipid Homeostasis[C][W

    PubMed Central

    Fan, Jilian; Yan, Chengshi; Roston, Rebecca; Shanklin, John

    2014-01-01

    Triacylglycerol (TAG) metabolism is a key aspect of intracellular lipid homeostasis in yeast and mammals, but its role in vegetative tissues of plants remains poorly defined. We previously reported that PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1 (PDAT1) is crucial for diverting fatty acids (FAs) from membrane lipid synthesis to TAG and thereby protecting against FA-induced cell death in leaves. Here, we show that overexpression of PDAT1 enhances the turnover of FAs in leaf lipids. Using the trigalactosyldiacylglycerol1-1 (tgd1-1) mutant, which displays substantially enhanced PDAT1-mediated TAG synthesis, we demonstrate that disruption of SUGAR-DEPENDENT1 (SDP1) TAG lipase or PEROXISOMAL TRANSPORTER1 (PXA1) severely decreases FA turnover, leading to increases in leaf TAG accumulation, to 9% of dry weight, and in total leaf lipid, by 3-fold. The membrane lipid composition of tgd1-1 sdp1-4 and tgd1-1 pxa1-2 double mutants is altered, and their growth and development are compromised. We also show that two Arabidopsis thaliana lipin homologs provide most of the diacylglycerol for TAG synthesis and that loss of their functions markedly reduces TAG content, but with only minor impact on eukaryotic galactolipid synthesis. Collectively, these results show that Arabidopsis lipins, along with PDAT1 and SDP1, function synergistically in directing FAs toward peroxisomal β-oxidation via TAG intermediates, thereby maintaining membrane lipid homeostasis in leaves. PMID:25293755

  5. Angptl4 protects against severe pro-inflammatory effects of dietary saturated fat by inhibiting lipoprotein lipase-dependent uptake of fatty acids in mesenteric lymph node macrophages

    PubMed Central

    Lichtenstein, Laeticia; Mattijssen, Frits; de Wit, Nicole J.; Georgiadi, Anastasia; Hooiveld, Guido J.; van der Meer, Roelof; He, Yin; Qi, Ling; Köster, Anja; Tamsma, Jouke T.; Tan, Nguan Soon; Müller, Michael; Kersten, Sander

    2012-01-01

    Summary Dietary saturated fat is linked to numerous chronic diseases, including cardiovascular disease. Here we show that the lipoprotein lipase inhibitor Angptl4 protects against the pronounced pro-inflammatory effects of dietary saturated fat. Strikingly, in mice lacking Angptl4, dietary saturated fat induces a severe and ultimately lethal phenotype characterized by fibrinopurulent peritonitis, ascites, intestinal fibrosis, and cachexia. These abnormalities are preceded by a massive acute phase response induced by saturated but not unsaturated fat or medium-chain fat, originating in the mesenteric lymph nodes (MLNs). MLNs undergo dramatic expansion and contain numerous lipid laden macrophages. In peritoneal macrophages incubated with chyle, Angptl4 dramatically reduced macrophage foam cell formation, inflammatory gene expression, and chyle-induced activation of the ER stress pathway. The data reveal a novel mechanism in which induction of macrophage Angptl4 by fatty acids serves to reduce postprandial lipid uptake from fatty chyle into MLN-resident macrophages by inhibiting triglyceride hydrolysis, thereby preventing macrophage activation and foam cell formation and protecting against progressive, uncontrolled dietary saturated fat-induced inflammation. PMID:21109191

  6. The near-ideal catalytic property of Candida antarctica lipase A to highly concentrate n-3 polyunsaturated fatty acids in monoacylglycerols via one-step ethanolysis of triacylglycerols.

    PubMed

    He, Yongjin; Li, Jingbo; Kodali, Sitharam; Chen, Bilian; Guo, Zheng

    2016-11-01

    Declining quantity/quality of available n-3 polyunsaturated fatty acids (n-3 PUFAs) resources demand innovative technology to concentrate n-3 PUFAs from low quality oils into value-added products/health-beneficial ingredients rich in n-3 PUFAs. This work proposed the catalytic property and specificity of an ideal enzyme required to tackle this task and identified Candida antarctica lipase A (CAL-A) is such a near-ideal enzyme in practice, which concentrates n-3 PUFAs from 25% to 27% in oils to a theoretically closer value 90% in monoacylglycerols (MAGs) via one-step enzymatic ethanolysis. Non-regiospecificity and high non-n-3 PUFAs preference of CAL-A are the catalytic feature to selectively cleave non-n-3 PUFAs in all 3 positions of triacylglycerols (TAGs); while high ethanol/TAGs ratio, low operation temperature and high tolerance to polar ethanol are essential conditions beyond biocatalyst itself. C-13 Nuclear magnetic resonance ((13)C NMR) analysis and competitive factor estimation verified the hypothesis and confirmed the plausible suggestion of catalytic mechanism of CAL-A.

  7. The near-ideal catalytic property of Candida antarctica lipase A to highly concentrate n-3 polyunsaturated fatty acids in monoacylglycerols via one-step ethanolysis of triacylglycerols.

    PubMed

    He, Yongjin; Li, Jingbo; Kodali, Sitharam; Chen, Bilian; Guo, Zheng

    2016-11-01

    Declining quantity/quality of available n-3 polyunsaturated fatty acids (n-3 PUFAs) resources demand innovative technology to concentrate n-3 PUFAs from low quality oils into value-added products/health-beneficial ingredients rich in n-3 PUFAs. This work proposed the catalytic property and specificity of an ideal enzyme required to tackle this task and identified Candida antarctica lipase A (CAL-A) is such a near-ideal enzyme in practice, which concentrates n-3 PUFAs from 25% to 27% in oils to a theoretically closer value 90% in monoacylglycerols (MAGs) via one-step enzymatic ethanolysis. Non-regiospecificity and high non-n-3 PUFAs preference of CAL-A are the catalytic feature to selectively cleave non-n-3 PUFAs in all 3 positions of triacylglycerols (TAGs); while high ethanol/TAGs ratio, low operation temperature and high tolerance to polar ethanol are essential conditions beyond biocatalyst itself. C-13 Nuclear magnetic resonance ((13)C NMR) analysis and competitive factor estimation verified the hypothesis and confirmed the plausible suggestion of catalytic mechanism of CAL-A. PMID:27521783

  8. [Prevention of atherosclerosis. The positional specificity of blood triglycerides and lipases, the particular milk lipids, and the modification of the fatty acids of vegetable oils and animal fats].

    PubMed

    Titov, V N; Krylin, V V; Shiriaeva, Iu K

    2011-03-01

    Milk is a biological medium that bears no resemblance to any of the biological fluids and tissues in primates and mammals in the positional composition of fatty acids (FA) in triglycerides. This is determined by the fact that at the very early phylogenesis of mammals, milk is to ensure a high postnatal bioavailability (absorption) of saturated palmitic FA, a substrate for neonatal energy supply despite all obstacles that are formed in the baby's intestine in vivo. Milk is destined for infant nutrition in the biology-destined period (not more than a year); assimilation of triglycerides that are so structurally unusual requires a) high isomerization activity in the enterocytes and b) the ability of blood lipases to hydrolyze palmitate-oleate-palmitate triglycerides as a component of oleic very-low-density lipoproteins. After the period permitted by nature, there is virtually no possibility to physiologically consume milk that contains structurally unusual triglycerides. The use of whole milk and its products by adults impairs the active, receptor cell absorption of FAs as ligand lipoproteins via apoE/B-100-endocytosis and enhances the generation of small, dense low-density lipoproteins as biological debris. The impaired biological function of endoecology and the debris accumulation of the intercellular medium lead to the activation of atheromatosis, atherothrombosis, and coronary sclerosis. Nature has given no sanction for turning the mammals that are not on milk to those on milk for whole life. Up to one year of age, the baby has in vivo conditions for the absorption and hydrolysis of triglycerides with palmitic FA at the sn-2 position. After one year of age, the expression of these lipases and coenzymes is over; re-expression occurs only with the activation of the biological function of locomotion - long-term strenuous physical activity. High physical activity expresses other genes, enzymes, coenzymes, and carrier proteins, which activate the hydrolysis of

  9. Endothelial lipase is a major determinant of HDL level

    SciTech Connect

    Ishida, Tatsuro; Choi, Sungshin; Kundu, Ramendra K.; Hirata, Ken-Ichi; Rubin, Edward M.; Cooper, Allen D.; Quertermous, Thomas

    2003-01-30

    lipase (44 percent identity) and hepatic lipase (41 percent identity), two well-characterized lipases that function at vascular endothelial surfaces. Critical motifs associated with lipase activity (GXSXG and the catalytic triad S169, D193, H274), and with heparin binding were strongly conserved. Interestingly, in contrast to both lipoprotein lipase and hepatic lipase, endothelial lipase has little triglyceride hydrolase activity in vitro but instead cleaves fatty acids from the sn-1 position of phosphatidylcho-line. In in vitro assays the enzyme is most active on lipids presented in HDL, although it will release fatty acids from all classes of lipoproteins. Consistent with this finding, adenovirus-mediated overexpression of endothelial lipase in LDL receptor-deficient mice reduced plasma concentrations of VLDL and LDL cholesterol by about 50 percent, whereas HDL-C decreased to almost zero in these animals. These data suggested that endothelial lipase may play a role in HDL catabolism.

  10. Optimization of culture conditions for production of a novel cold-active lipase from Pichia lynferdii NRRL Y-7723

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipases with abnormal properties such as thermo stability, alkalinity, acidity and cold-activity receive industrial attention because of their usability under restricted reaction conditions. Most microbial cold-active lipases originate from psychrotrophic and psychrophilic microorganisms found in An...

  11. Optimising the use of commercial LAL assays for the analysis of endotoxin contamination in metal colloids and metal oxide nanoparticles.

    PubMed

    Li, Yang; Italiani, Paola; Casals, Eudald; Tran, Ngoc; Puntes, Victor F; Boraschi, Diana

    2015-05-01

    Engineered nanoparticles (NP) are generally contaminated by bacterial endotoxin, a ubiquitous bacterial molecule with significant toxic and inflammatory effects. The presence of endotoxin, if not recognised, can be responsible for many of the in vitro and in vivo effects attributed to NPs. The Limulus Amoebocyte Lysate (LAL) assay, the test requested by regulatory authorities for assessing endotoxin contamination in products for human use, is not immediately applicable for testing endotoxin in NP preparations, mainly due to the possible interference of NPs with the assay readouts and components. In this study, we have compared different commercially available LAL assays for detecting endotoxin in gold, silver and iron oxide NPs. Different NP chemistry, concentrations and surface coatings could differently interfere with the LAL assays' results. After accurate testing of the possible interaction/interference of NPs with the various assay components, the modified chromogenic LAL assay proved the most suitable assay for measuring endotoxin in NP samples, provided the appropriate controls are performed. Thus, endotoxin determination can be performed in NP preparation with commercial LAL assays only after assay validation, i.e. once possible interference of NPs with the assay components and readouts has been excluded.

  12. Assay and Inhibition of Diacylglycerol Lipase Activity

    PubMed Central

    Johnston, Meghan; Bhatt, Shachi R.; Sikka, Surina; Mercier, Richard W.; West, Jay M.; Makriyannis, Alexandros; Gatley, S. John; Duclos, Richard I.

    2012-01-01

    A series of N-formyl-α-amino acid esters of β-lactone derivatives structurally related to tetrahydrolipstatin (THL) and O-3841 were synthesized that inhibit human and murine diacylglycerol lipase (DAGL) activities. New ether lipid reporter compounds were developed for an in vitro assay to efficiently screen inhibitors of 1,2-diacyl-sn-glycerol hydrolysis and related lipase activities using fluorescence resonance energy transfer (FRET). A standardized thin layer chromatography (TLC) radioassay of diacylglycerol lipase activity utilizing the labeled endogenous substrate [1″-14C]1-stearoyl-2-arachidonoyl-sn-glycerol with phosphorimaging detection was used to quantify inhibition by following formation of the initial product [1″-14C]2-arachidonoylglycerol and further hydrolysis under the assay conditions to [1-14C]arachidonic acid. PMID:22738638

  13. Studies of reaction variables for lipase-catalyzed production of alpha-linolenic acid enriched structured lipid and oxidative stability with antioxidants.

    PubMed

    Mitra, Kanika; Shin, Jung-Ah; Lee, Jeung-Hee; Kim, Seong-Ai; Hong, Soon-Taek; Sung, Chang-Keun; Xue, Cheng Lian; Lee, Ki-Teak

    2012-01-01

    Alpha-linolenic acid (ALA) enriched structured lipid (SL) was produced by lipase-catalyzed interesterification from perilla oil (PO) and corn oil (CO). The effects of different reaction conditions (substrate molar ratio [PO/CO 1:1 to 1:3], reaction time [0 to 24 h], and reaction temperature [55 to 65 °C]) were studied. Lipozyme RM IM from Rhizomucor miehei was used as biocatalyst. We obtained 32.39% of ALA in SL obtained under the optimized conditions (molar ratio-1:1 [PO:CO], temperature-60 °C, reaction time-15 h). In SL, the major triacylglycerol (TAG) species (linolenoyl-linolenoyl-linolenoyl glycerol [LnLnLn], linolenoyl-linolenoyl-linoleoyl glycerol [LnLnL]) mainly from PO and linoleoyl-linoleoyl-oleoyl glycerol (LLO), linoleoyl-oleoyl-oleoyl glycerol (LOO), palmitoyl-linoleoyl-oleoyl glycerol (PLO) from CO decreased while linolenoyl-linolenoyl-oleoyl glycerol (LnLnO) (18.41%), trilinolein (LLL) (9.06%), LLO (16.66%), palmitoyl-linoleoyl-linoleoyl glycerol (PLL) (9.69%) were increased compared to that of physical blend. Total tocopherol content (28.01 mg/100 g), saponification value (SV) (192.2), and iodine value (IV) (161.9) were obtained. Furthermore, oxidative stability of the SL was also investigated by addition of 3 different antioxidants (each 200 ppm of rosemary extract [SL-ROS], BHT [SL-BHT], catechin [SL-CAT]) was added into SL and stored in 60 °C oven for 30 d. 2-Thiobabituric acid-reactive substances (TBARS) value was 0.16 mg/kg in SL-CAT and 0.18 mg/kg in SL-ROS as compared with 0.22 mg/kg in control (SL) after oxidation. The lowest peroxide value (POV, 200.9 meq/kg) and longest induction time (29.88 h) was also observed in SL-CAT. PMID:22122200

  14. Analysis of Comparative Sequence and Genomic Data to Verify Phylogenetic Relationship and Explore a New Subfamily of Bacterial Lipases

    PubMed Central

    Salleh, Abu Bakar; Basri, Mahiran

    2016-01-01

    Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca2+-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65°C and retained ≥ 97% activity after incubation at 50°C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents. PMID:26934700

  15. Lipase-catalyzed production of a bioactive fatty amide derivative of 7,10-dihydroxy-8(E)-octadecenoic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty amides are of considerable interest due to their wide ranging industrial applications in detergents, shampoo, cosmetics and surfactant formulations. They are produced commercially from fatty acids by reacting with anhydrous ammonia at approximately 200 deg C and 345-690 KPa pressure. We inve...

  16. Full Fatty Acid Amide Hydrolase Inhibition Combined with Partial Monoacylglycerol Lipase Inhibition: Augmented and Sustained Antinociceptive Effects with Reduced Cannabimimetic Side Effects in Mice

    PubMed Central

    Ghosh, Sudeshna; Kinsey, Steven G.; Liu, Qing-song; Hruba, Lenka; McMahon, Lance R.; Grim, Travis W.; Merritt, Christina R.; Wise, Laura E.; Abdullah, Rehab A.; Selley, Dana E.; Sim-Selley, Laura J.; Cravatt, Benjamin F.

    2015-01-01

    Inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the primary hydrolytic enzymes for the respective endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonylglycerol (2-AG), produces antinociception but with minimal cannabimimetic side effects. Although selective inhibitors of either enzyme often show partial efficacy in various nociceptive models, their combined blockade elicits augmented antinociceptive effects, but side effects emerge. Moreover, complete and prolonged MAGL blockade leads to cannabinoid receptor type 1 (CB1) receptor functional tolerance, which represents another challenge in this potential therapeutic strategy. Therefore, the present study tested whether full FAAH inhibition combined with partial MAGL inhibition would produce sustained antinociceptive effects with minimal cannabimimetic side effects. Accordingly, we tested a high dose of the FAAH inhibitor PF-3845 (N-​3-​pyridinyl-​4-​[[3-​[[5-​(trifluoromethyl)-​2-​pyridinyl]oxy]phenyl]methyl]-​1-​piperidinecarboxamide; 10 mg/kg) given in combination with a low dose of the MAGL inhibitor JZL184 [4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate] (4 mg/kg) in mouse models of inflammatory and neuropathic pain. This combination of inhibitors elicited profound increases in brain AEA levels (>10-fold) but only 2- to 3-fold increases in brain 2-AG levels. This combination produced significantly greater antinociceptive effects than single enzyme inhibition and did not elicit common cannabimimetic effects (e.g., catalepsy, hypomotility, hypothermia, and substitution for Δ9-tetrahydrocannabinol in the drug-discrimination assay), although these side effects emerged with high-dose JZL184 (i.e., 100 mg/kg). Finally, repeated administration of this combination did not lead to tolerance to its antiallodynic actions in the carrageenan assay or CB1 receptor functional tolerance. Thus, full FAAH inhibition combined

  17. Influence of the degree of unsaturation of the acyl side chain upon the interaction of analogues of 1-arachidonoylglycerol with monoacylglycerol lipase and fatty acid amide hydrolase

    SciTech Connect

    Vandevoorde, Severine; Saha, Bijali; Mahadevan, Anu; Razdan, Raj K.; Pertwee, Roger G.; Martin, Billy R.; Fowler, Christopher J. . E-mail: cf@pharm.umu.se

    2005-11-11

    Little is known as to the structural requirements of the acyl side chain for interaction of acylglycerols with monoacylglycerol lipase (MAGL), the enzyme chiefly responsible for the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain. In the present study, a series of twelve analogues of 1-AG (the more stable regioisomer of 2-AG) were investigated with respect to their ability to inhibit the metabolism of 2-oleoylglycerol by cytosolic and membrane-bound MAGL. In addition, the ability of the compounds to inhibit the hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) was investigated. For cytosolic MAGL, compounds with 20 carbon atoms in the acyl chain and 2-5 unsaturated bonds inhibited the hydrolysis of 2-oleoylglycerol with similar potencies (IC{sub 50} values in the range 5.1-8.2 {mu}M), whereas the two compounds with a single unsaturated bond were less potent (IC{sub 50} values 19 and 21 {mu}M). The fully saturated analogue 1-monoarachidin did not inhibit the enzyme, whereas the lower side chain analogues 1-monopalmitin and 1-monomyristin inhibited the enzyme with IC{sub 50} values of 12 and 32 {mu}M, respectively. The 22-carbon chain analogue of 1-AG was also potent (IC{sub 50} value 4.5 {mu}M). Introduction of an {alpha}-methyl group for the C20:4, C20:3, and C22:4 compounds did not affect potency in a consistent manner. For the FAAH and the membrane-bound MAGL, there was no obvious relationship between the degree of unsaturation of the acyl side chain and the ability to inhibit the enzymes. It is concluded that increasing the number of unsaturated bonds on the acyl side chain of 1-AG from 1 to 5 has little effect on the affinity of acylglycerols for cytosolic MAGL.

  18. Full Fatty Acid Amide Hydrolase Inhibition Combined with Partial Monoacylglycerol Lipase Inhibition: Augmented and Sustained Antinociceptive Effects with Reduced Cannabimimetic Side Effects in Mice.

    PubMed

    Ghosh, Sudeshna; Kinsey, Steven G; Liu, Qing-Song; Hruba, Lenka; McMahon, Lance R; Grim, Travis W; Merritt, Christina R; Wise, Laura E; Abdullah, Rehab A; Selley, Dana E; Sim-Selley, Laura J; Cravatt, Benjamin F; Lichtman, Aron H

    2015-08-01

    Inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the primary hydrolytic enzymes for the respective endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonylglycerol (2-AG), produces antinociception but with minimal cannabimimetic side effects. Although selective inhibitors of either enzyme often show partial efficacy in various nociceptive models, their combined blockade elicits augmented antinociceptive effects, but side effects emerge. Moreover, complete and prolonged MAGL blockade leads to cannabinoid receptor type 1 (CB1) receptor functional tolerance, which represents another challenge in this potential therapeutic strategy. Therefore, the present study tested whether full FAAH inhibition combined with partial MAGL inhibition would produce sustained antinociceptive effects with minimal cannabimimetic side effects. Accordingly, we tested a high dose of the FAAH inhibitor PF-3845 (N-​3-​pyridinyl-​4-​[[3-​[[5-​(trifluoromethyl)-​2-​pyridinyl]oxy]phenyl]methyl]-​1-​piperidinecarboxamide; 10 mg/kg) given in combination with a low dose of the MAGL inhibitor JZL184 [4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate] (4 mg/kg) in mouse models of inflammatory and neuropathic pain. This combination of inhibitors elicited profound increases in brain AEA levels (>10-fold) but only 2- to 3-fold increases in brain 2-AG levels. This combination produced significantly greater antinociceptive effects than single enzyme inhibition and did not elicit common cannabimimetic effects (e.g., catalepsy, hypomotility, hypothermia, and substitution for Δ(9)-tetrahydrocannabinol in the drug-discrimination assay), although these side effects emerged with high-dose JZL184 (i.e., 100 mg/kg). Finally, repeated administration of this combination did not lead to tolerance to its antiallodynic actions in the carrageenan assay or CB1 receptor functional tolerance. Thus, full FAAH inhibition

  19. Biochemical and molecular characterization of Staphylococcus simulans lipase.

    PubMed

    Sayari, A; Agrebi, N; Jaoua, S; Gargouri, Y

    2001-09-01

    Staphylococcus simulans strain secretes a non-induced lipase in the culture medium. Staphylococcus simulans lipase (SSL), purified to homogeneity, is a tetrameric protein (160 kDa) corresponding to the association of four lipase molecules. The 30 N-terminal amino acid residues were sequenced. This sequence is identical to the one of Staphylococcus aureus PS54 lipase (SAL PS54) and exhibits a high degree of homology with Staphylococcus aureus NCTC8530 lipase (SAL NCTC8530), Staphylococcus hyicus lipase (SHL) and Staphylococcus epidermis RP62A lipase (SEL RP62A) sequences. But the cloning and sequencing of the part of the gene encoding the mature lipase show some differences from SAL PS54 sequence, which suggest that it is a new sequence. The lipase activity was maximal at pH 8.5 and 37 degrees C. SSL is able to hydrolyze triacylglycerols without chain length specificity. A specific activity of about 1000 U/mg was measured on tributyrin or triolein as substrate at 37 degrees C and at pH 8.5 in the presence of 3 mM CaCl(2). In contrast to other staphylococcal lipases previously characterized, Ca(2+) is not required to express the activity of SSL. SSL was found to be stable between pH 4 and pH 9. The enzyme is inactivated after a few minutes when incubated at 60 degrees C. Using tripropionin as substrate, SSL does not present the interfacial activation phenomenon. In contrast to many lipases, SSL is able to hydrolyze its substrate in the presence of bile salts or amphiphilic proteins. PMID:11698108

  20. Familial lipoprotein lipase deficiency

    MedlinePlus

    ... and white-colored blood vessels in the retinas Pancreatitis that keeps returning Yellowing of the eyes and ... discuss your diet needs with a registered dietitian. Pancreatitis that is related to lipoprotein lipase deficiency responds ...

  1. Lipase-catalyzed ethanolysis of borage oil: a kinetic study.

    PubMed

    Torres, Carlos F; Hill, Charles G; Otero, Cristina

    2004-01-01

    Ethanolysis of borage oil catalyzed by two commercial lipases (from Pseudomonas cepacia and Candida antarctica) was studied using two different methodologies. Multiresponse models derived from a generalized Michaelis-Menten mechanism were utilized to describe the rates of formation of ethyl esters of the primary fatty acids present in the precursor oil. The relative rate constants determined for each of the fatty acid residues indicated that both lipases discriminate against release of gamma-linolenic acid residues under the reaction conditions studied. However, both lipases also released some of the residues located at the sn-2 position, indicating that for the experimental conditions studied, both lipases are nonspecific. Moreover, inactivation of Novozym 435 was rapid. Because the half-life of this enzyme (ca. 2.2 h) is comparable to the half-life of the reaction, the intrinsic reaction rate and enzyme deactivation must both be considered in modeling the kinetics. PMID:15176879

  2. Lipase-catalyzed ethanolysis of borage oil: a kinetic study.

    PubMed

    Torres, Carlos F; Hill, Charles G; Otero, Cristina

    2004-01-01

    Ethanolysis of borage oil catalyzed by two commercial lipases (from Pseudomonas cepacia and Candida antarctica) was studied using two different methodologies. Multiresponse models derived from a generalized Michaelis-Menten mechanism were utilized to describe the rates of formation of ethyl esters of the primary fatty acids present in the precursor oil. The relative rate constants determined for each of the fatty acid residues indicated that both lipases discriminate against release of gamma-linolenic acid residues under the reaction conditions studied. However, both lipases also released some of the residues located at the sn-2 position, indicating that for the experimental conditions studied, both lipases are nonspecific. Moreover, inactivation of Novozym 435 was rapid. Because the half-life of this enzyme (ca. 2.2 h) is comparable to the half-life of the reaction, the intrinsic reaction rate and enzyme deactivation must both be considered in modeling the kinetics.

  3. Isolation of lipase producing thermophilic bacteria: optimization of production and reaction conditions for lipase from Geobacillus sp.

    PubMed

    Mehta, Akshita; Kumar, Rakesh; Gupta, Reena

    2012-12-01

    Lipases catalyze the hydrolysis and the synthesis of esters formed from glycerol and long chain fatty acids. Lipases occur widely in nature, but only microbial lipases are commercially significant. In the present study, thirty-two bacterial strains, isolated from soil sample of a hot spring were screened for lipase production. The strain TS-4, which gave maximum activity, was identified as Geobacillus sp. at MTCC, IMTECH, Chandigarh. The isolated lipase producing bacteria were grown on minimal salt medium containing olive oil. Maximal quantities of lipase were produced when 30 h old inoculum was used at 10% (v/v) in production medium and incubated in shaking conditions (150 rpm) for 72 h. The optimal temperature and pH for the bacterial growth and lipase production were found to be 60°C and 9.5, respectively. Maximal enzyme production resulted when mustard oil was used as carbon source and yeast extract as sole nitrogen source at a concentration of 1% (v/v) and 0.15% (w/v), respectively. The different optimized reaction parameters were temperature 65°C, pH 8.5, incubation time 10 min and substrate p-nitrophenyl palmitate. The Km and Vmax values of enzyme were found to be 14 mM and 17.86 μmol ml-1min-1, respectively, with p-nitrophenyl palmitate as substrate. All metal ions studied (1 mM) increased the lipase activity. PMID:23195552

  4. Links for Academic Learning (LAL): A Conceptual Model for Investigating Alignment of Alternate Assessments Based on Alternate Achievement Standards

    ERIC Educational Resources Information Center

    Flowers, Claudia; Wakeman, Shawnee; Browder, Diane M.; Karvonen, Meagan

    2009-01-01

    This article describes an alignment procedure, called Links for Academic Learning (LAL), for examining the degree of alignment of alternate assessments based on alternate achievement standards (AA-AAS) to grade-level content standards and instruction. Although some of the alignment criteria are similar to those used in general education…

  5. LAL Regulators SCO0877 and SCO7173 as Pleiotropic Modulators of Phosphate Starvation Response and Actinorhodin Biosynthesis in Streptomyces coelicolor

    PubMed Central

    Guerra, Susana M.; Rodríguez-García, Antonio; Santos-Aberturas, Javier; Vicente, Cláudia M.; Payero, Tamara D.; Martín, Juan F.; Aparicio, Jesús F.

    2012-01-01

    LAL regulators (Large ATP-binding regulators of the LuxR family) constitute a poorly studied family of transcriptional regulators. Several regulators of this class have been identified in antibiotic and other secondary metabolite gene clusters from actinomycetes, thus they have been considered pathway-specific regulators. In this study we have obtained two disruption mutants of LAL genes from S. coelicolor (Δ0877 and Δ7173). Both mutants were deficient in the production of the polyketide antibiotic actinorhodin, and antibiotic production was restored upon gene complementation of the mutants. The use of whole-genome DNA microarrays and quantitative PCRs enabled the analysis of the transcriptome of both mutants in comparison with the wild type. Our results indicate that the LAL regulators under study act globally affecting various cellular processes, and amongst them the phosphate starvation response and the biosynthesis of the blue-pigmented antibiotic actinorhodin. Both regulators act as negative modulators of the expression of the two-component phoRP system and as positive regulators of actinorhodin biosynthesis. To our knowledge this is the first characterization of LAL regulators with wide implications in Streptomyces metabolism. PMID:22363654

  6. Pancreatic lipase-related protein 2 digests fats in human milk and formula in concert with gastric lipase and carboxyl ester lipase

    PubMed Central

    Johnson, Karin; Ross, Leah; Miller, Rita; Xiao, Xunjun; Lowe, Mark E.

    2013-01-01

    INTRODUCTION Dietary fats must be digested into fatty acids and monoacylglycerols prior to absorption. In adults, colipase-dependent pancreatic triglyceride lipase (PTL) contributes significantly to fat digestion. In newborn rodents and humans, the pancreas expresses low levels of PTL. In rodents, a homologue of PTL, pancreatic lipase related protein 2 (PLRP2) and carboxyl ester lipase (CEL) compensate for the lack of PTL. In human newborns, the role for PLRP2 in dietary fat digestion is unclear. To clarify the potential of human PLRP2 to influence dietary fat digestion in newborns, we determined PLRP2 activity against human milk and infant formula. METHODS The activity of purified recombinant PLRP2, gastric lipase and CEL against fats in human milk and formula was measured with each lipase alone and in combination with a standard pH-stat assay. RESULTS Colipase added to human milk stimulated fat digestion. PLRP2 and CEL had activity against human milk and formula. Pre-digestion with gastric lipase increased PLRP2 activity against both substrates. Together, CEL and PLRP2 activity was additive with formula and synergistic with human milk. CONCLUSIONS PLRP2 can digest fats in human milk and formula. PLRP2 acts in concert with CEL and gastric lipase to digest fats in human milk in vitro. PMID:23732775

  7. Polyphenolic Compounds as Pancreatic Lipase Inhibitors.

    PubMed

    Buchholz, Tina; Melzig, Matthias F

    2015-07-01

    Obesity and its associated diseases such as diabetes mellitus and coronary heart diseases are a major challenge for our society. An important target for the treatment of obesity includes the development of inhibitors of nutrient digestion and absorption. Inhibition of pancreatic lipase and the associated reduction of lipid absorption is an attractive approach for the discovery of potent agents. Currently, the only clinically approved pharmacologic agent as pancreatic lipase inhibitor is Orlistat. However, its usage is compromised by unpleasant gastrointestinal adverse reactions (oily stools, oily spotting, flatulence). The use of botanical materials as a potential source of new drugs is of increasing importance and application. Natural products that are interesting for obesity treatment are generally considered to have less toxic and side effects than totally synthetic drugs. One of the most important sources of potential pancreatic lipase inhibitors represents the class of polyphenols. This article summarizes most studied subclasses of polyphenols including flavonoids, hydroxycinnamic acids, hydroxybenzoic acids and lignans with pancreatic lipase inhibitory effects. A structural comparison of potent inhibitors shows an increased inhibitory effect depending on number and position of phenolic hydroxyl groups, degree of polymerization and elimination of glycosylation during digestion. PMID:26132857

  8. The Collaborative Study on the Enzymatic Analysis of Positional Distribution of Short- and Medium-chain Fatty Acids in Milk Fat Using Immobilized Candida antarctica Lipase B.

    PubMed

    Yoshinaga, Kazuaki; Sato, Shinichi; Sasaki, Ryo; Asada, Mihoko; Hori, Ryuji; Imagi, Jun; Miyazaki, Yosuke; Nagai, Toshiharu; Saito, Katsuyoshi; Sano, Takashi; Sasaki, Akiko; Sato, Chiemi; Tsukahara, Yuki; Yamashita, Atsushi; Watanabe, Shimpei; Watanabe, Yomi

    2016-01-01

    The positional distributions of fatty acids (FAs) in milk fat containing short- and medium-chain FAs were analyzed by sn-1(3)-selective transesterification of triacylglycerols (TAGs) with ethanol using immobilized Candida antarctica lipase B (CALB), in a collaborative study conducted by 10 laboratories. The mean C4:0, C6:0, and C8:0 FA contents, when analyzed as propyl esters (PEs) using gas chromatography (GC) with a DB-23 capillary column, were found to be 3.0, 2.0, and, 1.3 area%, respectively. Their reproducibility standard deviations were 0.33, 0.18, and 0.19, respectively. The mean C4:0, C6:0, and C8:0 contents at the sn-2 position were 0.3, 0.4, and 1.0 area%, respectively. Their reproducibility standard deviations were 0.17, 0.11, and 0.19, respectively. The reproducibility standard deviations of C4:0, C6:0, and C8:0 FAs at the sn-2 position were either the same as or smaller than those for milk fat, although the FA contents at the sn-2 position were smaller than those in the milk fat. Therefore, it was concluded that the CALB method for estimating the regiospecific distribution is applicable to TAGs containing short- and medium-chain FAs. When estimating the short-chain (SC) FA contents in fats and oils by GC, it is better to analyze SCFAs as PEs or butyl esters, and not as methyl esters, in order to prevent loss of SCFAs during the experimental procedure because of their volatility and water solubility. This study also revealed that the stationary phase of the GC capillary column affected the flame ionization detector (FID) response of SCFAs. The theoretical FID correction factor (MWFA / active carbon number / atomic weight of carbon) fitted well with the actual FID responses of C4:0-C12:0 FAs when they were analyzed as PEs using a DB-23 column; however, this was not the case when the GC analysis was performed using wax-type columns. PMID:26972465

  9. SECRETION OF LIPASES IN THE DIGESTIVE TRACT OF THE CRICKET Gryllus bimaculatus.

    PubMed

    Weidlich, Sandy; Hoffmann, Klaus H; Woodring, Joseph

    2015-12-01

    Little is known concerning the sites and the ratios of the lipase secretions in insects, therefore we undertook an examination of the lipase secretion of fed and unfed adult female Gryllus bimaculatus. The ratio of triacylglyceride lipase, diacylglyceride lipase, and phosphatidylcholine lipase secreted by fed females in the caecum and ventriculus is 1:1.4:0.4. These activities decrease in the caecum by 30-40% in unfed females. The total lipase activity (TLA) in the caecum is about 10 times that in the ventriculus. Minimal lipase secretion occurs before and during the final moult, and remains at this level in unfed crickets, indicating a basal secretion rate. In 2-day-old fed females, about 10% of the TLA in the entire gut is found in the crop, about 70% in the caecum, 20% in the ventriculus, and 3% in the ileum. Lipases in the ventriculus are recycled back to the caecum and little is lost in the feces. Oleic acid stimulated in vitro lipase secretion, but lipids did not. Feeding stimulated lipase secretion, starvation reduced lipase secretion, but this does not prove a direct prandal regulation of secretion, because feeding also induced a size and volume increase of the caecum. PMID:26446311

  10. The use of immobilised digestive lipase from Chinook salmon (Oncorhynchus tshawytscha) to generate flavour compounds in milk.

    PubMed

    Kurtovic, Ivan; Marshall, Susan N; Cleaver, Helen L; Miller, Matthew R

    2016-05-15

    The aim of this research was to determine the potential of immobilised digestive lipase from Chinook salmon (Oncorhynchus tshawytscha) to generate flavour compounds in milk. The lipase was immobilised on hydrophobic resin (Toyopearl® Butyl) and used to hydrolyse milk lipids in a batch reactor. The lipase was stable when immobilised and there was no significant resin fouling or enzyme inhibition between cycles. Eight cycles were achieved before the hydrolysis rate dropped significantly because of physical losses of the immobilised lipase. The immobilised lipase showed the highest specificity towards short-chain fatty acids butanoic and hexanoic acids, the main dairy product flavour and odour compounds. Based on the performance of the reactor, and the ability of the lipase to alter free fatty acid composition and sensory characteristics of milk, the immobilised salmon lipase has potential applications in developing dairy products with unique flavours. PMID:26775978

  11. Lipase applications in oil hydrolysis with a case study on castor oil: a review.

    PubMed

    Goswami, Debajyoti; Basu, Jayanta Kumar; De, Sirshendu

    2013-03-01

    Lipase (triacylglycerol acylhydrolase) is a unique enzyme which can catalyze various types of reactions such as hydrolysis, esterification, alcoholysis etc. In particular, hydrolysis of vegetable oil with lipase as a catalyst is widely studied. Free lipase, lipase immobilized on suitable support, lipase encapsulated in a reverse micelle and lipase immobilized on a suitable membrane to be used in membrane reactor are the most common ways of employing lipase in oil hydrolysis. Castor oil is a unique vegetable oil as it contains high amounts (90%) of a hydroxy monounsaturated fatty acid named ricinoleic acid. This industrially important acid can be obtained by hydrolysis of castor oil. Different conventional hydrolysis processes have certain disadvantages which can be avoided by a lipase-catalyzed process. The degree of hydrolysis varies widely for different lipases depending on the operating range of process variables such as temperature, pH and enzyme loading. Immobilization of lipase on a suitable support can enhance hydrolysis by suppressing thermal inactivation and estolide formation. The presence of metal ions also affects lipase-catalyzed hydrolysis of castor oil. Even a particular ion has different effects on the activity of different lipases. Hydrophobic organic solvents perform better than hydrophilic solvents during the reaction. Sonication considerably increases hydrolysis in case of lipolase. The effects of additives on the same lipase vary with their types. Nonionic surfactants enhance hydrolysis whereas cationic and anionic surfactants decrease it. A single variable optimization method is used to obtain optimum conditions. In order to eliminate its disadvantages, a statistical optimization method is used in recent studies. Statistical optimization shows that interactions between any two of the following pH, enzyme concentration and buffer concentration become significant in presence of a nonionic surfactant named Span 80.

  12. Isolation and expression of a Malassezia globosa lipase gene, LIP1.

    PubMed

    DeAngelis, Yvonne M; Saunders, Charles W; Johnstone, Kevin R; Reeder, Nancy L; Coleman, Christal G; Kaczvinsky, Joseph R; Gale, Celeste; Walter, Richard; Mekel, Marlene; Lacey, Martin P; Keough, Thomas W; Fieno, Angela; Grant, Raymond A; Begley, Bill; Sun, Yiping; Fuentes, Gary; Youngquist, R Scott; Xu, Jun; Dawson, Thomas L

    2007-09-01

    Dandruff and seborrheic dermatitis (D/SD) are common hyperproliferative scalp disorders with a similar etiology. Both result, in part, from metabolic activity of Malassezia globosa and Malassezia restricta, commensal basidiomycete yeasts commonly found on human scalps. Current hypotheses about the mechanism of D/SD include Malassezia-induced fatty acid metabolism, particularly lipase-mediated breakdown of sebaceous lipids and release of irritating free fatty acids. We report that lipase activity was detected in four species of Malassezia, including M. globosa. We isolated lipase activity by washing M. globosa cells. The isolated lipase was active against diolein, but not triolein. In contrast, intact cells showed lipase activity against both substrates, suggesting the presence of at least another lipase. The diglyceride-hydrolyzing lipase was purified from the extract, and much of its sequence was determined by peptide sequencing. The corresponding lipase gene (LIP1) was cloned and sequenced. Confirmation that LIP1 encoded a functional lipase was obtained using a covalent lipase inhibitor. LIP1 was differentially expressed in vitro. Expression was detected on three out of five human scalps, as indicated by reverse transcription-PCR. This is the first step in a molecular description of lipid metabolism on the scalp, ultimately leading toward a test of its role in D/SD etiology. PMID:17460728

  13. Influence of environmental factors on lipase production by Lactobacillus plantarum.

    PubMed

    Lopes, M de F; Cunha, A E; Clemente, J J; Carrondo, M J; Crespo, M T

    1999-02-01

    A strain of Lactobacillus plantarum, DSMZ 12028 (Deutsch Sammlung von Mikroorganismen und Zellkulturen), isolated from a Portuguese dry fermented sausage, "chouriço", was found to produce true lipase, producing free fatty acids from triolein (olive oil). This enzymatic activity was found in whole cells, but was negligible in comparison to lipolytic activity in culture supernatant. Therefore, only extracellular activity was studied. The effect of pH, temperature and glucose concentration on extracellular lipase production was studied in continuously stirred tank reactors, the first time this technology has been used to study the production of this enzyme in lactobacilli. Maximum lipase production was achieved at a pH of 5.5 and 30 degrees C and was kept at a significant level over a wide range of dilution rates (0.05-0.4 h-1); the production of lipase was still significant for low pH values, temperature and glucose concentration, conditions that are close to the ones present during chouriço ripening. The effect of glucose concentration was also studied in a batch system. The control of lipase production was found to be related both to glucose concentration in the medium and to the growth rate/dilution rate. Glucose concentration was found to be important for fast lipase production, although it did not influence the maximum lipase activity reached in a batch culture.

  14. [Lipoprotein lipase and diabetic cardiomyopathy].

    PubMed

    Liu, Xiang-Yu; Yin, Wei-Dong; Tang, Chao-Ke

    2014-02-01

    Lipoprotein lipase (LPL) hydrolyzes plasma triglyceride-rich lipoproteins into free fatty acids (FFA) to provide energy for cardiac tissue. During diabetes, cardiac energy supply is insufficient due to defected utilization of glucose. As a compensation of cardiac energy supply, FFAs are released through the hydrolysis of very low density lipoprotein (VLDL) and chylomicrons (CM) due to activation of LPL activity. In diabetic patients, activated LPL activity and elevated FFAs result in the intracellular accumulation of reactive oxygen species and lipids in myocardium and potentially induce the diabetic cardiomyopathy (DCM). The present review summarizes the regulatory mechanisms of myocardial LPL and the pathogenesis of DCM induced by LPL and provides novel therapeutic targets and pathways for DCM. PMID:24873138

  15. Characterization and catalytic properties of free and silica-bound lipase: a comparative study.

    PubMed

    Narwal, Sunil Kumar; Saun, Nitin Kumar; Gupta, Reena

    2014-01-01

    In the present study, the commercial lipase from Himedia, Mumbai was immobilized on silica gel matrix in the presence of a cross-linking agent, glutaraldehyde. The silica immobilized lipase exposed to 2% glutaraldehyde showed 94.28% binding efficiency. The activities of the free and immobilized enzymes were investigated in the hydrolysis reaction of p-nitrophenyl palmitate. The activities of the free and the immobilized lipases were measured at different pH values and temperatures, and their thermal stability was also determined. The free and silica immobilized lipase possessed optimum hydrolytic activity at 40°C, pH 8.0 at 10 minutes of reaction time. Among p-nitrophenyl esters of fatty acids of different chain lengths, both free and silica immobilized showed maximum activity towards p-NPP with measured Km of free and immobilized lipase was found at 0.13 and 0.349 mM respectively whereas the Vmax of free and immobilized lipase was 5.08 μmol/min/mL and 10.38 μmol/min/mg respectively. The lipase activity was found to be stimulated only in the presence of Cu(2+) ions whereas other metal ions inhibited activity of the lipase. The silica immobilized lipase was quite stable at 55°C and 60°C. The immobilized lipase was recycled up to 6(th) cycle and it retained 52% of its original activity up to 5(th) cycle. PMID:24829134

  16. Optimization of culture conditions for production of a novel cold-active lipase from Pichia lynferdii NRRL Y-7723.

    PubMed

    Park, Sun-Young; Kim, Ji-Yeon; Bae, Jae-Han; Hou, Ching T; Kim, Hak-Ryul

    2013-01-30

    Lipases with abnormal properties such as thermostability, alkalinity, acidity, and cold activity receive industrial attention because of their usability under restricted reaction conditions. Most microbial cold-active lipases originate from psychrotrophic and psychrophilic microorganisms found in Antarctic regions, which has led to difficulties in the practical production of cold-active lipase. Recently, a mesophilic yeast, Pichia lynferdii NRRL Y-7723, was reported to produce a novel cold-active lipase. This study focused on optimization of environmental factors, while giving particular attention to the relationships between given factors and incubation time, to maximize the production of a novel cold-active lipase from P. lynferdii NRRL Y-7723. Maximum lipase production was highly dependent on the incubation time at a given environmental factor. Lipase production varied with incubation time at a given temperature, and 20 °C was selected as the optimum temperature for lipase production. Fructose was selected as the best carbon source, and maximum lipase production was obtained when it was present at 0.7% (w/v). Yeast extract was an efficient organic nitrogen source, with maximum lipase production occurring at 0.9% (w/v). Specifically, at the optimum yeast extract level the lipase production was >10 times higher than the productivity under standard conditions. All natural oils tested showed lipase production, but their maximum productivities varied according to incubation time and oil species. PMID:23305314

  17. A Bioactivity-Based Method for Screening, Identification of Lipase Inhibitors, and Clarifying the Effects of Processing Time on Lipase Inhibitory Activity of Polygonum Multiflorum.

    PubMed

    Chang, Yan-Xu; Ge, Ai-Hua; Jiang, Yan; Teye Azietaku, John; Li, Jin; Gao, Xiu-Mei

    2016-01-01

    Traditional Chinese medicine (TCM) has been used for the treatment of many complex diseases. However, the bioactive components are always undefined. In this study, a bioactivity-based method was developed and validated to screen lipase inhibitors and evaluate the effects of processing on the lipase inhibitory activity of TCM by ultrahigh performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry and fraction collector (UHPLC/Q-TOF-MS-FC). The results showed that both Polygonum multiflorum and processed P. multiflorum extracts had inhibitory effect against lipase with IC50 values of 38.84 μg/mL and 190.6 μg/mL, respectively. Stilbenes, phenolic acid, flavonoids, and anthraquinones were considered to be the potential lipase inhibitors. Eleven potential lipase inhibitors were simultaneously determined by UHPLC. Principal component analysis (PCA) was employed in exploring the effects of processing time on lipase inhibitory activity of P. multiflorum. Compared with conventional methods, a bioactivity-based method could quantitatively analyze lipase inhibitory activity of individual constituent and provide the total lipase inhibitory activity of the samples. The results demonstrated that the activity integrated UHPLC/Q-TOF-MS-FC method was an effective and powerful tool for screening and identifying lipase inhibitors from traditional Chinese medicines. PMID:26925151

  18. Plant lipases: partial purification of Carica papaya lipase.

    PubMed

    Rivera, Ivanna; Mateos-Díaz, Juan Carlos; Sandoval, Georgina

    2012-01-01

    Lipases from plants have very interesting features for application in different fields. This chapter provides an overview on some of the most important aspects of plant lipases, such as sources, applications, physiological functions, and specificities. Lipases from laticifers and particularly Carica papaya lipase (CPL) have emerged as a versatile autoimmobilized biocatalyst. However, to get a better understanding of CPL biocatalytic properties, the isolation and purification of individual C. papaya lipolytic enzymes become necessary. In this chapter, a practical protocol for partial purification of the latex-associated lipolytic activity from C. papaya is given.

  19. Plant lipases: partial purification of Carica papaya lipase.

    PubMed

    Rivera, Ivanna; Mateos-Díaz, Juan Carlos; Sandoval, Georgina

    2012-01-01

    Lipases from plants have very interesting features for application in different fields. This chapter provides an overview on some of the most important aspects of plant lipases, such as sources, applications, physiological functions, and specificities. Lipases from laticifers and particularly Carica papaya lipase (CPL) have emerged as a versatile autoimmobilized biocatalyst. However, to get a better understanding of CPL biocatalytic properties, the isolation and purification of individual C. papaya lipolytic enzymes become necessary. In this chapter, a practical protocol for partial purification of the latex-associated lipolytic activity from C. papaya is given. PMID:22426715

  20. Effects of methanol on lipases: molecular, kinetic and process issues in the production of biodiesel.

    PubMed

    Lotti, Marina; Pleiss, Jürgen; Valero, Francisco; Ferrer, Pau

    2015-01-01

    The biotechnological production of biodiesel is based on transesterification/esterification reactions between a source of fatty acids and a short-chain alcohol, usually methanol, catalysed by enzymes belonging to the class known as lipases. Several lipases used in industrial processes, although stable in the presence of other organic solvents, are inactivated by methanol at or below the concentration optimal for biodiesel production, making it necessary to use stepwise methanol feeding or pre-treatment of the enzyme. In this review article we focus on what is currently know about methanol inactivation of lipases, a phenomenon which is not common to all lipase enzymes, with the goal of improving the biocatalytic process. We suggest that different mechanisms can lead to inactivation of different lipases, in particular substrate inhibition and protein unfolding. Attempts to improve the performances of methanol sensitive lipases by mutagenesis as well as process engineering approaches are also summarized.

  1. Performances of the Alpha-X RF gun on the PHIL accelerator at LAL

    NASA Astrophysics Data System (ADS)

    Vinatier, T.; Bruni, C.; Roux, R.; Brossard, J.; Chancé, S.; Cayla, J. N.; Chaumat, V.; Xu, G.; Monard, H.

    2015-10-01

    The Alpha-X RF-gun was designed to produce an ultra-short (<100 fs rms), 100 pC and 6.3 MeV electron beam with a normalized rms transverse emittance of 1π mm mrad for a gun peak accelerating field of 100 MV/m. Such beams will be required by the Alpha-X project, which aims to study a laser-driven plasma accelerator with a short wavelength accelerating medium. It has been demonstrated on PHIL (Photo-Injector at LAL) that the coaxial RF coupling, chosen to preserve the gun field cylindrical symmetry, is perfectly understood and allows reaching the required peak accelerating field of 100 MV/m giving beam energy of 6.3 MeV. Moreover, a quite low beam rms relative energy spread of 0.15% at 3.8 MeV has been measured, completely agreeing with simulations. Dark current, quantum efficiencies and dephasing curves measurements have also been performed. They all show high values of the field enhancement factor β, which can be explained by the preparation of the photocathodes. Finally, measurements on the transverse phase-space have been carried out, with some limitations given by the difficult modelization of one of the PHIL solenoid magnets and by the enlargement of the beam transverse dimensions due to the use of YAG screens. These measurements give a normalized rms transverse emittance around 5π mm mrad, which does not fulfill the requirement for the Alpha-X project.

  2. Lingual lipase activity in the orosensory detection of fat by humans.

    PubMed

    Kulkarni, Bhushan V; Mattes, Richard D

    2014-06-15

    Lingual lipase generates nonesterified fatty acids (NEFA) from dietary fats during oral processing by lipolysis. Lingual lipase in rodents has strong lipolytic activity and plays a critical role in oral detection of fats. The functional activity of lingual lipase during oral processing of high-fat foods in humans remains poorly characterized. Five commonly consumed high-fat foods varying in physical states and fatty acid composition (almond, almond butter, olive oil, walnut, and coconut) were masticated by 15 healthy human subjects at the rate of one chew per second with and without lipase inhibitor orlistat. Salivary NEFA concentrations were measured. To determine the role of lingual lipase in oral fat detection, sensory ratings were obtained from the same 15 human subjects for almond butter with and without orlistat. Lingual lipase was active during oral processing of almond and coconut. No activity of lingual lipase was detected during processing of almond butter. There was only weak evidence lingual lipase is a determinant of oral fat detection. Lingual lipase may only contribute to NEFA generation and oral fat detection of fatty foods that require stronger oral processing effort. PMID:24694384

  3. Active-site titration analysis of surface influence on immobilized Candida antarctica Lipase B activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Matrix morphology and surface polarity effects were investigated for Candida antarctica lipase B immobilization. Measurements of the amount of lipase immobilized (bicinchoninic acid method) and the catalyst’s tributyrin hydrolysis activity, coupled with a determination of the lipase’s functional fr...

  4. Biodiesel production by transesterification using immobilized lipase.

    PubMed

    Narwal, Sunil Kumar; Gupta, Reena

    2013-04-01

    Biodiesel can be produced by transesterification of vegetable or waste oil catalysed by lipases. Biodiesel is an alternative energy source to conventional fuel. It combines environmental friendliness with biodegradability, low toxicity and renewability. Biodiesel transesterification reactions can be broadly classified into two categories: chemical and enzymatic. The production of biodiesel using the enzymatic route eliminates the reactions catalysed under acid or alkali conditions by yielding product of very high purity. The modification of lipases can improve their stability, activity and tolerance to alcohol. The cost of lipases and the relatively slower reaction rate remain the major obstacles for enzymatic production of biodiesel. However, this problem can be solved by immobilizing the enzyme on a suitable matrix or support, which increases the chances of re-usability. The main factors affecting biodiesel production are composition of fatty acids, catalyst, solvents, molar ratio of alcohol and oil, temperature, water content, type of alcohol and reactor configuration. Optimization of these parameters is necessary to reduce the cost of biodiesel production.

