Science.gov

Sample records for acid lipase lal

  1. Deletion of sterol O-acyltransferase 2 (SOAT2) function in mice deficient in lysosomal acid lipase (LAL) dramatically reduces esterified cholesterol sequestration in the small intestine and liver.

    PubMed

    Lopez, Adam M; Posey, Kenneth S; Turley, Stephen D

    2014-11-07

    Sterol O-acyltransferase 2 (SOAT2), also known as ACAT2, is the major cholesterol esterifying enzyme in the liver and small intestine (SI). Esterified cholesterol (EC) carried in certain classes of plasma lipoproteins is hydrolyzed by lysosomal acid lipase (LAL) when they are cleared from the circulation. Loss-of-function mutations in LIPA, the gene that encodes LAL, result in Wolman disease (WD) or cholesteryl ester storage disease (CESD). Hepatomegaly and a massive increase in tissue EC levels are hallmark features of both disorders. While these conditions can be corrected with enzyme replacement therapy, the question arose as to what effect the loss of SOAT2 function might have on tissue EC sequestration in LAL-deficient mice. When weaned at 21 days, Lal(-)(/)(-):Soat2(+)(/)(+) mice had a whole liver cholesterol content (mg/organ) of 24.7 mg vs 1.9mg in Lal(+/+):Soat2(+/+) littermates, with almost all the excess sterol being esterified. Over the next 31 days, liver cholesterol content in the Lal(-)(/)(-):Soat2(+)(/)(+) mice increased to 145 ± 2 mg but to only 29 ± 2 mg in their Lal(-)(/)(-):Soat2(-)(/)(-) littermates. The level of EC accumulation in the SI of the Lal(-)(/)(-):Soat2(-)(/)(-) mice was also much less than in their Lal(-)(/)(-):Soat2(+)(/)(+) littermates. In addition, there was a >70% reduction in plasma transaminase activities in the Lal(-)(/)(-):Soat2(-)(/)(-) mice. These studies illustrate how the severity of disease in a mouse model for CESD can be substantially ameliorated by elimination of SOAT2 function.

  2. Enzyme therapy for lysosomal acid lipase deficiency in the mouse.

    PubMed

    Du, H; Schiavi, S; Levine, M; Mishra, J; Heur, M; Grabowski, G A

    2001-08-01

    Lysosomal acid lipase (LAL) is the critical enzyme for the hydrolysis of the triglycerides (TG) and cholesteryl esters (CE) delivered to lysosomes. Its deficiency produces two human phenotypes, Wolman disease (WD) and cholesteryl ester storage disease (CESD). A targeted disruption of the LAL locus produced a null (lal( -/-)) mouse model that mimics human WD/CESD. The potential for enzyme therapy was tested using mannose terminated human LAL expressed in Pichia pastoris (phLAL), purified, and administered by tail vein injections to lal( -/-) mice. Mannose receptor (MR)-dependent uptake and lysosomal targeting of phLAL were evidenced ex vivo using competitive assays with MR-positive J774E cells, a murine monocyte/macrophage line, immunofluorescence and western blots. Following (bolus) IV injection, phLAL was detected in Kupffer cells, lung macrophages and intestinal macrophages in lal( -/-) mice. Two-month-old lal( -/-) mice received phLAL (1.5 U/dose) or saline injections once every 3 days for 30 days (10 doses). The treated lal( -/-) mice showed nearly complete resolution of hepatic yellow coloration; hepatic weight decreased by approximately 36% compared to PBS-treated lal( -/-) mice. Histologic analyses of numerous tissues from phLAL-treated mice showed reductions in macrophage lipid storage. TG and cholesterol levels decreased by approximately 50% in liver, 69% in spleen and 50% in small intestine. These studies provide feasibility for LAL enzyme therapy in human WD and CESD.

  3. Lysosomal Acid Lipase Hydrolyzes Retinyl Ester and Affects Retinoid Turnover.

    PubMed

    Grumet, Lukas; Eichmann, Thomas O; Taschler, Ulrike; Zierler, Kathrin A; Leopold, Christina; Moustafa, Tarek; Radovic, Branislav; Romauch, Matthias; Yan, Cong; Du, Hong; Haemmerle, Guenter; Zechner, Rudolf; Fickert, Peter; Kratky, Dagmar; Zimmermann, Robert; Lass, Achim

    2016-08-19

    Lysosomal acid lipase (LAL) is essential for the clearance of endocytosed cholesteryl ester and triglyceride-rich chylomicron remnants. Humans and mice with defective or absent LAL activity accumulate large amounts of cholesteryl esters and triglycerides in multiple tissues. Although chylomicrons also contain retinyl esters (REs), a role of LAL in the clearance of endocytosed REs has not been reported. In this study, we found that murine LAL exhibits RE hydrolase activity. Pharmacological inhibition of LAL in the human hepatocyte cell line HepG2, incubated with chylomicrons, led to increased accumulation of REs in endosomal/lysosomal fractions. Furthermore, pharmacological inhibition or genetic ablation of LAL in murine liver largely reduced in vitro acid RE hydrolase activity. Interestingly, LAL-deficient mice exhibited increased RE content in the duodenum and jejunum but decreased RE content in the liver. Furthermore, LAL-deficient mice challenged with RE gavage exhibited largely reduced post-prandial circulating RE content, indicating that LAL is required for efficient nutritional vitamin A availability. In summary, our results indicate that LAL is the major acid RE hydrolase and required for functional retinoid homeostasis.

  4. Lysosomal Acid Lipase Hydrolyzes Retinyl Ester and Affects Retinoid Turnover*

    PubMed Central

    Grumet, Lukas; Eichmann, Thomas O.; Zierler, Kathrin A.; Leopold, Christina; Moustafa, Tarek; Radovic, Branislav; Romauch, Matthias; Yan, Cong; Haemmerle, Guenter; Zechner, Rudolf; Fickert, Peter; Lass, Achim

    2016-01-01

    Lysosomal acid lipase (LAL) is essential for the clearance of endocytosed cholesteryl ester and triglyceride-rich chylomicron remnants. Humans and mice with defective or absent LAL activity accumulate large amounts of cholesteryl esters and triglycerides in multiple tissues. Although chylomicrons also contain retinyl esters (REs), a role of LAL in the clearance of endocytosed REs has not been reported. In this study, we found that murine LAL exhibits RE hydrolase activity. Pharmacological inhibition of LAL in the human hepatocyte cell line HepG2, incubated with chylomicrons, led to increased accumulation of REs in endosomal/lysosomal fractions. Furthermore, pharmacological inhibition or genetic ablation of LAL in murine liver largely reduced in vitro acid RE hydrolase activity. Interestingly, LAL-deficient mice exhibited increased RE content in the duodenum and jejunum but decreased RE content in the liver. Furthermore, LAL-deficient mice challenged with RE gavage exhibited largely reduced post-prandial circulating RE content, indicating that LAL is required for efficient nutritional vitamin A availability. In summary, our results indicate that LAL is the major acid RE hydrolase and required for functional retinoid homeostasis. PMID:27354281

  5. Acid Lipase Disease

    MedlinePlus

    ... Page You are here Home » Disorders » All Disorders Acid Lipase Disease Information Page Acid Lipase Disease Information Page What research is being ... research to understand lipid storage diseases such as acid lipase deficiency. Additional research studies hope to identify ...

  6. Wolman disease/cholesteryl ester storage disease: efficacy of plant-produced human lysosomal acid lipase in mice.

    PubMed

    Du, Hong; Cameron, Terri L; Garger, Stephen J; Pogue, Gregory P; Hamm, Lee A; White, Earl; Hanley, Kathleen M; Grabowski, Gregory A

    2008-08-01

    Lysosomal acid lipase (LAL) is an essential enzyme that hydrolyzes triglycerides (TGs) and cholesteryl esters (CEs) in lysosomes. Genetic LAL mutations lead to Wolman disease (WD) and cholesteryl ester storage disease (CESD). An LAL-null (lal(-/-)) mouse model resembles human WD/CESD with storage of CEs and TGs in multiple organs. Human LAL (hLAL) was expressed in Nicotiana benthamiana using the GENEWARE expression system (G-hLAL). Purified G-hLAL showed mannose receptor-dependent uptake into macrophage cell lines (J774E). Intraperitoneal injection of G-hLAL produced peak activities in plasma at 60 min and in the liver and spleen at 240 min. The t(1/2) values were: approximately 90 min (plasma), approximately 14 h (liver), and approximately 32 h (spleen), with return to baseline by approximately 150 h in liver and approximately 200 h in spleen. Ten injections of G-hLAL (every 3 days) into lal(-/-) mice produced normalization of hepatic color, decreases in hepatic cholesterol and TG contents, and diminished foamy macrophages in liver, spleen, and intestinal villi. All injected lal(-/-) mice developed anti-hLAL protein antibodies, but suffered no adverse events. These studies demonstrate the feasibility of using plant-expressed, recombinant hLAL for the enzyme therapy of human WD/CESD with general implications for other lysosomal storage diseases.

  7. Clinical Features of Lysosomal Acid Lipase Deficiency

    PubMed Central

    Burton, Barbara K.; Deegan, Patrick B.; Enns, Gregory M.; Guardamagna, Ornella; Horslen, Simon; Hovingh, Gerard K.; Lobritto, Steve J.; Malinova, Vera; McLin, Valerie A.; Raiman, Julian; Di Rocco, Maja; Santra, Saikat; Sharma, Reena; Sykut-Cegielska, Jolanta; Whitley, Chester B.; Eckert, Stephen; Valayannopoulos, Vassili; Quinn, Anthony G.

    2015-01-01

    Abstract Objective: The aim of this study was to characterize key clinical manifestations of lysosomal acid lipase deficiency (LAL D) in children and adults. Methods: Investigators reviewed medical records of LAL D patients ages ≥5 years, extracted historical data, and obtained prospective laboratory and imaging data on living patients to develop a longitudinal dataset. Results: A total of 49 patients were enrolled; 48 had confirmed LAL D. Mean age at first disease-related abnormality was 9.0 years (range 0–42); mean age at diagnosis was 15.2 years (range 1–46). Twenty-nine (60%) were male patients, and 27 (56%) were <20 years of age at the time of consent/assent. Serum transaminases were elevated in most patients with 458 of 499 (92%) of alanine aminotransferase values and 265 of 448 (59%) of aspartate aminotransferase values above the upper limit of normal. Most patients had elevated low-density lipoprotein (64% patients) and total cholesterol (63%) at baseline despite most being on lipid-lowering therapies, and 44% had high-density lipoprotein levels below the lower limit of normal. More than half of the patients with liver biopsies (n = 31, mean age 13 years) had documented evidence of steatosis (87%) and/or fibrosis (52%). Imaging assessments revealed that the median liver volume was ∼1.15 multiples of normal (MN) and median spleen volume was ∼2.2 MN. Six (13%) patients had undergone a liver transplant (ages 9–43.5 years). Conclusion: This study provides the largest longitudinal case review of patients with LAL D and confirms that LAL D is predominantly a pediatric disease causing early and progressive hepatic dysfunction associated with dyslipidemia that often leads to liver failure and transplantation. PMID:26252914

  8. Wolman disease/cholesteryl ester storage disease: efficacy of plant-produced human lysosomal acid lipase in mice*

    PubMed Central

    Du, Hong; Cameron, Terri L.; Garger, Stephen J.; Pogue, Gregory P.; Hamm, Lee A.; White, Earl; Hanley, Kathleen M.; Grabowski, Gregory A.

    2008-01-01

    Lysosomal acid lipase (LAL) is an essential enzyme that hydrolyzes triglycerides (TGs) and cholesteryl esters (CEs) in lysosomes. Genetic LAL mutations lead to Wolman disease (WD) and cholesteryl ester storage disease (CESD). An LAL-null (lal−/−) mouse model resembles human WD/CESD with storage of CEs and TGs in multiple organs. Human LAL (hLAL) was expressed in Nicotiana benthamiana using the GENEWARE® expression system (G-hLAL). Purified G-hLAL showed mannose receptor-dependent uptake into macrophage cell lines (J774E). Intraperitoneal injection of G-hLAL produced peak activities in plasma at 60 min and in the liver and spleen at 240 min. The t1/2 values were: ∼90 min (plasma), ∼14 h (liver), and ∼32 h (spleen), with return to baseline by ∼150 h in liver and ∼200 h in spleen. Ten injections of G-hLAL (every 3 days) into lal−/− mice produced normalization of hepatic color, decreases in hepatic cholesterol and TG contents, and diminished foamy macrophages in liver, spleen, and intestinal villi. All injected lal−/− mice developed anti-hLAL protein antibodies, but suffered no adverse events. These studies demonstrate the feasibility of using plant-expressed, recombinant hLAL for the enzyme therapy of human WD/CESD with general implications for other lysosomal storage diseases. PMID:18413899

  9. Hepatic entrapment of esterified cholesterol drives continual expansion of whole body sterol pool in lysosomal acid lipase-deficient mice.

    PubMed

    Aqul, Amal; Lopez, Adam M; Posey, Kenneth S; Taylor, Anna M; Repa, Joyce J; Burns, Dennis K; Turley, Stephen D

    2014-10-15

    Cholesteryl ester storage disease (CESD) results from loss-of-function mutations in LIPA, the gene that encodes lysosomal acid lipase (LAL). Hepatomegaly and deposition of esterified cholesterol (EC) in multiple organs ensue. The present studies quantitated rates of synthesis, absorption, and disposition of cholesterol, and whole body cholesterol pool size in a mouse model of CESD. In 50-day-old lal(-/-) and matching lal(+/+) mice fed a low-cholesterol diet, whole animal cholesterol content equalled 210 and 50 mg, respectively, indicating that since birth the lal(-/-) mice sequestered cholesterol at an average rate of 3.2 mg·day(-1)·animal(-1). The proportion of the body sterol pool contained in the liver of the lal(-/-) mice was 64 vs. 6.3% in their lal(+/+) controls. EC concentrations in the liver, spleen, small intestine, and lungs of the lal(-/-) mice were elevated 100-, 35-, 15-, and 6-fold, respectively. In the lal(-/-) mice, whole liver cholesterol synthesis increased 10.2-fold, resulting in a 3.2-fold greater rate of whole animal sterol synthesis compared with their lal(+/+) controls. The rate of cholesterol synthesis in the lal(-/-) mice exceeded that in the lal(+/+) controls by 3.7 mg·day(-1)·animal(-1). Fractional cholesterol absorption and fecal bile acid excretion were unchanged in the lal(-/-) mice, but their rate of neutral sterol excretion was 59% higher than in their lal(+/+) controls. Thus, in this model, the continual expansion of the body sterol pool is driven by the synthesis of excess cholesterol, primarily in the liver. Despite the severity of their disease, the median life span of the lal(-/-) mice was 355 days.

  10. Genetics Home Reference: lysosomal acid lipase deficiency

    MedlinePlus

    ... Home Health Conditions lysosomal acid lipase deficiency lysosomal acid lipase deficiency Enable Javascript to view the expand/ ... Download PDF Open All Close All Description Lysosomal acid lipase deficiency is an inherited condition characterized by ...

  11. Novel treatment options for lysosomal acid lipase deficiency: critical appraisal of sebelipase alfa

    PubMed Central

    Su, Kim; Donaldson, Emma; Sharma, Reena

    2016-01-01

    Lysosomal acid lipase deficiency (LAL-D) is a rare disorder of cholesterol metabolism with an autosomal recessive mode of inheritance. The absence or deficiency of the LAL enzyme gives rise to pathological accumulation of cholesterol esters in various tissues. A severe LAL-D phenotype manifesting in infancy is associated with adrenal calcification and liver and gastrointestinal involvement with characteristic early mortality. LAL-D presenting in childhood and adulthood is associated with hepatomegaly, liver fibrosis, cirrhosis, and premature atherosclerosis. There are currently no curative pharmacological treatments for this life-threatening condition. Supportive management with lipid-modifying agents does not ameliorate disease progression. Hematopoietic stem cell transplantation as a curative measure in infantile disease has mixed success and is associated with inherent risks and complications. Sebelipase alfa (Kanuma) is a recombinant human LAL protein and the first enzyme replacement therapy for the treatment of LAL-D. Clinical trials have been undertaken in infants with rapidly progressive LAL-D and in children and adults with later-onset LAL-D. Initial data have shown significant survival benefits in the infant group and improvements in biochemical parameters in the latter. Sebelipase alfa has received marketing authorization in the United States and Europe as long-term therapy for all affected individuals. The availability of enzyme replacement therapy for this rare and progressive disorder warrants greater recognition and awareness by physicians. PMID:27799810

  12. Macrophage-Specific Expression of Human Lysosomal Acid Lipase Corrects Inflammation and Pathogenic Phenotypes in lal−/− Mice

    PubMed Central

    Yan, Cong; Lian, Xuemei; Li, Yuan; Dai, Ying; White, Amanda; Qin, Yulin; Li, Huimin; Hume, David A.; Du, Hong

    2006-01-01

    Lysosomal acid lipase (LAL) hydrolyzes cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in the cell. The downstream metabolites of these compounds serve as hormonal ligands for nuclear receptors and transcription factors. Genetic ablation of the lal gene in the mouse caused malformation of macrophages and inflammation-triggered multiple pathogenic phenotypes in multiple organs. To assess the relationship between macrophages and lal−/− pathogenic phenotypes, a macrophage-specific doxycycline-inducible transgenic system was generated to induce human LAL (hLAL) expression in the lal−/− genetic background under control of the 7.2-kb c-fms promoter/intron2 regulatory sequence. Doxycycline-induced hLAL expression in macrophages significantly ameliorated aberrant gene expression, inflammatory cell (neutrophil) influx, and pathogenesis in multiple organs. These studies strongly support that neutral lipid metabolism in macrophages contributes to organ inflammation and pathogenesis. PMID:16936266

  13. Does Lysosomial Acid Lipase Reduction Play a Role in Adult Non-Alcoholic Fatty Liver Disease?

    PubMed Central

    Baratta, Francesco; Pastori, Daniele; Polimeni, Licia; Tozzi, Giulia; Violi, Francesco; Angelico, Francesco; Del Ben, Maria

    2015-01-01

    Lysosomal Acid Lipase (LAL) is a key enzyme involved in lipid metabolism, responsible for hydrolysing the cholesteryl esters and triglycerides. Wolman Disease represents the early onset phenotype of LAL deficiency rapidly leading to death. Cholesterol Ester Storage Disease is a late onset phenotype that occurs with fatty liver, elevated aminotransferase levels, hepatomegaly and dyslipidaemia, the latter characterized by elevated LDL-C and low HDL-C. The natural history and the clinical manifestations of the LAL deficiency in adults are not well defined, and the diagnosis is often incidental. LAL deficiency has been suggested as an under-recognized cause of dyslipidaemia and fatty liver. Therefore, LAL activity may be reduced also in non-obese patients presenting non-alcoholic fatty liver disease (NAFLD), unexplained persistently elevated liver transaminases or with elevation in LDL cholesterol. In these patients, it could be indicated to test LAL activity. So far, very few studies have been performed to assess LAL activity in representative samples of normal subjects or patients with NAFLD. Moreover, no large study has been carried out in adult subjects with NAFLD or cryptogenic cirrhosis. PMID:26602919

  14. Does Lysosomial Acid Lipase Reduction Play a Role in Adult Non-Alcoholic Fatty Liver Disease?

    PubMed

    Baratta, Francesco; Pastori, Daniele; Polimeni, Licia; Tozzi, Giulia; Violi, Francesco; Angelico, Francesco; Del Ben, Maria

    2015-11-25

    Lysosomal Acid Lipase (LAL) is a key enzyme involved in lipid metabolism, responsible for hydrolysing the cholesteryl esters and triglycerides. Wolman Disease represents the early onset phenotype of LAL deficiency rapidly leading to death. Cholesterol Ester Storage Disease is a late onset phenotype that occurs with fatty liver, elevated aminotransferase levels, hepatomegaly and dyslipidaemia, the latter characterized by elevated LDL-C and low HDL-C. The natural history and the clinical manifestations of the LAL deficiency in adults are not well defined, and the diagnosis is often incidental. LAL deficiency has been suggested as an under-recognized cause of dyslipidaemia and fatty liver. Therefore, LAL activity may be reduced also in non-obese patients presenting non-alcoholic fatty liver disease (NAFLD), unexplained persistently elevated liver transaminases or with elevation in LDL cholesterol. In these patients, it could be indicated to test LAL activity. So far, very few studies have been performed to assess LAL activity in representative samples of normal subjects or patients with NAFLD. Moreover, no large study has been carried out in adult subjects with NAFLD or cryptogenic cirrhosis.

  15. Reduced Lysosomal Acid Lipase Activity in Adult Patients With Non-alcoholic Fatty Liver Disease

    PubMed Central

    Baratta, Francesco; Pastori, Daniele; Del Ben, Maria; Polimeni, Licia; Labbadia, Giancarlo; Di Santo, Serena; Piemonte, Fiorella; Tozzi, Giulia; Violi, Francesco; Angelico, Francesco

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD) is characterized by intra-hepatic fat accumulation and mechanisms involved in its pathogenesis are not fully explained. Lysosomal Acid Lipase (LAL) is a key enzyme in lipid metabolism. We investigated its activity in patients with fatty liver. LAL activity (nmol/spot/h) was measured in 100 adult healthy subjects (HS) and in 240 NAFLD patients. A sub-analysis on 35 patients with biopsy-proven non-alcoholic steatohepatitis (NASH) was performed. Median LAL activity was 1.15 (0.95–1.72) in HS. It was significantly reduced in NAFLD [0.78 (0.61–1.01), p < 0.001 vs. HS]. A further reduction was observed in the subgroup of NASH [0.67 (0.51–0.77), p < 0.001 vs. HS]. Patients with LAL activity below median had higher values of serum total cholesterol (p < 0.05) and LDL-c (p < 0.05), and increased serum liver enzymes (ALT, p < 0.001; AST, p < 0.01; GGT, p < 0.01). At multivariable logistic regression analysis, factors associated with LAL activity below median were ALT (OR: 1.018, 95% CI 1.004–1.032, p = 0.011) and metabolic syndrome (OR: 2.551, 95% CI 1.241–5.245, p = 0.011), whilst statin use predicted a better LAL function (OR: 0.464, 95% CI 0.248–0.866, p = 0.016). Our findings suggest a strong association between impaired LAL activity and NAFLD. A better knowledge of the role of LAL may provide new insights in NAFLD pathogenesis. PMID:26288848

  16. Reduced Lysosomal Acid Lipase Activity in Adult Patients With Non-alcoholic Fatty Liver Disease.

    PubMed

    Baratta, Francesco; Pastori, Daniele; Del Ben, Maria; Polimeni, Licia; Labbadia, Giancarlo; Di Santo, Serena; Piemonte, Fiorella; Tozzi, Giulia; Violi, Francesco; Angelico, Francesco

    2015-07-01

    Non-alcoholic fatty liver disease (NAFLD) is characterized by intra-hepatic fat accumulation and mechanisms involved in its pathogenesis are not fully explained. Lysosomal Acid Lipase (LAL) is a key enzyme in lipid metabolism. We investigated its activity in patients with fatty liver. LAL activity (nmol/spot/h) was measured in 100 adult healthy subjects (HS) and in 240 NAFLD patients. A sub-analysis on 35 patients with biopsy-proven non-alcoholic steatohepatitis (NASH) was performed. Median LAL activity was 1.15 (0.95-1.72) in HS. It was significantly reduced in NAFLD [0.78 (0.61-1.01), p < 0.001 vs. HS]. A further reduction was observed in the subgroup of NASH [0.67 (0.51-0.77), p < 0.001 vs. HS]. Patients with LAL activity below median had higher values of serum total cholesterol (p < 0.05) and LDL-c (p < 0.05), and increased serum liver enzymes (ALT, p < 0.001; AST, p < 0.01; GGT, p < 0.01). At multivariable logistic regression analysis, factors associated with LAL activity below median were ALT (OR: 1.018, 95% CI 1.004-1.032, p = 0.011) and metabolic syndrome (OR: 2.551, 95% CI 1.241-5.245, p = 0.011), whilst statin use predicted a better LAL function (OR: 0.464, 95% CI 0.248-0.866, p = 0.016). Our findings suggest a strong association between impaired LAL activity and NAFLD. A better knowledge of the role of LAL may provide new insights in NAFLD pathogenesis.

  17. Lysosomal acid lipase: at the crossroads of normal and atherogenic cholesterol metabolism

    PubMed Central

    Dubland, Joshua A.; Francis, Gordon A.

    2015-01-01

    Unregulated cellular uptake of apolipoprotein B-containing lipoproteins in the arterial intima leads to the formation of foam cells in atherosclerosis. Lysosomal acid lipase (LAL) plays a crucial role in both lipoprotein lipid catabolism and excess lipid accumulation as it is the primary enzyme that hydrolyzes cholesteryl esters derived from both low density lipoprotein (LDL) and modified forms of LDL. Evidence suggests that as atherosclerosis progresses, accumulation of excess free cholesterol in lysosomes leads to impairment of LAL activity, resulting in accumulation of cholesteryl esters in the lysosome as well as the cytosol in foam cells. Impaired metabolism and release of cholesterol from lysosomes can lead to downstream defects in ATP-binding cassette transporter A1 regulation, needed to offload excess cholesterol from plaque foam cells. This review focuses on the role LAL plays in normal cholesterol metabolism and how the associated changes in its enzymatic activity may ultimately contribute to atherosclerosis progression. PMID:25699256

  18. Critical Roles of Lysosomal Acid Lipase in Myelopoiesis

    PubMed Central

    Qu, Peng; Shelley, William C.; Yoder, Mervin C.; Wu, Lingyan; Du, Hong; Yan, Cong

    2010-01-01

    Lysosomal acid lipase (LAL) is a key enzyme that cleaves cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in lysosomes. Genetic ablation of the lal gene (lal−/−) in mice has resulted in a systemic increase of macrophages and neutrophils, causing severe inflammation and pathogenesis in multiple organs. We hypothesized that aberrant growth and differentiation of myeloid cells in lal−/− mice arises from dysregulated production of progenitor cells in the bone marrow. Indeed, lal−/− mice displayed increased numbers of primitive lin−Sca-1+c-Kit+ (LSK) cells and granulocyte-macrophage precursors (GMP). Increased high proliferative potential colony-forming cells (HPP-CFC) were enumerated from cultured lal−/− bone marrow cells, as were significantly more CFU-GM, CFU-G, and CFU-M colonies. As a consequence, lal−/− mice developed significant myeloid infiltration, particularly with CD11b+/Gr-1+ myeloid-derived suppressive cells in multiple organs. Both decreased apoptosis and increased proliferation contribute to the systemic increase of myeloid cells in lal−/− myeloid cells. These lal−/− CD11b+/Gr-1+ cells displayed suppressive activity on T cell proliferation and function in vitro. Bone marrow chimeras confirmed that the myeloproliferative disorder in lal−/− mice was primarily attributable to autonomous defects in myeloid progenitor cells, although the hematopoietic microenvironment in the lal−/− mice did not support hematopoiesis normally. These results provide evidence that LAL is an important regulator of myelopoiesis during hematopoietic development, differentiation, and homeostasis. PMID:20348241

  19. Characterization of lysosomal acid lipase by site-directed mutagenesis and heterologous expression.

    PubMed

    Sheriff, S; Du, H; Grabowski, G A

    1995-11-17

    Lysosomal acid lipase (LAL) is essential for the hydrolysis of cholesterol esters and triglycerides that are delivered to the lysosomes via the low density lipoprotein receptor system. The deficiency of LAL is associated with cholesteryl ester storage disease (CESD) and Wolman's disease (WD). We cloned the human LAL cDNA and expressed the active enzyme in the baculovirus system. Two molecular forms (M(r) approximately 41,000 and approximately 46,000) with different glycosylation were found intracellularly, and approximately 24% of the M(r) approximately 46,000 form was secreted into the medium. Tunicamycin treatment produced only an inactive M(r) approximately 41,000 form. This result implicates glycosylation occupancy in the proper folding for active-site function. Catalytic activity was greater toward cis- than trans-unsaturated fatty acid esters of 4-methylumbelliferone and toward esters with 7-carbon length acyl chains. LAL cleaved cholesterol esters and mono-, tri-, and diglycerides. Heparin had a biphasic effect on enzymatic activity with initial activation followed by inhibition. Inhibition of LAL activity by tetrahydrolipstatin and diethyl p-nitrophenyl phosphate suggested the presence of active serines in binding/catalytic domain(s) of the protein. Site-directed mutagenesis at two putative active centers, GXSXG, showed that Ser153 was important to catalytic activity, whereas Ser99 was not and neither was the catalytic nucleophile. Three reported mutations (L179P, L336P, and delta AG302 deletion) from CESD patients were created and expressed in the Sf9 cell system. None cleaved cholesterol esters, and L179P and L336P cleaved only triolein at approximately 4% of wild-type levels. These results suggest that mechanisms, in addition to LAL defects, may operate in the selective accumulation of cholesterol esters or triglycerides in CESD and WD patients.

  20. Lysosomal Acid Lipase Deficiency in 23 Spanish Patients: High Frequency of the Novel c.966+2T>G Mutation in Wolman Disease.

    PubMed

    Ruiz-Andrés, Carla; Sellés, Elena; Arias, Angela; Gort, Laura

    2017-02-21

    Lysosomal acid lipase (LAL) is a lysosomal key enzyme involved in the intracellular hydrolysis of cholesteryl esters and triglycerides. Patients with very low residual LAL activity present with the infantile severe form Wolman disease (WD), while patients with some residual activity develop the less severe disorder known as Cholesteryl ester storage disorder (CESD). We present the clinical, biochemical, and molecular findings of 23 Spanish patients (22 families) with LAL deficiency. We identified eight different mutations, four of them not previously reported. The novel c.966+2T>G mutation accounted for 75% of the Wolman disease alleles, and the frequent CESD associated c.894G>A mutation accounted for 55% of the CESD alleles in our cohort. Haplotype analysis showed that both mutations co-segregated with a unique haplotype suggesting a common ancestor. Our study contributes to the LAL deficiency acknowledgement with novel mutations and with high frequencies of some unknown mutations for WD.

  1. Ezetimibe markedly attenuates hepatic cholesterol accumulation and improves liver function in the lysosomal acid lipase-deficient mouse, a model for cholesteryl ester storage disease.

    PubMed

    Chuang, Jen-Chieh; Lopez, Adam M; Posey, Kenneth S; Turley, Stephen D

    2014-01-17

    Lysosomal acid lipase (LAL) plays a critical role in the intracellular handling of lipids by hydrolyzing cholesteryl esters (CE) and triacylglycerols (TAG) contained in newly internalized lipoproteins. In humans, mutations in the LAL gene result in cholesteryl ester storage disease (CESD), or in Wolman disease (WD) when the mutations cause complete loss of LAL activity. A rat model for WD and a mouse model for CESD have been described. In these studies we used LAL-deficient mice to investigate how modulating the amount of intestinally-derived cholesterol reaching the liver might impact its mass, cholesterol content, and function in this model. The main experiment tested if ezetimibe, a potent cholesterol absorption inhibitor, had any effect on CE accumulation in mice lacking LAL. In male Lal(-/-) mice given ezetimibe in their diet (20 mg/day/kg bw) for 4 weeks starting at 21 days of age, both liver mass and hepatic cholesterol concentration (mg/g) were reduced to the extent that whole-liver cholesterol content (mg/organ) in the treated mice (74.3±3.4) was only 56% of that in those not given ezetimibe (133.5±6.7). There was also a marked improvement in plasma alanine aminotransferase (ALT) activity. Thus, minimizing cholesterol absorption has a favorable impact on the liver in CESD.

  2. Lysosomal acid lipase in mesenchymal stem cell stimulation of tumor growth and metastasis

    PubMed Central

    Zhao, Ting; Yan, Cong; Du, Hong

    2016-01-01

    Bone marrow mesenchymal stem cells (MSCs) are an important participant in the tumor microenvironment, in which they promote tumor growth and progression. Here we report for the first time that depletion of lysosomal acid lipase (LAL) in MSCs impairs their abilities to stimulate tumor growth and metastasis both in allogeneic and syngeneic mouse models. Reduced cell viability was observed in LAL-deficient (lal−/−) MSCs, which was a result of both increased apoptosis and decreased proliferation due to cell cycle arrest. The synthesis and secretion of cytokines and chemokines that are known to mediate MSCs' tumor-stimulating and immunosuppressive effects, i.e., IL-6, MCP-1 and IL-10, were down-regulated in lal−/− MSCs. When tumor cells were treated with the conditioned medium from lal−/− MSCs, decreased proliferation was observed, accompanied by reduced activation of oncogenic intracellular signaling molecules in tumor cells. Co-injection of lal−/− MSCs and B16 melanoma cells into wild type mice not only induced CD8+ cytotoxic T cells, but also decreased accumulation of tumor-promoting Ly6G+CD11b+ myeloid-derived suppressor cells (MDSCs), which may synergistically contribute to the impairment of tumor progression. Furthermore, lal−/− MSCs showed impaired differentiation towards tumor-associated fibroblasts. In addition, MDSCs facilitated MSC proliferation, which was mediated by MDSC-secreted cytokines and chemokines. Our results indicate that LAL plays a critical role in regulating MSCs' ability to stimulate tumor growth and metastasis, which provides a mechanistic basis for targeting LAL in MSCs to reduce the risk of cancer metastasis. PMID:27531897

  3. Lysosomal acid lipase over-expression disrupts lamellar body genesis and alveolar structure in the lung.

    PubMed

    Li, Yuan; Qin, Yulin; Li, Huimin; Wu, Renliang; Yan, Cong; Du, Hong

    2007-12-01

    The functional role of neutral lipids in the lung is poorly understood. Lysosomal acid lipase (LAL) is a critical enzyme in hydrolysis of cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in lysosomes. Human LAL was over-expressed in a doxycycline-controlled system in mouse respiratory epithelial cells to accelerate intracellular neutral lipid degradation and perturb the surfactant homeostasis in the lung. In this animal system, neutral lipid concentrations of pulmonary surfactant were reduced in bronchoalveolar lavage fluid (BALF) in association with decrease of surfactant protein C (SP-C) gene expression. The size and the number of lamellar bodies in alveolar type II epithelial cells (AT II cells) were significantly reduced accordingly. The number of macrophages required for surfactant recycling in BALF was also significantly reduced. As a result of these combinatory effects, emphysema of the alveolar structure was observed. Taken together, neutral lipid homeostasis is essential for maintenance of lamellar body genesis and the alveolar structure in the lung.

  4. Establishment of lal-/- myeloid lineage cell line that resembles myeloid-derived suppressive cells.

    PubMed

    Ding, Xinchun; Wu, Lingyan; Yan, Cong; Du, Hong

    2015-01-01

    Myeloid-derived suppressor cells (MDSCs) in mouse are inflammatory cells that play critical roles in promoting cancer growth and metastasis by directly stimulating cancer cell proliferation and suppressing immune surveillance. In order to facilitate characterization of biochemical and cellular mechanisms of MDSCs, it is urgent to establish an "MDSC-like" cell line. By cross breeding of immortomouse (simian virus 40 large T antigen transgenic mice) with wild type and lysosomal acid lipase (LAL) knock-out (lal-/-) mice, we have established a wild type (HD1A) and a lal-/- (HD1B) myeloid cell lines. Compared with HD1A cells, HD1B cells demonstrated many characteristics similar to lal-/- MDSCs. HD1B cells exhibited increased lysosomes around perinuclear areas, dysfunction of mitochondria skewing toward fission structure, damaged membrane potential, and increased ROS production. HD1B cells showed increased glycolytic metabolism during blockage of fatty acid metabolism to fuel the energy need. Similar to lal-/- MDSCs, the mTOR signal pathway in HD1B cells is overly activated. Rapamycin treatment of HD1B cells reduced ROS production and restored the mitochondrial membrane potential. HD1B cells showed much stronger immunosuppression on CD4+ T cell proliferation and function in vitro, and enhanced cancer cells proliferation. Knockdown of mTOR with siRNA reduced the HD1B cell ability to immunosuppress T cells and stimulate cancer cell proliferation. Therefore, the HD1B myeloid cell line is an "MDSC-like" cell line that can be used as an alternative in vitro system to study how LAL controls various myeloid cell functions.

  5. Genomic organization of the human lysosomal acid lipase gene (LIPA)

    SciTech Connect

    Aslandis, C.; Klima, H.; Lackner, K.J.; Schmitz, G. )

    1994-03-15

    Defects in the human lysosomal acid lipase gene are responsible for cholesteryl ester storage disease (CESD) and Wolman disease. Exon skipping as the cause for CESD has been demonstrated. The authors present here a summary of the exon structure of the entire human lysosomal acid lipase gene consisting of 10 exons, together with the sizes of genomic EcoRI and SacI fragments hybridizing to each exon. In addition, the DNA sequence of the putative promoter region is presented. The EMBL accession numbers for adjacent intron sequences are given. 7 refs., 2 figs., 1 tab.

  6. PRD125, a potent and selective inhibitor of sterol O-acyltransferase 2 markedly reduces hepatic cholesteryl ester accumulation and improves liver function in lysosomal acid lipase-deficient mice.

    PubMed

    Lopez, Adam M; Chuang, Jen-Chieh; Posey, Kenneth S; Ohshiro, Taichi; Tomoda, Hiroshi; Rudel, Lawrence L; Turley, Stephen D

    2015-11-01

    In most organs, the bulk of cholesterol is unesterified, although nearly all possess a varying capability of esterifying cholesterol through the action of either sterol O-acyltransferase (SOAT) 1 or, in the case of hepatocytes and enterocytes, SOAT2. Esterified cholesterol (EC) carried in plasma lipoproteins is hydrolyzed by lysosomal acid lipase (LAL) when they are cleared from the circulation. Loss-of-function mutations in LIPA, the gene that encodes LAL, result in Wolman disease or cholesteryl ester storage disease (CESD). Hepatomegaly and a massive increase in tissue EC levels are hallmark features of both disorders. While these conditions can be corrected with enzyme replacement therapy, the question arose as to whether pharmacological inhibition of SOAT2 might reduce tissue EC accretion in CESD. When weaned at 21 days, Lal(-/-) mice, of either gender, had a whole liver cholesterol content that was 12- to 13-fold more than that of matching Lal(+/+) littermates (23 versus 1.8 mg, respectively). In Lal(-/-) males given the selective SOAT2 inhibitor PRD125 1,11-O-o-methylbenzylidene-7-O-p-cyanobenzoyl-1,7,11-trideacetylpyripyropene A in their diet (∼10 mg/day per kg body weight) from 21 to 53 days, whole liver cholesterol content was 48.6 versus 153.7 mg in untreated 53-day-old Lal(-/-) mice. This difference reflected a 59% reduction in hepatic EC concentration (mg/g), combined with a 28% fall in liver mass. The treated mice also showed a 63% reduction in plasma alanine aminotransferase activity, in parallel with decisive falls in hepatic mRNA expression levels for multiple proteins that reflect macrophage presence and inflammation. These data implicate SOAT2 as a potential target in CESD management.

  7. Update on lysosomal acid lipase deficiency: Diagnosis, treatment and patient management.

    PubMed

    Camarena, Carmen; Aldamiz-Echevarria, Luis J; Polo, Begoña; Barba Romero, Miguel A; García, Inmaculada; Cebolla, Jorge J; Ros, Emilio

    2017-03-09

    Lysosomal acid lipase deficiency (LALD) is an ultra-rare disease caused by a congenital disorder of the lipid metabolism, characterized by the deposition of cholesterol esters and triglycerides in the organism. In patients with no enzyme function, the disease develops during the perinatal period and is invariably associated with death during the first year of life. In all other cases, the phenotype is heterogeneous, although most patients develop chronic liver diseases and may also develop an early cardiovascular disease. Treatment for LALD has classically included the use of supportive measures that do not prevent the progression of the disease. In 2015, regulatory agencies approved the use of a human recombinant LAL for the treatment of LALD. This long-term enzyme replacement therapy has been associated with significant improvements in the hepatic and lipid profiles of patients with LALD, increasing survival rates in infants with a rapidly progressive disease. Both the severity of LALD and the availability of a specific treatment highlight the need to identify these patients in clinical settings, although its low prevalence and the existing clinical overlap with other more frequent pathologies limit its diagnosis. In this paper we set out practical recommendations to identify and monitor patients with LALD, including a diagnostic algorithm, along with an updated treatment.

  8. Lipase

    MedlinePlus

    ... Lipase is used for indigestion, heartburn, allergy to gluten in wheat products (celiac disease), Crohn's disease, and ... that is associated with cystic fibrosis.Allergy to gluten in wheat products (celiac disease). Crohn's disease. Indigestion. ...

  9. Tuning Lipase Reaction for Production of Fatty Acids from Oil.

    PubMed

    Odaneth, Annamma A; Vadgama, Rajeshkumar N; Bhat, Anuradha D; Lali, Arvind M

    2016-10-01

    Fats or oils are split partially or completely to obtain fatty acids that find wide applications in oleo-chemical industries. Lipase-mediated complete splitting (hydrolysis) of oils is a green process having great potential to replace the traditional methods of oil splitting. However, cost of lipases, mechanistic kinetic equilibrium and associated operational limitations prove to be deterrents for scale up of the enzymatic oil splitting process. In the present study, we demonstrate the use of immobilised 1,3-regioselective lipase (HyLIP) for complete hydrolysis of oil in monophasic reaction medium. Incorporation of a polar organic solvent (tert-butanol, 1:5, v/v) homogenises the oil-water mixture and contributes positively towards complete hydrolysis. The monophasic oil hydrolysis reaction with optimised water concentration (0.05 %, v/v) gave Free Fatty Acid (FFA) yield of 88 % (HyLIP and Novozym-435) and 66 % (TLIM and RMIM). Smart reaction engineering and modification of the reaction intermediates to favourable substrate lead to ∼99 % degree of hydrolysis of triglycerides with ∼90 % FFA yield using 1,3-regioselective lipase. The present work becomes basic platform for developing technologies for synthesis of fatty acids, monoglycerides, diglycerides and glycerol.

  10. Cholestane-3β,5α,6β-triol: high levels in Niemann-Pick type C, cerebrotendinous xanthomatosis, and lysosomal acid lipase deficiency.

    PubMed

    Pajares, Sonia; Arias, Angela; García-Villoria, Judit; Macías-Vidal, Judit; Ros, Emilio; de las Heras, Javier; Girós, Marisa; Coll, Maria J; Ribes, Antonia

    2015-10-01

    Niemann-Pick type C (NPC) is a progressive neurodegenerative disease characterized by lysosomal/endosomal accumulation of unesterified cholesterol and glycolipids. Recent studies have shown that plasma cholestane-3β,5α,6β-triol (CT) and 7-ketocholesterol (7-KC) could be potential biomarkers for the diagnosis of NPC patients. We aimed to know the sensitivity and specificity of these biomarkers for the diagnosis of NPC compared with other diseases that can potentially lead to oxysterol alterations. We studied 107 controls and 122 patients including 16 with NPC, 3 with lysosomal acid lipase (LAL) deficiency, 8 with other lysosomal diseases, 5 with galactosemia, 11 with cerebrotendinous xanthomatosis (CTX), 3 with Smith-Lemli-Opitz, 14 with peroxisomal biogenesis disorders, 19 with unspecific hepatic diseases, 13 with familial hypercholesterolemia, and 30 with neurological involvement and no evidence of an inherited metabolic disease. CT and 7-KC were analyzed by HPLC-ESI-MS/MS as mono-dimethylglycine derivatives. Levels of 7-KC were high in most of the studied diseases, whereas those of CT were only high in NPC, LAL, and CTX patients. Consequently, although CT is a sensitive biomarker of NPC disease, including those cases with doubtful filipin staining, it is not specific. 7-KC is a very unspecific biomarker.

  11. Cholestane-3β,5α,6β-triol: high levels in Niemann-Pick type C, cerebrotendinous xanthomatosis, and lysosomal acid lipase deficiency[S

    PubMed Central

    Pajares, Sonia; Arias, Angela; García-Villoria, Judit; Macías-Vidal, Judit; Ros, Emilio; de las Heras, Javier; Girós, Marisa; Coll, Maria J.; Ribes, Antonia

    2015-01-01

    Niemann-Pick type C (NPC) is a progressive neurodegenerative disease characterized by lysosomal/endosomal accumulation of unesterified cholesterol and glycolipids. Recent studies have shown that plasma cholestane-3β,5α,6β-triol (CT) and 7-ketocholesterol (7-KC) could be potential biomarkers for the diagnosis of NPC patients. We aimed to know the sensitivity and specificity of these biomarkers for the diagnosis of NPC compared with other diseases that can potentially lead to oxysterol alterations. We studied 107 controls and 122 patients including 16 with NPC, 3 with lysosomal acid lipase (LAL) deficiency, 8 with other lysosomal diseases, 5 with galactosemia, 11 with cerebrotendinous xanthomatosis (CTX), 3 with Smith-Lemli-Opitz, 14 with peroxisomal biogenesis disorders, 19 with unspecific hepatic diseases, 13 with familial hypercholesterolemia, and 30 with neurological involvement and no evidence of an inherited metabolic disease. CT and 7-KC were analyzed by HPLC-ESI-MS/MS as mono-dimethylglycine derivatives. Levels of 7-KC were high in most of the studied diseases, whereas those of CT were only high in NPC, LAL, and CTX patients. Consequently, although CT is a sensitive biomarker of NPC disease, including those cases with doubtful filipin staining, it is not specific. 7-KC is a very unspecific biomarker. PMID:26239048

  12. Retinal pigment epithelial acid lipase activity and lipoprotein receptors: effects of dietary omega-3 fatty acids.

    PubMed Central

    Elner, Victor M

    2002-01-01

    PURPOSE: To show that fish oil-derived omega-3 polyunsaturated fatty acids, delivered to the retinal pigment epithelium (RPE) by circulating low-density lipoproteins (LDL), enhance already considerable RPE lysosomal acid lipase activity, providing for more efficient hydrolysis of intralysosomal RPE lipids, an effect that may help prevent development of age-related macular degeneration (ARMD). METHODS: Colorimetric biochemical and histochemical techniques were used to demonstrate RPE acid lipase in situ, in vitro, and after challenge with phagocytic stimuli. Receptor-mediated RPE uptake of fluorescently labeled native, aceto-acetylated, and oxidized LDL was studied in vitro and in vivo. LDL effects on RPE lysosomal enzymes were assessed. Lysosomal enzyme activity was compared in RPE cells from monkeys fed diets rich in fish oil to those from control animals and in cultured RPE cells exposed to sera from these monkeys. RESULTS: RPE acid lipase activity was substantial and comparable to that of mononuclear phagocytes. Acid lipase activity increased significantly following phagocytic challenge with photoreceptor outer segment (POS) membranes. Receptor-mediated RPE uptake of labeled lipoproteins was determined in vitro. Distinctive uptake of labeled lipoproteins occurred in RPE cells and mononuclear phagocytes in vivo. Native LDL enhanced RPE lysosomal enzyme activity. RPE lysosomal enzymes increased significantly in RPE cells from monkeys fed fish oil-rich diets and in cultured RPE cells exposed to their sera. CONCLUSIONS: RPE cells contain substantial acid lipase for efficient metabolism of lipids imbibed by POS phagocytosis and LDL uptake. Diets rich in fish oil-derived omega-3 fatty acids, by enhancing acid lipase, may reduce RPE lipofuscin accumulation, RPE oxidative damage, and the development of ARMD. PMID:12545699

  13. Surfactant enhanced ricinoleic acid production using Candida rugosa lipase.

    PubMed

    Goswami, Debajyoti; Sen, Ramkrishna; Basu, Jayanta Kumar; De, Sirshendu

    2010-01-01

    In this study, ricinoleic acid was produced on surfactant enhanced castor oil hydrolysis using Candida rugosa lipase. The most effective surfactant was Span 80. Employing fractional factorial design, the most suitable temperature and surfactant concentration were found to be 31 degrees C and 0.257% (w/w in buffer) respectively whereas pH, enzyme concentration, buffer concentration and agitation were identified as the most significant independent variables. A 2(4) full factorial central composite design was applied and the optimal conditions were found to be pH 7.0, enzyme concentration 7.42 mg/g oil, buffer concentration 0.20 g/g oil and agitation 1400 rpm with the maximum response of 76% in 4 h. The most important variable was pH, whereas enzyme and buffer concentrations also showed pronounced effect on response. This is the first report on the application of response surface methodology for optimizing surfactant enhanced ricinoleic acid production using C. rugosa lipase.

  14. Acid lipase from Candida viswanathii: production, biochemical properties, and potential application.

    PubMed

    de Almeida, Alex Fernando; Tauk-Tornisielo, Sâmia Maria; Carmona, Eleonora Cano

    2013-01-01

    Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (Y L/S = 1.381 g/g), lipase yield (Y L/S = 6.892 U/g), and biomass productivity (P X = 0.282 g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield (Y L/S ) of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties.

  15. Acid Lipase from Candida viswanathii: Production, Biochemical Properties, and Potential Application

    PubMed Central

    de Almeida, Alex Fernando; Carmona, Eleonora Cano

    2013-01-01

    Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (YL/S = 1.381 g/g), lipase yield (YL/S = 6.892 U/g), and biomass productivity (PX = 0.282 g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield (YL/S) of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties. PMID:24350270

  16. Synthesis of structured triacylglycerols enriched in n-3 fatty acids by immobilized microbial lipase.

    PubMed

    Araújo, Maria Elisa Melo Branco de; Campos, Paula Renata Bueno; Alberto, Thiago Grando; Contesini, Fabiano Jares; Carvalho, Patrícia de Oliveira

    The search for new biocatalysts has aroused great interest due to the variety of micro-organisms and their role as enzyme producers. Native lipases from Aspergillus niger and Rhizopus javanicus were used to enrich the n-3 long-chain polyunsaturated fatty acids content in the triacylglycerols of soybean oil by acidolysis with free fatty acids from sardine oil in solvent-free media. For the immobilization process, the best lipase/support ratios were 1:3 (w/w) for Aspergillus niger lipase and 1:5 (w/w) for Rhizopus javanicus lipase using Amberlite MB-1. Both lipases maintained constant activity for 6 months at 4°C. Reaction time, sardine-free fatty acids:soybean oil mole ratio and initial water content of the lipase were investigated to determine their effects on n-3 long-chain polyunsaturated fatty acids incorporation into soybean oil. Structured triacylglycerols with 11.7 and 7.2% of eicosapentaenoic acid+docosahexaenoic acid were obtained using Aspergillus niger lipase and Rhizopus javanicus lipase, decreasing the n-6/n-3 fatty acids ratio of soybean oil (11:1 to 3.5:1 and 4.7:1, respectively). The best reaction conditions were: initial water content of lipase of 0.86% (w/w), sardine-free faty acids:soybean oil mole ratio of 3:1 and reaction time of 36h, at 40°C. The significant factors for the acidolysis reaction were the sardine-free fatty acids:soybean oil mole ratio and reaction time. The characterization of structured triacylglycerols was obtained using easy ambient sonic-spray ionization mass spectrometry. The enzymatic reaction led to the formation of many structured triacylglycerols containing eicosapentaenoic acid, docosahexaenoic acid or both polyunsaturated fatty acids.

  17. Fatty acid alcohol ester-synthesizing activity of lipoprotein lipase.

    PubMed

    Tsujita, T; Sumiyoshi, M; Okuda, H

    1999-12-01

    The fatty acid alcohol ester-synthesizing activity of lipoprotein lipase (LPL) was characterized using bovine milk LPL. Synthesizing activities were determined in an aqueous medium using oleic acid or trioleylglycerol as the acyl donor and equimolar amounts of long-chain alcohols as the acyl acceptor. When oleic acid and hexadecanol emulsified with gum arabic were incubated with LPL, palmityl oleate was synthesized, in a time- and dose-dependent manner. Apo-very low density lipoprotein (apoVLDL) stimulated LPL-catalyzed palmityl oleate synthesis. The apparent equilibrium ratio of fatty acid alcohol ester/oleic acid was estimated using a high concentration of LPL and a long (20 h) incubation period. The equilibrium ratio was affected by the incubation pH and the alcohol chain length. When the incubation pH was below pH 7.0 and long chain fatty acyl alcohols were used as substrates, the fatty acid alcohol ester/free fatty acid equilibrium ratio favored ester formation, with an apparent equilibrium ratio of fatty acid alcohol ester/fatty acid of about 0.9/0.1. The equilibrium ratio decreased sharply at alkaline pH (above pH 8.0). The ratio also decreased when fatty alcohols with acyl chains shorter than dodecanol were used. When a trioleoylglycerol/fatty acyl alcohol emulsion was incubated with LPL, fatty acid alcohol esters were synthesized in a dose- and time-dependent fashion. Fatty acid alcohol esters were easily synthesized from trioleoylglycerol when fatty alcohols with acyl chains longer than dodecanol were used, but synthesis was decreased with fatty alcohols with acyl chain lengths shorter than decanol, and little synthesizing activity was detected with shorter-chain fatty alcohols such as butanol or ethanol.

  18. A computational search for lipases that can preferentially hydrolyze long-chain omega-3 fatty acids from fish oil triacylglycerols.

    PubMed

    Kamal, Md Zahid; Barrow, Colin J; Rao, Nalam Madhusudhana

    2015-04-15

    Consumption of long-chain omega-3 fatty acids is known to decrease the risk of major cardiovascular events. Lipases, a class of triacylglycerol hydrolases, have been extensively tested to concentrate omega-3 fatty acids from fish oils, under mild enzymatic conditions. However, no lipases with preference for omega-3 fatty acids selectivity have yet been discovered or developed. In this study we performed an exhaustive computational study of substrate-lipase interactions by docking, both covalent and non-covalent, for 38 lipases with a large number of structured triacylglycerols containing omega-3 fatty acids. We identified some lipases that have potential to preferentially hydrolyze omega-3 fatty acids from structured triacylglycerols. However omega-3 fatty acid preferences were found to be modest. Our study provides an explanation for absence of reports of lipases with omega-3 fatty acid hydrolyzing ability and suggests methods for developing these selective lipases.

  19. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    PubMed

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %.

  20. Breast milk jaundice; the role of lipoprotein lipase and the free fatty acids.

    PubMed

    Constantopoulos, A; Messaritakis, J; Matsaniotis, N

    1980-06-01

    Lipoprotein lipase activity and free fatty acid concentrations were measured in samples of milk collected from mothers of infants without and with prolonged neonatal jaundice. The lipoprotein lipase and free fatty acid values in the milk from mothers of infants without jaundice were found to increase with the duration of breast-feeding until the 12th post-partum day, and then to fall to the original levels. In the group of mothers with jaundiced infants both lipoprotein lipase and free fatty acid values were found within normal limits when measured between 15th and 37th days post-partum. These findings indicate that increased values of lipoprotein lipase and free fatty acids in the milk are not responsible for the development of breast-milk jaundice.

  1. Release of short chain fatty acids from cream lipids by commercial lipases and esterases.

    PubMed

    Saerens, K; Descamps, D; Dewettinck, K

    2008-02-01

    Lipases and esterases are frequently used in dairy production processes to enhance the buttery flavour of the end product. Short chain fatty acids, and especially butanoic acid, play a key role in this and different enzymes with specificity towards short chain fatty acids are commercially available as potent flavouring tools. We have compared six lipases/esterases associated with buttery flavour production. Although specificity to short chain fatty acids was ascribed to each enzyme, clear differences in free fatty acid profiles were found when these enzymes were applied on cream. Candida cylindraceae lipase was the most useful enzyme for buttery flavour production in cream with the highest yield of free fatty acids (57 g oleic acid 100 g(-1) fat), no release of long chain fatty acids and specificity towards butanoic acid.

  2. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases.

    PubMed

    Sóti, Péter Lajos; Weiser, Diana; Vigh, Tamás; Nagy, Zsombor Kristóf; Poppe, László; Marosi, György

    2016-03-01

    Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150).

  3. [Prediction of lipases types by different scale pseudo-amino acid composition].

    PubMed

    Zhang, Guangya; Li, Hongchun; Gao, Jiaqiang; Fang, Baishan

    2008-11-01

    Lipases are widely used enzymes in biotechnology. Although they catalyze the same reaction, their sequences vary. Therefore, it is highly desired to develop a fast and reliable method to identify the types of lipases according to their sequences, or even just to confirm whether they are lipases or not. By proposing two scales based pseudo amino acid composition approaches to extract the features of the sequences, a powerful predictor based on k-nearest neighbor was introduced to address the problems. The overall success rates thus obtained by the 10-fold cross-validation test were shown as below: for predicting lipases and nonlipase, the success rates were 92.8%, 91.4% and 91.3%, respectively. For lipase types, the success rates were 92.3%, 90.3% and 89.7%, respectively. Among them, the Z scales based pseudo amino acid composition was the best, T scales was the second. They outperformed significantly than 6 other frequently used sequence feature extraction methods. The high success rates yielded for such a stringent dataset indicate predicting the types of lipases is feasible and the different scales pseudo amino acid composition might be a useful tool for extracting the features of protein sequences, or at lease can play a complementary role to many of the other existing approaches.

  4. PRD125, a Potent and Selective Inhibitor of Sterol O-Acyltransferase 2 Markedly Reduces Hepatic Cholesteryl Ester Accumulation and Improves Liver Function in Lysosomal Acid Lipase-Deficient Mice

    PubMed Central

    Lopez, Adam M.; Chuang, Jen-Chieh; Posey, Kenneth S.; Ohshiro, Taichi; Tomoda, Hiroshi; Rudel, Lawrence L.

    2015-01-01

    In most organs, the bulk of cholesterol is unesterified, although nearly all possess a varying capability of esterifying cholesterol through the action of either sterol O-acyltransferase (SOAT) 1 or, in the case of hepatocytes and enterocytes, SOAT2. Esterified cholesterol (EC) carried in plasma lipoproteins is hydrolyzed by lysosomal acid lipase (LAL) when they are cleared from the circulation. Loss-of-function mutations in LIPA, the gene that encodes LAL, result in Wolman disease or cholesteryl ester storage disease (CESD). Hepatomegaly and a massive increase in tissue EC levels are hallmark features of both disorders. While these conditions can be corrected with enzyme replacement therapy, the question arose as to whether pharmacological inhibition of SOAT2 might reduce tissue EC accretion in CESD. When weaned at 21 days, Lal−/− mice, of either gender, had a whole liver cholesterol content that was 12- to 13-fold more than that of matching Lal+/+ littermates (23 versus 1.8 mg, respectively). In Lal−/− males given the selective SOAT2 inhibitor PRD125 1,11-O-o-methylbenzylidene-7-O-p-cyanobenzoyl-1,7,11-trideacetylpyripyropene A in their diet (∼10 mg/day per kg body weight) from 21 to 53 days, whole liver cholesterol content was 48.6 versus 153.7 mg in untreated 53-day-old Lal−/− mice. This difference reflected a 59% reduction in hepatic EC concentration (mg/g), combined with a 28% fall in liver mass. The treated mice also showed a 63% reduction in plasma alanine aminotransferase activity, in parallel with decisive falls in hepatic mRNA expression levels for multiple proteins that reflect macrophage presence and inflammation. These data implicate SOAT2 as a potential target in CESD management. PMID:26283692

  5. Lipoprotein lipase variants interact with polyunsaturated fatty acids to modulate obesity traits in Puerto Ricans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipoprotein lipase (LPL) is a candidate gene for obesity based on its role in triglyceride hydrolysis and the partitioning of fatty acids towards storage or oxidation. Whether dietary fatty acids modify LPL associated obesity risk is unknown. We examined five single nucleotide polymorphisms (SNPs) (...

  6. Synthesis of monoacylglycerol containing pinolenic acid via stepwise esterification using a cold active lipase.

    PubMed

    Pyo, Young-Gil; Hong, Seung In; Kim, Yangha; Kim, Byung Hee; Kim, In-Hwan

    2012-01-01

    High purity monoacylglycerol (MAG) containing pinolenic acid was synthesized via stepwise esterification of glycerol and fatty acids from pine nut oil using a cold active lipase from Penicillium camembertii as a biocatalyst. Effects of temperature, molar ratio, water content, enzyme loading, and vacuum on the synthesis of MAG by lipase-catalyzed esterification of glycerol and fatty acid from pine nut oil were investigated. Diacylglycerol (DAG) as well as MAG increased significantly when temperature was increased from 20 to 40 °C. At a molar ratio of 1:1, MAG content decreased because of the significant increase in DAG content. Water has a profound influence on both MAG and DAG content through the entire course of reaction. The reaction rate increased significantly as enzyme loading increased up to 600 units. Vacuum was an effective method to reduce DAG content. The optimum temperature, molar ratio, water content, enzyme loading, vacuum, and reaction time were 20 °C, 1:5 (fatty acid to glycerol), 2%, 600 units, 5 torr, and 24 h, respectively. MAG content further increased via lipase-catalyzed second step esterification at subzero temperature. P. camembertii lipase exhibited esterification activity up to -30 °C.

  7. Lipase-catalyzed regioselective preparation of fatty acid esters of hydrocortisone.

    PubMed

    Quintana, Paula G; Baldessari, Alicia

    2009-01-01

    A series of fatty acid derivatives of hydrocortisone has been prepared by an enzymatic methodology. Nine 21-monoacyl products and one 3,11,17-triacetyl derivative, nine of them novel compounds, were obtained in a highly regioselective way through lipase-catalyzed esterification, transesterification and alcoholysis reactions. The influence of various reaction parameters such as acylating agent: substrate ratio, enzyme: substrate ratio, solvent, temperature and nature of acylating agent and alcohol was evaluated. Among the tested lipases, Candida antarctica lipase appeared to be the most appropriate and showed a high efficient behavior especially in a one-pot transesterification. The advantages presented by this methodology, such as mild reaction conditions and low environmental impact, make the biocatalysis a convenient way to prepare acyl derivatives of hydrocortisone. These lipophilic compounds are potential products in the pharmaceutical industry.

  8. Comparative Studies of Mammalian Acid Lipases: Evidence for a New Gene Family in Mouse and Rat (Lipo)

    PubMed Central

    Holmes, Roger S; Cox, Laura A; VandeBerg, John L

    2010-01-01

    At least six families of mammalian acid lipases (E.C. 3.1.1.-) catalyse the hydrolysis of triglycerides in the body, designated as LIPA (lysosomal), LIPF (gastric), LIPJ (testis) and LIPK, LIPM and LIPN (epidermal), which belong to the AB hydrolase superfamily. In this study, in silico methods were used to predict the amino acid sequences, secondary and tertiary structures, and gene locations for acid lipase genes and encoded proteins using data from several mammalian genome projects. Mammalian acid lipase genes were located within a gene cluster for each of the 8 mammalian genomes examined, including human (Homo sapiens), chimpanzee (Pons troglodytes), rhesus monkey (Macacca mulatta), mouse (Mus musculus), rat (Rattus norvegicus), cow (Bos taurus), horse (Equus caballus) and dog (Canis familaris), with each containing 9 coding exons. Human and mouse acid lipases shared 44-87% sequence identity and exhibited sequence alignments and identities for key amino acid residues and conservation of predicted secondary and tertiary structures with those previously reported for human gastric lipase (LIPF) (Roussel et al., 1999). Evidence for a new family of acid lipase genes is reported for mouse and rat genomes, designated as Lipo. Mouse acid lipase genes are subject to differential mRNA tissue expression, with Lipa showing wide tissue expression, while others have a more restricted tissue expression in the digestive tract (Lipf), salivary gland (Lipo) and epidermal tissues (Lipk, Lipm and Lipn). Phylogenetic analyses of the mammalian acid lipase gene families suggested that these genes are products of gene duplication events prior to eutherian mammalian evolution and derived from an ancestral vertebrate LIPA gene, which is present in the frog, Xenopus tropicalis. PMID:20598663

  9. Production of fatty acid butyl esters using the low cost naturally immobilized Carica papaya lipase.

    PubMed

    Su, Erzheng; Wei, Dongzhi

    2014-07-09

    In this work, the low cost naturally immobilized Carica papaya lipase (CPL) was investigated for production of fatty acid butyl esters (FABE) to fulfill the aim of reducing the lipase cost in the enzymatic butyl-biodiesel process. The CPL showed specificities to different alcohol acyl acceptors. Alcohols with more than three carbon atoms did not have negative effects on the CPL activity. The CPL catalyzed butanolysis for FABE production was systematically investigated. The reaction solvent, alcohol/oil molar ratio, enzyme amount, reaction temperature, and water activity all affected the butanolysis process. Under the optimized conditions, the highest conversion of 96% could be attained in 24 h. These optimal conditions were further applied to CPL catalyzed butanolysis of other vegetable oils. All of them showed very high conversion. The CPL packed-bed reactor was further developed, and could be operated continuously for more than 150 h. All of these results showed that the low cost Carica papaya lipase can be used as a promising lipase for biodiesel production.

  10. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    PubMed Central

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M.J.

    2011-01-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. PMID:21915852

  11. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters.

    PubMed

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M J

    2012-02-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel.

  12. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase

    PubMed Central

    Sahonero-Canavesi, Diana X.; Sohlenkamp, Christian; Sandoval-Calderón, Mario; Lamsa, Anne; Pogliano, Kit; López-Lara, Isabel M.; Geiger, Otto

    2016-01-01

    Summary Phospholipids are well known for their membrane forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth. PMID:25711932

  13. Preparation of palm olein enriched with medium chain fatty acids by lipase acidolysis.

    PubMed

    Chnadhapuram, Mounika; Sunkireddy, Yella Reddy

    2012-05-01

    Medium chain (MC) fatty acids, caprylic (C8:0) and capric (C10:0) were incorporated into palm olein by 1,3-specific lipase acidolysis, up to 36% and 43%, respectively, when added as mixtures or individually after 24h. It was found that these acids were incorporated into palm olein at the expense of palmitic and oleic acids, the former being larger in quantity and reduction of 18:2 was negligible. The modified palm olein products showed reduction in higher molecular weight triacylglycerols (TGs) and increase in concentration of lower molecular weight TGs compared to those of palm olein. Fatty acids at sn-2 position in modified products were: C10:0, 4%; C16:0, 13%; C18:1, 66%; and C18:2, 15.4%. DSC results showed that the onset of melting and solids fat content were considerably reduced in modified palm olein products and no solids were found even at and below 10°C and also the onset of crystallisation was considerably lowered. The cloud point was reduced and iodine value dropped from 55.4 to 38 in modified palm olein. Thus, nutritionally superior palm olein was prepared by introducing MC fatty acids with reduced palmitic acid through lipase acidolysis.

  14. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase.

    PubMed

    Sahonero-Canavesi, Diana X; Sohlenkamp, Christian; Sandoval-Calderón, Mario; Lamsa, Anne; Pogliano, Kit; López-Lara, Isabel M; Geiger, Otto

    2015-09-01

    Phospholipids are well known for their membrane-forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth.

  15. Enantioselective esterification of (R,S)-2-methylalkanoic acid with Carica papaya lipase in organic solvents.

    PubMed

    Chang, Chun-Sheng; Ho, Ssu-Ching

    2011-11-01

    Isooctane was the best reaction medium for the enantioselective esterification of (R,S)-2-methylalkanoic acid with n-butanol using Carica papaya lipase as catalyst. Increasing linear alkyl-chain length of racemic 2-methylalkanoic acids from ethyl to hexyl increased the enantioselectivity (E) from 2.1 to 98.2 for the esterification of racemic 2-methylalkanoic acids with n-butanol at 35°C. Decreasing reaction temperature from 40 to 20°C increased the enantioselectivity (E) from 14 to 33 for the esterification of racemic 2-methylhexanoic acids with n-butanol. We obtained a maximum enantioselectivity, of E = 24.3, for the enantioselective esterification of racemic 2-methylhexanoic acids with n-butanol in isooctane at water activity 0.33, and at 35°C.

  16. Harnessing biodiesel-producing microbes: from genetic engineering of lipase to metabolic engineering of fatty acid biosynthetic pathway.

    PubMed

    Yan, Jinyong; Yan, Yunjun; Madzak, Catherine; Han, Bingnan

    2017-02-01

    Microbial production routes, notably whole-cell lipase-mediated biotransformation and fatty-acids-derived biosynthesis, offer new opportunities for synthesizing biodiesel. They compare favorably to immobilized lipase and chemically catalyzed processes. Genetically modified whole-cell lipase-mediated in vitro route, together with in vivo and ex vivo microbial biosynthesis routes, constitutes emerging and rapidly developing research areas for effective production of biodiesel. This review presents recent advances in customizing microorganisms for producing biodiesel, via genetic engineering of lipases and metabolic engineering (including system regulation) of fatty-acids-derived pathways. Microbial hosts used include Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Aspergillus oryzae. These microbial cells can be genetically modified to produce lipases under different forms: intracellularly expressed, secreted or surface-displayed. They can be metabolically redesigned and systematically regulated to obtain balanced biodiesel-producing cells, as highlighted in this study. Such genetically or metabolically modified microbial cells can support not only in vitro biotransformation of various common oil feedstocks to biodiesel, but also de novo biosynthesis of biodiesel from glucose, glycerol or even cellulosic biomass. We believe that the genetically tractable oleaginous yeast Yarrowia lipolytica could be developed to an effective biodiesel-producing microbial cell factory. For this purpose, we propose several engineered pathways, based on lipase and wax ester synthase, in this promising oleaginous host.

  17. Improved Performance of Lipase Immobilized on Tannic Acid-Templated Mesoporous Silica Nanoparticles.

    PubMed

    Jiang, Yanjun; Sun, Wenya; Zhou, Liya; Ma, Li; He, Ying; Gao, Jing

    2016-08-01

    Mesoporous silica nanoparticles were synthesized by using tannic acid as a pore-forming agent, which is an environmentally friendly, cheap, and non-surfactant template. SEM and TEM images indicated that the tannic acid-templated mesoporous silica nanoparticles (TA-MSNs) are monodisperse spherical-like particles with an average diameter of 195 ± 16 nm. The Brunauer-Emmett-Teller (BET) results showed that the TA-MSNs had a relatively high surface area (447 m(2)/g) and large pore volume (0.91 cm(3)/g), and the mean pore size was ca. 10.1 nm. Burkholderia cepacia lipase was immobilized on the TA-MSNs by physical adsorption for the first time, and the properties of immobilized lipase (BCL@TA-MSNs) were investigated. The BCL@TA-MSNs exhibited satisfactory thermal stability; strong tolerance to organic solvents such as methanol, ethanol, isooctane, n-hexane, and tetrahydrofuran; and high operational reusability when BCL@TA-MSNs were applied in esterification and transesterification reactions. After recycling 15 times in the transesterification reaction for biodiesel production, over 85 % of biodiesel yield can be maintained. With these desired characteristics, the TA-MSNs may provide excellent candidates for enzyme immobilization.

  18. Predicting lipase types by improved Chou's pseudo-amino acid composition.

    PubMed

    Zhang, Guang-Ya; Li, Hong-Chun; Gao, Jia-Qiang; Fang, Bai-Shan

    2008-01-01

    By proposing a improved Chou's pseudo amino acid composition approach to extract the features of the sequences, a powerful predictor based on k-nearest neighbor was introduced to identify the types of lipases according to their sequences. To avoid redundancy and bias, demonstrations were performed on a dataset where none of the proteins has > or =25% sequence identity to any other. The overall success rate thus obtained by the 10-fold cross-validation test was over 90%, indicating that the improved Chou's pseudo amino acid composition might be a useful tool for extracting the features of protein sequences, or at lease can play a complementary role to many of the other existing approaches.

  19. Asymmetric synthesis of aromatic β-amino acids using ω-transaminase: Optimizing the lipase concentration to obtain thermodynamically unstable β-keto acids.

    PubMed

    Mathew, Sam; Jeong, Seong-Su; Chung, Taeowan; Lee, Sang-Hyeup; Yun, Hyungdon

    2016-01-01

    Synthesized aromatic β-amino acids have recently attracted considerable attention for their application as precursors in many pharmacologically relevant compounds. Previous studies on asymmetric synthesis of aromatic β-amino acids using ω-transaminases could not be done efficiently due to the instability of β-keto acids. In this study, a strategy to circumvent the instability problem of β-keto acids was utilized to generate β-amino acids efficiently via asymmetric synthesis. In this work, thermodynamically stable β-ketoesters were initially converted to β-keto acids using lipase, and the β-keto acids were subsequently aminated using ω-transaminase. By optimizing the lipase concentration, we successfully overcame the instability problem of β-keto acids and enhanced the production of β-amino acids. This strategy can be used as a general approach to efficiently generate β-amino acids from β-ketoesters.

  20. Triterpene acids from apple peel inhibit lepidopteran larval midgut lipases and larval growth.

    PubMed

    Christeller, John T; McGhie, Tony K; Poulton, Joanne; Markwick, Ngaire P

    2014-07-01

    Fruit extracts from apple, kiwifruit, feijoa, boysenberry, and blueberry were screened for the presence of lipase inhibitory compounds against lepidopteran larval midgut crude extracts. From 120 extracts, six showed significant inhibition with an extract from the peel of Malus × domestica cv. "Big Red" showing highest levels of inhibition. Because this sample was the only apple peel sample in the initial screen, a survey of peels from seven apple cultivars was undertaken and showed that, despite considerable variation, all had inhibitory activity. Successive solvent fractionation and LC-MS of cv. "Big Red" apple peel extract identified triterpene acids as the most important inhibitory compounds, of which ursolic acid and oleanolic acid were the major components and oxo- and hydroxyl-triterpene acids were minor components. When ursolic acid was incorporated into artificial diet and fed to Epiphyas postvittana Walker (Tortricidae: Lepidoptera) larvae at 0.16% w/v, a significant decrease in larval weight was observed after 21 days. This concentration of ursolic acid is less than half the concentration reported in the skin of some apple cultivars.

  1. The impact of non-endotoxin LAL-reactive materials on Limulus amebocyte lysate analyses.

    PubMed

    Cooper, J F; Weary, M E; Jordan, F T

    1997-01-01

    Limulus amebocyte lysate (LAL) is activated by bacterial endotoxins and certain glucans (beta-D-glucan, LAL-RM). The potential for conflicting inter-laboratory results for LAL tests exists because commercial LAL reagents are highly variable in response to LAL-reactive glucans. The nature of beta-D-glucan activation of LAL and means for rendering LAL non-responsive to glucan are reviewed to provide a background for resolving conflicting data. Kinetic LAL methods are particularly useful for screening materials potentially contaminated with glucan. The presence of beta-D-glucan in parenterals is uncommon and is likely limited to products exposed to microbial or cellulosic materials. A scheme is suggested for identifying LAL-reactive glucans and for LAL release-testing without glucan interference.

  2. Aromatic amino acid mutagenesis at the substrate binding pocket of Yarrowia lipolytica lipase Lip2 affects its activity and thermostability.

    PubMed

    Wang, Guilong; Liu, Zimin; Xu, Li; Yan, Yunjun

    2014-01-01

    The lipase2 from Yarrowia lipolytica (YLLip2) is a yeast lipase exhibiting high homologous to filamentous fungal lipase family. Though its crystal structure has been resolved, its structure-function relationship has rarely been reported. By contrast, there are two amino acid residues (V94 and I100) with significant difference in the substrate binding pocket of YLLip2; they were subjected to site-directed mutagenesis (SDM) to introduce aromatic amino acid mutations. Two mutants (V94W and I100F) were created. The enzymatic properties of the mutant lipases were detected and compared with the wild-type. The activities of mutant enzymes dropped to some extent towards p-nitrophenyl palmitate (pNPC16) and their optimum temperature was 35°C, which was 5°C lower than that of the wild-type. However, the thermostability of I100F increased 22.44% after incubation for 1 h at 40°C and its optimum substrate shifted from p-nitrophenyl laurate (pNPC12) to p-nitrophenyl caprate (pNPC10). The above results demonstrated that the two substituted amino acid residuals have close relationship with such enzymatic properties as thermostability and substrate selectivity.

  3. Immobilized MAS1 lipase showed high esterification activity in the production of triacylglycerols with n-3 polyunsaturated fatty acids.

