Science.gov

Sample records for acid lipid particles

  1. Stability of lipid encapsulated ferulic acid particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Encapsulation of bioactive compounds by a solid lipid matrix provides stability and a mechanism for controlled release in formulated products. Phenolic compounds exhibit antioxidant and antimicrobial activities and have applications as functional food and feed additives. Ferulic acid, a common pheno...

  2. Stability of lipid encapsulated phenolic acid particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenolic compounds such as ferulic acid and p-coumaric acids are potential bioactive additives for use in animal feeds to replace current antioxidants and antimicrobial compounds. These compounds are ubiquitous in plants and may be obtained from commodity grain crops and waste biomass. Encapsulation...

  3. Encapsulation of ployunsaturated fatty acid esters with solid lipid particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyunsaturated fatty acids (PUFA) such as a-linolenic acid (ALA) and docosahexaenoic acid (DHA) are known to improve cardiovascular and nervous system health. These compounds are increasingly used in food and animal feed formulations. However, the high degree of unsaturation in these structures can...

  4. Safety profile of the intravenous administration of brain-targeted stable nucleic acid lipid particles.

    PubMed

    Conceição, Mariana; Mendonça, Liliana; Nóbrega, Clévio; Gomes, Célia; Costa, Pedro; Hirai, Hirokazu; Moreira, João Nuno; Lima, Maria C; Manjunath, N; de Almeida, Luís Pereira

    2016-03-01

    In a clinical setting, where multiple administrations of the therapeutic agent are usually required to improve the therapeutic outcome, it is crucial to assess the immunogenicity of the administered nanoparticles. In this data work, we investigated the safety profile of the repeated intravenous administration of brain-targeted stable nucleic acid lipid particles (RVG-9r-targeted SNALPs). To evaluate local activation of the immune system, we performed analysis of mouse tissue homogenates and sections from cerebellum. To investigate peripheral activation of the immune system, we used serum of mice that were intravenously injected with RVG-9r-targeted SNALPs. These data are related and were discussed in the accompanying research article entitled "Intravenous administration of brain-targeted stable nucleic acid lipid particles alleviates Machado-Joseph disease neurological phenotype" (Conceição et al., in press) [1]. PMID:26958628

  5. Safety profile of the intravenous administration of brain-targeted stable nucleic acid lipid particles

    PubMed Central

    Conceição, Mariana; Mendonça, Liliana; Nóbrega, Clévio; Gomes, Célia; Costa, Pedro; Hirai, Hirokazu; Moreira, João Nuno; Lima, Maria C.; Manjunath, N.; de Almeida, Luís Pereira

    2016-01-01

    In a clinical setting, where multiple administrations of the therapeutic agent are usually required to improve the therapeutic outcome, it is crucial to assess the immunogenicity of the administered nanoparticles. In this data work, we investigated the safety profile of the repeated intravenous administration of brain-targeted stable nucleic acid lipid particles (RVG-9r-targeted SNALPs). To evaluate local activation of the immune system, we performed analysis of mouse tissue homogenates and sections from cerebellum. To investigate peripheral activation of the immune system, we used serum of mice that were intravenously injected with RVG-9r-targeted SNALPs. These data are related and were discussed in the accompanying research article entitled “Intravenous administration of brain-targeted stable nucleic acid lipid particles alleviates Machado–Joseph disease neurological phenotype” (Conceição et al., in press) [1]. PMID:26958628

  6. GPCR-styrene maleic acid lipid particles (GPCR-SMALPs): their nature and potential.

    PubMed

    Wheatley, Mark; Charlton, Jack; Jamshad, Mohammed; Routledge, Sarah J; Bailey, Sian; La-Borde, Penelope J; Azam, Maria T; Logan, Richard T; Bill, Roslyn M; Dafforn, Tim R; Poyner, David R

    2016-04-15

    G-protein-coupled receptors (GPCRs) form the largest class of membrane proteins and are an important target for therapeutic drugs. These receptors are highly dynamic proteins sampling a range of conformational states in order to fulfil their complex signalling roles. In order to fully understand GPCR signalling mechanisms it is necessary to extract the receptor protein out of the plasma membrane. Historically this has universally required detergents which inadvertently strip away the annulus of lipid in close association with the receptor and disrupt lateral pressure exerted by the bilayer. Detergent-solubilized GPCRs are very unstable which presents a serious hurdle to characterization by biophysical methods. A range of strategies have been developed to ameliorate the detrimental effect of removing the receptor from the membrane including amphipols and reconstitution into nanodics stabilized by membrane scaffolding proteins (MSPs) but they all require exposure to detergent. Poly(styrene-co-maleic acid) (SMA) incorporates into membranes and spontaneously forms nanoscale poly(styrene-co-maleic acid) lipid particles (SMALPs), effectively acting like a 'molecular pastry cutter' to 'solubilize' GPCRs in the complete absence of detergent at any stage and with preservation of the native annular lipid throughout the process. GPCR-SMALPs have similar pharmacological properties to membrane-bound receptor, exhibit enhanced stability compared with detergent-solubilized receptors and being non-proteinaceous in nature, are fully compatible with downstream biophysical analysis of the encapsulated GPCR. PMID:27068979

  7. Intravenous administration of brain-targeted stable nucleic acid lipid particles alleviates Machado-Joseph disease neurological phenotype.

    PubMed

    Conceição, Mariana; Mendonça, Liliana; Nóbrega, Clévio; Gomes, Célia; Costa, Pedro; Hirai, Hirokazu; Moreira, João Nuno; Lima, Maria C; Manjunath, N; Pereira de Almeida, Luís

    2016-03-01

    Others and we showed that RNA interference holds great promise for the treatment of dominantly inherited neurodegenerative disorders such as Machado-Joseph disease (MJD), for which there is no available treatment. However, successful experiments involved intracranial administration of viral vectors and there is a need for a safer and less invasive procedure. In this work, we successfully generated stable nucleic acid lipid particles (SNALPs), incorporating a short peptide derived from rabies virus glycoprotein (RVG-9r) and encapsulating small interfering RNAs (siRNAs), which can target mutant ataxin-3. The developed formulation exhibited important features that make it adequate for systemic administration: high encapsulation efficiency of siRNAs, ability to protect the encapsulated siRNAs, appropriate and homogeneous particle size distribution. Following optimization of the formulation and in vitro validation of its efficacy to silence the MJD-causing protein - mutant ataxin-3 - in neuronal cells, in vivo experiments showed that intravenous administration of RVG-9r-targeted SNALPs efficiently silenced mutant ataxin-3 reducing neuropathology and motor behavior deficits in two mouse models of MJD. To our knowledge, this is the first report showing beneficial impact of a non-viral gene silencing strategy in MJD and the first time that a non-invasive systemic administration proved to be beneficial on a polyglutamine disorder. Our study opens new avenues towards MJD therapy that can also be applied to other neurodegenerative diseases linked to the production of pathogenic proteins. PMID:26757259

  8. PEG functionalized luminescent lipid particles for cellular imaging

    NASA Astrophysics Data System (ADS)

    Rana, Suman; Barick, K. C.; Shetake, Neena G.; Verma, Gunjan; Aswal, V. K.; Panicker, Lata; Pandey, B. N.; Hassan, P. A.

    2016-08-01

    We report here the synthesis, characterization and cellular uptake of luminescent micelle-like particles with phospholipid core and non-ionic PEG based surfactant polysorbate 80 shell. The adsorption of polysorbate 80 at the interface of lipid containing microemulsion droplets and its solidification upon removal of solvent leads to anchoring of PEG chain to the lipid particles. Hydrophobic partitioning of luminescent molecules, sodium 3-hydroxynaphthalene-2-carboxylic acid to the phospholipid core offers additional functionality to these particles. Thus, the cooperative assembly of lipid, non-ionic amphiphile and organic luminescent probe leads to the formation of multifunctional biocompatible particles which are useful for simultaneous imaging and therapy.

  9. Effect of Exposure to Atmospheric Ultrafine Particles on Production of Free Fatty Acids and Lipid Metabolites in the Mouse Small Intestine

    PubMed Central

    Li, Rongsong; Navab, Kaveh; Hough, Greg; Daher, Nancy; Zhang, Min; Mittelstein, David; Lee, Katherine; Pakbin, Payam; Saffari, Arian; Bhetraratana, May; Sulaiman, Dawoud; Beebe, Tyler; Wu, Lan; Jen, Nelson; Wine, Eytan; Tseng, Chi-Hong; Araujo, Jesus A.; Fogelman, Alan; Sioutas, Constantinos; Navab, Mohamed

    2014-01-01

    N, Wine E, Tseng CH, Araujo JA, Fogelman A, Sioutas C, Navab M, Hsiai TK. 2015. Effect of exposure to atmospheric ultrafine particles on production of free fatty acids and lipid metabolites in the mouse small intestine. Environ Health Perspect 123:34–41; http://dx.doi.org/10.1289/ehp.1307036 PMID:25170928

  10. Fusidic acid betamethasone lipid cream.

    PubMed

    Girolomoni, G; Mattina, R; Manfredini, S; Vertuani, S; Fabrizi, G

    2016-05-01

    Bacterial infections of the skin and soft tissues are frequent disorders. They can be primitive infections (e.g. impetigo, folliculitis) or secondary infections complicating other diseases, particularly atopic dermatitis. The most common aetiologic agent is Staphylococcus aureus. Topical antibiotic therapy may be sufficient in many instances to control these infections. Fusidic acid is an antibiotic used topically on the skin which is very active against S. aureus, including methicillin-resistant strains, and other Gram-positive bacteria. Resistance rates to fusidic acid are stably low. A fusidic acid and betamethasone formulation in a lipid-enriched cream (lipid cream) has been recently developed in order to provide effective antibacterial and anti-inflammatory activities in conjunction with a powerful emollient and moisturising effect. This preparation may be especially useful in patients with atopic-infected eczema. PMID:27121235

  11. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    PubMed

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis. PMID:27349116

  12. Apolipoprotein B-containing lipoprotein particle assembly: Lipid capacity of the nascent lipoprotein particle

    SciTech Connect

    Manchekar, Medha; Forte, Trudy M.; Datta, Geeta; Richardson, Paul E.; Segrest, Jere P.; Dashti, Nassrin

    2003-12-01

    We previously proposed that the N-terminal 1000 residue {beta}{alpha}{sub 1} domain of apolipoprotein B (apoB) forms a bulk lipid pocket homologous to that of lamprey lipovitellin (LV). In support of this ''lipid pocket'' hypothesis, apoB:1000 (residues 1-1000) was shown to be secreted by a stable transformant of McA-RH7777 cells as a monodisperse particle with HDL{sub 3} density and Stokes diameter of 112 {angstrom}. In contrast, apoB:931 (residues 1-931), missing only 69 residues of the sequence homologous to LV, was secreted as a particle considerably more dense than HDL with Stokes diameter of 110 {angstrom}. The purpose of the present study was to determine the stoichiometry of the lipid component of the apoB:931 and apoB:1000 particles. This was accomplished by metabolic labeling of cells with either [{sup 14}C]oleic acid or [{sup 3}H]glycerol followed by immunoprecipitation (IP) or nondenaturing gradient gel electrophoresis (NDGGE) of secreted lipoproteins and by immunoaffinity chromatography of secreted unlabeled lipoproteins. The [{sup 3}H]-labeled apoB:1000-containing particles, isolated by NDGGE, contained 50 phospholipids (PL) and 11 triacylglycerols (TAG) molecules per particle. In contrast, apoB:931-containing particles contained only a few molecules of PL and were devoid of TAG. The unlabeled apoB:1000-containing particles isolated by immunoaffinity chromatography and analyzed for lipid mass, contained 56 PL, 8 TAG, and 7 cholesteryl ester molecules per particle. The surface:core lipid ratio of apoB:1000-containing particles was approximately 4:1 and was not affected by incubation of cells with oleate. Although small amounts of microsomal triglyceride transfer protein (MTP) were associated with apoB:1000-containing particles, it never approached a 1:1 molar ratio of MTP to apoB. These results support a model in which: (1) the first 1000 amino acid residues of apoB are competent to complete the ''lipid pocket'' without a structural requirement for MTP

  13. Lipids, fatty acids, and more

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy is the most expensive component in livestock diets. Lipids are concentrated energy sources and are known to affect growth, feed efficiency, feed dust, and diet palatability. A large majority of research evaluating lipids in livestock has utilized lipids of high quality, dealt mainly with anim...

  14. In vivo activity of miR-34a mimics delivered by stable nucleic acid lipid particles (SNALPs) against multiple myeloma.

    PubMed

    Di Martino, Maria Teresa; Campani, Virginia; Misso, Gabriella; Gallo Cantafio, Maria Eugenia; Gullà, Annamaria; Foresta, Umberto; Guzzi, Pietro Hiram; Castellano, Maria; Grimaldi, Anna; Gigantino, Vincenzo; Franco, Renato; Lusa, Sara; Cannataro, Mario; Tagliaferri, Pierosandro; De Rosa, Giuseppe; Tassone, Pierfrancesco; Caraglia, Michele

    2014-01-01

    Multiple myeloma (MM) is a disease with an adverse outcome and new therapeutic strategies are urgently awaited. A rising body of evidence supports the notion that microRNAs (miRNAs), master regulators of eukaryotic gene expression, may exert anti-MM activity. Here, we evaluated the activity of synthetic miR-34a in MM cells. We found that transfection of miR-34a mimics in MM cells induces a significant change of gene expression with relevant effects on multiple signal transduction pathways. We detected early inactivation of pro-survival and proliferative kinases Erk-2 and Akt followed at later time points by caspase-6 and -3 activation and apoptosis induction. To improve the in vivo delivery, we encapsulated miR-34a mimics in stable nucleic acid lipid particles (SNALPs). We found that SNALPs miR-34a were highly efficient in vitro in inhibiting growth of MM cells. Then, we investigated the activity of the SNALPs miR-34a against MM xenografts in SCID mice. We observed significant tumor growth inhibition (p<0.05) which translated in mice survival benefits (p=0.0047). Analysis of miR-34a and NOTCH1 expression in tumor retrieved from animal demonstrated efficient delivery and gene modulation induced by SNALPs miR-34a in the absence of systemic toxicity. We here therefore provide evidence that SNALPs miR-34a may represent a promising tool for miRNA-therapeutics in MM. PMID:24587182

  15. In Vivo Activity of MiR-34a Mimics Delivered by Stable Nucleic Acid Lipid Particles (SNALPs) against Multiple Myeloma

    PubMed Central

    Gallo Cantafio, Maria Eugenia; Gullà, Annamaria; Foresta, Umberto; Guzzi, Pietro Hiram; Castellano, Maria; Grimaldi, Anna; Gigantino, Vincenzo; Franco, Renato; Lusa, Sara; Cannataro, Mario; Tagliaferri, Pierosandro; De Rosa, Giuseppe; Tassone, Pierfrancesco; Caraglia, Michele

    2014-01-01

    Multiple myeloma (MM) is a disease with an adverse outcome and new therapeutic strategies are urgently awaited. A rising body of evidence supports the notion that microRNAs (miRNAs), master regulators of eukaryotic gene expression, may exert anti-MM activity. Here, we evaluated the activity of synthetic miR-34a in MM cells. We found that transfection of miR-34a mimics in MM cells induces a significant change of gene expression with relevant effects on multiple signal transduction pathways. We detected early inactivation of pro-survival and proliferative kinases Erk-2 and Akt followed at later time points by caspase-6 and -3 activation and apoptosis induction. To improve the in vivo delivery, we encapsulated miR-34a mimics in stable nucleic acid lipid particles (SNALPs). We found that SNALPs miR-34a were highly efficient in vitro in inhibiting growth of MM cells. Then, we investigated the activity of the SNALPs miR-34a against MM xenografts in SCID mice. We observed significant tumor growth inhibition (p<0.05) which translated in mice survival benefits (p = 0.0047). Analysis of miR-34a and NOTCH1 expression in tumor retrieved from animal demonstrated efficient delivery and gene modulation induced by SNALPs miR-34a in the absence of systemic toxicity. We here therefore provide evidence that SNALPs miR-34a may represent a promising tool for miRNA-therapeutics in MM. PMID:24587182

  16. TRANS ACIDS IN SPECIALTY LIPIDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The role of trans acids in human health and nutrition is highly controversial and a search of the Internet reveals the interest in the subject. Trans acids are perceived as "killer fats" at one end of the spectrum to having no adverse effects at the other. In addition, saturated fats are perceived...

  17. Cationic Lipid-Based Nucleic Acid Vectors.

    PubMed

    Jubeli, Emile; Goldring, William P D; Pungente, Michael D

    2016-01-01

    The delivery of nucleic acids into cells remains an important laboratory cell culture technique and potential clinical therapy, based upon the initial cellular uptake, then translation into protein (in the case of DNA), or gene deletion by RNA interference (RNAi). Although viral delivery vectors are more efficient, the high production costs, limited cargo capacity, and the potential for clinical adverse events make nonviral strategies attractive. Cationic lipids are the most widely applied and studied nonviral vectors; however, much remains to be solved to overcome limitations of these systems. Advances in the field of cationic lipid-based nucleic acid (lipoplex) delivery rely upon the development of robust and reproducible lipoplex formulations, together with the use of cell culture assays. This chapter provides detailed protocols towards the formulation, delivery, and assessment of in vitro cationic lipid-based delivery of DNA. PMID:27436310

  18. Lipid encapsulated docosahexaenoic acid methyl ester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Encapsulation of structurally sensitive compounds within a solid lipid matrix provides a barrier to prooxidant compounds and effectively limits the extent of oxidative degradation. Encapsulated docosahexaenoic acid (DHA) methyl ester was examined as a model compound for functional foods and feeds. S...

  19. Lipid and Fatty Acid Requirements of Tilapia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary lipids are an important source of highly digestible energy and are the only source of essential fatty acids required for normal growth and development. They are also carriers and assist in the absorption of fat-soluble nutrients, such as sterols and fat-soluble vitamins, serve as a source of...

  20. Modified Lipoprotein-Derived Lipid Particles Accumulate in Human Stenotic Aortic Valves

    PubMed Central

    Lehti, Satu; Käkelä, Reijo; Hörkkö, Sohvi; Kummu, Outi; Helske-Suihko, Satu; Kupari, Markku; Werkkala, Kalervo; Kovanen, Petri T.; Öörni, Katariina

    2013-01-01

    In aortic stenosis plasma lipoprotein-derived lipids accumulate in aortic valves. Here, we first compared the lipid compositions of stenotic aortic valves and atherosclerotic plaque cores. Both pathological tissues were found to be enriched in cholesteryl linoleate, a marker of extracellularly accumulated lipoproteins. In addition, a large proportion of the phospholipids were found to contain arachidonic acid, the common precursor of a number of proinflammatory lipid mediators. Next, we isolated and characterized extracellular lipid particles from human stenotic and non-stenotic control valves, and compared them to plasma lipoproteins from the same subjects. The extracellular valvular lipid particles were isolated from 15 stenotic and 14 non-stenotic aortic valves. Significantly more apoB-100-containing lipid particles were found in the stenotic than in the non-stenotic valves. The majority of the lipid particles isolated from the non-stenotic valves had sizes (23±6.2 nm in diameter) similar to those of plasma low density lipoprotein (LDL) (22±1.5 nm), while the lipid particles from stenotic valves were not of uniform size, their sizes ranging from 18 to more than 500 nm. The lipid particles showed signs of oxidative modifications, and when compared to isolated plasma LDL particles, the lipid particles isolated from the stenotic valves had a higher sphingomyelin/phosphatidylcholine –ratio, and also higher contents of lysophosphatidylcholine and unesterified cholesterol. The findings of the present study reveal, for the first time, that in stenotic human aortic valves, infiltrated plasma lipoproteins have undergone oxidative and lipolytic modifications, and become fused and aggregated. The generated large lipid particles may contribute to the pathogenesis of human aortic stenosis. PMID:23762432

  1. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    PubMed Central

    Węglarz, Ludmiła; Dzierżewicz, Zofia

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II)/ascorbate. The observed inhibitory effect of PA on Fe(II)/ascorbate-induced lipid peroxidation was lower (10–20%) compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II)/ascorbate-induced peroxidation. In the absence of Fe(II)/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM) significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products. PMID:24260736

  2. Nucleic-Acid Delivery Using Lipid Nanocapsules.

    PubMed

    Lagarce, Frederic; Passirani, Catherine

    2016-01-01

    Lipid nanocapsules (LNCs) were designed more than 15 years ago to deliver lipophilic drugs to cells with non toxic excipients by mimicking lipoproteins. During the last 5 years these promising nanocarriers were re-designed to deliver nucleic acids to cancer cells. This short review sums up the features of LNCs and describes how DNAs or RNAs can be associated or encapsulated in these lipid carriers. The results of transfection effects on cells in vitro or in vivo are also presented. These new therapeutic strategies have been mainly proposed for glioma and melanoma treatment because these cancers are characterized by multiple acquired resistances, which can be reversed by DNA transfection or siRNA interference as it is discussed in this paper. In conclusion, LNCs are very good candidates to deliver nucleic acids to cells in the course of anti-cancer therapies. PMID:27033510

  3. Subcellular distributions of lipids in cultured BHK cells: evidence for the enrichment of lysobisphosphatidic acid and neutral lipids in lysosomes.

    PubMed

    Brotherus, J; Renkonen, O

    1977-03-01

    Homogenates of cultured hamster fibroblasts (BHK 21 cells) were fractionated by differential centrifugation into six main fractions: nuclear, mitochondrial, light mitochondrial, microsomal, soluble, and floating. The contents of several lipids and some marker enzymes were measured. According to the enzyme distributions, lysosomes were enriched both in the floating fraction and in the light mitochondrial fraction. Lysobisphosphatidic acid was enriched in the floating fraction more than tenfold relative to phospholipid. Cholesteryl esters and triglycerides were the main constituents of the fraction (70% of total lipids). Lysobisphosphatidic acid, triglycerides, and cholesteryl esters were enriched also in the light mitochondrial fraction. Their distribution patterns were different from those of the other lipids. Electron microscopy showed that the floating fraction contained numerous lipofuscin-like particles with darkly stained peripheries and with core regions staining like droplets of neutral lipids. Similar particles, frequently containing prominent multilamellar formations, were also common in intact cells. They contained cytochemically identified acid phosphatase. We conclude that lysobisphosphatidic acid was enriched in the lysosomes of the BHK cells and that the lysosomes also contained variable amounts of neutral lipids in the form of intralysosomal droplets. PMID:845501

  4. Long-range attraction of particles adhered to lipid vesicles

    NASA Astrophysics Data System (ADS)

    Sarfati, Raphael; Dufresne, Eric R.

    2016-07-01

    Many biological systems fold thin sheets of lipid membrane into complex three-dimensional structures. This microscopic origami is often mediated by the adsorption and self-assembly of proteins on a membrane. As a model system to study adsorption-mediated interactions, we study the collective behavior of micrometric particles adhered to a lipid vesicle. We estimate the colloidal interactions using a maximum likelihood analysis of particle trajectories. When the particles are highly wrapped by a tense membrane, we observe strong long-range attractions with a typical binding energy of 150 kBT and significant forces extending a few microns.

  5. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles

    SciTech Connect

    Vesterdal, Lise K.; Danielsen, Pernille H.; Folkmann, Janne K.; Jespersen, Line F.; Aguilar-Pelaez, Karin; Roursgaard, Martin; Loft, Steffen; Møller, Peter

    2014-01-15

    Exposure to particles has been suggested to generate hepatosteatosis by oxidative stress mechanisms. We investigated lipid accumulation in cultured human hepatocytes (HepG2) and rat liver after exposure to four different carbon-based particles. HepG2 cells were exposed to particles for 3 h and subsequently incubated for another 18 h to manifest lipid accumulation. In an animal model of metabolic syndrome we investigated the association between intake of carbon black (CB, 14 nm) particles and hepatic lipid accumulation, inflammation and gene expression of Srebp-1, Fasn and Scd-1 involved in lipid synthesis. There was a concentration-dependent increase in intracellular lipid content after exposure to CB in HepG2 cells, which was only observed after co-exposure to oleic/palmitic acid. Similar results were observed in HepG2 cells after exposure to diesel exhaust particles, fullerenes C{sub 60} or pristine single-walled carbon nanotubes. All four types of particles also generated oxidatively damaged DNA, assessed as formamidopyrimidine DNA glycosylase (FPG) sensitive sites, in HepG2 cells after 3 h exposure. The animal model of metabolic syndrome showed increased lipid load in the liver after one oral exposure to 6.4 mg/kg of CB in lean Zucker rats. This was not associated with increased iNOS staining in the liver, indicating that the oral CB exposure was associated with hepatic steatosis rather than steatohepatitis. The lipid accumulation did not seem to be related to increased lipogenesis because there were unaltered gene expression levels in both the HepG2 cells and rat livers. Collectively, exposure to particles is associated with oxidative stress and steatosis in hepatocytes. - Highlights: • Oral exposure to nanosized carbon black was associated with hepatosteatosis in rats. • In vitro studies included carbon black, C{sub 60}, diesel exhaust particles and SWCNTs. • Exposure to particles and free fatty acids increased lipid load in HepG2 cells. • Unaltered

  6. Fatty Acids as Surfactants on Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Tervahattu, H.; Juhanoja, J.; Niemi, J.

    2003-12-01

    Fatty acids (n-alcanoic acids) are common compounds in numerous anthropogenic and natural emissions. According to Rogge et al. (1993), catalyst-equipped automobiles emitted more than 600 μg km-1 of fatty acids which was over 50% of all identified organics in fine aerosol emissions. Coal burning produces fatty acids ranging from about 1700 mg kg-1 for bituminous coal to over 10000 mg kg-1 for lignite (Oros and Simoneit, 2000). Similarly, biomass burning is an important source for aerosol fatty acids. They are the major identified compound group in deciduous tree smoke, their total emission factor being measured as 1589 mg kg-1 which was 56% of all identified organic compounds (Oros and Simoneit, 2001a). Large amounts of fatty acid are also emitted from burning of conifer trees and grass (Oros and Simoneit, 2001a; Simoneit, 2002). Fatty acids have been reported to be major constituents of marine aerosols in many investigations (Barger and Garrett, 1976; Gagosian et. al, 1981; Sicre et al., 1990; Stephanou, 1992). It has been suggested that as the marine aerosol particles form, they acquire a coating of organic surfactants (Blanchard, 1964; Gill et al., 1983; Middlebrook et al., 1998; Ellison et al., 1999). Amphiphilic molecules, including lipids, can be assembled as monomolecular layers at air/water interfaces as well as transported to a solid support. Recently, we could show by time-of-flight secondary ion mass spectrometry that fatty acids are important ingredients of the outermost surface layer of the sea-salt aerosol particles (Tervahattu et al., 2002). In their TOF-SIMS studies on the surface composition of atmospheric aerosols, Peterson and Tyler (2002) found fatty acids on the surface of Montana forest fire particles. In this work we have studied by TOF-SIMS the surface chemical composition of aerosol particles emitted from field fires in the Baltic and other East European countries and transported to Finland as well as aerosol particles transported from

  7. Fatty acid profile of 25 alternative lipid feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports the fatty acid profiles of 25 alternative lipid feedstocks for the production of bio-based fuels and chemicals. Lipids were extracted using hexane from oil-bearing seeds using a standard Soxhlet apparatus. Fatty acid profiles were measured using gas chromatography-flame ionization...

  8. Changes in lipid composition, fatty acid profile and lipid oxidative stability during Cantonese sausage processing.

    PubMed

    Qiu, Chaoying; Zhao, Mouming; Sun, Weizheng; Zhou, Feibai; Cui, Chun

    2013-03-01

    Lipid composition, fatty acid profile and lipid oxidative stability were evaluated during Cantonese sausage processing. Free fatty acids increased with concomitant decrease of phospholipids. Total content of free fatty acids at 72 h in muscle and adipose tissue was 7.341 mg/g and 3.067 mg/g, respectively. Total amount of saturated, monounsaturated and polyunsaturated fatty acids (SFA, MUFA, and PUFA) in neutral lipid exhibited a little change during processing, while the proportion of PUFA significantly decreased in the PL fraction. The main triacylglycerols were POO+SLO+OOO, PSO (P = palmitic acid, O = oleic acid, L = linoleic acid, S = stearic acid), and a preferential hydrolysis of palmitic, oleic and linoleic acid was observed. Phosphatidylcholines (PC) and phosphatidylethanolamines (PE) were the main components of phospholipids and PE exhibited the most significant degradation during processing. Thiobarbituric acid values (TBARS) increased while peroxide values and hexanal contents varied during processing. PMID:23273460

  9. Quantifying Lipid Contents in Enveloped Virus Particles with Plasmonic Nanoparticles

    PubMed Central

    Feizpour, Amin; Yu, Xinwei; Edmans, Ethan; Reinhard, Björn M.; Akiyama, Hisashi; Miller, Caitlin M.; Gummuluru, Suryaram

    2015-01-01

    Phosphatidylserine (PS) and monosialotetrahexosylganglioside (GM1) are examples of two host-derived lipids in the membrane of enveloped virus particles that are known to contribute to virus attachment, uptake, and ultimately dissemination. A quantitative characterization of their contribution to the functionality of the virus requires information about their relative concentrations in the viral membrane. Here, a gold nanoparticle (NP) binding assay for probing relative PS and GM1 lipid concentrations in the outer leaflet of different HIV-1 and Ebola virus-like particles (VLPs) using sample sizes of less than 3×106 particles is introduced. The assay evaluates both scattering intensity and resonance wavelength and determines relative NP densities through plasmon coupling as a measure for the target lipid concentrations in the NP-labeled VLP membrane. A correlation of the optical observables with absolute lipid contents is achieved by calibration of the plasmon coupling-based methodology with unilamellar liposomes of known PS or GM1 concentration. The performed studies reveal significant differences in the membrane of VLPs that assemble at different intracellular sites and pave the way to an optical quantification of lipid concentration in virus particles at physiological titers. PMID:25382201

  10. Amino acid-containing membrane lipids in bacteria.

    PubMed

    Geiger, Otto; González-Silva, Napoleón; López-Lara, Isabel M; Sohlenkamp, Christian

    2010-01-01

    In the bacterial model organism Escherichia coli only the three major membrane lipids phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin occur, all of which belong to the glycerophospholipids. The amino acid-containing phosphatidylserine is a major lipid in eukaryotic membranes but in most bacteria it occurs only as a minor biosynthetic intermediate. In some bacteria, the anionic glycerophospholipids phosphatidylglycerol and cardiolipin can be decorated with aminoacyl residues. For example, phosphatidylglycerol can be decorated with lysine, alanine, or arginine whereas in the case of cardiolipin, lysine or d-alanine modifications are known. In few bacteria, diacylglycerol-derived lipids can be substituted with lysine or homoserine. Acyl-oxyacyl lipids in which the lipidic part is amide-linked to the alpha-amino group of an amino acid are widely distributed among bacteria and ornithine-containing lipids are the most common version of this lipid type. Only few bacterial groups form glycine-containing lipids, serineglycine-containing lipids, sphingolipids, or sulfonolipids. Although many of these amino acid-containing bacterial membrane lipids are produced in response to certain stress conditions, little is known about the specific molecular functions of these lipids. PMID:19703488

  11. Carbon nanotubes for stabilization of nanostructured lipid particles

    NASA Astrophysics Data System (ADS)

    Gaunt, Nicholas P.; Patil-Sen, Yogita; Baker, Matthew J.; Kulkarni, Chandrashekhar V.

    2014-12-01

    Carbon nanotubes (CNTs) are increasingly studied for innovative biotechnological applications particularly where they are combined with essential biological materials like lipids. Lipids have been used earlier for enhancing the dispersibility of CNTs in aqueous solutions. Here we report a novel application of CNTs for stabilization of internally self-assembled nanostructured lipid particles of 2-5 μm size. Single-walled (pristine) as well as -OH and -COOH functionalized multi-walled CNTs were employed to produce nanostructured emulsions which stayed stable for months and could be re-dispersed after complete dehydration. Concentrations of CNTs employed for stabilization were very low; moreover CNTs were well-decorated with lipid molecules. These features contribute towards reducing their toxicity and improving biocompatibility for biomedical and pharmaceutical applications. Our approach paves the way for future development of combination therapies employing both CNTs and nanostructured lipid self-assembly together as carriers of different drugs.Carbon nanotubes (CNTs) are increasingly studied for innovative biotechnological applications particularly where they are combined with essential biological materials like lipids. Lipids have been used earlier for enhancing the dispersibility of CNTs in aqueous solutions. Here we report a novel application of CNTs for stabilization of internally self-assembled nanostructured lipid particles of 2-5 μm size. Single-walled (pristine) as well as -OH and -COOH functionalized multi-walled CNTs were employed to produce nanostructured emulsions which stayed stable for months and could be re-dispersed after complete dehydration. Concentrations of CNTs employed for stabilization were very low; moreover CNTs were well-decorated with lipid molecules. These features contribute towards reducing their toxicity and improving biocompatibility for biomedical and pharmaceutical applications. Our approach paves the way for future development

  12. Polyunsaturated Fatty Acids in Lipid Bilayers and Tubules

    NASA Astrophysics Data System (ADS)

    Hirst, Linda S.; Yuan, Jing; Pramudya, Yohannes; Nguyen, Lam T.

    2007-03-01

    Omega-3 polyunsaturated fatty acids (PUFAs) are found in a variety of biological membranes and have been implicated with lipid raft formation and possible function, typical molecules include DHA (Docosahexanoic Acid) and AA (Alphalinoleic Acid) which have been the focus of considerable attention in recent years. We are interested in the phase behavior of these molecules in the lipid bilayer. The addition of lipid molecules with polyunsaturated chains has a clear effect on the fluidity and curvature of the membrane and we investigate the effects the addition of polyunsaturated lipids on bilayer structure and tubule formation. Self-assembled cylindrical lipid tubules have attracted considerable attention because of their interesting structures and potential technological applications. Using x-ray diffraction techniques, Atomic Force Microscopy and confocal fluorescence imaging, both symmetric and mixed chain lipids were incorporated into model membranes and the effects on bilayer structure and tubule formation investigated.

  13. Performance of structured lipids incorporating selected phenolic and ascorbic acids.

    PubMed

    Gruczynska, Eliza; Przybylski, Roman; Aladedunye, Felix

    2015-04-15

    Conditions applied during frying require antioxidant which is stable at these conditions and provides protection for frying oil and fried food. Novel structured lipids containing nutraceuticals and antioxidants were formed by enzymatic transesterification, exploring canola oil and naturally occurring antioxidants such as ascorbic and selected phenolic acids as substrates. Lipozyme RM IM lipase from Rhizomucor miehei was used as biocatalyst. Frying performance and oxidative stability of the final transesterification products were evaluated. The novel lipids showed significantly improved frying performance compared to canola oil. Oxidative stability assessment of the structured lipids showed significant improvement in resistance to oxidative deterioration compared to original canola oil. Interestingly, the presence of ascorbic acid in an acylglycerol structure protected α-tocopherol against thermal degradation, which was not observed for the phenolic acids. Developed structured lipids containing nutraceuticals and antioxidants may directly affect nutritional properties of lipids also offering nutraceutical ingredients for food formulation. PMID:25466089

  14. Cationic lipid-mediated nucleic acid delivery: beyond being cationic.

    PubMed

    Rao, N Madhusudhana

    2010-03-01

    Realization of the potential of nucleic acids as drugs is intricately linked to their in vivo delivery. Cationic lipids demonstrated tremendous potential as safe, efficient and scalable in vitro carriers of nucleic acids. For in vivo delivery of nucleic acids, the extant two component liposomal preparations consisting of cationic lipids and nucleic acids have been largely found to be insufficient. Being a soft matter, liposomes readily respond to many physiological variables leading to complex component and morphological changes, thus confounding the efforts in a priori identification of a "competent" formulation. In the recent past many chemical moieties that provide advantage in facing the challenges of barriers in vivo, were incorporated into cationic lipids to improve the transfection efficiency. The cationic lipids, essential for DNA condensation and protection, definitely require additional components to be efficient in vivo. In addition, formulations of cationic lipid carriers with non-lipidic components, mainly peptides, have demonstrated success in in vivo transfection. The present review describes some recent successes of in vivo nucleic acid delivery by cationic lipids. PMID:20060819

  15. Fatty acid methyl ester profiles of bat wing surface lipids.

    PubMed

    Pannkuk, Evan L; Fuller, Nathan W; Moore, Patrick R; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-11-01

    Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape(®) and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape(®) adhesive patches removed ~6× more total lipid than Sebutape(®) indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration. PMID:25227993

  16. A Variational Approach to Particles in Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Elliott, Charles M.; Gräser, Carsten; Hobbs, Graham; Kornhuber, Ralf; Wolf, Maren-Wanda

    2016-06-01

    A variety of models for the membrane-mediated interaction of particles in lipid membranes, mostly well-established in theoretical physics, is reviewed from a mathematical perspective. We provide mathematically consistent formulations in a variational framework, relate apparently different modelling approaches in terms of successive approximation, and investigate existence and uniqueness. Numerical computations illustrate that the new variational formulations are directly accessible to effective numerical methods.

  17. [Fatty acid and lipid peroxidation in human atherosclerosis].

    PubMed

    Loeper, J; Goy, J; Emerit, J; Rozensztajn, L; Jeny, C; Bedu, O

    1983-06-01

    Plasma fatty acids and lipid peroxidation were studied in human atherosclerosis. Analysis of fatty acids in 16 controls and 32 hyperlipidemic patients showed, in the latter, a decrease in saturated fatty acids, especially palmitic and stearic acids, and an increase in unsaturated fatty acids, especially arachidonic acid. Compared to hyperlipidemic patients without arterial injury, patients with arterial injury exhibit a significant increase in malonaldehyde (MDA). In the former, MDA concentrations are significantly increased compared to controls. Therefore, peroxidation of unsaturated fatty acids may have a deleterious effect on arteries in atheroma, through the release of toxic endoperoxydes and the metabolization of arachidonic acid into thromboxane, which is a platelet aggregator. Lipid peroxidation can also be demonstrated in other diseases: we found very high MDA concentration in 11 alcoholic patients (alcoholic hepatitis, cirrhosis) and 6 patients with inflammatory conditions such as Crohn disease. PMID:6308785

  18. Interaction measurement of particles bound to a lipid membrane

    NASA Astrophysics Data System (ADS)

    Sarfati, Raphael; Dufresne, Eric

    2015-03-01

    The local shape and dynamics of the plasma membrane play important roles in many cellular processes. Local membrane deformations are often mediated by the adsorption of proteins (notably from the BAR family), and their subsequent self-assembly. The emerging hypothesis is that self-assembly arises from long-range interactions of individual proteins through the membrane's deformation field. We study these interactions in a model system of micron-sized colloidal particles adsorbed onto a lipid bilayer. We use fluorescent microscopy, optical tweezers and particle tracking to measure dissipative and conservative forces as a function of the separation between the particles. We find that particles are driven together with forces of order 100 fN and remain bound in a potential well with a stiffness of order 100 fN/micron.

  19. Solid lipid particles for oral delivery of peptide and protein drugs I--elucidating the release mechanism of lysozyme during lipolysis.

    PubMed

    Christophersen, P C; Zhang, L; Yang, M; Nielsen, H Mørck; Müllertz, A; Mu, H

    2013-11-01

    The mechanism of protein release from solid lipid particles was investigated by a new lipolysis model in a biorelevant medium containing both bile salts and phospholipids. Lysozyme, a model protein, was formulated into solid lipid particles using four different types of lipids, two triglycerides with different chain-length of fatty acyl groups i.e. trimyristin (TG14) and tristearin (TG18), and two lipid blends dominated by diglycerides and monoglycerides, respectively. The release of lysozyme from the solid lipid particles and the lipid hydrolysis process were assessed in the lipolysis model, while the change in particle surface during the lipolysis process was evaluated using scanning electron microscopy. The lysozyme release profiles from TG14 and TG18 as well as diglyceride particles correlated well with the release of free fatty acids from the lipid particles during the lipolysis and therefore exhibited a lipase-mediated degradation-based release mechanism. The release of lysozyme from monoglyceride particles was independent on lipase degradation due to the instability of the lipid matrix in the lipolysis medium. In conclusion, the established lipolysis model is successfully used to elucidate the drug release mechanism from solid lipid particles and can potentially be used in rational selection of lipid excipients for oral delivery of peptide/protein drugs. PMID:23911434

  20. Fatty Acid and Lipid Transport in Plant Cells.

    PubMed

    Li, Nannan; Xu, Changcheng; Li-Beisson, Yonghua; Philippar, Katrin

    2016-02-01

    Fatty acids (FAs) and lipids are essential - not only as membrane constituents but also for growth and development. In plants and algae, FAs are synthesized in plastids and to a large extent transported to the endoplasmic reticulum for modification and lipid assembly. Subsequently, lipophilic compounds are distributed within the cell, and thus are transported across most membrane systems. Membrane-intrinsic transporters and proteins for cellular FA/lipid transfer therefore represent key components for delivery and dissemination. In addition to highlighting their role in lipid homeostasis and plant performance, different transport mechanisms for land plants and green algae - in the model systems Arabidopsis thaliana, Chlamydomonas reinhardtii - are compared, thereby providing a current perspective on protein-mediated FA and lipid trafficking in photosynthetic cells. PMID:26616197

  1. Preparation and Characterization of Reconstituted Lipid-Synthetic Polymer Discoidal Particles.

    PubMed

    Tanaka, Masafumi; Hosotani, Akira; Tachibana, Yuka; Nakano, Minoru; Iwasaki, Kenji; Kawakami, Toru; Mukai, Takahiro

    2015-11-24

    Discoidal high-density lipoproteins generated by the apolipoprotein-mediated solubilization of membrane lipids in vivo can be reconstituted with phospholipids and apolipoproteins in vitro. Recently, it has been reported that such particles can be prepared using the hydrolyzed acid form of styrene-maleic anhydride copolymer (SMAaf) instead of apolipoproteins, but characterization of its physicochemical properties has remained less elucidated. In the present study, with the aim of applying SMAaf-based lipid nanoparticles as novel delivery vehicles of drugs and/or imaging agents, we investigated the preparation conditions and evaluated the physicochemical properties of lipid-SMAaf complexes. SMAaf induced spontaneous turbidity clearance of dimyristoylphosphatidylcholine (DMPC) vesicles accompanied by the formation of smaller particles not only at the phase transition temperature of DMPC but also above it. Such reductions in the turbidity were not observed with some other amphiphilic synthetic polymers tested under the same experimental conditions. Size exclusion chromatography analyses showed that homogeneously sized particles were prepared at lipid to SMAaf weight ratios of less than 1/1.5. Dynamic light scattering and transmission electron microscopy revealed that gel-filtered DMPC-SMAaf complexes were approximately 8-10 nm in diameter and discoidal in shape. The DMPC-SMAaf complexes were relatively stable even after lyophilization but were sensitive to pH changes. Fluorescence techniques demonstrated that the gel to liquid-crystalline phase transition temperature of DMPC in the discoidal complexes broadened significantly relative to that of liposomes, despite their common bilayer structure, which is a typical feature of discoidal lipid nanoparticles. These results provide fundamental insights into discoidal SMAaf-based lipid nanoparticles for the development of novel delivery vehicles. PMID:26531224

  2. Lipid and fatty acid analysis of the Plodia interpunctella granulosis virus (PiGV) envelope

    NASA Technical Reports Server (NTRS)

    Shastri-Bhalla, K.; Funk, C. J.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Virus envelope was isolated from Plodia interpunctella granulosis virus, produced in early fourth-instar larvae. Both polar and neutral lipids were analyzed by two-dimensional thin-layer chromatography. Fatty acid composition of various individual neutral and polar lipids was determined by gas-liquid chromatography. The major components of envelope neutral lipid were diacylglycerols. Palmitic acid and stearic acid were the major saturated fatty acids in both polar and neutral lipids. Whereas palmitoleic acid was the major unsaturated fatty acids in neutral lipids, oleic acid was the major unsaturated fatty acid in the polar lipids.

  3. Lipid and polymeric carrier-mediated nucleic acid delivery

    PubMed Central

    Zhu, Lin; Mahato, Ram I

    2010-01-01

    Importance of the field Nucleic acids such as plasmid DNA, antisense oligonucleotide, and RNA interference (RNAi) molecules, have a great potential to be used as therapeutics for the treatment of various genetic and acquired diseases. To design a successful nucleic acid delivery system, the pharmacological effect of nucleic acids, the physiological condition of the subjects or sites, and the physicochemical properties of nucleic acid and carriers have to be thoroughly examined. Areas covered in this review The commonly used lipids, polymers and corresponding delivery systems are reviewed in terms of their characteristics, applications, advantages and limitations. What the reader will gain This article aims to provide an overview of biological barriers and strategies to overcome these barriers by properly designing effective synthetic carriers for nucleic acid delivery. Take home message A thorough understanding of biological barriers and the structure–activity relationship of lipid and polymeric carriers is the key for effective nucleic acid therapy. PMID:20836625

  4. Fatty Acids and Bioactive Lipids of Potato Cultivars: An Overview.

    PubMed

    Ramadan, Mohamed Fawzy; Oraby, Hesahm Farouk

    2016-01-01

    Potato tuber is a highly nutritious, wherein genotype and environmental differences are known to exist in the shape, size and nutritional value of potatoes. Owing to its high consumption, potato could be an ideal carrier of health-promoting phytochemicals. Potato cultivars contain many bioactive lipidic compounds such as fatty acids, glycolipids, phospholipids, sterols, tocols and carotenoids, which are highly desirable in diet because of their health-promoting effects. In the scientific literature, information on the content and profile of bioactive lipidic compounds in potato cultivars are few. The concentration and stability of bioactive lipids are affected by many factors such as genotype, agronomic factors, postharvest storage, cooking and processing conditions. In this review levels and composition of bioactive lipids in terms of lipid classes, fatty acids, phytosterols, tocopherols, and caroteinoids distribution in different potato cultivars including genetically modified potato (GMP) were highlighted and discussed. In addition, factors affecting bioactive lipids levels, stability and health benefits are reviewed. In consideration of potential nutritional value, detailed knowledge on lipids of potato cultivars is of major importance. PMID:27250559

  5. Linoleic acid stimulates neutral lipid accumulation in lipid droplets of maturing bovine oocytes.

    PubMed

    Carro, M; Buschiazzo, J; Ríos, G L; Oresti, G M; Alberio, R H

    2013-03-01

    Linoleic acid (LA) is a polyunsaturated fatty acid present in high concentrations in bovine follicular fluid; when added to maturation culture media, it affects oocyte competence (depending on the type and concentration of LA used). To date, little is known about the effective level of incorporation of LA and there is apparently no information regarding its esterification into various lipid fractions of the oocyte and its effect on neutral lipid storage. Therefore, the objective was to assess the uptake and subcellular lipid distribution of LA by analyzing incorporation of radiolabeled LA into oocyte polar and neutral lipid classes. The effects of various concentrations of LA on the nuclear status and cytoplasmic lipid content of bovine oocytes matured in vitro was also analyzed, with particular emphasis on intermediate concentrations of LA. Neutral lipids stored in lipid droplets were quantified with a fluorescence approach. Linoleic acid at 9 and 43 μM did not affect the nuclear status of oocytes matured in vitro, and 100 μM LA inhibited germinal vesicle breakdown, resulting in a higher percentage of oocytes arrested at the germinal state (43.5 vs. 3.0 in controls; P < 0.05). Bovine oocytes actively incorporated LA from the maturation medium (83.4 pmol LA per 100 oocytes at 22 hours of incubation; P < 0.05) and metabolized it mainly into major lipid classes, e.g., triacylglycerols and phospholipids (61.1% and 29.3%, respectively). Supplementation of the maturation medium with LA increased triacylglycerol accumulation in cytoplasmic lipid droplets at all concentrations assayed (P < 0.05). In conclusion, LA added to a defined maturation medium at concentrations that did not alter the nuclear status of bovine oocytes matured in vitro (9 and 43 μM) improved their quality by increasing the content of neutral lipids stored in lipid droplets. By directing the free fatty acid (LA) to triacylglycerol synthesis pathways and increasing the degree of unsaturation of

  6. Evaluation of a method of preparation of lipid emulsions as a model for chylomicron-like particles.

    PubMed

    Antelo, Aranzazu; Perona, Javier S

    2013-06-01

    Chylomicron remnants can penetrate into the artery wall, where they can initiate atherogenesis. Since it is difficult to isolate these particles from human blood because of contamination with other lipoproteins, the use of lipid emulsions as chylomicron remnant-like particles (CRLPs) has been proposed to study their metabolism. This study was aimed to evaluate the methodology for the preparation of CRLP. Artificial chylomicrons were prepared by sonication of a lipid mixture and separated by density gradient centrifugation. Lipid classes were analyzed by HPLC and fatty acids by GC. Particle size was measured by dynamic light scattering and the presence of apolipoprotein E by immunoblotting. The highest lipid content was found in the 60 < Sf < 400 fraction (Sf = Svedberg flotation rate), followed by the Sf > 400. This latter fraction presented the highest triacylglycerol (TAG) concentration, which was dramatically reduced in the 20 < Sf < 60 fraction. Fatty acid composition in TAG and phospholipids resembled that of the standards used with little modifications. The repeatability of the method was excellent, showing relative standard errors below 10%. The mean size of the 60 < Sf < 400 and Sf > 400 fractions, was 195.1 and 347.8 nm, respectively. The lipid analysis showed that Sf > 400 particles resembled the composition of natural chylomicrons and the 60 < Sf < 400 particles that of chylomicron remnants, the range of particle size being more homogeneous in the 60 < Sf < 400 fraction. The method mentioned in this article is not only a reliable method for the preparation of CRLP, but also for native chylomicron-like particles, in terms of lipid composition and particle size. PMID:23327416

  7. Amino Acid Degradations Produced by Lipid Oxidation Products.

    PubMed

    Hidalgo, Francisco J; Zamora, Rosario

    2016-06-10

    Differently to amino acid degradations produced by carbohydrate-derived reactive carbonyls, amino acid degradations produced by lipid oxidation products are lesser known in spite of being lipid oxidation a major source of reactive carbonyls in food. This article analyzes the conversion of amino acids into Strecker aldehydes, α-keto acids, and amines produced by lipid-derived free radicals and carbonyl compounds, as well as the role of lipid oxidation products on the reactions suffered by these compounds: the formation of Strecker aldehydes and other aldehydes from α-keto acids; the formation of Strecker aldehydes and olefins from amines; the formation of shorter aldehydes from Strecker aldehydes; and the addition reactions suffered by the olefins produced from the amines. The relationships among all these reactions and the effect of reaction conditions on them are discussed. This knowledge should contribute to better control food processing in order to favor the formation of desirable beneficial compounds and to inhibit the production of compounds with deleterious properties. PMID:25748518

  8. Lipid interaction of Pseudomonas aeruginosa exotoxin A. Acid-triggered permeabilization and aggregation of lipid vesicles.

    PubMed Central

    Menestrina, G; Pederzolli, C; Forti, S; Gambale, F

    1991-01-01

    We have investigated the interaction of Pseudomonas exotoxin A with small unilamellar vesicles comprised of different phospholipids as a function of pH, toxin, and lipid concentration. We have found that this toxin induces vesicle permeabilization, as measured by the release of a fluorescent dye. Permeabilization is due to the formation of ion-conductive channels which we have directly observed in planar lipid bilayers. The toxin also produces vesicle aggregation, as indicated by an increase of the turbidity. Aggregation and permeabilization have completely different time course and extent upon toxin dose and lipid composition, thus suggesting that they are two independent events. Both time constants decrease by lowering the pH of the bulk phase or by introducing a negative lipid into the vesicles. Our results indicate that at least three steps are involved in the interaction of Pseudomonas exotoxin A with lipid vesicles. After protonation of one charged group the toxin becomes competent to bind to the surface of the vesicles. Binding is probably initiated by an electrostatic interaction because it is absolutely dependent on the presence of acidic phospholipids. Binding is a prerequisite for the subsequent insertion of the toxin into the lipid bilayer, with a special preference for phosphatidylglycerol-containing membranes, to form ionic channels. At high toxin and vesicle concentrations, bound toxin may also induce aggregation of the vesicles, particularly when phosphatidic acid is present in the lipid mixture. A quenching of the intrinsic tryptophan fluorescence of the protein, which is induced by lowering the pH of the solution, becomes more drastic in the presence of lipid vesicles. However, this further quenching takes so long that it cannot be a prerequisite to either vesicle permeabilization or aggregation. Pseudomonas exotoxin A shares many of these properties with other bacterial toxins like diphtheria and tetanus toxin. Images FIGURE 7 FIGURE 8 FIGURE 12

  9. Lysophosphatidic acid as a lipid mediator with multiple biological actions.

    PubMed

    Aikawa, Shizu; Hashimoto, Takafumi; Kano, Kuniyuki; Aoki, Junken

    2015-02-01

    Lysophosphatidic acid (LPA) is one of the simplest glycerophospholipids with one fatty acid chain and a phosphate group as a polar head. Although LPA had been viewed just as a metabolic intermediate in de novo lipid synthetic pathways, it has recently been paid much attention as a lipid mediator. LPA exerts many kinds of cellular processes, such as cell proliferation and smooth muscle contraction, through cognate G protein-coupled receptors. Because lipids are not coded by the genome directly, it is difficult to know their patho- and physiological roles. However, recent studies have identified several key factors mediating the biological roles of LPA, such as receptors and producing enzymes. In addition, studies of transgenic and gene knockout animals for these LPA-related genes, have revealed the biological significance of LPA. In this review we will summarize recent advances in the studies of LPA production and its roles in both physiological and pathological conditions. PMID:25500504

  10. Lipid and fatty acid requirements of tilapias

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tilapia have been shown to have a dietary requirement for linoleic (n-6) series fatty acids (18:2n-6 or 20:4n-6). The optimum dietary levels of n-6 reported were 0.5 and 1% for redbelly tilapia (Tilapia zillii) and Nile tilapia (Oreochromis niloticus), respectively. Tilapia have been suggested to al...

  11. Dustbathing in food particles does not remove feather lipids.

    PubMed

    Scholz, B; Kjaer, J B; Petow, S; Schrader, L

    2014-08-01

    Within the European Union, dustbathing material in cage-housing systems for laying hens became compulsory in 2012. In practice, most producers use food particles as litter substrate. The feed is dropped in small amounts on scratching mats by an automatic transporting system. However, because dustbathing behavior is meant to remove stale lipids from hens' plumage, food particles may not be a suitable substrate due to their fat content. This study analyzes feather lipid concentration (FLC) of laying hens with access to food particles (F) or lignocellulose (L) as litter substrates. In each of 2 identical trials, 84 laying hens of 2 genotypes (Lohmann Selected Leghorn, Lohmann Brown) were kept in 12 compartments (7 hens each). Compartments were equipped with a grid floor and additionally contained a closed dustbathing tray holding F or L. Feather samples (150 feathers) were taken 2 times throughout the experiment. At 23 wk of age, 4 hens per compartment were sampled after they were allowed pair-wise access to a dustbath for 2.5 h and 3 hens were sampled without access to a dustbathing tray (control). After 10 wk of free access to the dustbathing trays, all hens were sampled again. In trial 2, an additional third sampling was made after dustbaths had been closed again for 6 wk. Here, 6 hens per compartment were sampled immediately before and after a dustbath. Dustbathing in F resulted in higher FLC compared with L and control (P < 0.001), whereas no significant difference was found between L and control (P = 0.103). When open access to litter was provided, hens had higher FLC in F compared with L (P < 0.001). The FLC immediately after dustbathing in F was higher compared with the level before dustbathing (P < 0.001), whereas it was lower after dustbathing in L (P = 0.006). These results show that F are not suitable litter material for laying hens because they lead to lipid accumulation on the plumage. PMID:24894524

  12. Rapid lipid enrichment in omega3 fatty acids: plasma data.

    PubMed

    Carpentier, Yvon A; Peltier, Sebastien; Portois, Laurence; Sener, Abdullah; Malaisse, Willy J

    2008-03-01

    The bolus intravenous injection of a novel medium-chain triglyceride:fish oil emulsion to normal subjects was recently reported to enrich within 60 min the phospholipid content of leucocytes and platelets in long-chain polyunsaturated omega3 fatty acids. The present study, conducted in second generation omega3-depleted rats, aimed at investigating whether such a procedure may also increase within 60 min the phospholipid content of omega3 fatty acids in cells located outwards the bloodstream, in this case liver cells, and whether this coincides with correction of the perturbation in the liver triglyceride fatty acid content and profile otherwise prevailing in these rats. This first report deals mainly with the fatty acid pattern of plasma lipids in male omega3-depleted rats that were non-injected or injected with either the omega3-rich emulsion or a control medium-chain triglyceride:olive oil emulsion. The results provide information on the fate of the exogenous lipids present in the lipid emulsions and injected intravenously 60 min before sacrifice. Moreover, in the uninjected omega3-depleted rats the comparison between individual plasma and liver measurements indicated positive correlations in the fatty acid profile of phospholipids and triglycerides. PMID:18288383

  13. Amino acid decarboxylations produced by lipid-derived reactive carbonyls in amino acid mixtures.

    PubMed

    Hidalgo, Francisco J; León, M Mercedes; Zamora, Rosario

    2016-10-15

    The formation of 2-phenylethylamine and phenylacetaldehyde in mixtures of phenylalanine, a lipid oxidation product, and a second amino acid was studied to determine the role of the second amino acid in the degradation of phenylalanine produced by lipid-derived reactive carbonyls. The presence of the second amino acid usually increased the formation of the amine and reduced the formation of the Strecker aldehyde. The reasons for this behaviour seem to be related to the α-amino group and the other functional groups (mainly amino or similar groups) present in the side-chain of the amino acid. These groups are suggested to modify the lipid-derived reactive carbonyl but not the reaction mechanism because the Ea of formation of both 2-phenylethylamine and phenylacetaldehyde remained unchanged in all studied systems. All these results suggest that the amine/aldehyde ratio obtained by amino acid degradation can be modified by adding free amino acids during food formulation. PMID:27173560

  14. What makes the bioactive lipids phosphatidic acid and lysophosphatidic acid so special?

    PubMed

    Kooijman, Edgar E; Carter, Karen M; van Laar, Emma G; Chupin, Vladimir; Burger, Koert N J; de Kruijff, Ben

    2005-12-27

    Phosphatidic acid and lysophosphatidic acid are minor but important anionic bioactive lipids involved in a number of key cellular processes, yet these molecules have a simple phosphate headgroup. To find out what is so special about these lipids, we determined the ionization behavior of phosphatidic acid (PA) and lysophosphatidic acid (LPA) in extended (flat) mixed lipid bilayers using magic angle spinning 31P NMR. Our data show two surprising results. First, despite identical phosphomonoester headgroups, LPA carries more negative charge than PA when present in a phosphatidylcholine bilayer. Dehydroxy-LPA [1-oleoyl-3-(phosphoryl)propanediol] behaves in a manner identical to that of PA, indicating that the difference in negative charge between LPA and PA is caused by the hydroxyl on the glycerol backbone of LPA and its interaction with the phosphomonoester headgroup. Second, deprotonation of phosphatidic acid and lysophosphatidic acid was found to be strongly stimulated by the inclusion of phosphatidylethanolamine in the bilayer, indicating that lipid headgroup charge depends on local lipid composition and will vary between the different subcellular locations of (L)PA. Our findings can be understood in terms of a hydrogen bond formed within the phosphomonoester headgroup of (L)PA and its destabilization by competing intra- or intermolecular hydrogen bonds. We propose that this hydrogen bonding property of (L)PA is involved in the various cellular functions of these lipids. PMID:16363814

  15. Effect of the particle size of cellulose from sweet potato residues on lipid metabolism and cecal conditions in ovariectomized rats.

    PubMed

    Lu, Hongjia; Gui, Yu; Guo, Ting; Wang, Qianqian; Liu, Xiong

    2015-04-01

    This study aims to examine the effect of the particle size of cellulose from sweet potato residues on lipid metabolism and cecal conditions in ovariectomized rats. Forty mature female Wistar rats were divided into five groups. The sham-operated group was used as the sham control. The other four groups were double-ovariectomized and assigned to the model, ordinary cellulose (100 g kg(-1) diet), microcrystalline cellulose (100 g kg(-1) diet), and cellulose nanocrystal (100 g kg(-1) diet) groups. As the cellulose particle size decreased, the body weight gain and food intake were decreased. The plasma lipids and hepatic lipids were decreased. In addition, the mRNA levels of cholesterol 7α-hydroxylase, farnesoid X receptor, and 3-hydroxy-3-methylglutaryl coenzyme A reductase were decreased, whereas those of ileal apical sodium-dependent bile acid transporter and intestinal bile acid binding protein were increased. The cecum weight, cecum content, and short-chain fatty acid concentration and the amount of total bile acids in the small intestinal content, as well as the bile acids and neutral steroids in fecal excretion, were increased. These results indicate that as the particle size decreased, cellulose was more effective in preventing ovarian hormone deficiency-induced hyperlipidemia and in improving intestinal health. PMID:25710810

  16. Lipid oxidation by hypochlorous acid: chlorinated lipids in atherosclerosis and myocardial ischemia.

    PubMed

    Ford, David A

    2010-12-01

    Leukocytes, containing myeloperoxidase (MPO), produce the reactive chlorinating species, HOCl, and they have important roles in the pathophysiology of cardiovascular disease. Leukocyte-derived HOCl can target primary amines, alkenes and vinyl ethers of lipids, resulting in chlorinated products. Plasmalogens are vinyl ether-containing phospholipids that are abundant in tissues of the cardiovascular system. The HOCl oxidation products derived from plasmalogens are α-chlorofatty aldehyde and unsaturated molecular species of lysophosphatidylcholine. α-chlorofatty aldehyde is the precursor of both α-chlorofatty alcohol and α-chlorofatty acid. Both α-chlorofatty aldehyde and α-chlorofatty acid accumulate in activated neutrophils and have disparate chemotactic properties. In addition, α-chlorofatty aldehyde increases in activated monocytes, human atherosclerotic lesions and rat infarcted myocardium. This article addresses the pathways for the synthesis of these lipids and their biological targets. PMID:21339854

  17. Omega-3 fatty acids, lipid rafts, and T cell signaling.

    PubMed

    Hou, Tim Y; McMurray, David N; Chapkin, Robert S

    2016-08-15

    n-3 polyunsaturated fatty acids (PUFA) have been shown in many clinical studies to attenuate inflammatory responses. Although inflammatory responses are orchestrated by a wide spectrum of cells, CD4(+) T cells play an important role in the etiology of many chronic inflammatory diseases such as inflammatory bowel disease and obesity. In light of recent concerns over the safety profiles of non-steroidal anti-inflammatory drugs (NSAIDs), alternatives such as bioactive nutraceuticals are becoming more attractive. In order for these agents to be accepted into mainstream medicine, however, the mechanisms by which nutraceuticals such as n-3 PUFA exert their anti-inflammatory effects must be fully elucidated. Lipid rafts are nanoscale, dynamic domains in the plasma membrane that are formed through favorable lipid-lipid (cholesterol, sphingolipids, and saturated fatty acids) and lipid-protein (membrane-actin cytoskeleton) interactions. These domains optimize the clustering of signaling proteins at the membrane to facilitate efficient cell signaling which is required for CD4(+) T cell activation and differentiation. This review summarizes novel emerging data documenting the ability of n-3 PUFA to perturb membrane-cytoskeletal structure and function in CD4(+) T cells. An understanding of these underlying mechanisms will provide a rationale for the use of n-3 PUFA in the treatment of chronic inflammation. PMID:26001374

  18. Dietary phenolic acids and ascorbic acid: Influence on acid-catalyzed nitrosative chemistry in the presence and absence of lipids.