  5. Biodiesel production by transesterification using immobilized lipase.

    PubMed

    Narwal, Sunil Kumar; Gupta, Reena

    2013-04-01

    Biodiesel can be produced by transesterification of vegetable or waste oil catalysed by lipases. Biodiesel is an alternative energy source to conventional fuel. It combines environmental friendliness with biodegradability, low toxicity and renewability. Biodiesel transesterification reactions can be broadly classified into two categories: chemical and enzymatic. The production of biodiesel using the enzymatic route eliminates the reactions catalysed under acid or alkali conditions by yielding product of very high purity. The modification of lipases can improve their stability, activity and tolerance to alcohol. The cost of lipases and the relatively slower reaction rate remain the major obstacles for enzymatic production of biodiesel. However, this problem can be solved by immobilizing the enzyme on a suitable matrix or support, which increases the chances of re-usability. The main factors affecting biodiesel production are composition of fatty acids, catalyst, solvents, molar ratio of alcohol and oil, temperature, water content, type of alcohol and reactor configuration. Optimization of these parameters is necessary to reduce the cost of biodiesel production. PMID:23247566

  6. Characterization of biotechnologically relevant extracellular lipase produced by Aspergillus terreus NCFT 4269.10.

    PubMed

    Sethi, Bijay Kumar; Nanda, Prativa Kumari; Sahoo, Santilata

    2016-01-01

    Enzyme production by Aspergillus terreus NCFT 4269.10 was studied under liquid static surface and solid-state fermentation using mustard oil cake as a substrate. The maximum lipase biosynthesis was observed after incubation at 30°C for 96h. Among the domestic oils tested, the maximum lipase biosynthesis was achieved using palm oil. The crude lipase was purified 2.56-fold to electrophoretic homogeneity, with a yield of 8.44%, and the protein had a molecular weight of 46.3kDa as determined by SDS-PAGE. Enzyme characterization confirmed that the purified lipase was most active at pH 6.0, temperature of 50°C, and substrate concentration of 1.5%. The enzyme was thermostable at 60°C for 1h, and the optimum enzyme-substrate reaction time was 30min. Sodium dodecyl sulfate and commercial detergents did not significantly affect lipase activity during 30-min incubation at 30°C. Among the metal ions tested, the maximum lipase activity was attained in the presence of Zn(2+), followed by Mg(2+) and Fe(2+). Lipase activity was not significantly affected in the presence of ethylenediaminetetraacetic acid, sodium lauryl sulfate and Triton X-100. Phenylmethylsulfonyl fluoride (1mM) and the reducing, β-mercaptoethanol significantly inhibited lipase activity. The remarkable stability in the presence of detergents, additives, inhibitors and metal ions makes this lipase unique and a potential candidate for significant biotechnological exploitation.

  7. Secreted lipases from Malassezia globosa: recombinant expression and determination of their substrate specificities.

    PubMed

    Sommer, Bettina; Overy, David P; Haltli, Bradley; Kerr, Russell G

    2016-07-01

    Malassezia globosa, which is associated with skin conditions such as dandruff and seborrhoeic dermatitis, possesses 13 secreted lipases, but only MgLip1, MgMDL2 and MgLip2 have been characterized. To understand the substrate preferences of these lipases and by extension their potential role in colonizing human skin, we expressed all 13 predicted secreted lipases in Pichia pastoris and evaluated their ability to utilize mono-, di- and triolein substrates. The M. globosa family class 3 lipases were shown to be specific for mono- and diacylglycerols, but exhibited no regio-selective production of diacylglycerols, which are of special interest for industrial applications. Lipases belonging to the Lip family utilized all substrates. In a further step, five lipases previously demonstrated to be expressed on human skin were tested against the eight most common di- and triacylglycerols in human sebum. All lipases liberated free fatty acids from three to eight of these substrates, proving their ability to hydrolyse key components of human sebum. Again, only Lip family lipases showed activity on triacylglycerides. Based on the demonstrated activity and expression levels of MgLip2 in M. globosa, the Lip lipase family appears to have the highest impact for the pathogenicity of M. globosa. PMID:27130210

  8. Characterization of lipases from Staphylococcus aureus and Staphylococcus epidermidis isolated from human facial sebaceous skin.

    PubMed

    Xie, Winny; Khosasih, Vivia; Suwanto, Antonius; Kim, Hyung Kwoun

    2012-01-01

    Two staphylococcal lipases were obtained from Staphylococcus epidermidis S2 and Staphylococcus aureus S11 isolated from sebaceous areas on the skin of the human face. The molecular mass of both enzymes was estimated to be 45 kDa by SDS-PAGE. S2 lipase displayed its highest activity in the hydrolysis of olive oil at 32 degrees C and pH 8, whereas S11 lipase showed optimal activity at 31 degrees C and pH 8.5. The S2 lipase showed the property of cold-adaptation, with activation energy of 6.52 kcal/mol. In contrast, S11 lipase's activation energy, at 21 kcal/mol, was more characteristic of mesophilic lipases. S2 lipase was stable up to 45° C and within the pH range from 5 to 9, whereas S11 lipase was stable up to 50 degrees C and from pH 6 to 10. Both enzymes had high activity against tributyrin, waste soybean oil, and fish oil. Sequence analysis of the S2 lipase gene showed an open reading frame of 2,067 bp encoding a signal peptide (35 aa), a pro-peptide (267 aa), and a mature enzyme (386 aa); the S11 lipase gene, at 2,076 bp, also encoded a signal peptide (37 aa), pro-peptide (255 aa), and mature enzyme (399 aa). The two enzymes maintained amino acid sequence identity of 98-99% with other similar staphylococcal lipases. Their microbial origins and biochemical properties may make these staphylococcal lipases isolated from facial sebaceous skin suitable for use as catalysts in the cosmetic, medicinal, food, or detergent industries.

  9. Isolation and analysis of lipase-overproducing mutants of Serratia marcescens.

    PubMed

    Kawai, E; Akatsuka, H; Sakurai, N; Idei, A; Matsumae, H; Shibatani, T; Komatsubara, S; Omori, K

    2001-01-01

    We have isolated a lipase-overproducing mutant, GE14, from Serratia marcescens 8000 after three rounds of N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. The mutant GE14 produced 95 kU/ml of extracellular lipase in the lipase medium, which was about threefold higher than that of produced by the original strain 8000. Enzymatic characteristics including specific activity of purified lipases from culture supernatants of GE14 and 8000 were almost same. The lipase gene (lipA) of GE14 contained two base substitutions; one in the promoter region and another in the N-terminal region of the lipA gene without an amino acid substitution. Promoter analysis using lipA-lacZ fusion plasmids revealed that these substitutions were responsible for the increase in the lipA expression level, independently. In contrast, no base substitution was found in the genes encoding the lipase secretion device, the Lip system. In addition, the genes coding for metalloprotease and the cell surface layer protein which are both secreted through the Lip system and associated with extracellular lipase production, also contained no base substitution. The strain GE14 carrying a high-copy-number lipA plasmid produced a larger amount of the extracellular lipase than the recombinant strains of 8000 and other mutants also did, indicating that GE14 was not only a lipase-overproducing strain, but also an advantageous host strain for overproducing the lipase by a recombinant DNA technique. These results suggest that the lipase-overproducing mutant GE14 and its recombinant strains are promising candidates for the industrial production of the S. marcescens lipase.

  10. Incorporating the LAL and ATP assays into the NASA procedural requirements document on the microbiological examination of space hardware.

    NASA Astrophysics Data System (ADS)

    Stabekis, P.

    The only NASA approved method for the microbial examination of space hardware is the culture-based assay As demands increase for more rapid and sensitive means of assessing spacecraft cleanliness alternatives to the culture-based assays are been pursued Two types of assays that have been recently evaluated for use on space hardware are the LAL Limulus Amebocyte Lysate and ATP Adenosine Triphosphate microbial detection methods This paper will summarize the evaluation of reports on the two methods and will outline the process by which the two assays will be incorporated in the appropriate NASA documents

  11. Biodiesel production from microalgae oil catalyzed by a recombinant lipase.

    PubMed

    Huang, Jinjin; Xia, Ji; Jiang, Wei; Li, Ying; Li, Jilun

    2015-03-01

    A recombinant Rhizomucor miehei lipase was constructed and expressed in Pichia pastoris. The target enzyme was termed Lipase GH2 and it can be used as a free enzyme for catalytic conversion of microalgae oil mixed with methanol or ethanol for biodiesel production in an n-hexane solvent system. Conversion rates of two major types of biodiesel, fatty acid methyl ester (FAME) and fatty acid ethyl ester (FAEE), reached maximal values (>90%) after 24h. The process of FAME production is generally more simple and economical than that of FAEE production, even though the two processes show similar conversion rates. In spite of the damaging effect of ethanol on enzyme activity, we successfully obtained ethyl ester by the enzymatic method. Our findings indicate that Lipase GH2 is a useful catalyst for conversion of microalgae oil to FAME or FAEE, and this system provides efficiency and reduced costs in biodiesel production.

  12. Biodiesel production from microalgae oil catalyzed by a recombinant lipase.

    PubMed

    Huang, Jinjin; Xia, Ji; Jiang, Wei; Li, Ying; Li, Jilun

    2015-03-01

    A recombinant Rhizomucor miehei lipase was constructed and expressed in Pichia pastoris. The target enzyme was termed Lipase GH2 and it can be used as a free enzyme for catalytic conversion of microalgae oil mixed with methanol or ethanol for biodiesel production in an n-hexane solvent system. Conversion rates of two major types of biodiesel, fatty acid methyl ester (FAME) and fatty acid ethyl ester (FAEE), reached maximal values (>90%) after 24h. The process of FAME production is generally more simple and economical than that of FAEE production, even though the two processes show similar conversion rates. In spite of the damaging effect of ethanol on enzyme activity, we successfully obtained ethyl ester by the enzymatic method. Our findings indicate that Lipase GH2 is a useful catalyst for conversion of microalgae oil to FAME or FAEE, and this system provides efficiency and reduced costs in biodiesel production. PMID:25585254

  13. Synthesis of a novel biologically active amide ester of 7,10-dihydroxy-8(E)-octadecanoic acid (DOD) using lipase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxy fatty acids (HFA) are known to have industrial potential because of their special properties such as high viscosity and reactivity. Among the hydroxy fatty acids, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) was successfully produced from oleic acid and lipid containing oleic acid by a bacter...

  14. Differences in hydrolytic abilities of two crude lipases from Geotrichum candidum 4013.

    PubMed

    Brabcová, Jana; Zarevúcka, Marie; Macková, Martina

    2010-12-01

    The fungus Geotrichum candidum 4013 produces two types of lipases (extracellular and cell-bound). Both enzymes were tested for their hydrolytic ability to p-nitrophenyl esters and compounds having a structure similar to the original substrate (triacylglycerols). Higher lipolytic activity of extracellular lipase was observed when triacylglycerols of medium- (C12) and long- (C18) chain fatty acids were used as substrates. Cell-bound lipase preferentially hydrolysed trimyristate (C14). The differences in the abilities of these two enzymes to hydrolyse p-nitrophenyl esters were observed as well. The order of extracellular lipase hydrolysis relation velocity was as follows: p-nitrophenyl decanoate > p-nitrophenyl caprylate > p-nitrophenyl laurate > p-nitrophenyl palmitate > p-nitrophenyl stearate. The cell-bound lipase indicates preference for p-nitrophenyl palmitate. The most striking differences in the ratios between the activity of both lipases (extracellular : cell-bound) towards different fatty acid methyl esters were 2.2 towards methyl hexanoate and 0.46 towards methyl stearate (C18). The Michaelis constant (K(m) ) and maximum reaction rate (V(max) ) for p-nitrophenyl palmitate hydrolysis of cell-bound lipase were significantly higher (K(m) 2.462 mM and V(max) 0.210 U/g/min) than those of extracellular lipase (K(m) 0.406 mM and V(max) 0.006 U/g/min).

  15. Subcellular localization and properties of lipase activities in human polymorphonuclear leukocytes.

    PubMed

    Hack, N J; Smith, G P; Peters, T J

    1985-03-01

    A fluorimetric assay for lipase activity has been optimized for measurement of the enzyme in human neutrophils. Activity was maximal at acid (4.5) and alkaline (9.5) pH, although there was also a neutral peak of activity at pH 6.5. Neutrophils were homogenised in isotonic sucrose and subjected to analytical subcellular fractionation by sucrose density gradient centrifugation. The gradient fractions were assayed for acid, neutral and alkaline lipase activity and for the principal organelle marker enzymes. Neutral lipase showed a unimodal distribution with an equilibrium density of 1.19 g . cm-3, corresponding to the distribution of particulate leucine aminopeptidase. Acid and alkaline lipase activities showed very similar distribution profiles to each other with both soluble components and a broad peak of particulate activity. The broad modal density of 1.19-1.22 g . cm-3 suggests that acid and alkaline lipase activities could be localised to more than one population of cytoplasmic granule. Fractionation experiments with neutrophils homogenised in sucrose medium containing digitonin confirmed the localisation of neutral lipase and leucine aminopeptidase to the same cytoplasmic granule, and suggested that at least part of the acid lipase activity was localised to the specific granule. No lipase activity could be attributed to the alkaline phosphatase-containing granule. Neutrophils were isolated from control subjects, patients with chronic granulocytic leukaemia and women in the third trimester of pregnancy. The specific activity of acid, neutral and alkaline lipase, and leucine aminopeptidase, in contrast to that of alkaline phosphatase, were similar in the three patient groups.

  16. Influence of N- and/or C-terminal regions on activity, expression, characteristics and structure of lipase from Geobacillus sp. 95.

    PubMed

    Gudiukaitė, Renata; Gegeckas, Audrius; Kazlauskas, Darius; Citavicius, Donaldas

    2014-01-01

    GD-95 lipase from Geobacillus sp. strain 95 and its modified variants lacking N-terminal signal peptide and/or 10 or 20 C-terminal amino acids were successfully cloned, expressed and purified. To our knowledge, GD-95 lipase precursor (Pre-GD-95) is the first Geobacillus lipase possessing more than 80% lipolytic activity at 5 °C. It has maximum activity at 55 °C and displays a broad pH activity range. GD-95 lipase was shown to hydrolyze p-NP dodecanoate, tricaprylin and canola oil better than other analyzed substrates. Structural and sequence alignments of bacterial lipases and GD-95 lipase revealed that the C-terminus forms an α helix, which is a conserved structure in lipases from Pseudomonas, Clostridium or Staphylococcus bacteria. This work demonstrates that 10 and 20 C-terminal amino acids of GD-95 lipase significantly affect stability and other physicochemical properties of this enzyme, which has never been reported before and can help create lipases with more specific properties for industrial application. GD-95 lipase and its modified variants GD-95-10 can be successfully applied to biofuel production, in leather and pulp industries, for the production of cosmetics or perfumes. These lipases are potential biocatalysts in processes, which require extreme conditions: low or high temperature, strongly acidic or alkaline environment and various organic solvents.

  17. Preparation of lipase-coated, stabilized, hydrophobic magnetic particles for reversible conjugation of biomacromolecules.

    PubMed

    Marciello, Marzia; Bolivar, Juan M; Filice, Marco; Mateo, Cesar; Guisan, Jose M

    2013-03-11

    This Communication presents the development of a novel strategy for the easy conjugation of biomolecules to hydrophobic magnetic microparticles via reversible coating with previously functionalized lipase molecules. First, the ability of lipase to be strongly adsorbed onto hydrophobic surfaces was exploited for the stabilization of microparticles in aqueous medium by the creation of a hydrophilic surface. Second, the surface amino acids of lipase can be tailored to suit biomolecule conjugation. This approach has been demonstrated by amino-epoxy activation of lipase, enabling the conjugation of different biomolecules to the magnetic particle's surface. For example, it was possible to immobilize 70% of Escherichia coli proteins on the recovered particles. Furthermore, this strategy could be extended to other lipase chemical modification protocols, enabling fine control of biomolecule coupling. These conjugation techniques constitute a modular methodology that also permits the recycling of the magnetic carrier following use.

  18. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Lipase test system. (a) Identification. A lipase test system is a device intended to measure the activity of the enzymes lipase in serum. Lipase measurements are used in diagnosis and treatment of...

  19. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Lipase test system. (a) Identification. A lipase test system is a device intended to measure the activity of the enzymes lipase in serum. Lipase measurements are used in diagnosis and treatment of...

  20. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Lipase test system. (a) Identification. A lipase test system is a device intended to measure the activity of the enzymes lipase in serum. Lipase measurements are used in diagnosis and treatment of...

  1. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Lipase test system. (a) Identification. A lipase test system is a device intended to measure the activity of the enzymes lipase in serum. Lipase measurements are used in diagnosis and treatment of...

  2. Monoacylglycerol Lipase Regulates Fever Response

    PubMed Central

    Sanchez-Alavez, Manuel; Nguyen, William; Mori, Simone; Moroncini, Gianluca; Viader, Andreu; Nomura, Daniel K.; Cravatt, Benjamin F.; Conti, Bruno

    2015-01-01

    Cyclooxygenase inhibitors such as ibuprofen have been used for decades to control fever through reducing the levels of the pyrogenic lipid transmitter prostaglandin E2 (PGE2). Historically, phospholipases have been considered to be the primary generator of the arachidonic acid (AA) precursor pool for generating PGE2 and other eicosanoids. However, recent studies have demonstrated that monoacyglycerol lipase (MAGL), through hydrolysis of the endocannabinoid 2-arachidonoylglycerol, provides a major source of AA for PGE2 synthesis in the mammalian brain under basal and neuroinflammatory states. We show here that either genetic or pharmacological ablation of MAGL leads to significantly reduced fever responses in both centrally or peripherally-administered lipopolysaccharide or interleukin-1β-induced fever models in mice. We also show that a cannabinoid CB1 receptor antagonist does not attenuate these anti-pyrogenic effects of MAGL inhibitors. Thus, much like traditional nonsteroidal anti-inflammatory drugs, MAGL inhibitors can control fever, but appear to do so through restricted control over prostaglandin production in the nervous system. PMID:26287872

  3. Identification of a triacylglycerol lipase in the diatom Phaeodactylum tricornutum.

    PubMed

    Barka, Frederik; Angstenberger, Max; Ahrendt, Tilman; Lorenzen, Wolfram; Bode, Helge B; Büchel, Claudia

    2016-03-01

    Diatoms accumulate triacylglycerols (TAGs) as storage lipids, but the knowledge about the molecular mechanisms of lipid metabolism is still sparse. Starting from a partial sequence for a putative TAG-lipase of the diatom Phaeodactylum tricornutum retrieved from the data bases, we have identified the full length coding sequence, tgl1. The gene encodes an 813 amino acid sequence that shows distinct motifs for so called "true" TAG-lipases [EC 3.1.1.3] that have been functionally characterized in model organisms like Arabidopsis thaliana and Saccharomyces cerevisiae. These lipases mediate the first initial step of TAG breakdown from storage lipids. To test whether Tgl1 can act as a TAG-lipase, a His-tagged version was overexpressed in Escherichia coli and the protein indeed showed esterase activity. To identify the TAG degrading function of Tgl1 in P. tricornutum, knock-down mutant strains were created using an antisense RNA approach. In the mutant cell lines the relative tgl1-mRNA-level was reduced up to 20% of that of the wild type, accompanied by a strong increase of TAG in the lipid extracts. In spite of the TAG accumulation, the polar lipid species pattern appeared to be unchanged, confirming the TAG-lipase function of Tgl1.

  4. Identification of a triacylglycerol lipase in the diatom Phaeodactylum tricornutum.

    PubMed

    Barka, Frederik; Angstenberger, Max; Ahrendt, Tilman; Lorenzen, Wolfram; Bode, Helge B; Büchel, Claudia

    2016-03-01

    Diatoms accumulate triacylglycerols (TAGs) as storage lipids, but the knowledge about the molecular mechanisms of lipid metabolism is still sparse. Starting from a partial sequence for a putative TAG-lipase of the diatom Phaeodactylum tricornutum retrieved from the data bases, we have identified the full length coding sequence, tgl1. The gene encodes an 813 amino acid sequence that shows distinct motifs for so called "true" TAG-lipases [EC 3.1.1.3] that have been functionally characterized in model organisms like Arabidopsis thaliana and Saccharomyces cerevisiae. These lipases mediate the first initial step of TAG breakdown from storage lipids. To test whether Tgl1 can act as a TAG-lipase, a His-tagged version was overexpressed in Escherichia coli and the protein indeed showed esterase activity. To identify the TAG degrading function of Tgl1 in P. tricornutum, knock-down mutant strains were created using an antisense RNA approach. In the mutant cell lines the relative tgl1-mRNA-level was reduced up to 20% of that of the wild type, accompanied by a strong increase of TAG in the lipid extracts. In spite of the TAG accumulation, the polar lipid species pattern appeared to be unchanged, confirming the TAG-lipase function of Tgl1. PMID:26747649

  5. Lipase-catalyzed polyester synthesis – A green polymer chemistry

    PubMed Central

    Kobayashi, Shiro

    2010-01-01

    This article is a short comprehensive review describing in vitro polyester synthesis catalyzed by a hydrolysis enzyme of lipase, most of which has been developed for these two decades. Polyesters are prepared by repeated ester bond-formation reactions; they include two major modes, ring-opening polymerization (ROP) of cyclic monomers such as cyclic esters (lactones) and condensation polymerization via the reaction between a carboxylic acid or its ester group and an alcohol group. Polyester synthesis is, therefore, a reaction in reverse way of in vivo lipase catalysis of ester bond-cleavage with hydrolysis. The lipase-catalyzed polymerizations show very high chemo-, regio-, and enantio-selectivities and involve various advantageous characteristics. Lipase is robust and compatible with other chemical catalysts, which allows novel chemo-enzymatic processes. New syntheses of a variety of functional polyesters and a plausible reaction mechanism of lipase catalysis are mentioned. The polymerization characteristics are of green nature currently demanded for sustainable society, and hence, desirable for conducting ‘green polymer chemistry’. PMID:20431260

  6. Bioscouring of cotton using lipase from marine bacteria Bacillus sonorensis.

    PubMed

    Nerurkar, Madhura; Joshi, Manasi; Adivarekar, Ravindra

    2015-01-01

    Bioscouring refers to the enzymatic removal of impurities from cotton fabric, which imparts it with improved hydrophilicity for further wet processes. In the present study, the efficacy of lipase from newly isolated marine bacteria Bacillus sonorensis isolated from marine clams Paphia malabarica collected from Kalbadevi estuary, Mumbai, India, has been evaluated for scouring of cotton fabric and compared with conventional alkaline scouring of cotton. As a scouring agent for cotton fabrics, the lipase from B. sonorensis was capable of removing substantial amount of wax from the cotton surface and hydrolyzing it into fatty acids. Bioscouring carried out with lipase at a concentration of 8 % on the weight of the fabric (owf) at pH 9, temperature 60 °C for 120 min showed maximum weight loss and hydrophilicity. The Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) studies revealed that the lipase-scoured fabric showed smooth surface indicating no damage to the fabric whereas the surface of the alkaline-scoured fabric appeared rough causing damage to the fabric. Evaluation of fabric properties such as wettability, whiteness, dyeing behaviour, tensile strength and bending rigidity revealed that the bioscouring using lipase from B. sonorensis is as effective as conventional alkaline treatment. PMID:25256798

  7. Lipase assay in duodenal juice using a conductimetric method.

    PubMed

    Ballot, C; Favre-Bonvin, G; Wallach, J M

    1984-11-15

    Lipase activity in duodenal juice is known to undergo important variations in pathologic states, especially in cases of chronic pancreatitis. Almost all of the current assay methods are based on the measurement of hydrolysis of olive oil or triolein, mainly by potentiometry. As we have developed a conductimetric method for enzyme activity measurements, we have applied it to lipase assay. A higher experimental conductimetric sensitivity is obtained when liberated acids have a short chain (higher limiting equivalent conductivity). We have therefore used triacetin as a substrate and compared out method with potentiometry (pH-stat) and spectrophotometry. The correlation coefficients of both methods with conductimetry were 0.94 and 0.97, respectively, indicating that the conductimetric method may be used for lipase assay in duodenal juice, using triacetin as a substrate.

  8. Development of a high-throughput assay for measuring lipase activity using natural triacylglycerols coated on microtiter plates.

    PubMed

    Serveau-Avesque, Carole; Verger, Robert; Rodriguez, Jorge A; Abousalham, Abdelkarim

    2013-09-21

    We have designed a convenient, specific, sensitive and continuous lipase assay based on the use of natural triacylglycerols (TAGs) from the Aleurites fordii seed oil which contains α-eleostearic acid (9,11,13,cis,trans,trans-octadecatrienoic acid) and which was coated in the wells of microtiter plates. The coated TAG film cannot be desorbed by the various buffers used during the lipase assay. Upon lipase action, α-eleostearic acid is liberated and desorbed from the interface and then solubilized into the micellar phase. Consequently, the UV absorbance of the α-eleostearic acid is considerably enhanced due to the transformation from an adsorbed to a water soluble state. The lipase activity can be measured continuously by recording the variations with time of the UV absorption spectra. The rate of lipolysis was monitored by measuring the increase of OD at 272 nm, which was found to be linear with time and directly proportional to the amount of added lipase. This microtiter plate lipase assay, based on coated TAGs, presents various advantages as compared to the classical systems: (i) coated TAGs on the microtiter plates could be stored for a long-time at 4 °C, (ii) higher sensitivity in lipase detection, (iii) good reproducibility, and (iv) increase of signal to noise ratio due to high UV absorption after transfer of α-eleostearic acid from an adsorbed to a soluble state. Low concentrations, down to 1 pg mL(-1) of pure Thermomyces lanuginosus or human pancreatic lipase, could be detected under standard assay conditions. The detection sensitivity of this coated method is around 1000 times higher as compared to those obtained with the classical emulsified systems. This continuous high throughput lipase assay could be used to screen new lipases and/or lipase inhibitors present in various biological samples.

  9. Application of lipases to regiospecific interesterification of exotic oils from an Amazonian area.

    PubMed

    Speranza, Paula; Ribeiro, Ana Paula Badan; Macedo, Gabriela Alves

    2016-01-20

    Enzymatic interesterification may favor the development of lipid fractions from Amazonian oils with greater application potential. In this study, the Amazonian buriti oil and murumuru fat were subjected to enzymatic interesterification using two lipases in three different enzyme systems: one with a commercial lipase from Thermomyces lanuginosa, a second with the lipase produced by Rhizopus sp., and a third with a mixture of both lipases. The three enzyme systems were able to catalyze the reaction, but the enzymes showed different specificities. The commercial lipase was specific for unsaturated fatty acids, whereas the Rhizopus sp. lipase was specific for both unsaturated fatty acids and the positions sn -1 and sn -3 of the fatty acid on the triacylglycerol. The mixture of both lipases showed no synergistic effect: the results were intermediate between the two enzymes applied alone. Interesterification reduced the levels of trisaturated and triunsaturated triacylglycerols and increased the levels of diunsaturated-monosaturated and monounsaturated-disaturated triacylglycerols. The thermal melting behavior indicated the formation of a single endothermic region with more homogeneous triacylglycerols. The content of the bioactive β-carotene was preserved after the interesterification reaction with all three-enzyme systems. The interesterified lipids obtained, because of the characteristics of the oils, may be applied to the formulation of cosmetics and pharmaceuticals. PMID:26657709

  10. Biochemical characterization of a lipase from olive fruit (Olea europaea L.).

    PubMed

    Panzanaro, S; Nutricati, E; Miceli, A; De Bellis, L

    2010-09-01

    Lipase (triacylglycerol acylhydrolase; EC 3.1.1.3) is the first enzyme of the degradation path of stored triacylglycerols (TAGs). In olive fruits, lipase may determine the increase of free fatty acids (FFAs) which level is an important index of virgin olive oil quality. However, despite the importance of virgin olive oil for nutrition and human health, few studies have been realized on lipase activity in Olea europaea fruits. In order to characterize olive lipase, fruits of the cv. Ogliarola, widely diffused in Salento area (Puglia, Italy), were harvested at four stages of ripening according to their skin colour (green, spotted I, spotted II, purple). Lipase activity was detected in the fatty layer obtained after centrifugation of the olive mesocarp homogenate. The enzyme exhibited a maximum activity at pH 5.0. The addition of calcium in the lipase assay medium leads to an increment of activity, whereas in the presence of copper the activity was reduced by 75%. Furthermore, mesocarp lipase activity increases during olive development but declined at maturity (purple stage). The data represent the first contribution to the biochemical characterization of an olive fruit lipase associated to oil bodies.

  11. [Cloning and expression of organic solvent tolerant lipase gene from Staphylococcus saprophyticus M36].

    PubMed

    Tang, Yanchong; Lu, Yaping; Lü, Fengxia; Bie, Xiaomei; Guo, Yao; Lu, Zhaoxin

    2009-12-01

    Lipases are important biocatalysts that are widely used in food processing and bio-diesel production. However, organic solvents could inactivate some lipases during applications. Therefore, the efficient cloning and expression of the organic solvent-tolerant lipase is important to its application. In this work, we first found out an organic solvent-tolerant lipase from Staphylococcus saprophyticus M36 and amplified the 741 bp Lipase gene lip3 (GenBank Accession No. FJ979867), by PCR, which encoded a 31.6 kD polypeptide of 247 amino acid residues. But the lipase shared 83% identity with tentative lip3 gene of Staphylococcus saprophyticus (GenBank Accession No. AP008934). We connected the gene with expression vector pET-DsbA, transformed it into Escherichia coli BL21 (DE3), and obtained the recombinant pET-DsbA-lip3. With the induction by 0.4 mmol/L of isopropyl beta-D-thiogalactopyranoside at pH 8.0, OD600 1.0, 25 degrees C for 12 h, the lipase activity reached up to 25.8 U/mL. The lipase expressed was stable in the presence of methanol, n-hexane, and isooctane, n-heptane.

  12. Characterization of Neutral Lipase BT-1 Isolated from the Labial Gland of Bombus terrestris Males

    PubMed Central

    Brabcová, Jana; Prchalová, Darina; Demianová, Zuzana; Bučánková, Alena; Vogel, Heiko; Valterová, Irena; Pichová, Iva; Zarevúcka, Marie

    2013-01-01

    Background In addition to their general role in the hydrolysis of storage lipids, bumblebee lipases can participate in the biosynthesis of fatty acids that serve as precursors of pheromones used for sexual communication. Results We studied the temporal dynamics of lipolytic activity in crude extracts from the cephalic part of Bombus terrestris labial glands. Extracts from 3-day-old males displayed the highest lipolytic activity. The highest lipase gene expression level was observed in freshly emerged bumblebees, and both gene expression and lipase activity were lower in bumblebees older than 3 days. Lipase was purified from labial glands, further characterized and named as BT-1. The B. terrestris orthologue shares 88% sequence identity with B. impatiens lipase HA. The molecular weight of B. terrestris lipase BT-1 was approximately 30 kDa, the pH optimum was 8.3, and the temperature optimum was 50°C. Lipase BT-1 showed a notable preference for C8-C10 p-nitrophenyl esters, with the highest activity toward p-nitrophenyl caprylate (C8). The Michaelis constant (Km) and maximum reaction rate (Vmax) for p-nitrophenyl laurate hydrolysis were Km = 0.0011 mM and Vmax = 0.15 U/mg. Conclusion This is the first report describing neutral lipase from the labial gland of B. terrestris. Our findings help increase understanding of its possible function in the labial gland. PMID:24260337

  13. Lipases in Medicine: An Overview.

    PubMed

    Loli, Heni; Narwal, Sunil Kumar; Saun, Nitin Kumar; Gupta, Reena

    2015-01-01

    Lipases are part of the family of hydrolases that act on carboxylic ester bonds. They are involved in catalyzing the hydrolysis of triglycerides (TG) into chylomicrons and very low density lipoprotein (VLDL) particles. Uses of lipases are evolving rapidly and currently they are reported to show high potential in medicine. Intensive study and investigations have led researchers to explore lipases for their use in substitution therapy, where in enzyme deficiency during diseased conditions is compensated by their external administration. In our body, they are used to break down fats present in food so that they can be absorbed in the intestine and deficiency of lipases leads to malabsorption of fats and fat-soluble vitamins. Lipases help a person who has cystic fibrosis, Alzheimer's disease, atherosclerosis and act as a candidate target for cancer prevention and therapy. They act as diagnostic tool and their presence or increasing levels can indicate certain infection or disease. Obesity causes metabolic disease and is a serious health problem around the world. Thus inhibiting digestive lipase to reduce fat absorption has become the main pharmacological approach to the treatment of obesity in recent years. PMID:26156413

  14. Lipases in Medicine: An Overview.

    PubMed

    Loli, Heni; Narwal, Sunil Kumar; Saun, Nitin Kumar; Gupta, Reena

    2015-01-01

    Lipases are part of the family of hydrolases that act on carboxylic ester bonds. They are involved in catalyzing the hydrolysis of triglycerides (TG) into chylomicrons and very low density lipoprotein (VLDL) particles. Uses of lipases are evolving rapidly and currently they are reported to show high potential in medicine. Intensive study and investigations have led researchers to explore lipases for their use in substitution therapy, where in enzyme deficiency during diseased conditions is compensated by their external administration. In our body, they are used to break down fats present in food so that they can be absorbed in the intestine and deficiency of lipases leads to malabsorption of fats and fat-soluble vitamins. Lipases help a person who has cystic fibrosis, Alzheimer's disease, atherosclerosis and act as a candidate target for cancer prevention and therapy. They act as diagnostic tool and their presence or increasing levels can indicate certain infection or disease. Obesity causes metabolic disease and is a serious health problem around the world. Thus inhibiting digestive lipase to reduce fat absorption has become the main pharmacological approach to the treatment of obesity in recent years.

  15. Comparative analyses of lipoprotein lipase, hepatic lipase, and endothelial lipase, and their binding properties with known inhibitors.

    PubMed

    Wang, Ziyun; Li, Shen; Sun, Lidan; Fan, Jianglin; Liu, Zhenming

    2013-01-01

    The triglyceride lipase gene subfamily plays a central role in lipid and lipoprotein metabolism. There are three members of this subfamily: lipoprotein lipase, hepatic lipase, and endothelial lipase. Although these lipases are implicated in the pathophysiology of hyperlipidemia and atherosclerosis, their structures have not been fully solved. In the current study, we established homology models of these three lipases, and carried out analysis of their activity sites. In addition, we investigated the kinetic characteristics for the catalytic residues using a molecular dynamics simulation strategy. To elucidate the molecular interactions and determine potential key residues involved in the binding to lipase inhibitors, we analyzed the binding pockets and binding poses of known inhibitors of the three lipases. We identified the spatial consensus catalytic triad "Ser-Asp-His", a characteristic motif in all three lipases. Furthermore, we found that the spatial characteristics of the binding pockets of the lipase molecules play a key role in ligand recognition, binding poses, and affinities. To the best of our knowledge, this is the first report that systematically builds homology models of all the triglyceride lipase gene subfamily members. Our data provide novel insights into the molecular structures of lipases and their structure-function relationship, and thus provides groundwork for functional probe design towards lipase-based therapeutic inhibitors for the treatment of hyperlipidemia and atherosclerosis. PMID:23991054

  16. Hydrolysis of milk triglycerides by human gastric lipase.

    PubMed

    Jaśkiewicz, J; Szafran, Z; Popiela, T; Szafran, H

    1980-01-01

    The concentrations of myristic, palmitic, palmitoleic, stearic and oleic acids were determined in the products of hydrolysis of lipids of cow milk incubated with human gastric juice using thin-layer chromatography for the separation of lipid fractions, and gas liquid chromatography for the determination of fatty acids. It was found that the percentage ratio of the above fatty acids in hydrolysis products was similar to that in milk triglycerides. It was concluded that triglycerides containing higher fatty acids present in milk are hydrolysed by the lipase appearing in human gastric juice, the rate of hydrolysis of the individual acids being roughly proportional to the concentration of these acids in triglyceride substrate.

  17. Comparative Study on the Immobilization of Lipase on Chitosan Gels Modified by Different Hydrophobic Groups

    NASA Astrophysics Data System (ADS)

    Deng, Hong-Tao; Lin, Yan; Wang, Juan-Juan; Liu, Zhong-Yang; Ma, Miao; Zheng, Fei

    The hydrophobic surface modification of chitosan gels (CS) was carried out using the amidating reaction of amido groups on a gel surface with propionic acid, stearic acid, and benzoic acid, respectively, activated by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Lipase from Candida rugosa was immobilized by adsorption on the nascent CS, propionyl-modified gels (PCS), stearyl-modified gels (SCS), and benzoyl-modified gels (BCS), respectively. The adsorption capacity and activity of immobilized lipase were investigated. It was found that the surface modification improved the adsorption capacity of lipase, and the activity retention of immobilized lipase increased from 52.34% for CS to 57.17%, 78.26% and 69.22%, respectively, for PCS, SCS, and BCS.

  18. Crystal structure of a triacylglycerol lipase from Penicillium expansum at 1.3 A determined by sulfur SAD

    SciTech Connect

    Bian, Chuanbing; Yuan, Cai; Chen, Liqing; Meehan, Edward J.; Jiang, Longguang; Huang, Zixiang; Lin, Lin; Huang, Mingdong

    2010-04-05

    Triacylglycerol lipases (EC 3.1.1.3) are present in many different organisms including animals, plants, and microbes. Lipases catalyze the hydrolysis of long-chain triglycerides into fatty acids and glycerol at the interface between the water insoluble substrate and the aqueous phase. Lipases can also catalyze the reverse esterification reaction to form glycerides under certain conditions. Lipases of microbial origin are of considerable commercial interest for wide variety of biotechnological applications in industries, including detergent, food, cosmetic, pharmaceutical, fine chemicals, and biodiesel. Nowadays, microbial lipases have become one of the most important industrial enzymes. PEL (Penicillium expansum lipase) is a fungal lipase from Penicillium expansum strain PF898 isolated from Chinese soil that has been subjected to several generations of mutagenesis to increase its enzymatic activity. PEL belongs to the triacylglycerol lipases family, and its catalytic characteristics have been studied. The enzyme has been used in Chinese laundry detergent industry for several years (http://www.leveking.com). However, the poor thermal stability of the enzyme limits its application. To further study and improve this enzyme, PEL was cloned and sequenced. Furthermore, it was overexpressed in Pichia pastoris. PEL contains GHSLG sequence, which is the lipase consensus sequence Gly-X1-Ser-X2-Gly, but has a low amino acid sequence identities to other lipases. The most similar lipases are Rhizomucor miehei (PML) and Rhizopus niveus (PNL) with a 21% and 20% sequence identities to PEL, respectively. Interestingly, the similarity of PEL with the known esterases is somewhat higher with 24% sequence identity to feruloyl esterase A. Here, we report the 1.3 {angstrom} resolution crystal structure of PEL determined by sulfur SAD phasing. This structure not only presents a new lipase structure at high resolution, but also provides a structural platform to analyze the published

  19. Glycerol acyl-transfer kinetics of a circular permutated Candida antarctica Lipase B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triacylglycerols containing a high abundance of unusual fatty acids, such as y-linolenic acid, or novel arylaliphatic acids, such as ferulic acid, are useful in pharmaceutical and cosmeceutical applications. Candida antarctica lipase B (CALB) is quite often used for non-aqueous synthesis, although ...

  20. Synthesis of naringin 6"-ricinoleate using immobilized lipase

    PubMed Central

    2012-01-01

    Abstract Background Naringin is an important flavanone with several biological activities, including antioxidant action. However, this compound shows low solubility in lipophilic preparations, such as is used in the cosmetic and food industries. One way to solve this problem is to add fatty acids to the flavonoid sugar unit using immobilized lipase. However, there is limited research regarding hydroxylation of unsaturated fatty acids as an answer to the low solubility challenge. In this work, we describe the reaction of naringin with castor oil containing ricinoleic acid, castor oil's major fatty acid component, using immobilized lipase from Candida antarctica. Analysis of the 1H and 13 C NMR (1D and 2D) spectra and literature comparison were used to characterise the obtained acyl derivative. Results After allowing the reaction to continue for 120 hours (in acetone media, 50°C), the major product obtained was naringin 6″-ricinoleate. In this reaction, either castor oil or pure ricinoleic acid was used as the acylating agent, providing a 33% or 24% yield, respectively. The chemical structure of naringin 6″-ricinoleate was determined using NMR analysis, including bidimensional (2D) experiments. Conclusion Using immobilized lipase from C. antarctica, the best conversion reaction was observed using castor oil containing ricinoleic acid as the acylating agent rather than an isolated fatty acid. Graphical abstract PMID:22578215

  1. Assessing endotoxins in equine-derived snake antivenoms: Comparison of the USP pyrogen test and the Limulus Amoebocyte Lysate assay (LAL).

    PubMed

    Solano, Gabriela; Gómez, Aarón; León, Guillermo

    2015-10-01

    Snake antivenoms are parenterally administered; therefore, endotoxin content must be strictly controlled. Following international indications to calculate endotoxin limits, it was determined that antivenom doses between 20 mL and 120 mL should not exceed 17.5 Endotoxin Units per milliliter (EU/mL) and 2.9 EU/mL, respectively. The rabbit pyrogen test (RPT) has been used to evaluate endotoxin contamination in antivenoms, but some laboratories have recently implemented the LAL assay. We compared the capability of both tests to evaluate endotoxin contamination in antivenoms, and we found that both methods can detect all endotoxin concentrations in the range of the antivenom specifications. The acceptance criteria of RPT and LAL must be harmonized by calculating the endotoxin limit as the quotient of the threshold pyrogenic dose and the therapeutic dose and the dose administered to rabbits as the quotient of the threshold pyrogenic dose and the endotoxin limit. Since endotoxins from Gram-negative bacteria exert different pyrogenicity, if contamination occurred, antivenom batches that induce pyrogenic reactions may be found in spite of passing LAL specifications. Although LAL assay can be used to assess endotoxin content throughout the antivenom manufacturing process, we recommend that the release of final products be based on the results of both methods. PMID:26325294

  2. Assessing endotoxins in equine-derived snake antivenoms: Comparison of the USP pyrogen test and the Limulus Amoebocyte Lysate assay (LAL).

    PubMed

    Solano, Gabriela; Gómez, Aarón; León, Guillermo

    2015-10-01

    Snake antivenoms are parenterally administered; therefore, endotoxin content must be strictly controlled. Following international indications to calculate endotoxin limits, it was determined that antivenom doses between 20 mL and 120 mL should not exceed 17.5 Endotoxin Units per milliliter (EU/mL) and 2.9 EU/mL, respectively. The rabbit pyrogen test (RPT) has been used to evaluate endotoxin contamination in antivenoms, but some laboratories have recently implemented the LAL assay. We compared the capability of both tests to evaluate endotoxin contamination in antivenoms, and we found that both methods can detect all endotoxin concentrations in the range of the antivenom specifications. The acceptance criteria of RPT and LAL must be harmonized by calculating the endotoxin limit as the quotient of the threshold pyrogenic dose and the therapeutic dose and the dose administered to rabbits as the quotient of the threshold pyrogenic dose and the endotoxin limit. Since endotoxins from Gram-negative bacteria exert different pyrogenicity, if contamination occurred, antivenom batches that induce pyrogenic reactions may be found in spite of passing LAL specifications. Although LAL assay can be used to assess endotoxin content throughout the antivenom manufacturing process, we recommend that the release of final products be based on the results of both methods.

  3. Amplification of thermostable lipase genes fragment from thermogenic phase of domestic waste composting process

    NASA Astrophysics Data System (ADS)

    Nurhasanah, Nurbaiti, Santi; Madayanti, Fida; Akhmaloka

    2015-09-01

    Lipases are lipolytic enzymes, catalyze the hydrolysis of fatty acid ester bonds of triglycerides to produce free fatty acids and glycerol. The enzyme is widely used in various fields of biotechnological industry. Hence, lipases with unique properties (e.g.thermostable lipase) are still being explored by variation methods. One of the strategy is by using metagenomic approach to amplify the gene directly from environmental sample. This research was focused on amplification of lipase gene fragment directly from the thermogenic phase of domestic waste composting in aerated trenches. We used domestic waste compost from waste treatment at SABUGA, ITB for the sample. Total chromosomal DNA were directly extracted from several stages at thermogenic phase of compost. The DNA was then directly used as a template for amplification of thermostable lipase gene fragments using a set of internal primers namely Flip-1a and Rlip-1a that has been affixed with a GC clamp in reverse primer. The results showed that the primers amplified the gene from four stages of thermogenic phase with the size of lipase gene fragment of approximately 570 base pairs (bp). These results were further used for Denaturing Gradient Gel Electrophoresis (DGGE) analysis to determine diversity of thermostable lipase gene fragments.

  4. Lipase maturation factor 1: a lipase chaperone involved in lipid metabolism.

    PubMed

    Péterfy, Miklós

    2012-05-01

    Mutations in lipase maturation factor 1 (LMF1) are associated with severe hypertriglyceridemia in mice and human subjects. The underlying cause is impaired lipid clearance due to lipase deficiency. LMF1 is a chaperone of the endoplasmic reticulum (ER) and it is critically required for the post-translational activation of three vascular lipases: lipoprotein lipase (LPL), hepatic lipase (HL) and endothelial lipase (EL). As LMF1 is only required for the maturation of homodimeric, but not monomeric, lipases, it is likely involved in the assembly of inactive lipase subunits into active enzymes and/or the stabilization of active dimers. Herein, we provide an overview of current understanding of LMF1 function and propose that it may play a regulatory role in lipase activation and lipid metabolism. Further studies will be required to test this hypothesis and elucidate the full spectrum of phenotypes in combined lipase deficiency. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease. PMID:22063272

  5. Dual-therapy with αvβ3-targeted Sn2 lipase-labile fumagillin-prodrug nanoparticles and zoledronic acid in the Vx2 rabbit tumor model.

    PubMed

    Esser, Alison K; Schmieder, Anne H; Ross, Michael H; Xiang, Jingyu; Su, Xinming; Cui, Grace; Zhang, Huiying; Yang, Xiaoxia; Allen, John S; Williams, Todd; Wickline, Samuel A; Pan, Dipanjan; Lanza, Gregory M; Weilbaecher, Katherine N

    2016-01-01

    Fumagillin, an unstable anti-angiogenesis mycotoxin, was synthesized into a stable lipase-labile prodrug and incorporated into integrin-targeted lipid-encapsulated nanoparticles (αvβ3-Fum-PD NP). Dual anti-angiogenic therapy combining αvβ3-Fum-PD NP with zoledronic acid (ZA), a long-acting osteoclast inhibitor with proposed anti-angiogenic effects, was evaluated. In vitro, αvβ3-Fum-PD NP reduced (P<0.05) endothelial cell viability without impacting macrophage viability. ZA suppressed (P<0.05) macrophage viability at high dosages but not endothelial cell proliferation. 3D MR neovascular imaging of rabbit Vx2 tumors showed no effect with ZA, whereas αvβ3-Fum-PD NP alone and with ZA decreased angiogenesis (P<0.05). Immunohistochemistry revealed decreased (P<0.05) microvascularity with αvβ3-Fum-PD NP and ZA and further microvascular reduction (P<0.05) with dual-therapy. In vivo, ZA did not decrease tumor macrophage numbers nor cancer cell proliferation, whereas αvβ3-Fum-PD-NPs reduced both measures. Dual-therapy with ZA and αvβ3-Fum-PD-NP may provide enhanced neo-adjuvant utility if macrophage ZA uptake is increased. From the Clinical Editor: Although anti-angiogenesis is one of the treatment modalities in the fight against cancer, many cancers become resistant to VEGF pathway inhibitors. In this article, the authors investigated the use of dual therapy using fumagillin, integrin-targeted lipid-encapsulated nanoparticles (αvβ3- Fum-PD NP) and zoledronic acid (ZA), in both in-vitro and in-vivo experiments. This combination approach may provide an insight to the design of future drugs against cancers.

  6. Dual-therapy with αvβ3-targeted Sn2 lipase-labile fumagillin-prodrug nanoparticles and zoledronic acid in the Vx2 rabbit tumor model.

    PubMed

    Esser, Alison K; Schmieder, Anne H; Ross, Michael H; Xiang, Jingyu; Su, Xinming; Cui, Grace; Zhang, Huiying; Yang, Xiaoxia; Allen, John S; Williams, Todd; Wickline, Samuel A; Pan, Dipanjan; Lanza, Gregory M; Weilbaecher, Katherine N

    2016-01-01

    Fumagillin, an unstable anti-angiogenesis mycotoxin, was synthesized into a stable lipase-labile prodrug and incorporated into integrin-targeted lipid-encapsulated nanoparticles (αvβ3-Fum-PD NP). Dual anti-angiogenic therapy combining αvβ3-Fum-PD NP with zoledronic acid (ZA), a long-acting osteoclast inhibitor with proposed anti-angiogenic effects, was evaluated. In vitro, αvβ3-Fum-PD NP reduced (P<0.05) endothelial cell viability without impacting macrophage viability. ZA suppressed (P<0.05) macrophage viability at high dosages but not endothelial cell proliferation. 3D MR neovascular imaging of rabbit Vx2 tumors showed no effect with ZA, whereas αvβ3-Fum-PD NP alone and with ZA decreased angiogenesis (P<0.05). Immunohistochemistry revealed decreased (P<0.05) microvascularity with αvβ3-Fum-PD NP and ZA and further microvascular reduction (P<0.05) with dual-therapy. In vivo, ZA did not decrease tumor macrophage numbers nor cancer cell proliferation, whereas αvβ3-Fum-PD-NPs reduced both measures. Dual-therapy with ZA and αvβ3-Fum-PD-NP may provide enhanced neo-adjuvant utility if macrophage ZA uptake is increased. From the Clinical Editor: Although anti-angiogenesis is one of the treatment modalities in the fight against cancer, many cancers become resistant to VEGF pathway inhibitors. In this article, the authors investigated the use of dual therapy using fumagillin, integrin-targeted lipid-encapsulated nanoparticles (αvβ3- Fum-PD NP) and zoledronic acid (ZA), in both in-vitro and in-vivo experiments. This combination approach may provide an insight to the design of future drugs against cancers. PMID:26515754

  7. Lipase-catalyzed reactions at interfaces of two-phase systems and microemulsions.

    PubMed

    Reis, P; Miller, R; Leser, M; Watzke, H

    2009-09-01

    This work describes the influence of two polar lipids, Sn-1/3 and Sn-2 monopalmitin, on the activity of lipase in biphasic systems and in microemulsions. In previous communications, we have shown that Sn-2 monoglycerides can replace Sn-1,3 regiospecific lipases at the oil-water interface, causing a drastically reduced rate of lipolysis. We here demonstrate that even if the lipase is expelled from the interface, it can catalyze esterification of the Sn-2 monoglyceride with fatty acids in both macroscopic oil-water systems and in microemulsions, leading to formation of di- and triglycerides. PMID:18795240

  8. Structure of the human hepatic triglyceride lipase gene

    SciTech Connect

    Cai, Shengjian; Wong, D.M.; Chen, Sanhwan; Chan, L. )

    1989-11-14

    The structure of the human hepatic triglyceride lipase gene was determined from multiple cosmid clones. All the exons, exon-intron junctions, and 845 bp of the 5{prime} and 254 bp of the 3{prime} flanking DNA were sequenced. Comparison of the exon sequences to three previously published cDNA sequences revealed differences in the sequence of the codons for residue 133, 193, 202, and 234 that may represent sequence polymorphisms. By primer extension, hepatic lipase mRNA initiates at an adenine 77 bases upstream of the translation initiation site. The hepatic lipase gene spans over 60 kb containing 9 exons and 8 introns, the latter being all located within the region encoding the mature protein. The exons are all of average size (118-234 bp). Exon 1 encodes the signal peptide, exon 4, a region that binds to the lipoprotein substrate, and exon 5, an evolutionarily highly conserved region of potential catalytic function, and exons 6 and 9 encode sequences rich in basic amino acids thought to be important in anchoring the enzyme to the endothelial surface by interacting with acidic domains of the surface glycosaminoglycans. The human lipoprotein lipase gene has been recently reported to have an identical exon-intron organization containing the analogous structural domains. The observations strongly support the common evolutionary origin of these two lipolytic enzymes.

  9. Study on immobilization of lipase onto magnetic microspheres with epoxy groups

    NASA Astrophysics Data System (ADS)

    Lei, Lin; Bai, Yongxiao; Li, Yanfeng; Yi, Liuxiang; Yang, Yong; Xia, Chungu

    2009-02-01

    Magnetic microspheres were synthesized by the suspension polymerization of glycidyl methacrylate (GMA), methacrylic acid (MAA) and divinyl benzene (DVB) in the presence of oleic acid-coated Fe 3O 4 nanoparticles. Triacylglycerol lipase from porcine pancreas was covalently immobilized on the magnetic microspheres via the active epoxy groups with the activity yield up to 63% (±2.3%) and enzyme loading of 39 (±0.5) mg/g supports. The resulting immobilized lipase had higher optimum temperature compared with those of free lipase and exhibited better thermal, broader pH stability and excellent reusability. Furthermore, the catalyzed capability of immobilized lipase was also investigated by catalyzing synthesis of hexyl acetate and the esterification conversion rate reached to 83% (±2.5%) after 12 h in nonaqueous solvent.

  10. Tailoring the internal structure of liquid crystalline nanoparticles responsive to fungal lipases: A potential platform for sustained drug release.