    PubMed

    Wang, Xiumei; Li, Daoming; Qu, Man; Durrani, Rabia; Yang, Bo; Wang, Yonghua

    2017-02-01

    Immobilization of lipase MAS1 from marine Streptomyces sp. strain W007 and its application in catalyzing esterification of n-3 polyunsaturated fatty acids (PUFA) with glycerol were investigated. The resin XAD1180 was selected as a suitable support for the immobilization of lipase MAS1, and its absorption ability was 75mg/g (lipase/resin ratio) with initial buffer pH value of 8.0. The thermal stability of immobilized MAS1 was improved significantly compared with that of the free lipase. Immobilized MAS1 had no regiospecificity in the hydrolysis of triolein. The highest esterification degree (99.31%) and TAG content (92.26%) by immobilized MAS1-catalyzed esterification were achieved under the optimized conditions, which were significantly better than those (82.16% and 47.26%, respectively) by Novozym 435. More than 92% n-3 PUFA was incorporated into TAG that had similar fatty acids composition to the substrate (n-3 PUFA). The immobilized MAS1 exhibited 50% of its initial activity after being used for five cycles.

  4. Simultaneous conversion of free fatty acids and triglycerides to biodiesel by immobilized Aspergillus oryzae expressing Fusarium heterosporum lipase.

    PubMed

    Amoah, Jerome; Quayson, Emmanuel; Hama, Shinji; Yoshida, Ayumi; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2017-03-01

    The presence of high levels of free fatty acids (FFA) in oil is a barrier to one-step biodiesel production. Undesirable soaps are formed during conventional chemical methods, and enzyme deactivation occurs when enzymatic methods are used. This work investigates an efficient technique to simultaneously convert a mixture of free fatty acids and triglycerides (TAG). A partial soybean hydrolysate containing 73.04% free fatty acids and 24.81% triglycerides was used as a substrate for the enzymatic production of fatty acid methyl ester (FAME). Whole-cell Candida antarctica lipase B-expressing Aspergillus oryzae, and Novozym 435 produced only 75.2 and 73.5% FAME, respectively. Fusarium heterosporum lipase-expressing A. oryzae produced more than 93% FAME in 72 h using three molar equivalents of methanol. FFA and TAG were converted simultaneously in the presence of increasing water content that resulted from esterification. Therefore, F. heterosporum lipase with a noted high level of tolerance of water could be useful in the industrial production of biodiesel from feedstock that has high proportion of free fatty acids.

  5. Activation of Hepatic Lipase Expression by Oleic Acid: Possible Involvement of USF1

    PubMed Central

    van Deursen, Diederik; van Leeuwen, Marije; Akdogan, Deniz; Adams, Hadie; Jansen, Hans; Verhoeven, Adrie J.M.

    2009-01-01

    Polyunsaturated fatty acids affect gene expression mainly through peroxisome proliferator-activated receptors (PPARs) and sterol regulatory element binding proteins (SREBPs), but how monounsaturated fatty acids affect gene expression is poorly understood. In HepG2 cells, oleate supplementation has been shown to increase secretion of hepatic lipase (HL). We hypothesized that oleate affects HL gene expression at the transcriptional level. To test this, we studied the effect of oleate on HL promoter activity using HepG2 cells and the proximal HL promoter region (700 bp). Oleate increased HL expression and promoter activity 1.3–2.1 fold and reduced SREBP activity by 50%. Downregulation of SREBP activity by incubation with cholesterol+25-hydroxycholesterol had no effect on HL promoter activity. Overexpression of SREBP2, but not SREBP1, reduced HL promoter activity, which was effected mainly through the USF1 binding site at -307/-312. Oleate increased the nuclear abundance of USF1 protein 2.7 ± 0.6 fold, while USF1 levels were reduced by SREBP2 overexpression. We conclude that oleate increases HL gene expression via USF1. USF1 may be an additional fatty acid sensor in liver cells. PMID:22253973

  6. Optimization of Lipase-Mediated Synthesis of 1-Nonene Oxide Using Phenylacetic Acid and Hydrogen Peroxide

    PubMed Central

    Abdulmalek, Emilia; Arumugam, Mahashanon; Basri, Mahiran; Rahman, Mohd Basyaruddin Abdul

    2012-01-01

    Herein, an efficient epoxidation of 1-nonene is described. In a simple epoxidation system, commercially available Novozym 435, an immobilized Candida antarctica lipase B, and hydrogen peroxide (H2O2) were utilized to facilitate the in situ oxidation of phenylacetic acid to the corresponding peroxy acid which then reacted with 1-nonene to give 1-nonene oxide with high yield and selectivity. The aliphatic terminal alkene was epoxidised efficiently in chloroform to give an excellent yield (97%–99%) under the optimum reaction conditions, including temperature (35 °C), initial H2O2 concentration (30%), H2O2 amount (4.4 mmol), H2O2 addition rate (one step), acid amount (8.8 mmol), and stirring speed (250 rpm). Interestingly, the enzyme was stable under the single-step addition of H2O2 with a catalytic activity of 190.0 Ug−1. The entire epoxidation process was carried out within 12 h using a conventional water bath shaker. PMID:23202943

  7. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids

    SciTech Connect

    Saxena, U.; Witte, L.D.; Goldberg, I.J.

    1989-03-15

    Lipoprotein lipase (LPL) bound to the lumenal surface of vascular endothelial cells is responsible for the hydrolysis of triglycerides in plasma lipoproteins. Studies were performed to investigate whether human plasma lipoproteins and/or free fatty acids would release LPL which was bound to endothelial cells. Purified bovine milk LPL was incubated with cultured porcine aortic endothelial cells resulting in the association of enzyme activity with the cells. When the cells were then incubated with media containing chylomicrons or very low density lipoproteins (VLDL), a concentration-dependent decrease in the cell-associated LPL enzymatic activity was observed. In contrast, incubation with media containing low density lipoproteins or high density lipoproteins produced a much smaller decrease in the cell-associated enzymatic activity. The addition of increasing molar ratios of oleic acid:bovine serum albumin to the media also reduced enzyme activity associated with the endothelial cells. To determine whether the decrease in LPL activity was due to release of the enzyme from the cells or inactivation of the enzyme, studies were performed utilizing radioiodinated bovine LPL. Radiolabeled LPL protein was released from endothelial cells by chylomicrons, VLDL, and by free fatty acids (i.e. oleic acid bound to bovine serum albumin). The release of radiolabeled LPL by VLDL correlated with the generation of free fatty acids from the hydrolysis of VLDL triglyceride by LPL bound to the cells. Inhibition of LPL enzymatic activity by use of a specific monoclonal antibody, reduced the extent of release of /sup 125/I-LPL from the endothelial cells by the added VLDL. These results demonstrated that LPL enzymatic activity and protein were removed from endothelial cells by triglyceride-rich lipoproteins (chylomicrons and VLDL) and oleic acid.

  8. Influence of fatty acid on lipase-catalyzed synthesis of ascorbyl esters and their free radical scavenging capacity.

    PubMed

    Stojanović, Marija; Carević, Milica; Mihailović, Mladen; Veličković, Dušan; Dimitrijević, Aleksandra; Milosavić, Nenad; Bezbradica, Dejan

    2015-01-01

    Fatty acid (FA) ascorbyl esters are recently emerging food, cosmetic, and pharmaceutical additives, which can be prepared in an eco-friendly way by using lipases as catalysts. Because they are amphiphilic molecules, which possess high free radical scavenging capacity, they can be applied as liposoluble antioxidants as well as emulsifiers and biosurfactants. In this study, the influence of a wide range of acyl donors on ester yield in lipase-catalyzed synthesis and ester antioxidant activity was examined. Among saturated acyl donors, higher yields and antioxidant activities of esters were achieved when short-chain FAs were used. Oleic acid gave the highest yield overall and its ester exhibited a high antioxidant activity. Optimization of experimental factors showed that the highest conversion (60.5%) in acetone was achieved with 5 g L(-1) of lipase, 50 mM of vitamin C, 10-fold molar excess of oleic acid, and 0.7 mL L(-1) of initial water. Obtained results showed that even short- and medium-chain ascorbyl esters could be synthesized with high yields and retained (or even exceeded) free radical scavenging capacity of l-ascorbic acid, indicating prospects of broadening their application in emulsions and liposomes.

  9. Screening of microbial lipases and evalutaion of their potential to produce glycerides with high gamma linolenic acid concentration

    PubMed Central

    Fregolente, Patricia B.L.; Fregolente, Leonardo V.; Maciel, Maria R.W.; Carvalho, Patricia O.

    2009-01-01

    Gamma linolenic acid (GLA, 18:3, cis- 6,9,12- octadecatrienoic acid), an important compound in n- 6 eicosanoid family biosynthesis, occurs in the lipids of a few plant and microbial sources. This study focused on the screening of microbial strains with suitable lipase activity for enrichment of GLA by selective hydrolysis of the borage oil (21.6 % of GLA/total fatty acids). Firstly, 352 microrganisms were tested for their lipolytic capacity using screening techniques on agar plates containing borage oil, strains were then selected and screened for their activity (U/mg) using both submerged fermentation (SmF) and solid state fermentation (SSF). The rate of hydrolysis and the selective preference of these hydrolytic enzymes towards fatty acids, with a special focus on enrichment of GLA were studied and compared with those obtained by two commercially-available lipases. Only one of the lipases tested during this study displayed selectivity, discriminating the GLA during the hydrolysis reaction. Using the enzymatic extract from Geotrichum candidum as a biocatalyst of the reaction, it was possible to obtain a percentage of 41.7% of GLA in acylglycerols fraction when the borage oil was treated in a fixed-bed reactor for 24 hours at 30ºC. PMID:24031421

  10. Improvement of catalytic activity of Candida rugosa lipase in the presence of calix[4]arene bearing iminodicarboxylic/phosphonic acid complexes modified iron oxide nanoparticles.

    PubMed

    Ozyilmaz, Elif; Bayrakci, Mevlut; Yilmaz, Mustafa

    2016-04-01

    In the present study, iron oxide magnetite nanoparticles, prepared through a co-precipitation method, were coated with phosphonic acid or iminodicarboxylic acid derivatives of calix[4]arene to modulate their surfaces with different acidic groups. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through sol-gel encapsulation. The catalytic activities and enantioselectivities of the two encapsulated lipases in the hydrolysis reaction of (R/S)-naproxen methyl ester and (R/S)-2-phenoxypropionic acid methyl ester were assessed. The results showed that the activity and enantioselectivity of the lipase were improved when the lipase was encapsulated in the presence of calixarene-based additives; the encapsulated lipase with the phosphonic acid derivative of calix[4]arene had an excellent rate of enantioselectivity against the (R/S)-naproxen methyl and (R/S)-2-phenoxypropionic acid methyl esters, with E=350 and 246, respectively, compared to the free enzyme. The encapsulated lipases (Fe-Calix-N(COOH)) and (Fe-Calix-P) showed good loading ability and little loss of enzyme activity, and the stability of the catalyst was very good; they only lost 6-11% of the enzyme's activity after five batches.

  11. Lipase-Catalyzed Production of 6-O-cinnamoyl-sorbitol from D-sorbitol and Cinnamic Acid Esters.

    PubMed

    Kim, Jung-Ho; Bhatia, Shashi Kant; Yoo, Dongwon; Seo, Hyung Min; Yi, Da-Hye; Kim, Hyun Joong; Lee, Ju Hee; Choi, Kwon-Young; Kim, Kwang Jin; Lee, Yoo Kyung; Yang, Yung-Hun

    2015-05-01

    To overcome the poor properties of solubility and stability of cinnamic acid, cinnamate derivatives with sugar alcohols were produced using the immobilized Candida antarctica lipase with vinyl cinnamate and D-sorbitol as substrate at 45 °C. Immobilized C. antarctica lipase was found to synthesize 6-O-cinnamoyl-sorbitol and confirmed by HPLC and (1)H-NMR and had a preference for vinyl cinnamate over other esters such as allyl-, ethyl-, and isobutyl cinnamate as co-substrate with D-sorbitol. Contrary to D-sorbitol, vinyl cinnamate, and cinnamic acid, the final product 6-O-cinnamoyl-sorbitol was found to have radical scavenging activity. This would be the first report on the biosynthesis of 6-O-cinnamoyl-sorbitol with immobilized enzyme from C. antarctica.

  12. A mechanistic study into the epoxidation of carboxylic acid and alkene in a mono, di-acylglycerol lipase.

    PubMed

    Wang, Xuping; Tang, Qingyun; Popowicz, Grzegorz Maria; Yang, Bo; Wang, Yonghua

    2015-05-01

    More and more industrial chemistry reactions rely on green technologies. Enzymes are finding increasing use in diverse chemical processes. Epoxidized vegetable oils have recently found applications as plasticizers and additives for PVC production. We report here an unusual activity of the Malassezia globosa lipase (SMG1) that is able to catalyze epoxidation of alkenes. SMG1 catalyzes formation of peroxides from long chain carboxylic acids that subsequently react with double bonds of alkenes to produce epoxides. The SMG1 is selective towards carboxylic acids and active also as a mutant lacking hydrolase activity. Moreover we present previously unobserved mechanism of catalysis that does not rely on acyl-substrate complex nor tetrahedral intermediate. Since SMG1 lipase is activated by allosteric change upon binding to the lipophilic-hydrophilic phase interface we reason that it can be used to drive the epoxidation in the lipophilic phase exclusively.

  13. Inhibitors of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase: New Targets for Future Antidepressants

    PubMed Central

    Ogawa, Shintaro; Kunugi, Hiroshi

    2015-01-01

    Cannabis and analogs of Δ9-tetrahydrocannabinol have been used for therapeutic purposes, but their therapeutic use remains limited because of various adverse effects. Endogenous cannabinoids have been discovered, and dysregulation of endocannabinoid signaling is implicated in the pathophysiology of major depressive disorder (MDD). Recently, endocannabinoid hydrolytic enzymes such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have become new therapeutic targets in the treatment of MDD. Several FAAH or MAGL inhibitors are reported to have no cannabimimetic side effects and, therefore, are new potential therapeutic options for patients with MDD who are resistant to first-line antidepressants (selective serotonin and serotonin-norepinephrine reuptake inhibitors). In this review, we focus on the possible relationships between MDD and the endocannabinoid system as well as the inhibitors’ therapeutic potential. MAGL inhibitors may reduce inflammatory responses through activation of cannabinoid receptor type 2. In the hypothalamic–pituitary–adrenal axis, repeated FAAH inhibitor administration may be beneficial for reducing circulating glucocorticoid levels. Both FAAH and MAGL inhibitors may contribute to dopaminergic system regulation. Recently, several new inhibitors have been developed with strong potency and selectivity. FAAH inhibitor, MAGL inhibitor, or dual blocker use would be promising new treatments for MDD. Further pre-clinical studies and clinical trials using these inhibitors are warranted. PMID:26630956

  14. Piperazine and piperidine carboxamides and carbamates as inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL).

    PubMed

    Korhonen, Jani; Kuusisto, Anne; van Bruchem, John; Patel, Jayendra Z; Laitinen, Tuomo; Navia-Paldanius, Dina; Laitinen, Jarmo T; Savinainen, Juha R; Parkkari, Teija; Nevalainen, Tapio J

    2014-12-01

    The key hydrolytic enzymes of the endocannabinoid system, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), are potential targets for various therapeutic applications. In this paper, we present more extensively the results of our previous work on piperazine and piperidine carboxamides and carbamates as FAAH and MAGL inhibitors. The best compounds of these series function as potent and selective MAGL/FAAH inhibitors or as dual FAAH/MAGL inhibitors at nanomolar concentrations. This study revealed that MAGL inhibitors should comprise leaving-groups with a conjugate acid pKa of 8-10, while diverse leaving groups are tolerated for FAAH inhibitors.

  15. Study of reaction parameters and kinetics of esterification of lauric acid with butanol by immobilized Candida antarctica lipase.

    PubMed

    Shankar, Sini; Agarwal, Madhu; Chaurasia, S P

    2013-12-01

    Esterification of lauric acid with n-butanol, catalyzed by immobilized Candida antarctica lipase (CAL) in aqueous-organic biphasic solvent system was studied. Effects of various reaction parameters on esterification were investigated, such as type and amount of solvent, amount of buffer, pH, temperature, speed of agitation, amount of enzyme, butanol and lauric acid. The most suitable reaction conditions for esterification were observed at 50 degrees C and pH 7.0 using 5000 micromoles of lauric acid, 7000 pmoles of butanol, 0.25 ml phosphate buffer, 1 ml of isooctane as the solvent and 50 mg of immobilized enzyme in the reaction medium at agitation speed of 150 rpm. Maximum esterification of 96.36% was acheived in 600 min of reaction time at n-butanol to lauric acid molar ratio of 1: 0.7. Kinetic study for the esterification of lauric acid with n-butanol using immobilized CAL was carried out and the kinetic constants were estimated by using non-linear regression method. The estimated value of Michaelis kinetic constants for butanol (KmBt) and acid (KmAc) were 451.56 (M) and 4.7 x 10(-7)(M), respectively and the value of dissociation constant (KBt) of the butanol-lipase complex was 9.41 x 10(7)(M). The estimated constants agreed fairly well with literature data.

  16. Synthesis of some glucose-fatty acid esters by lipase from Candida antarctica and their emulsion functions.

    PubMed

    Ren, Kangzi; Lamsal, Buddhi P

    2017-01-01

    The synthesis of glucose esters with palmitic acid, lauric acid and hexanoic acid using lipase enzyme was studied and their emulsion functionality in oil-in-water system were compared. Reactions at 3:1M ratio of fatty acids-to-glucose had the highest conversion percentages (over 90% for each of the fatty acid). Initial conversion rate increased as substrate solubility increased. Ester bond formation was confirmed by nuclear magnetic resonance technique that the chemical shifts of glucose H-6 and α-carbon protons of fatty acids in the ester molecules shifted to the higher fields. Contact angle of water on esters' pelleted surface increased as the hydrophobicity increased. Glucose esters' and commercial sucrose esters' functionality as emulsifiers were compared. Glucose esters delayed, but did not prevent coalescence, because the oil droplets diameter doubled during 7days. Sucrose esters prevented coalescence during 7days since the droplets diameter did not have significant change.

  17. Expression of lipases and lipid receptors in sperm storage tubules and possible role of fatty acids in sperm survival in the hen oviduct.

    PubMed

    Huang, A; Isobe, N; Obitsu, T; Yoshimura, Y

    2016-04-15

    The aim of this study was to determine the role of fatty acids for sperm survival in the sperm storage tubules (SSTs) of the hen oviduct. The mucosa tissues of uterovaginal junction (UVJ) of White Leghorn laying hens with or without artificial insemination using semen from Barred Plymouth Rock roosters were collected. The lipid density in the epithelium of UVJ and SST was analyzed by Sudan black B staining. The expressions of genes encoding lipid receptors and lipases were assayed by polymerase chain reaction in UVJ mucosa and SST cells isolated by laser microdissection. Fatty acid composition was analyzed by gas chromatography, and sperm were cultured with or without the identified predominant fatty acids for 24 hours to examine their effect on sperm viability. The lipid droplets were localized in the epithelium of UVJ mucosa and SSTs. The expression of genes encoding very low-density lipoprotein receptor(VLDLR), low-density lipoprotein receptor (LDLR), and fatty acid translocase (FAT/CD36) were found in SST cells. Expression of genes encoding endothelial lipase (EL), lipase H (LIPH), adipose triglyceride lipase (ATGL), and lipoprotein lipase (LPL) were found in UVJ. In contrast, only ATGL was found in SST cells, and its expression was significantly upregulated after artificial insemination. In UVJ mucosal tissues, five fatty acids, namely myristic acid (C14), palmitic acid (C16), stearic acid (C18), oleic acid (C18:1n9), and linoleic acid (C18:2n6), were identified as predominant fatty acids. The viability of sperm cultured with 1 mM oleic acid or linoleic acid was significantly higher than the sperm in the control culture without fatty acids. These results suggest that lipids in the SST cells may be degraded by ATGL, and fatty acids including oleic acid and linoleic acid may be released into the SST lumen to support sperm survival.

  18. Production of high-oleic acid tallow fractions using lipase-catalyzed directed interesterification, using both batch and continuous processing.

    PubMed

    MacKenzie; Stevenson

    2000-08-01

    Immobilized lipases were used to catalyze batch-directed interesterification of tallow, resulting in oleins containing significantly higher levels of unsaturated fatty acids than obtained by fractionation without lipase. After 14 days, a reaction catalyzed by 2% Novozym 435 yielded 57% olein unsaturation, compared with 45% in a no-enzyme control. Free fatty acid levels increased to 2-3% during reactions. Incubation of the enzyme in multiple batches of melted fat caused a gradual loss of interesterification activity, apparently due to progressive dehydration. The activity could be restored by addition of water to the reaction medium. Immobilized lipase was also used to catalyze directed interesterification in a continuous flow reactor. Melted tallow was circulated through a packed bed enzyme reactor and a separate crystallization vessel. The temperatures of the two parts of the apparatus were controlled separately to allow crystallization to occur separately from interesterification. Operation of the reactor with conventionally dry, prefractionated tallow allowed the formation of an olein consisting of up to 60% unsaturated fatty acids. The greatest changes in olein fatty acid composition were achieved when the fractionation temperature was kept constant at a value that promoted selective crystallization of trisaturated triglycerides that were continuously produced by enzymic interesterification. The enzyme could be reused without apparent loss of activity, and its activity was apparently enhanced by preincubation in melted tallow for up to several days. Control of both the water activity of the enzyme and tallow feedstock and of the absorption of atmospheric water vapor were required to maintain enzyme activity, during multiple reuse and minimize free fatty acid formation. This method may form the basis for a process to produce highly mono-unsaturated tallow fractions for use in food applications (e.g. frying) where a "healthy" low saturated fat product is required.

  19. Lipase Test

    MedlinePlus

    ... known as: LPS Formal name: Lipase Related tests: Amylase , Trypsin , Trypsinogen At a Glance Test Sample The ... lipase is most often used, along with an amylase test , to help diagnose and monitor acute pancreatitis . ...

  20. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media.

    PubMed

    Ng, Choong Hey; Yang, Kun-Lin

    2016-01-01

    Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp.

  1. Effect of modified atmosphere packaging on the shelf life of lal peda.

    PubMed

    Jha, Alok; Kumar, Arvind; Jain, Parul; Gautam, Anuj Kumar; Rasane, Prasad

    2015-02-01

    Lal peda is a traditional dairy-based sweet, popular in the Indian subcontinent, but it has a poor shelf life. The lal peda samples were packed in polyethylene bags filled with 3 different gaseous compositions (Air, 70 % N2: 30 % CO2 and 98 % N2) and stored at 10 °C. The shelf life was evaluated on the basis of changes in the microbial status of the product such as total plate count, yeast and molds and coliform counts and also the physico-chemical changes such as hydroxy methyl furfural (HMF), thiobarbituric acid (TBA) and free fatty acid (FFA). The microbial spoilage and the indices of chemical changes increased in all the samples with the progression of storage period. The samples packed with air showed significantly higher chemical deterioration and microbial spoilage as compared to the other two combinations. The results showed that samples packed with 70 % N2: 30 % CO2 combination had better shelf stability as compared to the samples packed under air and 98 % N2.

  2. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase

    SciTech Connect

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M.; Brown, Robert J.

    2014-09-05

    Highlights: • Lipoprotein hydrolysis products were produced by lipoprotein lipase. • Hydrolysis products lowers expression of macrophage cholesterol transporters. • Hydrolysis products reduces expression of select nuclear receptors. • Fatty acid products lowers cholesterol transporters and select nuclear receptors. • Fatty acid products reduces cholesterol efflux from macrophages. - Abstract: Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL.

  3. Biodiesel production with immobilized lipase: A review.

    PubMed

    Tan, Tianwei; Lu, Jike; Nie, Kaili; Deng, Li; Wang, Fang

    2010-01-01

    Fatty acid alkyl esters, also called biodiesel, are environmentally friendly and show great potential as an alternative liquid fuel. Biodiesel is produced by transesterification of oils or fats with chemical catalysts or lipase. Immobilized lipase as the biocatalyst draws high attention because that process is "greener". This article reviews the current status of biodiesel production with immobilized lipase, including various lipases, immobilization methods, various feedstocks, lipase inactivation caused by short chain alcohols and large scale industrialization. Adsorption is still the most widely employed method for lipase immobilization. There are two kinds of lipase used most frequently especially for large scale industrialization. One is Candida antartica lipase immobilized on acrylic resin, and the other is Candida sp. 99-125 lipase immobilized on inexpensive textile membranes. However, to further reduce the cost of biodiesel production, new immobilization techniques with higher activity and stability still need to be explored.

  4. Lipase-catalyzed enantioselective synthesis of (R,R)-lactide from alkyl lactate to produce PDLA (poly D-lactic acid) and stereocomplex PLA (poly lactic acid).

    PubMed

    Jeon, Byoung Wook; Lee, Jumin; Kim, Hyun Sook; Cho, Dae Haeng; Lee, Hyuk; Chang, Rakwoo; Kim, Yong Hwan

    2013-10-20

    R-lactide, a pivotal monomer for the production of poly (D-lactic acid) (PDLA) or stereocomplex poly (lactic acid) (PLA) was synthesized from alkyl (R)-lactate through a lipase-catalyzed reaction without racemization. From among several types of lipase, only lipase B from Candida antarctica (Novozym 435; CAL-B) was effective in the reaction that synthesized (R,R)-lactide. Enantiopure (R,R)-lactide, which consisted of over 99% enantiomeric excess, was synthesized from methyl (R)-lactate through CAL-B catalysis. Removal of the methanol by-product was critical to obtain a high level of lactide conversion. The (R,R)-lactide yield was 56% in a reaction containing 100 mg of Novozym 435, 10 mM methyl (R)-lactate and 1500 mg of molecular sieve 5A in methyl tert-butyl ether (MTBE). The important monomer (R,R)-lactide that is required for the production of the widely recognized bio-plastic PDLA and the PLA stereocomplex can be obtained using this novel synthetic method.

  5. Lipase-catalyzed synthesis of azido-functionalized aliphatic polyesters towards acid-degradable amphiphilic graft copolymers.

    PubMed

    Wu, Wan-Xia; Wang, Na; Liu, Bei-Yu; Deng, Qing-Feng; Yu, Xiao-Qi

    2014-02-28

    A series of novel aliphatic polyesters with azido functional groups were synthesized via the direct lipase-catalyzed polycondensation of dialkyl diester, diol and 2-azido-1,3-propanediol (azido glycerol) using immobilized lipase B from Candida antarctica (CALB). The effects of polymerization conditions including reaction time, temperature, enzyme amount, substrates and monomer feed ratio on the molecular weights of the products were studied. The polyesters with pendant azido groups were characterized by (1)H NMR, (13)C NMR, 2D NMR, FTIR, GPC and DSC. Alkyne end-functionalized poly(ethylene glycol) containing a cleavable acetal group was then grafted onto the polyester backbone by copper-catalyzed azide-alkyne cycloaddition (CuAAC, click chemistry). Using fluorescence spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM), these amphiphilic graft copolymers were found to readily self-assemble into nanosized micelles in aqueous solution with critical micelle concentrations between 0.70 and 1.97 mg L(-1), and micelle sizes from 20-70 nm. The degradation of these polymers under acidic conditions was investigated by GPC and (1)H NMR spectroscopy. Cell cytotoxicity tests indicated that the micelles had no apparent cytotoxicity to Bel-7402 cells, suggesting their potential as carriers for controlled drug delivery.

  6. Transformation of waste cooking oil into C-18 fatty acids using a novel lipase produced by Penicillium chrysogenum through solid state fermentation.

    PubMed

    Kumar, Sunil; Negi, Sangeeta

    2015-10-01

    The prime aim of the current work was to illustrate the components existing in repeatedly used cooking oil and to develop an economical process for the production of fatty acids from low cost feedstock waste. The waste cooking oil was characterized by the occurrence of high molecular weight hydrocarbons and polymerized derivative of esters. Triacontanoic acid methyl ester, 2,3,5,8-Tetramethyldecane, 3,3 dimethyl heptane, and 2,2,3,3-teramethyl pentane were detected as thermal and oxidative contaminants that adversely affect the quality of cooking oil. Fundamentally, waste cooking oil comprises ester bonds of long chain fatty acids. The extracellular lipase produced from P. chrysogenum was explored for the hydrolysis of waste cooking oil. The incorporation of lipase to waste cooking oil in 1:1 proportion released 17 % oleic acid and 5 % stearic acid.

  7. Candida rugosa Lipase Immobilized onto Acid-Functionalized Multi-walled Carbon Nanotubes for Sustainable Production of Methyl Oleate.

    PubMed

    Che Marzuki, Nur Haziqah; Mahat, Naji Arafat; Huyop, Fahrul; Buang, Nor Aziah; Wahab, Roswanira Abdul

    2015-10-01

    The chemical production of methyl oleate using chemically synthesized fatty acid alcohols and other toxic chemicals may lead to significant environmental hazards to mankind. Being a highly valuable fatty acid replacement raw material in oleochemical industry, the mass production of methyl oleate via environmentally favorable processes is of concern. In this context, an alternative technique utilizing Candida rugosa lipase (CRL) physically adsorbed on multi-walled carbon nanotubes (MWCNTs) has been suggested. In this study, the acid-functionalized MWCNTs prepared using a mixture of HNO3 and H2SO4 (1:3 v/v) was used as support for immobilizing CRL onto MWCNTs (CRL-MWCNTs) as biocatalysts. Enzymatic esterification was performed and the efficiency of CRL-MWCNTs was evaluated against the free CRL under varying conditions, viz. temperature, molar ratio of acid/alcohol, solvent log P, and enzyme loading. The CRL-MWCNTs resulted in 30-110 % improvement in the production of methyl oleate over the free CRL. The CRL-MWCNTs attained its highest yield (84.17 %) at 50 °C, molar ratio of acid/alcohol of 1:3, 3 mg/mL of enzyme loading, and iso-octane (log P 4.5) as solvent. Consequently, physical adsorption of CRL onto acid-functionalized MWCNTs has improved the activity and stability of CRL and hence provides an environmentally friendly means for the production of methyl oleate.

  8. High-yield preparation of wax esters via lipase-catalyzed esterification using fatty acids and alcohols from crambe and camelina oils.

    PubMed

    Steinke, G; Weitkamp, P; Klein, E; Mukherjee, K D

    2001-02-01

    Fatty acids obtained from seed oils of crambe (Crambe abyssinica) and camelina (Camelina sativa) via alkaline saponification or steam splitting were esterified using lipases as biocatalysts with oleyl alcohol and the alcohols derived from crambe and camelina oils via hydrogenolysis of their methyl esters. Long-chain wax esters were thus obtained in high yields when Novozym 435 (immobilized lipase B from Candida antarctica) and papaya (Carica papaya) latex lipase were used as biocatalysts and vacuum was applied to remove the water formed. The highest conversions to wax esters were obtained with Novozym 435 (> or =95%) after 4-6 h of reaction, whereas with papaya latex lipase such a high degree of conversion was attained after 24 h. Products obtained from stoichiometric amounts of substrates were almost exclusively (>95%) composed of wax esters having compositions approaching that of jojoba (Simmondsia chinensis) oil, especially when crambe fatty acids in combination with camelina alcohols or camelina fatty acids in combination with crambe alcohols were used as substrates.

  9. Synthesis of phosphatidylcholine with defined fatty acid in the sn-1 position by lipase-catalyzed esterification and transesterification reaction.

    PubMed

    Adlercreutz, Dietlind; Budde, Heike; Wehtje, Ernst

    2002-05-20

    The incorporation of caproic acid in the sn-1 position of phosphatidylcholine (PC) catalyzed by lipase from Rhizopus oryzae was investigated in a water activity-controlled organic medium. The reaction was carried out either as esterification or transesterification. A comparison between these two reaction modes was made with regard to product yield, product purity, reaction time, and byproduct formation as a consequence of acyl migration. The yield in the esterification and transesterification reaction was the same under identical conditions. The highest yield (78%) was obtained at a water activity (a(w)) of 0.11 and a caproic acid concentration of 0.8 M. The reaction time was shorter in the esterification reaction than in the transesterification reaction. The difference in reaction time was especially pronounced at low water activities and high fatty acid concentrations. The loss in yield due to acyl migration and consequent enzymatic side reactions was around 16% under a wide range of conditions. The incorporation of a fatty acid in the sn-1 position of PC proved to be thermodynamically much more favorable than the incorporation of a fatty acid in the sn-2 position.

  10. Enzymatic Synthesis of Furfuryl Alcohol Ester with Oleic Acid by Candida antarctica Lipase B and Its Kinetic Study

    NASA Astrophysics Data System (ADS)

    Sengupta, Avery; Dey, Tanmoy; Ghosh, Mahua; Ghosh, Jaydip; Ghosh, Santinath

    2012-08-01

    This study investigated the successful enzymatic production of furfuryl oleate and its detailed kinetic study by Michaelis-Menten model. Esterification of oleic acid and furfuryl alcohol by Candida antarctica lipase B (Novozym 435 preparation) in a solvent free system was studied in the present work at 1:1 molar ratio of furfuryl alcohol and oleic acid. About 99 % conversion (on the basis of oleic acid) has been achieved within 6 h at 5 % enzyme concentration. Ping-pong bi-bi mechanism (inhibition phenomenon taken into account) was applied to describe the ratios as a complex kinetic model. The kinetic parameters were determined using MATLAB language programme. The two initial rate constants KA and KB respectively were found out by different progress curves plotted with the help of MATLAB language programme. It was concluded from the results that furfuryl alcohol considerably inhibited the enzymatic reaction while oleic acid had negligible inhibitory effect. It was clearly seen that the initial rate was increased with the increase in the furfuryl alcohol concentration until 2 M/L after which there was a drop in the initial rate depicting the inhibitory effect of furfuryl alcohol. Surprisingly, it has been observed that addition of 0.1 mol of product activated the esterification reaction. Finally, the model was found to be statistically fitting well with the experimental data.

  11. Lipase test

    MedlinePlus

    ... cholecystitis Chronic pancreatitis Enzyme Familial lipoprotein lipase deficiency Pancreatic cancer Triglyceride level Review Date 2/4/2015 Updated ... team. Related MedlinePlus Health Topics Gastroenteritis Genetic Disorders Pancreatic Cancer Pancreatic Diseases Pancreatitis Browse the Encyclopedia A.D. ...

  12. Apple peels, from seven cultivars, have lipase-inhibitory activity and contain numerous ursenoic acids as identified by LC-ESI-QTOF-HRMS.

    PubMed

    McGhie, Tony K; Hudault, Sébastien; Lunken, Rona C M; Christeller, John T

    2012-01-11

    Apple peel contains numerous phytochemicals, many of which show bioactivity. This study investigated the identity of triterpenoid compounds contained in ethanolic extracts of peel from seven apple cultivars. Using HPLC-ESI-QTOF-HRMS, accurate mass information was obtained for 43 compounds, and chemical identity was inferred from the calculated elemental composition, fragment masses, ms/ms, and a limited set of authentic standards. Compounds were identified as triterpene acids and tentatively identified as ursenoic (or oleanoic) acid derivatives containing hydroxyl, oxo, and coumaroyloxy groups. These apple skin extracts exhibited lipase-inhibitory activity, which may be linked to the ursenoic acid content. Furthermore, both triterpene content and lipase-inhibitory activity varied by cultivar.

  13. Lipase-mediated enantioselective kinetic resolution of racemic acidic drugs in non-standard organic solvents: Direct chiral liquid chromatography monitoring and accurate determination of the enantiomeric excesses.

    PubMed

    Ghanem, Ashraf; Aboul-Enein, Mohammed Nabil; El-Azzouny, Aida; El-Behairy, Mohammed F

    2010-02-12

    The enantioselective resolution of a set of racemic acidic compounds such as non-steroidal anti-inflammatory drugs (NSAIDs) of the group arylpropionic acid derivatives is demonstrated. Thus, a set of lipases were screened and manipulated in either the esterification or hydrolysis mode for the enantioselective kinetic resolution of these racemates in non-standard organic solvents. The accurate determination of the enantiomeric excesses of both substrate and product during such reaction is demonstrated. This was based on the development of a direct and reliable enantioselective high performance liquid chromatography (HPLC) procedure for the simultaneous baseline separation of both substrate and product in one run without derivatization. This was achieved using the immobilized chiral stationary phase namely Chiralpak IB, a 3,5-dimethylphenylcarbamate derivative of cellulose (the immobilized version of Chiralcel OD) which proved to be versatile for the monitoring of the lipase-catalyzed kinetic resolution of racemates in non-standard organic solvents.

  14. Esterification of oleic acid with methanol by immobilized lipase on wrinkled silica nanoparticles with highly ordered, radially oriented mesochannels.

    PubMed

    Pang, Jinli; Zhou, Guowei; Liu, Ruirui; Li, Tianduo

    2016-02-01

    Mesoporous silica nanoparticles with a wrinkled structure (wrinkled silica nanoparticles, WSNs) having highly ordered, radially oriented mesochannels were synthesized by a solvothermal method. The method used a mixture of cyclohexane, ethanol, and water as solvent, tetraethoxysilane (TEOS) as source of inorganic silica, ammonium hydroxide as hydrolysis additive, cetyltrimethylammonium bromide (CTAB) as surfactant, and polyvinylpyrrolidone (PVP) as stabilizing agent of particle growth. Particle size (240nm to 540nm), specific surface areas (490m(2)g(-1) to 634m(2)g(-1)), surface morphology (radial wrinkled structures), and pore structure (radially oriented mesochannels) of WSN samples were varied using different molar ratios of CTAB to PVP. Using synthesized WSN samples with radially oriented mesochannels as support, we prepared immobilized Candida rugosa lipase (CRL) as a new biocatalyst for biodiesel production through the esterification of oleic acid with methanol. These results suggest that WSNs with highly ordered, radially oriented mesochannels have promising applications in biocatalysis, with the highest oleic acid conversion rate of about 86.4% under the optimum conditions.

  15. Senescent case of cholesterol ester storage disease that progressed to liver cirrhosis with a novel mutation (N250H) of lysosomal acid lipase gene.

    PubMed

    Kojima, Seiichiro; Watanabe, Norihito; Takashimizu, Shinji; Kagawa, Tatehiro; Shiraishi, Koichi; Koizumi, Jun; Hirabayashi, Ken-Ichi; Ohkubo, Tomoichi; Kamiguchi, Hiroshi; Tsuda, Michio; Mine, Tetsuya

    2013-12-01

    The patient, a 69-year-old man, had a chief complaint of hepatomegaly. The liver was palpated four fingerbreadths below the costal margin, and the spleen was three fingerbreadths below the costal margin. There were no other abnormal findings. Laparoscopy showed that the liver resembled an orange-yellow crayon in appearance and was nodular. The pathological findings of the liver biopsy tissue were consistent with liver cirrhosis. Inside the fibrous septum was an apparent aggregation of enlarged macrophages that phagocytosed lipid components, as well as enlarged Kupffer cells that phagocytosed lipid droplets. Electron microscopy showed the lipid droplets to have a moth-eaten appearance. Using monocytes extracted from the peripheral blood, acid lipase activity was measured by fluorescence spectrometry using 4-methylumbelliferone palmitate as a substrate. This patient's human lysosomal acid lipase activity was 0.020 nM/min per 10(6)  cells, corresponding to 5.9% of that in healthy subjects (0.332 ± 0.066 nM/min per 10(6)  cells). Cholesterol ester storage disease was therefore diagnosed. The acid lipase A base sequence obtained from leukocytes by direct sequencing was compared with a library. This patient had a point mutation of N250H/N250H in exon 7, a novel gene abnormality that has not previously been reported.

  16. Structured lipids via lipase-catalyzed incorporation of eicosapentaenoic acid into borage (Borago officinalis L.) and evening primrose (Oenothera biennis L.) oils.

    PubMed

    Senanayake, S P J Namal; Shahidi, Fereidoon

    2002-01-30

    Enzymatic acidolysis of borage oil (BO) or evening primrose oil (EPO) with eicosapentaenoic acid (20:5n-3; EPA) was studied. Of the six lipases that were tested in the initial screening, nonspecific lipase PS-30 from Pseudomonas sp. resulted in the highest incorporation of EPA into both oils. This enzyme was further studied for the influence of enzyme load, temperature, time, type of organic solvent, and mole ratio of substrates. The products from the acidolysis reaction were analyzed by gas chromatography (GC). The highest incorporation of EPA in both oils occurred at 45-55 degrees C and at 150-250 enzyme activity units. One unit of lipase activity was defined as nanomoles of fatty acids (oleic acid equivalents) produced per minute per gram of enzyme. Time course studies indicated that EPA incorporation was increased up to 26.8 and 25.2% (after 24 h) in BO and EPO, respectively. Among the solvents examined, n-hexane served best for the acidolysis of EPA with both oils. The effect of the mole ratio of oil to EPA was studied from 1:1 to 1:3. As the mole ratio of EPA increased, the incorporation increased from 25.2-26.8 to 37.4-39.9% (after 24 h). The highest EPA incorporations of 39.9 and 37.4% in BO and EPO, respectively, occurred at the stoichiometric mole ratio of 1:3 for oil to EPA.

  17. In vitro inhibitory effect on pancreatic lipase activity of subfractions from ethanol extracts of fermented Oats (Avena sativa L.) and synergistic effect of three phenolic acids.

    PubMed

    Cai, Shengbao; Wang, Ou; Wang, Mengqian; He, Jianfeng; Wang, Yong; Zhang, Di; Zhou, Feng; Ji, Baoping

    2012-07-25

    The purpose of the present work is to study the pancreatic lipase inhibitory effects of different subfractions (n-hexane, ethyl acetate (EA), n-butanol, and water) from ethanol extracts of nonfermented and fungi-fermented oats and to delineate the interactions of three primary phenolic acids in the EA subfractions. The EA subfraction showed the highest inhibitory effect on pancreatic lipase activity at 1.5 mg/mL compared to the other subfractions, regardless of whether the oats were fermented. Meanwhile, both of the EA subfractions of two fungi-fermented oats demonstrated more effective inhibitory activity than that of nonfermented oats. A positive correlation between the total phenolics content and inhibitory activity was found. The inhibitory ability of the EA subfraction from nonfermented or fermented oats also displayed a dose-dependent effect. The standards of caffeic, ferulic, and p-coumaric acids, mainly included in EA subfractions of fermented oats, also displayed a dose-dependent inhibitory effect. A synergistic effect of each binary combination of p-coumaric, ferulic, and caffeic acids was observed, especially at 150.0 μg/mL. Those results indicate that fungi-fermented oats have a more effective inhibitory ability on pancreatic lipase and polyphenols may be the most effective component and could be potentially used for dietary therapy of obesity.

  18. Lipase-catalyzed esterification of ferulic Acid with oleyl alcohol in ionic liquid/isooctane binary systems.

    PubMed

    Chen, Bilian; Liu, Huanzhen; Guo, Zheng; Huang, Jian; Wang, Minzi; Xu, Xuebing; Zheng, Lifei

    2011-02-23

    Lipase-catalyzed synthesis of ferulic acid oleyl alcohol ester in an ionic liquid (IL)/isooctane system was investigated. Considerable bioconversion and volumetric productivity were achieved in inexpensive 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF(6)]) and 1-methyl-3-octylimidazolium hexafluorophosphate ([Omim][PF(6)]) mediated systems, and thus, the two types of ILs were selected for further optimization of variables. The results showed that, before reaching a maximum, the increase of ferulic acid concentration, temperature, or enzyme dosage led to an increase in volumetric productivity. Variations of the ratios of IL/isooctane and concentrations of oleyl alcohol also profoundly affected the volumetric productivity. To a higher extent, [Hmim][PF(6)]/isooctane and [Omim][PF(6)]/isooctane show similar reaction behaviors. Under the optimized reaction conditions (60 °C, 150 mg of Novozym 435 and 100 mg of molecular sieves), up to 48.50 mg/mL productivity of oleyl feruleate could be achieved for the [Hmim][PF(6)]/isooctane (0.5 mL/1.5 mL) system with a substrate concentration of ferulic acid of 0.08 mmol/mL and oleyl alcohol of 0.32 mmol; while an optimum volumetric productivity of 26.92 mg/mL was obtained for the [Omim][PF(6)]/ isooctane (0.5 mL/1.5 mL) system under a similar reaction condition other than the substrate concentrations of ferulic acid at 0.05 mmol/mL and oleyl alcohol at 0.20 mmol.

  19. Genomics and genetics of Sulfolobus islandicus LAL14/1, a model hyperthermophilic archaeon

    PubMed Central

    Jaubert, Carole; Danioux, Chloë; Oberto, Jacques; Cortez, Diego; Bize, Ariane; Krupovic, Mart; She, Qunxin; Forterre, Patrick; Prangishvili, David; Sezonov, Guennadi

    2013-01-01

    The 2 465 177 bp genome of Sulfolobus islandicus LAL14/1, host of the model rudivirus SIRV2, was sequenced. Exhaustive comparative genomic analysis of S. islandicus LAL14/1 and the nine other completely sequenced S. islandicus strains isolated from Iceland, Russia and USA revealed a highly syntenic common core genome of approximately 2 Mb and a long hyperplastic region containing most of the strain-specific genes. In LAL14/1, the latter region is enriched in insertion sequences, CRISPR (clustered regularly interspaced short palindromic repeats), glycosyl transferase genes, toxin–antitoxin genes and MITE (miniature inverted-repeat transposable elements). The tRNA genes of LAL14/1 are preferential targets for the integration of mobile elements but clusters of atypical genes (CAG) are also integrated elsewhere in the genome. LAL14/1 carries five CRISPR loci with 10 per cent of spacers matching perfectly or imperfectly the genomes of archaeal viruses and plasmids found in the Icelandic hot springs. Strikingly, the CRISPR_2 region of LAL14/1 carries an unusually long 1.9 kb spacer interspersed between two repeat regions and displays a high similarity to pING1-like conjugative plasmids. Finally, we have developed a genetic system for S. islandicus LAL14/1 and created ΔpyrEF and ΔCRISPR_1 mutants using double cross-over and pop-in/pop-out approaches, respectively. Thus, LAL14/1 is a promising model to study virus–host interactions and the CRISPR/Cas defence mechanism in Archaea. PMID:23594878

  20. Role of lipase from community-associated methicillin-resistant Staphylococcus aureus strain USA300 in hydrolyzing triglycerides into growth-inhibitory free fatty acids.

    PubMed

    Cadieux, Brigitte; Vijayakumaran, Vithooshan; Bernards, Mark A; McGavin, Martin J; Heinrichs, David E

    2014-12-01

    Part of the human host innate immune response involves the secretion of bactericidal lipids on the skin and delivery of triglycerides into abscesses to control invading pathogens. Two Staphylococcus aureus lipases, named SAL1 and SAL2, were identified in the community-associated methicillin-resistant S. aureus strain USA300, which, presumably, are produced and function to degrade triglycerides to release free fatty acids. We show that the SAL2 lipase is one of the most abundant proteins secreted by USA300 and is proteolytically processed from the 72-kDa proSAL2 to the 44-kDa mature SAL2 by the metalloprotease aureolysin. We show that spent culture supernatants had lipase activity on both short- and long-chain fatty acid substrates and that deletion of gehB, encoding SAL2, resulted in the complete loss of these activities. With the use of gas chromatography-mass spectrometry, we show that SAL2 hydrolyzed trilinolein to linoleic acid, a fatty acid with known antistaphylococcal properties. When added to cultures of USA300, trilinolein and, to a lesser extent, triolein inhibited growth in a SAL2-dependent manner. This effect was shown to be due to the enzymatic activity of SAL2 on these triglycerides, since the catalytically inactive SAL2 Ser412Ala mutant was incapable of hydrolyzing the triglycerides or yielding delayed growth in their presence. Overall, these results reveal that SAL2 hydrolyzes triglycerides of both short- and long-chain fatty acids and that the released free fatty acids have the potential to cause significant delays in growth, depending on the chemical nature of the free fatty acid.

  1. AMPK Phosphorylates Desnutrin/ATGL and Hormone-Sensitive Lipase To Regulate Lipolysis and Fatty Acid Oxidation within Adipose Tissue

    PubMed Central

    Kim, Sun-Joong; Tang, Tianyi; Abbott, Marcia; Viscarra, Jose A.; Wang, Yuhui

    2016-01-01

    The role of AMP-activated protein kinase (AMPK) in promoting fatty acid (FA) oxidation in various tissues, such as liver and muscle, has been well understood. However, the role of AMPK in lipolysis and FA metabolism in adipose tissue has been controversial. To investigate the role of AMPK in the regulation of adipose lipolysis in vivo, we generated mice with adipose-tissue-specific knockout of both the α1 and α2 catalytic subunits of AMPK (AMPK-ASKO mice) by using aP2-Cre and adiponectin-Cre. Both models of AMPK-ASKO ablation show no changes in desnutrin/ATGL levels but have defective phosphorylation of desnutrin/ATGL at S406 to decrease its triacylglycerol (TAG) hydrolase activity, lowering basal lipolysis in adipose tissue. These mice also show defective phosphorylation of hormone-sensitive lipase (HSL) at S565, with higher phosphorylation at protein kinase A sites S563 and S660, increasing its hydrolase activity and isoproterenol-stimulated lipolysis. With higher overall adipose lipolysis, both models of AMPK-ASKO mice are lean, having smaller adipocytes with lower TAG and higher intracellular free-FA levels. Moreover, FAs from higher lipolysis activate peroxisome proliferator-activated receptor delta to induce FA oxidative genes and increase FA oxidation and energy expenditure. Overall, for the first time, we provide in vivo evidence of the role of AMPK in the phosphorylation and regulation of desnutrin/ATGL and HSL and thus adipose lipolysis. PMID:27185873

  2. Physico-chemical and sensory changes during the storage of lal peda.

    PubMed

    Jha, Alok; Kumar, Arvind; Jain, Parul; Om, Hari; Singh, Rakhi; Bunkar, D S

    2014-06-01

    Lal peda is a popular heat desiccated traditional dairy delicacy of eastern India specially Uttar Pradesh. It is prepared by blending of khoa and sugar followed by heat desiccation until characteristic reddish brown colour appears. It is a nutritive, palatable and a very good source of energy. In order to commercially manufacture and market lal peda, studies on its shelf-life were considered to be very important. Lal peda samples were packed in paper boxes and stored at two different temperatures i.e. 4 and 37 °C and physico-chemical and sensory changes were monitored during storage period. There was a continuous loss of moisture during storage and rate of loss of moisture was higher at 37 °C. FFA and HMF contents in lal peda increased during storage and these changes were found to be temperature sensitive. Changes in textural properties of lal peda in terms of hardness, springiness, cohesiveness, chewiness and gumminess were also studied. Lal peda samples stored at 4 and 37 °C were acceptable up to 31 days and 9 days, respectively on the basis of textural and sensory attributes.

  3. Synthetic resin-bound truncated Candida antarctica lipase B for production of fatty acid alkyl esters by transesterification of corn and soybean oils with ethanol or butanol.

    PubMed

    Hughes, Stephen R; Moser, Bryan R; Robinson, Samantha; Cox, Elby J; Harmsen, Amanda J; Friesen, Jon A; Bischoff, Kenneth M; Jones, Marjorie A; Pinkelman, Rebecca; Bang, Sookie S; Tasaki, Ken; Doll, Kenneth M; Qureshi, Nasib; Liu, Siqing; Saha, Badal C; Jackson, John S; Cotta, Michael A; Rich, Joseph O; Caimi, Paolo

    2012-05-31

    A gene encoding a synthetic truncated Candida antarctica lipase B (CALB) was generated via automated PCR and expressed in Saccharomyces cerevisiae. Western blot analysis detected five truncated CALB variants, suggesting multiple translation starts from the six in-frame ATG codons. The longest open reading frame, which corresponds to amino acids 35-317 of the mature lipase, appeared to be expressed in the greatest amount. The truncated CALB was immobilized on Sepabeads® EC-EP resin and used to produce ethyl and butyl esters from crude corn oil and refined soybean oil. The yield of ethyl esters was 4-fold greater from corn oil than from soybean oil and was 36% and 50% higher, respectively, when compared to a commercially available lipase resin (Novozym 435) using the same substrates. A 5:1 (v/v) ratio of ethanol to corn oil produced 3.7-fold and 8.4-fold greater yields than ratios of 15:1 and 30:1, respectively. With corn oil, butyl ester production was 56% higher than ethyl ester production. Addition of an ionic catalytic resin step prior to the CALB resin increased yields of ethyl esters from corn oil by 53% compared to CALB resin followed by ionic resin. The results suggest resin-bound truncated CALB has potential application in biodiesel production using biocatalysts.

  4. Production of Omega-3 Fatty Acid Ethyl Esters from Menhaden Oil Using Proteus vulgaris Lipase-Mediated One-Step Transesterification and Urea Complexation.

    PubMed

    Kim, Soo-Jin; Kim, Hyung Kwoun

    2016-05-01

    An organic solvent-stable lipase from Proteus vulgaris K80 was used to produce the omega-3 polyunsaturated fatty acid ethyl esters (ω-3 PUFA EEs). First, the lyophilized recombinant lipase K80 (LyoK80) was used to perform the transesterification reaction of menhaden oil and ethanol. LyoK80 produced the ω-3 PUFA EEs with a conversion yield of 82 % in the presence of 20 % water content via a three-step ethanol-feeding process; however, in a non-aqueous condition, LyoK80 produced only a slight amount of the ω-3 PUFA EEs. To enhance its reaction properties, the lipase K80 was immobilized on a hydrophobic bead to derive ImmK80; the biochemical properties and substrate specificity of ImmK80 are similar to those of LyoK80. ImmK80 was then used to produce ω-3 PUFA EEs in accordance with the same transesterification reaction. Unlike LyoK80, ImmK80 achieved a high ω-3 PUFA EE conversion yield of 86 % under a non-aqueous system via a one-step ethanol-feeding reaction. The ω-3 PUFA EEs were purified up to 92 % using a urea complexation method.

  5. Lipase catalyzed synthesis of neutral glycerides rich in micronutrients from rice bran oil fatty acid distillate.

    PubMed

    Nandi, Sumit; Gangopadhyay, Sarbani; Ghosh, Santinath

    2008-01-01

    Neutral glycerides with micronutrients like sterols, tocopherols and squalene may be prepared from cheap raw material like rice bran oil fatty acid distillate (RBO FAD). RBO FAD is an important byproduct of vegetable oil refining industries in the physical refining process. Glycerides like triacylglycerols (TAG), diacylglycerols (DAG) and monoacylglycerols (MAG) containing significant amounts of unsaponifiable matter like sterols, tocopherols and hydrocarbons (mainly squalene) may certainly be considered as novel functional food ingredients. Fatty acids present in RBO FAD were esterified with glycerol of varying amount (1:0.33, 1:0.5, 1:1 and 1:1.5 of FAD : glycerol ratio) for 8 h using non-specific enzyme NS 40013 (Candida antartica). After esterification the product mixture containing mono, di- and triglycerides was purified by molecular distillation to remove excess free fatty acids and also other volatile undesirable components. The purified product containing sterols, tocopherols and squalene can be utilized in various food formulations.

  6. Marine invertebrate lipases: Comparative and functional genomic analysis.

    PubMed

    Rivera-Perez, Crisalejandra

    2015-09-01

    Lipases are key enzymes involved in lipid digestion, storage and mobilization of reserves during fasting or heightened metabolic demand. This is a highly conserved process, essential for survival. The genomes of five marine invertebrate species with distinctive digestive system were screened for the six major lipase families. The two most common families in marine invertebrates, the neutral an acid lipases, are also the main families in mammals and insects. The number of lipases varies two-fold across analyzed genomes. A high degree of orthology with mammalian lipases was observed. Interestingly, 19% of the marine invertebrate lipases have lost motifs required for catalysis. Analysis of the lid and loop regions of the neutral lipases suggests that many marine invertebrates have a functional triacylglycerol hydrolytic activity as well as some acid lipases. A revision of the expression profiles and functional activity on sequences in databases and scientific literature provided information regarding the function of these families of enzymes in marine invertebrates.

  7. Inhibition of Gastric Lipase as a Mechanism for Body Weight and Plasma Lipids Reduction in Zucker Rats Fed a Rosemary Extract Rich in Carnosic Acid

    PubMed Central

    Romo Vaquero, María; Yáñez-Gascón, María-Josefa; García Villalba, Rocío; Larrosa, Mar; Fromentin, Emilie; Ibarra, Alvin; Roller, Marc; Tomás-Barberán, Francisco; Espín de Gea, Juan Carlos; García-Conesa, María-Teresa

    2012-01-01

    Background Rosemary (Rosmarinus officinalis L.) extracts (REs) exhibit hepatoprotective, anti-obesity and anti-inflammatory properties and are widely used in the food industry. REs are rich in carnosic acid (CA) and carnosol which may be responsible for some of the biological activities of REs. The aim of this study was to investigate whether inhibition of lipase activity in the gut may be a mechanism by which a RE enriched in CA (40%) modulates body weight and lipids levels in a rat model of metabolic disorders and obesity. Methods and Principal Findings RE was administered for 64 days to lean (fa/+) and obese (fa/fa) female Zucker rats and body weight, food intake, feces weight and blood biochemical parameters were monitored throughout the study. Lipase activity (hydrolysis of p-nitrophenylbutyrate) was measured in the gastrointestinal tract at the end of the study and the contents of CA, carnosol and methyl carnosate were also determined. Sub-chronic administration of RE moderately reduced body weight gain in both lean and obese animals but did not affect food intake. Serum triglycerides, cholesterol and insulin levels were also markedly decreased in the lean animals supplemented with RE. Importantly, lipase activity was significantly inhibited in the stomach of the RE-supplemented animals where the highest content of intact CA and carnosol was detected. Conclusions Our results confirm that long-term administration of RE enriched in CA moderates weight gain and improves the plasma lipids profile, primarily in the lean animals. Our data also suggest that these effects may be caused, at least in part, by a significant inhibition of gastric lipase and subsequent reduction in fat absorption. PMID:22745826

  8. In situ localization of the genetic locus encoding the lysosomal acid lipase/cholesteryl esterase (LIPA) deficient in wolman disease to chromosome 10q23. 2-q23. 3

    SciTech Connect

    Anderson, R.A.; Rao, N.; Byrum, R.S.; Rothschild, C.B.; Bowden, D.W.; Hayworth, R.; Pettenati, M. )

    1993-01-01

    Human acid lipase/cholesteryl esterase (EC 3.1.1.13) is a 46-kDa glycoprotein required for the lysosomal hydrolysis of cholesteryl esters and triglycerides that cells acquire through the receptor-mediated endocytosis of low-density lipoproteins. This activity is essential in the provision of free cholesterol for cell metabolism as well as for the feedback signal that modulates endogenous cellular cholesterol production. The extremely low level of lysosomal acid lipase in patients afflicted with the hereditary, allelic lysosomal storage disorders Woman disease (WD) and cholesteryl ester storage disease (CESD) (MIM Number 278000 (6)) is associated with the massive intralysosomal lipid storage and derangements in the regulation of cellular cholesterol production (10). Both WD and CESD cells lack a specific acid lipase isoenzyme and it is thought that the different mutations associated with WD and CESD are in the structural gene for this isoenzyme, LIPA. Analysis of the activity of the acid lipase isoenzyme in cell extracts from human-Chinese hamster somatic cell hybrids (4, 11) demonstrated the concordant segregation of the gene locus for lysosomal acid lipase with the glutamate oxaloacetate transaminase-1 (GOT1) enzyme marker for human chromosome 10 which was subsequently localized to 10q24.1 q25.1 (8). 11 refs., 1 figs.

  9. Hormone-sensitive lipase activity and triacylglycerol hydrolysis are decreased in rat soleus muscle by cyclopiazonic acid.

    PubMed

    Watt, Matthew J; Steinberg, Gregory R; Heigenhauser, G J F; Spriet, Lawrence L; Dyck, David J

    2003-08-01

    Cyclopiazonic acid (CPA) is a sarcoplasmic reticulum Ca2+-ATPase inhibitor that increases intracellular calcium. The role of CPA in regulating the oxidation and esterification of palmitate, the hydrolysis of intramuscular lipids, and the activation of hormone-sensitive lipase (HSL) was examined in isolated rat soleus muscles at rest. CPA (40 micro M) was added to the incubation medium to levels that resulted in subcontraction increases in muscle tension, and lipid metabolism was monitored using the previously described pulse-chase procedure. CPA did not alter the cellular energy state, as reflected by similar muscle contents of ATP, phosphocreatine, free AMP, and free ADP. CPA increased total palmitate uptake into soleus muscle (11%, P < 0.05) and was without effect on palmitate oxidation. This resulted in greater esterification of exogenous palmitate into the triacylglycerol (18%, P < 0.05) and phospholipid (89%, P < 0.05) pools. CPA decreased (P < 0.05) intramuscular lipid hydrolysis, and this occurred as a result of reduced HSL activity (20%, P < 0.05). Incubation of muscles with 3 mM caffeine, which is also known to increase Ca2+ without affecting the cellular energy state, reduced HSL activity (24%, P < 0.05). KN-93, a calcium/calmodulin-dependent kinase inhibitor (CaMKII), blocked the effects of CPA and caffeine, and HSL activity returned to preincubation values. The results of the present study demonstrate that CPA simultaneously decreases intramuscular triacylglycerol (IMTG) hydrolysis and promotes lipid storage in isolated, intact soleus muscle. The decreased IMTG hydrolysis is likely mediated by reduced HSL activity, possibly via the CaMKII pathway. These responses are not consistent with the increased hydrolysis and decreased esterification observed in contracting muscle when substrate availability and the hormonal milieu are tightly controlled. It is possible that more powerful signals or a higher [Ca2+] may override the lipid-storage effect of the CPA

  10. (4-Phenoxyphenyl)tetrazolecarboxamides and related compounds as dual inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL).

    PubMed

    Holtfrerich, Angela; Hanekamp, Walburga; Lehr, Matthias

    2013-05-01

    Inhibitors of the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), the principle enzymes involved in the degradation of endogenous cannabinoids like anandamide and 2-arachidonoylglycerol, have potential utility in the treatment of several disorders including pain, inflammation and anxiety. In the present study, the effectivity and selectivity of eight known FAAH and MAGL inhibitors for inhibition of the appropriate enzyme were measured applying in vitro assays, which work under comparable conditions. Because many of the known FAAH and MAGL inhibitors simply consist of a lipophilic scaffold to which a heterocyclic system is bound, furthermore, different heterocyclic structures were evaluated for their contribution to enzyme inhibition by attaching them to the same lipophilic backbone, namely 4-phenoxybenzene. One of the most active compound synthesized during this investigation was N,N-dimethyl-5-(4-phenoxyphenyl)-2H-tetrazole-2-carboxamide (16) (IC50 FAAH: 0.012 μM; IC50 MAGL: 0.028 μM). This inhibitor was systematically modified in the lipophilic 4-phenoxyphenyl region. Structure-activity relationship studies revealed that the inhibitory potency against FAAH and MAGL, respectively, could still be increased by replacement of the phenoxy residue of 16 by 3-chlorophenoxy (45) or pyrrol-1-yl groups (49). Finally, the tetrazolecarboxamide 16 and some related compounds were tested for metabolic stability with rat liver S9 fractions showing that these kind of FAAH/MAGL inhibitors are readily inactivated by cleavage of the bond between the tetrazole ring and its carboxamide substituent.

  11. Incorporation of omega-3 polyunsaturated fatty acids into soybean lecithin: effect of amines and divalent cations on transesterification by lipases.

    PubMed

    Marsaoui, Nabil; Laplante, Serge; Raies, Aly; Naghmouchi, Karim

    2013-12-01

    The transesterification of soybean lecithin with methyl esters of EPA and DHA in an organic solvent (hexane) using various commercially available lipases was studied. Lipases produced by Candida antarctica, Pseudomonas fluorescens, Burkholderia cepacia, Mucor miehei, Thermomyces lanuginosus and Rhizomucor miehei were compared, in the absence or presence of histidine, arginine, urea, Ca²⁺, Mg²⁺, or a combination of urea and divalent cations (additives at 5 % of the total lipid mass). Transesterification using the R. miehei enzyme reached 11.32 and 12.30 % in the presence of Ca²⁺ or Mg²⁺ respectively, and 8.58 and 9.31 % when urea was also added. These were the greatest degrees of transesterification obtained. The results suggest the potential use of this immobilized lipase as a catalyst for interesterification reactions in organic solvent systems with low water content.

  12. Continuous lipase-catalyzed esterification of soybean fatty acids under ultrasound irradiation.

    PubMed

    Trentin, Claudia M; Scherer, Robison P; Dalla Rosa, C; Treichel, H; Oliveira, D; Oliveira, J Vladimir

    2014-05-01

    This work investigates the continuous production of alkyl esters from soybean fatty acid (FA) charges using immobilized Novozym 435 as catalyst. The experiments were performed in a packed-bed bioreactor evaluating the effects of FA charge to alcohol (methanol and ethanol) molar ratio, from 1:1 to 1:6, substrate flow rate in the range of 0.5-2.5 mL/min and output irradiation power up to 154 W, at fixed temperature of 65 °C, on the reaction conversion. Results showed that almost complete conversions to fatty acids ethyl esters were achieved at mild ultrasonic power (61.6 W), FA to ethanol molar ratio of 1:6, operating temperature (65 °C) and remained nearly constant for long-term reactions without negligible enzyme activity losses.

  13. Organization of the human lipoprotein lipase gene and evolution of the lipase gene family.

    PubMed Central

    Kirchgessner, T G; Chuat, J C; Heinzmann, C; Etienne, J; Guilhot, S; Svenson, K; Ameis, D; Pilon, C; d'Auriol, L; Andalibi, A

    1989-01-01

    The human lipoprotein lipase gene was cloned and characterized. It is composed of 10 exons spanning approximately equal to 30 kilobases. The first exon encodes the 5'-untranslated region, the signal peptide plus the first two amino acids of the mature protein. The next eight exons encode the remaining 446 amino acids, and the tenth exon encodes the long 3'-untranslated region of 1948 nucleotides. The lipoprotein lipase transcription start site and the sequence of the 5'-flanking region were also determined. We compared the organization of genes for lipoprotein lipase, hepatic lipase, pancreatic lipase, and Drosophila yolk protein 1, which are members of a family of related genes. A model for the evolution of the lipase gene family is presented that involves multiple rounds of gene duplication plus exon-shuffling and intron-loss events. Images PMID:2602366

  14. Neutral Lipids and Peroxisome Proliferator-Activated Receptor-γ Control Pulmonary Gene Expression and Inflammation-Triggered Pathogenesis in Lysosomal Acid Lipase Knockout Mice

    PubMed Central

    Lian, Xuemei; Yan, Cong; Qin, Yulin; Knox, Lana; Li, Tingyu; Du, Hong

    2005-01-01

    The functional roles of neutral lipids in the lung are poorly understood. However, blocking cholesteryl ester and triglyceride metabolism in lysosomal acid lipase gene knockout mice (lal−/−) results in severe pathogenic phenotypes in the lung, including massive neutrophil infiltration, foamy macrophage accumulation, unwanted cell growth, and emphysema. To elucidate the mechanism underlining these pathologies, we performed Affymetrix GeneChip microarray analysis of 1-, 3-, and 6-month-old mice and identified aberrant gene expression that progressed with age. Among changed genes, matrix metalloproteinase (MMP)-12, apoptosis inhibitor 6 (Api-6), erythroblast transformation-specific domain (Ets) transcription factor family member Spi-C, and oncogene MafB were increased 100-, 70-, 40-, and 10-fold, respectively, in lal−/− lungs versus the wild-type lungs. The pathogenic increases of these molecules occurred primarily in alveolar type II epithelial cells. Transcriptional activities of the MMP-12 and Api-6 promoters were stimulated by Spi-C or MafB in respiratory epithelial cells. Treatment with 9-hydroxyoctadecanoic acids and ciglitazone significantly rescued lal−/− pulmonary inflammation and aberrant gene expression. In addition, both compounds as well as peroxisome proliferator-activated receptor gamma inhibited MMP-12 and Api-6 promoter activities. These data suggest that inflammation-triggered cell growth and emphysema during lysosomal acid lipase deficiency are partially caused by peroxisome proliferator-activated receptor-γ inactivation. PMID:16127159

  15. WinLALS for a linked-atom least-square refinement program for helical polymers on WINDOWS PCs.

    PubMed

    Okada, Kenji; Noguchi, Keiichi; Okuyama, Kenji; Arnott, Struther

    2003-07-01

    Fiber diffraction dada from polymers are sufficiently different in kind and quantity from single crystal data as to warrant analyses with a different emphasis: refinement of competing molecular models where torsion angles and bond angles are the explicit variables rather than atomic coordinates. The first linked-atom least-squares (LALS) refinement program had been devolved at Arnott's laboratories at King's College London [Arnott, S., Wonacott, A.J., 1966a. Polymer 7, 157] on mainframe and several revised versions were maintained at Purdue University [Smith, P.J.C., Arnott, S., 1978. Acta Crystallogr. Sect. A 34, 3; Chandrasekan, R. 2000. LALS Users Manual, Whistler Centre for Carbohydrate Researchm Purdue University, West Lafayette, IN] on workstation. Today the LALS users have to choose correctly any one program that they want to use, trigonometric or Bessel functions, from some versions. To develop a new WinLALS program based on the dimensioned version of the latest LALS2000 program [LALS Users Manual (2000)], we reviewed all the mathematical expressions and corrected the optimization of the non-bonded atomic contact terms. The WinLALS is coded with FORTRAN 90 and runs on MICROSOFT-WINDOWS PCs and the many amendments including changing input/output assignments, expanding array sizes, arranging that the update files have all output parameters of each cycle, and correcting several bugs are performed. This paper describes the mathematical expressions in detail employed in WinLALS and compares results of its applications obtained with those obtained earlier.

  16. Isolation and biochemical characterization of Bacillus pumilus lipases from the Antarctic.

    PubMed

    Arifin, Arild Ranlym; Kim, Soon-Ja; Yim, Joung Han; Suwanto, Antonius; Kim, Hyung Kwoun

    2013-05-01

    Lipase-producing bacterial strains were isolated from Antarctic soil samples using the tricaprylin agar plate method. Seven strains with relatively strong lipase activities were selected. All of them turned out to be Bacillus pumilus strains by the 16S rRNA gene sequence analysis. Their corresponding lipase genes were cloned, sequenced, and compared. Finally, three different Bacillus pumilus lipases (BPL1, BPL2, and BPL3) were chosen. Their amino acid sequence identities were in the range of 92-98% with the previous Bacillus pumilus lipases. Their optimum temperatures and pHs were measured to be 40 degrees C and pH 9. Lipase BPL1 and lipase BPL2 were stable up to 30 degrees C, whereas lipase BPL3 was stable up to 20 degrees C. Lipase BPL2 was stable within a pH range of 6-10, whereas lipase BPL1 and lipase BPL3 were stable within a pH range of 5-11, showing strong alkaline tolerance. All these lipases exhibited high hydrolytic activity toward pnitrophenyl caprylate (C8). In addition, lipase BPL1 showed high hydrolytic activity toward tributyrin, whereas lipase BPL2 and lipase BPL3 hydrolyzed tricaprylin and castor oil preferentially. These results demonstrated that the three Antarctic Bacillus lipases were alkaliphilic and had a substrate preference toward short- and mediumchain triglycerides. These Antarctic Bacillus lipases might be used in detergent and food industries.

  17. Organic Solvent Tolerant Lipases and Applications

    PubMed Central

    Kanwar, Shamsher S.

    2014-01-01

    Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s) could be performed in water-restricted organic media as organic solvent(s) not only improve(s) the solubility of substrate and reactant in reaction mixture but also permit(s) the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented. PMID:24672342

  18. A study of the relationship between bile salts, bile salt-stimulated lipase, and free fatty acids in breast milk: normal infants and those with breast milk jaundice.

    PubMed

    Forsyth, J S; Donnet, L; Ross, P E

    1990-08-01

    Breast milk jaundice has been reported to be associated with increased lipase activity and elevated free fatty acid (FFA) concentrations within breast milk. We have previously shown that bile salts are present in small concentrations in breast milk and the aim of this study was to examine the relationship of bile salt-stimulated lipase (BSSL) activity, FFA concentration, and bile salt concentration in milks of normal infants and the milk of infants with breast milk jaundice. Mothers of healthy newborn infants were recruited in the early newborn period and 42 provided breast milk samples at 2 weeks, 30 at 6 weeks, 16 at 10 weeks, and 13 at 14 weeks postnatally. We initially studied the effect of lactation on bile salts and found there was a significant decline in both cholate and chenodeoxycholate levels with duration of lactation (p less than 0.05). There was also a significant fall in BSSL activity with duration of lactation (p less than 0.05), but no correlation was found between BSSL activity and bile salt concentration. FFA concentrations were similar throughout lactation and were not related to either BSSL activity or bile salt concentration. There was a significant increase in the concentration of cholate and the cholate-to-chenodeoxycholate ratio in the milks of 12 infants with breast milk jaundice compared with normal milks, the BSSL activity was similar and contrary to previous reports, the FFA concentration was not increased in the milks of infants with breast milk jaundice.

  19. Inhibitory activity of chlorogenic acids in decaffeinated green coffee beans against porcine pancreas lipase and effect of a decaffeinated green coffee bean extract on an emulsion of olive oil.

    PubMed

    Narita, Yusaku; Iwai, Kazuya; Fukunaga, Taiji; Nakagiri, Osamu

    2012-01-01

    A decaffeinated green coffee bean extract (DGCBE) inhibited porcine pancreas lipase (PPL) activity with an IC50 value of 1.98 mg/mL. Six different chlorogenic acids in DGCBE contributed to this PPL inhibition, accounting for 91.8% of the inhibitory activity. DGCBE increased the droplet size and decreased the specific surface area of an olive oil emulsion.

  20. In vitro stability evaluation of coated lipase

    PubMed Central

    Liu, Lu Jie; Zhu, Jia; Wang, Bin; Cheng, Chu; Du, Yong Jie; Wang, Min Qi

    2017-01-01

    Objective The study was conducted to evaluate the stability of commercial coated lipase (CT-LIP) in vitro. Methods The capsules were tested under different conditions with a range of temperature, pH, dry heat treatment and steaming treatment, simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) in this work, respectively. Free lipase (uncoated lipase, UC-LIP) was the control group. Lipase relative activities measured in various treatments were used as a reference frame to characterize the stability. Results The lipase activities were decreased with increasing temperatures (p<0.05), and there was a markedly decline (p<0.01) in lipase comparative activities of UC-LIP at 80°C compared with CT-LIP group. Higher relative activities of lipase were observed in CT-LIP group compared with the free one under acidic ambient (pH 3 to 7) and an alkaline medium (pH 8 to 12). Residual lipase activities of CT-LIP group were increased (p<0.05) by 5.67% and 35.60% in dry heat and hydrothermal treatments, respectively. The lipase relative activity profile of CT-LIP was raised at first and dropped subsequently (p<0.05) compared with constantly reduced tendency of UC-LIP exposed to both SGF and SIF. Conclusion The results suggest that the CT-LIP possesses relatively higher stability in comparison with the UC-LIP in vitro. The CT-LIP could retain the potential property to provide sustained release of lipase and thus improved its bioavailability in the gastrointestinal tract. PMID:27507179

  1. Enzymatic Synthesis of Structured Lipids using a Novel Cold-Active Lipase from Pichia lynferdii NRRL Y-7723

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structured lipids (SL) were synthesized by the acidolysis of borage oil with caprylic acid using lipases. Six commercial lipases from different sources and a novel lipase from Pichia lynferdii NRRL Y-7723 were screened for their acidolysis activities and Lipozyme RM IM and NRRL Y-7723 lipase were s...

  2. Acylation of Antioxidant of Bamboo Leaves with Fatty Acids by Lipase and the Acylated Derivatives’ Efficiency in the Inhibition of Acrylamide Formation in Fried Potato Crisps

    PubMed Central

    Ma, Xiang; Wang, Erpei; Lu, Yuyun; Wang, Yong; Ou, Shiyi; Yan, Rian

    2015-01-01

    This study selectively acylated the primary hydroxyl groups on flavonoids in antioxidant of bamboo leaves (AOB) using lauric acid with Candida antarctica lipase B in tert-amyl-alcohol. The separation and isolation of acylated derivatives were performed using silica gel column chromatography with a mixture of dichloromethane/diethyl ether/methanol as eluents. Both thin layer chromatography and high-performance liquid chromatography analyses confirmed the high efficiency of the isolation process with the purified orientin-6″-laurate, isoorientin-6″-laurate, vitexin-6″-laurate, and isovitexin-6″-laurate that were obtained. The addition of AOB and acylated AOB reduced acrylamide formation in fried potato crisps. Results showed that 0.05% AOB and 0.05% and 0.1% acylated AOB groups significantly (p < 0.05) reduced the content of acrylamide in potato crisps by 30.7%, 44.5%, and 46.9%, respectively. PMID:26098744

  3. Acylation of Antioxidant of Bamboo Leaves with Fatty Acids by Lipase and the Acylated Derivatives' Efficiency in the Inhibition of Acrylamide Formation in Fried Potato Crisps.