    PubMed

    Combet, Emilie; El Mesmari, Aziza; Preston, Tom; Crozier, Alan; McColl, Kenneth E L

    2010-03-15

    Acid-catalyzed nitrosation and production of potentially carcinogenic nitrosative species is focused at the gastroesophageal junction, where salivary nitrite, derived from dietary nitrate, encounters the gastric juice. Ascorbic acid provides protection by converting nitrosative species to nitric oxide (NO). However, NO may diffuse into adjacent lipid, where it reacts with O(2) to re-form nitrosative species and N-nitrosocompounds (NOC). In this way, ascorbic acid promotes acid nitrosation. Using a novel benchtop model representing the gastroesophageal junction, this study aimed to clarify the action of a range of water-soluble antioxidants on the nitrosative mechanisms in the presence or absence of lipids. Caffeic, ferulic, gallic, or chlorogenic and ascorbic acids were added individually to simulated gastric juice containing secondary amines, with or without lipid. NO and O(2) levels were monitored by electrochemical detection. NOC were measured in both aqueous and lipid phases by gas chromatography-tandem mass spectrometry. In the absence of lipids, all antioxidants tested inhibited nitrosation, ranging from 35.9 + or - 7.4% with gallic acid to 93 + or - 0.6% with ferulic acid. In the presence of lipids, the impact of each antioxidant on nitrosation was inversely correlated with the levels of NO they generated (R(2) = 0.95, p<0.01): gallic, chlorogenic, and ascorbic acid promoted nitrosation, whereas ferulic and caffeic acids markedly inhibited nitrosation. PMID:20026204

  19. Effects of different biomass drying and lipid extraction methods on algal lipid yield, fatty acid profile, and biodiesel quality.

    PubMed

    Hussain, Javid; Liu, Yan; Lopes, Wilson A; Druzian, Janice I; Souza, Carolina O; Carvalho, Gilson C; Nascimento, Iracema A; Liao, Wei

    2015-03-01

    Three lipid extraction methods of hexane Soxhlet (Sox-Hex), Halim (HIP), and Bligh and Dyer (BD) were applied on freeze-dried (FD) and oven-dried (OD) Chlorella vulgaris biomass to evaluate their effects on lipid yield, fatty acid profile, and algal biodiesel quality. Among these three methods, HIP was the preferred one for C. vulgaris lipid recovery considering both extraction efficiency and solvent toxicity. It had the highest lipid yields of 20.0 and 22.0% on FD and OD biomass, respectively, with corresponding neutral lipid yields of 14.8 and 12.7%. The lipid profiling analysis showed that palmitic, oleic, linoleic, and α-linolenic acids were the major fatty acids in the algal lipids, and there were no significant differences on the amount of these acids between different drying and extraction methods. Correlative models applied to the fatty acid profiles concluded that high contents of palmitic and oleic acids in algal lipids contributed to balancing the ratio of saturated and unsaturated fatty acids and led to a high-quality algal biodiesel. PMID:25588528

  20. Effect of fatty acids on lipid and apoprotein secretion and association in hepatocyte cultures.

    PubMed Central

    Patsch, W; Tamai, T; Schonfeld, G

    1983-01-01

    Increasing availability of free fatty acids (FFA) to liver results in enhanced rates of secretion of triglycerides in lipoproteins. However, as FFA uptake increases, triglyceride secretory rates reach a plateau and esterified fatty acids accumulate intracellularly, suggesting that something is limiting lipid transport out of the liver. One possibility could be the limited availability of apoproteins. To test this hypothesis, primary rat hepatocytes in culture were incubated with increasing amounts of FFA (0-2.1 mumol/dish) and the amounts of lipids and apoproteins inside the cells and in culture media were measured; the latter by specific radioimmunoassays. Media also were fractionated on Sepharose 2B and 6B columns and the elution profiles of apoproteins were obtained. With exposure to increasing amounts of free fatty acids, hepatocytes took up more fatty acids and intracellular levels of triglycerides rose (from 71 to 146 micrograms/mg cell protein). Concomitantly, media triglycerides nearly doubled (31 to 51 micrograms/mg). Incorporation of [3H]glyceride into cellular and media triglyceride also rose. However, levels of apoproteins A-I, B, C-III3, and E in cells and media were unchanged. The increasing amounts of triglycerides in media were present in larger particles, as demonstrated on gel permeation chromatography. The elution profiles of apoproteins B, C-III3, and E were altered in that a greater proportion of the apoproteins eluted with larger particles. Similar results were obtained when hepatocytes were preloaded with increasing amounts of FFA over 12 h and analyses of cells and media were carried out 8 and 22 h after removal of fatty acids from the media. During loading of cells, accumulation of cellular triglycerides was directly related to media FFA concentrations. During unloading, triglyceride secretory rates were related to cellular triglyceride levels. At higher triglyceride secretory rates larger particles were secreted and a greater proportion of

  1. Roles played by acidic lipids in HIV-1 Gag membrane binding

    PubMed Central

    Olety, Balaji; Ono, Akira

    2014-01-01

    The MA domain mediates plasma membrane (PM) targeting of HIV-1 Gag, leading to particle assembly at the PM. The interaction between MA and acidic phospholipids, in addition to N-terminal myristoyl moiety, promotes Gag binding to lipid membranes. Among acidic phospholipids, PI(4,5)P2, a PM-specific phosphoinositide, is essential for proper HIV-1 Gag localization to the PM and efficient virus particle production. Recent studies further revealed that MA-bound RNA negatively regulates HIV-1 Gag membrane binding and that PI(4,5)P2 is necessary to overcome this RNA-imposed block. In this review, we will summarize the current understanding of Gag-membrane interactions and discuss potential roles played by acidic phospholipids. PMID:24998886

  2. Major lipid classes and their fatty acids in a parasitic nematode, Ascaridia galli.

    PubMed

    Ghosh, Amit; Kar, Kumkum; Ghosh, D; Dey, C; Misra, K K

    2010-04-01

    The paper presents major lipid classes and their fatty acids investigated from Ascaridia galli, a nematode parasite of country fowl. Thin layer chromatography (TLC) reveals that the percent of total lipid, neutral lipid, phospholipids, and glycolipids are 1.94, 54.39, 26.95 and 18.66, respectively. Gas-liquid chromatography (GLC) analysis shows that the saturated fatty acids are the major components in all the lipid fractions followed by monoenes and dienes. Polyunsaturated fatty acids (PUFA) were present in low amount. Stearic acids (C(18)) were the chief components among all the fatty acids in all the lipid fractions. PMID:21526035

  3. The Impact of Variables on Particle Size of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers; A Comparative Literature Review

    PubMed Central

    Azhar Shekoufeh Bahari, Leila; Hamishehkar, Hamed

    2016-01-01

    During the past decade, pharmaceutical science has seen rapid growth in interest for nanoscale materials. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are popular research topics recently introduced as nano-scale drug carriers; they have shown numerous merits in drug delivery. Size is the most important index in a nanocarrier affecting its drug delivery efficiency. The influence of preparation conditions and type of lipidic components on the size of SLN and NLC in comparable states seems to be interesting for researchers who investigate these types of carriers. This review highlights the results of SLN and NLC particle size and size distribution comparisons. PMID:27478775

  4. Intravenous lipid and amino acids briskly increase plasma glucose concentrations in small premature infants.

    PubMed

    Savich, R D; Finley, S L; Ogata, E S

    1988-07-01

    We determined the glycemic response to intravenous lipid infusion alone, lipid with amino acids, or amino acids alone in 15 very small premature infants receiving constant glucose infusion during early life. Infants who received lipid or lipid and amino acids demonstrated significant increases in glucose compared with infants who received amino acids. The combination of lipid and amino acids resulted in an earlier increase than lipid alone. Although plasma insulin did not change in all three groups, infants who received amino acids alone demonstrated an appropriate increase in glucagon. These data suggest that lipid infusion, a commonly used means of providing nutrition to premature infants, may cause significant disturbances in glucoregulation, particularly when administered with amino acids. PMID:3132930

  5. Oxodicarboxylic acids in atmospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Römpp, Andreas; Winterhalter, Richard; Moortgat, Geert K.

    Fine mode aerosol was collected on quartz fiber filters at several sites across Europe. These samples were analyzed for carboxylic acids by liquid chromatography coupled to a hybrid (quadrupole and time-of-flight) mass spectrometer (LC/MS/MS-TOF). A series of oxodicarboxylic acids (C 7-C 11) was detected. Oxodicarboxylic acids are linear dicarboxylic acids with an additional carbonyl group. Previous measurements of these acids are scarce and their sources are largely unknown. Several structural isomers (different positions of the carbonyl group within the molecule) could be identified and differentiated by the combination of laboratory experiments and high mass accuracy measurements. The homologs with 9-11 carbon atoms were identified for the first time in atmospheric aerosol particles. The concentrations of oxodicarboxylic acids in ambient aerosol samples frequently exceeded those of the corresponding unsubstituted dicarboxylic acids. Oxodicarboxylic acids have been shown to be products of the reaction of dicarboxylic acids with OH radicals in chamber experiments and a reaction mechanism is proposed. Good correlation of oxodicarboxylic acid and hydroxyl radical concentrations was found at two measurement sites (Finland and Crete) of different geographic location and meteorological conditions. The ratios of individual isomers from the field samples are comparable to those of the laboratory experiments. The results of this study imply that the reaction of OH radicals and dicarboxylic acids is an important pathway for the production of oxodicarboxylic acids in the atmosphere. Oxodicarboxylic acids seem to be important intermediates in atmospheric oxidation processes of organic compounds.

  6. Evidence that oleic acid exists in a separate phase within stratum corneum lipids

    SciTech Connect

    Ongpipattanakul, B.; Burnette, R.R.; Potts, R.O.; Francoeur, M.L. )

    1991-03-01

    Oleic acid is known to be a penetration enhancer for polar to moderately polar molecules. A mechanism related to lipid phase separation has been previously proposed by this laboratory to explain the increases in skin transport. In the studies presented here, Fourier transform infrared spectroscopy (FT-IR) was utilized to investigate whether or not oleic acid exists in a separate phase within stratum corneum (SC) lipids. Per-deuterated oleic acid was employed allowing the conformational phase behavior of the exogenously added fatty acid and the endogenous SC lipids to be monitored independently of each other. The results indicated that oleic acid exerts a significant effect on the SC lipids, lowering the lipid transition temperature (Tm) in addition to increasing the conformational freedom or flexibility of the endogenous lipid alkyl chains above their Tm. At temperatures lower than Tm, however, oleic acid did not significantly change the chain disorder of the SC lipids. Similar results were obtained with lipids isolated from the SC by chloroform:methanol extraction. Oleic acid, itself, was almost fully disordered at temperatures both above and below the endogenous lipid Tm in the intact SC and extracted lipid samples. This finding suggested that oleic acid does exist as a liquid within the SC lipids. The coexistence of fluid oleic acid and ordered SC lipids, at physiological temperatures, is consistent with the previously proposed phase-separation transport mechanism for enhanced diffusion.

  7. A comparative study of the fatty acid composition of prochloron lipids

    NASA Technical Reports Server (NTRS)

    Kenrick, J. R.; Deane, E. M.; Bishop, D. G.

    1983-01-01

    The chemical analysis of lipids of Prochloron isolated from several hosts is discussed. The object was to determine whether differences in lipid composition could be used to characterize organisms from different sources. Major lipid components are given. An analysis of fatty acid composition of individual lipids slowed a distinctive disstribution of fatty acids. While present results do not justify the use of fatty acid content in the taxonomy of Prochlon, the variations found in the lipids of cells from the same host harvested from different areas, or at different times in the same area, suggest that a study of the effects of temperature and light intensity on lipid composition would be rewarding.

  8. HIV-1 Vpu's lipid raft association is dispensable for counteraction of the particle release restriction imposed by CD317/Tetherin

    SciTech Connect

    Fritz, Joeelle V. Tibroni, Nadine Keppler, Oliver T. Fackler, Oliver T.

    2012-03-01

    HIV-1 Vpu antagonizes the block to particle release mediated by CD317 (BST-2/HM1.24/Tetherin) via incompletely understood mechanisms. Vpu and CD317 partially reside in cholesterol-rich lipid rafts where HIV-1 budding preferentially occurs. Here we find that lipid raft association of ectopically expressed or endogenous CD317 was unaltered upon co-expression with Vpu or following HIV-1 infection. Similarly, Vpu's lipid raft association remained unchanged upon expression of CD317. We identify amino acids V25 and Y29 of Vpu as crucial for microdomain partitioning and single substitution of these amino acids resulted in Vpu variants with markedly reduced or undetectable lipid raft association. These mutations did not affect Vpu's subcellular distribution and binding capacity to CD317, nor its ability to downmodulate cell surface CD317 and promote HIV-1 release from CD317-positive cells. We conclude that (i) lipid raft incorporation is dispensable for Vpu-mediated CD317 antagonism and (ii) Vpu does not antagonize CD317 by extraction from lipid rafts.

  9. Permeability of lipid bilayers to amino acids and phosphate

    NASA Technical Reports Server (NTRS)

    Chakrabarti, A. C.; Deamer, D. W.

    1992-01-01

    Permeability coefficients for amino acid classes, including neutral, polar, hydrophobic, and charged species, were measured and compared with values for other ionic solutes such as phosphate. The rates of efflux of glycine, lysine, phenylalanine, serine and tryptophan were determined after they were passively entrapped in large unilamellar vesicles (LUVs) composed of egg phosphatidylcholine (EPC) or dimyristoylphosphatidylcholine (DMPC). The following permeability coefficients were obtained for: glycine, 5.7 x 10(-12) cm s-1 (EPC), 2.0 x 10(-11) cm s-1 (DMPC); serine, 5.5 x 10(-12) cm s-1 (EPC), 1.6 x 10(-11) cm s-1 (DMPC); lysine, 5.1 x 10(-12) cm s-1 (EPC), 1.9 x 10(-11) cm s-1 (DMPC); tryptophan, 4.1 x 10(-10) cm s-1 (EPC); and phenylalanine, 2.5 x 10(-10) cm s-1 (EPC). Decreasing lipid chain length increased permeability slightly, while variations in pH had only minor effects on the permeability coefficients of the amino acids tested. Phosphate permeability was in the range of 10(-12)-10(-13) cm s-1 depending on the pH of the medium. The values for the polar and charged amino acids were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium, which are in the range of 10(-12)-10(-13) cm s-1, depending on conditions and the lipid species used. This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. The results are relevant to the permeation of certain peptides into lipid bilayers during protein translocation and membrane biogenesis.

  10. Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition

    PubMed Central

    Kishino, Shigenobu; Takeuchi, Michiki; Park, Si-Bum; Hirata, Akiko; Kitamura, Nahoko; Kunisawa, Jun; Kiyono, Hiroshi; Iwamoto, Ryo; Isobe, Yosuke; Arita, Makoto; Arai, Hiroyuki; Ueda, Kazumitsu; Shima, Jun; Takahashi, Satomi; Yokozeki, Kenzo; Shimizu, Sakayu; Ogawa, Jun

    2013-01-01

    In the representative gut bacterium Lactobacillus plantarum, we identified genes encoding the enzymes involved in a saturation metabolism of polyunsaturated fatty acids and revealed in detail the metabolic pathway that generates hydroxy fatty acids, oxo fatty acids, conjugated fatty acids, and partially saturated trans-fatty acids as intermediates. Furthermore, we observed these intermediates, especially hydroxy fatty acids, in host organs. Levels of hydroxy fatty acids were much higher in specific pathogen-free mice than in germ-free mice, indicating that these fatty acids are generated through polyunsaturated fatty acids metabolism of gastrointestinal microorganisms. These findings suggested that lipid metabolism by gastrointestinal microbes affects the health of the host by modifying fatty acid composition. PMID:24127592

  11. Uric acid as a modulator of glucose and lipid metabolism.

    PubMed

    Lima, William Gustavo; Martins-Santos, Maria Emília Soares; Chaves, Valéria Ernestânia

    2015-09-01

    In humans, uric acid is the final oxidation product of purine catabolism. The serum uric acid level is based on the balance between the absorption, production and excretion of purine. Uric acid is similarly produced in the liver, adipose tissue and muscle and is primarily excreted through the urinary tract. Several factors, including a high-fructose diet and the use of xenobiotics and alcohol, contribute to hyperuricaemia. Hyperuricaemia belongs to a cluster of metabolic and haemodynamic abnormalities, called metabolic syndrome, characterised by abdominal obesity, glucose intolerance, insulin resistance, dyslipidaemia and hypertension. Hyperuricaemia reduction in the Pound mouse or fructose-fed rats, as well as hyperuricaemia induction by uricase inhibition in rodents and studies using cell culture have suggested that uric acid plays an important role in the development of metabolic syndrome. These studies have shown that high uric acid levels regulate the oxidative stress, inflammation and enzymes associated with glucose and lipid metabolism, suggesting a mechanism for the impairment of metabolic homeostasis. Humans lacking uricase, the enzyme responsible for uric acid degradation, are susceptible to these effects. In this review, we summarise the current knowledge of the effects of uric acid on the regulation of metabolism, primarily focusing on liver, adipose tissue and skeletal muscle. PMID:26133655

  12. Skeletal Muscle Lipid Deposition and Insulin Resistance: Impact of Dietary Fatty Acids and Exercise

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evidence has mounted indicating that elevated intramuscular triacylglycerol levels are associated with diminished insulin sensitivity in skeletal muscle. This lipid accumulation is most likely due to enhanced fatty acid uptake into the muscle coupled with diminished mitochondrial lipid oxidation. Th...

  13. PARTICLE SIZE CHARACTERIZATION OF STARCH-LIPID COMPOSITES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch-lipid composites (SLCs) have been used as fat replacers and stabilizers in beef patties, dairy products, and baked goods and the technology has been patented under the trademark FanteskTM. The SLCs are produced by mixing aqueous starch slurry with a lipid source, and steam jet-cooking. The ...

  14. Solid Lipid Nanoparticles Loaded with Retinoic Acid and Lauric Acid as an Alternative for Topical Treatment of Acne Vulgaris.

    PubMed

    Silva, Elton Luiz; Carneiro, Guilherme; De Araújo, Lidiane Advíncula; Trindade, Mariana de Jesus Vaz; Yoshida, Maria Irene; Oréfice, Rodrigo Lambert; Farias, Luis de Macêdo; De Carvalho, Maria Auxiliadora Roque; Dos Santos, Simone Gonçalves; Goulart, Gisele Assis Castro; Alves, Ricardo José; Ferreira, Lucas Antônio Miranda

    2015-01-01

    Topical therapy is the first choice for the treatment of mild to moderate acne and all-trans retinoic acid is one of the most used drugs. The combination of retinoids and antimicrobials is an innovative approach for acne therapy. Recently, lauric acid, a saturated fatty acid, has shown strong antimicrobial activity against Propionibacterium acnes. However, topical application of retinoic acid is followed by high incidence of side-effects, including erythema and irritation. Solid lipid nanoparticles represent an alternative to overcome these side-effects. This work aims to develop solid lipid nanoparticles loaded with retinoic acid and lauric acid and evaluate their antibacterial activity. The influence of lipophilic stearylamine on the characteristics of solid lipid nanoparticles was investigated. Solid lipid nanoparticles were characterized for size, zeta potential, encapsulation efficiency, differential scanning calorimetry and X-ray diffraction. The in vitro inhibitory activity of retinoic acid-lauric acid-loaded solid lipid nanoparticles was evaluated against Propionibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis. High encapsulation efficiency was obtained at initial time (94 ± 7% and 100 ± 4% for retinoic acid and lauric acid, respectively) and it was demonstrated that lauric acid-loaded-solid lipid nanoparticles provided the incorporation of retinoic acid. However, the presence of stearylamine is necessary to ensure stability of encapsulation. Moreover, retinoic acid-lauric acid-loaded solid lipid nanoparticles showed growth inhibitory activity against Staphylococcus epidermidis, Propionibacterium acnes and Staphylococcus aureus, representing an interesting alternative for the topical therapy of acne vulgaris. PMID:26328443

  15. Dihydrolipoic acid inhibits 15-lipoxygenase-dependent lipid peroxidation.

    PubMed

    Lapenna, Domenico; Ciofani, Giuliano; Pierdomenico, Sante Donato; Giamberardino, Maria Adele; Cuccurullo, Franco

    2003-11-15

    The potential antioxidant effects of the hydrophobic therapeutic agent lipoic acid (LA) and of its reduced form dihydrolipoic acid (DHLA) on the peroxidation of either linoleic acid or human non-HDL fraction catalyzed by soybean 15-lipoxygenase (SLO) and rabbit reticulocyte 15-lipoxygenase (RR15-LOX) were investigated. DHLA, but not LA, did inhibit SLO-dependent lipid peroxidation, showing an IC(50) of 15 microM with linoleic acid and 5 microM with the non-HDL fraction. In specific experiments performed with linoleic acid, inhibition of SLO activity by DHLA was irreversible and of a complete, noncompetitive type. In comparison with DHLA, the well-known lipoxygenase inhibitor nordihydroguaiaretic acid and the nonspecific iron reductant sodium dithionite inhibited SLO-dependent linoleic acid peroxidation with an IC(50) of 4 and 100 microM, respectively, while the hydrophilic thiol N-acetylcysteine, albeit possessing iron-reducing and radical-scavenging properties, was ineffective. Remarkably, DHLA, but not LA, was also able to inhibit the peroxidation of linoleic acid and of the non-HDL fraction catalyzed by RR15-LOX with an IC(50) of, respectively, 10 and 5 microM. Finally, DHLA, but once again not LA, could readily reduce simple ferric ions and scavenge efficiently the stable free radical 1,1-diphenyl-2-pycrylhydrazyl in ethanol; DHLA was considerably less effective against 2,2'-azobis(2-amidinopropane) dihydrochloride-mediated, peroxyl radical-induced non-HDL peroxidation, showing an IC(50) of 850 microM. Thus, DHLA, at therapeutically relevant concentrations, can counteract 15-lipoxygenase-dependent lipid peroxidation; this antioxidant effect may stem primarily from reduction of the active ferric 15-lipoxygenase form to the inactive ferrous state after DHLA-enzyme hydrophobic interaction and, possibly, from scavenging of fatty acid peroxyl radicals formed during lipoperoxidative processes. Inhibition of 15-lipoxygenase oxidative activity by DHLA could occur in

  16. Improved In Vitro Antileukemic Activity of All-Trans Retinoic Acid Loaded in Cholesteryl Butyrate Solid Lipid Nanoparticles.

    PubMed

    Silva, Elton Luiz; Lima, Flávia Alves; Carneiro, Guilherme; Ramos Jonas Periera; Gomes, Dawidson Assis; de Souza-Fagundes, Elaine Maria; Ferreira, Lucas Antônio Miranda

    2016-02-01

    All-trans retinoic acid, a hydrophobic drug, has become one of the most successful examples of differentiation agents used for treatment of acute promyelocytic leukemia. On the other hand, histone deacetylase inhibitors, such as cholesteryl butyrate, present differentiating activity and.can potentiate action of drugs such as all-trans retinoic acid. Solid lipid nanoparticles represent a promising alternative for administration of hydrophobic drugs such as ATRA. This study aimed to develop, characterize, and evaluate the cytotoxicity of all-trans retinoic acid-loaded solid lipid nanoparticles for leukemia treatment. The influence of in situ formation of an ion pairing between all-trans retinoic acid and lipophilic amines on the characteristics of the particles (size, zeta potential, encapsulation efficiency) was evaluated. Cholesteryl butyrate, a butyric acid donor, was used as a component of the lipid matrix. In vitro activity on cell viability and distribution of cell cycle phases were evaluated for HL-60, Jurkat, and THP-1 cell lines. The encapsulation efficiency of all-trans retinoic acid in cholesteryl butyrate-solid lipid nanoparticles was significantly increased by the presence of the amine. Inhibition of cell viability by all-trans retinoic acid-loaded solid lipid nanoparticles was more pronounced than the free drug. Analysis of the distribution of cell cycle phases also showed increased activity for all-trans retinoic acid-loaded cholesteryl butyrate-solid lipid nanoparticles, with a clear increase in subdiploid DNA content. The ion pair formation in SLN containing cholesteryl butyrate can be explored as a simple and inexpensive strategy to improve the efficacy and bioavail-ability of ATRA in the treatment of the cancer and metabolic diseases in which this retinoid plays an important role. PMID:27433579

  17. Lipid production on free fatty acids by oleaginous yeasts under non-growth conditions.

    PubMed

    Yang, Xiaobing; Jin, Guojie; Wang, Yandan; Shen, Hongwei; Zhao, Zongbao K

    2015-10-01

    Microbial lipids produced by oleaginous yeasts serve as promising alternatives to traditional oils and fats for the production of biodiesel and oleochemicals. To improve its techno-economics, it is pivotal to use wastes and produce high quality lipids of special fatty acid composition. In the present study, four oleaginous yeasts were tested to use free fatty acids for lipid production under non-growth conditions. Microbial lipids of exceptionally high fatty acid relative contents, e.g. those contained over 70% myristic acid or 80% oleic acid, were produced that may be otherwise inaccessible by growing cells on various carbon sources. It was found that Cryptococcus curvatus is a robust strain that can efficiently use oleic acid as well as even-numbered saturated fatty acids with carbon atoms ranging from 10 to 20. Our results provided new opportunity for the production of functional lipids and for the exploitation of organic wastes rich in free fatty acids. PMID:26159379

  18. Characterization of lipid and fatty acids composition of Chlorella zofingiensis in response to nitrogen starvation.

    PubMed

    Zhu, Shunni; Wang, Yajie; Shang, Changhua; Wang, Zhongming; Xu, Jingliang; Yuan, Zhenhong

    2015-08-01

    Cellular biochemical composition of the microalga Chlorella zofingiensis was studied under favorable and nitrogen starvation conditions, with special emphasis on lipid classes and fatty acids distribution. When algal cells were grown in nitrogen-free medium (N stress), the increase in the contents of lipid and carbohydrate while a decrease in protein content was detected. Glycolipids were the major lipid fraction (50.7% of total lipids) under control condition, while neutral lipids increased to be predominant (86.7% of total lipids) under N stress condition. Triacylglycerol (TAG) content in N stressed cells was 27.3% dw, which was over three times higher than that obtained under control condition. Within neutral lipids fraction, monounsaturated fatty acids (MUFA) were the main group (40.6%) upon N stress, in which oleic acid was the most representative fatty acids (34.5%). Contrarily, glycolipids and phospholipids showed a higher percentage of polyunsaturated fatty acids (PUFA). Lipid quality assessment indicated the potential of this alga as a biodiesel feedstock when its neutral lipids were a principal lipid fraction. The results demonstrate that the neutral lipids content is key to determine the suitability of the microalga for biodiesel, and the stress cultivation is essential for lipid quality. PMID:25782619

  19. Lipid and fatty acid compositions of cod ( Gadus morhua), haddock ( Melanogrammus aeglefinus) and halibut ( Hippoglossus hippoglossus)

    NASA Astrophysics Data System (ADS)

    Zeng, Duan; Mai, Kangsen; Ai, Qinghui; Milley, Joyce E.; Lall, Santosh P.

    2010-12-01

    This study was conducted to compare lipid and fatty acid composition of cod, haddock and halibut. Three groups of cod (276 g ± 61 g), haddock (538 g ± 83 g) and halibut (3704 g ± 221 g) were maintained with commercial feeds mainly based on fish meal and marine fish oil for 12 weeks prior to sampling. The fatty acid compositions of muscle and liver were determined by GC/FID after derivatization of extracted lipids into fatty acid methyl esters (FAME). Lipids were also fractionated into neutral and polar lipids using Waters silica Sep-Pak?. The phospholipid fraction was further separated by high-performance thin-layer chromatography (HPTLC) and the FAME profile was obtained. Results of the present study showed that cod and haddock were lean fish and their total muscle lipid contents were 0.8% and 0.7%, respectively, with phospholipid constituting 83.6% and 87.5% of the total muscle lipid, respectively. Halibut was a medium-fat fish and its muscle lipid content was 8%, with 84% of the total muscle lipid being neutral lipid. Total liver lipid contents of cod, haddock and halibut were 36.9%, 67.2% and 30.7%, respectively, of which the neutral lipids accounted for the major fraction (88.1%-97.1%). Polyunsaturated fatty acids were the most abundant in cod and haddock muscle neutral lipid. Monounsaturated fatty acid level was the highest in halibut muscle neutral lipid. Fatty acid compositions of phospholipid were relatively constant. In summary, the liver of cod and haddock as lean fish was the main lipid reserve organ, and structural phospholipid is the major lipid form in flesh. However, as a medium-fat fish, halibut stored lipid in both their liver and muscle.

  20. Lipid transfer particle from the silkworm, Bombyx mori, is a novel member of the apoB/large lipid transfer protein family[S

    PubMed Central

    Yokoyama, Hiroshi; Yokoyama, Takeru; Yuasa, Masashi; Fujimoto, Hirofumi; Sakudoh, Takashi; Honda, Naoko; Fugo, Hajime; Tsuchida, Kozo

    2013-01-01

    Lipid transfer particle (LTP) is a high-molecular-weight, very high-density lipoprotein known to catalyze the transfer of lipids between a variety of lipoproteins, including both insects and vertebrates. Studying the biosynthesis and regulation pathways of LTP in detail has not been possible due to a lack of information regarding the apoproteins. Here, we sequenced the cDNA and deduced amino acid sequences for three apoproteins of LTP from the silkworm (Bombyx mori). The three subunit proteins of the LTP are coded by two genes, apoLTP-II/I and apoLTP-III. ApoLTP-I and apoLTP-II are predicted to be generated by posttranslational cleavage of the precursor protein, apoLTP-II/I. Clusters of amphipathic secondary structure within apoLTP-II/I are similar to Homo sapiens apolipoprotein B (apoB) and insect lipophorins. The apoLTP-II/I gene is a novel member of the apoB/large lipid transfer protein gene family. ApoLTP-III has a putative conserved juvenile hormone-binding protein superfamily domain. Expression of apoLTP-II/I and apoLTP-III genes was synchronized and both genes were primarily expressed in the fat body at the stage corresponding to increased lipid transport needs. We are now in a position to study in detail the physiological role of LTP and its biosynthesis and assembly. PMID:23812557

  1. Measurement of the incorporation of orally administered arachidonic acid into tissue lipids

    SciTech Connect

    Kulmacz, R.J.; Sivarajan, M.; Lands, W.E.

    1986-01-01

    The applicability of a stable isotope method to monitor the mixing of dietary arachidonic acid with endogenous arachidonic acid in tissue lipids was evaluated. Rats were fed octadeuterated arachidonic acid during a 20-day period, and the entry of the dietary acid into lipid esters of various tissues was examined by gas chromatography-mass spectrometric (GC-MS) analysis of their fatty acids. The rats were maintained on a fat-free diet from weaning until 63 days old to enhance the ratio of the dietary acid to endogenous arachidonate. Three separate forms of eicosatetraenoic acid in the tissue lipids could be distinguished by GC-MS: octadeuterated arachidonic acid (recent dietary origin), unlabeled arachidonic acid (maternal origin) and unlabeled 4,7,10,13-eicosatetraenoic acid (originating from palmitoleic acid). The total eicosatetraenoic acid in the tissue lipids contained about 90% arachidonate from recent dietary origin in lung, kidney, heart and fat, 70% in muscle and liver and 27% in brain. The n-7 isomer of eicosatetraenoic acid was estimated to make up 6% or less of the total eicosatetraenoic acid in lung, kidney, brain, muscle and heart tissue lipids, but it comprised around 15% of the total eicosatetraenoic acid in liver. The unlabeled arachidonic acid of maternal origin thus comprised only about 10% of the eicosatetraenoic acid in all tissues examined except muscle and brain, where it was 24% and 70% of the eicosatetraenoic acid, respectively.

  2. Lipid Diffusion in Supported Lipid Bilayers: A Comparison between Line-Scanning Fluorescence Correlation Spectroscopy and Single-Particle Tracking

    PubMed Central

    Rose, Markus; Hirmiz, Nehad; Moran-Mirabal, Jose M.; Fradin, Cécile

    2015-01-01

    Diffusion in lipid membranes is an essential component of many cellular process and fluorescence a method of choice to study membrane dynamics. The goal of this work was to directly compare two common fluorescence methods, line-scanning fluorescence correlation spectroscopy and single-particle tracking, to observe the diffusion of a fluorescent lipophilic dye, DiD, in a complex five-component mitochondria-like solid-supported lipid bilayer. We measured diffusion coefficients of DFCS ~ 3 μm2 · s−1 and DSPT ~ 2 μm2 · s−1, respectively. These comparable, yet statistically different values are used to highlight the main message of the paper, namely that the two considered methods give access to distinctly different dynamic ranges: D ≳ 1 μm2 · s−1 for FCS and D ≲ 5 μm2 · s−1 for SPT (with standard imaging conditions). In the context of membrane diffusion, this means that FCS allows studying lipid diffusion in fluid membranes, as well as the diffusion of loosely-bound proteins hovering above the membrane. SPT, on the other hand, is ideal to study the motions of membrane-inserted proteins, especially those presenting different conformations, but only allows studying lipid diffusion in relatively viscous membranes, such as supported lipid bilayers and cell membranes. PMID:26610279

  3. Mechanisms of lipid malabsorption in Cystic Fibrosis: the impact of essential fatty acids deficiency

    PubMed Central

    Peretti, N; Marcil, V; Drouin, E; Levy, E

    2005-01-01

    Transport mechanisms, whereby alimentary lipids are digested and packaged into small emulsion particles that enter intestinal cells to be translocated to the plasma in the form of chylomicrons, are impaired in cystic fibrosis. The purpose of this paper is to focus on defects that are related to intraluminal and intracellular events in this life-limiting genetic disorder. Specific evidence is presented to highlight the relationship between fat malabsorption and essential fatty acid deficiency commonly found in patients with cystic fibrosis that are often related to the genotype. Given the interdependency of pulmonary disease, pancreatic insufficiency and nutritional status, greater attention should be paid to the optimal correction of fat malabsorption and essential fatty acid deficiency in order to improve the quality of life and extend the life span of patients with cystic fibrosis. PMID:15869703

  4. Process strategies to maximize lipid accumulations of novel yeast in acid and base treated hydrolyzates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleaginous yeasts can accumulate up to 70% of cell biomass as lipids, predominantly as triacylglycerols. Yeast lipid fatty acid profiles have been reported to be similar to that of vegetable oils and consist primarily of oleic, palmitic, stearic, and linoleic acids. This capability provides the oppo...

  5. The effect of dietary fat and omega-3 fatty acids on whole body lipid oxidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipid peroxidation of polyunsaturated fatty acids yields several electrophilic, reactive carbonyl metabolites. We hypothesized that an increased intake of omega-3 fatty acids (n-3) would lead to increased lipid peroxidation metabolites compared to a diet low in n-3. As part of a randomized crossov...

  6. THP-1 macrophage lipid accumulation unaffected by fatty acid double bond geometric or positional configuration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary fatty acid type alters atherosclerotic lesion progression and macrophage lipid accumulation. Incompletely elucidated are the mechanisms by which fatty acids differing in double-bond geometric or positional configuration alter arterial lipid accumulation. The objective of this study was to ev...

  7. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES.

    EPA Science Inventory

    The very long chain highly unsaturated C28 fatty acids, octacosaheptaenoic [28:7(n-6)] and octacosaoctaenoic acid [28:8(n-3)], were found to be associated with phospholipids, obtained by fractionation of total lipid extracts into distinct lipid classes, in 4 and 6, respectively, ...

  8. Bioactive Hybrid Particles from Poly(D,L-lactide-co-glycolide) Nanoparticle Stabilized Lipid Droplets.

    PubMed

    Joyce, Paul; Whitby, Catherine P; Prestidge, Clive A

    2015-08-12

    Biodegradable and bioactive hybrid particles composed of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles and medium-chain triglycerides were prepared by spray drying lipid-in-water emulsions stabilized by PLGA nanoparticles, to form PLGA-lipid hybrid (PLH) microparticles approximately 5 μm in mean diameter. The nanoparticle stabilizer was varied and mannitol was also incorporated during the preparation to investigate the effect of stabilizer charge and cryoprotectant content on the particle microstructure. An in vitro lipolysis model was used to demonstrate the particles' bioactivity by manipulating the digestion kinetics of encapsulated lipid by pancreatic lipase in simulated gastrointestinal fluid. Lipid digestion kinetics were enhanced in PLH and PLGA-lipid-mannitol hybrid (PLMH) microparticles for both stabilizers, compared to a coarse emulsion, in biorelevant media. An optimal digestion rate was observed for the negatively charged PLMH system, evidenced by a 2-fold increase in the pseudo-first-order rate constant compared to a coarse emulsion. Improved microparticle redispersion, probed by dual dye confocal fluorescence microscopy, increased the available surface area of lipid for lipase adsorption, enhancing digestion kinetics. Thereby, lipase action was controlled in hybrid microparticles by altering the surface charge and carbohydrate content. Our results demonstrate that bioactive microparticles composed of versatile and biodegradable polymeric particles and oil droplets have great potential for use in smart food and nutrient delivery, as well as safer and more efficacious oral delivery of drugs and drug combinations. PMID:26181279

  9. Porous Silica-Supported Solid Lipid Particles for Enhanced Solubilization of Poorly Soluble Drugs.

    PubMed

    Yasmin, Rokhsana; Rao, Shasha; Bremmell, Kristen E; Prestidge, Clive A

    2016-07-01

    Low dissolution of drugs in the intestinal fluid can limit their effectiveness in oral therapies. Here, a novel porous silica-supported solid lipid system was developed to optimize the oral delivery of drugs with limited aqueous solubility. Using lovastatin (LOV) as the model poorly water-soluble drug, two porous silica-supported solid lipid systems (SSL-A and SSL-S) were fabricated from solid lipid (glyceryl monostearate, GMS) and nanoporous silica particles Aerosil 380 (silica-A) and Syloid 244FP (silica-S) via immersion/solvent evaporation. SSL particles demonstrated significantly higher rate and extent of lipolysis in comparison with the pure solid lipid, depending on the lipid loading levels and the morphology. The highest lipid digestion was observed when silica-S was loaded with 34% (w/w) solid lipid, and differential scanning calorimeter (DSC) analysis confirmed the encapsulation of up to 2% (w/w) non-crystalline LOV in this optimal SSL-S formulation. Drug dissolution under non-digesting intestinal conditions revealed a three- to sixfold increase in dissolution efficiencies when compared to the unformulated drug and a LOV-lipid suspension. Furthermore, the SSL-S provided superior drug solubilization under simulated intestinal digesting condition in comparison with the drug-lipid suspension and drug-loaded silica. Therefore, solid lipid and nanoporous silica provides a synergistic effect on optimizing the solubilization of poorly water-soluble compound and the solid lipid-based porous carrier system provides a promising delivery approach to overcome the oral delivery challenges of poorly water-soluble drugs. PMID:27048207

  10. Food-grade Pickering emulsions stabilised with solid lipid particles.

    PubMed

    Pawlik, Aleksandra; Kurukji, Daniel; Norton, Ian; Spyropoulos, Fotis

    2016-06-15

    Aqueous dispersions of tripalmitin particles (with a minimum size of 130 nm) were produced, via a hot sonication method, with and without the addition of food-grade emulsifiers. Depending on their relative size and chemistry, the emulsifiers altered the properties of the fat particles (e.g. crystal form, dispersion state and surface properties) by two proposed mechanisms. Firstly, emulsifiers modify the rate and/or extent of polymorphic transitions, resulting in the formation of fat crystals with a range of polarities. Secondly, the adsorption of emulsifiers at the particle interface modifies crystal surface properties. Such emulsifier-modified fat particles were then used to stabilise emulsions. As the behaviour of these particles was predisposed by the kind of emulsifier employed for their manufacture, the resulting particles showed different preferences to which of the emulsion phases (oil or water) became the continuous one. The polarity of the fat particles decreased as follows: Whey Protein Isolate > Soy Lecithin > Soy Lecithin + Tween 20 > Tween 20 > Polyglycerol Polyricinoleate > no emulsifier. Consequently, particles stabilised with WPI formed oil-in-water emulsions (O/W); particles stabilised solely with lecithin produced a highly unstable W/O emulsion; and particles stabilised with a mixture of lecithin and Tween 20 gave a stable W/O emulsion with drop size up to 30 μm. Coalescence stable, oil-continuous emulsions (W/O) with drop sizes between 5 and 15 μm were produced when the tripalmitin particles were stabilised with solely with Tween 20, solely with polyglycerol polyricinoleate, or with no emulsifier at all. It is proposed that the stability of the latter three emulsions was additionally enhanced by sintering of fat particles at the oil-water interface, providing a mechanical barrier against coalescence. PMID:27198879

  11. Effect of Growth on Fatty Acid Composition of Total Intramuscular Lipid and Phospholipids in Ira Rabbits

    PubMed Central

    Lu, Jingzhi; Li, Hongjun

    2015-01-01

    The changes in fatty acid composition of total intramuscular lipid and phospholipids were investigated in the longissimus dorsi, left-hind leg muscle, and abdominal muscle of male Ira rabbits. Changes were monitored at 35, 45, 60, 75, and 90 d. Analysis using gas chromatography identified 21 types of fatty acids. Results showed that the intramuscular lipid increased and the intramuscular phospholipids (total intramuscular lipid %) decreased in all muscles with increasing age (p<0.05). An abundant amount of unsaturated fatty acids, especially polyunsaturated fatty acids, was distributed in male Ira rabbits at different ages and muscles. Palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), and arachidonic acid (C20:4) were the major fatty acids, which account to the dynamic changes of the n-6/n-3 value in Ira rabbit meat. PMID:26761795

  12. Non-acidic activation of pain-related Acid-Sensing Ion Channel 3 by lipids.

    PubMed

    Marra, Sébastien; Ferru-Clément, Romain; Breuil, Véronique; Delaunay, Anne; Christin, Marine; Friend, Valérie; Sebille, Stéphane; Cognard, Christian; Ferreira, Thierry; Roux, Christian; Euller-Ziegler, Liana; Noel, Jacques; Lingueglia, Eric; Deval, Emmanuel

    2016-02-15

    Extracellular pH variations are seen as the principal endogenous signal that triggers activation of Acid-Sensing Ion Channels (ASICs), which are basically considered as proton sensors, and are involved in various processes associated with tissue acidification. Here, we show that human painful inflammatory exudates, displaying non-acidic pH, induce a slow constitutive activation of human ASIC3 channels. This effect is largely driven by lipids, and we identify lysophosphatidylcholine (LPC) and arachidonic acid (AA) as endogenous activators of ASIC3 in the absence of any extracellular acidification. The combination of LPC and AA evokes robust depolarizing current in DRG neurons at physiological pH 7.4, increases nociceptive C-fiber firing, and induces pain behavior in rats, effects that are all prevented by ASIC3 blockers. Lipid-induced pain is also significantly reduced in ASIC3 knockout mice. These findings open new perspectives on the roles of ASIC3 in the absence of tissue pH variation, as well as on the contribution of those channels to lipid-mediated signaling. PMID:26772186

  13. Delivery of retinoic acid to LNCap human prostate cancer cells using solid lipid nanoparticles.

    PubMed

    Akanda, Mushfiq H; Rai, Rajeev; Slipper, Ian J; Chowdhry, Babur Z; Lamprou, Dimitrios; Getti, Giulia; Douroumis, Dennis

    2015-09-30

    In this study retinoic acid (RTA) loaded solid lipid nanoparticles (SLNs) were optimized by tuning the process parameters (pressure/temperature) and using different lipids to develop nanodispersions with enhanced anticancer activity. The RTA-SLN dispersions were produced by high-pressure homogenization and characterized in terms of particle size, zeta potential, drug entrapment efficiency, stability, transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and in vitro drug release. Thermal and X-ray analysis showed the RTA to be in the amorphous state, whilst microscopic images revealed a spherical shape and uniform particle size distribution of the nanoparticles. Anticancer efficiency was evaluated by incubating RTA-SLNs with human prostate cancer (LNCap) cells, which demonstrated reduced cell viability with increased drug concentrations (9.53% at 200 ug/ml) while blank SLNs displayed negligible cytotoxicity. The cellular uptake of SLN showed localization within the cytoplasm of cells and flow cytometry analysis indicated an increase in the fraction of cells expressing early apoptotic markers, suggesting that the RTA loaded SLNs are able to induce apoptosis in LNCap cells. The RTA-SLN dispersions have the potential to be used for prostate anticancer treatment. PMID:26200751

  14. Increased fatty acid synthesis inhibits nitrogen starvation-induced autophagy in lipid droplet-deficient yeast.

    PubMed

    Régnacq, Matthieu; Voisin, Pierre; Sere, Yves Y; Wan, Bin; Soeroso, Venty M S; Bernard, Marianne; Camougrand, Nadine; Bernard, François-Xavier; Barrault, Christine; Bergès, Thierry

    2016-08-12

    Macroautophagy is a degradative pathway whereby cells encapsulate and degrade cytoplasmic material within endogenously-built membranes. Previous studies have suggested that autophagosome membranes originate from lipid droplets. However, it was recently shown that rapamycin could induce autophagy in cells lacking these organelles. Here we show that lipid droplet-deprived cells are unable to perform autophagy in response to nitrogen-starvation because of an accelerated lipid synthesis that is not observed with rapamycin. Using cerulenin, a potent inhibitor of fatty acid synthase, and exogenous addition of palmitic acid we could restore nitrogen-starvation induced autophagy in the absence of lipid droplets. PMID:27270031

  15. Impact of Association Colloids on Lipid Oxidation in Triacylglycerols and Fatty Acid Ethyl Esters.

    PubMed

    Homma, Rika; Suzuki, Karin; Cui, Leqi; McClements, David Julian; Decker, Eric A

    2015-11-25

    The impact of association colloids on lipid oxidation in triacylglycerols and fatty acid ethyl esters was investigated. Association colloids did not affect lipid oxidation of high oleic safflower and high linoleic safflower triacylglycerols, but were prooxidative in fish triacylglycerols. Association colloids retarded aldehyde formation in stripped ethyl oleate, linoleate, and fish oil ethyl esters. Interfacial tension revealed that lipid hydroperoxides were surface active in the presence of the surfactants found in association colloids. The lipid hydroperoxides from ethyl esters were less surface active than triacylglycerol hydroperoxides. Stripping decreased iron and copper concentrations in all oils, but more so in fatty acid ethyl esters. The combination of lower hydroperoxide surface activity and low metal concentrations could explain why association colloids inhibited lipid oxidation in fatty acid ethyl esters. This research suggests that association colloids could be used as an antioxidant technology in fatty acid ethyl esters. PMID:26506263

  16. Improved Butanol-Methanol (BUME) Method by Replacing Acetic Acid for Lipid Extraction of Biological Samples.

    PubMed

    Cruz, Mutya; Wang, Miao; Frisch-Daiello, Jessica; Han, Xianlin

    2016-07-01

    Extraction of lipids from biological samples is a critical step in lipidomics, especially for shotgun lipidomics where lipid extracts are directly infused into a mass spectrometer. The butanol-methanol (BUME) extraction method was originally developed to extract lipids from plasma samples with 1 % acetic acid. Considering some lipids are sensitive to acidic environments, we modified this protocol by replacing acetic acid with lithium chloride solution and extended the modified extraction to tissue samples. Although no significant reduction of plasmalogen levels in the acidic BUME extracts of rat heart samples was found, the modified method was established to extract various tissue samples, including rat liver, heart, and plasma. Essentially identical profiles of the majority of lipid classes were obtained from the extracts of the modified BUME and traditional Bligh-Dyer methods. However, it was found that neither the original, nor the modified BUME method was suitable for 4-hydroxyalkenal species measurement in biological samples. PMID:27245345

  17. Supercritical fluid precipitation of ketoprofen in novel structured lipid carriers for enhanced mucosal delivery--a comparison with solid lipid particles.

    PubMed

    Gonçalves, V S S; Matias, A A; Rodríguez-Rojo, S; Nogueira, I D; Duarte, C M M

    2015-11-10

    Structured lipid carriers based on mixture of solid lipids with liquid lipids are the second generation of solid lipid particles, offering the advantage of improved drug loading capacity and higher storage stability. In this study, structured lipid carriers were successfully prepared for the first time by precipitation from gas saturated solutions. Glyceryl monooleate (GMO), a liquid glycerolipid, was selected in this work to be incorporated into three solid glycerolipids with hydrophilic-lipophilic balance (HLB) ranging from 1 to 13, namely Gelucire 43/01™, Geleol™ and Gelucire 50/13™. In general, microparticles with a irregular porous morphology and a wide particle size distribution were obtained. The HLB of the individual glycerolipids might be a relevant parameter to take into account during the processing of solid:liquid lipid blends. As expected, the addition of a liquid lipid into a solid lipid matrix led to increased stability of the lipid carriers, with no significant modifications in their melting enthalpy after 6 months of storage. Additionally, Gelucire 43/01™:GMO particles were produced with different mass ratios and loaded with ketoprofen. The drug loading capacity of the structured lipid carriers increased as the GMO content in the particles increased, achieving a maximum encapsulation efficiency of 97% for the 3:1 mass ratio. Moreover, structured lipid carriers presented an immediate release of ketoprofen from its matrix with higher permeation through a mucous-membrane model, while solid lipid particles present a controlled release of the drug with less permeation capacity. PMID:26277371

  18. Effect of fullerene on the dispersibility of nanostructured lipid particles and encapsulation in sterically stabilized emulsions.

    PubMed

    Kulkarni, Chandrashekhar V; Moinuddin, Zeinab; Agarwal, Yash

    2016-10-15

    We report on the effect of fullerenes (C60) on the stability of nanostructured lipid emulsions. These (oil-in-water) emulsions are essentially aqueous dispersions of lipid particles exhibiting self-assembled nanostructures at their cores. The majority of previous studies on fullerenes were focused on planar and spherical lipid bilayer systems including pure lipids and liposomes. In this work, fullerenes were interacted with a lipid that forms nanostructured dispersions of non-lamellar self-assemblies. A range of parameters including the composition of emulsions and sonication parameters were examined to determine the influence of fullerenes on in-situ and pre-stabilized lipid emulsions. We found that fullerenes mutually stabilize very low concentrations of lipid molecules, while other concentration emulsions struggle to stay stable or even to form at first instance; we provide hypotheses to support these observations. Interestingly though, we were able to encapsulate varying amounts of fullerenes in sterically stabilized emulsions. This step has a significant positive impact, as we could effectively control an inherent aggregation tendency of fullerenes in aqueous environments. These novel hybrid nanomaterials may open a range of avenues for biotechnological and biomedical applications exploiting properties of both lipid and fullerene nanostructures. PMID:27416287

  19. Hydrothermal nitric acid treatment for effectual lipid extraction from wet microalgae biomass.

    PubMed

    Lee, Ilgyu; Park, Ji-Yeon; Choi, Sun-A; Oh, You-Kwan; Han, Jong-In

    2014-11-01

    Hydrothermal acid (combined with autoclaving and nitric acid) pretreatment was applied to Nannochloropsis salina as a cost-effective yet efficient way of lipid extraction from wet biomass. The optimal conditions for this pretreatment were determined using a statistical approach, and the roles of nitric acid were also determined. The maximum lipid yield (predicted: 24.6%; experimental: 24.4%) was obtained using 0.57% nitric acid at 120°C for 30min through response surface methodology. A relatively lower lipid yield (18.4%) was obtained using 2% nitric acid; however, chlorophyll and unsaturated fatty acids, both of which adversely affect the refinery and oxidative stability of biodiesel, were found to be not co-extracted. Considering its comparable extractability even from wet biomass and ability to reduce chlorophyll and unsaturated fatty acids, the hydrothermal nitric acid pretreatment can serve as one direct and promising route of extracting microalgae oil. PMID:25255190

  20. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica.

    PubMed

    Fontanille, Pierre; Kumar, Vinod; Christophe, Gwendoline; Nouaille, Régis; Larroche, Christian

    2012-06-01

    The valorization of volatile fatty acids into microbial lipids by the oleaginous yeast Yarrowia lipolytica was investigated. Therefore, a two-stage fed-batch strategy was designed: the yeast was initially grown on glucose or glycerol as carbon source, then sequential additions of acetic acid under nitrogen limiting conditions were performed after glucose or glycerol exhaustion. The typical values obtained with an initial 40 g/L concentration of glucose were close to 31 g/L biomass, a lipid concentration of 12.4 g/L, which correspond to a lipid content of the biomass close to 40%. This cultivation strategy was also efficient with other volatile fatty acids (butyric and propionic acids) or with a mixture of these three VFAs. The lipids composition was found quite similar to that of vegetable oils. The study demonstrated the feasibility of simultaneous biovalorization of volatile fatty acids and glycerol, two cheap industrial by-products. PMID:22464419

  1. Agglomerates of ultrafine particles of elemental carbon and TiO2 induce generation of lipid mediators in alveolar macrophages.

    PubMed Central

    Beck-Speier, I; Dayal, N; Karg, E; Maier, K L; Roth, C; Ziesenis, A; Heyder, J

    2001-01-01

    Agglomerates of ultrafine particles (AUFPs) may cause adverse health effects because of their large surface area. To evaluate physiologic responses of immune cells, we studied whether agglomerates of 77-nm elemental carbon [(EC); specific surface area 750 m2/g] and 21 nm titanium dioxide (TiO(2) particles (specific surface area 50 m(2)/g) affect the release of lipid mediators by alveolar macrophages (AMs). After 60-min incubation with 1 microg/mL AUFP-EC (corresponding to 7.5 cm(2) particle surface area), canine AMs (1 x 10(6) cells/mL) released arachidonic acid (AA) and the cyclooxygenase (COX) products prostaglandin E(2) (PGE(2), thromboxane B(2), and 12-hydroxyheptadecatrienoic acid but not 5-lipoxygenase (5-LO) products. AUFP-TiO(2) with a 10-fold higher mass (10 microg/mL) than AUFP-EC, but a similar particle surface area (5 cm(2) also induced AMs to release AA and COX products. Agglomerates of 250 nm TiO(2) particles (specific surface area 6.5 m(2)/g) at 100 microg/mL mass concentration (particle surface area 6.5 cm(2) showed the same response. Interestingly, 75 cm(2)/mL surface area of AUFP-EC and 16 cm(2)/mL surface area of AUFP-TiO(2) additionally induced the release of the 5-LO products leukotriene B(4) and 5-hydroxyeicosatetraenoic acid. Respiratory burst activity of stimulated canine neutrophils was partially suppressed by supernatants of AMs treated with various mass concentrations of the three types of particles. Inhibition of neutrophil activity was abolished by supernatants of AMs treated with COX inhibitors prior to AUFP-incubation. This indicates that anti-inflammatory properties of PGE(2) dominate the overall response of lipid mediators released by AUFP-affected AMs. In conclusion, our data indicate that surface area rather than mass concentration determines the effect of AUFPs, and that activation of phospholipase A(subscript)2(/subscript) and COX pathway occurs at a lower particle surface area than that of 5-LO-pathway. We hypothesize a

  2. Assembly, characterization, and delivery of quantum dot labeled biotinylated lipid particles.

    PubMed

    Sigot, Valeria

    2014-01-01

    Lipid nanoparticles composed of mixtures of PEGylated-lipids; cationic and neutral lipids prepared by detergent dialysis can encapsulate biological active molecules and show considerable potential as systemic therapeutic agents. Addition of biotinylated lipids to this formulation allows surface modification of these particles with a suitable ligand or probe conjugated to streptavidin for specific cell targeting. Monitoring long circulating particles and cellular uptake requires stable and bright fluorescent probes. Quantum dots (QDs) constitute a relatively new class of fluorescent probes that overcome the limitations of organic fluorophores in biological imaging applications. Here, a protocol for the encapsulation of QD655 (red) in biotinylated lipid particles (BLPs) prepared by a detergent dialysis technique is presented followed by characterization of the loaded liposomal vehicles. Then, a protocol for BLPs surface modification via biotin-streptavidin linkage with preformed complexes of ligand-QD525 (green) for specific cell targeting of the nanoparticle is detailed. Conditions for cell binding and uptake of two colors QD labeled BLPs as well as basic microscopic settings for confocal live cell imaging are described. PMID:25103804

  3. Chlorogenic acid from honeysuckle improves hepatic lipid dysregulation and modulates hepatic fatty acid composition in rats with chronic endotoxin infusion

    PubMed Central

    Zhou, Yan; Ruan, Zheng; Wen, Yanmei; Yang, Yuhui; Mi, Shumei; Zhou, Lili; Wu, Xin; Ding, Sheng; Deng, Zeyuan; Wu, Guoyao; Yin, Yulong

    2016-01-01

    Chlorogenic acid as a natural hydroxycinnamic acid has protective effect for liver. Endotoxin induced metabolic disorder, such as lipid dysregulation and hyperlipidemia. In this study, we investigated the effect of chlorogenic acid in rats with chronic endotoxin infusion. The Sprague-Dawley rats with lipid metabolic disorder (LD group) were intraperitoneally injected endotoxin. And the rats of chlorogenic acid-LD group were daily received chlorogenic acid by intragastric administration. In chlorogenic acid-LD group, the area of visceral adipocyte was decreased and liver injury was ameliorated, as compared to LD group. In chlorogenic acid-LD group, serum triglycerides, free fatty acids, hepatic triglycerides and cholesterol were decreased, the proportion of C20:1, C24:1 and C18:3n-6, Δ9-18 and Δ6-desaturase activity index in the liver were decreased, and the proportion of C18:3n-3 acid was increased, compared to the LD group. Moreover, levels of phosphorylated AMP-activated protein kinase, carnitine palmitoyltransferase-I, and fatty acid β-oxidation were increased in chlorogenic acid-LD group compared to LD rats, whereas levels of fatty acid synthase and acetyl-CoA carboxylase were decreased. These findings demonstrate that chlorogenic acid effectively improves hepatic lipid dysregulation in rats by regulating fatty acid metabolism enzymes, stimulating AMP-activated protein kinase activation, and modulating levels of hepatic fatty acids. PMID:27013782

  4. Automobile diesel exhaust particles induce lipid droplet formation in macrophages in vitro.

    PubMed

    Cao, Yi; Jantzen, Kim; Gouveia, Ana Cecilia Damiao; Skovmand, Astrid; Roursgaard, Martin; Loft, Steffen; Møller, Peter

    2015-07-01

    Exposure to diesel exhaust particles (DEP) has been associated with adverse cardiopulmonary health effects, which may be related to dysregulation of lipid metabolism and formation of macrophage foam cells. In this study, THP-1 derived macrophages were exposed to an automobile generated DEP (A-DEP) for 24h to study lipid droplet formation and possible mechanisms. The results show that A-DEP did not induce cytotoxicity. The production of reactive oxygen species was only significantly increased after exposure for 3h, but not 24h. Intracellular level of reduced glutathione was increased after 24h exposure. These results combined indicate an adaptive response to oxidative stress. Exposure to A-DEP was associated with significantly increased formation of lipid droplets, as well as changes in lysosomal function, assessed as reduced LysoTracker staining. In conclusion, these results indicated that exposure to A-DEP may induce formation of lipid droplets in macrophages in vitro possibly via lysosomal dysfunction. PMID:26122084

  5. Dietary linoleic acid-induced alterations in pro- and anti-nociceptive lipid autacoids

    PubMed Central

    Ringel, Amit; Majchrzak-Hong, Sharon F; Yang, Jun; Blanchard, Helene; Zamora, Daisy; Loewke, James D; Rapoport, Stanley I; Hibbeln, Joseph R; Davis, John M; Hammock, Bruce D; Taha, Ameer Y

    2016-01-01

    Background Chronic idiopathic pain syndromes are major causes of personal suffering, disability, and societal expense. Dietary n-6 linoleic acid has increased markedly in modern industrialized populations over the past century. These high amounts of linoleic acid could hypothetically predispose to physical pain by increasing the production of pro-nociceptive linoleic acid-derived lipid autacoids and by interfering with the production of anti-nociceptive lipid autacoids derived from n-3 fatty acids. Here, we used a rat model to determine the effect of increasing dietary linoleic acid as a controlled variable for 15 weeks on nociceptive lipid autacoids and their precursor n-6 and n-3 fatty acids in tissues associated with idiopathic pain syndromes. Results Increasing dietary linoleic acid markedly increased the abundance of linoleic acid and its pro-nociceptive derivatives and reduced the abundance of n-3 eicosapentaenoic acid and docosahexaenoic acid and their anti-nociceptive monoepoxide derivatives. Diet-induced changes occurred in a tissue-specific manner, with marked alterations of nociceptive lipid autacoids in both peripheral and central tissues, and the most pronounced changes in their fatty acid precursors in peripheral tissues. Conclusions The present findings provide biochemical support for the hypothesis that the high linoleic acid content of modern industrialized diets may create a biochemical susceptibility to develop chronic pain. Dietary linoleic acid lowering should be further investigated as part of an integrative strategy for the prevention and management of idiopathic pain syndromes. PMID:27030719

  6. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    SciTech Connect

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  7. Regulation of Lipid Synthesis in Soybeans by Two Benzoic Acid Herbicides 1

    PubMed Central

    Muslih, Raad K.; Linscott, Dean L.

    1977-01-01

    The effects of 3-nitro-2,5-dichlorobenzoic acid (dinoben) and 3-amino-2,4-dichlorobenzoic acid (chloramben) on lipid formation and on the incorporation of various substrates into lipids by intact seeds and subcellular fractions of germinating soybean (Glycine max [L.] Merr. `Amsoy') were studied. Dinoben (20 μg/ml) inhibited synthesis of total lipids 67%, neutral lipids 73%, glycolipids 51%, and phospholipids 39% in germinating seeds. When polar lipids were analyzed further, inhibition of individual lipid classes was also observed. Chloramben (20 μg/ml) stimulated total lipid synthesis 25%. With the exception of the mitochondrial fraction where malonate thiokinase was absent, dinoben inhibited up to 99% the incorporation of acetate and malonate into lipids, but did not inhibit acetyl-CoA and malonyl-CoA incorporation. Chloramben stimulated the incorporation of all substrates tested into lipids by all fractions except the mitochondrial fraction when malonate was the substrate. When dinoben and chloramben were used in combinations, chloramben did not reverse the inhibitory effect of dinoben. It is concluded that the dinoben inhibitory effect is specific and is associated with the acetate and malonate thiokinase systems. The chloramben effect is stimulatory to either acetyl-CoA carboxylase or fatty acid synthetase or both. PMID:16660173

  8. Archaeal Lipid Genes: Clues to Life in Acid and the Evolution of Membranes

    NASA Astrophysics Data System (ADS)

    Macalady, J. L.; Croft, L.; Vestling, M. M.; Harms, A. C.; Zheng, L.; Baumler, D. J.; Kaspar, C. W.; Banfield, J. F.