    PubMed

    Poletto, F S; Lima, F S; Lundberg, D; Nylander, T; Loh, W

    2016-11-01

    Lipases are key components in the mechanisms underlying the persistence and virulence of infections by fungi, and thus also promising triggers for bioresponsive lipid-based liquid crystalline nanoparticles. We here propose a platform in which only a minor component of the formulation is susceptible to cleavage by lipase and where hydrolysis triggers a controlled phase transition within the nanoparticles that can potentially allow for an extended drug release. The responsive formulations were composed of phytantriol, which was included as a non-cleavable major component and polysorbate 80, which serves both as nanoparticle stabilizer and potential lipase target. To monitor the structural changes resulting from lipase activity with sufficient time resolution, we used synchrotron small angle x-ray scattering. Comparing the effect of the two different lipases used in this work, lipase B from Candida Antarctica, (CALB) and lipase from Rhizomucor miehei (RMML), only CALB induced phase transition from bicontinuous reverse cubic to reverse hexagonal phase within the particles. This phase transition can be attributed to an increasing amount of oleic acid formed on cleavage of the polysorbate 80. However, when also a small amount of a cationic surfactant was included in the formulation, RMML could trigger the corresponding phase transition as well. The difference in activity between the two lipases can tentatively be explained by a difference in their interaction with the nanoparticle surface. Thus, a bioresponsive system for treating fungal infections, with a tunable selectivity for different types of lipases, could be obtained by tuning the composition of the nanoparticle formulation.

  11. Comparative study of free and immobilized lipase from Bacillus aerius and its application in synthesis of ethyl ferulate.

    PubMed

    Saun, Nitin Kumar; Narwal, Sunil Kumar; Dogra, Priyanka; Chauhan, Ghanshyam Singh; Gupta, Reena

    2014-01-01

    In the present study, a purified lipase from Bacillus aerius immobilized on celite matrix was used for synthesis of ethyl ferulate. The celite-bound lipase exposed to glutaraldehyde showed 90.02% binding efficiency. It took two hours to bind maximally onto the support. The pH and temperature optima of the immobilized lipase were same as those of free enzyme i.e 9.5 and 55°C. Among different substrates both free and immobilized lipase showed maximum affinity towards p-nitrophenyl palmitate (p-NPP). The lipase activity was found to be stimulated in the presence of Mg(2+) in case of free enzyme while Zn(2+) and Fe(3+) showed stimulatory effect on immobilized lipase whereas salt ions as well as chelating agents inhibited activity of both free and immobilized lipase. Maximum enzyme activity was observed in n-hexane as organic solvent followed by n-heptane for both free and immobilized lipase, however CCl4, acetone and benzene inhibited the enzyme activity. Moreover, all the selected detergents (SDS, Triton X-100, Tween 80 and Tween 20) had an inhibitory effect on both free and immobilized enzyme activity. The celite bound lipase (1.5%) efficiently performed maximum esterification (2.51 moles/l) of ethanol and ferulic acid (100 mM each, at a molar ratio of 1:3) when incubated at 55°C for 48 h resulting in the formation of ester ethyl ferulate. PMID:25099909

  12. Origin, Microbiology, Nutrition, and Pharmacology of D-Amino Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exposure of food proteins to certain processing conditions induces two major chemical changes: racemization of all L-amino acids (LAA) to D-amino acids (DAA) and concurrent formation of crosslinked amino acids such as lysinoalanine (LAL). The diet contains both processing-induced and naturally-form...

  13. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    PubMed

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained. PMID:19552446

  14. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    PubMed

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  15. Marine Fungal and Bacterial Isolates for Lipase Production: A Comparative Study.

    PubMed

    Patnala, H S; Kabilan, U; Gopalakrishnan, L; Rao, R M D; Kumar, D S

    2016-01-01

    Lipases, belonging to the class of enzymes called hydrolases, can catalyze triglycerides to fatty acids and glycerol. They are produced by microbes of plant and animal origin, and also by marine organisms. As marine microorganisms thrive in extreme conditions, lipases isolated from their origin possess characteristics of extremozymes, retain its activity in extreme conditions and can catalyze few chemical reactions which are impossible otherwise relative to the lipase produced from terrestrial microorganisms. Lipases are useful in many industries like detergent, food, leather, pharmaceutical, diary, etc. Few commercial enzymes have been developed and the use of them in certain industries like dairy, soaps are proved to be beneficial. There are few research papers reporting the production of lipase from marine bacteria and fungi. Lipase production involves two types of fermentation processes-solid-state fermentation (SSF) and submerged fermentation (SmF). Although SmF process is used conventionally, SSF process produces lipase in higher amounts. The production is also influenced by the composition of the medium, physiochemical parameters like temperature, pH, carbon, and nitrogen sources. PMID:27452166

  16. A grey mullet enzyme displaying both lipase and phospholipase activities: purification and characterization.

    PubMed

    Smichi, Nabil; Gargouri, Youssef; Miled, Nabil; Fendri, Ahmed

    2013-07-01

    A lipase from the golden grey mullet viscera was purified to homogeneity by ammonium sulphate precipitation, gel filtration, anionic and cation exchange chromatographies. The pure enzyme tentatively named grey mullet digestive lipase (GmDL) is a monomer having a molecular mass of about 35 kDa, as determined by SDS-PAGE analysis. No similarity was found between the NH2-terminal amino acid residues of GmDL and those of other known digestive lipases. GmDL is a serine enzyme, like all known lipases from different origins. Interestingly, GmDL has not only lipase activity but also a phospholipase activity which requires the presence of Ca(2+) and bile salts. Specific activities of 64 U/mg, 55 U/mg and 63 U/mg were measured using tributyrin, olive oil emulsion or phosphatidylcholine as substrate, respectively at pH 8 and at 50°C. GmDL is therefore a thermo-active enzyme as compared to other fish lipases studied so far. It is worth to notice that grey mullet lipase was active in the presence of salt concentrations as high as 0.8M.

  17. Screening, gene sequencing and characterising of lipase for methanolysis of crude palm oil.

    PubMed

    Ratnaningsih, Enny; Handayani, Dewi; Khairunnisa, Fatiha; Ihsanawati; Kurniasih, Sari Dewi; Mangindaan, Bill; Rismayani, Sinta; Kasipah, Cica; Nurachman, Zeily

    2013-05-01

    Staphylococcus sp. WL1 lipase (LipFWS) was investigated for methanolysis of crude palm oil (CPO) at moderate temperatures. Experiments were conducted in the following order: searching for the suitable bacterium for producing lipase from activated sludge, sequencing lipase gene, identifying lipase activity, then synthesising CPO biodiesel using the enzyme. From bacterial screening, one isolated specimen which consistently showed the highest extracellular lipase activity was identified as Staphylococcus sp. WL1 possessing lipFWS (lipase gene of 2,244 bp). The LipFWS deduced was a protein of 747 amino acid residues containing an α/β hydrolase core domain with predicted triad catalytic residues to be Ser474, His704 and Asp665. Optimal conditions for the LipFWS activity were found to be at 55 °C and pH 7.0 (in phosphate buffer but not in Tris buffer). The lipase had a K(M) of 0.75 mM and a V(max) of 0.33 mMmin(-1) on p-nitrophenyl palmitate substrate. The lyophilised crude LipFWS performed as good as the commonly used catalyst potassium hydroxide for methanolysis of CPO. ESI-IT-MS spectra indicated that the CPO was converted into biodiesel, suggesting that free LipFWS is a worthy alternative for CPO biodiesel synthesis. PMID:23463327

  18. The Saccharomyces cerevisiae YLL012/YEH1, YLR020/YEH2, and TGL1 genes encode a novel family of membrane-anchored lipases that are required for steryl ester hydrolysis.

    PubMed

    Köffel, René; Tiwari, Rashi; Falquet, Laurent; Schneiter, Roger

    2005-03-01

    Sterol homeostasis in eukaryotic cells relies on the reciprocal interconversion of free sterols and steryl esters. The formation of steryl esters is well characterized, but the mechanisms that control steryl ester mobilization upon cellular demand are less well understood. We have identified a family of three lipases of Saccharomyces cerevisiae that are required for efficient steryl ester mobilization. These lipases, encoded by YLL012/YEH1, YLR020/YEH2, and TGL1, are paralogues of the mammalian acid lipase family, which is composed of the lysosomal acid lipase, the gastric lipase, and four novel as yet uncharacterized human open reading frames. Lipase triple-mutant yeast cells are completely blocked in steryl ester hydrolysis but do not affect the mobilization of triacylglycerols, indicating that the three lipases are required for steryl ester mobilization in vivo. Lipase single mutants mobilize steryl esters to various degrees, indicating partial functional redundancy of the three gene products. Lipase double-mutant cells in which the third lipase is expressed from the inducible GAL1 promoter have greatly reduced steady-state levels of steryl esters, indicating that overexpression of any of the three lipases is sufficient for steryl ester mobilization in vivo. The three yeast enzymes constitute a novel class of membrane-anchored lipases that differ in topology and subcellular localization.

  19. Hydrolysis products generated by lipoprotein lipase and endothelial lipase differentially impact THP-1 macrophage cell signalling pathways.

    PubMed

    Essaji, Yasmin; Yang, Yanbo; Albert, Carolyn J; Ford, David A; Brown, Robert J

    2013-08-01

    Macrophages express lipoprotein lipase (LPL) and endothelial lipase (EL) within atherosclerotic plaques; however, little is known about how lipoprotein hydrolysis products generated by these lipases might affect macrophage cell signalling pathways. We hypothesized that hydrolysis products affect macrophage cell signalling pathways associated with atherosclerosis. To test our hypothesis, we incubated differentiated THP-1 macrophages with products from total lipoprotein hydrolysis by recombinant LPL or EL. Using antibody arrays, we found that the phosphorylation of six receptor tyrosine kinases and three signalling nodes--most associated with atherosclerotic processes--was increased by LPL derived hydrolysis products. EL derived hydrolysis products only increased the phosphorylation of tropomyosin-related kinase A, which is also implicated in playing a role in atherosclerosis. Using electrospray ionization-mass spectrometry, we identified the species of triacylglycerols and phosphatidylcholines that were hydrolyzed by LPL and EL, and we identified the fatty acids liberated by gas chromatography-mass spectrometry. To determine if the total liberated fatty acids influenced signalling pathways, we incubated differentiated THP-1 macrophages with a mixture of the fatty acids that matched the concentrations of liberated fatty acids from total lipoproteins by LPL, and we subjected cell lysates to antibody array analyses. The analyses showed that only the phosphorylation of Akt was significantly increased in response to fatty acid treatment. Overall, our study shows that macrophages display potentially pro-atherogenic signalling responses following acute treatments with LPL and EL lipoprotein hydrolysis products. PMID:23794138

  20. Lipase-catalyzed synthesis of monoacylglycerol in a homogeneous system.

    PubMed

    Monteiro, Julieta B; Nascimento, Maria G; Ninow, Jorge L

    2003-04-01

    The 1,3-regiospecifique lipase, Lipozyme IM, catalyzed the esterification of lauric acid and glycerol in a homogeneous system. To overcome the drawback of the insolubility of glycerol in hexane, which is extensively used in enzymatic synthesis, a mixture of n-hexane/tert-butanol (1:1, v/v) was used leading to a monophasic system. The conversion of lauric acid into monolaurin was 65% in 8 h, when a molar ratio of glycerol to fatty acid (5:1) was used with the fatty acid at 0.1 M, and the phenomenon of acyl migration was minimized.

  1. Fasting upregulates adipose triglyceride lipase and hormone-sensitive lipase levels and phosphorylation in mouse kidney.

    PubMed

    Marvyn, Phillip M; Bradley, Ryan M; Button, Emily B; Mardian, Emily B; Duncan, Robin E

    2015-06-01

    Circulating non-esterified fatty acids (NEFA) rise during fasting and are taken up by the kidneys, either directly from the plasma or during re-uptake of albumin from glomerular filtrate, and are stored as triacylglycerol (TAG). Subsequent utilization of stored fatty acids requires their hydrolytic release from cellular lipid droplets, but relatively little is known about renal lipolysis. We found that total [(3)H]triolein hydrolase activity of kidney lysates was significantly increased by 15% in the fasted state. Adipose triglyceride lipase (Atgl) and hormone-sensitive lipase (Hsl) mRNA expression was time-dependently increased by fasting, along with other fatty acid metabolism genes (Pparα, Cd36, and Aox). ATGL and HSL protein levels were also significantly induced (by 239 ± 7% and 322 ± 8%, respectively). Concomitant with changes in total protein levels, there was an increase in ATGL phosphorylation at the AMPK-regulated serine 406 site in the 14-3-3 binding motif, and an increase in HSL phosphorylation at serines 565 and 660 that are regulated by AMPK and PKA, respectively. Using immunofluorescence, we further demonstrate nearly ubiquitous expression of ATGL in the renal cortex with a concentration on the apical/lumenal surface of some cortical tubules. Our findings suggest a role for ATGL and HSL in kidney lipolysis.

  2. Fasting upregulates adipose triglyceride lipase and hormone-sensitive lipase levels and phosphorylation in mouse kidney.

    PubMed

    Marvyn, Phillip M; Bradley, Ryan M; Button, Emily B; Mardian, Emily B; Duncan, Robin E

    2015-06-01

    Circulating non-esterified fatty acids (NEFA) rise during fasting and are taken up by the kidneys, either directly from the plasma or during re-uptake of albumin from glomerular filtrate, and are stored as triacylglycerol (TAG). Subsequent utilization of stored fatty acids requires their hydrolytic release from cellular lipid droplets, but relatively little is known about renal lipolysis. We found that total [(3)H]triolein hydrolase activity of kidney lysates was significantly increased by 15% in the fasted state. Adipose triglyceride lipase (Atgl) and hormone-sensitive lipase (Hsl) mRNA expression was time-dependently increased by fasting, along with other fatty acid metabolism genes (Pparα, Cd36, and Aox). ATGL and HSL protein levels were also significantly induced (by 239 ± 7% and 322 ± 8%, respectively). Concomitant with changes in total protein levels, there was an increase in ATGL phosphorylation at the AMPK-regulated serine 406 site in the 14-3-3 binding motif, and an increase in HSL phosphorylation at serines 565 and 660 that are regulated by AMPK and PKA, respectively. Using immunofluorescence, we further demonstrate nearly ubiquitous expression of ATGL in the renal cortex with a concentration on the apical/lumenal surface of some cortical tubules. Our findings suggest a role for ATGL and HSL in kidney lipolysis. PMID:25879679

  3. Biochemical Characterization and Molecular Modeling of Pancreatic Lipase from a Cartilaginous Fish, the Common Stingray (Dasyatis pastinaca).

    PubMed

    Bouchaâla, Emna; BouAli, Madiha; Ben Ali, Yassine; Miled, Nabil; Gargouri, Youssef; Fendri, Ahmed

    2015-05-01

    In order to identify fish enzymes displaying novel biochemical properties, we have chosen the common stingray (Dasyatis pastinaca), one of the most primitive living jawed aquatic vertebrates as a starting biological material to purify a lipase. A stingray pancreatic lipase (SPL) was purified from delipidated pancreatic powder. The SPL molecular weight was around 55 kDa which is slightly higher than that of known classical pancreatic lipases (50 kDa). This increase in the molecular weight was due to glycosylation. Like classic pancreatic lipases, SPL was found to be much more active on short-chain triacylglycerols than on long-chain ones. Natural detergents act as inhibitors of the SPL activity. This inhibition can be reversed by the addition of stingray colipase. Starting from total pancreatic messenger RNAs (mRNAs), partial stingray pancreatic lipase complementary DNA (cDNA) was synthesized by reverse transcriptase-polymerase chain reaction (RT-PCR) and cloned into the PGEM-T vector. Partial amino acid sequence of the SPL was homologous to that of Japanese eel, porcine, and human pancreatic lipases. A 3D structure model of the sequenced part of SPL was built using the 3D structure of porcine pancreatic lipase as template, since both lipases shared an amino acid sequence identity of 60%.

  4. Biochemical Characterization and Molecular Modeling of Pancreatic Lipase from a Cartilaginous Fish, the Common Stingray (Dasyatis pastinaca).

    PubMed

    Bouchaâla, Emna; BouAli, Madiha; Ben Ali, Yassine; Miled, Nabil; Gargouri, Youssef; Fendri, Ahmed

    2015-05-01

    In order to identify fish enzymes displaying novel biochemical properties, we have chosen the common stingray (Dasyatis pastinaca), one of the most primitive living jawed aquatic vertebrates as a starting biological material to purify a lipase. A stingray pancreatic lipase (SPL) was purified from delipidated pancreatic powder. The SPL molecular weight was around 55 kDa which is slightly higher than that of known classical pancreatic lipases (50 kDa). This increase in the molecular weight was due to glycosylation. Like classic pancreatic lipases, SPL was found to be much more active on short-chain triacylglycerols than on long-chain ones. Natural detergents act as inhibitors of the SPL activity. This inhibition can be reversed by the addition of stingray colipase. Starting from total pancreatic messenger RNAs (mRNAs), partial stingray pancreatic lipase complementary DNA (cDNA) was synthesized by reverse transcriptase-polymerase chain reaction (RT-PCR) and cloned into the PGEM-T vector. Partial amino acid sequence of the SPL was homologous to that of Japanese eel, porcine, and human pancreatic lipases. A 3D structure model of the sequenced part of SPL was built using the 3D structure of porcine pancreatic lipase as template, since both lipases shared an amino acid sequence identity of 60%. PMID:25795061

  5. Adipocyte lipases and defect of lipolysis in human obesity.

    PubMed

    Langin, Dominique; Dicker, Andrea; Tavernier, Geneviève; Hoffstedt, Johan; Mairal, Aline; Rydén, Mikael; Arner, Erik; Sicard, Audrey; Jenkins, Christopher M; Viguerie, Nathalie; van Harmelen, Vanessa; Gross, Richard W; Holm, Cecilia; Arner, Peter

    2005-11-01

    The mobilization of fat stored in adipose tissue is mediated by hormone-sensitive lipase (HSL) and the recently characterized adipose triglyceride lipase (ATGL), yet their relative importance in lipolysis is unknown. We show that a novel potent inhibitor of HSL does not inhibit other lipases. The compound counteracted catecholamine-stimulated lipolysis in mouse adipocytes and had no effect on residual triglyceride hydrolysis and lipolysis in HSL-null mice. In human adipocytes, catecholamine- and natriuretic peptide-induced lipolysis were completely blunted by the HSL inhibitor. When fat cells were not stimulated, glycerol but not fatty acid release was inhibited. HSL and ATGL mRNA levels increased concomitantly during adipocyte differentiation. Abundance of the two transcripts in human adipose tissue was highly correlated in habitual dietary conditions and during a hypocaloric diet, suggesting common regulatory mechanisms for the two genes. Comparison of obese and nonobese subjects showed that obesity was associated with a decrease in catecholamine-induced lipolysis and HSL expression in mature fat cells and in differentiated preadipocytes. In conclusion, HSL is the major lipase for catecholamine- and natriuretic peptide-stimulated lipolysis, whereas ATGL mediates the hydrolysis of triglycerides during basal lipolysis. Decreased catecholamine-induced lipolysis and low HSL expression constitute a possibly primary defect in obesity. PMID:16249444

  6. Metabolic fate of rat heart endothelial lipoprotein lipase

    SciTech Connect

    Chajek-Shaul, T.; Bengtsson-Olivecrona, G.; Peterson, J.; Olivecrona, T.

    1988-09-01

    When isolated rat hearts were perfused with medium containing 125I-labeled bovine lipoprotein lipase (LPL), they bound both lipase activity and radioactivity. More than 80% of the bound lipase could be rapidly released by heparin. Low concentrations of bovine LPL displaced 50-60% of the endogeneous, endothelial-bound LPL. Higher concentrations caused additional binding. Both binding and exchange were rapid processes. The hearts continuously released endogenous LPL into the medium. An antiserum that inhibited bovine but not rat LPL was used to differentiate endogeneous and exogeneous LPL activity. When the pool of endothelial LPL was labeled with bovine 125I-labeled LPL and then chased with unlabeled bovine LPL, approximately 50% of the labeled lipase was rapidly displaced. During chase perfusion with medium only, catalytically active bovine LPL appeared in the perfusate. The rate of release was similar to that observed for endogeneous LPL activity and amounted to 10-13% of the heparin-releasable fraction in the first 5 min of perfusion. There was little or no degradation of bovine 125I-labeled LPL to fragments or acid-soluble products. These results indicate that endothelial LPL is accessible for exchange with exogeneous LPL and that detachment rather than degradation may be the pathway for catabolism of endothelial LPL.

  7. Solvent-free lipase-catalyzed preparation of diacylglycerols.

    PubMed

    Weber, Nikolaus; Mukherjee, Kumar D

    2004-08-25

    Various methods have been applied for the enzymatic preparation of diacylglycerols that are used as dietary oils for weight reduction in obesity and related disorders. Interesterification of rapeseed oil triacylglycerols with commercial preparations of monoacylglycerols, such as Monomuls 90-O18, Mulgaprime 90, and Nutrisoft 55, catalyzed by immobilized lipase from Rhizomucor miehei (Lipozyme RM IM) in vacuo at 60 degrees C led to extensive (from 60 to 75%) formation of diacylglycerols. Esterification of rapeseed oil fatty acids with Nutrisoft, catalyzed by Lipozyme RM in vacuo at 60 degrees C, also led to extensive (from 60 to 70%) formation of diacylglycerols. Esterification of rapeseed oil fatty acids with glycerol in vacuo at 60 degrees C, catalyzed by Lipozyme RM and lipases from Thermomyces lanuginosus (Lipozyme TL IM) and Candida antarctica (lipase B, Novozym 435), also provided diacylglycerols, however, to a lower extent (40-45%). Glycerolysis of rapeseed oil triacylglycerols with glycerol in vacuo at 60 degrees C, catalyzed by Lipozyme TL and Novozym 435, led to diacylglycerols to the extent of acids with Monomuls resulted in minor reduction of its activity. The products of esterification of rapeseed oil fatty acids with Monomuls and glycerol yielded upon short-path vacuum distillation residues (diacylglycerol oils) containing 66-70% diacylglycerols.

  8. Screening for hydrolytic enzymes reveals Ayr1p as a novel triacylglycerol lipase in Saccharomyces cerevisiae.

    PubMed

    Ploier, Birgit; Scharwey, Melanie; Koch, Barbara; Schmidt, Claudia; Schatte, Jessica; Rechberger, Gerald; Kollroser, Manfred; Hermetter, Albin; Daum, Günther

    2013-12-13

    Saccharomyces cerevisiae, as well as other eukaryotes, preserves fatty acids and sterols in a biologically inert form, as triacylglycerols and steryl esters. The major triacylglycerol lipases of the yeast S. cerevisiae identified so far are Tgl3p, Tgl4p, and Tgl5p (Athenstaedt, K., and Daum, G. (2003) YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J. Biol. Chem. 278, 23317-23323; Athenstaedt, K., and Daum, G. (2005) Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae, are localized to lipid particles. J. Biol. Chem. 280, 37301-37309). We observed that upon cultivation on oleic acid, triacylglycerol mobilization did not come to a halt in a yeast strain deficient in all currently known triacylglycerol lipases, indicating the presence of additional not yet characterized lipases/esterases. Functional proteome analysis using lipase and esterase inhibitors revealed a subset of candidate genes for yet unknown hydrolytic enzymes on peroxisomes and lipid droplets. Based on the conserved GXSXG lipase motif, putative functions, and subcellular localizations, a selected number of candidates were characterized by enzyme assays in vitro, gene expression analysis, non-polar lipid analysis, and in vivo triacylglycerol mobilization assays. These investigations led to the identification of Ayr1p as a novel triacylglycerol lipase of yeast lipid droplets and confirmed the hydrolytic potential of the peroxisomal Lpx1p in vivo. Based on these results, we discuss a possible link between lipid storage, lipid mobilization, and peroxisomal utilization of fatty acids as a carbon source.

  9. Deciphering the toxicity of bisphenol a to Candida rugosa lipase through spectrophotometric methods.

    PubMed

    Zhang, Rui; Zhao, Lining; Liu, Rutao

    2016-10-01

    Bisphenol A is widely used in the manufacture of food packaging and beverage containers and can invade our food and cause contamination. Candida rugose lipase has been a versatile enzyme for biocatalysis and biotransformations to produce useful materials for food, pharmaceutical and flavor. The interactions between bisphenol A and Candida rugosa lipase in vitro were studied by UV-vis, steady-state fluorescence, circular dichroism, synchronous fluorescence, light scattering spectra, molecular docking and enzyme activity assay to better understand the toxicity and toxic mechanisms of bisphenol A. The intrinsic fluorescence of the tryptophan amino acid residue and the secondary structure of the globular protein candida rugose lipase were made use of to thoroughly investigate the structural changes caused by bisphenol A. The results of the fluorescence indicated that bisphenol A interacted with candida rugose lipase and made tryptophan be exposed to a hydrophobic environment. Multi-spectroscopic measurements showed that the addition of bisphenol A increased the intrinsic fluorescence of Candida rugosa lipase, loosened its skeleton structure and changed its secondary structure. Also, the increased activity of Candida rugosa lipase revealed that the position or the structure of the catalytic triad of Candida rugosa lipase may be changed. The molecular docking results showed that bisphenol A bound with the residue Serine 209 which could be another reason for the increased activity of Candida rugosa lipase. Moreover, as can be seen from the results of resonance light scattering and dynamic light scattering, the volume of the Candida rugosa lipase was decreased and the lid may be stripped. PMID:27529468

  10. Characterization of biotechnologically relevant extracellular lipase produced by Aspergillus terreus NCFT 4269.10

    PubMed Central

    Sethi, Bijay Kumar; Nanda, Prativa Kumari; Sahoo, Santilata

    2016-01-01

    Enzyme production by Aspergillus terreus NCFT 4269.10 was studied under liquid static surface and solid-state fermentation using mustard oil cake as a substrate. The maximum lipase biosynthesis was observed after incubation at 30 °C for 96 h. Among the domestic oils tested, the maximum lipase biosynthesis was achieved using palm oil. The crude lipase was purified 2.56-fold to electrophoretic homogeneity, with a yield of 8.44%, and the protein had a molecular weight of 46.3 kDa as determined by SDS-PAGE. Enzyme characterization confirmed that the purified lipase was most active at pH 6.0, temperature of 50 °C, and substrate concentration of 1.5%. The enzyme was thermostable at 60 °C for 1 h, and the optimum enzyme–substrate reaction time was 30 min. Sodium dodecyl sulfate and commercial detergents did not significantly affect lipase activity during 30-min incubation at 30 °C. Among the metal ions tested, the maximum lipase activity was attained in the presence of Zn2+, followed by Mg2+ and Fe2+. Lipase activity was not significantly affected in the presence of ethylenediaminetetraacetic acid, sodium lauryl sulfate and Triton X-100. Phenylmethylsulfonyl fluoride (1 mM) and the reducing, β-mercaptoethanol significantly inhibited lipase activity. The remarkable stability in the presence of detergents, additives, inhibitors and metal ions makes this lipase unique and a potential candidate for significant biotechnological exploitation. PMID:26887237

  11. Vertebrate hepatic lipase genes and proteins: a review supported by bioinformatic studies.

    PubMed

    Holmes, Roger S; Vandeberg, John L; Cox, Laura A

    2011-04-22

    Hepatic lipase (gene: LIPC; enzyme: HL; E.C.3.1.1.3) is one of three members of the triglyceride lipase family that contributes to vascular lipoprotein degradation and serves a dual role in triglyceride hydrolysis and in facilitating receptor-mediated lipoprotein uptake into the liver. Amino acid sequences, protein structures, and gene locations for vertebrate LIPC (or Lipc for mouse and rat) genes and proteins were sourced from previous reports and vertebrate genome databases. Lipc was distinct from other neutral lipase genes (Lipg encoding endothelial lipase and Lpl encoding lipoprotein lipase [LPL]) and was located on mouse chromosome 9 with nine coding exons on the negative strand. Exon 9 of human LIPC and mouse and rat Lipc genes contained "stop codons" in different positions, causing changes in C-termini length. Vertebrate HL protein subunits shared 58%-97% sequence identities, including active, signal peptide, disulfide bond, and N-glycosylation sites, as well as proprotein convertase ("hinge") and heparin binding regions. Predicted secondary and tertiary structures revealed similarities with the three-dimensional structure reported for horse and human pancreatic lipases. Potential sites for regulating LIPC gene expression included CpG islands near the 5″-untranslated regions of the mouse and rat LIPC genes. Phylogenetic analyses examined the relationships and potential evolutionary origins of the vertebrate LIPC gene family with other neutral triglyceride lipase gene families (LIPG and LPL). We conclude that the triglyceride lipase ancestral gene for vertebrate neutral lipase genes (LIPC, LIPG, and LPL) predated the appearance of fish during vertebrate evolution. PMID:22408368

  12. Deciphering the toxicity of bisphenol a to Candida rugosa lipase through spectrophotometric methods.

    PubMed

    Zhang, Rui; Zhao, Lining; Liu, Rutao

    2016-10-01

    Bisphenol A is widely used in the manufacture of food packaging and beverage containers and can invade our food and cause contamination. Candida rugose lipase has been a versatile enzyme for biocatalysis and biotransformations to produce useful materials for food, pharmaceutical and flavor. The interactions between bisphenol A and Candida rugosa lipase in vitro were studied by UV-vis, steady-state fluorescence, circular dichroism, synchronous fluorescence, light scattering spectra, molecular docking and enzyme activity assay to better understand the toxicity and toxic mechanisms of bisphenol A. The intrinsic fluorescence of the tryptophan amino acid residue and the secondary structure of the globular protein candida rugose lipase were made use of to thoroughly investigate the structural changes caused by bisphenol A. The results of the fluorescence indicated that bisphenol A interacted with candida rugose lipase and made tryptophan be exposed to a hydrophobic environment. Multi-spectroscopic measurements showed that the addition of bisphenol A increased the intrinsic fluorescence of Candida rugosa lipase, loosened its skeleton structure and changed its secondary structure. Also, the increased activity of Candida rugosa lipase revealed that the position or the structure of the catalytic triad of Candida rugosa lipase may be changed. The molecular docking results showed that bisphenol A bound with the residue Serine 209 which could be another reason for the increased activity of Candida rugosa lipase. Moreover, as can be seen from the results of resonance light scattering and dynamic light scattering, the volume of the Candida rugosa lipase was decreased and the lid may be stripped.

  13. Esterification activity of novel fungal and yeast lipases.

    PubMed

    Rigo, Elisandra; Polloni, André E; Remonatto, Daniela; Arbter, Francieli; Menoncin, Silvana; Oliveira, J Vladimir; de Oliveira, Débora; Treichel, Helen; Kalil, Susana J; Ninow, Jorge L; Di Luccio, Marco

    2010-11-01

    The main objective of this work was the isolation and screening of microorganisms with potential for producing lipases for the synthesis of fatty esters as well as evaluating the specificity of the enzymes produced, using different alcohols (methanol, ethanol, n-propanol, and butanol) and fatty acids (oleic and lauric acids) as substrates. Promising biocatalysts for organic synthesis were obtained in this work. The isolated strains 69F and 161Y showed ability to efficiently catalyze the reaction for production of n-propyl oleate. Other strains can also be considered of potential interest, as 74F, 111Y, and 186Y. The future development of production using different substrates could result in cheap crude lipase of high importance to industrial applicability.

  14. The effect of refrigeration and mixing on detection of endotoxin in parenteral drugs using the Limulus Amebocyte Lysate (LAL) test.

    PubMed

    Guilfoyle, D E; Yager, J F; Carito, S L

    1989-01-01

    Prior to testing for the presence of bacterial endotoxin, parenteral products are handled and stored in a variety of ways. Two incidents, detected by the U.S. Food and Drug Administration, revealed that differences in product handling and storage may have played a role in causing analytical discrepancies in the testing of identical samples. The testing procedure was the USP Bacterial Endotoxin test using Limulus Amebocyte Lysate (LAL) reagent. Consequently, an evaluation was made at the two principal factors that contributed to the suspected analytical anomaly. The factors were sample storage and the degree of agitation prior to sample analysis. Additional variables such as bacterial growth medium and adsorption potential of endotoxin by rubber stoppers were also evaluated. It was found that neither the medium employed to grow the E. coli endotoxin nor the storage temperature of the spiked solutions were problematic. However, it was shown that 20-40% of the spiked endotoxin was lost due to non-agitation of solution in vials in which the solution was in contact with the rubber stoppers. A suggested remedy for this problem is to store intact product containers in an upright position and to establish a uniform mixing procedure prior to endotoxin assay.

  15. Characterization of an extracellular lipase and its chaperone from Ralstonia eutropha H16.

    PubMed

    Lu, Jingnan; Brigham, Christopher J; Rha, Chokyun; Sinskey, Anthony J

    2013-03-01

    Lipase enzymes catalyze the reversible hydrolysis of triacylglycerol to fatty acids and glycerol at the lipid-water interface. The metabolically versatile Ralstonia eutropha strain H16 is capable of utilizing various molecules containing long carbon chains such as plant oil, organic acids, or Tween as its sole carbon source for growth. Global gene expression analysis revealed an upregulation of two putative lipase genes during growth on trioleate. Through analysis of growth and activity using strains with gene deletions and complementations, the extracellular lipase (encoded by the lipA gene, locus tag H16_A1322) and lipase-specific chaperone (encoded by the lipB gene, locus tag H16_A1323) produced by R. eutropha H16 was identified. Increase in gene dosage of lipA not only resulted in an increase of the extracellular lipase activity, but also reduced the lag phase during growth on palm oil. LipA is a non-specific lipase that can completely hydrolyze triacylglycerol into its corresponding free fatty acids and glycerol. Although LipA is active over a temperature range from 10 °C to 70 °C, it exhibited optimal activity at 50 °C. While R. eutropha H16 prefers a growth pH of 6.8, its extracellular lipase LipA is most active between pH 7 and 8. Cofactors are not required for lipase activity; however, EDTA and EGTA inhibited LipA activity by 83 %. Metal ions Mg(2+), Ca(2+), and Mn(2+) were found to stimulate LipA activity and relieve chelator inhibition. Certain detergents are found to improve solubility of the lipid substrate or increase lipase-lipid aggregation, as a result SDS and Triton X-100 were able to increase lipase activity by 20 % to 500 %. R. eutropha extracellular LipA activity can be hyper-increased, making the overexpression strain a potential candidate for commercial lipase production or in fermentations using plant oils as the sole carbon source.

  16. Estolides Synthesis Catalyzed by Immobilized Lipases

    PubMed Central

    Aguieiras, Erika C. G.; Veloso, Cláudia O.; Bevilaqua, Juliana V.; Rosas, Danielle O.; da Silva, Mônica A. P.; Langone, Marta A. P.

    2011-01-01

    Estolides are vegetable-oil-based lubricants obtained from oleic acid or any source of hydroxy fatty acids. In this work, the estolides synthesis from oleic acid and methyl ricinoleate (biodiesel from castor oil), using immobilized commercial lipases (Novozym 435, Lipozyme RM-IM, and Lipozyme TL-IM) in a solvent-free medium was investigated. Acid value was used to monitor the reaction progress by determining the consumption of acid present in the medium. Novozym 435 showed the best performance. Water removal improved the conversion. Novozym 435 was more active at atmospheric pressure. Novozym 435 was reused four times with conversion reaching 15% after the fourth reaction at 80°C. Estolides produced under the reaction conditions used in this work presented good properties, such as, low temperature properties as pour point (−24°C), viscosity (23.9 cSt at 40°C and 5.2 cSt at 100°C), and viscosity index (153). PMID:21755040

  17. Mycelium-bound lipase from a locally isolated strain of Geotrichum candidum.

    PubMed

    Loo, Joo Ling; Khoramnia, Anahita; Lai, Oi Ming; Long, Kamariah; Ghazali, Hasanah Mohd

    2014-06-23

    Mycelium-bound lipase (MBL), from a locally isolated Geotrichum candidum strain, was produced and characterized as a natural immobilized lipase. A time course study of its lipolytic activity in 1 L liquid broth revealed the maximum MBL activity at 4 h for mycelium cells harvested after 54 h. The yield and specific activity of MBL were 3.87 g/L dry weight and 508.33 U/g protein, respectively, while less than 0.2 U/mL lipase activity was detected in the culture supernatant. Prolonged incubation caused release of the bound lipase into the growth medium. The growth pattern of G. candidum, and production and properties of MBL were not affected by the scale. The stability of mycelia harboring lipase (MBL), harvested and lyophilized after 54 h, studied at 4 °C depicted a loss of 4.3% and 30% in MBL activity after 1 and 8 months, while the activity of free lipase was totally lost after 14 days of storage. The MBL from G. candidum displayed high substrate selectivity for unsaturated fatty acids containing a cis-9 double bond, even in crude form. This unique specificity of MBL could be a direct, simple and inexpensive way in the fats and oil industry for the selective hydrolysis or transesterification of cis-9 fatty acid residues in natural triacylglycerols.

  18. The effects of chemically modifying serum apolipoproteins on their ability to activate lipoprotein lipase.

    PubMed Central

    Dodds, P F; Lopez-Johnston, A; Welch, V A; Gurr, M I

    1987-01-01

    Lipoprotein lipase activity was measured in an acetone-dried-powder preparation from rat epididymal adipose tissue using pig serum or pig serum lipoprotein, which had been chemically modified, as activator. Modification of acidic amino acids of lipoproteins with NN-dimethyl-1,3-diamine resulted in a complete loss of ability to activate lipoprotein lipase. Modification of 34% of lipoprotein arginine groups with cyclohexanedione resulted in the loss of 75% of the activation of lipoprotein lipase; approx. 42% of the original activity was recovered after reversal of the modification. This effect was dependent on the cyclohexanedione concentration. Modification of 48% of lipoprotein lysine groups with malonaldehyde decreased the maximum activation by 20%, but three times as much lipoprotein was required to achieve this. Non-enzymic glycosylation of lipoprotein with glucose, under a variety of conditions resulting in up to 28 nmol of glucose/mg of protein, had no effect upon the ability to activate lipoprotein lipase. In contrast non-enzymic sialylation resulted in a time-dependent loss of up to 60% of ability to activate lipoprotein lipase. Reductive methylation and acetoacetylation of serum did not affect the ability to activate lipoprotein lipase. The results are compared to the effects of similar modifications to low density lipoproteins on receptor-mediated endocytosis. PMID:3593262

  19. Mycelium-bound lipase from a locally isolated strain of Geotrichum candidum.

    PubMed

    Loo, Joo Ling; Khoramnia, Anahita; Lai, Oi Ming; Long, Kamariah; Ghazali, Hasanah Mohd

    2014-01-01

    Mycelium-bound lipase (MBL), from a locally isolated Geotrichum candidum strain, was produced and characterized as a natural immobilized lipase. A time course study of its lipolytic activity in 1 L liquid broth revealed the maximum MBL activity at 4 h for mycelium cells harvested after 54 h. The yield and specific activity of MBL were 3.87 g/L dry weight and 508.33 U/g protein, respectively, while less than 0.2 U/mL lipase activity was detected in the culture supernatant. Prolonged incubation caused release of the bound lipase into the growth medium. The growth pattern of G. candidum, and production and properties of MBL were not affected by the scale. The stability of mycelia harboring lipase (MBL), harvested and lyophilized after 54 h, studied at 4 °C depicted a loss of 4.3% and 30% in MBL activity after 1 and 8 months, while the activity of free lipase was totally lost after 14 days of storage. The MBL from G. candidum displayed high substrate selectivity for unsaturated fatty acids containing a cis-9 double bond, even in crude form. This unique specificity of MBL could be a direct, simple and inexpensive way in the fats and oil industry for the selective hydrolysis or transesterification of cis-9 fatty acid residues in natural triacylglycerols. PMID:24959682

  20. Evaluation of the recombinant turkey pancreatic lipase phospholipase activity: A monolayer study.

    PubMed

    Bou Ali, Madiha; Jallouli, Raida; Gargouri, Youssef; Ben Ali, Yassine

    2015-11-01

    Classical lipases are well known for being enzymes hydrolysing triacylglycérols as substrate, except the porcine pancreatic lipase (PPL) which was able to hydrolyze phosphatidylcholine. Amino acid sequence alignments revealed that Valine 260 residue in PPL lid, postulated to be responsible for the PPL phospholipase activity, was present in the Turkey pancreatic lipase (TPL). The importance of Val 260 in the phospholipase activities expression has been reported. To confirm this fact, Val 260 was mutated to Alanine in the TPL lid. Mutated protein has conserved its phospholipase activity as well as the non mutated TPL. Therefore, Valine 260 residue in the lid is not involved in the pancreatic lipases phospholipase activity. The rTPL phospholipase activity was also studied using monolayer technique. This avian pancreatic lipase has shown phospholipase activity toward differently charged phospholipids. The highest phospholipase activity was found on phosphatidylglycerol (negatively charged substrate) at a surface pressure of 20mN/m, but when a zwitterionic substrate was used (DLPC), a lower activity was found at a surface pressure of 10mN/m. However, it is worth noticing that the TPL phospholipase activity is about 100 fold lower than its lipase activity. GC chromatography analyses of the released fatty acids from the hydrolysis of 1,2-POPC have shown that rTPL hydrolyses esters bonds at the sn-1 as well as the sn-2 position of phospholipids. Hence, rTPL shows a low phospholipase activity in comparison to its activity toward triacylglycerols. PMID:26277750

  1. Factors affecting the resolution of dl-menthol by immobilized lipase-catalyzed esterification in organic solvent.

    PubMed

    Wang, Dong-Lin; Nag, Ahindra; Lee, Guan-Chun; Shaw, Jei-Fu

    2002-01-16

    Among 10 lipases tested, Candida rugosa lipase exhibited the best ability to catalyze the resolution of dl-menthol in organic solvent. The lipase was immobilized on different carriers, and the experiment was carried out with different acyl donors. The high yield and optical purity of the product were achieved in cyclohexane with valeric acid as acyl donor using C. rugosa lipase immobilized on DEAE-Sephadex A-25. The conversion of dl-menthol depended on the water content of immobilized lipase and on the pH of the aqueous solution from which lipase was immobilized. The operational stability of the DEAE-Sephadex A-25 immobilized lipase in catalysis of the esterification reaction showed that >85% activity remained after 34 days of repeated use. The resolution of racemic menthol in organic medium catalyzed by immobilized C. rugosa lipase-catalyzed esterification is very convenient, and it represents a significant improvement in the use of enzyme for the preparative production of optically active menthol. This process is readily applicable to large-scale preparation. PMID:11782192

  2. Lipolysis of visceral adipocyte triglyceride by pancreatic lipases converts mild acute pancreatitis to severe pancreatitis independent of necrosis and inflammation.

    PubMed

    Patel, Krutika; Trivedi, Ram N; Durgampudi, Chandra; Noel, Pawan; Cline, Rachel A; DeLany, James P; Navina, Sarah; Singh, Vijay P

    2015-03-01

    Visceral fat necrosis has been associated with severe acute pancreatitis (SAP) for over 100 years; however, its pathogenesis and role in SAP outcomes are poorly understood. Based on recent work suggesting that pancreatic fat lipolysis plays an important role in SAP, we evaluated the role of pancreatic lipases in SAP-associated visceral fat necrosis, the inflammatory response, local injury, and outcomes of acute pancreatitis (AP). For this, cerulein pancreatitis was induced in lean and obese mice, alone or with the lipase inhibitor orlistat and parameters of AP induction (serum amylase and lipase), fat necrosis, pancreatic necrosis, and multisystem organ failure, and inflammatory response were assessed. Pancreatic lipases were measured in fat necrosis and were overexpressed in 3T3-L1 cells. We noted obesity to convert mild cerulein AP to SAP with greater cytokines, unsaturated fatty acids (UFAs), and multisystem organ failure, and 100% mortality without affecting AP induction or pancreatic necrosis. Increased pancreatic lipase amounts and activity were noted in the extensive visceral fat necrosis of dying obese mice. Lipase inhibition reduced fat necrosis, UFAs, organ failure, and mortality but not the parameters of AP induction. Pancreatic lipase expression increased lipolysis in 3T3-L1 cells. We conclude that UFAs generated via lipolysis of visceral fat by pancreatic lipases convert mild AP to SAP independent of pancreatic necrosis and the inflammatory response. PMID:25579844

  3. Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy

    PubMed Central

    Yagyu, Hiroaki; Chen, Guangping; Yokoyama, Masayoshi; Hirata, Kumiko; Augustus, Ayanna; Kako, Yuko; Seo, Toru; Hu, Yunying; Lutz, E. Peer; Merkel, Martin; Bensadoun, André; Homma, Shunichi; Goldberg, Ira J.

    2003-01-01

    Lipoprotein lipase is the principal enzyme that hydrolyzes circulating triglycerides and liberates free fatty acids that can be used as energy by cardiac muscle. Although lipoprotein lipase is expressed by and is found on the surface of cardiomyocytes, its transfer to the luminal surface of endothelial cells is thought to be required for lipoprotein lipase actions. To study whether nontransferable lipoprotein lipase has physiological actions, we placed an α-myosin heavy-chain promoter upstream of a human lipoprotein lipase minigene construct with a glycosylphosphatidylinositol anchoring sequence on the carboxyl terminal region. Hearts of transgenic mice expressed the altered lipoprotein lipase, and the protein localized to the surface of cardiomyocytes. Hearts, but not postheparin plasma, of these mice contained human lipoprotein lipase activity. More lipid accumulated in hearts expressing the transgene; the myocytes were enlarged and exhibited abnormal architecture. Hearts of transgenic mice were dilated, and left ventricular systolic function was impaired. Thus, lipoprotein lipase expressed on the surface of cardiomyocytes can increase lipid uptake and produce cardiomyopathy. PMID:12569168

  4. Lipase-catalyzed acidolysis of palm mid fraction oil with palmitic and stearic Fatty Acid mixture for production of cocoa butter equivalent.

    PubMed

    Mohamed, Ibrahim O

    2013-10-01

    Cocoa butter equivalent (CBE) was prepared by enzymatic acidolysis reaction of substrate consisting of refined palm mid fraction oil and palmitic-stearic fatty acid mixture. The reactions were performed in a batch reactor at a temperature of 60 °C in an orbital shaker operated at 160 RPM. Different mass ratios of substrates were explored, and the composition of the five major triacylglycerols (TAGs) of the structured lipids was identified and quantified using cocoa butter certified reference material IRMM-801. The reaction resulted in production of cocoa butter equivalent with the TAGs' composition (1,3-dipalmitoyl-2-oleoyl-glycerol 30.7%, 1-palmitoyl-2-oleoyl-3-stearoyl-rac-glycerol 40.1%, 1-palmitoy-2,3- dioleoyl glycerol 9.0%, 1,3-distearoyl-2-oleoyl-glycerol 14.5 %, and 1-stearoyl-2,3-dioleoyl glycerol 5.7%) and with onset melting temperature of 31.6 °C and peak temperature of 40.4 °C which are close to those of cocoa butter. The proposed kinetics model for the acidolysis reaction presented the experimental data very well. The results of this research showed that palm mid fraction oil TAGs could be restructured to produce value added product such as CBE.

  5. Kinetic modeling of lipase-catalyzed esterification reaction between oleic acid and trimethylolpropane: a simplified model for multi-substrate multi-product ping-pong mechanisms.

    PubMed

    Bornadel, Amin; Akerman, Cecilia Orellana; Adlercreutz, Patrick; Hatti-Kaul, Rajni; Borg, Niklas

    2013-01-01

    Kinetic models are among the tools that can be used for optimization of biocatalytic reactions as well as for facilitating process design and upscaling in order to improve productivity and economy of these processes. Mechanism pathways for multi-substrate multi-product enzyme-catalyzed reactions can become very complex and lead to kinetic models comprising several tens of terms. Hence the models comprise too many parameters, which are in general highly correlated and their estimations are often prone to huge errors. In this study, Novozym(®) 435 catalyzed esterification reaction between oleic acid (OA) and trimethylolpropane (TMP) with continuous removal of side-product (water) was carried out as an example for reactions that follow multi-substrate multi-product ping-pong mechanisms. A kinetic model was developed based on a simplified ping-pong mechanism proposed for the reaction. The model considered both enzymatic and spontaneous reactions involved and also the effect of product removal during the reaction. The kinetic model parameters were estimated using nonlinear curve fitting through unconstrained optimization methodology and the model was verified by using empirical data from different experiments and showed good predictability of the reaction under different conditions. This approach can be applied to similar biocatalytic processes to facilitate their optimization and design.

  6. Contribution of Adipose Triglyceride Lipase and Hormone-sensitive Lipase to Lipolysis in hMADS Adipocytes*

    PubMed Central

    Bezaire, Véronic; Mairal, Aline; Ribet, Carole; Lefort, Corinne; Girousse, Amandine; Jocken, Johan; Laurencikiene, Jurga; Anesia, Rodica; Rodriguez, Anne-Marie; Ryden, Mikael; Stenson, Britta M.; Dani, Christian; Ailhaud, Gérard; Arner, Peter; Langin, Dominique

    2009-01-01

    Lipolysis is the catabolic pathway by which triglycerides are hydrolyzed into fatty acids. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) have the capacity to hydrolyze in vitro the first ester bond of triglycerides, but their respective contributions to whole cell lipolysis in human adipocytes is unclear. Here, we have investigated the roles of HSL, ATGL, and its coactivator CGI-58 in basal and forskolin-stimulated lipolysis in a human white adipocyte model, the hMADS cells. The hMADS adipocytes express the various components of fatty acid metabolism and show lipolytic capacity similar to primary cultured adipocytes. We show that lipolysis and fatty acid esterification are tightly coupled except in conditions of stimulated lipolysis. Immunocytochemistry experiments revealed that acute forskolin treatment promotes HSL translocation from the cytosol to small lipid droplets and redistribution of ATGL from the cytosol and large lipid droplets to small lipid droplets, resulting in enriched colocalization of the two lipases. HSL or ATGL overexpression resulted in increased triglyceride-specific hydrolase capacity, but only ATGL overexpression increased whole cell lipolysis. HSL silencing had no effect on basal lipolysis and only partially reduced forskolin-stimulated lipolysis. Conversely, silencing of ATGL or CGI-58 significantly reduced basal lipolysis and essentially abolished forskolin-stimulated lipolysis. Altogether, these results suggest that ATGL/CGI-58 acts independently of HSL and precedes its action in the sequential hydrolysis of triglycerides in human hMADS adipocytes. PMID:19433586

  7. Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes.

    PubMed

    Bezaire, Véronic; Mairal, Aline; Ribet, Carole; Lefort, Corinne; Girousse, Amandine; Jocken, Johan; Laurencikiene, Jurga; Anesia, Rodica; Rodriguez, Anne-Marie; Ryden, Mikael; Stenson, Britta M; Dani, Christian; Ailhaud, Gérard; Arner, Peter; Langin, Dominique

    2009-07-01

    Lipolysis is the catabolic pathway by which triglycerides are hydrolyzed into fatty acids. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) have the capacity to hydrolyze in vitro the first ester bond of triglycerides, but their respective contributions to whole cell lipolysis in human adipocytes is unclear. Here, we have investigated the roles of HSL, ATGL, and its coactivator CGI-58 in basal and forskolin-stimulated lipolysis in a human white adipocyte model, the hMADS cells. The hMADS adipocytes express the various components of fatty acid metabolism and show lipolytic capacity similar to primary cultured adipocytes. We show that lipolysis and fatty acid esterification are tightly coupled except in conditions of stimulated lipolysis. Immunocytochemistry experiments revealed that acute forskolin treatment promotes HSL translocation from the cytosol to small lipid droplets and redistribution of ATGL from the cytosol and large lipid droplets to small lipid droplets, resulting in enriched colocalization of the two lipases. HSL or ATGL overexpression resulted in increased triglyceride-specific hydrolase capacity, but only ATGL overexpression increased whole cell lipolysis. HSL silencing had no effect on basal lipolysis and only partially reduced forskolin-stimulated lipolysis. Conversely, silencing of ATGL or CGI-58 significantly reduced basal lipolysis and essentially abolished forskolin-stimulated lipolysis. Altogether, these results suggest that ATGL/CGI-58 acts independently of HSL and precedes its action in the sequential hydrolysis of triglycerides in human hMADS adipocytes. PMID:19433586

  8. Lipase-catalyzed hydrolysis of TG containing acetylenic FA.

    PubMed

    Jie, Marcel S F Lie Ken; Fua, Xun; Lau, Maureen M L; Chye, M L

    2002-10-01

    Hydrolysis of symmetrical acetylenic TG of type AAA [viz., glycerol tri-(4-decynoate), glycerol tri-(6-octadecynoate), glycerol tri-(9-octadecynoate), glycerol tri-(10-undecynoate), and glycerol tri-(13-docosynoate)] in the presence of eight microbial lipases was studied. Novozyme 435 (Candida antarctica), an efficient enzyme for esterification, showed a significant resistance in the hydrolysis of glycerol tri-(9-octadecynoate) and glycerol tri-(13-docosynoate). Hydrolysis of acetylenic TG with Lipolase 100T (Humicola lanuginosa) was rapidly accomplished. Lipase PS-D (Pseudomonas cepacia) showed a fair resistance toward the hydrolysis of glycerol tri-(6-octadecynoate) only, which reflected its ability to recognize the delta6 positional isomer of 18:1. Lipase CCL (Candida cylindracea, syn. C. rugosa) and AY-30 (C. rugosa) were able to catalyze the release of 10-undecynoic acid and 9-octadecynoic acid from the corresponding TG, but less readily the 13-docosynoic acid in the case of glycerol tri-(13-docosynoate). The two lipases CCL and AY-30 were able to distinguish the small difference in structure of fatty acyl moieties in the TG substrate. To confirm this trend, three regioisomers of mixed acetylenic TG of type ABC (containing one each of delta6, delta9, and delta13 acetylenic FA in various positions) were prepared and hydrolyzed with CCL and AY-40. The results reconfirmed the observation that AY-30 and CCL were able to distinguish the slight differences in the molecular structure (position of the acetylenic bond and chain length) of the acyl groups in the TG during the hydrolysis of such TG substrates.