    PubMed

    Ma, Xiang; Wang, Erpei; Lu, Yuyun; Wang, Yong; Ou, Shiyi; Yan, Rian

    2015-01-01

    This study selectively acylated the primary hydroxyl groups on flavonoids in antioxidant of bamboo leaves (AOB) using lauric acid with Candida antarctica lipase B in tert-amyl-alcohol. The separation and isolation of acylated derivatives were performed using silica gel column chromatography with a mixture of dichloromethane/diethyl ether/methanol as eluents. Both thin layer chromatography and high-performance liquid chromatography analyses confirmed the high efficiency of the isolation process with the purified orientin-6″-laurate, isoorientin-6″-laurate, vitexin-6″-laurate, and isovitexin-6″-laurate that were obtained. The addition of AOB and acylated AOB reduced acrylamide formation in fried potato crisps. Results showed that 0.05% AOB and 0.05% and 0.1% acylated AOB groups significantly (p < 0.05) reduced the content of acrylamide in potato crisps by 30.7%, 44.5%, and 46.9%, respectively.

  4. Use of a fluorescent radiolabeled triacylglycerol as a substrate for lipoprotein lipase and hepatic triglyceride lipase

    SciTech Connect

    Dousset, N.; Negre, A.; Salvayre, R.; Rogalle, P.; Dang, Q.Q.; Douste-Blazy, L.

    1988-06-01

    A fluorescent radiolabeled triacylglycerol has been synthesized by using a fluorescent fatty acid (pyrene decanoic acid) and a radiolabeled oleic acid. This analog of the natural substrate, 1(3)pyrene decanoic-2,3 (1,2)-dioleoyl-sn-glycerol, has been tested as substrate for determining lipoprotein lipase and hepatic triacylglycerol lipase activities in post-heparin plasma. Optimal conditions for the determination of the two post-heparin plasma lipases were similar to those using radiolabeled triolein. Using this substrate, both post-heparin lipases exhibited their characteristic properties (pH optimum and effect of inhibitors) and attacked external ester bonds (1 or 3) containing pyrene decanoic and oleic acids at a similar rate.

  5. Routine limulus amoebocyte lysate (LAL) test for endotoxin determination in milk using a Toxinometer ET-201.

    PubMed

    Mottar, J; De Block, J; Merchiers, M; Vantomme, K; Moermans, R

    1993-05-01

    A rapid method of performing the Limulus amoebocyte lysate (LAL) test in milk is proposed using the Toxinometer ET-201. This instrument measured the increase in turbidity due to the interaction between the endotoxins of the Gram-negative bacteria and the LAL reagent, monitored the ratio Rt of the sequential to the initial transmission at 12 s intervals and quantified endotoxins by determination of the reaction time Tr required to obtain a 5% decrease in Rt. There was a good correlation between the toxinometrically determined endotoxin concentrations and the number of Gram-negative bacteria (SD, 0.18 log(plate count units)), and the repeatability (CV, 6-10%) was high. The assay may be useful for screening raw materials for UHT milk production, as the endotoxin content of the raw material is related to the rest proteinase activity in the UHT milk.

  6. Evaluation of robot automated chromogenic substrate LAL endotoxin assay method for pharmaceutical products testing.

    PubMed

    Tsuji, K; Martin, P A

    1985-01-01

    The robot automated chromogenic substrate LAL assay method was evaluated for endotoxin testing using three lots each of 12 pharmaceutical products. As many as 216 assays, including automated standard curve construction and sample preparation, can be performed in a single day of unattended operation. The method is linear (r greater than .99) in the range of 0 to 0.2 EU/ml. The precision of the method determined by assaying a lot of calcium gluconate for four days was 6%, 10%, and 10% for within an assay block, between assay blocks, and between assay days, respectively. Recovery of endotoxin when spiked into products ranged from 81% to 110% and was within the statistical variation (2 sigma limit) of the method. The endotoxin levels detected in a biological raw material by the chromogenic substrate assay method correlated well with that of the gel-clot LAL assay method. The endotoxin content of the majority of the pharmaceutical products tested was well below the sensitivity of both the chromogenic substrate and the gel clot LAL assay methods.

  7. Streptozotocin-Induced Diabetes Decreases Mammary Gland Lipoprotein Lipase Activity and Messenger Ribonucleic Acid in Pregnant and Nonpregnant Rats

    PubMed Central

    Blanco-Dolado, Laura; Martín-Hidalgo, Antonia; Herrera, Emilio

    2002-01-01

    Diabetes mellitus is associated with a reduction of lipoprotein lipase (LPL) activity in adipose tissue and development of hypertriglyceridemia. To determine how a condition of severe insulin deficiency affects mammary gland LPL activity and mRNA expression during late pregnancy, streptozotocin (STZ) treated (40 mg/kg) and non-treated (control) virgin and 20 day pregnant rats were studied. In control rats, both LPL activity and mRNA were higher in pregnant than in virgin rats. When compared to control rats, STZ-treated rats, either pregnant or virgin, showed decreased LPL activity and mRNA content. Furthermore, mammary gland LPL activity was linearly correlated with mRNA content, and either variable was linearly correlated with plasma insulin levels. Thus, insulin deficiency impairs the expression of LPL in mammary glands, revealing the role of insulin as a modulator of the enzyme at the mRNA expression level. PMID:11900280

  8. A spectrophotometric assay for lipase activity utilizing immobilized triacylglycerols.

    PubMed

    Safarík, I

    1991-01-01

    New substrates for the determination of lipase activity have been developed. Triacylglycerols were immobilized by adsorption on an appropriate carrier or adsorbent yielding a lipase substrate in a powder form. The adsorbed triacylglycerols were easily hydrolyzed by lipases present in a reaction mixture. The released fatty acids were extracted with benzene and converted to the corresponding Cu (II) salts (copper soaps) which were measured spectrophotometrically.

  9. Comparative and functional genomics of lipases in holometabolous insects.

    PubMed

    Horne, Irene; Haritos, Victoria S; Oakeshott, John G

    2009-08-01

    Lipases have key roles in insect lipid acquisition, storage and mobilisation and are also fundamental to many physiological processes underpinning insect reproduction, development, defence from pathogens and oxidative stress, and pheromone signalling. We have screened the recently sequenced genomes of five species from four orders of holometabolous insects, the dipterans Drosophila melanogaster and Anopheles gambiae, the hymenopteran Apis mellifera, the moth Bombyx mori and the beetle Tribolium castaneum, for the six major lipase families that are also found in other organisms. The two most numerous families in the insects, the neutral and acid lipases, are also the main families in mammals, albeit not in Caenorhabditis elegans, plants or microbes. Total numbers of the lipases vary two-fold across the five insect species, from numbers similar to those in mammals up to numbers comparable to those seen in C. elegans. Whilst there is a high degree of orthology with mammalian lipases in the other four families, the great majority of the insect neutral and acid lipases have arisen since the insect orders themselves diverged. Intriguingly, about 10% of the insect neutral and acid lipases have lost motifs critical for catalytic function. Examination of the length of lid and loop regions of the neutral lipase sequences suggest that most of the insect lipases lack triacylglycerol (TAG) hydrolysis activity, although the acid lipases all have intact cap domains required for TAG hydrolysis. We have also reviewed the sequence databases and scientific literature for insights into the expression profiles and functions of the insect neutral and acid lipases and the orthologues of the mammalian adipose triglyceride lipase which has a pivotal role in lipid mobilisation. These data suggest that some of the acid and neutral lipase diversity may be due to a requirement for rapid accumulation of dietary lipids. The different roles required of lipases at the four discrete life stages of

  10. Gastric lipase: localization of the enzyme in the stomach

    SciTech Connect

    DeNigris, S.J.; Hamosh, M.; Hamosh, P.; Kasbekar, D.K.

    1986-03-05

    Isolated gastric glands prepared from human and rabbit stomach secrete lipase in response to secretagogues. They have investigated the localization of this enzyme in three species (rabbit, baboon, guinea pig). Gastric mucosa was sampled from the cardia (C), fundus-smooth (FS), fundus-ruggae (FR) and the antral area (A). Lipase activity was measured in mucosal homogenates using /sup 3/H-triolein as substrate and is expressed in units (U) = nmols free fatty acid released/min/mg wet weight. The localization of lipase is compared with that of pepsin (measured by hydrolysis of 2% hemoglobin at pH 1.8 and expressed in I.U.). Lipase is localized in a well defined area in the rabbit and is diffusely distributed in both guinea pig and baboon. The distribution of lipase and pepsin containing cells differs in all three species. The cellular origin of gastric lipase remains to be determined.

  11. The acidic domain of the endothelial membrane protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain.

    PubMed

    Mysling, Simon; Kristensen, Kristian Kølby; Larsson, Mikael; Beigneux, Anne P; Gårdsvoll, Henrik; Fong, Loren G; Bensadouen, André; Jørgensen, Thomas Jd; Young, Stephen G; Ploug, Michael

    2016-01-03

    GPIHBP1 is a glycolipid-anchored membrane protein of capillary endothelial cells that binds lipoprotein lipase (LPL) within the interstitial space and shuttles it to the capillary lumen. The LPL•GPIHBP1 complex is responsible for margination of triglyceride-rich lipoproteins along capillaries and their lipolytic processing. The current work conceptualizes a model for the GPIHBP1•LPL interaction based on biophysical measurements with hydrogen-deuterium exchange/mass spectrometry, surface plasmon resonance, and zero-length cross-linking. According to this model, GPIHBP1 comprises two functionally distinct domains: (1) an intrinsically disordered acidic N-terminal domain; and (2) a folded C-terminal domain that tethers GPIHBP1 to the cell membrane by glycosylphosphatidylinositol. We demonstrate that these domains serve different roles in regulating the kinetics of LPL binding. Importantly, the acidic domain stabilizes LPL catalytic activity by mitigating the global unfolding of LPL's catalytic domain. This study provides a conceptual framework for understanding intravascular lipolysis and GPIHBP1 and LPL mutations causing familial chylomicronemia.

  12. 13C NMR quantification of mono and diacylglycerols obtained through the solvent-free lipase-catalyzed esterification of saturated fatty acids.

    PubMed

    Fernandes, Jane Luiza Nogueira; de Souza, Rodrigo Octavio Mendonça Alves; de Vasconcellos Azeredo, Rodrigo Bagueira

    2012-06-01

    In the present investigation, we studied the enzymatic synthesis of monoacylglycerols (MAG) and diacylglycerols (DAG) via the esterification of saturated fatty acids (stearic, palmitic and an industrial residue containing 87% palmitic acid) and glycerol in a solvent-free system. Three immobilized lipases (Lipozyme RM IM, Lipozyme TL IM and Novozym 435) and different reaction conditions were evaluated. Under the optimal reaction conditions, esterifications catalyzed by Lipozyme RM IM resulted in a mixture of MAG and DAG at high conversion rates for all of the substrates. In addition, except for the reaction of industrial residue at atmospheric pressure, all of these products met the World Health Organization and European Union directives for acylglycerol mixtures for use in food applications. The products were quantified by (13)C NMR, with the aid of an external reference signal which was generated from a sealed coaxial tube filled with acetonitrile-d3. After calibrating the area of this signal using the classical external reference method, the same coaxial tube was used repeatedly to quantify the reaction products.

  13. Cloning and expression of gene, and activation of an organic solvent-stable lipase from Pseudomonas aeruginosa LST-03.

    PubMed

    Ogino, Hiroyasu; Katou, Yoshikazu; Akagi, Rieko; Mimitsuka, Takashi; Hiroshima, Shinichi; Gemba, Yuichi; Doukyu, Noriyuki; Yasuda, Masahiro; Ishimi, Kosaku; Ishikawa, Haruo

    2007-11-01

    Organic solvent-tolerant Pseudomonas aeruginosa LST-03 secretes an organic solvent-stable lipase, LST-03 lipase. The gene of the LST-03 lipase (Lip9) and the gene of the lipase-specific foldase (Lif9) were cloned and expressed in Escherichia coli. In the cloned 2.6 kbps DNA fragment, two open reading frames, Lip9 consisting of 933 nucleotides which encoded 311 amino acids and Lif9 consisting of 1,020 nucleotides which encoded 340 amino acids, were found. The overexpression of the lipase gene (lip9) was achieved when T7 promoter was used and the signal peptide of the lipase was deleted. The expressed amount of the lipase was greatly increased and overexpressed lipase formed inclusion body in E. coli cell. The collected inclusion body of the lipase from the cell was easily solubilized by urea and activated by using lipase-specific foldase of which 52 or 58 amino acids of N-terminal were deleted. Especially, the N-terminal methionine of the lipase of which the signal peptide was deleted was released in E. coli and the amino acid sequence was in agreement with that of the originally-produced lipase by P. aeruginosa LST-03. Furthermore, the overexpressed and solubilized lipase of which the signal peptide was deleted was more effectively activated by lipase-specific foldase.

  14. Optimising the use of commercial LAL assays for the analysis of endotoxin contamination in metal colloids and metal oxide nanoparticles.

    PubMed

    Li, Yang; Italiani, Paola; Casals, Eudald; Tran, Ngoc; Puntes, Victor F; Boraschi, Diana

    2015-05-01

    Engineered nanoparticles (NP) are generally contaminated by bacterial endotoxin, a ubiquitous bacterial molecule with significant toxic and inflammatory effects. The presence of endotoxin, if not recognised, can be responsible for many of the in vitro and in vivo effects attributed to NPs. The Limulus Amoebocyte Lysate (LAL) assay, the test requested by regulatory authorities for assessing endotoxin contamination in products for human use, is not immediately applicable for testing endotoxin in NP preparations, mainly due to the possible interference of NPs with the assay readouts and components. In this study, we have compared different commercially available LAL assays for detecting endotoxin in gold, silver and iron oxide NPs. Different NP chemistry, concentrations and surface coatings could differently interfere with the LAL assays' results. After accurate testing of the possible interaction/interference of NPs with the various assay components, the modified chromogenic LAL assay proved the most suitable assay for measuring endotoxin in NP samples, provided the appropriate controls are performed. Thus, endotoxin determination can be performed in NP preparation with commercial LAL assays only after assay validation, i.e. once possible interference of NPs with the assay components and readouts has been excluded.

  15. Endothelial lipase is a major determinant of HDL level

    SciTech Connect

    Ishida, Tatsuro; Choi, Sungshin; Kundu, Ramendra K.; Hirata, Ken-Ichi; Rubin, Edward M.; Cooper, Allen D.; Quertermous, Thomas

    2003-01-30

    lipase (44 percent identity) and hepatic lipase (41 percent identity), two well-characterized lipases that function at vascular endothelial surfaces. Critical motifs associated with lipase activity (GXSXG and the catalytic triad S169, D193, H274), and with heparin binding were strongly conserved. Interestingly, in contrast to both lipoprotein lipase and hepatic lipase, endothelial lipase has little triglyceride hydrolase activity in vitro but instead cleaves fatty acids from the sn-1 position of phosphatidylcho-line. In in vitro assays the enzyme is most active on lipids presented in HDL, although it will release fatty acids from all classes of lipoproteins. Consistent with this finding, adenovirus-mediated overexpression of endothelial lipase in LDL receptor-deficient mice reduced plasma concentrations of VLDL and LDL cholesterol by about 50 percent, whereas HDL-C decreased to almost zero in these animals. These data suggested that endothelial lipase may play a role in HDL catabolism.

  16. Lipase-catalyzed esterification of ferulic acid with lauryl alcohol in ionic liquids and antibacterial properties in vitro against three food-related bacteria.

    PubMed

    Shi, Yu-Gang; Wu, Yu; Lu, Xu-Yang; Ren, Yue-Ping; Wang, Qi; Zhu, Chen-Min; Yu, Di; Wang, He

    2017-04-01

    Lauryl ferulate (LF) was synthesized through lipase-catalyzed esterification of ferulic acid (FA) with lauryl alcohol in a novel ionic liquid ([(EO)-3C-im][NTf2]), and its antibacterial activities was evaluated in vitro against three food-related bacteria. [(EO)-3C-im][NTf2] was first synthesized through incorporating alkyl ether moiety into the double imidazolium ring. [(EO)-3C-im][NTf2] containing hexane was found to be the most suitable for this reaction. The effects of various parameters were studied, and the maximum yield of LF (90.1%) was obtained in the optimum reaction conditions, in [(EO)-3C-im][NTf2]/hexane (VILs:Vhexane=1:1) system, 0.08mmol/mL of FA concentration, 50mg/mL Novozym 435, 60°C. LF exhibited a stronger antibacterial activity against Gram-negative (25 mm) than Gram-positive (21.5-23.2 mm) bacteria. The lowest MIC value was seen for E. coli (1.25mM), followed by L. Monocytogenes (2.5mM) and S.aureus (5mM). The MBCs for L. Monocytogenes, S.aureus and E. coli were 10, 20 and 5mM.

  17. The near-ideal catalytic property of Candida antarctica lipase A to highly concentrate n-3 polyunsaturated fatty acids in monoacylglycerols via one-step ethanolysis of triacylglycerols.

    PubMed

    He, Yongjin; Li, Jingbo; Kodali, Sitharam; Chen, Bilian; Guo, Zheng

    2016-11-01

    Declining quantity/quality of available n-3 polyunsaturated fatty acids (n-3 PUFAs) resources demand innovative technology to concentrate n-3 PUFAs from low quality oils into value-added products/health-beneficial ingredients rich in n-3 PUFAs. This work proposed the catalytic property and specificity of an ideal enzyme required to tackle this task and identified Candida antarctica lipase A (CAL-A) is such a near-ideal enzyme in practice, which concentrates n-3 PUFAs from 25% to 27% in oils to a theoretically closer value 90% in monoacylglycerols (MAGs) via one-step enzymatic ethanolysis. Non-regiospecificity and high non-n-3 PUFAs preference of CAL-A are the catalytic feature to selectively cleave non-n-3 PUFAs in all 3 positions of triacylglycerols (TAGs); while high ethanol/TAGs ratio, low operation temperature and high tolerance to polar ethanol are essential conditions beyond biocatalyst itself. C-13 Nuclear magnetic resonance ((13)C NMR) analysis and competitive factor estimation verified the hypothesis and confirmed the plausible suggestion of catalytic mechanism of CAL-A.

  18. Arabidopsis Lipins, PDAT1 Acyltransferase, and SDP1 Triacylglycerol Lipase Synergistically Direct Fatty Acids toward β-Oxidation, Thereby Maintaining Membrane Lipid Homeostasis[C][W

    PubMed Central

    Fan, Jilian; Yan, Chengshi; Roston, Rebecca; Shanklin, John

    2014-01-01

    Triacylglycerol (TAG) metabolism is a key aspect of intracellular lipid homeostasis in yeast and mammals, but its role in vegetative tissues of plants remains poorly defined. We previously reported that PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1 (PDAT1) is crucial for diverting fatty acids (FAs) from membrane lipid synthesis to TAG and thereby protecting against FA-induced cell death in leaves. Here, we show that overexpression of PDAT1 enhances the turnover of FAs in leaf lipids. Using the trigalactosyldiacylglycerol1-1 (tgd1-1) mutant, which displays substantially enhanced PDAT1-mediated TAG synthesis, we demonstrate that disruption of SUGAR-DEPENDENT1 (SDP1) TAG lipase or PEROXISOMAL TRANSPORTER1 (PXA1) severely decreases FA turnover, leading to increases in leaf TAG accumulation, to 9% of dry weight, and in total leaf lipid, by 3-fold. The membrane lipid composition of tgd1-1 sdp1-4 and tgd1-1 pxa1-2 double mutants is altered, and their growth and development are compromised. We also show that two Arabidopsis thaliana lipin homologs provide most of the diacylglycerol for TAG synthesis and that loss of their functions markedly reduces TAG content, but with only minor impact on eukaryotic galactolipid synthesis. Collectively, these results show that Arabidopsis lipins, along with PDAT1 and SDP1, function synergistically in directing FAs toward peroxisomal β-oxidation via TAG intermediates, thereby maintaining membrane lipid homeostasis in leaves. PMID:25293755

  19. [Prevention of atherosclerosis. The positional specificity of blood triglycerides and lipases, the particular milk lipids, and the modification of the fatty acids of vegetable oils and animal fats].

    PubMed

    Titov, V N; Krylin, V V; Shiriaeva, Iu K

    2011-03-01

    Milk is a biological medium that bears no resemblance to any of the biological fluids and tissues in primates and mammals in the positional composition of fatty acids (FA) in triglycerides. This is determined by the fact that at the very early phylogenesis of mammals, milk is to ensure a high postnatal bioavailability (absorption) of saturated palmitic FA, a substrate for neonatal energy supply despite all obstacles that are formed in the baby's intestine in vivo. Milk is destined for infant nutrition in the biology-destined period (not more than a year); assimilation of triglycerides that are so structurally unusual requires a) high isomerization activity in the enterocytes and b) the ability of blood lipases to hydrolyze palmitate-oleate-palmitate triglycerides as a component of oleic very-low-density lipoproteins. After the period permitted by nature, there is virtually no possibility to physiologically consume milk that contains structurally unusual triglycerides. The use of whole milk and its products by adults impairs the active, receptor cell absorption of FAs as ligand lipoproteins via apoE/B-100-endocytosis and enhances the generation of small, dense low-density lipoproteins as biological debris. The impaired biological function of endoecology and the debris accumulation of the intercellular medium lead to the activation of atheromatosis, atherothrombosis, and coronary sclerosis. Nature has given no sanction for turning the mammals that are not on milk to those on milk for whole life. Up to one year of age, the baby has in vivo conditions for the absorption and hydrolysis of triglycerides with palmitic FA at the sn-2 position. After one year of age, the expression of these lipases and coenzymes is over; re-expression occurs only with the activation of the biological function of locomotion - long-term strenuous physical activity. High physical activity expresses other genes, enzymes, coenzymes, and carrier proteins, which activate the hydrolysis of

  20. Optimization of culture conditions for production of a novel cold-active lipase from Pichia lynferdii NRRL Y-7723

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipases with abnormal properties such as thermo stability, alkalinity, acidity and cold-activity receive industrial attention because of their usability under restricted reaction conditions. Most microbial cold-active lipases originate from psychrotrophic and psychrophilic microorganisms found in An...

  1. Inhibitory activity of benzophenones from Anemarrhena asphodeloides on pancreatic lipase.

    PubMed

    Jo, Yang Hee; Kim, Seon Beom; Ahn, Jong Hoon; Liu, Qing; Hwang, Bang Yeon; Lee, Mi Kyeong

    2013-04-01

    Pancreatic lipase is a key enzyme for lipid absorption by hydrolysis of total dietary fats. Therefore, inhibition of pancreatic lipase is suggested to be an effective therapy in the regulation of obesity. The EtOAc-soluble fraction of Anemarrhena asphodeloides rhizomes significantly inhibited pancreatic lipase activity as assessed using porcine pancreatic lipase as an in vitro assay system. Further fractionation of the EtOAc-soluble fraction of A. asphodeloides led to the isolation of a new benzophenone glycoside, zimoside A (1), together with the eleven known compounds iriflophenone (2), 2,4',6-trihydroxy-4-methoxybenzophenone (3), foliamangiferoside A (4), (2,3-dihydroxy-4-methoxyphenyl)(4-hydroxyphenyl)-methanone (5), 1,4,5,6,-tetrahydroxyxanthone (6), isosakuranetin (7), 4-hydroxybenzoic acid (8), 4-hydroxyacetophenone (9), vanillic acid (10), tyrosol (11) and 5-hydroxymethyl-2-furaldehyde (12). Among the isolated compounds, 3, 5 and 10 showed significant inhibition of pancreatic lipase activity.

  2. trans-10,cis-12 Conjugated linoleic acid inhibits lipoprotein lipase but increases the activity of lipogenic enzymes in adipose tissue from hamsters fed an atherogenic diet.

    PubMed

    Zabala, Amaia; Churruca, Itziar; Fernández-Quintela, Alfredo; Rodríguez, Víctor M; Macarulla, M Teresa; Martínez, J Alfredo; Portillo, María P

    2006-06-01

    The aim of the present work was to investigate the effects of trans-10,cis-12 conjugated linoleic acid (CLA) on the activity and expression of lipogenic enzymes and lipoprotein lipase (LPL), as well as on the expression of transcriptional factors controlling these enzymes, in adipose tissue from hamsters, and to evaluate the involvement of these changes in the body fat-reducing effect of this CLA isomer. Thirty male hamsters were divided into three groups and fed atherogenic diets supplemented with 0 (linoleic group), 5 or 10 g trans-10,cis-12 CLA/kg diet, for 6 weeks. Body and adipose tissue weights, food intake and serum insulin were measured. Total and heparin-releasable LPL and lipogenic enzyme activities (acetyl-CoA carboxylase (ACC); fatty acid synthase (FAS); glucose-6-phosphate dehydrogenase (G6PDH); and malic enzyme (ME)) were assessed. ACC, FAS, LPL, sterol regulatory element-binding proteins (SREBP-1a), SREBP-1c and PPARgamma mRNA levels were also determined by real-time PCR. CLA did not modify food intake, body weight and serum insulin level. CLA feeding reduced adipose tissue weight, LPL activity and expression, and increased lipogenic enzyme activities, despite a significant reduction in ACC and FAS mRNA levels. The expression of the three transcriptional factors analysed (SREBP-1a, SREBP-1c and PPARgamma) was also reduced. These results appear to provide a framework for partially understanding the reduction in body fat induced by CLA. Inhibition of LPL activity seems to be an important mechanism underlying body fat reduction in hamsters. Further research is needed to better characterize the effects of CLA on lipogenesis and the role of these effects in CLA action.

  3. Glycyrrhizic acid improved lipoprotein lipase expression, insulin sensitivity, serum lipid and lipid deposition in high-fat diet-induced obese rats

    PubMed Central

    2010-01-01

    Background The metabolic syndrome, known also as the insulin resistance syndrome, refers to the clustering of several risk factors for atherosclerotic cardiovascular disease. Dyslipidaemia is a hallmark of the syndrome and is associated with a whole body reduction in the activity of lipoprotein lipase (LPL), an enzyme under the regulation of the class of nuclear receptors known as peroxisome proliferator-activated receptor (PPAR). Glycyrrhizic acid (GA), a triterpenoid saponin, is the primary bioactive constituent of the roots of the shrub Glycyrrhiza glabra. Studies have indicated that triterpenoids could act as PPAR agonists and GA is therefore postulated to restore LPL expression in the insulin resistant state. Results Oral administration of 100 mg/kg of GA to high-fat diet-induced obese rats for 28 days led to significant reduction in blood glucose concentration and improvement in insulin sensitivity as indicated by the homeostasis model assessment of insulin resistance (HOMA-IR) (p < 0.05). LPL expression was up-regulated in the kidney, heart, quadriceps femoris, abdominal muscle and the visceral and subcutaneous adipose tissues but down-regulated in the liver - a condition in reverse to that seen in high-fat diet-induced obese rats without GA. With regard to lipid metabolism, GA administration led to significant hypotriglyceridemic and HDL-raising effects (p < 0.05), with a consistent reduction in serum free fatty acid, total cholesterol and LDL cholesterol and significant decrease in tissue lipid deposition across all studied tissue (p < 0.01). Conclusion In conclusion, GA may be a potential compound in improving dyslipidaemia by selectively inducing LPL expression in non-hepatic tissues. Such up-regulation was accompanied by a GA-mediated improvement in insulin sensitivity, which may be associated with a decrease in tissue lipid deposition. The HDL-raising effect of GA suggests the antiatherosclerotic properties of GA. PMID:20670429

  4. Analysis of Comparative Sequence and Genomic Data to Verify Phylogenetic Relationship and Explore a New Subfamily of Bacterial Lipases

    PubMed Central

    Salleh, Abu Bakar; Basri, Mahiran

    2016-01-01

    Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca2+-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65°C and retained ≥ 97% activity after incubation at 50°C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents. PMID:26934700

  5. Inhibition of fatty acid amide hydrolase and monoacylglycerol lipase by the anandamide uptake inhibitor VDM11: evidence that VDM11 acts as an FAAH substrate.

    PubMed

    Vandevoorde, Séverine; Fowler, Christopher J

    2005-08-01

    There is some dispute concerning the extent to which the uptake inhibitor VDM11 (N-(4-hydroxy-2-methylphenyl) arachidonoyl amide) is capable of inhibiting the metabolism of the endocannabinoid anandamide (AEA) by fatty acid amide hydrolase (FAAH). In view of a recent study demonstrating that the closely related compound AM404 (N-(4-hydroxyphenyl)arachidonylamide) is a substrate for FAAH, we re-examined the interaction of VDM11 with FAAH. In the presence of fatty acid-free bovine serum albumin (BSA, 0.125% w v(-1)), both AM404 and VDM11 inhibited the metabolism of AEA by rat brain FAAH with similar potencies (IC(50) values of 2.1 and 2.6 microM, respectively). The compounds were about 10-fold less potent as inhibitors of the metabolism of 2-oleoylglycerol (2-OG) by cytosolic monoacylglycerol lipase (MAGL). The potency of VDM11 towards FAAH was dependent upon the assay concentration of fatty acid-free bovine serum albumin (BSA). Thus, in the absence of fatty acid-free BSA, the IC(50) value for inhibition of FAAH was reduced by a factor of about two (from 2.9 to 1.6 microM). A similar reduction in the IC(50) value for the inhibition of membrane bound MAGL by both this compound (from 14 to 6 microM) and by arachidonoyl serinol (from 24 to 13 microM) was seen. An HPLC assay was set up to measure 4-amino-m-cresol, the hypothesised product of FAAH-catalysed VDM11 hydrolysis. 4-Amino-m-cresol was eluted with a retention time of approximately 2.4 min, but showed a time-dependent degradation to compounds eluting at peaks of approximately 5.6 and approximately 8 min. Peaks with the same retention times were also found following incubation of the membranes with VDM11, but were not seen when the membranes were preincubated with the FAAH inhibitors URB597 (3'-carbamoyl-biphenyl-3-yl-cyclohexylcarbamate) and CAY10401 (1-oxazolo[4,5-b]pyridin-2-yl-9-octadecyn-1-one) prior to addition of VDM11. The rate of metabolism of VDM11 was estimated to be roughly 15-20% of that for

  6. Cloning and Expression of a Subfamily 1.4 Lipase from Bacillus licheniformis IBRL-CHS2.

    PubMed

    Reddy, Nidyaletchmy Subba; Rahim, Rashidah Abdul; Ibrahim, Darah; Kumar, K Sudesh

    2016-11-01

    We report on the cloning of the lipase gene from Bacillus licheniformis IBRL-CHS2 and the expression of the recombinant lipase. DNA sequencing analysis of the cloned lipase gene showed that it shares 99% identity with the lipase gene from B. licheniformis ATCC 14580 and belongs to subfamily 1.4 of true lipases based on amino acid sequence alignment of various Bacillus lipases. The 612 bp lipase gene was then cloned into the pET-15b(+) expression vector and the construct was transformed into E. coli BL21 (DE3) for bulk expression of the lipase. Expression was analysed by SDS-PAGE where the lipase was found to have a molecular weight of about 23 kDa.

  7. Cloning and Expression of a Subfamily 1.4 Lipase from Bacillus licheniformis IBRL-CHS2

    PubMed Central

    Reddy, Nidyaletchmy Subba; Rahim, Rashidah Abdul; Ibrahim, Darah; Kumar, K. Sudesh

    2016-01-01

    We report on the cloning of the lipase gene from Bacillus licheniformis IBRL-CHS2 and the expression of the recombinant lipase. DNA sequencing analysis of the cloned lipase gene showed that it shares 99% identity with the lipase gene from B. licheniformis ATCC 14580 and belongs to subfamily 1.4 of true lipases based on amino acid sequence alignment of various Bacillus lipases. The 612 bp lipase gene was then cloned into the pET-15b(+) expression vector and the construct was transformed into E. coli BL21 (DE3) for bulk expression of the lipase. Expression was analysed by SDS-PAGE where the lipase was found to have a molecular weight of about 23 kDa. PMID:27965753

  8. Effect of chain length of alcohol on the lipase-catalyzed esterification of propionic acid in supercritical carbon dioxide.

    PubMed

    Varma, Mahesh N; Madras, Giridhar

    2010-04-01

    The esterification of propionic acid was investigated using three different alcohols, namely, isopropyl alcohol, isobutyl alcohol, and isoamyl alcohol. The variation of conversion with time for the synthesis of isoamyl propionate was investigated in the presence of five enzymes. Novozym 435 showed the highest activity, and this was used as the enzyme for investigating the various parameters that influence the esterification reaction. The Ping-Pong Bi-Bi model with inhibition by both acid and alcohol was used to model the experimental data and determine the kinetics of the esterification reaction.

  9. Zooplankton population in relation to physico-chemical parameters of Lal Diggi pond in Aligarh, India.

    PubMed

    Ahmad, Uzma; Parveen, Saltanat; Abdel Mola, Hesham R; Kabir, Habeeba A; Ganai, Altaf H

    2012-11-01

    Physico-chemical parameters and zooplankton were assessed Lal Diggi pond from January to December, 2008. Four groups of zooplankton were recorded. Rotifera constituted the main dominant group in this pond contributing 44.89% of the total zooplankton population followed by Cladocera (30.41%), Copepoda (15.51%) and Ostracoda (4.68%). The highest density of zooplankton was recorded during January and February being 197 and 182 no l(-1) respectively, while the lowest density was recorded during May and June being 64 no l(-1) each could be due to the negative and significant value of correlation between zooplankton and water temperature (r = -0.700). These data is supported by similarity indices which recorded high values during January and February while the lowest values recorded during June and July.

  10. Lipase-catalyzed production of a bioactive fatty amide derivative of 7,10-dihydroxy-8(E)-octadecenoic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty amides are of considerable interest due to their wide ranging industrial applications in detergents, shampoo, cosmetics and surfactant formulations. They are produced commercially from fatty acids by reacting with anhydrous ammonia at approximately 200 deg C and 345-690 KPa pressure. We inve...

  11. Full Fatty Acid Amide Hydrolase Inhibition Combined with Partial Monoacylglycerol Lipase Inhibition: Augmented and Sustained Antinociceptive Effects with Reduced Cannabimimetic Side Effects in Mice

    PubMed Central

    Ghosh, Sudeshna; Kinsey, Steven G.; Liu, Qing-song; Hruba, Lenka; McMahon, Lance R.; Grim, Travis W.; Merritt, Christina R.; Wise, Laura E.; Abdullah, Rehab A.; Selley, Dana E.; Sim-Selley, Laura J.; Cravatt, Benjamin F.

    2015-01-01

    Inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the primary hydrolytic enzymes for the respective endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonylglycerol (2-AG), produces antinociception but with minimal cannabimimetic side effects. Although selective inhibitors of either enzyme often show partial efficacy in various nociceptive models, their combined blockade elicits augmented antinociceptive effects, but side effects emerge. Moreover, complete and prolonged MAGL blockade leads to cannabinoid receptor type 1 (CB1) receptor functional tolerance, which represents another challenge in this potential therapeutic strategy. Therefore, the present study tested whether full FAAH inhibition combined with partial MAGL inhibition would produce sustained antinociceptive effects with minimal cannabimimetic side effects. Accordingly, we tested a high dose of the FAAH inhibitor PF-3845 (N-​3-​pyridinyl-​4-​[[3-​[[5-​(trifluoromethyl)-​2-​pyridinyl]oxy]phenyl]methyl]-​1-​piperidinecarboxamide; 10 mg/kg) given in combination with a low dose of the MAGL inhibitor JZL184 [4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate] (4 mg/kg) in mouse models of inflammatory and neuropathic pain. This combination of inhibitors elicited profound increases in brain AEA levels (>10-fold) but only 2- to 3-fold increases in brain 2-AG levels. This combination produced significantly greater antinociceptive effects than single enzyme inhibition and did not elicit common cannabimimetic effects (e.g., catalepsy, hypomotility, hypothermia, and substitution for Δ9-tetrahydrocannabinol in the drug-discrimination assay), although these side effects emerged with high-dose JZL184 (i.e., 100 mg/kg). Finally, repeated administration of this combination did not lead to tolerance to its antiallodynic actions in the carrageenan assay or CB1 receptor functional tolerance. Thus, full FAAH inhibition combined

  12. Influence of the degree of unsaturation of the acyl side chain upon the interaction of analogues of 1-arachidonoylglycerol with monoacylglycerol lipase and fatty acid amide hydrolase.

    PubMed

    Vandevoorde, Séverine; Saha, Bijali; Mahadevan, Anu; Razdan, Raj K; Pertwee, Roger G; Martin, Billy R; Fowler, Christopher J

    2005-11-11

    Little is known as to the structural requirements of the acyl side chain for interaction of acylglycerols with monoacylglycerol lipase (MAGL), the enzyme chiefly responsible for the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain. In the present study, a series of twelve analogues of 1-AG (the more stable regioisomer of 2-AG) were investigated with respect to their ability to inhibit the metabolism of 2-oleoylglycerol by cytosolic and membrane-bound MAGL. In addition, the ability of the compounds to inhibit the hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) was investigated. For cytosolic MAGL, compounds with 20 carbon atoms in the acyl chain and 2-5 unsaturated bonds inhibited the hydrolysis of 2-oleoylglycerol with similar potencies (IC50 values in the range 5.1-8.2 microM), whereas the two compounds with a single unsaturated bond were less potent (IC50 values 19 and 21 microM). The fully saturated analogue 1-monoarachidin did not inhibit the enzyme, whereas the lower side chain analogues 1-monopalmitin and 1-monomyristin inhibited the enzyme with IC50 values of 12 and 32 microM, respectively. The 22-carbon chain analogue of 1-AG was also potent (IC50 value 4.5 microM). Introduction of an alpha-methyl group for the C20:4, C20:3, and C22:4 compounds did not affect potency in a consistent manner. For the FAAH and the membrane-bound MAGL, there was no obvious relationship between the degree of unsaturation of the acyl side chain and the ability to inhibit the enzymes. It is concluded that increasing the number of unsaturated bonds on the acyl side chain of 1-AG from 1 to 5 has little effect on the affinity of acylglycerols for cytosolic MAGL.

  13. Competition of Thermomyces lanuginosus lipase with its hydrolysis products at the oil-water interface.

    PubMed

    Muth, Marco; Rothkötter, Stefanie; Paprosch, Steven; Schmid, Reiner P; Schnitzlein, Klaus

    2017-01-01

    Lipase-catalyzed hydrolysis of triglycerides yields glycerol and free fatty-acids, provided that the enzyme is non-regioselective. For an Sn-1,3 regioselective enzyme, such as lipase from Thermomyces lanuginosus, the final product is no longer glycerol but Sn-2 monoglyceride instead. However, surface active molecules generated by lipolysis may have a detrimental effect on the interfacial biocatalysis since it is known that low molecular weight surfactants can displace proteins from interfaces. By using drop profile analysis tensiometry, we evaluated the interfacial properties of the lipase-generated molecules and their competitive effect on the adsorption behavior of the lipase and on the proceeding lipolysis. Our results show that even at concentration ratios of 8.64×10(-4)M (Sn-2 monoglyceride) to 2.5×10(-7)M (lipase), the final interfacial pressure values are very similar as for the system containing the lipase alone (i.e. ∼26 mN/m). This is a strong indication that monoglycerides, as the most interfacially active products generated during regioselective lipolysis, are expelled from the oil-water interface by the lipase. We attribute this effect to intermolecular lipase-lipase interactions, resulting in a low desorption probability of the lipase. For low oleic acid concentrations, the interfacial tension is solely determined by the lipase, while for higher concentrations, lipase and oleic acid both contribute to the tension values. We propose a hypothesis based on the preferential interaction of oleic acid molecules with hydrophobic sites on the lipase. The pH dependence of the adsorption rate and the interfacial activity of the lipase were also investigated.

  14. Dry fermented sausages elaborated with lipase from Candida cylindracea. Comparison with traditional formulations.

    PubMed

    Zalacain, I; Zapelena, M J; Astiasarán, I; Bello, J

    1995-01-01

    The addition of microbial lipase to fermented sausages was studied. A sausage with lipase from Candida cylindracea and a control sausage with starter (Lactobacillus plantarum and Staphylococcus carnosus) were produced in a pilot plant. The acidity value and the amounts of the different free fatty acids (FFA) showed a higher intensity of lipolytic activity in sausages with lipase than in sausages with starter. In sausages with lipase, the percentage of saturated FFA was greater and that of polyunsaturated FFA was lower than in sausage with starter. Mono-unsaturated FFA percentage was similar in both sausages. TBA and peroxide values indicated that the increase of FFA produced by lipase action did not increase the rancidity. A slight increase in acetic, propionic and butyric acids was observed in sausage with lipase but this was not sufficient to develop excessive acidity in the product.

  15. Links for Academic Learning (LAL): A Conceptual Model for Investigating Alignment of Alternate Assessments Based on Alternate Achievement Standards

    ERIC Educational Resources Information Center

    Flowers, Claudia; Wakeman, Shawnee; Browder, Diane M.; Karvonen, Meagan

    2009-01-01

    This article describes an alignment procedure, called Links for Academic Learning (LAL), for examining the degree of alignment of alternate assessments based on alternate achievement standards (AA-AAS) to grade-level content standards and instruction. Although some of the alignment criteria are similar to those used in general education…

  16. LAL Regulators SCO0877 and SCO7173 as Pleiotropic Modulators of Phosphate Starvation Response and Actinorhodin Biosynthesis in Streptomyces coelicolor

    PubMed Central

    Guerra, Susana M.; Rodríguez-García, Antonio; Santos-Aberturas, Javier; Vicente, Cláudia M.; Payero, Tamara D.; Martín, Juan F.; Aparicio, Jesús F.

    2012-01-01

    LAL regulators (Large ATP-binding regulators of the LuxR family) constitute a poorly studied family of transcriptional regulators. Several regulators of this class have been identified in antibiotic and other secondary metabolite gene clusters from actinomycetes, thus they have been considered pathway-specific regulators. In this study we have obtained two disruption mutants of LAL genes from S. coelicolor (Δ0877 and Δ7173). Both mutants were deficient in the production of the polyketide antibiotic actinorhodin, and antibiotic production was restored upon gene complementation of the mutants. The use of whole-genome DNA microarrays and quantitative PCRs enabled the analysis of the transcriptome of both mutants in comparison with the wild type. Our results indicate that the LAL regulators under study act globally affecting various cellular processes, and amongst them the phosphate starvation response and the biosynthesis of the blue-pigmented antibiotic actinorhodin. Both regulators act as negative modulators of the expression of the two-component phoRP system and as positive regulators of actinorhodin biosynthesis. To our knowledge this is the first characterization of LAL regulators with wide implications in Streptomyces metabolism. PMID:22363654

  17. Mechanism of acetaldehyde-induced deactivation of microbial lipases

    PubMed Central

    2011-01-01

    Background Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Results Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Conclusions Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the enzymes. Lyophilization of

  18. Lipase-catalyzed ethanolysis of borage oil: a kinetic study.

    PubMed

    Torres, Carlos F; Hill, Charles G; Otero, Cristina

    2004-01-01

    Ethanolysis of borage oil catalyzed by two commercial lipases (from Pseudomonas cepacia and Candida antarctica) was studied using two different methodologies. Multiresponse models derived from a generalized Michaelis-Menten mechanism were utilized to describe the rates of formation of ethyl esters of the primary fatty acids present in the precursor oil. The relative rate constants determined for each of the fatty acid residues indicated that both lipases discriminate against release of gamma-linolenic acid residues under the reaction conditions studied. However, both lipases also released some of the residues located at the sn-2 position, indicating that for the experimental conditions studied, both lipases are nonspecific. Moreover, inactivation of Novozym 435 was rapid. Because the half-life of this enzyme (ca. 2.2 h) is comparable to the half-life of the reaction, the intrinsic reaction rate and enzyme deactivation must both be considered in modeling the kinetics.

  19. Lipase activity of Mucor pusillus.

    PubMed

    Somkuti, G A; Babel, F J

    1968-04-01

    Two strains of Mucor pusillus were examined for their ability to synthesize lipase in a complex medium used in the production of milk-clotting protease. Lipase activity of both strains reached maximal after 6 days of incubation under submerged conditions at 35 C. Lipase secreted into the medium hydrolyzed butterfat and vegetable lipids, as well as selected synthetic triglycerides. About 50% of lipase activity was destroyed after a 45-min heat treatment at 58 C.

  20. Rhodococcus sp. Strain CR-53 LipR, the First Member of a New Bacterial Lipase Family (Family X) Displaying an Unusual Y-Type Oxyanion Hole, Similar to the Candida antarctica Lipase Clan

    PubMed Central

    Bassegoda, Arnau; Pastor, F. I. Javier

    2012-01-01

    Bacterial lipases constitute the most important group of biocatalysts for synthetic organic chemistry. Accordingly, there is substantial interest in developing new valuable lipases. Considering the lack of information concerning the lipases of the genus Rhodococcus and taking into account the interest raised by the enzymes produced by actinomycetes, a search for putative lipase-encoding genes from Rhodococcus sp. strain CR-53 was performed. We isolated, cloned, purified, and characterized LipR, the first lipase described from the genus Rhodococcus. LipR is a mesophilic enzyme showing preference for medium-chain-length acyl groups without showing interfacial activation. It displays good long-term stability and high tolerance for the presence of ions and chemical agents in the reaction mixture. Amino acid sequence analysis of LipR revealed that it displays four unique amino acid sequence motifs that clearly separate it from any other previously described family of bacterial lipases. Using bioinformatics tools, LipR could be related only to several uncharacterized putative lipases from different bacterial origins, all of which display the four blocks of consensus amino acid sequence motifs that contribute to define a new family of bacterial lipases, namely, family X. Therefore, LipR is the first characterized member of the new bacterial lipase family X. Further confirmation of this new family of lipases was performed after cloning Burkholderia cenocepacia putative lipase, bearing the same conserved motifs and clustering in family X. Interestingly, all lipases grouping in the new bacterial lipase family X display a Y-type oxyanion hole, a motif conserved in the Candida antarctica lipase clan but never found among bacterial lipases. This observation contributes to confirm that LipR and its homologs belong to a new family of bacterial lipases. PMID:22226953

  1. Polyphenolic Compounds as Pancreatic Lipase Inhibitors.

    PubMed

    Buchholz, Tina; Melzig, Matthias F

    2015-07-01

    Obesity and its associated diseases such as diabetes mellitus and coronary heart diseases are a major challenge for our society. An important target for the treatment of obesity includes the development of inhibitors of nutrient digestion and absorption. Inhibition of pancreatic lipase and the associated reduction of lipid absorption is an attractive approach for the discovery of potent agents. Currently, the only clinically approved pharmacologic agent as pancreatic lipase inhibitor is Orlistat. However, its usage is compromised by unpleasant gastrointestinal adverse reactions (oily stools, oily spotting, flatulence). The use of botanical materials as a potential source of new drugs is of increasing importance and application. Natural products that are interesting for obesity treatment are generally considered to have less toxic and side effects than totally synthetic drugs. One of the most important sources of potential pancreatic lipase inhibitors represents the class of polyphenols. This article summarizes most studied subclasses of polyphenols including flavonoids, hydroxycinnamic acids, hydroxybenzoic acids and lignans with pancreatic lipase inhibitory effects. A structural comparison of potent inhibitors shows an increased inhibitory effect depending on number and position of phenolic hydroxyl groups, degree of polymerization and elimination of glycosylation during digestion.

  2. SECRETION OF LIPASES IN THE DIGESTIVE TRACT OF THE CRICKET Gryllus bimaculatus.

    PubMed

    Weidlich, Sandy; Hoffmann, Klaus H; Woodring, Joseph

    2015-12-01

    Little is known concerning the sites and the ratios of the lipase secretions in insects, therefore we undertook an examination of the lipase secretion of fed and unfed adult female Gryllus bimaculatus. The ratio of triacylglyceride lipase, diacylglyceride lipase, and phosphatidylcholine lipase secreted by fed females in the caecum and ventriculus is 1:1.4:0.4. These activities decrease in the caecum by 30-40% in unfed females. The total lipase activity (TLA) in the caecum is about 10 times that in the ventriculus. Minimal lipase secretion occurs before and during the final moult, and remains at this level in unfed crickets, indicating a basal secretion rate. In 2-day-old fed females, about 10% of the TLA in the entire gut is found in the crop, about 70% in the caecum, 20% in the ventriculus, and 3% in the ileum. Lipases in the ventriculus are recycled back to the caecum and little is lost in the feces. Oleic acid stimulated in vitro lipase secretion, but lipids did not. Feeding stimulated lipase secretion, starvation reduced lipase secretion, but this does not prove a direct prandal regulation of secretion, because feeding also induced a size and volume increase of the caecum.

  3. Lipase applications in oil hydrolysis with a case study on castor oil: a review.

    PubMed

    Goswami, Debajyoti; Basu, Jayanta Kumar; De, Sirshendu

    2013-03-01

    Lipase (triacylglycerol acylhydrolase) is a unique enzyme which can catalyze various types of reactions such as hydrolysis, esterification, alcoholysis etc. In particular, hydrolysis of vegetable oil with lipase as a catalyst is widely studied. Free lipase, lipase immobilized on suitable support, lipase encapsulated in a reverse micelle and lipase immobilized on a suitable membrane to be used in membrane reactor are the most common ways of employing lipase in oil hydrolysis. Castor oil is a unique vegetable oil as it contains high amounts (90%) of a hydroxy monounsaturated fatty acid named ricinoleic acid. This industrially important acid can be obtained by hydrolysis of castor oil. Different conventional hydrolysis processes have certain disadvantages which can be avoided by a lipase-catalyzed process. The degree of hydrolysis varies widely for different lipases depending on the operating range of process variables such as temperature, pH and enzyme loading. Immobilization of lipase on a suitable support can enhance hydrolysis by suppressing thermal inactivation and estolide formation. The presence of metal ions also affects lipase-catalyzed hydrolysis of castor oil. Even a particular ion has different effects on the activity of different lipases. Hydrophobic organic solvents perform better than hydrophilic solvents during the reaction. Sonication considerably increases hydrolysis in case of lipolase. The effects of additives on the same lipase vary with their types. Nonionic surfactants enhance hydrolysis whereas cationic and anionic surfactants decrease it. A single variable optimization method is used to obtain optimum conditions. In order to eliminate its disadvantages, a statistical optimization method is used in recent studies. Statistical optimization shows that interactions between any two of the following pH, enzyme concentration and buffer concentration become significant in presence of a nonionic surfactant named Span 80.

  4. A double blind lipase for lipase comparison of a high lipase and standard pancreatic enzyme preparation in cystic fibrosis.

    PubMed Central

    Bowler, I M; Wolfe, S P; Owens, H M; Sheldon, T A; Littlewood, J M; Walters, M P

    1993-01-01

    A standard acid resistant microsphere pancreatic enzyme preparation was compared with identical capsules half filled with mini-tablets of a new high lipase preparation in a randomised double blind crossover study in children with cystic fibrosis. Each patient received his/her usual number of capsules and the same dose of lipase during each period of the study. Eighteen patients completed the study. There were fewer gastrointestinal symptoms when pancreatic enzyme was supplied as the high lipase preparation. There was also a significant improvement in fat absorption (17%, 95% confidence interval (CI) 6 to 27), reduction in faecal fat output (15.8 g/day, 95% CI 6.4 to 22.5), and faecal energy loss (789 kJ/day, 95% CI 211 to 1384). It is concluded that half filled capsules of the new high lipase preparation are more effective than the standard preparation and it is likely that filled capsules would allow patients to use fewer than half the number of pancreatic enzyme capsules. PMID:7683190

  5. Tetracycline Inhibition of a Lipase from Corynebacterium acnes

    PubMed Central

    Weaber, K.; Freedman, R.; Eudy, W. W.

    1971-01-01

    A lipase which hydrolyzes triglycerides (tricaprylin and trilaurin) and naphthyl laurate was obtained from the broth of Corynebacterium acnes cultures by ammonium sulfate fractionation. Ca2+ and sodium taurocholate stimulated activity of the enzyme. Ethylenediaminetetraacetic acid (EDTA) did not inhibit activity of the Ca2+-activated enzyme, but lipolytic activity was inhibited by EDTA in the absence of Ca2+. Tetracycline (10−4m) produced a slight inhibition of the lipase activity with 5 × 10−5m or less showing no effect on the lipase activity. However, complete inhibition by tetracycline at 10−4m was observed for Ca2+-activated enzyme. Tetracycline inhibition of the C. acnes lipase could be demonstrated at concentrations as low as 10−6m. PMID:4252558

  6. Performances of the Alpha-X RF gun on the PHIL accelerator at LAL

    NASA Astrophysics Data System (ADS)

    Vinatier, T.; Bruni, C.; Roux, R.; Brossard, J.; Chancé, S.; Cayla, J. N.; Chaumat, V.; Xu, G.; Monard, H.

    2015-10-01

    The Alpha-X RF-gun was designed to produce an ultra-short (<100 fs rms), 100 pC and 6.3 MeV electron beam with a normalized rms transverse emittance of 1π mm mrad for a gun peak accelerating field of 100 MV/m. Such beams will be required by the Alpha-X project, which aims to study a laser-driven plasma accelerator with a short wavelength accelerating medium. It has been demonstrated on PHIL (Photo-Injector at LAL) that the coaxial RF coupling, chosen to preserve the gun field cylindrical symmetry, is perfectly understood and allows reaching the required peak accelerating field of 100 MV/m giving beam energy of 6.3 MeV. Moreover, a quite low beam rms relative energy spread of 0.15% at 3.8 MeV has been measured, completely agreeing with simulations. Dark current, quantum efficiencies and dephasing curves measurements have also been performed. They all show high values of the field enhancement factor β, which can be explained by the preparation of the photocathodes. Finally, measurements on the transverse phase-space have been carried out, with some limitations given by the difficult modelization of one of the PHIL solenoid magnets and by the enlargement of the beam transverse dimensions due to the use of YAG screens. These measurements give a normalized rms transverse emittance around 5π mm mrad, which does not fulfill the requirement for the Alpha-X project.

  7. Discrimination of thermostable and thermophilic lipases using support vector machines.

    PubMed

    Zhao, Wei; Wang, Xunzhang; Deng, Riqiang; Wang, Jinwen; Zhou, Hongbo

    2011-07-01

    Discriminating thermophilic lipases from their similar thermostable counterparts is a challenging task and it would help to design stable proteins. In this study, the distributions of N (N=2, 3) neighboring amino acids and the non-adjacent di-residue coupling patterns in the sequences of 65 thermostable and 77 thermophilic lipases had been systematically analyzed. It was found that the hydrophobic residues Leu, Pro, Met, Phe, Trp, as well as the polar residue Tyr had higher occurrence in thermophilic lipases than thermostable ones. The occurrence frequencies of KC EE KE RE, VE, YI, EK, VK, EV, YV, EY, KY, VY and YY in thermophilic proteins were significantly higher, while the occurrence frequencies of QC, QH, QN, HQ, MQ, NQ, QQ, TQ, QS and QT were significantly lower. CXP or CPX showed significantly positive to lipase thermostability, while XXQ or QXX showed significantly negative to lipase thermostability. Non-adjacent di-residue coupling patterns of PR14, RY32, YR47, LE53, LE64, PP64, RP70 and PP101 were significantly different in thermophilic lipases and their thermostable counterparts. The composition of dipeptide, tripeptide and non-adjacent di-residue patterns contained more information than amino acid composition. A statistical method based on support vector machines (SVMs) was developed for discriminating thermophilic and thermostable lipases. The accuracy of this method for the training dataset was 97.17?. Furthermore, the highest accuracy of the method for testing datasets was 98.41?. The influence of some specific patterns on lipase thermostability was also discussed.

  8. Plant lipases: partial purification of Carica papaya lipase.

    PubMed

    Rivera, Ivanna; Mateos-Díaz, Juan Carlos; Sandoval, Georgina

    2012-01-01

    Lipases from plants have very interesting features for application in different fields. This chapter provides an overview on some of the most important aspects of plant lipases, such as sources, applications, physiological functions, and specificities. Lipases from laticifers and particularly Carica papaya lipase (CPL) have emerged as a versatile autoimmobilized biocatalyst. However, to get a better understanding of CPL biocatalytic properties, the isolation and purification of individual C. papaya lipolytic enzymes become necessary. In this chapter, a practical protocol for partial purification of the latex-associated lipolytic activity from C. papaya is given.

  9. Effects of methanol on lipases: molecular, kinetic and process issues in the production of biodiesel.

    PubMed

    Lotti, Marina; Pleiss, Jürgen; Valero, Francisco; Ferrer, Pau

    2015-01-01

    The biotechnological production of biodiesel is based on transesterification/esterification reactions between a source of fatty acids and a short-chain alcohol, usually methanol, catalysed by enzymes belonging to the class known as lipases. Several lipases used in industrial processes, although stable in the presence of other organic solvents, are inactivated by methanol at or below the concentration optimal for biodiesel production, making it necessary to use stepwise methanol feeding or pre-treatment of the enzyme. In this review article we focus on what is currently know about methanol inactivation of lipases, a phenomenon which is not common to all lipase enzymes, with the goal of improving the biocatalytic process. We suggest that different mechanisms can lead to inactivation of different lipases, in particular substrate inhibition and protein unfolding. Attempts to improve the performances of methanol sensitive lipases by mutagenesis as well as process engineering approaches are also summarized.

  10. Collagen-Immobilized Lipases Show Good Activity and Reusability for Butyl Butyrate Synthesis.

    PubMed

    Dewei, Song; Min, Chen; Haiming, Cheng

    2016-11-01

    Candida rugosa lipases were immobilized onto collagen fibers through glutaraldehyde cross-linking method. The immobilization process has been optimized. Under the optimal immobilization conditions, the activity of the collagen-immobilized lipase reached 340 U/g. The activity was recovered of 28.3 % by immobilization. The operational stability of the obtained collagen-immobilized lipase for hydrolysis of olive oil emulsion was determined. The collagen-immobilized lipase showed good tolerance to temperature and pH variations in comparison to free lipase. The collagen-immobilized lipase was also applied as biocatalyst for synthesis of butyl butyrate from butyric acid and 1-butanol in n-hexane. The conversion yield was 94 % at the optimal conditions. Of its initial activity, 64 % was retained after 5 cycles for synthesizing butyl butyrate in n-hexane.

  11. Resveratrol regulates lipolysis via adipose triglyceride lipase.

    PubMed

    Lasa, Arrate; Schweiger, Martina; Kotzbeck, Petra; Churruca, Itziar; Simón, Edurne; Zechner, Rudolf; Portillo, María del Puy

    2012-04-01

    Resveratrol has been reported to increase adrenaline-induced lipolysis in 3T3-L1 adipocytes. The general aim of the present work was to gain more insight concerning the effects of trans-resveratrol on lipid mobilization. The specific purpose was to assess the involvement of the two main lipases: adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), in the activation of lipolysis induced by this molecule. For lipolysis experiments, 3T3-L1 and human SGBS adipocytes as well as adipose tissue from wild-type, ATGL knockout and HSL knockout mice were used. Moreover, gene and protein expressions of these lipases were analyzed. Resveratrol-induced free fatty acids release but not glycerol release in 3T3-L1 under basal and isoproterenol-stimulating conditions and under isoproterenol-stimulating conditions in SGBS adipocytes. When HSL was blocked by compound 76-0079, free fatty acid release was still induced by resveratrol. By contrast, in the presence of the compound C, an inhibitor of adenosine monophosphate-activated protein kinase, resveratrol effect was totally blunted. Resveratrol increased ATGL gene and protein expressions, an effect that was not observed for HSL. Resveratrol increased fatty acids release in epididymal adipose tissue from wild-type and HSL knockout mice but not in that adipose tissue from ATGL knockout mice. Taking as a whole, the present results provide novel evidence that resveratrol regulates lipolytic activity in human and murine adipocytes, as well as in white adipose tissue from mice, acting mainly on ATGL at transcriptional and posttranscriptional levels. Enzyme activation seems to be induced via adenosine monophosphate-activated protein kinase.

  12. High milk lipase activity associated with breast milk jaundice.

    PubMed

    Poland, R L; Schultz, G E; Garg, G

    1980-12-01

    Human milk samples that inhibit bilirubin-UDP-glucuronyl transferase (UDPGT) activity in vitro have been associated with prolonged unconjugated hyperbilirubinemia in newborn infants. We measured the concentration of nonesterified fatty acids (total and individual fatty acids), total fat and protein, and lipase activities (with and without bile salt stimulation) in milk samples from two groups of women. Women whose infants had prolonged unconjugated hyperbilirubinemia and whose milk inhibited the activity of UDPGT were in the first group (N = 9). Volunteers with healthy infants acted as controls. Inhibitory milk contained significantly more nonesterified fatty acids (total, palmitic, and oleic) than did controls. Fat and protein concentrations and bile salt-stimulated lipase activities were similar in the two groups. Unstimulated lipase activity was higher in the inhibitory milks (11.9 +/- 0.8 mM x min-1 x ml-1) than in the controls (6.0 +/- 0.1 mM x min-1 x ml-1) (P less than 0.01). The specific activity (mM x min-1 x mg protein) of unstimulated lipase was also significantly higher in the inhibitory milks (P less than 0.0001). The high nonesterified fatty acid levels in inhibitory milks is accounted for by the elevated unstimulated lipase activities. How these circumstances lead to jaundice in the infants remains to be shown.

  13. Lingual lipase activity in the orosensory detection of fat by humans.

    PubMed

    Kulkarni, Bhushan V; Mattes, Richard D

    2014-06-15

    Lingual lipase generates nonesterified fatty acids (NEFA) from dietary fats during oral processing by lipolysis. Lingual lipase in rodents has strong lipolytic activity and plays a critical role in oral detection of fats. The functional activity of lingual lipase during oral processing of high-fat foods in humans remains poorly characterized. Five commonly consumed high-fat foods varying in physical states and fatty acid composition (almond, almond butter, olive oil, walnut, and coconut) were masticated by 15 healthy human subjects at the rate of one chew per second with and without lipase inhibitor orlistat. Salivary NEFA concentrations were measured. To determine the role of lingual lipase in oral fat detection, sensory ratings were obtained from the same 15 human subjects for almond butter with and without orlistat. Lingual lipase was active during oral processing of almond and coconut. No activity of lingual lipase was detected during processing of almond butter. There was only weak evidence lingual lipase is a determinant of oral fat detection. Lingual lipase may only contribute to NEFA generation and oral fat detection of fatty foods that require stronger oral processing effort.

  14. Lingual lipase activity in the orosensory detection of fat by humans

    PubMed Central

    Kulkarni, Bhushan V.

    2014-01-01

    Lingual lipase generates nonesterified fatty acids (NEFA) from dietary fats during oral processing by lipolysis. Lingual lipase in rodents has strong lipolytic activity and plays a critical role in oral detection of fats. The functional activity of lingual lipase during oral processing of high-fat foods in humans remains poorly characterized. Five commonly consumed high-fat foods varying in physical states and fatty acid composition (almond, almond butter, olive oil, walnut, and coconut) were masticated by 15 healthy human subjects at the rate of one chew per second with and without lipase inhibitor orlistat. Salivary NEFA concentrations were measured. To determine the role of lingual lipase in oral fat detection, sensory ratings were obtained from the same 15 human subjects for almond butter with and without orlistat. Lingual lipase was active during oral processing of almond and coconut. No activity of lingual lipase was detected during processing of almond butter. There was only weak evidence lingual lipase is a determinant of oral fat detection. Lingual lipase may only contribute to NEFA generation and oral fat detection of fatty foods that require stronger oral processing effort. PMID:24694384

  15. Improving palm oil quality through identification and mapping of the lipase gene causing oil deterioration.

    PubMed

    Morcillo, F; Cros, D; Billotte, N; Ngando-Ebongue, G-F; Domonhédo, H; Pizot, M; Cuéllar, T; Espéout, S; Dhouib, R; Bourgis, F; Claverol, S; Tranbarger, T J; Nouy, B; Arondel, V

    2013-01-01

    The oil palm fruit mesocarp contains high lipase activity that increases free fatty acids and necessitates post-harvest inactivation by heat treatment of fruit bunches. Even before heat treatment the mesocarp lipase activity causes consequential oil losses and requires costly measures to limit free fatty acids quantities. Here we demonstrate that elite low-lipase lines yield oil with substantially less free fatty acids than standard genotypes, allowing more flexibility for post-harvest fruit processing and extended ripening for increased yields. We identify the lipase and its gene cosegregates with the low-/high-lipase trait, providing breeders a marker to rapidly identify potent elite genitors and introgress the trait into major cultivars. Overall, economic gains brought by wide adoption of this material could represent up to one billion dollars per year. Expected benefits concern all planters but are likely to be highest for African smallholders who would be more able to produce oil that meets international quality standards.

  16. Addition of lipase from Candida cylindracea to a traditional formulation of a dry fermented sausage.

    PubMed

    Zalacain, I; Zapelena, M J; Astiasaran, I; Bello, J

    1996-01-01

    The objective of this work was to study the manufacture of sausage containing a traditional starter culture (Lactobacillus plantarum and Staphylococcus carnosus) together with an enzyme lipase from Candida cylindracea as compared with that of a sausage with only starter. The acidity value showed more intense lipolysis in the sausage with lipase with this increase being especially important in the second week of drying. In spite of this, there was no significant (p > 0.05) increase in the oxidative rancidity processes in this sausage. The analysis of short chain fatty acids suggested the enzyme and starter together produced a greater amount of such acids than did the enzyme or the starter separately. Almost all free fatty acids showed significantly higher values in the sausage with lipase with the exception of linolenic acid. The addition of enzyme lipase produced a higher proportion of free saturated acids and a lower proportion of polyunsaturated acids during the drying of the sausage.

  17. Active-site titration analysis of surface influence on immobilized Candida antarctica Lipase B activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Matrix morphology and surface polarity effects were investigated for Candida antarctica lipase B immobilization. Measurements of the amount of lipase immobilized (bicinchoninic acid method) and the catalyst’s tributyrin hydrolysis activity, coupled with a determination of the lipase’s functional fr...

  18. Biodiesel production by transesterification using immobilized lipase.

    PubMed

    Narwal, Sunil Kumar; Gupta, Reena

    2013-04-01

    Biodiesel can be produced by transesterification of vegetable or waste oil catalysed by lipases. Biodiesel is an alternative energy source to conventional fuel. It combines environmental friendliness with biodegradability, low toxicity and renewability. Biodiesel transesterification reactions can be broadly classified into two categories: chemical and enzymatic. The production of biodiesel using the enzymatic route eliminates the reactions catalysed under acid or alkali conditions by yielding product of very high purity. The modification of lipases can improve their stability, activity and tolerance to alcohol. The cost of lipases and the relatively slower reaction rate remain the major obstacles for enzymatic production of biodiesel. However, this problem can be solved by immobilizing the enzyme on a suitable matrix or support, which increases the chances of re-usability. The main factors affecting biodiesel production are composition of fatty acids, catalyst, solvents, molar ratio of alcohol and oil, temperature, water content, type of alcohol and reactor configuration. Optimization of these parameters is necessary to reduce the cost of biodiesel production.

  19. Results of the GstLAL Search for Compact Binary Mergers in Advanced LIGO's First Observing Run

    NASA Astrophysics Data System (ADS)

    Lang, Ryan; LIGO Scientific Collaboration; Virgo Collaboration Collaboration

    2017-01-01

    Advanced LIGO's first observing period ended in January 2016. We discuss the GstLAL matched-filter search over this data set for gravitational waves from compact binary objects with total mass up to 100 solar masses. In particular, we discuss the recovery of the unambiguous gravitational wave signals GW150914 and GW151226, as well as the possible third signal LVT151012. Additionally, we discuss the constraints we can place on binary-neutron-star and neutron-star-black-hole system merger rates.

  20. Screening of lipase inhibitors from Scutellaria baicalensis extract using lipase immobilized on magnetic nanoparticles and study on the inhibitory mechanism.

    PubMed

    Wan, Li-Hong; Jiang, Xiao-Lan; Liu, Yi-Ming; Hu, Jin-Jie; Liang, Jian; Liao, Xun

    2016-03-01

    Scutellaria baicalensis is a traditional Chinese medicinal plant possessing a wide variety of biological activities. In this work, lipase immobilized on magnetic nanoparticles (LMNPs) was used as solid phase extract absorbent for screening of lipase inhibitors from this plant. Three flavonoids were found to bind to LMNPs and were identified as baicalin, wogonin, and oroxylin A by liquid chromatography-mass spectrometry (HPLC-MS). Their IC50 values were determined to be 229.22 ± 12.67, 153.71 ± 9.21, and 56.07 ± 4.90 μM, respectively. Fluorescence spectroscopy and molecular docking were used to probe the interactions between these flavonoids and lipase. All the flavonoids quenched the fluorescence of lipase statically by forming new complexes, implying their affinities with the enzyme. The thermodynamic analysis suggested that van der Waals force and hydrogen bond were the main forces between wogonin and lipase, while hydrophobic force was the main force for the other two flavonoids. The results from a molecular docking study further revealed that all of them could insert into the pocket of lipase binding to a couple of amino acid residues.

  1. Substrate specificity of lipoprotein lipase and endothelial lipase: studies of lid chimeras.

    PubMed

    Griffon, Nathalie; Budreck, Elaine C; Long, Christopher J; Broedl, Uli C; Marchadier, Dawn H L; Glick, Jane M; Rader, Daniel J

    2006-08-01

    The triglyceride (TG) lipase gene subfamily, consisting of LPL, HL, and endothelial lipase (EL), plays a central role in plasma lipoprotein metabolism. Compared with LPL and HL, EL is relatively more active as a phospholipase than as a TG lipase. The amino acid loop or "lid" covering the catalytic site has been implicated as the basis for the difference in substrate specificity between HL and LPL. To determine the role of the lid in the substrate specificity of EL, we studied EL in comparison with LPL by mutating specific residues of the EL lid and exchanging their lids. Mutation studies showed that amphipathic properties of the lid contribute to substrate specificity. Exchanging lids between LPL and EL only partially shifted the substrate specificity of the enzymes. Studies of a double chimera possessing both the lid and the C-terminal domain (C-domain) of EL in the LPL backbone showed that the role of the lid in determining substrate specificity does not depend on the nature of the C-domain of the lipase. Using a kinetic assay, we showed an additive effect of the EL lid on the apparent affinity for HDL(3) in the presence of the EL C-domain.

  2. Lipase cocktail for efficient conversion of oils containing phospholipids to biodiesel.

    PubMed

    Amoah, Jerome; Ho, Shih-Hsin; Hama, Shinji; Yoshida, Ayumi; Nakanishi, Akihito; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2016-07-01

    The presence of phospholipid has been a challenge in liquid enzymatic biodiesel production. Among six lipases that were screened, lipase AY had the highest hydrolysis activity and a competitive transesterification activity. However, it yielded only 21.1% FAME from oil containing phospholipids. By replacing portions of these lipases with a more robust bioFAME lipase, CalT, the combination of lipase AY-CalT gave the highest FAME yield with the least amounts of free fatty acids and partial glycerides. A higher methanol addition rate reduced FAME yields for lipase DF-CalT and A10D-CalT combinations while that of lipase AY-CalT combination improved. Optimizing the methanol addition rate for lipase AY-CalT resulted in a FAME yield of 88.1% at 2h and more than 95% at 6h. This effective use of lipases could be applied for the rapid and economic conversion of unrefined oils to biodiesel.

  3. Characterization of biotechnologically relevant extracellular lipase produced by Aspergillus terreus NCFT 4269.10.

    PubMed

    Sethi, Bijay Kumar; Nanda, Prativa Kumari; Sahoo, Santilata

    2016-01-01

    Enzyme production by Aspergillus terreus NCFT 4269.10 was studied under liquid static surface and solid-state fermentation using mustard oil cake as a substrate. The maximum lipase biosynthesis was observed after incubation at 30°C for 96h. Among the domestic oils tested, the maximum lipase biosynthesis was achieved using palm oil. The crude lipase was purified 2.56-fold to electrophoretic homogeneity, with a yield of 8.44%, and the protein had a molecular weight of 46.3kDa as determined by SDS-PAGE. Enzyme characterization confirmed that the purified lipase was most active at pH 6.0, temperature of 50°C, and substrate concentration of 1.5%. The enzyme was thermostable at 60°C for 1h, and the optimum enzyme-substrate reaction time was 30min. Sodium dodecyl sulfate and commercial detergents did not significantly affect lipase activity during 30-min incubation at 30°C. Among the metal ions tested, the maximum lipase activity was attained in the presence of Zn(2+), followed by Mg(2+) and Fe(2+). Lipase activity was not significantly affected in the presence of ethylenediaminetetraacetic acid, sodium lauryl sulfate and Triton X-100. Phenylmethylsulfonyl fluoride (1mM) and the reducing, β-mercaptoethanol significantly inhibited lipase activity. The remarkable stability in the presence of detergents, additives, inhibitors and metal ions makes this lipase unique and a potential candidate for significant biotechnological exploitation.

  4. Psychrophilic Lipase from Arctic Bacterium

    PubMed Central

    Ramle, Zakiah; Rahim, Rashidah Abdul

    2016-01-01

    A lipase producer psychrophilic microorganism isolated from Arctic sample was studied. The genomic DNA of the isolate was extracted using modified CTAB method. Identification of the isolate by morphological and 16S rRNA sequence analysis revealed that the isolate is closely related to Arthrobacter gangotriensis (97% similarity). A. gangotriensis was determined as positive lipase producer based on the plate screening using specific and sensitive plate assay of Rhodamine B. The PCR result using Arthrobacter sp.’s full lipase gene sequence as the template primers emphasised a possible lipase gene at 900 bp band size. The gene is further cloned in a suitable vector system for expression of lipase. PMID:27965754

  5. Biodiesel production from microalgae oil catalyzed by a recombinant lipase.

    PubMed

    Huang, Jinjin; Xia, Ji; Jiang, Wei; Li, Ying; Li, Jilun

    2015-03-01

    A recombinant Rhizomucor miehei lipase was constructed and expressed in Pichia pastoris. The target enzyme was termed Lipase GH2 and it can be used as a free enzyme for catalytic conversion of microalgae oil mixed with methanol or ethanol for biodiesel production in an n-hexane solvent system. Conversion rates of two major types of biodiesel, fatty acid methyl ester (FAME) and fatty acid ethyl ester (FAEE), reached maximal values (>90%) after 24h. The process of FAME production is generally more simple and economical than that of FAEE production, even though the two processes show similar conversion rates. In spite of the damaging effect of ethanol on enzyme activity, we successfully obtained ethyl ester by the enzymatic method. Our findings indicate that Lipase GH2 is a useful catalyst for conversion of microalgae oil to FAME or FAEE, and this system provides efficiency and reduced costs in biodiesel production.

  6. Synthesis of a novel biologically active amide ester of 7,10-dihydroxy-8(E)-octadecanoic acid (DOD) using lipase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxy fatty acids (HFA) are known to have industrial potential because of their special properties such as high viscosity and reactivity. Among the hydroxy fatty acids, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) was successfully produced from oleic acid and lipid containing oleic acid by a bacter...

  7. Differences in hydrolytic abilities of two crude lipases from Geotrichum candidum 4013.

    PubMed

    Brabcová, Jana; Zarevúcka, Marie; Macková, Martina

    2010-12-01

    The fungus Geotrichum candidum 4013 produces two types of lipases (extracellular and cell-bound). Both enzymes were tested for their hydrolytic ability to p-nitrophenyl esters and compounds having a structure similar to the original substrate (triacylglycerols). Higher lipolytic activity of extracellular lipase was observed when triacylglycerols of medium- (C12) and long- (C18) chain fatty acids were used as substrates. Cell-bound lipase preferentially hydrolysed trimyristate (C14). The differences in the abilities of these two enzymes to hydrolyse p-nitrophenyl esters were observed as well. The order of extracellular lipase hydrolysis relation velocity was as follows: p-nitrophenyl decanoate > p-nitrophenyl caprylate > p-nitrophenyl laurate > p-nitrophenyl palmitate > p-nitrophenyl stearate. The cell-bound lipase indicates preference for p-nitrophenyl palmitate. The most striking differences in the ratios between the activity of both lipases (extracellular : cell-bound) towards different fatty acid methyl esters were 2.2 towards methyl hexanoate and 0.46 towards methyl stearate (C18). The Michaelis constant (K(m) ) and maximum reaction rate (V(max) ) for p-nitrophenyl palmitate hydrolysis of cell-bound lipase were significantly higher (K(m) 2.462 mM and V(max) 0.210 U/g/min) than those of extracellular lipase (K(m) 0.406 mM and V(max) 0.006 U/g/min).