    2002-12-01

    Microorganisms living in acid mine drainage environments face extraordinary challenges. Acid-loving archaea such as Ferroplasma acidarmanus maintain pH gradients of 4 to 5 pH units across their membranes and thrive in hot, extremely low pH (0-1), metal-rich, solutions. New lipid analyses for two extremely acidophilic archaea, F. acidarmanus and F. acidiphilum, reveal that all known archaeal acidophiles have cell membranes composed primarily of tetraether-linked lipids. Because tetraether lipids assemble in rigid monolayers that exclude protons and metals, we suggest that tetraether synthesis genes are essential for archaeal survival in acid. Fusion of two diether-linked lipids to form a tetraether-linked lipid is a distinctive biochemical reaction with no analogy in bacteria and eukaryotes. In addition to archaeal acidophiles, tetraethers are present in members of every archaeal lineage except halophiles. Genes responsible for tetraether synthesis and subsequent biochemical steps which "tune" membrane lipid properties in response to environmental changes have not been identified to date. Comparative genomic analyses using the newly completed genome of F. acidarmanus and available genomes from Bacteria, Archaea and Eukarya have generated candidate tetraether synthase genes found only in archaea. Because tetraether-linked lipids are advantageous for acid-loving and possibly also for heat-loving archaea, the phylogeny of these genes has the potential to shed new light on role of hot, acid environments in early evolution.

  9. Fatty acids from VLDL lipolysis products induce lipid droplet accumulation in human monocytes

    PubMed Central

    den Hartigh, Laura J; Connolly-Rohrbach, Jaime E; Fore, Samantha; Huser, Thomas R; Rutledge, John C

    2010-01-01

    One mechanism by which monocytes become activated postprandially is by exposure to triglyceride (TG)-rich lipoproteins such as very low-density lipoproteins (VLDL). VLDL are hydrolyzed by lipoprotein lipase (LpL) at the blood-endothelial cell interface, releasing free fatty acids. In this study, we examined postprandial monocyte activation in more detail, and found that lipolysis products generated from postprandial VLDL induce the formation of lipid-filled droplets within cultured THP-1 monocytes, characterized by coherent anti-stokes Raman spectroscopy. Organelle-specific stains revealed an association of lipid droplets with the endoplasmic reticulum, confirmed by electron microscopy. Lipid droplet formation was reduced when LpL-released fatty acids were bound by bovine serum albumin, which also reduced cellular inflammation. Furthermore, saturated fatty acids induced more lipid droplet formation in monocytes compared to mono- and polyunsaturated fatty acids. Monocytes treated with postprandial VLDL lipolysis products contained lipid droplets with more intense saturated Raman spectroscopic signals than monocytes treated with fasting VLDL lipolysis products. In addition, we found that human monocytes isolated during the peak postprandial period contain more lipid droplets compared to those from the fasting state, signifying that their development is not limited to cultured cells but also occurs in vivo. In summary, circulating free fatty acids can mediate lipid droplet formation in monocytes and potentially be used as a biomarker to assess an individual’s risk of developing atherosclerotic cardiovascular disease. PMID:20208007

  10. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage

    SciTech Connect

    Frei, B. )

    1991-12-01

    The authors exposed human blood plasma and low-density lipoprotein (LDL) to many different oxidative challenges and followed the temporal consumption of endogenous antioxidants in relation to the initiation of oxidative damage. Under all types of oxidizing conditions, ascorbic acid completely protects lipids in plasma and LDL against detectable peroxidative damage as assessed by a specific and highly sensitive assay for lipid peroxidation. Ascorbic acid proved to be superior to the other water-soluble plasma antioxidants bilirubin, uric acid, and protein thiols as well as to the lipoprotein-associated antioxidants alpha-tocopherol, ubiquinol-10, lycopene, and beta-carotene. Although these antioxidants can lower the rate of detectable lipid peroxidation, they are not able to prevent its initiation. Only ascorbic acid is reactive enough to effectively intercept oxidants in the aqueous phase before they can attack and cause detectable oxidative damage to lipids.

  11. Pinolenic Acid Downregulates Lipid Anabolic Pathway in HepG2 Cells.

    PubMed

    Lee, Ah Ron; Han, Sung Nim

    2016-07-01

    Pine nut oil (PNO) was reported to reduce lipid accumulation in the liver. However, the specific effect of pinolenic acid (18:3, all-cis-Δ5,9,12), a unique component of PNO, on lipid metabolism has not been studied. We hypothesized that pinolenic acid downregulates the lipid anabolic pathway in HepG2 cells. HepG2 cells were incubated in serum-free medium supplemented with 50 μM bovine serum albumin (BSA), palmitic acid, oleic acid, γ-linolenic acid, pinolenic acid, eicosapentaenoic acid (EPA), or α-linolenic acid for 24 h. Lipid accumulation was determined by Oil Red O (ORO) staining. The mRNA levels of genes related to fatty acid biosynthesis (SREBP1c, FAS, SCD1, and ACC1), fatty acid oxidation (ACC2, PPARα, CPT1A, and ACADL), cholesterol synthesis (SREBP2 and HMGCR), and lipoprotein uptake (LDLr) and of genes that may be involved in the downregulation of the lipogenic pathway (ACSL3, ACSL4, and ACSL5) were determined by qPCR. LDLR protein levels were measured by Western blot analysis. The mRNA levels of SREBP1c, FAS, and SCD1 were significantly downregulated by pinolenic acid treatment compared to BSA control (53, 54, and 38 % lower, respectively). In addition, the mRNA levels of HMGCR, ACSL3, and LDLr were significantly lower (30, 30, and 43 % lower, respectively), and ACSL4 tended to be lower in the pinolenic acid group (20 % lower, P = 0.082) relative to the control group. In conclusion, pinolenic acid downregulated the lipid anabolic pathway in HepG2 cells by reducing expression of genes related to lipid synthesis, lipoprotein uptake, and the regulation of the lipogenic pathway. PMID:27084371

  12. Semiconductor particles in bilayer lipid membranes. Formation, characterization, and photoelectrochemistry

    SciTech Connect

    Zhao, X.K.; Baral, S.B.; Rolandi, R.; Fendler, J.H.

    1988-02-17

    Bilayer lipid membranes (BLMs) have been formed from bovine brain phosphatidylserine (PS), glyceryl monooleate (GMO), and a ploymerizable surfactant, (n-C/sub 15/H/sub 31/CO/sub 2/(CH/sub 2/))/sub 2/N/sup +/(CH/sub 3/)CH/sub 2/C/sub 6/H/sub 4/CH==CH/sub 2/Cl/sup -/(STYRS). These BLMs were then used to provide matrices for the in situ generation of microcrystalline CdS, CuS, Cu/sub 2/S, PbS, ZnS, HgS, and In/sub 2/S/sub 3/. Semiconductors were formed by injecting appropriate metal ion precursors and H/sub 2/S into the bathing solutions on opposite sides of the BLM. Their presence was established by voltage-dependent capacitance measurements, absorption spectroscopy, and optical microscopy. Subsequent to the injection of H/sub 2/S, the first observable change was the appearance of fairly uniform white dots on the black film. These dots rapidly moved around and grew in size, forming islands that then merged with themselves and with a second generation of dots, which ultimately led to a continuous film that continued to grow in thickness. Film formation and growth were monitored by simultaneous optical thickness and capacitance measurements. These data were treated in terms of an equivalent R-C circuit and allowed for the assessment of the semiconductor penetration depth into the BLM. This value for a GMO-BLM-supported In/sub 2/S/sub 3/ film was determined to be 24 A. Bandgap excitation, by nanosecond-pulsed or continuous illumination of the BLM-supported semiconductor film, led to observable photoelectric effects. Visible light (lambda > 350 nm) excitation into STYRS-BLM-supported CdS led to polymerization of the styrene moiety of STYRS. BLM-supported semiconductors remained stable for days.

  13. Fatty Acid and Lipid Profiles with Emphasis on n-3 Fatty Acids and Phospholipids from Ciona intestinalis.

    PubMed

    Zhao, Yadong; Wang, Miao; Lindström, Mikael E; Li, Jiebing

    2015-10-01

    In order to establish Ciona intestinalis as a new bioresource for n-3 fatty acids-rich marine lipids, the animal was fractionated into tunic and inner body tissues prior to lipid extraction. The lipids obtained were further classified into neutral lipids (NL), glycolipids (GL) and phospholipids (PL) followed by qualitative and quantitative analysis using GC-FID, GC-MS, (1)H NMR, 2D NMR, MALDI-TOF-MS and LC-ESI-MS methods. It was found that the tunic and inner body tissues contained 3.42-4.08% and 15.9-23.4% of lipids respectively. PL was the dominant lipid class (42-60%) irrespective of the anatomic fractions. From all lipid fractions and classes, the major fatty acids were 16:0, 18:1n-9, C20:1n-9, C20:5n-3 (EPA) and C22:6n-3 (DHA). The highest amounts of long chain n-3 fatty acids, mainly EPA and DHA, were located in PL from both body fractions. Cholestanol and cholesterol were the dominant sterols together with noticeable amounts of stellasterol, 22 (Z)-dehydrocholesterol and lathosterol. Several other identified and two yet unidentified sterols were observed for the first time from C. intestinalis. Different molecular species of phosphatidylcholine (34 species), sphingomyelin (2 species), phosphatidylethanolamine (2 species), phosphatidylserine (10 species), phosphatidylglycerol (9 species), ceramide (38 species) and lysophospholipid (5 species) were identified, representing the most systematic PL profiling knowledge so far for the animal. It could be concluded that C. intestinalis lipids should be a good alternative for fish oil with high contents of n-3 fatty acids. The lipids would be more bioavailable due to the presence of the fatty acids being mainly in the form of PL. PMID:26233815

  14. Small Drops Get Fat: Unexpected Fatty Acid in Cytoplasmic Lipid Droplets.

    PubMed

    Thurnher, Martin

    2016-06-23

    In a model of transcellular lipid biosynthesis, Guijas et al. (2016), in this issue of Cell Chemical Biology, demonstrate that lipid droplet-containing "foamy" monocytes unexpectedly accumulate 16:1n9-palmitoleic acid, which has anti-inflammatory function in vitro and in vivo. This uncommon positional isomer of 16:1n7-palmitoleic acid represents a candidate biomarker for early cardiovascular disease detection. PMID:27341429

  15. Lipid Classes and Fatty Acids in Ophryotrocha cyclops, a Dorvilleid from Newfoundland Aquaculture Sites

    PubMed Central

    Salvo, Flora; Dufour, Suzanne C.; Hamoutene, Dounia; Parrish, Christopher C.

    2015-01-01

    A new opportunistic annelid (Ophryotrocha cyclops) discovered on benthic substrates underneath finfish aquaculture sites in Newfoundland (NL) may be involved in the remediation of organic wastes. At those aquaculture sites, bacterial mats and O. cyclops often coexist and are used as indicators of organic enrichment. Little is known on the trophic strategies used by these annelids, including whether they might consume bacteria or other aquaculture-derived wastes. We studied the lipid and fatty acid composition of the annelids and their potential food sources (degraded flocculent organic matter, fresh fish pellets and bacterial mats) to investigate feeding relationships in these habitats and compared the lipid and fatty acid composition of annelids before and after starvation. Fish pellets were rich in lipids, mainly terrestrially derived C18 fatty acids (18:1ω9, 18:2ω6, 18:3ω3), while bacterial samples were mainly composed of ω7 fatty acids, and flocculent matter appeared to be a mixture of fresh and degrading fish pellets, feces and bacteria. Ophryotrocha cyclops did not appear to store excessive amounts of lipids (13%) but showed a high concentration of ω3 and ω6 fatty acids, as well as a high proportion of the main fatty acids contained in fresh fish pellets and bacterial mats. The dorvilleids and all potential food sources differed significantly in their lipid and fatty acid composition. Interestingly, while all food sources contained low proportions of 20:5ω3 and 20:2ω6, the annelids showed high concentrations of these two fatty acids, along with 20:4ω6. A starvation period of 13 days did not result in a major decrease in total lipid content; however, microscopic observations revealed that very few visible lipid droplets remained in the gut epithelium after three months of starvation. Ophryotrocha cyclops appears well adapted to extreme environments and may rely on lipid-rich organic matter for survival and dispersal in cold environments. PMID:26308719

  16. Effect of mycolic acid on surface activity of binary surfactant lipid monolayers.

    PubMed

    Chimote, G; Banerjee, R

    2008-12-15

    In pulmonary tuberculosis, Mycobacterium tuberculosis lies in close physical proximity to alveolar surfactant. Cell walls of the mycobacteria contain loosely bound, detachable surface-active lipids. In this study, the effect of mycolic acid (MA), the most abundant mycobacterial cell wall lipid, on the surface activity of phospholipid mixtures from lung surfactant was investigated using Langmuir monolayers and atomic force microscopy (AFM). In the presence of mycolic acid, all the surfactant lipid mixtures attained high minimum surface tensions (between 20 and 40 mN/m) and decreased surface compressibility moduli <50 mN/m. AFM images showed that the smooth surface topography of surfactant lipid monolayers was altered with addition of MA. Aggregates with diverse heights of at least two layer thicknesses were found in the presence of mycolic acid. Mycolic acids could aggregate within surfactant lipid monolayers and result in disturbed monolayer surface activity. The extent of the effect of mycolic acid depended on the initial state of the monolayer, with fluid films of DPPC-POPC and DPPC-CHOL being least affected. The results imply inhibitory effects of mycolic acid toward lung surfactant lipids and could be a mechanism of lung surfactant dysfunction in pulmonary tuberculosis. PMID:18848703

  17. Hydrodynamic coupling of particle inclusions embedded in curved lipid bilayer membranes.

    PubMed

    Sigurdsson, Jon Karl; Atzberger, Paul J

    2016-08-10

    We develop theory and computational methods to investigate particle inclusions embedded within curved lipid bilayer membranes. We consider the case of spherical lipid vesicles where inclusion particles are coupled through (i) intramembrane hydrodynamics, (ii) traction stresses with the external and trapped solvent fluid, and (iii) intermonolayer slip between the two leaflets of the bilayer. We investigate relative to flat membranes how the membrane curvature and topology augment hydrodynamic responses. We show how both the translational and rotational mobility of protein inclusions are effected by the membrane curvature, ratio of intramembrane viscosity to solvent viscosity, and intermonolayer slip. For general investigations of many-particle dynamics, we also discuss how our approaches can be used to treat the collective diffusion and hydrodynamic coupling within spherical bilayers. PMID:27373277

  18. Bioconversion of volatile fatty acids derived from waste activated sludge into lipids by Cryptococcus curvatus.

    PubMed

    Liu, Jia; Liu, Jia-Nan; Yuan, Ming; Shen, Zi-Heng; Peng, Kai-Ming; Lu, Li-Jun; Huang, Xiang-Feng

    2016-07-01

    Pure volatile fatty acid (VFA) solution derived from waste activated sludge (WAS) was used to produce microbial lipids as culture medium in this study, which aimed to realize the resource recovery of WAS and provide low-cost feedstock for biodiesel production simultaneously. Cryptococcus curvatus was selected among three oleaginous yeast to produce lipids with VFAs derived from WAS. In batch cultivation, lipid contents increased from 10.2% to 16.8% when carbon to nitrogen ratio increased from about 3.5 to 165 after removal of ammonia nitrogen by struvite precipitation. The lipid content further increased to 39.6% and the biomass increased from 1.56g/L to 4.53g/L after cultivation for five cycles using sequencing batch culture (SBC) strategy. The lipids produced from WAS-derived VFA solution contained nearly 50% of monounsaturated fatty acids, including palmitic acid, heptadecanoic acid, ginkgolic acid, stearic acid, oleic acid, and linoleic acid, which showed the adequacy of biodiesel production. PMID:27038264

  19. Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production.

    PubMed

    Lian, Jieni; Garcia-Perez, Manuel; Coates, Ralph; Wu, Hongwei; Chen, Shulin

    2012-08-01

    The presence of very reactive C1-C4 molecules adversely affects the quality bio-oils produced from the pyrolysis of lignocellulosic materials. In this paper a scheme to produce lipids with Cryptococcus curvatus from the carboxylic acids in the pyrolytic aqueous phase collected in fractional condensers is proposed. The capacities of three oleaginous yeasts C. curvatus, Rhodotorula glutinis, Lipomyces starkeyi to ferment acetate, formate, hydroxylacat-aldehyde, phenol and acetol were investigated. While acetate could be a good carbon source for lipid production, formate provides additional energy and contributes to yeast growth and lipid production as auxiliary energy resource. Acetol could slightly support yeast growth, but it inhibits lipid accumulation. Hydroxyacetaldehyde and phenols showed high yeast growth and lipid accumulation inhibition. A pyrolytic aqueous phase with 20 g/L acetate was fermented with C. curvatus, after neutralization and detoxification to produce 6.9 g/L dry biomass and 2.2 g/L lipid. PMID:22705522

  20. The high content of monoene fatty acids in the lipids of some midwater fishes: family Myctophidae.

    PubMed

    Saito, H; Murata, M

    1996-07-01

    The total lipids of eleven species of Myctophids caught at depths between 20 and 700 m in the northern Pacific Ocean were analyzed using silicic acid column chromatography (lipid classes) and capillary gas chromatography (fatty acid and fatty alcohol composition). The major components in the lipid classes were triacylglycerols or wax esters; triacylglycerols were the dominant acyl neutral lipids (68.1-96.1%) in eight species, and wax esters were found as the dominant lipid (85.5-87.9%) in three species. The major fatty acids and alcohols contained in the wax esters of the three fishes were 18:1n-9, 20:1n-9, 20:1n-11, and 22:1n-11 for fatty acids, and 16:0, 18:1, 20:1 and 22:1 for fatty alcohols. Fatty acids in the triacylglycerols ranging from C14 to C22 were predominantly of even chain length. The major components were 16:0, 16:1n-7, 18:1n-9, 20:1n-11, 22:1n-11, 20:5n-3 (icosapentaenoic acid), and 22:6n-3 (docosahexaenoic acid). In both the triacylglycerols and the wax esters, the major fatty components were monoenoic acids and alcohols. It is suggested from the lipid chemistry of the Myctophids that they may prey on the same organisms as the certain pelagic fishes such as saury and herring, because the large quantities of monoenoic fatty acids are similar to those of saury, herring, and sprats whose lipids originate from their prey organisms such as zooplanktons which are rich in monoenoic wax esters. PMID:8827699

  1. All-trans retinoic acid-loaded lipid nanoparticles as a transdermal drug delivery carrier.

    PubMed

    Charoenputtakhun, Ponwanit; Opanasopit, Praneet; Rojanarata, Theerasak; Ngawhirunpat, Tanasait

    2014-03-01

    The objective of this study was to investigate the effects of drug amounts (0.1%, 0.2% and 0.3% w/w), amounts of the oil (10%, 15% and 20% w/w of lipid matrix) and types of the oil (soybean oil (S), medium chain triglycerides (M), oleic acids (O) and linoleic acids (L)) in lipid matrix of all-trans retinoic acid (ATRA)-loaded nanostructured lipid carriers (NLCs) for transdermal drug delivery. The ATRA-loaded solid lipid nanoparticles (SLNs) were formulated with 30% w/w cetyl palmitate. All lipid nanoparticles had average sizes between 130 and 241 nm and had negative zeta potentials. The drug loading of all formulations was higher than 95%. The release of drug from all lipid nanoparticles followed zero-order kinetics. The amount of drug released from all the NLCs and SLNs was significantly greater than the drug released from the ATRA suspension. The ATRA flux of the SLNs was higher than the NLCs. The flux of the NLCs containing oleic acid was significantly higher than the other types of oils. The chemical stability at 4 °C, the percentage of ATRA remaining in all the lipid nanoparticles tested was higher than 80%. It can be concluded that both the SLNs and NLCs are promising dermal drug delivery systems for ATRA. PMID:23356887

  2. Parenteral lipid fatty acid composition directly determines the fatty acid composition of red blood cell and brain lipids in preterm pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies in enterally-fed infants have shown a positive effect of n-3 long-chain polyunsaturated fatty acid (LCPUFA) supplementatin on neurodevelopment. The effect of n-3 LCPUFA in fish oil-based parenteral (PN) lipid emulsions on neuronal tissues of PN-fed preterm infants is unknown. The objective ...

  3. Effects of free fatty acids on meibomian lipid films.

    PubMed

    Arciniega, Juan C; Nadji, Erfan J; Butovich, Igor A

    2011-10-01

    The purpose of this study was to evaluate the impact of free fatty acids (FFA), namely oleic (OA) and linoleic (LA) ones, on meibomian lipid films (MLF) using a Langmuir trough (LT) and a Brewster angle microscope (BAM). Human meibum was collected from healthy volunteers. A Tris-buffered saline (TBS, pH 7.4) was used as the control aqueous subphase for LT experiments. Then, varying amounts of OA and LA were dissolved in TBS to make FFA-containing subphases. Predetermined amounts of meibum were loaded onto the surface of the (TBS/±FFA) subphases to form MLF. Then, surface pressure-area (π/A) isotherms of MLF were recorded. Standard rheological parameters such as rigidity, elasticity, and hysteresis, were computed. In a separate experiment, OA and LA were pre-mixed with meibum at different weight ratios prior their spreading onto the control TBS subphase, and the (π/A) isotherms of the resulting mixed films of meibum and FFA were studied and analyzed in the same fashion as described above. When studied at the normal corneal temperature of 34 °C with the (TBS/-FFA) subphase, meibum formed stable films. When (TBS/+FFA) subphase was used, both FFA quickly disrupted the MLF, acting in a similar fashion. BAM revealed that the most dramatic changes in the structure of MLF occurred in the range of OA concentrations between 5 and 15 μM. However, this effect was apparent even with 2.5 μM OA. When OA was pre-mixed with meibum, but was absent from the subphase, it caused gradual concentration-dependent changes in the (π/A) isotherms, but the MLF did not disappear from the surface. Thus, tested FFA showed a remarkable ability to disrupt, and/or prevent the formation of, human MLF, which could contribute to the onset of those forms of dry eye disease that are associated with enhanced activity of lipolytic enzymes, such as chronic blepharitis. PMID:21718696

  4. Mechanism of bile acid-regulated glucose and lipid metabolism in duodenal-jejunal bypass

    PubMed Central

    Chai, Jie; Zou, Lei; Li, Xirui; Han, Dali; Wang, Shan; Hu, Sanyuan; Guan, Jie

    2015-01-01

    Bile acid plays an important role in regulating blood glucose, lipid and energy metabolism. The present study was implemented to determine the effect of duodenal-jejunal bypass (DJB) on FXR, TGR-5expression in terminal ileum and its bile acid-related mechanism on glucose and lipid metabolism. Immunohistochemistry was used to detect relative gene or protein expression in liver and intestine. Firstly, we found that expression of FXR in liver and terminal ileum of DJB group was significantly higher than that in S-DJB group (P<0.05). In addition, DJB dramatically increased the activation of TGR-5 in the liver of rats. Furthermore, PEPCK, G6Pase, FBPase 1 and GLP-1 were up-regulated by DJB. In conclusion, these results showed that bile acid ameliorated glucose and lipid metabolism through bile acid-FXR and bile acid- TGR-5 signaling pathway. PMID:26884847

  5. Alterations of the lipid content and fatty acid profile of Chlorella protothecoides under different light intensities.

    PubMed

    Krzemińska, Izabela; Piasecka, Agata; Nosalewicz, Artur; Simionato, Diana; Wawrzykowski, Jacek

    2015-11-01

    Chlorella protothecoides is a valuable source of lipids that may be used for biodiesel production. The present work shows analysis of the potential of photoheterotrophic cultivation of C. protothecoides under various light intensities aiming to identify the conditions with maximal biomass and lipid content. An increase in light intensity was associated with an increased specific growth rate and a shortened doubling time. Also, the relative total lipid content increased from 24.8% to 37.5% with increase of light intensity. The composition of fatty acid methyl esters was affected by light intensity with the C16-18 fatty acids increased from 76.97% to 90.24% of total fatty acids. However, the content of linolenic acids decreased with the increase of the culture irradiance. These studies indicate that cultures irradiated with high light intensities achieve the minimal specifications for biodiesel quality on linolenic acids and thus are suitable for biodiesel production. PMID:26231126

  6. Lipid peroxidation during n-3 fatty acid and vitamin E supplementation in humans.

    PubMed

    Allard, J P; Kurian, R; Aghdassi, E; Muggli, R; Royall, D

    1997-05-01

    The purpose of this study was to investigate in healthy humans the effect of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) intake, alone or in combination with dL-alpha-tocopherol acetate (vitamin E) supplements on lipid peroxidation. Eighty men were randomly assigned in a double-blind fashion to take daily for 6 wk either menhaden oil (6.26 g, n-3 fatty acids) or olive oil supplements with either vitamin E (900 IU) or its placebo. Antioxidant vitamins, phospholipid composition, malondialdehyde (MDA), and lipid peroxides were measured in the plasma at baseline and week 6. At the same time, breath alkane output was measured. Plasma alpha-tocopherol concentration increased in those receiving vitamin E (P < 0.0001). In those supplemented with n-3 fatty acids, EPA and DHA increased in plasma phospholipids (P < 0.0001) and plasma MDA and lipid peroxides increased (P < 0.001 and P < 0.05, respectively). Breath alkane output did not change significantly and vitamin E intake did not prevent the increase in lipid peroxidation during menhaden oil supplementation. The results demonstrate that supplementing the diet with n-3 fatty acids resulted in an increase in lipid peroxidation, as measured by plasma MDA release and lipid peroxide products, which was not suppressed by vitamin E supplementation. PMID:9168460

  7. Observational study of lipid profile and LDL particle size in patients with metabolic syndrome

    PubMed Central

    2011-01-01

    Background The atherogenic lipoprotein phenotype is characterized by an increase in plasma triglycerides, a decrease in high-density lipoprotein cholesterol (HDLc), and the prevalence of small, dense-low density lipoprotein cholesterol (LDLc) particles. The aim of this study was to establish the importance of LDL particle size measurement by gender in a group of patients with Metabolic Syndrome (MS) attending at a Cardiovascular Risk Unit in Primary Care and their classification into phenotypes. Subjects and methods One hundred eighty-five patients (93 men and 92 women) from several areas in the South of Spain, for a period of one year in a health centre were studied. Laboratory parameters included plasma lipids, lipoproteins, low-density lipoprotein size and several atherogenic rates were determinated. Results We found differences by gender between anthropometric parameters, blood pressure and glucose measures by MS status. Lipid profile was different in our two study groups, and gender differences in these parameters within each group were also remarkable, in HDLc and Apo A-I values. According to LDL particle size, we found males had smaller size than females, and patients with MS had also smaller than those without MS. We observed inverse relationship between LDL particle size and triglycerides in patients with and without MS, and the same relationship between all atherogenic rates in non-MS patients. When we considered our population in two classes of phenotypes, lipid profile was worse in phenotype B. Conclusion In conclusion, we consider worthy the measurement of LDL particle size due to its relationship with lipid profile and cardiovascular risk. PMID:21936888

  8. Stabilized plasmid-lipid particles for regional gene therapy: formulation and transfection properties.

    PubMed

    Zhang, Y P; Sekirov, L; Saravolac, E G; Wheeler, J J; Tardi, P; Clow, K; Leng, E; Sun, R; Cullis, P R; Scherrer, P

    1999-08-01

    Previous work (Wheeler et al, Gene Therapy 1999; 6: 271-281) has shown that plasmid DNA can be entrapped in 'stabilized plasmid-lipid particles' (SPLP) containing the fusogenic lipid dioleoylphosphatidylethanolamine (DOPE), low levels (5-10 mol%) of cationic lipid, and stabilized by a polyethyleneglycol (PEG) coating. The PEG moieties are attached to a ceramide anchor containing an arachidoyl acyl group (PEG-CerC20). These SPLP exhibit low transfection potencies in vitro, due in part to the long residence time of the PEG-CerC20 on the SPLP surface. In this work we employed SPLP stabilized by PEG attached to ceramide containing an octanoyl acyl group (PEG-CerC8), which is able to quickly exchange out of the SPLP, to develop systems that give rise to optimized in vitro and in vivo (regional) transfection. A particular objective was to achieve cationic lipid contents that give rise to maximum transfection levels. It is shown that by performing the dialysis procedure in the presence of increasing concentrations of citrate, SPLP containing up to 30 mol% of the cationic lipid dioleoydimethylammonium chloride (DODAC) could be generated. The SPLP produced could be isolated from empty vesicles by sucrose density gradient centrifugation, and exhibited a narrow size distribution (62 +/- 8 nm, as determined by freeze-fracture electron microscopy) and a high plasmid-to-lipid ratio of 65 microg/micromol (corresponding to one plasmid per particle) regardless of the DODAC content. It was found that isolated SPLP containing 20-24 mol% DODAC resulted in optimum transfection of COS-7 and HepG2 cells in vitro, with luciferase expression levels comparable to those achieved for plasmid DNA-cationic lipid complexes. In vivo studies employing an intraperitoneal B16 tumor model and intraperitoneal administration of SPLP also demonstrated maximum luciferase expression for DODAC contents of 20-24 mol% and significantly improved gene expression in tumor tissue as compared with complexes. We

  9. Combined Light and Electron Microscopy using Diaminobenzidine Photooxidation to Monitor Trafficking of Lipids Derived from Lipoprotein Particles

    PubMed Central

    Röhrl, Clemens; Meisslitzer-Ruppitsch, Claudia; Bittman, Robert; Li, Zaiguo; Pabst, Georg; Prassl, Ruth; Strobl, Witta; Neumüller, Josef; Ellinger, Adolf; Pavelka, Margit; Stangl, Herbert

    2013-01-01

    Diaminobenzidine (DAB) photooxidation is a method for conversion of fluorescent signals into electron-dense precipitates that are visible in the electron microscope. Recently, we have applied this method to analyze organelles involved in holo-high density lipoprotein (HDL) particle uptake at the ultrastructural level. In the present work we extended the spectrum of molecules visualized via photooxidation to monitor the uptake of HDL-derived lipids in HepG2 cells. By the combined light-electron microscopic method and with the aid of the DAB photooxidation technique, it became possible for the first time to visualize different intracellular pathways of lipoprotein particle-derived lipids and analyze the compartments involved at the ultrastructural level. HDL-Alexa 568 was used to visualize holo-HDL particle uptake. Reconstituted HDL particles containing the fluorescent cholesterol analogues Bodipy-cholesterol, Bodipy-cholesteryl oleate, or cholesteryl Bodipy-ester were used to visualize uptake of the HDL-associated sterol. In Bodipy-cholesteryl oleate and cholesteryl Bodipy-ester, the cholesterol moiety or the fatty acid moiety is fluorescently labeled, respectively; in contrast, Bodipy-cholesterol is an analogue of free cholesterol. The cellular compartments involved in their intracellular routes after uptake were analyzed in the fluorescence and electron microscope after DAB photooxidation. Bodipy-cholesterol was found to be localized in tubular endosomes and multivesicular bodies (MVBs), in the trans-Golgi network, and in stacked Golgi cisternae. In contrast, HepG2 cells incubated with HDL containing Bodipy-cholesteryl oleate or cholesteryl Bodipy-ester gave an uptake pattern comparable to that of holo-HDL particles, with MVBs being involved. Bodipy-cholesteryl oleate was also found in lysosomes. These results indicate that HDL-derived cholesterol and cholesteryl ester are transported by different intracellular pathways in HepG2 cells. Thus, the DAB photooxidation

  10. Alendronate-Loaded Modified Drug Delivery Lipid Particles Intended for Improved Oral and Topical Administration.

    PubMed

    Ochiuz, Lacramioara; Grigoras, Cristian; Popa, Marcel; Stoleriu, Iulian; Munteanu, Corneliu; Timofte, Daniel; Profire, Lenuta; Grigoras, Anca Giorgiana

    2016-01-01

    The present paper focuses on solid lipid particles (SLPs), described in the literature as the most effective lipid drug delivery systems that have been introduced in the last decades, as they actually combine the advantages of polymeric particles, hydrophilic/lipophilic emulsions and liposomes. In the current study, we present our most recent advances in the preparation of alendronate (AL)-loaded SLPs prepared by hot homogenization and ultrasonication using various ratios of a self-emulsifying lipidic mixture of Compritol 888, Gelucire 44/14, and Cremophor A 25. The prepared AL-loaded SLPs were investigated for their physicochemical, morphological and structural characteristics by dynamic light scattering, differential scanning calorimetry, thermogravimetric and powder X-ray diffraction analysis, infrared spectroscopy, optical and scanning electron microscopy. Entrapment efficacy and actual drug content were assessed by a validated HPLC method. In vitro dissolution tests performed in simulated gastro-intestinal fluids and phosphate buffer solution pH 7.4 revealed a prolonged release of AL of 70 h. Additionally, release kinetics analysis showed that both in simulated gastrointestinal fluids and in phosphate buffer solution, AL is released from SLPs based on equal ratios of lipid excipients following zero-order kinetics, which characterizes prolonged-release drug systems. PMID:27367664

  11. Biomass, lipid productivities and fatty acids composition of marine Nannochloropsis gaditana cultured in desalination concentrate.

    PubMed

    Matos, Ângelo Paggi; Feller, Rafael; Moecke, Elisa Helena Siegel; Sant'Anna, Ernani Sebastião

    2015-12-01

    In this study the feasibility of growing marine Nannochloropsis gaditana in desalination concentrate (DC) was explored and the influence of the DC concentration on the biomass growth, lipid productivities and fatty acids composition was assessed. The reuse of the medium with the optimum DC concentration in successive algal cultivation cycles and the additional of a carbon source to the optimized medium were also evaluated. On varying the DC concentration, the maximum biomass concentration (0.96gL(-1)) and lipid content (12.6%) were obtained for N. gaditana in the medium with the optimum DC concentration (75%). Over the course of the reuse of the optimum DC medium, three cultivation cycles were performed, observing that the biomass productivity is directly correlated to lipid productivity. Palmitic acid was the major fatty acid found in N. gaditana cells. The saturated fatty acids content of the algae enhanced significantly on increasing the DC concentration. PMID:26318921

  12. Reductions in Serum Lipids with a 4-year Decline in Serum Perfluorooctanoic Acid and Perfluorooctanesulfonic Acid

    PubMed Central

    Fitz-Simon, Nicola; Fletcher, Tony; Luster, Michael I.; Steenland, Kyle; Calafat, Antonia M.; Kato, Kayoko; Armstrong, Ben

    2016-01-01

    Background Several epidemiological cross-sectional studies have found positive associations between serum concentrations of lipids and perfluorooctanoic acid (PFOA, or C8). A longitudinal study should be less susceptible to biases from uncontrolled confounding or reverse causality. Methods We investigated the association between within-individual changes in serum PFOA and perfluorooctanesulfonic acid (PFOS) and changes in serum lipid levels (low-density lipoprotein [LDL] cholesterol, high-density lipoprotein cholesterol, total cholesterol, and triglycerides) over a 4.4-year period. The study population consisted of 560 adults living in parts of Ohio and West Virginia where public drinking water had been contaminated with PFOA. They had participated in a cross-sectional study in 2005–2006, and were followed up in 2010, by which time exposure to PFOA had been substantially reduced. Results Overall serum concentrations of PFOA and PFOS fell by half from initial geometric means of 74.8 and 18.5 ng/mL, respectively, with little corresponding change in LDL cholesterol (mean increase 1.8%, standard deviation 26.6%). However, there was a tendency for people with greater declines in serum PFOA or PFOS to have greater LDL decrease. For a person whose serum PFOA fell by half, the predicted fall in LDL cholesterol was 3.6% (95% confidence interval = 1.5–5.7%). The association with a decline in PFOS was even stronger, with a 5% decrease in LDL (2.5–7.4%). Conclusions Our findings from this longitudinal study support previous evidence from cross-sectional studies of positive associations between PFOA and PFOS in serum and LDL cholesterol. PMID:23685825

  13. Ultrafine metal particles immobilized on styrene/acrylic acid copolymer particles

    SciTech Connect

    Tamai, Hisashi; Hamamoto, Shiro; Nishiyama, Fumitaka; Yasuda, Hajime

    1995-04-01

    Ultrafine metal particles immobilized on styrene/acrylic acid copolymer fine particles were produced by reducing the copolymer particles-metal ion complexes or refluxing an ethanol solution of metal ions in the presence of copolymer particles. The size of metal particles formed by reduction of the complex is smaller than that by reflux of the metal ion solution and depends on the amount of metal ions immobilized.

  14. Effects of Fatty Acid Treatments on the Dexamethasone-Induced Intramuscular Lipid Accumulation in Chickens

    PubMed Central

    Wang, Xiao juan; Wei, Dai lin; Song, Zhi gang; Jiao, Hong chao; Lin, Hai

    2012-01-01

    Background Glucocorticoid has an important effect on lipid metabolism in muscles, and the type of fatty acid likely affects mitochondrial utilization. Therefore, we hypothesize that the different fatty acid types treatment may affect the glucocorticoid induction of intramuscular lipid accumulation. Methodology/Principal Findings The effect of dexamethasone (DEX) on fatty acid metabolism and storage in skeletal muscle of broiler chickens (Gallus gallus domesticus) was investigated with and without fatty acid treatments. Male Arbor Acres chickens (31 d old) were treated with either palmitic acid (PA) or oleic acid (OA) for 7 days, followed by DEX administration for 3 days (35–37 d old). The DEX-induced lipid uptake and oxidation imbalance, which was estimated by increased fatty acid transport protein 1 (FATP1) expression and decreased carnitine palmitoyl transferase 1 activity, contributed to skeletal muscle lipid accumulation. More sensitive than glycolytic muscle, the oxidative muscle in DEX-treated chickens showed a decrease in the AMP to ATP ratio, a decrease in AMP-activated protein kinase (AMPK) alpha phosphorylation and its activity, as well as an increase in the phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal p70S6 kinase, without Akt activation. DEX-stimulated lipid deposition was augmented by PA, but alleviated by OA, in response to pathways that were regulated differently, including AMPK, mTOR and FATP1. Conclusions DEX-induced intramuscular lipid accumulation was aggravated by SFA but alleviated by unsaturated fatty acid. The suppressed AMPK and augmented mTOR signaling pathways were involved in glucocortcoid-mediated enhanced intramuscular fat accumulation. PMID:22623960

  15. Prebiotic oligomerization of amino acids inside lipid vesicles of unsaturated and saturated fatty acids in hydrothermal environments

    NASA Astrophysics Data System (ADS)

    Imai, E.; Furuuchi, R.; Nemoto, A.; Hatori, K.; Honda, H.; Matsuno, K.

    We have already attempted an experimental model simulating seawater circulation in the vicinity of hydrothermal vents in the primitive ocean. We used a flow reactor that was constructed for simulating the pressure and temperature conditions of the hydrothermal vents. In the flow reactor, a high-temperature high-pressure fluid at 125˜ 250°C and at 20MPa was injected into a low temperature (0˜ 40°C ) chamber that was maintained at about the same high pressure as the fluid. We then experimentally examined a possibility of oligomerizing amino acids on or inside lipid vesicles. We compared three different kinds of lipid vesicles made of unsaturated fatty acids (oleic acid), saturated fatty acids (decanoic acid) and phospholipids (DPPC). Identification of the oligomeric products was made with the aid of an HPLC analysis. The oligomeric yields from glycine increased significantly in the presence of lipid vesicles compared to the case of their absence. On the other hand, there was found no significant difference in the yields of oligomers between in the presence of lipid vesicles dissolved by surfactant and in their absence. The possibility of lipid molecules serving as catalysts for oligomerization may be dismissed. The diameters of those lipid vesicles observed under a phase contrast microscope were about 10 micrometer or less. The total volume shared by oleic acid vesicles was about 5 % of the total volume of the suspension. Oligomerization of glycine inside oleic acid vesicles was enhanced more than 15 times compared to that proceeding in their outside. Enhancement of oligomerization of glycine in the presence of lipid vesicles was repeated as the reactants revisited the interface zone between the hot and cold regions. Even those lipid vesicles made of saturated fatty acid such as decanoic acid could have been functional in enhancing the oligomerization of monomers in their inside in the primitive ocean. References E. Imai, et al. (1999) Science 283, 831-833. H

  16. Effect of 3-hydroxy-3-methylglutaric acid administration on bile lipid composition in humans.

    PubMed

    Di Padova, C; Di Padova, F; Buzzetti, M; Tritapepe, R

    1984-09-01

    The effects of the lipid-lowering agent 3-hydroxy-3-methylglutaric acid (HMGA) on serum lipids and on biliary lipid composition were evaluated in a double-blind, placebo-controlled study in normolipidemic volunteers. After 4 weeks of HMGA administration (1 g three times a day orally) serum total cholesterol showed a significant decrease with regard to both pretreatment values and corresponding values of controls. The bile lipid molar percentage composition and the cholesterol saturation index showed no modification after HMGA and did not differ from the values obtained in the placebo group. These findings indicate that HMGA exerts no adverse effects on bile lipid composition in humans, differing from other hypolipidemic drugs currently in clinical use, which increase the bile cholesterol saturation index. PMID:6083597

  17. Detergent-free Isolation of Functional G Protein-Coupled Receptors into Nanometric Lipid Particles.

    PubMed

    Logez, Christel; Damian, Marjorie; Legros, Céline; Dupré, Clémence; Guéry, Mélody; Mary, Sophie; Wagner, Renaud; M'Kadmi, Céline; Nosjean, Olivier; Fould, Benjamin; Marie, Jacky; Fehrentz, Jean-Alain; Martinez, Jean; Ferry, Gilles; Boutin, Jean A; Banères, Jean-Louis

    2016-01-12

    G protein-coupled receptors (GPCRs) are integral membrane proteins that play a pivotal role in signal transduction. Understanding their dynamics is absolutely required to get a clear picture of how signaling proceeds. Molecular characterization of GPCRs isolated in detergents nevertheless stumbles over the deleterious effect of these compounds on receptor function and stability. We explored here the potential of a styrene-maleic acid polymer to solubilize receptors directly from their lipid environment. To this end, we used two GPCRs, the melatonin and ghrelin receptors, embedded in two membrane systems of increasing complexity, liposomes and membranes from Pichia pastoris. The styrene-maleic acid polymer was able, in both cases, to extract membrane patches of a well-defined size. GPCRs in SMA-stabilized lipid discs not only recognized their ligand but also transmitted a signal, as evidenced by their ability to activate their cognate G proteins and recruit arrestins in an agonist-dependent manner. Besides, the purified receptor in lipid discs undergoes all specific changes in conformation associated with ligand-mediated activation, as demonstrated in the case of the ghrelin receptor with fluorescent conformational reporters and compounds from distinct pharmacological classes. Altogether, these data highlight the potential of styrene-maleic stabilized lipid discs for analyzing the molecular bases of GPCR-mediated signaling in a well-controlled membrane-like environment. PMID:26701065

  18. Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides.

    PubMed

    Huang, Xiang-Feng; Liu, Jia-Nan; Lu, Li-Jun; Peng, Kai-Ming; Yang, Gao-Xiang; Liu, Jia

    2016-04-01

    Rhodosporidium toruloides AS 2.1389 was tested using different concentrations of acetic acid as a low-cost carbon source for the production of microbial lipids, which are good raw materials for biodiesel production. It grew and had higher lipid contents in media containing 4-20g/L acetic acid as the sole carbon source, compared with that in glucose-containing media under the same culture conditions. At acetic acid concentrations as high as 20g/L and the optimal carbon-to-nitrogen ratio (C/N) of 200 in a batch culture, the highest biomass production was 4.35g/L, with a lipid content of 48.2%. At acetic acid concentrations as low as 4g/L, a sequencing batch culture (SBC) with a C/N of 100 increased biomass production to 4.21g/L, with a lipid content of 38.6%. These results provide usable culture strategies for lipid production by R. toruloides AS 2.1389 when using diverse waste-derived volatile fatty acids. PMID:26851898

  19. Lipids and Fatty Acids of Nudibranch Mollusks: Potential Sources of Bioactive Compounds

    PubMed Central

    Zhukova, Natalia V.

    2014-01-01

    The molecular diversity of chemical compounds found in marine animals offers a good chance for the discovery of novel bioactive compounds of unique structures and diverse biological activities. Nudibranch mollusks, which are not protected by a shell and produce chemicals for various ecological uses, including defense against predators, have attracted great interest for their lipid composition. Lipid analysis of eight nudibranch species revealed dominant phospholipids, sterols and monoalkyldiacylglycerols. Among polar lipids, 1-alkenyl-2-acyl glycerophospholipids (plasmalogens) and ceramide-aminoethyl phosphonates were found in the mollusks. The fatty acid compositions of the nudibranchs differed greatly from those of other marine gastropods and exhibited a wide diversity: very long chain fatty acids known as demospongic acids, a series of non-methylene-interrupted fatty acids, including unusual 21:2∆7,13, and an abundance of various odd and branched fatty acids typical of bacteria. Symbiotic bacteria revealed in some species of nudibranchs participate presumably in the production of some compounds serving as a chemical defense for the mollusks. The unique fatty acid composition of the nudibranchs is determined by food supply, inherent biosynthetic activities and intracellular symbiotic microorganisms. The potential of nudibranchs as a source of biologically active lipids and fatty acids is also discussed. PMID:25196731

  20. Lipid and fatty acid analysis of uninfected and granulosis virus-infected Plodia interpunctella larvae

    NASA Technical Reports Server (NTRS)

    Shastri-Bhalla, K.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A comparative study on the lipid and fatty acid composition of the uninfected and GV-infected Plodia interpunctella larvae was performed. Higher levels of free fatty acids were found in GV-infected larvae compared to those of the uninfected larvae, while the latter had more triacylglycerol compared to the former. The known identified phospholipids were fewer in the GV-infected larvae compared to those in the uninfected larvae. However, an unidentified phospholipid was found to be approximately two times higher in GV-infected larvae. The total lipid of both larvae had palmitic, oleic, and linoleic as the major fatty acids. The fatty acid composition of the GV-infected larval phospholipid differed considerably compared to that of the uninfected larvae, in that the ratio of unsaturated fatty acid to saturated fatty acid was 3.5 times less in the GV-infected larvae.

  1. Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production.

    PubMed

    Karpagam, R; Preeti, R; Ashokkumar, B; Varalakshmi, P

    2015-11-01

    Lipid from microalgae is one of the putative oil resources to facilitate the biodiesel production during this era of energy dissipation and environmental pollution. In this study, the key parameters such as biomass productivity, lipid productivity and lipid content were evaluated at the early stationary phase of Chlamydomonas reinhardtii, CC1010 cultivated in nutrient starved (nitrogen, phosphorous), glucose (0.05%, 0.1%, 0.15% and 0.2%) and vitamin B12 supplementation (0.001%, 0.002% and 0.003%) in Tris-Acetate-Phosphate (TAP) medium. The lipid content in nitrogen starved media was 61% which is 2.34 folds higher than nutrient sufficient TAP medium. Glucose supplementation has lead to proportional increase in biomass productivity with the increasing concentration of glucose whereas vitamin B12 supplementations had not shown any influence in lipid and biomass production. Further, fatty acid methyl ester (FAME) profiling of C. reinhardtii, CC 1010 has revealed more than 80% of total SFA (saturated fatty acid) and MUFA (mono unsaturated fatty acid) content. Quality checking parameters of biodiesel like cetane number, saponification value, iodine number and degree of unsaturation were analyzed and the biodiesel fuel properties were found to be appropriate as per the international standards, EN 14214 and ASTM D6751. Conclusively, among all the treatments, nitrogen starvation with 0.1% glucose supplementation had yielded high lipid content in C. reinhardtii, CC 1010. PMID:25838071

  2. Lipid oxidation stability of omega-3- and conjugated linoleic acid-enriched sous vide chicken meat.

    PubMed

    Narciso-Gaytán, C; Shin, D; Sams, A R; Keeton, J T; Miller, R K; Smith, S B; Sánchez-Plata, M X

    2011-02-01

    Lipid oxidation is known to occur rather rapidly in cooked chicken meat containing relatively high amounts of polyunsaturated fatty acids. To assess the lipid oxidation stability of sous vide chicken meat enriched with n-3 and conjugated linoleic acid (CLA) fatty acids, 624 Cobb × Ross broilers were raised during a 6-wk feeding period. The birds were fed diets containing CLA (50% cis-9, trans-11 and 50% trans-10, cis-12 isomers), flaxseed oil (FSO), or menhaden fish oil (MFO), each supplemented with 42 or 200 mg/kg of vitamin E (dl-α-tocopheryl acetate). Breast or thigh meat was vacuum-packed, cooked (74°C), cooled in ice water, and stored at 4.4°C for 0, 5, 10, 15, and 30 d. The lipid oxidation development of the meat was estimated by quantification of malonaldehyde (MDA) values, using the 2-thiobarbituric acid reactive substances analysis. Fatty acid, nonheme iron, moisture, and fat analyses were performed as well. Results showed that dietary CLA induced deposition of cis-9, trans-11 and trans-10, cis-12 CLA isomers, increased the proportion of saturated fatty acids, and decreased the proportions of monounsaturated and polyunsaturated fatty acids. Flaxseed oil induced higher deposition of C18:1, C18:2, C18:3, and C20:4 fatty acids, whereas MFO induced higher deposition of n-3 fatty acids, eicosapentaenoic acid (C20:5), and docosahexaenoic acid (C22:6; P < 0.05). Meat lipid oxidation stability was affected by the interaction of either dietary oil or vitamin E with storage day. Lower (P < 0.05) MDA values were found in the CLA treatment than in the MFO and FSO treatments. Lower (P < 0.05) MDA values were detected in meat samples from the 200 mg/kg of vitamin E than in meat samples from the 42 mg/kg of vitamin E. Nonheme iron values did not affect (P > 0.05) lipid oxidation development. In conclusion, dietary CLA, FSO, and MFO influenced the fatty acid composition of chicken muscle and the lipid oxidation stability of meat over the storage time. Supranutritional

  3. Uptake and incorporation of saturated and unsaturated fatty acids into macrophage lipids and their effect upon macrophage adhesion and phagocytosis.

    PubMed Central

    Calder, P C; Bond, J A; Harvey, D J; Gordon, S; Newsholme, E A

    1990-01-01

    Murine thioglycollate-elicited peritoneal macrophages were cultured in the presence of a variety of fatty acids added as complexes with bovine serum albumin. All fatty acids tested were taken up readily by the cells and both neutral and phospholipid fractions were enriched with the fatty acid provided in the medium. This generated a range of cells enriched in saturated, monounsaturated or polyunsaturated fatty acids, including n-3 acids of fish oil origin. Saturated fatty acid enrichment enhanced macrophage adhesion to both tissue culture plastic and bacterial plastic compared with enrichment with polyunsaturated fatty acids. Macrophages enriched with the saturated fatty acids myristate or palmitate showed decreases of 28% and 21% respectively in their ability to phagocytose unopsonized zymosan particles. Those enriched with polyunsaturated fatty acids showed 25-55% enhancement of phagocytic capacity. The greatest rate of uptake was with arachidonate-enriched cells. Phagocytic rate was highly correlated with the saturated/unsaturated fatty acid ratio, percentage of polyunsaturated fatty acid and index of unsaturation, except for macrophages enriched with fish-oil-derived fatty acids; they showed lower phagocytic activity than expected on the basis of their degree of unsaturation. These results suggest that membrane fluidity is important in determining macrophage adhesion and phagocytic activity. However, in the case of phagocytosis, this effect may be partially overcome if the cells are enriched with fish-oil-derived fatty acids. Thus it may be possible to modulate the activity of cells of the immune system, and so an immune response, by dietary lipid manipulation. PMID:2117922

  4. Bioavailability of Fullerene under Environmentally Relevant Conditions: Effects of Humic Acid and Fetal Bovine Serum on Accumulation in Lipid Bilayers and Cellular Uptake.

    PubMed

    Ha, Yeonjeong; Wang, Xianzhe; Liljestrand, Howard M; Maynard, Jennifer A; Katz, Lynn E

    2016-07-01

    Carbon fullerene (C60) has emerged at the forefront of nanoscale research and application due to its unique properties. As the production of this nanoparticle rapidly increases, it can be released into natural aquatic environments and can accumulate in biological systems. This research examined the effects of humic acid and fetal bovine serum (FBS), which are ubiquitous in aquatic environments and representative of blood plasma in living organisms, respectively, on bioavailability of fullerene. Bioavailability was investigated using in vitro methods for lipid membrane accumulation and cellular uptake studies. Humic acid and FBS significantly changed the characteristics of fullerene including its particle size and surface charge. The effects of humic acid on lipid accumulation of fullerene depended on the lipid head charge. FBS also significantly decreased the lipid accumulation when positively charged and zwitterionic head groups were present on the lipids, possibly due to the higher steric repulsion of the protein coated nanoparticles. In addition, both humic acid and FBS protein effectively lowered the amounts of fullerene taken up by Caco-2 cells, which are derived from a human colorectal adenocarcinoma and have similar functions to the small intestinal epithelium. Results of this study suggest that surface modification of fullerene by environmentally relevant matrices can significantly affect the biological transport, as well as the possible toxicity of this nanomaterial. PMID:26943027

  5. Ontogenetic change in the lipid and fatty acid composition of scleractinian coral larvae

    NASA Astrophysics Data System (ADS)

    Figueiredo, J.; Baird, A. H.; Cohen, M. F.; Flot, J.-F.; Kamiki, T.; Meziane, T.; Tsuchiya, M.; Yamasaki, H.

    2012-06-01

    Some scleractinian coral larvae have an extraordinary capacity to delay metamorphosis, and this is reflected in the large geographic range of many species. Coral eggs typically contain a high proportion of wax esters, which have been hypothesized to provide a source of energy for long-distance dispersal. To better understand the role of lipids in the dispersal of broadcast spawning coral larvae, ontogenetic changes in the lipid and fatty acid composition of Goniastrea retiformis were measured from the eggs until larvae were 30 days old. Egg biomass was 78.8 ± 0.5% lipids, 86.3 ± 0.2% of which were wax esters, 9.3 ± 0.0% polar lipids, 4.1 ± 0.2% sterols, and 0.3 ± 0.1% triacylglycerols. The biomass of wax esters declined significantly through time, while polar lipids, sterols and triacylglycerols remained relatively constant, suggesting that wax esters are the prime source of energy for development. The most prevalent fatty acid in the eggs was palmitic acid, a marker of the dinoflagellate Symbiodinium, highlighting the importance of symbiosis in coral reproductive ecology. The proportion of polyunsaturated fatty acids declined through time, suggesting that they are essential for larval development. Interestingly, triacylglycerols are only abundant in the propagules that contain Symbiodinium, suggesting important differences in the energetic of dispersal among species with vertical and horizontal transmission of symbionts.

  6. How Bacterial Pathogens Eat Host Lipids: Implications for the Development of Fatty Acid Synthesis Therapeutics*

    PubMed Central

    Yao, Jiangwei; Rock, Charles O.

    2015-01-01

    Bacterial type II fatty acid synthesis (FASII) is a target for the development of novel therapeutics. Bacteria incorporate extracellular fatty acids into membrane lipids, raising the question of whether pathogens use host fatty acids to bypass FASII and defeat FASII therapeutics. Some pathogens suppress FASII when exogenous fatty acids are present to bypass FASII therapeutics. FASII inhibition cannot be bypassed in many bacteria because essential fatty acids cannot be obtained from the host. FASII antibiotics may not be effective against all bacteria, but a broad spectrum of Gram-negative and -positive pathogens can be effectively treated with FASII inhibitors. PMID:25648887

  7. The role of porous nanostructure in controlling lipase-mediated digestion of lipid loaded into silica particles.

    PubMed

    Joyce, Paul; Tan, Angel; Whitby, Catherine P; Prestidge, Clive A

    2014-03-18

    The rate and extent of lipolysis, the breakdown of fat into molecules that can be absorbed into the bloodstream, depend on the interfacial composition and structure of lipid (fat) particles. A novel method for controlling the interfacial properties is to load the lipid into porous colloidal particles. We report on the role of pore nanostructure and surface coverage in controlling the digestion kinetics of medium-chain and long-chain triglycerides loaded into porous silica powders of different particle size, porosity, and hydrophobicity/hydrophilicity. An in vitro lipolysis model was used to measure digestion kinetics of lipid by pancreatic lipase, a digestive enzyme. The rate and extent of lipid digestion were significantly enhanced when a partial monolayer of lipid was loaded in porous hydrophilic silica particles compared to a submicrometer lipid-in-water emulsion or a coarse emulsion. The inhibitory effect of digestion products was clearly evident for digestion from a submicrometer emulsion and coarse emulsion. This effect was minimal, however, in the two silica-lipid systems. Lipase action was inhibited for lipid loaded in the hydrophobic silica and considered due to the orientation of lipase adsorption on the methylated silica surface. Thus, hydrophilic silica promotes enhanced digestion kinetics, whereas hydrophobic silica exerts an inhibitory effect on hydrolysis. Evaluation of digestion kinetics enabled the mechanism for enhanced rate of lipolysis in silica-lipid systems to be derived and detailed. These investigations provide valuable insights for the optimization of smart food microparticles and lipid-based drug delivery systems based on lipid excipients and porous nanoparticles. PMID:24552363

  8. Bile acid signaling in lipid metabolism: metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice.

    PubMed

    Qi, Yunpeng; Jiang, Changtao; Cheng, Jie; Krausz, Kristopher W; Li, Tiangang; Ferrell, Jessica M; Gonzalez, Frank J; Chiang, John Y L

    2015-01-01

    Bile acid synthesis is the major pathway for catabolism of cholesterol. Cholesterol 7α-hydroxylase (CYP7A1) is the rate-limiting enzyme in the bile acid biosynthetic pathway in the liver and plays an important role in regulating lipid, glucose and energy metabolism. Transgenic mice overexpressing CYP7A1 (CYP7A1-tg mice) were resistant to high-fat diet (HFD)-induced obesity, fatty liver, and diabetes. However the mechanism of resistance to HFD-induced obesity of CYP7A1-tg mice has not been determined. In this study, metabolomic and lipidomic profiles of CYP7A1-tg mice were analyzed to explore the metabolic alterations in CYP7A1-tg mice that govern the protection against obesity and insulin resistance by using ultra-performance liquid chromatography-coupled with electrospray ionization quadrupole time-of-flight mass spectrometry combined with multivariate analyses. Lipidomics analysis identified seven lipid markers including lysophosphatidylcholines, phosphatidylcholines, sphingomyelins and ceramides that were significantly decreased in serum of HFD-fed CYP7A1-tg mice. Metabolomics analysis identified 13 metabolites in bile acid synthesis including taurochenodeoxycholic acid, taurodeoxycholic acid, tauroursodeoxycholic acid, taurocholic acid, and tauro-β-muricholic acid (T-β-MCA) that differed between CYP7A1-tg and wild-type mice. Notably, T-β-MCA, an antagonist of the farnesoid X receptor (FXR) was significantly increased in intestine of CYP7A1-tg mice. This study suggests that reducing 12α-hydroxylated bile acids and increasing intestinal T-β-MCA may reduce high fat diet-induced increase of phospholipids, sphingomyelins and ceramides, and ameliorate diabetes and obesity. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics. PMID:24796972

  9. Bile acid signaling in lipid metabolism: Metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice

    PubMed Central

    Qi, Yunpeng; Jiang, Changtao; Cheng, Jie; Krausz, Kristopher W.; Li, Tiangang; Ferrell, Jessica M.; Gonzalez, Frank J.; Chiang, John Y.L.

    2014-01-01

    Bile acid synthesis is the major pathway for catabolism of cholesterol. Cholesterol 7α-hydroxylase (CYP7A1) is the rate-limiting enzyme in the bile acid biosynthetic pathway in the liver and plays an important role in regulating lipid, glucose and energy metabolism. Transgenic mice overexpressing CYP7A1 (CYP7A1-tg mice) were resistant to high-fat diet (HFD)-induced obesity, fatty liver, and diabetes. However the mechanism of resistance to HFD-induced obesity of CYP7A1-tg mice has not been determined. In this study, metabolomic and lipidomic profiles of CYP7A1-tg mice were analyzed to explore the metabolic alterations in CYP7A1-tg mice that govern the protection against obesity and insulin resistance by using ultra-performance liquid chromatography-coupled with electrospray ionization quadrupole time-of-flight mass spectrometry combined with multivariate analyses. Lipidomics analysis identified seven lipid markers including lysophosphatidylcholines, phosphatidylcholines, sphingomyelins and ceramides that were significantly decreased in serum of HFD-fed CYP7A1-tg mice. Metabolomics analysis identified 13 metabolites in bile acid synthesis including taurochenodeoxycholic acid, taurodeoxycholic acid, tauroursodeoxycholic acid, taurocholic acid, and tauro-β-muricholic acid (T-β-MCA) that differed between CYP7A1-tg and wild-type mice. Notably, T-β-MCA, an antagonist of the farnesoid X receptor (FXR) was significantly increased in intestine of CYP7A1-tg mice. This study suggests that reducing 12α-hydroxylated bile acids and increasing intestinal T-β-MCA may reduce high fat diet-induced increase of phospholipids, sphingomyelins and ceramides, and ameliorate diabetes and obesity. PMID:24796972

  10. The reactions of hypochlorous acid, the reactive oxygen species produced by myeloperoxidase, with lipids.

    PubMed

    Spickett, C M; Jerlich, A; Panasenko, O M; Arnhold, J; Pitt, A R; Stelmaszyńska, T; Schaur, R J

    2000-01-01

    Myeloperoxidase (MPO), an abundant enzyme in phagocytes, has been implicated in the pathogenesis of various inflammatory diseases including atherosclerosis. The major oxidant produced by MPO, hypochlorous acid (HOCl), is able to modify a great variety of biomolecules by chlorination and/or oxidation. In this paper the reactions of lipids (preferentially unsaturated fatty acids and cholesterol) with either reagent HOCl or HOCl generated by the MPO-hydrogen peroxide-chloride system are reviewed. One of the major issues has been whether the reaction of HOCl with lipids of low density lipoprotein (LDL) yields predominantly chlorohydrins or lipid hydroperoxides. Electrospray mass spectrometry provided direct evidence that chlorohydrins rather than peroxides are the major products of HOCl- or MPO-treated LDL phosphatidylcholines. Nevertheless lipid peroxidation is a possible alternative reaction of HOCl with polyunsaturated fatty acids if an additional radical source such as pre-formed lipid hydroperoxides is available. In phospholipids carrying a primary amino group such as phosphatidylethanolamine chloramines are the preferred products compared to chlorohydrins. Cholesterol can be converted by HOCl to great variety of oxysterols besides three isomers of chlorohydrins. For the situation in vivo it appears that the type of reaction occurring between HOCl and lipids would very much depend on the circumstances, e.g. the pH and the presence of radical initiators. The biological effects of lipid chlorohydrins are not yet well understood. It has been shown that chlorohydrins of both unsaturated fatty acids as well as of cholesterol may cause lysis of target cells, possibly by disruption of membrane structures. PMID:11996112

  11. Pantothenic acid and its derivatives protect Ehrlich ascites tumor cells against lipid peroxidation.

    PubMed

    Slyshenkov, V S; Rakowska, M; Moiseenok, A G; Wojtczak, L

    1995-12-01

    Preincubation of Ehrlich ascites tumor cells at 22 or 32 degrees C, but not at 0 degree C, with pantothenic acid, 4'-phosphopantothenic acid, pantothenol, or pantethine reduced lipid peroxidation (measured by production of thiobarbituric acid-reactive compounds) induced by the Fenton reaction (Fe2+ + H2O2) and partly protected the plasma membrane against the leakiness to cytoplasmic proteins produced by the same reagent. Pantothenic acid and its derivatives did not inhibit (Fe2+ + H2O2)-induced peroxidation of phospholipid multilamellar vesicles, thus indicating that their effect on the cells was not due to the scavenging mechanism. Homopantothenic acid and its 4'-phosphate ester (which are not precursors of CoA) neither protected Ehrlich ascites tumor cells against lipid peroxidation nor prevented plasma membrane leakiness under the same conditions. Incubation of the cells with pantothenic acid, 4'-phosphopantothenic acid, pantothenol, or pantethine significantly increased the amount of cellular CoA and potentiated incorporation of added palmitate into phospholipids and cholesterol esters. It is concluded that pantothenic acid and its related compounds protect the plasma membrane of Ehrlich ascites tumor cells against the damage by oxygen free radicals due to increasing cellular level of CoA. The latter compound may act by diminishing propagation of lipid peroxidation and promoting repair mechanisms, mainly the synthesis of phospholipids. PMID:8582649

  12. Studies in lipid histochemistry. XIII. The OPA (osmiumtetroxide-periodic acid-alpha-naphthylamine) method for the detection of apolar lipids.