  9. Lipase in the Lipid Bodies of Corn Scutella during Seedling Growth 1

    PubMed Central

    Lin, Yon-Hui; Wimer, Larry T.; Huang, Anthony H. C.

    1983-01-01

    In the scutella of corn (Zea mays), lipase activity is absent in ungerminated seeds and increases during seedling growth. At the peak stage of lipolysis, about 50% of the lipase activity is recovered in the lipid body fraction after flotation centrifugation. The lipase is tightly bound to the lipid bodies, and resists solubilization by repeated washing with buffers or NaCl solutions. Isolated lipid bodies undergo autolysis of internal triacylglycerols, resulting in the release of fatty acids. After the triacylglycerols in isolated lipid bodies have been extracted with diethyl ether, the lipase is recovered in the membrane fraction. The lipase has an optimal activity at pH 7.5 in the autolysis of lipid bodies, or on trilinolein or N-methylindoxylmyristate. Of the various acylglycerols examined, the enzyme is active only on acylglycerols of linoleic and oleic acids which are the major fatty acid constituents of corn oil. The activity is not greatly affected by NaCl, CaCl2, or pretreatment of the enzyme with p-chloromercuribenzoate or mersalyl, and detergents abolish the activity. The enzyme hydrolyzes trilinolein completely to fatty acids; during the course of reaction, there is little accumulation of di- or mono-linolein. PMID:16663239

  10. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ed. (1981), p. 110, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Animal lipase. 184.1415 Section 184.1415 Food and... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an...

  11. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ed. (1981), p. 110, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Animal lipase. 184.1415 Section 184.1415 Food and... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an...

  12. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ed. (1981), p. 110, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Animal lipase. 184.1415 Section 184.1415 Food and... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an...

  13. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... 110, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Animal lipase. 184.1415 Section 184.1415 Food and....1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme preparation obtained...

  14. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ed. (1981), p. 110, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Animal lipase. 184.1415 Section 184.1415 Food and... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an...

  15. Lipase turbidimetric assay and acute pancreatitis.

    PubMed

    Orda, R; Orda, S; Baron, J; Wiznitzer, T

    1984-04-01

    The simplified turbidimetric assay for lipase activity was used for the differential diagnosis of acute pancreatitis. Serum lipase levels were found to be increased in a group of 17 patients in whom acute pancreatitis was clinically suspected and confirmed by a high ACCR and decreased uptake of the radionuclide in the pancreas scan. The lipase levels were within normal limits in a control group of 14 patients suffering from diseases other than acute pancreatitis. The turbidimetric test was helpful for rapid quantitative determination of serum lipase and thus for the early and accurate diagnosis of acute pancreatitis. PMID:6200277

  16. Cloning, expression and characterization of a lipase gene from the Candida antarctica ZJB09193 and its application in biosynthesis of vitamin A esters.

    PubMed

    Liu, Zhi-Qiang; Zheng, Xiao-Bo; Zhang, Su-Ping; Zheng, Yu-Guo

    2012-09-01

    Lipase is one of the most important industrial enzymes, which has been widely used in the preparation of food additives, cosmetics and pharmaceuticals industries. In order to obtain a large amount of lipase, the lipase gene from Candida antarctica ZJB09193 was cloned, and expressed in Pichia pastoris with the vector pPICZαA. Under the optimal conditions, the yield of recombinant lipase in the culture broth reached 3.0 g/L. After purification, the properties of recombinant lipase were studied: the optimum pH and temperature were pH 8.0 and 52°C, Ca(2+) activated the activity of lipase, and the apparent K(m) and V(max) values for p-nitrophenyl acetate were 0.34 mM and 7.36 μmol min(-1) mg(-1), respectively. Furthermore, the recombinant lipase was immobilized on pretreated textile for biosynthesis of vitamin A esters. In a system of n-hexane, 0.3 g immobilized recombinant lipase was used in the presence of 0.06 g vitamin A acetate and 0.55 mmol fatty acid (nine different fatty acids were tested). The yield of all vitamin A esters exceeded 78% in 7h at 30°C except using lactic acid and hexanoic acid as substrates. After optimization, the yield of vitamin A palmitate reached 87%. This study has the potential to be developed into industrial application. PMID:22281522

  17. Lipase assay in soils by copper soap colorimetry.

    PubMed

    Saisuburamaniyan, N; Krithika, L; Dileena, K P; Sivasubramanian, S; Puvanakrishnan, R

    2004-07-01

    A simple and sensitive method for the estimation of lipase activity in soils is reported. In this method, 50mg of soil is incubated with emulsified substrate, the fatty acids liberated are treated with cupric acetate-pyridine reagent, and the color developed is measured at 715 nm. Use of olive oil in this protocol leads to an estimation of true lipase activity in soils. The problem of released fatty acids getting adsorbed onto the soil colloids is obviated by the use of isooctane, and separate standards for different soils need not be developed. Among the various surfactants used for emulsification, polyvinyl alcohol is found to be the most effective. Incubation time of 20 min, soil concentration of 50 mg, pH 6.5, and incubation temperature of 37 degrees C were found to be the most suitable conditions for this assay. During the process of enrichment of the soils with oil, interference by the added oil is avoided by the maintenance of a suitable control, wherein 50 mg of soil is added after stopping the reaction. This assay is sensitive and it could be adopted to screen for lipase producers from enriched soils and oil-contaminated soils before resorting to isolation of the microbes by classical screening methods.

  18. Covalent immobilization of Pseudomonas cepacia lipase on semiconducting materials

    NASA Astrophysics Data System (ADS)

    Fernandez, Renny Edwin; Bhattacharya, Enakshi; Chadha, Anju

    2008-05-01

    Lipase from Pseudomonas cepacia was covalently immobilized on crystalline silicon, porous silicon and silicon nitride surfaces. The various stages of immobilization were characterized using FTIR (Fourier transform infrared) spectroscopy. The surface topography of the enzyme immobilized surfaces was investigated using scanning electron microscopy (SEM). The quantity of the immobilized active enzyme was estimated by the para-nitrophenyl palmitate (pNPP) assay. The immobilized lipase was used for triglyceride hydrolysis and the acid produced was detected by a pH sensitive silicon nitride surface as a shift in the C- V (capacitance-voltage) characteristics of an electrolyte-insulator-semiconductor capacitor (EISCAP) thus validating the immobilization method for use as a biosensor.

  19. Gelatin blends with alginate: gels for lipase immobilization and purification.

    PubMed

    Fadnavis, Nitin W; Sheelu, Gurrala; Kumar, Bezavada Mani; Bhalerao, Mahendra U; Deshpande, Ashlesha A

    2003-01-01

    Blends of natural polysaccharide sodium alginate (5%) with gelatin (3%) cross-linked with glutaraldehyde provide beads with excellent compressive strength (8 x 10(4) Pa) and regular structure on treatment with calcium chloride. Lipases from porcine pancreas, Pseudomonas cepacia, and Candida rugosa were immobilized in such a blend with excellent efficiency. The immobilized enzymes were stable and were reused several times without significant loss of enzyme activity both in aqueous and reverse micellar media. The beads were functionalized with succinic anhydride to obtain beads with extra carboxylic acid groups. These functionalized beads were then successfully used for 7.4-fold purification of crude porcine pancreatic lipase in a simple operation of protein binding at pH 5 and release at pH 8.5.

  20. Application of a statistically enhanced, novel, organic solvent stable lipase from Bacillus safensis DVL-43.

    PubMed

    Kumar, Davender; Parshad, Rajinder; Gupta, Vijay Kumar

    2014-05-01

    This paper presents the molecular identification of a newly isolated bacterial strain producing a novel and organic solvent stable lipase, statistical optimization of fermentation medium, and its application in the synthesis of ethyl laurate. On the basis of nucleotide homology and phylogenetic analysis of 16S rDNA sequence, the strain was identified as Bacillus safensis DVL-43 (Gen-bank accession number KC156603). Optimization of fermentation medium using Plackett-Burman design and response surface methodology led to 11.4-fold increase in lipase production. The lipase from B. safensis DVL-43 exhibited excellent stability in various organic solvents. The enzyme retained 100% activity after 24h incubation in xylene, DMSO and toluene, each solvent being used at a concentration of 25% (v/v). The use of partially purified DVL-43 lipase as catalyst in the synthesis of ethyl laurate, an esterification product of lauric acid and ethanol, resulted in 80% esterification in 12h under optimized conditions. The formation of ethyl laurate was confirmed using TLC and (1)H NMR. Organic solvent stable lipases exhibiting potential application in enzymatic esterification are in great demand in flavor, fine chemicals and pharma industries. We could not find any report on lipase production from B. safensis strain and its application in esterification.

  1. Preparation Fe3O4@chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus.

    PubMed

    Wang, Xiang-Yu; Jiang, Xiao-Ping; Li, Yue; Zeng, Sha; Zhang, Ye-Wang

    2015-04-01

    Magnetic Fe3O4@chitosan nanoparticles were prepared by a simple in situ co-precipitation method and characterized by transmission electron microscope (TEM) and Fourier transform infrared spectroscopy (FTIR). The prepared Fe3O4@chitosan nanoparticles were used for covalent immobilization of lipase from Thermomyces lanuginosus by chemical conjugation after electrostatic entrapment (CCEE). The optimal immobilization conditions were obtained as follows: enzyme/support 19.8 mg/g, pH 5.0, time 4h and temperature 30 °C. Under these conditions, a high immobilization efficiency of 75% and a protein loading of 16.8 mg/g-support were obtained. Broad pH tolerance and high thermostability could be achieved by immobilization. The immobilized lipase retained 70% initial activity after ten cycles. Kinetic parameters Vmax and Km of free and immobilized lipase were determined as 5.72 mM/min, 2.26 mM/min and 21.25 mM, 28.73 mM, respectively. Ascorbyl palmitate synthesis with immobilized lipase was carried out in tert-butanol at 50 °C, and the conversion of ascorbic acid was obtained higher than 50%. These results showed that the immobilization of lipase onto magnetic chitosan nanoparticles by the method of CCEE is an efficient and simple way for preparation of stable lipase. PMID:25603148

  2. Effect of lipase addition on hydrolysis and biomethane production of Chinese food waste.

    PubMed

    Meng, Ying; Li, Sang; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Li, Xiujin

    2015-03-01

    The lipase obtained from Aspergillums niger was applied to promote the hydrolysis of food waste for achieving high biomethane production. Two strategies of lipase additions were investigated. One (Group A) was to pre-treat food waste to pre-decompose lipid to fatty acids before anaerobic digestion, and another one (Group B) was to add lipase to anaerobic digester directly to degrade lipid inside digester. The lipase was used at the concentrations of 0.1%, 0.5%, and 1.0% (w/v). The results showed that Group A achieved higher biomethane production, TS and VS reductions than those of Group B. At 0.5% lipase concentration, Group A obtained experimental biomethane yield of 500.1 mL/g VS(added), 4.97-26.50% higher than that of Group B. The maximum Bd of 73.8% was also achieved in Group A. Therefore, lipase pre-treatment strategy is recommended. This might provide one of alternatives for efficient biomethane production from food waste and mitigating environmental impact associated.

  3. Model studies on the formation of monochloropropanediols in the presence of lipase.

    PubMed

    Robert, Marie-Claude; Oberson, Jean-Marie; Stadler, Richard H

    2004-08-11

    The formation of chloropropanols was investigated using model systems comprised of lipase, vegetable oil or fat, water, and sodium chloride. The results showed that measurable levels of the foodborne carcinogen 3-chloro-1,2-propanediol (3-MCPD) are formed in the presence of commercially available lipases of mammalian, vegetable, and fungal origins, incubated at temperatures of 40 degrees C. The highest yield of 3-MCPD was obtained in reaction mixtures containing lipase from Rhizopus oryzae, and all the lipases studied exhibited a high hydrolytic activity toward triglycerides from palm and peanut oil. In contrast, hydrolysis over time and the yield of 3-MCPD in olive and sunflower oils were significantly lower (up to 10-fold), possibly linked to the relatively lower amount (<18%) of saturated fatty acids in these oils. We provide here for the first time evidence that lipases are able to induce the formation of chloropropanols under model system conditions. However, the key intermediates and precise mechanistic aspects governing the formation of 3-MCPD in the presence of lipase still need to be elucidated.

  4. Application of a statistically enhanced, novel, organic solvent stable lipase from Bacillus safensis DVL-43.

    PubMed

    Kumar, Davender; Parshad, Rajinder; Gupta, Vijay Kumar

    2014-05-01

    This paper presents the molecular identification of a newly isolated bacterial strain producing a novel and organic solvent stable lipase, statistical optimization of fermentation medium, and its application in the synthesis of ethyl laurate. On the basis of nucleotide homology and phylogenetic analysis of 16S rDNA sequence, the strain was identified as Bacillus safensis DVL-43 (Gen-bank accession number KC156603). Optimization of fermentation medium using Plackett-Burman design and response surface methodology led to 11.4-fold increase in lipase production. The lipase from B. safensis DVL-43 exhibited excellent stability in various organic solvents. The enzyme retained 100% activity after 24h incubation in xylene, DMSO and toluene, each solvent being used at a concentration of 25% (v/v). The use of partially purified DVL-43 lipase as catalyst in the synthesis of ethyl laurate, an esterification product of lauric acid and ethanol, resulted in 80% esterification in 12h under optimized conditions. The formation of ethyl laurate was confirmed using TLC and (1)H NMR. Organic solvent stable lipases exhibiting potential application in enzymatic esterification are in great demand in flavor, fine chemicals and pharma industries. We could not find any report on lipase production from B. safensis strain and its application in esterification. PMID:24534493

  5. Immobilization of Yarrowia lipolytica lipase Ylip2 for the biocatalytic synthesis of phytosterol ester in a water activity controlled reactor.

    PubMed

    Cui, Caixia; Guan, Nan; Xing, Chen; Chen, Biqiang; Tan, Tianwei

    2016-10-01

    In this work, phytosterol ester was synthesized using Yarrowia lipolytica lipase Ylip2 that had been immobilized on inorganic support in a solvent-free system and reacted in a computer-aided water activity controlled bioreactor. The immobilization of Ylip2 on celite led to a remarkable increase in the phytosterol conversion compared to that of free lipase. An investigation of the reaction conditions were oleic acid as the fatty acid variety, 10,000U/g substrate, and a temperature of 50°C for phytosterol ester synthesis. Controlling of the water activity at a set point was accomplished by the introduction of dry air through the reaction medium at a digital feedback controlled flow rate. For the esterification of phytosterol ester, a low (15%) water activity resulted in a considerable improvement in phytosterol conversion (91.1%) as well as a decreased reaction time (78h). Furthermore, Ylip2 lipase immobilized on celite retained 90% esterification activity for the synthesis of phytosterol oleate after reused 8 cycles, while free lipase was only viable for 5 batches with 90% esterification activity remained. Finally, the phytosterol oleate space time yield increased from 1.65g/L/h with free lipase to 2.53g/L/h with immobilized lipase. These results illustrate that the immobilized Yarrowia lipolytica lipase Ylip2 in a water activity controlled reactor has great potential for the application in phytosterol esters synthesis. PMID:27416561

  6. Gene cloning and catalytic characterization of cold-adapted lipase of Photobacterium sp. MA1-3 isolated from blood clam.

    PubMed

    Kim, Young Ok; Khosasih, Vivia; Nam, Bo-Hye; Lee, Sang-Jun; Suwanto, Antonius; Kim, Hyung Kwoun

    2012-12-01

    A lipase-producing Photobacterium strain (MA1-3) was isolated from the intestine of a blood clam caught at Namhae, Korea. The lipase gene was cloned by shotgun cloning and encoded 340 amino acids with a molecular mass of 38,015 Da. It had a very low sequence identity with other bacterial lipases, with the exception of that of Photobacterium lipolyticum M37 (83.2%). The MA1-3 lipase was produced in soluble form when Escherichia coli cells harboring the gene were cultured at 18°C. Its optimum temperature and pH were 45°C and pH 8.5, respectively. Its activation energy was calculated to be 2.69 kcal/mol, suggesting it to be a cold-adapted lipase. Its optimum temperature, temperature stability, and substrate specificity were quite different from those of M37 lipase, despite the considerable sequence similarities. Meanwhile, MA1-3 lipase performed a transesterification reaction using olive oil and various alcohols including methanol, ethanol, 1-propanol, and 1-butanol. In the presence of t-butanol as a co-solvent, this lipase produced biodiesel using methanol and plant or waste oils. The highest biodiesel conversion yield (73%) was achieved using waste soybean oil and methanol at a molar ratio of 1:5 after 12 h using 5 units of lipase. PMID:22841866

  7. [Gene cloning, expression and characterization of two cold-adapted lipases from Penicillium sp. XMZ-9].

    PubMed

    Zheng, Xiaomei; Wu, Ningfeng; Fan, Yunliu

    2012-04-01

    Cold-adapted lipases are attractive biocatalysts that can be used at low temperatures as additives in food products, laundry detergents, and the organic synthesis of chiral intermediates. Cold-adapted lipases are normally found in microorganisms that survive at low temperatures. A fungi strain XMZ-9 exhibiting lipolytic activity was isolated from the soil of glaciers in Xinjiang by the screening plates using 1% tributyrin as the substrate and Victoria blue as an indicator. Based on morphological characteristics and phylogenetic comparisons of its 18S rDNA, the strain was identified as Penicillium sp. The partial nucleotide sequences of these two lipase related genes, LipA and LipB, were obtained by touchdown PCR using the degenerate primers designed according to the conservative domains of lipase. The full-length sequences of two genes were obtained by genome walking. The gene lipA contained 1 014 nucleotides, without any intron, comprising one open reading frame encoding a polypeptide of 337 amino acids. The gene lipB comprised two introns (61 bp and 49 bp) and a coding region sequence of 1 122 bp encoding a polypeptide of 373 amino acids, cDNA sequences of both lipA and lipB were cloned and expressed in Escherichia coli BL21 (DE3). The recombinant LipA was mostly expressed as inclusion bodies, and recovered lipase activity at low temperature after in vitro refolded by dilution. Differently, the recombinant LipB was expressed in the soluble form and then purified by Ni-NTA affinity chromatography Column. It showed high lipase activity at low temperature. These results indicated that they were cold-adapted enzymes. This study paves the way for the further research of these cold-adapted lipases for application in the industry.

  8. Biochemical characterization of Yarrowia lipolytica LIP8, a secreted lipase with a cleavable C-terminal region.

    PubMed

    Kamoun, Jannet; Schué, Mathieu; Messaoud, Wala; Baignol, Justine; Point, Vanessa; Mateos-Diaz, Eduardo; Mansuelle, Pascal; Gargouri, Youssef; Parsiegla, Goetz; Cavalier, Jean-François; Carrière, Frédéric; Aloulou, Ahmed

    2015-02-01

    Yarrowia lipolytica is a lipolytic yeast possessing 16 paralog genes coding for lipases. Little information on these lipases has been obtained and only the major secreted lipase, namely YLLIP2, had been biochemically and structurally characterized. Another secreted lipase, YLLIP8, was isolated from Y. lipolytica culture medium and compared with the recombinant enzyme produced in Pichia pastoris. N-terminal sequencing showed that YLLIP8 is produced in its active form after the cleavage of a signal peptide. Mass spectrometry analysis revealed that YLLIP8 recovered from culture medium lacks a C-terminal part of 33 amino acids which are present in the coding sequence. A 3D model of YLLIP8 built from the X-ray structure of the homologous YLLIP2 lipase shows that these truncated amino acids in YLLIP8 belong to an additional C-terminal region predicted to be mainly helical. Western blot analysis shows that YLLIP8 C-tail is rapidly cleaved upon enzyme secretion since both cell-bound and culture supernatant lipases lack this extension. Mature recombinant YLLIP8 displays a true lipase activity on short-, medium- and long-chain triacylglycerols (TAG), with an optimum activity at alkaline pH on medium chain TAG. It has no apparent regioselectivity in TAG hydrolysis, thus generating glycerol and FFAs as final lipolysis products. YLLIP8 properties are distinct from those of the 1,3-regioselective YLLIP2, acting optimally at acidic pH. These lipases are tailored for complementary roles in fatty acid uptake by Y. lipolytica. PMID:25449652

  9. Biochemical characterization of Yarrowia lipolytica LIP8, a secreted lipase with a cleavable C-terminal region.

    PubMed

    Kamoun, Jannet; Schué, Mathieu; Messaoud, Wala; Baignol, Justine; Point, Vanessa; Mateos-Diaz, Eduardo; Mansuelle, Pascal; Gargouri, Youssef; Parsiegla, Goetz; Cavalier, Jean-François; Carrière, Frédéric; Aloulou, Ahmed

    2015-02-01

    Yarrowia lipolytica is a lipolytic yeast possessing 16 paralog genes coding for lipases. Little information on these lipases has been obtained and only the major secreted lipase, namely YLLIP2, had been biochemically and structurally characterized. Another secreted lipase, YLLIP8, was isolated from Y. lipolytica culture medium and compared with the recombinant enzyme produced in Pichia pastoris. N-terminal sequencing showed that YLLIP8 is produced in its active form after the cleavage of a signal peptide. Mass spectrometry analysis revealed that YLLIP8 recovered from culture medium lacks a C-terminal part of 33 amino acids which are present in the coding sequence. A 3D model of YLLIP8 built from the X-ray structure of the homologous YLLIP2 lipase shows that these truncated amino acids in YLLIP8 belong to an additional C-terminal region predicted to be mainly helical. Western blot analysis shows that YLLIP8 C-tail is rapidly cleaved upon enzyme secretion since both cell-bound and culture supernatant lipases lack this extension. Mature recombinant YLLIP8 displays a true lipase activity on short-, medium- and long-chain triacylglycerols (TAG), with an optimum activity at alkaline pH on medium chain TAG. It has no apparent regioselectivity in TAG hydrolysis, thus generating glycerol and FFAs as final lipolysis products. YLLIP8 properties are distinct from those of the 1,3-regioselective YLLIP2, acting optimally at acidic pH. These lipases are tailored for complementary roles in fatty acid uptake by Y. lipolytica.

  10. Preliminary studies on immobilization of lipase using chicken eggshell

    NASA Astrophysics Data System (ADS)

    Salleh, S.; Serri, N. A.; Hena, S.; Tajarudin, H. A.

    2016-06-01

    A few advantages of enzyme immobilization are reusability of expensive enzyme, improvement of stability and activity compared to crude enzyme. Various organic components can be used as carrier for enzyme immobilization such as chicken eggshell. It can be used as a carrier for immobilization as its mineral component mostly contains of calcium carbonate. In the present study, Tributyrin method was used to test enzyme activity of Rhizomucour Miehei, Candida Antarctica and Candida Rugosa. Rhizomucour Miehei shows the highest enzyme activity (360.8 mol/min/mL lipase) and was used in further experiment. Experiment was continued to study incubation time for lipase immobilization on eggshell (1-4 hours) and reaction time of esterification of sugar ester (0-72 hours). Two hours incubation time for lipase immobilization was observed and gives the highest yield of sugar ester (78.13%). Fructose and stearic acid as substrate was used for the production of sugar ester. The highest percentage of sugar ester production was shown at 36 hours of reaction time.

  11. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants.

    PubMed

    Volokita, Micha; Rosilio-Brami, Tamar; Rivkin, Natalia; Zik, Moriyah

    2011-01-01

    The GDSL-lipase gene family is a very large subfamily within the supergene family of SGNH esterases, defined by the distinct GDSL amino acid motif and several highly conserved domains. Plants retain a large number of GDSL-lipases indicating that they have acquired important functions. Yet, in planta functions have been demonstrated for only a few GDSL-lipases from diverse species. Considering that orthologs often retain equivalent functions, we determined the phylogenetic relationships between GDSL-lipases from genome-sequenced species representing bryophytes, gymnosperms, monocots, and eudicots. An unrooted phylogenetic tree was constructed from the amino acid sequences of 604 GDSL-lipases from seven species. The topology of the tree depicts two major and one minor subfamily. This division is also supported by the unique gene structure of each subfamily. Because GDSL-lipase genes of all species are present in each of the three subfamilies, we conclude that the last common ancestor of the land plants already possessed at least one ancestral GDSL-lipase gene of each subfamily. Combined gene structure and synteny analyses revealed events of segmental duplications, gene transposition, and gene degeneration in the evolution of the GDSL-lipase gene family. Furthermore, these analyses showed that independent events of intron gain and loss also contributed to the extant repertoire of the GDSL-lipase gene family. Our findings suggest that underlying many of the intron losses was a spliceosomal-mediated mechanism followed by gene conversion. Sorting the phylogenetic relationships among the members of the GDSL-lipase gene family, as depicted by the tree and supported by synteny analyses, provides a framework for extrapolation of demonstrated functional data to GDSL-lipases, whose function is yet unknown. Furthermore, function(s) associated with specific lineage(s)-enriched branches may reveal correlations between acquired and/or lost functions and speciation.

  12. A stable lipase from Candida lipolytica: cultivation conditions and crude enzyme characteristics.

    PubMed

    Pereira-Meirelles, F V; Rocha-Leão, M H; Sant Anna, G L

    1997-01-01

    Although lipases have been intensively studied, some aspects of enzyme production like substrate uptake, catabolite repression, and enzyme stability under long storage periods are seldom discussed in the literature. This work deals with the production of lipase by a new selected strain of Candida lipolytica. Concerning nutrition, it was observed that inorganic nitrogen sources were not as effective as peptone, and that oleic acid or triacylglycerides (TAG) were essential carbon sources. Repression by glucose and stimulation by oleic acid and long chain TAG (triolein and olive oil) were observed. Extracellular lipase activity was only observed at high levels at late stationary phase, whereas intracellular lipase levels were constant and almost undetectable during the cultivation period, suggesting that the produced enzyme was attached to the cell wall, mainly at the beginning of cultivation. The crude lipase produced by this yeast strain shows the following optima conditions: pH 8.0-10.0, temperature of 55 degrees C. Moreover, this preparation maintains its full activity for at least 370 d at 5 degrees C.

  13. Biodiesel production using lipase immobilized on epoxychloropropane-modified Fe3O4 sub-microspheres.

    PubMed

    Zhang, Qian; Zheng, Zhong; Liu, Changxia; Liu, Chunqiao; Tan, Tianwei

    2016-04-01

    Superparamagnetic Fe3O4 sub-microspheres with diameters of approximately 200 nm were prepared via a solvothermal method, and then modified with epoxychloropropane. Lipase was immobilized on the modified sub-microspheres. The immobilized lipase was used in the production of biodiesel fatty acid methyl esters (FAMEs) from acidified waste cooking oil (AWCO). The effects of the reaction conditions on the biodiesel yield were investigated using a combination of response surface methodology and three-level/three-factor Box-Behnken design (BBD). The optimum synthetic conditions, which were identified using Ridge max analysis, were as follows: immobilized lipase:AWCO mass ratio 0.02:1, fatty acid:methanol molar ratio 1:1.10, hexane:AWCO ratio 1.33:1 (mL/g), and temperature 40 °C. A 97.11% yield was obtained under these conditions. The BBD and experimental data showed that the immobilized lipase could generate biodiesel over a wide temperature range, from 0 to 40 °C. Consistently high FAME yields, in excess of 80%, were obtained when the immobilized lipase was reused in six replicate trials at 10 and 20 °C. PMID:26803008

  14. A broad pH range indicator-based spectrophotometric assay for true lipases using tributyrin and tricaprylin.

    PubMed

    Camacho-Ruiz, María de Los Angeles; Mateos-Díaz, Juan Carlos; Carrière, Frédéric; Rodriguez, Jorge A

    2015-05-01

    A continuous assay is proposed for the screening of acidic, neutral, or alkaline lipases using microtiter plates, emulsified short- and medium-chain TGs, and a pH indicator. The lipase activity measurement is based on the decrease of the pH indicator optical density due to protonation which is caused by the release of FFAs during the hydrolysis of TGs and thus acidification. Purified lipases with distinct pH optima and an esterase were used to validate the method. The rate of lipolysis was found to be linear with time and proportional to the amount of enzyme added in each case. Specific activities measured with this microplate assay method were lower than those obtained by the pH-stat technique. Nevertheless, the pH-dependent profiles of enzymatic activity were similar with both assays. In addition, the substrate preference of each enzyme tested was not modified and this allowed discriminating lipase and esterase activities using tributyrin (low water solubility) and tricaprylin (not water soluble) as substrates. This continuous lipase assay is compatible with a high sample throughput and can be applied for the screening of lipases and lipase inhibitors from biological samples.

  15. A broad pH range indicator-based spectrophotometric assay for true lipases using tributyrin and tricaprylin.

    PubMed

    Camacho-Ruiz, María de Los Angeles; Mateos-Díaz, Juan Carlos; Carrière, Frédéric; Rodriguez, Jorge A

    2015-05-01

    A continuous assay is proposed for the screening of acidic, neutral, or alkaline lipases using microtiter plates, emulsified short- and medium-chain TGs, and a pH indicator. The lipase activity measurement is based on the decrease of the pH indicator optical density due to protonation which is caused by the release of FFAs during the hydrolysis of TGs and thus acidification. Purified lipases with distinct pH optima and an esterase were used to validate the method. The rate of lipolysis was found to be linear with time and proportional to the amount of enzyme added in each case. Specific activities measured with this microplate assay method were lower than those obtained by the pH-stat technique. Nevertheless, the pH-dependent profiles of enzymatic activity were similar with both assays. In addition, the substrate preference of each enzyme tested was not modified and this allowed discriminating lipase and esterase activities using tributyrin (low water solubility) and tricaprylin (not water soluble) as substrates. This continuous lipase assay is compatible with a high sample throughput and can be applied for the screening of lipases and lipase inhibitors from biological samples. PMID:25748441

  16. A broad pH range indicator-based spectrophotometric assay for true lipases using tributyrin and tricaprylin[S

    PubMed Central

    Camacho-Ruiz, María de los Angeles; Mateos-Díaz, Juan Carlos; Carrière, Frédéric; Rodriguez, Jorge A.

    2015-01-01

    A continuous assay is proposed for the screening of acidic, neutral, or alkaline lipases using microtiter plates, emulsified short- and medium-chain TGs, and a pH indicator. The lipase activity measurement is based on the decrease of the pH indicator optical density due to protonation which is caused by the release of FFAs during the hydrolysis of TGs and thus acidification. Purified lipases with distinct pH optima and an esterase were used to validate the method. The rate of lipolysis was found to be linear with time and proportional to the amount of enzyme added in each case. Specific activities measured with this microplate assay method were lower than those obtained by the pH-stat technique. Nevertheless, the pH-dependent profiles of enzymatic activity were similar with both assays. In addition, the substrate preference of each enzyme tested was not modified and this allowed discriminating lipase and esterase activities using tributyrin (low water solubility) and tricaprylin (not water soluble) as substrates. This continuous lipase assay is compatible with a high sample throughput and can be applied for the screening of lipases and lipase inhibitors from biological samples. PMID:25748441

  17. High-throughput screening method for lipases/esterases.

    PubMed

    Mateos-Díaz, Eduardo; Rodríguez, Jorge Alberto; de Los Ángeles Camacho-Ruiz, María; Mateos-Díaz, Juan Carlos

    2012-01-01

    High-throughput screening (HTS) methods for lipases and esterases are generally performed by using synthetic chromogenic substrates (e.g., p-nitrophenyl, resorufin, and umbelliferyl esters) which may be misleading since they are not their natural substrates (e.g., partially or insoluble triglycerides). In previous works, we have shown that soluble nonchromogenic substrates and p-nitrophenol (as a pH indicator) can be used to quantify the hydrolysis and estimate the substrate selectivity of lipases and esterases from several sources. However, in order to implement a spectrophotometric HTS method using partially or insoluble triglycerides, it is necessary to find particular conditions which allow a quantitative detection of the enzymatic activity. In this work, we used Triton X-100, CHAPS, and N-lauroyl sarcosine as emulsifiers, β-cyclodextrin as a fatty acid captor, and two substrate concentrations, 1 mM of tributyrin (TC4) and 5 mM of trioctanoin (TC8), to improve the test conditions. To demonstrate the utility of this method, we screened 12 enzymes (commercial preparations and culture broth extracts) for the hydrolysis of TC4 and TC8, which are both classical substrates for lipases and esterases (for esterases, only TC4 may be hydrolyzed). Subsequent pH-stat experiments were performed to confirm the preference of substrate hydrolysis with the hydrolases tested. We have shown that this method is very useful for screening a high number of lipases (hydrolysis of TC4 and TC8) or esterases (only hydrolysis of TC4) from wild isolates or variants generated by directed evolution using nonchromogenic triglycerides directly in the test.

  18. High-throughput screening method for lipases/esterases.

    PubMed

    Mateos-Díaz, Eduardo; Rodríguez, Jorge Alberto; de Los Ángeles Camacho-Ruiz, María; Mateos-Díaz, Juan Carlos

    2012-01-01

    High-throughput screening (HTS) methods for lipases and esterases are generally performed by using synthetic chromogenic substrates (e.g., p-nitrophenyl, resorufin, and umbelliferyl esters) which may be misleading since they are not their natural substrates (e.g., partially or insoluble triglycerides). In previous works, we have shown that soluble nonchromogenic substrates and p-nitrophenol (as a pH indicator) can be used to quantify the hydrolysis and estimate the substrate selectivity of lipases and esterases from several sources. However, in order to implement a spectrophotometric HTS method using partially or insoluble triglycerides, it is necessary to find particular conditions which allow a quantitative detection of the enzymatic activity. In this work, we used Triton X-100, CHAPS, and N-lauroyl sarcosine as emulsifiers, β-cyclodextrin as a fatty acid captor, and two substrate concentrations, 1 mM of tributyrin (TC4) and 5 mM of trioctanoin (TC8), to improve the test conditions. To demonstrate the utility of this method, we screened 12 enzymes (commercial preparations and culture broth extracts) for the hydrolysis of TC4 and TC8, which are both classical substrates for lipases and esterases (for esterases, only TC4 may be hydrolyzed). Subsequent pH-stat experiments were performed to confirm the preference of substrate hydrolysis with the hydrolases tested. We have shown that this method is very useful for screening a high number of lipases (hydrolysis of TC4 and TC8) or esterases (only hydrolysis of TC4) from wild isolates or variants generated by directed evolution using nonchromogenic triglycerides directly in the test. PMID:22426713

  19. Adipose Triglyceride Lipase, Not Hormone-Sensitive Lipase, Is the Primary Lipolytic Enzyme in Fasting Elephant Seals (Mirounga angustirostris).

    PubMed

    Fowler, Melinda A; Costa, Daniel P; Crocker, Daniel E; Shen, Wen-Jun; Kraemer, Fredric B

    2015-01-01

    Little is known about the mechanisms that allow capital breeders to rapidly mobilize large amounts of body reserves. Northern elephant seals (Mirounga angustirostris) utilize fat reserves for maternal metabolism and to create high fat milk for the pup. Hormone-sensitive lipase (HSL) has been hypothesized to be an important lipolytic enzyme in fasting seals, but the activity of HSL and adipose triglyceride lipase (ATGL) has not been quantified in fasting adult seals, nor has their relationship to milk lipid content been assessed. Blubber and milk samples were obtained from 18 early lactation and 19 late lactation females, as well as blubber from five early and five late molting female seals. Blubber lipolytic activity was assessed with radiometric assays. HSL activity was negligible in seal blubber at all fasting stages. Total triglyceride lipase activity was stable among early and late lactation and early molt but increased in late molting seals. Relative abundance of ATGL protein increased across fasting, but neither activity nor relative protein levels were related to circulating nonesterified fatty acids or milk lipid content, suggesting the possibility of other regulatory pathways between lipolytic activity and milk lipid content. These results demonstrate that HSL is not the primary lipolytic enzyme in fasting adult female seals and that ATGL contributes more to lipolysis than HSL. PMID:25860827

  20. Adipose Triglyceride Lipase, Not Hormone-Sensitive Lipase, Is the Primary Lipolytic Enzyme in Fasting Elephant Seals (Mirounga angustirostris).

    PubMed

    Fowler, Melinda A; Costa, Daniel P; Crocker, Daniel E; Shen, Wen-Jun; Kraemer, Fredric B

    2015-01-01

    Little is known about the mechanisms that allow capital breeders to rapidly mobilize large amounts of body reserves. Northern elephant seals (Mirounga angustirostris) utilize fat reserves for maternal metabolism and to create high fat milk for the pup. Hormone-sensitive lipase (HSL) has been hypothesized to be an important lipolytic enzyme in fasting seals, but the activity of HSL and adipose triglyceride lipase (ATGL) has not been quantified in fasting adult seals, nor has their relationship to milk lipid content been assessed. Blubber and milk samples were obtained from 18 early lactation and 19 late lactation females, as well as blubber from five early and five late molting female seals. Blubber lipolytic activity was assessed with radiometric assays. HSL activity was negligible in seal blubber at all fasting stages. Total triglyceride lipase activity was stable among early and late lactation and early molt but increased in late molting seals. Relative abundance of ATGL protein increased across fasting, but neither activity nor relative protein levels were related to circulating nonesterified fatty acids or milk lipid content, suggesting the possibility of other regulatory pathways between lipolytic activity and milk lipid content. These results demonstrate that HSL is not the primary lipolytic enzyme in fasting adult female seals and that ATGL contributes more to lipolysis than HSL.

  1. Chronic increased serum lipase without evidence of pancreatitis: tumor-derived lipase?

    PubMed

    Donnelly, J G; Ooi, D S; Burns, B F; Goel, R

    1996-03-01

    A 51-year-old man developed a large retroperitoneal tumor with liver and lymph node metastases; there was no radiological evidence of pancreatic involvement. Despite the progression of disease, results of laboratory tests, notably serum amylase, were normal except for minor increases in aspartate aminotransferase and gamma-glutamyltransferase and a marked increase in lipase. The increased lipase was not attributable to formation of macroenzyme. To determine the source of the lipase, we fractionated serum and a tumor biopsy homogenate, using electrophoresis. The lipase pattern obtained from the patient's serum differed from that seen in serum from a patient with acute pancreatitis. Additionally, the lipase pattern obtained from a homogenate of biopsy sample from the retroperitoneal tumor did not match the pattern observed for normal pancreas. Apparently, the source of this increased serum lipase activity was the nonpancreatic tumor.

  2. Synthesis of hepatic lipase in liver and extrahepatic tissues

    SciTech Connect

    Doolittle, M.H.; Wong, H.; Davis, R.C.; Schotz, M.C.

    1987-11-01

    Immunoprecipitations of hepatic lipase from pulse-labeled rat liver have demonstrated that hepatic lipase is synthesized in two distinct molecular weight forms, HL-I (Mr = 51,000) and HL-II (Mr = 53,000). Both forms are immunologically related to purified hepatic lipase, but not to lipoprotein lipase. HL-I and HL-II are also kinetically related and represent different stages of intracellular processing. Glycosidase experiments suggest that HL-I is the high mannose microsomal form of the mature, sialylated HL-II enzyme. Hepatic lipase activity was detected in liver and adrenal gland but was absent in brain, heart, kidney, testes, small intestine, lung, and spleen. The adrenal and liver lipase activities were inhibited in a similar dose-dependent manner by hepatic lipase antiserum. Immunoblot analysis of partially purified adrenal lipase showed an immunoreactive band co-migrating with HL-II at 53,000 daltons which was absent in a control blot treated with preimmune serum. Adrenal lipase and authentic hepatic lipase yielded similar peptide maps, confirming the presence of the lipase in adrenal gland. However, incorporation of L-(/sup 35/S)methionine into immunoprecipitable hepatic lipase was not detected in this tissue. In addition, Northern blot analysis showed the presence of hepatic lipase mRNA in liver but not adrenal gland. The presence of hepatic lipase in adrenal gland in the absence of detectable synthesis or messenger suggests that hepatic lipase originates in liver and is transported to this extrahepatic site.

  3. Tailoring the internal structure of liquid crystalline nanoparticles responsive to fungal lipases: A potential platform for sustained drug release.

    PubMed

    Poletto, F S; Lima, F S; Lundberg, D; Nylander, T; Loh, W

    2016-11-01

    Lipases are key components in the mechanisms underlying the persistence and virulence of infections by fungi, and thus also promising triggers for bioresponsive lipid-based liquid crystalline nanoparticles. We here propose a platform in which only a minor component of the formulation is susceptible to cleavage by lipase and where hydrolysis triggers a controlled phase transition within the nanoparticles that can potentially allow for an extended drug release. The responsive formulations were composed of phytantriol, which was included as a non-cleavable major component and polysorbate 80, which serves both as nanoparticle stabilizer and potential lipase target. To monitor the structural changes resulting from lipase activity with sufficient time resolution, we used synchrotron small angle x-ray scattering. Comparing the effect of the two different lipases used in this work, lipase B from Candida Antarctica, (CALB) and lipase from Rhizomucor miehei (RMML), only CALB induced phase transition from bicontinuous reverse cubic to reverse hexagonal phase within the particles. This phase transition can be attributed to an increasing amount of oleic acid formed on cleavage of the polysorbate 80. However, when also a small amount of a cationic surfactant was included in the formulation, RMML could trigger the corresponding phase transition as well. The difference in activity between the two lipases can tentatively be explained by a difference in their interaction with the nanoparticle surface. Thus, a bioresponsive system for treating fungal infections, with a tunable selectivity for different types of lipases, could be obtained by tuning the composition of the nanoparticle formulation. PMID:27518452

  4. Cloning and characterization of newly isolated lipase from Enterobacter sp. Bn12

    PubMed Central

    Farrokh, Parisa; Yakhchali, Bagher; Karkhane, Ali Asghar

    2014-01-01

    A mesophilic Enterobacter sp. Bn12 producing an alkaline thermostable lipase was isolated from soil in Tehran, Iran. The lipase gene (ELBn12) was identified from a genomic library. Sequence analysis of the DNA fragment revealed an open reading frame of 879 bp encoding a lipase with a molecular mass of 31.3 kDa. The deduced amino acid sequence showed 96% identity with a lipase of Enterobacter sp. Ag1 and the identity of their DNA sequences was 88.9%. ELBn12 belongs to the lipase subfamily I.1 and its catalytic triad consists of Ser82, Asp237 and His259. The lipase was expressed in Escherichia coli (BL21) pLysS and partially purified by anion exchange chromatography. The maximum activity of ELBn12 was obtained at temperature of 60 °C and pH 8.0 towards tricaprylin (C8) and its specific activity was around 2900 U/mg. ELBn12 was stable within a broad pH range from 6.0 to 11.0. The enzyme showed high stability in both polar and nonpolar organic solvents at 50% (v/v). The lipase activity was enhanced in the presence of 10 mM of Ca2+, Mg2+ and K+, while heavy metals (Fe3+ and Zn2+) had strong inhibitory effect. ELBn12 showed high activity in the presence of 1% (w/v) nonionic surfactants, however ionic surfactants inhibited the lipolytic activity. ELBn12 characteristics show that it has a potential to be used in various industrial processes. PMID:25242958

  5. Cloning and characterization of newly isolated lipase from Enterobacter sp. Bn12.

    PubMed

    Farrokh, Parisa; Yakhchali, Bagher; Karkhane, Ali Asghar

    2014-01-01

    A mesophilic Enterobacter sp. Bn12 producing an alkaline thermostable lipase was isolated from soil in Tehran, Iran. The lipase gene (ELBn12) was identified from a genomic library. Sequence analysis of the DNA fragment revealed an open reading frame of 879 bp encoding a lipase with a molecular mass of 31.3 kDa. The deduced amino acid sequence showed 96% identity with a lipase of Enterobacter sp. Ag1 and the identity of their DNA sequences was 88.9%. ELBn12 belongs to the lipase subfamily I.1 and its catalytic triad consists of Ser82, Asp237 and His259. The lipase was expressed in Escherichia coli (BL21) pLysS and partially purified by anion exchange chromatography. The maximum activity of ELBn12 was obtained at temperature of 60 °C and pH 8.0 towards tricaprylin (C8) and its specific activity was around 2900 U/mg. ELBn12 was stable within a broad pH range from 6.0 to 11.0. The enzyme showed high stability in both polar and nonpolar organic solvents at 50% (v/v). The lipase activity was enhanced in the presence of 10 mM of Ca(2+), Mg(2+) and K(+), while heavy metals (Fe(3+) and Zn(2+)) had strong inhibitory effect. ELBn12 showed high activity in the presence of 1% (w/v) nonionic surfactants, however ionic surfactants inhibited the lipolytic activity. ELBn12 characteristics show that it has a potential to be used in various industrial processes. PMID:25242958

  6. Effect of protamine on lipoprotein lipase and hepatic lipase in rats.

    PubMed Central

    Hultin, M; Olivecrona, G; Olivecrona, T

    1994-01-01

    The polycation protamine impedes the catabolism of triglyceride-rich lipoproteins and this has been suggested to be due to intravascular inactivation of lipoprotein lipase. We have made intravenous injections of protamine to rats and found that both lipoprotein lipase and hepatic lipase activities were released to plasma. The effect of protamine was more short-lived than that obtained by injection of heparin. The release of hepatic lipase by protamine was as effective as the release by heparin, while the amount of lipoprotein lipase released by protamine was only about one-tenth of that released by heparin. This was not due to inactivation of lipoprotein lipase, since injection of an excess of heparin 10 min after injection of protamine released as much lipoprotein lipase activity to plasma as in controls. The results in vivo differed from those obtained in model experiments in vitro. Protamine was able to almost quantitatively release both lipoprotein lipase and hepatic lipase from columns of heparin-agarose. The displacement was dependent on the total amount of protamine that had passed over the column, indicating that it was due to occupation by protamine of all available binding sites. Our results in vivo showed that the binding sites for lipoprotein lipase were not blocked as efficiently as those for hepatic lipase, indicating that the binding structures were not identical. It was concluded that the impaired turnover of lipoproteins by protamine probably was due to prevention of binding of the lipoproteins to endothelial cell surfaces rather than to impaired lipase function. PMID:7818503

  7. Crystal structure of the open form of dog gastric lipase in complex with a phosphonate inhibitor.

    PubMed

    Roussel, Alain; Miled, Nabil; Berti-Dupuis, Liliane; Rivière, Mireille; Spinelli, Silvia; Berna, Patrick; Gruber, Véronique; Verger, Robert; Cambillau, Christian

    2002-01-18

    Fat digestion in humans and some mammals such as dogs requires the successive intervention of two lipases: gastric lipase, which is stable and active despite the highly acidic stomach environment, followed by the classical pancreatic lipase secreted into the duodenum. We previously solved the structure of recombinant human gastric lipase (HGL) at 3.0-A resolution in its closed form; this was the first structure to be described within the mammalian acid lipase family. Here we report on the open structure of the recombinant dog gastric lipase (r-DGL) at 2.7-A resolution in complex with the undecyl-butyl (C11Y4) phosphonate inhibitor. HGL and r-DGL show 85.7% amino acid sequence identity, which makes it relevant to compare the forms from two different species. The open r-DGL structure confirms the previous description of the HGL catalytic triad (Ser(153), His(353), and Asp(324)) with the catalytic serine buried and an oxyanion hole (NH groups of Gln(154) and Leu(67)). In r-DGL, the binding of the C11Y4 phosphonate inhibitor induces part of the cap domain, the lid, to roll over the enzyme surface and to expose a catalytic crevice measuring approximately 20 x 20 x 7 A(3). The C11Y4 phosphonate fits into this crevice, and a molecule of beta-octyl glucoside fills up the crevice. The C11Y4 phosphonate inhibitor and the detergent molecule suggest a possible binding mode for the natural substrates, the triglyceride molecules.

  8. Cloning, sequencing and characterization of lipase from a polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipase gene (lip) of a biodegradable polyhydroxyalkanoate- (PHA-) synthesizing bacterium P. resinovorans NRRL B-2649 was cloned, sequenced and characterized by using consensus primers and PCR-based genome walking method. The ORF of the putative Lip (314 amino acids) and its active site (Ser111, Asp...

  9. Enzymatic Synthesis of Isopropyl Acetate by Immobilized Bacillus cereus Lipase in Organic Medium

    PubMed Central

    Verma, Madan Lal; Azmi, Wamik; Kanwar, Shamsher Singh

    2011-01-01

    Selective production of fragrance fatty acid ester from isopropanol and acetic acid has been achieved using silica-immobilized lipase of Bacillus cereus MTCC 8372. A purified thermoalkalophilic extracellular lipase was immobilized by adsorption onto the silica. The effects of various parameters like molar ratio of substrates (isopropanol and acetic acid; 25 to 100 mM), concentration of biocatalyst (25–125 mg/mL), reaction time, reaction temperature, organic solvents, molecular sieves, and initial water activity were studied for optimal ester synthesis. Under optimized conditions, 66.0 mM of isopropyl acetate was produced when isopropanol and acetic acid were used at 100 mM: 75 mM in 9 h at 55°C in n-heptane under continuous shaking (160 rpm) using bound lipase (25 mg). Addition of molecular sieves (3 Å × 1.5 mm) resulted in a marked increase in ester synthesis (73.0 mM). Ester synthesis was enhanced by water activity associated with pre-equilibrated saturated salt solution of LiCl. The immobilized lipase retained more than 50% of its activity after the 6th cycle of reuse. PMID:21603222

  10. Effect of salt solutions applied during wheat conditioning on lipase activity and lipid stability of whole wheat flour.

    PubMed

    Doblado-Maldonado, Andrés F; Arndt, Elizabeth A; Rose, Devin J

    2013-09-01

    Lipolytic activity in whole wheat flour (WWF) is largely responsible for the loss in baking quality during storage. Metal ions affect the activity of seed lipases; however, no previous studies have applied this information to WWF in a way that reduces lipase activity, is practical for commercial manufacture, and uses common food ingredients. NaCl, KCl, Ca-propionate, or FeNa-ethylenediaminetetraacetic acid (FeNa-EDTA) were applied to hard red winter (HRW) and hard white spring (HWS) wheats during conditioning as aqueous solutions at concentrations that would be acceptable in baked goods. Salts affected lipase activity to different degrees depending on the type of wheat used. Inhibition was greater in HRW compared with HWS WWF, probably due to higher lipase activity in HRW wheat. In HRW WWF, 1% NaCl (flour weight) reduced hydrolytic and oxidative rancidity and resulted in higher loaf volume and lower firmness than untreated WWF after 24 weeks of storage.

  11. Cocoa pod husk: A new source of CLEA-lipase for preparation of low-cost biodiesel: An optimized process.

    PubMed

    Khanahmadi, Soofia; Yusof, Faridah; Chyuan Ong, Hwai; Amid, Azura; Shah, Harmen

    2016-08-10

    Enzymatic reactions involving lipases as catalyst in transesterification can be an excellent alternative to produce environmental-friendly biodiesel. In this study, lipase extracted from Cocoa Pod Husk (CPH) and immobilized through cross linked enzyme aggregate (CLEA) technology catalysed the transesterification of Jatropha curcas oil successfully. Face centered central composite design (FCCCD) under response surface methodology (RSM) was used to get the optimal conditions of 3% (w/w) enzyme loading, 4h reaction time and 1:6 oil/ethanol ratio to achieve the highest conversion of free fatty acid and glycerides into biodiesel (93%). The reusability of CLEA-lipase was tested and after seven cycles, the conversion percentage reduced to 58%. The results revealed that CLEA lipase from CPH is a potential catalyst for biodiesel production. PMID:27184429

  12. Esterase and lipase in camel tick Hyalomma dromedarii (Acari: Ixodidae) during embryogenesis.

    PubMed

    Fahmy, Afaf S; Abdel-Gany, Somia S; Mohamed, Tarek M; Mohamed, Saleh A

    2004-02-01

    Esterase and lipase activity showed significant changes during embryogenesis of camel tick Hyalomma dromedarii. From the elution profile of chromatography on DEAE-cellulose, six forms of H. dromedarii esterase (El to EVI) can be distinguished. Esterase EIII was purified to homogeneity after chromatography on Sepharose 6B. The molecular mass of esterase EIII was 45 kDa for the native enzyme and represented a monomer of 45 kDa by SDS-PAGE. Esterase EIII had an acidic pI at 5.3. Lipase activity was detected in the same DEAE-cellulose peaks (LI to LVI) of H. dromedarii esterases. The highest lipase activity was exhibited by lipase LIII. Esterase EIII and lipase LIII were compared with respect to Michaelis constant, substrate specificity, temperature optimum, heat stability, pH optimum, effect of metal ions and inhibitors. This study suggests that H. dromedarii lipolytic enzymes may play a central role in the interconversion of lipovitellins during embryogenesis. PMID:14990212

  13. From Structure to Catalysis: Recent Developments in the Biotechnological Applications of Lipases

    PubMed Central

    Anobom, Cristiane D.; Pinheiro, Anderson S.; De-Andrade, Rafael A.; Aguieiras, Erika C. G.; Andrade, Guilherme C.; Moura, Marcelo V.; Almeida, Rodrigo V.; Freire, Denise M.