  8. Inhibition of Propionibacterium acnes lipase by extracts of Indian medicinal plants.

    PubMed

    Patil, V; Bandivadekar, A; Debjani, D

    2012-06-01

    Lipases play an important role in pathogenesis of acne by hydrolysing sebum triglycerides and releasing irritating free fatty acids in the pilosebaceous follicles. Lipase is a strong chemotactic and proinflammatory antigen. Therefore, lipase has generated a high interest as a pharmacological target for antiacne drugs. The aim of this study was to identify inhibitory effects of plant extracts on the lipase activity of Propionibacterium acnes. Colorimetric microassay was used to determine lipase activity. Extracts from Terminalia chebula and Embelia ribes showed lower IC(50) value (1 μg mL(-1) ) for lipase inhibition as compared to Vitex negundo and Picrorhiza kurroa (19 and 47 μg mL(-1) , respectively). The active component responsible for lipase inhibition was isolated. This study reports for the first time the novel antilipase activity of chebulagic acid (IC(50) : 60 μmol L(-1) ) with minimum inhibitory concentration value of 12.5 μg mL(-1) against P. acnes. The inhibitory potential of plant extracts was further confirmed by plate assay. The organism was grown in the presence of subinhibitory concentrations of extracts from P. kurroa, V. negundo, T. chebula, E. ribes and antibiotics such as clindamycin and tetracycline. Extract from T. chebula showed significant inhibition of lipase activity and number of P. acnes.

  9. Role of Met93 and Thr96 in the lid hinge region of Rhizopus chinensis lipase.

    PubMed

    Zhu, Shan-Shan; Li, Ming; Yu, Xiaowei; Xu, Yan

    2013-05-01

    We engineered Rhizopus chinensis lipase to study its critical amino acid role in catalytic properties. Based on the amino acid sequence and three-dimensional model of the lipase, residues located in its lid hinge region (Met93 and Thr96) were replaced with corresponding amino acid residues (Ile93 and Asn96) found in the lid hinge region of Rhizopus oryzae lipase. The substitutions in the lid hinge region affected not only substrate specificity but also the thermostability of the lipase. Both lipases preferred p-nitrophenyl laurate and glyceryl trilaurate (C12). However, the variant S4-3O showed a slight decline in activity toward long-chain fatty acid (C16-C18). When enzymes activities decreased by half, the temperature of the variant (45 °C) was 22 °C lower than the parent (67 °C), probably substantially destabilized the structure of the lid region. The interfacial kinetic analysis of S4-3O suggested that the lower catalytic efficiency was due to a higher K m* value. According to the lipase structure investigated, Ile93Met played a role of narrowing the size of the hydrophobic patch, which affected the substrate binding affinity, and Asn96Thr destabilized the structure of the lipase by disrupting the H-bond interaction in the lid region.

  10. Antioxidant property and [Formula: see text]-glucosidase, [Formula: see text]-amylase and lipase inhibiting activities of Flacourtia inermis fruits: characterization of malic acid as an inhibitor of the enzymes.

    PubMed

    Alakolanga, A G A W; Kumar, N Savitri; Jayasinghe, Lalith; Fujimoto, Yoshinori

    2015-12-01

    Flacourtia inermis Roxb. (Flacourtiaceae), is a moderate sized tree cultivated in Sri Lanka for its fruits known as Lovi. The current study was undertaken to study the biological activity of extracts of the fruits in an attempt to increase the value of the under exploited fruit crops. Fruits of F. inermis were found to be rich in phenolics and anthocyanins. Polyphenol content of the fruits was determined to be 1.28 g gallic acid equivalents per 100 g of fresh fruit and anthocyanin content was estimated as 108 mg cyanidin-3-glucoside equivalents per 100 g of fresh fruits. The EtOAc extract showed moderate antioxidant activity in the DPPH radical scavenging assay with IC50 value of 66.2 ppm. The EtOAc and MeOH extracts of the fruits also exhibited inhibitory activities toward α-glucosidase, α-amylase and lipase enzymes with IC50values ranging from 549 to 710 ppm, 1021 to 1949 ppm and 1290 to 2096 ppm, respectively. The active principle for the enzyme inhibition was isolated through activity-guided fractionation and was characterized as (S)-malic acid. The results of this study indicate that F. inermis fruits have the potential to be used in health foods and in nutritional supplements.

  11. Rationale behind the near-ideal catalysis of Candida antarctica lipase A (CAL-A) for highly concentrating ω-3 polyunsaturated fatty acids into monoacylglycerols.

    PubMed

    He, Yongjin; Li, Jingbo; Kodali, Sitharam; Chen, Bilian; Guo, Zheng

    2017-03-15

    Dramatic decline in the quality and quantity of ω-3 PUFAs from marine resource demands new environmental-friendly technology to produce high quality ω-3 PUFAs concentrates in a better bioavailable form. Accordingly this work demonstrated an exceptionally highly efficient non-aqueous approach that non-regiospecific and non ω-3 PUFAs preferential Candida antarctica lipase A (CAL-A), functioning as a near-ideal biocatalyst, is capable to directly concentrate ω-3 PUFAs from 20% to 30% in oils to up to >90% in monoacylglycerols form through one step reaction. The rationale behind the experimental observation is justified and the catalytic property and specificity of an ideal enzyme tackling this task are defined. High selectivity and efficiency, excellent reusability of biocatalyst, general applicability for concentrating ω-3 PUFAs from both fish and microalgae oils, simple process for product recovery (e.g. by short path distillation), make this novel approach a highly industrially relevant and with potential application in food and drug industries.

  12. Lipase inactivation in wheat germ by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj Kumar; Kudachikar, V. B.; Kumar, Sourav

    2013-05-01

    An attempt was made to improve the shelf life of wheat germ by optimizing processing conditions involving γ-irradiation. Studies were carried out to investigate the effect of γ-irradiation (0-30 kGy doses) on the chemical composition of wheat germ with respect to variation in moisture, total ash, crude fat, free fatty acid, protein and lipase activity. The results demonstrate that shelf stability of wheat germ was achieved by inactivation of lipase at doses of γ-irradiation greater than 12 kGy.

  13. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Lipase test system. (a) Identification. A lipase test system is a device intended to measure the activity of the enzymes lipase in serum. Lipase measurements are used in diagnosis and treatment of...

  14. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Lipase test system. (a) Identification. A lipase test system is a device intended to measure the activity of the enzymes lipase in serum. Lipase measurements are used in diagnosis and treatment of...

  15. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Lipase test system. (a) Identification. A lipase test system is a device intended to measure the activity of the enzymes lipase in serum. Lipase measurements are used in diagnosis and treatment of...

  16. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Lipase test system. (a) Identification. A lipase test system is a device intended to measure the activity of the enzymes lipase in serum. Lipase measurements are used in diagnosis and treatment of...

  17. 21 CFR 862.1465 - Lipase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Lipase test system. (a) Identification. A lipase test system is a device intended to measure the activity of the enzymes lipase in serum. Lipase measurements are used in diagnosis and treatment of...

  18. Monoacylglycerol Lipase Regulates Fever Response.

    PubMed

    Sanchez-Alavez, Manuel; Nguyen, William; Mori, Simone; Moroncini, Gianluca; Viader, Andreu; Nomura, Daniel K; Cravatt, Benjamin F; Conti, Bruno

    2015-01-01

    Cyclooxygenase inhibitors such as ibuprofen have been used for decades to control fever through reducing the levels of the pyrogenic lipid transmitter prostaglandin E2 (PGE2). Historically, phospholipases have been considered to be the primary generator of the arachidonic acid (AA) precursor pool for generating PGE2 and other eicosanoids. However, recent studies have demonstrated that monoacyglycerol lipase (MAGL), through hydrolysis of the endocannabinoid 2-arachidonoylglycerol, provides a major source of AA for PGE2 synthesis in the mammalian brain under basal and neuroinflammatory states. We show here that either genetic or pharmacological ablation of MAGL leads to significantly reduced fever responses in both centrally or peripherally-administered lipopolysaccharide or interleukin-1β-induced fever models in mice. We also show that a cannabinoid CB1 receptor antagonist does not attenuate these anti-pyrogenic effects of MAGL inhibitors. Thus, much like traditional nonsteroidal anti-inflammatory drugs, MAGL inhibitors can control fever, but appear to do so through restricted control over prostaglandin production in the nervous system.

  19. Lipase-catalyzed polyester synthesis – A green polymer chemistry

    PubMed Central

    Kobayashi, Shiro

    2010-01-01

    This article is a short comprehensive review describing in vitro polyester synthesis catalyzed by a hydrolysis enzyme of lipase, most of which has been developed for these two decades. Polyesters are prepared by repeated ester bond-formation reactions; they include two major modes, ring-opening polymerization (ROP) of cyclic monomers such as cyclic esters (lactones) and condensation polymerization via the reaction between a carboxylic acid or its ester group and an alcohol group. Polyester synthesis is, therefore, a reaction in reverse way of in vivo lipase catalysis of ester bond-cleavage with hydrolysis. The lipase-catalyzed polymerizations show very high chemo-, regio-, and enantio-selectivities and involve various advantageous characteristics. Lipase is robust and compatible with other chemical catalysts, which allows novel chemo-enzymatic processes. New syntheses of a variety of functional polyesters and a plausible reaction mechanism of lipase catalysis are mentioned. The polymerization characteristics are of green nature currently demanded for sustainable society, and hence, desirable for conducting ‘green polymer chemistry’. PMID:20431260

  20. Screening and characterization of a thermostable lipase from marine Streptomyces sp. strain W007.

    PubMed

    Yuan, Dongjuan; Lan, Dongming; Xin, Ruipu; Yang, Bo; Wang, Yonghua

    2016-01-01

    A screening method along with the combination of genome sequence of microorganism, pairwise alignment, and lipase classification was used to search the thermostable lipase. Then, a potential thermostable lipase (named MAS1) from marine Streptomyces sp. strain W007 was expressed in Pichia pastoris X-33, and the biochemical properties were characterized. Lipase MAS1 belongs to the subfamily I.7, and it has 38% identity to the well-characterized Bacillus subtilis thermostable lipases in the subfamily I.4. The purified enzyme was estimated to be 29 kDa. The enzyme showed optimal temperature at 40 °C, and retained more than 80% of initial activity after 1 H incubation at 60 °C, suggesting that MAS1 was a thermostable lipase. MAS1 was an alkaline enzyme with optimal pH value at 7.0 and had stable activity for 12 H of incubation at pH 6.0-9.0. It was stable and retained about 90% of initial activity in the presence of Cu(2+) , Ca(2+) , Ni(2+) , and Mg(2+) , whereas 89.05% of the initial activity was retained when ethylene diamine tetraacetic acid was added. MAS1 showed the tolerance to organic solvents, but was inhibited by various surfactants. MAS1 was verified to be a triglyceride lipase and could hydrolyze triacylglycerol and diacylglycerol. The result represents a good example for researchers to discover thermostable lipase for industrial application.

  1. [Cloning and expression of organic solvent tolerant lipase gene from Staphylococcus saprophyticus M36].

    PubMed

    Tang, Yanchong; Lu, Yaping; Lü, Fengxia; Bie, Xiaomei; Guo, Yao; Lu, Zhaoxin

    2009-12-01

    Lipases are important biocatalysts that are widely used in food processing and bio-diesel production. However, organic solvents could inactivate some lipases during applications. Therefore, the efficient cloning and expression of the organic solvent-tolerant lipase is important to its application. In this work, we first found out an organic solvent-tolerant lipase from Staphylococcus saprophyticus M36 and amplified the 741 bp Lipase gene lip3 (GenBank Accession No. FJ979867), by PCR, which encoded a 31.6 kD polypeptide of 247 amino acid residues. But the lipase shared 83% identity with tentative lip3 gene of Staphylococcus saprophyticus (GenBank Accession No. AP008934). We connected the gene with expression vector pET-DsbA, transformed it into Escherichia coli BL21 (DE3), and obtained the recombinant pET-DsbA-lip3. With the induction by 0.4 mmol/L of isopropyl beta-D-thiogalactopyranoside at pH 8.0, OD600 1.0, 25 degrees C for 12 h, the lipase activity reached up to 25.8 U/mL. The lipase expressed was stable in the presence of methanol, n-hexane, and isooctane, n-heptane.

  2. Development of a lipase fermentation process that uses a recombinant Pseudomonas alcaligenes strain.

    PubMed

    Gerritse, G; Hommes, R W; Quax, W J

    1998-07-01

    Pseudomonas alcaligenes M-1 secretes an alkaline lipase, which has excellent characteristics for the removal of fatty stains under modern washing conditions. A fed-batch fermentation process based on the secretion of the alkaline lipase from P. alcaligenes was developed. Due to the inability of P. alcaligenes to grow on glucose, citric acid and soybean oil were applied as substrates in the batch phase and feed phase, respectively. The gene encoding the high-alkaline lipase from P. alcaligenes was isolated and characterized. Amplification of lipase gene copies in P. alcaligenes with the aid of low- and high-copy-number plasmids resulted in an increase of lipase expression that was apparently colinear with the gene copy number. It was found that overexpression of the lipase helper gene, lipB, produced a stimulating effect in strains with high copy numbers (> 20) of the lipase structural gene, lipA. In strains with lipA on a low-copy-number vector, the lipB gene did not show any effect, suggesting that LipB is required in a low ratio to LipA only. During scaling up of the fermentation process to 100 m3, severe losses in lipase productivity were observed. Simulations have identified an increased level of dissolved carbon dioxide as the most probable cause for the scale-up losses. A large-scale fermentation protocol with a reduced dissolved carbon dioxide concentration resulted in a substantial elimination of the scale-up loss.

  3. Lipases in Medicine: An Overview.

    PubMed

    Loli, Heni; Narwal, Sunil Kumar; Saun, Nitin Kumar; Gupta, Reena

    2015-01-01

    Lipases are part of the family of hydrolases that act on carboxylic ester bonds. They are involved in catalyzing the hydrolysis of triglycerides (TG) into chylomicrons and very low density lipoprotein (VLDL) particles. Uses of lipases are evolving rapidly and currently they are reported to show high potential in medicine. Intensive study and investigations have led researchers to explore lipases for their use in substitution therapy, where in enzyme deficiency during diseased conditions is compensated by their external administration. In our body, they are used to break down fats present in food so that they can be absorbed in the intestine and deficiency of lipases leads to malabsorption of fats and fat-soluble vitamins. Lipases help a person who has cystic fibrosis, Alzheimer's disease, atherosclerosis and act as a candidate target for cancer prevention and therapy. They act as diagnostic tool and their presence or increasing levels can indicate certain infection or disease. Obesity causes metabolic disease and is a serious health problem around the world. Thus inhibiting digestive lipase to reduce fat absorption has become the main pharmacological approach to the treatment of obesity in recent years.

  4. Mono-estolide synthesis from trans-8-hydroxy fatty acids by lipases in solvent-free media and their physical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas aeruginosa 42A2 is known to produce two hydroxy-fatty acids, 10(S)-hydroxy-8(E)-octadecenoic and 7,10(S,S)-dihydroxy-8(E)-octadecenoic acids, when cultivated in a mineral medium using oleic acid as a single carbon source. These compounds were purified, 91 and 96 % respectively, to produc...

  5. Assessing endotoxins in equine-derived snake antivenoms: Comparison of the USP pyrogen test and the Limulus Amoebocyte Lysate assay (LAL).

    PubMed

    Solano, Gabriela; Gómez, Aarón; León, Guillermo

    2015-10-01

    Snake antivenoms are parenterally administered; therefore, endotoxin content must be strictly controlled. Following international indications to calculate endotoxin limits, it was determined that antivenom doses between 20 mL and 120 mL should not exceed 17.5 Endotoxin Units per milliliter (EU/mL) and 2.9 EU/mL, respectively. The rabbit pyrogen test (RPT) has been used to evaluate endotoxin contamination in antivenoms, but some laboratories have recently implemented the LAL assay. We compared the capability of both tests to evaluate endotoxin contamination in antivenoms, and we found that both methods can detect all endotoxin concentrations in the range of the antivenom specifications. The acceptance criteria of RPT and LAL must be harmonized by calculating the endotoxin limit as the quotient of the threshold pyrogenic dose and the therapeutic dose and the dose administered to rabbits as the quotient of the threshold pyrogenic dose and the endotoxin limit. Since endotoxins from Gram-negative bacteria exert different pyrogenicity, if contamination occurred, antivenom batches that induce pyrogenic reactions may be found in spite of passing LAL specifications. Although LAL assay can be used to assess endotoxin content throughout the antivenom manufacturing process, we recommend that the release of final products be based on the results of both methods.

  6. Crystal structure of a triacylglycerol lipase from Penicillium expansum at 1.3 A determined by sulfur SAD

    SciTech Connect

    Bian, Chuanbing; Yuan, Cai; Chen, Liqing; Meehan, Edward J.; Jiang, Longguang; Huang, Zixiang; Lin, Lin; Huang, Mingdong

    2010-04-05

    Triacylglycerol lipases (EC 3.1.1.3) are present in many different organisms including animals, plants, and microbes. Lipases catalyze the hydrolysis of long-chain triglycerides into fatty acids and glycerol at the interface between the water insoluble substrate and the aqueous phase. Lipases can also catalyze the reverse esterification reaction to form glycerides under certain conditions. Lipases of microbial origin are of considerable commercial interest for wide variety of biotechnological applications in industries, including detergent, food, cosmetic, pharmaceutical, fine chemicals, and biodiesel. Nowadays, microbial lipases have become one of the most important industrial enzymes. PEL (Penicillium expansum lipase) is a fungal lipase from Penicillium expansum strain PF898 isolated from Chinese soil that has been subjected to several generations of mutagenesis to increase its enzymatic activity. PEL belongs to the triacylglycerol lipases family, and its catalytic characteristics have been studied. The enzyme has been used in Chinese laundry detergent industry for several years (http://www.leveking.com). However, the poor thermal stability of the enzyme limits its application. To further study and improve this enzyme, PEL was cloned and sequenced. Furthermore, it was overexpressed in Pichia pastoris. PEL contains GHSLG sequence, which is the lipase consensus sequence Gly-X1-Ser-X2-Gly, but has a low amino acid sequence identities to other lipases. The most similar lipases are Rhizomucor miehei (PML) and Rhizopus niveus (PNL) with a 21% and 20% sequence identities to PEL, respectively. Interestingly, the similarity of PEL with the known esterases is somewhat higher with 24% sequence identity to feruloyl esterase A. Here, we report the 1.3 {angstrom} resolution crystal structure of PEL determined by sulfur SAD phasing. This structure not only presents a new lipase structure at high resolution, but also provides a structural platform to analyze the published

  7. Lipase-catalyzed domino kinetic resolution/intramolecular Diels-Alder reaction: one-pot synthesis of optically active 7-oxabicyclo[2.2.1]heptenes from furfuryl alcohols and beta-substituted acrylic acids.

    PubMed

    Akai, Shuji; Naka, Tadaatsu; Omura, Sohei; Tanimoto, Kouichi; Imanishi, Masashi; Takebe, Yasushi; Matsugi, Masato; Kita, Yasuyuki

    2002-09-16

    The first lipase-catalyzed domino reaction is described in which the acyl moiety formed during the enzymatic kinetic resolution of furfuryl alcohols (+/-)-3 with a 1-ethoxyvinyl ester 2 was utilized as a part of the constituent structure for the subsequent Diels-Alder reaction. The preparation of ester 2 from carboxylic acid 1 and the subsequent domino reaction were carried out in a one-pot reaction. Therefore, this procedure provides a convenient preparation of the optically active 7-oxabicyclo[2.2.1]heptene derivatives 5, which has five chiral, non-racemic carbon centers, from achiral 1 and racemic 3. The overall efficiency of this process was dependent on the substituent at the C-3 position of 3, and the use of the 3-methylfurfuryl derivatives, (+/-)-3 b and (+/-)-3 f, exclusively produced diastereoselectivity with excellent enantioselectivity to give (2R)-syn-5 (91->/=99 % ee) and (S)-3 (96->/=99 % ee). Similar procedures starting from the 3-bromofurfuryl alcohols (+/-)-3 h-j provided the cycloadducts (2R)-syn-5 j-q (93->/=99 % ee), in which the bromo group was utilized for the installation of bulky substituents to the 7-oxabicycloheptene core.

  8. Synthesis of naringin 6"-ricinoleate using immobilized lipase

    PubMed Central

    2012-01-01

    Abstract Background Naringin is an important flavanone with several biological activities, including antioxidant action. However, this compound shows low solubility in lipophilic preparations, such as is used in the cosmetic and food industries. One way to solve this problem is to add fatty acids to the flavonoid sugar unit using immobilized lipase. However, there is limited research regarding hydroxylation of unsaturated fatty acids as an answer to the low solubility challenge. In this work, we describe the reaction of naringin with castor oil containing ricinoleic acid, castor oil's major fatty acid component, using immobilized lipase from Candida antarctica. Analysis of the 1H and 13 C NMR (1D and 2D) spectra and literature comparison were used to characterise the obtained acyl derivative. Results After allowing the reaction to continue for 120 hours (in acetone media, 50°C), the major product obtained was naringin 6″-ricinoleate. In this reaction, either castor oil or pure ricinoleic acid was used as the acylating agent, providing a 33% or 24% yield, respectively. The chemical structure of naringin 6″-ricinoleate was determined using NMR analysis, including bidimensional (2D) experiments. Conclusion Using immobilized lipase from C. antarctica, the best conversion reaction was observed using castor oil containing ricinoleic acid as the acylating agent rather than an isolated fatty acid. Graphical abstract PMID:22578215

  9. Glycerol acyl-transfer kinetics of a circular permutated Candida antarctica Lipase B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triacylglycerols containing a high abundance of unusual fatty acids, such as y-linolenic acid, or novel arylaliphatic acids, such as ferulic acid, are useful in pharmaceutical and cosmeceutical applications. Candida antarctica lipase B (CALB) is quite often used for non-aqueous synthesis, although ...

  10. Enzymatic modification of cassava starch by bacterial lipase.

    PubMed

    Rajan, Akhila; Abraham, T Emilia

    2006-06-01

    Enzymatic modification of starch using long chain fatty acid makes it thermoplastic suitable for a myriad of industrial applications. An industrial lipase preparation produced by Burkholderia cepacia (lipase PS) was used for modification of cassava starch with two acyl donors, lauric acid and palmitic acid. Reactions performed with palmitic acid by liquid-state and microwave esterification gave a degree of substitution (DS) of 62.08% (DS 1.45) and 42.06% (DS 0.98), respectively. Thermogravimetric analysis showed that onset of decomposition is at a higher temperature (above 600 degrees Celsius) for modified starch than the unmodified starch (280 degrees Celsius). Modified starch showed reduction in alpha-amylase digestibility compared to native starch (76.5-18%). Swelling power lowered for modified starch as esterification renders starch more hydrophobic, making it suitable for biomedical applications as materials for bone fixation and replacements, carriers for controlled release of drugs and bioactive agents. Thus enzymatic esterification is ecofriendly.

  11. Amplification of thermostable lipase genes fragment from thermogenic phase of domestic waste composting process

    NASA Astrophysics Data System (ADS)

    Nurhasanah, Nurbaiti, Santi; Madayanti, Fida; Akhmaloka

    2015-09-01

    Lipases are lipolytic enzymes, catalyze the hydrolysis of fatty acid ester bonds of triglycerides to produce free fatty acids and glycerol. The enzyme is widely used in various fields of biotechnological industry. Hence, lipases with unique properties (e.g.thermostable lipase) are still being explored by variation methods. One of the strategy is by using metagenomic approach to amplify the gene directly from environmental sample. This research was focused on amplification of lipase gene fragment directly from the thermogenic phase of domestic waste composting in aerated trenches. We used domestic waste compost from waste treatment at SABUGA, ITB for the sample. Total chromosomal DNA were directly extracted from several stages at thermogenic phase of compost. The DNA was then directly used as a template for amplification of thermostable lipase gene fragments using a set of internal primers namely Flip-1a and Rlip-1a that has been affixed with a GC clamp in reverse primer. The results showed that the primers amplified the gene from four stages of thermogenic phase with the size of lipase gene fragment of approximately 570 base pairs (bp). These results were further used for Denaturing Gradient Gel Electrophoresis (DGGE) analysis to determine diversity of thermostable lipase gene fragments.

  12. Controlled lid-opening in Thermomyces lanuginosus lipase- An engineered switch for studying lipase function.

    PubMed

    Skjold-Jørgensen, Jakob; Vind, Jesper; Moroz, Olga V; Blagova, Elena; Bhatia, Vikram K; Svendsen, Allan; Wilson, Keith S; Bjerrum, Morten J

    2017-01-01

    Here, we present a lipase mutant containing a biochemical switch allowing a controlled opening and closing of the lid independent of the environment. The closed form of the TlL mutant shows low binding to hydrophobic surfaces compared to the binding observed after activating the controlled switch inducing lid-opening. We directly show that lipid binding of this mutant is connected to an open lid conformation demonstrating the impact of the exposed amino acid residues and their participation in binding at the water-lipid interface. The switch was created by introducing two cysteine residues into the protein backbone at sites 86 and 255. The crystal structure of the mutant shows the successful formation of a disulfide bond between C86 and C255 which causes strained closure of the lid-domain. Control of enzymatic activity and binding was demonstrated on substrate emulsions and natural lipid layers. The locked form displayed low enzymatic activity (~10%) compared to wild-type. Upon release of the lock, enzymatic activity was fully restored. Only 10% binding to natural lipid substrates was observed for the locked lipase compared to wild-type, but binding was restored upon adding reducing agent. QCM-D measurements revealed a seven-fold increase in binding rate for the unlocked lipase. The TlL_locked mutant shows structural changes across the protein important for understanding the mechanism of lid-opening and closing. Our experimental results reveal sites of interest for future mutagenesis studies aimed at altering the activation mechanism of TlL and create perspectives for generating tunable lipases that activate under controlled conditions.

  13. The role of lipases in the removal of dormancy in apple seeds.

    PubMed

    Zarska-Maciejewska, B; St Lewak

    1976-01-01

    It was found that the temperature optimum for apple (Malus domestica Borb.) seed acid lipase is the same as that for seed after-ripening process. The activity of the enzyme occurs between the 40th and 70th days of stratification, whereas the activity of alkaline lipase very low at that time appears about 20 days later. The changes of both enzyme activities were also studied during dark and light culture of embryos isolated from seeds after different times of stratification. Only the alkaline enzyme activity is under the control of light. It was concluded that essentially the same process, i.e. the hydrolysis of reserve fats is catalysed by two different enzymes: acid lipase acting during the cold-mediated breaking of embryo dormancy and alkaline lipase acting during the germination of dormant embryos, thus being under light control.

  14. Characterization of an alkaline lipase from Proteus vulgaris K80 and the DNA sequence of the encoding gene.

    PubMed

    Kim, H K; Lee, J K; Kim, H; Oh, T K

    1996-01-01

    A facultatively anaerobic bacterium producing an extracellular alkaline lipase was isolated from the soil collected near a sewage disposal plant in Korea and identified to be a strain of Proteus vulgaris. The molecular mass of the purified lipase K80 was estimated to be 31 kDa by SDS-PAGE. It was found to be an alkaline enzyme having maximum hydrolytic activity at pH 10, while fairly stable in a wide pH range from 5 to 11. The gene for lipase K80 was cloned in Escherichia coli. Sequence analysis showed an open reading frame of 861 bp coding for a polypeptide of 287 amino acid residues. The deduced amino acid sequence of the lipase gene had 46.3% identity to the lipase from Pseudomonas fragi.

  15. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    PubMed

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  16. Screening, gene sequencing and characterising of lipase for methanolysis of crude palm oil.

    PubMed

    Ratnaningsih, Enny; Handayani, Dewi; Khairunnisa, Fatiha; Ihsanawati; Kurniasih, Sari Dewi; Mangindaan, Bill; Rismayani, Sinta; Kasipah, Cica; Nurachman, Zeily

    2013-05-01

    Staphylococcus sp. WL1 lipase (LipFWS) was investigated for methanolysis of crude palm oil (CPO) at moderate temperatures. Experiments were conducted in the following order: searching for the suitable bacterium for producing lipase from activated sludge, sequencing lipase gene, identifying lipase activity, then synthesising CPO biodiesel using the enzyme. From bacterial screening, one isolated specimen which consistently showed the highest extracellular lipase activity was identified as Staphylococcus sp. WL1 possessing lipFWS (lipase gene of 2,244 bp). The LipFWS deduced was a protein of 747 amino acid residues containing an α/β hydrolase core domain with predicted triad catalytic residues to be Ser474, His704 and Asp665. Optimal conditions for the LipFWS activity were found to be at 55 °C and pH 7.0 (in phosphate buffer but not in Tris buffer). The lipase had a K(M) of 0.75 mM and a V(max) of 0.33 mMmin(-1) on p-nitrophenyl palmitate substrate. The lyophilised crude LipFWS performed as good as the commonly used catalyst potassium hydroxide for methanolysis of CPO. ESI-IT-MS spectra indicated that the CPO was converted into biodiesel, suggesting that free LipFWS is a worthy alternative for CPO biodiesel synthesis.

  17. Overexpression and characterization in Bacillus subtilis of a positionally nonspecific lipase from Proteus vulgaris.

    PubMed

    Lu, Yaping; Lin, Qian; Wang, Jin; Wu, Yufan; Bao, Wuyundalai; Lv, Fengxia; Lu, Zhaoxin

    2010-09-01

    A Proteus vulgaris strain named T6 which produced lipase (PVL) with nonpositional specificity had been isolated in our laboratory. To produce the lipase in large quantities, we cloned its gene, which had an opening reading frame of 864 base pairs and encoded a deduced 287-amino-acid protein. The PVL gene was inserted into the Escherichia coli expression vector pET-DsbA, and active lipase was expressed in E. coli BL21 cells. The secretive expression of PVL gene in Bacillus subtilis was examined. Three vectors, i.e., pMM1525 (xylose-inducible), pMMP43 (constitutive vector, derivative of pMM1525), and pHPQ (sucrose-inducible, constructed based on pHB201), were used to produce lipase in B. subtilis. Recombinant B. subtilis WB800 cells harboring the pHPQ-PVL plasmid could synthesize and secrete the PVL protein in high yield. The lipase activity reached 356.8 U/mL after induction with sucrose for 72 h in shake-flask culture, representing a 12-fold increase over the native lipase activity in P. vulgaris. The characteristics of the heterologously expressed lipase were identical to those of the native one.

  18. Conversion of a Rhizopus chinensis lipase into an esterase by lid swapping.

    PubMed

    Yu, Xiao-Wei; Zhu, Shan-Shan; Xiao, Rong; Xu, Yan

    2014-06-01

    In an effort to explore the feasibility of converting a lipase into an esterase by modifying the lid region, we designed and characterized two novel Rhizopus chinensis lipase variants by lid swapping. The substrate specificity of an R. chinensis lipase was successfully modified toward water-soluble substrates, that is, turned into an esterase, by replacing the hydrophobic lid with a hydrophilic lid from ferulic acid esterase from Aspergillus niger Meanwhile, as a comparison, the lid of R. chinensis lipase was replaced by a hydrophobic lid from Rhizomucor miehei lipase, which did not alter its substrate specificity but led to a 5.4-fold higher catalytic efficiency (k*cat/K*m) toward p-nitrophenyl laurate. Based on the analysis of structure-function relationships, it suggests that the amphipathic nature of the lid is very important for the substrate specificity. This study provides new insight into the structural basis of lipase specificities and a way to tune the substrate preference of lipases.

  19. The Saccharomyces cerevisiae YLL012/YEH1, YLR020/YEH2, and TGL1 genes encode a novel family of membrane-anchored lipases that are required for steryl ester hydrolysis.

    PubMed

    Köffel, René; Tiwari, Rashi; Falquet, Laurent; Schneiter, Roger

    2005-03-01

    Sterol homeostasis in eukaryotic cells relies on the reciprocal interconversion of free sterols and steryl esters. The formation of steryl esters is well characterized, but the mechanisms that control steryl ester mobilization upon cellular demand are less well understood. We have identified a family of three lipases of Saccharomyces cerevisiae that are required for efficient steryl ester mobilization. These lipases, encoded by YLL012/YEH1, YLR020/YEH2, and TGL1, are paralogues of the mammalian acid lipase family, which is composed of the lysosomal acid lipase, the gastric lipase, and four novel as yet uncharacterized human open reading frames. Lipase triple-mutant yeast cells are completely blocked in steryl ester hydrolysis but do not affect the mobilization of triacylglycerols, indicating that the three lipases are required for steryl ester mobilization in vivo. Lipase single mutants mobilize steryl esters to various degrees, indicating partial functional redundancy of the three gene products. Lipase double-mutant cells in which the third lipase is expressed from the inducible GAL1 promoter have greatly reduced steady-state levels of steryl esters, indicating that overexpression of any of the three lipases is sufficient for steryl ester mobilization in vivo. The three yeast enzymes constitute a novel class of membrane-anchored lipases that differ in topology and subcellular localization.

  20. Lipase-catalyzed synthesis of monoacylglycerol in a homogeneous system.

    PubMed

    Monteiro, Julieta B; Nascimento, Maria G; Ninow, Jorge L

    2003-04-01

    The 1,3-regiospecifique lipase, Lipozyme IM, catalyzed the esterification of lauric acid and glycerol in a homogeneous system. To overcome the drawback of the insolubility of glycerol in hexane, which is extensively used in enzymatic synthesis, a mixture of n-hexane/tert-butanol (1:1, v/v) was used leading to a monophasic system. The conversion of lauric acid into monolaurin was 65% in 8 h, when a molar ratio of glycerol to fatty acid (5:1) was used with the fatty acid at 0.1 M, and the phenomenon of acyl migration was minimized.

  1. Biochemical Characterization and Molecular Modeling of Pancreatic Lipase from a Cartilaginous Fish, the Common Stingray (Dasyatis pastinaca).

    PubMed

    Bouchaâla, Emna; BouAli, Madiha; Ben Ali, Yassine; Miled, Nabil; Gargouri, Youssef; Fendri, Ahmed

    2015-05-01

    In order to identify fish enzymes displaying novel biochemical properties, we have chosen the common stingray (Dasyatis pastinaca), one of the most primitive living jawed aquatic vertebrates as a starting biological material to purify a lipase. A stingray pancreatic lipase (SPL) was purified from delipidated pancreatic powder. The SPL molecular weight was around 55 kDa which is slightly higher than that of known classical pancreatic lipases (50 kDa). This increase in the molecular weight was due to glycosylation. Like classic pancreatic lipases, SPL was found to be much more active on short-chain triacylglycerols than on long-chain ones. Natural detergents act as inhibitors of the SPL activity. This inhibition can be reversed by the addition of stingray colipase. Starting from total pancreatic messenger RNAs (mRNAs), partial stingray pancreatic lipase complementary DNA (cDNA) was synthesized by reverse transcriptase-polymerase chain reaction (RT-PCR) and cloned into the PGEM-T vector. Partial amino acid sequence of the SPL was homologous to that of Japanese eel, porcine, and human pancreatic lipases. A 3D structure model of the sequenced part of SPL was built using the 3D structure of porcine pancreatic lipase as template, since both lipases shared an amino acid sequence identity of 60%.

  2. Burkholderia cepacia lipase is a promising biocatalyst for biofuel production.

    PubMed

    Sasso, Francesco; Natalello, Antonino; Castoldi, Simone; Lotti, Marina; Santambrogio, Carlo; Grandori, Rita

    2016-07-01

    Lipases resistant to inhibition and denaturation by methanol are valuable tools for biotechnological applications, in particular for biofuel production. Microbial lipases have attracted a great deal of interest because of their stability at high concentrations of organic solvents. Burkholderia cepacia lipase (BCL) is tested here for robustness towards methanol in terms of conformational stability and catalytic activity in transesterification assays. This lipase turns out to be even more tolerant than the homologous and better characterized enzyme from Burkholderia glumae. BCL unfolding transition, as monitored by far-UV circular dichroism (CD) and intrinsic fluorescence, displays a Tm above 60°C in the presence of 50% methanol. The protein unfolds at low pH, and the organic solvent affects the nature of the denatured state under acidic conditions. The protein performs well in transesterification assays upon prolonged incubations at high methanol concentrations. BCL is highly tolerant to methanol and displays particularly high conformational stability under conditions employed for transesterification reactions. These features depict BCL as a promising enzyme for biofuel industry.

  3. Screening for hydrolytic enzymes reveals Ayr1p as a novel triacylglycerol lipase in Saccharomyces cerevisiae.

    PubMed

    Ploier, Birgit; Scharwey, Melanie; Koch, Barbara; Schmidt, Claudia; Schatte, Jessica; Rechberger, Gerald; Kollroser, Manfred; Hermetter, Albin; Daum, Günther

    2013-12-13

    Saccharomyces cerevisiae, as well as other eukaryotes, preserves fatty acids and sterols in a biologically inert form, as triacylglycerols and steryl esters. The major triacylglycerol lipases of the yeast S. cerevisiae identified so far are Tgl3p, Tgl4p, and Tgl5p (Athenstaedt, K., and Daum, G. (2003) YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J. Biol. Chem. 278, 23317-23323; Athenstaedt, K., and Daum, G. (2005) Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae, are localized to lipid particles. J. Biol. Chem. 280, 37301-37309). We observed that upon cultivation on oleic acid, triacylglycerol mobilization did not come to a halt in a yeast strain deficient in all currently known triacylglycerol lipases, indicating the presence of additional not yet characterized lipases/esterases. Functional proteome analysis using lipase and esterase inhibitors revealed a subset of candidate genes for yet unknown hydrolytic enzymes on peroxisomes and lipid droplets. Based on the conserved GXSXG lipase motif, putative functions, and subcellular localizations, a selected number of candidates were characterized by enzyme assays in vitro, gene expression analysis, non-polar lipid analysis, and in vivo triacylglycerol mobilization assays. These investigations led to the identification of Ayr1p as a novel triacylglycerol lipase of yeast lipid droplets and confirmed the hydrolytic potential of the peroxisomal Lpx1p in vivo. Based on these results, we discuss a possible link between lipid storage, lipid mobilization, and peroxisomal utilization of fatty acids as a carbon source.

  4. Origin, Microbiology, Nutrition, and Pharmacology of D-Amino Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exposure of food proteins to certain processing conditions induces two major chemical changes: racemization of all L-amino acids (LAA) to D-amino acids (DAA) and concurrent formation of crosslinked amino acids such as lysinoalanine (LAL). The diet contains both processing-induced and naturally-form...

  5. Lipase-catalyzed synthesis of cocoa butter equivalent from palm olein and saturated fatty acid distillate from palm oil physical refinery.

    PubMed

    Mohamed, Ibrahim O

    2012-11-01

    Cocoa butter equivalent was prepared by enzymatic acidolysis reaction of substrate consisting of refined palm olein oil and palmitic-stearic fatty acid mixture. The reactions were performed in a batch reactor at a temperature of 60 °C in an orbital shaker operated at 160 RPM. Different mass ratios of substrates were explored and the compositions of the five major triacylglycerol (TAG) of the structured lipids were identified and quantified using cocoa butter-certified reference material IRMM-801. The reaction resulted in production of cococa butter equivent with TAG compostion (POP 26.6 %, POS 42.1, POO 7.5, SOS 18.0 %, and SOO 5.8 %) and melting temperature between 34.7 and 39.6 °C which is close to that of the cocoa butter. The result of this research demonstrated the potential use of saturated fatty acid distillate (palmitic and stearic fatty acids) obtained from palm oil physical refining process into a value-added product.

  6. Deciphering the toxicity of bisphenol a to Candida rugosa lipase through spectrophotometric methods.

    PubMed

    Zhang, Rui; Zhao, Lining; Liu, Rutao

    2016-10-01

    Bisphenol A is widely used in the manufacture of food packaging and beverage containers and can invade our food and cause contamination. Candida rugose lipase has been a versatile enzyme for biocatalysis and biotransformations to produce useful materials for food, pharmaceutical and flavor. The interactions between bisphenol A and Candida rugosa lipase in vitro were studied by UV-vis, steady-state fluorescence, circular dichroism, synchronous fluorescence, light scattering spectra, molecular docking and enzyme activity assay to better understand the toxicity and toxic mechanisms of bisphenol A. The intrinsic fluorescence of the tryptophan amino acid residue and the secondary structure of the globular protein candida rugose lipase were made use of to thoroughly investigate the structural changes caused by bisphenol A. The results of the fluorescence indicated that bisphenol A interacted with candida rugose lipase and made tryptophan be exposed to a hydrophobic environment. Multi-spectroscopic measurements showed that the addition of bisphenol A increased the intrinsic fluorescence of Candida rugosa lipase, loosened its skeleton structure and changed its secondary structure. Also, the increased activity of Candida rugosa lipase revealed that the position or the structure of the catalytic triad of Candida rugosa lipase may be changed. The molecular docking results showed that bisphenol A bound with the residue Serine 209 which could be another reason for the increased activity of Candida rugosa lipase. Moreover, as can be seen from the results of resonance light scattering and dynamic light scattering, the volume of the Candida rugosa lipase was decreased and the lid may be stripped.

  7. Characterization of biotechnologically relevant extracellular lipase produced by Aspergillus terreus NCFT 4269.10

    PubMed Central

    Sethi, Bijay Kumar; Nanda, Prativa Kumari; Sahoo, Santilata

    2016-01-01

    Enzyme production by Aspergillus terreus NCFT 4269.10 was studied under liquid static surface and solid-state fermentation using mustard oil cake as a substrate. The maximum lipase biosynthesis was observed after incubation at 30 °C for 96 h. Among the domestic oils tested, the maximum lipase biosynthesis was achieved using palm oil. The crude lipase was purified 2.56-fold to electrophoretic homogeneity, with a yield of 8.44%, and the protein had a molecular weight of 46.3 kDa as determined by SDS-PAGE. Enzyme characterization confirmed that the purified lipase was most active at pH 6.0, temperature of 50 °C, and substrate concentration of 1.5%. The enzyme was thermostable at 60 °C for 1 h, and the optimum enzyme–substrate reaction time was 30 min. Sodium dodecyl sulfate and commercial detergents did not significantly affect lipase activity during 30-min incubation at 30 °C. Among the metal ions tested, the maximum lipase activity was attained in the presence of Zn2+, followed by Mg2+ and Fe2+. Lipase activity was not significantly affected in the presence of ethylenediaminetetraacetic acid, sodium lauryl sulfate and Triton X-100. Phenylmethylsulfonyl fluoride (1 mM) and the reducing, β-mercaptoethanol significantly inhibited lipase activity. The remarkable stability in the presence of detergents, additives, inhibitors and metal ions makes this lipase unique and a potential candidate for significant biotechnological exploitation. PMID:26887237

  8. [Use of reactions with Limulus amoebocyte lysate (LAL) to determine biological activity of lipopolysaccharides from reference and clinical strains of the Bacteroides fragilis group].

    PubMed

    Rokosz, Alicja; Fiejka, Maria; Górska, Paulina; Aleksandrowicz, Janina; Meisel-Mikołajczyk, Felicja; Łuczak, MirosŁaw

    2002-01-01

    The aim of this study was to determine and compare a biological activity of lipopolysaccharides (LPS) from reference and clinical strains of strictly anaerobic bacteria belonging to the Bacteroides fragilis group (BFG) by means of quantitative, photometric BET (LAL) method with Limulus polyphemus amoebocyte lysate and chromogenic substrate S-2423. Lipopolysaccharides of five BFG species were extracted by Westphal and Jann method (1965) from eight reference and two clinical strains of B. fragilis group. Crude LPS preparations were purified according to the procedure described by Gmeiner (1975) with ultracentrifugation and nuclease treatment. Biological activities of bacterial endotoxins were determined by quantitative BET method with chromogenic substrate S-2423 (ENDOCHROME kit, Charles River Endosafe Ltd., USA). Tests were performed according to the producer's recommendations. E. coli O55:B5 LPS was applied to compare its activity in reaction with LAL reagent with activities of LPS preparations from rods of the Bacteroides genus. Among examined bacterial compounds the most active in BET method was E. coli O55:B5 LPS. Activities of lipopolysaccharides from five species of BFG rods in reaction with Limulus amoebocyte lysate were differentiated. Greater ability to activate LAL proenzyme revealed lipopolysaccharides of these species of the Bacteroides genus, which are important from the clinical point of view--B. fragilis and B. thetaiotaomicron.

  9. Estolides synthesis catalyzed by immobilized lipases.

    PubMed

    Aguieiras, Erika C G; Veloso, Cláudia O; Bevilaqua, Juliana V; Rosas, Danielle O; da Silva, Mônica A P; Langone, Marta A P

    2011-01-01

    Estolides are vegetable-oil-based lubricants obtained from oleic acid or any source of hydroxy fatty acids. In this work, the estolides synthesis from oleic acid and methyl ricinoleate (biodiesel from castor oil), using immobilized commercial lipases (Novozym 435, Lipozyme RM-IM, and Lipozyme TL-IM) in a solvent-free medium was investigated. Acid value was used to monitor the reaction progress by determining the consumption of acid present in the medium. Novozym 435 showed the best performance. Water removal improved the conversion. Novozym 435 was more active at atmospheric pressure. Novozym 435 was reused four times with conversion reaching 15% after the fourth reaction at 80°C. Estolides produced under the reaction conditions used in this work presented good properties, such as, low temperature properties as pour point (-24°C), viscosity (23.9 cSt at 40°C and 5.2 cSt at 100°C), and viscosity index (153).

  10. Estolides Synthesis Catalyzed by Immobilized Lipases

    PubMed Central

    Aguieiras, Erika C. G.; Veloso, Cláudia O.; Bevilaqua, Juliana V.; Rosas, Danielle O.; da Silva, Mônica A. P.; Langone, Marta A. P.

    2011-01-01

    Estolides are vegetable-oil-based lubricants obtained from oleic acid or any source of hydroxy fatty acids. In this work, the estolides synthesis from oleic acid and methyl ricinoleate (biodiesel from castor oil), using immobilized commercial lipases (Novozym 435, Lipozyme RM-IM, and Lipozyme TL-IM) in a solvent-free medium was investigated. Acid value was used to monitor the reaction progress by determining the consumption of acid present in the medium. Novozym 435 showed the best performance. Water removal improved the conversion. Novozym 435 was more active at atmospheric pressure. Novozym 435 was reused four times with conversion reaching 15% after the fourth reaction at 80°C. Estolides produced under the reaction conditions used in this work presented good properties, such as, low temperature properties as pour point (−24°C), viscosity (23.9 cSt at 40°C and 5.2 cSt at 100°C), and viscosity index (153). PMID:21755040

  11. Lipase-catalysed ester synthesis in solvent-free oil system: is it esterification or transesterification?

    PubMed

    Sun, Jingcan; Yu, Bin; Curran, Philip; Liu, Shao-Quan

    2013-12-01

    Ester synthesis was carried out in a solvent-free system of lipase, coconut oil and ethanol or fusel alcohols to ascertain the reaction mechanism. During ester formation, octanoic and decanoic acids increased initially and then decreased gradually, indicating that ester production was a two-step reaction consisting of hydrolysis and esterification, rather than alcoholysis. With ethanol as the alcohol substrate, added butyric acid inhibited ester synthesis. However, when fusel alcohols were used as the alcohol substrate, no significant inhibitory effect by butyric acid was observed. Added octanoic acid did not show any adverse effect on the synthesis of corresponding esters. The results suggest that polarity of the reactants determines lipase activity. This study provides the first evidence on the mechanism of immobilised lipase-catalysed ester synthesis in a solvent-free system involving both hydrolysis and esterification.

  12. Purification and characterization of solvent tolerant lipase from Bacillus sp. for methyl ester production from algal oil.

    PubMed

    Sivaramakrishnan, Ramachandran; Incharoensakdi, Aran

    2016-05-01

    Lipase from Bacillus sp. isolated from the oil contaminated soil was purified by ammonium sulphate precipitation and ion-exchange chromatography with a 5.1-fold purification and 10.5% yield. SDS-PAGE analysis of the enzyme revealed the molecular mass of 24 kDa. The optimum pH and temperature for lipase activity were 6.5 and 37°C, respectively. The isolated lipase was stimulated by pretreatment with methanol and ethanol as well as by divalent metal ions Ca(2+), Mg(2+) and Mn(2+). The enzyme showed high activity towards oleic rich oils. The enzyme immobilized on celite could retain 90% lipase activity after eight cycles. Transesterification of Botryococcus sp. oil using the immobilized enzyme for 40 h resulted in 80% yield of fatty acid methyl esters which had good properties for use as biodiesel. Overall results suggested that the solvent tolerant Bacillus lipase can be a potential biocatalyst for methyl ester production.

  13. Dieselzymes: development of a stable and methanol tolerant lipase for biodiesel production by directed evolution

    PubMed Central

    2013-01-01

    Background Biodiesels are methyl esters of fatty acids that are usually produced by base catalyzed transesterification of triacylglyerol with methanol. Some lipase enzymes are effective catalysts for biodiesel synthesis and have many potential advantages over traditional base or acid catalyzed transesterification. Natural lipases are often rapidly inactivated by the high methanol concentrations used for biodiesel synthesis, however, limiting their practical use. The lipase from Proteus mirabilis is a particularly promising catalyst for biodiesel synthesis as it produces high yields of methyl esters even in the presence of large amounts of water and expresses very well in Escherichia coli. However, since the Proteus mirabilis lipase is only moderately stable and methanol tolerant, these properties need to be improved before the enzyme can be used industrially. Results We employed directed evolution, resulting in a Proteus mirabilis lipase variant with 13 mutations, which we call Dieselzyme 4. Dieselzyme 4 has greatly improved thermal stability, with a 30-fold increase in the half-inactivation time at 50°C relative to the wild-type enzyme. The evolved enzyme also has dramatically increased methanol tolerance, showing a 50-fold longer half-inactivation time in 50% aqueous methanol. The immobilized Dieselzyme 4 enzyme retains the ability to synthesize biodiesel and has improved longevity over wild-type or the industrially used Brukholderia cepacia lipase during many cycles of biodiesel synthesis. A crystal structure of Dieselzyme 4 reveals additional hydrogen bonds and salt bridges in Dieselzyme 4 compared to the wild-type enzyme, suggesting that polar interactions may become particularly stabilizing in the reduced dielectric environment of the oil and methanol mixture used for biodiesel synthesis. Conclusions Directed evolution was used to produce a stable lipase, Dieselzyme 4, which could be immobilized and re-used for biodiesel synthesis. Dieselzyme 4 outperforms

  14. The Role of Mannosylated Enzyme and the Mannose Receptor in Enzyme Replacement Therapy

    PubMed Central

    Du, Hong; Levine, Mark; Ganesa, Chandrashekar; Witte, David P.; Cole, Edward S.; Grabowski, Gregory A.

    2005-01-01

    Lysosomal acid lipase (LAL) is the critical enzyme for the hydrolysis of triglycerides (TGs) and cholesteryl esters (CEs) in lysosomes. LAL defects cause Wolman disease (WD) and CE storage disease (CESD). An LAL null (lal−/−) mouse model closely mimics human WD/CESD, with hepatocellular, Kupffer cell and other macrophage, and adrenal cortical storage of CEs and TGs. The effect on the cellular targeting of high-mannose and complex oligosaccharide–type oligosaccharide chains was tested with human LAL expressed in Pichia pastoris (phLAL) and CHO cells (chLAL), respectively. Only chLAL was internalized by cultured fibroblasts, whereas both chLAL and phLAL were taken up by macrophage mannose receptor (MMR)–positive J774E cells. After intraperitoneal injection into lal−/− mice, phLAL and chLAL distributed to macrophages and macrophage-derived cells of various organs. chLAL was also detected in hepatocytes. Ten injections of either enzyme over 30 d into 2- and 2.5-mo-old lal−/− mice produced normalization of hepatic color, decreased liver weight (50%–58%), and diminished hepatic cholesterol and TG storage. Lipid accumulations in macrophages were diminished with either enzyme. Only chLAL cleared lipids in hepatocytes. Mice double homozygous for the LAL and MMR deficiences (lal−/−;MMR−/−) showed phLAL uptake into Kupffer cells and hepatocytes, reversal of macrophage histopathology and lipid storage in all tissues, and clearance of hepatocytes. These results implicate MMR-independent and mannose 6-phosphate receptor–independent pathways in phLAL uptake and delivery to lysosomes in vivo. In addition, these studies show specific cellular targeting and physiologic effects of differentially oligosaccharide-modified human LALs mediated by MMR and that lysosomal targeting of mannose-terminated glycoproteins occurs and storage can be eliminated effectively without MMR. PMID:16380916

  15. Lipolysis of Visceral Adipocyte Triglyceride by Pancreatic Lipases Converts Mild Acute Pancreatitis to Severe Pancreatitis Independent of Necrosis and Inflammation

    PubMed Central

    Patel, Krutika; Trivedi, Ram N.; Durgampudi, Chandra; Noel, Pawan; Cline, Rachel A.; DeLany, James P.; Navina, Sarah; Singh, Vijay P.

    2016-01-01

    Visceral fat necrosis has been associated with severe acute pancreatitis (SAP) for over 100 years; however, its pathogenesis and role in SAP outcomes are poorly understood. Based on recent work suggesting that pancreatic fat lipolysis plays an important role in SAP, we evaluated the role of pancreatic lipases in SAP-associated visceral fat necrosis, the inflammatory response, local injury, and outcomes of acute pancreatitis (AP). For this, cerulein pancreatitis was induced in lean and obese mice, alone or with the lipase inhibitor orlistat and parameters of AP induction (serum amylase and lipase), fat necrosis, pancreatic necrosis, and multisystem organ failure, and inflammatory response were assessed. Pancreatic lipases were measured in fat necrosis and were overexpressed in 3T3-L1 cells. We noted obesity to convert mild cerulein AP to SAP with greater cytokines, unsaturated fatty acids (UFAs), and multisystem organ failure, and 100% mortality without affecting AP induction or pancreatic necrosis. Increased pancreatic lipase amounts and activity were noted in the extensive visceral fat necrosis of dying obese mice. Lipase inhibition reduced fat necrosis, UFAs, organ failure, and mortality but not the parameters of AP induction. Pancreatic lipase expression increased lipolysis in 3T3-L1 cells. We conclude that UFAs generated via lipolysis of visceral fat by pancreatic lipases convert mild AP to SAP independent of pancreatic necrosis and the inflammatory response. PMID:25579844

  16. Lipase-catalyzed hydrolysis of TG containing acetylenic FA.

    PubMed

    Jie, Marcel S F Lie Ken; Fua, Xun; Lau, Maureen M L; Chye, M L

    2002-10-01

    Hydrolysis of symmetrical acetylenic TG of type AAA [viz., glycerol tri-(4-decynoate), glycerol tri-(6-octadecynoate), glycerol tri-(9-octadecynoate), glycerol tri-(10-undecynoate), and glycerol tri-(13-docosynoate)] in the presence of eight microbial lipases was studied. Novozyme 435 (Candida antarctica), an efficient enzyme for esterification, showed a significant resistance in the hydrolysis of glycerol tri-(9-octadecynoate) and glycerol tri-(13-docosynoate). Hydrolysis of acetylenic TG with Lipolase 100T (Humicola lanuginosa) was rapidly accomplished. Lipase PS-D (Pseudomonas cepacia) showed a fair resistance toward the hydrolysis of glycerol tri-(6-octadecynoate) only, which reflected its ability to recognize the delta6 positional isomer of 18:1. Lipase CCL (Candida cylindracea, syn. C. rugosa) and AY-30 (C. rugosa) were able to catalyze the release of 10-undecynoic acid and 9-octadecynoic acid from the corresponding TG, but less readily the 13-docosynoic acid in the case of glycerol tri-(13-docosynoate). The two lipases CCL and AY-30 were able to distinguish the small difference in structure of fatty acyl moieties in the TG substrate. To confirm this trend, three regioisomers of mixed acetylenic TG of type ABC (containing one each of delta6, delta9, and delta13 acetylenic FA in various positions) were prepared and hydrolyzed with CCL and AY-40. The results reconfirmed the observation that AY-30 and CCL were able to distinguish the slight differences in the molecular structure (position of the acetylenic bond and chain length) of the acyl groups in the TG during the hydrolysis of such TG substrates.

  17. Lipase-catalyzed acidolysis of palm mid fraction oil with palmitic and stearic Fatty Acid mixture for production of cocoa butter equivalent.

    PubMed

    Mohamed, Ibrahim O

    2013-10-01

    Cocoa butter equivalent (CBE) was prepared by enzymatic acidolysis reaction of substrate consisting of refined palm mid fraction oil and palmitic-stearic fatty acid mixture. The reactions were performed in a batch reactor at a temperature of 60 °C in an orbital shaker operated at 160 RPM. Different mass ratios of substrates were explored, and the composition of the five major triacylglycerols (TAGs) of the structured lipids was identified and quantified using cocoa butter certified reference material IRMM-801. The reaction resulted in production of cocoa butter equivalent with the TAGs' composition (1,3-dipalmitoyl-2-oleoyl-glycerol 30.7%, 1-palmitoyl-2-oleoyl-3-stearoyl-rac-glycerol 40.1%, 1-palmitoy-2,3- dioleoyl glycerol 9.0%, 1,3-distearoyl-2-oleoyl-glycerol 14.5 %, and 1-stearoyl-2,3-dioleoyl glycerol 5.7%) and with onset melting temperature of 31.6 °C and peak temperature of 40.4 °C which are close to those of cocoa butter. The proposed kinetics model for the acidolysis reaction presented the experimental data very well. The results of this research showed that palm mid fraction oil TAGs could be restructured to produce value added product such as CBE.

  18. [Identification of catalytically active groups of wheat (Triticum aestivum L.) germ lipase].

    PubMed

    Korneeva, O S; Popova, T N; Kapranchikov, V S; Motina, E A

    2008-01-01

    The active site of wheat germ lipase was studied by the Dixon method and chemical modification. The profile of curve logV = f(pH), pK and ionization heat values, lipase photoinactivation, and lipase inactivation with diethylpyrocarbonate and dicyclohexylcarbodiimide led us to assume that the active site of the enzyme comprises the carboxylic group of aspartic or glutamic acid and the imidazole group of histidine. Apparently, the OH-group of serine plays a key role in catalysis: as a result of incubation for 1 h in the presence of phenylmethylsulfonyl fluoride, the enzyme activity decreased by more than 70%. It is shown that ethylenediamine tetraacetate is a noncompetitive inhibitor of lipase. Wheat germs are very healthful because they are rich in vitamins, essential amino acids, and proteins. For this reason, wheat germs are widely used in food, medical, and feed mill industries [1-3]. However, their use is limited by instability during storage, which is largely determined by the effect of hydrolytic and redox enzymes. Representative enzymes of this group are lipase (glycerol ester hydrolase, EC 3.1.1.3), which hydrolyzes triglycerides of higher fatty acids, and lipoxygenase (EC 1.13.11.13), which oxidizes polyunsaturated higher fatty acids.

  19. Evaluation of Expression of Lipases and Phospholipases of Malassezia restricta in Patients with Seborrheic Dermatitis

    PubMed Central

    Lee, Yang Won; Lee, Shin Yung; Lee, Younghoon

    2013-01-01

    Background Malassezia species (spp.) are cutaneous opportunistic pathogens and associated with various dermatological diseases including seborrheic dermatitis, dandruff and atopic dermatitis. Almost all Malassezia spp. are obligatorily lipid-dependent, which might be caused by lack of the myristic acid synthesis. Recent genome analysis of M. restricta and M. globosa suggested that the absence of a gene encoding fatty acid synthesis might be compensated by abundant genes encoding hydrolases, which produce fatty acids, and that lipases and phospholipases may play a role in virulence of the fungus. Objective The current study aimed to investigate the contribution of lipases and phospholipases in virulence of the M. restricta as being the most frequently isolated Malassezia spp. from the human skin. Methods Swap samples of two different body sites of at least 18 patients with seborrheic dermatitis were obtained and in vivo expression of lipases and phospholipases of M. restricta was analyzed by the gene specific two-step nested RT-PCR. Results The results of the current study suggest that majority of the patients display expression of lipase RES_0242. Conclusion These data imply a possible role of lipase in the host environment to produce free fatty acids for the fungus. PMID:24003273

  20. Synthesis of 4-nitrophenyl acetate using molecular sieve-immobilized lipase from Bacillus coagulans.

    PubMed

    Raghuvanshi, Shilpa; Gupta, Reena

    2009-03-01

    Extracellular lipase from Bacillus coagulans BTS-3 was immobilized on (3 A x 1.5 mm) molecular sieve. The molecular sieve showed approximately 68.48% binding efficiency for lipase (specific activity 55 IU mg(-1)). The immobilized enzyme achieved approx 90% conversion of acetic acid and 4-nitrophenol (100 mM each) into 4-nitrophenyl acetate in n-heptane at 65 degrees C in 3 h. When alkane of C-chain length other than n-heptane was used as the organic solvent, the conversion of 4-nitrophenol and acetic acid was found to decrease. About 88.6% conversion of the reactants into ester was achieved when reactants were used at molar ratio of 1:1. The immobilized lipase brought about conversion of approximately 58% for esterification of 4-nitrophenol and acetic acid into 4-nitrophenyl acetate at a temperature of 65 degrees C after reuse for 5 cycles.

  1. Lipase assay in soils by copper soap colorimetry.

    PubMed

    Saisuburamaniyan, N; Krithika, L; Dileena, K P; Sivasubramanian, S; Puvanakrishnan, R

    2004-07-01

    A simple and sensitive method for the estimation of lipase activity in soils is reported. In this method, 50mg of soil is incubated with emulsified substrate, the fatty acids liberated are treated with cupric acetate-pyridine reagent, and the color developed is measured at 715 nm. Use of olive oil in this protocol leads to an estimation of true lipase activity in soils. The problem of released fatty acids getting adsorbed onto the soil colloids is obviated by the use of isooctane, and separate standards for different soils need not be developed. Among the various surfactants used for emulsification, polyvinyl alcohol is found to be the most effective. Incubation time of 20 min, soil concentration of 50 mg, pH 6.5, and incubation temperature of 37 degrees C were found to be the most suitable conditions for this assay. During the process of enrichment of the soils with oil, interference by the added oil is avoided by the maintenance of a suitable control, wherein 50 mg of soil is added after stopping the reaction. This assay is sensitive and it could be adopted to screen for lipase producers from enriched soils and oil-contaminated soils before resorting to isolation of the microbes by classical screening methods.

  2. Biodiesel production with special emphasis on lipase-catalyzed transesterification.

    PubMed

    Bisen, Prakash S; Sanodiya, Bhagwan S; Thakur, Gulab S; Baghel, Rakesh K; Prasad, G B K S

    2010-08-01

    The production of biodiesel by transesterification employing acid or base catalyst has been industrially accepted for its high conversion and reaction rates. Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have led to the search for alternative production methods. Recently, enzymatic transesterification involving lipases has attracted attention for biodiesel production as it produces high purity product and enables easy separation from the byproduct, glycerol. The use of immobilized lipases and immobilized whole cells may lower the overall cost, while presenting less downstream processing problems, to biodiesel production. The present review gives an overview on biodiesel production technology and analyzes the factors/methods of enzymatic approach reported in the literature and also suggests suitable method on the basis of evidence for industrial production of biodiesel.

  3. Covalent immobilization of Pseudomonas cepacia lipase on semiconducting materials

    NASA Astrophysics Data System (ADS)

    Fernandez, Renny Edwin; Bhattacharya, Enakshi; Chadha, Anju

    2008-05-01

    Lipase from Pseudomonas cepacia was covalently immobilized on crystalline silicon, porous silicon and silicon nitride surfaces. The various stages of immobilization were characterized using FTIR (Fourier transform infrared) spectroscopy. The surface topography of the enzyme immobilized surfaces was investigated using scanning electron microscopy (SEM). The quantity of the immobilized active enzyme was estimated by the para-nitrophenyl palmitate (pNPP) assay. The immobilized lipase was used for triglyceride hydrolysis and the acid produced was detected by a pH sensitive silicon nitride surface as a shift in the C- V (capacitance-voltage) characteristics of an electrolyte-insulator-semiconductor capacitor (EISCAP) thus validating the immobilization method for use as a biosensor.

  4. Ultrasound-assisted hydrolysis of waste cooking oil catalyzed by homemade lipases.

    PubMed

    Mulinari, J; Venturin, B; Sbardelotto, M; Dall Agnol, A; Scapini, T; Camargo, A F; Baldissarelli, D P; Modkovski, T A; Rossetto, V; Dalla Rosa, C; Reichert, F W; Golunski, S M; Vieitez, I; Vargas, G D L P; Dalla Rosa, C; Mossi, A J; Treichel, H

    2017-03-01

    This study aimed to evaluate the waste cooking oil (WCO) hydrolysis in ultrasonic system using lipase as catalyst. Lipase was produced by the fungus Aspergillus niger via solid state fermentation (SSF) using canola meal as substrate. Prior to the hydrolysis reaction, the lipase behavior when subjected to ultrasound was evaluated by varying the temperature of the ultrasonic bath, the exposure time and the equipment power. Having optimized the treatment on ultrasound, the WCO hydrolysis reaction was carried out by evaluating the oil:water ratio and the lipase concentration. For a greater homogenization of the reaction medium, a mechanical stirrer at 170rpm was used. All steps were analyzed by experimental design technique. The lipase treatment in ultrasound generated an increase of about 320% in its hydrolytic activity using 50% of ultrasonic power for 25min. at 45°C. The results of the experimental design conducted for ultrasound-assisted hydrolysis showed that the best condition was using an oil:water ratio of 1:3 (v:v) and enzyme concentration of 15% (v/v), generating 62.67μmol/mL of free fatty acids (FFA) in 12h of reaction. Thus, the use of Aspergillus niger lipase as a catalyst for hydrolysis reaction of WCO can be considered as a possible pretreatment technique of the oil in order to accelerate its degradation.

  5. Effect of lipase addition on hydrolysis and biomethane production of Chinese food waste.

    PubMed

    Meng, Ying; Li, Sang; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Li, Xiujin

    2015-03-01

    The lipase obtained from Aspergillums niger was applied to promote the hydrolysis of food waste for achieving high biomethane production. Two strategies of lipase additions were investigated. One (Group A) was to pre-treat food waste to pre-decompose lipid to fatty acids before anaerobic digestion, and another one (Group B) was to add lipase to anaerobic digester directly to degrade lipid inside digester. The lipase was used at the concentrations of 0.1%, 0.5%, and 1.0% (w/v). The results showed that Group A achieved higher biomethane production, TS and VS reductions than those of Group B. At 0.5% lipase concentration, Group A obtained experimental biomethane yield of 500.1 mL/g VS(added), 4.97-26.50% higher than that of Group B. The maximum Bd of 73.8% was also achieved in Group A. Therefore, lipase pre-treatment strategy is recommended. This might provide one of alternatives for efficient biomethane production from food waste and mitigating environmental impact associated.

  6. Application of a statistically enhanced, novel, organic solvent stable lipase from Bacillus safensis DVL-43.

    PubMed

    Kumar, Davender; Parshad, Rajinder; Gupta, Vijay Kumar

    2014-05-01

    This paper presents the molecular identification of a newly isolated bacterial strain producing a novel and organic solvent stable lipase, statistical optimization of fermentation medium, and its application in the synthesis of ethyl laurate. On the basis of nucleotide homology and phylogenetic analysis of 16S rDNA sequence, the strain was identified as Bacillus safensis DVL-43 (Gen-bank accession number KC156603). Optimization of fermentation medium using Plackett-Burman design and response surface methodology led to 11.4-fold increase in lipase production. The lipase from B. safensis DVL-43 exhibited excellent stability in various organic solvents. The enzyme retained 100% activity after 24h incubation in xylene, DMSO and toluene, each solvent being used at a concentration of 25% (v/v). The use of partially purified DVL-43 lipase as catalyst in the synthesis of ethyl laurate, an esterification product of lauric acid and ethanol, resulted in 80% esterification in 12h under optimized conditions. The formation of ethyl laurate was confirmed using TLC and (1)H NMR. Organic solvent stable lipases exhibiting potential application in enzymatic esterification are in great demand in flavor, fine chemicals and pharma industries. We could not find any report on lipase production from B. safensis strain and its application in esterification.

  7. Lipase-nanoporous gold biocomposite modified electrode for reliable detection of triglycerides.

    PubMed

    Wu, Chao; Liu, Xueying; Li, Yufei; Du, Xiaoyu; Wang, Xia; Xu, Ping

    2014-03-15

    For triglycerides biosensor design, protein immobilization is necessary to create the interface between the enzyme and the electrode. In this study, a glassy carbon electrode (GCE) was modified with lipase-nanoporous gold (NPG) biocomposite (denoted as lipase/NPG/GCE). Due to highly conductive, porous, and biocompatible three-dimensional structure, NPG is suitable for enzyme immobilization. In cyclic voltammetry experiments, the lipase/NPG/GCE bioelectrode displayed surface-confined reaction in a phosphate buffer solution. Linear responses were obtained for tributyrin concentrations ranging from 50 to 250 mg dl(-1) and olive oil concentrations ranging from 10 to 200 mg dl(-1). The value of apparent Michaelis-Menten constant for tributyrin was 10.67 mg dl(-1) and the detection limit was 2.68 mg dl(-1). Further, the lipase/NPG/GCE bioelectrode had strong anti-interference ability against urea, glucose, cholesterol, and uric acid as well as a long shelf-life. For the detection of triglycerides in human serum, the values given by the lipase/NPG/GCE bioelectrode were in good agreement with those of an automatic biochemical analyzer. These properties along with a long self-life make the lipase/NPG/GCE bioelectrode an excellent choice for the construction of triglycerides biosensor.

  8. Immobilization of Yarrowia lipolytica lipase Ylip2 for the biocatalytic synthesis of phytosterol ester in a water activity controlled reactor.

    PubMed

    Cui, Caixia; Guan, Nan; Xing, Chen; Chen, Biqiang; Tan, Tianwei

    2016-10-01

    In this work, phytosterol ester was synthesized using Yarrowia lipolytica lipase Ylip2 that had been immobilized on inorganic support in a solvent-free system and reacted in a computer-aided water activity controlled bioreactor. The immobilization of Ylip2 on celite led to a remarkable increase in the phytosterol conversion compared to that of free lipase. An investigation of the reaction conditions were oleic acid as the fatty acid variety, 10,000U/g substrate, and a temperature of 50°C for phytosterol ester synthesis. Controlling of the water activity at a set point was accomplished by the introduction of dry air through the reaction medium at a digital feedback controlled flow rate. For the esterification of phytosterol ester, a low (15%) water activity resulted in a considerable improvement in phytosterol conversion (91.1%) as well as a decreased reaction time (78h). Furthermore, Ylip2 lipase immobilized on celite retained 90% esterification activity for the synthesis of phytosterol oleate after reused 8 cycles, while free lipase was only viable for 5 batches with 90% esterification activity remained. Finally, the phytosterol oleate space time yield increased from 1.65g/L/h with free lipase to 2.53g/L/h with immobilized lipase. These results illustrate that the immobilized Yarrowia lipolytica lipase Ylip2 in a water activity controlled reactor has great potential for the application in phytosterol esters synthesis.

  9. Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production.

    PubMed

    Tran, Dang-Thuan; Chen, Ching-Lung; Chang, Jo-Shu

    2012-04-15

    In this work, lipase produced from an isolated strain Burkholderia sp. C20 was immobilized on magnetic nanoparticles to catalyze biodiesel synthesis. Core-shell nanoparticles were synthesized by coating Fe(3)O(4) core with silica shell. The nanoparticles treated with dimethyl octadecyl [3-(trimethoxysilyl) propyl] ammonium chloride were used as immobilization supporters. The Burkholderia lipase was then bound to the synthesized nanoparticles for immobilization. The protein binding efficiency on alkyl-functionalized Fe(3)O(4)-SiO(2) was estimated as 97%, while the efficiency was only 76% on non-modified Fe(3)O(4)-SiO(2). Maximum adsorption capacity of lipase on alkyl-functionalized Fe(3)O(4)-SiO(2) was estimated as 29.45 mg g(-1) based on Langmuir isotherm. The hydrolytic kinetics (using olive oil as substrate) of the lipase immobilized on alkyl-grafted Fe(3)O(4)-SiO(2) followed Michaelis-Menten model with a maximum reaction rate and a Michaelis constant of 6251 Ug(-1) and 3.65 mM, respectively. Physical and chemical properties of the nanoparticles and the immobilized lipase were characterized by Brunauer-Emmett-Teller (BET) analysis, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FT-IR). Moreover, the immobilized lipase was used to catalyze the transesterification of olive oil with methanol to produce fatty acid methyl esters (FAMEs), attaining a FAMEs conversion of over 90% within 30 h in batch operation when 11 wt% immobilized lipase was employed. The immobilized lipase could be used for ten cycles without significant loss in its transesterification activity.

  10. A gene encoding a new cold-active lipase from an Antarctic isolate of Penicillium expansum.

    PubMed

    Mohammed, Suja; Te'o, Junior; Nevalainen, Helena

    2013-08-01

    Cold-active lipases are of significant interest as biocatalysts in industrial processes. We have identified a lipase that displayed activity towards long carbon-chain-p-nitrophenyl substrates (C12-C18) at 25 °C from the culture supernatant of an Antarctic Penicillium expansum strain assigned P. expansum SM3. Zymography revealed a protein band of around 30 kDa with activity towards olive oil. DNA fragments of a lipase gene designated as lipPE were isolated from the genomic DNA of P. expansum SM3 by genomic walking PCR. Subsequently, the complete genomic lipPE gene was amplified using gene-specific primers designed from the 5'- and 3'-regions. Reverse transcription PCR was used to amplify the lipPE cDNA. The deduced amino acid sequence consisted of 285 residues that included a predicted signal peptide. Three peptides identified by LC/MS/MS analysis of the proteins in the culture supernatant of P. expansum were also present in the deduced amino acid sequence of the lipPE gene suggesting that this gene encoded the lipase identified by initial zymogram activity analysis. Full analysis of the nucleotide and the deduced amino acid sequences indicated that the lipPE gene encodes a novel P. expansum lipase. The lipPE gene was expressed in E. coli for further characterization of the enzyme with a view of assessing its suitability for industrial applications.