    PubMed

    Elleder, M

    1975-09-29

    A new procedure for the detection of apolar lipids is described. It is a modification of the OTAN method (Adams, 1959) using periodic acid which oxidatively removes lower osmium derivatives from polar sites only, leaving those in apolar lipids intact and demonstrable with alpha-naphthylamine. Control steps for the exclusion of the possible interference of some less polar complex lipids and of lipopigments are described. The described technic is superior to the conventionally used sudan dyes due partly to the fact that only aqueous solutions are employed thus excluding any extraction of lipids, partly to the more distinct coloration. PMID:171245

  13. Intake of silica nanoparticles by giant lipid vesicles: influence of particle size and thermodynamic membrane state

    PubMed Central

    Strobl, Florian G; Seitz, Florian; Westerhausen, Christoph; Reller, Armin; Torrano, Adriano A; Bräuchle, Christoph

    2014-01-01

    Summary The uptake of nanoparticles into cells often involves their engulfment by the plasma membrane and a fission of the latter. Understanding the physical mechanisms underlying these uptake processes may be achieved by the investigation of simple model systems that can be compared to theoretical models. Here, we present experiments on a massive uptake of silica nanoparticles by giant unilamellar lipid vesicles (GUVs). We find that this uptake process depends on the size of the particles as well as on the thermodynamic state of the lipid membrane. Our findings are discussed in the light of several theoretical models and indicate that these models have to be extended in order to capture the interaction between nanomaterials and biological membranes correctly. PMID:25671142

  14. Entry of Bluetongue Virus Capsid Requires the Late Endosome-specific Lipid Lysobisphosphatidic Acid*

    PubMed Central

    Patel, Avnish; Mohl, Bjorn-Patrick; Roy, Polly

    2016-01-01

    The entry of viruses into host cells is one of the key processes of infection. The mechanisms of cellular entry for enveloped virus have been well studied. The fusion proteins as well as the facilitating cellular lipid factors involved in the viral fusion entry process have been well characterized. The process of non-enveloped virus cell entry, in comparison, remains poorly defined, particularly for large complex capsid viruses of the family Reoviridae, which comprises a range of mammalian pathogens. These viruses enter cells without the aid of a limiting membrane and thus cannot fuse with host cell membranes to enter cells. Instead, these viruses are believed to penetrate membranes of the host cell during endocytosis. However, the molecular mechanism of this process is largely undefined. Here we show, utilizing an in vitro liposome penetration assay and cell biology, that bluetongue virus (BTV), an archetypal member of the Reoviridae, utilizes the late endosome-specific lipid lysobisphosphatidic acid for productive membrane penetration and viral entry. Further, we provide preliminary evidence that lipid lysobisphosphatidic acid facilitates pore expansion during membrane penetration, suggesting a mechanism for lipid factor requirement of BTV. This finding indicates that despite the lack of a membrane envelope, the entry process of BTV is similar in specific lipid requirements to enveloped viruses that enter cells through the late endosome. These results are the first, to our knowledge, to demonstrate that a large non-enveloped virus of the Reoviridae has specific lipid requirements for membrane penetration and host cell entry. PMID:27036941

  15. Entry of Bluetongue Virus Capsid Requires the Late Endosome-specific Lipid Lysobisphosphatidic Acid.

    PubMed

    Patel, Avnish; Mohl, Bjorn-Patrick; Roy, Polly

    2016-06-01

    The entry of viruses into host cells is one of the key processes of infection. The mechanisms of cellular entry for enveloped virus have been well studied. The fusion proteins as well as the facilitating cellular lipid factors involved in the viral fusion entry process have been well characterized. The process of non-enveloped virus cell entry, in comparison, remains poorly defined, particularly for large complex capsid viruses of the family Reoviridae, which comprises a range of mammalian pathogens. These viruses enter cells without the aid of a limiting membrane and thus cannot fuse with host cell membranes to enter cells. Instead, these viruses are believed to penetrate membranes of the host cell during endocytosis. However, the molecular mechanism of this process is largely undefined. Here we show, utilizing an in vitro liposome penetration assay and cell biology, that bluetongue virus (BTV), an archetypal member of the Reoviridae, utilizes the late endosome-specific lipid lysobisphosphatidic acid for productive membrane penetration and viral entry. Further, we provide preliminary evidence that lipid lysobisphosphatidic acid facilitates pore expansion during membrane penetration, suggesting a mechanism for lipid factor requirement of BTV. This finding indicates that despite the lack of a membrane envelope, the entry process of BTV is similar in specific lipid requirements to enveloped viruses that enter cells through the late endosome. These results are the first, to our knowledge, to demonstrate that a large non-enveloped virus of the Reoviridae has specific lipid requirements for membrane penetration and host cell entry. PMID:27036941

  16. Characteristic of lipids and fatty acid compositions of the neon flying squid, Ommastrephes bartramii.

    PubMed

    Saito, Hiroaki; Ishikawa, Satoru

    2012-01-01

    The lipids and fatty acids of the neon flying squid (Ommastrephes bartramii) were an-alyzed to clarify its lipid physiology and health benefit as marine food. Triacylglycerols were the only major component in the digestive gland (liver). In all other organs (mantle, arm, integument, and ovary), sterols and phospholipids were the major components with noticeable levels of ceramide aminoethyl phosphonate and sphingomyelin. The significant levels of sphingolipids suggest the O. bartramii lipids is a useful source for cosmetics. Although the lipid content between the liver and all other tissues markedly differed from each other, the same nine dominant fatty acids in the triacylglycerols were found in all organs; 14:0, 16:0, 18:0, 18:1n-9, 20:1n-9, 20:1n-11, 22:1n-11, 20:5n-3 (icosapentaenoic acid, EPA), and 22:6n-3 (docosahexaenoic acid, DHA). Unusually high 20:1n-11 levels in the O. bartramii triacylglycerols were probably characteristic for western Pacific animal depot lipids, compared with non-detectable levels of 20:1n-11 reported in other marine animals. O. bartramii concurrently has high levels of DHA in their triacylglycerols. The major fatty acids in the phospholipids were 16:0, 18:0, 20:1n-9, EPA, and DHA without 20:1n-11. Markedly high levels of both EPA and DHA were observed in phosphatidylethanolamine, while only DHA was found as the major one in phosphatidylcholine. In particular, high levels of DHA were found both in its depot triacylglycerols and tissue phospholipids in all organs of O. bartramii, similar to that in highly migratory fishes. The high DHA levels in all its organs suggest that O. bartramii lipids is a healthy marine source for DHA supplements. PMID:23018852

  17. Lipid content and fatty acid composition of 11 species of Queensland (Australia) fish.

    PubMed

    Belling, G B; Abbey, M; Campbell, J H; Campbell, G R

    1997-06-01

    The fatty acid composition of 11 species of fish caught of the northeast coast of Australia was determined. No fatty acid profiles have been previously published for fish from this area nor for nine of these species. Although the percentage of polyunsaturated fatty acid (PUFA) was the same as the calculated average for Australian fish (42.3%), the percentage of n-3 fatty acids was lower (24.4 +/- 5.4% vs. 30.7 +/- 10.1%) and the n-6 fatty acids higher (16.5 +/- 4.5% vs. 11.2 +/- 5.9%), P < 0.001 in each case. The major n-3 PUFA were docosahexaenoic (15.6 +/- 6.3%) and eicosapentaenoic acid (4.3 +/- 1.1%) while the major n-6 PUFA were arachidonic (8.3 +/- 3.2%) and n-6 docosatetraenoic acid (3.1 +/- 1.3%). The second-most abundant class of fatty acid was the saturates (31.6 +/- 3.5%) while the monounsaturates accounted for 17.4 +/- 4.3% of the total fatty acids. The monounsaturate with the highest concentration was octadecenoic acid (11.8 +/- 2.6%). There was a positive correlation between the total lipid content and saturated and monounsaturated fatty acids (r = 0.675 and 0.567, respectively) and a negative correlation between the total lipid content and PUFA (r = 0.774). PMID:9208391

  18. Development of an optimized hyaluronic acid-based lipidic nanoemulsion co-encapsulating two polyphenols for nose to brain delivery.

    PubMed

    Nasr, Maha

    2016-05-01

    The development of mucoadhesive lipidic nanoemulsion based on hyaluronic acid, co-encapsulating two polyphenols (resveratrol and curcumin) for the transnasal treatment of neurodegenerative diseases was attempted in the current manuscript. Nanoemulsions were prepared by the spontaneous emulsification method, and were characterized for their particle size, zeta potential, mucoadhesive strength and morphology. The selected formula was tested for its antioxidant potential, in vitro and ex vivo release of the two polyphenols, safety on nasal mucosa and in vivo quantification of the two drugs in rat brains. Its stability was tested by monitoring the change in particle size, zeta potential, drugs' content and antioxidant potential upon storage for 3 months. The optimized hyaluronic acid based nanoemulsion formula displayed a particle size of 115.2 ± 0.15 and a zeta potential of -23.9 ± 1.7. The formula displayed a spherical morphology and significantly higher mucoadhesive strength compared to its non mucoadhesive counterpart. In addition, the nanoemulsion was able to preserve the antioxidant ability of the two polyphenols and protect them from degradation. Diffusion controlled release of the two drugs was achievable till 6 hours, with an ex vivo flux across sheep nasal mucosa of 2.86 and 2.09 µg/cm(2)hr for resveratrol and curcumin, respectively. Moreover, the mucoadhesive nanoemulsion was safe on nasal mucosa and managed to increase the amounts of the two polypehnols in the brain (about 7 and 9 folds increase in AUC0-7 h for resveratrol and curcumin, respectively). Hyaluronic acid based lipidic nanoemulsion proved itself as a successful carrier enhancing the solubility, stability and brain targetability of polyphenols. PMID:26401600

  19. New Poly(amino acid methacrylate) Brush Supports the Formation of Well-Defined Lipid Membranes

    PubMed Central

    2015-01-01

    A novel poly(amino acid methacrylate) brush comprising zwitterionic cysteine groups (PCysMA) was utilized as a support for lipid bilayers. The polymer brush provides a 12-nm-thick cushion between the underlying hard support and the aqueous phase. At neutral pH, the zeta potential of the PCysMA brush was ∼−10 mV. Cationic vesicles containing >25% DOTAP were found to form a homogeneous lipid bilayer, as determined by a combination of surface analytical techniques. The lipid mobility as measured by FRAP (fluorescence recovery after photobleaching) gave diffusion coefficients of ∼1.5 μm2 s–1, which are comparable to those observed for lipid bilayers on glass substrates. PMID:25746444

  20. Roles of Chlorogenic Acid on Regulating Glucose and Lipids Metabolism: A Review

    PubMed Central

    Meng, Shengxi; Cao, Jianmei; Feng, Qin; Peng, Jinghua; Hu, Yiyang

    2013-01-01

    Intracellular glucose and lipid metabolic homeostasis is vital for maintaining basic life activities of a cell or an organism. Glucose and lipid metabolic disorders are closely related with the occurrence and progression of diabetes, obesity, hepatic steatosis, cardiovascular disease, and cancer. Chlorogenic acid (CGA), one of the most abundant polyphenol compounds in the human diet, is a group of phenolic secondary metabolites produced by certain plant species and is an important component of coffee. Accumulating evidence has demonstrated that CGA exerts many biological properties, including antibacterial, antioxidant, and anticarcinogenic activities. Recently, the roles and applications of CGA, particularly in relation to glucose and lipid metabolism, have been highlighted. This review addresses current studies investigating the roles of CGA in glucose and lipid metabolism. PMID:24062792

  1. New poly(amino acid methacrylate) brush supports the formation of well-defined lipid membranes.

    PubMed

    Blakeston, Anita C; Alswieleh, Abdullah M; Heath, George R; Roth, Johannes S; Bao, Peng; Cheng, Nan; Armes, Steven P; Leggett, Graham J; Bushby, Richard J; Evans, Stephen D

    2015-03-31

    A novel poly(amino acid methacrylate) brush comprising zwitterionic cysteine groups (PCysMA) was utilized as a support for lipid bilayers. The polymer brush provides a 12-nm-thick cushion between the underlying hard support and the aqueous phase. At neutral pH, the zeta potential of the PCysMA brush was ∼-10 mV. Cationic vesicles containing >25% DOTAP were found to form a homogeneous lipid bilayer, as determined by a combination of surface analytical techniques. The lipid mobility as measured by FRAP (fluorescence recovery after photobleaching) gave diffusion coefficients of ∼1.5 μm(2) s(-1), which are comparable to those observed for lipid bilayers on glass substrates. PMID:25746444

  2. Role of a liver fatty acid-binding protein gene in lipid metabolism in chicken hepatocytes.

    PubMed

    Gao, G L; Na, W; Wang, Y X; Zhang, H F; Li, H; Wang, Q G

    2015-01-01

    This study investigated the role of the chicken liver fatty acid-binding protein (L-FABP) gene in lipid metabolism in hepatocytes, and the regulatory relationships between L-FABP and genes related to lipid metabolism. The short hairpin RNA (shRNA) interference vector with L-FABP and an eukaryotic expression vector were used. Chicken hepatocytes were subjected to shRNA-mediated knockdown or L-FABP cDNA overexpression. Expression levels of lipid metabolism-related genes and biochemical parameters were detected 24, 36, 48, 60, and 72 h after transfection with the interference or overexpression plasmids for L-FABP, PPARα and L-BABP expression levels, and the total amount of cholesterol, were significantly affected by L-FABP expression. L-FABP may affect lipid metabolism by regulating PPARα and L-BABP in chicken hepatocytes. PMID:25966259

  3. Age-Specific Lipid and Fatty Acid Profiles of Atlantic Salmon Juveniles in the Varzuga River.

    PubMed

    Murzina, Svetlana A; Nefedova, Zinaida A; Pekkoeva, Svetlana N; Veselov, Alexey E; Efremov, Denis A; Nemova, Nina N

    2016-01-01

    The age-specific lipid and fatty acid profiles of juvenile Atlantic salmon at different ages (0+, 1+, and 2+ years) after hatching from nests located in the mainstream of a large Arctic River, the Varzuga River, and resettling to the favorable Sobachji shoal in autumn before overwinter are herein presented. The contemporary methods of the lipid analysis were used: thin layer chromatography and gas chromatography. The results show that the stability of the regulation of important functions in developing organisms is maintained through structural alterations in lipids. These alterations can be considered as a sequence of the modifications and changes in the ratios of certain lipid classes and fatty acids constituents. In general, changes in the lipids and fatty acids (FAs) maintained the physiological limits and controls through the adaptive systems of the organism. The mechanisms of juvenile fish biochemical adaptation to the environmental conditions in the studied biotope include the modification of the energy metabolism and anabolism, and here belongs to the energy characteristics of metabolic processes. PMID:27376274

  4. Stimuli responsive charge-switchable lipids: Capture and release of nucleic acids.

    PubMed

    Hersey, Joseph S; LaManna, Caroline M; Lusic, Hrvoje; Grinstaff, Mark W

    2016-03-01

    Stimuli responsive lipids, which enable control over the formation, transformation, and disruption of supramolecular assemblies, are of interest for biosensing, diagnostics, drug delivery, and basic transmembrane protein studies. In particular, spatiotemporal control over a supramolecular structure can be achieved using light activated compounds to induce significant supramolecular rearrangements. As such, a family of cationic lipids are described which undergo a permanent switch in charge upon exposure to 365 nm ultraviolet (UV) light to enable the capture of negatively charged nucleic acids within the self-assembled supramolecular structure of the lipids and subsequent release of these macromolecules upon exposure to UV light and disruption of the assemblies. The lipids are composed of either two different tripeptide head groups, Lysine-Glycine-Glycine (KGG) and Glycine-Glycine-Glycine (GGG) and three different hydrocarbon chain lengths (C6, C10, or C14) terminated by a UV light responsive 1-(2-nitrophenyl)ethanol (NPE) protected carboxylic acid. The photolysis of the NPE protected lipid is measured as a function of time, and the resulting changes in net molecular charge are observed using zeta potential analysis for each head group and chain length combination. A proof of concept study for the capture and release of both linear DNA (calf thymus) and siRNA is presented using an ethidium bromide quenching assay where a balance between binding affinity and supramolecular stability are found to be the key to optimal nucleic acid capture and release. PMID:26896839

  5. Age-Specific Lipid and Fatty Acid Profiles of Atlantic Salmon Juveniles in the Varzuga River

    PubMed Central

    Murzina, Svetlana A.; Nefedova, Zinaida A.; Pekkoeva, Svetlana N.; Veselov, Alexey E.; Efremov, Denis A.; Nemova, Nina N.

    2016-01-01

    The age-specific lipid and fatty acid profiles of juvenile Atlantic salmon at different ages (0+, 1+, and 2+ years) after hatching from nests located in the mainstream of a large Arctic River, the Varzuga River, and resettling to the favorable Sobachji shoal in autumn before overwinter are herein presented. The contemporary methods of the lipid analysis were used: thin layer chromatography and gas chromatography. The results show that the stability of the regulation of important functions in developing organisms is maintained through structural alterations in lipids. These alterations can be considered as a sequence of the modifications and changes in the ratios of certain lipid classes and fatty acids constituents. In general, changes in the lipids and fatty acids (FAs) maintained the physiological limits and controls through the adaptive systems of the organism. The mechanisms of juvenile fish biochemical adaptation to the environmental conditions in the studied biotope include the modification of the energy metabolism and anabolism, and here belongs to the energy characteristics of metabolic processes. PMID:27376274

  6. Lipid phosphate phosphatases regulate lysophosphatidic acid production and signaling in platelets: studies using chemical inhibitors of lipid phosphate phosphatase activity.

    PubMed

    Smyth, Susan S; Sciorra, Vicki A; Sigal, Yury J; Pamuklar, Zehra; Wang, Zuncai; Xu, Yong; Prestwich, Glenn D; Morris, Andrew J

    2003-10-31

    Blood platelets play an essential role in ischemic heart disease and stroke contributing to acute thrombotic events by release of potent inflammatory agents within the vasculature. Lysophosphatidic acid (LPA) is a bioactive lipid mediator produced by platelets and found in the blood and atherosclerotic plaques. LPA receptors on platelets, leukocytes, endothelial cells, and smooth muscle cells regulate growth, differentiation, survival, motility, and contractile activity. Definition of the opposing pathways of synthesis and degradation that control extracellular LPA levels is critical to understanding how LPA bioactivity is regulated. We show that intact platelets and platelet membranes actively dephosphorylate LPA and identify the major enzyme responsible as lipid phosphate phosphatase 1 (LPP1). Localization of LPP1 to the platelet surface is increased by exposure to LPA. A novel receptor-inactive sn-3-substituted difluoromethylenephosphonate analog of phosphatidic acid that is a potent competitive inhibitor of LPP1 activity potentiates platelet aggregation and shape change responses to LPA and amplifies LPA production by agonist-stimulated platelets. Our results identify LPP1 as a pivotal regulator of LPA signaling in the cardiovascular system. These findings are consistent with genetic and cell biological evidence implicating LPPs as negative regulators of lysophospholipid signaling and suggest that the mechanisms involve both attenuation of lysophospholipid actions at cell surface receptors and opposition of lysophospholipid production. PMID:12909631

  7. A mutant of Arabidopsis deficient in desaturation of palmitic acid in leaf lipids

    SciTech Connect

    Kunst, L.; Somerville, C. ); Browse, J. )

    1989-07-01

    The overall fatty acid composition of leaf lipids in a mutant of Arabidopsis thaliana was characterized by elevated amounts of palmitic acid and a decreased amount of unsaturated 16-carbon fatty acids as a consequence of a single nuclear mutation. Quantitative analysis of the fatty acid composition of individual lipids suggested that the mutant is deficient in the activity of a chloroplast {omega}9 fatty acid desaturase which normally introduces a double bond in 16-carbon acyl chains esterified to monogalactosyldiacylglycerol (MGD). The mutant exhibited an increased ratio of 18- to 16-carbon fatty acids in MGD due to a change in the relative contribution of the prokaryotic and eukaryotic pathways of lipid biosynthesis. This appears to be a regulated response to the loss of chloroplast {omega}9 desaturase and presumably reflects a requirement for polyunsaturated fatty acids for the normal assembly of chloroplast membranes. The reduction in mass of prokaryotic MGD species involved both a reduction in synthesis of MGD by the prokaryotic pathway and increased turnover of MGD molecular species which contain 16:0.

  8. Docosahexaenoic acid and eicosapentaenoic acid induce changes in the physical properties of a lipid bilayer model membrane.

    PubMed

    Onuki, Yoshinori; Morishita, Mariko; Chiba, Yoshiyuki; Tokiwa, Shinji; Takayama, Kozo

    2006-01-01

    We investigated the effect of fatty acids such as stearic acid (SA, 18:0), oleic acid (OA, 18:1), eicosapentaenoic acid (EPA, 20:5), and docosahexaenoic acid (DHA, 22:6) on a dipalmitoylphosphatidylcholine (DPPC) bilayer by determining the phase transition temperature, fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH), and detergent insolubility. Treatment with unsaturated fatty acid broadened and shifted the phase transitions of the DPPC bilayer to a lower temperature. The phase transition temperature and the value of fluorescence anisotropy of DPH at 37 degrees C decreased progressively with increasing treatment amounts of unsaturated fatty acid. A large amount of the DPPC bilayer treated with unsaturated fatty acid was dissolved in Triton X-100, obtaining a low level of detergent insolubility. These modifications of the bilayer physical properties were most pronounced with DHA and EPA treatment. These data show that unsaturated fatty acids, particularly DHA and EPA, induce a marked change in the lipid bilayer structure. The composition of fatty acids in the DPPC bilayer was similar after treatment with various unsaturated fatty acids, suggesting that the different actions of unsaturated fatty acids are attributed to change in the molecular structure (e.g., kinked conformation by double bonds). We further explored the change in physical properties induced by fatty acids dispersed in a water-in-oil-in-water multiple emulsion and found that unsaturated fatty acids acted efficiently on the DPPC bilayer, even when incorporated in emulsion form. PMID:16394552

  9. Lipid Cross-Linking of Nanolipoprotein Particles Substantially Enhances Serum Stability and Cellular Uptake.

    PubMed

    Gilmore, Sean F; Blanchette, Craig D; Scharadin, Tiffany M; Hura, Greg L; Rasley, Amy; Corzett, Michele; Pan, Chong-Xian; Fischer, Nicholas O; Henderson, Paul T

    2016-08-17

    Nanolipoprotein particles (NLPs) consist of a discoidal phospholipid lipid bilayer confined by an apolipoprotein belt. NLPs are a promising platform for a variety of biomedical applications due to their biocompatibility, size, definable composition, and amphipathic characteristics. However, poor serum stability hampers the use of NLPs for in vivo applications such as drug formulation. In this study, NLP stability was enhanced upon the incorporation and subsequent UV-mediated intermolecular cross-linking of photoactive DiynePC phospholipids in the lipid bilayer, forming cross-linked nanoparticles (X-NLPs). Both the concentration of DiynePC in the bilayer and UV exposure time significantly affected the resulting X-NLP stability in 100% serum, as assessed by size exclusion chromatography (SEC) of fluorescently labeled particles. Cross-linking did not significantly impact the size of X-NLPs as determined by dynamic light scattering and SEC. X-NLPs had essentially no degradation over 48 h in 100% serum, which is a drastic improvement compared to non-cross-linked NLPs (50% degradation by ∼10 min). X-NLPs had greater uptake into the human ATCC 5637 bladder cancer cell line compared to non-cross-linked particles, indicating their potential utility for targeted drug delivery. X-NLPs also exhibited enhanced stability following intravenous administration in mice. These results collectively support the potential utility of X-NLPs for a variety of in vivo applications. PMID:27411034

  10. Asymmetric lipid-polymer particles (LIPOMER) by modified nanoprecipitation: role of non-solvent composition.

    PubMed

    Jindal, Anil B; Devarajan, Padma V

    2015-07-15

    Asymmetric lipid polymer nanostructures (LIPOMER) comprising glyceryl monostearate (GMS) as lipid and Gantrez AN 119 (Gantrez) as polymer, revealed enhanced splenic accumulation. In the present paper, we attempt to explain the formation of asymmetric GMS LIPOMER using real time imaging. Particles were prepared by precipitation under static conditions using different non-solvent phase compositions. The process was video recorded and the videos converted to time elapsed images using the FFmpeg 0.10.2 software at 25 frames/sec. Non-solvent compositions comprising >30% of IPA/Acetone revealed significant stranding of the solvent phase and slower onset of precipitation(2-6s). At lower concentrations of IPA and acetone, and in non-solvent compositions comprising ethanol/water the stranding phenomenon was not evident. Further, rapid precipitation(<1 s) was evident. Nanoprecipitation based on the Marangoni effect is a result of diffusion stranding, interfacial turbulence, and mass transfer of solvent and non-solvent resulting in solute precipitation. Enhanced diffusion stranding favored by high interaction of GMS and Gantrez(low ΔPol), and the low solubility parameter(Δδtotal) and high mixing enthalpy(ΔHM) of GMS in IPA resulted in droplets with random shapes analogous to an amoeba with pseudopodia, which on precipitation formed asymmetric particles. Asymmetric particles could be readily designed through appropriate selection of solutes and non-solvent phase by modified nanoprecipitation. PMID:25934429

  11. From fatty-acid sensing to chylomicron synthesis: role of intestinal lipid-binding proteins.

    PubMed

    Buttet, Marjorie; Traynard, Véronique; Tran, Thi Thu Trang; Besnard, Philippe; Poirier, Hélène; Niot, Isabelle

    2014-01-01

    Today, it is well established that the development of obesity and associated diseases results, in part, from excessive lipid intake associated with a qualitative imbalance. Among the organs involved in lipid homeostasis, the small intestine is the least studied even though it determines lipid bioavailability and largely contributes to the regulation of postprandial hyperlipemia (triacylglycerols (TG) and free fatty acids (FFA)). Several Lipid-Binding Proteins (LBP) are expressed in the small intestine. Their supposed intestinal functions were initially based on what was reported in other tissues, and took no account of the physiological specificity of the small intestine. Progressively, the identification of regulating factors of intestinal LBP and the description of the phenotype of their deletion have provided new insights into cellular and molecular mechanisms involved in fat absorption. This review will discuss the physiological contribution of each LBP in the main steps of intestinal absorption of long-chain fatty acids (LCFA): uptake, trafficking and reassembly into chylomicrons (CM). Moreover, current data indicate that the small intestine is able to adapt its lipid absorption capacity to the fat content of the diet, especially through the coordinated induction of LBP. This adaptation requires the existence of a mechanism of intestinal lipid sensing. Emerging data suggest that the membrane LBP CD36 may operate as a lipid receptor that triggers an intracellular signal leading to the modulation of the expression of LBP involved in CM formation. This event could be the starting point for the optimized synthesis of large CM, which are efficiently degraded in blood. Better understanding of this intestinal lipid sensing might provide new approaches to decrease the prevalence of postprandial hypertriglyceridemia, which is associated with cardiovascular diseases, insulin resistance and obesity. PMID:23958439

  12. Influence of lipid bilayer properties on nanodisc formation mediated by styrene/maleic acid copolymers.

    PubMed

    Cuevas Arenas, Rodrigo; Klingler, Johannes; Vargas, Carolyn; Keller, Sandro

    2016-08-11

    Copolymers of styrene and maleic acid (SMA) have gained great attention as alternatives to conventional detergents, as they offer decisive advantages for studying membrane proteins and lipids in vitro. These polymers self-insert into artificial and biological membranes and, at sufficiently high concentrations, solubilise them into disc-shaped nanostructures containing a lipid bilayer core surrounded by a polymer belt. We have used (31)P nuclear magnetic resonance spectroscopy and dynamic light scattering to systematically study the solubilisation of vesicles composed of saturated or unsaturated phospholipids by an SMA copolymer with a 3 : 1 styrene/maleic acid molar ratio at different temperatures. Solubilisation was thermodynamically rationalised in terms of a three-stage model that treats various lipid/polymer aggregates as pseudophases. The solubilising capacity of SMA(3 : 1) towards a saturated lipid is higher in the gel than in the liquid-crystalline state of the membrane even though solubilisation is slower. Although the solubilisation of mixed fluid membranes is non-selective, the presence of a non-bilayer phospholipid lowers the threshold at which the membrane becomes saturated with SMA(3 : 1) but raises the polymer concentration required for complete solubilisation. Both of these trends can be explained by considering the vesicle-to-nanodisc transfer free energies of the lipid and the polymer. On the basis of the phase diagrams thus obtained, re-association of polymer-solubilised lipids with vesicles is possible under mild conditions, which has implications for the reconstitution of proteins and lipids from nanodiscs into vesicular membranes. Finally, the phase diagrams provide evidence for the absence of free SMA(3 : 1) in vesicular lipid suspensions. PMID:27471007

  13. Revisiting β-casein as a stabilizer for lipid liquid crystalline nanostructured particles.

    PubMed

    Zhai, Jiali; Waddington, Lynne; Wooster, Tim J; Aguilar, Marie-Isabel; Boyd, Ben J

    2011-12-20

    Lipid liquid crystalline nanoparticles such as cubosomes and hexosomes have unique internal nanostructures that have shown great potential in drug and nutrient delivery applications. The triblock copolymer, Pluronic F127, is usually employed as a steric stabilizer in dispersions of lipid nanostructured particles. In this study, we investigated the formation, colloidal stability and internal nanostructure and morphology of glyceryl monooleate (GMO) and phytantriol (PHYT) cubosome dispersions on substituting β-casein with F127 in increasing proportion as the stabilizer. Internal structure and particle morphology were evaluated using small-angle X-ray scattering (SAXS) and cryo-transmission electron microscopy (cryo-TEM), while protein secondary structure was studied using synchrotron radiation circular dichroism (SRCD). The GMO cubosome dispersion stabilized by β-casein alone displayed a V(2) (Pn3m) phase structure and a V(2) to H(2) phase transition at 60 °C. In comparison, F127-stabilized GMO dispersion had a V(2) (Im3m) phase structure and the H(2) phase only appeared at higher temperature, that is, 70 °C. In the case of PHYT dispersions, only the V(2) (Pn3m) phase structure was observed irrespective of the type and concentration of stabilizers. However, β-casein-stabilized PHYT dispersion displayed a V(2) to H(2) to L(2) transition behavior upon heating, whereas F127-stabilized PHYT dispersion displayed only a direct V(2) to L(2) transition. The protein secondary structure was not disturbed by interaction with GMO or PHYT cubosomes. The results demonstrate that β-casein provides steric stabilization to dispersions of lipid nanostructured particles and avoids the transition to Im3m structure in GMO cubosomes, but also favors the formation of the H(2) phase, which has implications in drug formulation and delivery applications. PMID:22026367

  14. Nucleic acid separations using superficially porous silica particles

    PubMed Central

    Close, Elizabeth D.; Nwokeoji, Alison O.; Milton, Dafydd; Cook, Ken; Hindocha, Darsha M.; Hook, Elliot C.; Wood, Helen; Dickman, Mark J.

    2016-01-01

    Ion pair reverse-phase liquid chromatography has been widely employed for nucleic acid separations. A wide range of alternative stationary phases have been utilised in conjunction with ion pair reverse-phase chromatography, including totally porous particles, non-porous particles, macroporous particles and monolithic stationary phases. In this study we have utilised superficially porous silica particles in conjunction with ion pair reverse-phase liquid chromatography for the analysis of nucleic acids. We have investigated a range of different pore-sizes and phases for the analysis of a diverse range of nucleic acids including oligonucleotides, oligoribonucleotides, phosphorothioate oligonucleotides and high molecular weight dsDNA and RNA. The pore size of the superficially porous silica particles was shown to significantly affect the resolution of the nucleic acids. Optimum separations of small oligonucleotides such as those generated in RNase mapping experiments were obtained with 80 Å pore sizes and can readily be interfaced with mass spectrometry analysis. Improved resolution of larger oligonucleotides (>19 mers) was observed with pore sizes of 150 Å. The optimum resolution for larger dsDNA/RNA molecules was achieved using superficially porous silica particles with pore sizes of 400 Å. Furthermore, we have utilised 150 Å pore size solid-core particles to separate typical impurities of a fully phosphorothioated oligonucleotide, which are often generated in the synthesis of this important class of therapeutic oligonucleotide. PMID:26948761

  15. Fatty acid composition of lipids in pot marigold (Calendula officinalis L.) seed genotypes

    PubMed Central

    2013-01-01

    Background Calendula officinalis L. (pot marigold) is an annual aromatic herb with yellow or golden-orange flowers, native to the Mediterranean climate areas. Their seeds contain significant amounts of oil (around 20%), of which about 60% is calendic acid. For these reasons, in Europe concentrated research efforts have been directed towards the development of pot marigold as an oilseed crop for industrial purposes. Results The oil content and fatty acid composition of major lipid fractions in seeds from eleven genotypes of pot marigold (Calendula officinalis L.) were determined. The lipid content of seeds varied between 13.6 and 21.7 g oil/100 g seeds. The calendic and linoleic acids were the two dominant fatty acids in total lipid (51.4 to 57.6% and 28.5 to 31.9%) and triacylglycerol (45.7 to 54.7% and 22.6 to 29.2%) fractions. Polar lipids were also characterised by higher unsaturation ratios (with the PUFAs content between 60.4 and 66.4%), while saturates (consisted mainly of palmitic and very long-chain saturated fatty acids) were found in higher amounts in sterol esters (ranging between 49.3 and 55.7% of total fatty acids). Conclusions All the pot marigold seed oils investigated contain high levels of calendic acid (more than 50% of total fatty acids), making them favorable for industrial use. The compositional differences between the genotypes should be considered when breeding and exploiting the pot marigold seeds for nutraceutical and pharmacological purposes. PMID:23327299

  16. Acid sphingomyelinase activity is regulated by membrane lipids and facilitates cholesterol transfer by NPC2[S

    PubMed Central

    Oninla, Vincent O.; Breiden, Bernadette; Babalola, Jonathan O.; Sandhoff, Konrad

    2014-01-01

    During endocytosis, membrane components move to intraluminal vesicles of the endolysosomal compartment for digestion. At the late endosomes, cholesterol is sorted out mainly by two sterol-binding proteins, Niemann-Pick protein type C (NPC)1 and NPC2. To study the NPC2-mediated intervesicular cholesterol transfer, we developed a liposomal assay system. (Abdul-Hammed, M., B. Breiden, M. A. Adebayo, J. O. Babalola, G. Schwarzmann, and K. Sandhoff. 2010. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J. Lipid Res. 51: 1747–1760.) Anionic lipids stimulate cholesterol transfer between liposomes while SM inhibits it, even in the presence of anionic bis(monoacylglycero)phosphate (BMP). Preincubation of vesicles containing SM with acid sphingomyelinase (ASM) (SM phosphodiesterase, EC 3.1.4.12) results in hydrolysis of SM to ceramide (Cer), which enhances cholesterol transfer. Besides SM, ASM also cleaves liposomal phosphatidylcholine. Anionic phospholipids derived from the plasma membrane (phosphatidylglycerol and phosphatidic acid) stimulate SM and phosphatidylcholine hydrolysis by ASM more effectively than BMP, which is generated during endocytosis. ASM-mediated hydrolysis of liposomal SM was also stimulated by incorporation of diacylglycerol (DAG), Cer, and free fatty acids into the liposomal membranes. Conversely, phosphatidylcholine hydrolysis was inhibited by incorporation of cholesterol, Cer, DAG, monoacylglycerol, and fatty acids. Our data suggest that SM degradation by ASM is required for physiological secretion of cholesterol from the late endosomal compartment, and is a key regulator of endolysosomal lipid digestion. PMID:25339683

  17. Notch1 deficiency decreases hepatic lipid accumulation by induction of fatty acid oxidation.

    PubMed

    Song, No-Joon; Yun, Ui Jeong; Yang, Sunghee; Wu, Chunyan; Seo, Cho-Rong; Gwon, A-Ryeong; Baik, Sang-Ha; Choi, Yuri; Choi, Bo Youn; Bahn, Gahee; Kim, Suji; Kwon, So-Mi; Park, Jin Su; Baek, Seung Hyun; Park, Tae Joo; Yoon, Keejung; Kim, Byung-Joon; Mattson, Mark P; Lee, Sung-Joon; Jo, Dong-Gyu; Park, Kye Won

    2016-01-01

    Notch signaling pathways modulate various cellular processes, including cell proliferation, differentiation, adhesion, and communication. Recent studies have demonstrated that Notch1 signaling also regulates hepatic glucose production and lipid synthesis. However, the effect of Notch1 signaling on hepatic lipid oxidation has not yet been directly investigated. To define the function of Notch1 signaling in hepatic lipid metabolism, wild type mice and Notch1 deficient antisense transgenic (NAS) mice were fed a high-fat diet. High-fat diet -fed NAS mice exhibited a marked reduction in hepatic triacylglycerol accumulation compared with wild type obese mice. The improved fatty liver was associated with an increased expression of hepatic genes involved in fatty acid oxidation. However, lipogenic genes were not differentially expressed in the NAS liver, suggesting lipolytic-specific regulatory effects by Notch1 signaling. Expression of fatty acid oxidative genes and the rate of fatty acid oxidation were also increased by inhibition of Notch1 signaling in HepG2 cells. In addition, similar regulatory effects on lipid accumulation were observed in adipocytes. Taken together, these data show that inhibition of Notch1 signaling can regulate the expression of fatty acid oxidation genes and may provide therapeutic strategies in obesity-induced hepatic steatosis. PMID:26786165

  18. Notch1 deficiency decreases hepatic lipid accumulation by induction of fatty acid oxidation

    PubMed Central

    Song, No-Joon; Yun, Ui Jeong; Yang, Sunghee; Wu, Chunyan; Seo, Cho-Rong; Gwon, A-Ryeong; Baik, Sang-Ha; Choi, Yuri; Choi, Bo Youn; Bahn, Gahee; Kim, Suji; Kwon, So-Mi; Park, Jin Su; Baek, Seung Hyun; Park, Tae Joo; Yoon, Keejung; Kim, Byung-Joon; Mattson, Mark P.; Lee, Sung-Joon; Jo, Dong-Gyu; Park, Kye Won

    2016-01-01

    Notch signaling pathways modulate various cellular processes, including cell proliferation, differentiation, adhesion, and communication. Recent studies have demonstrated that Notch1 signaling also regulates hepatic glucose production and lipid synthesis. However, the effect of Notch1 signaling on hepatic lipid oxidation has not yet been directly investigated. To define the function of Notch1 signaling in hepatic lipid metabolism, wild type mice and Notch1 deficient antisense transgenic (NAS) mice were fed a high-fat diet. High-fat diet -fed NAS mice exhibited a marked reduction in hepatic triacylglycerol accumulation compared with wild type obese mice. The improved fatty liver was associated with an increased expression of hepatic genes involved in fatty acid oxidation. However, lipogenic genes were not differentially expressed in the NAS liver, suggesting lipolytic-specific regulatory effects by Notch1 signaling. Expression of fatty acid oxidative genes and the rate of fatty acid oxidation were also increased by inhibition of Notch1 signaling in HepG2 cells. In addition, similar regulatory effects on lipid accumulation were observed in adipocytes. Taken together, these data show that inhibition of Notch1 signaling can regulate the expression of fatty acid oxidation genes and may provide therapeutic strategies in obesity-induced hepatic steatosis. PMID:26786165

  19. Accumulation of Oxygenated Fatty Acids in Oat Lipids During Storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxygenated fatty acids were identified in oat grain by gas chromatography - mass spectrometry. We hypothesized that most of these were the results of lipoxygenase activity. This hypothesis was tested by measuring concentrations of these compounds after hydrothermal treatments and storage of oat groa...

  20. Clickable Lipids: Azido and Alkynyl Fatty Acids and Triacylglycerols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract: Hydroxy fatty acids (FA), which were isolated from glycolipids that can be prepared fermentatively from fats and oils, have been synthetically modified to contain azide and alkyne functional groups. These particular functional groups were chosen because they can participate in a copper-ca...

  1. Human Rhinovirus Subviral A Particle Binds to Lipid Membranes over a Twofold Axis of Icosahedral Symmetry

    PubMed Central

    Kumar, Mohit

    2013-01-01

    Minor group human rhinoviruses bind low-density lipoprotein (LDL) receptors for endocytosis. Once they are inside endosomes, the acidic pH triggers their dissociation from the receptors and conversion into hydrophobic subviral A particles; these attach to the membrane and transfer their single-strand, positive-sense RNA genome into the cytosol. Here, we allowed human rhinovirus 2 (HRV2) A particles, produced in vitro by incubation at pH 5.4, to attach to liposomes; cryo-electron microscopy 3-dimensional single-particle image reconstruction revealed that they bind to the membrane around a 2-fold icosahedral symmetry axis. PMID:23946453

  2. Metastability in lipid based particles exhibits temporally deterministic and controllable behavior

    NASA Astrophysics Data System (ADS)

    Jacoby, Guy; Cohen, Keren; Barkan, Kobi; Talmon, Yeshayahu; Peer, Dan; Beck, Roy

    2015-03-01

    The metastable-to-stable phase-transition is commonly observed in many fields of science, as an uncontrolled independent process, highly sensitive to microscopic fluctuations. In particular, self-assembled lipid suspensions exhibit phase-transitions, where the underlying driving mechanisms and dynamics are not well understood. Here we describe a study of the phase-transition dynamics of lipid-based particles, consisting of mixtures of dilauroylphosphatidylethanolamine (DLPE) and dilauroylphosphatidylglycerol (DLPG), exhibiting a metastable liquid crystalline-to-stable crystalline phase transition upon cooling from 60°C to 37°C. Surprisingly, unlike classically described metastable-to-stable phase transitions, the manner in which recrystallization is delayed by tens of hours is robust, predetermined and controllable. Our results show that the delay time can be manipulated by changing lipid stoichiometry, changing solvent salinity, adding an ionophore, or performing consecutive phase-transitions. Moreover, the delay time distribution indicates a deterministic nature. We suggest that the non-stochastic physical mechanism responsible for the delayed recrystallization involves several rate-affecting processes, resulting in a controllable, non-independent metastability. A qualitative model is proposed to describe the structural reorganization during the phase transition.

  3. Metastability in lipid based particles exhibits temporally deterministic and controllable behavior

    PubMed Central

    Jacoby, Guy; Cohen, Keren; Barkan, Kobi; Talmon, Yeshayahu; Peer, Dan; Beck, Roy

    2015-01-01

    The metastable-to-stable phase-transition is commonly observed in many fields of science, as an uncontrolled independent process, highly sensitive to microscopic fluctuations. In particular, self-assembled lipid suspensions exhibit phase-transitions, where the underlying driving mechanisms and dynamics are not well understood. Here we describe a study of the phase-transition dynamics of lipid-based particles, consisting of mixtures of dilauroylphosphatidylethanolamine (DLPE) and dilauroylphosphatidylglycerol (DLPG), exhibiting a metastable liquid crystalline-to-stable crystalline phase transition upon cooling from 60°C to 37°C. Surprisingly, unlike classically described metastable-to-stable phase transitions, the manner in which recrystallization is delayed by tens of hours is robust, predetermined and controllable. Our results show that the delay time can be manipulated by changing lipid stoichiometry, changing solvent salinity, adding an ionophore, or performing consecutive phase-transitions. Moreover, the delay time distribution indicates a deterministic nature. We suggest that the non-stochastic physical mechanism responsible for the delayed recrystallization involves several rate-affecting processes, resulting in a controllable, non-independent metastability. A qualitative model is proposed to describe the structural reorganization during the phase transition. PMID:25820650

  4. In vivo incorporation of labeled fatty acids in rat liver lipids after oral administration

    SciTech Connect

    Leyton, J.; Drury, P.J.; Crawford, M.A.

    1987-08-01

    Striking differences were found in the compartmentalization of fatty acids into liver lipid fractions. The saturated fatty acids--lauric, myristic, palmitic and stearic--were incorporated into phosphoglycerides at faster rates with increasing chain lengths, while triglyceride incorporation was almost uniform. The degree of incorporation of the unsaturated fatty acids into phosphoglycerides (structural) compared to triglyceride (storage and energy) was the converse of their oxidation rates. The incorporation of oleic, linoleic and alpha-linolenic acids was mainly into triglyceride, whereas dihomo-gamma-linolenic acid and arachidonic acid were preferentially incorporated into phosphoglycerides. The data suggest that distribution of each fatty acid is different depending on its destination for structural or energy function.

  5. Oxidized lipids and lipid-mediators are involved in cardiovascular injury induced by diesel exhaust particles and ozone

    EPA Science Inventory

    The mechanisms by which air pollutants induce cardiac and vascular injuries are unknown. We hypothesized that these injuries involve alterations in'aortic membrane lipids and lipid-mediators. We exposed male Wistar Kyoto rats (12-15 wk old), nose-only to air, ozone (03; 0.5 ppm),...

  6. On the dissolution kinetics of humic acid particles. Effect of monocarboxylic acids.

    PubMed

    Brigante, Maximiliano; Zanini, Graciela; Avena, Marcelo

    2008-05-01

    The dissolution kinetics of humic acid particles has been studied in batch experiments, and the effects of monocarboxylic (formic, acetic, and propionic) acids are reported. The dissolution rate of the particles is significantly affected by the presence of monocarboxylic acids in the pH range 4-10. At pH 7, for example, propionic acid increases 30 times this dissolution rate. The capacity of increasing the dissolution rate is in the order formic acidacidacid, and this dissolving capacity of carboxylics seems to be directly related to their affinity for HA molecules located at the surface of the solid particles. The results indicate that carboxylics and related compounds may affect markedly the mobility and transport of humic substances in the environment. PMID:18328533

  7. The fusogenic lipid phosphatidic acid promotes the biogenesis of mitochondrial outer membrane protein Ugo1

    PubMed Central

    Keller, Michael; Taskin, Asli A.; Horvath, Susanne E.; Guan, Xue Li; Prinz, Claudia; Opalińska, Magdalena; Zorzin, Carina; van der Laan, Martin; Wenk, Markus R.; Schubert, Rolf; Wiedemann, Nils; Holzer, Martin

    2015-01-01

    Import and assembly of mitochondrial proteins depend on a complex interplay of proteinaceous translocation machineries. The role of lipids in this process has been studied only marginally and so far no direct role for a specific lipid in mitochondrial protein biogenesis has been shown. Here we analyzed a potential role of phosphatidic acid (PA) in biogenesis of mitochondrial proteins in Saccharomyces cerevisiae. In vivo remodeling of the mitochondrial lipid composition by lithocholic acid treatment or by ablation of the lipid transport protein Ups1, both leading to an increase of mitochondrial PA levels, specifically stimulated the biogenesis of the outer membrane protein Ugo1, a component of the mitochondrial fusion machinery. We reconstituted the import and assembly pathway of Ugo1 in protein-free liposomes, mimicking the outer membrane phospholipid composition, and found a direct dependency of Ugo1 biogenesis on PA. Thus, PA represents the first lipid that is directly involved in the biogenesis pathway of a mitochondrial membrane protein. PMID:26347140

  8. Amino acid-based cationic lipids with α-tocopherol hydrophobic tail for efficient gene delivery.

    PubMed

    Yi, Wen-Jing; Zheng, Li-Ting; Su, Rong-Chuan; Liu, Qiang; Zhao, Zhi-Gang

    2015-11-01

    In this work, three amino acid-based cationic lipids L1-L3 bearing the same α-tocopherol moiety and biodegradable ester bond linkage, but differing in the polar head-group, were prepared and applied as non-viral gene delivery vectors. The physicochemical properties such as size, zeta-potential, stability, and cellular uptake of the lipoplexes formed from lipids L1-L3 as well as the transfection efficacy (TE) were investigated. The results showed that the chemical composition of the cationic head-group clearly affects the physicochemical parameters of the amino acid-based lipids, especially the TE. Besides their low cytotoxicity, these lipoplexes also showed comparable TE to commercially available lipofectamine 2000. In particular, dipeptide lipid L3 gave excellent TE, which was 1.8 times higher than bPEI 25k in the presence of 10% serum in Hela cells. These results demonstrate the promising use of novel dipeptide lipids for safe and efficient gene delivery. PMID:25973654

  9. The Lipid domain Phase diagram in a Dipalmitoyl-PC/Docosahaexnoic Acid-PE/Cholesterol System

    NASA Astrophysics Data System (ADS)

    Lor, Chai; Hirst, Linda

    2011-03-01

    Lipid domains in bilayer membrane and polyunsaturated fatty acids (PUFAs) are thought to play an important role in cellular activities. In particular, lipids containing docosahaexnoic acid are an interesting class of PUFAs due to their health benefits. In this project, we perform oxidation measurements of DHA-PE to determine the rate of oxidation in combination with antioxidants. A ternary diagram of DPPC/DHA-PE/cholesterol is mapped out to identify phase separation phenomena using atomic force microscope (AFM). Fluorescence microscopy is also used to image lipid domains in a flat bilayer with fluorescent labels. As expected, we observe the phase, shape, and size of lipid domains changes with varying composition. Moreover, we find that the roughness of the domains changes possibly due to overpacking of cholesterol in domains. This model study provides further understanding of the role of cholesterol in the bilayer membrane leading towards a better understanding of cell membranes. NSF award # DMR 0852791, ``CAREER: Self-Assembly of Polyunsaturated Lipids and Cholesterol In The Cell Membrane.''

  10. Waste lipids to energy: how to optimize methane production from long‐chain fatty acids (LCFA)

    PubMed Central

    Alves, M. Madalena; Pereira, M. Alcina; Sousa, Diana Z.; Cavaleiro, Ana J.; Picavet, Merijn; Smidt, Hauke; Stams, Alfons J. M.

    2009-01-01

    Summary The position of high‐rate anaerobic technology (HR‐AnWT) in the wastewater treatment and bioenergy market can be enhanced if the range of suitable substrates is expanded. Analyzing existing technologies, applications and problems, it is clear that, until now, wastewaters with high lipids content are not effectively treated by HR‐AnWT. Nevertheless, waste lipids are ideal potential substrates for biogas production, since theoretically more methane can be produced, when compared with proteins or carbohydrates. In this minireview, the classical problems of lipids methanization in anaerobic processes are discussed and new concepts to enhance lipids degradation are presented. Reactors operation, feeding strategies and prospects of technological developments for wastewater treatment are discussed. Long‐chain fatty acids (LCFA) degradation is accomplished by syntrophic communities of anaerobic bacteria and methanogenic archaea. For optimal performance these syntrophic communities need to be clustered in compact aggregates, which is often difficult to achieve with wastewaters that contain fats and lipids. Driving the methane production from lipids/LCFA at industrial scale without risk of overloading and inhibition is still a challenge that has the potential for filling a gap in the existing processes and technologies for biological methane production associated to waste and wastewater treatment. PMID:21255287

  11. Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids.

    PubMed

    Vajpeyi, Shashwat; Chandran, Kartik

    2015-01-01

    Lipid accumulation in the oleaginous yeast Cryptococcus albidus was evaluated using mixtures of volatile fatty acids (VFA) as substrates. In general, batch growth under nitrogen limitation led to higher lipid accumulation using synthetic VFA. During batch growth, an initial COD:N ratio of 25:1mg COD:mg N led to maximum intracellular lipid accumulation (28.3 ± 0.7% g/g dry cell weight), which is the maximum reported for C. albidus using VFA as the carbon source, without compromising growth kinetics. At this feed COD:N ratio, chemostat cultures fed with synthetic VFA yielded statistically similar intracellular lipid content as batch cultures (29.9 ± 1.9%, g/g). However, batch cultures fed with VFA produced from the fermentation of food waste, yielded a lower lipid content (14.9 ± 0.1%, g/g). The lipid composition obtained with synthetic and food-waste-derived VFA was similar to commercial biodiesel feedstock. We therefore demonstrate the feasibility of linking biochemical waste treatment and biofuel production using VFA as key intermediates. PMID:25697838

  12. Effect of methyl-branched fatty acids on the structure of lipid bilayers.

    PubMed

    Poger, David; Caron, Bertrand; Mark, Alan E

    2014-12-01

    Methyl-branched fatty acids are widespread in prokaryotic membranes. Although anteiso and iso branching (that is on the antepenultimate and penultimate carbons) and the presence of multiple methyl branches in the phytanoyl chain are known to modify the thermotropic behavior and enhance the fluidity of lipid bilayers, little is known about the effect of methyl branching on the structure of lipid bilayers. In this study, molecular dynamics simulations are used to examine systematically the impact of one or more methyl branches at different positions along the sn-1 palmitoyl chain on the structural properties of a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayer. It is found that methyl branching reduces lipid condensation, decreases the bilayer thickness, and lowers chain ordering. Branching also results in the formation of kinks at the branching point, thereby enhancing the fluidity of lipid bilayers. Furthermore, this effect varies in a methyl-position-dependent fashion. In the case of polymethylated chains, the simulations suggest that if the gap between the methyl groups is sufficient (two or three carbons), the effects of the methyl branches are additive and equivalent to the combined effect of the corresponding monomethyl-branched lipids. PMID:25380125

  13. Exosomes and Microvesicles: Identification and Targeting By Particle Size and Lipid Chemical Probes

    PubMed Central

    Kastelowitz, Noah

    2014-01-01

    Exosomes and microvesicles are two classes of submicroscopic vesicle released by cells into the extracellular space. Collectively referred to as extracellular vesicles, these membrane containers facilitate important cell-cell communication by carrying a diverse array of signaling molecules, including nucleic acids, proteins, and lipids. Recently, the role of extracellular vesicle signaling in cancer progression has become a topic of significant interest. Methods to detect and target exosomes and microvesicles are needed to realize applications of extracellular vesicles as biomarkers and, perhaps, therapeutic targets. Detection of exosomes and microvesicles is a complex problem as they are both submicroscopic and of heterogeneous cellular origins. In this Minireview, we highlight the basic biology of extracellular vesicles, and address available biochemical and biophysical detection methods. Detectible characteristics described here include lipid and protein composition, and physical properties such as the vesicle membrane shape and diffusion coefficient. In particular, we propose that detection of exosome and microvesicle membrane curvature with lipid chemical probes that sense membrane shape is a distinctly promising method for identifying and targeting these vesicles. PMID:24740901

  14. Modeling the effect of nano-sized polymer particles on the properties of lipid membranes

    NASA Astrophysics Data System (ADS)

    Rossi, Giulia; Monticelli, Luca

    2014-12-01

    The interaction between polymers and biological membranes has recently gained significant interest in several research areas. On the biomedical side, dendrimers, linear polyelectrolytes, and neutral copolymers find application as drug and gene delivery agents, as biocidal agents, and as platforms for biological sensors. On the environmental side, plastic debris is often disposed of in the oceans and gets degraded into small particles; therefore concern is raising about the interaction of small plastic particles with living organisms. From both perspectives, it is crucial to understand the processes driving the interaction between polymers and cell membranes. In recent times progress in computer technology and simulation methods has allowed computational predictions on the molecular mechanism of interaction between polymeric materials and lipid membranes. Here we review the computational studies on the interaction between lipid membranes and different classes of polymers: dendrimers, linear charged polymers, polyethylene glycol (PEG) and its derivatives, polystyrene, and some generic models of polymer chains. We conclude by discussing some of the technical challenges in this area and future developments.

  15. Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA.

    PubMed

    Chen, Sam; Tam, Yuen Yi C; Lin, Paulo J C; Sung, Molly M H; Tam, Ying K; Cullis, Pieter R

    2016-08-10

    Lipid nanoparticles (LNP) can provide a clinically effective method for delivering small interfering RNA (siRNA) to silence pathological genes in hepatocytes. The gene silencing potency of these LNP-siRNA systems has been shown to depend on a variety of factors including association with serum factors such as ApoE and the pKa of component ionizable lipids. Here we investigate the influence of LNP size, an important parameter affecting tissue penetration of LNP systems, on the pharmacokinetics, biodistribution, and hepatic gene silencing potency of LNP-siRNA systems following intravenous administration. For LNP systems stabilized by a polyethylene glycol (PEG)-lipid that can dissociate from the LNP following injection, it is shown that small (diameter≤30nm) systems are considerably less potent than their larger counterparts. This is attributed in part to the ability of other lipid components, particularly the ionizable amino-lipid, to dissociate from the LNP following dissociation of the PEG-lipid. Small LNP stabilized by PEG-lipids with slow dissociation rates exhibited much reduced amino-lipid dissociation rates, however such systems are relatively impotent due to the continued presence of the PEG coating. These results demonstrate the delicate balance between the in vivo potency of LNP-siRNA systems and the residence times of component lipids in the LNP particle itself and suggest new directions to optimize the in vivo gene silencing potency of small LNP-siRNA systems. PMID:27238441

  16. Effects of Fatty Acids on the Interfacial and Solution Behavior of Mixed Lipidic Aggregates Called Solid Lipid Nanoparticles.

    PubMed

    Karmakar, Gourab; Nahak, Prasant; Guha, Pritam; Roy, Biplab; Chettri, Priyam; Sapkota, Manish; Koirala, Suraj; Misono, Takeshi; Torigoe, Kanjiro; Ghosh, Shilpi; Panda, Amiya Kumar

    2016-01-01

    Mutual miscibility of soylecithin, tristearin, fatty acids (FAs), and curcumin was assessed by means of surface pressure-area isotherms at the air-solution interface in order to formulate modified solid lipid nanoparticles (SLN). Appearance of minima in the excess area (Aex) and changes in free energy of mixing (∆G(0)ex) were recorded for systems with 20 mole% FAs. Modified SLNs, promising as topical drug delivery systems, were formulated using the lipids in combination with curcumin, stabilized by an aqueous Tween 60 solution. Optimal formulations were assessed by judiciously varying the FA chain length and composition. Physicochemical properties of SLNs were studied such as the size, zeta potential (by dynamic light scattering), morphology (by freeze fracture transmission electron microscopy), and thermal behavior (by differential scanning calorimetry). The size and zeta potential of the formulations were in the range 300-500 nm and -10 to -20 mV, respectively. Absorption and emission spectroscopic analyses supported the dynamic light scattering and differential scanning calorimetry data and confirmed localization of curcumin to the palisade layer of SLNs. These nanoparticles showed a sustained release of incorporated curcumin. Curcumin-loaded SLNs were effective against a gram-positive bacterial species, Bacillus amyloliquefaciens. Our results on the physicochemical properties of curcumin-loaded SLNs, the sustained release, and on antibacterial activity suggest that SLNs are promising delivery agents for topical drugs. PMID:27150334

  17. Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity

    PubMed Central

    Mueller, Michaela; Thorell, Anders; Claudel, Thierry; Jha, Pooja; Koefeler, Harald; Lackner, Carolin; Hoesel, Bastian; Fauler, Guenter; Stojakovic, Tatjana; Einarsson, Curt; Marschall, Hanns-Ulrich; Trauner, Michael

    2015-01-01

    Background & Aims Bile acids (BAs) are major regulators of hepatic BA and lipid metabolism but their mechanisms of action in non-alcoholic fatty liver disease (NAFLD) are still poorly understood. Here we aimed to explore the molecular and biochemical mechanisms of ursodeoxycholic acid (UDCA) in modulating the cross-talk between liver and visceral white adipose tissue (vWAT) regarding BA and cholesterol metabolism and fatty acid/lipid partitioning in morbidly obese NAFLD patients. Methods In this randomized controlled pharmacodynamic study, we analyzed serum, liver and vWAT samples from 40 well-matched morbidly obese patients receiving UDCA (20 mg/kg/day) or no treatment three weeks prior to bariatric surgery. Results Short term UDCA administration stimulated BA synthesis by reducing circulating fibroblast growth factor 19 and farnesoid X receptor (FXR) activation, resulting in cholesterol 7α-hydroxylase induction mirrored by elevated C4 and 7α-hydroxycholesterol. Enhanced BA formation depleted hepatic and LDL-cholesterol with subsequent activation of the key enzyme of cholesterol synthesis 3-hydroxy-3-methylglutaryl-CoA reductase. Blunted FXR anti-lipogenic effects induced lipogenic stearoyl-CoA desaturase (SCD) in the liver, thereby increasing hepatic triglyceride content. In addition, induced SCD activity in vWAT shifted vWAT lipid metabolism towards generation of less toxic and more lipogenic monounsaturated fatty acids such as oleic acid. Conclusion These data demonstrate that by exerting FXR-antagonistic effects, UDCA treatment in NAFLD patients strongly impacts on cholesterol and BA synthesis and induces neutral lipid accumulation in both liver and vWAT. PMID:25617503

  18. The role of lipid components of the diet in the regulation of the fatty acid composition of the rat liver endoplasmic reticulum and lipid peroxidation.