    2014-01-01

    Microbial lipases are highly appreciated as biocatalysts due to their peculiar characteristics such as the ability to utilize a wide range of substrates, high activity and stability in organic solvents, and regio- and/or enantioselectivity. These enzymes are currently being applied in a variety of biotechnological processes, including detergent preparation, cosmetics and paper production, food processing, biodiesel and biopolymer synthesis, and the biocatalytic resolution of pharmaceutical derivatives, esters, and amino acids. However, in certain segments of industry, the use of lipases is still limited by their high cost. Thus, there is a great interest in obtaining low-cost, highly active, and stable lipases that can be applied in several different industrial branches. Currently, the design of specific enzymes for each type of process has been used as an important tool to address the limitations of natural enzymes. Nowadays, it is possible to “order” a “customized” enzyme that has ideal properties for the development of the desired bioprocess. This review aims to compile recent advances in the biotechnological application of lipases focusing on various methods of enzyme improvement, such as protein engineering (directed evolution and rational design), as well as the use of structural data for rational modification of lipases in order to create higher active and selective biocatalysts. PMID:24783219

  14. Purification and Initial Characterization of Lipase from the Scutella of Corn Seedlings 1

    PubMed Central

    Lin, Yon-Hui; Huang, Anthony H. C.

    1984-01-01

    The lipase from the scutella of corn (Zea mays) MO-17 seedlings was purified 272-fold to apparent homogeneity as evidenced by sodium dodecyl sulfate polyacrylamide gel electrophoresis and double immunodiffusion. The procedure involved isolation of the lipid bodies, extraction with diethyl ether, DE-52 ion exchange chromatography, and sucrose density gradient centrifugation. The enzyme had an approximate molecular weight of 270,000 daltons after sucrose density gradient centrifugation, and 65,000 daltons after sodium dodecyl sulfate polyacrylamide gel electrophoresis. The lipase contained no cysteine and its molecular weight in sodium dodecyl sulfate was not reduced by β-mercaptoethanol. The amino acid composition as well as a biphasic partition using Triton X-114 revealed the enzyme to be a hydrophobic protein. Rabbit γ-globulin containing antibodies raised against the purified lipase formed one precipitin line with the lipase in a double diffusion test, and precipitated all the lipase activity from a solution. Images Fig. 1 Fig. 3 Fig. 4 PMID:16663912

  15. Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome.

    PubMed

    Privé, Florence; Newbold, C Jamie; Kaderbhai, Naheed N; Girdwood, Susan G; Golyshina, Olga V; Golyshin, Peter N; Scollan, Nigel D; Huws, Sharon A

    2015-07-01

    Improving the health beneficial fatty acid content of meat and milk is a major challenge requiring an increased understanding of rumen lipid metabolism. In this study, we isolated and characterized rumen bacterial lipases/esterases using functional metagenomics. Metagenomic libraries were constructed from DNA extracted from strained rumen fluid (SRF), solid-attached bacteria (SAB) and liquid-associated rumen bacteria (LAB), ligated into a fosmid vector and subsequently transformed into an Escherichia coli host. Fosmid libraries consisted of 7,744; 8,448; and 7,680 clones with an average insert size of 30 to 35 kbp for SRF, SAB and LAB, respectively. Transformants were screened on spirit blue agar plates containing tributyrin for lipase/esterase activity. Five SAB and four LAB clones exhibited lipolytic activity, and no positive clones were found in the SRF library. Fosmids from positive clones were pyrosequenced and twelve putative lipase/esterase genes and two phospholipase genes retrieved. Although the derived proteins clustered into diverse esterase and lipase families, a degree of novelty was seen, with homology ranging from 40 to 78% following BlastP searches. Isolated lipases/esterases exhibited activity against mostly short- to medium-chain substrates across a range of temperatures and pH. The function of these novel enzymes recovered in ruminal metabolism needs further investigation, alongside their potential industrial uses. PMID:25575887

  16. Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome.

    PubMed

    Privé, Florence; Newbold, C Jamie; Kaderbhai, Naheed N; Girdwood, Susan G; Golyshina, Olga V; Golyshin, Peter N; Scollan, Nigel D; Huws, Sharon A

    2015-07-01

    Improving the health beneficial fatty acid content of meat and milk is a major challenge requiring an increased understanding of rumen lipid metabolism. In this study, we isolated and characterized rumen bacterial lipases/esterases using functional metagenomics. Metagenomic libraries were constructed from DNA extracted from strained rumen fluid (SRF), solid-attached bacteria (SAB) and liquid-associated rumen bacteria (LAB), ligated into a fosmid vector and subsequently transformed into an Escherichia coli host. Fosmid libraries consisted of 7,744; 8,448; and 7,680 clones with an average insert size of 30 to 35 kbp for SRF, SAB and LAB, respectively. Transformants were screened on spirit blue agar plates containing tributyrin for lipase/esterase activity. Five SAB and four LAB clones exhibited lipolytic activity, and no positive clones were found in the SRF library. Fosmids from positive clones were pyrosequenced and twelve putative lipase/esterase genes and two phospholipase genes retrieved. Although the derived proteins clustered into diverse esterase and lipase families, a degree of novelty was seen, with homology ranging from 40 to 78% following BlastP searches. Isolated lipases/esterases exhibited activity against mostly short- to medium-chain substrates across a range of temperatures and pH. The function of these novel enzymes recovered in ruminal metabolism needs further investigation, alongside their potential industrial uses.

  17. A simple strategy to monitor lipase activity using liquid crystal-based sensors.

    PubMed

    Hu, Qiong-Zheng; Jang, Chang-Hyun

    2012-09-15

    In this study, we developed a simple label-free technique for monitoring the enzymatic activity of lipase using liquid crystal (LC)-based sensors. The optical response of LCs changed from a bright to dark appearance when an aqueous solution of lipase was in contact with a nematic LC, 4-cyano-4'-pentylbiphenyl (5CB), that was doped with glyceryl trioleate, which is a glyceride that can be enzymatically hydrolyzed by lipase. Since the oleic acid released from the enzymatic reaction could spontaneously form a self-assembled monolayer at the aqueous/LC interface due to its amphiphilic property, the orientation of the LCs transited from a planar to homeotropic state, which induced a change in the optical response of the LCs. We did not observe a bright-to-dark shift in the optical appearance of LCs when pure 5CB was immersed into the lipase solution. Moreover, we further confirmed the specificity of the enzymatic reaction by transferring an aqueous buffer solution not containing an analyte, or with bovine serum albumin (BSA) or trypsin onto the interface of aqueous solutions and the glyceryl trioleate-doped 5CB, which did not produce any distinctive contrast in the optical appearance. These results suggest the feasibility of measuring the enzymatic activity of lipase using the LC-based sensing technique. Furthermore, our strategy could also be used for the preparation of a self-assembled monolayer of carboxylates at the aqueous/LC interface. PMID:22967518

  18. Familial lipoprotein lipase-activity deficiency: study of total body fatness and subcutaneous fat tissue distribution.

    PubMed

    Brun, L D; Gagné, C; Julien, P; Tremblay, A; Moorjani, S; Bouchard, C; Lupien, P J

    1989-10-01

    Total body fatness and subcutaneous fat tissue distribution were evaluated in 19 hyperchylomicronemic patients. Eleven were males, aged 10 to 57 years, and eight were females, aged 13 to 46 years. Familial lipoprotein-lipase-activity deficiency was diagnosed by the absence of lipoprotein-lipase activity in the plasma withdrawn ten and 20 minutes after intravenous injection of ten units of heparin per kilogram of body weight. The 19 patients had skin-fold measurements for evaluation of subcutaneous fat distribution. Fifteen also underwent body density measurements by underwater weighing. Percent body fat was calculated from body density. These anthropometric data were plotted against the regression curves of 1638 normal controls of both sexes (aged 10 to 54 years) for fat tissue weight, percent body fat, subcutaneous fat/total fat mass ratio and trunk/extremity skin-fold ratio. Impairments in the process of building fat tissue reserves could not be shown in the 19 hyperchylomicronemic patients, in spite of the absence of lipoprotein-lipase activity in their postheparin plasma. It is hypothesized that normal fat tissue mass in these patients could be due partly to de novo synthesis of fatty acids by adipocytes, hydrolysis of plasma triglycerides by hepatic lipase, and/or contribution of a specific fat-tissue lipase to the catabolism of plasma triglyceride-rich lipoproteins.

  19. Lipase coated clusters of iron oxide nanoparticles for biodiesel synthesis in a solvent free medium.

    PubMed

    Mukherjee, Joyeeta; Gupta, Munishwar Nath

    2016-06-01

    Methyl or ethyl esters of long chain fatty acids are called biodiesel. Biodiesel is synthesized by the alcoholysis of oils/fats. In this work, lipase from Thermomyces lanuginosus was precipitated over the clusters of Fe3O4 nanoparticles. This biocatalyst preparation was used for obtaining biodiesel from soybean oil. After optimization of both immobilization conditions and process parameters, complete conversion to biodiesel was obtained in 3h and on lowering the enzyme amount, as little as 1.7U of lipase gave 96% conversion in 7h. The solvent free media with oil:ethanol (w/w) of 1:4 and 40°C with 2% (w/w) water along with 20% (w/w) silica (for facilitating acyl migration) were employed for reaching this high % of conversion. The biocatalyst design enables one to use a rather small amount of lipase. This should help in switching over to a biobased production of biodiesel. PMID:26967340

  20. PPARγ as a sensor of lipase activity and a target for the lipase inhibitor orlistat.

    PubMed

    Martin, Harry; McGhie, Tony K; Bentley-Hewitt, Kerry; Christeller, John

    2013-01-01

    A PPARγ fluorescence polarization (FP) assay was used to measure the release of fatty acid products from triglyceride emulsions during digestion with pancreatic and yeast lipases in a real-time, homogenous assay. Using the same FP assay we show the anti-obesity drug Orlistat is a PPARγ ligand with an IC50 of 2.84 ± 0.16 μM. Analytical Mass Spectrometry confirms that Orlistat does not bind covalently to PPARγ. The PPARγ FP assay is shown to be a simple method for measuring real-time lipase activity using a number of triglyceride substrates including olive oil and grape seed oil emulsions. Incubation of Orlistat with the human intestinal epithelial cell line Caco-2, at concentrations of 1 - 100 μM, leads to induction of genes regulated by PPARγ. At 100 μM Orlistat, transcription of β-defensin 1 (hDB1) & Adipose Differentiation Related Protein (ADRP) increase by up to 2.6 fold and 6.8 fold, respectively. Although at 1 μM and 100 μM Orlistat did not significantly increase defensin protein synthesis, at 10 μM Orlistat induced a 1.5 fold increase in hDB1 protein secretion in the human colonic adenocarcinoma cell line HT-29. Thus Orlistat is similar to the anti-diabetic drug Rosiglitazone in its ability to induce defensin gene expression. The antimicrobial peptide β-defensin 1 protects against pathogenic micro-organisms in the gut and PPARγ suppresses inflammatory gene expression. These may be beneficial side effects of Orlistat consumption on gut epithelial cells. PMID:23566279

  1. MfLIP1, a gene encoding an extracellular lipase of the lipid-dependent fungus Malassezia furfur.

    PubMed

    Brunke, Sascha; Hube, Bernhard

    2006-02-01

    Malassezia furfur is a dimorphic fungus and a member of the normal cutaneous microflora of humans. However, it is also a facultative pathogen, associated with a wide range of skin diseases. One unusual feature of M. furfur is an absolute dependency on externally provided lipids which the fungus hydrolyses by lipolytic activity to release fatty acids necessary for both growth and pathogenicity. In this study, the cloning and characterization of the first gene encoding a secreted lipase of M. furfur possibly associated with this activity are reported. The gene, MfLIP1, shows high sequence similarity to other known extracellular lipases, but is not a member of a lipase gene family in M. furfur. MfLIP1 consists of 1464 bp, encoding a protein with a molecular mass of 54.3 kDa, a conserved lipase motif and an N-terminal signal peptide of 26 aa. By using a genomic library, two other genes were identified flanking MfLIP1, one of them encoding a putative secreted catalase, the other a putative amine oxidase. The cDNA of MfLIP1 was expressed in Pichia pastoris and the biochemical properties of the recombinant lipase were analysed. MfLip1 is most active at 40 degrees C and the pH optimum was found to be 5.8. The lipase hydrolysed lipids, such as Tweens, frequently used as the source of fatty acids in M. furfur media, and had minor esterase activity. Furthermore, the lipase is inhibited by different bivalent metal ions. This is the first molecular description of a secreted lipase from M. furfur.

  2. Lipase and phospholipase biosensors: a review.

    PubMed

    Herrera-López, Enrique J

    2012-01-01

    Recent advances in the field of biology, electronics, and nanotechnology have improved the development of biosensors. A biosensor is a device composed of a biological recognition element and a sensor element. Biosensor applications are becoming increasingly important in areas such as biotechnology, pharmaceutics, food, and environment. Lipases and phospholipases are enzymes which have been used widely in food industry, oleochemical industry, biodegradable polymers, detergents, and other applications. In the medical industry, lipases and phospholipases are used as diagnostic tools to detect triglycerides, cholesterol, and phospholipids levels in blood samples. Therefore, the development of lipase and phospholipase biosensors is of paramount importance in the clinical area. This chapter introduces the reader into the preliminaries of biosensor and reviews recent developments of lipase and phospholipase biosensors. PMID:22426738

  3. [Lipases in catalytic reactions of organic chemistry].

    PubMed

    Bezborodov, A M; Zagustina, N A

    2014-01-01

    Aspects of enzymatic catalysis in lipase-catalyzed reactions of organic synthesis are discussed in the review. The data on modern methods of protein engineering and enzyme modification allowing a broader range of used substrates are briefly summarized. The application of lipase in the preparation of pharmaceuticals and agrochemicals containing no inactive enantiomers and in the synthesis of secondary alcohol enantiomers and optically active amides is demonstrated. The subject of lipase involvement in the C-C bond formation in the Michael reaction is discussed. Data on the enzymatic synthesis of construction materials--polyesters, siloxanes, etc.--are presented. Examples demonstrating the application of lipase enzymatic catalysis in industry are given. PMID:25707112

  4. Immobilization and characterization of a thermostable lipase.

    PubMed

    Song, Chongfu; Sheng, Liangquan; Zhang, Xiaobo

    2013-12-01

    Lipases have found a number of commercial applications. However, thermostable lipase immobilized on nanoparticle is not extensively characterized. In this study, a recombinant thermostable lipase (designated as TtL) from Thermus thermophilus WL was expressed in Escherichia coli and immobilized onto 3-APTES-modified Fe3O4@SiO2 supermagnetic nanoparticles. Based on analyses with tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer observation, the diameter of immobilized lipase nanoparticle was 18.4 (± 2.4) nm, and its saturation magnetization value was 52.3 emu/g. The immobilized lipase could be separated from the reaction medium rapidly and easily in a magnetic field. The biochemical characterizations revealed that, comparing with the free one, the immobilized lipase exhibited better resistance to temperature, pH, metal ions, enzyme inhibitors, and detergents. The K m value for the immobilized TtL (2.56 mg/mL) was found to be lower than that of the free one (3.74 mg/mL), showing that the immobilization improved the affinity of lipase for its substrate. In addition, the immobilized TtL exhibited good reusability. It retained more than 79.5 % of its initial activity after reusing for 10 cycles. Therefore, our study presented that the possibility of the efficient reuse of the thermostable lipase immobilized on supermagnetic nanoparticles made it attractive from the viewpoint of practical application. PMID:23748908

  5. Lipase

    MedlinePlus

    ... in wheat products (celiac disease), Crohn's disease, and cystic fibrosis. ... the pancreas (pancreatic insufficiency) that is associated with cystic fibrosis.Allergy to gluten in wheat products (celiac disease). ...

  6. Production of lipase from Pseudomonas gessardii using blood tissue lipid and thereof for the hydrolysis of blood cholesterol and triglycerides and lysis of red blood cells.

    PubMed

    Ramani, K; Sekaran, G

    2012-08-01

    The study demonstrates the production of lipase (LIP) from Pseudomonas gessardii using blood tissue lipid as the substrate for the hydrolysis of blood cholesterol and triglycerides. The lipase was purified with the specific activity of 828 U/mg protein and the molecular weight of 56 kDa. The maximum lipase activity was observed at the pH 7.0 and the temperature 37 °C. The amino acid composition of purified lipase was determined by HPLC. The mesoporous activated carbon (MAC) was used for the immobilization of lipase for the repeated use of the enzyme catalyst. The K (m) value of immobilized lipase (MAC-LIP) and the free lipase (LIP) was 0.182 and 1.96 mM, respectively. The V (max) value of MAC-LIP and LIP was 1.33 and 1.26 mM/min, respectively. The MAC and MAC-LIP were characterized by scanning electron microscopy (SEM). The hydrolysis study showed 78 and 100% hydrolysis of triglycerides and cholesterol, respectively, for LIP and 84 and 100% hydrolysis of triglycerides and cholesterol, respectively, for MAC-LIP at the reaction time of 1 h. The effect of lipase on cell wall lysis was carried out on the RBCs of blood plasma. Interestingly, 99.9% lysis of RBCs was observed within 2 h. SEM images and phase contrast microscopy confirmed the lysis of RBCs. This work provides a potential biocatalyst for the hydrolysis of blood cholesterol and triglycerides.

  7. Utilization of agroindustrial residues for lipase production by solid-state fermentation

    PubMed Central

    Damaso, Mônica Caramez Triches; Passianoto, Moisés Augusto; de Freitas, Sidinéa Cordeiro; Freire, Denise Maria Guimarães; Lago, Regina Celi Araujo; Couri, Sonia

    2008-01-01

    The aim of this work was to produce lipases by solid-state fermentation (SSF) using, as substrate, agroindustrial residue supplemented with by-products from corn oil refining process or olive oil. For a group of ten fungi strains selected in the first steps, the lipase activity obtained by SSF varied from 7.7 to 58.6 U/g of dry substrate (gds). Among the evaluated strains, the Aspergillus niger mutant 11T53A14 was selected by presenting the best enzymatic production. For the fermentation tests, two substrates were also investigated: wheat bran and corn cob, both supplemented with olive oil. The best results were obtained with wheat bran. Additionally, three industrial by-products from corn oil refining (soapstock, stearin and fatty acids) were evaluated as substitutes to the olive oil in the function of lipases production inducer. Among them, soapstock and stearin were the best inducers, whereas fatty acids presented an inhibitor effect. The highest lipase activities using soapstock, stearin and fatty acids were 62.7 U/gds, 37.7 U/gds and 4.1 U/gds, respectively. PMID:24031288

  8. Transport of lipoprotein lipase across endothelial cells

    SciTech Connect

    Saxena, U.; Klein, M.G.; Goldberg, I.J. )

    1991-03-15

    Lipoprotein lipase (LPL), synthesized in muscle and fat, hydrolyzes plasma triglycerides primarily while bound to luminal endothelial cell surfaces. To obtain information about the movement of LPL from the basal to the luminal endothelial cell surface, the authors studied the transport of purified bovine milk LPL across bovine aortic endothelial cell monolayers. {sup 125}I-labeled LPL ({sup 125}I-LPL) added to the basal surface of the monolayers was detected on the apical side of the cells in two compartments: (1) in the medium of the upper chamber, and (2) bound to the apical cell surface. The amount of {sup 125}I-LPL on the cell surface, but not in the medium, reached saturation with time and LPL dose. Catalytically active LPL was transported to the apical surface but very little LPL activity appeared in the medium. Heparinase treatment of the basal cell surface and addition of dextran sulfate to the lower chamber decreased the amount of {sup 125}I-LPL appearing on the apical surface. Similarly, the presence of increasing molar ratios of oleic acid/bovine serum albumin at the basal surface decreased the transport of active LPL across the monolayer. Thus, a saturable transport system, which requires haparan sulfate proteoglycans and is inhibited by high concentrations of free fatty acids on the basal side of the cells, appears to exist for passage of enzymatically active LPL across endothelial cells. They postulate that regulation of LPL transport to the endothelial luminal surface modulates the physiologically active pool of LPL in vivo.

  9. Lipoprotein electrostatic properties regulate hepatic lipase association and activity.

    PubMed

    Boucher, Jonathan G; Nguyen, Trang; Sparks, Daniel L

    2007-12-01

    The effect of lipoprotein electrostatic properties on the catalytic regulation of hepatic lipase (HL) was investigated. Enrichment of serum or very low density lipoprotein (VLDL) with oleic acid increased lipoprotein negative charge and stimulated lipid hydrolysis by HL. Similarly, enrichment of serum or isolated lipoproteins with the anionic phospholipids phosphatidylinositol (PI), phosphatidic acid, or phosphatidylserine also increased lipoprotein negative charge and stimulated hydrolysis by HL. Anionic lipids had a small effect on phospholipid hydrolysis, but significantly stimulated triacylglyceride (TG) hydrolysis. High density lipoprotein (HDL) charge appears to have a specific effect on lipolysis. Enrichment of HDL with PI significantly stimulated VLDL-TG hydrolysis by HL. To determine whether HDL charge affects the association of HL with HDL and VLDL, HL-lipoprotein interactions were probed immunochemically. Under normal circumstances, HL associates with HDL particles, and only small amounts bind to VLDL. PI enrichment of HDL blocked the binding of HL with HDL. These data indicate that increasing the negative charge of HDL stimulates VLDL-TG hydrolysis by reducing the association of HL with HDL. Therefore, HDL controls the hydrolysis of VLDL by affecting the interlipoprotein association of HL. Lipoprotein electrostatic properties regulate lipase association and are an important regulator of the binding and activity of lipolytic enzymes.

  10. Synthesis of flavor and fragrance esters using Candida antarctica lipase.

    PubMed

    Larios, Araceli; García, Hugo S; Oliart, Rosa María; Valerio-Alfaro, Gerardo

    2004-09-01

    Candida antarctica lipase fraction B (CAL-B) showed substrate specificity in the synthesis of esters in hexane involving reactions of short-chain acids having linear (acetic and butyric acids) and branched chain (isovaleric acid) structures, an unsaturated (tiglic acid) fatty acid, and phenylacetic acid with n-butanol and geraniol. The variation in the conversion to the esters was ca. 10%. Similar results were observed in a study of the alcohol specificity of the enzyme for esterification of acetic and butyric acids with four alcohols: n-butyl, isopentyl, 2-phenylethyl, and geraniol. Enantioselectivity of CAL-B in hexane with a range of chiral alpha-substituted or beta-substituted carboxylic acids and n-butyl alcohol was analyzed. The results show that CAL-B can be employed as a robust biocatalyst in esterification reactions due to the high conversions obtained in the synthesis of short-chain flavor esters in an organic solvent, although this enzyme exhibited modest enantioselectivity with chiral short-chain carboxylic acids.

  11. Production and Characterization of Lipases by Two New Isolates of Aspergillus through Solid-State and Submerged Fermentation.

    PubMed

    Colla, Luciane Maria; Ficanha, Aline M M; Rizzardi, Juliana; Bertolin, Telma Elita; Reinehr, Christian Oliveira; Costa, Jorge Alberto Vieira

    2015-01-01

    Due to the numerous applications of lipases in industry, there is a need to study their characteristics, because lipases obtained from different sources may present different properties. The aim of this work was to accomplish the partial characterization of lipases obtained through submerged fermentation and solid-state fermentation by two species of Aspergillus. Fungal strains were isolated from a diesel-contaminated soil and selected as good lipases producers. Lipases obtained through submerged fermentation presented optimal activities at 37 °C and pH 7.2 and those obtained through solid-state fermentation at 35 °C and pH 6.0. The enzymes produced by submerged fermentation were more temperature-stable than those obtained by solid-state fermentation, presenting 72% of residual activity after one hour of exposition at 90 °C. Lipases obtained through submerged fermentation had 80% of stability in acidic pH and those obtained through solid-state fermentation had stability greater than 60% in alkaline pH. PMID:26180809

  12. A reappraisal of the role of Pityrosporum orbiculare in pityriasis versicolor and the significance of extracellular lipase.

    PubMed

    Catterall, M D; Ward, M E; Jacobs, P

    1978-12-01

    Pityrosporum orbiculare is an obligate lipophilic yeast in vitro, which suggests it possesses an extracellular lipase crucial for nutrition. If present in vivo, the enzyme would enable the yeast to utilize skin surface lipids, which may therfore play an important role in the pathogenesis of pityriasis versicolor. Cultured P. orbiculare and biopsy material from patients with pityriasis versicolor were investigated for the presence of lipase by electron microscope histochemistry. At sites of lipase activity, fatty acid hydrolyzed from Tween 80 substrate reacts with Ca++ ions to form an insoluble Ca++ soap. Exchange of Ca++ with Pb++ enables the sites of lipase activity to be visualized as electron dense deposits of insoluble lead soap. Surface lipase activity was apparent when the technique was applied to P. orbiculare grown on lipid containing medium and its specificity confirmed by removal of substrate and inhibition by di-isopropyl fluorophosphate and quinine hydrochloride, but not by sodium fluoride. When the same technique was applied to stratum corneum infected with Pityrosporum furfur (Malassez), no reaction product could be detected. It is postulated that lipase, although critical for fungal nutrition in vitro, is unlikely to be of importance in vivo. Skin surface lipids are therefore probably not relevant to the pathogenesis of pityriasis versicolor.

  13. Molecular cloning and characterization of a thermostable lipase from deep-sea thermophile Geobacillus sp. EPT9.

    PubMed

    Zhu, Yanbing; Li, Hebin; Ni, Hui; Xiao, Anfeng; Li, Lijun; Cai, Huinong

    2015-02-01

    A gene (1,254 bp) encoding a lipase was identified from a deep-sea hydrothermal field thermophile Geobacillus sp. EPT9. The open reading frame of this gene encoded 417 amino acid residues. The gene was cloned, overexpressed in Escherichia coli, and the target protein was purified to homogeneity. The purified recombinant enzyme presented a molecular mass of 44.8 kDa. When p-nitrophenyl palmitate was used as a substrate, the recombinant lipase was optimally active at 55 °C and pH 8.5. The recombinant enzyme retained 44 % residual activity after incubation at 80 °C for 1 h, which indicated that Geobacillus sp. EPT9 lipase was thermostable. Homology modeling of strain EPT9 lipase was developed with the lipase from Bacillus sp. L2 as a template. The core structure exhibits an α/β-hydrolase fold and the typical catalytic triad might consist of Ser142, Asp346, and His387. The enzymatic activity of EPT9 lipase was inhibited by addition of phenylmethylsulfonyl fluoride, indicating that it contains serine residue, which plays an important role in the catalytic mechanism.

  14. Purification and biochemical characterization of a novel alkaline (phospho)lipase from a newly isolated Fusarium solani strain.

    PubMed

    Jallouli, Raida; Khrouf, Fatma; Fendri, Ahmed; Mechichi, Tahar; Gargouri, Youssef; Bezzine, Sofiane

    2012-12-01

    An extracellular lipase from Fusarium solani strain (F. solani lipase (FSL)) was purified to homogeneity by ammonium sulphate precipitation, gel filtration and anion exchange chromatography. The purified enzyme has a molecular mass of 30 kDa as estimated by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The 12 NH(2)-terminal amino acid residues showed a high degree of homology with a putative lipase from the fungus Necteria heamatoccocae. It is a serine enzyme, like all known lipases from different origins. Interestingly, FSL has not only lipase activity but also a high phospholipase activity which requires the presence of Ca(2+) and bile salts. The specific activities of FSL were about 1,610 and 2,414 U/mg on olive oil emulsion and egg-yolk phosphatidylcholine as substrates, respectively, at pH 8.0 and 37 °C. The (phospho)lipase enzyme was stable in the pH range of 5-10 and at temperatures below 45 °C.

  15. Biodegradation of waste greases and biochemical properties of a novel lipase from Pseudomonas synxantha PS1.

    PubMed

    Cai, Xianghai; Chen, Siqi; Yang, Hong; Wang, Wei; Lin, Lin; Shen, Yaling; Wei, Wei; Wei, Dong-Zhi

    2016-07-01

    A lipase-producing bacterial strain was isolated from oil-well-produced water in Shengli oilfield (Shandong province, China) and was identified as Pseudomonas synxantha by 16S rDNA sequence analysis (named Pseudomonas synxantha PS1). Strain PS1 showed a maximum lipase activity of 10.8 U/mL after culturing for 48 h at 30 °C, with lactose (4 g/L) as carbon source, tryptone (8 g/L) as nitrogen source, olive oil (0.5%, v/v) as inductor, and the initial pH 8.0. Meanwhile, the lipase gene from P. synxantha PS1 was cloned and expressed in Escherichia coli BL21 with the vector pET28a. The novel gene (lipPS1) has an open reading frame of 1425 bp and encodes a 474 aa lipase (LipPS1) sharing the most identity (87%) with the lipase in Pseudomonas fluorescens. LipPS1 preferably acted on substrates with a long chain (C10-C18) of fatty acids. The optimum pH and temperature of the recombinant enzyme were 8.0 and 40 °C, respectively, towards the optimum substrate p-nitrophenyl palmitate. The LipPS1 showed remarkable stability under alkaline conditions and was stable at pH 7.0-10.0 (retaining more than 60% activity). From the organic solvents tests, the lipase was activated by 15% (v/v) methanol (112%), 15% ethanol (127%), and 15% n-butyl alcohol (116%). LipPS1 presented strong biodegradability of waste grease; 93% of waste grease was hydrolyzed into fatty acid after 12 h at 30 °C. This is the first report of the lipase activity and lipase gene obtained from P. synxantha (including wild strain and recombinant strain) and of the recombinant LipPS1 with the detailed enzymatic properties. Also a preliminary study of the biodegradability of waste greases shows the potential value in industry applications. PMID:27321682

  16. Uml2 is a novel CalB-type lipase of Ustilago maydis with phospholipase A activity.

    PubMed

    Buerth, Christoph; Kovacic, Filip; Stock, Janpeter; Terfrüchte, Marius; Wilhelm, Susanne; Jaeger, Karl-Erich; Feldbrügge, Michael; Schipper, Kerstin; Ernst, Joachim F; Tielker, Denis

    2014-06-01

    CalB of Pseudozyma aphidis (formerly named Candida antarctica) is one of the most widely applied enzymes in industrial biocatalysis. Here, we describe a protein with 66 % sequence identity to CalB, designated Ustilago maydis lipase 2 (Uml2), which was identified as the product of gene um01422 of the corn smut fungus U. maydis. Sequence analysis of Uml2 revealed the presence of a typical lipase catalytic triad, Ser-His-Asp with Ser125 located in a Thr-Xaa-Ser-Xaa-Gly pentapeptide. Deletion of the uml2 gene in U. maydis diminished the ability of cells to hydrolyse fatty acids from tributyrin or Tween 20/80 substrates, thus demonstrating that Uml2 functions as a lipase that may contribute to nutrition of this fungal pathogen. Uml2 was heterologously produced in Pichia pastoris and recombinant N-glycosylated Uml2 protein was purified from the culture medium. Purified Uml2 released short- and long-chain fatty acids from p-nitrophenyl esters and Tween 20/80 substrates. Furthermore, phosphatidylcholine substrates containing long-chain saturated or unsaturated fatty acids were effectively hydrolysed. Both esterase and phospholipase A activity of Uml2 depended on the Ser125 catalytic residue. These results indicate that Uml2, in contrast to CalB, exhibits not only esterase and lipase activity but also phospholipase A activity. Thus, by genome mining, we identified a novel CalB-like lipase with different substrate specificities.

  17. Inhibition of dog and human gastric lipases by enantiomeric phosphonate inhibitors: a structure-activity study.

    PubMed

    Miled, Nabil; Roussel, Alain; Bussetta, Cécile; Berti-Dupuis, Liliane; Rivière, Mireille; Buono, Gérard; Verger, Robert; Cambillau, Christian; Canaan, Stéphane

    2003-10-14

    The crystal structures of gastric lipases in the apo form [Roussel, A., et al. (1999) J. Biol. Chem. 274, 16995-17002] or in complex with the (R(P))-undecyl butyl phosphonate [C(11)Y(4)(+)] [Roussel, A., et al. (2002) J. Biol. Chem. 277, 2266-2274] have improved our understanding of the structure-activity relationships of acid lipases. In this report, we have performed a kinetic study with dog and human gastric lipases (DGL and HGL, respectively) using several phosphonate inhibitors by varying the absolute configuration of the phosphorus atom and the chain length of the alkyl/alkoxy substituents. Using the two previously determined structures and that of a new crystal structure obtained with the other (S(P))-phosphonate enantiomer [C(11)Y(4)(-)], we constructed models of phosphonate inhibitors fitting into the active site crevices of DGL and HGL. All inhibitors with a chain length of fewer than 12 carbon atoms were found to be completely buried in the catalytic crevice, whereas longer alkyl/alkoxy chains were found to point out of the cavity. The main stereospecific determinant explaining the stronger inhibition of the S(P) enantiomers is the presence of a hydrogen bond involving the catalytic histidine as found in the DGL-C(11)Y(4)(-) complex. On the basis of these results, we have built a model of the first tetrahedral intermediate corresponding to the tristearoyl-lipase complex. The triglyceride molecule completely fills the active site crevice of DGL, in contrast with what is observed with other lipases such as pancreatic lipases which have a shallower and narrower active site. For substrate hydrolysis, the supply of water molecules to the active site might be achieved through a lateral channel identified in the protein core.

  18. Isolation and biochemical characterization of two lipases from a metagenomic library of China Holstein cow rumen.

    PubMed

    Liu, Kailang; Wang, Jiaqi; Bu, Dengpan; Zhao, Shengguo; McSweeney, Chris; Yu, Ping; Li, Dan

    2009-08-01

    Two novel lipase genes RlipE1 and RlipE2 which encoded 361- and 265-amino acid peptides, respectively, were recovered from a metagenomic library of the rumen microbiota of Chinese Holstein cows. A BLAST search revealed a high similarity (90%) between RlipE2 and a carboxylesterase from Thermosinus carboxydivorans Nor1, while there was a low similarity (below 50%) between RlipE1 and other lipases. Phylogenetic analysis indicated that RlipE2 clustered with the lipolytic enzymes from family V while RlipE1 clustered with six other putative bacterial lipases which might constitute a new subfamily. The recombinant lipases were thermally unstable and retained 60% activity over a pH range of 6.5-8.5. Substrate specificity assay indicated that both enzymes had higher hydrolytic activity toward laurate (C(12)), palmitate (C(16)) and stearate (C(18)). The novel phylogenetic affiliation and high specificity of both enzymes for long-chain fatty acid make them interesting targets for manipulation of rumen lipid metabolism. PMID:19486892

  19. Thermomyces lanuginosus lipase-catalyzed hydrolysis of the lipid cubic liquid crystalline nanoparticles.

    PubMed

    Barauskas, Justas; Anderberg, Hanna; Svendsen, Allan; Nylander, Tommy

    2016-01-01

    In this study well-ordered glycerol monooleate (GMO)-based cubic liquid crystalline nanoparticles (LCNPs) have been used as substrates for Thermomyces lanuginosus lipase in order to establish the relation between the catalytic activity, measured by pH-stat titration, and the change in morphology and nanostructure determined by cryogenic transmission electron microscopy and synchrotron small angle X-ray diffraction. The initial lipase catalyzed LCNP hydrolysis rate is approximately 25% higher for large 350nm nanoparticles compared to the small 190nm particles, which is attributed to the increased number of structural defects on the particle surface. At pH 8.0 and 8.4 bicontinuous Im3m cubic LCNPs transform into "sponge"-like assemblies and disordered multilamellar onion-like structures upon exposure to lipase. At pH 6.5 and 7.5 lipolysis induced phase transitions of the inner core of the particles, following the sequence Im3m cubic → reversed hexagonal → reversed micellar Fd3m cubic → reversed micelles. These transitions to the liquid crystalline phases with higher negative curvature of the lipid/water interface were found to trigger protonation of the oleic acid produced during lipase catalyzed reaction. The increase curvature of the reversed discrete micellar cubic phase was suggested to cause an increase in the oleic acid pKa to a larger value observed by pH-stat titration.

  20. Activities of amylase, proteinase, and lipase enzymes from Lactococcus chungangensis and its application in dairy products.

    PubMed

    Konkit, Maytiya; Kim, Wonyong

    2016-07-01

    Several enzymes are involved in the process of converting milk to lactic acid and coagulated milk to curd and, therefore, are important in dairy fermented products. Amylase, proteinase, and lipase are enzymes that play an important role in degrading milk into monomeric molecules such as oligosaccharides, amino acids, and fatty acids, which are the main molecules responsible for flavors in cheese. In the current study, we determined the amylase, proteinase, and lipase activities of Lactococcus chungangensis CAU 28(T), a bacterial strain of nondairy origin, and compared them with those of the reference strain, Lactococcus lactis ssp. lactis KCTC 3769(T), which is commonly used in the dairy industry. Lactococcus chungangensis CAU 28(T) and L. lactis ssp. lactis KCTC 3769(T) were both found to have amylase, proteinase, and lipase activities in broth culture, cream cheese, and yogurt. Notably, the proteinase and lipase activities of L. chungangensis CAU 28(T) were higher than those of L. lactis ssp. lactis KCTC 3769(T), with proteinase activity of 10.50 U/mL in tryptic soy broth and 8.64 U/mL in cream cheese, and lipase activity of 100 U/mL of tryptic soy broth, and 100 U/mL of cream cheese. In contrast, the amylase activity was low, with 5.28 U/mL in tryptic soy broth and 8.86 U/mL in cream cheese. These enzyme activities in L. chungangensis CAU 28(T) suggest that this strain has potential to be used for manufacturing dairy fermented products, even though the strain is of nondairy origin. PMID:27108177

  1. Process optimization for production and purification of a thermostable, organic solvent tolerant lipase from Acinetobacter sp. AU07.

    PubMed

    Gururaj, P; Ramalingam, Subramanian; Nandhini Devi, Ganesan; Gautam, Pennathur

    2016-01-01

    The purpose of this study was to isolate, purify and optimize the production conditions of an organic solvent tolerant and thermostable lipase from Acinetobacter sp. AU07 isolated from distillery waste. The lipase production was optimized by response surface methodology, and a maximum production of 14.5U/mL was observed at 30°C and pH 7, using a 0.5% (v/v) inoculum, 2% (v/v) castor oil (inducer), and agitation 150rpm. The optimized conditions from the shake flask experiments were validated in a 3L lab scale bioreactor, and the lipase production increased to 48U/mL. The enzyme was purified by ammonium sulfate precipitation and ion exchange chromatography and the overall yield was 36%. SDS-PAGE indicated a molecular weight of 45kDa for the purified protein, and Matrix assisted laser desorption/ionization time of flight analysis of the purified lipase showed sequence similarity with GDSL family of lipases. The optimum temperature and pH for activity of the enzyme was found to be 50°C and 8.0, respectively. The lipase was completely inhibited by phenylmethylsulfonyl fluoride but minimal inhibition was observed when incubated with ethylenediaminetetraacetic acid and dithiothreitol. The enzyme was stable in the presence of non-polar hydrophobic solvents. Detergents like SDS inhibited enzyme activity; however, there was minimal loss of enzyme activity when incubated with hydrogen peroxide, Tween 80 and Triton X-100. The kinetic constants (Km and Vmax) revealed that the hydrolytic activity of the lipase was specific to moderate chain fatty acid esters. The Vmax, Km and Vmax/Km ratio of the enzyme were 16.98U/mg, 0.51mM, and 33.29, respectively when 4-nitrophenyl palmitate was used as a substrate. PMID:27268114

  2. Process optimization for production and purification of a thermostable, organic solvent tolerant lipase from Acinetobacter sp. AU07.

    PubMed

    Gururaj, P; Ramalingam, Subramanian; Nandhini Devi, Ganesan; Gautam, Pennathur

    2016-01-01

    The purpose of this study was to isolate, purify and optimize the production conditions of an organic solvent tolerant and thermostable lipase from Acinetobacter sp. AU07 isolated from distillery waste. The lipase production was optimized by response surface methodology, and a maximum production of 14.5U/mL was observed at 30°C and pH 7, using a 0.5% (v/v) inoculum, 2% (v/v) castor oil (inducer), and agitation 150rpm. The optimized conditions from the shake flask experiments were validated in a 3L lab scale bioreactor, and the lipase production increased to 48U/mL. The enzyme was purified by ammonium sulfate precipitation and ion exchange chromatography and the overall yield was 36%. SDS-PAGE indicated a molecular weight of 45kDa for the purified protein, and Matrix assisted laser desorption/ionization time of flight analysis of the purified lipase showed sequence similarity with GDSL family of lipases. The optimum temperature and pH for activity of the enzyme was found to be 50°C and 8.0, respectively. The lipase was completely inhibited by phenylmethylsulfonyl fluoride but minimal inhibition was observed when incubated with ethylenediaminetetraacetic acid and dithiothreitol. The enzyme was stable in the presence of non-polar hydrophobic solvents. Detergents like SDS inhibited enzyme activity; however, there was minimal loss of enzyme activity when incubated with hydrogen peroxide, Tween 80 and Triton X-100. The kinetic constants (Km and Vmax) revealed that the hydrolytic activity of the lipase was specific to moderate chain fatty acid esters. The Vmax, Km and Vmax/Km ratio of the enzyme were 16.98U/mg, 0.51mM, and 33.29, respectively when 4-nitrophenyl palmitate was used as a substrate.

  3. A novel method for beef bone protein extraction by lipase-pretreatment and its application in the Maillard reaction.

    PubMed

    Song, Shiqing; Li, Sisi; Fan, Li; Hayat, Khizar; Xiao, Zuobing; Chen, Lihua; Tang, Qi

    2016-10-01

    Five beef bone hydrolysates were obtained by different enzyme treatment schemes, including papain (M), combination of porcine pancreatic lipase and papain (Z+M, combination of lipase and papain (Y+M), Protamex (F), combination of porcine pancreatic lipase and Protamex (Z+F). The degree of hydrolysis (DH), free amino acids and molecular weight distribution of these hydrolysates were evaluated. To further explore the differences between these five hydrolysates, Maillard reaction products (MRPs) were prepared using a xylose/cysteine/hydrolysate model. It was found that the DH, content of low molecular weight peptides and amino acids of hydrolysates increased significantly after lipase pre-treatment. GC-MS showed that the total content of furans, pyrroles and thioethers in MRPs Y+M increased by 78.0% compared with MRPs M, while in MRPs Z+F, pyrazines increased by 44.1% compared with MRPs F. Examining the sensory characteristics of the MRPs, the MRP from the hydrolysate of Y+M had the best mouthful, umami and meaty characteristics. The correlation analysis further confirmed that an appropriate lipase pre-treatment could improve the flavour of MRPs. PMID:27132826

  4. A novel method for beef bone protein extraction by lipase-pretreatment and its application in the Maillard reaction.

    PubMed

    Song, Shiqing; Li, Sisi; Fan, Li; Hayat, Khizar; Xiao, Zuobing; Chen, Lihua; Tang, Qi

    2016-10-01

    Five beef bone hydrolysates were obtained by different enzyme treatment schemes, including papain (M), combination of porcine pancreatic lipase and papain (Z+M, combination of lipase and papain (Y+M), Protamex (F), combination of porcine pancreatic lipase and Protamex (Z+F). The degree of hydrolysis (DH), free amino acids and molecular weight distribution of these hydrolysates were evaluated. To further explore the differences between these five hydrolysates, Maillard reaction products (MRPs) were prepared using a xylose/cysteine/hydrolysate model. It was found that the DH, content of low molecular weight peptides and amino acids of hydrolysates increased significantly after lipase pre-treatment. GC-MS showed that the total content of furans, pyrroles and thioethers in MRPs Y+M increased by 78.0% compared with MRPs M, while in MRPs Z+F, pyrazines increased by 44.1% compared with MRPs F. Examining the sensory characteristics of the MRPs, the MRP from the hydrolysate of Y+M had the best mouthful, umami and meaty characteristics. The correlation analysis further confirmed that an appropriate lipase pre-treatment could improve the flavour of MRPs.

  5. DONGLE and DEFECTIVE IN ANTHER DEHISCENCE1 lipases are not essential for wound- and pathogen-induced jasmonate biosynthesis: redundant lipases contribute to jasmonate formation.

    PubMed

    Ellinger, Dorothea; Stingl, Nadja; Kubigsteltig, Ines Ingeborg; Bals, Thomas; Juenger, Melanie; Pollmann, Stephan; Berger, Susanne; Schuenemann, Danja; Mueller, Martin Johannes

    2010-05-01

    Lipases are involved in the generation of jasmonates, which regulate responses to biotic and abiotic stresses. Two sn-1-specific acyl hydrolases, DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1) and DONGLE (DGL), have been reported to be localized in plastids and to be essential and sufficient for jasmonate biosynthesis in Arabidopsis (Arabidopsis thaliana) leaves. Here, we show that levels of 12-oxo-phytodienoic acid (OPDA) and jasmonic acid in three different DGL RNA interference lines and the dad1 mutant were similar to wild-type levels during the early wound response as well as after Pseudomonas infection. Due to the lack of sn-2 substrate specificity, synthesis of dinor OPDA was not expected and also not found to be affected in DGL knockdown and DGL-overexpressing lines. As reported, DAD1 participates in jasmonate formation only in the late wound response. In addition, DGL protein was found to be localized in lipid bodies and not in plastids. Furthermore, jasmonate levels in 16 additional mutants defective in the expression of lipases with predicted chloroplast localization did not show strong differences from wild-type levels after wounding, except for a phospholipase A (PLA) PLA-Igamma1 (At1g06800) mutant line that displayed diminished wound-induced dinor OPDA, OPDA, and jasmonic acid levels. A quadruple mutant defective in four DAD1-like lipases displayed similar jasmonate levels as the mutant line of PLA-Igamma1 after wounding. Hence, we identify PLA-Igamma1 as a novel target gene to manipulate jasmonate biosynthesis. Our results suggest that, in addition to DAD1 and PLA-Igamma1, still unidentified enzymes with sn-1 and sn-2 hydrolase activity are involved in wound- and pathogen-induced jasmonate formation, indicating functional redundancy within the lipase family.

  6. Intrinsic and extrinsic regulation of cardiac lipoprotein lipase following diabetes.

    PubMed

    Wang, Ying; Rodrigues, Brian

    2015-02-01

    Cardiac lipoprotein lipase (LPL) is a pivotal enzyme controlling heart metabolism by providing the majority of fatty acids required by this organ. From activation in cardiomyocytes to secretion to the vascular lumen, cardiac LPL is regulated by multiple pathways, which are altered during diabetes. Hence, dimerization/activation of LPL is modified following diabetes, a process controlled by lipase maturation factor 1. The role of AMP-activated protein kinase, protein kinase D, and heparan sulfate proteoglycans, intrinsic factors that regulate the intracellular transport of LPL is also shifted, and is discussed. More recent studies have identified several exogenous factors released from endothelial cells (EC) and adipose tissue that are required for proper functioning of LPL. In response to hyperglycemia, both active and latent heparanase are released from EC to facilitate LPL secretion. Diabetes also increased the expression of glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) in EC, which mediates the transport of LPL across EC. Angiopoietin-like protein 4 secreted from the adipose tissue has the potential to reduce coronary LPL activity. Knowledge of these intrinsic and extrinsic factors could be used develop therapeutic targets to normalize LPL function, and maintain cardiac energy homeostasis after diabetes. PMID:25463481

  7. Solvent-Free Lipase-Catalyzed Synthesis of Diacylgycerols as Low-Calorie Food Ingredients

    PubMed Central

    Vázquez, Luis; González, Noemí; Reglero, Guillermo; Torres, Carlos

    2016-01-01

    Problems derived from obesity and overweight have recently promoted the development of fat substitutes and other low-calorie foods. On the one hand, fats with short- and medium-chain fatty acids are a source of quick energy, easily hydrolyzable and hardly stored as fat. Furthermore, 1,3-diacylglycerols are not hydrolyzed to 2-monoacylglycerols in the gastrointestinal tract, reducing the formation of chylomicron and lowers the serum level of triacylglycerols by decreasing its resynthesis in the enterocyte. In this work, these two effects were combined to synthesize short- and medium-chain 1,3-diacylglycerols, leading to a product with great potential as for their low-calorie properties. Lipase-catalyzed transesterification reactions were performed between short- and medium-chain fatty acid ethyl esters and glycerol. Different variables were investigated, such as the type of biocatalyst, the molar ratio FAEE:glycerol, the adsorption of glycerol on silica gel, or the addition of lecithin. Best reaction conditions were evaluated considering the percentage of 1,3-DAG produced and the reaction rate. Except Novozym 435 (Candida antarctica), other lipases required the adsorption of glycerol on silica gel to form acylglycerols. Lipases that gave the best results with adsorption were Novozym 435 and Lipozyme RM IM (Rhizomucor miehei) with 52 and 60.7% DAG at 32 h, respectively. Because of its specificity for sn-1 and sn-3 positions, lipases leading to a higher proportion of 1,3-DAG vs. 1,2-DAG were Lipozyme RM IM (39.8 and 20.9%, respectively) and Lipase PLG (Alcaligenes sp.) (35.9 and 19.3%, respectively). By adding 1% (w/w) of lecithin to the reaction with Novozym 435 and raw glycerol, the reaction rate was considerably increased from 41.7 to 52.8% DAG at 24 h. PMID:26904539

  8. Studies on lipase-affinity adsorption using response-surface analysis.

    PubMed

    Kamimura, E S; Medieta, O; Rodrigues, M I; Maugeri, F

    2001-06-01

    Lipases are widely distributed enzymes that can be obtained from animals, plants and micro-organisms. Coupling lipases with a wide range of substrates allows the opportunity for synthesis of optically pure pharmaceutical preparations, flavour compounds and other food additives. Affinity chromatography owes its power as a purification method to specific biological interactions. Response-surface analysis was chosen to study column efficiency. This method allows the understanding of interactions between variables with advantages over conventional methods, which involve changing one variable while fixing others at certain levels. The aim of this work was to study the influence of the ratio bed height/column diameter (L/D) and superficial velocity (V) on the column efficiency. The experimental design involved the two variables, L/D (2-10) and v (1-2 cm/min), at five levels. Lipase was obtained from Geotrichum sp. culture in a complex medium composed of 5% corn-steep liquor, 0.5% NH(4)NO(3) and 1% olive oil at 30 degrees C, with 1VVM (air volume/medium volume per min) aeration and 400 rev./min agitation. Maximum lipase activity was 19 units/ml after almost 9 h of fermentation. This lipase could potentially be used in esterification reactions to increase the content of gamma-linolenic acid and to produce bioaromas for food industries. The adsorption assays were carried out in a fixed-bed column with an affinity adsorbent, which was obtained by reaction of a gel with oleic acid as ligand. Breakthrough curves were obtained for all experiments. It has been shown that the lower the values of both L/D and v, the higher the column efficiency (maximum 65.43%). Also, it was observed from the response surface that the efficiency reached a minimum at an L/D of around 8.

  9. Protein purification and cloning of diacylglycerol lipase from rat brain.

    PubMed

    Aso, Chizu; Araki, Mari; Ohshima, Noriyasu; Tatei, Kazuaki; Hirano, Tohko; Obinata, Hideru; Kishi, Mikiko; Kishimoto, Koji; Konishi, Akimitsu; Goto, Fumio; Sugimoto, Hiroyuki; Izumi, Takashi

    2016-06-01

    Diacylglycerol (DG) lipase, which hydrolyses 1-stearoyl-2-arachidonyl-sn-glycerol to produce an endocannabinoid, 2-arachidonoylglycerol, was purified from the soluble fraction of rat brain lysates. DG lipase was purified about 1,200-fold by a sequential column chromatographic procedure. Among proteins identified by mass spectrometry analysis in the partially purified DG lipase sample, only DDHD domain containing two (DDHD2), which was formerly regarded as a phospholipase A1, exhibited significant DG lipase activity. Rat DDHD2 expressed in Chinese hamster ovary cells showed similar enzymatic properties to partially purified DG lipase from rat brain. The source of DG lipase activity in rat brain was immunoprecipitated using anti-DDHD2 antibody. Thus, we concluded that the DG lipase activity in the soluble fraction of rat brain is derived from DDHD2. DDHD2 is distributed widely in the rat brain. Immunohistochemical analysis revealed that DDHD2 is expressed in hippocampal neurons, but not in glia.

  10. A new alkaline lipase obtained from the metagenome of marine sponge Ircinia sp.

    PubMed

    Su, Jing; Zhang, Fengli; Sun, Wei; Karuppiah, Valliappan; Zhang, Guangya; Li, Zhiyong; Jiang, Qun

    2015-07-01

    Microorganisms associated with marine sponges are potential resources for marine enzymes. In this study, culture-independent metagenomic approach was used to isolate lipases from the complex microbiome of the sponge Ircinia sp. obtained from the South China Sea. A metagenomic library was constructed, containing 6568 clones, and functional screening on 1 % tributyrin agar resulted in the identification of a positive lipase clone (35F4). Following sequence analysis 35F4 clone was found to contain a putative lipase gene lipA. Sequence analysis of the predicted amino acid sequence of LipA revealed that it is a member of subfamily I.1 of lipases, with 63 % amino acid similarity to the lactonizing lipase from Aeromonas veronii (WP_021231793). Based on the predicted secondary structure, LipA was predicted to be an alkaline enzyme by sequence/structure analysis. Heterologous expression of lipA in E. coli BL21 (DE3) was performed and the characterization of the recombinant enzyme LipA showed that it is an alkaline enzyme with high tolerance to organic solvents. The isolated lipase LipA was active in the broad alkaline range, with the highest activity at pH 9.0, and had a high level of stability over a pH range of 7.0-12.0. The activity of LipA was increased in the presence of 5 mM Ca(2+) and some organic solvents, e.g. methanol, acetone and isopropanol. The optimum temperature for the activity of LipA is 40 °C and the molecular weight of LipA was determined to be ~30 kDa by SDS-PAGE. LipA is an alkaline lipase and shows good tolerance to some organic solvents, which make it of potential utility in the detergent industry and enzyme mediated organic synthesis. The result of this study has broadened the diversity of known lipolytic genes and demonstrated that marine sponges are an important source for new enzymes.