  11. Expression of an Organic Solvent Stable Lipase from Staphylococcus epidermidis AT2

    PubMed Central

    Rahman, Raja Noor Zaliha Raja Abd.; Kamarudin, Nor Hafizah Ahmad; Yunus, Jalimah; Salleh, Abu Bakar; Basri, Mahiran

    2010-01-01

    An organic solvent tolerant lipase gene from Staphylococcus epidermidis AT2 was successfully cloned and expressed with pTrcHis2 in E. coli TOP10. Sequence analysis revealed an open reading frame (ORF) of 1,933 bp in length which coded for a polypeptide of 643 amino acid residues. The polypeptide comprised of a signal peptide (37 amino acids), pro-peptide and a mature protein of 390 amino acids. Expression of AT2 lipase resulted in an 18-fold increase in activity, upon the induction of 0.6 mM IPTG after a 10 h incubation period. Interestingly, this lipase was stable in various organic solvents (25% (v/v), mainly toluene, octanol, p-xylene and n-hexane). Literature shows that most of the organic solvent stable bacterial lipases were produced by Pseudomonas sp. and Bacillus sp., but very few from Staphylococcus sp. This lipase demonstrates great potential to be employed in various industrial applications. PMID:20957088

  12. Hydrolysis of fluorescent pyrenetriacylglycerols by lipases from human stomach and gastric juice.

    PubMed

    Nègre, A; Salvayre, R; Dousset, N; Rogalle, P; Dang, Q Q; Douste-Blazy, L

    1988-11-25

    Fluorescent triacylglycerols containing pyrenedecanoic (P10) and pyrenebutanoic (P4) acids were synthesized and their hydrolysis by lipases from human gastric juice and stomach homogenate was investigated. The existence in stomach homogenate of four different lipolytic enzymes hydrolyzing fluorescent triacylglycerols is suggested by the comparison of various enzymatic properties: acyl chain length specificity, heat inactivation and effect of detergents (Triton X-100 and taurocholate), serum albumin, diethyl-para-nitrophenyl phosphate (E600) and other inhibitors. (1) The acid pH4-lipase hydrolyzes P10-triacylglycerols but not P4-triacylglycerol and exhibited the characteristic properties of the lysosomal lipase: the maximal activating effect of detergents occurs at relatively high concentrations (the substrate/detergent optimal molar ratios were 1:5 and 1:25 for triacylglycerols/taurocholate and triacylglycerols/Triton X-100, respectively); its activity was strongly inhibited by para-chloromercuribenzoate (2.5 mmol/l), but was not significantly affected by serum albumin and E600 (10(-2) mmol/l). (2) The neutral pH7-lipase hydrolyzes P10-triacylglycerols but not P4-triacylglycerol. It is resistant to E600 and heat-stable, similarly to the acid pH4-lipase, but it is well discriminated from the acid enzyme by its substrate/detergent optimal molar ratios (1:2 and 1:3 for triacylglycerols/taurocholate and triacylglycerols/Triton X-100, respectively), whereas higher detergent concentrations, optimal for the acid lipase, are strongly inhibitory for the neutral enzyme. (3) The pH5-lipase present in gastric juice as well as in stomach homogenate exhibited properties obviously discriminating it from the other lipolytic enzymes from stomach homogenate: broad substrate specificity for P10- as well as P4-triacylglycerols, activation by low concentrations of amphiphiles (with optimal ratios triacylglycerols/taurocholate, triacylglycerols/taurocholate and triacylglycerols

  13. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme preparation obtained from edible forestomach tissue of calves, kids, or lambs, or from animal pancreatic tissue. The enzyme preparation may be produced as a tissue preparation or as an aqueous extract. Its characterizing...

  14. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme... tissue. The enzyme preparation may be produced as a tissue preparation or as an aqueous extract. Its characterizing enzyme activity is that of a triacylglycerol hydrolase (EC 3.1.1.3). (b) The ingredient meets...

  15. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme... tissue. The enzyme preparation may be produced as a tissue preparation or as an aqueous extract. Its characterizing enzyme activity is that of a triacylglycerol hydrolase (EC 3.1.1.3). (b) The ingredient meets...

  16. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme... tissue. The enzyme preparation may be produced as a tissue preparation or as an aqueous extract. Its characterizing enzyme activity is that of a triacylglycerol hydrolase (EC 3.1.1.3). (b) The ingredient meets...

  17. 21 CFR 184.1415 - Animal lipase.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme... tissue. The enzyme preparation may be produced as a tissue preparation or as an aqueous extract. Its characterizing enzyme activity is that of a triacylglycerol hydrolase (EC 3.1.1.3). (b) The ingredient meets...

  18. Lipase production by yeasts from extra virgin olive oil.

    PubMed

    Ciafardini, G; Zullo, B A; Iride, A

    2006-02-01

    Newly produced olive oil has an opalescent appearance due to the presence of solid particles and micro-drops of vegetation water from the fruits. Some of our recent microbiological research has shown that a rich micro-flora is present in the suspended fraction of the freshly produced olive oil capable of improving the quality of the oil through the hydrolysis of the oleuropein. Present research however has, for the first time, demonstrated the presence of lipase-positive yeasts in some samples of extra virgin olive oil which can lower the quality of the oil through the hydrolysis of the triglycerides. The tests performed with yeasts of our collection, previously isolated from olive oil, demonstrated that two lipase-producing yeast strains named Saccharomyces cerevisiae 1525 and Williopsis californica 1639 were able to hydrolyse different specific synthetic substrates represented by p-nitrophenyl stearate, 4-nitrophenyl palmitate, tripalmitin and triolein as well as olive oil triglycerides. The lipase activity in S. cerevisiae 1525 was confined to the whole cells, whereas in W. californica 1639 it was also detected in the extracellular fraction. The enzyme activity in both yeasts was influenced by the ratio of the aqueous to the organic phase reaching its maximum value in S. cerevisiae 1525 when the water added to the olive oil was present in a ratio of 0.25% (v/v), whereas in W. californica 1639 the optimal ratio was 1% (v/v). Furthermore, the free fatty acids of olive oil proved to be good inducers of lipase activity in both yeasts. The microbiological analysis carried out on commercial extra virgin olive oil, produced in four different geographic areas, demonstrated that the presence of lipase-producing yeast varied from zero to 56% of the total yeasts detected, according to the source of oil samples. The discovery of lipase-positive yeasts in some extra virgin olive oils leads us to believe that yeasts are able to contribute in a positive or negative way towards

  19. Gene cloning and catalytic characterization of cold-adapted lipase of Photobacterium sp. MA1-3 isolated from blood clam.

    PubMed

    Kim, Young Ok; Khosasih, Vivia; Nam, Bo-Hye; Lee, Sang-Jun; Suwanto, Antonius; Kim, Hyung Kwoun

    2012-12-01

    A lipase-producing Photobacterium strain (MA1-3) was isolated from the intestine of a blood clam caught at Namhae, Korea. The lipase gene was cloned by shotgun cloning and encoded 340 amino acids with a molecular mass of 38,015 Da. It had a very low sequence identity with other bacterial lipases, with the exception of that of Photobacterium lipolyticum M37 (83.2%). The MA1-3 lipase was produced in soluble form when Escherichia coli cells harboring the gene were cultured at 18°C. Its optimum temperature and pH were 45°C and pH 8.5, respectively. Its activation energy was calculated to be 2.69 kcal/mol, suggesting it to be a cold-adapted lipase. Its optimum temperature, temperature stability, and substrate specificity were quite different from those of M37 lipase, despite the considerable sequence similarities. Meanwhile, MA1-3 lipase performed a transesterification reaction using olive oil and various alcohols including methanol, ethanol, 1-propanol, and 1-butanol. In the presence of t-butanol as a co-solvent, this lipase produced biodiesel using methanol and plant or waste oils. The highest biodiesel conversion yield (73%) was achieved using waste soybean oil and methanol at a molar ratio of 1:5 after 12 h using 5 units of lipase.

  20. [Gene cloning, expression and characterization of two cold-adapted lipases from Penicillium sp. XMZ-9].

    PubMed

    Zheng, Xiaomei; Wu, Ningfeng; Fan, Yunliu

    2012-04-01

    Cold-adapted lipases are attractive biocatalysts that can be used at low temperatures as additives in food products, laundry detergents, and the organic synthesis of chiral intermediates. Cold-adapted lipases are normally found in microorganisms that survive at low temperatures. A fungi strain XMZ-9 exhibiting lipolytic activity was isolated from the soil of glaciers in Xinjiang by the screening plates using 1% tributyrin as the substrate and Victoria blue as an indicator. Based on morphological characteristics and phylogenetic comparisons of its 18S rDNA, the strain was identified as Penicillium sp. The partial nucleotide sequences of these two lipase related genes, LipA and LipB, were obtained by touchdown PCR using the degenerate primers designed according to the conservative domains of lipase. The full-length sequences of two genes were obtained by genome walking. The gene lipA contained 1 014 nucleotides, without any intron, comprising one open reading frame encoding a polypeptide of 337 amino acids. The gene lipB comprised two introns (61 bp and 49 bp) and a coding region sequence of 1 122 bp encoding a polypeptide of 373 amino acids, cDNA sequences of both lipA and lipB were cloned and expressed in Escherichia coli BL21 (DE3). The recombinant LipA was mostly expressed as inclusion bodies, and recovered lipase activity at low temperature after in vitro refolded by dilution. Differently, the recombinant LipB was expressed in the soluble form and then purified by Ni-NTA affinity chromatography Column. It showed high lipase activity at low temperature. These results indicated that they were cold-adapted enzymes. This study paves the way for the further research of these cold-adapted lipases for application in the industry.

  1. The production and characterization of a new active lipase from Acremonium alcalophilum using a plant bioreactor

    PubMed Central

    2013-01-01

    Background Microorganisms are the most proficient decomposers in nature, using secreted enzymes in the hydrolysis of lignocellulose. As such, they present the most abundant source for discovery of new enzymes. Acremonium alcalophilum is the only known cellulolytic fungus that thrives in alkaline conditions and can be cultured readily in the laboratory. Its optimal conditions for growth are 30°C and pH 9.0-9.2. The genome sequence of Acremonium alcalophilum has revealed a large number of genes encoding biomass-degrading enzymes. Among these enzymes, lipases are interesting because of several industrial applications including biofuels, detergent, food processing and textile industries. Results We identified a lipA gene in the genome sequence of Acremonium alcalophilum, encoding a protein with a predicted lipase domain with weak sequence identity to characterized enzymes. Unusually, the predicted lipase displays ≈ 30% amino acid sequence identity to both feruloyl esterase and lipase of Aspergillus niger. LipA, when transiently produced in Nicotiana benthamiana, accumulated to over 9% of total soluble protein. Plant-produced recombinant LipA is active towards p-nitrophenol esters of various carbon chain lengths with peak activity on medium-chain fatty acid (C8). The enzyme is also highly active on xylose tetra-acetate and oat spelt xylan. These results suggests that LipA is a novel lipolytic enzyme that possesses both lipase and acetylxylan esterase activity. We determined that LipA is a glycoprotein with pH and temperature optima at 8.0 and 40°C, respectively. Conclusion Besides being the first heterologous expression and characterization of a gene coding for a lipase from A. alcalophilum, this report shows that LipA is very versatile exhibiting both acetylxylan esterase and lipase activities potentially useful for diverse industry sectors, and that tobacco is a suitable bioreactor for producing fungal proteins. PMID:23915965

  2. Cross-validated stable-isotope dilution GC-MS and LC-MS/MS assays for monoacylglycerol lipase (MAGL) activity by measuring arachidonic acid released from the endocannabinoid 2-arachidonoyl glycerol.

    PubMed

    Kayacelebi, Arslan Arinc; Schauerte, Celina; Kling, Katharina; Herbers, Jan; Beckmann, Bibiana; Engeli, Stefan; Jordan, Jens; Zoerner, Alexander A; Tsikas, Dimitrios

    2017-03-15

    2-Arachidonoyl glycerol (2AG) is an endocannabinoid that activates cannabinoid (CB) receptors CB1 and CB2. Monoacylglycerol lipase (MAGL) inactivates 2AG through hydrolysis to arachidonic acid (AA) and glycerol, thus modulating the activity at CB receptors. In the brain, AA released from 2AG by the action of MAGL serves as a substrate for cyclooxygenases which produce pro-inflammatory prostaglandins. Here we report stable-isotope GC-MS and LC-MS/MS assays for the reliable measurement of MAGL activity. The assays utilize deuterium-labeled 2AG (d8-2AG; 10μM) as the MAGL substrate and measure deuterium-labeled AA (d8-AA; range 0-1μM) as the MAGL product. Unlabelled AA (d0-AA, 1μM) serves as the internal standard. d8-AA and d0-AA are extracted from the aqueous buffered incubation mixtures by ethyl acetate. Upon solvent evaporation the residue is reconstituted in the mobile phase prior to LC-MS/MS analysis or in anhydrous acetonitrile for GC-MS analysis. LC-MS/MS analysis is performed in the negative electrospray ionization mode by selected-reaction monitoring the mass transitions [M-H](-)→[M-H - CO2](-), i.e., m/z 311→m/z 267 for d8-AA and m/z 303→m/z 259 for d0-AA. Prior to GC-MS analysis d8-AA and d0-AA were converted to their pentafluorobenzyl (PFB) esters by means of PFB-Br. GC-MS analysis is performed in the electron-capture negative-ion chemical ionization mode by selected-ion monitoring the ions [M-PFB](-), i.e., m/z 311 for d8-AA and m/z 303 for d0-AA. The GC-MS and LC-MS/MS assays were cross-validated. Linear regression analysis between the concentration (range, 0-1μM) of d8-AA measured by LC-MS/MS (y) and that by GC-MS (x) revealed a straight line (r(2)=0.9848) with the regression equation y=0.003+0.898x, indicating a good agreement. In dog liver, we detected MAGL activity that was inhibitable by the MAGL inhibitor JZL-184. Exogenous eicosatetraynoic acid is suitable as internal standard for the quantitative determination of d8-AA produced from d8

  3. Biochemical characterization of Yarrowia lipolytica LIP8, a secreted lipase with a cleavable C-terminal region.

    PubMed

    Kamoun, Jannet; Schué, Mathieu; Messaoud, Wala; Baignol, Justine; Point, Vanessa; Mateos-Diaz, Eduardo; Mansuelle, Pascal; Gargouri, Youssef; Parsiegla, Goetz; Cavalier, Jean-François; Carrière, Frédéric; Aloulou, Ahmed

    2015-02-01

    Yarrowia lipolytica is a lipolytic yeast possessing 16 paralog genes coding for lipases. Little information on these lipases has been obtained and only the major secreted lipase, namely YLLIP2, had been biochemically and structurally characterized. Another secreted lipase, YLLIP8, was isolated from Y. lipolytica culture medium and compared with the recombinant enzyme produced in Pichia pastoris. N-terminal sequencing showed that YLLIP8 is produced in its active form after the cleavage of a signal peptide. Mass spectrometry analysis revealed that YLLIP8 recovered from culture medium lacks a C-terminal part of 33 amino acids which are present in the coding sequence. A 3D model of YLLIP8 built from the X-ray structure of the homologous YLLIP2 lipase shows that these truncated amino acids in YLLIP8 belong to an additional C-terminal region predicted to be mainly helical. Western blot analysis shows that YLLIP8 C-tail is rapidly cleaved upon enzyme secretion since both cell-bound and culture supernatant lipases lack this extension. Mature recombinant YLLIP8 displays a true lipase activity on short-, medium- and long-chain triacylglycerols (TAG), with an optimum activity at alkaline pH on medium chain TAG. It has no apparent regioselectivity in TAG hydrolysis, thus generating glycerol and FFAs as final lipolysis products. YLLIP8 properties are distinct from those of the 1,3-regioselective YLLIP2, acting optimally at acidic pH. These lipases are tailored for complementary roles in fatty acid uptake by Y. lipolytica.

  4. Preliminary studies on immobilization of lipase using chicken eggshell

    NASA Astrophysics Data System (ADS)

    Salleh, S.; Serri, N. A.; Hena, S.; Tajarudin, H. A.

    2016-06-01

    A few advantages of enzyme immobilization are reusability of expensive enzyme, improvement of stability and activity compared to crude enzyme. Various organic components can be used as carrier for enzyme immobilization such as chicken eggshell. It can be used as a carrier for immobilization as its mineral component mostly contains of calcium carbonate. In the present study, Tributyrin method was used to test enzyme activity of Rhizomucour Miehei, Candida Antarctica and Candida Rugosa. Rhizomucour Miehei shows the highest enzyme activity (360.8 mol/min/mL lipase) and was used in further experiment. Experiment was continued to study incubation time for lipase immobilization on eggshell (1-4 hours) and reaction time of esterification of sugar ester (0-72 hours). Two hours incubation time for lipase immobilization was observed and gives the highest yield of sugar ester (78.13%). Fructose and stearic acid as substrate was used for the production of sugar ester. The highest percentage of sugar ester production was shown at 36 hours of reaction time.

  5. Discrimination against diacylglycerol ethers in lipase-catalysed ethanolysis of shark liver oil.

    PubMed

    Fernández, Óscar; Vázquez, Luis; Reglero, Guillermo; Torres, Carlos F

    2013-01-15

    Lipase-catalysed ethanolysis of squalene-free shark liver oil was investigated. The mentioned shark liver oil was comprised mainly of diacylglycerol ether and triacylglycerols. In order to test discrimination against diacylglycerol ether, up to 10 different lipases were compared. The ratio of oil to ethanol and lipase stability were also evaluated. Surprisingly, lipase from Pseudomonas stutzeri was the fastest biocatalyst among all assayed, although poor discrimination against diacylglycerol ether was observed. The best results in terms of selectivity and stability were obtained with immobilised lipase from Candida antarctica (Novozym 435). Ethanolysis reaction after 24h in the presence of Novozym 435 produced total disappearance of triacylglycerol and a final reaction mixture comprised mainly of diacylglycerol ethers (10.6%), monoacylglycerol ethers (32.9%) and fatty acid ethyl esters (46.0%). In addition, when an excess of ethanol was used, diacylglycerol ethers completely disappeared after 15 h, giving a final product mainly composed of monoacylglycerol ethers (36.6%) and fatty acid ethyl esters (46.4%).

  6. Biodiesel production using lipase immobilized on epoxychloropropane-modified Fe3O4 sub-microspheres.

    PubMed

    Zhang, Qian; Zheng, Zhong; Liu, Changxia; Liu, Chunqiao; Tan, Tianwei

    2016-04-01

    Superparamagnetic Fe3O4 sub-microspheres with diameters of approximately 200 nm were prepared via a solvothermal method, and then modified with epoxychloropropane. Lipase was immobilized on the modified sub-microspheres. The immobilized lipase was used in the production of biodiesel fatty acid methyl esters (FAMEs) from acidified waste cooking oil (AWCO). The effects of the reaction conditions on the biodiesel yield were investigated using a combination of response surface methodology and three-level/three-factor Box-Behnken design (BBD). The optimum synthetic conditions, which were identified using Ridge max analysis, were as follows: immobilized lipase:AWCO mass ratio 0.02:1, fatty acid:methanol molar ratio 1:1.10, hexane:AWCO ratio 1.33:1 (mL/g), and temperature 40 °C. A 97.11% yield was obtained under these conditions. The BBD and experimental data showed that the immobilized lipase could generate biodiesel over a wide temperature range, from 0 to 40 °C. Consistently high FAME yields, in excess of 80%, were obtained when the immobilized lipase was reused in six replicate trials at 10 and 20 °C.

  7. A broad pH range indicator-based spectrophotometric assay for true lipases using tributyrin and tricaprylin[S

    PubMed Central

    Camacho-Ruiz, María de los Angeles; Mateos-Díaz, Juan Carlos; Carrière, Frédéric; Rodriguez, Jorge A.

    2015-01-01

    A continuous assay is proposed for the screening of acidic, neutral, or alkaline lipases using microtiter plates, emulsified short- and medium-chain TGs, and a pH indicator. The lipase activity measurement is based on the decrease of the pH indicator optical density due to protonation which is caused by the release of FFAs during the hydrolysis of TGs and thus acidification. Purified lipases with distinct pH optima and an esterase were used to validate the method. The rate of lipolysis was found to be linear with time and proportional to the amount of enzyme added in each case. Specific activities measured with this microplate assay method were lower than those obtained by the pH-stat technique. Nevertheless, the pH-dependent profiles of enzymatic activity were similar with both assays. In addition, the substrate preference of each enzyme tested was not modified and this allowed discriminating lipase and esterase activities using tributyrin (low water solubility) and tricaprylin (not water soluble) as substrates. This continuous lipase assay is compatible with a high sample throughput and can be applied for the screening of lipases and lipase inhibitors from biological samples. PMID:25748441

  8. High-throughput screening method for lipases/esterases.

    PubMed

    Mateos-Díaz, Eduardo; Rodríguez, Jorge Alberto; de Los Ángeles Camacho-Ruiz, María; Mateos-Díaz, Juan Carlos

    2012-01-01

    High-throughput screening (HTS) methods for lipases and esterases are generally performed by using synthetic chromogenic substrates (e.g., p-nitrophenyl, resorufin, and umbelliferyl esters) which may be misleading since they are not their natural substrates (e.g., partially or insoluble triglycerides). In previous works, we have shown that soluble nonchromogenic substrates and p-nitrophenol (as a pH indicator) can be used to quantify the hydrolysis and estimate the substrate selectivity of lipases and esterases from several sources. However, in order to implement a spectrophotometric HTS method using partially or insoluble triglycerides, it is necessary to find particular conditions which allow a quantitative detection of the enzymatic activity. In this work, we used Triton X-100, CHAPS, and N-lauroyl sarcosine as emulsifiers, β-cyclodextrin as a fatty acid captor, and two substrate concentrations, 1 mM of tributyrin (TC4) and 5 mM of trioctanoin (TC8), to improve the test conditions. To demonstrate the utility of this method, we screened 12 enzymes (commercial preparations and culture broth extracts) for the hydrolysis of TC4 and TC8, which are both classical substrates for lipases and esterases (for esterases, only TC4 may be hydrolyzed). Subsequent pH-stat experiments were performed to confirm the preference of substrate hydrolysis with the hydrolases tested. We have shown that this method is very useful for screening a high number of lipases (hydrolysis of TC4 and TC8) or esterases (only hydrolysis of TC4) from wild isolates or variants generated by directed evolution using nonchromogenic triglycerides directly in the test.

  9. Adipose Triglyceride Lipase, Not Hormone-Sensitive Lipase, Is the Primary Lipolytic Enzyme in Fasting Elephant Seals (Mirounga angustirostris).

    PubMed

    Fowler, Melinda A; Costa, Daniel P; Crocker, Daniel E; Shen, Wen-Jun; Kraemer, Fredric B

    2015-01-01

    Little is known about the mechanisms that allow capital breeders to rapidly mobilize large amounts of body reserves. Northern elephant seals (Mirounga angustirostris) utilize fat reserves for maternal metabolism and to create high fat milk for the pup. Hormone-sensitive lipase (HSL) has been hypothesized to be an important lipolytic enzyme in fasting seals, but the activity of HSL and adipose triglyceride lipase (ATGL) has not been quantified in fasting adult seals, nor has their relationship to milk lipid content been assessed. Blubber and milk samples were obtained from 18 early lactation and 19 late lactation females, as well as blubber from five early and five late molting female seals. Blubber lipolytic activity was assessed with radiometric assays. HSL activity was negligible in seal blubber at all fasting stages. Total triglyceride lipase activity was stable among early and late lactation and early molt but increased in late molting seals. Relative abundance of ATGL protein increased across fasting, but neither activity nor relative protein levels were related to circulating nonesterified fatty acids or milk lipid content, suggesting the possibility of other regulatory pathways between lipolytic activity and milk lipid content. These results demonstrate that HSL is not the primary lipolytic enzyme in fasting adult female seals and that ATGL contributes more to lipolysis than HSL.

  10. Alterations in endocannabinoid tone following chemotherapy-induced peripheral neuropathy: Effects of endocannabinoid deactivation inhibitors targeting fatty-acid amide hydrolase and monoacylglycerol lipase in comparison to reference analgesics following cisplatin treatment

    PubMed Central

    Guindon, Josée; Lai, Yvonne; Takacs, Sara M.; Bradshaw, Heather B.; Hohmann, Andrea G.

    2012-01-01

    SUMMARY Cisplatin, a platinum-derived chemotherapeutic agent, produces mechanical and cold allodynia reminiscent of chemotherapy-induced neuropathy in humans. The endocannabinoid system represents a novel target for analgesic drug development. The endocannabinoid consists of endocannabinoids (e.g. anandamide (AEA) and 2-arachidonoylglycerol (2-AG)), cannabinoid receptors (e.g. CB1 and CB2) and the enzymes controlling endocannabinoid synthesis and degradation. AEA is hydrolyzed by fatty-acid amide hydrolase (FAAH) whereas 2-AG is hydrolyzed primarily by monoacylglycerol lipase (MGL). We compared effects of brain permeant (URB597) and impermeant (URB937) inhibitors of FAAH with an irreversible inhibitor of MGL (JZL184) on cisplatin-evoked behavioral hypersensitivities. Endocannabinoid modulators were compared with agents used clinically to treat neuropathy (i.e. the opioid analgesic morphine, the anticonvulsant gabapentin and the tricyclic antidepressant amitriptyline). Cisplatin produced robust mechanical and cold allodynia but did not alter responsiveness to heat. After neuropathy was fully established, groups received acute intraperitoneal (i.p.) injections of vehicle, amitriptyline (30 mg/kg), gabapentin (100 mg/kg), morphine (6 mg/kg), URB597 (0.1 or 1 mg/kg), URB937 (0.1 or 1 mg/kg) or JZL184 (1, 3 or 8 mg/kg). Pharmacological specificity was assessed by coadministering each endocannabinoid modulator with either a CB1 (AM251 3 mg/kg), CB2 (AM630 3 mg/kg), TRPV1 (AMG9810 3 mg/kg) or TRPA1 (HC030031 8 mg/kg) antagonist. Effects of cisplatin on endocannabinoid levels and transcription of receptors (CB1, CB2, TRPV1, TRPA1) and enzymes (FAAH, MGL) linked to the endocannabinoid system were also assessed. URB597, URB937, JZL184 and morphine reversed cisplatin-evoked mechanical and cold allodynia to pre-cisplatin levels. By contrast, gabapentin only partially reversed the neuropathy while amitriptyline, administered acutely, was ineffective. CB1 or CB2 antagonist

  11. Advances in lipase-catalyzed esterification reactions.

    PubMed

    Stergiou, Panagiota-Yiolanda; Foukis, Athanasios; Filippou, Michalis; Koukouritaki, Maria; Parapouli, Maria; Theodorou, Leonidas G; Hatziloukas, Efstathios; Afendra, Amalia; Pandey, Ashok; Papamichael, Emmanuel M

    2013-12-01

    Lipase-catalyzed esterification reactions are among the most significant chemical and biochemical processes of industrial relevance. Lipases catalyze hydrolysis as well as esterification reactions. Enzyme-catalyzed esterification has acquired increasing attention in many applications, due to the significance of the derived products. More specifically, the lipase-catalyzed esterification reactions attracted research interest during the past decade, due to an increased use of organic esters in biotechnology and the chemical industry. Lipases, as hydrolyzing agents are active in environments, which contain a minimum of two distinct phases, where all reactants are partitioned between these phases, although their distribution is not fixed and changes as the reaction proceeds. The kinetics of the lipase-catalyzed reactions is governed by a number of factors. This article presents a thorough and descriptive evaluation of the applied trends and perspectives concerning the enzymatic esterification, mainly for biofuel production; an emphasis is given on essential factors, which affect the lipase-catalyzed esterification reaction. Moreover, the art of using bacterial and/or fungal strains for whole cell biocatalysis purposes, as well as carrying out catalysis by various forms of purified lipases from bacterial and fungal sources is also reviewed.

  12. Purification of extracellular lipase from Pseudomonas aeruginosa.

    PubMed Central

    Stuer, W; Jaeger, K E; Winkler, U K

    1986-01-01

    Lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) was excreted by Pseudomonas aeruginosa PAC1R during the late logarithmic growth phase. Characterization of cell-free culture supernatants by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of significant amounts of lipopolysaccharide, part of which seemed to be tightly bound to lipase. After concentration of culture supernatants by ultrafiltration, lipase-lipopolysaccharide complexes were dissociated by treatment with EDTA-Tris buffer and subsequent sonication in the presence of the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. The solubilized lipase was purified by isoelectric focusing in an agarose gel containing the same detergent; the lipase activity appeared in a single peak corresponding to a distinct band in the silver-stained gel. The isoelectric point was 5.8. Analysis of purified lipase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and scanning revealed an apparent molecular weight of 29,000 and a specific activity of 760 mu kat/mg of protein. Estimations based on these data showed that a single P. aeruginosa cell excreted about 200 molecules of lipase, each having a molecular activity of 2.2 X 10(4) per s. Images PMID:3096967

  13. Synthesis of hepatic lipase in liver and extrahepatic tissues

    SciTech Connect

    Doolittle, M.H.; Wong, H.; Davis, R.C.; Schotz, M.C.

    1987-11-01

    Immunoprecipitations of hepatic lipase from pulse-labeled rat liver have demonstrated that hepatic lipase is synthesized in two distinct molecular weight forms, HL-I (Mr = 51,000) and HL-II (Mr = 53,000). Both forms are immunologically related to purified hepatic lipase, but not to lipoprotein lipase. HL-I and HL-II are also kinetically related and represent different stages of intracellular processing. Glycosidase experiments suggest that HL-I is the high mannose microsomal form of the mature, sialylated HL-II enzyme. Hepatic lipase activity was detected in liver and adrenal gland but was absent in brain, heart, kidney, testes, small intestine, lung, and spleen. The adrenal and liver lipase activities were inhibited in a similar dose-dependent manner by hepatic lipase antiserum. Immunoblot analysis of partially purified adrenal lipase showed an immunoreactive band co-migrating with HL-II at 53,000 daltons which was absent in a control blot treated with preimmune serum. Adrenal lipase and authentic hepatic lipase yielded similar peptide maps, confirming the presence of the lipase in adrenal gland. However, incorporation of L-(/sup 35/S)methionine into immunoprecipitable hepatic lipase was not detected in this tissue. In addition, Northern blot analysis showed the presence of hepatic lipase mRNA in liver but not adrenal gland. The presence of hepatic lipase in adrenal gland in the absence of detectable synthesis or messenger suggests that hepatic lipase originates in liver and is transported to this extrahepatic site.

  14. Cloning and characterization of newly isolated lipase from Enterobacter sp. Bn12.

    PubMed

    Farrokh, Parisa; Yakhchali, Bagher; Karkhane, Ali Asghar

    2014-01-01

    A mesophilic Enterobacter sp. Bn12 producing an alkaline thermostable lipase was isolated from soil in Tehran, Iran. The lipase gene (ELBn12) was identified from a genomic library. Sequence analysis of the DNA fragment revealed an open reading frame of 879 bp encoding a lipase with a molecular mass of 31.3 kDa. The deduced amino acid sequence showed 96% identity with a lipase of Enterobacter sp. Ag1 and the identity of their DNA sequences was 88.9%. ELBn12 belongs to the lipase subfamily I.1 and its catalytic triad consists of Ser82, Asp237 and His259. The lipase was expressed in Escherichia coli (BL21) pLysS and partially purified by anion exchange chromatography. The maximum activity of ELBn12 was obtained at temperature of 60 °C and pH 8.0 towards tricaprylin (C8) and its specific activity was around 2900 U/mg. ELBn12 was stable within a broad pH range from 6.0 to 11.0. The enzyme showed high stability in both polar and nonpolar organic solvents at 50% (v/v). The lipase activity was enhanced in the presence of 10 mM of Ca(2+), Mg(2+) and K(+), while heavy metals (Fe(3+) and Zn(2+)) had strong inhibitory effect. ELBn12 showed high activity in the presence of 1% (w/v) nonionic surfactants, however ionic surfactants inhibited the lipolytic activity. ELBn12 characteristics show that it has a potential to be used in various industrial processes.

  15. Cloning and characterization of newly isolated lipase from Enterobacter sp. Bn12

    PubMed Central

    Farrokh, Parisa; Yakhchali, Bagher; Karkhane, Ali Asghar

    2014-01-01

    A mesophilic Enterobacter sp. Bn12 producing an alkaline thermostable lipase was isolated from soil in Tehran, Iran. The lipase gene (ELBn12) was identified from a genomic library. Sequence analysis of the DNA fragment revealed an open reading frame of 879 bp encoding a lipase with a molecular mass of 31.3 kDa. The deduced amino acid sequence showed 96% identity with a lipase of Enterobacter sp. Ag1 and the identity of their DNA sequences was 88.9%. ELBn12 belongs to the lipase subfamily I.1 and its catalytic triad consists of Ser82, Asp237 and His259. The lipase was expressed in Escherichia coli (BL21) pLysS and partially purified by anion exchange chromatography. The maximum activity of ELBn12 was obtained at temperature of 60 °C and pH 8.0 towards tricaprylin (C8) and its specific activity was around 2900 U/mg. ELBn12 was stable within a broad pH range from 6.0 to 11.0. The enzyme showed high stability in both polar and nonpolar organic solvents at 50% (v/v). The lipase activity was enhanced in the presence of 10 mM of Ca2+, Mg2+ and K+, while heavy metals (Fe3+ and Zn2+) had strong inhibitory effect. ELBn12 showed high activity in the presence of 1% (w/v) nonionic surfactants, however ionic surfactants inhibited the lipolytic activity. ELBn12 characteristics show that it has a potential to be used in various industrial processes. PMID:25242958

  16. Cloning, sequencing and characterization of lipase from a polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipase gene (lip) of a biodegradable polyhydroxyalkanoate- (PHA-) synthesizing bacterium P. resinovorans NRRL B-2649 was cloned, sequenced and characterized by using consensus primers and PCR-based genome walking method. The ORF of the putative Lip (314 amino acids) and its active site (Ser111, Asp...

  17. Enzymatic Synthesis of Isopropyl Acetate by Immobilized Bacillus cereus Lipase in Organic Medium

    PubMed Central

    Verma, Madan Lal; Azmi, Wamik; Kanwar, Shamsher Singh

    2011-01-01

    Selective production of fragrance fatty acid ester from isopropanol and acetic acid has been achieved using silica-immobilized lipase of Bacillus cereus MTCC 8372. A purified thermoalkalophilic extracellular lipase was immobilized by adsorption onto the silica. The effects of various parameters like molar ratio of substrates (isopropanol and acetic acid; 25 to 100 mM), concentration of biocatalyst (25–125 mg/mL), reaction time, reaction temperature, organic solvents, molecular sieves, and initial water activity were studied for optimal ester synthesis. Under optimized conditions, 66.0 mM of isopropyl acetate was produced when isopropanol and acetic acid were used at 100 mM: 75 mM in 9 h at 55°C in n-heptane under continuous shaking (160 rpm) using bound lipase (25 mg). Addition of molecular sieves (3 Å × 1.5 mm) resulted in a marked increase in ester synthesis (73.0 mM). Ester synthesis was enhanced by water activity associated with pre-equilibrated saturated salt solution of LiCl. The immobilized lipase retained more than 50% of its activity after the 6th cycle of reuse. PMID:21603222

  18. Oyster mushroom’s lipase enzyme entrapment on calcium alginate as biocatalyst in the synthesis of lauryl diethanolamide

    NASA Astrophysics Data System (ADS)

    Wijayati, N.; Masubah, K.; Supartono

    2017-02-01

    Lipase is an enzyme with large biotechnology applications, such as hydrolysis in the food industry, applications in chemical industry, synthesis of polymers and surfactants. Lipase was isolated from oyster mushroom with activity 0,93 U/mg and protein content 1,1234 mg/mL. Lipase was immobilized by entrapment method in a matrix of Ca-alginate. This report describes that we have developed for the synthesis of lauryl diethanolamide The result showed that the optimum condition of lipase immobilization was achieved on 3% Na-alginate solution with protein content 0,84 mg/mL and the activity 3,33 U/mg. An amide (22.911%) formed from the amidation of lauric acid and diethanolamine.

  19. Effect of salt solutions applied during wheat conditioning on lipase activity and lipid stability of whole wheat flour.

    PubMed

    Doblado-Maldonado, Andrés F; Arndt, Elizabeth A; Rose, Devin J

    2013-09-01

    Lipolytic activity in whole wheat flour (WWF) is largely responsible for the loss in baking quality during storage. Metal ions affect the activity of seed lipases; however, no previous studies have applied this information to WWF in a way that reduces lipase activity, is practical for commercial manufacture, and uses common food ingredients. NaCl, KCl, Ca-propionate, or FeNa-ethylenediaminetetraacetic acid (FeNa-EDTA) were applied to hard red winter (HRW) and hard white spring (HWS) wheats during conditioning as aqueous solutions at concentrations that would be acceptable in baked goods. Salts affected lipase activity to different degrees depending on the type of wheat used. Inhibition was greater in HRW compared with HWS WWF, probably due to higher lipase activity in HRW wheat. In HRW WWF, 1% NaCl (flour weight) reduced hydrolytic and oxidative rancidity and resulted in higher loaf volume and lower firmness than untreated WWF after 24 weeks of storage.

  20. Cocoa pod husk: A new source of CLEA-lipase for preparation of low-cost biodiesel: An optimized process.

    PubMed

    Khanahmadi, Soofia; Yusof, Faridah; Chyuan Ong, Hwai; Amid, Azura; Shah, Harmen

    2016-08-10

    Enzymatic reactions involving lipases as catalyst in transesterification can be an excellent alternative to produce environmental-friendly biodiesel. In this study, lipase extracted from Cocoa Pod Husk (CPH) and immobilized through cross linked enzyme aggregate (CLEA) technology catalysed the transesterification of Jatropha curcas oil successfully. Face centered central composite design (FCCCD) under response surface methodology (RSM) was used to get the optimal conditions of 3% (w/w) enzyme loading, 4h reaction time and 1:6 oil/ethanol ratio to achieve the highest conversion of free fatty acid and glycerides into biodiesel (93%). The reusability of CLEA-lipase was tested and after seven cycles, the conversion percentage reduced to 58%. The results revealed that CLEA lipase from CPH is a potential catalyst for biodiesel production.

  1. Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome.

    PubMed

    Privé, Florence; Newbold, C Jamie; Kaderbhai, Naheed N; Girdwood, Susan G; Golyshina, Olga V; Golyshin, Peter N; Scollan, Nigel D; Huws, Sharon A

    2015-07-01

    Improving the health beneficial fatty acid content of meat and milk is a major challenge requiring an increased understanding of rumen lipid metabolism. In this study, we isolated and characterized rumen bacterial lipases/esterases using functional metagenomics. Metagenomic libraries were constructed from DNA extracted from strained rumen fluid (SRF), solid-attached bacteria (SAB) and liquid-associated rumen bacteria (LAB), ligated into a fosmid vector and subsequently transformed into an Escherichia coli host. Fosmid libraries consisted of 7,744; 8,448; and 7,680 clones with an average insert size of 30 to 35 kbp for SRF, SAB and LAB, respectively. Transformants were screened on spirit blue agar plates containing tributyrin for lipase/esterase activity. Five SAB and four LAB clones exhibited lipolytic activity, and no positive clones were found in the SRF library. Fosmids from positive clones were pyrosequenced and twelve putative lipase/esterase genes and two phospholipase genes retrieved. Although the derived proteins clustered into diverse esterase and lipase families, a degree of novelty was seen, with homology ranging from 40 to 78% following BlastP searches. Isolated lipases/esterases exhibited activity against mostly short- to medium-chain substrates across a range of temperatures and pH. The function of these novel enzymes recovered in ruminal metabolism needs further investigation, alongside their potential industrial uses.

  2. From Structure to Catalysis: Recent Developments in the Biotechnological Applications of Lipases

    PubMed Central

    Anobom, Cristiane D.; Pinheiro, Anderson S.; De-Andrade, Rafael A.; Aguieiras, Erika C. G.; Andrade, Guilherme C.; Moura, Marcelo V.; Almeida, Rodrigo V.; Freire, Denise M.

    2014-01-01

    Microbial lipases are highly appreciated as biocatalysts due to their peculiar characteristics such as the ability to utilize a wide range of substrates, high activity and stability in organic solvents, and regio- and/or enantioselectivity. These enzymes are currently being applied in a variety of biotechnological processes, including detergent preparation, cosmetics and paper production, food processing, biodiesel and biopolymer synthesis, and the biocatalytic resolution of pharmaceutical derivatives, esters, and amino acids. However, in certain segments of industry, the use of lipases is still limited by their high cost. Thus, there is a great interest in obtaining low-cost, highly active, and stable lipases that can be applied in several different industrial branches. Currently, the design of specific enzymes for each type of process has been used as an important tool to address the limitations of natural enzymes. Nowadays, it is possible to “order” a “customized” enzyme that has ideal properties for the development of the desired bioprocess. This review aims to compile recent advances in the biotechnological application of lipases focusing on various methods of enzyme improvement, such as protein engineering (directed evolution and rational design), as well as the use of structural data for rational modification of lipases in order to create higher active and selective biocatalysts. PMID:24783219

  3. Neutrophil chemotaxis by Propionibacterium acnes lipase and its inhibition.

    PubMed Central

    Lee, W L; Shalita, A R; Suntharalingam, K; Fikrig, S M

    1982-01-01

    The chemoattraction of Propionibacterium acnes lipase for neutrophils and the effect of lipase inhibitor and two antibiotic agents on the chemotaxis were evaluated. Of the various fractions tested, partially purified lipase (fraction 2c) was the most active cytotaxin produced by P. acnes. Serum mediators were not required for the generation of chemotaxis by lipase in vitro. Diisopropyl phosphofluoridate at low concentration (10(-4) mM) completely inhibited lipase activity as well as polymorphonuclear leukocyte chemotaxis generated by lipase. Tetracycline hydrochloride and erythromycin base at concentrations of 10(-1) mM and 1 mM, respectively, caused 100% inhibition of PMN migration toward lipase or zymosan-activated serum. The inhibiting activity of the antibiotics was directed against cells independently of any effect on lipase. Chemotaxis by P. acnes lipase suggests a wider role for this enzyme in the inflammatory process and the pathogenesis of acne vulgaris. Images PMID:7054130

  4. Lipase coated clusters of iron oxide nanoparticles for biodiesel synthesis in a solvent free medium.

    PubMed

    Mukherjee, Joyeeta; Gupta, Munishwar Nath

    2016-06-01

    Methyl or ethyl esters of long chain fatty acids are called biodiesel. Biodiesel is synthesized by the alcoholysis of oils/fats. In this work, lipase from Thermomyces lanuginosus was precipitated over the clusters of Fe3O4 nanoparticles. This biocatalyst preparation was used for obtaining biodiesel from soybean oil. After optimization of both immobilization conditions and process parameters, complete conversion to biodiesel was obtained in 3h and on lowering the enzyme amount, as little as 1.7U of lipase gave 96% conversion in 7h. The solvent free media with oil:ethanol (w/w) of 1:4 and 40°C with 2% (w/w) water along with 20% (w/w) silica (for facilitating acyl migration) were employed for reaching this high % of conversion. The biocatalyst design enables one to use a rather small amount of lipase. This should help in switching over to a biobased production of biodiesel.

  5. Lipase catalyzed synthesis of silicone polyesters.

    PubMed

    Poojari, Yadagiri; Clarson, Stephen J

    2009-11-28

    Immobilized Candida antarctica lipase B (CALB) was successfully employed as a catalyst to synthesize silicone aromatic polyesters by the transesterification of dimethyl terephthalate with alpha,omega-bis(hydroxyalkyl)-terminated poly(dimethylsiloxane) in toluene under mild reaction conditions.

  6. Lipase and phospholipase biosensors: a review.

    PubMed

    Herrera-López, Enrique J

    2012-01-01

    Recent advances in the field of biology, electronics, and nanotechnology have improved the development of biosensors. A biosensor is a device composed of a biological recognition element and a sensor element. Biosensor applications are becoming increasingly important in areas such as biotechnology, pharmaceutics, food, and environment. Lipases and phospholipases are enzymes which have been used widely in food industry, oleochemical industry, biodegradable polymers, detergents, and other applications. In the medical industry, lipases and phospholipases are used as diagnostic tools to detect triglycerides, cholesterol, and phospholipids levels in blood samples. Therefore, the development of lipase and phospholipase biosensors is of paramount importance in the clinical area. This chapter introduces the reader into the preliminaries of biosensor and reviews recent developments of lipase and phospholipase biosensors.

  7. MfLIP1, a gene encoding an extracellular lipase of the lipid-dependent fungus Malassezia furfur.

    PubMed

    Brunke, Sascha; Hube, Bernhard

    2006-02-01

    Malassezia furfur is a dimorphic fungus and a member of the normal cutaneous microflora of humans. However, it is also a facultative pathogen, associated with a wide range of skin diseases. One unusual feature of M. furfur is an absolute dependency on externally provided lipids which the fungus hydrolyses by lipolytic activity to release fatty acids necessary for both growth and pathogenicity. In this study, the cloning and characterization of the first gene encoding a secreted lipase of M. furfur possibly associated with this activity are reported. The gene, MfLIP1, shows high sequence similarity to other known extracellular lipases, but is not a member of a lipase gene family in M. furfur. MfLIP1 consists of 1464 bp, encoding a protein with a molecular mass of 54.3 kDa, a conserved lipase motif and an N-terminal signal peptide of 26 aa. By using a genomic library, two other genes were identified flanking MfLIP1, one of them encoding a putative secreted catalase, the other a putative amine oxidase. The cDNA of MfLIP1 was expressed in Pichia pastoris and the biochemical properties of the recombinant lipase were analysed. MfLip1 is most active at 40 degrees C and the pH optimum was found to be 5.8. The lipase hydrolysed lipids, such as Tweens, frequently used as the source of fatty acids in M. furfur media, and had minor esterase activity. Furthermore, the lipase is inhibited by different bivalent metal ions. This is the first molecular description of a secreted lipase from M. furfur.

  8. Production of lipase from Pseudomonas gessardii using blood tissue lipid and thereof for the hydrolysis of blood cholesterol and triglycerides and lysis of red blood cells.

    PubMed

    Ramani, K; Sekaran, G

    2012-08-01

    The study demonstrates the production of lipase (LIP) from Pseudomonas gessardii using blood tissue lipid as the substrate for the hydrolysis of blood cholesterol and triglycerides. The lipase was purified with the specific activity of 828 U/mg protein and the molecular weight of 56 kDa. The maximum lipase activity was observed at the pH 7.0 and the temperature 37 °C. The amino acid composition of purified lipase was determined by HPLC. The mesoporous activated carbon (MAC) was used for the immobilization of lipase for the repeated use of the enzyme catalyst. The K (m) value of immobilized lipase (MAC-LIP) and the free lipase (LIP) was 0.182 and 1.96 mM, respectively. The V (max) value of MAC-LIP and LIP was 1.33 and 1.26 mM/min, respectively. The MAC and MAC-LIP were characterized by scanning electron microscopy (SEM). The hydrolysis study showed 78 and 100% hydrolysis of triglycerides and cholesterol, respectively, for LIP and 84 and 100% hydrolysis of triglycerides and cholesterol, respectively, for MAC-LIP at the reaction time of 1 h. The effect of lipase on cell wall lysis was carried out on the RBCs of blood plasma. Interestingly, 99.9% lysis of RBCs was observed within 2 h. SEM images and phase contrast microscopy confirmed the lysis of RBCs. This work provides a potential biocatalyst for the hydrolysis of blood cholesterol and triglycerides.

  9. A lipase with broad solvent stability from Burkholderia cepacia RQ3: isolation, characteristics and application for chiral resolution of 1-phenylethanol.

    PubMed

    Xie, Chengjia; Wu, Bin; Qin, Song; He, Bingfang

    2016-01-01

    Using both polar and low polar organic solvents (DMSO and toluene) as screening stress, a solvent-stable bacterium Burkholderia cepacia RQ3 was newly isolated. An organic solvent-stable lipase from strain RQ3 was purified in a single step with 50.1% recovery by hydrophobic chromatography. The purified lipase was homogenous on SDS-PAGE and had an apparent molecular mass of 33 kDa. The gene of lipase RQ3 with an open reading frame of 1095 bp encoding 364-amino acid residues was cloned. The optimal pH and temperature for lipase activity were 9.0 and 40 °C. The lipase was stable in a wide pH range of 6.0-10.0 and at temperature below 50 °C. Strikingly, all the tested hydrophilic and hydrophobic organic solvents significantly extended the half-life of lipase RQ3 compared with that in a solvent-free system, which indicated that lipase RQ3 showed a broad solvent tolerance to various organic solvents. The lipase demonstrated excellent enantioselective transesterification toward the (S)-1-phenylethanol with a theoretical conversion yield of 50% and ee p of 99.9%, which made it an exploitable biocatalyst for organic synthesis and pharmaceutical industries.

  10. Synthesis of glycerides containing n-3 fatty acids and conjugated linoleic acid by solvent-free acidolysis of fish oil.

    PubMed

    Garcia, H S; Arcos, J A; Ward, D J; Hill, C G

    2000-12-05

    Menhaden oil, a rich source of n-3 fatty acids, was interesterified with conjugated linoleic acid (CLA) in a reaction medium composed solely of substrates and either free or immobilized commercial lipase preparations. Of five lipases tested, an immobilized preparation from Mucor miehei provided the fastest rate of incorporation of CLA into fish oil acylglycerols; however, and as observed with most of the lipases utilized, a significant proportion of the n-3 fatty acid residues were liberated in the process. A soluble lipase from Candida rugosa converted free CLA to acylglycerol residues while leaving the n-3 fatty acid residues virtually untouched. Even though the reaction rate was slower for this enzyme than for the other four lipase preparations, the specificity of the free C. rugosa lipase gives it the greatest potential for commercial use in preparing fish oils enriched in CLA residues but still retaining their original n-3 fatty acid residues.

  11. Utilization of agroindustrial residues for lipase production by solid-state fermentation

    PubMed Central

    Damaso, Mônica Caramez Triches; Passianoto, Moisés Augusto; de Freitas, Sidinéa Cordeiro; Freire, Denise Maria Guimarães; Lago, Regina Celi Araujo; Couri, Sonia

    2008-01-01

    The aim of this work was to produce lipases by solid-state fermentation (SSF) using, as substrate, agroindustrial residue supplemented with by-products from corn oil refining process or olive oil. For a group of ten fungi strains selected in the first steps, the lipase activity obtained by SSF varied from 7.7 to 58.6 U/g of dry substrate (gds). Among the evaluated strains, the Aspergillus niger mutant 11T53A14 was selected by presenting the best enzymatic production. For the fermentation tests, two substrates were also investigated: wheat bran and corn cob, both supplemented with olive oil. The best results were obtained with wheat bran. Additionally, three industrial by-products from corn oil refining (soapstock, stearin and fatty acids) were evaluated as substitutes to the olive oil in the function of lipases production inducer. Among them, soapstock and stearin were the best inducers, whereas fatty acids presented an inhibitor effect. The highest lipase activities using soapstock, stearin and fatty acids were 62.7 U/gds, 37.7 U/gds and 4.1 U/gds, respectively. PMID:24031288

  12. Homogenization and lipase treatment of milk and resulting methyl ketone generation in blue cheese.

    PubMed

    Cao, Mingkai; Fonseca, Leorges M; Schoenfuss, Tonya C; Rankin, Scott A

    2014-06-25

    A specific range of methyl ketones contribute to the distinctive flavor of traditional blue cheeses. These ketones are metabolites of lipid metabolism by Penicillium mold added to cheese for this purpose. Two processes, namely, the homogenization of milk fat and the addition of exogenous lipase enzymes, are traditionally applied measures to control the formation of methyl ketones in blue cheese. There exists little scientific validation of the actual effects of these treatments on methyl ketone development. The present study evaluated the effects of milk fat homogenization and lipase treatments on methyl ketone and free fatty acid development using sensory methods and the comparison of selected volatile quantities using gas chromatography. Initial work was conducted using a blue cheese system model; subsequent work was conducted with manufactured blue cheese. In general, there were modest effects of homogenization and lipase treatments on free fatty acid (FFA) and methyl ketone concentrations in blue cheese. Blue cheese treatments involving Penicillium roqueforti lipase with homogenized milk yielded higher FFA and methyl ketone levels, for example, a ∼20-fold increase for hexanoic acid and a 3-fold increase in 2-pentanone.

  13. Regulation of adipose triglyceride lipase by rosiglitazone

    PubMed Central

    Liu, L.-F.; Purushotham, A.; Wendel, A. A.; Koba, K.; DeIuliis, J.; Lee, K.; Belury, M. A.

    2013-01-01

    Aim To elucidate the mechanism by which rosiglitazone regulates adipose triglyceride lipase (ATGL). Methods Male C57Bl/6 mice were treated with rosiglitazone daily (10 mg/kg body weight), and adipose tissues were weighed and preserved for mRNA and protein analysis of ATGL. In parallel, preadipocyte (3T3-L1) cells were differentiated with insulin/dexamethasone/3-isobutyl-1-methlxanthine cocktail or rosiglitazone, and ATGL levels were measured with real-time PCR, western blotting and immunohistochemistry. Results Rosiglitazone concomitantly promoted differentiation of pre-adipocytes to functional adipocytes and induced mRNA levels of ATGL. The peroxisome proliferator-activated receptor-γ (PPARγ) antagonist bisphenol A diglycidyl ether significantly abrogated the induction of mRNA, but not protein levels of ATGL by rosiglitazone in differentiated 3T3-L1 adipocytes. In the presence of epinephrine rosiglitazone stimulated free fatty acid release and increased diacylglycerol acyltransferase-1 (DGAT-1) mRNA suggest that ATGL and DGAT-1 may be cooperatively involved in rosiglitazone-stimulated triglyceride hydrolysis and fatty acid re-esterification in 3T3-L1 adipocytes. Treatment of 3T3-L1 adipocytes with rosiglitazone or insulin did not appear to alter localization of ATGL staining surrounding lipid droplets. Finally, we found that rosiglitazone increased ATGL mRNA levels in 3T3-L1 adipocytes in the presence of cycloheximide, an inhibitor of protein synthesis, suggesting that rosiglitazone regulation of ATGL occurs at the transcriptional level. Conclusions Rosiglitazone directly regulates transcription of ATGL, likely through a PPARγ-mediated mechanism. PMID:18643838

  14. Therapeutic potential of monoacylglycerol lipase inhibitors.

    PubMed

    Mulvihill, Melinda M; Nomura, Daniel K

    2013-03-19

    Marijuana and aspirin have been used for millennia to treat a wide range of maladies including pain and inflammation. Both cannabinoids, like marijuana, that exert anti-inflammatory action through stimulating cannabinoid receptors, and cyclooxygenase (COX) inhibitors, like aspirin, that suppress pro-inflammatory eicosanoid production have shown beneficial outcomes in mouse models of neurodegenerative diseases and cancer. Both cannabinoids and COX inhibitors, however, have untoward effects that discourage their chronic usage, including cognitive deficits and gastrointestinal toxicity, respectively. Recent studies have uncovered that the serine hydrolase monoacylglycerol lipase (MAGL) links the endocannabinoid and eicosanoid systems together through hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-AG) to provide the major arachidonic acid (AA) precursor pools for pro-inflammatory eicosanoid synthesis in specific tissues. Studies in recent years have shown that MAGL inhibitors elicit anti-nociceptive, anxiolytic, and anti-emetic responses and attenuate precipitated withdrawal symptoms in addiction paradigms through enhancing endocannabinoid signaling. MAGL inhibitors have also been shown to exert anti-inflammatory action in the brain and protect against neurodegeneration through lowering eicosanoid production. In cancer, MAGL inhibitors have been shown to have anti-cancer properties not only through modulating the endocannabinoid-eicosanoid network, but also by controlling fatty acid release for the synthesis of protumorigenic signaling lipids. Thus, MAGL serves as a critical node in simultaneously coordinating multiple lipid signaling pathways in both physiological and disease contexts. This review will discuss the diverse (patho)physiological roles of MAGL and the therapeutic potential of MAGL inhibitors in treating a vast array of complex human diseases.

  15. Identification and localization of a lipase-like acyltransferase in phenylpropanoid metabolism of tomato (Solanum lycopersicum).

    PubMed

    Teutschbein, Jenny; Gross, Wiltrud; Nimtz, Manfred; Milkowski, Carsten; Hause, Bettina; Strack, Dieter

    2010-12-03

    We have isolated an enzyme classified as chlorogenate: glucarate caffeoyltransferase (CGT) from seedlings of tomato (Solanum lycopersicum) that catalyzes the formation of caffeoylglucarate and caffeoylgalactarate using chlorogenate (5-O-caffeoylquinate) as acyl donor. Peptide sequences obtained by trypsin digestion and spectrometric sequencing were used to isolate the SlCGT cDNA encoding a protein of 380 amino acids with a putative targeting signal of 24 amino acids indicating an entry of the SlCGT into the secretory pathway. Immunogold electron microscopy revealed the localization of the enzyme in the apoplastic space of tomato leaves. Southern blot analysis of genomic cDNA suggests that SlCGT is encoded by a single-copy gene. The SlCGT cDNA was functionally expressed in Nicotiana benthamiana leaves and proved to confer chlorogenate-dependent caffeoyltransferase activity in the presence of glucarate. Sequence comparison of the deduced amino acid sequence identified the protein unexpectedly as a GDSL lipase-like protein, representing a new member of the SGNH protein superfamily. Lipases of this family employ a catalytic triad of Ser-Asp-His with Ser as nucleophile of the GDSL motif. Site-directed mutagenesis of each residue of the assumed respective SlCGT catalytic triad, however, indicated that the catalytic triad of the GDSL lipase is not essential for SlCGT enzymatic activity. SlCGT is therefore the first example of a GDSL lipase-like protein that lost hydrolytic activity and has acquired a completely new function in plant metabolism, functioning in secondary metabolism as acyltransferase in synthesis of hydroxycinnamate esters by employing amino acid residues different from the lipase catalytic triad.

  16. Production and Characterization of Lipases by Two New Isolates of Aspergillus through Solid-State and Submerged Fermentation

    PubMed Central

    Colla, Luciane Maria; Ficanha, Aline M. M.; Rizzardi, Juliana; Bertolin, Telma Elita; Reinehr, Christian Oliveira; Costa, Jorge Alberto Vieira

    2015-01-01

    Due to the numerous applications of lipases in industry, there is a need to study their characteristics, because lipases obtained from different sources may present different properties. The aim of this work was to accomplish the partial characterization of lipases obtained through submerged fermentation and solid-state fermentation by two species of Aspergillus. Fungal strains were isolated from a diesel-contaminated soil and selected as good lipases producers. Lipases obtained through submerged fermentation presented optimal activities at 37°C and pH 7.2 and those obtained through solid-state fermentation at 35°C and pH 6.0. The enzymes produced by submerged fermentation were more temperature-stable than those obtained by solid-state fermentation, presenting 72% of residual activity after one hour of exposition at 90°C. Lipases obtained through submerged fermentation had 80% of stability in acidic pH and those obtained through solid-state fermentation had stability greater than 60% in alkaline pH. PMID:26180809

  17. Expression, purification and characterization of a functional, recombinant, cold-active lipase (LipA) from psychrotrophic Yersinia enterocolitica.

    PubMed

    Ji, Xiuling; Li, Shan; Wang, Baoqiang; Zhang, Qi; Lin, Lianbing; Dong, Zhiyang; Wei, Yunlin

    2015-11-01

    A novel cold-active lipase gene encoding 294 amino acid residues was obtained from the Yersinia enterocolitica strain KM1. Sequence alignment and phylogenetic analysis revealed that this novel lipase is a new member of the bacterial lipase family I.1. The lipase shares the conserved GXSXG motif and catalytic triad Ser85-Asp239-His261. The recombinant protein LipA was solubly and heterogeneously expressed in Escherichia coli, purified by Ni-affinity chromatography, and then characterized. LipA was active over a broad range spanning 15-60°C with an optimum activity at 25°C and across a wide pH range from 5.0 to 11.0 with an optimum activity at pH 7.5. The molecular weight was estimated to be 34.2 KDa. The lipase could be activated by Mg(2+) and a low concentration (10%) of ethanol, dimethyl sulfoxide, methanol and acetonitrile, whereas it was strongly inhibited by Zn(2+), Cu(2+) and Mn(2+). This cold-active lipase may be a good candidate for detergents and biocatalysts at low temperature.

  18. Purification and biochemical characterization of a novel alkaline (phospho)lipase from a newly isolated Fusarium solani strain.

    PubMed

    Jallouli, Raida; Khrouf, Fatma; Fendri, Ahmed; Mechichi, Tahar; Gargouri, Youssef; Bezzine, Sofiane

    2012-12-01

    An extracellular lipase from Fusarium solani strain (F. solani lipase (FSL)) was purified to homogeneity by ammonium sulphate precipitation, gel filtration and anion exchange chromatography. The purified enzyme has a molecular mass of 30 kDa as estimated by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The 12 NH(2)-terminal amino acid residues showed a high degree of homology with a putative lipase from the fungus Necteria heamatoccocae. It is a serine enzyme, like all known lipases from different origins. Interestingly, FSL has not only lipase activity but also a high phospholipase activity which requires the presence of Ca(2+) and bile salts. The specific activities of FSL were about 1,610 and 2,414 U/mg on olive oil emulsion and egg-yolk phosphatidylcholine as substrates, respectively, at pH 8.0 and 37 °C. The (phospho)lipase enzyme was stable in the pH range of 5-10 and at temperatures below 45 °C.

  19. Concentration, characterization and application of lipases from Sporidiobolus pararoseus strain

    PubMed Central

    Smaniotto, Alessandra; Skovronski, Aline; Rigo, Elisandra; Tsai, Siu Mui; Durrer, Ademir; Foltran, Lillian Liva; Paroul, Natália; Di Luccio, Marco; Oliveira, J. Vladimir; de Oliveira, Débora; Treichel, Helen

    2014-01-01

    Lipases produced by a newly isolated Sporidiobolus pararoseus strain have potential catalytic ability for esterification reactions. After production, the enzymatic extracts (conventional crude and precipitated, ‘CC’ and ‘CP’, and industrial crude and precipitated, ‘IC’ e ‘IP’) were partially characterized. The enzymes presented, in general, higher specificity for short chain alcohols and fatty acids. The precipitated extract showed a good thermal stability, higher than that for crude enzymatic extracts. The ‘CC’ and ‘CP’ enzymes presented high activities after exposure to pH 6.5 and 40 °C. On the other hand, the ‘IC’ and ‘IP’ extracts kept their activities in a wide range of pH memory but presented preference for higher reaction temperatures. Preliminary studies of application of the crude lipase extract in the enzymatic production of geranyl propionate using geraniol and propionic acid as substrates in solvent-free system led to a reaction conversion of 42 ± 1.5%. PMID:24948948

  20. Lipoprotein electrostatic properties regulate hepatic lipase association and activity.

    PubMed

    Boucher, Jonathan G; Nguyen, Trang; Sparks, Daniel L

    2007-12-01

    The effect of lipoprotein electrostatic properties on the catalytic regulation of hepatic lipase (HL) was investigated. Enrichment of serum or very low density lipoprotein (VLDL) with oleic acid increased lipoprotein negative charge and stimulated lipid hydrolysis by HL. Similarly, enrichment of serum or isolated lipoproteins with the anionic phospholipids phosphatidylinositol (PI), phosphatidic acid, or phosphatidylserine also increased lipoprotein negative charge and stimulated hydrolysis by HL. Anionic lipids had a small effect on phospholipid hydrolysis, but significantly stimulated triacylglyceride (TG) hydrolysis. High density lipoprotein (HDL) charge appears to have a specific effect on lipolysis. Enrichment of HDL with PI significantly stimulated VLDL-TG hydrolysis by HL. To determine whether HDL charge affects the association of HL with HDL and VLDL, HL-lipoprotein interactions were probed immunochemically. Under normal circumstances, HL associates with HDL particles, and only small amounts bind to VLDL. PI enrichment of HDL blocked the binding of HL with HDL. These data indicate that increasing the negative charge of HDL stimulates VLDL-TG hydrolysis by reducing the association of HL with HDL. Therefore, HDL controls the hydrolysis of VLDL by affecting the interlipoprotein association of HL. Lipoprotein electrostatic properties regulate lipase association and are an important regulator of the binding and activity of lipolytic enzymes.

  1. Biodegradation of waste greases and biochemical properties of a novel lipase from Pseudomonas synxantha PS1.

    PubMed

    Cai, Xianghai; Chen, Siqi; Yang, Hong; Wang, Wei; Lin, Lin; Shen, Yaling; Wei, Wei; Wei, Dong-Zhi

    2016-07-01

    A lipase-producing bacterial strain was isolated from oil-well-produced water in Shengli oilfield (Shandong province, China) and was identified as Pseudomonas synxantha by 16S rDNA sequence analysis (named Pseudomonas synxantha PS1). Strain PS1 showed a maximum lipase activity of 10.8 U/mL after culturing for 48 h at 30 °C, with lactose (4 g/L) as carbon source, tryptone (8 g/L) as nitrogen source, olive oil (0.5%, v/v) as inductor, and the initial pH 8.0. Meanwhile, the lipase gene from P. synxantha PS1 was cloned and expressed in Escherichia coli BL21 with the vector pET28a. The novel gene (lipPS1) has an open reading frame of 1425 bp and encodes a 474 aa lipase (LipPS1) sharing the most identity (87%) with the lipase in Pseudomonas fluorescens. LipPS1 preferably acted on substrates with a long chain (C10-C18) of fatty acids. The optimum pH and temperature of the recombinant enzyme were 8.0 and 40 °C, respectively, towards the optimum substrate p-nitrophenyl palmitate. The LipPS1 showed remarkable stability under alkaline conditions and was stable at pH 7.0-10.0 (retaining more than 60% activity). From the organic solvents tests, the lipase was activated by 15% (v/v) methanol (112%), 15% ethanol (127%), and 15% n-butyl alcohol (116%). LipPS1 presented strong biodegradability of waste grease; 93% of waste grease was hydrolyzed into fatty acid after 12 h at 30 °C. This is the first report of the lipase activity and lipase gene obtained from P. synxantha (including wild strain and recombinant strain) and of the recombinant LipPS1 with the detailed enzymatic properties. Also a preliminary study of the biodegradability of waste greases shows the potential value in industry applications.

  2. Molecular and enzymatic characterization of a subfamily I.4 lipase from an edible oil-degrader Bacillus sp. HH-01.

    PubMed

    Kamijo, Takashi; Saito, Akihiro; Ema, Sadaharu; Yoh, Inchi; Hayashi, Hiroko; Nagata, Ryo; Nagata, Yoshiho; Ando, Akikazu

    2011-02-01

    An edible-oil degrading bacterial strain HH-01 was isolated from oil plant gummy matter and was classified as a member of the genus Bacillus on the basis of the nucleotide sequence of the 16S rRNA gene. A putative lipase gene and its flanking regions were cloned from the strain based on its similarity to lipase genes from other Bacillus spp. The deduced product was composed of 214 amino acids and the putative mature protein, consisting of 182 amino acids, exhibited 82% amino acid sequence identity with the subfamily I.4 lipase LipA of Bacillus subtilis 168. The recombinant product was successfully overproduced as a soluble form in Escherichia coli and showed lipase activity. The gene was, therefore, designated as lipA of HH-01. HH-01 LipA was stable at pH 4-11 and up to 30°C, and its optimum pH and temperature were 8-9 and 30°C, respectively. The enzyme showed preferential hydrolysis of the 1(3)-position ester bond in trilinolein. The activity was, interestingly, enhanced by supplementing with 1 mM CoCl(2), in contrast to other Bacillus lipases. The lipA gene seemed to be constitutively transcribed during the exponential growth phase, regardless of the presence of edible oil.

  3. Genetic and biochemical characterization of a new extracellular lipase from Streptomyces cinnamomeus.

    PubMed Central

    Sommer, P; Bormann, C; Götz, F

    1997-01-01

    Streptomyces cinnamomeus Tü89 secretes a 30-kDa esterase and a 50-kDa lipase. The lipase-encoding gene, lipA, was cloned from genomic DNA into Streptomyces lividans TK23 with plasmid vector pIJ702. Two lipase-positive clones were identified; each recombinant plasmid had a 5.2-kb MboI insert that contained the complete lipA gene. The two plasmids differed in the orientation of the insert and the degree of lipolytic activity produced. The lipA gene was sequenced; lipA encodes a proprotein of 275 amino acids (29,213 Da) with a pI of 5.35. The LipA signal peptide is 30 amino acids long, and the mature lipase sequence is 245 amino acids long (26.2 kDa) and contains six cysteine residues. The conserved catalytic serine residue of LipA is in position 125. Sequence similarity of the mature lipases (29% identity, 60% similarity) was observed mainly in the N-terminal 104 amino acids with the group II Pseudomonas lipases; no similarity to the two Streptomyces lipase sequences was found. lipA was also expressed in Escherichia coli under the control of lacZ promoter. In the presence of the inducer isopropyl-beta-D-thiogalactopyranoside (IPTG), growth of the E. coli clone was severely affected, and the cells lysed in liquid medium. Lipase activity in the E. coli clone was found mainly in the pellet fraction. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, three additional protein bands of 50, 29, and 27 kDa were visible. The 27-kDa protein showed lipolytic activity and represents the mature lipase; the 29- and 50-kDa forms showed no activity and very probably represent the unprocessed form and a dimeric misfolded form, respectively. For higher expression of lipA in S. lividans, the gene was cloned next to the strong aphII promoter. In contrast to the lipA-expressing E. coli clone, S. cinnamomeus and the corresponding S. lividans clone secreted only an active protein of 50 kDa. The lipase showed highest activity with C6 and C18 triglycerides; no activity

  4. Adipose triglyceride lipase is implicated in fuel- and non-fuel-stimulated insulin secretion.

    PubMed

    Peyot, Marie-Line; Guay, Claudiane; Latour, Martin G; Lamontagne, Julien; Lussier, Roxane; Pineda, Marco; Ruderman, Neil B; Haemmerle, Guenter; Zechner, Rudolf; Joly, Erik; Madiraju, S R Murthy; Poitout, Vincent; Prentki, Marc

    2009-06-19

    Reduced lipolysis in hormone-sensitive lipase-deficient mice is associated with impaired glucose-stimulated insulin secretion (GSIS), suggesting that endogenous beta-cell lipid stores provide signaling molecules for insulin release. Measurements of lipolysis and triglyceride (TG) lipase activity in islets from HSL(-/-) mice indicated the presence of other TG lipase(s) in the beta-cell. Using real time-quantitative PCR, adipose triglyceride lipase (ATGL) was found to be the most abundant TG lipase in rat islets and INS832/13 cells. To assess its role in insulin secretion, ATGL expression was decreased in INS832/13 cells (ATGL-knockdown (KD)) by small hairpin RNA. ATGL-KD increased the esterification of free fatty acid (FFA) into TG. ATGL-KD cells showed decreased glucose- or Gln + Leu-induced insulin release, as well as reduced response to KCl or palmitate at high, but not low, glucose. The K(ATP)-independent/amplification pathway of GSIS was considerably reduced in ATGL-KD cells. ATGL(-/-) mice were hypoinsulinemic and hypoglycemic and showed decreased plasma TG and FFAs. A hyperglycemic clamp revealed increased insulin sensitivity and decreased GSIS and arginine-induced insulin secretion in ATGL(-/-) mice. Accordingly, isolated islets from ATGL(-/-) mice showed reduced insulin secretion in response to glucose, glucose + palmitate, and KCl. Islet TG content and FFA esterification into TG were increased by 2-fold in ATGL(-/-) islets, but glucose usage and oxidation were unaltered. The results demonstrate the importance of ATGL and intracellular lipid signaling for fuel- and non-fuel-induced insulin secretion.

  5. Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model.

    PubMed Central

    Schulz, T.; Pleiss, J.; Schmid, R. D.

    2000-01-01

    The lipase from Pseudomonas cepacia represents a widely applied catalyst for highly enantioselective resolution of chiral secondary alcohols. While its stereopreference is determined predominantly by the substrate structure, stereoselectivity depends on atomic details of interactions between substrate and lipase. Thirty secondary alcohols with published E values using P. cepacia lipase in hydrolysis or esterification reactions were selected, and models of their octanoic acid esters were docked to the open conformation of P. cepacia lipase. The two enantiomers of 27 substrates bound preferentially in either of two binding modes: the fast-reacting enantiomer in a productive mode and the slow-reacting enantiomer in a nonproductive mode. Nonproductive mode of fast-reacting enantiomers was prohibited by repulsive interactions. For the slow-reacting enantiomers in the productive binding mode, the substrate pushes the active site histidine away from its proper orientation, and the distance d(H(N epsilon) - O(alc)) between the histidine side chain and the alcohol oxygen increases, d(H(N epsilon) - O(alc)) was correlated to experimentally observed enantioselectivity: in substrates for which P. cepacia lipase has high enantioselectivity (E > 100), d(H(N epsilon) - O(alc)) is >2.2 A for slow-reacting enantiomers, thus preventing efficient catalysis of this enantiomer. In substrates of low enantioselectivity (E < 20), the distance d(H(N epsilon) - O(alc)) is less than 2.0 A, and slow- and fast-reacting enantiomers are catalyzed at similar rates. For substrates of medium enantioselectivity (20 < E < 100), d(H(N epsilon) - O(alc)) is around 2.1 A. This simple model can be applied to predict enantioselectivity of P. cepacia lipase toward a broad range of secondary alcohols. PMID:10892799

  6. Adipose Triglyceride Lipase Is Implicated in Fuel- and Non-fuel-stimulated Insulin Secretion*

    PubMed Central

    Peyot, Marie-Line; Guay, Claudiane; Latour, Martin G.; Lamontagne, Julien; Lussier, Roxane; Pineda, Marco; Ruderman, Neil B.; Haemmerle, Guenter; Zechner, Rudolf; Joly, Érik; Madiraju, S. R. Murthy; Poitout, Vincent; Prentki, Marc

    2009-01-01

    Reduced lipolysis in hormone-sensitive lipase-deficient mice is associated with impaired glucose-stimulated insulin secretion (GSIS), suggesting that endogenous β-cell lipid stores provide signaling molecules for insulin release. Measurements of lipolysis and triglyceride (TG) lipase activity in islets from HSL−/− mice indicated the presence of other TG lipase(s) in the β-cell. Using real time-quantitative PCR, adipose triglyceride lipase (ATGL) was found to be the most abundant TG lipase in rat islets and INS832/13 cells. To assess its role in insulin secretion, ATGL expression was decreased in INS832/13 cells (ATGL-knockdown (KD)) by small hairpin RNA. ATGL-KD increased the esterification of free fatty acid (FFA) into TG. ATGL-KD cells showed decreased glucose- or Gln + Leu-induced insulin release, as well as reduced response to KCl or palmitate at high, but not low, glucose. The KATP-independent/amplification pathway of GSIS was considerably reduced in ATGL-KD cells. ATGL−/− mice were hypoinsulinemic and hypoglycemic and showed decreased plasma TG and FFAs. A hyperglycemic clamp revealed increased insulin sensitivity and decreased GSIS and arginine-induced insulin secretion in ATGL−/− mice. Accordingly, isolated islets from ATGL−/− mice showed reduced insulin secretion in response to glucose, glucose + palmitate, and KCl. Islet TG content and FFA esterification into TG were increased by 2-fold in ATGL−/− islets, but glucose usage and oxidation were unaltered. The results demonstrate the importance of ATGL and intracellular lipid signaling for fuel- and non-fuel-induced insulin secretion. PMID:19389712

  7. Expression and biochemical characterization of cold-adapted lipases from Antarctic Bacillus pumilus strains.

    PubMed

    Litantra, Ribka; Lobionda, Stefani; Yim, Joung Han; Kim, Hyung Kwoun

    2013-09-28

    Two lipase genes (bpl1 and bpl3) from Antarctic Bacillus pumilus strains were expressed in Bacillus subtilis. Both recombinant lipases BPL1 and BPL2 were secreted to the culture medium and their activities reached 3.5 U/ml and 5.0 U/ml, respectively. Their molecular masses apparent using SDS-PAGE were 23 kDa for BPL1 and 19 kDa for BPL3. Both lipases were purified to homogeneity using ammonium sulfate precipitation and HiTrap SP FF column and Superose 12 column chromatographies. The final specific activities were estimated to be 328 U/mg for BPL1 and 310 U/mg for BPL3. Both lipases displayed an optimum temperature of 35°C, similar to other mesophilic enzymes. However, they maintained as much as 70% and 80% of the maximum activities at 10°C. Accordingly, their calculated activation energy at a temperature range of 10-35°C was 5.32 kcal/mol for BPL1 and 4.26 kcal/mol for BPL3, typical of cold-adapted enzymes. The optimum pH of BPL1 and BPL3 was 8.5 and 8.0, respectively, and they were quite stable at pH 7.0-11.0, showing their strong alkaline tolerance. Both lipases had a preference toward medium chain length (C6-C10) fatty acid substrates. These results indicate the potential for the two Antarctic B. pumilus lipases as catalysts in bioorganic synthesis, food, and detergent industries.

  8. Activities of amylase, proteinase, and lipase enzymes from Lactococcus chungangensis and its application in dairy products.