    PubMed

    Hammer, C T; Wills, E D

    1978-08-15

    The fatty acid compositions of the lipids and the lipid peroxide concentrations and rates of lipid peroxidation were determined in suspensions of liver endoplasmic reticulum isolated from rats fed on synthetic diets in which the fatty acid composition had been varied but the remaining constituents (protein, carbohydrate, vitamins and minerals) kept constant. Stock diet and synthetic diets containing no fat, 10% corn oil, herring oil, coconut oil or lard were used. The fatty acid composition of the liver endoplasmic reticulum lipid was markedly dependent on the fatty acid composition of the dietary lipid. Feeding a herring-oil diet caused incorporation of 8.7% eicosapentaenoic acid (C(20:5)) and 17% docosahexaenoic acid (C(22:6)), but only 5.1% linoleic acid (C(18:2)) and 6.4% arachidonic acid (C(20:4)), feeding a corn-oil diet caused incorporation of 25.1% C(18:2), 17.8% C(20:4) and 2.5% C(22:6) fatty acids, and feeding a lard diet caused incorporation of 10.3% C(18:2), 13.5% C(20:4) and 4.3% C(22:6) fatty acids into the liver endoplasmic-reticulum lipids. Phenobarbitone injection (100mg/kg) decreased the incorporation of C(20:4) and C(22:6) fatty acids into the liver endoplasmic reticulum of rats fed on a lard, corn-oil or herring-oil diet. Microsomal lipid peroxide concentrations and rates of peroxidation in the presence of ascorbate depended on the nature and quantity of the polyunsaturated fatty acids in the diet. The lipid peroxide content was 1.82+/-0.30nmol of malonaldehyde/mg of protein and the rate of peroxidation was 0.60+/-0.08nmol of malonaldehyde/min per mg of protein after feeding a fat-free diet, and the values were increased to 20.80nmol of malonaldehyde/mg of protein and 3.73nmol of malonaldehyde/min per mg of protein after feeding a 10% herring-oil diet in which polyunsaturated fatty acids formed 24% of the total fatty acids. Addition of alpha-tocopherol to the diets (120mg/kg of diet) caused a very large decrease in the lipid peroxide

  19. Dietary lipids from marine unicellular algae enhance the amount of liver and blood omega-3 fatty acids in rats.

    PubMed

    Sukenik, A; Takahashi, H; Mokady, S

    1994-01-01

    The nutritional effect of omega-3 (omega 3) polyenoic fatty acids, originating from marine unicellular algae or from fish oil, on the liver and blood lipids was studied in weanling rats fed for 2 weeks on control or experimental diets. Isolipid experimental diets containing either 10% marine microalgae or algal lipids or fish (capelin) oil substituting part (40%) or all of the soybean oil of the control diet. The algae employed were Nannochloropsis sp. or Isochrysis galbana, which are rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), respectively. Cell disruption improved the digestibility of the Nannochloropsis biomass. Diets containing algal meal significantly reduced the relative abundance of arachidonic acid (AA) in the blood and liver lipids and caused a significant increase in the percentage of the omega 3 polyunsaturated fatty acids (PUFA). Feeding Nannochloropsis lipids resulted in a similar effect on the plasma and liver fatty acid pattern as that of a diet containing disrupted cells of Nannochloropsis biomass. In comparison, the response of the plasma and liver lipids to capelin oil was characterized by a further reduction in the abundance of AA and a significant elevation in the percentage of EPA and DHA. These differences are probably due to the variations in the fatty acid composition and not to the fact that omega 3 fatty acids are associated with different lipid classes in these lipid sources. Based on the present study, it is postulated that certain marine unicellular algae can be used as a nutritional source for omega 3 PUFA. PMID:8067689

  20. Binding of small basic peptides to membranes containing acidic lipids: theoretical models and experimental results.

    PubMed Central

    Ben-Tal, N; Honig, B; Peitzsch, R M; Denisov, G; McLaughlin, S

    1996-01-01

    We measured directly the binding of Lys3, Lys5, and Lys7 to vesicles containing acidic phospholipids. When the vesicles contain 33% acidic lipids and the aqueous solution contains 100 mM monovalent salt, the standard Gibbs free energy for the binding of these peptides is 3, 5, and 7 kcal/mol, respectively. The binding energies decrease as the mol% of acidic lipids in the membrane decreases and/or as the salt concentration increases. Several lines of evidence suggest that these hydrophilic peptides do not penetrate the polar headgroup region of the membrane and that the binding is mainly due to electrostatic interactions. To calculate the binding energies from classical electrostatics, we applied the nonlinear Poisson-Boltzmann equation to atomic models of the phospholipid bilayers and the basic peptides in aqueous solution. The electrostatic free energy of interaction, which arises from both a long-range coulombic attraction between the positively charged peptide and the negatively charged lipid bilayer, and a short-range Born or image charge repulsion, is a minimum when approximately 2.5 A (i.e., one layer of water) exists between the van der Waals surfaces of the peptide and the lipid bilayer. The calculated molar association constants, K, agree well with the measured values: K is typically about 10-fold smaller than the experimental value (i.e., a difference of about 1.5 kcal/mol in the free energy of binding). The predicted dependence of K (or the binding free energies) on the ionic strength of the solution, the mol% of acidic lipids in the membrane, and the number of basic residues in the peptide agree very well with the experimental measurements. These calculations are relevant to the membrane binding of a number of important proteins that contain clusters of basic residues. Images FIGURE 2 FIGURE 3 PMID:8842196

  1. Cytotoxicity of bovine α-lactalbumin: oleic acid complexes correlates with the disruption of lipid membranes.

    PubMed

    Wen, Hanzhen; Glomm, Wilhelm R; Halskau, Oyvind

    2013-11-01

    HAMLET/BAMLET (Human/Bovine α-Lactalbumin Made Lethal to Tumors) is a tumoricidal substance composed of partially unfolded human/bovine α-lactalbumin (HLA/BLA) and several oleic acid (OA) molecules. The HAMLET mechanism of interaction involves an insufficiently understood effect on the membrane or its embedded components. We examined the effect of BLAOA (bovine α-lactalbumin complexed with oleic acid, a HAMLET-like substance) and its individual components on cells and artificial lipid membranes using viability staining and metabolic dyes, fluorescence spectroscopy, leakage integrity assays and microscopy. Our results show a dose-dependency of OA used to prepare BLAOA on its ability to induce tumor cell death, and a correlation between leakage and cell death. BLAOA incorporates into the membrane, tightens the lipid packing and lowers their solvent accessibility. Fluorescence imaging reveals that giant unilamellar vesicles (GUVs) develop blebs and eventually collapse upon exposure to BLAOA, indicating that the lipid packing reorganization can translate into observable morphological effects. These effects are observed to be local in GUVs, and a tightly packed and solvent-shielded lipid environment is associated with leakage and GUV disruption. Furthermore, the effects of BLAOA on membrane are pH dependent, with an optimum of activity on artificial membranes near neutral pHs. While BLA alone is effective at membrane disruption at acidic pHs, OA is ineffective in a pH range of 4.5 to 9.1. Taken together, this supports a model where the lipid, fatty acid and protein components enhance each other's ability to affect the overall integrity of the membrane. PMID:23916586

  2. Co-oxidation of the sulfur-containing amino acids in an autoxidizing lipid system

    USGS Publications Warehouse

    Wedemeyer, G.A.; Dollar, A.M.

    1963-01-01

    Oxidation of the sulfur amino acids by autoxidizing lipids was studied in a model system consisting of an amino acid dispersed in cold-pressed, molecularly distilled menhaden oil (20–80% w/w). Under all conditions investigated, cysteine was oxidized completely to cystine. Preliminary results suggest that at 110°C the oxidation follows first-order kinetics for at least the first 8 hr. A specific reaction rate constant of 0.25 per hour was calculated. When fatty acids were added to the system, cystine was oxidized to its thiosulfinate ester. When the fatty acid-cystine ratio was 1:2, oxidation of cystine was a maximum. No oxidation of cystine occurred unless either a fatty acid, volatile organic acid, or ethanol was added. Under the conditions investigated, methionine was not oxidized to either its sulfoxide or its sulfone.

  3. The Role of Tetraether Lipid Composition in the Adaptation of Thermophilic Archaea to Acidity

    PubMed Central

    Boyd, Eric S.; Hamilton, Trinity L.; Wang, Jinxiang; He, Liu; Zhang, Chuanlun L.

    2013-01-01

    Diether and tetraether lipids are fundamental components of the archaeal cell membrane. Archaea adjust the degree of tetraether lipid cyclization in order to maintain functional membranes and cellular homeostasis when confronted with pH and/or thermal stress. Thus, the ability to adjust tetraether lipid composition likely represents a critical phenotypic trait that enabled archaeal diversification into environments characterized by extremes in pH and/or temperature. Here we assess the relationship between geochemical variation, core- and polar-isoprenoid glycerol dibiphytanyl glycerol tetraether (C-iGDGT and P-iGDGT, respectively) lipid composition, and archaeal 16S rRNA gene diversity and abundance in 27 geothermal springs in Yellowstone National Park, Wyoming. The composition and abundance of C-iGDGT and P-iGDGT lipids recovered from geothermal ecosystems were distinct from surrounding soils, indicating that they are synthesized endogenously. With the exception of GDGT-0 (no cyclopentyl rings), the abundances of individual C-iGDGT and P-iGDGT lipids were significantly correlated. The abundance of a number of individual tetraether lipids varied positively with the relative abundance of individual 16S rRNA gene sequences, most notably crenarchaeol in both the core and polar GDGT fraction and sequences closely affiliated with Candidatus Nitrosocaldus yellowstonii. This finding supports the proposal that crenarchaeol is a biomarker for nitrifying archaea. Variation in the degree of cyclization of C- and P-iGDGT lipids recovered from geothermal mats and sediments could best be explained by variation in spring pH, with lipids from acidic environments tending to have, on average, more internal cyclic rings than those from higher pH ecosystems. Likewise, variation in the phylogenetic composition of archaeal 16S rRNA genes could best be explained by spring pH. In turn, the phylogenetic similarity of archaeal 16S rRNA genes was significantly correlated with the similarity

  4. The role of tetraether lipid composition in the adaptation of thermophilic archaea to acidity.

    PubMed

    Boyd, Eric S; Hamilton, Trinity L; Wang, Jinxiang; He, Liu; Zhang, Chuanlun L

    2013-01-01

    Diether and tetraether lipids are fundamental components of the archaeal cell membrane. Archaea adjust the degree of tetraether lipid cyclization in order to maintain functional membranes and cellular homeostasis when confronted with pH and/or thermal stress. Thus, the ability to adjust tetraether lipid composition likely represents a critical phenotypic trait that enabled archaeal diversification into environments characterized by extremes in pH and/or temperature. Here we assess the relationship between geochemical variation, core- and polar-isoprenoid glycerol dibiphytanyl glycerol tetraether (C-iGDGT and P-iGDGT, respectively) lipid composition, and archaeal 16S rRNA gene diversity and abundance in 27 geothermal springs in Yellowstone National Park, Wyoming. The composition and abundance of C-iGDGT and P-iGDGT lipids recovered from geothermal ecosystems were distinct from surrounding soils, indicating that they are synthesized endogenously. With the exception of GDGT-0 (no cyclopentyl rings), the abundances of individual C-iGDGT and P-iGDGT lipids were significantly correlated. The abundance of a number of individual tetraether lipids varied positively with the relative abundance of individual 16S rRNA gene sequences, most notably crenarchaeol in both the core and polar GDGT fraction and sequences closely affiliated with Candidatus Nitrosocaldus yellowstonii. This finding supports the proposal that crenarchaeol is a biomarker for nitrifying archaea. Variation in the degree of cyclization of C- and P-iGDGT lipids recovered from geothermal mats and sediments could best be explained by variation in spring pH, with lipids from acidic environments tending to have, on average, more internal cyclic rings than those from higher pH ecosystems. Likewise, variation in the phylogenetic composition of archaeal 16S rRNA genes could best be explained by spring pH. In turn, the phylogenetic similarity of archaeal 16S rRNA genes was significantly correlated with the similarity

  5. Effects of sewage discharges on lipid and fatty acid composition of the Patagonian bivalve Diplodon chilensis.

    PubMed

    Rocchetta, Iara; Pasquevich, María Y; Heras, Horacio; Ríos de Molina, María del Carmen; Luquet, Carlos M

    2014-02-15

    Lipid and fatty acid (FA) composition and selected oxidative stress parameters of freshwater clams (Dipolodon chilensis), from a sewage-polluted (SMA) and a clean site, were compared. Trophic markers FA were analyzed in clams and sediment. Saturated FA (SAFA), and bacteria and sewage markers were abundant in SMA sediments, while diatom markers were 50% lower. Proportions of SAFA, branched FA, 20:5n-3 (EPA) and 22:6n-3 (DHA) were higher in SMA clams. Chronic exposure of D. chilensis to increasing eutrophication affected its lipid and FA composition. The increase in EPA and DHA proportions could be an adaptive response, which increases stress resistance but could also lead to higher susceptibility to lipid peroxidation TBARS, lipofuscins (20-fold) and GSH concentrations were higher in SMA clams. FA markers indicated terrestrial plant detritus and bacteria are important items in D. chilensis diet. Anthropogenic input in their food could be traced using specific FA as trophic markers. PMID:24373665

  6. Nicotinic acid increases the lipid content of rat brain synaptosomes. [Ethanol effects

    SciTech Connect

    Basilio, C.; Flores, M.

    1989-02-09

    Chronic administration of nicotinic acid (NA) increase hepatic lipids and potentiates a similar effect induced by ethanol. The amethystic properties of NA promoted us to study its effects on the lipid content of brain synaptosomes of native and ethanol treated rats. Groups of 10 Sprague-Dawley female rats received i.p. either saline, ethanol (4g/kg), NA (50mg/kg), or a mixture of both compounds once a week during 3 weeks. The sleeping time (ST) of the animals receiving ethanol was recorded, brain synaptosomes of all groups were prepared and total lipids (TL) and cholesterol (Chol) content were determined. NA, ethanol and ethanol + NA markedly increased both TL and Chol of synaptosomes. Animals treated with ethanol or ethanol + NA developed tolerance. The group treated with ethanol-NA showed the highest Chol content and slept significantly less than the one treated with ethanol alone indicating that the changes induced by NA favored the appearance of tolerance.

  7. Teichoic acid and lipid metabolism during sporulation of Bacillus megaterium KM.

    PubMed Central

    Johnstone, K; Simion, F A; Ellar, D J

    1982-01-01

    The biochemistry of teichoic acid and lipid metabolism has been studied during sporulation of Bacillus megaterium KM. Measurements of cell-wall and membrane teichoic acid have shown that net synthesis of these polymers ceases at the onset of sporulation. Pulse-labelling studies show that the period of asymmetric septation and forespore engulfment is marked by an initiation of turnover of membrane teichoic acid but not of wall teichoic acid. This is reflected in the presence of inner-membrane teichoic acid and the virtual absence of wall teichoic acid in dormant spores. The total amount of lipid phosphorus in the sporulating cell increases by 70% as a result of asymmetric septation and subsequent engulfment of the forespore. The phosphorus requirement for this synthesis is derived from a pool formed during exponential growth, which is not exchangeable with extracellular Pi during sporulation. These results suggest that during sporulation a proportion of the glycerol 3-phosphate produced by preferential degradation of membrane teichoic acid formed during exponential growth is used for phospholipid synthesis during sporulation. PMID:6807293

  8. Five Decades with Polyunsaturated Fatty Acids: Chemical Synthesis, Enzymatic Formation, Lipid Peroxidation and Its Biological Effects

    PubMed Central

    Catalá, Angel

    2013-01-01

    I have been involved in research on polyunsaturated fatty acids since 1964 and this review is intended to cover some of the most important aspects of this work. Polyunsaturated fatty acids have followed me during my whole scientific career and I have published a number of studies concerned with different aspects of them such as chemical synthesis, enzymatic formation, metabolism, transport, physical, chemical, and catalytic properties of a reconstructed desaturase system in liposomes, lipid peroxidation, and their effects. The first project I became involved in was the organic synthesis of [1-14C] eicosa-11,14-dienoic acid, with the aim of demonstrating the participation of that compound as a possible intermediary in the biosynthesis of arachidonic acid “in vivo.” From 1966 to 1982, I was involved in several projects that study the metabolism of polyunsaturated fatty acids. In the eighties, we studied fatty acid binding protein. From 1990 up to now, our laboratory has been interested in the lipid peroxidation of biological membranes from various tissues and different species as well as liposomes prepared with phospholipids rich in PUFAs. We tested the effect of many antioxidants such as alpha tocopherol, vitamin A, melatonin and its structural analogues, and conjugated linoleic acid, among others. PMID:24490074

  9. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    NASA Astrophysics Data System (ADS)

    Ahn, D. U.; Nam, K. C.

    2004-09-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  10. An ABCA1-independent pathway for recycling a poorly lipidated 8.1 nm apolipoprotein E particle from glia

    PubMed Central

    Fan, Jianjia; Stukas, Sophie; Wong, Charmaine; Chan, Jennifer; May, Sharon; DeValle, Nicole; Hirsch-Reinshagen, Veronica; Wilkinson, Anna; Oda, Michael N.; Wellington, Cheryl L.

    2011-01-01

    Lipid transport in the brain is coordinated by glial-derived lipoproteins that contain apolipoprotein E (apoE) as their primary protein. Here we show that apoE is secreted from wild-type (WT) primary murine mixed glia as nascent lipoprotein subspecies ranging from 7.5 to 17 nm in diameter. Negative-staining electron microscropy (EM) revealed rouleaux, suggesting a discoidal structure. Potassium bromide (KBr) density gradient ultracentrifugation showed that all subspecies, except an 8.1 nm particle, were lipidated. Glia lacking the cholesterol transporter ABCA1 secreted only 8.1 nm particles, which were poorly lipidated and nondiscoidal but could accept lipids to form the full repertoire of WT apoE particles. Receptor-associated-protein (RAP)-mediated inhibition of apoE receptor function blocked appearance of the 8.1 nm species, suggesting that this particle may arise through apoE recycling. Selective deletion of the LDL receptor (LDLR) reduced the level of 8.1 nm particle production by approximately 90%, suggesting that apoE is preferentially recycled through the LDLR. Finally, apoA-I stimulated secretion of 8.1 nm particles in a dose-dependent manner. These results suggest that nascent glial apoE lipoproteins are secreted through multiple pathways and that a greater understanding of these mechanisms may be relevant to several neurological disorders. PMID:21705806

  11. Free fatty acids chain length distribution affects the permeability of skin lipid model membranes.

    PubMed

    Uchiyama, Masayuki; Oguri, Masashi; Mojumdar, Enamul H; Gooris, Gert S; Bouwstra, Joke A

    2016-09-01

    The lipid matrix in the stratum corneum (SC) plays an important role in the barrier function of the skin. The main lipid classes in this lipid matrix are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). The aim of this study was to determine whether a variation in CER subclass composition and chain length distribution of FFAs affect the permeability of this matrix. To examine this, we make use of lipid model membranes, referred to as stratum corneum substitute (SCS). We prepared SCS containing i) single CER subclass with either a single FFA or a mixture of FFAs and CHOL, or ii) a mixture of various CER subclasses with either a single FFA or a mixture of FFAs and CHOL. In vitro permeation studies were performed using ethyl-p-aminobenzoic acid (E-PABA) as a model drug. The flux of E-PABA across the SCS containing the mixture of FFAs was higher than that across the SCS containing a single FA with a chain length of 24 C atoms (FA C24), while the E-PABA flux was not effected by the CER composition. To select the underlying factors for the changes in permeability, the SCSs were examined by Fourier transform infrared spectroscopy (FTIR) and Small angle X-ray scattering (SAXS). All lipid models demonstrated a similar phase behavior. However, when focusing on the conformational ordering of the individual FFA chains, the shorter chain FFA (with a chain length of 16, 18 or 20 C atoms forming only 11m/m% of the total FFA level) had a higher conformational disordering, while the conformational ordering of the chains of the CER and FA C24 and FA C22 hardly did not change irrespective of the composition of the SCS. In conclusion, the conformational mobility of the short chain FFAs present only at low levels in the model SC lipid membranes has a great impact on the permeability of E-PABA. PMID:27287726

  12. A J-Like Protein Influences Fatty Acid Composition of Chloroplast Lipids in Arabidopsis

    PubMed Central

    Ajjawi, Imad; Coku, Ardian; Froehlich, John E.; Yang, Yue; Osteryoung, Katherine W.; Benning, Christoph; Last, Robert L.

    2011-01-01

    A comprehensive understanding of the lipid and fatty acid metabolic machinery is needed for optimizing production of oils and fatty acids for fuel, industrial feedstocks and nutritional improvement in plants. T-DNA mutants in the poorly annotated Arabidopsis thaliana gene At1g08640 were identified as containing moderately high levels (50–100%) of 16∶1Δ7 and 18∶1Δ9 leaf fatty acids and subtle decreases (5–30%) of 16∶3 and 18∶3 (http://www.plastid.msu.edu/). TLC separation of fatty acids in the leaf polar lipids revealed that the chloroplastic galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) were the main lipid types affected by this mutation. Analysis of the inferred amino acid sequence of At1g08640 predicted the presence of a transit peptide, three transmembrane domains and an N-terminal J-like domain, and the gene was named CJD1 for Chloroplast J-like Domain 1. GFP reporter experiments and in vitro chloroplast import assays demonstrated CJD1 is a chloroplast membrane protein. Screening of an Arabidopsis cDNA library by yeast-2-hybrid (Y2H) using the J-like domain of CJD1 as bait identified a plastidial inner envelope protein (Accumulation and Replication of Chloroplasts 6, ARC6) as the primary interacting partner in the Y2H assay. ARC6 plays a central role in chloroplast division and binds CJD1 via its own J-like domain along with an adjacent conserved region whose function is not fully known. These results provide a starting point for future investigations of how mutations in CJD1 affect lipid composition. PMID:22028775

  13. Culture media optimization of Porphyridium purpureum: production potential of biomass, total lipids, arachidonic and eicosapentaenoic acid.

    PubMed

    Kavitha, Mysore Doddaiah; Kathiresan, Shanmugam; Bhattacharya, Sila; Sarada, Ravi

    2016-05-01

    Porphyridium purpureum a red marine microalga is known for phycobiliproteins (PB), polyunsaturated fatty acids and sulphated exopolysaccharides. In the present study, effects of media constituents for the production of different polyunsaturated fatty acids from P. purpureum were considered using a response surface methodology (RSM). A second order polynomial was used to predict the response functions in terms of the independent variables such as the concentrations of sodium chloride, magnesium sulphate, sodium nitrate and potassium dihydrogen phosphate. The response functions were production of biomass yield, total lipid and polyunsaturated fatty acids like arachidonic acid (AA 20:4) and eicosapentaenoic acid (EPA 20:5). Results corroborated that maximum Biomass (0.95 gL(-1)) yield was at the concentrations of sodium chloride (14.89 gL(-1)), magnesium sulfate (3.93 gL(-1)) and sodium nitrate (0.96 gL(-1)) and potassium dihydrogen phosphate (0.09 gL(-1)). Optimum total lipid (17.9 % w/w) and EPA (34.6 % w/w) content was at the concentrations of sodium chloride (29.98 gL(-1)), magnesium sulfate (9.34 gL(-1)) and sodium nitrate (1.86 gL(-1)). Variation in concentration of potassium dihydrogen phosphate for both lipid (0.01gL(-1)) and EPA content (0.20 gL(-1)) was observed. The optimum conditions for biomass, total lipid, AA and EPA varied indicating their batch mode of growth and interaction effect of the salt. PMID:27407193

  14. Lipid and citric acid production by wild yeasts grown in glycerol.

    PubMed

    Souza, Karla Silva Teixeira; Schwan, Rosane Freitas; Dias, Disney Ribeiro

    2014-04-01

    In this study, crude glycerol was used as a carbon source in the cultivation of wild yeasts, aiming for the production of microbial lipids and citric acid. Forty yeasts of different sources were tested concerning their growth in crude and commercial glycerol. Four yeasts (Lidnera saturnus UFLA CES-Y677, Yarrowia lipolytica UFLA CM-Y9.4, Rhodotorula glutinis NCYC 2439, and Cryptococcus curvatus NCYC 476) were then selected owing to their ability to grow in pure (OD600 2.133, 1.633, 2.055, and 2.049, respectively) and crude (OD600 2.354, 1.753, 2.316, and 2.281, respectively) glycerol (10%, 20%, and 30%). Y. lipolytica UFLA CM-Y9.4 was selected for its ability to maintain cell viability in concentrations of 30% of crude glycerol, and high glycerol intake (18.907 g/l). This yeast was submitted to lipid production in 30 g/l of crude glycerol, and therefore obtained 63.4% of microbial lipids. In the fatty acid profile, there was a predominance of stearic (C18:0) and palmitic (C16:0) acids in the concentrations of 87.64% and 74.67%, respectively. We also performed optimization of the parameters for the production of citric acid, which yielded a production of 0.19 g/l of citric acid in optimum conditions (38.4 g/l of crude glycerol, agitation of 184 rpm, and temperature of 30°C). Yarrowia lipolytica UFLA CM-Y9.4 presented good lipid production when in the concentration of 30 g/l of glycerol. These data may be used for production in large quantities for the application of industrial biodiesel. PMID:24473455

  15. Lipid Body Organelles within the Parasite Trypanosoma cruzi: A Role for Intracellular Arachidonic Acid Metabolism

    PubMed Central

    Toledo, Daniel A. M.; Roque, Natália R.; Teixeira, Lívia; Milán-Garcés, Erix A.; Carneiro, Alan B.; Almeida, Mariana R.; Andrade, Gustavo F. S.; Martins, Jefferson S.; Pinho, Roberto R.; Freire-de-Lima, Célio G.; Bozza, Patrícia T.; D’Avila, Heloisa

    2016-01-01

    Most eukaryotic cells contain varying amounts of cytosolic lipidic inclusions termed lipid bodies (LBs) or lipid droplets (LDs). In mammalian cells, such as macrophages, these lipid-rich organelles are formed in response to host-pathogen interaction during infectious diseases and are sites for biosynthesis of arachidonic acid (AA)-derived inflammatory mediators (eicosanoids). Less clear are the functions of LBs in pathogenic lower eukaryotes. In this study, we demonstrated that LBs, visualized by light microscopy with different probes and transmission electron microscopy (TEM), are produced in trypomastigote forms of the parasite Trypanosoma cruzi, the causal agent of Chagas’ disease, after both host interaction and exogenous AA stimulation. Quantitative TEM revealed that LBs from amastigotes, the intracellular forms of the parasite, growing in vivo have increased size and electron-density compared to LBs from amastigotes living in vitro. AA-stimulated trypomastigotes released high amounts of prostaglandin E2 (PGE2) and showed PGE2 synthase expression. Raman spectroscopy demonstrated increased unsaturated lipid content and AA incorporation in stimulated parasites. Moreover, both Raman and MALDI mass spectroscopy revealed increased AA content in LBs purified from AA-stimulated parasites compared to LBs from unstimulated group. By using a specific technique for eicosanoid detection, we immunolocalized PGE2 within LBs from AA-stimulated trypomastigotes. Altogether, our findings demonstrate that LBs from the parasite Trypanosoma cruzi are not just lipid storage inclusions but dynamic organelles, able to respond to host interaction and inflammatory events and involved in the AA metabolism. Acting as sources of PGE2, a potent immunomodulatory lipid mediator that inhibits many aspects of innate and adaptive immunity, newly-formed parasite LBs may be implicated with the pathogen survival in its host. PMID:27490663

  16. Lipid Body Organelles within the Parasite Trypanosoma cruzi: A Role for Intracellular Arachidonic Acid Metabolism.

    PubMed

    Toledo, Daniel A M; Roque, Natália R; Teixeira, Lívia; Milán-Garcés, Erix A; Carneiro, Alan B; Almeida, Mariana R; Andrade, Gustavo F S; Martins, Jefferson S; Pinho, Roberto R; Freire-de-Lima, Célio G; Bozza, Patrícia T; D'Avila, Heloisa; Melo, Rossana C N

    2016-01-01

    Most eukaryotic cells contain varying amounts of cytosolic lipidic inclusions termed lipid bodies (LBs) or lipid droplets (LDs). In mammalian cells, such as macrophages, these lipid-rich organelles are formed in response to host-pathogen interaction during infectious diseases and are sites for biosynthesis of arachidonic acid (AA)-derived inflammatory mediators (eicosanoids). Less clear are the functions of LBs in pathogenic lower eukaryotes. In this study, we demonstrated that LBs, visualized by light microscopy with different probes and transmission electron microscopy (TEM), are produced in trypomastigote forms of the parasite Trypanosoma cruzi, the causal agent of Chagas' disease, after both host interaction and exogenous AA stimulation. Quantitative TEM revealed that LBs from amastigotes, the intracellular forms of the parasite, growing in vivo have increased size and electron-density compared to LBs from amastigotes living in vitro. AA-stimulated trypomastigotes released high amounts of prostaglandin E2 (PGE2) and showed PGE2 synthase expression. Raman spectroscopy demonstrated increased unsaturated lipid content and AA incorporation in stimulated parasites. Moreover, both Raman and MALDI mass spectroscopy revealed increased AA content in LBs purified from AA-stimulated parasites compared to LBs from unstimulated group. By using a specific technique for eicosanoid detection, we immunolocalized PGE2 within LBs from AA-stimulated trypomastigotes. Altogether, our findings demonstrate that LBs from the parasite Trypanosoma cruzi are not just lipid storage inclusions but dynamic organelles, able to respond to host interaction and inflammatory events and involved in the AA metabolism. Acting as sources of PGE2, a potent immunomodulatory lipid mediator that inhibits many aspects of innate and adaptive immunity, newly-formed parasite LBs may be implicated with the pathogen survival in its host. PMID:27490663

  17. Production of hybrid lipid-based particles loaded with inorganic nanoparticles and active compounds for prolonged topical release.

    PubMed

    García-González, C A; Sampaio da Sousa, A R; Argemí, A; López Periago, A; Saurina, J; Duarte, C M M; Domingo, C

    2009-12-01

    The production of particulate hybrid carriers containing a glyceryl monostearate (Lumulse GMS-K), a waxy triglyceride (Cutina HR), silanized TiO(2) and caffeine were investigated with the aim of producing sunscreens with UV-radiation protection properties. Particles were obtained using the supercritical PGSS (Particles from Gas Saturated Solutions) technique. This method takes advantages of the lower melting temperatures of the lipids obtained from the dissolution of CO(2) in the bulk mixture. Experiments were performed at 13 MPa and 345 K, according to previous melting point measurements. Blends containing Lumulse GMS-K and Cutina HR lipids (50 wt%) were loaded with silanized TiO(2) and caffeine in percentile proportions of 6 and 4 wt%, respectively. The particles produced were characterized using several analytical techniques as follows: system crystallinity was checked by X-ray diffraction and differential scanning calorimetry, thermal stability by thermogravimetric analysis, and morphology by scanning and transmission electron microscopy. Further, the UV-shielding ability of TiO(2) after its dispersion in the lipidic matrix was assessed by solid UV-vis spectroscopy. Preliminary results indicated that caffeine-loaded solid lipid particles presented a two-step dissolution profile, with an initial burst of 60 wt% of the loaded active agent. Lipid blends loaded with TiO(2) and caffeine encompassed the UV-filter behavior of TiO(2) and the photoaging prevention properties of caffeine. PMID:19720123

  18. Oleic acid coated magnetic nano-particles: Synthesis and characterizations

    SciTech Connect

    Panda, Biswajit Goyal, P. S.

    2015-06-24

    Magnetic nano particles of Fe{sub 3}O{sub 4} coated with oleic acid were synthesized using wet chemical route, which involved co-precipitation of Fe{sup 2+} and Fe{sup 3+} ions. The nano particles were characterized using XRD, TEM, FTIR, TGA and VSM. X-ray diffraction studies showed that nano particles consist of single phase Fe{sub 3}O{sub 4} having inverse spinel structure. The particle size obtained from width of Bragg peak is about 12.6 nm. TEM analysis showed that sizes of nano particles are in range of 6 to 17 nm with a dominant population at 12 - 14 nm. FTIR and TGA analysis showed that -COOH group of oleic acid is bound to the surface of Fe{sub 3}O{sub 4} particles and one has to heat the sample to 278° C to remove the attached molecule from the surface. Further it was seen that Fe{sub 3}O{sub 4} particles exhibit super paramagnetism with a magnetization of about 53 emu/ gm.

  19. Sulfuric Acid and Soot Particle Formation in Aircraft Exhaust

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F.; Verma, S.; Ferry, G. V.; Howard, S. D.; Vay, S.; Kinne, S. A.; Baumgardner, D.; Dermott, P.; Kreidenweis, S.; Goodman, J.; Gore, Waren J. Y. (Technical Monitor)

    1997-01-01

    A combination of CN counts, Ames wire impactor size analyses and optical particle counter data in aircraft exhaust results in a continuous particle size distribution between 0.01 micrometer and 1 micrometer particle radius sampled in the exhaust of a Boeing 757 research aircraft. The two orders of magnitude size range covered by the measurements correspond to 6-7 orders of magnitude particle concentration. CN counts and small particle wire impactor data determine a nucleation mode, composed of aircraft-emitted sulfuric acid aerosol, that contributes between 62% and 85% to the total aerosol surface area and between 31% and 34% to its volume. Soot aerosol comprises 0.5% of the surface area of the sulfuric acid aerosol. Emission indices are: EIH2SO4 = 0.05 g/kgFUEL and (0.2-0.5) g/kgFUEL (for 75 ppmm and 675 ppmm fuel-S, respectively), 2.5E4particles/kgFUEL (for 75 and 675 ppmm fuel-S). The sulfur (gas) to H2SO4 (particle) conversion efficiency is between 10% and 25%.

  20. Fatty acids of lipid fractions in extracellular polymeric substances of activated sludge flocs.

    PubMed

    Conrad, Arnaud; Suutari, Merja Kontro; Keinänen, Minna M; Cadoret, Aurore; Faure, Pierre; Mansuy-Huault, Laurence; Block, Jean-Claude

    2003-10-01

    Phospholipid (PL), glycolipid (GL), and neutral lipid (NL) FA, and the lipopolysaccharide 2- and 3-hydroxy (LPS 2-OH and 3-OH) FA of activated sludges and extracted extracellular polymeric substances (EPS) were determined on samples collected from two wastewater treatment plants. EPS extracted from sludges by means of sonication and cation exchange contained proteins (43.4%), humic-like substances (11.5%), nucleic acids (10.9%), carbohydrates (9.9%), and lipid-bound FA (1.8%). The lipids associated with EPS were composed of GL, PL, NL, and LPS acids in proportions of 61, 21, 16, and 2%, respectively. The profiles of lipid-bound FA in activated sludges and EPS were similar (around 85 separate FA were identified). The FA signatures observed can be attributed to the likely presence of yeasts, fungi, sulfate-reducing bacteria, gram-positive and gram-negative bacteria, and, in lesser quantities, mycobacteria. Comparison of data from the dates of sampling (January and September) showed that there were more unsaturated PLFA in the EPS extracted from the activated sludges sampled in January. This observation could be partly related to microorganism adaptation to temperature variations. The comparison between two wastewater treatment plants showed that the FA profiles were similar, although differences in microbial community structure were also seen. Most of the FA in sludges had an even number of carbons. PMID:14669975

  1. Spontaneous remodeling of HDL particles at acidic pH enhances their capacity to induce cholesterol efflux from human macrophage foam cells[S

    PubMed Central

    Nguyen, Su Duy; Öörni, Katariina; Lee-Rueckert, Miriam; Pihlajamaa, Tero; Metso, Jari; Jauhiainen, Matti; Kovanen, Petri T.

    2012-01-01

    HDL particles may enter atherosclerotic lesions having an acidic intimal fluid. Therefore, we investigated whether acidic pH would affect their structural and functional properties. For this purpose, HDL2 and HDL3 subfractions were incubated for various periods of time at different pH values ranging from 5.5 to 7.5, after which their protein and lipid compositions, size, structure, and cholesterol efflux capacity were analyzed. Incubation of either subfraction at acidic pH induced unfolding of apolipoproteins, which was followed by release of lipid-poor apoA-I and ensuing fusion of the HDL particles. The acidic pH-modified HDL particles exhibited an enhanced ability to promote cholesterol efflux from cholesterol-laden primary human macrophages. Importantly, treatment of the acidic pH-modified HDL with the mast cell-derived protease chymase completely depleted the newly generated lipid-poor apoA-I, and prevented the acidic pH-dependent increase in cholesterol efflux. The above-found pH-dependent structural and functional changes were stronger in HDL3 than in HDL2. Spontaneous acidic pH-induced remodeling of mature spherical HDL particles increases HDL-induced cholesterol efflux from macrophage foam cells, and therefore may have atheroprotective effects. PMID:22855736

  2. Palmitoleic acid reduces intramuscular lipid and restores insulin sensitivity in obese sheep

    PubMed Central

    Duckett, Susan K; Volpi-Lagreca, Gabriela; Alende, Mariano; Long, Nathan M

    2014-01-01

    Obese sheep were used to assess the effects of palmitoleic (C16:1 cis-9) acid infusion on lipogenesis and circulating insulin levels. Infusion of 10 mg/kg body weight (BW)/day C16:1 intravenously in obese sheep reduced (P<0.01) weight gain by 77%. Serum palmitoleic levels increased (P<0.05) in a linear manner with increasing levels of C16:1 infusion. Cis-11 vaccenic (C18:1 cis-11) acid, a known elongation product of palmitoleic acid, was also elevated (P<0.05) in serum after 14 days and 21 days of infusion. Plasma insulin levels were lower (P<0.05) (10 mg/kg BW/day C16:1) than controls (0 mg/kg BW/day C16:1) at 14 days and 28 days of infusion. Infusion of C16:1 resulted in linear increases in tissue concentrations of palmitoleic, cis-11 vaccenic, eicosapentaenoic, and docosapentaenoic acids in a dose-dependent manner. Total lipid content of the semitendinosus (ST) muscle and mesenteric adipose tissue was reduced (P<0.01) in both 5 mg/kg and 10 mg/kg BW C16:1 dose levels. Total lipid content and mean adipocyte size in the longissimus muscle was reduced (P<0.05) in the 10 mg/kg BW C16:1 dose level only, whereas total lipid content and adipocyte size of the subcutaneous adipose tissue was not altered. Total lipid content of the liver was also unchanged with C16:1 infusion. Palmitoleic acid infusion upregulated (P<0.05) acetyl-CoA carboxylase (ACC), fatty acid elongase-6 (ELOVL6), and Protein kinase, AMP-activated, alpha 1 catalytic subunit, transcript variant 1 (AMPK) mRNA expressions in liver, subcutaneous adipose, and ST muscle compared to the controls. However, mRNA expression of glucose transporter type 4 (GLUT4) and carnitine palmitoyltransferase 1b (CPT1B) differed between tissues. In the subcutaneous adipose and liver, C16:1 infusion upregulated (P<0.05) GLUT4 and CPT1B, whereas these genes were downregulated (P<0.05) in ST muscle with C16:1 infusion. These results show that C16:1 infusion for 28 days reduced weight gain, intramuscular adipocyte size and total

  3. Investigation of the roles of the substances in serum lipids and their constitutive fatty acids in chronic urticaria.

    PubMed

    Kobayashi, S

    1989-06-01

    The newly-generated lipid mediators include products of arachidonate metabolism, prostaglandins and leukotrienes. In this study, serum lipids and fatty acids, including arachidonic acid (C20:4) were examined in 12 normal subjects (6 males and 6 females) and 23 subjects with chronic urticaria (6 males and 17 females), including 17 who made an excellent or good recovery (4 males and 13 females). The results indicated a relationship between chronic urticaria and serum lipids and fatty acids. The omega 6 (n-6) and omega 3 (n-3) series of polyunsaturated fatty acids and lipid peroxidation were suggested that may be one of the mediators in chronic urticaria. Pantethine, glutathione and ascorbic acid were effective in controlling chronic urticaria. PMID:2794222

  4. Palmitoleic acid calcium salt: a lubricant and bactericidal powder from natural lipids.

    PubMed

    Yamamoto, Yoshiaki; Kawamura, Yuki; Yamazaki, Yuki; Kijima, Tatsuro; Morikawa, Toshiya; Nonomura, Yoshimune

    2015-01-01

    Palmitoleic acid is a promising bactericidal agent for cleansing products with alternative bactericidal abilities. In this study, we focus on the physical and biological activity of palmitoleic acid calcium salt (C16:1 fatty acid Ca salt) because it forms via an ion-exchange reaction between palmitoleic acid and Ca ions in tap water, and remains on the skin surface during the cleansing process. Here, we prepared C16:1 fatty acid Ca salt to investigate its crystal structure and physical and bactericidal properties. The Ca salt was a plate-shaped lamellar crystalline powder with a particle diameter of several micrometers to several tens of micrometers; it exhibited significant lubricity and alternative bactericidal activity against Staphylococcus aureus (S. aureus) and Propionibacterium acnes (P. acnes). We also examined other fatty acid Ca salts prepared from lauric acid (C12:0 fatty acid), palmitic acid (C16:0 fatty acid), and oleic acid (C18:1 fatty acid). The bactericidal activities and lubricity of the fatty acid Ca salts changed with the alkyl chain length and the degree of unsaturation. The C16:1 fatty acid Ca salt exhibited the strongest selective bactericidal ability among the four investigated fatty acid Ca salts. These findings suggest that C16:1 fatty acid and its Ca salt have potential applications in cleansing and cosmetic products. PMID:25757432

  5. Lipid and protein oxidation in hepatic homogenates and cell membranes exposed to bile acids.

    PubMed

    Fuentes-Broto, Lorena; Martínez-Ballarín, Enrique; Miana-Mena, Javier; Berzosa, Cesar; Piedrafita, Eduardo; Cebrián, Igor; Reiter, Russel J; García, Joaquín J

    2009-01-01

    Cholestasis occurs in a variety of hepatic diseases and causes damage due to accumulation of bile acids in the liver. The aim was to investigate the effect of several bile acids, i.e. chenodeoxycholic, taurochenodeoxycholic, deoxycholic, taurodeoxycholic, ursodeoxycholic, lithocholic and taurolithocholic (TLC), in inducing oxidative damage. Hepatic tissue of male Sprague-Dawley rats was incubated with or without 1 mM of each bile acid, with or without 0.1 mM FeCl(3) and 0.1 mM ascorbic acid for the purpose of generating free radicals. Several bile acids increased lipid and protein oxidation, with TLC being the most pro-oxidative (657% and 175% in homogenates and 350% and 311% in membranes, respectively). TLC also enhanced iron-induced oxidative stress to lipids (21% in homogenates and 29% in membranes) and to proteins (74% in membranes). This enhancement was dose- and time-dependent and was reduced by melatonin. These results suggest that bile acids differentially mediate hepatic oxidative stress and may be involved in the physiopathology of cholestasis. PMID:19669996

  6. Very long chain fatty acid and lipid signaling in the response of plants to pathogens

    PubMed Central

    Raffaele, Sylvain; Leger, Amandine

    2009-01-01

    Recent findings indicate that lipid signaling is essential for plant resistance to pathogens. Besides oxylipins and unsaturated fatty acids known to play important signaling functions during plant-pathogen interactions, the very long chain fatty acid (VLCFA) biosynthesis pathway has been recently associated to plant defense through different aspects. VLCFAs are indeed required for the biosynthesis of the plant cuticle and the generation of sphingolipids. Elucidation of the roles of these lipids in biotic stress responses is the result of the use of genetic approaches together with the identification of the genes/proteins involved in their biosynthesis. This review focuses on recent observations which revealed the complex function of the cuticle and cuticle-derived signals, and the key role of sphingolipids as bioactive molecules involved in signal transduction and cell death regulation during plant-pathogen interactions. PMID:19649180

  7. Production of lipids containing high levels of docosahexaenoic acid from empty palm fruit bunches by Aurantiochytrium sp. KRS101.

    PubMed

    Hong, Won-Kyung; Yu, Anna; Heo, Sun-Yeon; Oh, Baek-Rock; Kim, Chul Ho; Sohn, Jung-Hoon; Yang, Ji-Won; Kondo, Akihiko; Seo, Jeong-Woo

    2013-07-01

    The oleaginous microalga Aurantiochytrium sp. KRS101 was cultivated in enzymatic hydrolysates of alkali-pretreated empty palm fruit bunches (EFBs), without prior detoxification process. The maximal levels of lipid and docosahexaenoic acid synthesized were 12.5 and 5.4 g L⁻¹ after cultivation for 36 h. Similar lipid levels were also obtained via simultaneous saccharification and cultivation. The results suggested that EFB is a promising source for production of useful lipids by the microalgal strain. PMID:23053417

  8. Beneath the minerals, a layer of round lipid particles was identified to mediate collagen calcification in compact bone formation.

    PubMed

    Xu, Shaohua; Yu, Jianqing J

    2006-12-01

    Astronauts lose 1-2% of their bone minerals per month during space flights. A systematic search for a countermeasure relies on a good understanding of the mechanism of bone formation at the molecular level. How collagen fibers, the dominant matrix protein in bones, are mineralized remains mysterious. Atomic force microscopy was carried out, in combination with immunostaining and Western blotting, on bovine tibia to identify unrecognized building blocks involved in bone formation and for an elucidation of the process of collagen calcification in bone formation. Before demineralization, tiles of hydroxyapatite crystals were found stacked along bundles of collagen fibers. These tiles were homogeneous in size and shape with dimensions 0.69 x 0.77 x 0.2 micro m(3). Demineralization dissolved these tiles and revealed small spheres with an apparent diameter around 145 nm. These spheres appeared to be lipid particles since organic solvents dissolved them. The parallel collagen bundles had widths mostly <2 micro m. Composition analysis of compact bones indicated a high content of apolar lipids, including triglycerides and cholesterol esters. Apolar lipids are known to form lipid droplets or lipoproteins, and these spheres are unlikely to be matrix vesicles as reported for collagen calcification in epiphyseal cartilages. Results from this study suggest that the layer of round lipid particles on collagen fibers mediates the mineral deposition onto the fibers. The homogeneous size of these lipid particles and the presence of apolipoprotein in demineralized bone tissue suggest the possibility that these particles might be of lipoprotein origin. More studies are needed to verify the last claim and to exclude the possibility that they are secreted lipid droplets. PMID:16980361

  9. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers.

    PubMed

    Ashley, Carlee E; Carnes, Eric C; Phillips, Genevieve K; Padilla, David; Durfee, Paul N; Brown, Page A; Hanna, Tracey N; Liu, Juewen; Phillips, Brandy; Carter, Mark B; Carroll, Nick J; Jiang, Xingmao; Dunphy, Darren R; Willman, Cheryl L; Petsev, Dimiter N; Evans, Deborah G; Parikh, Atul N; Chackerian, Bryce; Wharton, Walker; Peabody, David S; Brinker, C Jeffrey

    2011-05-01

    Encapsulation of drugs within nanocarriers that selectively target malignant cells promises to mitigate side effects of conventional chemotherapy and to enable delivery of the unique drug combinations needed for personalized medicine. To realize this potential, however, targeted nanocarriers must simultaneously overcome multiple challenges, including specificity, stability and a high capacity for disparate cargos. Here we report porous nanoparticle-supported lipid bilayers (protocells) that synergistically combine properties of liposomes and nanoporous particles. Protocells modified with a targeting peptide that binds to human hepatocellular carcinoma exhibit a 10,000-fold greater affinity for human hepatocellular carcinoma than for hepatocytes, endothelial cells or immune cells. Furthermore, protocells can be loaded with combinations of therapeutic (drugs, small interfering RNA and toxins) and diagnostic (quantum dots) agents and modified to promote endosomal escape and nuclear accumulation of selected cargos. The enormous capacity of the high-surface-area nanoporous core combined with the enhanced targeting efficacy enabled by the fluid supported lipid bilayer enable a single protocell loaded with a drug cocktail to kill a drug-resistant human hepatocellular carcinoma cell, representing a 10(6)-fold improvement over comparable liposomes. PMID:21499315

  10. The Targeted Delivery of Multicomponent Cargos to Cancer Cells via Nanoporous Particle-Supported Lipid Bilayers

    PubMed Central

    Ashley, Carlee E.; Carnes, Eric C.; Phillips, Genevieve K.; Padilla, David; Durfee, Paul N.; Brown, Page A.; Hanna, Tracey N.; Liu, Juewen; Phillips, Brandy; Carter, Mark B.; Carroll, Nick J.; Jiang, Xingmao; Dunphy, Darren R.; Willman, Cheryl L.; Petsev, Dimiter N.; Evans, Deborah G.; Parikh, Atul N.; Chackerian, Bryce; Wharton, Walker; Peabody, David S.; Brinker, C. Jeffrey

    2011-01-01

    Encapsulation of drugs within nanocarriers that selectively target malignant cells promises to mitigate side effects of conventional chemotherapy and to enable delivery of the unique drug combinations needed for personalized medicine. To realize this potential, however, targeted nanocarriers must simultaneously overcome multiple challenges, including specificity, stability, and a high capacity for disparate cargos. Here we report porous nanoparticle-supported lipid bilayers (protocells) that synergistically combine properties of liposomes and nanoporous particles. Protocells modified with a targeting peptide that binds to human hepatocellular carcinoma (HCC) exhibit a 10,000-fold greater affinity for HCC than for hepatocytes, endothelial cells, and immune cells. Furthermore, protocells can be loaded with combinations of therapeutic (drugs, siRNA, and toxins) and diagnostic (quantum dots) agents and modified to promote endosomal escape and nuclear accumulation of selected cargos. The enormous capacity of the high-surface-area nanoporous core combined with the enhanced targeting efficacy enabled by the fluid supported lipid bilayer allow a single protocell loaded with a drug cocktail to kill a drug-resistant HCC cell, representing a 106-fold improvement over comparable liposomes. PMID:21499315

  11. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers

    NASA Astrophysics Data System (ADS)

    Ashley, Carlee E.; Carnes, Eric C.; Phillips, Genevieve K.; Padilla, David; Durfee, Paul N.; Brown, Page A.; Hanna, Tracey N.; Liu, Juewen; Phillips, Brandy; Carter, Mark B.; Carroll, Nick J.; Jiang, Xingmao; Dunphy, Darren R.; Willman, Cheryl L.; Petsev, Dimiter N.; Evans, Deborah G.; Parikh, Atul N.; Chackerian, Bryce; Wharton, Walker; Peabody, David S.; Brinker, C. Jeffrey

    2011-05-01

    Encapsulation of drugs within nanocarriers that selectively target malignant cells promises to mitigate side effects of conventional chemotherapy and to enable delivery of the unique drug combinations needed for personalized medicine. To realize this potential, however, targeted nanocarriers must simultaneously overcome multiple challenges, including specificity, stability and a high capacity for disparate cargos. Here we report porous nanoparticle-supported lipid bilayers (protocells) that synergistically combine properties of liposomes and nanoporous particles. Protocells modified with a targeting peptide that binds to human hepatocellular carcinoma exhibit a 10,000-fold greater affinity for human hepatocellular carcinoma than for hepatocytes, endothelial cells or immune cells. Furthermore, protocells can be loaded with combinations of therapeutic (drugs, small interfering RNA and toxins) and diagnostic (quantum dots) agents and modified to promote endosomal escape and nuclear accumulation of selected cargos. The enormous capacity of the high-surface-area nanoporous core combined with the enhanced targeting efficacy enabled by the fluid supported lipid bilayer enable a single protocell loaded with a drug cocktail to kill a drug-resistant human hepatocellular carcinoma cell, representing a 106-fold improvement over comparable liposomes.

  12. Membrane lipid heterogeneity associated with acetylcholine receptor particle aggregates in Xenopus embryonic muscle cells.

    PubMed Central

    Bridgman, P C; Nakajima, Y

    1981-01-01

    Filipin, digitonin, and saponin react with membrane cholesterol to produce unique membrane alterations (sterol-specific complexes) that are easily discernible in freeze-fracture replicas. We have treated both noninnervated and innervated Xenopus embryonic muscle cells in culture with these agents. Freeze-fracture of these treated muscle cells showed that most areas of the muscle plasma membrane contain sterol-specific complexes (19- to 40-nm protuberances and dimples with filipin, a scalloped appearance with digitonin, or an irregular, rough appearance with saponin). However, these complexes were virtually absent from membrane areas of junctional and nonjunctional aggregates of acetylcholine receptor particles. This result suggests that the membrane matrix of these aggregates is low in cholesterol and that this membrane lipid heterogeneity may be linked to the mechanisms involved in their formation and stabilization on muscle cells in culture. Images PMID:6940140

  13. Lipid Lowering Effect of Antioxidant Alpha-Lipoic Acid in Experimental Atherosclerosis

    PubMed Central

    Amom, Zulkhairi; Zakaria, Zaiton; Mohamed, Jamaluddin; Azlan, Azrina; Bahari, Hasnah; Taufik Hidayat Baharuldin, Mohd; Aris Moklas, Mohd; Osman, Khairul; Asmawi, Zanariyah; Kamal Nik Hassan, Mohd

    2008-01-01

    Accumulating data demonstrated that hypercholesterolemia and oxidative stress play an important role in the development of atherosclerosis. In the present study, a protective activity of alpha-lipoic acid; a metabolic antioxidant in hypercholesterolemic-induced animals was investigated. Eighteen adult male New Zealand White (NZW) rabbit were segregated into three groups labelled as group N, HCD and ALA (n = 6). Group N (normal control) was fed with normal chow, the rest (HCD and ALA) were fed with 100 g/head/day of 1% cholesterol rich diet to induce hypercholesterolemia. Four point two mg/body weight of alpha lipoic acid was concomintantly supplemented to the ALA group. Drinking water was given ad-libitum. The study was designed for 10 weeks. Blood sampling was taken from the ear lobe vein at the beginning, week 5 and week 10. Plasma was prepared for lipid profile estimation and microsomal lipid peroxidation index indicated with malondialdehyde (MDA) formation. At the end of the experiment, the animals were sacrificed and the aorta were excised for intimal lesion analysis. The plasma total cholesterol (TC) and low density lipoprotein (LDL) levels were found to be significantly low in ALA group compared to that of the HCD group (p<0.05). Similarly, low level of MDA (p<0.05) in ALA group was observed compared to that of the HCD group showing a significant reduction of lipid peroxidation activity. Histomorphometric intimal lesion analysis of the aorta showing less of atheromatous plaque formation in alpha lipoic acid supplemented group (p<0.05) compared to HCD group. These findings suggested that alpha lipoic acid posses a dual lipid lowering and anti-atherosclerotic properties indicated with low plasma TC and LDL levels and reduction of athero-lesion formation in hypercholesterolemic-induced rabbits. PMID:18818758

  14. 1- and 2-particle Microrheology of Hyaluronic Acid

    NASA Astrophysics Data System (ADS)

    Sagan, Austin; Kearns, Sarah; Ross, David; Das, Moumita; Thurston, George; Franklin, Scott

    2015-03-01

    Hyaluronic acid (also called HA or Hyaluronan) is a high molecular weight polysaccaride ubiquitous in the extracellular matrix of soft tissue such as cartilage, skin, the eye's vitreous gel and synovial fluid. It has been shown to play an important role in mechanotransduction, cell migration and proliferation, and in tissue morphodynamics. We present a confocal microrheology study of hyaluronic acid of varying concentrations. The mean squared displacement (MSD) of sub-micron colloidal tracer particles is tracked in two dimensions and shows a transition from diffusive motion at low concentrations to small-time trapping by the protein network as the concentration increases. Correlations between particle motion can be used to determine an effective mean-squared displacement which deviates from the single-particle MSD as the fluid becomes less homogeneous. The real and effective mean-squared displacements are used to probe the local and space-averaged frequency dependent rheological properties of the fluid as the concentration changes.

  15. Virosome engineering of colloidal particles and surfaces: bioinspired fusion to supported lipid layers

    NASA Astrophysics Data System (ADS)

    Fleddermann, J.; Diamanti, E.; Azinas, S.; Košutić, M.; Dähne, L.; Estrela-Lopis, I.; Amacker, M.; Donath, E.; Moya, S. E.

    2016-04-01

    Immunostimulating reconstituted influenza virosomes (IRIVs) are liposomes with functional viral envelope glycoproteins: influenza virus hemagglutinin (HA) and neuraminidase intercalated in the phospholipid bilayer. Here we address the fusion of IRIVs to artificial supported lipid membranes assembled on polyelectrolyte multilayers on both colloidal particles and planar substrates. The R18 assay is used to prove the IRIV fusion in dependence of pH, temperature and HA concentration. IRIVs display a pH-dependent fusion mechanism, fusing at low pH in analogy to the influenza virus. The pH dependence is confirmed by the Quartz Crystal Microbalance technique. Atomic Force Microscopy imaging shows that at low pH virosomes are integrated in the supported membrane displaying flattened features and a reduced vertical thickness. Virosome fusion offers a new strategy for transferring biological functions on artificial supported membranes with potential applications in targeted delivery and sensing.Immunostimulating reconstituted influenza virosomes (IRIVs) are liposomes with functional viral envelope glycoproteins: influenza virus hemagglutinin (HA) and neuraminidase intercalated in the phospholipid bilayer. Here we address the fusion of IRIVs to artificial supported lipid membranes assembled on polyelectrolyte multilayers on both colloidal particles and planar substrates. The R18 assay is used to prove the IRIV fusion in dependence of pH, temperature and HA concentration. IRIVs display a pH-dependent fusion mechanism, fusing at low pH in analogy to the influenza virus. The pH dependence is confirmed by the Quartz Crystal Microbalance technique. Atomic Force Microscopy imaging shows that at low pH virosomes are integrated in the supported membrane displaying flattened features and a reduced vertical thickness. Virosome fusion offers a new strategy for transferring biological functions on artificial supported membranes with potential applications in targeted delivery and sensing

  16. Control analysis of lipid biosynthesis in tissue cultures from oil crops shows that flux control is shared between fatty acid synthesis and lipid assembly.

    PubMed Central

    Ramli, Umi S; Baker, Darren S; Quant, Patti A; Harwood, John L

    2002-01-01

    Top-Down (Metabolic) Control Analysis (TDCA) was used to examine, quantitatively, lipid biosynthesis in tissue cultures from two commercially important oil crops, olive (Olea europaea L.) and oil palm (Elaeis guineensis Jacq.). A conceptually simplified system was defined comprising two blocks of reactions: fatty acid synthesis (Block A) and lipid assembly (Block B), which produced and consumed, respectively, a common and unique system intermediate, cytosolic acyl-CoA. We manipulated the steady-state levels of the system intermediate by adding exogenous oleic acid and, using two independent assays, measured the effect of the addition on the system fluxes (J(A) and J(B)). These were the rate of incorporation of radioactivity: (i) through Block A from [1-(14)C]acetate into fatty acids and (ii) via Block B from [U-(14)C]glycerol into complex lipids respectively. The data showed that fatty acid formation (Block A) exerted higher control than lipid assembly (Block B) in both tissues with the following group flux control coefficients (C):(i) Oil palm: *C(J(TL))(BlkA)=0.64+/-0.05 and *C(J(TL))(BlkB)=0.36+/-0.05(ii) Olive: *C(J(TL))(BlkA)=0.57+/-0.10 and *C(J(TL))(BlkB)=0.43+/-0.10where *C indicates the group flux control coefficient over the lipid biosynthesis flux (J(TL)) and the subscripts BlkA and BlkB refer to defined blocks of the system, Block A and Block B. Nevertheless, because both parts of the lipid biosynthetic pathway exert significant flux control, we suggest strongly that manipulation of single enzyme steps will not affect product yield appreciably. The present study represents the first use of TDCA to examine the overall lipid biosynthetic pathway in any tissue, and its findings are of immediate academic and economic relevance to the yield and nutritional quality of oil crops. PMID:12023882

  17. Fatty acid composition of plasma lipids and erythrocyte membranes during simulated extravehicular activity

    NASA Astrophysics Data System (ADS)

    Skedina, M. A.; Katuntsev, V. P.; Buravkova, L. B.; Naidina, V. P.

    Ten subjects (from 27 to 41 years) have been participated in 32 experiments. They were decompressed from ground level to 40-35 kPa in altitude chamber when breathed 100% oxygen by mask and performed repeated cycles of exercises (3.0 Kcal/min). The intervals between decompressions were 3-5 days. Plasma lipid and erythrocyte membrane fatty acid composition was evaluated in the fasting venous blood before and immediately after hypobaric exposure. There were 7 cases decompression sickness (DCS). Venous gas bubbles (GB) were detected in 27 cases (84.4%). Any significant changes in the fatty acid composition of erythrocyte membranes and plasma didn't practically induce after the first decompression. However, by the beginning of the second decompression the total lipid level in erythrocyte membranes decreased from 54.6 mg% to 40.4 mg% in group with DCS symptoms and from 51.2 mg% to 35.2 mg% (p < 0.05) without DCS symptoms. In group with DCS symptoms a tendency to increased level of saturated fatty acids in erythrocyte membranes (16:0, 18:0), the level of the polyunsaturated linoleic fatty acid (18:2) and arachidonic acid (20:4) tended to be decreased by the beginning of the second decompression. Insignificant changes in blood plasma fatty acid composition was observed in both groups. The obtained biochemical data that indicated the simulated extravehicular activity (EVA) condition is accompanied by the certain changes in the blood lipid metabolism, structural and functional state of erythrocyte membranes, which are reversible. The most pronounced changes are found in subjects with DCS symptoms.

  18. Energetic particle-induced enhancements of stratospheric nitric acid

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1994-01-01

    Inclusion of complete ion chemistry in the calculation of minor species production during energetic particle deposition events leads to significant enhancement in the calculated nitric acid concentration during precipitation. An ionization rate of 1.2 x 10(exp 3)/cu cm/s imposed for 1 day increases HNO3 from 3 x 10(exp 5) to 6 x 10(exp 7)/cu cm at 50 km. With an ionization rate of 600 cu cm/s, the maximum HNO3 is 3 x 10(exp 7)/cu cm. Calculations which neglect negative ions predict the nitric acid will fall during precipitation events. The decay time for converting HNO3 into odd nitrogen and hydrogen is more than 1 day for equinoctial periods at 70 deg latitude. Examination of nitric acid data should yield important information on the magnitude and frequency of charged particle events.

  19. Vitamin B12 and omega-3 fatty acids together regulate lipid metabolism in Wistar rats.

    PubMed

    Khaire, Amrita; Rathod, Richa; Kale, Anvita; Joshi, Sadhana

    2015-08-01

    Our recent study indicates that maternal vitamin B12 and omega-3 fatty acid status influence plasma and erythrocyte fatty acid profile in dams. The present study examines the effects of prenatal and postnatal vitamin B12 and omega-3 fatty acid status on lipid metabolism in the offspring. Pregnant dams were divided into five groups: Control; Vitamin B12 deficient (BD); Vitamin B12 supplemented (BS); Vitamin B12 deficient group supplemented with omega-3 fatty acids (BDO); Vitamin B12 supplemented group with omega-3 fatty acids (BSO). The offspring were continued on the same diets till 3 month of age. Vitamin B12 deficiency increased cholesterol levels (p<0.01) but reduced docosahexaenoic acid (DHA) (p<0.05), liver mRNA levels of acetyl CoA carboxylase-1 (ACC-1) (p<0.05) and carnitine palmitoyltransferase-1 (CPT-1) (p<0.01) in the offspring. Omega-3 fatty acid supplementation to this group normalized cholesterol but not mRNA levels of ACC-1 and CPT-1. Vitamin B12 supplementation normalized the levels cholesterol to that of control but increased plasma triglyceride (p<0.01) and reduced liver mRNA levels of adiponectin, ACC-1, and CPT-1 (p<0.01 for all). Supplementation of both vitamin B12 and omega-3 fatty acid normalized triglyceride and mRNA levels of all the above genes. Prenatal and postnatal vitamin B12 and omega-3 fatty acids together play a crucial role in regulating the genes involved in lipid metabolism in adult offspring. PMID:26003565

  20. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP)

    SciTech Connect

    Van Wychen, S.; Laurens, L. M. L.

    2013-12-01

    This procedure is based on a whole biomass transesterification of lipids to fatty acid methyl esters to represent an accurate reflection of the potential of microalgal biofuels. Lipids are present in many forms and play various roles within an algal cell, from cell membrane phospholipids to energy stored as triacylglycerols.

  1. Dynamics of lipid and fatty acid composition of shallow-water corals under thermal stress: an experimental approach

    NASA Astrophysics Data System (ADS)

    Imbs, A. B.; Yakovleva, I. M.