  11. Kinetics of the two-step hydrolysis of triacylglycerol by pancreatic lipases.

    PubMed

    Lykidis, A; Mougios, V; Arzoglou, P

    1995-06-15

    Pancreatic lipases catalyze the hydrolysis of triacylglycerol in a sequential manner. First, triacylglycerol is hydrolyzed to 1,2-diacylglycerol, which is subsequently converted to 2-monoacylglycerol. We studied the kinetics of trioleoylglycerol hydrolysis by rabbit and human pancreatic lipases. The products (acylglycerols and fatty acid) were analyzed by extraction from the reaction mixture, separation by thin-layer chromatography, and quantification by capillary gas chromatography. The first-order rate constants of trioleoylglycerol and dioleoylglycerol hydrolysis were calculated showing that both enzymes hydrolyze dioleoylglycerol faster than trioleoylglycerol. Using rabbit pancreatic lipase, we found that deoxycholate enhanced dioleoylglycerol hydrolysis to a higher degree than trioleoylglycerol hydrolysis. Colipase increased both rate constants similarly at high deoxycholate concentrations (35 mM), while at low concentrations (5 mM) a selectivity toward trioleoylglycerol was observed. From the variation of the rate constants with respect to temperature, we calculated the apparent activation energies of trioleoylglycerol and dioleoylglycerol hydrolysis to be 59.8 kJ.mol-1 and 53.5 kJ.mol-1, respectively. Upon storage, both rabbit and human pancreatic lipases showed a greater loss of activity toward dioleoylglycerol as compared to trioleoylglycerol, suggesting that different conformational elements of the enzyme molecule are responsible for the interaction with each substrate.

  12. The surface-associated protein of Staphylococcus saprophyticus is a lipase.

    PubMed

    Sakinc, Türkan; Woznowski, Magdalena; Ebsen, Michael; Gatermann, Sören G

    2005-10-01

    Staphylococcus saprophyticus surface-associated protein (Ssp) was the first surface protein described for this organism. Ssp-positive strains display a fuzzy layer of surface-associated material in electron micrographs, whereas Ssp-negative strains appear to be smooth. The physiologic function of Ssp, however, has remained elusive. To clone the associated gene, we determined the N-terminal sequence, as well as an internal amino acid sequence, of the purified protein. We derived two degenerate primers from these peptide sequences, which we used to identify the ssp gene from genomic DNA of S. saprophyticus 7108. The gene was cloned by PCR techniques and was found to be homologous to genes encoding staphylococcal lipases. In keeping with this finding, strains 7108 and 9325, which are Ssp positive, showed lipase activity on tributyrylglycerol agar plates, whereas the Ssp-negative strain CCM883 did not. Association of enzyme activity with the cloned DNA was proven by introducing the gene into Staphylococcus carnosus TM300. When wild-type strain 7108 and an isogenic mutant were analyzed by transmission electron microscopy, strain 7108 exhibited the fuzzy surface layer, whereas the mutant appeared to be smooth. Lipase activity and the surface appendages could be restored by reintroduction of the cloned gene into the mutant. Experiments using immobilized collagen type I did not provide evidence for the involvement of Ssp in adherence to this matrix protein. Our experiments thus provided evidence that Ssp is a surface-associated lipase of S. saprophyticus.

  13. [Influence of tobacco smoking on lipase activity in patients with pancreatitis].

    PubMed

    Sliwińska-Mossoń, Mariola; Milnerowicz, Halina

    2005-01-01

    The aim of this study is to prove the influence of tobacco smoking on lipase activity in the blood of smoking and non-smoking health persons and in smoking and non-smoking patients with diagnosed acute (AP), chronic exaggerated (CEP) and chronic pancreatitis (CP). The blood has been collected from 28 healthy persons and 55 patients with AP, CEP and CP. The enzyme activity has been determined using the colorimetric method with substrate 1,2-odilauryl-rac-glycero-3-glutaric acid -(6-methylresorufin) ester. The exposures to tobacco smoke have been examined on the basic of concentration of cotinine in the serum of patients. The highest lipase activity has been found in smoking patients with CEP. It has been noted that the serum lipase activity is significantly higher in smoking and healthy persons (p<0,05) then in non-smoking and healthy patients. However no significant differences have been found between the lipase activity in smoking patients with CP and non-smoking patients with CP. Smoking patients with AP and CEP have been found to have a significantly increased enzyme activity (p>0.01; p>0.05 respectively) when compared to non-smoking patients. Results of examination indicate that tobacco smoking has a significant influence on exocrine function of pancreas.

  14. Efficient production of biodiesel from waste grease: one-pot esterification and transesterification with tandem lipases.

    PubMed

    Yan, Jinyong; Li, Aitao; Xu, Yi; Ngo, Thao P N; Phua, Szechao; Li, Zhi

    2012-11-01

    A novel concept and efficient method for producing biodiesel (FAME) from grease (15-40wt% free fatty acid, FFA) were developed by using tandem lipases for one-pot esterification of FFA and transesterification of triglyceride with methanol in a solvent-free system. Combining immobilized Candida antarctica lipase B (CALB) (Novozyme 435) favoring the esterification and immobilized Thermomyces lanuginosus lipase (TLL) (Lipozyme TLIM) preferring the transesterification at 2:8 (wt/wt) gave FAME in 80% yield, being better than that with Novozyme 435 or Lipozyme TLIM. Recombinant Escherichia coli (Calb/Tll) co-expressing CALB and TLL was engineered as a more efficient tandem-lipases system. Using wet or dry cells (4wt%) gave FAME in 87% or 95% yield, which is much better than that with E. coli cells expressing either CALB or TLL alone. Cells of E. coli (Calb/Tll) were recycled for five times and retained 75% productivity, thus being practical for producing biodiesel from grease.

  15. Biodiesel production from Nannochloropsis gaditana lipids through transesterification catalyzed by Rhizopus oryzae lipase.

    PubMed

    Navarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro Antonio; Esteban Cerdán, Luis; Martín Valverde, Lorena; Molina Grima, Emilio

    2016-03-01

    Biodiesel (fatty acid methyl esters, FAMEs) was produced from saponifiable lipids (SLs) extracted from wet Nannochloropsis gaditana biomass using methanolysis catalyzed by Rhizopus oryzae intracellular lipase. SLs were firstly extracted with ethanol to obtain 31 wt% pure SLs. But this low SL purity also gave a low biodiesel conversion (58%). This conversion increased up to 80% using SLs purified by crystallization in acetone (95 wt% purity). Polar lipids play an important role in decreasing the reaction velocity - using SLs extracted with hexane, which have lower polar lipid content (37.4% versus 49.0% using ethanol), we obtained higher reaction velocities and less FAME conversion decrease when the same lipase batch was reused. 83% of SLs were transformed to biodiesel using a 70 wt% lipase/SL ratio, 11:1 methanol/SL molar ratio, 10 mL t-butanol/g SLs after 72 h. The FAME conversion decreased to 71% after catalyzing three reactions with the same lipase batch. PMID:26735878

  16. Immobilization of lipase and keratinase on functionalized SBA-15 nanostructured materials

    NASA Astrophysics Data System (ADS)

    Le, Hy G.; Vu, Tuan A.; Tran, Hoa T. K.; Dang, Phuong T.

    2013-12-01

    SBA-15 nanostructured materials were synthesized via hydrothermal treatment and were functionalized with 3- aminopropyltriethoxysilane (APTES). The obtained samples were characterized by different techniques such as XRD, BET, TEM, IR and DTA. After functionalization, it showed that these nanostrucrured materials still maintained the hexagonal pore structure of the parent SBA-15. The model enzyms chosen in this study were lipase and keratinase. Lipase was a biocatalyst for hydrolyzation of long chain triglycerides or methyl esters of long chain alcohols and fatty acids; keratinase is a proteolytic enzyme that catalyzes the cleavage of keratin. The functionalized SBA-15 materials were used to immobilize lipase and keratinase, exhibiting higher activity than that of the unfunctionalized pure silica SBA-15 ones. This might be due to the enhancing of surface hydrophobicity upon functionalization. The surface functionalization of the nanostructured silicas with organic groups can favor the interaction between enzyme and the supports and consequently increasing the operational stability of the immobilized enzymes. The loading of lipase on functionalized SBA-15 materials was higher than that of keratinase. This might be rationalized by the difference in size of enzyms.

  17. Identification and Characterization of Lipase Activity and Immunogenicity of LipL from Mycobacterium tuberculosis.

    PubMed

    Cao, Jun; Dang, Guanghui; Li, Huafang; Li, Tiantian; Yue, Zhiguo; Li, Na; Liu, Yajun; Liu, Siguo; Chen, Liping

    2015-01-01

    Lipids and lipid-metabolizing esterases/lipases are highly important for the mycobacterial life cycle and, possibly, for mycobacterial virulence. In this study, we expressed 10 members of the Lip family of Mycobacterium tuberculosis. Among the 10 proteins, LipL displayed a significantly high enzymatic activity for the hydrolysis of long-chain lipids. The optimal temperature for the lipase activity of LipL was demonstrated to be 37°C, and the optimal pH was 8.0. The lipase active center was not the conserved motif G-x-S-x-G, but rather the S-x-x-K and GGG motifs, and the key catalytic amino acid residues were identified as G50, S88, and K91, as demonstrated through site-directed mutagenesis experiments. A three-dimensional modeling structure of LipL was constructed, which showed that the GGG motif was located in the surface of a pocket structure. Furthermore, the subcellular localization of LipL was demonstrated to be on the mycobacterial surface by Western blot analysis. Our results revealed that the LipL protein could induce a strong humoral immune response in humans and activate a CD8+ T cell-mediated response in mice. Overall, our study identified and characterized a novel lipase denoted LipL from M. tuberculosis, and demonstrated that LipL functions as an immunogen that activates both humoral and cell-mediated responses. PMID:26398213

  18. Efficient production of biodiesel from waste grease: one-pot esterification and transesterification with tandem lipases.

    PubMed

    Yan, Jinyong; Li, Aitao; Xu, Yi; Ngo, Thao P N; Phua, Szechao; Li, Zhi

    2012-11-01

    A novel concept and efficient method for producing biodiesel (FAME) from grease (15-40wt% free fatty acid, FFA) were developed by using tandem lipases for one-pot esterification of FFA and transesterification of triglyceride with methanol in a solvent-free system. Combining immobilized Candida antarctica lipase B (CALB) (Novozyme 435) favoring the esterification and immobilized Thermomyces lanuginosus lipase (TLL) (Lipozyme TLIM) preferring the transesterification at 2:8 (wt/wt) gave FAME in 80% yield, being better than that with Novozyme 435 or Lipozyme TLIM. Recombinant Escherichia coli (Calb/Tll) co-expressing CALB and TLL was engineered as a more efficient tandem-lipases system. Using wet or dry cells (4wt%) gave FAME in 87% or 95% yield, which is much better than that with E. coli cells expressing either CALB or TLL alone. Cells of E. coli (Calb/Tll) were recycled for five times and retained 75% productivity, thus being practical for producing biodiesel from grease. PMID:22940338

  19. High-level soluble expression of Serratia marcescens H30 lipase in Escherichia coli.

    PubMed

    Su, Erzheng; Xu, Jingjing; Wu, Xiangping

    2015-01-01

    Serratia marcescens lipase (SmL) is an important biocatalyst used to enantioselectively hydrolyze (±)-trans-3-(4-methoxyphynyl) glycidic acid methyl ester. However, the economically justified level recombinant soluble expression of SmL in Escherichia coli has not been established. Thus, fusion genes of lipase from S. marcescens H30 with different fusion tags were constructed and expressed in E. coli. The effects of fusion tags were revealed. A significant increase in recombinant lipase solubility showed that E. coli BL21 (DE3)/pET32a-SmL was a suitable choice for SmL production. To optimize the performance of recombinant SmL production, changes in culture medium compositions and induction conditions were systematically tested. Finally, the recombinant SmL activity and productivity reached approximately 23,000 U/L and 1,278 U/L/H in shake flasks, respectively. This value is the highest SmL activity attained by heterogeneous recombinant expression in E. coli. Lipase activity and productivity reached 19,650 U/L and 1,228 U/L/H, respectively, by scaling up SmL production in a 7.0 L fermenter. The existence of the Trx tag did not influence the chiral selectivity of recombinant SmL. These findings indicate a possibility for soluble and economical SmL expression in E. coli to meet industrial needs.

  20. Antioxidant and lipase inhibitory activities and essential oil composition of pomegranate peel extracts.

    PubMed

    Hadrich, Fatma; Cher, Slim; Gargouri, Youssef Talel; Adel, Sayari

    2014-01-01

    The chemical composition of essential oil, antioxidant and pancreatic lipase inhibitory activities of various solvent extracts obtained from pomegranate peelTunisian cultivar was evaluated. Gas chromatography/mass spectrometry was used to determine the composition of the PP essential oil. Nine-teen components were identified and the main compounds were the camphor (60.32%) and the benzaldehyde (20.98%). The phenolic and flavonoids content varied from 0 to 290.10 mg Gallic acid equivalent and from 5.2 to 20.43 mg catechin equivalent/g dried extract. The antioxidant activity of various solvent extracts from pomegranate peel was also investigated using various in vitro assays as the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical method, β-carotene bleaching and reducing power assays.Methanol and ethanol extracts showed the most potent antioxidant activity in all assays tested followed by water and acetone extracts. The inhibitory effect of the pomegranate peelextracts on porcine pancreatic lipase was evaluated and the results showed that ethanol and methanol extracts markedly reduced lipase activity. Generally, the highestlipase activity inhibitory (100%) was observed at a concentration of 1 mg/ml after 30 min of incubation. LC-MS analysis of ethanol extract showed the presence of four components which are cholorogenic acid, mannogalloylhexoside, gallic acid and ellagic acid. Our findings demonstrate that the ethanol extract from pomegranate peel might be a good candidate for furtherinvestigations of new bioactive substances. PMID:24770478

  1. New Extremophilic Lipases and Esterases from Metagenomics

    PubMed Central

    López-López, Olalla; Cerdán, Maria E; González Siso, Maria I

    2014-01-01

    Lipolytic enzymes catalyze the hydrolysis of ester bonds in the presence of water. In media with low water content or in organic solvents, they can catalyze synthetic reactions such as esterification and transesterification. Lipases and esterases, in particular those from extremophilic origin, are robust enzymes, functional under the harsh conditions of industrial processes owing to their inherent thermostability and resistance towards organic solvents, which combined with their high chemo-, regio- and enantioselectivity make them very attractive biocatalysts for a variety of industrial applications. Likewise, enzymes from extremophile sources can provide additional features such as activity at extreme temperatures, extreme pH values or high salinity levels, which could be interesting for certain purposes. New lipases and esterases have traditionally been discovered by the isolation of microbial strains producing lipolytic activity. The Genome Projects Era allowed genome mining, exploiting homology with known lipases and esterases, to be used in the search for new enzymes. The Metagenomic Era meant a step forward in this field with the study of the metagenome, the pool of genomes in an environmental microbial community. Current molecular biology techniques make it possible to construct total environmental DNA libraries, including the genomes of unculturable organisms, opening a new window to a vast field of unknown enzymes with new and unique properties. Here, we review the latest advances and findings from research into new extremophilic lipases and esterases, using metagenomic approaches, and their potential industrial and biotechnological applications. PMID:24588890

  2. Structural characterization of MAPLE deposited lipase biofilm

    NASA Astrophysics Data System (ADS)

    Aronne, Antonio; Ausanio, Giovanni; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Fanelli, Esther; Massoli, Patrizio; Vicari, Luciano R. M.

    2014-11-01

    Lipases (triacylglycerol ester hydrolases) are enzymes used in several industrial applications. Enzymes immobilization can be used to address key issues limiting widespread application at industrial level. Immobilization efficiency is related to the ability to preserve the native conformation of the enzyme. MAPLE (Matrix Assisted Pulsed Laser Evaporation) technique, a laser deposition procedure for treating organic/polymeric/biomaterials, was applied for the deposition of lipase enzyme in an ice matrix, using near infrared laser radiation. Microscopy analysis showed that the deposition occurred in micrometric and submicrometric clusters with a wide size distribution. AFM imaging showed that inter-cluster regions are uniformly covered with smaller aggregates of nanometric size. Fourier transform infrared spectroscopy was used for both recognizing the deposited material and analyzing its secondary structure. Results showed that the protein underwent reversible self-association during the deposition process. Actually, preliminary tests of MAPLE deposited lipase used for soybean oil transesterification with isopropyl alcohol followed by gas chromatography-mass spectrometry gave results consistent with undamaged deposition of lipase.

  3. Agroindustrial Wastes as Alternative for Lipase Production by Candida viswanathii under Solid-State Cultivation: Purification, Biochemical Properties, and Its Potential for Poultry Fat Hydrolysis

    PubMed Central

    Dias, Kleydiane Braga; da Silva, Ana Carolina Cerri; Terrasan, César Rafael Fanchini

    2016-01-01

    The aims of this work were to establish improved conditions for lipase production by Candida viswanathii using agroindustrial wastes in solid-state cultivation and to purify and evaluate the application of this enzyme for poultry fat hydrolysis. Mixed wheat bran plus spent barley grain (1 : 1, w/w) supplemented with 25.0% (w/w) olive oil increased the lipase production to 322.4%, compared to the initial conditions. When olive oil was replaced by poultry fat, the highest lipase production found at 40% (w/w) was 31.43 U/gds. By selecting, yeast extract supplementation (3.5%, w/w), cultivation temperature (30°C), and substrate moisture (40%, w/v), lipase production reached 157.33 U/gds. Lipase was purified by hydrophobic interaction chromatography, presenting a molecular weight of 18.5 kDa as determined by SDS-PAGE. The crude and purified enzyme showed optimum activity at pH 5.0 and 50°C and at pH 5.5 and 45°C, respectively. The estimated half-life at 50°C was of 23.5 h for crude lipase and 6.7 h at 40°C for purified lipase. Lipase presented high activity and stability in many organic solvents. Poultry fat hydrolysis was maximum at pH 4.0, reaching initial hydrolysis rate of 33.17 mmol/L/min. Thus, C. viswanathii lipase can be successfully produced by an economic and sustainable process and advantageously applied for poultry fat hydrolysis without an additional acidification step to recover the released fatty acids. PMID:27725884

  4. The Metagenome-Derived Enzymes LipS and LipT Increase the Diversity of Known Lipases

    PubMed Central

    Chow, Jennifer; Kovacic, Filip; Dall Antonia, Yuliya; Krauss, Ulrich; Fersini, Francesco; Schmeisser, Christel; Lauinger, Benjamin; Bongen, Patrick; Pietruszka, Joerg; Schmidt, Marlen; Menyes, Ina; Bornscheuer, Uwe T.; Eckstein, Marrit; Thum, Oliver; Liese, Andreas; Mueller-Dieckmann, Jochen; Jaeger, Karl-Erich; Streit, Wolfgang R.

    2012-01-01

    Triacylglycerol lipases (EC 3.1.1.3) catalyze both hydrolysis and synthesis reactions with a broad spectrum of substrates rendering them especially suitable for many biotechnological applications. Most lipases used today originate from mesophilic organisms and are susceptible to thermal denaturation whereas only few possess high thermotolerance. Here, we report on the identification and characterization of two novel thermostable bacterial lipases identified by functional metagenomic screenings. Metagenomic libraries were constructed from enrichment cultures maintained at 65 to 75°C and screened resulting in the identification of initially 10 clones with lipolytic activities. Subsequently, two ORFs were identified encoding lipases, LipS and LipT. Comparative sequence analyses suggested that both enzymes are members of novel lipase families. LipS is a 30.2 kDa protein and revealed a half-life of 48 h at 70°C. The lipT gene encoded for a multimeric enzyme with a half-life of 3 h at 70°C. LipS had an optimum temperature at 70°C and LipT at 75°C. Both enzymes catalyzed hydrolysis of long-chain (C12 and C14) fatty acid esters and additionally hydrolyzed a number of industry-relevant substrates. LipS was highly specific for (R)-ibuprofen-phenyl ester with an enantiomeric excess (ee) of 99%. Furthermore, LipS was able to synthesize 1-propyl laurate and 1-tetradecyl myristate at 70°C with rates similar to those of the lipase CalB from Candida antarctica. LipS represents the first example of a thermostable metagenome-derived lipase with significant synthesis activities. Its X-ray structure was solved with a resolution of 1.99 Å revealing an unusually compact lid structure. PMID:23112831

  5. A novel cold-active lipase from Candida albicans: cloning, expression and characterization of the recombinant enzyme.

    PubMed

    Lan, Dong-Ming; Yang, Ning; Wang, Wen-Kai; Shen, Yan-Fei; Yang, Bo; Wang, Yong-Hua

    2011-01-01

    A novel lipase gene lip5 from the yeast Candida albicans was cloned and sequenced. Alignment of amino acid sequences revealed that 86-34% identity exists with lipases from other Candida species. The lipase and its mutants were expressed in the yeast Pichia pastoris, where alternative codon usage caused the mistranslation of 154-Ser and 293-Ser as leucine. 154-Ser to leucine resulted in loss of expression of Lip5, and 293-Ser to leucine caused a marked reduction in the lipase activity. Lip5-DM, which has double mutations that revert 154 and 293 to serine residues, showed good lipase activity, and was overexpressed and purified by (NH(4))(2)SO(4) precipitation and ion-exchange chromatography. The pure Lip5-DM was stable at low temperatures ranging from 15-35 °C and pH 5-9, with the optimal conditions being 15-25 °C and pH 5-6. The activation energy of recombinant lipase was 8.5 Kcal/mol between 5 and 25 °C, suggesting that Lip5-DM was a cold-active lipase. Its activity was found to increase in the presence of Zn(2+), but it was strongly inhibited by Fe(2+), Fe(3+), Hg(2+) and some surfactants. In addition, the Lip5-DM could not tolerate water-miscible organic solvents. Lip5-DM exhibited a preference for the short-and medium-chain length p-nitrophenyl (C4 and C8 acyl group) esters rather than the long chain length p-nitrophenyl esters (C12, C16 and C18 acyl group) with highest activity observed with the C8 derivatives. The recombinant enzyme displayed activity toward triacylglycerols, such as olive oil and safflower oil.

  6. Hydrolysis characteristics of bovine milk fat and monoacid triglycerides mediated by pregastric lipase from goats and kids.

    PubMed

    Lai, D T; MacKenzie, A D; O'Connor, C J; Turner, K W

    1997-10-01

    Commercial extracts from oro-pharyngeal tissues of goats and kids have been used as the source of pregastric lipase and have been processed to yield partially purified samples of the primary pregastric lipase. The activity of these lipases against tributyrylglycerol has been determined over a range of pH and temperatures. Optimum pH conditions for pregastric lipase ranged from pH 5.6 to 6.5 for goats and from pH 5.5 to 6.2 for kids, respectively; the optimum temperature ranged from 43 to 60 degrees C. Optima for kid lipase extended slightly below pH 5.5 and higher than 60 degrees C; which were the limits of the test conditions. The enzymes were also used as catalysts for the hydrolysis of monoacid triglycerides (C4:0 to C12:0) at 40 degrees C and pH 6.5; activity was maximum against tributyrylglycerol (C4:0). Values for the Michaelis-Menten constant, increased as carbon chain length of the carboxylic moiety on the triglycerides increased, but values were identical for pregastric lipases of both goats and kids. Anhydrous milk fat was hydrolyzed by the commercial extracts of pregastric lipases of goats and kids, and the resulting profiles for free fatty acids were very similar to one another and to the corresponding profile for a commercial sample of Parmesan cheese. There appear to be no significant differences in activity between the enzyme preparations from goats and kids.

  7. Direct transesterification of Oedogonium sp. oil be using immobilized isolated novel Bacillus sp. lipase.

    PubMed

    Sivaramakrishnan, Ramachandran; Muthukumar, Karuppan

    2014-01-01

    This work emphasizes the potential of the isolated Bacillus sp. lipase for the production of fatty acid methyl ester by the direct transesterification of Oedogonium sp. of macroalgae. Dimethyl carbonate was used as the extraction solvent and also as the reactant. The effect of solvent/algae ratio, water addition, catalyst, temperature, stirring and time on the direct transesterification was studied. The highest fatty acid methyl ester yield obtained under optimum conditions (5 g Oedogonium sp. powder, 7.5 ml of solvent (dimethyl carbonate)/g of algae, 8% catalyst (%wt/wt of oil), distilled water 1% (wt/wt of algae), 36 h, 55°C and 180 rpm) was 82%. Final product was subjected to thermogravimetric analysis and (1)H NMR analysis. The results showed that the isolated enzyme has good potential in catalyzing the direct transesterification of algae, and the dimethyl carbonate did not affect the activity of the isolated lipase. PMID:23890544

  8. Direct transesterification of Oedogonium sp. oil be using immobilized isolated novel Bacillus sp. lipase.

    PubMed

    Sivaramakrishnan, Ramachandran; Muthukumar, Karuppan

    2014-01-01

    This work emphasizes the potential of the isolated Bacillus sp. lipase for the production of fatty acid methyl ester by the direct transesterification of Oedogonium sp. of macroalgae. Dimethyl carbonate was used as the extraction solvent and also as the reactant. The effect of solvent/algae ratio, water addition, catalyst, temperature, stirring and time on the direct transesterification was studied. The highest fatty acid methyl ester yield obtained under optimum conditions (5 g Oedogonium sp. powder, 7.5 ml of solvent (dimethyl carbonate)/g of algae, 8% catalyst (%wt/wt of oil), distilled water 1% (wt/wt of algae), 36 h, 55°C and 180 rpm) was 82%. Final product was subjected to thermogravimetric analysis and (1)H NMR analysis. The results showed that the isolated enzyme has good potential in catalyzing the direct transesterification of algae, and the dimethyl carbonate did not affect the activity of the isolated lipase.

  9. Efficient regioselective acylation of quercetin using Rhizopus oryzae lipase and its potential as antioxidant.

    PubMed

    Kumar, Vinod; Jahan, Firdaus; Mahajan, Richi V; Saxena, Rajendra Kumar

    2016-10-01

    The present investigation describes the regioselective enzymatic acylation of quercetin with ferulic acid using Rhizopus oryzae lipase. Optimization of reaction parameters resulted in 93.2% yield of the ester synthesized using 750IU of lipase in cyclo-octane at a temperature of 45°C. The reaction was successfully carried out upto 25g scale. The ester synthesized was analyzed by (1)H Nuclear magnetic resonance spectroscopy. The ester synthesized (quercetin ferulate) showed higher antiradical activity as compared to ascorbic acid using the 2,2-diphenyl-1-picrylhydrazyl radical method. These results on enzyme-catalyzed acylation of quercetin might be used to prepare and scale-up other flavonoids derivatives. PMID:27372535

  10. Efficient regioselective acylation of quercetin using Rhizopus oryzae lipase and its potential as antioxidant.

    PubMed

    Kumar, Vinod; Jahan, Firdaus; Mahajan, Richi V; Saxena, Rajendra Kumar

    2016-10-01

    The present investigation describes the regioselective enzymatic acylation of quercetin with ferulic acid using Rhizopus oryzae lipase. Optimization of reaction parameters resulted in 93.2% yield of the ester synthesized using 750IU of lipase in cyclo-octane at a temperature of 45°C. The reaction was successfully carried out upto 25g scale. The ester synthesized was analyzed by (1)H Nuclear magnetic resonance spectroscopy. The ester synthesized (quercetin ferulate) showed higher antiradical activity as compared to ascorbic acid using the 2,2-diphenyl-1-picrylhydrazyl radical method. These results on enzyme-catalyzed acylation of quercetin might be used to prepare and scale-up other flavonoids derivatives.

  11. Anti-obesity activity of hen egg anti-lipase immunoglobulin yolk, a novel pancreatic lipase inhibitor

    PubMed Central

    2013-01-01

    Background There is completely no report about both hen egg anti-lipase immunoglobulin yolk (IgY) and its anti-obesity action. Thus, we tried to isolate and characterize a novel anti-lipase immunoglobulin from hen egg yolk. Moreover, we investigated whether hen egg yolk anti-lipase IgY inhibits pancreatic lipase activity in vitro, and examined its ability to prevent obesity in a murine high fat diet-induced obesity model. Methods We determined the inhibitory action of Anti-lipase IgY on lipase activity in vitro. We also focused our evaluation on the anti-obesity properties of Anti-lipase IgY in a murine high fat diet-induced obesity model. Results Anti-lipase IgY blocked porcine lipase activity with an IC50 of 0.49 μM. Supplementing the high fat diet with only 0.2% (w/w) of Anti-lipase IgY for 35 days significantly decreased the weights of intraperitoneal adipose tissues, epididymal, mesenteric, retroperitoneal and perirenal adipose tissues, and the amounts of hepatic total lipid, triglyceride, and cholesterol. This was accompanied by a significant increase in the fecal excretion of triglyceride in the absence of diarrhea. Furthermore, Anti-lipase IgY treatment restored body weight gain to levels similar to mice fed with Control IgY. Conclusions This study provides the first report of the development of anti-lipase IgY and the direct evidence that inhibition of pancreatic lipase using Anti-lipase IgY is an effective anti-obesity treatment due to the associated increase in fecal excretion of triglyceride. PMID:24321125

  12. Expression of a lipid-inducible, self-regulating form of Yarrowia lipolytica lipase LIP2 in Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Yarrowia lipolytica lipase 2 gene (YlLIP2) was cloned into galactose- and fatty acid-inducible Saccharomyces cerevisiae expression vectors and used to generate yeast strains that secrete active LIP2 enzyme activity, as evidenced by results from gene expression analysis and tributyrin turbidity c...

  13. Compound heterozygote for lipoprotein lipase deficiency: Ser----Thr244 and transition in 3' splice site of intron 2 (AG----AA) in the lipoprotein lipase gene.

    PubMed Central

    Hata, A; Emi, M; Luc, G; Basdevant, A; Gambert, P; Iverius, P H; Lalouel, J M

    1990-01-01

    Cloning and sequencing of translated exons and intron-exon boundaries of the lipoprotein lipase gene in a patient of French descent who has the chylomicronemia syndrome revealed that he was a compound heterozygote for two nucleotide substitutions. One (TCC----ACC) leads to an amino acid substitution (Ser----Thr244), while the other alters the 3' splice site of intron 2 (AG----AA). The functional significance of the Thr244 amino acid substitution was established by in vitro expression in cultured mammalian cells. Images Figure 1 Figure 2 PMID:2121025

  14. Strategy to Overcome Effect of Raw Materials on Enzymatic Process of Biodiesel from Non-edible Oils Using Candida sp. 99-125 Lipase.

    PubMed

    Nie, Kaili; Wang, Fang; Tan, Tianwei; Liu, Luo

    2015-11-01

    Non-edible oils are preferred raw materials for biodiesel production. However, the properties of raw materials significantly affect the synthesis process, leading to difficulties to design one process suitable for any kind of raw material. In this study, the composition of five typical non-edible oils was analyzed. The major difference was the content of free fatty acids, reflected from their acid values. The influence of different oils was investigated by using lipase from Candida sp. 99-125. At low lipase dosage and low water content, the conversion was found proportional to the acid value. However, by increasing the water content or lipase dosage, we observed that the conversions for all kinds of oils used in this study could exceed 80%. Time course analysis indicates that the lipase used in this study catalyzed hydrolysis followed by esterification, rather than direct transesterification. Accumulation of free fatty acids at the very beginning was necessary. A high water content facilitated the hydrolysis of oils with low acid value. This lipase showed capability to transform all the oils by controlling the water content.

  15. Polyphenols extracted from black tea (Camellia sinensis) residue by hot-compressed water and their inhibitory effect on pancreatic lipase in vitro.

    PubMed

    Yuda, Naoki; Tanaka, Miyuki; Suzuki, Manabu; Asano, Yuzo; Ochi, Hiroshi; Iwatsuki, Keiji

    2012-12-01

    Polyphenols, retained in black tea wastes following the commercial production of tea beverages, represent an underutilized resource. The purpose of this study was to investigate the potential use of hot-compressed water (HCW) for the extraction of pancreatic lipase-inhibiting polyphenols from black tea residues. Black tea residues were treated with HCW at 10 °C intervals, from 100 to 200 °C. The resulting extracts were analyzed using high-performance liquid chromatography-mass spectrometry and assayed to determine their inhibitory effect on pancreatic lipase activity in vitro. Four theaflavins (TF), 5 catechins, 2 quercetin glycosides, quinic acid, gallic acid, and caffeine were identified. The total polyphenol content of extracts increased with increasing temperature but lipase inhibitors (TF, theaflavin 3-O-gallate, theaflavin 3'-O-gallate, theaflavin 3,3'-O-gallate, epigallocatechin gallate, and epicatechin gallate) decreased over 150 °C. All extracts inhibited pancreatic lipase but extracts obtained at 100 to 140 °C showed the greatest lipase inhibition (IC(50) s of 0.9 to 1.3 μg/mL), consistent with the optimal extraction of TFs and catechins except catechin by HCW between 130 and 150 °C. HCW can be used to extract pancreatic lipase-inhibiting polyphenols from black tea waste. These extracts have potential uses, as dietary supplements and medications, for the prevention and treatment of obesity.

  16. Placental lipases in pregnancies complicated by gestational diabetes mellitus (GDM).

    PubMed

    Barrett, Helen L; Kubala, Marta H; Scholz Romero, Katherin; Denny, Kerina J; Woodruff, Trent M; McIntyre, H David; Callaway, Leonie K; Nitert, Marloes Dekker

    2014-01-01

    Infants of women with gestational diabetes mellitus (GDM) are more likely to be born large for gestational age with a higher percentage body fat. Elevated maternal lipids may contribute to this. Placental lipases such as lipoprotein lipase (LPL), endothelial lipase (EL) and hormone sensitive lipase (HSL) are involved in transferring lipids from mother to fetus. Previous studies of expression of these lipases in placentae in women with diabetes in pregnancy have reported divergent results. Intracellular lipases such as adipose triglyceride lipase (ATGL), and HSL are central to lipid droplet metabolism. The activities of these lipases are both influenced by Perilipin 1, and ATGL is also activated by a co-factor comparative gene identification-58 (CGI-58) and inhibited by G0/G1 switch gene 2 (GS02). None of these modifying factors or ATGL have been examined previously in placenta. The purpose of this study was therefore to examine the expression of ATGL, HSL, LPL, EL, as well as Perilipin 1, GS02 and CGI-58 in term pregnancies complicated by GDM. mRNA and protein expression of the lipases were measured in placentae from 17 women with GDM and 17 normoglycaemic pregnancies, matched for maternal BMI and gestational age of delivery. ATGL mRNA expression was increased and HSL mRNA expression reduced in placentae from GDM although there was no differences in protein expression of any of the lipases. All lipases were localised to trophoblasts and endothelial cells. The expression of Perilipin 1 and CGI-58 mRNA was increased and GS02 not altered in GDM. These results suggest that there is no difference in expression in these four lipases between GDM and normoglycaemic placentae, and therefore altered lipid transfer via these lipases does not contribute to large for gestational age in infants of women with GDM. PMID:25118138

  17. Medium-based optimization of an organic solvent-tolerant extracellular lipase from the isolated halophilic Alkalibacillus salilacus.

    PubMed

    Samaei-Nouroozi, Amene; Rezaei, Shahla; Khoshnevis, Nika; Doosti, Mahmoud; Hajihoseini, Reza; Khoshayand, Mohammad Reza; Faramarzi, Mohammad Ali

    2015-09-01

    A haloalkaliphilic solvent-tolerant lipase was produced from Alkalibacillus salilacus within 48 h of growth in liquid medium. An overall 4.9-fold enhanced production was achieved over unoptimized media after medium optimization by statistical approaches. Plackett-Burman screening suggested lipase production maximally influenced by olive oil, KH2PO4, NaCl, and glucose; and response surface methodology predicted the appropriate levels of each parameter. Produced lipase was highly active and stable over broad ranges of temperature (15-65 °C), pH (4.0-11.0), and NaCl concentration (0-30 %) showing excellent thermostable, pH-stable, and halophilic properties. The enzyme was optimally active at pH 8.0 and 40 °C. Majority of cations, except some like Co(2+) and Al(3+) were positive signals for lipase activity. In addition, the presence of chemical agents and organic solvents with different log P ow was well tolerated by the enzyme. Finally, efficacy of lipase-mediated esterification of various alcohols with oleic acid in organic solvents was studied. PMID:26198037

  18. Biodiesel production from sunflower, soybean, and waste cooking oils by transesterification using lipase immobilized onto a novel microporous polymer.

    PubMed

    Dizge, Nadir; Aydiner, Coskun; Imer, Derya Y; Bayramoglu, Mahmut; Tanriseven, Aziz; Keskinler, Bülent

    2009-03-01

    This study aims at carrying out lipase-catalyzed synthesis of fatty acid methyl esters (biodiesel) from various vegetable oils using lipase immobilized onto a novel microporous polymeric matrix (MPPM) as a low-cost biocatalyst. The research is focused on three aspects of the process: (a) MPPM synthesis (monolithic, bead, and powder forms), (b) microporous polymeric biocatalyst (MPPB) preparation by immobilization of lipase onto MPPM, and (c) biodiesel production by MPPB. Experimental planning of each step of the study was separately carried out in accordance with design of experiment (DoE) based on Taguchi methodology. Microporous polymeric matrix (MPPM) containing aldehyde functional group was synthesized by polyHIPE technique using styrene, divinylbenzene, and polyglutaraldehyde. Thermomyces lanuginosus lipase was covalently attached onto MPPM with 80%, 85%, and 89% immobilization efficiencies using bead, powder, and monolithic forms, respectively. Immobilized enzymes were successfully used for the production of biodiesel using sunflower, soybean, and waste cooking oils. It was shown that immobilized enzymes retain their activities during 10 repeated batch reactions at 25 degrees C, each lasting 24h. Since the developed novel method is simple yet effective, it could have a potential to be used industrially for the production of chemicals requiring immobilized lipases. PMID:19028094

  19. Serum lipase determination in the dog: a comparison of a titrimetric method with an automated kinetic method.

    PubMed

    Walter, Gail L.; McGraw, Pamela; Tvedten, Harold W.

    1992-01-01

    An enzymatic, kinetic method for determining serum lipase activity was evaluated and compared to a standard manual method for use in dogs. The kinetic method was a commercial kit adapted for use on a tandem access clinical chemistry analyzer and utilized a series of coupled enzymatic reactions based on the hydrolysis of 1,2-diglyceride by lipase. The manual method was the Cherry-Crandall technique based on the titration of base against the acid formed by hydrolysis of an olive oil substrate by lipase. The correlation between the two methods was very good (r = 0.94). The reference range for 56 clinically healthy dogs assayed by the kinetic method was 90 to 527 U/L. Diseases associated with a greater than twofold elevation in serum lipase activity as determined by the kinetic method included pancreatitis, gastritis with liver disease, and oliguric renal failure with metabolic acidosis. In some cases, pancreatitis was seen with other clinical problems, such as gastroenteritis, diabetic ketoacidosis, duodenal mass, disseminated intravascular coagulation, and septic peritonitis. Diseases associated with serum lipase activity within the reference range or elevated less than twofold included gastritis, gastric ulcer, cholestasis, phenobarbital-induced hepatopathy, colitis, copper hepatopathy, abdominal hematoma, apocrine gland adenocarcinoma, and thrombocytopenia with pneumonia.

  20. Complex of Burkholderia cepacia lipase with transition state analogue of 1-phenoxy-2-acetoxybutane: biocatalytic, structural and modelling study.

    PubMed

    Luić, M; Tomić, S; Lescić, I; Ljubović, E; Sepac, D; Sunjić, V; Vitale, L; Saenger, W; Kojic-Prodić, B

    2001-07-01

    In a series of four racemic phenoxyalkyl-alkyl carbinols, 1-phenoxy-2-hydroxybutane (1) is enantioselectively acetylated by Burkholderia cepacia (formerly Pseudomonas cepacia) lipase with an E value > or = 200, whereas for the other three racemates E was found to be < or = 4. To explain the high preference of B. cepacia lipase for (R)-(+)-1, a precursor of its transition state analogue with a tetrahedral P-atom, (R(P),S(P))-O-(2R)-(1-phenoxybut-2-yl)methylphosphonic acid chloride was prepared and crystallized in complex with B. cepacia lipase. The X-ray structure of the complex was determined, allowing to compare the conformation of the inhibitor with results of molecular modelling.

  1. In silico and experimental characterization of chimeric Bacillus thermocatenulatus lipase with the complete conserved pentapeptide of Candida rugosa lipase.

    PubMed

    Hosseini, Mostafa; Karkhane, Ali Asghar; Yakhchali, Bagher; Shamsara, Mehdi; Aminzadeh, Saeed; Morshedi, Dena; Haghbeen, Kamahldin; Torktaz, Ibrahim; Karimi, Esmat; Safari, Zahra

    2013-02-01

    Lipases are one of the highest value commercial enzymes as they have broad applications in detergent, food, pharmaceutical, and dairy industries. To provide chimeric Bacillus thermocatenulatus lipase (BTL2), the completely conserved pentapeptide (¹¹²Ala-His-Ser-Gln-Gly¹¹⁶) was replaced with similar sequences (²⁰⁷Gly-Glu-Ser-Ala-Gly²¹¹) of Candida rugosa lipase (CLR) at the nucleophilic elbow region. For this purpose, three mutations including A112G, H113E, and Q115A were inserted in the conserved pentapeptide sequence of btl2 gene. Based on the crystal structures of 2W22, the best structure of opened form of the chimeric lipases were garnered using the MODELLER v9.10 software. The native and chimeric lipases were docked to a set of ligands, and a trial version of Molegro Virtual Docker (MVD) software was used to obtain the energy values. Docking results confirmed chimeric lipase to be better than the native lipase. Following the in silico study, cloning experiments were conducted and expression of native and chimeric btl2 gene in Pichia pastoris was performed. The native and chimeric lipases were purified, and the effect of these mutations on characteristics of chimeric lipase studied and then compared with those of native lipase. Chimeric lipase exhibited 1.6-fold higher activity than the native lipase at 55 °C. The highest percentage of both lipases activity was observed at 60 °C and pH of 8.0. The ion Ca²⁺ slightly inhibited the activity of both lipases, whereas the organic solvent enhanced the lipase stability of chimeric lipase as compared with the native lipase. According to the results, the presence of two glycine residues at the conserved pentapeptide region of this chimeric lipase (¹¹²Gly-Glu-Ser-Ala-Gly¹¹⁶) may increase the flexibility of the nucleophilic elbow region and affect the enzyme activity level. PMID:23274720

  2. Novel lipase purification methods - a review of the latest developments.

    PubMed

    Tan, Chung Hong; Show, Pau Loke; Ooi, Chien Wei; Ng, Eng-Poh; Lan, John Chi-Wei; Ling, Tau Chuan

    2015-01-01

    Microbial lipases are popular biocatalysts due to their ability to catalyse diverse reactions such as hydrolysis, esterification, and acidolysis. Lipases function efficiently on various substrates in aqueous and non-aqueous media. Lipases are chemo-, regio-, and enantio-specific, and are useful in various industries, including those manufacturing food, detergents, and pharmaceuticals. A large number of lipases from fungal and bacterial sources have been isolated and purified to homogeneity. This success is attributed to the development of both conventional and novel purification techniques. This review highlights the use of these techniques in lipase purification, including conventional techniques such as: (i) ammonium sulphate fractionation; (ii) ion-exchange; (iii) gel filtration and affinity chromatography; as well as novel techniques such as (iv) reverse micellar system; (v) membrane processes; (vi) immunopurification; (vi) aqueous two-phase system; and (vii) aqueous two-phase floatation. A summary of the purification schemes for various bacterial and fungal lipases are also provided. PMID:25273633

  3. Lipidomic analyses of female mice lacking hepatic lipase and endothelial lipase indicate selective modulation of plasma lipid species.

    PubMed

    Yang, Yanbo; Kuwano, Takashi; Lagor, William R; Albert, Carolyn J; Brenton, Siobhan; Rader, Daniel J; Ford, David A; Brown, Robert J

    2014-06-01

    Hepatic lipase (HL) and endothelial lipase (EL) share overlapping and complementary roles in lipoprotein metabolism. The deletion of HL and EL alleles in mice raises plasma total cholesterol and phospholipid concentrations. However, the influence of HL and EL in vivo on individual molecular species from each class of lipid is not known. We hypothesized that the loss of HL, EL, or both in vivo may affect select molecular species from each class of lipids. To test this hypothesis, we performed lipidomic analyses on plasma and livers from fasted female wild-type, HL-knockout, EL-knockout, and HL/EL-double knockout mice. Overall, the loss of HL, EL, or both resulted in minimal changes to hepatic lipids; however, select species of CE were surprisingly reduced in the livers of mice only lacking EL. The loss of HL, EL, or both reduced the plasma concentrations for select molecular species of triacylglycerol, diacylglycerol, and free fatty acid. On the other hand, the loss of HL, EL, or both raised the plasma concentrations for select molecular species of phosphatidylcholine, cholesteryl ester, diacylglycerol, sphingomyelin, ceramide, plasmanylcholine, and plasmenylcholine. The increased plasma concentration of select ether phospholipids was evident in the absence of EL, thus suggesting that EL might exhibit a phospholipase A2 activity. Using recombinant EL, we showed that it could hydrolyse the artificial phospholipase A2 substrate 4-nitro-3-(octanoyloxy)benzoic acid. In summary, our study shows for the first time the influence of HL and EL on individual molecular species of several classes of lipids in vivo using lipidomic methods. PMID:24777581

  4. Porcine pancreatic lipase related protein 2 has high triglyceride lipase activity in the absence of colipase.

    PubMed

    Xiao, Xunjun; Ross, Leah E; Sevilla, Wednesday A; Wang, Yan; Lowe, Mark E

    2013-09-01

    Efficient dietary fat digestion is essential for newborns who consume more dietary fat per body weight than at any other time of life. In many mammalian newborns, pancreatic lipase related protein 2 (PLRP2) is the predominant duodenal lipase. Pigs may be an exception since PLRP2 expression has been documented in the intestine but not in the pancreas. Because of the differences in tissue-specific expression, we hypothesized that the kinetic properties of porcine PLRP2 would differ from those of other mammals. To characterize its properties, recombinant porcine PLRP2 was expressed in HEK293T cells and purified to homogeneity. Porcine PLRP2 had activity against tributyrin, trioctanoin and triolein. The activity was not inhibited by bile salts and colipase, which is required for the activity of pancreatic triglyceride lipase (PTL), minimally stimulated PLRP2 activity. Similar to PLRP2 from other species, PLRP2 from pigs had activity against galactolipids and phospholipids. Importantly, porcine PLRP2 hydrolyzed a variety of dietary substrates including pasteurized human mother's milk and infant formula and its activity was comparable to that of PTL. In conclusion, porcine PLRP2 has broad substrate specificity and has high triglyceride lipase activity even in the absence of colipase. The data suggest that porcine PLRP2 would be a suitable lipase for inclusion in recombinant preparations for pancreatic enzyme replacement therapy.

  5. Enhancing trimethylolpropane esters synthesis through lipase immobilized on surface hydrophobic modified support and appropriate substrate feeding methods.

    PubMed

    Tao, Yifeng; Cui, Caixia; Shen, Huaqing; Liu, Luo; Chen, Biqiang; Tan, Tianwei

    2014-05-10

    Candida sp. 99-125 lipase immobilized on surface hydrophobic modified support and appropriate substrate feeding methods were used to improve the synthesis of tri-substituted trimethylolpropane (TMP) esters, which can be used as raw materials for biodegradable lubricants. The proposed novel production method is environmentally friendly. Lipase was adsorbed on surface hydrophobic silk fibers that were pretreated by amino-modified polydimethylsiloxane. A 5-level-4-factors central composite model, including reaction time, temperature, enzyme amount, and molar ratio of fatty acid to TMP, was designed to evaluate the interaction of process variables in the enzymatic esterification. The water activity was kept constant using a LiCl-saturated salt solution. Under the optimum conditions with 30% enzyme amount and substrates molar ratio 8.4 at 45°C for 47h, the total conversion of caprylic acid is 97.3% and the yield of tri-substituted TMP esters is 95.5%. The surface hydrophobic treatment resulted in less cluster water accumulated on the surface immobilized lipase, which was demonstrated by near-infrared spectra. Consequently, the optimum temperature and water tolerance of immobilized lipase were increased. Two TMP-feeding methods were used to maintain high molar ratio of fatty acid to TMP, and increase the final tri-substituted TMP esters content exceeding 85% (w/w) in reactant.

  6. Biosysthesis of Corn Starch Palmitate by Lipase Novozym 435

    PubMed Central

    Xin, Jia-Ying; Wang, Yan; Liu, Tie; Lin, Kai; Chang, Le; Xia, Chun-Gu

    2012-01-01

    Esterification of starch was carried out to expand the usefulness of starch for a myriad of industrial applications. Lipase B from Candida antarctica, immobilized on macroporous acrylic resin (Novozym 435), was used for starch esterification in two reaction systems: micro-solvent system and solvent-free system. The esterification of corn starch with palmitic acid in the solvent-free system and micro-solvent system gave a degree of substitution (DS) of 1.04 and 0.0072 respectively. Esterification of corn starch with palmitic acid was confirmed by UV spectroscopy and IR spectroscopy. The results of emulsifying property analysis showed that the starch palmitate with higher DS contributes to the higher emulsifying property (67.6%) and emulsion stability (79.6%) than the native starch (5.3% and 3.9%). Modified starch obtained by esterification that possesses emulsifying properties and has long chain fatty acids, like palmitic acid, has been widely used in the food, pharmaceutical and biomedical applications industries. PMID:22837690

  7. An interfacial and comparative in vitro study of gastrointestinal lipases and Yarrowia lipolytica LIP2 lipase, a candidate for enzyme replacement therapy.

    PubMed

    Bénarouche, Anaïs; Point, Vanessa; Carrière, Frédéric; Cavalier, Jean-François

    2014-07-01

    Lipolytic activities of Yarrowia lipolytica LIP2 lipase (YLLIP2), human pancreatic (HPL) and dog gastric (DGL) lipases were first compared using lecithin-stabilized triacylglycerol (TAG) emulsions (Intralipid) at various pH and bile salt concentrations. Like DGL, YLLIP2 was able to hydrolyze TAG droplets covered by a lecithin monolayer, while HPL was not directly active on that substrate. These results were in good agreement with the respective kinetics of adsorption on phosphatidylcholine (PC) monomolecular films of the same three lipases, YLLIP2 being the most tensioactive lipase. YLLIP2 adsorption onto a PC monolayer spread at the air/water interface was influenced by pH-dependent changes in the enzyme/lipid interfacial association constant (KAds) which was optimum at pH 6.0 on long-chain egg PC monolayer, and at pH 5.0 on medium chain dilauroylphosphatidylcholine film. Using substrate monolayers (1,2-dicaprin, trioctanoin), YLLIP2 displayed the highest lipolytic activities on both substrates in the 25-35 mN m(-1) surface pressure range. YLLIP2 was active in a large pH range and displayed a pH-dependent activity profile combining DGL and HPL features at pH values found in the stomach (pH 3-5) and in the intestine (pH 6-7), respectively. The apparent maximum activity of YLLIP2 was observed at acidic pH 4-6 and was therefore well correlated with an efficient interfacial binding at these pH levels, whatever the type of interfaces (Intralipid emulsions, substrate or PC monolayers). All these findings support the use of YLLIP2 in enzyme replacement therapy for the treatment of pancreatic exocrine insufficiency, a pathological situation in which an acidification of intestinal contents occurs.

  8. Biosensor Applications of MAPLE Deposited Lipase

    PubMed Central

    Califano, Valeria; Bloisi, Francesco; Aronne, Antonio; Federici, Stefania; Nasti, Libera; Depero, Laura E.; Vicari, Luciano R. M.

    2014-01-01

    Matrix Assisted Pulsed Laser Evaporation (MAPLE) is a thin film deposition technique derived from Pulsed Laser Deposition (PLD) for deposition of delicate (polymers, complex biological molecules, etc.) materials in undamaged form. The main difference of MAPLE technique with respect to PLD is the target: it is a frozen solution or suspension of the (guest) molecules to be deposited in a volatile substance (matrix). Since laser beam energy is mainly absorbed by the matrix, damages to the delicate guest molecules are avoided, or at least reduced. Lipase, an enzyme catalyzing reactions borne by triglycerides, has been used in biosensors for detection of β-hydroxyacid esters and triglycerides in blood serum. Enzymes immobilization on a substrate is therefore required. In this paper we show that it is possible, using MAPLE technique, to deposit lipase on a substrate, as shown by AFM observation, preserving its conformational structure, as shown by FTIR analysis. PMID:25587426

  9. Immobilised lipases in the cosmetics industry.

    PubMed

    Ansorge-Schumacher, Marion B; Thum, Oliver

    2013-08-01

    Commercial products for personal care, generally perceived as cosmetics, have an important impact on everyday life worldwide. Accordingly, the market for both consumer products and specialty chemicals comprising their ingredients is considerable. Lipases have started to play a minor role as active ingredients in so-called 'functional cosmetics' as well as a major role as catalysts for the industrial production of various specialty esters, aroma compounds and active agents. Interestingly, both applications almost always require preparation by appropriate immobilisation techniques. In addition, for catalytic use special reactor concepts often have to be employed due to the mostly limited stability of these preparations. Nevertheless, these processes show distinct advantages based on process simplification, product quality and environmental footprint and are therefore apt to more and more replace traditional chemical processes. Here, for the first time a review on the various aspects of using immobilised lipases in the cosmetics industry is given.