    PubMed

    Konkit, Maytiya; Kim, Wonyong

    2016-07-01

    Several enzymes are involved in the process of converting milk to lactic acid and coagulated milk to curd and, therefore, are important in dairy fermented products. Amylase, proteinase, and lipase are enzymes that play an important role in degrading milk into monomeric molecules such as oligosaccharides, amino acids, and fatty acids, which are the main molecules responsible for flavors in cheese. In the current study, we determined the amylase, proteinase, and lipase activities of Lactococcus chungangensis CAU 28(T), a bacterial strain of nondairy origin, and compared them with those of the reference strain, Lactococcus lactis ssp. lactis KCTC 3769(T), which is commonly used in the dairy industry. Lactococcus chungangensis CAU 28(T) and L. lactis ssp. lactis KCTC 3769(T) were both found to have amylase, proteinase, and lipase activities in broth culture, cream cheese, and yogurt. Notably, the proteinase and lipase activities of L. chungangensis CAU 28(T) were higher than those of L. lactis ssp. lactis KCTC 3769(T), with proteinase activity of 10.50 U/mL in tryptic soy broth and 8.64 U/mL in cream cheese, and lipase activity of 100 U/mL of tryptic soy broth, and 100 U/mL of cream cheese. In contrast, the amylase activity was low, with 5.28 U/mL in tryptic soy broth and 8.86 U/mL in cream cheese. These enzyme activities in L. chungangensis CAU 28(T) suggest that this strain has potential to be used for manufacturing dairy fermented products, even though the strain is of nondairy origin.

  9. Use of lipase from Rhizomucor miehei in dry fermented sausages elaboration: Microbial, chemical and sensory analysis.

    PubMed

    Zalacain, I; Zapelena, M J; De Peña, M P; Astiasarán, I; Bello, J

    1997-01-01

    Three different amounts of lipase (0.075, 0.100 and 0.150 LU/g) from Rhizomucor miehei (Palatase M 200L Novo Nordisk) were used to determine the correct amount to use in dry fermented sausages. Determination of acidity values through fourteen days of ripening showed that 0.100 LU/g was the most appropriate. Two types of fermented sausages were manufactured, addition of the enzyme being the only difference between them. Addition of Palatase did not affect product stability (pH and A(w)), and the growth of micro-organisms. In spite of the increase in acidity value, no rancidity developed as determined by both chemical and sensory analysis. Increases in the liberation of palmitic, palmitoleic, stearic, oleic and linoleic acids were found when lipase was used. Juiciness and taste were slightly better in the sausages with Palatase than in those without, but these differences were not reflected in the overall acceptability.

  10. Molecular cloning and heterologous expression of a true lipase in Pichia pastoris isolated via a metagenomic approach.

    PubMed

    Zheng, Jianhua; Liu, Liguo; Liu, Cuina; Jin, Qi

    2012-01-01

    Lipases are important enzymes for various biotechnological applications. By using functional expression screening, lipZ03, a novel lipase gene, was isolated from a soil-derived metagenomic library. The gene was supposed to encode a protein of 617 amino acids with a C-terminal targeting signal region and four potential N-linked glycosylation sites. The protein sequence shared a conserved GXSXG motif (X represents any amino acid residue) with other microbial lipases. Gene lipZ03 was expressed in Pichia pastoris and the molecular weight was estimated to be approximately 65 kDa by electrophoresis. The optimum reaction temperature and pH value for LipZ03 was 50°C and 9.0, respectively. The enzyme was highly stable in the temperature range of 40-60°C and under alkaline conditions (pH 8-10). Lipolytic activity was significantly enhanced by Ca(2+) and Mg(2+) ions, but dramatically inhibited by Cu(2+), Ni(2+) and Hg(2+) ions and EDTA. The purified enzyme preferentially hydrolyzed relatively long-chain triacylglycerols and was a true lipase rather than an esterase. Using a multi-stepwise methanol supply, the purified LipZ03 achieved a conversion yield of biodiesel production up to 74% after 36 h. Some interesting characteristics described here showed that the recombinant lipase may have potential to be a useful enzyme in industrial applications.

  11. Bioprospecting hot spring metagenome: lipase for the production of biodiesel.

    PubMed

    Sahoo, Rajesh Kumar; Kumar, Mohit; Sukla, Lala Behari; Subudhi, Enketeswara

    2017-02-01

    Screening of metagenomic library from Taptapani Hot Spring (Odisha) yielded a positive lipase clone (pUC-lip479). Sequence analysis showed an ORF (RK-lip479) of 416 amino acid residues which was overexpressed in Escherichia coli BL21 (DE3). Optimum pH and temperature of purified lipase RK-lip479 were 8.0 and 65 °C, respectively, and found to be stable over a pH range of 7.0-9.0 and temperatures 55-75 °C. RK-lip479 could hydrolyse a wide range of 4-nitrophenyl esters (4-nitrophenyoctanoate, 4-nitrophenyldodecanoate, 4-nitrophenylpalmitate, 4-nitrophenylmyristate and 4-nitrophenylstearate), and maximum activity was observed with 4-nitrophenyldodecanoate. RK-lip479 was resistant to many organic solvents, especially isopropanol, DMSO, methanol, DMF, ethanol, dichloromethane, acetone, glycerol and ethyl acetate. RK-lip479 also showed activity in the presence of monovalent (Na(+) and K(+)), divalent (Mg(2+), Mn(2+), Ca(2+), Hg(2+), Cu(2+), Co(2+), Zn(2+) and Ag(2+) ) and trivalent cations (Fe(3+) and Al(3+)). Yield of biodiesel production was in the range of 40-76% using various waste oils with RK-Lip479 under optimized conditions.

  12. Solvent-Free Lipase-Catalyzed Synthesis of Diacylgycerols as Low-Calorie Food Ingredients

    PubMed Central

    Vázquez, Luis; González, Noemí; Reglero, Guillermo; Torres, Carlos

    2016-01-01

    Problems derived from obesity and overweight have recently promoted the development of fat substitutes and other low-calorie foods. On the one hand, fats with short- and medium-chain fatty acids are a source of quick energy, easily hydrolyzable and hardly stored as fat. Furthermore, 1,3-diacylglycerols are not hydrolyzed to 2-monoacylglycerols in the gastrointestinal tract, reducing the formation of chylomicron and lowers the serum level of triacylglycerols by decreasing its resynthesis in the enterocyte. In this work, these two effects were combined to synthesize short- and medium-chain 1,3-diacylglycerols, leading to a product with great potential as for their low-calorie properties. Lipase-catalyzed transesterification reactions were performed between short- and medium-chain fatty acid ethyl esters and glycerol. Different variables were investigated, such as the type of biocatalyst, the molar ratio FAEE:glycerol, the adsorption of glycerol on silica gel, or the addition of lecithin. Best reaction conditions were evaluated considering the percentage of 1,3-DAG produced and the reaction rate. Except Novozym 435 (Candida antarctica), other lipases required the adsorption of glycerol on silica gel to form acylglycerols. Lipases that gave the best results with adsorption were Novozym 435 and Lipozyme RM IM (Rhizomucor miehei) with 52 and 60.7% DAG at 32 h, respectively. Because of its specificity for sn-1 and sn-3 positions, lipases leading to a higher proportion of 1,3-DAG vs. 1,2-DAG were Lipozyme RM IM (39.8 and 20.9%, respectively) and Lipase PLG (Alcaligenes sp.) (35.9 and 19.3%, respectively). By adding 1% (w/w) of lecithin to the reaction with Novozym 435 and raw glycerol, the reaction rate was considerably increased from 41.7 to 52.8% DAG at 24 h. PMID:26904539

  13. Solvent-Free Lipase-Catalyzed Synthesis of Diacylgycerols as Low-Calorie Food Ingredients.

    PubMed

    Vázquez, Luis; González, Noemí; Reglero, Guillermo; Torres, Carlos

    2016-01-01

    Problems derived from obesity and overweight have recently promoted the development of fat substitutes and other low-calorie foods. On the one hand, fats with short- and medium-chain fatty acids are a source of quick energy, easily hydrolyzable and hardly stored as fat. Furthermore, 1,3-diacylglycerols are not hydrolyzed to 2-monoacylglycerols in the gastrointestinal tract, reducing the formation of chylomicron and lowers the serum level of triacylglycerols by decreasing its resynthesis in the enterocyte. In this work, these two effects were combined to synthesize short- and medium-chain 1,3-diacylglycerols, leading to a product with great potential as for their low-calorie properties. Lipase-catalyzed transesterification reactions were performed between short- and medium-chain fatty acid ethyl esters and glycerol. Different variables were investigated, such as the type of biocatalyst, the molar ratio FAEE:glycerol, the adsorption of glycerol on silica gel, or the addition of lecithin. Best reaction conditions were evaluated considering the percentage of 1,3-DAG produced and the reaction rate. Except Novozym 435 (Candida antarctica), other lipases required the adsorption of glycerol on silica gel to form acylglycerols. Lipases that gave the best results with adsorption were Novozym 435 and Lipozyme RM IM (Rhizomucor miehei) with 52 and 60.7% DAG at 32 h, respectively. Because of its specificity for sn-1 and sn-3 positions, lipases leading to a higher proportion of 1,3-DAG vs. 1,2-DAG were Lipozyme RM IM (39.8 and 20.9%, respectively) and Lipase PLG (Alcaligenes sp.) (35.9 and 19.3%, respectively). By adding 1% (w/w) of lecithin to the reaction with Novozym 435 and raw glycerol, the reaction rate was considerably increased from 41.7 to 52.8% DAG at 24 h.

  14. The surface-associated protein of Staphylococcus saprophyticus is a lipase.

    PubMed

    Sakinc, Türkan; Woznowski, Magdalena; Ebsen, Michael; Gatermann, Sören G

    2005-10-01

    Staphylococcus saprophyticus surface-associated protein (Ssp) was the first surface protein described for this organism. Ssp-positive strains display a fuzzy layer of surface-associated material in electron micrographs, whereas Ssp-negative strains appear to be smooth. The physiologic function of Ssp, however, has remained elusive. To clone the associated gene, we determined the N-terminal sequence, as well as an internal amino acid sequence, of the purified protein. We derived two degenerate primers from these peptide sequences, which we used to identify the ssp gene from genomic DNA of S. saprophyticus 7108. The gene was cloned by PCR techniques and was found to be homologous to genes encoding staphylococcal lipases. In keeping with this finding, strains 7108 and 9325, which are Ssp positive, showed lipase activity on tributyrylglycerol agar plates, whereas the Ssp-negative strain CCM883 did not. Association of enzyme activity with the cloned DNA was proven by introducing the gene into Staphylococcus carnosus TM300. When wild-type strain 7108 and an isogenic mutant were analyzed by transmission electron microscopy, strain 7108 exhibited the fuzzy surface layer, whereas the mutant appeared to be smooth. Lipase activity and the surface appendages could be restored by reintroduction of the cloned gene into the mutant. Experiments using immobilized collagen type I did not provide evidence for the involvement of Ssp in adherence to this matrix protein. Our experiments thus provided evidence that Ssp is a surface-associated lipase of S. saprophyticus.

  15. Biodiesel production from Nannochloropsis gaditana lipids through transesterification catalyzed by Rhizopus oryzae lipase.

    PubMed

    Navarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro Antonio; Esteban Cerdán, Luis; Martín Valverde, Lorena; Molina Grima, Emilio

    2016-03-01

    Biodiesel (fatty acid methyl esters, FAMEs) was produced from saponifiable lipids (SLs) extracted from wet Nannochloropsis gaditana biomass using methanolysis catalyzed by Rhizopus oryzae intracellular lipase. SLs were firstly extracted with ethanol to obtain 31 wt% pure SLs. But this low SL purity also gave a low biodiesel conversion (58%). This conversion increased up to 80% using SLs purified by crystallization in acetone (95 wt% purity). Polar lipids play an important role in decreasing the reaction velocity - using SLs extracted with hexane, which have lower polar lipid content (37.4% versus 49.0% using ethanol), we obtained higher reaction velocities and less FAME conversion decrease when the same lipase batch was reused. 83% of SLs were transformed to biodiesel using a 70 wt% lipase/SL ratio, 11:1 methanol/SL molar ratio, 10 mL t-butanol/g SLs after 72 h. The FAME conversion decreased to 71% after catalyzing three reactions with the same lipase batch.

  16. Immobilization of lipase and keratinase on functionalized SBA-15 nanostructured materials

    NASA Astrophysics Data System (ADS)

    Le, Hy G.; Vu, Tuan A.; Tran, Hoa T. K.; Dang, Phuong T.

    2013-12-01

    SBA-15 nanostructured materials were synthesized via hydrothermal treatment and were functionalized with 3- aminopropyltriethoxysilane (APTES). The obtained samples were characterized by different techniques such as XRD, BET, TEM, IR and DTA. After functionalization, it showed that these nanostrucrured materials still maintained the hexagonal pore structure of the parent SBA-15. The model enzyms chosen in this study were lipase and keratinase. Lipase was a biocatalyst for hydrolyzation of long chain triglycerides or methyl esters of long chain alcohols and fatty acids; keratinase is a proteolytic enzyme that catalyzes the cleavage of keratin. The functionalized SBA-15 materials were used to immobilize lipase and keratinase, exhibiting higher activity than that of the unfunctionalized pure silica SBA-15 ones. This might be due to the enhancing of surface hydrophobicity upon functionalization. The surface functionalization of the nanostructured silicas with organic groups can favor the interaction between enzyme and the supports and consequently increasing the operational stability of the immobilized enzymes. The loading of lipase on functionalized SBA-15 materials was higher than that of keratinase. This might be rationalized by the difference in size of enzyms.

  17. Influence of Hierarchical Interfacial Assembly on Lipase Stability and Performance in Deep Eutectic Solvent.

    PubMed

    Andler, Stephanie M; Wang, Li-Sheng; Rotello, Vincent M; Goddard, Julie M

    2017-03-08

    Hierarchical systems that integrate nano- and macroscale structural elements can offer enhanced enzyme stability over traditional immobilization methods. Microparticles were synthesized using interfacial assembly of lipase B from Candida antarctica with (CLMP-N) and without (CLMP) nanoparticles around a cross-linked polymeric core, to characterize the influence of the hierarchical assembly on lipase stability in extreme environments. Kinetic analysis revealed that the turnover rate (kcat) significantly increased after immobilization. The macrostructure stabilized lipase at neutral and basic pH values, while the nanoparticles influenced stability under acidic pH conditions. Performance of CLMPs was demonstrated by production of sugar ester surfactants in a greener, deep eutectic solvent system (choline chloride and urea). Turnover rate (kcat) and catalytic efficiency (kcat/Km) of the CLMPs decreased following solvent exposure but retained over 60% and 20% activity after 48 h storage at 50 and 60 °C, respectively. CLMP and CLMP-N outperformed the commercially available lipase per unit protein in the production of sugar esters. Improving enzyme performance in greener solvent systems via hierarchical assembly can improve processing efficiency and sustainability for the production of value-added agricultural products.

  18. Diet quality determines lipase gene expression and lipase/esterase activity in Daphnia pulex

    PubMed Central

    Schwarzenberger, Anke; Wacker, Alexander

    2017-01-01

    ABSTRACT We studied the short- (12 h) and long-term (144 h) response of Daphnia pulex lipases to quality shifts in diets consisting of different mixtures of the green alga Scenedesmus with the cyanobacterium Synechococcus, two species with contrasting lipid compositions. The lipase/esterase activity in both the gut and the body tissues had fast responses to the diet shift and increased with higher dietary contributions of Synechococcus. When screening the Daphnia genome for TAG lipases, we discovered a large gene-family expansion of these enzymes. We used a subset of eight genes for mRNA expression analyses and distinguished between influences of time and diet on the observed gene expression patterns. We identified five diet-responsive lipases of which three showed a sophisticated short- and long-term pattern of expression in response to small changes in food-quality. Furthermore, the gene expression of one of the lipases was strongly correlated to lipase/esterase activity in the gut suggesting its potentially major role in digestion. These findings demonstrate that the lipid-related enzymatic machinery of D. pulex is finely tuned to diet and might constitute an important mechanism of physiological adaptation in nutritionally complex environments. PMID:28069588

  19. Data on hepatic lipolysis, adipose triglyceride lipase, and hormone-sensitive lipase in fasted and non-fasted C57BL/6J female mice

    PubMed Central

    Marvyn, Phillip M.; Mardian, Emily B.; Bradley, Ryan M.; A. Marks, Kristin; Duncan, Robin E.

    2016-01-01

    Liver homogenates produced from fasted and non-fasted C57BL/6J female mice were assayed for total lipolytic activity measured as hydrolysis of [9,10-3H(N)]-triolein into [3H] free fatty acids (FFA). Liver homogenates were also used for immunoblotting to determine levels of the lipolytic enzymes adipose-triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), as well as site specific phosphorylation at the 14-3-3 binding site of ATGL and the serine 565 and serine 660 sites of HSL. Significantly higher triolein hydrolysis activity was observed in fasted liver samples, as well as a significant increase in total ATGL and a significant decrease in HSL phosphorylation at the S565 site. PMID:27054184

  20. New Extremophilic Lipases and Esterases from Metagenomics

    PubMed Central

    López-López, Olalla; Cerdán, Maria E; González Siso, Maria I

    2014-01-01

    Lipolytic enzymes catalyze the hydrolysis of ester bonds in the presence of water. In media with low water content or in organic solvents, they can catalyze synthetic reactions such as esterification and transesterification. Lipases and esterases, in particular those from extremophilic origin, are robust enzymes, functional under the harsh conditions of industrial processes owing to their inherent thermostability and resistance towards organic solvents, which combined with their high chemo-, regio- and enantioselectivity make them very attractive biocatalysts for a variety of industrial applications. Likewise, enzymes from extremophile sources can provide additional features such as activity at extreme temperatures, extreme pH values or high salinity levels, which could be interesting for certain purposes. New lipases and esterases have traditionally been discovered by the isolation of microbial strains producing lipolytic activity. The Genome Projects Era allowed genome mining, exploiting homology with known lipases and esterases, to be used in the search for new enzymes. The Metagenomic Era meant a step forward in this field with the study of the metagenome, the pool of genomes in an environmental microbial community. Current molecular biology techniques make it possible to construct total environmental DNA libraries, including the genomes of unculturable organisms, opening a new window to a vast field of unknown enzymes with new and unique properties. Here, we review the latest advances and findings from research into new extremophilic lipases and esterases, using metagenomic approaches, and their potential industrial and biotechnological applications. PMID:24588890

  1. Gastric lipase secretion in children with gastritis.

    PubMed

    Tomasik, Przemyslaw J; Wędrychowicz, Andrzej; Rogatko, Iwona; Zając, Andrzej; Fyderek, Krzysztof; Sztefko, Krystyna

    2013-07-29

    Gastric lipase is one of the prepancreatic lipases found in some mammalian species and in humans. Our knowledge of the hormonal regulation of gastric lipase secretion in children and adolescents is still very limited. The aim of this study was to compare the activity of human gastric lipase (HGL) in gastric juice in healthy adolescents and in patients with gastritis. The adolescents were allocated to three groups: the first including patients with Helicobacter pylori gastritis (HPG; n = 10), the second including patients with superficial gastritis caused by pathogens other than H. pylori (non-HPG; n = 14) and the control group including healthy adolescents (n = 14). Activity of HGL was measured in gastric juice collected during endoscopy. Plasma concentrations of cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) were measured in all adolescents. Activity of HGL in the non-HPG group was significantly lower than in the HPG group (p < 0.005) and the control group (p < 0.005). Mean plasma GIP levels in the control group were lower than in the non-HPG group (p < 0.003) and the HPG group (p < 0.01). We conclude that the regulation of HGL secretion by GLP-1 and CCK is altered in patients with gastritis. Moreover, GIP is a potent controller of HGL activity, both in healthy subjects and in patients with gastritis.

  2. Structural characterization of MAPLE deposited lipase biofilm

    NASA Astrophysics Data System (ADS)

    Aronne, Antonio; Ausanio, Giovanni; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Fanelli, Esther; Massoli, Patrizio; Vicari, Luciano R. M.

    2014-11-01

    Lipases (triacylglycerol ester hydrolases) are enzymes used in several industrial applications. Enzymes immobilization can be used to address key issues limiting widespread application at industrial level. Immobilization efficiency is related to the ability to preserve the native conformation of the enzyme. MAPLE (Matrix Assisted Pulsed Laser Evaporation) technique, a laser deposition procedure for treating organic/polymeric/biomaterials, was applied for the deposition of lipase enzyme in an ice matrix, using near infrared laser radiation. Microscopy analysis showed that the deposition occurred in micrometric and submicrometric clusters with a wide size distribution. AFM imaging showed that inter-cluster regions are uniformly covered with smaller aggregates of nanometric size. Fourier transform infrared spectroscopy was used for both recognizing the deposited material and analyzing its secondary structure. Results showed that the protein underwent reversible self-association during the deposition process. Actually, preliminary tests of MAPLE deposited lipase used for soybean oil transesterification with isopropyl alcohol followed by gas chromatography-mass spectrometry gave results consistent with undamaged deposition of lipase.

  3. Agroindustrial Wastes as Alternative for Lipase Production by Candida viswanathii under Solid-State Cultivation: Purification, Biochemical Properties, and Its Potential for Poultry Fat Hydrolysis

    PubMed Central

    Dias, Kleydiane Braga; da Silva, Ana Carolina Cerri; Terrasan, César Rafael Fanchini

    2016-01-01

    The aims of this work were to establish improved conditions for lipase production by Candida viswanathii using agroindustrial wastes in solid-state cultivation and to purify and evaluate the application of this enzyme for poultry fat hydrolysis. Mixed wheat bran plus spent barley grain (1 : 1, w/w) supplemented with 25.0% (w/w) olive oil increased the lipase production to 322.4%, compared to the initial conditions. When olive oil was replaced by poultry fat, the highest lipase production found at 40% (w/w) was 31.43 U/gds. By selecting, yeast extract supplementation (3.5%, w/w), cultivation temperature (30°C), and substrate moisture (40%, w/v), lipase production reached 157.33 U/gds. Lipase was purified by hydrophobic interaction chromatography, presenting a molecular weight of 18.5 kDa as determined by SDS-PAGE. The crude and purified enzyme showed optimum activity at pH 5.0 and 50°C and at pH 5.5 and 45°C, respectively. The estimated half-life at 50°C was of 23.5 h for crude lipase and 6.7 h at 40°C for purified lipase. Lipase presented high activity and stability in many organic solvents. Poultry fat hydrolysis was maximum at pH 4.0, reaching initial hydrolysis rate of 33.17 mmol/L/min. Thus, C. viswanathii lipase can be successfully produced by an economic and sustainable process and advantageously applied for poultry fat hydrolysis without an additional acidification step to recover the released fatty acids. PMID:27725884

  4. Hydrolysis characteristics of bovine milk fat and monoacid triglycerides mediated by pregastric lipase from goats and kids.

    PubMed

    Lai, D T; MacKenzie, A D; O'Connor, C J; Turner, K W

    1997-10-01

    Commercial extracts from oro-pharyngeal tissues of goats and kids have been used as the source of pregastric lipase and have been processed to yield partially purified samples of the primary pregastric lipase. The activity of these lipases against tributyrylglycerol has been determined over a range of pH and temperatures. Optimum pH conditions for pregastric lipase ranged from pH 5.6 to 6.5 for goats and from pH 5.5 to 6.2 for kids, respectively; the optimum temperature ranged from 43 to 60 degrees C. Optima for kid lipase extended slightly below pH 5.5 and higher than 60 degrees C; which were the limits of the test conditions. The enzymes were also used as catalysts for the hydrolysis of monoacid triglycerides (C4:0 to C12:0) at 40 degrees C and pH 6.5; activity was maximum against tributyrylglycerol (C4:0). Values for the Michaelis-Menten constant, increased as carbon chain length of the carboxylic moiety on the triglycerides increased, but values were identical for pregastric lipases of both goats and kids. Anhydrous milk fat was hydrolyzed by the commercial extracts of pregastric lipases of goats and kids, and the resulting profiles for free fatty acids were very similar to one another and to the corresponding profile for a commercial sample of Parmesan cheese. There appear to be no significant differences in activity between the enzyme preparations from goats and kids.

  5. Direct transesterification of Oedogonium sp. oil be using immobilized isolated novel Bacillus sp. lipase.

    PubMed

    Sivaramakrishnan, Ramachandran; Muthukumar, Karuppan

    2014-01-01

    This work emphasizes the potential of the isolated Bacillus sp. lipase for the production of fatty acid methyl ester by the direct transesterification of Oedogonium sp. of macroalgae. Dimethyl carbonate was used as the extraction solvent and also as the reactant. The effect of solvent/algae ratio, water addition, catalyst, temperature, stirring and time on the direct transesterification was studied. The highest fatty acid methyl ester yield obtained under optimum conditions (5 g Oedogonium sp. powder, 7.5 ml of solvent (dimethyl carbonate)/g of algae, 8% catalyst (%wt/wt of oil), distilled water 1% (wt/wt of algae), 36 h, 55°C and 180 rpm) was 82%. Final product was subjected to thermogravimetric analysis and (1)H NMR analysis. The results showed that the isolated enzyme has good potential in catalyzing the direct transesterification of algae, and the dimethyl carbonate did not affect the activity of the isolated lipase.

  6. Correlation between Propionibacterium acnes biotypes, lipase activity and rash degree in acne patients.

    PubMed

    Higaki, S; Kitagawa, T; Kagoura, M; Morohashi, M; Yamagishi, T

    2000-08-01

    We examined the possible correlation between biotypes of Propionibacterium acnes, lipase activity, and rash degree in acne patients. Among 5 P. acnes biotypes, P. acnes biotype 3 (B3) was the most common, followed by P. acnes biotypes 1, 2 and 4; P. acnes biotype 5 was not found. P. acnes B3 was isolated from more severe skin rashes than those of the other biotypes. Production of propionic acid (PA) and butyric acid (BA) by P. acnes B3 was higher than those by the other P. acnes biotypes. As the rash degree in acne patients was more severe, the production of PA and BA elevated. Although only a few P. acnes strains were examined in the present study, P. acnes B3 had the highest lipase activity and might have the greatest influence on skin rash in acne patients.

  7. Efficient regioselective acylation of quercetin using Rhizopus oryzae lipase and its potential as antioxidant.

    PubMed

    Kumar, Vinod; Jahan, Firdaus; Mahajan, Richi V; Saxena, Rajendra Kumar

    2016-10-01

    The present investigation describes the regioselective enzymatic acylation of quercetin with ferulic acid using Rhizopus oryzae lipase. Optimization of reaction parameters resulted in 93.2% yield of the ester synthesized using 750IU of lipase in cyclo-octane at a temperature of 45°C. The reaction was successfully carried out upto 25g scale. The ester synthesized was analyzed by (1)H Nuclear magnetic resonance spectroscopy. The ester synthesized (quercetin ferulate) showed higher antiradical activity as compared to ascorbic acid using the 2,2-diphenyl-1-picrylhydrazyl radical method. These results on enzyme-catalyzed acylation of quercetin might be used to prepare and scale-up other flavonoids derivatives.

  8. Expression of a lipid-inducible, self-regulating form of Yarrowia lipolytica lipase LIP2 in Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Yarrowia lipolytica lipase 2 gene (YlLIP2) was cloned into galactose- and fatty acid-inducible Saccharomyces cerevisiae expression vectors and used to generate yeast strains that secrete active LIP2 enzyme activity, as evidenced by results from gene expression analysis and tributyrin turbidity c...

  9. Efficient biocatalyst by encapsulating lipase into nanoporous gold

    NASA Astrophysics Data System (ADS)

    Du, Xiaoyu; Liu, Xueying; Li, Yufei; Wu, Chao; Wang, Xia; Xu, Ping

    2013-04-01

    Lipases are one of the most important biocatalysts for biotechnological applications. Immobilization is an efficient method to increase the stability and reusability of lipases. In this study, nanoporous gold (NPG), a new kind of nanoporous material with tunable porosity and excellent biocompatibility, was employed as an effective support for lipase immobilization. The pore size of NPG and adsorption time played key roles in the construction of lipase-NPG biocomposites. The morphology and composition of NPG before and after lipase loading are verified using a scanning electron microscope, equipped with an energy-dispersive X-ray spectrometer. The resulting lipase-NPG biocomposites exhibited excellent catalytic activity and remarkable reusability. The catalytic activity of the lipase-NPG biocomposite with a pore size of 35 nm had no decrease after ten recycles. Besides, the lipase-NPG biocomposite exhibited high catalytic activity in a broader pH range and higher temperature than that of free lipase. In addition, the leaching of lipase from NPG could be prevented by matching the protein's diameter and pore size. Thus, the encapsulation of enzymes within NPG is quite useful for establishing new functions and will have wide applications for different chemical processes.

  10. Compound heterozygote for lipoprotein lipase deficiency: Ser----Thr244 and transition in 3' splice site of intron 2 (AG----AA) in the lipoprotein lipase gene.

    PubMed Central

    Hata, A; Emi, M; Luc, G; Basdevant, A; Gambert, P; Iverius, P H; Lalouel, J M

    1990-01-01

    Cloning and sequencing of translated exons and intron-exon boundaries of the lipoprotein lipase gene in a patient of French descent who has the chylomicronemia syndrome revealed that he was a compound heterozygote for two nucleotide substitutions. One (TCC----ACC) leads to an amino acid substitution (Ser----Thr244), while the other alters the 3' splice site of intron 2 (AG----AA). The functional significance of the Thr244 amino acid substitution was established by in vitro expression in cultured mammalian cells. Images Figure 1 Figure 2 PMID:2121025

  11. Polyphenols extracted from black tea (Camellia sinensis) residue by hot-compressed water and their inhibitory effect on pancreatic lipase in vitro.

    PubMed

    Yuda, Naoki; Tanaka, Miyuki; Suzuki, Manabu; Asano, Yuzo; Ochi, Hiroshi; Iwatsuki, Keiji

    2012-12-01

    Polyphenols, retained in black tea wastes following the commercial production of tea beverages, represent an underutilized resource. The purpose of this study was to investigate the potential use of hot-compressed water (HCW) for the extraction of pancreatic lipase-inhibiting polyphenols from black tea residues. Black tea residues were treated with HCW at 10 °C intervals, from 100 to 200 °C. The resulting extracts were analyzed using high-performance liquid chromatography-mass spectrometry and assayed to determine their inhibitory effect on pancreatic lipase activity in vitro. Four theaflavins (TF), 5 catechins, 2 quercetin glycosides, quinic acid, gallic acid, and caffeine were identified. The total polyphenol content of extracts increased with increasing temperature but lipase inhibitors (TF, theaflavin 3-O-gallate, theaflavin 3'-O-gallate, theaflavin 3,3'-O-gallate, epigallocatechin gallate, and epicatechin gallate) decreased over 150 °C. All extracts inhibited pancreatic lipase but extracts obtained at 100 to 140 °C showed the greatest lipase inhibition (IC(50) s of 0.9 to 1.3 μg/mL), consistent with the optimal extraction of TFs and catechins except catechin by HCW between 130 and 150 °C. HCW can be used to extract pancreatic lipase-inhibiting polyphenols from black tea waste. These extracts have potential uses, as dietary supplements and medications, for the prevention and treatment of obesity.

  12. Strategy to Overcome Effect of Raw Materials on Enzymatic Process of Biodiesel from Non-edible Oils Using Candida sp. 99-125 Lipase.

    PubMed

    Nie, Kaili; Wang, Fang; Tan, Tianwei; Liu, Luo

    2015-11-01

    Non-edible oils are preferred raw materials for biodiesel production. However, the properties of raw materials significantly affect the synthesis process, leading to difficulties to design one process suitable for any kind of raw material. In this study, the composition of five typical non-edible oils was analyzed. The major difference was the content of free fatty acids, reflected from their acid values. The influence of different oils was investigated by using lipase from Candida sp. 99-125. At low lipase dosage and low water content, the conversion was found proportional to the acid value. However, by increasing the water content or lipase dosage, we observed that the conversions for all kinds of oils used in this study could exceed 80%. Time course analysis indicates that the lipase used in this study catalyzed hydrolysis followed by esterification, rather than direct transesterification. Accumulation of free fatty acids at the very beginning was necessary. A high water content facilitated the hydrolysis of oils with low acid value. This lipase showed capability to transform all the oils by controlling the water content.

  13. Refined homology model of monoacylglycerol lipase: toward a selective inhibitor

    NASA Astrophysics Data System (ADS)

    Bowman, Anna L.; Makriyannis, Alexandros

    2009-11-01

    Monoacylglycerol lipase (MGL) is primarily responsible for the hydrolysis of 2-arachidonoylglycerol (2-AG), an endocannabinoid with full agonist activity at both cannabinoid receptors. Increased tissue 2-AG levels consequent to MGL inhibition are considered therapeutic against pain, inflammation, and neurodegenerative disorders. However, the lack of MGL structural information has hindered the development of MGL-selective inhibitors. Here, we detail a fully refined homology model of MGL which preferentially identifies MGL inhibitors over druglike noninhibitors. We include for the first time insight into the active-site geometry and potential hydrogen-bonding interactions along with molecular dynamics simulations describing the opening and closing of the MGL helical-domain lid. Docked poses of both the natural substrate and known inhibitors are detailed. A comparison of the MGL active-site to that of the other principal endocannabinoid metabolizing enzyme, fatty acid amide hydrolase, demonstrates key differences which provide crucial insight toward the design of selective MGL inhibitors as potential drugs.

  14. Serum lipase determination in the dog: a comparison of a titrimetric method with an automated kinetic method.

    PubMed

    Walter, Gail L.; McGraw, Pamela; Tvedten, Harold W.

    1992-01-01

    An enzymatic, kinetic method for determining serum lipase activity was evaluated and compared to a standard manual method for use in dogs. The kinetic method was a commercial kit adapted for use on a tandem access clinical chemistry analyzer and utilized a series of coupled enzymatic reactions based on the hydrolysis of 1,2-diglyceride by lipase. The manual method was the Cherry-Crandall technique based on the titration of base against the acid formed by hydrolysis of an olive oil substrate by lipase. The correlation between the two methods was very good (r = 0.94). The reference range for 56 clinically healthy dogs assayed by the kinetic method was 90 to 527 U/L. Diseases associated with a greater than twofold elevation in serum lipase activity as determined by the kinetic method included pancreatitis, gastritis with liver disease, and oliguric renal failure with metabolic acidosis. In some cases, pancreatitis was seen with other clinical problems, such as gastroenteritis, diabetic ketoacidosis, duodenal mass, disseminated intravascular coagulation, and septic peritonitis. Diseases associated with serum lipase activity within the reference range or elevated less than twofold included gastritis, gastric ulcer, cholestasis, phenobarbital-induced hepatopathy, colitis, copper hepatopathy, abdominal hematoma, apocrine gland adenocarcinoma, and thrombocytopenia with pneumonia.

  15. A Novel Lipase as Aquafeed Additive for Warm-Water Aquaculture

    PubMed Central

    Yang, Yalin; Huang, Lu; Zhou, Zhigang

    2015-01-01

    A novel Acinetobacter lipase gene lipG1was cloned from DNA extracted from intestinal sample of common carp (Cyprinus carpio), and expressed in E. coli BL21. The encoded protein was 406 amino acids in length. Phylogenetic analysis indicated that LipG1 and its relatives comprised a novel group of true lipases produced by Gram-negative bacteria. LipG1 showed maximal activity at 40℃ and pH 8.0 when pNP decanoate (C10) was used as the substrate, and remained high activity between 20℃ and 35℃. Activity of the lipase was promoted by Ca2+ and Mg2+, and inhibited by Zn2+ and Cu2+. Moreover, LipG1 is stable with proteases, most commercial detergents and organic solvents. Substrate specificity test indicated that LipG1can hydrolyse pNP esters with acyl chain length from C2 to C16, with preference for medium-chain pNP esters (C8, C10). Lastly, LipG1was evaluated as an aquafeed additive for juvenile common carp (Cyprinus carpio). Results showed that supplementation of LipG1significantly improved the gut and heptaopancreas lipase activity of fish fed with palm oil diet. Consistently, improved feed conversion ratio and growth performance were recorded in the LipG1 feeding group, to levels comparable to the group of fish fed with soybean oil diet. Collectively, LipG1 exhibited good potential as an aquafeed additive enzyme, and deserves further characterization as the representative of a novel group of lipases. PMID:26147311

  16. A Novel Lipase as Aquafeed Additive for Warm-Water Aquaculture.

    PubMed

    Ran, Chao; He, Suxu; Yang, Yalin; Huang, Lu; Zhou, Zhigang

    2015-01-01

    A novel Acinetobacter lipase gene lipG1 was cloned from DNA extracted from intestinal sample of common carp (Cyprinus carpio), and expressed in E. coli BL21. The encoded protein was 406 amino acids in length. Phylogenetic analysis indicated that LipG1 and its relatives comprised a novel group of true lipases produced by Gram-negative bacteria. LipG1 showed maximal activity at 40℃ and pH 8.0 when pNP decanoate (C10) was used as the substrate, and remained high activity between 20℃ and 35℃. Activity of the lipase was promoted by Ca2+ and Mg2+, and inhibited by Zn2+ and Cu2+. Moreover, LipG1 is stable with proteases, most commercial detergents and organic solvents. Substrate specificity test indicated that LipG1 can hydrolyse pNP esters with acyl chain length from C2 to C16, with preference for medium-chain pNP esters (C8, C10). Lastly, LipG1 was evaluated as an aquafeed additive for juvenile common carp (Cyprinus carpio). Results showed that supplementation of LipG1 significantly improved the gut and heptaopancreas lipase activity of fish fed with palm oil diet. Consistently, improved feed conversion ratio and growth performance were recorded in the LipG1 feeding group, to levels comparable to the group of fish fed with soybean oil diet. Collectively, LipG1 exhibited good potential as an aquafeed additive enzyme, and deserves further characterization as the representative of a novel group of lipases.

  17. Effectiveness of immobilized lipase Thermomyces lanuginosa in catalyzing interesterification of palm olein in batch reaction.

    PubMed

    Saw, Mei Huey; Siew, Wai Lin

    2014-01-01

    Lipase Thermomyces lanuginosa has shown potential in modifying oils and fats through interesterification. Analyzing the physicochemical properties of the modified oils is important to determine the effectiveness of lipase in catalyzing interesterification. In this study, the effectiveness of the immobilized lipase (Lipozyme(®) TL IM) in catalyzing interesterification of palm olein in pilot-scale batch reactor was determined. The evaluation was done by analyzing the changes of triacylglycerol (TAGs) composition, sn-2 position fatty acids composition and the physical properties of the palm olein after the interesterifications. The pilot-scale batch reaction was conducted for 8 hours with 5 %w/w enzyme dosage based on the results of TAGs composition of the laboratory-scale interesterified products. The pilot-scale results showed that Lipozyme(®) TL IM act as an effective enzyme in converting TAGs, in which 4.5% of trisaturated TAGs (PPP and PPS) were produced in the batch reaction. The formation of these new TAGs had also altered the thermal and physical properties of the palm olein. These interesterified products showed a broad peak and shoulder at high temperature, ranging from 10°C to 40°C, indicating the formation of some new TAGs with high melting points. However, the enzyme did not perform perfectly as a 1,3-specific enzyme in the reaction as a significant reduction of oleic acid and an increment of palmitic acid at the sn-2 position was observed.

  18. Critical Role of Different Immobilized Biocatalysts of a Given Lipase in the Selective Ethanolysis of Sardine Oil.

    PubMed

    Moreno-Perez, Sonia; Turati, Daniela Flavia Machado; Borges, Janaina Pires; Luna, Pilar; Señorans, Francisco Javier; Guisan, Jose M; Fernandez-Lorente, Gloria

    2017-01-11

    Different immobilized derivatives of two lipases were tested as catalysts of the synthesis of ethyl esters of omega-3 fatty acids during the ethanolysis of sardine oil in solvent-free systems at 25 °C. Lipases from Thermomyces lanuginosus (TLL) and Lecitase Ultra (a phospholipase with lipolytic activity) were studied. Lipases were adsorbed on hydrophobic Sepabeads C18 through the open active center and on an anion-exchanger Duolite with the active center exposed to the reaction medium. TLL-Sepabeads derivatives exhibit a high activity of 9 UI/mg of immobilized enzyme, and they are 20-fold more active than TLL-Duolite derivatives and almost 1000-fold more active than Lipozyme TL IM (the commercial derivative from Novozymes). Lecitase-Sepabeads exhibit a high selectivity for the synthesis of the ethyl ester of EPA that is 43-fold faster than the synthesis of the ethyl ester of DHA.

  19. Enhancing trimethylolpropane esters synthesis through lipase immobilized on surface hydrophobic modified support and appropriate substrate feeding methods.

    PubMed

    Tao, Yifeng; Cui, Caixia; Shen, Huaqing; Liu, Luo; Chen, Biqiang; Tan, Tianwei

    2014-05-10

    Candida sp. 99-125 lipase immobilized on surface hydrophobic modified support and appropriate substrate feeding methods were used to improve the synthesis of tri-substituted trimethylolpropane (TMP) esters, which can be used as raw materials for biodegradable lubricants. The proposed novel production method is environmentally friendly. Lipase was adsorbed on surface hydrophobic silk fibers that were pretreated by amino-modified polydimethylsiloxane. A 5-level-4-factors central composite model, including reaction time, temperature, enzyme amount, and molar ratio of fatty acid to TMP, was designed to evaluate the interaction of process variables in the enzymatic esterification. The water activity was kept constant using a LiCl-saturated salt solution. Under the optimum conditions with 30% enzyme amount and substrates molar ratio 8.4 at 45°C for 47h, the total conversion of caprylic acid is 97.3% and the yield of tri-substituted TMP esters is 95.5%. The surface hydrophobic treatment resulted in less cluster water accumulated on the surface immobilized lipase, which was demonstrated by near-infrared spectra. Consequently, the optimum temperature and water tolerance of immobilized lipase were increased. Two TMP-feeding methods were used to maintain high molar ratio of fatty acid to TMP, and increase the final tri-substituted TMP esters content exceeding 85% (w/w) in reactant.

  20. New tools for exploring "old friends-microbial lipases".

    PubMed

    Nagarajan, Saisubramanian

    2012-11-01

    Fat-splitting enzymes (lipases), due to their natural, industrial, and medical relevance, attract enough attention as fats do in our lives. Starting from the paper that we write, cheese and oil that we consume, detergent that we use to remove oil stains, biodiesel that we use as transportation fuel, to the enantiopure drugs that we use in therapeutics, all these applications are facilitated directly or indirectly by lipases. Due to their uniqueness, versatility, and dexterity, decades of research work have been carried out on microbial lipases. The hunt for novel lipases and strategies to improve them continues unabated as evidenced by new families of microbial lipases that are still being discovered mostly by metagenomic approaches. A separate database for true lipases termed LIPABASE has been created recently which provides taxonomic, structural, biochemical information about true lipases from various species. The present review attempts to summarize new approaches that are employed in various aspects of microbial lipase research, viz., screening, isolation, production, purification, improvement by protein engineering, and surface display. Finally, novel applications facilitated by microbial lipases are also presented.

  1. Immobilization of a Commercial Lipase from Penicillium camembertii (Lipase G) by Different Strategies

    PubMed Central

    Mendes, Adriano A.; Freitas, Larissa; de Carvalho, Ana Karine F.; de Oliveira, Pedro C.; de Castro, Heizir F.

    2011-01-01

    The objective of this work was to select the most suitable procedure to immobilize lipase from Penicillium camembertii (Lipase G). Different techniques and supports were evaluated, including physical adsorption on hydrophobic supports octyl-agarose, poly(hydroxybutyrate) and Amberlite resin XAD-4; ionic adsorption on the anionic exchange resin MANAE-agarose and covalent attachment on glyoxyl-agarose, MANAE-agarose cross-linked with glutaraldehyde, MANAE-agarose-glutaraldehyde, and epoxy-silica-polyvinyl alcohol composite. Among the tested protocols, the highest hydrolytic activity (128.2 ± 8.10 IU·g−1 of support) was achieved when the lipase was immobilized on epoxy-SiO2-PVA using hexane as coupling medium. Lipase immobilized by ionic adsorption on MANAE-agarose also gave satisfactory result, attaining 55.6 ± 2.60 IU·g−1 of support. In this procedure, the maximum loading of immobilized enzyme was 9.3 mg·g−1 of gel, and the highest activity (68.8 ± 2.70 IU·g−1 of support) was obtained when 20 mg of protein·g−1 was offered. Immobilization carried out in aqueous medium by physical adsorption on hydrophobic supports and covalent attachment on MANAE-agarose-glutaraldehyde and glyoxyl-agarose was shown to be unfeasible for Lipase G. Thermal stability tests revealed that the immobilized derivative on epoxy-SiO2-PVA composite using hexane as coupling medium had a slight higher thermal stability than the free lipase. PMID:21811674

  2. Clean synthesis of biolubricant range esters using novel liquid lipase enzyme in solvent free medium.

    PubMed

    Trivedi, Jayati; Aila, Mounika; Sharma, Chandra Dutt; Gupta, Piyush; Kaul, Savita

    2015-01-01

    In view of the rising global problems of environment pollution and degradation, the present process provides a 'green solution' to the synthesis of higher esters of lubricant range, more specifically in the range C12-C36, using different combinations of acids and alcohols, in a single step reaction. The esters produced are biodegradable in nature and have a plethora of uses, such as in additives, as lubricating oils and other hydraulic fluids. The enzymatic esterification was performed using liquid (non-immobilized or free) lipase enzyme, without any additional organic solvent. Soluble lipase proves to be superior to immobilized enzymes as it is more cost effective and provides a faster process for the production of higher esters of lubricant range. An interesting finding was, that the lipase enzyme showed higher conversion rates with increasing carbon number of straight chain alcohols and acids. Reactions were carried out for the optimization of initial water concentration, temperature, pH of the substrate mixture and the chain length of the substrates. Under optimized conditions, the method was suitable to achieve ~ 99% conversion. Thus, the process provides an environment friendly, enzymatic alternative to the chemical route which is currently used in the industrial synthesis of lubricant components.

  3. Kinetic resolution of racemic 1-phenyl 1-propanol by lipase catalyzed enantioselective esterification reaction.

    PubMed

    Karadeniz, Fatma; Bayraktar, Emine; Mehmetoglu, Ulkü

    2010-10-01

    In this study, resolution of (R,S)-1-phenyl 1-propanol by lipase-catalyzed enantioselective esterification was achieved. To investigate the effect of lipase type on enantiomeric excess, three different lipases were used. Novozym 435 exhibited the highest enantioselectivity for resolution of (R,S)-1-phenyl 1-propanol. The effects of carbon length of fatty acids from C12 to C16, which were used as acyl donor, organic solvents with Log P values from 0.5 to 4.5, acyl donor/alcohol molar ratio (1:1, 3:2, 2:1, 3:1), amount of added molecular sieves (0-133.2 kg/m(3)), and temperature (10-60° C) on the enantioselectivity were investigated. The best reaction conditions were comprised of using toluene (Log P= 2.5) as solvent, lauric acid (12C) as acyl donor, 133.2 kg/m(3) molecular sieves at 50° C and acyl donor/alcohol molar ratio as 1:1. Under these conditions, the enantiomeric excess of S enantiomer ee (S) was obtained as 95% for a reaction time of 2.5 hours.

  4. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores.

    PubMed

    Zechner, Rudolf; Kienesberger, Petra C; Haemmerle, Guenter; Zimmermann, Robert; Lass, Achim

    2009-01-01

    Fatty acids (FAs) are essential components of all lipid classes and pivotal substrates for energy production in all vertebrates. Additionally, they act directly or indirectly as signaling molecules and, when bonded to amino acid side chains of peptides, anchor proteins in biological membranes. In vertebrates, FAs are predominantly stored in the form of triacylglycerol (TG) within lipid droplets of white adipose tissue. Lipid droplet-associated TGs are also found in most nonadipose tissues, including liver, cardiac muscle, and skeletal muscle. The mobilization of FAs from all fat depots depends on the activity of TG hydrolases. Currently, three enzymes are known to hydrolyze TG, the well-studied hormone-sensitive lipase (HSL) and monoglyceride lipase (MGL), discovered more than 40 years ago, as well as the relatively recently identified adipose triglyceride lipase (ATGL). The phenotype of HSL- and ATGL-deficient mice, as well as the disease pattern of patients with defective ATGL activity (due to mutation in ATGL or in the enzyme's activator, CGI-58), suggest that the consecutive action of ATGL, HSL, and MGL is responsible for the complete hydrolysis of a TG molecule. The complex regulation of these enzymes by numerous, partially uncharacterized effectors creates the "lipolysome," a complex metabolic network that contributes to the control of lipid and energy homeostasis. This review focuses on the structure, function, and regulation of lipolytic enzymes with a special emphasis on ATGL.

  5. Production of calcium-stearate by lipase using hydrogenated beef tallow.

    PubMed

    Lee, Hyang-Bok; Kwon, Jin-Soo; Kim, Young-Bum; Kim, Eun-Ki

    2009-05-01

    Calcium-stearate has been traditionally produced by chemical methods, producing wastes and requiring high energy because of high temperature operation. To achieve enzymatic production of calcium-stearate at unfavorable conditions, i.e., pH 10 and 60 degrees C, suitable lipase was selected and reaction conditions were optimized using calcium hydroxide and hydrogenated beef tallow as substrates. Under optimum conditions, 95% of beef tallow, in 2.5 h, was converted into calcium-stearate by using commercial lipase SDL 451. Investigation of the time-course reaction revealed that fatty acid was initially produced by lipase, followed by conversion into calcium-stearate. The fatty acid production rate was faster than that of the conversion into calcium-stearate at the beginning of the reaction. Alkaline pH, originating from the addition of calcium hydroxide, increased the converting reaction. This is the first report demonstrating that chemical production of calcium-stearate can be replaced by enzymatic reaction, thereby creating a cleaner process.

  6. Residue Val237 is critical for the enantioselectivity of Penicillium expansum lipase.

    PubMed

    Tang, Lianghua; Su, Min; Chi, Liying; Zhang, Junling; Zhang, Huihui; Zhu, Ling

    2014-03-01

    The shape of the hydrophobic tunnel leading to the active site of Penicillium expansum lipase (PEL) was redesigned by single-point mutations, in order to better understand enzyme enantioselectivity towards naproxen. A variant with a valine-to-glycine substitution at residue 237 exhibited almost no enantioselectivity (E = 1.1) compared with that (E = 104) of wild-type PEL. The function of the residue, Val237, in the hydrophobic tunnel was further analyzed by site-directed mutagenesis. For each of these variants a significant decrease of enantioselectivity (E < 7) was observed compared with that of wild-type enzyme. Further docking result showed that Val237 plays the most important role in stabilizing the correct orientation of (R)-naproxen. Overall, these results indicate that the residue Val237 is the key amino acid residue maintaining the enantioselectivity of the lipase.

  7. Sensitive impedimetric biosensor for direct detection of diazinon based on lipases

    NASA Astrophysics Data System (ADS)

    Jaffrezic-Renault, Nicole; Zehani, Nedjla; Dzyadevych, Sergei; Kherrat, Rochdi

    2014-07-01

    Two novel impedimetric biosensors for highly sensitive and rapid quantitative detection of diazinon in an aqueous medium were developed using two types of lipase, from Candida Rugosa (microbial source) (CRL) and from porcine pancreas (animal source) (PPL) immobilized onto a functionalized gold electrode. The lipase is characterized to specifically catalyze the hydrolysis of ester functions leading to the transformation of diazinon into diethyl phosphorothioic acid (DETP) and 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMHP). The developed biosensors both presented a large wide range of linearity up to 50µM with a detection limit of 10 nM for the CRL biosensor and 0.1 µM for the PPL biosensor. A comparative study was carried out between the two biosensors and results showed higher sensitivity for the CRL sensor. Moreover, it presented good accuracy and reproducibility, and had very good storage and multiple use stability for 25 days when stored at 4°C.

  8. Adding value to the oil cake as a waste from oil processing industry: production of lipase and protease by Candida utilis in solid state fermentation.

    PubMed

    Moftah, Omar Ali Saied; Grbavčić, Sanja; Zuža, Milena; Luković, Nevena; Bezbradica, Dejan; Knežević-Jugović, Zorica

    2012-01-01

    Olive oil cake is a by-product from the olive oil processing industry and can be used for the lipase and protease production by Candida utilis in solid state fermentation. Different carbon and nitrogen sources were evaluated, and the results showed that the supplementation of the substrate with maltose and starch as carbon sources and yeast extract as a nitrogen source significantly increased the lipase production. The best results were obtained with maltose, whereas rather low lipase and protease activities were found with glucose and oleic acid. Response surface methodology and a five-level-three-factor central composite rotatable design were used to evaluate the effects of the initial moisture content, inoculum size and fermentation time on both lipase and protease activity levels. A lipase activity value of ≈25 U g(-1) and a protease activity value of 110 U g(-1) were obtained under the optimized fermentation conditions. An alkaline treatment of the substrate appeared to be efficient, leading to increases of 39% and 133% in the lipase and protease production, respectively. The results showed that the olive cake could be a good source for enzyme production by solid state fermentation.

  9. Application of a Burkholderia cepacia lipase-immobilized silica monolith to batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil

    PubMed Central

    2011-01-01

    Background The enzymatic production of biodiesel through alcoholysis of triglycerides has become more attractive because it shows potential in overcoming the drawbacks of chemical processes. In this study, we investigate the production of biodiesel from crude, non-edible Jatropha oil and methanol to characterize Burkholderia cepacia lipase immobilized in an n-butyl-substituted hydrophobic silica monolith. We also evaluate the performance of a lipase-immobilized silica monolith bioreactor in the continuous production of biodiesel. Results The Jatropha oil used contained 18% free fatty acids, which is problematic in a base-catalyzed process. In the lipase-catalyzed reaction, the presence of free fatty acids made the reaction mixture homogeneous and allowed bioconversion to proceed to 90% biodiesel yield after a 12 hour reaction time. The optimal molar ratio of methanol to oil was 3.3 to 3.5 parts methanol to one part oil, with water content of 0.6% (w/w). Further experiments revealed that B. cepacia lipase immobilized in hydrophobic silicates was sufficiently tolerant to methanol, and glycerol adsorbed on the support disturbed the reaction to some extent in the present reaction system. The continuous production of biodiesel was performed at steady state using a lipase-immobilized silica monolith bioreactor loaded with 1.67 g of lipase. The yield of 95% was reached at a flow rate of 0.6 mL/h, although the performance of the continuous bioreactor was somewhat below that predicted from the batch reactor. The bioreactor was operated successfully for almost 50 days with 80% retention of the initial yield. Conclusions The presence of free fatty acids originally contained in Jatropha oil improved the reaction efficiency of the biodiesel production. A combination of B. cepacia lipase and its immobilization support, n-butyl-substituted silica monolith, was effective in the production of biodiesel. This procedure is easily applicable to the design of a continuous flow

  10. Quantitative study of lipase secretion, extracellular lipolysis, and lipid storage in the yeast Yarrowia lipolytica grown in the presence of olive oil: analogies with lipolysis in humans.

    PubMed

    Najjar, Amal; Robert, Sylvie; Guérin, Clémence; Violet-Asther, Michèle; Carrière, Frédéric

    2011-03-01

    Lipase secretion, extracellular lipolysis, and fatty acid uptake were quantified in the yeast Yarrowia lipolytica grown in the presence of olive oil and/or glucose. Specific lipase assays, Western blot analysis, and ELISA indicated that most of the lipase activity measured in Y. lipolytica cultures resulted from the YLLIP2 lipase. Lipase production was triggered by olive oil and, during the first hours of culture, most of the lipase activity and YLLIP2 immunodetection remained associated with the yeast cells. YLLIP2 was then released in the culture medium before it was totally degraded by proteases. Olive oil triglycerides were largely degraded when the lipase was still attached to the cell wall. The fate of lipolysis products in the culture medium and inside the yeast cell, as well as lipid storage, was investigated simultaneously by quantitative TLC-FID and GC analysis. The intracellular levels of free fatty acids (FFA) and triglycerides increased transiently and were dependent on the carbon sources. A maximum fat storage of 37.8% w/w of yeast dry mass was observed with olive oil alone. A transient accumulation of saturated FFA was observed whereas intracellular triglycerides became enriched in unsaturated fatty acids. So far, yeasts have been mainly used for studying the intracellular synthesis, storage, and mobilization of neutral lipids. The present study shows that yeasts are also interesting models for studying extracellular lipolysis and fat uptake by the cell. The quantitative data obtained here allow for the first time to establish interesting analogies with gastrointestinal and vascular lipolysis in humans.

  11. Detergent compatible alkaline lipase produced by marine Bacillus smithii BTMS 11.

    PubMed

    Lailaja, V P; Chandrasekaran, M

    2013-08-01

    Bacillus smithii BTMS 11, isolated from marine sediment, produced alkaline and thermostable lipase. The enzyme was purified to homogeneity by ammonium sulfate precipitation and ion exchange chromatography which resulted in 0.51 % final yield and a 4.33 fold of purification. The purified enzyme was found to have a specific activity of 360 IU/mg protein. SDS-PAGE analyses, under non-reducing and reducing conditions, yielded a single band of 45 kDa indicating the single polypeptide nature of the enzyme and zymogram analysis using methylumbelliferyl butyrate as substrate confirmed the lipolytic activity of the protein band. The enzyme was found to have 50 °C and pH 8.0 as optimum conditions for maximal activity. However, the enzyme was active over wide range of temperatures (30-80 °C) and pH (7.0-10.0). Effect of a number of metal salts, solvents, surfactants, and other typical enzyme inhibitors on lipase activity was studied to determine the novel characteristics of the enzyme. More than 90 % of the enzyme activity was observed even after 3 h of incubation in the presence of commercial detergents Surf, Sunlight, Ariel, Henko, Tide and Ujala indicating the detergent compatibility of B. smithii lipase. The enzyme was also found to be efficient in stain removal from cotton cloths. Further it was observed that the enzyme could catalyse ester synthesis between fatty acids of varying carbon chain lengths and methanol with high preference for medium to long chain fatty acids showing 70 % of esterification. Results of the study indicated scope for application of this marine bacterial lipase in various industries.

  12. Surface modification of functional self-assembled monolayers on 316L stainless steel via lipase catalysis.

    PubMed

    Mahapatro, Anil; Johnson, David M; Patel, Devang N; Feldman, Marc D; Ayon, Arturo A; Agrawal, C Mauli

    2006-01-31

    Lipase catalyzed esterification of therapeutic drugs to functional self-assembled monolayers (SAMs) on 316L stainless steel (SS) after assembly has been demonstrated. SAMs of 16-mercaptohexadecanoic acid (-COOH SAM) and 11-mercapto-1-undecanol (-OH SAM) were formed on 316L SS, and lipase catalysis was used to attach therapeutic drugs, perphenazine and ibuprofen, respectively, on these SAMs. The reaction was carried out in toluene at 60 degrees C for 5 h using Novozyme-435 as the biocatalyst. The FTIR spectra after surface modification of -OH SAMs showed the presence of the C=O stretching bands at 1745 cm(-1), which was absent in the FTIR spectra of -OH SAMs. Similarly, the FTIR spectra after the reaction of the -COOH SAM with perphenazine showed two peaks in the carbonyl region, a peak at 1764 cm(-1), which is the representative peak for the C=O stretching for esters. The second peak at 1681 cm(-1) is assigned to the C=O stretching of the remaining unreacted terminal COOH. XPS spectra after lipase catalysis with ibuprofen showed a photoelectron peak evolving at 288.5 eV which arises from the carbon (C=O) of the carboxylic acid of the drug (ibuprofen). Similarly for -COOH SAMs, after esterifiation we see a small, photoelectron peak evolving at 286.5 eV which corresponds to the C in the methylene groups adjacent to the oxygen (C-O), which should evolve only after the esterification of perphenazine with the -COOH SAM. Thus, lipase catalysis provides an alternate synthetic methodology for surface modification of functional SAMs after assembly.

  13. Effects of cannabinoids on the activities of mouse brain lipases.

    PubMed

    Hunter, S A; Burstein, S; Renzulli, L

    1986-09-01

    Cannabinoids were found to augment phospholipase activities and modify lipid levels of mouse brain synaptosomes, myelin and mitochondria. Delta-1-tetra-hydrocannabinol (delta 1-THC) and several of its metabolites induced a dose-dependent (0.32-16 microM) stimulation of phospholipase A2 (PLA2) activity resulting in the increased release of free arachidonic acid from exogenous [1-14C]phosphatidylcholine (PC). The potencies of the cannabinoids in modulating PLA2 activity were approximately of the order: 7-OH-delta 1-THC greater than delta 1-THC greater than 7-oxo-delta 1-THC greater than delta 1-THC-7-oic acid = 6 alpha OH-delta 1-THC much greater than 6 beta-OH-delta 1-THC. The hydrolysis of phosphatidylinositol (PI) by synaptosomal phospholipase C (PLC) was enhanced significantly by delta 1-THC and promoted diacylglyceride levels by greater than 100 percent compared to control values. In contrast, arachidonate was the major product resulting from phospholipase activities of a 20,000 g pellet. Synaptosomal diacylglyceride lipase activity was inhibited by delta 1-THC. [1-14C]Arachidonic acid was readily incorporated into subcellular membrane phospholipids and after exposure to cannabinoids led to diminished phosphoglyceride levels and concomitant increases in released neutral lipid products. These data suggest that cannabinoids control phospholipid turnover and metabolism in mouse brain preparations by the activation of phospholipases and, through this mechanism, may exert some of their effects.

  14. Production and characterization of an extracellular lipase from Candida guilliermondii

    PubMed Central

    Oliveira, Anne Caroline Defranceschi; Fernandes, Maria Luiza; Mariano, André Bellin

    2014-01-01

    Extracellular lipases from the endophytic yeast Candida guilliermondii isolated from castor leaves (Ricinus communis L.) were produced using low-cost raw materials such as agro-industrial residues and applying them in the esterification of oleic acid for evaluating their potential use in biodiesel production. After partial purification using ammonium sulfate, the enzyme was characterized and presented higher activity (26.8 ± 1.5 U mL−1) in the presence of 5 mmol L−1 NaCl at 30 °C and pH 6.5. The production through submerged fermentation was formerly performed in 150 mL erlenmeyer flasks and, once the enzyme production was verified, assays in a 14 L bioreactor were conducted, obtaining 18 ± 1.4 U mL−1. The produced enzyme was applied in the oleic acid esterification under different solvents: hexane, cyclohexane or cyclohexanone) and different acid:alcohol molar ratios. Higher ester conversion rate (81%) was obtained using hexane and the molar ratio of 1:9 was the best conditions using methanol. The results suggest the potential for development of endophytic yeast in the production of biocatalyst through submerged fermentation using agroindustrial residues as culture medium. PMID:25763060

  15. Monoacylglycerol lipase inhibition by organophosphorus compounds leads to elevation of brain 2-arachidonoylglycerol and the associated hypomotility in mice

    SciTech Connect

    Quistad, Gary B.; Klintenberg, Rebecka; Caboni, Pierluigi; Liang, Shannon N.; Casida, John E. . E-mail: ectl@nature.berkeley.edu

    2006-02-15

    Three components of the cannabinoid system are sensitive to selected organophosphorus (OP) compounds: monoacylglycerol (MAG) lipase that hydrolyzes the major endogenous agonist 2-arachidonoylglycerol (2-AG); fatty acid amide hydrolase (FAAH) that cleaves the agonist anandamide present in smaller amounts; the CB1 receptor itself. This investigation considers which component of the cannabinoid system is the most likely contributor to OP-induced hypomotility in mice. Structure-activity studies by our laboratory and others rule against major involvement of a direct toxicant-CB1 receptor interaction for selected OPs. Attention was therefore focused on the OP sensitivities of MAG lipase and FAAH, assaying 19 structurally diverse OP chemicals (pesticides, their metabolites and designer compounds) for in vitro inhibition of both enzymes. Remarkably high potency and low selectivity is observed with three O-alkyl (C{sub 1}, C{sub 2}, C{sub 3}) alkylphosphonofluoridates (C{sub 8}, C{sub 12}) (IC50 0.60-3.0 nM), five S-alkyl (C{sub 5}, C{sub 7}, C{sub 9}) and alkyl (C{sub 1}, C{sub 12}) benzodioxaphosphorin oxides (IC50 0.15-5.7 nM) and one OP insecticide metabolite (chlorpyrifos oxon, IC50 34-40 nM). In ip-treated mice, the OPs at 1-30 mg/kg more potently inhibit brain FAAH than MAG lipase, but FAAH inhibition is not correlated with hypomotility. However, the alkylphosphonofluoridate-treated mice show dose-dependent increases in severity of hypomotility, inhibition of MAG lipase activity and elevation of 2-AG. Moderate to severe hypomotility is accompanied by 64 to 86% MAG lipase inhibition and about 6-fold elevation of brain 2-AG level. It therefore appears that OP-induced MAG lipase inhibition leads to elevated 2-AG and the associated hypomotility.

  16. Production and Use of Lipases in Bioenergy: A Review from the Feedstocks to Biodiesel Production

    PubMed Central

    Ribeiro, Bernardo Dias; de Castro, Aline Machado; Coelho, Maria Alice Zarur; Freire, Denise Maria Guimarães

    2011-01-01

    Lipases represent one of the most reported groups of enzymes for the production of biofuels. They are used for the processing of glycerides and fatty acids for biodiesel (fatty acid alkyl esters) production. This paper presents the main topics of the enzyme-based production of biodiesel, from the feedstocks to the production of enzymes and their application in esterification and transesterification reactions. Growing technologies, such as the use of whole cells as catalysts, are addressed, and as concluding remarks, the advantages, concerns, and future prospects of enzymatic biodiesel are presented. PMID:21785707

  17. Novel strategy of using methyl esters as slow release methanol source during lipase expression by mut+ Pichia pastoris X33.

    PubMed

    Kumari, Arti; Gupta, Rani

    2014-01-01

    One of the major issues with heterologous production of proteins in Pichia pastoris X33 under AOX1 promoter is repeated methanol induction. To obviate repeated methanol induction, methyl esters were used as a slow release source of methanol in lipase expressing mut+ recombinant. Experimental design was based on the strategy that in presence of lipase, methyl esters can be hydrolysed to release their products as methanol and fatty acid. Hence, upon break down of methyl esters by lipase, first methanol will be used as a carbon source and inducer. Then P. pastoris can switch over to fatty acid as a carbon source for multiplication and biomass maintenance till further induction by methyl esters. We validated this strategy using recombinant P. pastoris expressing Lip A, Lip C from Trichosporon asahii and Lip11 from Yarrowia lipolytica. We found that the optimum lipase yield under repeated methanol induction after 120 h was 32866 U/L, 28271 U/L and 21978 U/L for Lip C, Lip A and Lip 11 respectively. In addition, we found that a single dose of methyl ester supported higher production than repeated methanol induction. Among various methyl esters tested, methyl oleate (0.5%) caused 1.2 fold higher yield for LipA and LipC and 1.4 fold for Lip11 after 120 h of induction. Sequential utilization of methanol and oleic acid by P. pastoris was observed and was supported by differential peroxisome proliferation studies by transmission electron microscopy. Our study identifies a novel strategy of using methyl esters as slow release methanol source during lipase expression.

  18. A novel cold-adapted lipase from Sorangium cellulosum strain So0157-2: gene cloning, expression, and enzymatic characterization.

    PubMed

    Cheng, Yuan-Yuan; Qian, Yun-Kai; Li, Zhi-Feng; Wu, Zhi-Hong; Liu, Hong; Li, Yue-Zhong

    2011-01-01

    Genome sequencing of cellulolytic myxobacterium Sorangium cellulosum reveals many open-reading frames (ORFs) encoding various degradation enzymes with low sequence similarity to those reported, but none of them has been characterized. In this paper, a predicted lipase gene (lipA) was cloned from S. cellulosum strain So0157-2 and characterized. lipA is 981-bp in size, encoding a polypeptide of 326 amino acids that contains the pentapeptide (GHSMG) and catalytic triad residues (Ser114, Asp250 and His284). Searching in the GenBank database shows that the LipA protein has only the 30% maximal identity to a human monoglyceride lipase. The novel lipA gene was expressed in Escherichia coli BL21 and the recombinant protein (r-LipA) was purified using Ni-NTA affinity chromatography. The enzyme hydrolyzed the p-nitrophenyl (pNP) esters of short or medium chain fatty acids (≤C(10)), and the maximal activity was on pNP acetate. The r- LipA is a cold-adapted lipase, with high enzymatic activity in a wide range of temperature and pH values. At 4 °C and 30 °C, the K(m) values of r-LipA on pNP acetate are 0.037 ± 0.001 and 0.174 ± 0.006 mM, respectively. Higher pH and temperature conditions promoted hydrolytic activity toward the pNP esters with longer chain fatty acids. Remarkably, this lipase retained much of its activity in the presence of commercial detergents and organic solvents. The results suggest that the r-LipA protein has some new characteristics potentially promising for industrial applications and S. cellulosum is an intriguing resource for lipase screening.

  19. Activation of a bacterial lipase by its chaperone.

    PubMed Central

    Hobson, A H; Buckley, C M; Aamand, J L; Jørgensen, S T; Diderichsen, B; McConnell, D J

    1993-01-01

    The gene lipA of Pseudomonas cepacia DSM 3959 encodes a prelipase from which a signal peptide is cleaved during secretion, producing a mature extracellular lipase. Expression of lipase in several heterologous hosts depends on the presence of another gene, limA, in cis or in trans. Lipase protein has been overproduced in Escherichia coli in the presence and absence of the lipase modulator gene limA. Therefore, limA is not required for the transcription of lipA or for the translation of the lipA mRNA. However, no lipase activity is observed in the absence of limA. limA has been overexpressed and encodes a 33-kDa protein, Lim. If lipase protein is denatured in 8 M urea and the urea is removed by dialysis, lipase activity is quantitatively recovered provided Lim protein is present during renaturation. Lip and Lim proteins form a complex precipitable either by an anti-lipase or anti-Lim antibody. The Lim protein has therefore the properties of a chaperone. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7685908

  20. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance

    PubMed Central

    Cui, Jiandong; Zhao, Yamin; Liu, Ronglin; Zhong, Cheng; Jia, Shiru

    2016-01-01

    Increasing numbers of materials have been extensively used as platforms for enzyme immobilization to improve catalytic performance. However, activity of the most of the enzymes was declined after immobilization. Here, we develop a surfactant-activated lipase-inorganic flowerlike hybrid nanomaterials with rational design based on interfacial activation and self-assembly. The resulting surfactant-activated lipase-inorganic hybird nanoflower (activated hNF-lipase) exhibited 460% and 200% higher activity than native lipase and conventional lipase-inorganic hybird nanoflower (hNF-lipase). Furthermore, the activated hNF-lipase displayed good reusability due to its monodispersity and mechanical properties, and had excellent long-time stability. The superior catalytic performances were attributed to both the conformational modulation of surfactants and hierarchical structure of nanoflowers, which not only anchored lipases in an active form, but also decreased the enzyme-support negative interaction and mass-transfer limitations. This new biocatalytic system is promising to find widespread use in applications related to biomedicine, biosensor, and biodiesel. PMID:27297609

  1. Lipase-catalyzed synthesis of ascorbyl oleate in acetone: optimization of reaction conditions and lipase reusability.

    PubMed

    Stojanović, Marija; Velićković, Dušan; Dimitrijević, Aleksandra; Milosavić, Nenad; Knežević-Jugović, Zorica; Bezbradica, Dejan

    2013-01-01

    Lipase-catalyzed ascorbyl oleate synthesis is eco-friendly and selective way of production of liposoluble biocompatible antioxidants, but still not present on an industrial level due to the high biocatalyst costs. In this study, response surface methodology was applied in order to estimate influence of individual experimental factors, identify interactions among them, and to determine optimum conditions for enzymatic synthesis of ascorbyl oleate in acetone, in terms of limiting substrate conversion, product yield, and yield per mass of consumed enzyme. As a biocatalyst, commercial immobilized preparation of lipase B from Candida antarctica, Novozym 435, was used. In order to develop cost-effective process, at reaction conditions at which maximum amount of product per mass of biocatalyst was produced (60°C, 0.018 % (v/v) of water, 0.135 M of vitamin C, substrates molar ratio 1:8, and 0.2 % (w/v) of lipase), possibilities for further increase of ester yield were investigated. Addition of molecular sieves at 4(th) hour of reaction enabled increase of yield from 16.7 mmol g⁻¹ to 19.3 mmol g⁻¹. Operational stability study revealed that after ten reaction cycles enzyme retained 48 % of its initial activity. Optimized synthesis with well-timed molecular sieves addition and repeated use of lipase provided production of 153 mmol per gram of enzyme. Further improvement of productivity was achieved using procedure for the enzyme reactivation.

  2. Monoolein production by triglycerides hydrolysis using immobilized Rhizopus oryzae lipase.

    PubMed

    Ghattas, Nesrine; Abidi, Ferid; Galai, Said; Marzouki, M Nejib; Salah, Abderraouf Ben

    2014-07-01

    Lipase extracted from Rhizopus oryzae was immobilized in alginate gel beads. The effects of the immobilization conditions, such as, alginate concentration, CaCl2 concentration and amount of initial enzyme on retained activity (specific activity ratio of entrapped active lipase to free lipase) were investigated. The optimal conditions for lipase entrapment were determined: 2% (w/v) alginate concentration, 100mM CaCl2 and enzyme ratio of 2000IU/mL.In such conditions, immobilized lipase by inclusion in alginate showed a highest stability and activity, on olive oil hydrolysis reaction where it could be reused for 10 cycles. After 15min of hydrolysis reaction, the mass composition of monoolein, diolein and triolein were about 78%, 10% and 12%. Hydrolysis' products purification by column chromatography lead to a successful separation of reaction compounds and provide a pure fraction of monoolein which is considered as the widest used emulsifier in food and pharmaceutical industries.

  3. A thiol-activated lipase from Trichosporon asahii MSR 54: detergent compatibility and presoak formulation for oil removal from soiled cloth at ambient temperature.

    PubMed

    Kumar, S Suresh; Kumar, Lalit; Sahai, Vikram; Gupta, Rani

    2009-03-01

    An alkaline lipase from Trichosporon asahii MSR 54 was used to develop presoak formulation for removing oil stains at ambient temperature. The lipase was produced in a reactor followed by concentration by ultrafiltration and then it was dried with starch. The biochemical characteristics of enzyme showed that it was an alkaline lipase having pH activity in the range of pH 8.0-10.0 and temperature in the range of 25-50 degrees C. The present lipase was active >80% at 25 degrees C. The lipase was cystein activated with fourfold enhancement in presence of 5 mM cystein and likewise the activity was also stimulated in presence of papain hydrolysate which served as source of cystein. The presoak formulation consisted of two components A and B, component A was enzyme additive and B was a mixture of carbonate/bicarbonate source of alkali and papain hydrolysate as source of cystein. The results indicated that the presoaking in enzyme formulation followed by detergent washing was a better strategy for stain removal than direct washing with detergent in presence of lipase. Further, it was observed that 0.25% presoak component B in presence of 100 U enzyme component A (0.1 g) was the best formulation in removing maximum stain from mustard oil/triolein soiled clothes as indicated by increase in reflectance which was found equal to that of control cloth. The lipase action in presoaked formulation was clearly indicated by quantitated fatty acid release and also the TLC results of wash water, where oil hydrolytic products were visible only in presence of enzyme in the treatment. The wash performance carried at 25 degrees C indicated that washing at 25 degrees C was at par with that at 40 degrees C as indicated by similar reflectance of the washed cloth piece though qualitative fatty acid release was higher at 40 degrees C.

  4. Isolation and characterization of novel lipases from a metagenomic library of the microbial community in the pitcher fluid of the carnivorous plant Nepenthes hybrida.

    PubMed

    Morohoshi, Tomohiro; Oikawa, Manabu; Sato, Shoko; Kikuchi, Noriko; Kato, Norihiro; Ikeda, Tsukasa

    2011-10-01

    Members of the genus Nepenthes are carnivorous plants that use the pitfall method of insect capture as a supplementary nutritional source. We extracted metagenomic DNA from the microbial community found in the pitcher fluid of Nepenthes and constructed a plasmid-based metagenomic library. An activity-based screening method enabled the isolation of two lipase genes, lip1 and lip2. Both Lip1 and Lip2 belong to a novel family or subfamily of lipases and show lipase activities in acidic conditions, such as those found in pitcher fluid. This study was conducted under the assumption that the secreted Lip1 and Lip2 were capable of enzymatic activity in the acidic pitcher fluid.

  5. 21 CFR 184.1420 - Lipase enzyme preparation derived from Rhizopus niveus.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Lipase enzyme preparation derived from Rhizopus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1420 Lipase enzyme preparation derived from Rhizopus niveus. (a) Lipase enzyme preparation contains lipase enzyme (CAS Reg....