    2012-03-01

    Coral bleaching induces changes in lipid and fatty acid composition that result in low lipid content, reducing the likelihood of coral survival. Species-specific differences in the metabolism of lipid reserves may contribute to the differential resistance of corals under acute heat exposures. Here, we examined the dynamics of lipids and fatty acid abundance in corals subjected to short-term heat stress. The stony corals Acropora intermedia, Montipora digitata, and the soft coral Sinularia capitalis all showed a 60-75% decline in both storage and structural lipids. However, S. capitalis and M. digitata exhibited no significant change in the percentages of structural lipids (i.e., polar lipids and sterols) until they had lost 90-95% of their endosymbionts, whereas A. intermedia showed a rapid decline in structural lipids after a 50% loss of symbionts. After a 90-95% loss of symbionts under heat stress, all three corals showed a relative depletion of polyunsaturated fatty acids that had symbiont biomarkers, suggesting that polyunsaturated fatty acids were translocated from the symbiont to the coral host tissue.

  2. [Fatty acid content of the lipid fraction of the liver and fatty tissues of fattened geese].

    PubMed

    Kostadinov, K; Monov, G

    1986-01-01

    The content of fatty acids in the lipid fraction of the liver and in the body fats of fattened gray Landen geese. Determinations were carried out with a gas chromatography Chrom 41 supplied with Determinations were carried out with a gas chromatograph Chrom 41 supplied with a flame-ionization detector. It was found that the average content of fatty acids (saturated and unsaturated) as expressed by percent of their total amount was 45.90% and 54.10% (liver), 36.58% and 63.42% (subcutaneous fatty tissue), 42.79% and 57.31% (inner lard), and 39.01% and 60.99% (skin fats). PMID:3727379

  3. Fatty acid composition of lipids present in selected lichenized fungi: a chemotyping study.

    PubMed

    Sassaki, G L; Cruz, L M; Gorin, P A; Lacomini, M

    2001-02-01

    The total-lipid composition of 21 lichens of the ascomycetous genera Cladonia (11) and Cladina (1) of the family Cladoniacea, Cladia (1), Parmotrema (3), Ramalina (2), Leptogium (1), Cetraria (1), and the basidiomycetous genus Dictyonema (1) was determined. Analyses of those of Dictyonema glabratum were carried out with a total extract and those obtained after successive extractions with various solvents. Each extract was partitioned between n-heptane/isopropanol and 1 M sulfuric acid, giving triglycerides (TG) in the upper phase. Extracts were methanolyzed and the resulting methyl esters were analyzed by gas chromatography-mass spectrometry. Methanolyzates of TG unexpectedly contained esters of 9-oxodecanoic, 9-methyl-tetradecanoic, 6-methyl-tetradecanoic, 3-hydroxy-decanoic, nonanedioic, and decanedioic acids, as well as common fatty acids. Fatty acid methyl ester profiles from the lichens were submitted to cluster analysis, and the resulting dendogram showed a cluster consistent with Cladonia spp., suggesting an efficient aid to lichen taxonomy. The total carbohydrate content of each lipid extract was determined by a modified phenol-sulfuric acid method, which compensated for the presence of pigments. PMID:11269697

  4. The effect of hydroxylated fatty acid-containing phospholipids in the remodeling of lipid membranes.

    PubMed

    Piotto, Stefano; Trapani, Alfonso; Bianchino, Erminia; Ibarguren, Maitane; López, David J; Busquets, Xavier; Concilio, Simona

    2014-06-01

    The synthetic fatty acid 2-hydroxyoleic acid (2OHOA) is an antitumor drug that regulates membrane lipid composition and structure. An important effect of this drug is the restoration of sphingomyelin (SM) levels in cancer cell membranes, where the SM concentration is lower than in non-tumor cells. It is well known that free fatty acid concentration in cell membranes is lower than 5%, and that fatty acid excess is rapidly incorporated into phospholipids. In a recent work, we have considered the effect of free 2OHOA in model membranes in liquid ordered (Lo) and liquid disordered (Ld) phases, by using all-atom molecular dynamics. This study concerns membranes that are modified upon incorporation of 2OHOA into different phospholipids. 2OHOA-containing phospholipids have a permanent effect on lipid membranes, making a Ld membrane surface more compact and less hydrated, whereas the opposite effect is observed in Lo domains. Moreover, the hydroxyl group of fatty acid chains increases the propensity of Ld model membranes to form hexagonal or other non-lamellar structures. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. PMID:24463068

  5. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  6. Lipid content and fatty acid composition of green algae Scenedesmus obliquus grown in a constant cell density apparatus

    NASA Technical Reports Server (NTRS)

    Choi, K. J.; Nakhost, Z.; Barzana, E.; Karel, M.

    1987-01-01

    The lipids of alga Scenedesmus obliquus grown under controlled conditions were separated and fractionated by column and thin-layer chromatography, and fatty acid composition of each lipid component was studied by gas-liquid chromatography (GLC). Total lipids were 11.17%, and neutral lipid, glycolipid and phospholipid fractions were 7.24%, 2.45% and 1.48% on a dry weight basis, respectively. The major neutral lipids were diglycerides, triglycerides, free sterols, hydrocarbons and sterol esters. The glycolipids were: monogalactosyl diglyceride, digalactosyl diglyceride, esterified sterol glycoside, and sterol glycoside. The phospholipids included: phosphatidyl choline, phosphatidyl glycerol and phosphatidyl ethanolamine. Fourteen fatty acids were identified in the four lipid fractions by GLC. The main fatty acids were C18:2, C16:0, C18:3(alpha), C18:1, C16:3, C16:1, and C16:4. Total unsaturated fatty acid and essential fatty acid compositions of the total algal lipids were 80% and 38%, respectively.

  7. Short term exposure to perluoroalkyl acids causes increase of hepatic lipid and triglyceride in conjunction with liver hypertrophy

    EPA Science Inventory

    ABSTRACT BODY: Persistent presence of perfluoroalkyl acids (PFAAs) in the environment is due to extensive use of industrial and consumer products. These chemicals activate peroxisome proliferatoractivated receptor-alpha (PPARa) in liver and after lipid metabolism. The current stu...

  8. Australian Acid Brine Lake as a Mars Analog: An Analysis of Preserved Lipids in Shore and Lake Sediments

    NASA Astrophysics Data System (ADS)

    Graham, H. V.; Stern, J. C.; Baldridge, A. M.; Thomsen, B. J.

    2016-05-01

    This study investigates organic molecules preserved in sediment cores from an acid brine lake. We explore the distribution and stable isotopic composition of lipids in order to understand preservation potential in similar martian environments.

  9. Succinic acid monoethyl ester, a novel insulinotropic agent: effect on lipid composition and lipid peroxidation in streptozotocin-nicotin-amide induced type 2 diabetic rats.

    PubMed

    Saravanan, Ramalingam; Pari, Leelavinothan

    2007-02-01

    Succinic acid monoethyl ester (EMS) is recently proposed as an insulinotropic agent for the treatment of non-insulin dependent diabetes mellitus. Oxidative stress has been suggested to be a contributory factor in the development and complications of diabetes. In the present study the effect of EMS and Metformin on plasma glucose, insulin, serum and tissue lipid profile, lipoproteins and lipid peroxidation in streptozotocin-nicotinamide induced type 2 diabetic model was investigated. The carboxylic nutrient EMS was administered intraperitonially (8 micromol/g body weight) to streptozotocin diabetic rats for 30 days. The levels of thiobarbituric acid reactive substances (TBARS) and hydroperoxides in liver and kidney and serum and tissue lipids [cholesterol, triglycerides, phospholipids and free fatty acids] and very low density lipoprotein-cholesterol (VLDL-C) and low density lipoprotein-cholesterol (LDL-C), were significantly increased in diabetic rats, whereas the levels of high-density lipoprotein-cholesterol (HDL-C) and antiatherogenic index (AAI) (ratio of HDL to total cholesterol) were significantly decreased. The effect of EMS was compared with metformin, a reference drug. Treatment with EMS and metformin resulted in a significant reduction of plasma glucose with increase plasma insulin in diabetic rats. EMS also resulted in a significant decrease in serum and tissue lipids and lipid peroxidation products. These biochemical observations were supplemented by histopathological examination of liver and kidney section. Our results suggest the possible antihyperlipidemic and antiperoxidative effect of EMS apart from its antidiabetic effect. PMID:17006620

  10. Medium-chain fatty acid reduces lipid accumulation by regulating expression of lipid-sensing genes in human liver cells with steatosis.

    PubMed

    Wang, Baogui; Fu, Jing; Li, Lumin; Gong, Deming; Wen, Xuefang; Yu, Ping; Zeng, Zheling

    2016-05-01

    Accumulation of lipids in the liver can lead to cell dysfunction and steatosis, an important factor in pathogenesis causing non-alcoholic fatty liver disease. The mechanisms related to lipid deposition in the liver, however, remain poorly understood. This study was aimed to investigate the effects of medium-chain fatty acid (MCFA) on the lipolysis and expression of lipid-sensing genes in human liver cells with steatosis. A cellular steatosis model, which is suitable to experimentally investigate the impact of fat accumulation in the liver, was established in human normal liver cells (LO2 cells) with a mixture of free fatty acids (oleate/palmitate, 2:1) at 200 μm for 24 h incubation. MCFA was found to down-regulate expression of liver X receptor-α, sterol regulatory element binding protein-1, acetyl-CoA carboxylase, fatty acid synthase, CD 36 and lipoprotein lipase in this cellular model, and have positive effects on adipose triglyceride lipase and hormone-sensitive lipase. These results suggest that MCFA may reduce lipid accumulation by regulating key lipid-sensing genes in human liver cells with steatosis. PMID:26932533

  11. Longitudinal Metabolomic Profiling of Amino Acids and Lipids across Healthy Pregnancy.

    PubMed

    Lindsay, Karen L; Hellmuth, Christian; Uhl, Olaf; Buss, Claudia; Wadhwa, Pathik D; Koletzko, Berthold; Entringer, Sonja

    2015-01-01

    Pregnancy is characterized by a complexity of metabolic processes that may impact fetal development and ultimately, infant health outcomes. However, our understanding of whole body maternal and fetal metabolism during this critical life stage remains incomplete. The objective of this study is to utilize metabolomics to profile longitudinal patterns of fasting maternal metabolites among a cohort of non-diabetic, healthy pregnant women in order to advance our understanding of changes in protein and lipid concentrations across gestation, the biochemical pathways by which they are metabolized and to describe variation in maternal metabolites between ethnic groups. Among 160 pregnant women, amino acids, tricarboxylic acid (TCA) cycle intermediates, keto-bodies and non-esterified fatty acids were detected by liquid chromatography coupled with mass spectrometry, while polar lipids were detected through flow-injected mass spectrometry. The maternal plasma concentration of several essential and non-essential amino acids, long-chain polyunsaturated fatty acids, free carnitine, acetylcarnitine, phosphatidylcholines and sphingomyelins significantly decreased across pregnancy. Concentrations of several TCA intermediates increase as pregnancy progresses, as well as the keto-body β-hydroxybutyrate. Ratios of specific acylcarnitines used as indicators of metabolic pathways suggest a decreased beta-oxidation rate and increased carnitine palmitoyltransferase-1 enzyme activity with advancing gestation. Decreasing amino acid concentrations likely reflects placental uptake and tissue biosynthesis. The absence of any increase in plasma non-esterified fatty acids is unexpected in the catabolic phase of later pregnancy and may reflect enhanced placental fatty acid uptake and utilization for fetal tissue growth. While it appears that energy production through the TCA cycle increases as pregnancy progresses, decreasing patterns of free carnitine and acetylcarnitine as well as increased

  12. Longitudinal Metabolomic Profiling of Amino Acids and Lipids across Healthy Pregnancy

    PubMed Central

    Lindsay, Karen L.; Hellmuth, Christian; Uhl, Olaf; Buss, Claudia; Wadhwa, Pathik D.; Koletzko, Berthold; Entringer, Sonja

    2015-01-01

    Pregnancy is characterized by a complexity of metabolic processes that may impact fetal development and ultimately, infant health outcomes. However, our understanding of whole body maternal and fetal metabolism during this critical life stage remains incomplete. The objective of this study is to utilize metabolomics to profile longitudinal patterns of fasting maternal metabolites among a cohort of non-diabetic, healthy pregnant women in order to advance our understanding of changes in protein and lipid concentrations across gestation, the biochemical pathways by which they are metabolized and to describe variation in maternal metabolites between ethnic groups. Among 160 pregnant women, amino acids, tricarboxylic acid (TCA) cycle intermediates, keto-bodies and non-esterified fatty acids were detected by liquid chromatography coupled with mass spectrometry, while polar lipids were detected through flow-injected mass spectrometry. The maternal plasma concentration of several essential and non-essential amino acids, long-chain polyunsaturated fatty acids, free carnitine, acetylcarnitine, phosphatidylcholines and sphingomyelins significantly decreased across pregnancy. Concentrations of several TCA intermediates increase as pregnancy progresses, as well as the keto-body β-hydroxybutyrate. Ratios of specific acylcarnitines used as indicators of metabolic pathways suggest a decreased beta-oxidation rate and increased carnitine palmitoyltransferase-1 enzyme activity with advancing gestation. Decreasing amino acid concentrations likely reflects placental uptake and tissue biosynthesis. The absence of any increase in plasma non-esterified fatty acids is unexpected in the catabolic phase of later pregnancy and may reflect enhanced placental fatty acid uptake and utilization for fetal tissue growth. While it appears that energy production through the TCA cycle increases as pregnancy progresses, decreasing patterns of free carnitine and acetylcarnitine as well as increased

  13. Growth, fatty acid profile in major lipid classes and lipid fluidity of Aurantiochytrium mangroveiSK-02 As a function of growth temperature

    PubMed Central

    Chodchoey, Kanokwan; Verduyn, Cornelis

    2012-01-01

    Aurantiochytrium mangrovei Sk-02 was grown in a medium containing glucose (40 g/l), yeast extract (10 g/L) and sea salts (15 g/L) at temperatures ranging from 12 to 35°C. The fastest growth (µmax= 0.15 h-1) and highest fatty acid content of 415 mg/g-dry cell weight were found in the cells grown at 30°C. However, the cells grown at 12°C showed the highest percentage of polyunsaturated fatty acid (PUFA) (48.6% of total fatty acid). The percentage of docosahexaenoic acid (DHA) and pentadecanoic acid (C15:0) decreased with an increase in the growth temperature, whereas, palmitic acid (C16:0), stearic acid (C18:0) and DPA (C22:5n6) increased with an increase in the growth temperature. The composition of the major lipid class (%w/w) was slightly affected by the growth temperature. The fluidity of the organelle membrane or intracellular lipid (by DPH measurement) decreased with an increase in the growth temperatures, while the plasma membrane fluidity (by TMA-DPH measurement) could still maintain its fluidity in a wide range of temperatures (15 - 37°C). Furthermore, the distribution of DHA was found to be higher (36 – 54%) in phospholipid (PL) as compared to neutral lipid (NL) (20 - 41%). PMID:24031817

  14. Nanocomplexes based on amphiphilic hyaluronic acid derivative and polyethylene glycol-lipid for ginsenoside rg3 delivery.

    PubMed

    Lee, Jae-Young; Yang, Heejung; Yoon, In-Soo; Kim, Sang-Bum; Ko, Seung-Hak; Shim, Jae-Seong; Sung, Sang Hyun; Cho, Hyun-Jong; Kim, Dae-Duk

    2014-10-01

    Hybrid nanocomplex formulations, based on amphiphilic hyaluronic acid-ceramide (HACE) and lipids, were fabricated for the delivery of 20(S)-ginsenoside Rg 3 [(S)-Rg3]. Nanocomplexes with less than 200 nm mean diameter, narrow size distribution, spherical shape, and negative zeta potential were prepared. The maintenance of the structural stability of the hybrid nanocomplexes in the blood stream was demonstrated by measuring their particle size in serum. Nanocomplexes based on HACE, phosphatidylcholine (PC), and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (DSPE-PEG) showed a sustained drug release profile compared with other formulations. Blank nanocomplexes exhibited negligible cytotoxicity within the tested concentration range in A549 human lung adenocarcinoma cells. The cellular uptake efficiency of hybrid nanocomplexes was improved compared with the HACE-based nanoparticles probably because of interactions between lipids and the cellular membrane. The results of a pharmacokinetic study in rats revealed decreased in vivo clearance of (S)-Rg3, especially in the HACE/PC/DSPE-PEG-based hybrid nanocomplex (F3) group. The hybrid nanostructure and the outer PEG chain likely contributed to improve in vivo performance of the F3 group. Thus, these developed hybrid nanocomplexes could serve as good candidates for tumor-targeted delivery of anticancer agents. PMID:25112537

  15. Ethanol-Induced Alterations in Fatty Acid-Related Lipids in Serum and Tissues in Mice

    PubMed Central

    Zhao, Zhenwen; Yu, Menggang; Crabb, David; Xu, Yan; Liangpunsakul, Suthat

    2010-01-01

    Background Chronic alcohol consumption is a major factor for several human diseases and alcoholism is associated with a host of societal problems. One of the major alcohol- induced metabolic changes is the increased NADH levels, which reduces glucose synthesis and increases fatty acid (FA) synthesis. Probably more important is the induction of FA synthesizing enzymes under the control of sterol regulatory element binding proteins (SREBP), plus increased malonyl-CoA which blocks FA entry to the mitochondria for oxidation. The changes in FA-related lipids, particularly lysophospholipids (LPLs) and ceramides (Cers), in different tissues in ethanol-fed have not been reported. Methods We systematically determined the levels of FA-related lipids, including FAs, phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), lysophosphatidic acid (LPA), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), lysophosphatidylinositol (LPI), sphingomyelins (SMs), and ceramides (Cers) in the serum and different tissues by high-performance-liquid-chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The study was performed in C57BL/6J mice fed with Lieber DeCarli diet; in which ethanol was added to account for 27.5% of total calories. The serum and tissues were collected at the time of sacrifice in these mice and the results were compared to pair-fed controls. Results The important observation was that ethanol induced tissue-specific changes, which were related to different FA chains. Several 22:6 FA, 18:0 FA, 18:0 to 18:3 FA-containing lipids were significantly increased in the serum, liver, and skeletal muscle, respectively. In the kidney, all 22:6 FA-containing lipids detected were increased. In addition, alterations of other lipids in tissues, except adipose tissue, were also observed. Conclusions We found tissue-specific alterations in the levels of FA-related lipids after ethanol administration. The implications of these findings

  16. Variation in Fatty Acid Distribution of Different Acyl Lipids in Rice (Oryza sativa L.) Brans

    PubMed Central

    Yoshida, Hiromi; Tanigawa, Takaaki; Kuriyama, Isoko; Yoshida, Naoko; Tomiyama, Yuka; Mizushina, Yoshiyuki

    2011-01-01

    The lipids extracted from rice brans were classified by thin-layer chromatography into eight fractions, and their fatty acid (FA) compositions were investigated among five different Japanese cultivars. The lipids of these rice brans comprised mainly triacylglycerols (TAG; 84.9-86.0 wt%), free FA (4.2-4.6 wt%), and phospholipids (PL; 6.5-6.7 wt%), whilst other components were also detected in minor proportions (0.2-2.1 wt%). The PL components included phosphatidyl choline (43.3-46.8 wt%) phosphatidyl ethanolamine (25.0-27.3 wt%) and phosphatidyl inositol (20.2-23.2 wt%). Comparison of the different cultivars showed, with a few exceptions, no substantial difference (P > 0.05) in FA distribution. FA distribution of TAG among the five cultivars was characterized as: unsaturated FA predominantly concentrated at the sn-2 position and saturated FA primarily occupying the sn-1 or sn-3 position in these lipids. These results suggest that the rice bran lipids may be well incorporated into our daily diet to improve nutritional value of the Japanese diet. PMID:22254108

  17. Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery.

    PubMed

    Angelova, Angelina; Angelov, Borislav; Mutafchieva, Rada; Lesieur, Sylviane; Couvreur, Patrick

    2011-02-15

    Lipids and lipopolymers self-assembled into biocompatible nano- and mesostructured functional materials offer many potential applications in medicine and diagnostics. In this Account, we demonstrate how high-resolution structural investigations of bicontinuous cubic templates made from lyotropic thermosensitive liquid-crystalline (LC) materials have initiated the development of innovative lipidopolymeric self-assembled nanocarriers. Such structures have tunable nanochannel sizes, morphologies, and hierarchical inner organizations and provide potential vehicles for the predictable loading and release of therapeutic proteins, peptides, or nucleic acids. This Account shows that structural studies of swelling of bicontinuous cubic lipid/water phases are essential for overcoming the nanoscale constraints for encapsulation of large therapeutic molecules in multicompartment lipid carriers. For the systems described here, we have employed time-resolved small-angle X-ray scattering (SAXS) and high-resolution freeze-fracture electronic microscopy (FF-EM) to study the morphology and the dynamic topological transitions of these nanostructured multicomponent amphiphilic assemblies. Quasi-elastic light scattering and circular dichroism spectroscopy can provide additional information at the nanoscale about the behavior of lipid/protein self-assemblies under conditions that approximate physiological hydration. We wanted to generalize these findings to control the stability and the hydration of the water nanochannels in liquid-crystalline lipid nanovehicles and confine therapeutic biomolecules within these structures. Therefore we analyzed the influence of amphiphilic and soluble additives (e.g. poly(ethylene glycol)monooleate (MO-PEG), octyl glucoside (OG), proteins) on the nanochannels' size in a diamond (D)-type bicontinuous cubic phase of the lipid glycerol monooleate (MO). At body temperature, we can stabilize long-living swollen states, corresponding to a diamond cubic phase

  18. Monthly changes of glycogen, lipid and free amino acid of oyster

    NASA Astrophysics Data System (ADS)

    Zhicui, Zhang; Changhu, Xue; Xin, Gao; Zhaojie, Li; Qi, Wang

    2006-07-01

    Monthly difference of the chemical composition of oyster cultured along the eastern coast of Shandong Province was analyzed. The components analyzed included glycogen, fatty acid and free amino acid (FAA). The content of glycogen was high in January and March (2.89 and 2.82 g(100g)-1 on average, respectively) and low in October (2.07 g(100g)-1 on avarage). The low content of neutral lipids in October reflected a relatively poor nutritional value of oyster (1.42 g(100 g)-1 on average). The main fatty acids of oyster were palmitic acid (16:0), oleic acid (18:1), eicosapentaenoic acid (EPA, 20: 5ω-3) and docosahexaenoic acid (DHA, 22:6ω-3). The major FAAs of oyster were Taurine, Glutamicacid, Glycin, Alanine, Arginine and Proline. Taurine was the most abundant FAA with its content ranging from 603 mg (100g)-1 to 1139 mg(100g)-1. The high contents of glycogen, polyunsaturated fatty acid and FAA showed that oyster cultured along the eastern coast of Shandong Province was nutritionally good in January and March.

  19. P300 acetyltransferase regulates fatty acid synthase expression, lipid metabolism and prostate cancer growth.

    PubMed

    Gang, Xiaokun; Yang, Yinhui; Zhong, Jian; Jiang, Kui; Pan, Yunqian; Karnes, R Jeffrey; Zhang, Jun; Xu, Wanhai; Wang, Guixia; Huang, Haojie

    2016-03-22

    De novo fatty acid (FA) synthesis is required for prostate cancer (PCa) survival and progression. As a key enzyme for FA synthesis fatty acid synthase (FASN) is often overexpressed in human prostate cancers and its expression correlates with worse prognosis and poor survival. P300 is an acetyltransferase that acts as a transcription co-activator. Increasing evidence suggests that P300 is a major PCa promoter, although the underlying mechanism remains poorly understood. Here, we demonstrated that P300 binds to and increases histone H3 lysine 27 acetylation (H3K27Ac) in the FASN gene promoter. We provided evidence that P300 transcriptionally upregulates FASN expression and promotes lipid accumulation in human PCa cells in culture and Pten knockout prostate tumors in mice. Pharmacological inhibition of P300 decreased FASN expression and lipid droplet accumulation in PCa cells. Immunohistochemistry analysis revealed that expression of P300 protein positively correlates with FASN protein levels in a cohort of human PCa specimens. We further showed that FASN is a key mediator of P300-induced growth of PCa cells in culture and in mice. Together, our findings demonstrate P300 as a key factor that regulates FASN expression, lipid accumulation and cell growth in PCa. They also suggest that this regulatory pathway can serve as a new therapeutic target for PCa treatment. PMID:26934656

  20. P300 acetyltransferase regulates fatty acid synthase expression, lipid metabolism and prostate cancer growth

    PubMed Central

    Zhong, Jian; Jiang, Kui; Pan, Yunqian; Karnes, R. Jeffrey; Zhang, Jun; Xu, Wanhai; Wang, Guixia; Huang, Haojie

    2016-01-01

    De novo fatty acid (FA) synthesis is required for prostate cancer (PCa) survival and progression. As a key enzyme for FA synthesis fatty acid synthase (FASN) is often overexpressed in human prostate cancers and its expression correlates with worse prognosis and poor survival. P300 is an acetyltransferase that acts as a transcription co-activator. Increasing evidence suggests that P300 is a major PCa promoter, although the underlying mechanism remains poorly understood. Here, we demonstrated that P300 binds to and increases histone H3 lysine 27 acetylation (H3K27Ac) in the FASN gene promoter. We provided evidence that P300 transcriptionally upregulates FASN expression and promotes lipid accumulation in human PCa cells in culture and Pten knockout prostate tumors in mice. Pharmacological inhibition of P300 decreased FASN expression and lipid droplet accumulation in PCa cells. Immunohistochemistry analysis revealed that expression of P300 protein positively correlates with FASN protein levels in a cohort of human PCa specimens. We further showed that FASN is a key mediator of P300-induced growth of PCa cells in culture and in mice. Together, our findings demonstrate P300 as a key factor that regulates FASN expression, lipid accumulation and cell growth in PCa. They also suggest that this regulatory pathway can serve as a new therapeutic target for PCa treatment. PMID:26934656

  1. Sex differences in lipid peroxidation and fatty acid levels in recent onset schizophrenia.

    PubMed

    Ramos-Loyo, Julieta; Medina-Hernández, Virginia; Estarrón-Espinosa, Mirna; Canales-Aguirre, Alejandro; Gómez-Pinedo, Ulises; Cerdán-Sánchez, Luis F

    2013-07-01

    Sex differences in the symptomatology and course of illness have been reported among schizophrenic patients. Hence, the principal objective of the present study was to investigate sex differences in the concentrations of the lipid peroxidation metabolites MDA and 4-HNE, and in the membrane phospholipid levels of ARA, EPA and DHA in patients with schizophrenia. A total of 46 paranoid schizophrenics (25 women) with short-term evolution who were in an acute psychotic stage and 40 healthy controls (23 women) participated in the study. Psychopathology was evaluated by BPRS and PANSS. Lipid peroxidation sub-products (MDA, 4-HNE) and fatty acid levels (ARA, EPA, DHA) were determined in erythrocyte membranes. The men in both groups showed higher lipid peroxidation levels and those values were higher in schizophrenic patients than controls, with only EPA fatty acid concentrations found to be lower in the former than the latter. These results suggest that men may suffer greater oxidative neuronal damage than women, and that this could worsen the course of illness and result in greater disease severity. PMID:23421976

  2. Nitrooleic Acid Attenuates Lipid Metabolic Disorders and Liver Steatosis in DOCA-Salt Hypertensive Mice

    PubMed Central

    Sun, Jing; Jia, Zhanjun; Yang, Tianxin; Xu, Liang; Zhao, Bing; Yu, Kezhou; Wang, Rong

    2015-01-01

    Nitrooleic acid (OA-NO2) is endogenous ligands for peroxisome proliferator-activated receptors. The present study was aimed at investigating the beneficial effects of OA-NO2 on the lipid metabolism and liver steatosis in deoxycorticosterone acetate- (DOCA-) salt induced hypertensive mice model. Male C57BL/6 mice were divided to receive DOCA-salt plus OA-NO2 or DOCA-salt plus vehicle and another group received neither DOCA-salt nor OA-NO2 (control group). After 3-week treatment with DOCA-salt plus 1% sodium chloride in drinking fluid, the hypertension was noted; however, OA-NO2 had no effect on the hypertension. In DOCA-salt treated mice, the plasma triglyceride and total cholesterol levels were significantly increased compared to control mice, and pretreatment with OA-NO2 significantly reduced these parameters. Further, the histopathology of liver exhibited more lipid distribution together with more serious micro- and macrovesicular steatosis after DOCA-salt treatment and that was consistent with liver tissue triglyceride and nonesterified fatty acids (NEFA) content. The mice pretreated with OA-NO2 showed reduced liver damage accompanied with low liver lipid content. Moreover, the liver TBARS, together with the expressions of gp91phox and p47phox, were parallelly decreased. These findings indicated that OA-NO2 had the protective effect on liver injury against DOCA-salt administration and the beneficial effect could be attributed to its antihyperlipidemic activities. PMID:25861250

  3. Mechanisms of Nitrogen Dioxide Reactions: Initiation of Lipid Peroxidation and the Production of Nitrous Acid

    NASA Astrophysics Data System (ADS)

    Pryor, William A.; Lightsey, John W.

    1981-10-01

    The reactions of nitrogen dioxide with cyclohexene have been studied as a model for the reactions that occur between nitrogen dioxide in smoggy air and unsaturated fatty acids in pulmonary lipids. As predicted from earlier studies at high nitrogen dioxide concentrations, this gas reacts with cyclohexene predominantly by addition to the double bond at nitrogen dioxide concentrations of I percent (10,000 parts per million) to 40 percent in nitrogen; in the presence of air or oxygen, this reaction initiates the autoxidation of the alkene. However, at concentrations below 100 parts per million in nitrogen, nitrogen dioxide reacts with cyclohexene almost exclusively by abstraction of allylic hydrogen; this unexpected reaction also initiates the autoxidation of the alkene in the presence of oxygen or air, but it leads to the production of nitrous acid rather than of a product containing a nitro group attached to a carbon atom. The nitrous acid can react with amines to produce nitrosamines. Moreover, the nitrite ion produced by the hydrogen abstraction mechanism would be expected to diffuse throughout the body, unlike nitrated lipids that would be confined to the pulmonary cavity. These findings have been confirmed with methyl oleate, linoleate, and linolenate; some of the kinetic features of the nitrogen dioxideinitiated autoxidation of these unsaturated fatty acids have been studied.

  4. Polyunsaturated Fatty Acid-Derived Lipid Mediators and T Cell Function

    PubMed Central

    Nicolaou, Anna; Mauro, Claudio; Urquhart, Paula; Marelli-Berg, Federica

    2014-01-01

    Fatty acids are involved in T cell biology both as nutrients important for energy production as well as signaling molecules. In particular, polyunsaturated fatty acids are known to exhibit a range of immunomodulatory properties that progress through T cell mediated events, although the molecular mechanisms of these actions have not yet been fully elucidated. Some of these immune activities are linked to polyunsaturated fatty acid-induced alteration of the composition of cellular membranes and the consequent changes in signaling pathways linked to membrane raft-associated proteins. However, significant aspects of the polyunsaturated fatty acid bioactivities are mediated through their transformation to specific lipid mediators, products of cyclooxygenase, lipoxygenase, or cytochrome P450 enzymatic reactions. Resulting bioactive metabolites including prostaglandins, leukotrienes, and endocannabinoids are produced by and/or act upon T leukocytes through cell surface receptors and have been shown to alter T cell activation and differentiation, proliferation, cytokine production, motility, and homing events. Detailed appreciation of the mode of action of these lipids presents opportunities for the design and development of therapeutic strategies aimed at regulating T cell function. PMID:24611066

  5. Lysosomal acid lipase deficiency in rats: Lipid analyses and lipase activities in liver and spleen

    SciTech Connect

    Kuriyama, M.; Yoshida, H.; Suzuki, M.; Fujiyama, J.; Igata, A. )

    1990-09-01

    We report the biological characterization of an animal model of a genetic lipid storage disease analogous to human Wolman's disease. Affected rats accumulated cholesteryl esters (13.3-fold), free cholesterol (2.8-fold), and triglycerides (5.4-fold) in the liver, as well as cholesteryl esters (2.5-fold) and free cholesterol (1.33-fold) in the spleen. Triglycerides did not accumulate, and the levels actually decreased in the spleen. Analysis of the fatty acid composition of the cholesteryl esters and triglycerides showed high percentages of linoleic acid (18:2) and arachidonic acid (20:4) in both organs, especially in the liver. No accumulation of phospholipids, neutral glycosphingolipids, or gangliosides was found in the affected rats. Acid lipase activity for (14C)triolein, (14C)cholesteryl oleate, and 4-methyl-umbelliferyl oleate was deficient in both the liver and spleen of affected rats. Lipase activity at neutral pH was normal in both liver and spleen. Heterozygous rats showed intermediate utilization of these substrates in both organs at levels between those for affected rats and those for normal controls, although they did not accumulate any lipids. These data suggest that these rats represent an animal counterpart of Wolman's disease in humans.

  6. Solid lipid nanoparticles as nucleic acid delivery system: properties and molecular mechanisms.

    PubMed

    de Jesus, Marcelo B; Zuhorn, Inge S

    2015-03-10

    Solid lipid nanoparticles (SLNs) have been proposed in the 1990s as appropriate drug delivery systems, and ever since they have been applied in a wide variety of cosmetic and pharmaceutical applications. In addition, SLNs are considered suitable alternatives as carriers in gene delivery. Although important advances have been made in this particular field, fundamental knowledge of the underlying mechanisms of SLN-mediated gene delivery is conspicuously lacking, an imperative requirement in efforts aimed at further improving their efficiency. Here, we address recent advances in the use of SLNs as platform for delivery of nucleic acids as therapeutic agents. In addition, we will discuss available technology for conveniently producing SLNs. In particular, we will focus on underlying molecular mechanisms by which SLNs and nucleic acids assemble into complexes and how the nucleic acid cargo may be released intracellularly. In discussing underlying mechanisms, we will, when appropriate, refer to analogous studies carried out with systems based on cationic lipids and polymers, that have proven useful in the assessment of structure-function relationships. Finally, we will give suggestions for improving SLN-based gene delivery systems, by pointing to alternative methods for SLNplex assembly, focusing on the realization of a sustained nucleic acid release. PMID:25578828

  7. Differential molecular regulation of bile acid homeostasis by soy lipid induced phytosterolemia and fish oil lipid emulsions in TPN-fed preterm pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prolonged total parenteral nutrition (PN) may lead to cholestasis and liver disease (PNALD). The soybean oil-based lipid emulsion (Intralipid) and its constituent phytosterols have been implicated in PNALD. Phytosterols may induce cholestasis by antagonism of the nuclear bile-acid receptor, FXR, lea...

  8. Carnosic Acid Inhibits Lipid Accumulation in 3T3-L1 Adipocytes Through Attenuation of Fatty Acid Desaturation

    PubMed Central

    Park, Mi-Young; Sung, Mi-Kyung

    2015-01-01

    Background: Excess body fat accumulation contributes to the development of metabolic disorders that can cause adverse health effects. Carnosic acid (CA), a major bioactive component of rosemary (Rosemarinus officinalis), has been suggested to possess anti-adipogenic properties. The present study was conducted to elucidate the mechanism underlying the anti-adipogenic effects of CA. Methods: 3T3-L1 pre-adipocytes were treated with CA (0.1, 1, and 10 μM) from day 0 to day 8 of differentiation. On day 8, biochemical markers of lipid accumulation and the degree of fatty acid desaturation were measured. Results: Oil Red O staining results, triglyceride (TG) accumulation, and glycerol 3-phosphate dehydrogenase activity suggested that CA significantly inhibited lipid accumulation in 3T3-L1 adipocytes. CA significantly decreased mRNA expression of peroxisome proliferator-activated receptor-γ, sterol regulatory element-binding protein 1, and CCAAT/enhancer binding protein-α in a dose-dependent manner. Moreover, it decreased the ratio of both C16:1/C16:0 and C18:1/C18:0, with reduced expression of stearoyl CoA desaturase 1 mRNA and protein. Conclusions: These results suggest that CA efficiently suppressed adipogenesis in 3T3-L1 adipocytes and its action, at least in part, is associated with the downregulation of adipogenesis-related genes and the fatty acid composition of TG accumulated in adipocytes. PMID:25853102

  9. Effect of lipid supplementation on milk odd- and branched-chain fatty acids in dairy cows.

    PubMed

    Baumann, E; Chouinard, P Y; Lebeuf, Y; Rico, D E; Gervais, R

    2016-08-01

    Eight ruminally fistulated, multiparous Holstein cows were arranged in a double 4×4 Latin square with 14-d periods to investigate the effects of lipid supplementation on performance, rumen parameters, the milk odd- and branched-chain fatty acid (OBCFA) profile, and the relationships between milk OBCFA and rumen parameters. Lipid supplementation is known to inhibit microbial growth in the rumen, decrease de novo microbial fatty acid synthesis, and increase the uptake of circulating fatty acids by the mammary gland; treatments were selected to isolate these effects on the milk OBCFA profile. The 4 treatments were (1) a lipid-free emulsion medium infused in the rumen (CTL), (2) soybean oil as a source of polyunsaturated fatty acids infused in the rumen (RSO), (3) saturated fatty acids (38% 16:0, 40% 18:0) infused in the rumen (RSF), and (4) saturated fatty acids infused in the abomasum (ASF). Fat supplements were provided continuously as emulsions at a rate of 450g/d. Preplanned contrasts compared CTL to RSO, RSO to RSF, and RSF to ASF. Infusing RSO slightly decreased ruminal pH, but did not affect volatile fatty acids profile and milk fat concentration as compared with CTL. The yields of energy-corrected milk, fat, and protein were greater with RSF compared with RSO. The concentration of odd-chain fatty acids was decreased by RSO, whereas even-chain iso fatty acids were not affected. Milk fat concentration of 17:0 + cis-9 17:1 was higher for RSF than for RSO, due to the saturated fatty acids supplement containing 2% 17:0 + cis-9 17:1. Limited differences were observed in the milk OBCFA profile between RSF and ASF. A multiple regression analysis yielded the following equation for predicting rumen pH based on milk fatty acids: pH=6.24 - (0.56×4:0) + (1.67 × iso 14:0) + (4.22 × iso 15:0) + (9.41×22:0). Rumen propionate concentration was negatively correlated with milk fat concentration of iso 14:0 and positively correlated with milk 15:0, whereas the acetate

  10. Microencapsulation of nanoemulsions: novel Trojan particles for bioactive lipid molecule delivery

    PubMed Central

    Li, Xiang; Anton, Nicolas; Ta, Thi Minh Chau; Zhao, Minjie; Messaddeq, Nadia; Vandamme, Thierry F

    2011-01-01

    Background Nanoemulsions consist of very stable nanodroplets of oil dispersed in an aqueous phase, typically below 300 nm in size. They can be used to obtain a very fine, homogeneous dispersion of lipophilic compounds in water, thus facilitating their handling and use in nanomedicine. However, the drawback is that they are suspended in an aqueous media. This study proposes a novel technique for drying lipid nanoemulsion suspensions to create so-called Trojan particles, ie, polymer microparticles (around 2 μm) which very homogeneously “entrap” the nano-oil droplets (around 150 nm) in their core. Methods Microencapsulation of the nanoemulsions was performed using a spray-drying process and resulted in a dried powder of microparticles. By using a low-energy nanoemulsification method and relatively gentle spray-drying, the process was well suited to sensitive molecules. The model lipophilic molecule tested was vitamin E acetate, encapsulated at around 20% in dried powder. Results We showed that the presence of nanoemulsions in solution before spray-drying had a significant impact on microparticle size, distribution, and morphology. However, the process itself did not destroy the oil nanodroplets, which could easily be redispersed when the powder was put back in contact with water. High-performance liquid chromatography follow-up of the integrity of the vitamin E acetate showed that the molecules were intact throughout the process, as well as when conserved in their dried form. Conclusion This study proposes a novel technique using a spray-drying process to microencapsulate nanoemulsions. The multiscale object formed, so-called Trojan microparticles, were shown to successfully encapsulate, protect, and release the lipid nanodroplets. PMID:21760727

  11. Exploitable Lipids and Fatty Acids in the Invasive Oyster Crassostrea gigas on the French Atlantic Coast.

    PubMed

    Dagorn, Flore; Couzinet-Mossion, Aurélie; Kendel, Melha; Beninger, Peter G; Rabesaotra, Vony; Barnathan, Gilles; Wielgosz-Collin, Gaëtane

    2016-06-01

    Economic exploitation is one means to offset the cost of controlling invasive species, such as the introduced Pacific oyster (Crassostrea gigas Thunberg) on the French Atlantic coast. Total lipid and phospholipid (PL) fatty acids (FAs) and sterols were examined in an invasive population of C. gigas in Bourgneuf Bay, France, over four successive seasons, with a view to identify possible sources of exploitable substances. The total lipid level (% dry weight) varied from 7.1% (winter) to 8.6% (spring). Of this, PLs accounted for 28.1% (spring) to 50.4% (winter). Phosphatidylcholine was the dominant PL throughout the year (up to 74% of total PLs in winter). Plasmalogens were identified throughout the year as a series of eleven dimethylacetals (DMAs) with chain lengths between C16 and C20 (up to 14.5% of PL FAs + DMAs in winter). Thirty-seven FAs were identified in the PL FAs. Eicosapentaenoic acid (20:5n-3 EPA/7.53% to 14.5%) and docosahexaenoic acid (22:6n-3 DHA/5.51% to 9.5%) were the dominant polyunsaturated FAs in all seasons. Two non-methylene-interrupted dienoic (NMID) FAs were identified in all seasons: 7,13-docosadienoic and 7,15-docosadienoic acids, the latter being present at relatively high levels (up to 9.6% in winter). Twenty free sterols were identified, including cholesterol at 29.9% of the sterol mixture and about 33% of phytosterols. C. gigas tissues thus contained exploitable lipids for health benefits or as a potential source of high-quality commercial lecithin. PMID:27231919

  12. Exploitable Lipids and Fatty Acids in the Invasive Oyster Crassostrea gigas on the French Atlantic Coast

    PubMed Central

    Dagorn, Flore; Couzinet-Mossion, Aurélie; Kendel, Melha; Beninger, Peter G.; Rabesaotra, Vony; Barnathan, Gilles; Wielgosz-Collin, Gaëtane

    2016-01-01

    Economic exploitation is one means to offset the cost of controlling invasive species, such as the introduced Pacific oyster (Crassostrea gigas Thunberg) on the French Atlantic coast. Total lipid and phospholipid (PL) fatty acids (FAs) and sterols were examined in an invasive population of C. gigas in Bourgneuf Bay, France, over four successive seasons, with a view to identify possible sources of exploitable substances. The total lipid level (% dry weight) varied from 7.1% (winter) to 8.6% (spring). Of this, PLs accounted for 28.1% (spring) to 50.4% (winter). Phosphatidylcholine was the dominant PL throughout the year (up to 74% of total PLs in winter). Plasmalogens were identified throughout the year as a series of eleven dimethylacetals (DMAs) with chain lengths between C16 and C20 (up to 14.5% of PL FAs + DMAs in winter). Thirty-seven FAs were identified in the PL FAs. Eicosapentaenoic acid (20:5n-3 EPA/7.53% to 14.5%) and docosahexaenoic acid (22:6n-3 DHA/5.51% to 9.5%) were the dominant polyunsaturated FAs in all seasons. Two non-methylene-interrupted dienoic (NMID) FAs were identified in all seasons: 7,13-docosadienoic and 7,15-docosadienoic acids, the latter being present at relatively high levels (up to 9.6% in winter). Twenty free sterols were identified, including cholesterol at 29.9% of the sterol mixture and about 33% of phytosterols. C. gigas tissues thus contained exploitable lipids for health benefits or as a potential source of high-quality commercial lecithin. PMID:27231919

  13. Lipid Abundance in Zebrafish Embryos Is Regulated by Complementary Actions of the Endocannabinoid System and Retinoic Acid Pathway.

    PubMed

    Fraher, Daniel; Ellis, Megan K; Morrison, Shona; McGee, Sean L; Ward, Alister C; Walder, Ken; Gibert, Yann

    2015-10-01

    The endocannabinoid system (ECS) and retinoic acid (RA) signaling have been associated with influencing lipid metabolism. We hypothesized that modulation of these pathways could modify lipid abundance in developing vertebrates and that these pathways could have a combinatorial effect on lipid levels. Zebrafish embryos were exposed to chemical treatments altering the activity of the ECS and RA pathway. Embryos were stained with the neutral lipid dye Oil-Red-O (ORO) and underwent whole-mount in situ hybridization (WISH). Mouse 3T3-L1 fibroblasts were differentiated under exposure to RA-modulating chemicals and subsequently stained with ORO and analyzed for gene expression by qRT-PCR. ECS activation and RA exposure increased lipid abundance and the expression of lipoprotein lipase. In addition, RA treatment increased expression of CCAAT/enhancer-binding protein alpha. Both ECS receptors and RA receptor subtypes were separately involved in modulating lipid abundance. Finally, increased ECS or RA activity ameliorated the reduced lipid abundance caused by peroxisome proliferator-activated receptor gamma (PPARγ) inhibition. Therefore, the ECS and RA pathway influence lipid abundance in zebrafish embryos and have an additive effect when treated simultaneously. Furthermore, we demonstrated that these pathways act downstream or independently of PPARγ to influence lipid levels. Our study shows for the first time that the RA and ECS pathways have additive function in lipid abundance during vertebrate development. PMID:26181105

  14. Amine bearing polymeric particles as acid neutralizers for engine oils

    SciTech Connect

    Theodore, A.N.; Chattha, M.S.

    1986-02-04

    This patent describes a lubricating oil composition consisting of a major proportion of a lubricating base oil and about 0.1 to 15 weight percent of an acid neutralizing additive which consists of polymer particles (a) bearing pendant amine groups, and (b) having a diameter of about 500 A and 10,000 A. The amine functional particles are formed by reacting polymer particles bearing pendant epoxide groups with a secondary amine in an amount so as to react essentially all of the epoxide groups on the epoxide bearing polymer particles with the secondary amine. The polymer particles bearing pendant epoxide groups are formed by the free radical addition polymerization of: (a) between about 50 and about 100 weight percent of an ethylenically unsaturated monomers bearing an epoxide group, and (b) 0 up to about 50 weight percent of other monoethylenically unsaturated monomers; in the presence of: (I) a non-polar organic liquid which is a solvent for the polymerizable monomers, but a non-solvent for the resultant polymer, and (II) polymeric dispersion stabilizer containing at least two segments, with one segment being solvated by the non-polar organic liquid and the second segment being of different polarity than the first segment and relatively insoluble in the non-polar organic liquid. The second segment of the stabilizer is chemically attached to the polymerized particle.

  15. Tailored host-guest lipidic cubic phases: a protocell model exhibiting nucleic acid recognition.

    PubMed

    Komisarski, Marek; Osornio, Yazmin M; Siegel, Jay S; Landau, Ehud M

    2013-01-21

    A classical conundrum in origin-of-life studies relates to the nature of the first chemical system: was it a carrier of genetic information or a facilitator of cellular compartmentalization? Here we present a system composed of tailor-made nucleolipids and hydrated monoolein, which assemble at ambient temperatures to form host-guest lipidic cubic phase (LCP) materials that are stable in bulk water and can perform both functions. As such, they may represent a molecular model for a protocell in origin-of-life studies. Nucleolipids within the lipidic material sequester and bind selectively complementary oligonucleotide sequences from solution by virtue of base-pairing; noncomplementary sequences diffuse freely between the LCP material and the bulk aqueous environment. Sequence specific enrichment of nucleic acids within the LCP material demonstrates an effective mechanism for selection of genetic material in these cell-mimetic systems. PMID:23239006

  16. Dietary ɛ-Polylysine Decreased Serum and Liver Lipid Contents by Enhancing Fecal Lipid Excretion Irrespective of Increased Hepatic Fatty Acid Biosynthesis-Related Enzymes Activities in Rats

    PubMed Central

    Hosomi, Ryota; Yamamoto, Daiki; Otsuka, Ren; Nishiyama, Toshimasa; Yoshida, Munehiro; Fukunaga, Kenji

    2015-01-01

    ɛ-Polylysine (EPL) is used as a natural preservative in food. However, few studies have been conducted to assess the beneficial functions of dietary EPL. The purpose of this study was to elucidate the mechanism underlying the inhibition of neutral and acidic sterol absorption and hepatic enzyme activity-related fatty acid biosynthesis following EPL intake. EPL digest prepared using an in vitro digestion model had lower lipase activity and micellar lipid solubility and higher bile acid binding capacity than casein digest. Male Wistar rats were fed an AIN-93G diet containing 1% (wt/wt) EPL or l-lysine. After 4 weeks of feeding these diets, the marked decrease in serum and liver triacylglycerol contents by the EPL diet was partly attributed to increased fecal fatty acid excretion. The activities of hepatic acetyl-coenzyme A carboxylase and glucose-6-phosphate dehydrogenase, which are key enzymes of fatty acid biosynthesis, were enhanced in rats fed EPL diet. The increased fatty acid biosynthesis activity due to dietary EPL may be prevented by the enhancement of fecal fatty acid excretion. The hypocholesterolemic effect of EPL was mediated by increased fecal neutral and acidic sterol excretions due to the EPL digest suppressing micellar lipid solubility and high bile acid binding capacity. These results show that dietary EPL has beneficial effects that could help prevent lifestyle-related diseases such as hyperlipidemia and atherosclerosis. PMID:25866749

  17. Dietary ɛ-Polylysine Decreased Serum and Liver Lipid Contents by Enhancing Fecal Lipid Excretion Irrespective of Increased Hepatic Fatty Acid Biosynthesis-Related Enzymes Activities in Rats.

    PubMed

    Hosomi, Ryota; Yamamoto, Daiki; Otsuka, Ren; Nishiyama, Toshimasa; Yoshida, Munehiro; Fukunaga, Kenji

    2015-03-01

    ɛ-Polylysine (EPL) is used as a natural preservative in food. However, few studies have been conducted to assess the beneficial functions of dietary EPL. The purpose of this study was to elucidate the mechanism underlying the inhibition of neutral and acidic sterol absorption and hepatic enzyme activity-related fatty acid biosynthesis following EPL intake. EPL digest prepared using an in vitro digestion model had lower lipase activity and micellar lipid solubility and higher bile acid binding capacity than casein digest. Male Wistar rats were fed an AIN-93G diet containing 1% (wt/wt) EPL or l-lysine. After 4 weeks of feeding these diets, the marked decrease in serum and liver triacylglycerol contents by the EPL diet was partly attributed to increased fecal fatty acid excretion. The activities of hepatic acetyl-coenzyme A carboxylase and glucose-6-phosphate dehydrogenase, which are key enzymes of fatty acid biosynthesis, were enhanced in rats fed EPL diet. The increased fatty acid biosynthesis activity due to dietary EPL may be prevented by the enhancement of fecal fatty acid excretion. The hypocholesterolemic effect of EPL was mediated by increased fecal neutral and acidic sterol excretions due to the EPL digest suppressing micellar lipid solubility and high bile acid binding capacity. These results show that dietary EPL has beneficial effects that could help prevent lifestyle-related diseases such as hyperlipidemia and atherosclerosis. PMID:25866749

  18. A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid utilization

    PubMed Central

    Liu, Sihao; Brown, Jonathan D.; Stanya, Kristopher J.; Homan, Edwin; Leidl, Mathias; Inouye, Karen; Bhargava, Prerna; Gangl, Matthew R.; Dai, Lingling; Hatano, Ben; Hotamisligil, Gökhan S.; Saghatelian, Alan; Plutzky, Jorge; Lee, Chih-Hao

    2014-01-01

    Food intake increases the activity of hepatic de novo lipogenesis, which mediates the conversion of glucose to fats for storage or utilization. In mice, this program follows a circadian rhythm that peaks with nocturnal feeding1,2 and is repressed by Rev-erbα/β and an HDAC3-containing complex3–5 during the day. The transcriptional activators controlling rhythmic lipid synthesis in the dark cycle remain poorly defined. Disturbances in hepatic lipogenesis are also associated with systemic metabolic phenotypes6–8, suggesting that lipogenesis in the liver communicates with peripheral tissues to control energy substrate homeostasis. Here we identify a PPARδ-dependent de novo lipogenic pathway in the liver that modulates fat utilization by muscle via a circulating lipid. The nuclear receptor PPARδ controls diurnal expression of lipogenic genes in the dark/feeding cycle. Liver-specific PPARδ activation increases, while hepatocyte-Ppard deletion reduces, muscle fatty acid (FA) uptake. Unbiased metabolite profiling identifies PC(18:0/18:1), or 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), as a serum lipid regulated by diurnal hepatic PPARδ activity. PC(18:0/18:1) reduces postprandial lipid levels and increases FA utilization through muscle PPARα. High fat feeding diminishes rhythmic production of PC(18:0/18:1), whereas PC(18:0/18:1) administration in db/db mice improves metabolic homeostasis. These findings reveal an integrated regulatory circuit coupling lipid synthesis in the liver to energy utilization in muscle by coordinating the activity of two closely related nuclear receptors. These data implicate alterations in diurnal hepatic PPARδ-PC(18:0/18:1) signaling in metabolic disorders including obesity. PMID:24153306

  19. SMA-SH: Modified Styrene-Maleic Acid Copolymer for Functionalization of Lipid Nanodiscs.

    PubMed

    Lindhoud, Simon; Carvalho, Vanessa; Pronk, Joachim W; Aubin-Tam, Marie-Eve

    2016-04-11

    Challenges in purification and subsequent functionalization of membrane proteins often complicate their biochemical and biophysical characterization. Purification of membrane proteins generally involves replacing the lipids surrounding the protein with detergent molecules, which can affect protein structure and function. Recently, it was shown that styrene-maleic acid copolymers (SMA) can dissolve integral membrane proteins from biological membranes into nanosized discs. Within these nanoparticles, proteins are embedded in a patch of their native lipid bilayer that is stabilized in solution by the amphipathic polymer that wraps the disc like a bracelet. This approach for detergent-free purification of membrane proteins has the potential to greatly simplify purification but does not facilitate conjugation of functional compounds to the membrane proteins. Often, such functionalization involves laborious preparation of protein variants and optimization of labeling procedures to ensure only minimal perturbation of the protein. Here, we present a strategy that circumvents several of these complications through modifying SMA by grafting the polymer with cysteamine. The reaction results in SMA that has solvent-exposed sulfhydrils (SMA-SH) and allows tuning of the coverage with SH groups. Size exclusion chromatography, dynamic light scattering, and transmission electron microscopy demonstrate that SMA-SH dissolves lipid bilayer membranes into lipid nanodiscs, just like SMA. In addition, we demonstrate that, just like SMA, SMA-SH solubilizes proteoliposomes into protein-loaded nanodiscs. We covalently modify SMA-SH-lipid nanodiscs using thiol-reactive derivatives of Alexa Fluor 488 and biotin. Thus, SMA-SH promises to simultaneously tackle challenges in purification and functionalization of membrane proteins. PMID:26974006

  20. Lipid Sources with Different Fatty Acid Profile Alters the Fatty Acid Profile and Quality of Beef from Confined Nellore Steers

    PubMed Central

    Fiorentini, Giovani; Lage, Josiane F.; Carvalho, Isabela P. C.; Messana, Juliana D.; Canesin, Roberta. C.; Reis, Ricardo A.; Berchielli, Telma T.

    2015-01-01

    The present study was conducted to determine the effects of lipid sources with different fatty acids profile on meat fatty acids profile and beef quality traits of Nellore. A total of 45 Nellore animals with an average initial body weight of 419±11 kg (at 15±2 mo) were distributed in a completely randomized design consisting of 5 treatments and 9 replicates. The roughage feed was maize silage (600 g/kg on a dry matter [DM] basis) plus concentrate (400 g/kg on a DM basis). The dietary treatments were as follows: without fat (WF), palm oil (PO), linseed oil (LO), protected fat (PF), and soybean grains (SG). No effects of lipid sources were observed (p>0.05) on beef color, pH, water-holding capacity, and sarcomere length. Beef from cattle fed PO had greater shear-force values (p<0.05) compared to beef from cattle fed WF. Deposition of main unsaturated fatty acids (oleic, linoleic, and linolenic) was greater in treatments WF, SG, and LO, respectively, while the values of conjugated linoleic acid (CLA) were greater when animals were fed LO. The inclusion of LO in the diet enhances the concentration of CLA in longissimus muscle and subcutaneous fat besides improving the atherogenicity index and elongase activity. As such, LO can be used with the aim to improve the quality of beef from confined Nellore cattle. Conversely, the use of PO is not recommended since it may increase the concentration of undesirable unsaturated fatty acids in muscle and subcutaneous fat, shear-force and the atherogenicity index. PMID:26104402

  1. Arachidonic acid-derived signaling lipids and functions in impaired healing

    PubMed Central

    Dhall, Sandeep; Wijesinghe, Dayanjan Shanaka; Karim, Zubair A.; Castro, Anthony; Vemana, Hari Priya; Khasawneh, Fadi T.; Chalfant, Charles E.; Martins-Green, Manuela

    2016-01-01

    Very little is known about lipid function during wound healing, and much less during impaired healing. Such understanding will help identify what roles lipid signaling plays in the development of impaired/chronic wounds. We took a lipidomics approach to study the alterations in lipid profile in the LIGHT−/− mouse model of impaired healing which has characteristics that resemble those of impaired/chronic wounds in humans, including high levels of oxidative stress, excess inflammation, increased extracellular matrix degradation and blood vessels with fibrin cuffs. The latter suggests excess coagulation and potentially increased platelet aggregation. We show here that in these impaired wounds there is an imbalance in the arachidonic acid (AA) derived eicosonoids that mediate or modulate inflammatory reactions and platelet aggregation. In the LIGHT−/− impaired wounds there is a significant increase in enzymatically derived breakdown products of AA. We found that early after injury there was a significant increase in the eicosanoids 11-, 12-, and 15-hydroxyeicosa-tetranoic acid, and the proinflammatory leukotrienes (LTD4 and LTE) and prostaglandins (PGE2 and PGF2α). Some of these eicosanoids also promote platelet aggregation. This led us to examine the levels of other eicosanoids known to be involved in the latter process. We found that thromboxane (TXA2/B2), and prostacyclins 6kPGF1α are elevated shortly after wounding and in some cases during healing. To determine whether they have an impact in platelet aggregation and hemostasis, we tested LIGHT−/− mouse wounds for these two parameters and found that, indeed, platelet aggregation and hemostasis are enhanced in these mice when compared with the control C57BL/6 mice. Understanding lipid signaling in impaired wounds can potentially lead to development of new therapeutics or in using existing nonsteroidal anti-inflammatory agents to help correct the course of healing. PMID:26135854

  2. Arachidonic acid-derived signaling lipids and functions in impaired healing.

    PubMed

    Dhall, Sandeep; Wijesinghe, Dayanjan Shanaka; Karim, Zubair A; Castro, Anthony; Vemana, Hari Priya; Khasawneh, Fadi T; Chalfant, Charles E; Martins-Green, Manuela

    2015-09-01

    Very little is known about lipid function during wound healing, and much less during impaired healing. Such understanding will help identify what roles lipid signaling plays in the development of impaired/chronic wounds. We took a lipidomics approach to study the alterations in lipid profile in the LIGHT(-/-) mouse model of impaired healing which has characteristics that resemble those of impaired/chronic wounds in humans, including high levels of oxidative stress, excess inflammation, increased extracellular matrix degradation and blood vessels with fibrin cuffs. The latter suggests excess coagulation and potentially increased platelet aggregation. We show here that in these impaired wounds there is an imbalance in the arachidonic acid (AA) derived eicosonoids that mediate or modulate inflammatory reactions and platelet aggregation. In the LIGHT(-/-) impaired wounds there is a significant increase in enzymatically derived breakdown products of AA. We found that early after injury there was a significant increase in the eicosanoids 11-, 12-, and 15-hydroxyeicosa-tetranoic acid, and the proinflammatory leukotrienes (LTD4 and LTE) and prostaglandins (PGE2 and PGF2α ). Some of these eicosanoids also promote platelet aggregation. This led us to examine the levels of other eicosanoids known to be involved in the latter process. We found that thromboxane (TXA2 /B2 ), and prostacyclins 6kPGF1α are elevated shortly after wounding and in some cases during healing. To determine whether they have an impact in platelet aggregation and hemostasis, we tested LIGHT(-/-) mouse wounds for these two parameters and found that, indeed, platelet aggregation and hemostasis are enhanced in these mice when compared with the control C57BL/6 mice. Understanding lipid signaling in impaired wounds can potentially lead to development of new therapeutics or in using existing nonsteroidal anti-inflammatory agents to help correct the course of healing. PMID:26135854

  3. Fatty Acid Desaturase 1 (FADS1) Gene Polymorphisms Control Human Hepatic Lipid Composition

    PubMed Central

    Wang, Libo; Athinarayanan, Shaminie; Jiang, Guanglong; Chalasani, Naga; Zhang, Min; Liu, Wanqing

    2014-01-01

    Fatty Acid Desaturase (FADS) genes and their variants have been associated with multiple metabolic phenotypes including liver enzymes and hepatic fat accumulation but the detailed mechanism remains unclear. We aimed to delineate the role of FADSs in modulating lipid composition in human liver. We performed a targeted lipidomic analysis of a variety of phospholipids, sphingolipids and ceramides among 154 human liver tissue samples. The associations between previously Genome-wide Association Studies (GWAS)-identified six FADS single nucleotide polymorphisms (SNPs) and these lipid levels as well as total hepatic fat content (HFC) were tested. The potential function of these SNPs in regulating transcription of 3 FADS genes (FADS1, FADS2 and FADS3) in the locus was also investigated. We found that while these SNPs were in high linkage disequilibrium (r2 >0.8), the rare alleles of these SNPs were consistently and significantly associated with the accumulation of multiple very-long-chain fatty acids (VLCFAs), with C47H85O13P (C36:4), a phosphatidylinositol (PI) and C43H80O8PN (C38:3), a phosphatidylethanolamine (PE) reached the Bonferroni corrected significance (p<3×10−4). Meanwhile, these SNPs were significantly associated with increased ratios between the more saturated and relatively less saturated forms of VLCFAs, especially between PEs, PIs and phosphatidylcholines (PCs) (p≤3.5×10−6). These alleles were also associated with increased total HFC (p<0.05). Further analyses revealed that these alleles were associated with decreased hepatic expression of FADS1 (p=0.0018 for rs174556), but not FADS2 or FADS3 (p>0.05). Conclusion Our findings revealed critical insight into the mechanism underlying FADS1 and its polymorphisms in modulating hepatic lipid deposition by altering gene transcription and controlling lipid composition in human livers. PMID:25123259

  4. Trans isomeric octadecenoic acids are related inversely to arachidonic acid and DHA and positively related to mead acid in umbilical vessel wall lipids.