  10. Immobilization of lipase from grey mullet.

    PubMed

    Aryee, Alberta N A; Simpson, Benjamin K

    2012-12-01

    Grey mullet (Mugil cephalus) lipase was isolated using para-aminobenzamidine agarose and immobilized on octyl Sepharose CL-4B (o-Sep). Immobilized grey mullet lipase (GMLi) had a 10 °C higher optimum temperature compared to the free enzyme and showed remarkable thermal stability. GMLi was most active within the pH range of 8.0-9.5 with an optimum at 8.5. Immobilization also enhanced the storage stability and reusability of the enzyme with minimal changes in efficiency during repeated batches. GMLi showed variable stabilities in various organic solvents. A signal in the amide I absorption region of the FTIR spectrum of GMLi was attributed to the protein layer on o-Sep. The surface morphology of o-Sep was visualized on a Zeiss stereomicroscope as globular-shaped beads.

  11. Lipase and esterase-catalyzed acylation of hetero-substituted nitrogen nucleophiles in water and organic solvents.

    PubMed

    Hacking, M A; Akkus, H; van Rantwijk, F; Sheldon, R A

    2000-04-01

    The lipase- and esterase-catalyzed acylations of hydroxylamine and hydrazine derivatives with octanoic acid and ethyl octanoate are described. The influence of solvent and nucleophile on the initial reaction rate was investigated for a number of free and immobilized enzymes. Initial rates were highest in water, but the overall productivity was optimal in dioxane. Octanoic acid (250 g/L) was converted for 93% into the hydroxamic acid in 36 h with only 1% (w/w) Candida antarctica lipase B (Novozym 435) in dioxane at 40 degrees C. This translates to a catalyst productivity of 68.5 g. g(-1). day(-1) and a space time yield of 149 g. L(-1). day(-1), unprecedented figures in the direct reaction of an acid with a nitrogen nucleophile in an organic solvent.

  12. Characterization of a novel testicular form of human hormone-sensitive lipase.

    PubMed

    Mairal, Aline; Melaine, Nathalie; Laurell, Henrik; Grober, Jacques; Holst, Lena Stenson; Guillaudeux, Thierry; Holm, Cecilia; Jégou, Bernard; Langin, Dominique

    2002-02-22

    Hormone-sensitive lipase (HSL) is an esterase and lipase, which are essential for spermatogenesis. Two HSL mRNAs are expressed in human testis. A long form is encoded by a testis-specific exon and nine exons common to testis and adipocyte HSL. Here we show that the short-form 3.3-kb mRNA possesses a unique 5' end that is transcribed from a novel testis-specific exon. The corresponding protein is similar to the 775-amino-acid-long adipocyte HSL. Immunohistochemistry experiments on human testis sections revealed that the long form is strictly expressed in haploid germ cells whereas the short form is expressed in interstitial and tubular somatic cells as well as premeiotic germ cells. PMID:11846402

  13. Sensitive impedimetric biosensor for direct detection of diazinon based on lipases

    NASA Astrophysics Data System (ADS)

    Jaffrezic-Renault, Nicole; Zehani, Nedjla; Dzyadevych, Sergei; Kherrat, Rochdi

    2014-07-01

    Two novel impedimetric biosensors for highly sensitive and rapid quantitative detection of diazinon in an aqueous medium were developed using two types of lipase, from Candida Rugosa (microbial source) (CRL) and from porcine pancreas (animal source) (PPL) immobilized onto a functionalized gold electrode. The lipase is characterized to specifically catalyze the hydrolysis of ester functions leading to the transformation of diazinon into diethyl phosphorothioic acid (DETP) and 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMHP). The developed biosensors both presented a large wide range of linearity up to 50µM with a detection limit of 10 nM for the CRL biosensor and 0.1 µM for the PPL biosensor. A comparative study was carried out between the two biosensors and results showed higher sensitivity for the CRL sensor. Moreover, it presented good accuracy and reproducibility, and had very good storage and multiple use stability for 25 days when stored at 4°C.

  14. Sensitive impedimetric biosensor for direct detection of diazinon based on lipases

    PubMed Central

    Zehani, Nedjla; Dzyadevych, Sergei V.; Kherrat, Rochdi; Jaffrezic-Renault, Nicole J.

    2014-01-01

    Two novel impedimetric biosensors for highly sensitive and rapid quantitative detection of diazinon in aqueous medium were developed using two types of lipase, from Candida Rugosa (microbial source) (CRL) and from porcine pancreas (animal source) (PPL) immobilized on functionalized gold electrode. Lipase is characterized to specifically catalyze the hydrolysis of ester functions leading to the transformation of diazinon into diethyl phosphorothioic acid (DETP) and 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMHP). The developed biosensors both presented a wide range of linearity up to 50 μM with a detection limit of 10 nM for Candida Rugosa biosensor and 0.1 μM for porcine pancreas biosensor. A comparative study was carried out between the two biosensors and results showed higher efficiency of Candida Rugosa sensor. Moreover, it presented good accuracy and reproducibility, had very good storage and multiple use stability for 25 days when stored at 4°C. PMID:25072052

  15. Application of a Burkholderia cepacia lipase-immobilized silica monolith to batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil

    PubMed Central

    2011-01-01

    Background The enzymatic production of biodiesel through alcoholysis of triglycerides has become more attractive because it shows potential in overcoming the drawbacks of chemical processes. In this study, we investigate the production of biodiesel from crude, non-edible Jatropha oil and methanol to characterize Burkholderia cepacia lipase immobilized in an n-butyl-substituted hydrophobic silica monolith. We also evaluate the performance of a lipase-immobilized silica monolith bioreactor in the continuous production of biodiesel. Results The Jatropha oil used contained 18% free fatty acids, which is problematic in a base-catalyzed process. In the lipase-catalyzed reaction, the presence of free fatty acids made the reaction mixture homogeneous and allowed bioconversion to proceed to 90% biodiesel yield after a 12 hour reaction time. The optimal molar ratio of methanol to oil was 3.3 to 3.5 parts methanol to one part oil, with water content of 0.6% (w/w). Further experiments revealed that B. cepacia lipase immobilized in hydrophobic silicates was sufficiently tolerant to methanol, and glycerol adsorbed on the support disturbed the reaction to some extent in the present reaction system. The continuous production of biodiesel was performed at steady state using a lipase-immobilized silica monolith bioreactor loaded with 1.67 g of lipase. The yield of 95% was reached at a flow rate of 0.6 mL/h, although the performance of the continuous bioreactor was somewhat below that predicted from the batch reactor. The bioreactor was operated successfully for almost 50 days with 80% retention of the initial yield. Conclusions The presence of free fatty acids originally contained in Jatropha oil improved the reaction efficiency of the biodiesel production. A combination of B. cepacia lipase and its immobilization support, n-butyl-substituted silica monolith, was effective in the production of biodiesel. This procedure is easily applicable to the design of a continuous flow

  16. Application of lipase immobilized on the biocompatible ternary blend polymer matrix for synthesis of citronellyl acetate in non-aqueous media: kinetic modelling study.

    PubMed

    Badgujar, Kirtikumar C; Bhanage, Bhalchandra M

    2014-04-10

    This work reports the use of new support for immobilization of lipase Burkholderia cepacia (BCL) matrix made up of polylactic acid (PLA), chitosan (CH), and polyvinyl alcohol (PVA). Initially lipase from various microbial sources and immobilization support composition was screened to obtain a robust biocatalyst. Among various biocatalysts preparation, the PLA:PVA:CH:BCL (1:6:1:2) was worked as a robust biocatalyst for the citronellyl acetate synthesis. Various reaction parameters were studied in detail to obtain the suitable reaction conditions for model citronellyl acetate synthesis reaction. Various kinetic parameters such as r(max), K(i(citronellol)), K(m(citronellol)), K(m(vinyl acetate)) were determined using non-linear regression analysis for the ternary complex as well as bi-bi ping-pong mechanism. The experimental results and kinetic study showed that citronellyl acetate synthesis catalyzed by immobilized lipase BCL followed the ternary complex mechanism with inhibition by alcohol (citronellol). The energy of activation for citronellyl acetate synthesis was found to be lower for immobilized lipase (8.9 kcal/mol) than aggregated lipase (14.8 kcal/mol) enzyme. The developed biocatalyst showed four to fivefold higher catalytic activity and excellent recyclability (up to six cycles) than the aggregated lipase. PMID:24629263

  17. Characterization of a novel cross-linked lipase: impact of cross-linking on solubility and release from drug product.

    PubMed

    Hetrick, Evan M; Sperry, David C; Nguyen, Hung K; Strege, Mark A

    2014-04-01

    Liprotamase is a novel non-porcine pancreatic enzyme replacement therapy containing purified biotechnology-derived lipase, protease, and amylase together with excipients in a capsule formulation. To preserve the structural integrity and biological activity of lipase (the primary drug substance) through exposure of the drug product to the low-pH gastric environment, the enzyme was processed through the use of cross-linked enzyme crystal (CLEC) technology, making the lipase-CLEC drug substance insoluble under acidic conditions but fully soluble at neutral pH and in alkaline environments. In this report we characterize the degree of cross-linking for lipase-CLEC and demonstrate its impact on lipase-CLEC solubility and release from the drug product under relevant physiological pH conditions. Cross-linked lipase-CLEC was characterized via size exclusion chromatography (SEC) and capillary electrophoresis sodium dodecyl sulfate polyacrylamide gel electrophoresis (CE-SDS-PAGE). A combination of methodologies was developed to understand the impact of cross-linking on drug product release. Dissolution evaluation using USP Apparatus 2 at pH 5.0 with an enzyme activity-based end point demonstrated solubility discrimination based on degree of cross-linking, while full release was demonstrated at pH 6.5. The dissolution of the drug product was also evaluated using a dual-stage test employing a USP Apparatus 4 flow-through system to mimic the changing pH environments experienced in the stomach and intestine to understand the impact of cross-linking on drug product performance. Use of USP Apparatus 4 to characterize the pH-dependent release of lipase-CLEC represents a novel approach compared to the Apparatus 1 test employing an acid-challenge stage outlined in the USP for delayed-release pancrelipase, and the advantages of this approach may prove useful for understanding the pH-dependence of release for other drug products. Collectively, these studies confirmed that degree of

  18. Production and characterization of an extracellular lipase from Candida guilliermondii

    PubMed Central

    Oliveira, Anne Caroline Defranceschi; Fernandes, Maria Luiza; Mariano, André Bellin

    2014-01-01

    Extracellular lipases from the endophytic yeast Candida guilliermondii isolated from castor leaves (Ricinus communis L.) were produced using low-cost raw materials such as agro-industrial residues and applying them in the esterification of oleic acid for evaluating their potential use in biodiesel production. After partial purification using ammonium sulfate, the enzyme was characterized and presented higher activity (26.8 ± 1.5 U mL−1) in the presence of 5 mmol L−1 NaCl at 30 °C and pH 6.5. The production through submerged fermentation was formerly performed in 150 mL erlenmeyer flasks and, once the enzyme production was verified, assays in a 14 L bioreactor were conducted, obtaining 18 ± 1.4 U mL−1. The produced enzyme was applied in the oleic acid esterification under different solvents: hexane, cyclohexane or cyclohexanone) and different acid:alcohol molar ratios. Higher ester conversion rate (81%) was obtained using hexane and the molar ratio of 1:9 was the best conditions using methanol. The results suggest the potential for development of endophytic yeast in the production of biocatalyst through submerged fermentation using agroindustrial residues as culture medium. PMID:25763060

  19. Monoacylglycerol lipase inhibition by organophosphorus compounds leads to elevation of brain 2-arachidonoylglycerol and the associated hypomotility in mice

    SciTech Connect

    Quistad, Gary B.; Klintenberg, Rebecka; Caboni, Pierluigi; Liang, Shannon N.; Casida, John E. . E-mail: ectl@nature.berkeley.edu

    2006-02-15

    Three components of the cannabinoid system are sensitive to selected organophosphorus (OP) compounds: monoacylglycerol (MAG) lipase that hydrolyzes the major endogenous agonist 2-arachidonoylglycerol (2-AG); fatty acid amide hydrolase (FAAH) that cleaves the agonist anandamide present in smaller amounts; the CB1 receptor itself. This investigation considers which component of the cannabinoid system is the most likely contributor to OP-induced hypomotility in mice. Structure-activity studies by our laboratory and others rule against major involvement of a direct toxicant-CB1 receptor interaction for selected OPs. Attention was therefore focused on the OP sensitivities of MAG lipase and FAAH, assaying 19 structurally diverse OP chemicals (pesticides, their metabolites and designer compounds) for in vitro inhibition of both enzymes. Remarkably high potency and low selectivity is observed with three O-alkyl (C{sub 1}, C{sub 2}, C{sub 3}) alkylphosphonofluoridates (C{sub 8}, C{sub 12}) (IC50 0.60-3.0 nM), five S-alkyl (C{sub 5}, C{sub 7}, C{sub 9}) and alkyl (C{sub 1}, C{sub 12}) benzodioxaphosphorin oxides (IC50 0.15-5.7 nM) and one OP insecticide metabolite (chlorpyrifos oxon, IC50 34-40 nM). In ip-treated mice, the OPs at 1-30 mg/kg more potently inhibit brain FAAH than MAG lipase, but FAAH inhibition is not correlated with hypomotility. However, the alkylphosphonofluoridate-treated mice show dose-dependent increases in severity of hypomotility, inhibition of MAG lipase activity and elevation of 2-AG. Moderate to severe hypomotility is accompanied by 64 to 86% MAG lipase inhibition and about 6-fold elevation of brain 2-AG level. It therefore appears that OP-induced MAG lipase inhibition leads to elevated 2-AG and the associated hypomotility.

  20. Production and Use of Lipases in Bioenergy: A Review from the Feedstocks to Biodiesel Production

    PubMed Central

    Ribeiro, Bernardo Dias; de Castro, Aline Machado; Coelho, Maria Alice Zarur; Freire, Denise Maria Guimarães

    2011-01-01

    Lipases represent one of the most reported groups of enzymes for the production of biofuels. They are used for the processing of glycerides and fatty acids for biodiesel (fatty acid alkyl esters) production. This paper presents the main topics of the enzyme-based production of biodiesel, from the feedstocks to the production of enzymes and their application in esterification and transesterification reactions. Growing technologies, such as the use of whole cells as catalysts, are addressed, and as concluding remarks, the advantages, concerns, and future prospects of enzymatic biodiesel are presented. PMID:21785707

  1. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance

    PubMed Central

    Cui, Jiandong; Zhao, Yamin; Liu, Ronglin; Zhong, Cheng; Jia, Shiru

    2016-01-01

    Increasing numbers of materials have been extensively used as platforms for enzyme immobilization to improve catalytic performance. However, activity of the most of the enzymes was declined after immobilization. Here, we develop a surfactant-activated lipase-inorganic flowerlike hybrid nanomaterials with rational design based on interfacial activation and self-assembly. The resulting surfactant-activated lipase-inorganic hybird nanoflower (activated hNF-lipase) exhibited 460% and 200% higher activity than native lipase and conventional lipase-inorganic hybird nanoflower (hNF-lipase). Furthermore, the activated hNF-lipase displayed good reusability due to its monodispersity and mechanical properties, and had excellent long-time stability. The superior catalytic performances were attributed to both the conformational modulation of surfactants and hierarchical structure of nanoflowers, which not only anchored lipases in an active form, but also decreased the enzyme-support negative interaction and mass-transfer limitations. This new biocatalytic system is promising to find widespread use in applications related to biomedicine, biosensor, and biodiesel. PMID:27297609

  2. Immobilization, Regiospecificity Characterization and Application of Aspergillus oryzae Lipase in the Enzymatic Synthesis of the Structured Lipid 1,3-Dioleoyl-2-Palmitoylglycerol

    PubMed Central

    Zhao, Minjie; Fu, Guanwen; Lai, Jia; Feng, Fengqin

    2015-01-01

    The enzymatic synthesis of 1,3-dioleoyl-2-palmitoylglycerol (OPO), one of the main components of human milk fats, has been hindered by the relatively high cost of sn-1,3-specific lipases and the deficiency in biocatalyst stability. The sn-1,3-specific lipase from Aspergillus oryzae (AOL) is highly and efficiently immobilized with the polystyrene-based hydrophobic resin D3520, with a significant 49.54-fold increase in specific lipase activity compared with the AOL powder in catalyzing the synthesis of OPO through the acidolysis between palm stearin and oleic acid (OA). The optimal immobilization conditions were investigated, including time course, initial protein concentration and solution pH. The sn-1,3 specificity of lipases under different immobilization conditions was evaluated and identified as positively associated with the lipase activity, and the pH of the immobilization solution influenced the regiospecificity and synthetic activity of these lipases. Immobilized AOL D3520, as the biocatalyst, was used for the enzymatic synthesis of the structured lipid OPO through the acidolysis between palm stearin and OA. The following conditions were optimized for the synthesis of structured lipid OPO: 65 °C temperature; 1:8 substrate molar ratio between palm stearin and OA; 8% (w/w) enzyme load; 3.5% water content of the immobilized lipase; and 1 h reaction time. Under these conditions, highly efficient C52 production (45.65%) was achieved, with a tripalmitin content of 2.75% and a sn-2 palmitic acid (PA) proportion of 55.08% in the system. PMID:26218640

  3. Genomic organization of the murine CTL lipase gene

    SciTech Connect

    Kaplan, M.H.; Boyer, S.N.; Grusby, M.J.

    1996-08-01

    Murine cytotoxic T-lymphocyte (CTL) lipase was originally identified as an IL-4-inducible gene in CD8-positive T cells. To further our understanding of both the function and the regulation of CTL lipase in T cells, we have cloned and characterized the murine gene. Two overlapping phage clones spanning 29 kb contain the entire CTL lipase gene. The exon structure in similar to those characterized for the human and canine pancreatic lipase-related protein 1 genes, with notable differences in the 5{prime} end. Transcripts initiate from a site that matches a consensus for an initiator sequence. Potential cis-regulatory elements in the CTL lipase 5{prime} regulatory region that would confer dual tissue specificity in exocrine pancreas and cytotoxic T lymphocytes are identified. The implications of this promoter organization are discussed. 27 refs., 2 figs.

  4. Monoolein production by triglycerides hydrolysis using immobilized Rhizopus oryzae lipase.

    PubMed

    Ghattas, Nesrine; Abidi, Ferid; Galai, Said; Marzouki, M Nejib; Salah, Abderraouf Ben

    2014-07-01

    Lipase extracted from Rhizopus oryzae was immobilized in alginate gel beads. The effects of the immobilization conditions, such as, alginate concentration, CaCl2 concentration and amount of initial enzyme on retained activity (specific activity ratio of entrapped active lipase to free lipase) were investigated. The optimal conditions for lipase entrapment were determined: 2% (w/v) alginate concentration, 100mM CaCl2 and enzyme ratio of 2000IU/mL.In such conditions, immobilized lipase by inclusion in alginate showed a highest stability and activity, on olive oil hydrolysis reaction where it could be reused for 10 cycles. After 15min of hydrolysis reaction, the mass composition of monoolein, diolein and triolein were about 78%, 10% and 12%. Hydrolysis' products purification by column chromatography lead to a successful separation of reaction compounds and provide a pure fraction of monoolein which is considered as the widest used emulsifier in food and pharmaceutical industries. PMID:24755261

  5. Monoolein production by triglycerides hydrolysis using immobilized Rhizopus oryzae lipase.

    PubMed

    Ghattas, Nesrine; Abidi, Ferid; Galai, Said; Marzouki, M Nejib; Salah, Abderraouf Ben

    2014-07-01

    Lipase extracted from Rhizopus oryzae was immobilized in alginate gel beads. The effects of the immobilization conditions, such as, alginate concentration, CaCl2 concentration and amount of initial enzyme on retained activity (specific activity ratio of entrapped active lipase to free lipase) were investigated. The optimal conditions for lipase entrapment were determined: 2% (w/v) alginate concentration, 100mM CaCl2 and enzyme ratio of 2000IU/mL.In such conditions, immobilized lipase by inclusion in alginate showed a highest stability and activity, on olive oil hydrolysis reaction where it could be reused for 10 cycles. After 15min of hydrolysis reaction, the mass composition of monoolein, diolein and triolein were about 78%, 10% and 12%. Hydrolysis' products purification by column chromatography lead to a successful separation of reaction compounds and provide a pure fraction of monoolein which is considered as the widest used emulsifier in food and pharmaceutical industries.

  6. ROG1 encodes a monoacylglycerol lipase in Saccharomyces cerevisiae.

    PubMed

    Vishnu Varthini, Lakshmanaperumal; Selvaraju, Kandasamy; Srinivasan, Malathi; Nachiappan, Vasanthi

    2015-01-01

    Lipid metabolism is extensively studied in Saccharomyces cerevisiae. Here, we report that revertant of glycogen synthase kinase mutation-1 (Rog1p) possesses monoacylglycerol (MAG) lipase activity in S. cerevisiae. The lipase activity of Rog1p was confirmed in two ways: through analysis of a strain with a double deletion of ROG1 and monoglyceride lipase YJU3 (yju3Δrog1Δ) and by site-directed mutagenesis of the ROG1 lipase motif (GXSXG). Rog1p is localized in both the cytosol and the nucleus. Overexpression of ROG1 in a ROG1-deficient strain resulted in an accumulation of reactive oxygen species. These results suggest that Rog1p is a MAG lipase that regulates lipid homeostasis.

  7. Isolation and characterization of novel lipases from a metagenomic library of the microbial community in the pitcher fluid of the carnivorous plant Nepenthes hybrida.

    PubMed

    Morohoshi, Tomohiro; Oikawa, Manabu; Sato, Shoko; Kikuchi, Noriko; Kato, Norihiro; Ikeda, Tsukasa

    2011-10-01

    Members of the genus Nepenthes are carnivorous plants that use the pitfall method of insect capture as a supplementary nutritional source. We extracted metagenomic DNA from the microbial community found in the pitcher fluid of Nepenthes and constructed a plasmid-based metagenomic library. An activity-based screening method enabled the isolation of two lipase genes, lip1 and lip2. Both Lip1 and Lip2 belong to a novel family or subfamily of lipases and show lipase activities in acidic conditions, such as those found in pitcher fluid. This study was conducted under the assumption that the secreted Lip1 and Lip2 were capable of enzymatic activity in the acidic pitcher fluid.

  8. A potential high-throughput method for the determination of lipase activity by potentiometric flow injection titrations.

    PubMed

    Vahl, Katja; Kahlert, Heike; Böttcher, Dominique; Wardenga, Rainer; Komorsky-Lovrić, Sebojka; Bornscheuer, Uwe; Scholz, Fritz

    2008-03-01

    Potentiometric FIA titrations were performed to determine enzyme activities of lipase type B from Candida antarctica, CAL-B. Two substrates, triacetin and tributyrin were hydrolyzed in phosphate buffer solutions, and the concentration change of the base component of the buffer was titrated in a carrier solution containing hydrochloric acid and potassium chloride. The system was calibrated with butyric acid and acetic acid, respectively. FIA titration peaks were evaluated with respect to peak height and peak area. Butyric acid and acetic acid could be titrated in the buffer solution from 3x10(-3) mol L(-1) to 0.1 mol L(-1). The detection limit of enzyme activity was determined to be 0.07 U mL(-1) (15 min reaction time) and the minimum activity was calculated to be 0.035 units corresponding to 35 nmol min(-1). The specific activities of lipase B for the hydrolysis of tributyrin and triacetin were determined as 16+/-2 U mg(-1) and 2+/-0.2 U mg(-1) (per mg commercial lipase preparation), respectively.

  9. Tetrahydrolipstatin Inhibition, Functional Analyses, and Three-dimensional Structure of a Lipase Essential for Mycobacterial Viability

    SciTech Connect

    Crellin, Paul K.; Vivian, Julian P.; Scoble, Judith; Chow, Frances M.; West, Nicholas P.; Brammananth, Rajini; Proellocks, Nicholas I.; Shahine, Adam; Le Nours, Jerome; Wilce, Matthew C.J.; Britton, Warwick J.; Coppel, Ross L.; Rossjohn, Jamie; Beddoe, Travis

    2010-09-17

    The highly complex and unique mycobacterial cell wall is critical to the survival of Mycobacteria in host cells. However, the biosynthetic pathways responsible for its synthesis are, in general, incompletely characterized. Rv3802c from Mycobacterium tuberculosis is a partially characterized phospholipase/thioesterase encoded within a genetic cluster dedicated to the synthesis of core structures of the mycobacterial cell wall, including mycolic acids and arabinogalactan. Enzymatic assays performed with purified recombinant proteins Rv3802c and its close homologs from Mycobacterium smegmatis (MSMEG{_}6394) and Corynebacterium glutamicum (NCgl2775) show that they all have significant lipase activities that are inhibited by tetrahydrolipstatin, an anti-obesity drug that coincidently inhibits mycobacterial cell wall biosynthesis. The crystal structure of MSMEG{_}6394, solved to 2.9 {angstrom} resolution, revealed an {alpha}/{beta} hydrolase fold and a catalytic triad typically present in esterases and lipases. Furthermore, we demonstrate direct evidence of gene essentiality in M. smegmatis and show the structural consequences of loss of MSMEG{_}6394 function on the cellular integrity of the organism. These findings, combined with the predicted essentiality of Rv3802c in M. tuberculosis, indicate that the Rv3802c family performs a fundamental and indispensable lipase-associated function in mycobacteria.

  10. Lipases in green chemistry: acylation and alcoholysis on steroids and nucleosides.

    PubMed

    Baldessari, Alicia; Iglesias, Luis E

    2012-01-01

    In this article, we describe the application of lipases in acylation and alcoholysis reactions on steroids and nucleosides. In the field of steroids, a variety of acetyl and fatty acid derivatives of androstanes, pregnanes, and cholestanes have been prepared through lipase-catalyzed acylation and alcoholysis reactions taking advantage of the high regio- and stereoselectivity of these enzymes. The substrates as well as the products show a high degree of biological activity as neurosteroids, hormones, and glucocorticoids. The regioselective preparation of diacylated nucleosides by means of an enzymatic alcoholysis allowed the synthesis of nucleosides prodrugs or modified nucleosides. The quantitative full deacylation and dealkoxycarbonylation of nucleosides and steroids is a mild synthetic method for the deprotection of these labile compounds. Some of the reported steroid and nucleoside products are novel, and it is not possible to obtain them satisfactorily by following traditional synthetic procedures. The advantages presented by this methodology, such as selectivity, mild reaction conditions, and low environmental impact, make the lipases an important tool in the application of the principles of Green Chemistry, offering a convenient way to prepare derivatives of natural compounds with a great potential in the pharmaceutical industry. PMID:22426734

  11. Optimal production and biochemical properties of a lipase from Candida albicans.

    PubMed

    Lan, Dongming; Hou, Shulin; Yang, Ning; Whiteley, Chris; Yang, Bo; Wang, Yonghua

    2011-01-01

    Lipases from microorganisms have multi-faceted properties and play an important role in ever-growing modern biotechnology and, consequently, it is of great significance to develop new ones. In the present work, a lipase gene from Candida albicans (CaLIP10) was cloned and two non-unusual CUG serine codons were mutated into universal codons, and its expression in Pichia pastoris performed optimally, as shown by response surface methodology. Optimal conditions were: initial pH of culture 6.86, temperature 25.53 °C, 3.48% of glucose and 1.32% of yeast extract. The corresponding maximal lipolytic activity of CaLIP10 was 8.06 U/mL. The purified CaLIP10 showed maximal activity at pH 8.0 and 25 °C, and a good resistance to non-ionic surfactants and polar organic solvent was noticed. CaLIP10 could effectively hydrolyze coconut oil, but exhibited no obvious preference to the fatty acids with different carbon length, and diacylglycerol was accumulated in the reaction products, suggesting that CaLIP10 is a potential lipase for the oil industry.

  12. Plastic fats from sal, mango and palm oil by lipase catalyzed interesterification.

    PubMed

    Shankar Shetty, Umesha; Sunki Reddy, Yella Reddy; Khatoon, Sakina

    2014-02-01

    Speciality plastic fats with no trans fatty acids suitable for use in bakery and as vanaspati substitute were prepared by interesterification of blends of palm stearin (PSt) with sal and mango fats using Lipozyme TLIM lipase as catalyst. The blends containing PSt/sal or PSt/mango showed short melting range and hence are not suitable as bakery shortenings. Lipase catalysed interesterification extended the plasticity or melting range of all the blends. The blends containing higher proportion of PSt with sal fat (50/50) were harder having high solids at and above body temperature and hence cannot be used as bakery shortenings. The blends with PSt/sal (30-40/60-70) after interesterification showed melting profiles similar to those of commercial hydrogenated bakery fats. Similarly, the blends containing PSt/mango (30-40/60-70) after interesterification also showed melting profiles similar to those of commercial hydrogenated shortenings. The slip melting point and solidification characteristics also confirm the plastic nature of these samples. The improvement in plasticity after interesterification is due to formation of higher melting as well as lower melting triglycerides during lipase catalysed interesterification. PMID:24493889

  13. A novel chemoenzymatic synthesis of propyl caffeate using lipase-catalyzed transesterification in ionic liquid.

    PubMed

    Pang, Na; Gu, Shuang-Shuang; Wang, Jun; Cui, Hong-Sheng; Wang, Fang-Qin; Liu, Xi; Zhao, Xing-Yu; Wu, Fu-An

    2013-07-01

    Propyl caffeate has the highest antioxidant capacity in the caffeate alkyl esters family, but industrial production of propyl caffeate is hindered by low yields using either the chemical or enzymatic catalysis method. To set up a high-yield process for obtaining propyl caffeate, a novel chemoenzymatic synthesis method using lipase-catalyzed transesterification of an intermediate methyl caffeate or ethyl caffeate and 1-propanol in ionic liquid was established. The maximum propyl caffeate yield of 98.5% was obtained using lipase-catalyzed transesterification under the following optimal conditions: Novozym 435 as a biocatalyst, [Bmim][CF3SO3] as a medium, a molar ratio of methyl caffeate to 1-propanol of 1:5, a mass ratio of methyl caffeate to lipase of 1:20, and a reaction temperature of 60°C. The two-step conversion of caffeic acid to propyl caffeate via methyl caffeate is an efficient way to prepare propyl caffeate with an overall yield of 82.7%.

  14. A green approach for starch modification: Esterification by lipase and novel imidazolium surfactant.

    PubMed

    Adak, Sunita; Banerjee, Rintu

    2016-10-01

    Starch being one of the most abundant polysaccharides in nature has been subjected to modification to enhance its applicability. Modification by esterification involves acylation of hydroxyl groups of glucose units to form starch esters. Lipases, as catalysts have emerged as a promising alternative to chemical processes. Although ionic liquids and microwave assisted heating are emerging as green technology yet their use along with lipases for starch modification has not been probed. In the present study esterification of corn starch employing Rhizopus oryzae lipase, microwave irradiation and novel imidazolium surfactants has been attempted. At 80% irradiation, 1:3 starch/oleic acid molar ratio, 150 IU enzyme, and 50μmol of [C16-3-C16im]Br2 maximum degree of substitution (DS=2.75) was attained. The modified starch showed better hydrophobicity and thermoplasticity with corresponding structural changes depicted by FTIR, XRD and SEM. These properties advocate the usefulness of the modified starch in food and biopolymer sectors.

  15. Production, characterization, and application of an organic solvent-tolerant lipase present in active inclusion bodies.

    PubMed

    Li, Suxia; Lin, Kang; Pang, Huaiyu; Wu, Yixin; Xu, Jianhe

    2013-01-01

    An organic solvent-tolerant lipase from Serratia marcescens ECU1010 (rSML) was overproduced in Escherichia coli in an insoluble form. High concentrations of both biomass (50 g cell wet weight/L culture broth) and inclusion bodies (10.5 g/L) were obtained by applying a high-cell-density cultivation procedure. Activity assays indicated that the enzymatic activity of rSML reached 600 U/L. After treatment with isopropyl ether for 12 h, the maximum lipase activity reached 6,000 U/L. Scanning electron microscopy and Fourier transform infrared microspectroscopy revealed the activation mechanism of rSML in the presence of organic solvents. rSML was stable in broad ranges of temperatures and pH values, as well as in a series of organic solvents. Besides, rSML showed the best enantioselectivity for the kinetic resolution of (±)-trans-3-(4-methoxyphenyl)glycidic acid methyl ester. These features render the S. marcescens ECU1010 lipase attractive for biotechnological applications in the field of organic synthesis and pharmaceutical industry. PMID:23269633

  16. Enhanced Biocatalytic Esterification with Lipase-Immobilized Chitosan/Graphene Oxide Beads

    PubMed Central

    Lau, Siaw Cheng; Lim, Hong Ngee; Basri, Mahiran; Fard Masoumi, Hamid Reza; Ahmad Tajudin, Asilah; Huang, Nay Ming; Pandikumar, Alagarsamy; Chia, Chi Hua; Andou, Yoshito

    2014-01-01

    In this work, lipase from Candida rugosa was immobilized onto chitosan/graphene oxide beads. This was to provide an enzyme-immobilizing carrier with excellent enzyme immobilization activity for an enzyme group requiring hydrophilicity on the immobilizing carrier. In addition, this work involved a process for the preparation of an enzymatically active product insoluble in a reaction medium consisting of lauric acid and oleyl alcohol as reactants and hexane as a solvent. This product enabled the stability of the enzyme under the working conditions and allowed the enzyme to be readily isolated from the support. In particular, this meant that an enzymatic reaction could be stopped by the simple mechanical separation of the “insoluble” enzyme from the reaction medium. Chitosan was incorporated with graphene oxide because the latter was able to enhance the physical strength of the chitosan beads by its superior mechanical integrity and low thermal conductivity. The X-ray diffraction pattern showed that the graphene oxide was successfully embedded within the structure of the chitosan. Further, the lipase incorporation on the beads was confirmed by a thermo-gravimetric analysis. The lipase immobilization on the beads involved the functionalization with coupling agents, N-hydroxysulfosuccinimide sodium (NHS) and 1-ethyl-(3-dimethylaminopropyl) carbodiimide (EDC), and it possessed a high enzyme activity of 64 U. The overall esterification conversion of the prepared product was 78% at 60°C, and it attained conversions of 98% and 88% with commercially available lipozyme and novozyme, respectively, under similar experimental conditions. PMID:25127038

  17. Lipases Immobilization for Effective Synthesis of Biodiesel Starting from Coffee Waste Oils

    PubMed Central

    Ferrario, Valerio; Veny, Harumi; De Angelis, Elisabetta; Navarini, Luciano; Ebert, Cynthia; Gardossi, Lucia

    2013-01-01

    Immobilized lipases were applied to the enzymatic conversion of oils from spent coffee ground into biodiesel. Two lipases were selected for the study because of their conformational behavior analysed by Molecular Dynamics (MD) simulations taking into account that immobilization conditions affect conformational behavior of the lipases and ultimately, their efficiency upon immobilization. The enzymatic synthesis of biodiesel was initially carried out on a model substrate (triolein) in order to select the most promising immobilized biocatalysts. The results indicate that oils can be converted quantitatively within hours. The role of the nature of the immobilization support emerged as a key factor affecting reaction rate, most probably because of partition and mass transfer barriers occurring with hydrophilic solid supports. Finally, oil from spent coffee ground was transformed into biodiesel with yields ranging from 55% to 72%. The synthesis is of particular interest in the perspective of developing sustainable processes for the production of bio-fuels from food wastes and renewable materials. The enzymatic synthesis of biodiesel is carried out under mild conditions, with stoichiometric amounts of substrates (oil and methanol) and the removal of free fatty acids is not required. PMID:24970178

  18. Cloning, expression and characterization of a lipase encoding gene from human oral metagenome.

    PubMed

    Preeti, Arivaradarajan; Hemalatha, Devaraj; Rajendhran, Jeyaprakash; Mullany, Peter; Gunasekaran, Paramasamy

    2014-09-01

    The human oral metagenomic DNA cloned into plasmid pUC19 was used to construct a DNA library in Escherichia coli. Functional screening of 40,000 metagenomic clones led to identification of a clone LIP2 that exhibited halo on tributyrin agar plate. Sequence analysis of LIP2 insert DNA revealed a 939 bp ORF (omlip1) which showed homology to lipase 1 of Acinetobacter junii SH205. The omlip1 ORF was cloned and expressed in E. coli BL21 (DE3) using pET expression system. The recombinant enzyme was purified to homogeneity and the biochemical properties were studied. The purified OMLip1 hydrolyzed p-nitrophenyl esters and triacylglycerol esters of medium and long chain fatty acids, indicating the enzyme is a true lipase. The purified protein exhibited a pH and temperature optima of 7 and 37 °C respectively. The lipase was found to be stable at pH range of 6-7 and at temperatures lower than 40 °C. Importantly, the enzyme activity was unaltered, by the presence or absence of many divalent cations. The metal ion insensitivity of OMLip1offers its potential use in industrial processes. PMID:24891735

  19. Peroxisome extensions deliver the Arabidopsis SDP1 lipase to oil bodies.

    PubMed

    Thazar-Poulot, Nelcy; Miquel, Martine; Fobis-Loisy, Isabelle; Gaude, Thierry

    2015-03-31

    Lipid droplets/oil bodies (OBs) are lipid-storage organelles that play a crucial role as an energy resource in a variety of eukaryotic cells. Lipid stores are mobilized in the case of food deprivation or high energy demands--for example, during certain developmental processes in animals and plants. OB degradation is achieved by lipases that hydrolyze triacylglycerols (TAGs) into free fatty acids and glycerol. In the model plant Arabidopsis thaliana, Sugar-Dependent 1 (SDP1) was identified as the major TAG lipase involved in lipid reserve mobilization during seedling establishment. Although the enzymatic activity of SDP1 is associated with the membrane of OBs, its targeting to the OB surface remains uncharacterized. Here we demonstrate that the core retromer, a complex involved in protein trafficking, participates in OB biogenesis, lipid store degradation, and SDP1 localization to OBs. We also report an as-yet-undescribed mechanism for lipase transport in eukaryotic cells, with SDP1 being first localized to the peroxisome membrane at early stages of seedling growth and then possibly moving to the OB surface through peroxisome tubulations. Finally, we show that the timely transfer of SDP1 to the OB membrane requires a functional core retromer. In addition to revealing previously unidentified functions of the retromer complex in plant cells, our work provides unanticipated evidence for the role of peroxisome dynamics in interorganelle communication and protein transport. PMID:25775518

  20. Optimized production of biodiesel from waste cooking oil by lipase immobilized on magnetic nanoparticles.

    PubMed

    Yu, Chi-Yang; Huang, Liang-Yu; Kuan, I-Ching; Lee, Shiow-Ling

    2013-01-01

    Biodiesel, a non-toxic and biodegradable fuel, has recently become a major source of renewable alternative fuels. Utilization of lipase as a biocatalyst to produce biodiesel has advantages over common alkaline catalysts such as mild reaction conditions, easy product separation, and use of waste cooking oil as raw material. In this study, Pseudomonas cepacia lipase immobilized onto magnetic nanoparticles (MNP) was used for biodiesel production from waste cooking oil. The optimal dosage of lipase-bound MNP was 40% (w/w of oil) and there was little difference between stepwise addition of methanol at 12 h- and 24 h-intervals. Reaction temperature, substrate molar ratio (methanol/oil), and water content (w/w of oil) were optimized using response surface methodology (RSM). The optimal reaction conditions were 44.2 °C, substrate molar ratio of 5.2, and water content of 12.5%. The predicted and experimental molar conversions of fatty acid methyl esters (FAME) were 80% and 79%, respectively. PMID:24336109

  1. A green approach for starch modification: Esterification by lipase and novel imidazolium surfactant.

    PubMed

    Adak, Sunita; Banerjee, Rintu

    2016-10-01

    Starch being one of the most abundant polysaccharides in nature has been subjected to modification to enhance its applicability. Modification by esterification involves acylation of hydroxyl groups of glucose units to form starch esters. Lipases, as catalysts have emerged as a promising alternative to chemical processes. Although ionic liquids and microwave assisted heating are emerging as green technology yet their use along with lipases for starch modification has not been probed. In the present study esterification of corn starch employing Rhizopus oryzae lipase, microwave irradiation and novel imidazolium surfactants has been attempted. At 80% irradiation, 1:3 starch/oleic acid molar ratio, 150 IU enzyme, and 50μmol of [C16-3-C16im]Br2 maximum degree of substitution (DS=2.75) was attained. The modified starch showed better hydrophobicity and thermoplasticity with corresponding structural changes depicted by FTIR, XRD and SEM. These properties advocate the usefulness of the modified starch in food and biopolymer sectors. PMID:27312646

  2. Optimal production and biochemical properties of a lipase from Candida albicans.

    PubMed

    Lan, Dongming; Hou, Shulin; Yang, Ning; Whiteley, Chris; Yang, Bo; Wang, Yonghua

    2011-01-01

    Lipases from microorganisms have multi-faceted properties and play an important role in ever-growing modern biotechnology and, consequently, it is of great significance to develop new ones. In the present work, a lipase gene from Candida albicans (CaLIP10) was cloned and two non-unusual CUG serine codons were mutated into universal codons, and its expression in Pichia pastoris performed optimally, as shown by response surface methodology. Optimal conditions were: initial pH of culture 6.86, temperature 25.53 °C, 3.48% of glucose and 1.32% of yeast extract. The corresponding maximal lipolytic activity of CaLIP10 was 8.06 U/mL. The purified CaLIP10 showed maximal activity at pH 8.0 and 25 °C, and a good resistance to non-ionic surfactants and polar organic solvent was noticed. CaLIP10 could effectively hydrolyze coconut oil, but exhibited no obvious preference to the fatty acids with different carbon length, and diacylglycerol was accumulated in the reaction products, suggesting that CaLIP10 is a potential lipase for the oil industry. PMID:22072943

  3. Optimized Production of Biodiesel from Waste Cooking Oil by Lipase Immobilized on Magnetic Nanoparticles

    PubMed Central

    Yu, Chi-Yang; Huang, Liang-Yu; Kuan, I-Ching; Lee, Shiow-Ling

    2013-01-01

    Biodiesel, a non-toxic and biodegradable fuel, has recently become a major source of renewable alternative fuels. Utilization of lipase as a biocatalyst to produce biodiesel has advantages over common alkaline catalysts such as mild reaction conditions, easy product separation, and use of waste cooking oil as raw material. In this study, Pseudomonas cepacia lipase immobilized onto magnetic nanoparticles (MNP) was used for biodiesel production from waste cooking oil. The optimal dosage of lipase-bound MNP was 40% (w/w of oil) and there was little difference between stepwise addition of methanol at 12 h- and 24 h-intervals. Reaction temperature, substrate molar ratio (methanol/oil), and water content (w/w of oil) were optimized using response surface methodology (RSM). The optimal reaction conditions were 44.2 °C, substrate molar ratio of 5.2, and water content of 12.5%. The predicted and experimental molar conversions of fatty acid methyl esters (FAME) were 80% and 79%, respectively. PMID:24336109

  4. Peroxisome extensions deliver the Arabidopsis SDP1 lipase to oil bodies.

    PubMed

    Thazar-Poulot, Nelcy; Miquel, Martine; Fobis-Loisy, Isabelle; Gaude, Thierry

    2015-03-31

    Lipid droplets/oil bodies (OBs) are lipid-storage organelles that play a crucial role as an energy resource in a variety of eukaryotic cells. Lipid stores are mobilized in the case of food deprivation or high energy demands--for example, during certain developmental processes in animals and plants. OB degradation is achieved by lipases that hydrolyze triacylglycerols (TAGs) into free fatty acids and glycerol. In the model plant Arabidopsis thaliana, Sugar-Dependent 1 (SDP1) was identified as the major TAG lipase involved in lipid reserve mobilization during seedling establishment. Although the enzymatic activity of SDP1 is associated with the membrane of OBs, its targeting to the OB surface remains uncharacterized. Here we demonstrate that the core retromer, a complex involved in protein trafficking, participates in OB biogenesis, lipid store degradation, and SDP1 localization to OBs. We also report an as-yet-undescribed mechanism for lipase transport in eukaryotic cells, with SDP1 being first localized to the peroxisome membrane at early stages of seedling growth and then possibly moving to the OB surface through peroxisome tubulations. Finally, we show that the timely transfer of SDP1 to the OB membrane requires a functional core retromer. In addition to revealing previously unidentified functions of the retromer complex in plant cells, our work provides unanticipated evidence for the role of peroxisome dynamics in interorganelle communication and protein transport.

  5. Plastic fats from sal, mango and palm oil by lipase catalyzed interesterification.

    PubMed

    Shankar Shetty, Umesha; Sunki Reddy, Yella Reddy; Khatoon, Sakina

    2014-02-01

    Speciality plastic fats with no trans fatty acids suitable for use in bakery and as vanaspati substitute were prepared by interesterification of blends of palm stearin (PSt) with sal and mango fats using Lipozyme TLIM lipase as catalyst. The blends containing PSt/sal or PSt/mango showed short melting range and hence are not suitable as bakery shortenings. Lipase catalysed interesterification extended the plasticity or melting range of all the blends. The blends containing higher proportion of PSt with sal fat (50/50) were harder having high solids at and above body temperature and hence cannot be used as bakery shortenings. The blends with PSt/sal (30-40/60-70) after interesterification showed melting profiles similar to those of commercial hydrogenated bakery fats. Similarly, the blends containing PSt/mango (30-40/60-70) after interesterification also showed melting profiles similar to those of commercial hydrogenated shortenings. The slip melting point and solidification characteristics also confirm the plastic nature of these samples. The improvement in plasticity after interesterification is due to formation of higher melting as well as lower melting triglycerides during lipase catalysed interesterification.

  6. Lipases in green chemistry: acylation and alcoholysis on steroids and nucleosides.

    PubMed

    Baldessari, Alicia; Iglesias, Luis E

    2012-01-01

    In this article, we describe the application of lipases in acylation and alcoholysis reactions on steroids and nucleosides. In the field of steroids, a variety of acetyl and fatty acid derivatives of androstanes, pregnanes, and cholestanes have been prepared through lipase-catalyzed acylation and alcoholysis reactions taking advantage of the high regio- and stereoselectivity of these enzymes. The substrates as well as the products show a high degree of biological activity as neurosteroids, hormones, and glucocorticoids. The regioselective preparation of diacylated nucleosides by means of an enzymatic alcoholysis allowed the synthesis of nucleosides prodrugs or modified nucleosides. The quantitative full deacylation and dealkoxycarbonylation of nucleosides and steroids is a mild synthetic method for the deprotection of these labile compounds. Some of the reported steroid and nucleoside products are novel, and it is not possible to obtain them satisfactorily by following traditional synthetic procedures. The advantages presented by this methodology, such as selectivity, mild reaction conditions, and low environmental impact, make the lipases an important tool in the application of the principles of Green Chemistry, offering a convenient way to prepare derivatives of natural compounds with a great potential in the pharmaceutical industry.

  7. Optimized butyl butyrate synthesis catalyzed by Thermomyces lanuginosus lipase.

    PubMed

    Martins, Andréa B; Friedrich, John L R; Rodrigues, Rafael C; Garcia-Galan, Cristina; Fernandez-Lafuente, Roberto; Ayub, Marco A Z

    2013-01-01

    Butyl butyrate is an ester present in pineapple flavor, which is very important for the food and beverages industries. In this work, the optimization of the reaction of butyl butyrate synthesis catalyzed by the immobilized lipase Lipozyme TL-IM was performed. n-Hexane was selected as the most appropriate solvent. Other reaction parameters such as temperature, substrate molar ratio, biocatalyst content and added water, and their responses measured as yield, were evaluated using a fractional factorial design, followed by a central composite design (CCD) and response surface methodology. In the fractional design 2(4-1) , the four variables were tested and temperature and biocatalyst content were statistically significant and then used for optimization on CCD. The optimal conditions for butyl butyrate synthesis were found to be 48°C; substrate molar ratio 3:1 (butanol:butyric acid); biocatalyst content of 40% of acid mass. Under these conditions, over 90% of yield was obtained in 2 h. Enzyme reuse was tested by washing the biocatalyst with n-hexane or by direct reuse. The direct reuse produced a rapid decrease on enzyme activity, while washing with n-hexane allowed reusing the enzyme for five reactions cycles keeping approximately 85% of its activity.

  8. Efficient phagocytosis requires triacylglycerol hydrolysis by adipose triglyceride lipase.

    PubMed

    Chandak, Prakash G; Radovic, Branislav; Aflaki, Elma; Kolb, Dagmar; Buchebner, Marlene; Fröhlich, Eleonore; Magnes, Christoph; Sinner, Frank; Haemmerle, Guenter; Zechner, Rudolf; Tabas, Ira; Levak-Frank, Sanja; Kratky, Dagmar

    2010-06-25

    Macrophage phagocytosis is an essential biological process in host defense and requires large amounts of energy. To date, glucose is believed to represent the prime substrate for ATP production in macrophages. To investigate the relative contribution of free fatty acids (FFAs) in this process, we determined the phagocytosis rates in normal mouse macrophages and macrophages of adipose triglyceride lipase (ATGL)-deficient mice. ATGL was shown to be the rate-limiting enzyme for the hydrolysis of lipid droplet-associated triacylglycerol (TG) in many tissues. Here, we demonstrate that Atgl(-/-) macrophages fail to efficiently hydrolyze cellular TG stores leading to decreased cellular FFA concentrations and concomitant accumulation of lipid droplets, even in the absence of exogenous lipid loading. The reduced availability of FFAs results in decreased cellular ATP concentrations and impaired phagocytosis suggesting that fatty acids must first go through a cycle of esterification and re-hydrolysis before they are available as energy substrate. Exogenously added glucose cannot fully compensate for the phagocytotic defect in Atgl(-/-) macrophages. Hence, phagocytosis was also decreased in vivo when Atgl(-/-) mice were challenged with bacterial particles. These findings imply that phagocytosis in macrophages depends on the availability of FFAs and that ATGL is required for their hydrolytic release from cellular TG stores. This novel mechanism links ATGL-mediated lipolysis to macrophage function in host defense and opens the way to explore possible roles of ATGL in immune response, inflammation, and atherosclerosis.

  9. Triacylglycerol kinetics in endotoxic rats with suppressed lipoprotein lipase activity

    SciTech Connect

    Bagby, G.J.; Corll, C.B.; Martinez, R.R.

    1987-07-01

    Hypertriglyceridemia observed in animals after bacterial endotoxin administration and some forms of sepsis can result from increased hepatic triacylglycerol (TG) output or decreased TG clearance by extrahepatic tissues. To differentiate between these two possibilities, TG and free fatty acid (FFA) kinetics were determined in control and endotoxin-injected rats 18 h after treatment. Plasma TG and FFA kinetics were assessed by a constant intravenous infusion with (9,10-/sup 3/H)palmitate-labeled very low-density lipoprotein and (1-/sup 14/C)palmitate bound to albumin, respectively. In addition, lipoprotein lipase (LPL) activity was determined in heart, skeletal muscle, and adipose tissue as well as in postheparin plasma of functionally hepatectomized, adrenalectomized, and gonadectomized rats. Plasma FFA acid concentrations were slightly increased in endotoxin-treated rats but their turnover did not differ from control. Endotoxin-treated rats had a threefold increase in plasma TG concentrations and decreased heart, skeletal muscle, and post-heparin plasma LPL activity. Plasma TG turnover was decreased, indicating that hypertriglyceridemia was not due to an increased TG output by the liver. Instead, the endotoxin-induced increase in plasma TG concentration was consequence of the 80% reduction in TG metabolic clearance rate. Thus, suppression of LPL activity in endotoxic animals impairs TG clearance resulting in hypertriglyceridemia. Furthermore, endotoxin administration reduced the delivery of TG-FFA to extrahepatic tissues because hepatic synthesis and secretion of TG from plasma FFA was decreased and LPL activity was suppressed.

  10. Molecular cloning and functional expression of esf gene encoding enantioselective lipase from Serratia marcescens ES-2 for kinetic resolution of optically active (S)-flurbiprofen.

    PubMed

    Lee, Kwang-Woo; Bae, Hyun-Ae; Lee, Yong-Hyun

    2007-01-01

    An enantioselective lipase gene (esf) for the kinetic resolution of optically active (S)-flurbiprofen was cloned from the new strain Serratia marcescens ES-2. The esf gene was composed of a 1,845-bp open reading frame encoding 614 amino acid residues with a calculated molecular mass of 64,978 Da. The lipase expressed in E. coli was purified by a three-step procedure, and it showed preferential substrate specificity toward the medium-chain-length fatty acids. The esf gene encoding the enantioselective lipase was reintroduced into the parent strain S. marcescens ES-2 for secretory overexpression. The transformant S. marcescens BESF secreted up to 217 kU/ ml of the enantioselective lipase, about 54-fold more than the parent strain, after supplementing 3.0% Triton X-207. The kinetic resolution of (S)-flurbiprofen was carried out even at an extremely high (R,S)-flurbiprofen ethyl ester [(R,S)-FEE] concentration of 500 mM, 130 kU of the S. marcescens ES-2 lipase per mmol of (R,S)-FEE, and 1,000 mM of succinyl beta-cyclodextrin as the dispenser at 37 degrees C for 12 h, achieving the high enantiomeric excess and conversion yield of 98% and 48%, respectively.