  6. 21 CFR 184.1420 - Lipase enzyme preparation derived from Rhizopus niveus.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lipase enzyme preparation derived from Rhizopus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1420 Lipase enzyme preparation derived from Rhizopus niveus. (a) Lipase enzyme preparation contains lipase enzyme (CAS Reg....

  7. 21 CFR 184.1420 - Lipase enzyme preparation derived from Rhizopus niveus.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Lipase enzyme preparation derived from Rhizopus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1420 Lipase enzyme preparation derived from Rhizopus niveus. (a) Lipase enzyme preparation contains lipase enzyme (CAS Reg....

  8. 21 CFR 184.1420 - Lipase enzyme preparation derived from Rhizopus niveus.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Lipase enzyme preparation derived from Rhizopus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1420 Lipase enzyme preparation derived from Rhizopus niveus. (a) Lipase enzyme preparation contains lipase enzyme (CAS Reg....

  9. 21 CFR 184.1420 - Lipase enzyme preparation derived from Rhizopus niveus.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Lipase enzyme preparation derived from Rhizopus... Specific Substances Affirmed as GRAS § 184.1420 Lipase enzyme preparation derived from Rhizopus niveus. (a) Lipase enzyme preparation contains lipase enzyme (CAS Reg. No. 9001-62-1), which is obtained from...

  10. A rare entity in ED: Normal lipase level in acute pancreatitis.

    PubMed

    Limon, Onder; Sahin, Erkan; Kantar, Funda Ugur; Oray, Deniz; Ugurhan, Asli Aydinoglu

    2016-03-01

    Acute pancreatitis can have a variable presentation and diagnosis is based on clinical presentation, serum amylase and lipase levels and computed tomography. Negative predictive value of serum lipase in diagnosing acute pancreatitis is approximately to 100 percent and a normal blood lipase level in acute pancreatitis is an extremely rare condition. Here we reported two cases with normal serum amylase and lipase levels.

  11. Enhancing functional production of a chaperone-dependent lipase in Escherichia coli using the dual expression cassette plasmid

    PubMed Central

    2012-01-01

    Abstracts Background The lipase subfamilies I.1 and I.2 show more than 33% homology in the amino acid sequences and most members share another common property that their genes are clustered with the secondary genes whose protein products are required for folding the lipase into an active conformation and secretion into the culture medium. In previous studies, the lipase (LipA) and its chaperone (LipB) from Ralstonia sp. M1 were overexpressed in E. coli and the lipase was successfully refolded in vitro. The purpose of this study was to enhance the production of the active lipase LipA from Ralstonia sp. M1 in the heterologous host E. coli without in vitro refolding process, using two-plasmid co-expression systems and dual expression cassette plasmid systems. Results To produce more active lipase from Ralstonia sp. M1 in E. coli without in vitro refolding process but with the help of overexpression of the chaperone (LipB1 and LipB3 corresponding to 56-aa truncated and 26-aa truncated chaperone LipB), six different expression systems including 2 two-plasmid co-expression systems (E. coli BL21/pELipABa + pELipB1k and BL21/pELipABa + pELipB3k) and 4 dual expression cassette plasmid systems (BL21/pELipAB-LipB1a, BL21/pELipAB-LipB3a, BL21/pELipA-LipB1a, and BL21/pELipA-LipB3a) were constructed. The two-plasmid co-expression systems (E. coli BL21/pELipABa + pELipB1k and BL21/pELipABa + pELipB3k) produced the active lipase at a level of 4 times as high as the single expression cassette plasmid system E. coli BL21/pELipABa did. For the first time, the dual expression cassette plasmid systems BL21/pELipAB-LipB1a and BL21/pELipAB-LipB3a yielded 29- and 19-fold production of the active lipase in comparison with the single expression cassette plasmid system E. coli BL21/pELipABa, respectively. Although the lipase amount was equally expressed in all these expression systems (40% of total cellular protein) and only a small fraction of the overexpressed lipase was folded in vivo

  12. SOA genes encode proteins controlling lipase expression in response to triacylglycerol utilization in the yeast Yarrowia lipolytica.

    PubMed

    Desfougères, Thomas; Haddouche, Ramdane; Fudalej, Franck; Neuvéglise, Cécile; Nicaud, Jean-Marc

    2010-02-01

    The oleaginous yeast Yarrowia lipolytica efficiently metabolizes hydrophobic substrates such as alkanes, fatty acids or triacylglycerol. This yeast has been identified in oil-polluted water and in lipid-rich food. The enzymes involved in lipid breakdown, for use as a carbon source, are known, but the molecular mechanisms controlling the expression of the genes encoding these enzymes are still poorly understood. The study of mRNAs obtained from cells grown on oleic acid identified a new group of genes called SOA genes (specific for oleic acid). SOA1 and SOA2 are two small genes coding for proteins with no known homologs. Single- and double-disrupted strains were constructed. Wild-type and mutant strains were grown on dextrose, oleic acid and triacylglycerols. The double mutant presents a clear phenotype consisting of a growth defect on tributyrin and triolein, but not on dextrose or oleic acid media. Lipase activity was 50-fold lower in this mutant than in the wild-type strain. The impact of SOA deletion on the expression of the main extracellular lipase gene (LIP2) was monitored using a LIP2-beta-galactosidase promoter fusion protein. These data suggest that Soa proteins are components of a molecular mechanism controlling lipase gene expression in response to extracellular triacylglycerol.

  13. Optimized production of biodiesel from waste cooking oil by lipase immobilized on magnetic nanoparticles.

    PubMed

    Yu, Chi-Yang; Huang, Liang-Yu; Kuan, I-Ching; Lee, Shiow-Ling

    2013-12-11

    Biodiesel, a non-toxic and biodegradable fuel, has recently become a major source of renewable alternative fuels. Utilization of lipase as a biocatalyst to produce biodiesel has advantages over common alkaline catalysts such as mild reaction conditions, easy product separation, and use of waste cooking oil as raw material. In this study, Pseudomonas cepacia lipase immobilized onto magnetic nanoparticles (MNP) was used for biodiesel production from waste cooking oil. The optimal dosage of lipase-bound MNP was 40% (w/w of oil) and there was little difference between stepwise addition of methanol at 12 h- and 24 h-intervals. Reaction temperature, substrate molar ratio (methanol/oil), and water content (w/w of oil) were optimized using response surface methodology (RSM). The optimal reaction conditions were 44.2 °C, substrate molar ratio of 5.2, and water content of 12.5%. The predicted and experimental molar conversions of fatty acid methyl esters (FAME) were 80% and 79%, respectively.

  14. Lipases immobilization for effective synthesis of biodiesel starting from coffee waste oils.

    PubMed

    Ferrario, Valerio; Veny, Harumi; De Angelis, Elisabetta; Navarini, Luciano; Ebert, Cynthia; Gardossi, Lucia

    2013-08-13

    Immobilized lipases were applied to the enzymatic conversion of oils from spent coffee ground into biodiesel. Two lipases were selected for the study because of their conformational behavior analysed by Molecular Dynamics (MD) simulations taking into account that immobilization conditions affect conformational behavior of the lipases and ultimately, their efficiency upon immobilization. The enzymatic synthesis of biodiesel was initially carried out on a model substrate (triolein) in order to select the most promising immobilized biocatalysts. The results indicate that oils can be converted quantitatively within hours. The role of the nature of the immobilization support emerged as a key factor affecting reaction rate, most probably because of partition and mass transfer barriers occurring with hydrophilic solid supports. Finally, oil from spent coffee ground was transformed into biodiesel with yields ranging from 55% to 72%. The synthesis is of particular interest in the perspective of developing sustainable processes for the production of bio-fuels from food wastes and renewable materials. The enzymatic synthesis of biodiesel is carried out under mild conditions, with stoichiometric amounts of substrates (oil and methanol) and the removal of free fatty acids is not required.

  15. Enhanced Biocatalytic Esterification with Lipase-Immobilized Chitosan/Graphene Oxide Beads

    PubMed Central

    Lau, Siaw Cheng; Lim, Hong Ngee; Basri, Mahiran; Fard Masoumi, Hamid Reza; Ahmad Tajudin, Asilah; Huang, Nay Ming; Pandikumar, Alagarsamy; Chia, Chi Hua; Andou, Yoshito

    2014-01-01

    In this work, lipase from Candida rugosa was immobilized onto chitosan/graphene oxide beads. This was to provide an enzyme-immobilizing carrier with excellent enzyme immobilization activity for an enzyme group requiring hydrophilicity on the immobilizing carrier. In addition, this work involved a process for the preparation of an enzymatically active product insoluble in a reaction medium consisting of lauric acid and oleyl alcohol as reactants and hexane as a solvent. This product enabled the stability of the enzyme under the working conditions and allowed the enzyme to be readily isolated from the support. In particular, this meant that an enzymatic reaction could be stopped by the simple mechanical separation of the “insoluble” enzyme from the reaction medium. Chitosan was incorporated with graphene oxide because the latter was able to enhance the physical strength of the chitosan beads by its superior mechanical integrity and low thermal conductivity. The X-ray diffraction pattern showed that the graphene oxide was successfully embedded within the structure of the chitosan. Further, the lipase incorporation on the beads was confirmed by a thermo-gravimetric analysis. The lipase immobilization on the beads involved the functionalization with coupling agents, N-hydroxysulfosuccinimide sodium (NHS) and 1-ethyl-(3-dimethylaminopropyl) carbodiimide (EDC), and it possessed a high enzyme activity of 64 U. The overall esterification conversion of the prepared product was 78% at 60°C, and it attained conversions of 98% and 88% with commercially available lipozyme and novozyme, respectively, under similar experimental conditions. PMID:25127038

  16. Immobilization of lipase from Candida rugosa on layered double hydroxides for esterification reaction.

    PubMed

    Rahman, Mohd Basyaruddin A; Basri, Mahiran; Hussein, Mohd Zobir; Rahman, Raja Nor Zaliha A; Zainol, Dara Hatira; Salleh, Abu Bakar

    2004-01-01

    Synthesis of layered double hydroxides (LDHs) of Zn/Al-NO3- hydrotalcite (HIZAN) and Zn/Al-diocytyl sodium sulfosuccinate (DSS) nanocomposite (NAZAD) with a molar ratio of Zn/Al of 4:1 were carried out by coprecipitation through continuous agitation. Their structures were determined using X-ray diffractometer spectra, which showed that basal spacing for LDH synthesized by both methods was about 8.89 A. An expansion of layered structure of about 27.9 A was observed to accommodate the surfactant anion between the interlayer. This phenomenon showed that the intercalation process took place between the LDH interlayer. Lipase from Candida rugosa was immobilized onto these materials by physical adsorption method. It was found that the protein loading onto NAZAD is higher than HIZAN. The activity of immobilized lipase was investigated through esterification of oleic acid and 1-butanol in hexane. The effects of pore size, surface area, reaction temperature, thermostability of the immobilized lipases, storage stability in organic solvent, and leaching studies were investigated. Stability was found to be the highest in the nanocomposite NAZAD.

  17. Production, characterization, and application of an organic solvent-tolerant lipase present in active inclusion bodies.

    PubMed

    Li, Suxia; Lin, Kang; Pang, Huaiyu; Wu, Yixin; Xu, Jianhe

    2013-01-01

    An organic solvent-tolerant lipase from Serratia marcescens ECU1010 (rSML) was overproduced in Escherichia coli in an insoluble form. High concentrations of both biomass (50 g cell wet weight/L culture broth) and inclusion bodies (10.5 g/L) were obtained by applying a high-cell-density cultivation procedure. Activity assays indicated that the enzymatic activity of rSML reached 600 U/L. After treatment with isopropyl ether for 12 h, the maximum lipase activity reached 6,000 U/L. Scanning electron microscopy and Fourier transform infrared microspectroscopy revealed the activation mechanism of rSML in the presence of organic solvents. rSML was stable in broad ranges of temperatures and pH values, as well as in a series of organic solvents. Besides, rSML showed the best enantioselectivity for the kinetic resolution of (±)-trans-3-(4-methoxyphenyl)glycidic acid methyl ester. These features render the S. marcescens ECU1010 lipase attractive for biotechnological applications in the field of organic synthesis and pharmaceutical industry.

  18. Covalent-bonded immobilization of lipase on poly(phenylene sulfide) dendrimers and their hydrolysis ability.

    PubMed

    Yemul, Omprakash; Imae, Toyoko

    2005-01-01

    Covalent-bonded immobilization of lipase from burkholderia cepacia onto two poly(phenylene sulfide) (PPS) dendrimers with different generations (two and three) was achieved using carbodiimide as a coupling reagent. The hydrolysis activity of olive oil to fatty acid was studied on enzyme-immobilized PPS dendrimers. Enzyme activity was proportional to the enzyme loading, and highest recovered activity was obtained at the medium enzyme loading for both G2 and G3 dendrimers. The immobilization improved the optimum pH and caused the temperature range to widen. Immobilization of enzyme has enhanced the thermal stability of enzyme activity in comparison with free enzyme. The immobilized enzyme as a biocatalyst for batch hydrolysis of olive oil retained 80 approximately 90% activity even after 20 times of recycling. This retention of activity after recycle is very valuable and powerful in enzyme technology. The present noteworthy and vital availability on enzyme reaction of the covalently bonded immobilized lipase on dendrimer came from the structure of dendrimer with a large number of functional terminal groups, which are easily available for immobilization of many lipases at the situation keeping reactive enzymes on the surface of dendrimer.

  19. Optimized Production of Biodiesel from Waste Cooking Oil by Lipase Immobilized on Magnetic Nanoparticles

    PubMed Central

    Yu, Chi-Yang; Huang, Liang-Yu; Kuan, I-Ching; Lee, Shiow-Ling

    2013-01-01

    Biodiesel, a non-toxic and biodegradable fuel, has recently become a major source of renewable alternative fuels. Utilization of lipase as a biocatalyst to produce biodiesel has advantages over common alkaline catalysts such as mild reaction conditions, easy product separation, and use of waste cooking oil as raw material. In this study, Pseudomonas cepacia lipase immobilized onto magnetic nanoparticles (MNP) was used for biodiesel production from waste cooking oil. The optimal dosage of lipase-bound MNP was 40% (w/w of oil) and there was little difference between stepwise addition of methanol at 12 h- and 24 h-intervals. Reaction temperature, substrate molar ratio (methanol/oil), and water content (w/w of oil) were optimized using response surface methodology (RSM). The optimal reaction conditions were 44.2 °C, substrate molar ratio of 5.2, and water content of 12.5%. The predicted and experimental molar conversions of fatty acid methyl esters (FAME) were 80% and 79%, respectively. PMID:24336109

  20. Lipases Immobilization for Effective Synthesis of Biodiesel Starting from Coffee Waste Oils

    PubMed Central

    Ferrario, Valerio; Veny, Harumi; De Angelis, Elisabetta; Navarini, Luciano; Ebert, Cynthia; Gardossi, Lucia

    2013-01-01

    Immobilized lipases were applied to the enzymatic conversion of oils from spent coffee ground into biodiesel. Two lipases were selected for the study because of their conformational behavior analysed by Molecular Dynamics (MD) simulations taking into account that immobilization conditions affect conformational behavior of the lipases and ultimately, their efficiency upon immobilization. The enzymatic synthesis of biodiesel was initially carried out on a model substrate (triolein) in order to select the most promising immobilized biocatalysts. The results indicate that oils can be converted quantitatively within hours. The role of the nature of the immobilization support emerged as a key factor affecting reaction rate, most probably because of partition and mass transfer barriers occurring with hydrophilic solid supports. Finally, oil from spent coffee ground was transformed into biodiesel with yields ranging from 55% to 72%. The synthesis is of particular interest in the perspective of developing sustainable processes for the production of bio-fuels from food wastes and renewable materials. The enzymatic synthesis of biodiesel is carried out under mild conditions, with stoichiometric amounts of substrates (oil and methanol) and the removal of free fatty acids is not required. PMID:24970178

  1. Lipases in green chemistry: acylation and alcoholysis on steroids and nucleosides.

    PubMed

    Baldessari, Alicia; Iglesias, Luis E

    2012-01-01

    In this article, we describe the application of lipases in acylation and alcoholysis reactions on steroids and nucleosides. In the field of steroids, a variety of acetyl and fatty acid derivatives of androstanes, pregnanes, and cholestanes have been prepared through lipase-catalyzed acylation and alcoholysis reactions taking advantage of the high regio- and stereoselectivity of these enzymes. The substrates as well as the products show a high degree of biological activity as neurosteroids, hormones, and glucocorticoids. The regioselective preparation of diacylated nucleosides by means of an enzymatic alcoholysis allowed the synthesis of nucleosides prodrugs or modified nucleosides. The quantitative full deacylation and dealkoxycarbonylation of nucleosides and steroids is a mild synthetic method for the deprotection of these labile compounds. Some of the reported steroid and nucleoside products are novel, and it is not possible to obtain them satisfactorily by following traditional synthetic procedures. The advantages presented by this methodology, such as selectivity, mild reaction conditions, and low environmental impact, make the lipases an important tool in the application of the principles of Green Chemistry, offering a convenient way to prepare derivatives of natural compounds with a great potential in the pharmaceutical industry.

  2. ADIPOSE TRIGLYCERIDE LIPASE REGULATES BASAL LIPOLYSIS AND LIPID DROPLET SIZE IN ADIPOCYTES

    PubMed Central

    Miyoshi, Hideaki; Perfield, James W.; Obin, Martin S.; Greenberg, Andrew S.

    2008-01-01

    In adipocytes, lipid droplet (LD) size reflects a balance of triglyceride synthesis (lipogenesis) and hydrolysis (lipolysis). Perilipin A (Peri A), is the most abundant phosphoprotein on the surface of adipocyte LDs and has a crucial role in lipid storage and lipolysis. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are the major rate-determining enzymes for lipolysis in adipocytes. Each of these proteins (Peri A, ATGL and HSL) have been demonstrated to regulate lipid storage and release in the adipocyte. However, in the absence of PKA stimulation (basal state), the lipases (ATGL and HSL) are located mainly in the cytoplasm, and their contribution to basal rates of lipolysis and influence on LD size are poorly understood. In this study, we utilize an adenoviral system to knockdown or overexpress ATGL and HSL in an engineered model system of adipocytes in the presence or absence of Peri A. We are able to demonstrate in our experimental model system, that in the basal state, LD size, triglyceride storage, and fatty acid release are mainly influenced by expression of ATGL. These results demonstrate for the first time the relative contributions of ATGL, HSL, and Peri A on determination of LD size in the absence of PKA-stimulation. PMID:18980248

  3. Chemiluminescence assay of lipase activity using a synthetic substrate as proenhancer for luminol chemiluminescence reaction.

    PubMed

    Ichibangase, Tomoko; Ohba, Yoshihito; Kishikawa, Naoya; Nakashima, Kenichiro; Kuroda, Naotaka

    2004-01-01

    A novel chemiluminescence (CL) assay method for lipase (triacylglycerol lipase, E.C.3.1.1.3) activity was developed by using the lauric acid ester of 2-(4-hydroxyphenyl)-4,5-diphenylimidazole (HDI) as a substrate. The method is based on the enhanced CL reaction of luminol-hydrogen peroxide-horseradish peroxidase (HRP) with HDI that is liberated from the substrate by enzymatic hydrolysis. To simplify the assay procedure, both the hydrolysis of the substrate and the enhanced CL reaction were performed in the same reaction mixture. Lipases from Candida cylindracea and porcine pancreas were successfully determined with the detection limits (blank signal + 3 SD) of 0.05 and 50.0 mU/tube, respectively. The method is simple and rapid, permitting the completion of single assay within 5 min. The reproducibilities obtained with replicate assays were relative standard deviations (RSDs) of <=> 4.7% for within-day and <=> 6.0% for between-day assays.

  4. Tetrahydrolipstatin Inhibition, Functional Analyses, and Three-dimensional Structure of a Lipase Essential for Mycobacterial Viability

    SciTech Connect

    Crellin, Paul K.; Vivian, Julian P.; Scoble, Judith; Chow, Frances M.; West, Nicholas P.; Brammananth, Rajini; Proellocks, Nicholas I.; Shahine, Adam; Le Nours, Jerome; Wilce, Matthew C.J.; Britton, Warwick J.; Coppel, Ross L.; Rossjohn, Jamie; Beddoe, Travis

    2010-09-17

    The highly complex and unique mycobacterial cell wall is critical to the survival of Mycobacteria in host cells. However, the biosynthetic pathways responsible for its synthesis are, in general, incompletely characterized. Rv3802c from Mycobacterium tuberculosis is a partially characterized phospholipase/thioesterase encoded within a genetic cluster dedicated to the synthesis of core structures of the mycobacterial cell wall, including mycolic acids and arabinogalactan. Enzymatic assays performed with purified recombinant proteins Rv3802c and its close homologs from Mycobacterium smegmatis (MSMEG{_}6394) and Corynebacterium glutamicum (NCgl2775) show that they all have significant lipase activities that are inhibited by tetrahydrolipstatin, an anti-obesity drug that coincidently inhibits mycobacterial cell wall biosynthesis. The crystal structure of MSMEG{_}6394, solved to 2.9 {angstrom} resolution, revealed an {alpha}/{beta} hydrolase fold and a catalytic triad typically present in esterases and lipases. Furthermore, we demonstrate direct evidence of gene essentiality in M. smegmatis and show the structural consequences of loss of MSMEG{_}6394 function on the cellular integrity of the organism. These findings, combined with the predicted essentiality of Rv3802c in M. tuberculosis, indicate that the Rv3802c family performs a fundamental and indispensable lipase-associated function in mycobacteria.

  5. A green approach for starch modification: Esterification by lipase and novel imidazolium surfactant.

    PubMed

    Adak, Sunita; Banerjee, Rintu

    2016-10-05

    Starch being one of the most abundant polysaccharides in nature has been subjected to modification to enhance its applicability. Modification by esterification involves acylation of hydroxyl groups of glucose units to form starch esters. Lipases, as catalysts have emerged as a promising alternative to chemical processes. Although ionic liquids and microwave assisted heating are emerging as green technology yet their use along with lipases for starch modification has not been probed. In the present study esterification of corn starch employing Rhizopus oryzae lipase, microwave irradiation and novel imidazolium surfactants has been attempted. At 80% irradiation, 1:3 starch/oleic acid molar ratio, 150 IU enzyme, and 50μmol of [C16-3-C16im]Br2 maximum degree of substitution (DS=2.75) was attained. The modified starch showed better hydrophobicity and thermoplasticity with corresponding structural changes depicted by FTIR, XRD and SEM. These properties advocate the usefulness of the modified starch in food and biopolymer sectors.

  6. Lid domain plasticity and lipid flexibility modulate enzyme specificity in human monoacylglycerol lipase.

    PubMed

    Riccardi, Laura; Arencibia, Jose M; Bono, Luca; Armirotti, Andrea; Girotto, Stefania; De Vivo, Marco

    2017-01-12

    Human monoacylglycerol lipase (MAGL) is a membrane-interacting enzyme that generates pro-inflammatory signaling molecules. For this reason, MAGL inhibition is a promising strategy to treat pain, cancer, and neuroinflammatory diseases. MAGL can hydrolyze monoacylglycerols bearing an acyl chain of different lengths and degrees of unsaturation, cleaving primarily the endocannabinoid 2-arachidonoylglycerol. Importantly, the enzymatic binding site of MAGL is confined by a 75-amino-acid-long, flexible cap domain, named 'lid domain', which is structurally similar to that found in several other lipases. However, it is unclear how lid domain plasticity affects catalysis in MAGL. By integrating extensive molecular dynamics simulations and free-energy calculations with mutagenesis and kinetic experiments, we here define a lid-domain-mediated mechanism for substrate selection and binding in MAGL catalysis. In particular, we clarify the key role of Phe159 and Ile179, two conserved residues within the lid domain, in regulating substrate specificity in MAGL. We conclude by proposing that other structurally related lipases may share this lid-domain-mediated mechanism for substrate specificity.

  7. Efficient phagocytosis requires triacylglycerol hydrolysis by adipose triglyceride lipase.

    PubMed

    Chandak, Prakash G; Radovic, Branislav; Aflaki, Elma; Kolb, Dagmar; Buchebner, Marlene; Fröhlich, Eleonore; Magnes, Christoph; Sinner, Frank; Haemmerle, Guenter; Zechner, Rudolf; Tabas, Ira; Levak-Frank, Sanja; Kratky, Dagmar

    2010-06-25

    Macrophage phagocytosis is an essential biological process in host defense and requires large amounts of energy. To date, glucose is believed to represent the prime substrate for ATP production in macrophages. To investigate the relative contribution of free fatty acids (FFAs) in this process, we determined the phagocytosis rates in normal mouse macrophages and macrophages of adipose triglyceride lipase (ATGL)-deficient mice. ATGL was shown to be the rate-limiting enzyme for the hydrolysis of lipid droplet-associated triacylglycerol (TG) in many tissues. Here, we demonstrate that Atgl(-/-) macrophages fail to efficiently hydrolyze cellular TG stores leading to decreased cellular FFA concentrations and concomitant accumulation of lipid droplets, even in the absence of exogenous lipid loading. The reduced availability of FFAs results in decreased cellular ATP concentrations and impaired phagocytosis suggesting that fatty acids must first go through a cycle of esterification and re-hydrolysis before they are available as energy substrate. Exogenously added glucose cannot fully compensate for the phagocytotic defect in Atgl(-/-) macrophages. Hence, phagocytosis was also decreased in vivo when Atgl(-/-) mice were challenged with bacterial particles. These findings imply that phagocytosis in macrophages depends on the availability of FFAs and that ATGL is required for their hydrolytic release from cellular TG stores. This novel mechanism links ATGL-mediated lipolysis to macrophage function in host defense and opens the way to explore possible roles of ATGL in immune response, inflammation, and atherosclerosis.

  8. Triacylglycerol kinetics in endotoxic rats with suppressed lipoprotein lipase activity

    SciTech Connect

    Bagby, G.J.; Corll, C.B.; Martinez, R.R.

    1987-07-01

    Hypertriglyceridemia observed in animals after bacterial endotoxin administration and some forms of sepsis can result from increased hepatic triacylglycerol (TG) output or decreased TG clearance by extrahepatic tissues. To differentiate between these two possibilities, TG and free fatty acid (FFA) kinetics were determined in control and endotoxin-injected rats 18 h after treatment. Plasma TG and FFA kinetics were assessed by a constant intravenous infusion with (9,10-/sup 3/H)palmitate-labeled very low-density lipoprotein and (1-/sup 14/C)palmitate bound to albumin, respectively. In addition, lipoprotein lipase (LPL) activity was determined in heart, skeletal muscle, and adipose tissue as well as in postheparin plasma of functionally hepatectomized, adrenalectomized, and gonadectomized rats. Plasma FFA acid concentrations were slightly increased in endotoxin-treated rats but their turnover did not differ from control. Endotoxin-treated rats had a threefold increase in plasma TG concentrations and decreased heart, skeletal muscle, and post-heparin plasma LPL activity. Plasma TG turnover was decreased, indicating that hypertriglyceridemia was not due to an increased TG output by the liver. Instead, the endotoxin-induced increase in plasma TG concentration was consequence of the 80% reduction in TG metabolic clearance rate. Thus, suppression of LPL activity in endotoxic animals impairs TG clearance resulting in hypertriglyceridemia. Furthermore, endotoxin administration reduced the delivery of TG-FFA to extrahepatic tissues because hepatic synthesis and secretion of TG from plasma FFA was decreased and LPL activity was suppressed.

  9. Lipase production from a novel thermo-tolerant and extreme acidophile Bacillus pumilus using palm oil as the substrate and treatment of palm oil-containing wastewater.

    PubMed

    Saranya, P; Sukanya Kumari, H; Prasad Rao, B; Sekaran, G

    2014-03-01

    The thermo-tolerant and extreme acidophilic microorganism Bacillus pumilus was isolated from the soil collected from a commercial edible-oil extraction industry. Optimisation of conditions for the lipase production was conducted using response surface methodology. The optimum conditions for obtaining the maximum activity (1,100 U/mL) of extremely acidic thermostable lipase were fermentation time, 96 h; pH, 1; temperature, 50 °C; and concentration of palm oil, 50 g/L. After purification, a 7.1-fold purity of lipase with specific activity of 5,173 U/mg protein was obtained. The molecular weight of the thermo-tolerant acidophilic lipase (TAL) was 55 kDa. The predominant amino acid in the TAL was glycine. The functional groups of lipase were determined by Fourier transform infrared spectroscopy. TAL exhibited enhanced activity (114 %) with dimethyl sulphoxide (20 %, v/v), and it showed a moderate activity with methanol, hexane and benzene. The optimum conditions for the treatment of palm oil in wastewater using the TAL were found to be time, 3 h; pH, 1; temperature, 50 °C with pseudo second-order kinetic constant of 1.88 × 10(-3) L mol(-1) min(-1). The Michaelis-Menten enzyme kinetic model and the nonlinear kinetic model were evaluated for the TAL. TAL established hydrolysis efficiency of 96 % for palm oil in wastewater at 50 °C.

  10. Molecular characterization of a proteolysis-resistant lipase from Bacillus pumilus SG2.

    PubMed

    Sangeetha, R; Arulpandi, I; Geetha, A

    2014-01-01

    Proteolysis-resistant lipases can be well exploited by industrial processes which employ both lipase and protease as biocatalysts. A proteolysis resistant lipase from Bacillus pumilus SG2 was isolated, purified and characterized earlier. The lipase was resistant to native and commercial proteases. In the present work, we have characterized the lip gene which encodes the proteolysis-resistant lipase from Bacillus pumilus SG2. The parameters and structural details of lipase were analysed. The lip gene consisted of 650 bp. The experimental molecular weight of SG2 lipase was nearly double that of its theoretical molecular weight, thus suggesting the existence of the functional lipase as a covalent dimer. The proteolytic cleavage sites of the lipase would have been made inaccessible by dimerisation, thus rendering the lipase resistant to protease.

  11. Novel organic solvent-tolerant esterase isolated by metagenomics: insights into the lipase/esterase classification.

    PubMed

    Berlemont, Renaud; Spee, Olivier; Delsaute, Maud; Lara, Yannick; Schuldes, Jörg; Simon, Carola; Power, Pablo; Daniel, Rolf; Galleni, Moreno

    2013-01-01

    in order to isolate novel organic solvent-tolerant (OST) lipases, a metagenomic library was built using DNA derived from a temperate forest soil sample. A two-step activity-based screening allowed the isolation of a lipolytic clone active in the presence of organic solvents. Sequencing of the plasmid pRBest recovered from the positive clone revealed the presence of a putative lipase/esterase encoding gene. The deduced amino acid sequence (RBest1) contains the conserved lipolytic enzyme signature and is related to the previously described OST lipase from Lysinibacillus sphaericus 205y, which is the sole studied prokaryotic enzyme belonging to the 4.4 α/β hydrolase subgroup (abH04.04). Both in vivo and in vitro studies of the substrate specificity of RBest1, using triacylglycerols or nitrophenyl-esters, respectively, revealed that the enzyme is highly specific for butyrate (C4) compounds, behaving as an esterase rather than a lipase. The RBest1 esterase was purified and biochemically characterized. The optimal esterase activity was observed at pH 6.5 and at temperatures ranging from 38 to 45 °C. Enzymatic activity, determined by hydrolysis of p-nitrophenyl esters, was found to be affected by the presence of different miscible and non-miscible organic solvents, and salts. Noteworthy, RBest1 remains significantly active at high ionic strength. These findings suggest that RBest1 possesses the ability of OST enzymes to molecular adaptation in the presence of organic compounds and resistance of halophilic proteins.

  12. Production of lipases by four anoxygenic purple non-sulphur phototrophic bacteria.

    PubMed

    Munjam, Srinivas; Girisham, S; Reddy, S M

    Production of lipases by Rhodopseudomonas palustris, Rhodobacter sphaeroides, Rhodocyclus gelatinosus and Rhodocyclus tenuis in different synthetic media was investigated. Rc. gelatinosus followed by Rb. sphaeroides were good producers of lipases, while Rps. palustris and Rc. tenuis were poor in lipase secretion. Lipase secretion by Rc. gelatinosus was adaptive in nature, while other three bacterial behavior was inconsistent. No positive correlation could be observed between growth and lipase production.

  13. Role of lipoprotein lipase activity on lipoprotein metabolism and the fate of circulating triglycerides in pregnancy.

    PubMed

    Herrera, E; Lasunción, M A; Gomez-Coronado, D; Aranda, P; López-Luna, P; Maier, I

    1988-06-01

    The mechanism that induces maternal hypertriglyceridemia in late normal pregnancy, and its physiologic significance are reviewed as a model of the effects of sex steroids on lipoprotein metabolism. In the pregnant rat, maternal carcass fat content progressively increases up to day 19 of gestation, then declines at day 21. The decline may be explained by the augmented lipolytic activity in adipose tissue that is seen in late pregnancy in the rat. This change causes maternal circulating free fatty acids and glycerol levels to rise. Although the liver is the main receptor organ for these metabolites, liver triglyceride content is reduced. Circulating triglycerides and very-low-density lipoprotein (VLDL)-triglyceride levels are highly augmented in the pregnant rat, indicating that liver-synthesized triglycerides are rapidly released into the circulation. Similar increments in circulating VLDL-triglycerides are seen in pregnant women during the third trimester of gestation. This increase is coincident with a decrease in plasma postheparin lipoprotein lipase activity, indicating a reduced removal of circulating triglycerides by maternal tissues or a redistribution in their use among the different tissues. During late gestation in the rat, tissue lipoprotein lipase activity varies in different directions; it decreases in adipose tissue, the liver, and to a smaller extent the heart, but increases in placental and mammary gland tissue. These changes play an important role in the fate of circulating triglycerides, which are diverted from uptake by adipose tissue to uptake by the mammary gland for milk synthesis, and probably by the placenta for hydrolysis and transfer of released nonesterified fatty acids to the fetus. After 24 hours of starvation, lipoprotein lipase activity in the liver greatly increases in the rat in late pregnancy; this change is not seen in virgin animals. This alteration is similar to that seen in liver triglyceride content and plasma ketone body

  14. Gene cloning and molecular characterization of the Talaromyces thermophilus lipase catalyzed efficient hydrolysis and synthesis of esters.

    PubMed

    Romdhane, Ines Belhaj-Ben; Frikha, Fakher; Maalej-Achouri, Inès; Gargouri, Ali; Belghith, Hafedh

    2012-02-15

    A genomic bank from Talaromyces thermophilus fungus was constructed and screened using a previously isolated fragment lipase gene as probe. From several clones isolated, the nucleotide sequence of the lipase gene (TTL gene) was completed and sequenced. The TTL coding gene consists of an open reading frame (ORF) of 1083bp encoding a protein of 269 Aa with an estimated molecular mass of 30kDa. The TTL belongs to the same gene family as Thermomyces lanuginosus lipase (TLL, Lipolase®), a well known lipase with multiple applications. The promoter sequence of the TTL gene showed the conservation of known consensus sequences PacC, CreA, Hap2-3-4 and the existence of a particular sequence like the binding sites of Oleate Response Element (ORE) and Fatty acids Responsis Element (FARE) which are similar to that already found to be specific of lipolytic genes in Candida and Fusarium, respectively. Northern blot analysis showed that the TTL expression was much higher on wheat bran than on olive oil as sole carbon source. Compared to the Lipolase®, this enzyme was found to be more efficient for the hydrolysis and the synthesis of esters; and its synthetic efficiency even reached 91.6% from Waste Cooking Oil triglycerides.

  15. Isolation of thermo-stable and solvent-tolerant Bacillus sp. lipase for the production of biodiesel.

    PubMed

    Sivaramakrishnan, Ramachandran; Muthukumar, Karuppan

    2012-02-01

    This study presents the production of biodiesel from algae oil by transesterification using thermophilic microorganism. The microorganism used in this study was isolated from the soil sample obtained near the furnace. The organism was identified as Bacillus sp., and the lipase obtained was purified by ammonium sulfate precipitation and ion exchange chromatography leading to 8.6-fold purification and 13% recovery. Molecular weight of the enzyme was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and it was found to be 45 kDa. The effect of pH, temperature, and solvent addition on lipase activity was investigated. The enzyme showed maximum activity at 55 °C and at pH 7 and was also found to be highly active in the presence of organic solvents such as hexane and t-butanol. The isolated lipase was successfully used for the production of biodiesel. The transesterification activity of the isolated lipase showed 76% of fatty acid methyl esters yield in 40 h, which indicated that this enzyme can be used as a potential biocatalyst for the biodiesel production.

  16. Cloning, Expression, and Characterization of a Cold-Active and Organic Solvent-Tolerant Lipase from Aeromicrobium sp. SCSIO 25071.

    PubMed

    Su, Hongfei; Mai, Zhimao; Yang, Jian; Xiao, Yunzhu; Tian, Xinpeng; Zhang, Si

    2016-06-28

    The gene encoding lipase (Lip98) from Aeromicrobium sp. SCSIO 25071 was cloned and functionally expressed in Escherichia coli. Lip98 amino acid sequence shares the highest (49%) identity to Rhodococcus jostii RHA1 lipase and contains a novel motif (GHSEG), which is different from other clusters in the lipase superfamily. The recombinant lipase was purified to homogeneity with Ni-NTA affinity chromatography. Lip98 showed an apparent molecular mass of 30 kDa on SDS gel. The optimal temperature and pH value for enzymatic activity were recorded at 30°C and 7.5, respectively. Lip98 exhibited high activity at low temperatures with 35% maximum activity at 0°C and good stability at temperatures below 35°C. Its calculated activation energy was 4.12 kcal/mol at the low temperature range of 15-30°C. Its activity was slightly affected by some metal ions such as K(+), Ca(2+), and Na(+). The activity of Lip98 was increased by various organic solvents such as DMSO, ethanol, acetone, and hexane with the concentration of 30% (v/v) and retained more than 30% residual activity in neat organic solvent. The unique characteristics of Lip98 imply that it is a promising candidate for industrial application as a nonaqueous biocatalyst and food additive.

  17. Biodiesel production from crude Jatropha oil catalyzed by non-commercial immobilized heterologous Rhizopus oryzae and Carica papaya lipases.

    PubMed

    Rodrigues, J; Canet, A; Rivera, I; Osório, N M; Sandoval, G; Valero, F; Ferreira-Dias, S

    2016-08-01

    The aim of this study was to evaluate the feasibility of biodiesel production by transesterification of Jatropha oil with methanol, catalyzed by non-commercial sn-1,3-regioselective lipases. Using these lipases, fatty acid methyl esters (FAME) and monoacylglycerols are produced, avoiding the formation of glycerol as byproduct. Heterologous Rhizopus oryzae lipase (rROL) immobilized on different synthetic resins and Carica papaya lipase (rCPL) immobilized on Lewatit VP OC 1600 were tested. Reactions were performed at 30°C, with seven stepwise methanol additions. For all biocatalysts, 51-65% FAME (theoretical maximum=67%, w/w) was obtained after 4h transesterification. Stability tests were performed in 8 or 10 successive 4h-batches, either with or without rehydration of the biocatalyst between each two consecutive batches. Activity loss was much faster when biocatalysts were rehydrated. For rROL, half-life times varied from 16 to 579h. rROL on Lewatit VPOC 1600 was more stable than for rCPL on the same support.

  18. Inhibition of lipase and inflammatory mediators by Chlorella lipid extracts for antiacne treatment

    PubMed Central

    Sibi, G.

    2015-01-01

    Acne vulgaris is a chronic inflammatory disease, and its treatment is challenging due to the multifactorial etiology and emergence of antibiotic-resistant Propionibacterium acnes strains. This study was focused to reduce antibiotics usage and find an alternate therapeutic source for treating acne. Lipid extracts of six Chlorella species were tested for inhibition of lipase, reactive oxygen species (ROS) production, cytokine production using P. acnes (Microbial Type Culture Collection 1951). Lipase inhibitory assay was determined by dimercaprol Tributyrate - 5, 5'- dithiobis 2-nitrobenzoic acid method and ROS production assay was performed using nitro-blue tetrazolium test. The anti-inflammatory activity of algal lipid extracts was determined by in vitro screening method based on inhibition of pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) produced by human peripheral blood mononuclear cells. Minimum inhibitory concentration (MIC) values of lipid extracts were determined by microdilution method, and the fatty acid methyl esters (FAME) were analyzed by gas chromatography-mass spectroscopy. Chlorella ellipsoidea has the highest lipase inhibitory activity with 61.73% inhibition, followed by Chlorella vulgaris (60.31%) and Chlorella protothecoides (58.9%). Lipid extracts from C. protothecoides and C. ellipsoidea has significantly reduced the ROS production by 61.27% and 58.34% respectively. Inhibition of pro-inflammatory cytokines TNF-α showed the inhibition ranging from 58.39% to 78.67%. C. vulgaris has exhibited the MICvalue of 10 μg/ml followed by C. ellipsoidea, C. protothecoides and Chlorella pyrenoidosa (20 μg/ml). FAME analysis detected 19 fatty acids of which 5 were saturated fatty acids, and 14 were unsaturated fatty acids ranging from C14 to C24. The results suggest that lipid extracts of Chlorella species has significant inhibitory activity on P. acnes by inhibiting lipase activity. Further, anti-inflammatory reaction caused by the

  19. Studies on the Substrate and Stereo/Regioselectivity of Adipose Triglyceride Lipase, Hormone-sensitive Lipase, and Diacylglycerol-O-acyltransferases*

    PubMed Central

    Eichmann, Thomas O.; Kumari, Manju; Haas, Joel T.; Farese, Robert V.; Zimmermann, Robert; Lass, Achim; Zechner, Rudolf

    2012-01-01

    Adipose triglyceride lipase (ATGL) is rate-limiting for the initial step of triacylglycerol (TAG) hydrolysis, generating diacylglycerol (DAG) and fatty acids. DAG exists in three stereochemical isoforms. Here we show that ATGL exhibits a strong preference for the hydrolysis of long-chain fatty acid esters at the sn-2 position of the glycerol backbone. The selectivity of ATGL broadens to the sn-1 position upon stimulation of the enzyme by its co-activator CGI-58. sn-1,3 DAG is the preferred substrate for the consecutive hydrolysis by hormone-sensitive lipase. Interestingly, diacylglycerol-O-acyltransferase 2, present at the endoplasmic reticulum and on lipid droplets, preferentially esterifies sn-1,3 DAG. This suggests that ATGL and diacylglycerol-O-acyltransferase 2 act coordinately in the hydrolysis/re-esterification cycle of TAGs on lipid droplets. Because ATGL preferentially generates sn-1,3 and sn-2,3, it suggests that TAG-derived DAG cannot directly enter phospholipid synthesis or activate protein kinase C without prior isomerization. PMID:23066022

  20. Enantioselective nano liquid chromatographic separation of racemic pharmaceuticals: a facile one-pot in situ preparation of lipase-based polymer monoliths in capillary format.

    PubMed

    Ahmed, Marwa; Ghanem, Ashraf

    2014-11-01

    New affinity monolithic capillary columns of 150 µm internal diameter were prepared in situ fused glass capillary via either immobilization or encapsulation of Candida antarctica lipase B (CALB) on or within polymer monoliths, respectively. The immobilized lipase-based monoliths were prepared via copolymerization of 19.1% monomers (8.9% MMA and 10.2% GMA), 19.8% EDMA, and 61.1% porogens (54.2% formamide and 6.9% 1-propanol) w/w or 20% GMA, 20% EDMA, and 60% porogens (51.6% cyclohexanol and 8.4% 1-dodecanol) in the presence of AIBN (1%) as a radical initiator. This was followed by pumping a solution of lipase through the capillaries and rinsing with potassium phosphate buffer. On the other hand, the encapsulated lipase-based monoliths were prepared via copolymerization of 20% monomers (GMA), 20% EDMA, and 60% porogens (48% 1-propanol, 6% 1,4-butanediol) or 16.4% monomers (16% BuMA, 0.4% SPMA), 23.6% EDMA, and 60% porogens (36% 1-propanol, 18% 1,4-butanediol along with 6% lipase aqueous solution in potassium phosphate buffer. The prepared capillary columns were investigated for the enantioselective nano liquid chromatographic separation of a set of different classes of racemic pharmaceuticals, namely, α- and β-blockers, antiinflammatory drugs, antifungal drugs, dopamine antagonists, norepinephrine-dopamine reuptake inhibitors, catecholamines, sedative hypnotics, diuretics, antihistaminics, anticancer drugs, and antiarrhythmic drugs. Run-to-run repeatability was quite satisfactory. The encapsulated lipase-based capillary monolith showed better enantioselective separations of most of the investigated compounds. Baseline separation was achieved for alprenolol, atenolol, bromoglutithimide, carbuterol, chloropheneramine, cizolertine carbinol, 4-hydroxy-3-methoxymandelic acid, desmethylcizolertine, nomifensine, normetanephrine, and sulconazole under reversed phase chromatographic conditions. A speculation about the understanding of the chiral recognition mechanism of

  1. Importance of the residue Asp 290 on chain length selectivity and catalytic efficiency of recombinant Staphylococcus simulans lipase expressed in E. coli.

    PubMed

    Sayari, Adel; Mosbah, Habib; Gargouri, Youssef

    2007-05-01

    In addition to their physiological importance, microbial lipases, like staphylococcal ones, are of considerable commercial interest for biotechnological applications such as detergents, food production, and pharmaceuticals and industrial synthesis of fine chemicals. The gene encoding the extracellular lipase of Staphylococcus simulans (SSL) was subcloned in the pET-14b expression vector and expressed in Esherichia coli BL21 (DE3). The wild-type SSL was expressed as amino terminal His6-tagged recombinant protein. One-step purification of the recombinant lipase was achieved with nickel metal affinity column. The purified His-tagged SSL (His6-SSL) is able to hydrolyse triacylglycerols without chain length selectivity. The major differences among lipases are reflected in their chemical specificity in the hydrolysis of peculiar ester bonds, and their respective capacity to hydrolyse substrates having different physico-chemical properties. It has been proposed, using homology alignment, that the region around the residue 290 of Staphylococcus hyicus lipase could be involved in the selection of the substrate. To evaluate the importance of this environment, the residue Asp290 of Staphylococcus simulans lipase was mutated to Ala using site-directed mutagenesis. The mutant expression plasmid was also overexpressed in Esherichia coli and purified with a nickel metal affinity column. The substitution of Asp290 by Ala was accompanied by a significant shift of the acyl-chain length specificity of the mutant towards short chain fatty acid esters. Kinetic studies of wild-type SSL and its mutant D290A were carried out, and show essentially that the catalytic efficiency (k cat /K M ) of the mutant was affected. Our results confirmed that Asp290 is important for the chain length selectivity and catalytic efficiency of Staphylococcus simulans lipase.

  2. Lipase-catalyzed aza-Michael reaction on acrylate derivatives.

    PubMed

    Steunenberg, Peter; Sijm, Maarten; Zuilhof, Han; Sanders, Johan P M; Scott, Elinor L; Franssen, Maurice C R

    2013-04-19

    A methodology has been developed for an efficient and selective lipase-catalyzed aza-Michael reaction of various amines (primary and secondary) with a series of acrylates and alkylacrylates. Reaction parameters were tuned, and under the optimal conditions it was found that Pseudomonas stutzeri lipase and Chromobacterium viscosum lipase showed the highest selectivity for the aza-Michael addition to substituted alkyl acrylates. For the first time also, some CLEAs were examined that showed a comparable or higher selectivity and yield than the free enzymes and other formulations.

  3. Obtaining lipases from byproducts of orange juice processing.

    PubMed

    Okino-Delgado, Clarissa Hamaio; Fleuri, Luciana Francisco

    2014-11-15

    The presence of lipases was observed in three byproducts of orange juice processing: peel, core and frit. The enzymes were characterised biochemically over a wide pH range from neutral (6-7) to alkaline (8-9). The optimal temperature for the activity of these byproducts showed wide range at 20°C to 70°C, indicating fairly high thermostability. The activities were monitored on p-NP-butyrate, p-NP-laurate and p-NP-palmitate. For the first time, lipase activity was detected in these residues, reaching 68.5 lipase U/g for the crude extract from fractions called frit.

  4. Dimethyl carbonate-mediated lipid extraction and lipase-catalyzed in situ transesterification for simultaneous preparation of fatty acid methyl esters and glycerol carbonate from Chlorella sp. KR-1 biomass.

    PubMed

    Jo, Yoon Ju; Lee, Ok Kyung; Lee, Eun Yeol

    2014-04-01

    Fatty acid methyl esters (FAMEs) and glycerol carbonate were simultaneously prepared from Chlorella sp. KR-1 containing 40.9% (w/w) lipid using a reactive extraction method with dimethyl carbonate (DMC). DMC was used as lipid extraction agent, acyl acceptor for transesterification of the extracted triglycerides, substrate for glycerol carbonate synthesis from glycerol, and reaction medium for the solvent-free reaction system. For 1g of biomass, 367.31 mg of FAMEs and 16.73 mg of glycerol carbonate were obtained under the optimized conditions: DMC to biomass ratio of 10:1 (v/w), water content of 0.5% (v/v), and Novozyme 435 to biomass ratio of 20% (w/w) at 70°C for 24h. The amount of residual glycerol was only in the range of 1-2.5mg. Compared to conventional method, the cost of FAME production with the proposed technique could be reduced by combining lipid extraction with transesterification and omitting the extraction solvent recovery process.

  5. Exploring the protein stability landscape: Bacillus subtilis lipase A as a model for detergent tolerance.

    PubMed

    Fulton, Alexander; Frauenkron-Machedjou, Victorine Josiane; Skoczinski, Pia; Wilhelm, Susanne; Zhu, Leilei; Schwaneberg, Ulrich; Jaeger, Karl-Erich

    2015-04-13

    A systematic study was conducted with Bacillus subtilis lipase A (BSLA) to determine the effect of every single amino acid substitution on detergent tolerance. BSLA is a minimal α/β-hydrolase of 181 amino acids with a known crystal structure. It can be expressed in Escherichia coli and is biochemically well characterized. Site saturation mutagenesis resulted in a library of 3439 variants, each with a single amino acid exchange as confirmed by DNA sequencing. The library was tested against four detergents, namely SDS, CTAB, Tween 80, and sulfobetaine. Surface remodeling emerged as an effective engineering strategy to increase tolerance towards detergents. Amino acid residues that significantly affect the tolerance for each of the four detergents were identified. In summary, this systematic analysis provides an experimental dataset to help derive novel protein engineering strategies as well as to direct modeling efforts.

  6. Interactions of Perilipin-5 (Plin5) with Adipose Triglyceride Lipase*

    PubMed Central

    Granneman, James G.; Moore, Hsiao-Ping H.; Mottillo, Emilio P.; Zhu, Zhengxian; Zhou, Li

    2011-01-01

    Members of the perilipin family of lipid droplet scaffold proteins are thought to play important roles in tissue-specific regulation of triglyceride metabolism, but the mechanisms involved are not fully understood. Present results indicate that adipose triglyceride lipase (Atgl) interacts with perilipin-5 (Plin5) but not perilipin-1 (Plin1). Protein interaction assays in live cells and in situ binding experiments showed that Atgl and its protein activator, α-β-hydrolase domain-containing 5 (Abhd5), each bind Plin5. Surprisingly, competition experiments indicated that individual Plin5 molecules bind Atgl or Abhd5 but not both simultaneously. Thus, the ability of Plin5 to concentrate these proteins at droplet surfaces involves binding to different Plin5 molecules, possibly in an oligomeric complex. The association of Plin5-Abhd5 complexes on lipid droplet surfaces was more stable than Plin5-Atgl complexes, and oleic acid treatment selectively promoted the interaction of Plin5 and Abhd5. Analysis of chimeric and mutant perilipin proteins demonstrated that amino acids 200–463 are necessary and sufficient to bind both Atgl and Abhd5 and that the C-terminal 64 amino acids of Plin5 are critical for the differential binding of Atgl to Plin5 and Plin1. Mutant Plin5 that binds Abhd5 but not Atgl was defective in preventing neutral lipid accumulation compared with wild type Plin5, indicating that the ability of Plin5 to concentrate these proteins on lipid droplets is critical to functional Atgl activity in cells. PMID:21148142

  7. Regulation of hepatic lipase activity by sphingomyelin in plasma lipoproteins.

    PubMed

    Yang, Peng; Subbaiah, Papasani V

    2015-10-01

    Hepatic lipase (HL) is an important enzyme in the clearance of triacylglycerol (TAG) from the circulation, and has been proposed to have pro-atherogenic as well as anti-atherogenic properties. It hydrolyzes both phospholipids and TAG of lipoproteins, and its activity is negatively correlated with HDL levels. Although it is known that HL acts preferentially on HDL lipids, the basis for this specificity is not known, since it does not require any specific apoprotein for activity. In this study, we tested the hypothesis that sphingomyelin (SM), whose concentration is much higher in VLDL and LDL compared to HDL, is an inhibitor of HL, and that this could explain the lipoprotein specificity of the enzyme. The results presented show that the depletion of SM from normal lipoproteins activated the HL roughly in proportion to their SM content. SM depletion stimulated the hydrolysis of both phosphatidylcholine (PC) and TAG, although the PC hydrolysis was stimulated more. In the native lipoproteins, HL showed specificity for PC species containing polyunsaturated fatty acids at sn-2 position, and produced more unsaturated lyso PC species. The enzyme also showed preferential hydrolysis of certain TAG species over others. SM depletion affected the specificity of the enzyme towards PC and TAG species modestly. These results show that SM is a physiological inhibitor of HL activity in lipoproteins and that the specificity of the enzyme towards HDL is at least partly due to its low SM content.

  8. Regulation of hepatic lipase activity by sphingomyelin in plasma lipoproteins

    PubMed Central

    Yang, Peng; Subbaiah, Papasani V.

    2015-01-01

    Hepatic lipase (HL) is an important enzyme in the clearance of triacylglycerol (TAG) from the circulation, and has been proposed to have pro-atherogenic as well as anti-atherogenic properties. It hydrolyzes both phospholipids and TAG of lipoproteins, and its activity is negatively correlated with HDL levels. Although it is known that HL acts preferentially on HDL lipids, the basis for this specificity is not known, since it does not require any specific apoprotein for activity. In this study, we tested the hypothesis that sphingomyelin (SM), whose concentration is much higher in VLDL and LDL compared to HDL, is an inhibitor of HL, and that this could explain the lipoprotein specificity of the enzyme. The results presented show that the depletion of SM from normal lipoproteins activated the HL roughly in proportion to their SM content. SM depletion stimulated the hydrolysis of both phosphatidylcholine (PC) and TAG, although the PC hydrolysis was stimulated more. In the native lipoproteins, HL showed specificity for PC species containing polyunsaturated fatty acids at sn-2 position, and produced more unsaturated lyso PC species. The enzyme also showed preferential hydrolysis of certain TAG species over others. SM depletion affected the specificity of the enzyme towards PC and TAG species modestly. These results show that SM is a physiological inhibitor of HL activity in lipoproteins and that the specificity of the enzyme towards HDL is at least partly due to its low SM content. PMID:26193433

  9. Bioremediation of waste cooking oil using a novel lipase produced by Penicillium chrysogenum SNP5 grown in solid medium containing waste grease.

    PubMed

    Kumar, Sunil; Mathur, Anisha; Singh, Varsha; Nandy, Suchismita; Khare, Sunil Kumar; Negi, Sangeeta

    2012-09-01

    The aim of present work was to bioremediate the waste cooking oil using a novel lipase produced in solid medium containing waste grease and wheat bran by Penicillium chrysogenum. Enzyme extracted with phosphate buffer was purified 10.6 and 26.28-fold after 90% ammonium sulfate precipitation and ion-exchange chromatography, respectively. The partial characterization of enzyme revealed its K(m) and V(max) value for p-nitrophenolpamitate as 0.4mM and 47.61 U/ml, respectively. The relative molecular mass of lipase was 40 kDa by SDS-PAGE and confirmed by zymogram. Purified lipase was most stable at 40°C and at 8.0 pH. Lipase activity was enhanced by metal ions such as Mg(2+), Fe(2+), Ca(2+) and non-ionic surfactant TritonX-100, while suppressed in the presence of SDS. Crude lipase was applied on cooking oil waste and the acid value was 26.92 mg/g. This showed that the enzyme could be employed for the bioremediation of used cooking oil.

  10. Cellulose binding domain assisted immobilization of lipase (GSlip-CBD) onto cellulosic nanogel: characterization and application in organic medium.

    PubMed

    Kumar, Ashok; Zhang, Shaowei; Wu, Gaobing; Wu, Cheng Chao; Chen, JunPeng; Baskaran, R; Liu, Ziduo

    2015-12-01

    A cbd gene was cloned into the C-terminal region of a lip gene from Geobacillus stearothermophilus. The native lipase (43.5 kDa) and CBD-Lip fusion protein (60.2 kDa) were purified to homogeneity by SDS-PAGE. A highly stable cellulosic nanogel was prepared by controlled hydrolysis of microcrystalline cellulose onto which the CBD-lip fusion protein was immobilized through bio-affinity based binding. The nanogel-bound lipase showed optimum activity at 55 °C, and it remains stable and active at pH 10-10.5. Furthermore, the immobilized lipase showed an over two-fold increase of relative activity in the presence of DMSO, isopropanol, isoamyl alcohol and n-butanol, but a mild activity decrease at a low concentration of methanol and ethanol. The immobilized biocatalyst retained ~50% activity after eight repetitive hydrolytic cycles. Enzyme kinetic studies of the immobilized lipase showed a 1.24 fold increase in Vmax and 5.25 fold increase in kcat towards p-NPP hydrolysis. Additionally, the nanogel bound lipase was tested to synthesize a biodiesel ester, ethyl oleate in DMSO. Kinetic analysis showed the km 100.5 ± 4.3 mmol and Vmax 0.19 ± 0.015 mmolmin(-1) at varied oleic acid concentration. Also, the values of km and Vmax at varying concentration of ethanol were observed to be 95.9 ± 13.9 mmol and 0.22 ± 0.013 mmolmin(-1) respectively. The maximum yield of ethyl oleate 111.2 ± 1.24 mM was obtained under optimized reaction conditions in organic medium. These results suggest that this immobilized biocatalyst can be used as an efficient tool for the biotransformation reactions on an industrial scale.

  11. Characterization of a Hyperthermostable Alkaline Lipase from Bacillus sonorensis 4R

    PubMed Central

    Bhosale, Hemlata; Shaheen, Uzma

    2016-01-01

    Hyperthermostable alkaline lipase from Bacillus sonorensis 4R was purified and characterized. The enzyme production was carried out at 80°C and 9.0 pH in glucose-tween inorganic salt broth under static conditions for 96 h. Lipase was purified by anion exchange chromatography by 12.15 fold with a yield of 1.98%. The molecular weight of lipase was found to be 21.87 KDa by SDS-PAGE. The enzyme activity was optimal at 80°C with t1/2 of 150 min and at 90°C, 100°C, 110°C, and 120°C; the respective values were 121.59 min, 90.01 min, 70.01 min, and 50 min. The enzyme was highly activated by Mg and t1/2 values at 80°C were increased from 150 min to 180 min when magnesium and mannitol were added in combination. The activation energy calculated from Arrhenius plot was 31.102 KJ/mol. At 80–120°C, values of ΔH and ΔG were in the range of 28.16–27.83 KJ/mol and 102.79 KJ/mol to 111.66 KJ/mol, respectively. Lipase activity was highest at 9.0 pH and stable for 2 hours at this pH at 80°C. Pretreatment of lipase with MgSO4 and CaSO4 stimulated enzyme activity by 249.94% and 30.2%, respectively. The enzyme activity was greatly reduced by CoCl2, CdCl2, HgCl2, CuCl2, Pb(NO3)2, PMSF, orlistat, oleic acid, iodine, EDTA, and urea. PMID:26904276

  12. Immobilization of Yarrowia lipolytica Lipase on Macroporous Resin Using Different Methods: Characterization of the Biocatalysts in Hydrolysis Reaction

    PubMed Central

    Sun, Jingjing; Chen, Yiling; Sheng, Jun; Sun, Mi

    2015-01-01

    To improve the reusability and organic solvent tolerance of microbial lipase and expand the application of lipase (hydrolysis, esterification, and transesterification), we immobilized marine microbial lipase using different methods and determined the properties of immobilized lipases. Considering the activity and cost of immobilized lipase, the concentration of lipase was fixed at 2 mg/mL. The optimal temperature of immobilized lipases was 40°C and 5°C higher than free lipase. The activities of immobilized lipases were much higher than free lipase at alkaline pH (more than 50% at pH 12). The free lipase lost most activity (35.3%) and immobilized lipases retained more than 46.4% of their initial activity after 3 h heat treatment at 70°C. At alkaline pH, immobilized lipases were more stable than free lipase (more than 60% residue activity at pH 11 for 3 h). Immobilized lipases retained 80% of their activity after 5 cycles and increased enzyme activity (more than 108.7%) after 3 h treatment in tert-butanol. Immobilization of lipase which improved reusability of lipase and provided a chance to expand the application of marine microbial lipase in organic system expanded the application range of lipase to catalyze hydrolysis and esterification in harsh condition. PMID:26240816

  13. Stability of a Lipase Extracted from Seeds of Pachira aquatica in Commercial Detergents and Application Tests in Poultry Wastewater Pretreatment and Fat Particle Hydrolysis

    PubMed Central

    Polizelli, Patrícia Peres; Facchini, Fernanda Dell Antonio

    2013-01-01

    A protein extract containing a plant lipase from oleaginous seeds of Pachira aquatica was tested using soybean oil, wastewater from a poultry processing plant, and beef fat particles as substrate. The hydrolysis experiments were carried out at a temperature of 40°C, an incubation time of 90 minutes, and pH 8.0-9.0. The enzyme had the best stability at pH 9.0 and showed good stability in the alkaline range. It was found that P. aquatica lipase was stable in the presence of some commercial laundry detergent formulations, and it retained full activity up to 0.35% in hydrogen peroxide, despite losing activity at higher concentrations. Concerning wastewater, the lipase increased free fatty acids release by 7.4 times and promoted the hydrolysis of approximately 10% of the fats, suggesting that it could be included in a pretreatment stage, especially for vegetable oil degradation. PMID:24455209

  14. Gene cloning and characterization of a novel highly organic solvent tolerant lipase from Proteus sp. SW1 and its application for biodiesel production.

    PubMed

    Whangsuk, Wirongrong; Sungkeeree, Pareenart; Thiengmag, Sirinthra; Kerdwong, Jarunee; Sallabhan, Ratiboot; Mongkolsuk, Skorn; Loprasert, Suvit

    2013-01-01

    Proteus sp. SW1 was found to produce an extracellular solvent tolerant lipase. The gene, lipA, encoding a bacterial lipase, was cloned from total Proteus sp. SW1 DNA. lipA was predicted to encode a 287 amino acid protein of 31.2 kDa belonging to the Group I proteobacterial lipases. Purified His-tagged LipA exhibited optimal activity at pH 10.0 and 55°C. It was highly stable in organic solvents retaining 112% of its activity in 100% isopropanol after 24 h, and exhibited more than 200% of its initial activity upon exposure to 60% acetone, ethanol, and hexane for 18 h. Biodiesel synthesis reactions, using a single step addition of 13% an acyl acceptor ethanol, showed that LipA was highly effective at converting palm oil into biodiesel.

  15. Synthesis of acyl arbutin by an immobilized lipase and its suppressive ability against lipid oxidation in a bulk system and O/W emulsion.

    PubMed

    Nagai, Mizuka; Watanabe, Yoshiyuki; Nomura, Masato

    2009-11-01

    Acyl arbutin was synthesized through the condensation of arbutin with a saturated fatty acid (C6-18) by the immobilized lipase in a batch reaction. The conversion at 10 and 20 g/l-solvent of immobilized lipase reached 45% over 2 d, but the initial reaction rate per amount of immobilized lipase decreased at 20 g/l-solvent. The radical scavenging activity of acyl arbutin in an ethanol solution was independent of the acyl chain length, although the rate constant, k, estimated for the oxidation of methyl linoleate in a bulk system with acyl arbutin by using the Weibull equation, decreased as the acyl chain length increased. This indicates the antioxidative ability of acyl arbutin with a long acyl chain to be due to its lipophilicity. Furthermore, it is suggested that dodecanoyl arbutin mainly acted on the interface between the oil and water phases in an O/W emulsion, and effectively suppressed the oxidation induced at the interface.

  16. Lipase Activity among Bacteria Isolated from Amazonian Soils

    PubMed Central

    Willerding, André Luis; de Oliveira, Luiz Antonio; Moreira, Francisco Wesen; Germano, Mariana Gomes; Chagas, Aloísio Freitas

    2011-01-01

    The objective of this study was to select lipase-producing bacteria collected from different counties of the Amazon region. Of the 440 bacteria strains, 181 were selected for the lipase assay in qualitative tests at Petri dishes, being 75 (41%) lipase positive. The enzymatic index was determined during fifteen days at different temperatures (30°, 35°, 40°, and 45°C). The highest lipase activity was observed within 72 hours at 30°C. Twelve bacteria strains presented an index equal to or greater than the standard used like reference, demonstrating the potential of microbial resource. After the bioassay in Petri dishes, the selected bacteria strains were analyzed in quantitative tests on p-nitrophenyl palmitate (p-NPP). A group of the strains was selected for other phases of study with the use in oleaginous substrates of the Amazonian flora, aiming for the application in processes like oil biotransformation. PMID:22007294

  17. Identification, cloning and characterization of a GDSL lipase secreted into the nectar of Jacaranda mimosifolia.

    PubMed

    Kram, Brian W; Bainbridge, Elizabeth A; Perera, M Ann D N; Carter, Clay

    2008-09-01

    The presence and function of several proteins secreted into floral nectars has been described in recent years. Here we report the presence of at least eight distinct proteins secreted into the floral nectar of the tropical tree Jacaranda mimosifolia (Bignoniaceae). Steps were initiated to identify and characterize these proteins in order to determine potential functions. The N-terminal sequence of the major Jacaranda nectar protein, JNP1, at 43 kDa contained similarity with members of the plant GDSL lipase/esterase gene family. Based upon this sequence, a full-length cDNA was isolated and predicted to encode a mature protein of 339 amino acids with a molecular mass of 37 kDa. Both raw nectar and heterologously expressed JNP1 displayed lipase/esterase activities. Interestingly, J. mimosifolia flowers produce an opaque, white colored nectar containing spherical, lipophilic particles approximately 5 microm in diameter and smaller. GS-MS analysis also identified the accumulation of free fatty acids within the nectar. It is proposed that JNP1 hydrolyzes Jacaranda nectar lipids with the concomitant release of free fatty acids. Potential functions of JNP1 in relation to pollinator attraction and prevention of microbial growth within nectar are briefly discussed.

  18. Fasting energy homeostasis in mice with adipose deficiency of desnutrin/adipose triglyceride lipase.

    PubMed

    Wu, Jiang Wei; Wang, Shu Pei; Casavant, Stéphanie; Moreau, Alain; Yang, Gong She; Mitchell, Grant A

    2012-05-01

    Adipose triglyceride lipase (ATGL) catalyzes the first step of lipolysis of cytoplasmic triacylglycerols in white adipose tissue (WAT) and several other organs. We created adipose-specific ATGL-deficient (ATGLAKO) mice. In these mice, in vivo lipolysis, measured as the increase of plasma nonesterified fatty acid and glycerol levels after injection of a β3-adrenergic agonist, was undetectable. In isolated ATGLAKO adipocytes, β3-adrenergic-stimulated glycerol release was 10-fold less than in controls. Under fed conditions, ATGLAKO mice had normal viability, mild obesity, low plasma nonesterified fatty acid levels, increased insulin sensitivity, and increased daytime food intake. After 5 h of fasting, ATGLAKO WAT showed phosphorylation of the major protein kinase A-mediated targets hormone-sensitive lipase and perilipin A and ATGLAKO liver showed low glycogen and triacylglycerol contents. During a 48-h fast, ATGLAKO mice developed striking and complex differences from controls: progressive reduction of oxygen consumption, high respiratory exchange ratio, consistent with reduced fatty acid availability for energy production, lethargy, hypothermia, and undiminished fat mass, but greater loss of lean mass than controls. Plasma of 48 h-fasted ATGLAKO mice had a unique pattern: low 3-hydroxybutyrate, insulin, adiponectin, and fibroblast growth factor 21 with elevated leptin and corticosterone. ATGLAKO WAT, liver, skeletal muscle, and heart showed increased levels of mRNA related to autophagy and proteolysis. In murine ATGL deficiency, adipose lipolysis is critical for fasting energy homeostasis, and fasting imposes proteolytic stress on many organs, including heart and skeletal muscle.

  19. Efficient water removal in lipase-catalyzed esterifications using a low-boiling-point azeotrope.

    PubMed

    Yan, Youchun; Bornscheuer, Uwe T; Schmid, Rolf D

    2002-04-05

    High conversions in lipase-catalyzed syntheses of esters from free acyl donors and an alcohol requires efficient removal of water preferentially at temperatures compatible to enzyme activity. Using a lipase B from Candida antarctica (CAL-B)-mediated synthesis of sugar fatty-acid esters, we show that a mixture of ethyl methylketone (EMK) and hexane (best ratio: 4:1, vo/vo) allows efficient removal of water generated during esterification. Azeotropic distillation of the solvent mixture (composition: 26% EMK, 55% hexane, 19% water) takes place at 59 degrees C, which closely matches the optimum temperature reported for CAL-B. Water is then removed from the azeotrope by membrane vapor permeation. In case of glucose stearate, 93% yield was achieved after 48 h using an equimolar ratio of glucose and stearic acid. CAL-B could be reused for seven reaction cycles, with 86% residual activity after 14 d total reaction time at 59 degrees C. A decrease in fatty-acid chain length as well as increasing temperatures (75 degrees C) resulted in lower conversions. In addition, immobilization of CAL-B on a magnetic polypropylene carrier (EP 100) facilitated separation of the biocatalyst.

  20. Lipases at interfaces: unique interfacial properties as globular proteins.

    PubMed

    Reis, P; Miller, R; Krägel, J; Leser, M; Fainerman, V B; Watzke, H; Holmberg, K

    2008-06-01

    The adsorption behavior of two globular proteins, lipase from Rhizomucor miehei and beta-lactoglobulin, at inert oil/water and air/water interfaces was studied by the pendant drop technique. The kinetics and adsorption isotherms were interpreted for both proteins in different environments. It was found that the adopted mathematical models well describe the adsorption behavior of the proteins at the studied interfaces. One of the main findings is that unique interfacial properties were observed for lipase as compared to the reference beta-lactoglobulin. A folded drop with a "skinlike" film was formed for the two proteins after aging followed by compression. This behavior is normally associated with protein unfolding and covalent cross-linking at the interface. Despite this, the lipase activity was not suppressed. By highlighting the unique interfacial properties of lipases, we believe that the presented work contributes to a better understanding of lipase interfacial activation and the mechanisms regulating lipolysis. The results indicate that the understanding of the physical properties of lipases can lead to novel approaches to regulate their activity.

  1. Role of the lid hydrophobicity pattern in pancreatic lipase activity.

    PubMed

    Thomas, Annick; Allouche, Maya; Basyn, Frédéric; Brasseur, Robert; Kerfelec, Brigitte

    2005-12-02

    Pancreatic lipase is a soluble globular protein that must undergo structural modifications before it can hydrolyze oil droplets coated with bile salts. The binding of colipase and movement of the lipase lid open access to the active site. Mechanisms triggering lid mobility are unclear. The *KNILSQIVDIDGI* fragment of the lid of the human pancreatic lipase is predicted by molecular modeling to be a tilted peptide. Tilted peptides are hydrophobicity motifs involved in membrane fusion and more globally in perturbations of hydrophobic/hydrophilic interfaces. Analysis of this lid fragment predicts no clear consensus of secondary structure that suggests that its structure is not strongly sequence determined and could vary with environment. Point mutations were designed to modify the hydrophobicity profile of the [240-252] fragment and their consequences on the lipase-mediated catalysis were tested. Two mutants, in which the tilted peptide motif was lost, also have poor activity on bile salt-coated oil droplets and cannot be reactivated by colipase. Conversely, one mutant in which a different tilted peptide is created retains colipase dependence. These results suggest that the tilted hydrophobicity pattern of the [240-252] fragment is neither important for colipase binding to lipase, nor for interfacial binding but is important to trigger the maximal catalytic efficiency of lipase in the presence of bile salt.

  2. Immobilization and Characterization of a New Regioselective and Enantioselective Lipase Obtained from a Metagenomic Library

    PubMed Central

    Alnoch, Robson Carlos; Martini, Viviane Paula; Glogauer, Arnaldo; Costa, Allen Carolina dos Santos; Piovan, Leandro; Muller-Santos, Marcelo; de Souza, Emanuel Maltempi; de Oliveira Pedrosa, Fábio; Mitchell, David Alexander; Krieger, Nadia

    2015-01-01

    In previous work, a new lipase and its cognate foldase were identified and isolated from a metagenomic library constructed from soil samples contaminated with fat. This new lipase, called LipG9, is a true lipase that shows specific activities that are comparable to those of well-known industrially-used lipases with high activity against long-chain triglycerides. In the present work, LipG9 was co-expressed and co-immobilized with its foldase, on an inert hydrophobic support (Accurel MP1000). We studied the performance of this immobilized LipG9 (Im-LipG9) in organic media, in order to evaluate its potential for use in biocatalysis. Im-LipG9 showed good stability, maintaining a residual activity of more than 70% at 50°C after incubation in n-heptane (log P 4.0) for 8 h. It was also stable in polar organic solvents such as ethanol (log P -0.23) and acetone (log P -0.31), maintaining more than 80% of its original activity after 8 h incubation at 30°C. The synthesis of ethyl esters was tested with fatty acids of different chain lengths in n-heptane at 30 °C. The best conversions (90% in 3 h) were obtained for medium and long chain saturated fatty acids (C8, C14 and C16), with the maximum specific activity, 29 U per gram of immobilized preparation, being obtained with palmitic acid (C16). Im-LipG9 was sn-1,3-specific. In the transesterification of the alcohol (R,S)-1-phenylethanol with vinyl acetate and the hydrolysis of the analogous ester, (R,S)-1-phenylethyl acetate, Im-LipG9 showed excellent enantioselectivity for the R-isomer of both substrates (E> 200), giving an enantiomeric excess (ee) of higher than 95% for the products at 49% conversion. The results obtained in this work provide the basis for the development of applications of LipG9 in biocatalysis. PMID:25706996

  3. Genetic and structure-function studies of missense mutations in human endothelial lipase.

    PubMed

    Razzaghi, Hamid; Tempczyk-Russell, Anna; Haubold, Kurt; Santorico, Stephanie A; Shokati, Touraj; Christians, Uwe; Churchill, Mair E A

    2013-01-01

    Endothelial lipase (EL) plays a pivotal role in HDL metabolism. We sought to characterize EL and its interaction with HDL as well as its natural variants genetically, functionally and structurally. We screened our biethnic population sample (n = 802) for selected missense mutations (n = 5) and identified T111I as the only common variant. Multiple linear regression analyses in Hispanic subjects revealed an unexpected association between T111I and elevated LDL-C (p-value = 0.012) and total cholesterol (p-value = 0.004). We examined lipase activity of selected missense mutants (n = 10) and found different impacts on EL function, ranging from normal to complete loss of activity. EL-HDL lipidomic analyses indicated that EL has a defined remodeling of HDL without exhaustion of the substrate and a distinct and preference for several fatty acids that are lipid mediators and known for their potent pro- and anti-inflammatory properties. Structural studies using homology modeling revealed a novel α/β motif in the C-domain, unique to EL. The EL dimer was found to have the flexibility to expand and to bind various sizes of HDL particles. The likely impact of the all known missense mutations (n = 18) on the structure of EL was examined using molecular modeling and the impact they may have on EL lipase activity using a novel structure-function slope based on their structural free energy differences. The results of this multidisciplinary approach delineated the impact of EL and its variants on HDL. Moreover, the results suggested EL to have the capacity to modulate vascular health through its role in fatty acid-based signaling pathways.

  4. Extracellular lipase of Pseudomonas sp. strain ATCC 21808: purification, characterization, crystallization, and preliminary X-ray diffraction data.