    PubMed

    Decsi, Tamás; Boehm, Günther; Tjoonk, H M Ria; Molnár, Szilárd; Dijck-Brouwer, D A Janneke; Hadders-Algra, Mijna; Martini, Ingrid A; Muskiet, Frits A J; Boersma, E Rudy

    2002-10-01

    Long-chain PUFA play an important role in early human neurodevelopment. Significant inverse correlations were reported between values of trans isomeric and long-chain PUFA in plasma lipids of preterm infants and children aged 1-15 yr as well as in venous cord blood lipids of full-term infants. Here we report FA compositional data of cord blood vessel wall lipids in 308 healthy, full-term infants (gestational age: 39.7 +/- 1.2 wk, birth weight: 3528 +/- 429 g, mean +/- SD). The median (interquartile range) of the sum of 18-carbon trans FA was 0.22 (0.13) % w/w in umbilical artery and 0.16 (0.10) % w/w in umbilical vein lipids. Nonparametric correlation analysis showed significant inverse correlations between the sum of 18-carbon trans FA and both arachidonic acid and DHA in artery (r = -0.38, P < 0.01, and r = -0.20, P < 0.01) and vein (r = -0.36, P < 0.01, and -0.17, P < 0.01) wall lipids. In addition, the sum of 18-carbon trans FA was significantly positively correlated to Mead acid, a general indicator of EFA deficiency, in both artery (r = +0.35, P < 0.01) and vein (r = +0.31, P< 0.01) wall lipids. The present results obtained in a large group of full-term infants suggest that maternal trans FA intake is inversely associated with long-chain PUFA status of the infant at birth. PMID:12530555

  5. Occurrence of lipid A variants with 27-hydroxyoctacosanoic acid in lipopolysaccharides from members of the family Rhizobiaceae

    SciTech Connect

    Bhat, U.R.; Carlson, R.W. ); Mayer, H. ); Yokota, A. ); Hollingsworth, R.I. )

    1991-04-01

    Lipopolysaccharides (LPSs) isolated from several strains of Rhizobium, Bradyrhizobium, Agrobacterium, and Azorhizobium were screened for the presence of 27-hydroxyoctacosanoic acid. The LPSs from all strains, with the exception of Azorhizobium caulinodans, contained various amounts of this long-chain hydroxy fatty acid in the lipid A fractions. Analysis of the lipid A sugars revealed three types of backbones: those containing glucosamine (as found in Rhizobium meliloti and Thizobium fredii), those containing glucosamine and galacturonic acid (as found in Rhizobium leguminosarum bv. phaseoli, trifolii, and viciae), and those containing clucosamine and galacturonic acid (as found in Rhizobium leguminosarum bv. phaseoli, trifolii, and viciae), and those containing 2,3-diamino-2,3-dideoxyglucose either alone or in combination with glucosamine (as found in Bradyrhizobium japonicum and Bradyrhizobium sp. (Lupinus) strain DSM 30140). The distribution of 27-hydroxyoctacosamoic acid as well as analysis of lipid A backbone sugars revealed the taxonomic relatedness of various strains of the Rhizobiaceae.

  6. 13,16-Dimethyl Octacosanedioic Acid (iso-Diabolic Acid), a Common Membrane-Spanning Lipid of Acidobacteria Subdivisions 1 and 3 ▿ †

    PubMed Central

    Sinninghe Damsté, Jaap S.; Rijpstra, W. Irene C.; Hopmans, Ellen C.; Weijers, Johan W. H.; Foesel, Bärbel U.; Overmann, Jörg; Dedysh, Svetlana N.

    2011-01-01

    The distribution of membrane lipids of 17 different strains representing 13 species of subdivisions 1 and 3 of the phylum Acidobacteria, a highly diverse phylum of the Bacteria, were examined by hydrolysis and gas chromatography-mass spectrometry (MS) and by high-performance liquid chromatography-MS of intact polar lipids. Upon both acid and base hydrolyses of total cell material, the uncommon membrane-spanning lipid 13,16-dimethyl octacosanedioic acid (iso-diabolic acid) was released in substantial amounts (22 to 43% of the total fatty acids) from all of the acidobacteria studied. This lipid has previously been encountered only in thermophilic Thermoanaerobacter species but bears a structural resemblance to the alkyl chains of bacterial glycerol dialkyl glycerol tetraethers (GDGTs) that occur ubiquitously in peat and soil and are suspected to be produced by acidobacteria. As reported previously, most species also contained iso-C15 and C16:1ω7C as major fatty acids but the presence of iso-diabolic acid was unnoticed in previous studies, most probably because the complex lipid that contained this moiety was not extractable from the cells; it could only be released by hydrolysis. Direct analysis of intact polar lipids in the Bligh-Dyer extract of three acidobacterial strains, indeed, did not reveal any membrane-spanning lipids containing iso-diabolic acid. In 3 of the 17 strains, ether-bound iso-diabolic acid was detected after hydrolysis of the cells, including one branched GDGT containing iso-diabolic acid-derived alkyl chains. Since the GDGT distribution in soils is much more complex, branched GDGTs in soil likely also originate from other (acido)bacteria capable of biosynthesizing these components. PMID:21515715

  7. Ethyl oleate-containing nanostructured lipid carriers improve oral bioavailability of trans-ferulic acid ascompared with conventional solid lipid nanoparticles.

    PubMed

    Zhang, Yongtai; Li, Zhe; Zhang, Kai; Yang, Gang; Wang, Zhi; Zhao, Jihui; Hu, Rongfeng; Feng, Nianping

    2016-09-10

    trans-Ferulic acid (TFA) has antioxidative, anti-inflammatory, and cardioprotective effects, but its poor solubility in water results in unsatisfactory oral bioavailability when administered conventionally at a standard dosage. However, the limited bioavailability of TFA can be overcome by delivering it in nanostructured lipid carriers (NLCs). In this study, a microemulsion (ME)-based method was used to prepare NLCs with ethyl oleate as the liquid lipid component and glyceryl behenate as the solid lipid component. These NLCs and solid lipid nanoparticles (SLNs) were then used as vehicles for TFA. Their entrapment efficiencies (EE), stability during storage, in vitro release profiles, and in vivo pharmacokinetics were compared. The NLC formulation afforded a drug entrapment efficiency that was significantly greater than that of the SLN formulation, which was made using a single solid lipid. Furthermore, the TFA that was dispersed in the disordered binary lipid matrix of the NLC formulation was more stable than that in the SLN formulation, and thus showed less expulsion from the vehicle during storage. In in vivo pharmacokinetic studies, the NLC TFA formulation yielded a greater Cmax and AUC than that produced by the SLN formulation and an aqueous TFA suspension. This showed that the oral bioavailability of TFA was markedly improved by packaging in NLCs. NLCs are thus a promising vehicle for oral TFA administration, with significant advantages over SLNs. PMID:27374194

  8. Enhanced hepatic delivery of siRNA and microRNA using oleic acid based lipid nanoparticle formulations

    PubMed Central

    Wang, Xinmei; Yu, Bo; Ren, Wei; Mo, Xiaokui; Zhou, Chenguang; He, Hongyan; Jia, HuLiang; Wang, Lu; Jacob, Samson T.; Lee, Robert J.; Ghoshal, Kalpana; Lee, L. James

    2015-01-01

    Many cationic lipids have been developed for lipid-based nanoparticles (LNPs) for delivery of siRNA and microRNA (miRNA). However, less attention has been paid to “helper lipids”. Here, we investigated several “helper lipids” and examined their effects on the physicochemical properties such as particle size and zeta potential, as well as cellular uptake and transfection efficiency. We found that inclusion of oleic acid (OA), an unsaturated fatty acid; into the LNP formulation significantly enhanced the delivery efficacy for siRNA and miRNA. For proof-of-concept, miR-122, a liver-specific microRNA associated with many liver diseases, was used as a model agent to demonstrate the hepatic delivery efficacy both in tumor cells and in animals. Compared to Lipofectamine 2000, a commercial transfection agent, OA containing LNPs delivered microRNA-122 in a more efficient manner with a 1.8-fold increase in mature miR-122 expression and a 20% decrease in Bcl-w, a target of microRNA-122. In comparison with Invivofectamine, a commercial transfection agent specifically designed for hepatic delivery, OA containing LNPs showed comparable liver accumulation and in vivo delivery efficiency. These findings demonstrated the importance of “helper lipid” components of the LNP formulation on the cellular uptake and transfection activity of siRNA and miRNA. OA containing LNPs are a promising nanocarrier system for the delivery of RNA-based therapeutics in liver diseases. PMID:24121065

  9. Lipid and fatty acid metabolism in Ralstonia eutropha: relevance for the biotechnological production of value-added products.

    PubMed

    Riedel, Sebastian L; Lu, Jingnan; Stahl, Ulf; Brigham, Christopher J

    2014-02-01

    Lipid and fatty acid metabolism has been well studied in model microbial organisms like Escherichia coli and Bacillus subtilis. The major precursor of fatty acid biosynthesis is also the major product of fatty acid degradation (β-oxidation), acetyl-CoA, which is a key metabolite for all organisms. Controlling carbon flux to fatty acid biosynthesis and from β-oxidation allows for the biosynthesis of natural products of biotechnological importance. Ralstonia eutropha can utilize acetyl-CoA from fatty acid metabolism to produce intracellular polyhydroxyalkanoate (PHA). R. eutropha can also be engineered to utilize fatty acid metabolism intermediates to produce different PHA precursors. Metabolism of lipids and fatty acids can be rerouted to convert carbon into other value-added compounds like biofuels. This review discusses the lipid and fatty acid metabolic pathways in R. eutropha and how they can be used to construct reagents for the biosynthesis of products of industrial importance. Specifically, how the use of lipids or fatty acids as the sole carbon source in R. eutropha cultures adds value to these biotechnological products will be discussed here. PMID:24343766

  10. Recent Advances in Analytical Methods on Lipoprotein Subclasses: Calculation of Particle Numbers from Lipid Levels by Gel Permeation HPLC Using "Spherical Particle Model".

    PubMed

    Okazaki, Mitsuyo; Yamashita, Shizuya

    2016-01-01

    Recently, we developed an analytical method for determining the lipid levels and particle numbers in lipoprotein subclasses covering a wide size range from chylomicrons to small high density lipoproteins, by using gel permeation high-performance liquid chromatography (GP-HPLC). The challenges in analytical methods on lipoprotein subclasses have been addressed from 1980 by Hara and Okazaki using commercial TSK gel permeation columns. Later, the improvements in the hardware, separation and detection of lipoproteins, and the data processing software, using a Gaussian distribution approximation to calculate lipid levels of lipoprotein subclasses, have been extensively utilized in these analytical methods for over thirty years. In this review, we describe on the recent advances in analytical methods on lipoprotein subclasses based on various techniques, and the calculation of particle numbers from lipid levels by GPHPLC using the "spherical particle model". Free/ester ratio of cholesterol in particular lipoprotein subclass was accurately estimated from triglyceride, total cholesterol (free and esterified) and the size of the particle based on this model originally proposed by Shen and Kezdy. PMID:27041512

  11. The Effects of Boron Derivatives on Lipid Absorption from the Intestine and on Bile Lipids and Bile Acids of Sprague Dawley Rats

    PubMed Central

    Hall, Iris H.; Reynolds, David J.; Wong, O. T.; Sood, A.; Spielvogel, B. F.

    1995-01-01

    N,N-dimethyl-n-octadecylamine borane 1 at 8 mg/kg/day, tetrakis-u-(trimethylamine boranecarboxylato)-bis(trimethyl-carboxyborane)-dicopper(II) 2 at 2.5 mg/kg/day and trimethylamine-carboxyborane 3 at 8 mg/kg/day were evaluated for their effects on bile lipids, bile acids, small intestinal absorption of cholesterol and cholic acid and liver and small intestinal enzyme activities involved in lipid metabolism. The agent administered orally elevated rat bile excretion of lipids, e.g. cholesterol and phospholipids, and compounds 2 and 3 increased the bile flow rate. These agents altered the composition of the bile acids, but there was no significant increase in lithocholic acid which is most lithogenic agent in rats. The three agents did decrease cholesterol absorption from isolated in situ intestinal duodenum loops in the presence of drug. Hepatic and small intestinal mucosa enzyme activities, e.g. ATP-dependent citrate lyase, acyl CoA cholesterol acyl transferase, cholsterol-7-α -hydroxylase, sn glycerol-3-phosphate acyl transferase, phosphatidylate phosphohydrolase, and lipoprotein lipase, were reduced. However, the boron derivatives 1 and 3 decreased hepatic HMG-CoA reductase activity, the regulatory enzyme for cholesterol synthesis, but the compounds had no effects on small intestinal mucosa HMG-CoA reductase activity. There was no evidence of hepatic cell damage afforded by the drugs based on clinical chemistry values which would induce alterations in bile acid concentrations after treatment of the rat. PMID:18472747

  12. Bile acids and sphingosine-1-phosphate receptor 2 in hepatic lipid metabolism.

    PubMed

    Kwong, Eric; Li, Yunzhou; Hylemon, Phillip B; Zhou, Huiping

    2015-03-01

    The liver is the central organ involved in lipid metabolism. Dyslipidemia and its related disorders, including non-alcoholic fatty liver disease (NAFLD), obesity and other metabolic diseases, are of increasing public health concern due to their increasing prevalence in the population. Besides their well-characterized functions in cholesterol homoeostasis and nutrient absorption, bile acids are also important metabolic regulators and function as signaling hormones by activating specific nuclear receptors, G-protein coupled receptors, and multiple signaling pathways. Recent studies identified a new signaling pathway by which conjugated bile acids (CBA) activate the extracellular regulated protein kinases (ERK1/2) and protein kinase B (AKT) signaling pathway via sphingosine-1-phosphate receptor 2 (S1PR2). CBA-induced activation of S1PR2 is a key regulator of sphingosine kinase 2 (SphK2) and hepatic gene expression. This review focuses on recent findings related to the role of bile acids/S1PR2-mediated signaling pathways in regulating hepatic lipid metabolism. PMID:26579441

  13. Age-related changes in retinoic, docosahexaenoic and arachidonic acid modulation in nuclear lipid metabolism.

    PubMed

    Gaveglio, Virginia L; Pascual, Ana C; Giusto, Norma M; Pasquaré, Susana J

    2016-08-15

    The aim of this work was to study how age-related changes could modify several enzymatic activities that regulate lipid mediator levels in nuclei from rat cerebellum and how these changes are modulated by all-trans retinoic acid (RA), docosahexaenoic acid (DHA) and arachidonic acid (AA). The higher phosphatidate phosphohydrolase activity and lower diacylglycerol lipase (DAGL) activity observed in aged animals compared with adults could augment diacylglycerol (DAG) availability in the former. Additionally, monoacylglycerol (MAG) availability could be high due to an increase in lysophosphatidate phosphohydrolase (LPAPase) activity and a decrease in monocylglycerol lipase activity. Interestingly, RA, DHA and AA were observed to modulate these enzymatic activities and this modulation was found to change in aged rats. In adult nuclei, whereas RA led to high DAG and MAG production through inhibition of their hydrolytic enzymes, DHA and AA promoted high MAG production by LPAPase and DAGL stimulation. In contrast, in aged nuclei RA caused high MAG generation whereas DHA and AA diminished it through LPAPase activity modulation. These results demonstrate that aging promotes a different nuclear lipid metabolism as well as a different type of non-genomic regulation by RA, DHA and AA, which could be involved in nuclear signaling events. PMID:27355428

  14. Lipids, curvature stress, and the action of lipid prodrugs: free fatty acids and lysolipid enhancement of drug transport across liposomal membranes.

    PubMed

    Jespersen, Henrik; Andersen, Jonas H; Ditzel, Henrik J; Mouritsen, Ole G

    2012-01-01

    Molecular shape and its impact on bilayer curvature stress are powerful concepts for describing the effects of lipids and fatty acids on fundamental membrane properties, such as passive permeability and derived properties like drug transport across liposomal membranes. We illustrate these relationships by studying the effects of fatty acids and lysolipids on the permeation of a potent anti-cancer drug, doxorubicin, across the bilayer of a liposome in which the drug is encapsulated. Using a simple fluorescence assay, we have systematically studied the passive permeation of doxorubicin across liposomal membranes in different lipid phases: the solid-ordered phase (DPPC bilayers), the liquid-disordered phase (POPC lipid bilayers), and the liquid-ordered phase induced by high levels of cholesterol (DOPC + cholesterol lipid bilayers). The effect of different free fatty acids (FA) and lysolipids (LL), separately and in combination, on permeability was assessed to elucidate the possible mechanism of phospholipase A(2)-triggered release in cancer tissue of liposomal doxorubicin formulations. In all cases, FAs applied separately lead to significant enhancement of permeability, most pronounced in liquid-disordered bilayers and less pronounced in solid and solid-ordered bilayers. LLs applied separately had only a marginal effect on permeability. FA and LL applied in combination lead to a synergistic enhancement of permeability in solid bilayers, whereas in liquid-disordered bilayers, the combined effect suppressed the otherwise strong permeability enhancement due to the FAs. PMID:21839138

  15. Lipid metabolic dose response to dietary alpha-linolenic acid in monk parrot (Myiopsitta monachus).

    PubMed

    Petzinger, Christina; Heatley, J J; Bailey, Christopher A; Bauer, John E

    2014-03-01

    Monk parrots (Myiopsitta monachus) are susceptible to atherosclerosis, a progressive disease characterized by the formation of plaques in the arteries accompanied by underlying chronic inflammation. The family of n-3 fatty acids, especially eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), have consistently been shown to reduce atherosclerotic risk factors in humans and other mammals. Some avian species have been observed to convert α-linolenic acid (18:3n-3, ALA) to EPA and DHA (Htin et al. in Arch Geflugelk 71:258-266, 2007; Petzinger et al. in J Anim Physiol Anim Nutr, 2013). Therefore, the metabolic effects of including flaxseed oil, as a source of ALA, in the diet at three different levels (low, medium, and high) on the lipid metabolism of Monk parrots was evaluated through measuring plasma total cholesterol (TC), free cholesterol (FC), triacylglycerols (TAG), and phospholipid fatty acids. Feed intake, body weight, and body condition score were also assessed. Thus the dose and possible saturation response of increasing dietary ALA at constant linoleic acid (18:2n-6, LNA) concentration on lipid metabolism in Monk parrots (M. monachus) was evaluated. Calculated esterified cholesterol in addition to plasma TC, FC, and TAG were unaltered by increasing dietary ALA. The high ALA group had elevated levels of plasma phospholipid ALA, EPA, and docosapentaenoic acid (DPAn-3, 22:5n-3). The medium and high ALA groups had suppressed plasma phospholipid 20:2n-6 and adrenic acid (22:4n-6, ADA) compared to the low ALA group. When the present data were combined with data from a previous study (Petzinger et al. in J Anim Physiol Anim Nutr, 2013) a dose response to dietary ALA was observed when LNA was constant. Plasma phospholipid ALA, EPA, DPAn-3, DHA, and total n-3 were positively correlated while 20:2n-6, di-homo-gamma-linoleic acid (20:3n-6Δ7), arachidonic acid (20:4n-6), ADA, and total n-6 were inversely correlated with dietary en% ALA. PMID

  16. Improved Experimental Techniques for Analyzing Nucleic Acid Transport Through Protein Nanopores in Planar Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Costa, Justin A.

    The translocation of nucleic acid polymers across cell membranes is a fundamental requirement for complex life and has greatly contributed to genomic molecular evolution. The diversity of pathways that have evolved to transport DNA and RNA across membranes include protein receptors, active and passive transporters, endocytic and pinocytic processes, and various types of nucleic acid conducting channels known as nanopores. We have developed a series of experimental techniques, collectively known as "Wicking", that greatly improves the biophysical analysis of nucleic acid transport through protein nanopores in planar lipid bilayers. We have verified the Wicking method using numerous types of classical ion channels including the well-studied chloride selective channel, CLIC1. We used the Wicking technique to reconstitute α-hemolysin and found that DNA translocation events of types A and B could be routinely observed using this method. Furthermore, measurable differences were observed in the duration of blockade events as DNA length and composition was varied, consistent with previous reports. Finally, we tested the ability of the Wicking technology to reconstitute the dsRNA transporter Sid-1. Exposure to dsRNAs of increasing length and complexity showed measurable differences in the current transitions suggesting that the charge carrier was dsRNA. However, the translocation events occurred so infrequently that a meaningful electrophysiological analysis was not possible. Alterations in the lipid composition of the bilayer had a minor effect on the frequency of translocation events but not to such a degree as to permit rigorous statistical analysis. We conclude that in many instances the Wicking method is a significant improvement to the lipid bilayer technique, but is not an optimal method for analyzing transport through Sid-1. Further refinements to the Wicking method might have future applications in high throughput DNA sequencing, DNA computation, and

  17. Lipid Composition of the Human Eye: Are Red Blood Cells a Good Mirror of Retinal and Optic Nerve Fatty Acids?

    PubMed Central

    Acar, Niyazi; Berdeaux, Olivier; Grégoire, Stéphane; Cabaret, Stéphanie; Martine, Lucy; Gain, Philippe; Thuret, Gilles; Creuzot-Garcher, Catherine P.; Bron, Alain M.; Bretillon, Lionel

    2012-01-01

    Background The assessment of blood lipids is very frequent in clinical research as it is assumed to reflect the lipid composition of peripheral tissues. Even well accepted such relationships have never been clearly established. This is particularly true in ophthalmology where the use of blood lipids has become very common following recent data linking lipid intake to ocular health and disease. In the present study, we wanted to determine in humans whether a lipidomic approach based on red blood cells could reveal associations between circulating and tissue lipid profiles. To check if the analytical sensitivity may be of importance in such analyses, we have used a double approach for lipidomics. Methodology and Principal Findings Red blood cells, retinas and optic nerves were collected from 9 human donors. The lipidomic analyses on tissues consisted in gas chromatography and liquid chromatography coupled to an electrospray ionization source-mass spectrometer (LC-ESI-MS). Gas chromatography did not reveal any relevant association between circulating and ocular fatty acids except for arachidonic acid whose circulating amounts were positively associated with its levels in the retina and in the optic nerve. In contrast, several significant associations emerged from LC-ESI-MS analyses. Particularly, lipid entities in red blood cells were positively or negatively associated with representative pools of retinal docosahexaenoic acid (DHA), retinal very-long chain polyunsaturated fatty acids (VLC-PUFA) or optic nerve plasmalogens. Conclusions and Significance LC-ESI-MS is more appropriate than gas chromatography for lipidomics on red blood cells, and further extrapolation to ocular lipids. The several individual lipid species we have identified are good candidates to represent circulating biomarkers of ocular lipids. However, further investigation is needed before considering them as indexes of disease risk and before using them in clinical studies on optic nerve

  18. Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting

    PubMed Central

    Lam, Vinh Q.; Akopian, David; Rome, Michael; Henningsen, Doug

    2010-01-01

    The signal recognition particle (SRP) and SRP receptor comprise the major cellular machinery that mediates the cotranslational targeting of proteins to cellular membranes. It remains unclear how the delivery of cargos to the target membrane is spatially coordinated. We show here that phospholipid binding drives important conformational rearrangements that activate the bacterial SRP receptor FtsY and the SRP–FtsY complex. This leads to accelerated SRP–FtsY complex assembly, and allows the SRP–FtsY complex to more efficiently unload cargo proteins. Likewise, formation of an active SRP–FtsY GTPase complex exposes FtsY’s lipid-binding helix and enables stable membrane association of the targeting complex. Thus, membrane binding, complex assembly with SRP, and cargo unloading are inextricably linked to each other via conformational changes in FtsY. These allosteric communications allow the membrane delivery of cargo proteins to be efficiently coupled to their subsequent unloading and translocation, thus providing spatial coordination during protein targeting. PMID:20733058

  19. [Involvement of nonstructural protein 5A and lipids on production of hepatitis C virus particles].

    PubMed

    Suzuki, Tetsuro; Masaki, Takahiro; Aizaki, Hideki

    2008-12-01

    A robust system for production of recombinant infectious hepatitis C virus (HCV) has been established in 2005 and classical virological techniques are now able to be applied to the HCV research, especially regarding molecular mechanisms on virion assembly and maturation. We recently demonstrated that the C-terminal serine cluster of NS5A is a determinant of NS5A interaction with Core and the subcellular localization of NSSA. Mutation of this cluster blocks the NS5A-Core interaction, resulting in perturbation of association between Core and HCV RNA. It is thus tempting to consider that NS5A plays a key role in transporting the viral genome RNA synthesized by the replication complex to the surface of lipid droplets (LDs) or LD-associated membranes, where Core localizes, leading to facilitation of nucleocapsid formation. We also demonstrated an important role of cholesterol and sphingolipid in HCV infection and virion maturation. Specifically, mature HCV particles are rich in cholesterol. Depletion of cholesterol from HCV or hydrolysis of virion-associated sphingomyelin results in a loss of infectivity, and the addition of exogenous cholesterol restores infectivity. In addition, cholesterol and sphingolipid on the HCV membrane play a key role in virus internalization. Finally, inhibitors of the sphingolipid biosynthetic pathway efficiently block virion production. PMID:19374198

  20. Light-Induced Changes in Fatty Acid Profiles of Specific Lipid Classes in Several Freshwater Phytoplankton Species

    PubMed Central

    Wacker, Alexander; Piepho, Maike; Harwood, John L.; Guschina, Irina A.; Arts, Michael T.

    2016-01-01

    We tested the influence of two light intensities [40 and 300 μmol PAR / (m2s)] on the fatty acid composition of three distinct lipid classes in four freshwater phytoplankton species. We chose species of different taxonomic classes in order to detect potentially similar reaction characteristics that might also be present in natural phytoplankton communities. From samples of the bacillariophyte Asterionella formosa, the chrysophyte Chromulina sp., the cryptophyte Cryptomonas ovata and the zygnematophyte Cosmarium botrytis we first separated glycolipids (monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol), phospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, and phosphatidylserine) as well as non-polar lipids (triacylglycerols), before analyzing the fatty acid composition of each lipid class. High variation in the fatty acid composition existed among different species. Individual fatty acid compositions differed in their reaction to changing light intensities in the four species. Although no generalizations could be made for species across taxonomic classes, individual species showed clear but small responses in their ecologically-relevant omega-3 and omega-6 polyunsaturated fatty acids (PUFA) in terms of proportions and of per tissue carbon quotas. Knowledge on how lipids like fatty acids change with environmental or culture conditions is of great interest in ecological food web studies, aquaculture, and biotechnology, since algal lipids are the most important sources of omega-3 long-chain PUFA for aquatic and terrestrial consumers, including humans. PMID:27014290

  1. Pharmaceutical quality evaluation of lipid emulsions containing PGE1: alteration in the number of large particles in infusion solutions.

    PubMed

    Shibata, Hiroko; Saito, Haruna; Yomota, Chikako; Kawanishi, Toru

    2009-08-13

    There are two generics of a parenteral lipid emulsion of prostaglandin E1 (PGE(1)) (Lipo-PGE(1)) in addition to two innovators. It was reported the change from innovator to generic in clinical practice caused the slowing of drip rate and formation of aggregates in the infusion line. Thus, we investigated the difference of pharmaceutical quality in these Lipo-PGE(1) formulations. After mixing with some infusion solutions, the mean diameter and number of large particles were determined. Although the mean diameter did not change in any infusion solutions, the number of large particles (diameter >1.0 microm) dramatically increased in generics with Hartmann's solution pH 8 or Lactec injection with 7% sodium bicarbonate. Next, we investigated the effect of these infusion solutions on the retention rate of PGE(1) in lipid particles. The retention rate of PGE(1) in these two infusion solutions decreased more quickly than that in normal saline. Nevertheless, there were no significant differences among the formulations tested. Our results suggest that there is no difference between innovators and generics except in mixing with these infusion solutions. Furthermore, that monitoring the number of large particles can be an effective means of evaluating pharmaceutical interactions and/or the stability of lipid emulsions. PMID:19465103

  2. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    SciTech Connect

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositional ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.

  3. Poly(propylacrylic acid) enhances cationic lipid mediated delivery of antisense oligonucleotides

    PubMed Central

    Lee, Li Kim; Williams, Charity L.; Devore, David; Roth, Charles M.

    2008-01-01

    The use of antisense oligodeoxynucleotides (ODNs) to inhibit the expression of specific mRNA targets represents a powerful technology for control of gene expression. Cationic lipids and polymers are frequently used to improve the delivery of ODNs to cells, but the resulting complexes often aggregate, bind to serum components, and are trafficked poorly within cells. We show that the addition of a synthetic, pH-sensitive, membrane-disrupting polyanion, poly(propylacrylic acid) (PPAA), improves the in vitro efficiency of the cationic lipid, DOTAP, with regard to oligonucleotide delivery and antisense activity. In characterization studies, ODN complexation with DOTAP/ODN was maintained even when substantial amounts of PPAA were added. The formulation also exhibited partial protection of phosphodiester oligonucleotides against enzymatic digestion. In Chinese hamster ovary (CHO) cells, incorporation of PPAA in DOTAP/ODN complexes improved two- to threefold the cellular uptake of fluorescently tagged oligonucleotides. DOTAP/ODN complexes containing PPAA also maintained high levels of uptake into cells upon exposure to serum. Addition of PPAA to DOTAP/ODN complexes enhanced the antisense activity (using GFP as the target) over a range of PPAA concentrations in both serum-free, and to a lesser extent, serum-containing media. Thus, PPAA is a useful adjunct that improves the lipid-mediated delivery of oligonucleotides. PMID:16677032

  4. Structure and Stability of Carbohydrate-Lipid Interactions. Methylmannose Polysaccharide-Fatty Acid Complexes.

    PubMed

    Liu, Lan; Siuda, Iwona; Richards, Michele R; Renaud, Justin; Kitova, Elena N; Mayer, Paul M; Tieleman, D Peter; Lowary, Todd L; Klassen, John S

    2016-08-17

    We report a detailed study of the structure and stability of carbohydrate-lipid interactions. Complexes of a methylmannose polysaccharide (MMP) derivative and fatty acids (FAs) served as model systems. The dependence of solution affinities and gas-phase dissociation activation energies (Ea ) on FA length indicates a dominant role of carbohydrate-lipid interactions in stabilizing (MMP+FA) complexes. Solution (1) H NMR results reveal weak interactions between MMP methyl groups and FA acyl chain; MD simulations suggest the complexes are disordered. The contribution of FA methylene groups to the Ea is similar to that of heats of transfer of n-alkanes from the gas phase to polar solvents, thus suggesting that MMP binds lipids through dipole-induced dipole interactions. The MD results point to hydrophobic interactions and H-bonds with the FA carboxyl group. Comparison of collision cross sections of deprotonated (MMP+FA) ions with MD structures suggests that the gaseous complexes are disordered. PMID:27253157

  5. Docosahexaenoic acid supplementation improves fasting and postprandial plasma lipid profiles in hypertriglyceridemic men.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The effects of docosahexaenoic acid (DHA) on the concentrations of different subclasses of VLDL, LDL and HDL particles, and their mean diameters in fasting and postprandial plasma has not been studied. Objective: To determine the effects of DHA supplementation on the concentrations of a...

  6. Influence of a subinhibitory dose of antifungal fatty acids from Sporothrix flocculosa on cellular lipid composition in fungi.

    PubMed

    Benyagoub, M; Willemot, C; Bélanger, R R

    1996-10-01

    Antifungal fatty acids produced by the biocontrol fungus Sporothrix flocculosa were studied on the basis of their effect on growth and cellular lipid composition of three fungi, Cladosporium cucumerinum, Fusarium oxysporum, and S. flocculosa, whose growth was decreased by 51, 33, and 5%, respectively, when exposed to 0.4 mg fatty acid per ml. The sensitivity to fatty acid antibiotics from S. flocculosa was related to a high degree of unsaturation of phospholipid fatty acids and a low proportion of sterols. The major responses of sensitive fungi to sublethal doses of antifungal fatty acids from liquid culture of S. flocculosa were: (i) a decrease in total lipid; (ii) an increase in the degree of fatty acid unsaturation (18:1 > 18:2 > 18:3); (iii) an increase in free fatty acids and phosphatidic acid and a decrease in total phospholipids; and (iv) an increase in sterol/phospholipid ratio. These modifications in lipid composition led to an increase in membrane fluidity in sensitive fungi as demonstrated by assessment of fluoresence anisotropy using liposomes and 1,6-diphenyl-1,3,5-hexatriene probe. This alteration in the physical state of lipids appears to be responsible for the previously demonstrated alteration of membrane structure and function in fungi confronted to S. flocculosa. PMID:8898307

  7. Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress.

    PubMed

    Lindberg, Lina; Santos, Aline Xs; Riezman, Howard; Olsson, Lisbeth; Bettiga, Maurizio

    2013-01-01

    When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D) and Zygosaccharomyces bailii (CBS7555) cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L(-1), while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L(-1) acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS) showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP)2C 2.2×) and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP)2C 2.7×), when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to generate large

  8. Lipid peroxidation, antioxidant concentrations, and fatty acid contents of muscle tissue from malignant hyperthermia-susceptible swine.

    PubMed

    Duthie, G G; Wahle, K W; Harris, C I; Arthur, J R; Morrice, P C

    1992-08-01

    Homogenates of semitendinosus muscle from malignant hyperthermia (MH)-susceptible pigs produced threefold more pentane than those from MH-resistant pigs, indicating enhanced free radical-mediated peroxidation of n-6 fatty acids. This did not reflect a deficiency in tissue antioxidants or antioxidant-enzymes but glutathione concentrations and glutathione peroxidase activities were increased in the tissue from MH-susceptible swine, consistent with an adaptive response to a sustained oxidant stress. A lower proportion of linoleic acid (18:2 n-6) in phospholipids and neutral lipids in muscle from MHS pigs indicated increased peroxidation or metabolism (desaturation and elongation). The increased oleic acid (18:1 n-9) in the MHS muscle indicated that desaturase activity was elevated in all lipid classes. The results are consistent with the hypothesis that enhanced free radical activity and lipid peroxidation contributes to the abnormalities in Ca2+ homeostasis and polyunsaturated fatty acid metabolism in MH. PMID:1632646

  9. Effect of lipid composition and amino acid sequence upon transmembrane peptide-accelerated lipid transleaflet diffusion (flip-flop).

    PubMed

    LeBarron, Jamie; London, Erwin

    2016-08-01

    We examined how hydrophobic peptide-accelerated transleaflet lipid movement (flip-flop) was affected by peptide sequence and vesicle composition and properties. A peptide with a completely hydrophobic sequence had little if any effect upon flip-flop. While peptides with a somewhat less hydrophobic sequence accelerated flip-flop, the half-time remained slow (hours) with substantial (0.5mol%) peptide in the membranes. It appears that peptide-accelerated lipid flip-flop involves a rare event that may reflect a rare state of the peptide or lipid bilayer. There was no simple relationship between peptide overall hydrophobicity and flip-flop. In addition, flip-flop was not closely linked to whether the peptides were in a transmembrane or non-transmembrane (interfacial) inserted state. Flip-flop was also not associated with peptide-induced pore formation. We found that peptide-accelerated flip-flop is initially faster in small (highly curved) unilamellar vesicles relative to that in large unilamellar vesicles. Peptide-accelerated flip-flop was also affected by lipid composition, being slowed in vesicles with thick bilayers or those containing 30% cholesterol. Interestingly, these factors also slow spontaneous lipid flip-flop in the absence of peptide. Combined with previous studies, the results are most consistent with acceleration of lipid flip-flop by peptide-induced thinning of bilayer width. PMID:27131444

  10. Ether- and Ester-Bound iso-Diabolic Acid and Other Lipids in Members of Acidobacteria Subdivision 4

    PubMed Central

    Rijpstra, W. Irene C.; Hopmans, Ellen C.; Foesel, Bärbel U.; Wüst, Pia K.; Overmann, Jörg; Tank, Marcus; Bryant, Donald A.; Dunfield, Peter F.; Houghton, Karen; Stott, Matthew B.

    2014-01-01

    Recently, iso-diabolic acid (13,16-dimethyl octacosanedioic acid) has been identified as a major membrane-spanning lipid of subdivisions 1 and 3 of the Acidobacteria, a highly diverse phylum within the Bacteria. This finding pointed to the Acidobacteria as a potential source for the bacterial glycerol dialkyl glycerol tetraethers that occur ubiquitously in peat, soil, lakes, and hot springs. Here, we examined the lipid composition of seven phylogenetically divergent strains of subdivision 4 of the Acidobacteria, a bacterial group that is commonly encountered in soil. Acid hydrolysis of total cell material released iso-diabolic acid derivatives in substantial quantities (11 to 48% of all fatty acids). In contrast to subdivisions 1 and 3 of the Acidobacteria, 6 out of the 7 species of subdivision 4 (excepting “Candidatus Chloracidobacterium thermophilum”) contained iso-diabolic acid ether bound to a glycerol in larger fractional abundance than iso-diabolic acid itself. This is in agreement with the analysis of intact polar lipids (IPLs) by high-performance liquid chromatography-mass spectrometry (HPLC-MS), which showed the dominance of mixed ether-ester glycerides. iso-Diabolic acid-containing IPLs were not identified, because these IPLs are not released with a Bligh-Dyer extraction, as observed before when studying lipid compositions of subdivisions 1 and 3 of the Acidobacteria. The presence of ether bonds in the membrane lipids does not seem to be an adaptation to temperature, because the five mesophilic isolates contained a larger amount of ether lipids than the thermophile “Ca. Chloracidobacterium thermophilum.” Furthermore, experiments with Pyrinomonas methylaliphatogenes did not reveal a major influence of growth temperature over the 50 to 69°C range. PMID:24928878

  11. The fatty acid transport protein Fat1p is involved in the export of fatty acids from lipid bodies in Yarrowia lipolytica.

    PubMed

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Dulermo, Thierry; Thevenieau, France; Nicaud, Jean-Marc

    2014-09-01

    In order to live, cells need to import different molecules, such as sugars, amino acids or lipids, using transporters. In Saccharomyces cerevisiae, the ScFAT1 gene encodes the long-chain fatty acid transporter; however, the transport of fatty acids (FAs) in the oleaginous yeast Yarrowia lipolytica has not yet been studied. In contrast to what has previously been found for ΔScfat1 strains, ΔYlfat1 yeast was still able to grow on substrates containing short-, medium- or long-chain FAs. We observed a notable difference in cell lipid content between wild-type (WT) and deletion mutant strains after 24 h of culture in minimal oleate medium: in the WT strain, lipids represented 24% of cell dry weight (CDW), while they accounted for 37% of CDW in the ΔYlfat1 strain. This result indicates that YlFat1p is not involved in cell lipid uptake. Moreover, we also observed that fatty acid remobilisation was decreased in the ΔYlfat1 strain and that fluorescence-tagged YlFat1p proteins localised to the interfaces between lipid bodies, which suggests that YlFat1p may play a role in the export of FAs from lipid bodies. PMID:24945074

  12. Lipid binding protein response to a bile acid library: a combined NMR and statistical approach.

    PubMed

    Tomaselli, Simona; Pagano, Katiuscia; Boulton, Stephen; Zanzoni, Serena; Melacini, Giuseppe; Molinari, Henriette; Ragona, Laura

    2015-11-01

    Primary bile acids, differing in hydroxylation pattern, are synthesized from cholesterol in the liver and, once formed, can undergo extensive enzyme-catalysed glycine/taurine conjugation, giving rise to a complex mixture, the bile acid pool. Composition and concentration of the bile acid pool may be altered in diseases, posing a general question on the response of the carrier (bile acid binding protein) to the binding of ligands with different hydrophobic and steric profiles. A collection of NMR experiments (H/D exchange, HET-SOFAST, ePHOGSY NOESY/ROESY and (15) N relaxation measurements) was thus performed on apo and five different holo proteins, to monitor the binding pocket accessibility and dynamics. The ensemble of obtained data could be rationalized by a statistical approach, based on chemical shift covariance analysis, in terms of residue-specific correlations and collective protein response to ligand binding. The results indicate that the same residues are influenced by diverse chemical stresses: ligand binding always induces silencing of motions at the protein portal with a concomitant conformational rearrangement of a network of residues, located at the protein anti-portal region. This network of amino acids, which do not belong to the binding site, forms a contiguous surface, sensing the presence of the bound lipids, with a signalling role in switching protein-membrane interactions on and off. PMID:26260520

  13. Docosapentaenoic acid derived metabolites and mediators - The new world of lipid mediator medicine in a nutshell.

    PubMed

    Weylandt, Karsten-H

    2016-08-15

    Recent years have seen the description and elucidation of a new class of anti-inflammatory and pro-resolving lipid mediators. The arachidonic acid (AA)-derived compounds in this class are called lipoxins and have been described in great detail since their discovery thirty years ago. The new players are mediators derived from fish oil omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), called resolvins, protectins and maresins. Taken together, these mediators are also called specialized pro-resolution mediators (SPMs). As compared to the AA/EPA/DHA-derived compounds, research regarding mediators formed from the n-3 and n-6 docosapentaenoic acids (DPAn-3 and DPAn-6) is sparse. However, mono- di- and trihydroxy derivates of the DPAs have anti-inflammatory properties as well, even though mechanisms of their anti-inflammatory action have not been fully elucidated. This review aims to summarize current knowledge regarding the DPA-derived SPMs and their actions. PMID:26546723

  14. [Effect of nuts enrich in monounsaturated acid on serum lipid of hyperlipidemia rats].

    PubMed

    Yan, Shaofang; Xiao, Ying; Wang, Junbo; Liang, Xuejun

    2003-03-01

    In order to observe the regulatory effect of monounsaturated acid-enriched almond and macadamia nuts on blood lipid-level (TC, TG, HDL-C), the hyperlipidemia Wistar rats were used as the model and a diet containing almond and macadamia at the doses of between 12.5% and 25.0% was given for six weeks. The results showed that the level of the serum TC and TG in each study group was significantly lower than that of high fat chow control group (P < 0.05). There was a significant increase (P < 0.05) in the serum HDL-C level in the high fat chow group with high-dose macadamias compared with that in the high fat chow control group. The findings suggested that nuts enrich in monounsaturated acid could decrease the level of serum TC and TG and macadamias could increased the level of serum HDL-C in the hyperlipidemia rats. PMID:12793000

  15. Australian Acid Playa Lake as a Mars Analog: Results from Sediment Lipid Analysis

    NASA Astrophysics Data System (ADS)

    Graham, H.; Baldridge, A. M.; Stern, J. C.

    2015-12-01

    The ephemeral saline acidic lakes on the Yilgarn Craton of Western Australia have been suggested as geochemical analogues to martian terrains. Both are characterized by interbedded phyllosilicates and hydrated sulfates. On Mars, these areas indicate shifting environmental conditions, from the neutral/alkaline and wet conditions that dominated during the Noachian era to the more familiar dry, acidic conditions that began in the Hesperian. The habitability of such a dynamic environment can be informed by investigation of the Yilgarn Lake system. Previous work has found phospholipid fatty acids (PLFA) evidence of microbial communities in sections of sediment cores taken from Lake Gilmore. These communities include both Gram-positive and -negative bacteria, Actinomycetes, and even methanotrophs. Given recurring detection of methane on the martian surface, evidence of a methane cycling community in an analogous environment is of particular interest. In this study we analyze the carbon isotope composition of bulk organic material as well as extracted lipids from the Lake Gilmore sediment cores at both a near-shore and mid-lake location. These analyses reveal very low accumulations of organic carbon, concentrated primarily in the gypsum-rich near-shore core. The near-shore sediments show a down-core decrease in abundance of organic carbon as well as depletion in the carbon isotope composition (δ13C) with depth. Bulk carbon did not exhibit the unique, highly depleted, diagnostic signature associated with methanotrophic biomass. Compound-specific isotope analysis (CSIA) of carbon in extracted methanotroph PFLAs can confirm the presence of a methane cycling metabolism at depth. Also, additional extractions have isolated lipids associated with lake-edge grasses. These analyses consider both the chain-length distribution and carbon CSIA of these lipids in order to understand the effect of terrestrial detritus on any preserved methanotroph carbon signal, given the very low

  16. Lipid homeostasis and oxidative stress in the liver of male rats exposed to perfluorododecanoic acid

    SciTech Connect

    Zhang Hongxia; Shi Zhimin; Liu Yang; Wei Yanhong; Dai Jiayin

    2008-02-15

    Perfluorododecanoic acid (PFDoA), a perfluorinated carboxylic acid (PFCA) with twelve carbon atoms, has broad industrial applications and is widely distributed in both wildlife and the environment. Unlike other PFCAs with short carbon chain, however, limited studies have been performed to date on the toxic effects of PFDoA on animals. To determine the hepatotoxicity of PFDoA, male rats were orally dosed by gavage for 14 days with 0, 1, 5, or 10 mg PFDoA/kg/day. Absolute liver weights were diminished, but the relative liver weight was significantly increased in the 5 and 10 mg PFDoA/kg/day groups. Meanwhile, serum triglyceride (TG) concentrations were decreased significantly in rats dosed with 1 and 5 mg PFDoA/kg/day, while the liver lipid accumulation was observed in ultrastructure. The expression of peroxisome proliferator-activated receptor (PPAR)-{alpha} and its target genes, and to a lesser extent PPAR{gamma}, was induced by PFDoA. No significant changes in the expression of liver X receptor {alpha} (LXR{alpha}) or its target genes CYP7A1 and acetyl-CoA carboxylase 1 (ACC1) were noted, although the mRNA levels of several genes involved in lipogenesis and lipid transport were changed significantly in the certain of the experimental groups. In addition, superoxide dismutase (SOD) and catalase (CAT) activities were activated significantly in the 1 mg PFDoA/kg/day group and inhibited significantly with a concomitant increase of lipid peroxidation (LPO) levels in the 5 and 10 mg PFDoA/kg/day groups. Our results demonstrate that PFDoA exerts notable hepatotoxicity in male rats and that PPAR and its target genes, SOD and CAT activity, and LPO levels exhibited sensitivity to the toxicity of PFDoA.

  17. The effect of amino acids on lipid production and nutrient removal by Rhodotorula glutinis cultivation in starch wastewater.

    PubMed

    Liu, Meng; Zhang, Xu; Tan, Tianwei

    2016-10-01

    In this paper, the components of amino acids in mixed starch wastewater (corn steep water/corn gluten water=1/3, v/v) were analyzed by GC-MS. Effects of amino acids on lipid production by Rhodotorula glutinis and COD removal were studied. The results showed that mixed starch wastewater contained 9 kinds of amino acids and these amino acids significantly improved the biomass (13.63g/L), lipid yield (2.48g/L) and COD removal compared to the basic medium (6.23g/L and 1.56g/L). In a 5L fermentor containing mixed starch wastewater as substrate to culture R. glutinis, the maximum biomass, lipid content and lipid yield reached 26.38g/L, 28.90% and 7.62g/L, with the associated removal rates of COD, TN and TP reaching 77.41%, 69.12% and 73.85%, respectively. The results revealed a promising approach for lipid production with using amino acids present in starch wastewater as an alternative nitrogen source. PMID:27420158

  18. Lipid Classes, Fatty Acid Composition, and Glycerolipid Molecular Species of the Red Alga Gracilaria vermiculophylla, a Prostaglandin-Producing Seaweed.

    PubMed

    Honda, Masaki; Ishimaru, Takashi; Itabashi, Yutaka

    2016-01-01

    The red alga Gracilaria vermiculophylla is a well-known producer of prostaglandins, such as PGE2 and PGF2α. In this study, the characteristics of glycerolipids as substrates of prostaglandin production were clarified, and the lipid classes, fatty acid composition, and glycerolipid molecular species were investigated in detail. The major lipid classes were monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and sulfoquinovosyldiacylglycerol (SQDG), as well as phosphatidylcholine (PC), which accounted for 43.0% of the total lipid profile. Arachidonic acid (20:4n-6), a prostaglandin precursor, and palmitic acid (16:0) were the predominant fatty acids in the total lipid profile. The 20:4n-6 content was significantly high in MGDG and PC (more than 60%), and the 16:0 content was significantly high in DGDG and SQDG (more than 50%). Chiral-phase high-performance liquid chromatography determined that fatty acids were esterified at the sn-1 and sn-2 positions of those lipids. The main glycerolipid molecular species were 20:4n-6/20:4n-6 (sn-1/sn-2) for MGDG (56.5%) and PC (40.0%), and 20:4n-6/16:0 for DGDG (75.4%) and SQDG (58.4%). Thus, it was considered that the glycerolipid molecular species containing one or two 20:4n-6 were the major substrates for prostaglandin production in G. vermiculophylla. PMID:27581490

  19. Plant pentacyclic triterpenic acids as modulators of lipid membrane physical properties.

    PubMed

    Prades, Jesús; Vögler, Oliver; Alemany, Regina; Gomez-Florit, Manuel; Funari, Sérgio S; Ruiz-Gutiérrez, Valentina; Barceló, Francisca

    2011-03-01

    Free triterpenic acids (TTPs) present in plants are bioactive compounds exhibiting multiple nutriceutical activities. The underlying molecular mechanisms have only been examined in part and mainly focused on anti-inflammatory properties, cancer and cardiovascular diseases, in all of which TTPs frequently affect membrane-related proteins. Based on the structural characteristics of TTPs, we assume that their effect on biophysical properties of cell membranes could play a role for their biological activity. In this context, our study is focused on the compounds, oleanolic (3β-hydroxy-12-oleanen-28-oic acid, OLA), maslinic (2α,3β-dihydroxy-12-oleanen-28-oic acid, MSL) and ursolic ((3β)-3-hydroxyurs-12-en-28-oic acid, URL) as the most important TTPs present in orujo olive oil. X-ray diffraction, differential scanning calorimetry, (31)P nuclear magnetic resonance and Laurdan fluorescence data provide experimental evidence that OLA, MSL and URL altered the structural properties of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and DPPC-Cholesterol (Cho) rich membranes, being located into the polar-hydrophobic interphase. Specifically, in DPPC membranes, TTPs altered the structural order of the L(β'), phase without destabilizing the lipid bilayer. The existence of a nonbilayer isotropic phase in coexistence with the liquid crystalline L(α) phase, as observed in DPPC:URL samples, indicated the presence of lipid structures with high curvature (probably inverted micelles). In DPPC:Cho membranes, TTPs affected the membrane phase properties increasing the Laurdan GP values above 40°C. MSL and URL induced segregation of Cho within the bilayer, in contrast to OLA, that reduced the structural organization of the membrane. These results strengthen the relevance of TTP interactions with cell membranes as a molecular mechanism underlying their broad spectrum of biological effects. PMID:21167812

  20. Kaempferol Isolated from Nelumbo nucifera Inhibits Lipid Accumulation and Increases Fatty Acid Oxidation Signaling in Adipocytes.

    PubMed

    Lee, Bonggi; Kwon, Misung; Choi, Jae Sue; Jeong, Hyoung Oh; Chung, Hae Young; Kim, Hyeung-Rak

    2015-12-01

    Stamens of Nelumbo nucifera Gaertn have been used as a Chinese medicine due to its antioxidant, hypoglycemic, and antiatherogenic activity. However, the effects of kaempferol, a main component of N. nucifera, on obesity are not fully understood. We examined the effect of kaempferol on adipogenesis and fatty acid oxidation signaling pathways in 3T3-L1 adipocytes. Kaempferol reduced cytoplasmic triglyceride (TG) accumulation in dose and time-dependent manners during adipocyte differentiation. Accumulation of TG was rapidly reversed by retrieving kaempferol treatment. Kaempferol broadly decreased mRNA or protein levels of adipogenic transcription factors and their target genes related to lipid accumulation. Kaempferol also suppressed glucose uptake and glucose transporter GLUT4 mRNA expression in adipocytes. Furthermore, protein docking simulation suggests that Kaempferol can directly bind to and activate peroxisome proliferator-activated receptor (PPAR)-α by forming hydrophobic interactions with VAL324, THR279, and LEU321 residues of PPARα. The binding affinity was higher than a well-known PPARα agonist fenofibrate. Consistently, mRNA expression levels of PPARα target genes were increased. Our study indicates while kaempferol inhibits lipogenic transcription factors and lipid accumulation, it may bind to PPARα and stimulate fatty acid oxidation signaling in adipocytes. PMID:26280739

  1. Water and acid soluble trace metals in atmospheric particles

    NASA Technical Reports Server (NTRS)

    Lindberg, S. E.; Harriss, R. C.

    1983-01-01

    Continental aerosols are collected above a deciduous forest in eastern Tennessee and subjected to selective extractions to determine the water-soluble and acid-leachable concentrations of Cd, Mn, Pb, and Zn. The combined contributions of these metals to the total aerosol mass is 0.5 percent, with approximately 70 percent of this attributable to Pb alone. A substantial fraction (approximately 50 percent or more) of the acid-leachable metals is soluble in distilled water. In general, this water-soluble fraction increases with decreasing particle size and with increasing frequency of atmospheric water vapor saturation during the sampling period. The pattern of relative solubilities (Zn being greater than Mn, which is approximately equal to Cd, which is greater than Pb) is found to be similar to the general order of the thermodynamic solubilities of the most probable salts of these elements in continental aerosols with mixed fossil fuel and soil sources.

  2. Polar lipid and fatty acid profiles--re-vitalizing old approaches as a modern tool for the classification of mycoplasmas?

    PubMed

    Worliczek, Hanna Lucia; Kämpfer, Peter; Rosengarten, Renate; Tindall, Brian J; Busse, Hans-Jürgen

    2007-07-01

    A set of 20 Mollicutes strains representing different lines of descent, including the type species of the genus Mycoplasma, Mycoplasma mycoides, Acholeplasma laidlawii and a strain of Mesoplasma, were subjected to polar lipid and fatty acid analyses in order to evaluate their suitability for classification purposes within members of this group. Complex polar lipid and fatty acid profiles were detected for each examined strain. All strains contained the polar lipids phosphocholine-6'-alpha-glucopyranosyl-(1'-3)-1, 2-diacyl-glycerol (MfGL-I), 1-O-alkyl/alkenyl-2-O-acyl-glycero-3-phosphocholine (MfEL), sphingomyelin (SphM), 1-O-alkyl/alkenyl-glycero-3-phosphocholine (lysoMfEL), the unknown aminophospholipid APL1 and the cholesterol Chol2. A total of 19 strains revealed the presence of phosphatidylethanolamine (PE) and/or phosphatidylglycerol (PG), and the presence of diphosphatidylglycerol (DPG) was detected in 13 strains. The unknown aminolipid AL1 was found in the extracts of 17 strains. Unbranched saturated and unsaturated compounds predominated in the fatty acid profiles. Major fatty acids were usually C16:0, C18:0, C18:1 omega9c and 'Summed feature 5' (C18:2 omega6, 9c/C18:0 anteiso). Our results demonstrated that members of the M. mycoides cluster showed rather homogenous polar lipid and fatty acid profiles. In contrast, each of the other strains was characterized by a unique polar lipid profile and significant quantitative differences in the presence of certain fatty acids. These results indicate that analyses of both polar lipid and fatty acid profiles could be a useful tool for classification of mycoplasmas. PMID:17482408

  3. alpha-Linolenic acid- and docosahexaenoic acid-enriched eggs from hens fed flaxseed: influence on blood lipids and platelet phospholipid fatty acids in humans.

    PubMed

    Ferrier, L K; Caston, L J; Leeson, S; Squires, J; Weaver, B J; Holub, B J

    1995-07-01

    This study was undertaken to examine the effects that consumption of eggs from hens fed diets containing flaxseed would have on plasma and platelet lipids of male volunteers. Feeding diets containing 0%, 10%, and 20% ground flaxseed to Leghorn pullets provided a marked progressive increase in n-3 fatty acid content as alpha-linolenic acid (alpha-LNA) (28, 261, and 527 mg/egg) and docosahexaenoic acid (DHA) (51, 81, and 87 mg/egg) but no alteration in the cholesterol concentration of the egg yolk. Twenty-eight male volunteers, divided into three groups, were fed four eggs per day for 2 wk according to a cyclic Latin-square design. No statistically significant changes were observed in total cholesterol, high-density-lipoprotein cholesterol, or plasma triglyceride concentrations. Significant increases in total n-3 fatty acids and in DHA content (which rose from 1.5 to 2.0% by wt or 33% overall), and a significant decrease in ratio of n-6 to n-3 fatty acids were found in platelet phospholipids of subjects consuming eggs from flaxseed-fed hens. Health and Welfare Canada in 1990 set recommended intakes for dietary n-3 fatty acids and for the ratio of n-6 to n-3 fatty acids, which are not being met currently by the overall population. Eggs modified by the inclusion of flaxseed in the laying hens' diet could provide an important nutritional source of n-3 fatty acid. PMID:7598070

  4. Overproduction and secretion of free fatty acids through disrupted neutral lipid recycle in Saccharomyces cerevisiae.

    PubMed

    Leber, Christopher; Polson, Brian; Fernandez-Moya, Ruben; Da Silva, Nancy A

    2015-03-01

    The production of fuels and chemicals from biorenewable resources is important to alleviate the environmental concerns, costs, and foreign dependency associated with the use of petroleum feedstock. Fatty acids are attractive biomolecules due to the flexibility of their iterative biosynthetic pathway, high energy content, and suitability for conversion into other secondary chemicals. Free fatty acids (FFAs) that can be secreted from the cell are particularly appealing due to their lower harvest costs and straightforward conversion into a broad range of biofuel and biochemical products. Saccharomyces cerevisiae was engineered to overproduce extracellular FFAs by targeting three native intracellular processes. β-oxidation was disrupted by gene knockouts in FAA2, PXA1 and POX1, increasing intracellular fatty acids levels up to 55%. Disruptions in the acyl-CoA synthetase genes FAA1, FAA4 and FAT1 allowed the extracellular detection of free fatty acids up to 490mg/L. Combining these two disrupted pathways, a sextuple mutant (Δfaa1 Δfaa4 Δfat1 Δfaa2 Δpxa1 Δpox1) was able to produce 1.3g/L extracellular free fatty acids. Further diversion of carbon flux into neutral lipid droplet formation was investigated by the overexpression of DGA1 or ARE1 and by the co-overexpression of a compatible lipase, TGL1, TGL3 or TGL5. The sextuple mutant overexpressing the diacylglycerol acyltransferase, DGA1, and the triacylglycerol lipase, TGL3, yielded 2.2g/L extracellular free fatty acids. This novel combination of pathway interventions led to 4.2-fold higher extracellular free fatty acid levels than previously reported for S. cerevisiae. PMID:25461829

  5. Fatty-acid profile of total and polar lipids in cultured rainbow trout (Oncorhynchus mykiss) raised in freshwater and seawater (Croatia) determined by transmethylation method.

    PubMed

    Staver, Mladenka Malenica; Jerković, Igor; Giacometti, Jasminka; Malenica, Ante; Marijanović, Zvonimir

    2012-08-01

    Fatty acids from total lipids and polar lipids in cultured rainbow trout (Oncorhynchus mykiss) raised in seawater (SW) and freshwater (FW) were identified and quantified from the muscle samples in January, April, and July. The highest total lipid and polar lipid amounts were found in April. July contents of total lipids were low, but percent of the polyunsaturated fatty acids (PUFAs) was high in SW and FW environment (particularly n-3 PUFAs). Variety of 17 fatty acids was identified by GC-FID after transmethylation. The predominant fatty acids in rainbow trout from SW and FW were: docosahexaenoic acid among n-3 PUFAs, palmitic acid among saturated fatty acids (SFAs), and oleic acid among monounsaturated fatty acids (MUFAs). Appreciably higher n-3/n-6 ratio was found in total lipids in April (6.40, FW fish) and in polar lipids in July (18.76; SW fish). High n-3/n-6 ratio in total lipids and polar lipids of rainbow trout from SW and FW, besides beneficial n-3/n-6 ratio in the commercial fish food, could be characteristic for the local environmental conditions (Croatia). PMID:22899619

  6. Wheat germ oil and α-lipoic acid predominantly improve the lipid profile of broiler meat.

    PubMed

    Arshad, Muhammad Sajid; Anjum, Faqir Muhammad; Khan, Muhammad Issa; Shahid, Muhammad

    2013-11-20

    In response to recent assertions that synthetic antioxidants may have the potential to cause toxic effects and to consumers' increased attention to consuming natural products, the poultry industry has been seeking sources of natural antioxidants, alone or in combination with synthetic antioxidants that are currently being used by the industry. The present study was conducted to determine the effect of α-lipoic acid, α-tocopherol, and wheat germ oil on the status of antioxidant enzymes, fatty acid profile, and serum biochemical profile of broiler blood. One-day-old (180) broiler birds were fed six different feeds varying in their antioxidant content: no addition (T1), natural α-tocopherol (wheat germ oil, T2), synthetic α-tocopherol (T3), α-lipoic acid (T4), α-lipoic acid together with natural α-tocopherol (T5), and α-lipoic acid together with synthetic α-tocopherol (T6). The composition of saturated and unsaturated fatty acids in the breast and leg meat was positively influenced by the different dietary supplements. The content of fatty acid was significantly greater in broilers receiving T2 both in breast (23.92%) and in leg (25.82%) meat, whereas lower fatty acid levels was found in broilers receiving diets containing T6 in the breast (19.57%) and leg (21.30%) meat. Serum total cholesterol (113.42 mg/dL) and triglycerides (52.29 mg/dL) were lowest in the group given natural α-tocopherol and α-lipoic acid. Wheat germ oil containing natural α-tocopherol alone or with α-lipoic acid was more effective than synthetic α-tocopherol in raising levels of antioxidant enzymes superoxide dismutase, catalase, and glutathione reductase while lowering plasma total cholesterol, low-density lipoprotein, and triglycerides and raising high-density lipoprotein and plasma protein significantly. It was concluded that the combination of wheat germ oil and α-lipoic acid is helpful in improving the lipid profile of broilers. PMID:24191686

  7. Long Chain Fatty Acid Acylated Derivatives of Quercetin-3-O-Glucoside as Antioxidants to Prevent Lipid Oxidation

    PubMed Central

    Warnakulasuriya, Sumudu N.; Ziaullah; Rupasinghe, H.P. Vasantha

    2014-01-01

    Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G. PMID:25384198

  8. Hexadecenoic Fatty Acid Isomers in Human Blood Lipids and Their Relevance for the Interpretation of Lipidomic Profiles

    PubMed Central

    Sansone, Anna; Tolika, Evanthia; Louka, Maria; Sunda, Valentina; Deplano, Simone; Melchiorre, Michele; Anagnostopoulos, Dimitrios; Chatgilialoglu, Chryssostomos; Formisano, Cesare; Di Micco, Rosa; Faraone Mennella, Maria Rosaria; Ferreri, Carla

    2016-01-01

    Monounsaturated fatty acids (MUFA) are emerging health biomarkers, and in particular the ratio between palmitoleic acid (9cis-16:1) and palmitic acid (16:0) affords the delta-9 desaturase index that is increased in obesity. Recently, other positional and geometrical MUFA isomers belonging to the hexadecenoic family (C16 MUFA) were found in circulating lipids, such as sapienic acid (6cis-16:1), palmitelaidic acid (9trans-16:1) and 6trans-16:1. In this work we report: i) the identification of sapienic acid as component of human erythrocyte membrane phospholipids with significant increase in morbidly obese patients (n = 50) compared with age-matched lean controls (n = 50); and ii) the first comparison of erythrocyte membrane phospholipids (PL) and plasma cholesteryl esters (CE) in morbidly obese patients highlighting that some of their fatty acid levels have opposite trends: increases of both palmitic and sapienic acids with the decrease of linoleic acid (9cis,12cis-18:2, omega-6) in red blood cell (RBC) membrane PL were reversed in plasma CE, whereas the increase of palmitoleic acid was similar in both lipid species. Consequentially, desaturase enzymatic indexes gave different results, depending on the lipid class used for the fatty acid content. The fatty acid profile of morbidly obese subjects also showed significant increases of stearic acid (C18:0) and C20 omega-6, as well as decreases of oleic acid (9cis-18:1) and docosahexaenoic acid (C22:6 omega-3) as compared with lean healthy controls. Trans monounsaturated and polyunsaturated fatty acids were also measured and found significantly increased in both lipid classes of morbidly obese subjects. These results highlight the C16 MUFA isomers as emerging metabolic marker provided that the assignment of the double bond position and geometry is correctly performed, thus identifying the corresponding lipidomic pathway. Since RBC membrane PL and plasma CE have different fatty acid trends, caution must also be used in the

  9. Hexadecenoic Fatty Acid Isomers in Human Blood Lipids and Their Relevance for the Interpretation of Lipidomic Profiles.