  11. Studies on the lipase-induced degradation of lipid-based drug delivery systems. Part II - Investigations on the mechanisms leading to collapse of the lipid structure.

    PubMed

    Schwab, Martin; McGoverin, Cushla M; Gordon, Keith C; Winter, Gerhard; Rades, Thomas; Myschik, Julia; Strachan, Clare J

    2013-08-01

    It has recently been found that lipid composition appears to have a major influence on the rate of lipase-induced degradation of lipid-based extended release drug delivery systems (microparticles, compressed implants and extrudated implants). Previously, we have found that during lipase incubation, depending on the lipid used, lipidic extrudates can lose their physical strength and collapse generating lipid particles in the μm-range. The aim of this study was to characterise the processes leading to collapse of solid lipid-based drug delivery systems during in vitro lipase incubation. Compressed lipid implants were used as model systems. Free fatty acids (FFA) generated in the incubation experiments were derivatised and subsequently analysed via reversed phase-HPLC in order to characterise the degradation behaviour of single lipid components (glyceryltrilaurate (D112), glyceryltrimyristate (D114), glyceryltripalmitate (D116) and glyceryltristearate (D118)) used for the preparation of compressed lipid implants. Further, Raman spectroscopy/microscopy, differential scanning calorimetry, scanning electron and light microscopy were used to investigate the physical and chemical changes in the implants upon lipase incubation. This study revealed that the lipid component D112 plays a major role in the degradation and erosion processes occurring during lipase incubation of lipid implants. The production of D112/lauric acid mixtures, with a melting point below human body temperature, leads to lipid matrices melting and losing their physical integrity.

  12. Interaction between extracellular lipase LipA and the polysaccharide alginate of Pseudomonas aeruginosa

    PubMed Central

    2013-01-01

    Background As an opportunistic human pathogen Pseudomonas aeruginosa is able to cause acute and chronic infections. The biofilm mode of life significantly contributes to the growth and persistence of P. aeruginosa during an infection process and mediates the pathogenicity of the bacterium. Within a biofilm mucoid strains of P. aeruginosa simultaneously produce and secrete several hydrolytic enzymes and the extracellular polysaccharide alginate. The focus of the current study was the interaction between extracellular lipase LipA and alginate, which may be physiologically relevant in biofilms of mucoid P. aeruginosa. Results Fluorescence microscopy of mucoid P. aeruginosa biofilms were performed using fluorogenic lipase substrates. It showed a localization of the extracellular enzyme near the cells. A microtiter plate-based binding assay revealed that the polyanion alginate is able to bind LipA. A molecular modeling approach showed that this binding is structurally based on electrostatic interactions between negatively charged residues of alginate and positively charged amino acids of the protein localized opposite of the catalytic centre. Moreover, we showed that the presence of alginate protected the lipase activity by protection from heat inactivation and from degradation by the endogenous, extracellular protease elastase LasB. This effect was influenced by the chemical properties of the alginate molecules and was enhanced by the presence of O-acetyl groups in the alginate chain. Conclusion We demonstrate that the extracellular lipase LipA from P. aeruginosa interacts with the polysaccharide alginate in the self-produced extracellular biofilm matrix of P. aeruginosa via electrostatic interactions suggesting a role of this interaction for enzyme immobilization and accumulation within biofilms. This represents a physiological advantage for the cells. Especially in the biofilm lifestyle, the enzyme is retained near the cell surface, with the catalytic centre exposed

  13. Unique Regulation of Adipose Triglyceride Lipase (ATGL) by Perilipin 5, a Lipid Droplet-associated Protein*

    PubMed Central

    Wang, Hong; Bell, Ming; Sreenevasan, Urmilla; Hu, Hong; Liu, Jun; Dalen, Knut; Londos, Constantine; Yamaguchi, Tomohiro; Rizzo, Mark A.; Coleman, Rosalind; Gong, Dawei; Brasaemle, Dawn; Sztalryd, Carole

    2011-01-01

    Lipolysis is a critical metabolic pathway contributing to energy homeostasis through degradation of triacylglycerides stored in lipid droplets (LDs), releasing fatty acids. Neutral lipid lipases act at the oil/water interface. In mammalian cells, LD surfaces are coated with one or more members of the perilipin protein family, which serve important functions in regulating lipolysis. We investigated mechanisms by which three perilipin proteins control lipolysis by adipocyte triglyceride lipase (ATGL), a key lipase in adipocytes and non-adipose cells. Using a cell culture model, we examined interactions of ATGL and its co-lipase CGI-58 with perilipin 1 (perilipin A), perilipin 2 (adipose differentiation-related protein), and perilipin 5 (LSDP5) using multiple techniques as follows: anisotropy Forster resonance energy transfer, co-immunoprecipitation, [32P]orthophosphate radiolabeling, and measurement of lipolysis. The results show that ATGL interacts with CGI-58 and perilipin 5; the latter is selectively expressed in oxidative tissues. Both proteins independently recruited ATGL to the LD surface, but with opposite effects; interaction of ATGL with CGI-58 increased lipolysis, whereas interaction of ATGL with perilipin 5 decreased lipolysis. In contrast, neither perilipin 1 nor 2 interacted directly with ATGL. Activation of protein kinase A (PKA) increased [32P]orthophosphate incorporation into perilipin 5 by 2-fold, whereas neither ATGL nor CGI-58 was labeled under the incubation conditions. Cells expressing both ectopic perilipin 5 and ATGL showed a 3-fold increase in lipolysis following activation of PKA. Our studies establish perilipin 5 as a novel ATGL partner and provide evidence that the protein composition of perilipins at the LD surface regulates lipolytic activity of ATGL. PMID:21393244

  14. Novel organic solvent-tolerant esterase isolated by metagenomics: insights into the lipase/esterase classification.

    PubMed

    Berlemont, Renaud; Spee, Olivier; Delsaute, Maud; Lara, Yannick; Schuldes, Jörg; Simon, Carola; Power, Pablo; Daniel, Rolf; Galleni, Moreno

    2013-01-01

    in order to isolate novel organic solvent-tolerant (OST) lipases, a metagenomic library was built using DNA derived from a temperate forest soil sample. A two-step activity-based screening allowed the isolation of a lipolytic clone active in the presence of organic solvents. Sequencing of the plasmid pRBest recovered from the positive clone revealed the presence of a putative lipase/esterase encoding gene. The deduced amino acid sequence (RBest1) contains the conserved lipolytic enzyme signature and is related to the previously described OST lipase from Lysinibacillus sphaericus 205y, which is the sole studied prokaryotic enzyme belonging to the 4.4 α/β hydrolase subgroup (abH04.04). Both in vivo and in vitro studies of the substrate specificity of RBest1, using triacylglycerols or nitrophenyl-esters, respectively, revealed that the enzyme is highly specific for butyrate (C4) compounds, behaving as an esterase rather than a lipase. The RBest1 esterase was purified and biochemically characterized. The optimal esterase activity was observed at pH 6.5 and at temperatures ranging from 38 to 45 °C. Enzymatic activity, determined by hydrolysis of p-nitrophenyl esters, was found to be affected by the presence of different miscible and non-miscible organic solvents, and salts. Noteworthy, RBest1 remains significantly active at high ionic strength. These findings suggest that RBest1 possesses the ability of OST enzymes to molecular adaptation in the presence of organic compounds and resistance of halophilic proteins.

  15. Molecular and biochemical characterizations of the monoacylglycerol lipase gene family of Arabidopsis thaliana.

    PubMed

    Kim, Ryeo Jin; Kim, Hae Jin; Shim, Donghwan; Suh, Mi Chung

    2016-03-01

    Monoacylglycerol lipase (MAGL) catalyzes the last step of triacylglycerol breakdown, which is the hydrolysis of monoacylglycerol (MAG) to fatty acid and glycerol. Arabidopsis harbors over 270 genes annotated as 'lipase', the largest class of acyl lipid metabolism genes that have not been characterized experimentally. In this study, computational modeling suggested that 16 Arabidopsis putative MAGLs (AtMAGLs) have a three-dimensional structure that is similar to a human MAGL. Heterologous expression and enzyme assays indicated that 11 of the 16 encoded proteins indeed possess MAG lipase activity. Additionally, AtMAGL4 displayed hydrolase activity with lysophosphatidylcholine and lysophosphatidylethanolamine (LPE) substrates and AtMAGL1 and 2 utilized LPE as a substrate. All recombinant AtMAGLs preferred MAG substrates with unsaturated fatty acids over saturated fatty acids and AtMAGL8 exhibited the highest hydrolase activities with MAG containing 20:1 fatty acids. Except for AtMAGL4, -14 and -16, all AtMAGLs showed similar activity with both sn-1 and sn-2 MAG isomers. Spatial, temporal and stress-induced expression of the 16 AtMAGL genes was analyzed by transcriptome analyses. AtMAGL:eYFP fusion proteins provided initial evidence that AtMAGL1, -3, -6, -7, -8, -11, -13, -14 and -16 are targeted to the endoplasmic reticulum and/or Golgi network, AtMAGL10, -12 and -15 to the cytosol and AtMAGL2, -4 and -5 to the chloroplasts. Furthermore, AtMAGL8 was associated with the surface of oil bodies in germinating seeds and leaves accumulating oil bodies. This study provides the broad characterization of one of the least well-understood groups of Arabidopsis lipid-related enzymes and will be useful for better understanding their roles in planta. PMID:26932457

  16. Clinical efficacy of serum lipase subtype analysis for the differential diagnosis of pancreatic and non-pancreatic lipase elevation

    PubMed Central

    Bang, Chang Seok; Kim, Jin Bong; Park, Sang Hyun; Baik, Gwang Ho; Su, Ki Tae; Yoon, Jai Hoon; Kim, Yeon Soo; Kim, Dong Joon

    2016-01-01

    Background/Aims: Non-pancreatic elevations of serum lipase have been reported, and differential diagnosis is necessary for clinical practice. This study aimed to evaluate the clinical efficacy of serum lipase subtype analysis for the differential diagnosis of pancreatic and non-pancreatic lipase elevation. Methods: Patients who were referred for the serum lipase elevation were prospectively enrolled. Clinical findings and serum lipase subtypes were analyzed and compared by dividing the patients into pancreatitis and non-pancreatitis groups. Results: A total of 34 patients (12 pancreatitis vs. 22 non-pancreatitis cases) were enrolled. In univariate analysis, the fraction of pancreatic lipase (FPL) in the total amount of serum lipase subtypes was statistically higher in patients with pancreatitis ([median, 0.004; interquartile range [IQR], 0.003 to 0.011] vs. [median, 0.002; IQR, 0.001 to 0.004], p = 0.04). Based on receiver operating characteristic curve analysis for the prediction of acute pancreatitis, FPL was the most valuable predictor (area under the receiver-operating characteristic curve [AUROC], 0.72; 95% confidence interval [CI], 0.54 to 0.86; sensitivity, 83.3%; specificity, 63.6%; positive predictive value, 55.6%; negative predictive value, 97.5%). In multivariate analysis, a cut-off value higher than 0.0027 for the FPL was associated with acute pancreatitis (odds ratio, 8.3; 95% CI, 1.3 to 51.7; p = 0.02). Conclusions: The results did not support that serum lipase subtype analysis could replace standard lipase measurement for the diagnosis of acute pancreatitis. However, the test demonstrated adequate sensitivity for use in triage or as an add-on test for serum lipase elevation. PMID:27243230

  17. Biodiesel production from crude Jatropha oil catalyzed by non-commercial immobilized heterologous Rhizopus oryzae and Carica papaya lipases.

    PubMed

    Rodrigues, J; Canet, A; Rivera, I; Osório, N M; Sandoval, G; Valero, F; Ferreira-Dias, S

    2016-08-01

    The aim of this study was to evaluate the feasibility of biodiesel production by transesterification of Jatropha oil with methanol, catalyzed by non-commercial sn-1,3-regioselective lipases. Using these lipases, fatty acid methyl esters (FAME) and monoacylglycerols are produced, avoiding the formation of glycerol as byproduct. Heterologous Rhizopus oryzae lipase (rROL) immobilized on different synthetic resins and Carica papaya lipase (rCPL) immobilized on Lewatit VP OC 1600 were tested. Reactions were performed at 30°C, with seven stepwise methanol additions. For all biocatalysts, 51-65% FAME (theoretical maximum=67%, w/w) was obtained after 4h transesterification. Stability tests were performed in 8 or 10 successive 4h-batches, either with or without rehydration of the biocatalyst between each two consecutive batches. Activity loss was much faster when biocatalysts were rehydrated. For rROL, half-life times varied from 16 to 579h. rROL on Lewatit VPOC 1600 was more stable than for rCPL on the same support. PMID:26980626

  18. Gene cloning and molecular characterization of the Talaromyces thermophilus lipase catalyzed efficient hydrolysis and synthesis of esters.

    PubMed

    Romdhane, Ines Belhaj-Ben; Frikha, Fakher; Maalej-Achouri, Inès; Gargouri, Ali; Belghith, Hafedh

    2012-02-15

    A genomic bank from Talaromyces thermophilus fungus was constructed and screened using a previously isolated fragment lipase gene as probe. From several clones isolated, the nucleotide sequence of the lipase gene (TTL gene) was completed and sequenced. The TTL coding gene consists of an open reading frame (ORF) of 1083bp encoding a protein of 269 Aa with an estimated molecular mass of 30kDa. The TTL belongs to the same gene family as Thermomyces lanuginosus lipase (TLL, Lipolase®), a well known lipase with multiple applications. The promoter sequence of the TTL gene showed the conservation of known consensus sequences PacC, CreA, Hap2-3-4 and the existence of a particular sequence like the binding sites of Oleate Response Element (ORE) and Fatty acids Responsis Element (FARE) which are similar to that already found to be specific of lipolytic genes in Candida and Fusarium, respectively. Northern blot analysis showed that the TTL expression was much higher on wheat bran than on olive oil as sole carbon source. Compared to the Lipolase®, this enzyme was found to be more efficient for the hydrolysis and the synthesis of esters; and its synthetic efficiency even reached 91.6% from Waste Cooking Oil triglycerides. PMID:22178764

  19. Lysosomal Lipases PLRP2 and LPLA2 Process Mycobacterial Multi-acylated Lipids and Generate T Cell Stimulatory Antigens.

    PubMed

    Gilleron, Martine; Lepore, Marco; Layre, Emilie; Cala-De Paepe, Diane; Mebarek, Naila; Shayman, James A; Canaan, Stéphane; Mori, Lucia; Carrière, Frédéric; Puzo, Germain; De Libero, Gennaro

    2016-09-22

    Complex antigens require processing within antigen-presenting cells (APCs) to form T cell stimulatory complexes with CD1 antigen-presenting molecules. It remains unknown whether lipids with multi-acylated moieties also necessitate digestion by lipases to become capable of binding CD1 molecules and stimulate T cells. Here, we show that the mycobacterial tetra-acylated glycolipid antigens phosphatidyl-myo-inositol mannosides (PIM) are digested to di-acylated forms by pancreatic lipase-related protein 2 (PLRP2) and lysosomal phospholipase A2 (LPLA2) within APCs. Recombinant PLRP2 and LPLA2 removed the sn1- and sn2-bound fatty acids from the PIM glycerol moiety, as revealed by mass spectrometry and nuclear magnetic resonance studies. PLRP2 or LPLA2 gene silencing in APCs abolished PIM presentation to T cells, thus revealing an essential role of both lipases in vivo. These findings show that endosomal lipases participate in lipid antigen presentation by processing lipid antigens and have a role in T cell immunity against mycobacteria. PMID:27662254

  20. Expression and characterization of a lipase-related protein in the malpighian tubules of the Chinese oak silkworm, Antheraea pernyi.

    PubMed

    Wang, L; Li, J; Zhao, X; Qian, C; Wei, G; Zhu, B; Liu, C

    2016-10-01

    Lipases are ubiquitous enzymes in nature, which play a crucial role in fat metabolism by catalyzing the hydrolysis of triacylglycerol to free fatty acids and glycerol. However, reports concerning insect lipase are rare. In this study, we studied the expression and activity of a lipase-related protein from Antheraea pernyi (ApLRP). Recombinant ApLRP was expressed in Escherichia coli cells and used to raise rabbit anti-ApLRP polyclonal antibodies. ApLRP mRNA and protein expression were abundant in the midgut and malpighian tubules, respectively. After challenge with four different microorganisms (E. coli, Beauveria bassiana, Micrococcus luteus and nuclear polyhedrosis virus), the expression levels of ApLRP mRNA in midgut were inducted significantly compared with the control. The different pathogens induced different ApLRP gene expression patterns. The optimum temperature and pH for the enzyme's activity were 35°C and 7.0, respectively. ApLRP activity was stimulated in the presence of Mg2+, Na+, Ca2+ and b-mercaptoethanol; while Zn2+, Cu2+ and Fe3+ inhibited its activity. Detergents such as SDS, glycerol and Tween-20 increased the lipase activity by 20-30%. Our results indicated that ApLRP might play an important role in the innate immunity of insects.

  1. Expression and characterization of a lipase-related protein in the malpighian tubules of the Chinese oak silkworm, Antheraea pernyi.

    PubMed

    Wang, L; Li, J; Zhao, X; Qian, C; Wei, G; Zhu, B; Liu, C

    2016-10-01

    Lipases are ubiquitous enzymes in nature, which play a crucial role in fat metabolism by catalyzing the hydrolysis of triacylglycerol to free fatty acids and glycerol. However, reports concerning insect lipase are rare. In this study, we studied the expression and activity of a lipase-related protein from Antheraea pernyi (ApLRP). Recombinant ApLRP was expressed in Escherichia coli cells and used to raise rabbit anti-ApLRP polyclonal antibodies. ApLRP mRNA and protein expression were abundant in the midgut and malpighian tubules, respectively. After challenge with four different microorganisms (E. coli, Beauveria bassiana, Micrococcus luteus and nuclear polyhedrosis virus), the expression levels of ApLRP mRNA in midgut were inducted significantly compared with the control. The different pathogens induced different ApLRP gene expression patterns. The optimum temperature and pH for the enzyme's activity were 35°C and 7.0, respectively. ApLRP activity was stimulated in the presence of Mg2+, Na+, Ca2+ and b-mercaptoethanol; while Zn2+, Cu2+ and Fe3+ inhibited its activity. Detergents such as SDS, glycerol and Tween-20 increased the lipase activity by 20-30%. Our results indicated that ApLRP might play an important role in the innate immunity of insects. PMID:27297450

  2. Gene cloning and molecular characterization of the Talaromyces thermophilus lipase catalyzed efficient hydrolysis and synthesis of esters.

    PubMed

    Romdhane, Ines Belhaj-Ben; Frikha, Fakher; Maalej-Achouri, Inès; Gargouri, Ali; Belghith, Hafedh

    2012-02-15

    A genomic bank from Talaromyces thermophilus fungus was constructed and screened using a previously isolated fragment lipase gene as probe. From several clones isolated, the nucleotide sequence of the lipase gene (TTL gene) was completed and sequenced. The TTL coding gene consists of an open reading frame (ORF) of 1083bp encoding a protein of 269 Aa with an estimated molecular mass of 30kDa. The TTL belongs to the same gene family as Thermomyces lanuginosus lipase (TLL, Lipolase®), a well known lipase with multiple applications. The promoter sequence of the TTL gene showed the conservation of known consensus sequences PacC, CreA, Hap2-3-4 and the existence of a particular sequence like the binding sites of Oleate Response Element (ORE) and Fatty acids Responsis Element (FARE) which are similar to that already found to be specific of lipolytic genes in Candida and Fusarium, respectively. Northern blot analysis showed that the TTL expression was much higher on wheat bran than on olive oil as sole carbon source. Compared to the Lipolase®, this enzyme was found to be more efficient for the hydrolysis and the synthesis of esters; and its synthetic efficiency even reached 91.6% from Waste Cooking Oil triglycerides.

  3. Highly efficient solvent-free synthesis of 1,3-diacylglycerols by lipase immobilised on nano-sized magnetite particles.

    PubMed

    Meng, Xiao; Xu, Gang; Zhou, Qin-Li; Wu, Jian-Ping; Yang, Li-Rong

    2014-01-15

    Recently, 1,3-DAGs (1,3-diacylglycerols) have attracted considerable attention as healthy components of food, oil and pharmaceutical intermediates. Generally, 1,3-DAG is prepared by lipase-mediated catalysis in a solvent free system. However, the system's high reaction temperature (required to reach the reactants' melting point), high substrate concentration and high viscosity severely reduce the lipase's activity, selectivity and recycling efficiency. In this report, MjL (Mucor javanicus lipase) was found to have the best performance in the solvent-free synthesis of 1,3-DAGs of several common commercial lipases. By covalent binding to amino-group-activated NSM (nano-sized magnetite) particles and cross-linking to form an enzyme aggregate coat, MjL's specific activity increased 10-fold, and was able to be reused for 10 cycles with 90% residual activity at 55°C. 1,3-DAGs of lauric, myristic, palmitic, stearic, oleic and linoleic acid were prepared using the resulting immobilised enzyme, all with yields greater than 90%, and the reaction time was also greatly reduced. PMID:24054246

  4. Biodiesel production from crude Jatropha oil catalyzed by non-commercial immobilized heterologous Rhizopus oryzae and Carica papaya lipases.

    PubMed

    Rodrigues, J; Canet, A; Rivera, I; Osório, N M; Sandoval, G; Valero, F; Ferreira-Dias, S

    2016-08-01

    The aim of this study was to evaluate the feasibility of biodiesel production by transesterification of Jatropha oil with methanol, catalyzed by non-commercial sn-1,3-regioselective lipases. Using these lipases, fatty acid methyl esters (FAME) and monoacylglycerols are produced, avoiding the formation of glycerol as byproduct. Heterologous Rhizopus oryzae lipase (rROL) immobilized on different synthetic resins and Carica papaya lipase (rCPL) immobilized on Lewatit VP OC 1600 were tested. Reactions were performed at 30°C, with seven stepwise methanol additions. For all biocatalysts, 51-65% FAME (theoretical maximum=67%, w/w) was obtained after 4h transesterification. Stability tests were performed in 8 or 10 successive 4h-batches, either with or without rehydration of the biocatalyst between each two consecutive batches. Activity loss was much faster when biocatalysts were rehydrated. For rROL, half-life times varied from 16 to 579h. rROL on Lewatit VPOC 1600 was more stable than for rCPL on the same support.

  5. Innovative approaches for effective selection of lipase-producing microorganisms as whole cell catalysts for biodiesel production.

    PubMed

    Ciudad, Gustavo; Reyes, Isaac; Azócar, Laura; Briones, Reinaldo; Jorquera, Milko; Wick, Lukas Y; Navia, Rodrigo

    2011-07-01

    The high cost of commercial lipases limits their industrial application in the production of biodiesel or fatty acid methyl esters (FAME). This disadvantage has encouraged the search for lipase-producing microorganisms (LPMs) as potential whole cell catalysts for FAME production. The aim of this study, therefore, was to evaluate innovative procedures for easy selection and testing of LPMs as a low-cost whole cell catalyst, based on catalytic performance, methanol tolerance and physico-chemical cell surface properties. The latter (in particular the cell surface hydrophobicity and charge) were analyzed because of their crucial role in microbial adhesion to surfaces and the concomitant increase in cell immobilization and bioavailability of hydrophobic substrates. Biocatalysis experiments performed in the presence of nutrient, rapeseed oil and methanol were an effective tool for studying and identifying, in just two experiments, the capacity of different LPMs as biocatalysts in organic media, as well as the methanol tolerance of the cell and the lipase. This indicates the potential for using live microorganisms for FAME production. Another finding was that the inhibitory effect of methanol is more significant for lipase activity than LPM growth, indicating that the way in which alcohol is supplied to the reaction is a crucial step in FAME production by biocatalysts. According to these results, the application of these innovative assessments should simplify the search for new strains which are able to effectively catalyze the FAME production process.

  6. Highly efficient solvent-free synthesis of 1,3-diacylglycerols by lipase immobilised on nano-sized magnetite particles.

    PubMed

    Meng, Xiao; Xu, Gang; Zhou, Qin-Li; Wu, Jian-Ping; Yang, Li-Rong

    2014-01-15

    Recently, 1,3-DAGs (1,3-diacylglycerols) have attracted considerable attention as healthy components of food, oil and pharmaceutical intermediates. Generally, 1,3-DAG is prepared by lipase-mediated catalysis in a solvent free system. However, the system's high reaction temperature (required to reach the reactants' melting point), high substrate concentration and high viscosity severely reduce the lipase's activity, selectivity and recycling efficiency. In this report, MjL (Mucor javanicus lipase) was found to have the best performance in the solvent-free synthesis of 1,3-DAGs of several common commercial lipases. By covalent binding to amino-group-activated NSM (nano-sized magnetite) particles and cross-linking to form an enzyme aggregate coat, MjL's specific activity increased 10-fold, and was able to be reused for 10 cycles with 90% residual activity at 55°C. 1,3-DAGs of lauric, myristic, palmitic, stearic, oleic and linoleic acid were prepared using the resulting immobilised enzyme, all with yields greater than 90%, and the reaction time was also greatly reduced.

  7. Cloning, Expression, and Characterization of a Cold-Active and Organic Solvent-Tolerant Lipase from Aeromicrobium sp. SCSIO 25071.

    PubMed

    Su, Hongfei; Mai, Zhimao; Yang, Jian; Xiao, Yunzhu; Tian, Xinpeng; Zhang, Si

    2016-06-28

    The gene encoding lipase (Lip98) from Aeromicrobium sp. SCSIO 25071 was cloned and functionally expressed in Escherichia coli. Lip98 amino acid sequence shares the highest (49%) identity to Rhodococcus jostii RHA1 lipase and contains a novel motif (GHSEG), which is different from other clusters in the lipase superfamily. The recombinant lipase was purified to homogeneity with Ni-NTA affinity chromatography. Lip98 showed an apparent molecular mass of 30 kDa on SDS gel. The optimal temperature and pH value for enzymatic activity were recorded at 30°C and 7.5, respectively. Lip98 exhibited high activity at low temperatures with 35% maximum activity at 0°C and good stability at temperatures below 35°C. Its calculated activation energy was 4.12 kcal/mol at the low temperature range of 15-30°C. Its activity was slightly affected by some metal ions such as K(+), Ca(2+), and Na(+). The activity of Lip98 was increased by various organic solvents such as DMSO, ethanol, acetone, and hexane with the concentration of 30% (v/v) and retained more than 30% residual activity in neat organic solvent. The unique characteristics of Lip98 imply that it is a promising candidate for industrial application as a nonaqueous biocatalyst and food additive.

  8. Stereoselective hydrolysis of triglycerides by animal and microbial lipases.

    PubMed

    Rogalska, E; Cudrey, C; Ferrato, F; Verger, R

    1993-01-01

    In the present paper, a study on the stereoselectivity of 25 lipases of animal and microbial origin towards homogeneous prochiral triglycerides is presented. All the lipases tested catalyse the hydrolysis of the chemically alike but sterically nonequivalent ester groups in trioctanoin and triolein with different degrees of stereobias, depending on the fatty acyl chain length of the substrate (Rogalska et al., J. Biol. Chem. 256:20271-20276, 1990). Hydrolysis of the sn-2 ester group is catalysed by very few lipases and only Candida antarctica A shows a clear preference for this position. Most of the lipases investigated (12 with trioctanoin and 16 with triolein) showed a preference for the sn-1 position. Using trioctanoin as substrate we observed a total stereoselectivity for position sn-1 with Pseudomonas sp. and Pseudomonas aeruginosa and for position sn-3 with Candida antarctica B. This was not the case with triolein as substrate. Among the 23 lipases studied here and the other two lipases described previously (Rogalska et al., J. Biol. Chem. 256:20271-20276, 1990), 17 show a higher stereoselectivity with trioctanoin than with triolein. With guinea pig pancreatic lipase and with three mold lipases (Geotrichum candidum M, Geotrichum candidum A, and Candida antarctica B), the preference switches from sn-3 to sn-1 when the acyl chain length increases from eight to 18 carbon atoms. The main conclusion to emerge from the present study is that the specific stereopreference of each lipase for a given substrate under given lipolytic conditions can be said to be its fingerprint.

  9. Dimethyl carbonate-mediated lipid extraction and lipase-catalyzed in situ transesterification for simultaneous preparation of fatty acid methyl esters and glycerol carbonate from Chlorella sp. KR-1 biomass.

    PubMed

    Jo, Yoon Ju; Lee, Ok Kyung; Lee, Eun Yeol

    2014-04-01

    Fatty acid methyl esters (FAMEs) and glycerol carbonate were simultaneously prepared from Chlorella sp. KR-1 containing 40.9% (w/w) lipid using a reactive extraction method with dimethyl carbonate (DMC). DMC was used as lipid extraction agent, acyl acceptor for transesterification of the extracted triglycerides, substrate for glycerol carbonate synthesis from glycerol, and reaction medium for the solvent-free reaction system. For 1g of biomass, 367.31 mg of FAMEs and 16.73 mg of glycerol carbonate were obtained under the optimized conditions: DMC to biomass ratio of 10:1 (v/w), water content of 0.5% (v/v), and Novozyme 435 to biomass ratio of 20% (w/w) at 70°C for 24h. The amount of residual glycerol was only in the range of 1-2.5mg. Compared to conventional method, the cost of FAME production with the proposed technique could be reduced by combining lipid extraction with transesterification and omitting the extraction solvent recovery process. PMID:24583221

  10. Dimethyl carbonate-mediated lipid extraction and lipase-catalyzed in situ transesterification for simultaneous preparation of fatty acid methyl esters and glycerol carbonate from Chlorella sp. KR-1 biomass.

    PubMed

    Jo, Yoon Ju; Lee, Ok Kyung; Lee, Eun Yeol

    2014-04-01

    Fatty acid methyl esters (FAMEs) and glycerol carbonate were simultaneously prepared from Chlorella sp. KR-1 containing 40.9% (w/w) lipid using a reactive extraction method with dimethyl carbonate (DMC). DMC was used as lipid extraction agent, acyl acceptor for transesterification of the extracted triglycerides, substrate for glycerol carbonate synthesis from glycerol, and reaction medium for the solvent-free reaction system. For 1g of biomass, 367.31 mg of FAMEs and 16.73 mg of glycerol carbonate were obtained under the optimized conditions: DMC to biomass ratio of 10:1 (v/w), water content of 0.5% (v/v), and Novozyme 435 to biomass ratio of 20% (w/w) at 70°C for 24h. The amount of residual glycerol was only in the range of 1-2.5mg. Compared to conventional method, the cost of FAME production with the proposed technique could be reduced by combining lipid extraction with transesterification and omitting the extraction solvent recovery process.

  11. Characterization of a highly thermostable extracellular lipase from Lactobacillus plantarum.

    PubMed

    Lopes, Maria de Fátima Silva; Leitão, Ana Lúcia; Regalla, Manuela; Marques, J J Figueiredo; Carrondo, Manuel José Teixeira; Crespo, Maria Teresa Barreto

    2002-06-01

    After screening for the presence of lipase activity in lactobacilli isolated from "chouriço", a traditional Portuguese dry fermented sausage, a strain of Lactobacillus plantarum (DSMZ 12028) was chosen for extracellular lipase characterisation and purification. Proteinase K did not significantly affect lipolytic activity, as opposed to trypsin, which completely eliminated this activity. Among NaCl, Ca2+, EDTA, BSA, glycerol, Mn2+ and Mg2+, only Mn2+ and Mg2+ stimulated the lipase. Purification by gel filtration chromatography and gel electrophoresis revealed four bands, between 98 and 45 kDa, all with lipolytic activity against olive oil.

  12. Obtaining lipases from byproducts of orange juice processing.

    PubMed

    Okino-Delgado, Clarissa Hamaio; Fleuri, Luciana Francisco

    2014-11-15

    The presence of lipases was observed in three byproducts of orange juice processing: peel, core and frit. The enzymes were characterised biochemically over a wide pH range from neutral (6-7) to alkaline (8-9). The optimal temperature for the activity of these byproducts showed wide range at 20°C to 70°C, indicating fairly high thermostability. The activities were monitored on p-NP-butyrate, p-NP-laurate and p-NP-palmitate. For the first time, lipase activity was detected in these residues, reaching 68.5 lipase U/g for the crude extract from fractions called frit.

  13. Lipase-catalyzed aza-Michael reaction on acrylate derivatives.

    PubMed

    Steunenberg, Peter; Sijm, Maarten; Zuilhof, Han; Sanders, Johan P M; Scott, Elinor L; Franssen, Maurice C R

    2013-04-19

    A methodology has been developed for an efficient and selective lipase-catalyzed aza-Michael reaction of various amines (primary and secondary) with a series of acrylates and alkylacrylates. Reaction parameters were tuned, and under the optimal conditions it was found that Pseudomonas stutzeri lipase and Chromobacterium viscosum lipase showed the highest selectivity for the aza-Michael addition to substituted alkyl acrylates. For the first time also, some CLEAs were examined that showed a comparable or higher selectivity and yield than the free enzymes and other formulations.

  14. Exploring the protein stability landscape: Bacillus subtilis lipase A as a model for detergent tolerance.

    PubMed

    Fulton, Alexander; Frauenkron-Machedjou, Victorine Josiane; Skoczinski, Pia; Wilhelm, Susanne; Zhu, Leilei; Schwaneberg, Ulrich; Jaeger, Karl-Erich

    2015-04-13

    A systematic study was conducted with Bacillus subtilis lipase A (BSLA) to determine the effect of every single amino acid substitution on detergent tolerance. BSLA is a minimal α/β-hydrolase of 181 amino acids with a known crystal structure. It can be expressed in Escherichia coli and is biochemically well characterized. Site saturation mutagenesis resulted in a library of 3439 variants, each with a single amino acid exchange as confirmed by DNA sequencing. The library was tested against four detergents, namely SDS, CTAB, Tween 80, and sulfobetaine. Surface remodeling emerged as an effective engineering strategy to increase tolerance towards detergents. Amino acid residues that significantly affect the tolerance for each of the four detergents were identified. In summary, this systematic analysis provides an experimental dataset to help derive novel protein engineering strategies as well as to direct modeling efforts.

  15. Lipoprotein lipase and hepatic lipase mRNA tissue specific expression, developmental regulation, and evolution.

    PubMed

    Semenkovich, C F; Chen, S H; Wims, M; Luo, C C; Li, W H; Chan, L

    1989-03-01

    Lipoprotein lipase (LPL) and hepatic lipase (HL) enzyme activities were previously reported to be regulated during development, but the underlying molecular events are unknown. In addition, little is known about LPL evolution. We cloned and sequenced a complete mouse LPL cDNA. Comparison of sequences from mouse, human, bovine, and guinea pig cDNAs indicated that the rates of evolution of mouse, human, and bovine LPL are quite low, but guinea pig LPL has evolved several times faster than the others. 32P-Labeled mouse LPL and rat HL cDNAs were used to study lipase mRNA tissue distribution and developmental regulation in the rat. Northern gel analysis revealed the presence of a single 1.87 kb HL mRNA species in liver, but not in other tissues including adrenal and ovary. A single 4.0 kb LPL mRNA species was detected in epididymal fat, heart, psoas muscle, lactating mammary gland, adrenal, lung, and ovary, but not in adult kidney, liver, intestine, or brain. Quantitative slot-blot hybridization analysis demonstrated the following relative amounts of LPL mRNA in rat tissues: adipose, 100%; heart, 94%; adrenal, 6.6%; muscle, 3.8%; lung, 3.0%; kidney, 0%; adult liver, 0%. The same quantitative analysis was used to study lipase mRNA levels during development. There was little postnatal variation in LPL mRNA in adipose tissue; maximal levels were detected at the earliest time points studied for both inguinal and epididymal fat. In heart, however, LPL mRNA was detected at low levels 6 days before birth and increased 278-fold as the animals grew to adulthood.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Discovery of XEN445: a potent and selective endothelial lipase inhibitor raises plasma HDL-cholesterol concentration in mice.

    PubMed

    Sun, Shaoyi; Dean, Richard; Jia, Qi; Zenova, Alla; Zhong, Jing; Grayson, Celene; Xie, Clark; Lindgren, Andrea; Samra, Pritpaul; Sojo, Luis; van Heek, Margaret; Lin, Linus; Percival, David; Fu, Jian-Min; Winther, Michael D; Zhang, Zaihui

    2013-12-15

    Endothelial lipase (EL) activity has been implicated in HDL metabolism and in atherosclerotic plaque development; inhibitors are proposed to be efficacious in the treatment of dyslipidemia related cardiovascular disease. We describe here the discovery of a novel class of anthranilic acids EL inhibitors. XEN445 (compound 13) was identified as a potent and selective EL inhibitor, that showed good ADME and PK properties, and demonstrated in vivo efficacy in raising plasma HDLc concentrations in mice. PMID:24211162

  17. Lipase catalyzed esterification of glycidol in organic solvents

    SciTech Connect

    Martins, J.F.; Nunes da Ponte, M.; Barreiros, S. . Centro de Tecnologia Quimica e Biologica)

    1993-08-05

    The authors studied the resolution of racemic glycidol through esterification with butyric acid catalyzed by porcine pancreatic lipase in organic media. A screening of seven solvents (log P values between 0.49 and 3.0, P being the n-octanol-water partition coefficient of the solvent) showed that neither log P nor the logarithm of the molar solubility of water in the solvent provides good correlations between enantioselectivity and the properties of the organic media. Chloroform was one of the best solvents as regards the enantiometic purity (e.p.) of the ester produced. In this solvent, the optimum temperature for the reaction was determined to be 35C. The enzyme exhibited maximum activity at a water content of 13 [plus minus] 2% (w/w). The enantiomeric purity obtained was 83 [plus minus] 2% of (S)-glycidol butyrate and did not depend on the alcohol concentration or the enzyme water content for values of these parameters up to 200 mM and 25% (w/w), respectively. The reaction was found to follow a BiBi mechanism.

  18. Lipase catalyzed esterification of glycidol in organic solvents.

    PubMed

    Martins, J F; Da Ponte, M N; Barreiros, S

    1993-08-01

    We studied the resolution of racemic glycidol through esterification with butyric acid catalyzed by porcine pancreatic lipase in organic media. A screening of seven solvents (log P values between 0.49 and 3.0, P being the n-octanol-water partition coefficient of the solvent) showed that neither log P nor the logarithm of the molar solubility of water in the solvent provides good correlations between enantioselectivity and the properties of the organic media. Chloroform was one of the best solvents as regards the enantiomeric purity (e. p.) of the ester produced. In this solvent, the optimum temperature for the reaction was determined to be 35 degrees C. The enzyme exhibited maximum activity at a water content of 13 +/- 2% (w/w). The enantiomeric purity obtained was 83 +/- 2% of (S)-glycidyl butyrate and did not depend on the alcohol concentration or the enzyme water content for values of these parameters up to 200 mM and 25% (w/w), respectively. The reaction was found to follow a BiBi mechanism.

  19. Structural insights of a hormone sensitive lipase homologue Est22.

    PubMed

    Huang, Jing; Huo, Ying-Yi; Ji, Rui; Kuang, Siyun; Ji, Chaoneng; Xu, Xue-Wei; Li, Jixi

    2016-01-01

    Hormone sensitive lipase (HSL) catalyzes the hydrolysis of triacylglycerols into fatty acids and glycerol, thus playing key roles in energy homeostasis. However, the application of HSL serving as a pharmaceutical target and an industrial biocatalyst is largely hampered due to the lack of high-resolution structural information. Here we report biochemical properties and crystal structures of a novel HSL homologue esterase Est22 from a deep-sea metagenomic library. Est22 prefers short acyl chain esters and has a very high activity with substrate p-nitrophenyl butyrate. The crystal structures of wild type and mutated Est22 with its product p-nitrophenol are solved with resolutions ranging from 1.4 Å to 2.43 Å. The Est22 exhibits a α/β-hydrolase fold consisting with a catalytic domain and a substrate-recognizing cap domain. Residues Ser188, Asp287, and His317 comprise the catalytic triad in the catalytic domain. The p-nitrophenol molecule occupies the substrate binding pocket and forms hydrogen bonds with adjacent residues Gly108, Gly109, and Gly189. Est22 exhibits a dimeric form in solution, whereas mutants D287A and H317A change to polymeric form, which totally abolished its enzymatic activities. Our study provides insights into the catalytic mechanism of HSL family esterase and facilitates the understanding for further industrial and biotechnological applications of esterases. PMID:27328716

  20. Transcriptional regulation of adipocyte hormone-sensitive lipase by glucose.

    PubMed

    Smih, Fatima; Rouet, Philippe; Lucas, Stéphanie; Mairal, Aline; Sengenes, Coralie; Lafontan, Max; Vaulont, Sophie; Casado, Marta; Langin, Dominique

    2002-02-01

    Hormone-sensitive lipase (HSL) catalyzes the rate-limiting step in the mobilization of fatty acids from adipose tissue, thus determining the supply of energy substrates in the body. HSL mRNA was positively regulated by glucose in human adipocytes. Pools of stably transfected 3T3-F442A adipocytes were generated with human adipocyte HSL promoter fragments from -2,400/+38 to -31/+38 bp linked to the luciferase gene. A glucose-responsive region was mapped within the proximal promoter (-137 bp). Electromobility shift assays showed that upstream stimulatory factor (USF)-1 and USF2 and Sp1 and Sp3 bound to a consensus E-box and two GC-boxes in the -137-bp region. Cotransfection of the -137/+38 construct with USF1 and USF2 expression vectors produced enhanced luciferase activity. Moreover, HSL mRNA levels were decreased in USF1- and USF2-deficient mice. Site-directed mutagenesis of the HSL promoter showed that the GC-boxes, although contributing to basal promoter activity, were dispensable for glucose responsiveness. Mutation of the E-box led to decreased promoter activity and suppression of the glucose response. Analogs and metabolites were used to determine the signal metabolite of the glucose response. The signal is generated downstream of glucose-6-phosphate in the glycolytic pathway before the triose phosphate step. PMID:11812735

  1. Regulation of hepatic lipase activity by sphingomyelin in plasma lipoproteins.

    PubMed

    Yang, Peng; Subbaiah, Papasani V

    2015-10-01

    Hepatic lipase (HL) is an important enzyme in the clearance of triacylglycerol (TAG) from the circulation, and has been proposed to have pro-atherogenic as well as anti-atherogenic properties. It hydrolyzes both phospholipids and TAG of lipoproteins, and its activity is negatively correlated with HDL levels. Although it is known that HL acts preferentially on HDL lipids, the basis for this specificity is not known, since it does not require any specific apoprotein for activity. In this study, we tested the hypothesis that sphingomyelin (SM), whose concentration is much higher in VLDL and LDL compared to HDL, is an inhibitor of HL, and that this could explain the lipoprotein specificity of the enzyme. The results presented show that the depletion of SM from normal lipoproteins activated the HL roughly in proportion to their SM content. SM depletion stimulated the hydrolysis of both phosphatidylcholine (PC) and TAG, although the PC hydrolysis was stimulated more. In the native lipoproteins, HL showed specificity for PC species containing polyunsaturated fatty acids at sn-2 position, and produced more unsaturated lyso PC species. The enzyme also showed preferential hydrolysis of certain TAG species over others. SM depletion affected the specificity of the enzyme towards PC and TAG species modestly. These results show that SM is a physiological inhibitor of HL activity in lipoproteins and that the specificity of the enzyme towards HDL is at least partly due to its low SM content. PMID:26193433

  2. Regulation of hepatic lipase activity by sphingomyelin in plasma lipoproteins.

    PubMed

    Yang, Peng; Subbaiah, Papasani V

    2015-10-01

    Hepatic lipase (HL) is an important enzyme in the clearance of triacylglycerol (TAG) from the circulation, and has been proposed to have pro-atherogenic as well as anti-atherogenic properties. It hydrolyzes both phospholipids and TAG of lipoproteins, and its activity is negatively correlated with HDL levels. Although it is known that HL acts preferentially on HDL lipids, the basis for this specificity is not known, since it does not require any specific apoprotein for activity. In this study, we tested the hypothesis that sphingomyelin (SM), whose concentration is much higher in VLDL and LDL compared to HDL, is an inhibitor of HL, and that this could explain the lipoprotein specificity of the enzyme. The results presented show that the depletion of SM from normal lipoproteins activated the HL roughly in proportion to their SM content. SM depletion stimulated the hydrolysis of both phosphatidylcholine (PC) and TAG, although the PC hydrolysis was stimulated more. In the native lipoproteins, HL showed specificity for PC species containing polyunsaturated fatty acids at sn-2 position, and produced more unsaturated lyso PC species. The enzyme also showed preferential hydrolysis of certain TAG species over others. SM depletion affected the specificity of the enzyme towards PC and TAG species modestly. These results show that SM is a physiological inhibitor of HL activity in lipoproteins and that the specificity of the enzyme towards HDL is at least partly due to its low SM content.

  3. Inhibition of endothelial lipase activity by sphingomyelin in the lipoproteins.

    PubMed

    Yang, Peng; Belikova, Natalia A; Billheimer, Jeff; Rader, Daniel J; Hill, John S; Subbaiah, Papasani V

    2014-10-01

    Endothelial lipase (EL) is a major determinant of plasma HDL concentration, its activity being inversely proportional to HDL levels. Although it is known that it preferentially acts on HDL compared to LDL and VLDL, the basis for this specificity is not known. Here we tested the hypothesis that sphingomyelin, a major phospholipid in lipoproteins is a physiological inhibitor of EL, and that the preference of the enzyme for HDL may be due to low sphingomyelin/phosphatidylcholine (PtdCho) ratio in HDL, compared to other lipoproteins. Using recombinant human EL, we showed that sphingomyelin inhibits the hydrolysis of PtdCho in the liposomes in a concentration-dependent manner. While the enzyme showed lower hydrolysis of LDL PtdCho, compared to HDL PtdCho, this difference disappeared after the degradation of lipoprotein sphingomyelin by bacterial sphingomyelinase. Analysis of molecular species of PtdCho hydrolyzed by EL in the lipoproteins showed that the enzyme preferentially hydrolyzed PtdCho containing polyunsaturated fatty acids (PUFA) such as 22:6, 20:5, 20:4 at the sn-2 position, generating the corresponding PUFA-lyso PtdCho. This specificity for PUFA-PtdCho species was not observed after depletion of sphingomyelin by sphingomyelinase. These results show that sphingomyelin not only plays a role in regulating EL activity, but also influences its specificity towards PtdCho species. PMID:25167836

  4. Structural insights of a hormone sensitive lipase homologue Est22

    PubMed Central

    Huang, Jing; Huo, Ying-Yi; Ji, Rui; Kuang, Siyun; Ji, Chaoneng; Xu, Xue-Wei; Li, Jixi

    2016-01-01

    Hormone sensitive lipase (HSL) catalyzes the hydrolysis of triacylglycerols into fatty acids and glycerol, thus playing key roles in energy homeostasis. However, the application of HSL serving as a pharmaceutical target and an industrial biocatalyst is largely hampered due to the lack of high-resolution structural information. Here we report biochemical properties and crystal structures of a novel HSL homologue esterase Est22 from a deep-sea metagenomic library. Est22 prefers short acyl chain esters and has a very high activity with substrate p-nitrophenyl butyrate. The crystal structures of wild type and mutated Est22 with its product p-nitrophenol are solved with resolutions ranging from 1.4 Å to 2.43 Å. The Est22 exhibits a α/β-hydrolase fold consisting with a catalytic domain and a substrate-recognizing cap domain. Residues Ser188, Asp287, and His317 comprise the catalytic triad in the catalytic domain. The p-nitrophenol molecule occupies the substrate binding pocket and forms hydrogen bonds with adjacent residues Gly108, Gly109, and Gly189. Est22 exhibits a dimeric form in solution, whereas mutants D287A and H317A change to polymeric form, which totally abolished its enzymatic activities. Our study provides insights into the catalytic mechanism of HSL family esterase and facilitates the understanding for further industrial and biotechnological applications of esterases. PMID:27328716

  5. Cellulose binding domain assisted immobilization of lipase (GSlip-CBD) onto cellulosic nanogel: characterization and application in organic medium.

    PubMed

    Kumar, Ashok; Zhang, Shaowei; Wu, Gaobing; Wu, Cheng Chao; Chen, JunPeng; Baskaran, R; Liu, Ziduo

    2015-12-01

    A cbd gene was cloned into the C-terminal region of a lip gene from Geobacillus stearothermophilus. The native lipase (43.5 kDa) and CBD-Lip fusion protein (60.2 kDa) were purified to homogeneity by SDS-PAGE. A highly stable cellulosic nanogel was prepared by controlled hydrolysis of microcrystalline cellulose onto which the CBD-lip fusion protein was immobilized through bio-affinity based binding. The nanogel-bound lipase showed optimum activity at 55 °C, and it remains stable and active at pH 10-10.5. Furthermore, the immobilized lipase showed an over two-fold increase of relative activity in the presence of DMSO, isopropanol, isoamyl alcohol and n-butanol, but a mild activity decrease at a low concentration of methanol and ethanol. The immobilized biocatalyst retained ~50% activity after eight repetitive hydrolytic cycles. Enzyme kinetic studies of the immobilized lipase showed a 1.24 fold increase in Vmax and 5.25 fold increase in kcat towards p-NPP hydrolysis. Additionally, the nanogel bound lipase was tested to synthesize a biodiesel ester, ethyl oleate in DMSO. Kinetic analysis showed the km 100.5 ± 4.3 mmol and Vmax 0.19 ± 0.015 mmolmin(-1) at varied oleic acid concentration. Also, the values of km and Vmax at varying concentration of ethanol were observed to be 95.9 ± 13.9 mmol and 0.22 ± 0.013 mmolmin(-1) respectively. The maximum yield of ethyl oleate 111.2 ± 1.24 mM was obtained under optimized reaction conditions in organic medium. These results suggest that this immobilized biocatalyst can be used as an efficient tool for the biotransformation reactions on an industrial scale. PMID:26590897

  6. Characterization of a Hyperthermostable Alkaline Lipase from Bacillus sonorensis 4R

    PubMed Central

    Bhosale, Hemlata; Shaheen, Uzma

    2016-01-01

    Hyperthermostable alkaline lipase from Bacillus sonorensis 4R was purified and characterized. The enzyme production was carried out at 80°C and 9.0 pH in glucose-tween inorganic salt broth under static conditions for 96 h. Lipase was purified by anion exchange chromatography by 12.15 fold with a yield of 1.98%. The molecular weight of lipase was found to be 21.87 KDa by SDS-PAGE. The enzyme activity was optimal at 80°C with t1/2 of 150 min and at 90°C, 100°C, 110°C, and 120°C; the respective values were 121.59 min, 90.01 min, 70.01 min, and 50 min. The enzyme was highly activated by Mg and t1/2 values at 80°C were increased from 150 min to 180 min when magnesium and mannitol were added in combination. The activation energy calculated from Arrhenius plot was 31.102 KJ/mol. At 80–120°C, values of ΔH and ΔG were in the range of 28.16–27.83 KJ/mol and 102.79 KJ/mol to 111.66 KJ/mol, respectively. Lipase activity was highest at 9.0 pH and stable for 2 hours at this pH at 80°C. Pretreatment of lipase with MgSO4 and CaSO4 stimulated enzyme activity by 249.94% and 30.2%, respectively. The enzyme activity was greatly reduced by CoCl2, CdCl2, HgCl2, CuCl2, Pb(NO3)2, PMSF, orlistat, oleic acid, iodine, EDTA, and urea. PMID:26904276

  7. Gene cloning and characterization of a novel highly organic solvent tolerant lipase from Proteus sp. SW1 and its application for biodiesel production.

    PubMed

    Whangsuk, Wirongrong; Sungkeeree, Pareenart; Thiengmag, Sirinthra; Kerdwong, Jarunee; Sallabhan, Ratiboot; Mongkolsuk, Skorn; Loprasert, Suvit

    2013-01-01

    Proteus sp. SW1 was found to produce an extracellular solvent tolerant lipase. The gene, lipA, encoding a bacterial lipase, was cloned from total Proteus sp. SW1 DNA. lipA was predicted to encode a 287 amino acid protein of 31.2 kDa belonging to the Group I proteobacterial lipases. Purified His-tagged LipA exhibited optimal activity at pH 10.0 and 55°C. It was highly stable in organic solvents retaining 112% of its activity in 100% isopropanol after 24 h, and exhibited more than 200% of its initial activity upon exposure to 60% acetone, ethanol, and hexane for 18 h. Biodiesel synthesis reactions, using a single step addition of 13% an acyl acceptor ethanol, showed that LipA was highly effective at converting palm oil into biodiesel.

  8. Stability of a Lipase Extracted from Seeds of Pachira aquatica in Commercial Detergents and Application Tests in Poultry Wastewater Pretreatment and Fat Particle Hydrolysis

    PubMed Central

    Polizelli, Patrícia Peres; Facchini, Fernanda Dell Antonio

    2013-01-01

    A protein extract containing a plant lipase from oleaginous seeds of Pachira aquatica was tested using soybean oil, wastewater from a poultry processing plant, and beef fat particles as substrate. The hydrolysis experiments were carried out at a temperature of 40°C, an incubation time of 90 minutes, and pH 8.0-9.0. The enzyme had the best stability at pH 9.0 and showed good stability in the alkaline range. It was found that P. aquatica lipase was stable in the presence of some commercial laundry detergent formulations, and it retai