    PubMed Central

    Kordel, M; Hofmann, B; Schomburg, D; Schmid, R D

    1991-01-01

    A procedure for the purification of a very hydrophobic lipase from Pseudomonas sp. strain ATCC 21808 was elaborated by avoiding the use of long-chain detergents in view of subsequent crystallization of the enzyme. The purification procedure included chromatography on Q-Sepharose in the presence of n-octyl-beta-D-glucopyranoside, Ca2+ precipitation of fatty acids, and Octyl-Sepharose chromatography. The enzyme was purified 260-fold to a yield of 35% and a specific activity of 3,300 U/mg. The molecular weight was determined as 35,000; a polyacrylamide gel under nondenaturing conditions revealed a band at 110,000, and the isoelectric point proved to be at 4.5 to 4.6. The lipase crystallized with different salts and ethylene glycol polymers in the presence of n-octyl-beta-D-glucopyranoside and one alkyloligooxyethylene compound (CxEy) in the range from C5E2 to C8E4. The crystals diffract to a resolution of about 0.25 nm. Precession photographs revealed that they belong to space group C2 with lattice constants of a = 9.27 nm, b = 4.74 nm, c = 8.65 nm, and beta = 122.3 degrees, indicating a cell content of one molecule per asymmetric unit of the crystal. In hydrolysis of triglycerides, the lipase showed substrate specificity for saturated fatty acids from C6 to C12 and unsaturated long-chain fatty acids. Monoglycerides were hydrolyzed very slowly. The N-terminal sequence is identical to that of the lipase from Pseudomonas cepacia. Treatment with diethyl-p-nitrophenylphosphate affected the activities toward triolein and p-nitrophenylacetate to the same extent and with the same velocity. Images PMID:1856176

  5. Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins.

    PubMed Central

    Cygler, M.; Schrag, J. D.; Sussman, J. L.; Harel, M.; Silman, I.; Gentry, M. K.; Doctor, B. P.

    1993-01-01

    Based on the recently determined X-ray structures of Torpedo californica acetylcholinesterase and Geotrichum candidum lipase and on their three-dimensional superposition, an improved alignment of a collection of 32 related amino acid sequences of other esterases, lipases, and related proteins was obtained. On the basis of this alignment, 24 residues are found to be invariant in 29 sequences of hydrolytic enzymes, and an additional 49 are well conserved. The conservation in the three remaining sequences is somewhat lower. The conserved residues include the active site, disulfide bridges, salt bridges, and residues in the core of the proteins. Most invariant residues are located at the edges of secondary structural elements. A clear structural basis for the preservation of many of these residues can be determined from comparison of the two X-ray structures. PMID:8453375

  6. Extraction of microalgal lipids and the influence of polar lipids on biodiesel production by lipase-catalyzed transesterification.

    PubMed

    Navarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro Antonio; Esteban Cerdán, Luis; Molina Grima, Emilio

    2016-09-01

    In order to obtain microalgal saponifiable lipids (SLs) fractions containing different polar lipid (glycolipids and phospholipids) contents, SLs were extracted from wet Nannochloropsis gaditana microalgal biomass using seven extraction systems, and the polar lipid contents of some fractions were reduced by low temperature acetone crystallization. We observed that the polar lipid content in the extracted lipids depended on the polarity of the first solvent used in the extraction system. Lipid fractions with polar lipid contents between 75.1% and 15.3% were obtained. Some of these fractions were transformed into fatty acid methyl esters (FAMEs, biodiesel) by methanolysis, catalyzed by the lipases Novozym 435 and Rhizopus oryzae in tert-butanol medium. We observed that the reaction velocity was higher the lower the polar lipid content, and that the final FAME conversions achieved after using the same lipase batch to catalyze consecutive reactions decreased in relation to an increase in the polar lipid content.

  7. Amino acid alignment of cholinesterases, esterases, lipases, and related proteins

    SciTech Connect

    Gentry, M.K.; Doctor, B.P.

    1995-12-31

    The alignments previously published (Gentry Doctor, 1991; Cygler et al., 1993), nine and 32 sequences respectively, have been further expanded by the addition of 22 newly-found sequences. References and protein sequences were found by searching on the term acetylcholinesterase using the software package Entrez, an integrated citation and sequence retrieval system (National Center for Biotechnology Information, NLM, Bethesda, MD).

  8. Interfacial activation of lipases on hydrophobic support and application in the synthesis of a lubricant ester.

    PubMed

    Bassi, Jaquelinne J; Todero, Larissa M; Lage, Flávia A P; Khedy, Gabrielly I; Ducas, Jamile Dell; Custódio, Ana Paula; Pinto, Marilene A; Mendes, Adriano A

    2016-11-01

    n-Octyl oleate was synthetized by enzymatic esterification reaction of oleic acid and n-octanol. Lipases from porcine pancreatic (PPL), Mucor javanicus (MJL), Candida sp. (CALA), Rhizomucor miehei (RML) and Thermomyces lanuginosus (TLL) were immobilized via interfacial activation on poly-methacrylate particles (PMA) and tested as biocatalysts. Their catalytic properties were determined in the hydrolysis of olive oil emulsion. Among them, TLL-PMA was the biocatalyst that yielded the highest hydrolytic activity (217.8±1.1 IU/g) and immobilized protein loading (37.5±0.4mg/g). This biocatalyst was also the most active in n-octyl oleate synthesis, thus selected for further studies. Maximum conversion percentage of 95.1±1.3% was observed after 60min of reaction at 45°C, 10% m/v of TLL-PMA, and molar ratio oleic acid:n-octanol of 1:1.5 in a solvent-free system. The biocatalyst fully retained its original activity after twelve cycles of reaction of 60min each. The product was confirmed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy analysis and their physico-chemical properties were determined according to ASTM standard methods. These results show that the immobilization of an alkalophilic and thermostable lipase (TLL) on PMA particles allowed the preparation of a highly active biocatalyst in hydrolysis and esterification reactions.

  9. Combining phospholipases and a liquid lipase for one-step biodiesel production using crude oils

    PubMed Central

    2014-01-01

    Background Enzymatic biodiesel is becoming an increasingly popular topic in bioenergy literature because of its potential to overcome the problems posed by chemical processes. However, the high cost of the enzymatic process still remains the main drawback for its industrial application, mostly because of the high price of refined oils. Unfortunately, low cost substrates, such as crude soybean oil, often release a product that hardly accomplishes the final required biodiesel specifications and need an additional pretreatment for gums removal. In order to reduce costs and to make the enzymatic process more efficient, we developed an innovative system for enzymatic biodiesel production involving a combination of a lipase and two phospholipases. This allows performing the enzymatic degumming and transesterification in a single step, using crude soybean oil as feedstock, and converting part of the phospholipids into biodiesel. Since the two processes have never been studied together, an accurate analysis of the different reaction components and conditions was carried out. Results Crude soybean oil, used as low cost feedstock, is characterized by a high content of phospholipids (900 ppm of phosphorus). However, after the combined activity of different phospholipases and liquid lipase Callera Trans L, a complete transformation into fatty acid methyl esters (FAMEs >95%) and a good reduction of phosphorus (P <5 ppm) was achieved. The combination of enzymes allowed avoidance of the acid treatment required for gums removal, the consequent caustic neutralization, and the high temperature commonly used in degumming systems, making the overall process more eco-friendly and with higher yield. Once the conditions were established, the process was also tested with different vegetable oils with variable phosphorus contents. Conclusions Use of liquid lipase Callera Trans L in biodiesel production can provide numerous and sustainable benefits. Besides reducing the costs derived from

  10. Application of protein N-terminal amidase in enzymatic synthesis of dipeptides containing acidic amino acids specifically at the N-terminus.

    PubMed

    Arai, Toshinobu; Noguchi, Atsushi; Takano, Eriko; Kino, Kuniki

    2013-04-01

    Dipeptides exhibit unique physiological functions and physical properties, e.g., l-aspartyl-l-phenylalanine-methyl ester (Asp-Phe-OMe, aspartame) as an artificial sweetener, and functional studies of peptides have been carried out in various fields. Therefore, to establish a manufacturing process for the useful dipeptides, we investigated its enzymatic synthesis by utilizing an l-amino acid ligase (Lal), which catalyzes dipeptide synthesis in an ATP-dependent manner. Many Lals were obtained, but the Lals recognizing acidic amino acids as N-terminal substrates have not been identified. To increase the variety of dipeptides that are enzymatically synthesized, we proposed a two-step synthesis: Asn-Xaa and Gln-Xaa (Asn, l-asparagine; Gln, l-glutamine; and Xaa, arbitrary amino acids) synthesized by Lals were continuously deamidated by a novel amidase, yielding Asp-Xaa and Glu-Xaa (Asp, l-aspartic acid; and Glu, l-glutamic acid). We searched for amidases that specifically deamidate the N-terminus of Asn or Gln in dipeptides since none have been previously reported. We focused on the protein N-terminal amidase from Saccharomyces cerevisiae (NTA1), and assayed its activity toward dipeptides. Our findings showed that NTA1 deamidated l-asparaginyl-l-valine (Asn-Val) and l-glutaminyl-glycine (Gln-Gly), but did not deamidate l-valyl-l-asparagine and l-alanyl-l-glutamine, suggesting that this deamidation activity is N-terminus specific. The specific activity toward Asn-Val and Gln-Gly were 190 ± 30 nmol min(-1) mg(-1)·protein and 136 ± 6 nmol min(-1) mg(-1)·protein. Additionally, we examined some characteristics of NTA1. Acidic dipeptide synthesis was examined by a combination of Lals and NTA1, resulting in the synthesis of 12 kinds of Asp-Xaa, including Asp-Phe, a precursor of aspartame, and 11 kinds of Glu-Xaa.

  11. Biochemical characterization of the surface-associated lipase of Staphylococcus saprophyticus.

    PubMed

    Sakinç, Türkân; Kleine, Britta; Gatermann, Sören G

    2007-09-01

    Staphylococcus saprophyticus, an important cause of urinary tract infections, produces a surface-associated lipase, Ssp. In contrast to other lipases, Ssp is a protein that is present in high amounts on the surface of the bacteria and it was shown that it is a true lipase. Characterization of S. saprophyticus lipase (Ssp) showed that it is more similar to Staphylococcus aureus lipase and Staphylococcus epidermidis lipase than to Staphylococcus hyicus lipase and Staphylococcus simulans lipase. Ssp showed an optimum of lipolytic activity at pH 6 and lost its activity at pH>8 or pH<5. The present results show that Ssp activity is dependent on Ca(2+). Consequently, activity increased c. 10-fold in the presence of 2 mM Ca(2+). Optimal activity was reached at 30 degrees C. It was also observed that the enzymatic activity of Ssp depends strongly on the acyl chain length of the substrate molecule.

  12. Immobilizing Yarrowia lipolytica Lipase Lip2 via Improvement of Microspheres by Gelatin Modification.

    PubMed

    Xie, Rong; Cui, Caixia; Chen, Biqiang; Tan, Tianwei

    2015-10-01

    The purpose of this study was to investigate the feasibility of immobilizing Yarrowia lipolytica lipase lip2 on epoxy microspheres with or without gelatin modifications. The activity of lipase immobilized on gelatin-modified supports was twofold higher than those immobilized on native supports. There was no significant difference in the Michaelis-Menten constant (K M ) between the two immobilized lipases. However, lipase immobilized on gelatin modified supports showed an approximately fourfold higher V max than lipase immobilized on native supports. Lipase immobilization on the gelatin-modified support exhibited a significantly improved operational stability in an esterification system. After it was reused for a total of 35 batches, the ester conversion of lipase immobilized on gelatin-modified and native microspheres was 83 and 60 %, respectively. Furthermore, the immobilized lipase could be stored at 4 °C for 12 months without any loss of activity.

  13. Immobilization of active lipase B from Candida antarctica on the surface of polyhydroxyalkanoate inclusions.

    PubMed

    Jahns, Anika C; Rehm, Bernd H A

    2015-04-01

    Polyhydroxyalkanoate (PHA) beads, recombinantly produced in Escherichia coli, were functionalized to display lipase B from Candida antarctica as translational protein fusion. The respective beads were characterized in respect to protein content, functionality, long term storage capacity and re-usability. The direct fusion of the PHA synthase, PhaC, to lipase B yielded active PHA lipase beads capable of hydrolyzing glycerol tributyrate. Lipase B beads showed stable activity over several weeks and re-usability without loss of function.

  14. Angiopoietin-like protein 3 inhibits lipoprotein lipase activity through enhancing its cleavage by proprotein convertases.

    PubMed

    Liu, Jun; Afroza, Huq; Rader, Daniel J; Jin, Weijun

    2010-09-03

    Lipoprotein lipase (LPL)-mediated lipolysis of triglycerides is the first and rate-limiting step in chylomicron/very low density lipoprotein clearance at the luminal surface of the capillaries. Angiopoietin-like protein 3 (ANGPTL3) is shown to inhibit LPL activity and plays important roles in modulating lipoprotein metabolism in vivo. However, the mechanism by which it inhibits LPL activity remains poorly understood. Using cell-based analysis of the interaction between ANGPTL3, furin, proprotein convertase subtilisin/kexin type 5 (PCSK5), paired amino acid converting enzyme-4 (PACE4), and LPL, we demonstrated that the cleavage of LPL by proprotein convertases is an inactivation process, similar to that seen for endothelial lipase cleavage. At physiological concentrations and in the presence of cells, ANGPTL3 is a potent inhibitor of LPL. This action is due to the fact that ANGPTL3 can enhance LPL cleavage by endogenous furin and PACE4 but not by PCSK5. This effect is specific to LPL but not endothelial lipase. Both N- and C-terminal domains of LPL are required for ANGPTL3-enhanced cleavage, and the N-terminal domain of ANGPTL3 is sufficient to exert its effect on LPL cleavage. Moreover, ANGPTL3 enhances LPL cleavage in the presence of either heparan sulfate proteoglycans or glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1). By enhancing LPL cleavage, ANGPTL3 dissociates LPL from the cell surface, inhibiting both the catalytic and noncatalytic functions of LPL. Taken together, our data provide a molecular connection between ANGPTL3, LPL, and proprotein convertases, which may represent a rapid signal communication among different metabolically active tissues to maintain energy homeostasis. These novel findings provide a new paradigm of specific protease-substrate interaction and further improve our knowledge of LPL biology.

  15. Endothelial dysfunction in adipose triglyceride lipase deficiency

    PubMed Central

    Schrammel, Astrid; Mussbacher, Marion; Wölkart, Gerald; Stessel, Heike; Pail, Karoline; Winkler, Sarah; Schweiger, Martina; Haemmerle, Guenter; Al Zoughbi, Wael; Höfler, Gerald; Lametschwandtner, Alois; Zechner, Rudolf; Mayer, Bernd

    2014-01-01

    Systemic knockout of adipose triglyceride lipase (ATGL), the pivotal enzyme of triglyceride lipolysis, results in a murine phenotype that is characterized by progredient cardiac steatosis and severe heart failure. Since cardiac and vascular dysfunction have been closely related in numerous studies we investigated endothelium-dependent and -independent vessel function of ATGL knockout mice. Aortic relaxation studies and Langendorff perfusion experiments of isolated hearts showed that ATGL knockout mice suffer from pronounced micro- and macrovascular endothelial dysfunction. Experiments with agonists directly targeting vascular smooth muscle cells revealed the functional integrity of the smooth muscle cell layer. Loss of vascular reactivity was restored ~ 50% upon treatment of ATGL knockout mice with the PPARα agonist Wy14,643, indicating that this phenomenon is partly a consequence of impaired cardiac contractility. Biochemical analysis revealed that aortic endothelial NO synthase expression and activity were significantly reduced in ATGL deficiency. Enzyme activity was fully restored in ATGL mice treated with the PPARα agonist. Biochemical analysis of perivascular adipose tissue demonstrated that ATGL knockout mice suffer from perivascular inflammatory oxidative stress which occurs independent of cardiac dysfunction and might contribute to vascular defects. Our results reveal a hitherto unrecognized link between disturbed lipid metabolism, obesity and cardiovascular disease. PMID:24657704

  16. Crowding enhances lipase turnover rate on surface-immobilized substrates.

    PubMed

    Balevicius, Zigmas; Ignatjeva, Dalia; Niaura, Gediminas; Ignatjev, Ilja; Vaicikauskas, Viktoras; Babonas, Gintautas Jurgis; Valincius, Gintaras

    2015-07-01

    Utilizing surface-immobilized synthetic lipid substrates containing the redox-active ferrocene groups, the enzymatic activity of lipase from Thermomyces lanuginosus was measured by the cyclic voltammetry method. The activity was correlated with the surface density of the protein by the ATR-IR spectroscopy and the total internal reflection ellipsometry. It was found that the lipase turnover rate significantly increases with its surface density. Despite expected hindrance effects due to the crowding of the enzyme molecules in the near surface-saturation range of concentrations, the turnover rate was consistently higher compared with the values measured at low concentrations. The effect was explained by the change in the surface arrangement of the enzyme. In the low concentration range, lipase adsorbs onto a surface adopting a predominantly horizontal position. At high concentrations, as the surface density approaches saturation, the enzyme molecules due to crowding are forced into the predominantly vertical position, which is more favorable for the activation of the lipase through the interaction between the "hydrophobic lid" of the lipase and the hydrophobic adsorbate surface.

  17. Exploring the Conformational States and Rearrangements of Yarrowia lipolytica Lipase

    PubMed Central

    Bordes, Florence; Barbe, Sophie; Escalier, Pierre; Mourey, Lionel; André, Isabelle; Marty, Alain; Tranier, Samuel

    2010-01-01

    We report the 1.7 Å resolution crystal structure of the Lip2 lipase from Yarrowia lipolytica in its closed conformation. The Lip2 structure is highly homologous to known structures of the fungal lipase family (Thermomyces lanuginosa, Rhizopus niveus, and Rhizomucor miehei lipases). However, it also presents some unique features that are described and discussed here in detail. Structural differences, in particular in the conformation adopted by the so-called lid subdomain, suggest that the opening mechanism of Lip2 may differ from that of other fungal lipases. Because the catalytic activity of lipases is strongly dependent on structural rearrangement of this mobile subdomain, we focused on elucidating the molecular mechanism of lid motion. Using the x-ray structure of Lip2, we carried out extensive molecular-dynamics simulations in explicit solvent environments (water and water/octane interface) to characterize the major structural rearrangements that the lid undergoes under the influence of solvent or upon substrate binding. Overall, our results suggest a two-step opening mechanism that gives rise first to a semi-open conformation upon adsorption of the protein at the water/organic solvent interface, followed by a further opening of the lid upon substrate binding. PMID:20923657

  18. Influence of cosolvents on the hydrophobic surface immobilization topography of Candida antarctica lipase B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of cosolvents and co-solutes during the immobilization of lipases on hydrophobic supports may influence the extent of lipase immobilization and the long-term catalytic stability of the biocatalyst. Candida antarctica B lipase immobilization was examined on a hydrophobic surface, i.e., ...

  19. Biodesel Production from Pseudomonas Fluorescens Lp1 Lipase Immobilized on Amino-silane Modified Super Paramagnetic Fe3O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kanimozhi, S.; Perinbam, K.

    2013-04-01

    An extracellular lipase from Pseudomonas fluorescens Lp1 isolated from oil contaminated soil was immobilized onto amino silane modified superparamagnetic Fe3O4 nanoparticles. The magnetic nanoparticles, magnetite was synthesized chemically by co-precipitation and characterized by Scanning Electron Microscopy (SEM), Fourier Transformed Infrared Spectroscopy (FT-IR) and Powder X-ray diffraction studies (XRD). The structure of the synthesized magnetic nanoparticles was uniform, spherical and the size was determined around 31 nm by powder XRD. The biodiesel production mixture was prepared by addition of waste cooking oil, lipase immobilized magnetite and methanol. The transesterified products were analyzed by Gas Liquid chromatography-Mass spectroscopy (GC-MS). The methyl esters such as Oxiraneundecanoic acid, 3-pentyl-methyl ester, Hexadecanoic acid, methyl ester and 10-Octadecenoic acid, methyl ester were obtained. The study experimentally proved the use of amino silane modified superparamagnetic Fe3O4 nanoparticles in biodiesel production from waste cooking oil.

  20. Generation of a Functionally Distinct Rhizopus oryzae Lipase through Protein Folding Memory.

    PubMed

    Satomura, Atsushi; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2015-01-01

    Rhizopus oryzae lipase (ROL) has a propeptide at its N-terminus that functions as an intramolecular chaperone and facilitates the folding of mature ROL (mROL). In this study, we successfully generated a functionally distinct imprinted mROL (mROLimp) through protein folding memory using a mutated propeptide. The mutated propeptide left its structural memory on mROL and produced mROLimp that exhibited different substrate specificities compared with mROLWT (prepared from the wild type propeptide), although the amino acid sequences of both mROLs were the same. mROLimp showed a preference for substrates with medium chain-length acyl groups and, noticeably, recognized a peptidase-specific substrate. In addition, ROLimp was more stable than mROLWT. These results strongly suggest that proteins with identical amino acid sequences can fold into different conformations and that mutations in intramolecular chaperones can dynamically induce changes in enzymatic activity.

  1. Enzymatic biodiesel synthesis from yeast oil using immobilized recombinant Rhizopus oryzae lipase.

    PubMed

    Duarte, Susan Hartwig; Hernández, Gonzalo Lázaro del Peso; Canet, Albert; Benaiges, Maria Dolors; Maugeri, Francisco; Valero, Francisco

    2015-05-01

    The recombinant Rhizopus oryzae lipase (1-3 positional selective), immobilized on Relizyme OD403, has been applied to the production of biodiesel using single cell oil from Candida sp. LEB-M3 growing on glycerol from biodiesel process. The composition of microbial oil is quite similar in terms of saponifiable lipids than olive oil, although with a higher amount of saturated fatty acids. The reaction was carried out in a solvent system, and n-hexane showed the best performance in terms of yield and easy recovery. The strategy selected for acyl acceptor addition was a stepwise methanol addition using crude and neutralized single cell oil, olive oil and oleic acid as substrates. A FAMEs yield of 40.6% was obtained with microbial oils lower than olive oil 54.3%. Finally in terms of stability, only a lost about 30% after 6 reutilizations were achieved.

  2. QSAR study and the hydrolysis activity prediction of three alkaline lipases from different lipase-producing microorganisms.

    PubMed

    Wang, Haikuan; Wang, Xiaojie; Li, Xiaolu; Zhang, Yehong; Dai, Yujie; Guo, Changlu; Zheng, Heng

    2012-09-28

    The hydrolysis activities of three alkaline lipases, L-A1, L-A2 and L-A3 secreted by different lipase-producing microorganisms isolated from the Bay of Bohai, P. R. China were characterized with 16 kinds of esters. It was found that all the lipases have the ability to catalyze the hydrolysis of the glycerides, methyl esters, ethyl esters, especially for triglycerides, which shows that they have broad substrate spectra, and this property is very important for them to be used in detergent industry. Three QSAR models were built for L-A1, L-A2 and L-A3 respectively with GFA using Discovery studio 2.1. The models equations 1, 2 and 3 can explain 95.80%, 97.45% and 97.09% of the variances (R(2)(adj)) respectively while they could predict 95.44%, 89.61% and 93.41% of the variances (R(2)(cv)) respectively. With these models the hydrolysis activities of these lipases to mixed esters were predicted and the result showed that the predicted values are in good agreement with the measured values, which indicates that this method can be used as a simple tool to predict the lipase activities for single or mixed esters.

  3. Purification and partial characterization of nonspecific lipase from rat pancreas.

    PubMed

    Albron, P W; Corbett, B J; Latimer, A D

    1976-03-26

    Nonspecific lipase (also referred to as micelle lipase and secondary ester hydrolase) has been purified to electrophoretic homogeneity starting from acetone powder of rat pancreas. The purified enzyme is found to have a molecular weight (gel filtration) of 64 000 +/- 2000, and an equivalent weight (titration with E-600) of 65 000. Nonspecific lipase is seen to be very sensitive to inhibition by organophosphates but resistant to quinine. Evidence for the presence of sulfhydryl and imidazole groups essential for activity is presented, and some observations on substrate specificity are made. The purified enzyme appears to lack phosphate groups and lipids, and is unstable under conditions of low ionic strength and/or exposure to 2-mercaptoethanol.

  4. Lipoprotein metabolism and lipoprotein lipase in severe cystic acne.

    PubMed

    Pigatto, P; Altomare, G F; Negri, M; Finzi, A F; Vigotti, G; Vergani, C

    1985-01-01

    In severe cystic acne we found low levels of high density lipoprotein-cholesterol (HDL-C) and apolipoprotein A (Apo-A) in the presence of normal total lipids. In a larger number of patients, we always observed significantly lower levels of HDL-C and Apo-A than in either age-matched controls or subjects with acne vulgaris. Since lipoprotein lipase is one major determinant of HDL concentration, we assayed the lipase activity in liver and extra-hepatic tissues by the method of Krauss et al. There was highly significant less total and hepatic lipase activity than in age-matched controls. HDL distribution was examined by zonal ultracentrifugation and a decrease in the HDL2 subclass was discovered. Since HDL are inversely correlated to atherosclerosis, cystic acne is one risk factor for atherosclerosis. The linkage between low HDL levels and severe cystic acne should be further investigated.

  5. Lactobacillus sps. lipase mediated poly (ε-caprolactone) degradation.

    PubMed

    Khan, Imran; Ray Dutta, Jayati; Ganesan, Ramakrishnan

    2017-02-01

    Polymer degradation through lipase appears to be an enthralling alternative to bulk chemical routes. Poly (ε-caprolactone) (PCL) is an artificial polyester that can be degraded by microbes and enzymes like lipases and esterases. The environmental degradation of PCL is dependent on the activity of bacteria that characterization techniques such as thermogravimetric analysis, differential thermal are widely present in the ecosystem. In this study, three different lipases derived from Lactobacillus brevis, Lactobacillus plantarum and their co-culture have been utilized to explore their efficiency towards PCL enzymatic degradation. The effect of parameters such as enzyme loading and degradation time has been explored to understand the efficiency of the enzymes used in this study. Various analysis, scanning electron microscopy and Fourier transform infrared spectroscopy have been employed to study the enzymatic degradation and its possible mechanistic insight.

  6. [Structure and Activity of Fungal Lipases in Bile Salt Solutions].

    PubMed

    Bogdanova, L R; Bakirova, D R; Valiullina, Yu A; Idiyatullin, B Z; Faizullin, D A; Zueva, O S; Zuev, Yu F

    2016-01-01

    The changes in structure and catalytic properties of fungal lipases (Candida rugosa, Rhizomucor miehei, Mucor javanicus) were investigated in micellar solutions of bile salts that differ in hydrophilic-lypophilic balance and reaction medium properties. The methods of circular dichroism and tryptophan fluorescence were applied to estimate the changes in peptide structure within complexes with bile salt micelles. Bile salts do not exert a significant influence on the structure of the enzymes under study: in Rh. miehei and M. javanicus lipases the alpha helix content slightly decreased, the influence of bile salts on the C. rugosa structure was not revealed. Despite negligible structural modifications in the enzymes, in bile salt solutions a considerable change in their catalytic properties was observed: an abrupt decrease in catalytic effectiveness. Substrate-bile salts micelles complex formation was demonstrated by the NMR self-diffusion method. The model of a regulation of fungal lipase activity was proposed.

  7. The immobilization of lipase on PVDF-co-HFP membrane

    NASA Astrophysics Data System (ADS)

    Kayhan, Naciye; Eyüpoǧlu, Volkan; Adem, Şevki

    2016-04-01

    Lipase is an enzyme having a lot of different industrial applications such as biodiesel production, biopolymer synthesis, enantiopure pharmaceutical productions, agrochemicals, etc. Its immobilized form on different substances is more conventional and useful than its free form. Supporting material was prepared using PVDF-co-HFP in laboratory conditions and attached 1,4-diaminobutane (DA) and epichlorohydrin (EPI) ligands to the membrane to immobilize lipase enzyme. The immobilization conditions such as enzyme amount, pH, the concentration of salt, thermal stability and activity were stabilized for our experimental setup. Then, biochemical characterizations were performed on immobilized lipase PVDF-co-HFP regarding optimal pH activity, temperature and thermal stability. Also, the desorption ratios of immobilized enzyme in two different pathway were investigated to confirm immobilization stability for 24 hours.

  8. Integrated lipase production and in situ biodiesel synthesis in a recombinant Pichia pastoris yeast: an efficient dual biocatalytic system composed of cell free enzymes and whole cell catalysts

    PubMed Central

    2014-01-01

    Background Lipase-catalyzed biotransformation of acylglycerides or fatty acids into biodiesel via immobilized enzymes or whole cell catalysts has been considered as one of the most promising methods to produce renewable and environmentally friendly alternative liquid fuels, thus being extensively studied so far. In all previously pursued approaches, however, lipase enzymes are prepared in an independent process separated from enzymatic biodiesel production, which would unavoidably increase the cost and energy consumption during industrial manufacture of this cost-sensitive energy product. Therefore, there is an urgent need to develop novel cost-effective biocatalysts and biocatalytic processes with genuine industrial feasibility. Result Inspired by the consolidated bioprocessing of lignocellulose to generate bioethanol, an integrated process with coupled lipase production and in situ biodiesel synthesis in a recombinant P. pastoris yeast was developed in this study. The novel and efficient dual biocatalytic system based on Thermomyces lanuginosus lipase took advantage of both cell free enzymes and whole cell catalysts. The extracellular and intracellular lipases of growing yeast cells were simultaneously utilized to produce biodiesel from waste cooking oils in situ and in one pot. This integrated system effectively achieved 58% and 72% biodiesel yield via concurrent esterified-transesterified methanolysis and stepwise hydrolysis-esterification at 3:1 molar ratio between methanol and waste cooking oils, respectively. Further increasing the molar ratio of methanol to waste cooking oils to 6:1 led to an 87% biodiesel yield using the stepwise strategy. Both water tolerance and methanol tolerance of this novel system were found to be significantly improved compared to previous non-integrated biodiesel production processes using separately prepared immobilized enzymes or whole cell catalysts. Conclusion We have proposed a new concept of integrated biodiesel production

  9. A comparison of currently used serum lipase and amylase procedures in the serial detection of enzyme elevations in acute pancreatitis.

    PubMed

    Hathaway, J A; Kitt, D; Wingate, B

    1983-10-14

    Twenty-eight patients having acute pancreatitis were followed during convalescence with serum amylase and lipase determinations. Starch and p-nitrophenyl-oligosaccharide substrates were used for amylase. Dimercaptotributyrate and triolein were employed for lipase. The extreme sensitivity of the lipase procedure using the tributyrate detected a persistent elevation of lipase when other parameters of measurement had returned to normal.

  10. Comparison of immunoreactive serum trypsinogen and lipase in Cystic Fibrosis

    SciTech Connect

    Lloyd-Still, J.D.; Weiss, S.; Wessel, H.; Fong, L.; Conway, J.J.

    1984-01-01

    The incidence of Cystic Fibrosis (CF) is 1 in 2,000. Early detection and treatment of CF may necessitate newborn screening with a reliable and cost-effective test. Serum immunoreactive trypsinogen (IRT) an enzyme produced by the pancreas, is detectable by radioimmunoassay (RIA) techniques. Recently, it has been shown that IRT is elevated in CF infants for the first few months of life and levels become subnormal as pancreatic insufficiency progresses. Other enzymes produced by the pancreas, such as lipase, are also elevated during this time. The author's earlier work confirmed previous reports of elevated IRT levels in CF infants. The development of a new RIA for lipase (nuclipase) has enabled comparison of these 2 pancreatic enzymes in C.F. Serum IRT and lipase determinations were performed on 2 groups of CF patients; infants under 1 year of age, and children between 1 and 18 years of age. Control populations of the same age groups were included. The results showed that both trypsin (161 +- 92 ng/ml, range 20 to 400) and lipase (167 +- 151 ng/ml, range 29 to 500) are elevated in CF in the majority of infants. Control infants had values of IRT ranging from 20 to 29.5 ng/ml and lipase values ranging from 23 to 34 ng/ml. IRT becomes subnormal in most CF patients by 8 years of age as pancreatic function insufficiency increases. Lipase levels and IRT levels correlate well in infancy, but IRT is a more sensitive indicator of pancreatic insufficiency in older patients with CF.

  11. Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other biodegradable plastics.

    PubMed

    Masaki, Kazuo; Kamini, Numbi Ramudu; Ikeda, Hiroko; Iefuji, Haruyuki

    2005-11-01

    A purified lipase from the yeast Cryptococcus sp. strain S-2 exhibited remote homology to proteins belonging to the cutinase family rather than to lipases. This enzyme could effectively degrade the high-molecular-weight compound polylactic acid, as well as other biodegradable plastics, including polybutylene succinate, poly (epsilon-caprolactone), and poly(3-hydroxybutyrate).

  12. Lipase immobilization on differently functionalized vinyl-based amphiphilic polymers: influence of phase segregation on the enzyme hydrolytic activity.

    PubMed

    Bellusci, Mariangela; Francolini, Iolanda; Martinelli, Andrea; D'Ilario, Lucio; Piozzi, Antonella

    2012-03-12

    Microbial lipase from Candida rugosa was immobilized by physical adsorption onto an ethylene-vinyl alcohol polymer (EVAL) functionalized with acyl chlorides. To evaluate the influence of the reagent chain-length on the amount and activity of immobilized lipase, three differently long aliphatic fatty acids were employed (C8, C12, C18), obtaining EVAL functionalization degrees ranging from 5% to 65%. The enzyme-polymer affinity increased with both the length of the alkyl chain and the matrix hydrophobicity. In particular, the esterified polymers showed a tendency to give segregated hydrophilic and hydrophobic domains. It was observed the formation of an enzyme multilayer at both low and high protein concentrations. Desorption experiments showed that Candida rugosa lipase may be adsorbed in a closed form on the polymer hydrophilic domains and in an open, active structure on the hydrophobic ones. The best results were found for the EVAL-C18 13% matrix that showed hyperactivation with both the soluble and unsoluble substrate after enzyme desorption. In addition, this supported biocatalyst retained its activity for repetitive cycles.

  13. Lipase-catalyzed (trans)esterification of 5-hydroxy- methylfurfural and separation from HMF esters using deep-eutectic solvents.

    PubMed

    Krystof, Monika; Pérez-Sánchez, María; Domínguez de María, Pablo

    2013-04-01

    5-Hydroxymethylfurfural (HMF) is a valuable biomass-derived building block. Among possible HMF valorization products, a broad range of HMF esters can be synthesized. These HMF esters have found some promising applications, such as monomers, fuels, additives, surfactants, and fungicides, and thus several catalytic approaches for HMF (trans)esterifications have been reported. The intrinsic reactivity of HMF is challenging, forcing the use of mild reaction conditions to avoid by-product formation. This paper explores the lipase-catalyzed (trans)esterification of HMF with different acyl donors (carboxylic acids and methyl- and ethyl esters) mostly in solvent-free conditions. The results demonstrate that lipases may be promising alternatives for the synthesis of HMF esters-with high productivities and reactions at high substrate loadings-provided that robust systems for lipase immobilization are applied to assure an adequate reusability of the enzymes. Once (trans)esterifications have been conducted, the separation of unreacted HMF and HMF esters is performed by using deep-eutectic solvents (DES) as separation agents. DES are able to dissolve hydrogen-bond donors (e.g., HMF), whereas non-hydrogen-bond donors (in this case HMF esters) form a second phase. By using this approach, high ester purities (>99 %) and efficiencies (up to >90 % HMF ester recovery) in separations were obtained by using choline chloride-based DES.

  14. Hydrolysis of triacetin catalyzed by immobilized lipases: effect of the immobilization protocol and experimental conditions on diacetin yield.

    PubMed

    Hernandez, Karel; Garcia-Verdugo, Eduardo; Porcar, Raul; Fernandez-Lafuente, Roberto

    2011-05-06

    The effect of the immobilization protocol and some experimental conditions (pH value and presence of acetonitrile) on the regioselective hydrolysis of triacetin to diacetin catalyzed by lipases has been studied. Lipase B from Candida antarctica (CALB) and lipase from Rhizomucor miehei (RML) were immobilized on Sepabeads (commercial available macroporous acrylic supports) activated with glutaraldehyde (covalent immobilization) or octadecyl groups (adsorption via interfacial activation). All the biocatalysts accumulated diacetin. Covalently immobilized RML was more active towards rac-methyl mandelate than the adsorbed RML. However, this covalent RML preparation presented the lowest activity towards triacetin. For this reason, this preparation was discarded as biocatalyst for this reaction. At pH 7, acyl migration occurred giving a mixture of 1,2 and 1,3 diacetin, but at pH 5.5, only 1,2 diacetin was produced. Yields were improved at acidic pH values and in the presence of 20% acetonitrile (to over 95%). RML immobilized on octadecyl Sepabeads was proposed as optimal preparation, mainly due to its higher specific activity. Each enzyme preparation presented very different properties. Moreover, changes in the reaction conditions affected the various immobilized enzymes in a different way.

  15. Application of a chitosan-immobilized Talaromyces thermophilus lipase to a batch biodiesel production from waste frying oils.

    PubMed

    Romdhane, Ines Belhaj-Ben; Romdhane, Zamen Ben; Bouzid, Maha; Gargouri, Ali; Belghith, Hafedh

    2013-12-01

    Waste frying oil, which not only harms people's health but also causes environmental pollution, can be a good alternative to partially substitute petroleum diesel through transesterification reaction. This oil contained 8.8 % of free fatty acids, which cause a problem in a base-catalyzed process. In this study, synthesis of biodiesel was efficiently catalyzed by the covalently immobilized Talaromyces thermophilus lipase and allowed bioconversion yield up to 92 % after 24 h of reaction time. The optimal molar ratio was four to six parts of methanol to one part of oil with a biocatalyst loaded of 25 wt.% of oil. Further, experiments revealed that T. thermophilus lipase, immobilized by a multipoint covalent liaison onto activated chitosan via a short spacer (glutaraldehyde), was sufficiently tolerant to methanol. In fact, using the stepwise addition of methanol, no significant difference was observed from the one-step whole addition at the start of reaction. The batch biodiesel synthesis was performed in a fixed bed reactor with a lipase loaded of 10 g. The bioconversion yield of 98 % was attained after a 5-h reaction time. The bioreactor was operated successfully for almost 150 h without any changes in the initial conversion yield. Most of the chemical and physical properties of the produced biodiesel meet the European and USA standard specifications of biodiesel fuels.

  16. Optimisation of flavour ester biosynthesis in an aqueous system of coconut cream and fusel oil catalysed by lipase.

    PubMed

    Sun, Jingcan; Yu, Bin; Curran, Philip; Liu, Shao-Quan

    2012-12-15

    Coconut cream and fusel oil, two low-cost natural substances, were used as starting materials for the biosynthesis of flavour-active octanoic acid esters (ethyl-, butyl-, isobutyl- and (iso)amyl octanoate) using lipase Palatase as the biocatalyst. The Taguchi design method was used for the first time to optimize the biosynthesis of esters by a lipase in an aqueous system of coconut cream and fusel oil. Temperature, time and enzyme amount were found to be statistically significant factors and the optimal conditions were determined to be as follows: temperature 30°C, fusel oil concentration 9% (v/w), reaction time 24h, pH 6.2 and enzyme amount 0.26 g. Under the optimised conditions, a yield of 14.25mg/g (based on cream weight) and signal-to-noise (S/N) ratio of 23.07 dB were obtained. The results indicate that the Taguchi design method was an efficient and systematic approach to the optimisation of lipase-catalysed biological processes.

  17. Fluorescence spectroscopic analysis of the structure and dynamics of Bacillus subtilis lipase A governing its activity profile under alkaline conditions.

    PubMed

    Kübler, Daniel; Ingenbosch, Kim N; Bergmann, Anna; Weidmann, Monika; Hoffmann-Jacobsen, Kerstin

    2015-12-01

    Because of their vast diversity of substrate specificity and reaction conditions, lipases are versatile materials for biocatalysis. Lipase A from Bacillus subtilis (BSLA) is the smallest lipase yet discovered. It has the typical α/β hydrolase fold but lacks a lid covering the substrate cleft. In this study, the pH-dependence of the activity, stability, structure, and dynamics of BSLA was investigated by fluorescence spectroscopy. By use of a fluorogenic substrate it was revealed that the optimum pH for BSLA activity is 8.5 whereas thermodynamic and kinetic stability are maximum at pH 10. The origin of this behavior was clarified by investigation of ANS (8-anilino-1-naphthalenesulfonic acid) binding and fluorescence quenching of the two single tryptophan mutants W31F and W42F. Variations in segmental dynamics were investigated by use of time-resolved fluorescence anisotropy. This analysis showed that the activity maximum is governed by high surface hydrophobicity and high segmental mobility of surface loops whereas the stability optimum is a result of low segmental mobility and surface hydrophobicity.

  18. Lipase-catalyzed biodiesel production from waste activated bleaching earth as raw material in a pilot plant.

    PubMed

    Park, Enoch Y; Sato, Masayasu; Kojima, Seiji

    2008-05-01

    The production of fatty acid methyl esters (FAMEs) from waste activated bleaching earth (ABE) discarded by the crude oil refining industry using lipase from Candida cylindracea was investigated in a 50-L pilot plant. Diesel oil or kerosene was used as an organic solvent for the transesterification of triglycerides embedded in the waste ABE. When 1% (w/w) lipase was added to waste ABE, the FAME content reached 97% (w/w) after reaction for 12 h at 25 degrees C with an agitation rate of 30 rpm. The FAME production rate was strongly dependent upon the amount of enzyme added. Mixtures of FAME and diesel oil at ratios of 45:55 (BDF-45) and 35:65 (BDF-35) were assessed and compared with the European specifications for biodiesel as automotive diesel fuel, as defined by pr EN 14214. The biodiesel quality of BDF-45 met the EN 14214 standard. BDF-45 was used as generator fuel, and the exhaust emissions were compared with those of diesel oil. The CO and SO2 contents were reduced, but nitrogen oxide emission increased by 10%. This is the first report of a pilot plant study of lipase-catalyzed FAME production using waste ABE as a raw material. This result demonstrates a promising reutilization method for the production of FAME from industrial waste resources containing vegetable oils for use as a biodiesel fuel.

  19. JCL Roundtable: Hypertriglyceridemia due to defects in lipoprotein lipase function.

    PubMed

    Brown, W Virgil; Goldberg, Ira J; Young, Stephen G

    2015-01-01

    In this Roundtable, our intent is to discuss those rare genetic disorders that impair the function of lipoprotein lipase. These cause severe hypertriglyceridemia that appears in early childhood with Mendelian inheritance and usually with full penetrance in a recessive pattern. Dr Ira Goldberg from New York University School of Medicine and Dr Stephen Young from the University of California, Los Angeles have agreed to answer my questions about this topic. Both have done fundamental work in recent years that has markedly altered our views on lipoprotein lipase function. I am going to start by asking them to give us a brief history of this enzyme system as a clinical entity.

  20. Nanostructured Montmorillonite Clay for Controlling the Lipase-Mediated Digestion of Medium Chain Triglycerides.

    PubMed

    Dening, Tahnee J; Joyce, Paul; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-12-07

    Biocompatible lipid hybrid particles composed of montmorillonite and medium chain triglycerides were engineered for the first time by spray drying oil-in-water emulsions stabilized by montmorillonite platelets to form montmorillonite-lipid hybrid (MLH) microparticles containing up to 75% w/w lipid. In vitro lipolysis studies under simulated intestinal conditions indicated that the specific porous nanoarchitecture and surface chemistry of MLH particles significantly increased the rate (>10-fold) and extent of lipase-mediated digestion compared to that of coarse and homogenized submicrometer triglyceride emulsions. Proton nuclear magnetic resonance studies verified the rapid and enhanced production of fatty acids for MLH particles; these are electrostatically repelled by the negatively charged montmorillonite platelet faces and avoid the "interfacial poisoning" caused by incomplete digestion that retards lipid droplet digestion. MLH particles are a novel biomaterial and encapsulation system that optimize lipase enzyme efficiency and have excellent potential as a smart delivery system for lipophilic biomolecules owing to their exceptional physicochemical and biologically active properties. These particles can be readily fabricated with varying lipid loads and thus may be tailored to optimize the solubilization of specific bioactive molecules requiring reformulation.

  1. Purification, physico-chemical and kinetic properties of the deglycosylated Talaromyces thermophilus lipase.

    PubMed

    Romdhan, Ines belhaj-ben; Fendri, Ahmed; Frikha, Fakher; Gargouri, Ali; Belghith, Hafedh

    2012-12-01

    The Talaromyces thermophilus strain produces only one form of lipase called TTLI. When the culture medium was concentrated and stored at 4°C during a few days, we noticed the appearance of a second short form of lipase named TTLII. This second form was purified to homogeneity using gel filtration and FPLC-Anion exchange chromatography. The NH(2)-terminal 24 amino acid residues were found to be identical to those of TTLI. The treatment of the TTLI with endoglycosidase H decreased its apparent molecular weight from 39 to 30kDa which corresponds to the molecular weight of TTLII. This difference was mostly attributed to the N-glycosylation of the enzyme. In fact, the glycan chain content and concavaline A-Sepharose affinity column confirmed that the TTLII was completely deglycosylated. Compared to TTLI, the TTLII activity was completely decreased over a broad range of temperature and pH. Furthermore, the deglycosylation of the enzyme reduced its specific activity by 50% toward different substrates; strongly suggest that the N-glycans are determinants for optimal catalytic activity and thermal stability of this enzyme. Covalent immobilization of the enzymes on supports suggests the involvement of the glycan moiety in enzyme-polymer interactions. In the case of TTLI the glycan moiety can constitute an extra site for the covalent linkage of the enzyme on the carrier.

  2. [Acquired partial lipodystrophy. Insulin resistance, hepatic lipase activity and small and dense LDL particles].

    PubMed

    Paglione, A M; Ferrari, N; Berg, G; Frechtel, G; Taverna, M; Fasulo, V; Lopez, G I; Gomez, R M; Bruno, O; Ruiz, M; Wikinski, R L

    2001-01-01

    Partial lipodystrophy (PLD) is an infrequent condition characterized by symmetric loss of subcutaneous adipose tissue in the upper or lower part of the body, although occasionally it affects only the extremities. In all cases it appears along with acantosis nigricans (AN), insulin resistance and impairment in the metabolism of lipids and carbohydrates. The case depicted pertains to a 49 year old female with no family history involving loss of adipose tissue in face and upper body. No fat in lower part of body was observed. The patient showed facial thinning at age 8, AN at 11 and gestational diabetes during her fourth pregnancy at 33. At present, the patient presents severe hyperglycemia and hyperinsulinemia with a marked insulin resistance. Type IV hyperlipoproteinemia (OMS), declined C-HDL and Apo A1 and low C-LDL but with a high proportion of small and dense LDL particles were present. Non esterified fatty acids were high. Lipoprotein lipase and hepatic lipase activities are in the lower limit and increased respectively. Fraction C3 of the complement was diminished. No mutations were observed either in codons 170, 809 and 972 of the IRS-1 receptor or in codon 276 of the adrenergic beta 2 gene.

  3. Synthesis and characterization of branched polymers from lipase-catalyzed trimethylolpropane copolymerizations.

    PubMed

    Kulshrestha, Ankur S; Gao, Wei; Fu, Hongyong; Gross, Richard A

    2007-06-01

    Lipase-catalyzed terpolymerizations were performed with the monomers trimethylolpropane (B3), 1,8-octanediol (B2), and adipic acid (A2). Polymerizations were performed in bulk, at 70 degrees C, for 42 h, using immobilized lipase B from Candida antartica (Novozyme-435) as a catalyst. To determine the substitution pattern of trimethylolpropane (TMP) in copolymers, model compounds with variable degrees of acetylation were synthesized. Inverse-gated 13C NMR spectra were recorded to first determine the chemical shift positions for mono-, di-, and trisubstituted TMP units and, subsequently, to determine substitution of TMP units along chains. Variation of TMP in the monomer feed gave copolymers with degrees of branching (DB) from 20% to 67%. In one example, a hyperbranched copolyester with 53 mol % TMP adipate units was formed in 80% yield, with Mw 14 100 (relative to polystyrene standards), Mw/Mn 5.3, and DB 36%. Thermal and crystalline properties of the copolyesters were studied by thermogravimetric analysis and differential scanning calorimetry.

  4. Cloning, expression and characterization of a lipase gene from marine bacterium Pseudoalteromonas lipolytica SCSIO 04301

    NASA Astrophysics Data System (ADS)

    Su, Hongfei; Mai, Zhimao; Zhang, Si

    2016-12-01

    A lipase gene, lip1233, isolated from Pseudoalteromonas lipolytica SCSIO 04301, was cloned and expressed in E. coli. The enzyme comprised 810 amino acid residues with a deduced molecular weight of 80 kDa. Lip1233 was grouped into the lipase family X because it contained a highly conserved motif GHSLG. The recombinant enzyme was purified with Ni-NTA affinity chromatography. The optimal temperature and pH value of Lip1233 were 45°C and 8.0, respectively. It retained more than 70% of original activity after being incubated in pH ranging from 6.0 to 9.5 for 30 min. It was stable when the temperature was below 45°C, but was unstable when the temperature was above 55°C. Most metal ions tested had no significant effect on the activity of Lip1233. Lip1233 remained more than original activity in some organic solvents at the concentration of 30% (v/v). It retained more than 30% activity after incubated in pure organic solvents for 12 h, while in hexane the activity was nearly 100%. Additionally, Lip1233 exhibited typical halotolerant characteristic as it was active under 4M NaCl. Lip1233 powder could catalyze efficiently the synthesis of fructose esters in hexane at 40°C. These characteristics demonstrated that Lip1233 is applicable to elaborate food processing and organic synthesis.

  5. Modifications of the C terminus Affect Functionality and Stability of Yeast Triacylglycerol Lipase Tgl3p*

    PubMed Central

    Koch, Barbara; Schmidt, Claudia; Ploier, Birgit; Daum, Günther

    2014-01-01

    Lipid droplets are specific organelles for the storage of triacylglycerols and steryl esters. They are surrounded by a phospholipid monolayer with a small but specific set of proteins embedded. Assembly and insertion of proteins into this surface membrane is an intriguing question of lipid droplet biology. To address this question we studied the topology of Tgl3p, the major triacylglycerol lipase of the yeast Saccharomyces cerevisiae, on lipid droplets. Employing the method of limited proteolysis of lipid droplet surface proteins, we found that the C terminus of Tgl3p faces the inside of the organelle, whereas the N terminus is exposed at the cytosolic side of lipid droplets. Detailed analysis of the C terminus revealed a stretch of seven amino acids that are critical for protein stability and functionality. The negative charge of two aspartate residues within this stretch is crucial for lipase activity of Tgl3p. A portion of Tgl3p, which is located to the endoplasmic reticulum, exhibits a different topology. In the phospholipid bilayer of the endoplasmic reticulum the C terminus faces the cytosol, which results in instability of the protein. Thus, the topology of Tgl3p is important for its function and strongly dependent on the membrane environment. PMID:24847060

  6. Importance of the lid and cap domains for the catalytic activity of gastric lipases.

    PubMed

    Miled, N; Bussetta, C; De caro, A; Rivière, M; Berti, L; Canaan, S

    2003-09-01

    Human gastric lipase (HGL) is an enzyme secreted by the stomach, which is stable and active despite the highly acidic environment. It has been clearly established that this enzyme is responsible for 30% of the fat digestion processes occurring in human. This globular protein belongs to the alpha/beta hydrolase fold family and its catalytic serine is deeply buried under a domain called the extrusion domain, which is composed of a 'cap' domain and a segment consisting of 58 residues, which can be defined as a lid. The exact roles played by the cap and the lid domains during the catalytic step have not yet been elucidated. We have recently solved the crystal structure of the open form of the dog gastric lipase in complex with a covalent inhibitor. The detergent molecule and the inhibitor were mimicking a triglyceride substrate that would interact with residues belonging to both the cap and the lid domains. In this study, we have investigated the role of the cap and the lid domains, using site-directed mutagenesis procedures. We have produced truncated mutants lacking the lid and the cap. After expressing these mutants and purifying them, their activity was found to have decreased drastically in comparison with the wild type HGL. The lid and the cap domains play an important role in the catalytic reaction mechanism. Based on these results and the structural data (open form of DGL), we have pointed out the cap and the lid residues involved in the binding with the lipidic substrate.

  7. Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: increased thermostability and altered acyl chain length specificity.

    PubMed

    Yu, Xiao-Wei; Tan, Nian-Jiang; Xiao, Rong; Xu, Yan

    2012-01-01

    The key to enzyme function is the maintenance of an appropriate balance between molecular stability and structural flexibility. The lid domain which is very important for "interfacial activation" is the most flexible part in the lipase structure. In this work, rational design was applied to explore the relationship between lid rigidity and lipase activity by introducing a disulfide bond in the hinge region of the lid, in the hope of improving the thermostability of R. chinensis lipase through stabilization of the lid domain without interfering with its catalytic performance. A disulfide bridge between F95C and F214C was introduced into the lipase from R. chinensis in the hinge region of the lid according to the prediction of the "Disulfide by Design" algorithm. The disulfide variant showed substantially improved thermostability with an eleven-fold increase in the t(1/2) value at 60°C and a 7°C increase of T(m) compared with the parent enzyme, probably contributed by the stabilization of the geometric structure of the lid region. The additional disulfide bond did not interfere with the catalytic rate (k(cat)) and the catalytic efficiency towards the short-chain fatty acid substrate, however, the catalytic efficiency of the disulfide variant towards pNPP decreased by 1.5-fold probably due to the block of the hydrophobic substrate channel by the disulfide bond. Furthermore, in the synthesis of fatty acid methyl esters, the maximum conversion rate by RCLCYS reached 95% which was 9% higher than that by RCL. This is the first report on improving the thermostability of the lipase from R. chinensis by introduction of a disulfide bond in the lid hinge region without compromising the catalytic rate.

  8. A calcium-gated lid and a large beta-roll sandwich are revealed by the crystal structure of extracellular lipase from Serratia marcescens.

    PubMed

    Meier, Reto; Drepper, Thomas; Svensson, Vera; Jaeger, Karl-Erich; Baumann, Ulrich

    2007-10-26

    Lipase LipA from Serratia marcescens is a 613-amino acid enzyme belonging to family I.3 of lipolytic enzymes that has an important biotechnological application in the production of a chiral precursor for the coronary vasodilator diltiazem. Like other family I.3 lipases, LipA is secreted by Gram-negative bacteria via a type I secretion system and possesses 13 copies of a calcium binding tandem repeat motif, GGXGXDXUX (U, hydrophobic amino acids), in the C-terminal part of the polypeptide chain. The 1.8-A crystal structure of LipA reveals a close relation to eukaryotic lipases, whereas family I.1 and I.2 enzymes appear to be more distantly related. Interestingly, the structure shows for the N-terminal lipase domain a variation on the canonical alpha/beta hydrolase fold in an open conformation, where the putative lid helix is anchored by a Ca(2+) ion essential for activity. Another novel feature observed in this lipase structure is the presence of a helical hairpin additional to the putative lid helix that exposes a hydrophobic surface to the aqueous medium and might function as an additional lid. The tandem repeats form two separated parallel beta-roll domains that pack tightly against each other. Variations of the consensus sequence of the tandem repeats within the second beta-roll result in an asymmetric Ca(2+) binding on only one side of the roll. The analysis of the properties of the beta-roll domains suggests an intramolecular chaperone function.

  9. Selective Enrichment of Omega-3 Fatty Acids in Oils by Phospholipase A1.

    PubMed

    Ranjan Moharana, Tushar; Byreddy, Avinesh R; Puri, Munish; Barrow, Colin; Rao, Nalam Madhusudhana

    2016-01-01

    Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1), which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL), as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids.

  10. Effect of solvents and precipitant on the properties of chitosan nanoparticles in a water-in-oil microemulsion and its lipase immobilization performance.

    PubMed

    Wu, Yue; Wang, Yujun; Luo, Guangsheng; Dai, Youyuan

    2010-02-01

    When chitosan nanoparticles were prepared in a water-in-oil (W/O) microemulsion by using 2% (wt) acetic acid (HAc) and 30% (wt) tri-n-octylamine (TOA) as solvent and precipitant, respectively, particle diameters of 7 nm were observed and the particles formed ovoid shaped aggregates. Using 0.05% HCl and 5.0M NaOH as solvent and precipitant produced nanoparticles 10nm in size that aggregated in the form of snowflakes. These two types of nanoparticles were used to immobilize lipase, the lipase adsorption capacity using nanoparticles 7 nm in size reached 156 mg/g and activity retention compared to free enzyme was as high as 66.7%, and the residual activity of the immobilized lipase was 91% after 5 runs of reaction. In additional, the activity retention of nanoparticles 10nm in size also could reach 62.8%. This indicated that the chitosan nanoparticles prepared in a W/O microemulsion were suitable for lipase immobilization.

  11. Identification and characterization of genes, encoding the 3-hydroxybutyrate dehydrogenase and a putative lipase, in an avirulent spontaneous Legionella pneumophila serogroup 6 mutant.

    PubMed

    Scaturro, Maria; Barello, Cristina; Giusti, Melania De; Fontana, Stefano; Pinci, Federica; Giuffrida, Maria Gabriella; Ricci, Maria Luisa

    2015-04-01

    Legionella pneumophila is a pathogen widespread in aquatic environment, able to multiply both within amoebae and human macrophages. The aim of this study was to identify genes differently expressed in a spontaneous avirulent Legionella pneumophila serogroup 6 mutant, named Vir-, respect the parental strain (Vir+), and to determine their role in the loss of virulence. Protein profiles revealed some differences in Vir- proteomic maps, and among the identified proteins the undetectable 3-hydroxybutyrate dehydrogenase (BdhA) and a down-produced lipase. Both Legionella enzymes were studied before and were here further characterized at genetic level. A significant down-regulation of both genes was observed in Vir- at the transcriptional level, but the use of defined mutants demonstrated that they did not affect the intracellular multiplication. A mutant (MS1) showed an accumulation of poly-3-hydroxybutyrate (PHB) granules suggesting a role of bdhA gene in its degradation process. The lipase deduced amino acid sequence revealed a catalytic triad, typical of the 'lipase box' characteristic of PHB de-polymerase enzymes, that let us suppose a possible involvement of lipase in the PHB granule degradation process. Our results revealed unexpected alterations in secondary metabolic pathways possibly linking the loss of virulence to Legionella lack of energy sources.

  12. Optimal Conditions for Continuous Immobilization of Pseudozyma hubeiensis (Strain HB85A) Lipase by Adsorption in a Packed-Bed Reactor by Response Surface Methodology

    PubMed Central

    Bussamara, Roberta; Dall'Agnol, Luciane; Schrank, Augusto; Fernandes, Kátia Flávia; Vainstein, Marilene Henning

    2012-01-01

    This study aimed to develop an optimal continuous process for lipase immobilization in a bed reactor in order to investigate the possibility of large-scale production. An extracellular lipase of Pseudozyma hubeiensis (strain HB85A) was immobilized by adsorption onto a polystyrene-divinylbenzene support. Furthermore, response surface methodology (RSM) was employed to optimize enzyme immobilization and evaluate the optimum temperature and pH for free and immobilized enzyme. The optimal immobilization conditions observed were 150 min incubation time, pH 4.76, and an enzyme/support ratio of 1282 U/g support. Optimal activity temperature for free and immobilized enzyme was found to be 68°C and 52°C, respectively. Optimal activity pH for free and immobilized lipase was pH 4.6 and 6.0, respectively. Lipase immobilization resulted in improved enzyme stability in the presence of nonionic detergents, at high temperatures, at acidic and neutral pH, and at high concentrations of organic solvents such as 2-propanol, methanol, and acetone. PMID:22315670

  13. Functional expression of a novel alkaline-adapted lipase of Bacillus amyloliquefaciens from stinky tofu brine and development of immobilized enzyme for biodiesel production.

    PubMed

    Cai, Xianghai; Ma, Jing; Wei, Dong-Zhi; Lin, Jin-Ping; Wei, Wei

    2014-11-01

    Using enrichment procedures, a lipolytic strain was isolated from a stinky tofu brine and was identified as Bacillus amyloliquefaciens (named B. amyloliquefaciens Nsic-8) by morphological, physiological, biochemical tests and 16S rDNA sequence analysis. Meanwhile, the key enzyme gene (named lip BA) involved in ester metabolism was obtained from Nsic-8 with the assistance of homology analysis. The novel gene has an open reading frame of 645 bp, and encodes a 214-amino-acid lipase (LipBA). The deduced amino acid sequence shows the highest identity with the lipase from B. amyloliquefaciens IT-45 (NCBI database) and belongs to the family of triacylglycerol lipase (EC 3.1.1.3). The lipase gene was expressed in Escherichia coli BL21(DE3) using plasmid pET-28a. The enzyme activity and specific activity were 250 ± 16 U/ml and 1750 ± 153 U/mg, respectively. The optimum pH and temperature of the recombinant enzyme were 9.0 and 40 °C respectively. LipBA showed much higher stability under alkaline conditions and was stable at pH 7.0-11.0. The Km and Vmax values of purified LipBA using 4-nitrophenyl palmitate as the substrate were 1.04 ± 0.06 mM and 119.05 ± 7.16 μmol/(ml min), respectively. After purification, recombinant lipase was immobilized with the optimal conditions (immobilization time 3 h at 30 °C, with 92 % enzyme recovery) and the immobilized enzyme was applied in biodiesel production. This is the first report of the lipase activity and lipase gene obtained from B. amyloliquefaciens (including wild strain and recombinant strain) and the recombinant LipBA with the detailed enzymatic properties. Also the preliminary study of the transesterification shows the potential value in biodiesel production applications.

  14. Activity of different Candida antarctica lipase B formulations in organic solvents.

    PubMed

    Secundo, F; Carrea, G; Soregaroli, C; Varinelli, D; Morrone, R

    2001-04-20

    The activity of different formulations of Candida antarctica lipase B (CALB), such as crude CALB, purified CALB, purified CALB lyophilized with PEG (CALB + PEG) or oleic acid (CALB + OA), and the commercial formulation Novozym 435, was determined in toluene, carbon tetrachloride, and 1,4-dioxane at various water activities (a(w)). The reaction between vinylacetate and 1-octanol was used as the model reaction and both transesterification (formation of 1-octylacetate) and hydrolytic (formation of acetic acid from vinylacetate) activities were determined. For equal amounts of lipase protein, CALB + PEG (and to a lesser extent CALB + OA) displayed higher activity than that of the other formulations; for instance, in toluene (a(w) < 0.1), it was 260-, 13-, and 1.8-fold more active than crude CALB, purified CALB, and Novozym 435, respectively. Moreover, the transesterification activity of CALB + PEG was of the same order of magnitude (51%) of the activity shown by the enzyme in the hydrolysis of vinylacetate in aqueous buffer. These results suggest that PEG and oleic acid could act as lyoprotectants, preventing the formation of intermolecular interactions during the lyophilization process that might be responsible for protein denaturation. No diffusional limitation was observed for CALB + PEG-catalyzed reactions. Purified CALB, in contrast to the other formulations, showed a marked activity increase (2.1 to 7.8-fold) as a function of a(w) and, in 1,4-dioxane, it was 3.5-fold more active when it was added to the solvent after previous dissolution of the lyophilized powder in water.

  15. Application of Rigidity Theory to the Thermostabilization of Lipase A from Bacillus subtilis

    PubMed Central

    Rathi, Prakash Chandra; Fulton, Alexander; Jaeger, Karl-Erich; Gohlke, Holger

    2016-01-01

    Protein thermostability is a crucial factor for biotechnological enzyme applications. Protein engineering studies aimed at improving thermostability have successfully applied both directed evolution and rational design. However, for rational approaches, the major challenge remains the prediction of mutation sites and optimal amino acid substitutions. Recently, we showed that such mutation sites can be identified as structural weak spots by rigidity theory-based thermal unfolding simulations of proteins. Here, we describe and validate a unique, ensemble-based, yet highly efficient strategy to predict optimal amino acid substitutions at structural weak spots for improving a protein’s thermostability. For this, we exploit the fact that in the majority of cases an increased structural rigidity of the folded state has been found as the cause for thermostability. When applied prospectively to lipase A from Bacillus subtilis, we achieved both a high success rate (25% over all experimentally tested mutations, which raises to 60% if small-to-large residue mutations and mutations in the active site are excluded) in predicting significantly thermostabilized lipase variants and a remarkably large increase in those variants’ thermostability (up to 6.6°C) based on single amino acid mutations. When considering negative controls in addition and evaluating the performance of our approach as a binary classifier, the accuracy is 63% and increases to 83% if small-to-large residue mutations and mutations in the active site are excluded. The gain in precision (predictive value for increased thermostability) over random classification is 1.6-fold (2.4-fold). Furthermore, an increase in thermostability predicted by our approach significantly points to increased experimental thermostability (p < 0.05). These results suggest that our strategy is a valuable complement to existing methods for rational protein design aimed at improving thermostability. PMID:27003415

  16. Microplate Bioassay for Determining Substrate Selectivity of "Candida rugosa" Lipase

    ERIC Educational Resources Information Center

    Wang, Shi-zhen; Fang, Bai-shan

    2012-01-01

    Substrate selectivity of "Candida rugosa" lipase was tested using "p"-nitrophenyl esters of increasing chain length (C[subscript 1], C[subscript 7], C[subscript 15]) using the high-throughput screening method. A fast and easy 96-well microplate bioassay was developed to help students learn and practice biotechnological specificity screen. The…

  17. Safety evaluation of a lipase expressed in Aspergillus oryzae.

    PubMed

    Greenough, R J; Perry, C J; Stavnsbjerg, M

    1996-02-01

    A programme of studies was conducted to establish the safety of a lipase artificially expressed in Aspergillus oryzae to be used in the detergent industry and as a processing aid in the baking industry. Laboratory animal studies were used to assess general and inhalation toxicity, skin sensitization, and skin and eye irritation. Its potential to cause mutagenicity and chromosomal aberrations was assessed in microbial and tissue culture in vitro studies. The pathogenicity of A. oryzae, the organism used to produce the lipase, was also assessed in laboratory animals. Basic ecotoxicity in a variety of test species was studied. General and inhalation toxicity was low. There was evidence of mild skin irritation. There was no evidence of eye irritation, skin sensitization, mutagenic potential, chromosomal aberrations, exotoxicity or notable pathogenicity. Comparison of these results with human exposure levels and previously published data indicates that the lipase appears safe for consumers in the given applications, requires no special occupational health precautions in manufacture and is of low environmental impact. Furthermore, the organism used in production of the lipase hs no notable pathogenicity.

  18. Study of microwave effects on the lipase-catalyzed hydrolysis.

    PubMed

    Chen, Chia-Chen; Reddy, P Muralidhar; Devi, C Shobha; Chang, Po-Chi; Ho, Yen-Peng

    2016-01-01

    The effect of microwave heating on lipase-catalyzed reaction remains controversial. It is not clear whether the reaction rate enhancements are purely due to thermal/heating effects or to non-thermal effects. Therefore, quantitative mass spectrometry was used to conduct accurate kinetic analysis of lipase-catalyzed hydrolysis of triolein by microwave and conventional heating. Commercial lipases from Candida rugosa (CRL), Porcine Pancreas (PPL), and Burkholderia cepacia (BCL) were used. Hydrolysis reactions were performed at various temperatures and pH levels, along with various amounts of buffer and enzymes. Hydrolysis product yields at each time point using an internal-standard method showed no significant difference between microwave and conventional heating conditions when the reaction was carried out at the same temperature. CRL showed optimum catalytic activity at 37 °C, while PPL and BCL had better activities at 50 °C. The phosphate buffer was found to give a better hydrolysis yield than the Tris-HCl buffer. Overall results prove that a non-thermal effect does not exist in microwave-assisted lipase hydrolysis of triolein. Therefore, conventional heating at high temperatures (e.g., 50 °C) can be also used to accelerate hydrolysis reactions.

  19. Lipase-catalyzed synthesis of partial acylglycerols of acetoacetate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A commercially available immobilized preparation of Rhizomucor miehei lipase (Lipozyme RMIM) has been employed in the synthesis of partial glycerides of acetoacetate. Due to the chemical reactivitity of the acetoacetyl group, these glycerides could have novel uses in e.g. polymer formation. Both 1...

  20. Medium-chain versus long-chain triacylglycerol emulsion hydrolysis by lipoprotein lipase and hepatic lipase: Implications for the mechanisms of lipase action

    SciTech Connect

    Deckelbaum, R.J. ); Hamilton, J.A.; Butbul, E.; Gutman, A. ); Moser, A. ); Bengtsson-Olivecrona, G.; Olivecrona, T. ); Carpentier, Y.A. )

    1990-02-06

    To explore how enzyme affinities and enzyme activities regulate hydrolysis of water-insoluble substrates, the authors compared hydrolysis of phospholipid-stabilized emulsions of medium-chain (MCT) versus long-chain triacylglycerols (LCT). Because substrate solubility at the emulsion surface might modulate rates of hydrolysis, the ability of egg yolk phosphatidylcholine to solubilize MCT was examined by NMR spectroscopy. Chemical shift measurements showed that 11 mol % of ({sup 13}C)carbonyl enriched trioctanoin was incorporated into phospholipid vesicles as a surface component. Line widths of trioctanoin surface peaks were half that of LCT, and relaxation times, T{sub 1}, were also shorter for trioctanoin, showing greater mobility for MCT in phospholipid. In assessing the effects of these differences in solubility on lipolysis, they found that both purified bovine milk lipoprotein lipase and human hepatic lipase hydrolyzed MCT at rates at least 2-fold higher than for LCT. Differences in affinity were also demonstrated in mixed incubations where increasing amounts of LCT emulsion resulted in decreased hydrolysis of MCT emulsions. These results suggest that despite lower enzyme affinity for MCT emulsions, shorter chain triacylglycerols are more readily hydrolyzed by lipoprotein and hepatic lipases than long-chain triacylglycerols because of greater MCT solubility and mobility at the emulsion-water interface.

  1. A reliable and reproducible method for the lipase assay in an AOT/isooctane reversed micellar system: modification of the copper-soap colorimetric method.

    PubMed

    Kwon, Chang Woo; Park, Kyung-Min; Choi, Seung Jun; Chang, Pahn-Shick

    2015-09-01

    The copper-soap method, which is based on the absorbance of a fatty acid-copper complex at 715 nm, is a widely used colorimetric assay to determine the lipase activity in reversed micellar system. However, the absorbance of the bis(2-ethylhexyl) sodium sulfosuccinate (AOT)-copper complex prevents the use of an AOT/isooctane reversed micellar system. An extraction step was added to the original procedure to remove AOT and eliminate interference from the AOT-copper complex. Among the solvents tested, acetonitrile was determined to be the most suitable because it allows for the generation of a reproducible calibration curve with oleic acid that is independent of the AOT concentrations. Based on the validation data, the modified method, which does not experience interference from the AOT-copper complex, could be a useful method with enhanced accuracy and reproducibility for the lipase assay.

  2. Optimization of conjugated linoleic acid triglycerides via enzymatic esterification in no-solvent system

    NASA Astrophysics Data System (ADS)

    Yi, Dan; Sun, Xiuqin; Li, Guangyou; Liu, Fayi; Lin, Xuezheng; Shen, Jihong

    2009-09-01

    We compared four esterifiable enzymes. The lipase Novozym 435 possessed the highest activity for the conjugated linoleic acid esterification during the synthesis of triglycerides. The triglycerides were synthesized by esterification of glycerol and conjugated linoleic acid (CLA) in a no-solvent system using lipase catalysis. We investigated the effects of temperature, enzyme concentration, water content, and time on esterification. Enzyme and water concentrations of up to 1% of the total reaction volume and a system temperature of 60°C proved optimal for esterification. Similarly, when the esterification was carried out for 24 h, the reaction ratio improved to 94.11%. The esterification rate of the rotating screen basket remained high (87.28%) when the enzyme was re-used for the 5th time. We evaluated the substrate selectivity of lipase (NOVO 435) and determined that this lipase prefers the 10,12-octadacadienoic acid to the 9,11-octadecadienoic acid.

  3. Closed and open conformations of the lid domain induce different patterns of human pancreatic lipase antigenicity and immunogenicity.

    PubMed

    Halimi, Hubert; De Caro, Josiane; Carrière, Frédéric; De Caro, Alain

    2005-12-01

    Epitope mapping was performed on human pancreatic lipase (HPL) using the SPOTscan method. A set of 146 short (12 amino acid residues) synthetic overlapping peptides covering the entire amino acid sequence of HPL were used to systematically assess the immunoreactivity of antisera raised in rabbits against native HPL, HPL without a lid (HPL(-lid)) and HPL covalently inhibited by diethyl p-nitrophenyl phosphate (DP-HPL). In the latter form of HPL, the lid domain controlling the access to the active site was assumed to exist in the open conformation. All the anti-lipase sera were tested in a direct ELISA, anti-HPL serum showing the greatest antibody titer. Although from the structural point of view, the differences between the various forms of HPL were restricted to the lid domain, differences in the antigenic properties of HPL were observed with the SPOTscan method, and the anti-DP-HPL antibodies showed the strongest reactivity. Most of the peptide stretches recognized included amino acid residues which are accessible at the surface of the lipase, except for those located near the active site. Two small peptides (T173-P180, V199-A207) were identified in the vicinity of the active site, their antipeptide antibodies were produced and their reactivity towards the various forms of HPL was tested in a double sandwich ELISA. No reactivity was observed under these conditions. Two antipeptide antibodies directed against two other selected peptides, P208-V221 (belonging to the beta9 loop) and I245-F258 (belonging to the lid domain) were prepared and found to react much more strongly with DP-HPL than with HPL or HPL(-lid) in a double sandwich ELISA. These antibodies should provide useful tools for monitoring the conformational changes taking place during the opening of the HPL lid domain.

  4. Fabrication of enzyme-immobilized halloysite nanotubes for affinity enrichment of lipase inhibitors from complex mixtures.

    PubMed

    Wang, Haibo; Zhao, Xiaoping; Wang, Shufang; Tao, Shan; Ai, Ni; Wang, Yi

    2015-05-01

    Lipase is the key enzyme for catalyzing triglyceride hydrolysis in vivo, and lipase inhibitors have been used in the management of obesity. We present the first report on the use of lipase-adsorbed halloysite nanotubes as an efficient medium for the selective enrichment of lipase inhibitors from natural products. A simple and rapid approach was proposed to fabricate lipase-adsorbed nanotubes through electrostatic interaction. Results showed that more than 85% lipase was adsorbed into nanotubes in 90 min, and approximately 80% of the catalytic activity was maintained compared with free lipase. The specificity and reproducibility of the proposed approach were validated by screening a known lipase inhibitor (i.e., orlistat) from a mixture that contains active and inactive compounds. Moreover, we applied this approach with high performance liquid chromatography-mass spectrometry technique to screen lipase inhibitors from the Magnoliae cortex extract, a medicinal plant used for treating obesity. Two novel biphenyl-type natural lipase inhibitors magnotriol A and magnaldehyde B were identified, and their IC50 values were determined as 213.03 and 96.96 μM, respectively. The ligand-enzyme interactions of magnaldehyde B were further investigated by molecular docking. Our findings proved that enzyme-adsorbed nanotube could be used as a feasible and selective affinity medium for the rapid screening of enzyme inhibitors from complex mixtures.

  5. Solvent-induced lid opening in lipases: a molecular dynamics study.

    PubMed

    Rehm, Sascha; Trodler, Peter; Pleiss, Jürgen

    2010-11-01

    In most lipases, a mobile lid covers the substrate binding site. In this closed structure, the lipase is assumed to be inactive. Upon activation of the lipase by contact with a hydrophobic solvent or at a hydrophobic interface, the lid opens. In its open structure, the substrate binding site is accessible and the lipase is active. The molecular mechanism of this interfacial activation was studied for three lipases (from Candida rugosa, Rhizomucor miehei, and Thermomyces lanuginosa) by multiple molecular dynamics simulations for 25 ns without applying restraints or external forces. As initial structures of the simulations, the closed and open structures of the lipases were used. Both the closed and the open structure were simulated in water and in an organic solvent, toluene. In simulations of the closed lipases in water, no conformational transition was observed. However, in three independent simulations of the closed lipases in toluene the lid gradually opened. Thus, pathways of the conformational transitions were investigated and possible kinetic bottlenecks were suggested. The open structures in toluene were stable, but in water the lid of all three lipases moved towards the closed structure and partially unfolded. Thus, in all three lipases opening and closing was driven by the solvent and independent of a bound substrate molecule.