    PubMed

    Sansone, Anna; Tolika, Evanthia; Louka, Maria; Sunda, Valentina; Deplano, Simone; Melchiorre, Michele; Anagnostopoulos, Dimitrios; Chatgilialoglu, Chryssostomos; Formisano, Cesare; Di Micco, Rosa; Faraone Mennella, Maria Rosaria; Ferreri, Carla

    2016-01-01

    Monounsaturated fatty acids (MUFA) are emerging health biomarkers, and in particular the ratio between palmitoleic acid (9cis-16:1) and palmitic acid (16:0) affords the delta-9 desaturase index that is increased in obesity. Recently, other positional and geometrical MUFA isomers belonging to the hexadecenoic family (C16 MUFA) were found in circulating lipids, such as sapienic acid (6cis-16:1), palmitelaidic acid (9trans-16:1) and 6trans-16:1. In this work we report: i) the identification of sapienic acid as component of human erythrocyte membrane phospholipids with significant increase in morbidly obese patients (n = 50) compared with age-matched lean controls (n = 50); and ii) the first comparison of erythrocyte membrane phospholipids (PL) and plasma cholesteryl esters (CE) in morbidly obese patients highlighting that some of their fatty acid levels have opposite trends: increases of both palmitic and sapienic acids with the decrease of linoleic acid (9cis,12cis-18:2, omega-6) in red blood cell (RBC) membrane PL were reversed in plasma CE, whereas the increase of palmitoleic acid was similar in both lipid species. Consequentially, desaturase enzymatic indexes gave different results, depending on the lipid class used for the fatty acid content. The fatty acid profile of morbidly obese subjects also showed significant increases of stearic acid (C18:0) and C20 omega-6, as well as decreases of oleic acid (9cis-18:1) and docosahexaenoic acid (C22:6 omega-3) as compared with lean healthy controls. Trans monounsaturated and polyunsaturated fatty acids were also measured and found significantly increased in both lipid classes of morbidly obese subjects. These results highlight the C16 MUFA isomers as emerging metabolic marker provided that the assignment of the double bond position and geometry is correctly performed, thus identifying the corresponding lipidomic pathway. Since RBC membrane PL and plasma CE have different fatty acid trends, caution must also be used in the

  10. Relationship of branched-chain alpha-keto-acids and lipids in sera of hypertriglyceridemic subjects.

    PubMed

    Penttilä, I M; Herranen, J; Lampainen, E; Voutilainen, E

    1987-12-01

    According to the present study, in hyperlipidemias where triglyceride values in serum are raised, the triglyceride values are associated with increased amounts of branched-chain alpha-keto-acids (BCKA) in the serum. In particular, the concentration of alpha-ketoisocaproic acid (KICA), which in the control sera was 34.4 mumol/l, was in type IIB hyperlipidemia 40.4% and in type IV 49.4% higher than in controls with normal serum lipid values. In type IV hyperlipidemia, values for alpha-ketoisovaleric acid (KIVA) and alpha-keto-beta-methyl-n-valeric acid (KMVA) were also high when compared to the corresponding mean values of the controls, 7.1 and 18.8 mumol/l. The respective differences were 57.7 and 44.1 per cent. In type IIB hyperlipidemia, KIVA was significantly and KMVA insignificantly increased compared to the control group. In type IIA hyperlipidemia with normal triglyceride values, none of the three BCKA differed significantly from the controls. These results also indicate that the increased amounts of individual BCKA somehow depend on the concentration of triglycerides in serum, while no relationship was found between BCKA values and cholesterol concentration. PMID:3436049

  11. Identification of albumin-bound fatty acids as the major factor in serum-induced lipid accumulation by cultured cells.

    PubMed

    Mackenzie, C G; Mackenzie, J B; Reiss, O K; Wisneski, J A

    1970-11-01

    Factors responsible for the high lipogenic activity of rabbit serum were investigated using an assay procedure based on the gravimetric determination of the 24 hr increase in cell lipid. Cellular synthesis of fatty acids was inhibited by the presence of serum in the assay medium. Approximately 90% of the increase in cell lipid produced by serum fractions was due to triglyceride accumulation. Fractionation of rabbit serum by precipitation with ammonium sulfate or by ultracentrifugation in high density medium, both indicated that three-quarters of its lipogenic activity was associated with albumin. The lipoproteins prepared by ultracentrifugation also exhibited about one-half the activity of whole serum. The lipogenic activity of albumin was confirmed by the high potency of the albumin isolated in a nearly pure form from proteins of d>1.21 by precipitation with trichloroacetic acid and extraction with ethanol. As judged from chemical and isotopic analysis, neither the lipid content nor the lipid composition of the albumin was appreciably altered during its isolation. Of the albumin-bound lipids, only the free fatty acids, as determined by DEAE column chromatography, were present in an amount sufficient to account for the observed increase in cell triglycerides. In control experiments with horse serum of low lipogenic activity, the proteins of d>1.21 also possessed low activity in conjunction with a low content of free fatty acid. However, the albumin isolated from the latter preparation exhibited the high lipogenic activity of rabbit serum albumin. Chemical and isotopic analysis of the recovered horse serum albumin revealed that its free fatty acid content was the same as that of rabbit serum albumin. These results indicated that the isolation of horse serum albumin was attended by a substantial increase in its free fatty acid content. When the rabbit serum and horse serum content of media were adjusted to provide equivalent concentrations of albumin-bound fatty

  12. Lipid and fatty acid composition of mesocarp and seed of avocado fruits harvested at northern range in Japan.

    PubMed

    Takenaga, Fumio; Matsuyama, Kaori; Abe, Shin; Torii, Yasuyoshi; Itoh, Shingo

    2008-01-01

    The lipid and fatty acid composition of the mesocarp and seed of avocado fruit grown and harvested in Japan, which is located at the northern range of the avacado, was investigated and compared to an imported avocado purchased commercially. The potential of the avocado mesocarp as an agricultural product in Japan was also explored. Total lipids (TL) accounted for approximately 20% of the mesocarp. Further analysis showed that the neutral lipid (NL) fraction accounted for at least 95% of the TL, and almost 90% of NL was triacylglycerol. Monoenoic acids accounted for at least 65% of the total fatty acids, and oleic acid, which is regarded as an especially important functional component of avacado accounted for approximately 50% of the monounsaturated fatty acids. A comparison of the Japanese avocado cultivars and an imported avocado cultivar in the present study revealed no significant differences in the lipid and fatty acid compositions. Therefore, production of avocado fruit, which is rich in various nutritional components, is expected to be increased on a larger number of farms in Japan in the future. It is believed to be necessary to carry out further verification, such as the establishment of a cultivation technique adoptable to Japan, examination of optimal soil and land features, and cultivar selection. PMID:18838831

  13. Impact of lipid oxidation-derived aldehydes and ascorbic acid on the antioxidant activity of model melanoidins.

    PubMed

    Kitrytė, Vaida; Adams, An; Venskutonis, Petras Rimantas; De Kimpe, Norbert

    2012-12-01

    As the heat-induced formation of antioxidants throughout the Maillard reaction is known, this study was undertaken to evaluate the impact of lipid oxidation-derived aldehydes and ascorbic acid in Maillard model systems on the resulting antioxidant activity. For this purpose, various fractions of melanoidin-like polycondensation products were obtained from mixtures of amino acids (glycine, lysine, arginine) and lipid oxidation-derived aldehydes (hexanal, (E)-2-hexenal), in the presence or absence of glucose or ascorbic acid. All fractions showed a significant radical scavenging capacity (DPPH assay) and ferric reducing power (FRAP assay). The activity varied according to the composition of the model system tested, although some similar trends were discovered in both assays applied. The presence of lipid oxidation products in the browning products augmented the antioxidant activity in specific cases. For instance, the combined presence of arginine, hexanal and glucose in heated model systems resulted in a significantly higher antioxidant capacity. With an exception of ascorbic acid-containing model systems, melanoidin-like polycondensation products possessed significantly stronger antioxidant activities than the corresponding unheated initial reactant mixtures. Water-soluble high molecular weight (>12kDa) and nonsoluble fractions comprised the major part of the antioxidants derived from amino acid/lipid oxidation product model systems, with or without glucose or ascorbic acid. PMID:22953854

  14. Rapid determination of lipid peroxidation using a novel pyridoxamine-participating ferrous oxidation-sulfosalicylic acid spectrophotometric method.

    PubMed

    Chen, Jingnan; Cai, Danqian; Zhang, Yu

    2016-11-15

    A novel method is developed to rapidly analyze lipid peroxidation in edible oils and fatty foods at room temperature, which is called the pyridoxamine-participating ferrous oxidation-sulfosalicylic acid (PFOS) method. The PFOS method evaluates the lipid peroxide value colorimetrically via detecting the pyridoxamine-mediated pigment produced by 5-sulfosalicylic acid and Fe(3+) at 500nm, while the latter is converted from Fe(2+) in the presence of lipid peroxides. The optimized formulation was ethanol (70%, v/v), Fe(2+) (4mmol/L), 5-sulfosalicylic acid (40mmol/L) and pyridoxamine (18mmol/L). The limit of quantitation is 0.087mmol Fe(3+)/L with acceptable reproducibility. In addition, current method has a significant linear correlation with both conventional thiobarbituric acid (R(2)=0.9999) and ferric thiocyanate assays (R(2)=0.9675). This method offers a rapid technique for evaluating lipid peroxidation without heating and sophisticated instrumental procedures. Besides, current method provides a new option to evaluate the lipid peroxidation state and improve the reproducibility of ferrous-oxidation. PMID:27283678

  15. Testing models of fatty acid transfer and lipid synthesis in spinach leaf using in vivo oxygen-18 labeling

    SciTech Connect

    Pollard, M.; Ohlrogge, J.

    1999-12-01

    Oxygen-18 labeling has been applied to the study of plant lipid biosynthesis for the first time. [{sup 13}C{sub 2}{sup 18}O{sub 2}]Acetate was incubated with spinach (Spinacia oleracea) leaves and the {sup 18}O content in fatty acid methyl esters isolated from different lipid classes measured by gas chromatography-mass spectrometry. Fatty acids isolated from lipids synthesized within the plastid, such as monogalactosyldiacylglycerol, show an {sup 18}O content consistent with the exogenous acetate undergoing a single activation step and with the direct utilization of acyl-acyl carrier protein by the acyl transferases of the chloroplast. In contrast, fatty acids isolated from lipids assembled in the cytosol, such as phosphatidylcholine, show a 50% reduction in the {sup 18}O content. This is indicative of export of the fatty acyl groups from the plastid via a free carboxylate anion, and is consistent with the acyl-acyl carrier protein thioesterase:acyl-coenzyme A (CoA) synthetase mediated export mechanism. If this were not the case and the acyl group was transferred directly from acyl-acyl carrier protein to an acyl acceptor on the cytosolic side, there would be either complete retention of {sup 18}O or, less likely, complete loss of {sup 18}O, but not a 50% loss of {sup 18}O. Thus, existing models for fatty acid transfer from the plastid and for spatially separate synthesis of prokaryotic and eukaryotic lipids have both been confirmed.

  16. Subchronic effects of valproic acid on gene expression profiles for lipid metabolism in mouse liver

    SciTech Connect

    Lee, Min-Ho |; Kim, Mingoo |; Lee, Byung-Hoon |; Kim, Ju-Han |; Kang, Kyung-Sun |; Kim, Hyung-Lae |; Yoon, Byung-Il |; Chung, Heekyoung; Kong, Gu |; Lee, Mi-Ock ||

    2008-02-01

    Valproic acid (VPA) is used clinically to treat epilepsy, however it induces hepatotoxicity such as microvesicular steatosis. Acute hepatotoxicity of VPA has been well documented by biochemical studies and microarray analysis, but little is known about the chronic effects of VPA in the liver. In the present investigation, we profiled gene expression patterns in the mouse liver after subchronic treatment with VPA. VPA was administered orally at a dose of 100 mg/kg/day or 500 mg/kg/day to ICR mice, and the livers were obtained after 1, 2, or 4 weeks. The activities of serum liver enzymes did not change, whereas triglyceride concentration increased significantly. Microarray analysis revealed that 1325 genes of a set of 32,996 individual genes were VPA responsive when examined by two-way ANOVA (P < 0.05) and fold change (> 1.5). Consistent with our previous results obtained using an acute VPA exposure model (Lee et al., Toxicol Appl Pharmacol. 220:45-59, 2007), the most significantly over-represented biological terms for these genes included lipid, fatty acid, and steroid metabolism. Biological pathway analysis suggests that the genes responsible for increased biosynthesis of cholesterol and triglyceride, and for decreased fatty acid {beta}-oxidation contribute to the abnormalities in lipid metabolism induced by subchronic VPA treatment. A comparison of the VPA-responsive genes in the acute and subchronic models extracted 15 commonly altered genes, such as Cyp4a14 and Adpn, which may have predictive power to distinguish the mode of action of hepatotoxicants. Our data provide a better understanding of the molecular mechanisms of VPA-induced hepatotoxicity and useful information to predict steatogenic hepatotoxicity.

  17. Palmitic acid-labeled lipids selectively incorporated into platelet cytoskeleton during aggregation

    SciTech Connect

    Packham, M.A.; Guccione, M.A.; Bryant, N.L.; Livne, A. )

    1990-07-01

    Previous experiments showed that during the early stages (20-30 seconds) of aggregation induced by adenosine diphosphate (ADP, 2 microM) or thrombin (0.1 U/mL) of rabbit or human platelets prelabeled with (3H)palmitic acid, labeled lipid became associated with the cytoskeleton isolated after lysis with 1% Triton X-100, 5 mM EGTA (ethylene glycol-bis-(beta-aminoethyl ether))-N,N,N',N'-tetra-acetic acid. The association appeared to be related to the number of sites of contact and was independent of the release of granule contents. We have now investigated the nature of the labeled lipids by thin-layer and column chromatography and found differences between the distribution of the label in intact platelets (both stimulated and unstimulated) and the isolated cytoskeletons. In both species, and with either ADP or thrombin as aggregating agent, 70-85% of the label in both intact platelets and in the cytoskeletons was in phospholipids. The distribution of label among the phospholipids in the cytoskeletons was similar to that in intact platelets except that the percentage of label in phosphatidylcholine was significantly higher in the cytoskeletons of human platelets than in the intact platelets, and the percentage of label in phosphatidylserine/phosphatidylinositol was significantly lower in the cytoskeletons of rabbit platelets and thrombin-aggregated human platelets than in intact platelets. The cytoskeletons contained a lower percentage of label in triacylglycerol, diacylglycerol, and cholesterol ester than the intact platelets. Contrary to a report in the literature, we found no evidence for the incorporation of diacylglycerol and palmitic acid into the cytoskeleton.

  18. Milk lipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Milk fat conveys a number of desirable qualities to food, and various lipid components contribute to human nutrition and health. Over 96% of milk lipids consist of triacylglycerols, which contain a variety of fatty acids. Di- and monoacylglycerols, free fatty acids, sterols, and phospho-, glyco-,...

  19. Cell type-specific modulation of lipid mediator's formation in murine adipose tissue by omega-3 fatty acids.

    PubMed

    Kuda, Ondrej; Rombaldova, Martina; Janovska, Petra; Flachs, Pavel; Kopecky, Jan

    2016-01-15

    Mutual interactions between adipocytes and immune cells in white adipose tissue (WAT) are involved in modulation of lipid metabolism in the tissue and also in response to omega-3 polyunsaturated fatty acids (PUFA), which counteract adverse effects of obesity. This complex interplay depends in part on in situ formed anti- as well as pro-inflammatory lipid mediators, but cell types engaged in the synthesis of the specific mediators need to be better characterized. We used tissue fractionation and metabolipidomic analysis to identify cells producing lipid mediators in epididymal WAT of mice fed for 5 weeks obesogenic high-fat diet (lipid content 35% wt/wt), which was supplemented or not by omega-3 PUFA (4.3 mg eicosapentaenoic acid and 14.7 mg docosahexaenoic acid per g of diet). Our results demonstrate selective increase in levels of anti-inflammatory lipid mediators in WAT in response to omega-3, reflecting either their association with adipocytes (endocannabinoid-related N-docosahexaenoylethanolamine) or with stromal vascular cells (pro-resolving lipid mediator protectin D1). In parallel, tissue levels of obesity-associated pro-inflammatory endocannabinoids were suppressed. Moreover, we show that adipose tissue macrophages (ATMs), which could be isolated using magnetic force from the stromal vascular fraction, are not the major producers of protectin D1 and that omega-3 PUFA lowered lipid load in ATMs while promoting their less-inflammatory phenotype. Taken together, these results further document specific roles of various cell types in WAT in control of WAT inflammation and metabolism and they suggest that also other cells but ATMs are engaged in production of pro-resolving lipid mediators in response to omega-3 PUFA. PMID:26707880

  20. Characterization of mannosylerythritol lipids containing hexadecatetraenoic acid produced from cuttlefish oil by Pseudozyma churashimaensis OK96.

    PubMed

    Morita, Tomotake; Kawamura, Daisuke; Morita, Naoki; Fukuoka, Tokuma; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2013-01-01

    Biosurfactants are surface-active compounds produced by microorganisms. Mannosylerythritol lipids (MEL) are promising biosurfactants produced by Ustilaginomycetes, and their physicochemical and biochemical properties differ depending on the chemical structure of their hydrophilic and/or hydrophobic moieties. To further develop MEL derivatives and expand their potential applications, we focused our attention on the use of cuttlefish oil, which contains polyunsaturated fatty acids (e.g., docosahexaenoic acid, C₂₂:₆, and eicosapentaenoic acid, C₂₀:₅, as the sole carbon source. Among the microorganisms capable of producing MEL, only nine strains were able to produce them from cuttlefish oil. On gas chromatography-mass spectrometry (GC/MS) analysis, we observed that Pseudozyma churashimaensis OK96 was particularly suitable for the production of MEL-A, a MEL containing hexadecatetraenoic acid (C₁₆:₄) (23.6% of the total unsaturated fatty acids and 7.7% of the total fatty acids). The observed critical micelle concentration (CMC) and surface tension at CMC of the new MEL-A were 5.7×10⁻⁶ M and 29.5 mN/m, respectively, while those of MEL-A produced from soybean oil were 2.7×10⁻⁶ M and 27.7 mN/m, respectively. With polarized optical and confocal laser scanning microscopies, the self-assembling properties of MEL-A were found to be different from those of conventional MEL. Furthermore, based on the DPPH radical-scavenging assay, the anti-oxidative activity of MEL-A was found to be 2.1-fold higher than that of MEL-A produced from soybean oil. Thus, the newly identified MEL-A is attractive as a new functional material with excellent surface-active and antioxidative properties. PMID:23648407

  1. Analysis of Lipid Phase Behavior and Protein Conformational Changes in Nanolipoprotein Particles upon Entrapment in Sol–Gel-Derived Silica

    PubMed Central

    2015-01-01

    The entrapment of nanolipoprotein particles (NLPs) and liposomes in transparent, nanoporous silica gel derived from the precursor tetramethylorthosilicate was investigated. NLPs are discoidal patches of lipid bilayer that are belted by amphiphilic scaffold proteins and have an average thickness of 5 nm. The NLPs in this work had a diameter of roughly 15 nm and utilized membrane scaffold protein (MSP), a genetically altered variant of apolipoprotein A-I. Liposomes have previously been examined inside of silica sol–gels and have been shown to exhibit instability. This is attributed to their size (∼150 nm) and altered structure and constrained lipid dynamics upon entrapment within the nanometer-scale pores (5–50 nm) of the silica gel. By contrast, the dimensional match of NLPs with the intrinsic pore sizes of silica gel opens the possibility for their entrapment without disruption. Here we demonstrate that NLPs are more compatible with the nanometer-scale size of the porous environment by analysis of lipid phase behavior via fluorescence anisotropy and analysis of scaffold protein secondary structure via circular dichroism spectroscopy. Our results showed that the lipid phase behavior of NLPs entrapped inside of silica gel display closer resemblance to its solution behavior, more so than liposomes, and that the MSP in the NLPs maintain the high degree of α-helix secondary structure associated with functional protein–lipid interactions after entrapment. We also examined the effects of residual methanol on lipid phase behavior and the size of NLPs and found that it exerts different influences in solution and in silica gel; unlike in free solution, silica entrapment may be inhibiting NLP size increase and/or aggregation. These findings set precedence for a bioinorganic hybrid nanomaterial that could incorporate functional integral membrane proteins. PMID:25062385

  2. Analysis of lipid phase behavior and protein conformational changes in nanolipoprotein particles upon entrapment in sol-gel-derived silica.

    PubMed

    Zeno, Wade F; Hilt, Silvia; Aravagiri, Kannan K; Risbud, Subhash H; Voss, John C; Parikh, Atul N; Longo, Marjorie L

    2014-08-19

    The entrapment of nanolipoprotein particles (NLPs) and liposomes in transparent, nanoporous silica gel derived from the precursor tetramethylorthosilicate was investigated. NLPs are discoidal patches of lipid bilayer that are belted by amphiphilic scaffold proteins and have an average thickness of 5 nm. The NLPs in this work had a diameter of roughly 15 nm and utilized membrane scaffold protein (MSP), a genetically altered variant of apolipoprotein A-I. Liposomes have previously been examined inside of silica sol-gels and have been shown to exhibit instability. This is attributed to their size (∼150 nm) and altered structure and constrained lipid dynamics upon entrapment within the nanometer-scale pores (5-50 nm) of the silica gel. By contrast, the dimensional match of NLPs with the intrinsic pore sizes of silica gel opens the possibility for their entrapment without disruption. Here we demonstrate that NLPs are more compatible with the nanometer-scale size of the porous environment by analysis of lipid phase behavior via fluorescence anisotropy and analysis of scaffold protein secondary structure via circular dichroism spectroscopy. Our results showed that the lipid phase behavior of NLPs entrapped inside of silica gel display closer resemblance to its solution behavior, more so than liposomes, and that the MSP in the NLPs maintain the high degree of α-helix secondary structure associated with functional protein-lipid interactions after entrapment. We also examined the effects of residual methanol on lipid phase behavior and the size of NLPs and found that it exerts different influences in solution and in silica gel; unlike in free solution, silica entrapment may be inhibiting NLP size increase and/or aggregation. These findings set precedence for a bioinorganic hybrid nanomaterial that could incorporate functional integral membrane proteins. PMID:25062385

  3. [Deposition of exogenous and endogenously generated unsaturated fatty acids in lipid droplets triacylglycerol as a mechanism of its sequestration in epithelial cells].

    PubMed

    Fedorova, E V; Fok, E M; Bakhteeva, V T; Lavrova, E A; Parnova, R G

    2014-08-01

    Neutral lipids are deposited in intracellular compartments called lipid droplets, which are known to be critically implicated in regulation of cellular lipid metabolism. These organelles consist of a core of neutral lipids, mainly triacylglycerol (TAG) and cholesteryl esters, surrounded by phospholipid monolayer. Using Nile red lipid staining and [3H]-arachidonic and [3H]-oleic acids as precursors for lipid biosynthesis, we have evaluated the mechanisms of lipid body induction elicited by exogenous fatty acids within primary cultured epithelial cells from the frog urinary bladder. It was found that arachidonic and oleic acids at concentrations 10-50 tM stimulated lipid droplets formation accompanied by accumulation of TAG and by the significant increase of incorporation of fatty acids into TAG indicating an enhanced TAG biosynthesis. No changes of cholesteryl esters content were observed under these conditions. In cells, prelabelled with [3H]-oleic acids, etomoxir, an inhibitor of O-carnitine palmitroyltansferase 1, decreased oxidation of oleic acid and increased its incorporation into TAG leading to intracellular TAG accumulation. In cells, prelabelled with [3H]-arachidonic acid, diclofenac, an inhibitor of cyclooxygenase 1 and 2, led to significant decrease in cellular PGE2 production and to reesterification of free arachidonic acid to TAG but not to phospholipids. Taking together, these data evidence that in isolated frog urinary bladder epithelial cells, reacylation of unsaturated free fatty acids into TAG is a main route of their metabolic conversion under the conditions of the increased cytosolic level of free fatty acids. PMID:25682688

  4. Perturbations in polar lipids, starvation survival and reproduction following exposure to unsaturated fatty acids or environmental toxicants in Daphnia magna.

    PubMed

    Sengupta, Namrata; Gerard, Patrick D; Baldwin, William S

    2016-02-01

    Acclimating to toxicant stress is energy expensive. In laboratory toxicology tests dietary conditions are ideal, but not in natural environments where nutrient resources vary in quality and quantity. We compared the effects of additional lipid resources, docosahexaenoic acid (n-3; DHA) or linoleic acid (n-6; LA), or the effects of the toxicants, atrazine or triclosan on post-treatment starvation survival, reproduction, and lipid profiles. Chemical exposure prior to starvation had chemical-specific effects as DHA showed moderately beneficial effects on starvation survival and all of the other chemicals showed adverse effects on either survival or reproduction. Surprisingly, pre-exposure to triclosan inhibits adult maturation and in turn completely blocks reproduction during the starvation phase. The two HR96 activators tested, atrazine and LA adversely reduce post-reproduction survival 70% during starvation and in turn show poor fecundity. DHA and LA show distinctly different lipid profiles as DHA primarily increases the percentage of large (>37 carbon) phosphatidylcholine (PC) species and LA primarily increases the percentage of smaller (<37 carbon) PC species. The toxicants atrazine and triclosan moderately perturb a large number of different phospholipids including several phosphatidylethanolamine species. Some of these polar lipid species may be biomarkers for diets rich in specific fatty acids or toxicant classes. Overall our data demonstrates that toxicants can perturb lipid utilization and storage in daphnids in a chemical specific manner, and different chemicals can produce distinct polar lipid profiles. In summary, biological effects caused by fatty acids and toxicants are associated with changes in the production and use of lipids. PMID:26606184

  5. Comparative Analysis of Lipid Content and Fatty Acid Composition of Commercially Important Fish and Shellfish from Sri Lanka and Japan.

    PubMed

    Devadason, Chandravathany; Jayasinghe, Chamila; Sivakanesan, Ramiah; Senarath, Samanthika; Beppu, Fumiaki; Gotoh, Naohiro

    2016-01-01

    Sri Lanka is surrounded by the Indian Ocean, allowing plenty of fishes to be caught. Moreover, these fishes represent one of the undocumented fish resources in the world and their detailed lipid profiles have not been previously examined. In this study, the lipid content and fatty acid composition of 50 commercially important fishes from the Indian Ocean (Sri Lanka) and the Pacific Ocean (Japan) were compared. The total lipid content and fatty acid composition, including eicosapentaenoic acid (C20:5n-3, EPA) and docosahexaenoic acid (C22:6n-3, DHA), differed significantly among species. Fish from the Pacific Ocean had higher proportions of fatty acids, including EPA and DHA. Herrings and mackerels from both oceanic areas demonstrated high levels of EPA and DHA, and n-3/n-6 ratio. Brackish and freshwater fishes from both groups showed low levels of PUFAs. Fish from the Indian Ocean were high in n-6 fatty acids. Monounsaturated fatty acid levels were high in omnivorous fish from the Pacific Ocean, and saturated fatty acid levels were high in fish from the Indian Ocean. The results of this study will be of value in determining the dietary usefulness of fish caught in Sri Lanka. PMID:27373421

  6. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    DOE PAGESBeta

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositionalmore » ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.« less

  7. Linoleic acid-derived lipid mediators increase in a female-dominated subphenotype of COPD.

    PubMed

    Balgoma, David; Yang, Mingxing; Sjödin, Marcus; Snowden, Stuart; Karimi, Reza; Levänen, Bettina; Merikallio, Heta; Kaarteenaho, Riitta; Palmberg, Lena; Larsson, Kjell; Erle, David J; Dahlén, Sven-Erik; Dahlén, Barbro; Sköld, C Magnus; Wheelock, Åsa M; Wheelock, Craig E

    2016-06-01

    Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality; however, the role of inflammatory mediators in its pathobiology remains unclear. The aim of this study was to investigate the influence of gender in COPD on lipid mediator levels.Bronchoalveolar lavage fluid (BALF) and serum were obtained from healthy never-smokers, smokers and COPD patients (Global Initiative for Chronic Obstructive Lung Disease stage I-II/A-B) (n=114). 94 lipid mediators derived from the cytochrome-P450, lipoxygenase, and cyclooxygenase pathways were analysed by liquid chromatography-mass spectrometry.Multivariate modelling identified a 9-lipid panel in BALF that classified female smokers with COPD from healthy female smokers (p=6×10(-6)). No differences were observed for the corresponding male population (p=1.0). These findings were replicated in an independent cohort with 92% accuracy (p=0.005). The strongest drivers were the cytochrome P450-derived epoxide products of linoleic acid (leukotoxins) and their corresponding soluble epoxide hydrolase (sEH)-derived products (leukotoxin-diols). These species correlated with lung function (r=0.87; p=0.0009) and mRNA levels of enzymes putatively involved in their biosynthesis (r=0.96; p=0.003). Leukotoxin levels correlated with goblet cell abundance (r=0.72; p=0.028).These findings suggest a mechanism by which goblet cell-associated cytochrome-P450 and sEH activity produce elevated leukotoxin-diol levels, which play a putative role in the clinical manifestations of COPD in a female-dominated disease sub-phenotype. PMID:26965288

  8. Lysine and novel hydroxylysine lipids in soil bacteria: amino acid membrane lipid response to temperature and pH in Pseudopedobacter saltans

    PubMed Central

    Moore, Eli K.; Hopmans, Ellen C.; Rijpstra, W. Irene C.; Sánchez-Andrea, Irene; Villanueva, Laura; Wienk, Hans; Schoutsen, Frans; Stams, Alfons J. M.; Sinninghe Damsté, Jaap S.

    2015-01-01

    Microbial decomposition of organic matter is an essential process in the global carbon cycle. The soil bacteria Pseudopedobacter saltans and Flavobacterium johnsoniae are both able to degrade complex organic molecules, but it is not fully known how their membrane structures are adapted to their environmental niche. The membrane lipids of these species were extracted and analyzed using high performance liquid chromatography-electrospray ionization/ion trap/mass spectrometry (HPLC-ESI/IT/MS) and high resolution accurate mass/mass spectrometry (HRAM/MS). Abundant unknown intact polar lipids (IPLs) from P. saltans were isolated and further characterized using amino acid analysis and two dimensional nuclear magnetic resonance (NMR) spectroscopy. Ornithine IPLs (OLs) with variable (hydroxy) fatty acid composition were observed in both bacterial species. Lysine-containing IPLs (LLs) were also detected in both species and were characterized here for the first time using HPLC-MS. Novel LLs containing hydroxy fatty acids and novel hydroxylysine lipids with variable (hydroxy) fatty acid composition were identified in P. saltans. The confirmation of OL and LL formation in F. johnsoniae and P. saltans and the presence of OlsF putative homologs in P. saltans suggest the OlsF gene coding protein is possibly involved in OL and LL biosynthesis in both species, however, potential pathways of OL and LL hydroxylation in P. saltans are still undetermined. Triplicate cultures of P. saltans were grown at three temperature/pH combinations: 30°C/pH 7, 15°C/pH 7, and 15°C/pH 9. The fractional abundance of total amino acid containing IPLs containing hydroxylated fatty acids was significantly higher at higher temperature, and the fractional abundance of lysine-containing IPLs was significantly higher at lower temperature and higher pH. These results suggest that these amino acid-containing IPLs, including the novel hydroxylysine lipids, could be involved in temperature and pH stress

  9. Visualization of lipid metabolism in the larval zebrafish intestine reveals a relationship between NPC1L1 mediated cholesterol uptake and dietary fatty acids

    PubMed Central

    Walters, James W.; Anderson, Jennifer L.; Bittman, Robert; Pack, Michael; Farber, Steven A.

    2012-01-01

    SUMMARY The small intestine is the primary site of dietary lipid absorption in mammals. The balance of nutrients, microorganisms, bile, and mucus that determine intestinal luminal environment cannot be recapitulated ex vivo, thus complicating studies of lipid absorption. We show that fluorescently labeled lipids can be used to visualize and study lipid absorption in live zebrafish larvae. We demonstrate that the addition of BODIPY-fatty acid to a diet high in atherogenic lipids enables imaging of enterocyte lipid droplet dynamics in real time. We find that a lipid-rich meal promotes BODIPY-cholesterol absorption into an endosomal compartment distinguishable from lipid droplets. We also show that dietary fatty acids promote intestinal cholesterol absorption by rapid relocalization of NPC1L1 to intestinal brush border. These data illustrate the power of the zebrafish system to address longstanding questions in vertebrate digestive physiology. PMID:22749558

  10. Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment.

    PubMed

    Fei, Qiang; Fu, Rongzhan; Shang, Longan; Brigham, Christopher J; Chang, Ho Nam

    2015-04-01

    Volatile fatty acids (VFAs) that can be derived from food wastes were used for microbial lipid production by Chlorella protothecoides in heterotrophic cultures. The usage of VFAs as carbon sources for lipid accumulation was investigated in batch cultures. Culture medium, culture temperature, and nitrogen sources were explored for lipid production in the heterotrophic cultivation. The concentration and the ratio of VFAs exhibited significant influence on cell growth and lipid accumulation. The highest lipid yield coefficient and lipid content of C. protothecoides grown on VFAs were 0.187 g/g and 48.7%, respectively. The lipid content and fatty acids produced using VFAs as carbon sources were similar to those seen on growth and production using glucose. The techno-economic analysis indicates that the biodiesel derived from the lipids produced by heterotrophic C. protothecoides with VFAs as carbon sources is very promising and competitive with other biofuels and fossil fuels. PMID:25332127

  11. Composition and hygroscopicity of aerosol particles at Mt. Lu in South China: Implications for acid precipitation

    NASA Astrophysics Data System (ADS)

    Li, Weijun; Chi, Jianwei; Shi, Zongbo; Wang, Xinfeng; Chen, Bin; Wang, Yan; Li, Tao; Chen, Jianmin; Zhang, Daizhou; Wang, Zifa; Shi, Chune; Liu, Liangke; Wang, Wenxing

    2014-09-01

    Physicochemical properties of aerosol particles were studied at Mt. Lu, an elevated site (115°59‧E, 29°35‧N, 1165 m) within the acid precipitation area. Northeast winds transport copious amounts of air pollutants and water vapor from the Yangtze River Delta into this acid precipitation area. NH4+ and SO42- are the dominant ions in PM2.5 and determine aerosol acidity. Individual particle analysis shows abundant S-rich and metals (i.e. Fe-, Zn-, Mn-, and Pb-rich) particles. Unlike aerosol particles in North China and urban areas, there are little soot and mineral particles at Mt. Lu. Lack of mineral particles contributed to the higher acidity in precipitation in the research area. Nano-sized spherical metal particles were observed to be embedded in 37% of S-rich particles. These metal particles were likely originated from heavy industries and fired-power plants. Hygroscopic experiments show that most particles start to deliquesce at 73-76% but organic coating lowers the particle deliquescence relative humidity (DRH) to 63-73%. The DRHs of these aerosol particles are clearly smaller than that of pure ammonium sulfate particles which is 80%. Since RH in ambient air was relatively high, ranging from 65% to 85% during our study period, most particles at our sampling site were in liquid phase. Our results suggest that liquid phase reactions in aerosol particles may contribute to SO2 to sulfuric acid conversion in the acid precipitation area.

  12. Angiotensin II modification by decomposition products of linoleic acid-derived lipid hydroperoxide.

    PubMed

    Takahashi, Ryo; Goto, Takaaki; Oe, Tomoyuki; Lee, Seon Hwa

    2015-09-01

    Polyunsaturated fatty acids are highly susceptible to oxidation induced by reactive oxygen species and enzymes, leading to the formation of lipid hydroperoxides. The linoleic acid (LA)-derived hydroperoxide, 13-hydroperoxyoctadecadienoic acid (HPODE) undergoes homolytic decomposition to reactive aldehydes, 4-oxo-2(E)-nonenal (ONE), 4-hydroxy-2(E)-nonenal, trans-4,5-epoxy-2(E)-decenal (EDE), and 4-hydroperoxy-2(E)-nonenal (HPNE), which can covalently modify peptides and proteins. ONE and HNE have been shown to react with angiotensin (Ang) II (DRVYIHPF) and modify the N-terminus, Arg(2), and His(6). ONE-derived pyruvamide-Ang II (Ang P) alters the biological activities of Ang II considerably. The present study revealed that EDE and HPNE preferentially modified the N-terminus and His(6) of Ang II. In addition to the N-substituted pyrrole of [N-C4H2]-Ang II and Michael addition products of [His(6)(EDE)]-Ang II, hydrated forms were detected as major products, suggesting considerable involvement of the vicinal dihydrodiol (formed by epoxide hydration) in EDE-derived protein modification in vivo. Substantial amounts of [N-(EDE-H2O)]-Ang II isomers were also formed and their synthetic pathway might involve the tautomerization of a carbinolamine intermediate, followed by intramolecular cyclization and dehydration. The main HPNE-derived products were [His(6)(HPNE)]-Ang II and [N-(HPNE-H2O)]-Ang II. However, ONE, HNE, and malondialdehyde-derived modifications were dominant, because HPNE is a precursor of these aldehydes. A mixture of 13-HPODE and [(13)C18]-13-HPODE (1:1) was then used to determine the major modifications derived from LA peroxidation. The characteristic doublet (1:1) observed in the mass spectrum and the mass difference of the [M+H](+) doublet aided the identification of Ang P (N-terminal α-ketoamide), [N-ONE]-Ang II (4-ketoamide), [Arg(2)(ONE-H2O)]-Ang II, [His(6)(HNE)]-Ang II (Michael addition product), [N-C4H2]-Ang II (EDE-derived N-substituted pyrrole

  13. Quantitative Intracellular Localization of Cationic Lipid-Nucleic Acid Nanoparticles with Fluorescence Microscopy.

    PubMed

    Majzoub, Ramsey N; Ewert, Kai K; Safinya, Cyrus R

    2016-01-01

    Current activity in developing synthetic carriers of nucleic acids (NA) and small molecule drugs for therapeutic applications is unprecedented. One promising class of synthetic vectors for the delivery of therapeutic NA is PEGylated cationic liposome (CL)-NA nanoparticles (NPs). Chemically modified PEG-lipids can be used to surface-functionalize lipid-NA nanoparticles, allowing researchers to design active nanoparticles that can overcome the various intracellular and extracellular barriers to efficient delivery. Optimization of these functionalized vectors requires a comprehensive understanding of their intracellular pathways. In this chapter we present two distinct methods for investigating the intracellular activity of PEGylated CL-NA NPs using quantitative analysis with fluorescence microscopy.The first method, spatial localization, describes how to prepare fluorescently labeled CL-NA NPs, perform fluorescence microscopy and properly analyze the data to measure the intracellular distribution of nanoparticles and fluorescent signal. We provide software which allows data from multiple cells to be averaged together and yield statistically significant results. The second method, fluorescence colocalization, describes how to label endocytic organelles via Rab-GFPs and generate micrographs for software-assisted NP-endocytic marker colocalization measurements. These tools will allow researchers to study the endosomal trafficking of CL-NA NPs which can guide their design and improve their efficiency. PMID:27436314

  14. β2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH

    PubMed Central

    Goodchild, Sophia C.; Sheynis, Tania; Thompson, Rebecca; Tipping, Kevin W.; Xue, Wei-Feng; Ranson, Neil A.; Beales, Paul A.; Hewitt, Eric W.; Radford, Sheena E.

    2014-01-01

    Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of β2-microglobulin (β2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which β2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of β2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that β2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between β2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of β2m amyloid-associated osteoarticular tissue destruction in DRA. PMID:25100247

  15. Enhancement of carotenoid bioaccessibility from carrots using excipient emulsions: influence of particle size of digestible lipid droplets.

    PubMed

    Zhang, Ruojie; Zhang, Zipei; Zou, Liqiang; Xiao, Hang; Zhang, Guodong; Decker, Eric Andrew; McClements, David Julian

    2016-01-01

    The influence of initial lipid droplet size on the ability of excipient emulsions to increase carotenoid bioaccessibility from carrots was investigated using a simulated gastrointestinal tract (GIT). Corn oil-in-water excipient emulsions were fabricated with different surface-weighted mean droplet diameters: d32 = 0.17 μm (fine), 0.46 μm (medium), and, 10 μm (large). Bulk oil containing a similar quantity of lipids as the emulsions was used as a control. The excipient emulsions and control were mixed with pureed carrots, and then passed through a simulated GIT (mouth, stomach, and small intestine), and changes in particle size, charge, microstructure, lipid digestion, and carotenoid bioaccessibility were measured. Carotenoid bioaccessibility significantly increased with decreasing lipid droplet size in the excipient emulsions, which was attributed to the rapid formation of mixed micelles that could solubilize the carotenoids in the intestinal fluids. These results have important implications for designing excipient foods, such as dressings, dips, creams, and sauces, to increase the bioavailability of health-promoting nutraceuticals in foods. PMID:26583923

  16. Tracking single particles on supported lipid membranes: multimobility diffusion and nanoscopic confinement.

    PubMed

    Hsieh, Chia-Lung; Spindler, Susann; Ehrig, Jens; Sandoghdar, Vahid

    2014-02-13

    Supported lipid bilayers have been studied intensively over the past two decades. In this work, we study the diffusion of single gold nanoparticles (GNPs) with diameter of 20 nm attached to GM1 ganglioside or DOPE lipids at different concentrations in supported DOPC bilayers. The indefinite photostability of GNPs combined with the high sensitivity of interferometric scattering microscopy (iSCAT) allows us to achieve 1.9 nm spatial precision at 1 ms temporal resolution, while maintaining long recording times. Our trajectories visualize strong transient confinements within domains as small as 20 nm, and the statistical analysis of the data reveals multiple mobilities and deviations from normal diffusion. We present a detailed analysis of our findings and provide interpretations regarding the effect of the supporting substrate and GM1 clustering. We also comment on the use of high-speed iSCAT for investigating diffusion of lipids, proteins, or viruses in lipid membranes with unprecedented spatial and temporal resolution. PMID:24433014

  17. Rare Branched Fatty Acids Characterize the Lipid Composition of the Intra-Aerobic Methane Oxidizer “Candidatus Methylomirabilis oxyfera”

    PubMed Central

    Zhu, Baoli; Rijpstra, W. Irene C.; Jetten, Mike S. M.; Ettwig, Katharina F.; Sinninghe Damsté, Jaap S.

    2012-01-01

    The recently described bacterium “Candidatus Methylomirabilis oxyfera” couples the oxidation of the important greenhouse gas methane to the reduction of nitrite. The ecological significance of “Ca. Methylomirabilis oxyfera” is still underexplored, as our ability to identify the presence of this bacterium is thus far limited to DNA-based techniques. Here, we investigated the lipid composition of “Ca. Methylomirabilis oxyfera” to identify new, gene-independent biomarkers for the environmental detection of this bacterium. Multiple “Ca. Methylomirabilis oxyfera” enrichment cultures were investigated. In all cultures, the lipid profile was dominated up to 46% by the fatty acid (FA) 10-methylhexadecanoic acid (10MeC16:0). Furthermore, a unique FA was identified that has not been reported elsewhere: the monounsaturated 10-methylhexadecenoic acid with a double bond at the Δ7 position (10MeC16:1Δ7), which comprised up to 10% of the total FA profile. We propose that the typical branched fatty acids 10MeC16:0 and 10MeC16:1Δ7 are key and characteristic components of the lipid profile of “Ca. Methylomirabilis oxyfera.” The successful detection of these fatty acids in a peatland from which one of the enrichment cultures originated supports the potential of these unique lipids as biomarkers for the process of nitrite-dependent methane oxidation in the environment. PMID:23042164

  18. Lipid metabolism and the risk factors of cardiovascular disease: implication of dietary omega-3 polyunsaturated fatty acids.

    PubMed

    Balogun, Kayode A

    2016-02-01

    Cardiovascular disease (CVD) is a complicated and multifarious disease, and is the number one cause of mortality worldwide. The pathogenesis of CVD is attributed to the interaction between genetics and environment. There are numerous data that support the cardioprotective properties of omega (n)-3 polyunsaturated fatty acids (PUFA); however, there are also controversial reports. Considering the reported sex and age differences in the pathophysiology of CVD and the metabolism of n-3 PUFA, it is imperative to consider these factors in the cardioprotective effects of n-3 PUFA. The current thesis investigated the effects of n-3 PUFA on the risk factors of CVD, such as dyslipidemia and obesity, with a particular focus on how sex, age, and dose of n-3 PUFA affect lipid and lipoprotein metabolism. The plasma concentrations of lipids and lipoproteins of C57BL/6 mice offspring at weaning and 16 weeks postweaning were chosen as study outcomes to assess the sex, age, and dose-specific effects of n-3 PUFA on markers of dyslipidemia, a well-known risk factor of CVD. A longer exposure to a postnatal diet high in n-3 PUFA increased plasma concentration of low-density lipoprotein (LDL) cholesterol in the offspring in a sex-specific manner; however, the profile of this increase was less atherogenic, as the high n-3 PUFA group had a lower plasma concentration of very small LDL particles in both males and females. There was no effect of high n-3 PUFA diet observed on plasma concentration of high-density lipoprotein cholesterol; however, the high n-3 PUFA group had a higher cholesterol efflux in the male offspring but not in female offspring. Lipidomic analyses revealed that high n-3 PUFA diet led to higher hepatic and plasma concentrations of n-3 PUFA-containing bioactive lipids, such a phosphatidylcholine, lysophosphatidylcholine and free fatty acids, which could positively influence pathways involved in cardioprotection. The effects of dietary n-3 PUFA on obesity at the cellular

  19. Fatty acid composition of spruce needle lipids after exposure to air pollutants

    SciTech Connect

    Wolfenden, J.; Wellburn, A.R. )

    1990-05-01

    Alterations in the fatty acid composition of membrane lipids have been observed in long-term experiments using realistic exposures of air pollutants. Monogalactosyl diglyceride (MGDG), from red spruce, showed a 12% reduction in linolenic acid (18:3) compared with controls, after a 21 week winter fumigation with SO{sub 2} NO{sub 2} (20 ppb each). The composition of phosphatidyl choline from the same trees was unaffected. In Norway spruce exposed to 70 ppb O{sub 3} for 3 consecutive summers there was no treatment effect on 18:3 content of MGDG, which ranged from 70 to 80%, with highest values in November. The percentage of octadecatetranoic acid (18:4) also varied seasonally. Compared with controls, polluted plants had proportionally less 18:4 during autumn, perhaps indicating some effect of O{sub 3} on the winter hardening process. Our observations emphasize the need for long-term experiments to investigate subtle disturbances to seasonal metabolic cycles.

  20. Regulation of inflammatory and lipid metabolism genes by eicosapentaenoic acid-rich oil[S

    PubMed Central

    Gillies, Peter J.; Bhatia, Sujata K.; Belcher, Leigh A; Hannon, Daniel B.; Thompson, Jerry T.; Vanden Heuvel, John P.

    2012-01-01

    Omega-3-PUFAs, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are associated with prevention of various aspects of metabolic syndrome. In the present studies, the effects of oil rich in EPA on gene expression and activation of nuclear receptors was examined and compared with other ω3-PUFAs. The EPA-rich oil (EO) altered the expression of FA metabolism genes in THP-1 cells, including stearoyl CoA desaturase (SCD) and FA desaturase-1 and -2 (FASDS1 and -2). Other ω3-PUFAs resulted in a similar gene expression response for a subset of genes involved in lipid metabolism and inflammation. In reporter assays, EO activated human peroxisome proliferator-activated receptor α (PPARα) and PPARβ/γ with minimal effects on PPARγ, liver X receptor, retinoid X receptor, farnesoid X receptor, and retinoid acid receptor γ (RARγ); these effects were similar to that observed for purified EPA. When serum from a 6 week clinical intervention with dietary supplements containing olive oil (control), DHA, or two levels of EPA were applied to THP-1 cells, the expression of SCD and FADS2 decreased in the cells treated with serum from the ω3-PUFA-supplemented individuals. Taken together, these studies indicate regulation of gene expression by EO that is consistent with treating aspects of dyslipidemia and inflammation. PMID:22556214

  1. Preparation of fatty acid methyl esters for gas-chromatographic analysis of marine lipids: insight studies.

    PubMed

    Carvalho, Ana P; Malcata, F Xavier

    2005-06-29

    Assays for fatty acid composition in biological materials are commonly carried out by gas chromatography, after conversion of the lipid material into the corresponding methyl esters (FAME) via suitable derivatization reactions. Quantitative derivatization depends on the type of catalyst and processing conditions employed, as well as the solubility of said sample in the reaction medium. Most literature pertinent to derivatization has focused on differential comparison between alternative methods; although useful to find out the best method for a particular sample, additional studies on factors that may affect each step of FAME preparation are urged. In this work, the influence of various parameters in each step of derivatization reactions was studied, using both cod liver oil and microalgal biomass as model systems. The accuracies of said methodologies were tested via comparison with the AOCS standard method, whereas their reproducibility was assessed by analysis of variance of (replicated) data. Alkaline catalysts generated lower levels of long-chain unsaturated FAME than acidic ones. Among these, acetyl chloride and BF(3) were statistically equivalent to each other. The standard method, which involves alkaline treatment of samples before acidic methylation with BF(3), provided equivalent results when compared with acidic methylation with BF(3) alone. Polarity of the reaction medium was found to be of the utmost importance in the process: intermediate values of polarity [e.g., obtained by a 1:1 (v/v) mixture of methanol with diethyl ether or toluene] provided amounts of extracted polyunsaturated fatty acids statistically higher than those obtained via the standard method. PMID:15969474

  2. Association between Dietary Acid Load and Insulin Resistance: Tehran Lipid and Glucose Study

    PubMed Central

    Moghadam, Sajjad Khalili; Bahadoran, Zahra; Mirmiran, Parvin; Tohidi, Maryam; Azizi, Fereidoun

    2016-01-01

    In the current study, we investigated the longitudinal association between dietary acid load and the risk of insulin resistance (IR) in the Tehranian adult population. This longitudinal study was conducted on 925 participants, aged 22~80 years old, in the framework of the third (2006~2008) and fourth (2009~2011) phases of the Tehran Lipid and Glucose Study. At baseline, the dietary intake of subjects was assessed using a validated semi-quantitative food frequency questionnaire, and the potential renal acid load (PRAL) and net endogenous acid production (NEAP) scores were calculated at baseline. Fasting serum insulin and glucose were measured at baseline and again after a 3-year of follow-up; IR was defined according to optimal cut-off values. Multiple logistic regression models were used to estimate the risk of IR according to the PRAL and NEAP quartile categories. Mean age and body mass index of the participants were 40.3 years old of 26.4 kg/m2, respectively. Mean PRAL and NEAP scores were −11.2 and 35.6 mEq/d, respectively. After adjustment for potential confounders, compared to the lowest quartile of PRAL and NEAP, the highest quartile was accompanied with increased risk of IR [odds ratio (OR)=2.81, 95% confidence interval (CI)=1.32~5.97 and OR=2.18, 95% CI=1.03 ~4.61, respectively]. Our findings suggest that higher acidic dietary acid-base load, defined by higher PRAL and NEAP scores, may be a risk factor for the development of IR and related metabolic disorders. PMID:27390726

  3. AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation

    PubMed Central

    Herms, Albert; Bosch, Marta; Reddy, Babu J.N.; Schieber, Nicole L.; Fajardo, Alba; Rupérez, Celia; Fernández-Vidal, Andrea; Ferguson, Charles; Rentero, Carles; Tebar, Francesc; Enrich, Carlos; Parton, Robert G.; Gross, Steven P.; Pol, Albert

    2015-01-01

    Lipid droplets (LDs) are intracellular organelles that provide fatty acids (FAs) to cellular processes including synthesis of membranes and production of metabolic energy. While known to move bidirectionally along microtubules (MTs), the role of LD motion and whether it facilitates interaction with other organelles are unclear. Here we show that during nutrient starvation, LDs and mitochondria relocate on detyrosinated MT from the cell centre to adopt a dispersed distribution. In the cell periphery, LD–mitochondria interactions increase and LDs efficiently supply FAs for mitochondrial beta-oxidation. This cellular adaptation requires the activation of the energy sensor AMPK, which in response to starvation simultaneously increases LD motion, reorganizes the network of detyrosinated MTs and activates mitochondria. In conclusion, we describe the existence of a specialized cellular network connecting the cellular energetic status and MT dynamics to coordinate the functioning of LDs and mitochondria during nutrient scarcity. PMID:26013497

  4. Engineering of lipid prodrug-based, hyaluronic acid-decorated nanostructured lipid carriers platform for 5-fluorouracil and cisplatin combination gastric cancer therapy

    PubMed Central

    Qu, Chun-Ying; Zhou, Min; Chen, Ying-wei; Chen, Mei-mei; Shen, Feng; Xu, Lei-Ming

    2015-01-01

    Purpose The first-line chemotherapy treatment protocol for gastric cancer is combination chemotherapy of 5-fluorouracil (5-FU) and cisplatin (CDDP). The aim of this study was to engineer prodrug-based nanostructured lipid carriers (NLC) platform for codelivery of 5-FU and CDDP to enhance therapy and decrease toxicity. Methods First, 5-FU-stearic acid lipid conjugate was synthesized by two steps. Second, 5-FU-stearic acid prodrug and CDDP were loaded in NLC. Finally, hyaluronic acid (HA) was coated onto NLC surface. Average size, zeta potential, and drug loading capacity of NLC were evaluated. Human gastric cancer cell line BGC823 (BGC823 cells) was used for the testing of in vitro cytotoxicity assays. In vivo antitumor activity of NLC was evaluated in mice bearing BGC823 cells model. Results HA-coated 5-FU-stearic acid prodrug and CDDP-loaded NLC (HA-FU/C-NLC) showed a synergistic effect in combination therapy and displayed the greatest antitumor activity than all of the free drugs or uncoated NLC in vitro and in vivo. Conclusion This work reveals that HA-coated NLC could be used as a novel carrier to code-liver 5-FU and CDDP for gastric cancer therapy. HA-FU/C-NLC could be a promising targeted and combinational therapy in nanomedicine. PMID:26089667

  5. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    SciTech Connect

    Song, Jun; Ren, Pingping; Zhang, Lin; Wang, Xing Li; Chen, Li; Shen, Ying H.

    2010-02-26

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  6. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeasts species

    PubMed Central

    Sitepu, Irnayuli R.; Sestric, Ryan; Ignatia, Laura; Levin, David; German, J. Bruce; Gillies, Laura A.; Almada, Luis A.G.; Boundy-Mills, Kyria L.

    2013-01-01

    Oleaginous yeasts have been studied for oleochemical production for over 80 years. Only a few species have been studied intensely. To expand the diversity of oleaginous yeasts available for lipid research, we surveyed a broad diversity of yeasts with indicators of oleaginicity including known oleaginous clades, and buoyancy. Sixty-nine strains representing 17 genera and 50 species were screened for lipid production. Yeasts belonged to Ascomycota families, Basidiomycota orders, and the yeast-like algal genus Prototheca. Total intracellular lipids and fatty acid composition were determined under different incubation times and nitrogen availability. Thirteen new oleaginous yeast species were discovered, representing multiple ascomycete and basidiomycete clades. Nitrogen starvation generally increased intracellular lipid content. The fatty acid profiles varied with the growth conditions regardless of taxonomic affiliation. The dominant fatty acids were oleic acid, palmitic acid, linoleic acid, and stearic acid. Yeasts and culture conditions that produced fatty acids appropriate for biodiesel were identified. PMID:23891835

  7. Lipid merging, protrusion and vesicle release triggered by shrinking/swelling of poly(N-isopropylacrylamide) microgel particles

    NASA Astrophysics Data System (ADS)

    Dou, Yujiang; Li, Jingliang; Yuan, Bing; Yang, Kai

    2014-03-01

    Cell membrane changes its morphology during many physiological processes with the assistance of a solid support, such as the cytoskeleton, under an environmental stimulus. Here, a novel type of stimuli-responsive lipogel was fabricated, mimicking the changes of cell membrane. The lipogel was prepared from poly(N-isopropylacrylamide) (pNIPAM) microgel particle and phospholipid by a solvent-exchange method. The temperature dependent volume phase transition of pNIPAM triggers reversible transformation of the lipogel between a lipid vesicle-coated sun-like structure and a contracted hybrid sphere, through lipid merging and protrusion processes, respectively. By contrast, the salt induced pNIPAM phase transition leads to an irreversible vesicle release behaviour. The lipogel creates a unique platform for studying cell membrane behaviour and provides promising candidates in drug delivery and controlled release applications.

  8. Boronic acid-modified lipid nanocapsules: a novel platform for the highly efficient inhibition of hepatitis C viral entry

    NASA Astrophysics Data System (ADS)

    Khanal, Manakamana; Barras, Alexandre; Vausselin, Thibaut; Fénéant, Lucie; Boukherroub, Rabah; Siriwardena, Aloysius; Dubuisson, Jean; Szunerits, Sabine

    2015-01-01

    The search for viral entry inhibitors that selectively target viral envelope glycoproteins has attracted increasing interest in recent years. Amongst the handful of molecules reported to show activity as hepatitis C virus (HCV) entry inhibitors are a variety of glycan-binding proteins including the lectins, cyanovirin-N (CV-N) and griffithsin. We recently demonstrated that boronic acid-modified nanoparticles are able to reduce HCV entry through a similar mechanism to that of lectins. A major obstacle to any further development of these nanostructures as viral entry inhibitors is their only moderate maximal inhibition potential. In the present study, we report that lipid nanocapsules (LNCs), surface-functionalized with amphiphilic boronic acid (BA) through their post-insertion into the semi-rigid shell of the LNCs, are indeed far superior as HCV entry inhibitors when compared with previously reported nanostructures. These 2nd generation particles (BA-LNCs) are shown to prevent HCV infection in the micromolar range (IC50 = 5.4 μM of BA moieties), whereas the corresponding BA monomers show no significant effects even at the highest analyzed concentration (20 μM). The new BA-LNCs are the most promising boronolectin-based HCV entry inhibitors reported to date and are thus observed to show great promise in the development of a pseudolectin-based therapeutic agent.The search for viral entry inhibitors that selectively target viral envelope glycoproteins has attracted increasing interest in recent years. Amongst the handful of molecules reported to show activity as hepatitis C virus (HCV) entry inhibitors are a variety of glycan-binding proteins including the lectins, cyanovirin-N (CV-N) and griffithsin. We recently demonstrated that boronic acid-modified nanoparticles are able to reduce HCV entry through a similar mechanism to that of lectins. A major obstacle to any further development of these nanostructures as viral entry inhibitors is their only moderate maximal

  9. Lipid production by Cryptococcus curvatus on hydrolysates derived from corn fiber and sweet sorghum bagasse following dilute acid pretreatment.

    PubMed

    Liang, Yanna; Jarosz, Kimberly; Wardlow, Ashley T; Zhang, Ji; Cui, Yi

    2014-08-01

    Corn fiber and sweet sorghum bagasse (SSB) are both pre-processed lignocellulosic materials that can be used to produce liquid biofuels. Pretreatment using dilute sulfuric acid at a severity factor of 1.06 and 1.02 released 83.2 and 86.5 % of theoretically available sugars out of corn fiber and SSB, respectively. The resulting hydrolysates derived from pretreatment of SSB at SF of 1.02 supported growth of Cryptococcus curvatus well. In 6 days, the dry cell density reached 10.8 g/l with a lipid content of 40 % (w/w). Hydrolysates from corn fiber, however, did not lead to any significant cell growth even with addition of nutrients. In addition to consuming glucose, xylose, and arabinose, C. curvatus also utilized formic acid, acetic acid, 4-hydroxymethylfurfural, and levulinic acid for growth. Thus, C. curvatus appeared to be an excellent yeast strain for producing lipids from hydrolysates developed from lignocellulosic feedstocks. PMID:24928546

  10. Analysis of lipid and fatty acid composition of three species of scorpions with relation to different organs.

    PubMed

    Laino, Aldana; Mattoni, Camilo; Ojanguren-Affilastro, Andrés; Cunningham, Mónica; Fernando Garcia, C

    2015-12-01

    Within arthropods most of the information related to the type of mobilization and storage of lipids is found in insects and crustaceans. Literature is scarce with relation to scorpions. This order is a remarkably important model of the biochemistry, since it is characterized as an animal with very primitive traits which have varied minimally through time. In the present study we characterize and compare lipids and fatty acids present in three species of scorpion: Timogenes elegans, Timogenes dorbignyi, and Brachistosternus ferrugineus, focusing the study on the main organs/tissues involved in the dynamics of lipids. As found in the fat body of insects, hepatopancreas of crustaceans and midgut diverticula of spiders, the hepatopancreas of the three species studied here turned out to be the organ of lipid storage (great quantity of triacylglycerides). With relation to the hemolymph and muscles, a great quantity of phospholipids was observed, which is possibly involved in membrane formation. It is important to highlight that unlike what happens in insects, in scorpions the main circulating energetic lipid is the triacylglyceride. This lipid is found in greater proportion in the hepatopancreas of females, surely for reproduction. The fatty acid of the different organs/tissues analyzed remained constant in the three species studied with certain characteristic patterns, thus observing saturated and unsaturated most abundant fatty acids of C16 and C18. Finally, it could be observed that in T. elegans, T. dorbignyi and B. ferrugineus scorpions, there is a lack of 20:4 that generates a special condition within fatty acids of arthropods. PMID:26303276

  11. Research on the Changes to the Lipid/Polymer Membrane Used in the Acidic Bitterness Sensor Caused by Preconditioning.

    PubMed

    Harada, Yuhei; Noda, Junpei; Yatabe, Rui; Ikezaki, Hidekazu; Toko, Kiyoshi

    2016-01-01

    A taste sensor that uses lipid/polymer membranes can evaluate aftertastes felt by humans using Change in membrane Potential caused by Adsorption (CPA) measurements. The sensor membrane for evaluating bitterness, which is caused by acidic bitter substances such as iso-alpha acid contained in beer, needs an immersion process in monosodium glutamate (MSG) solution, called "MSG preconditioning". However, what happens to the lipid/polymer membrane during MSG preconditioning is not clear. Therefore, we carried out three experiments to investigate the changes in the lipid/polymer membrane caused by the MSG preconditioning, i.e., measurements of the taste sensor, measurements of the amount of the bitterness substance adsorbed onto the membrane and measurements of the contact angle of the membrane surface. The CPA values increased as the preconditioning process progressed, and became stable after 3 d of preconditioning. The response potentials to the reference solution showed the same tendency of the CPA value change during the preconditioning period. The contact angle of the lipid/polymer membrane surface decreased after 7 d of MSG preconditioning; in short, the surface of the lipid/polymer membrane became hydrophilic during MSG preconditioning. The amount of adsorbed iso-alpha acid was increased until 5 d preconditioning, and then it decreased. In this study, we revealed that the CPA values increased with the progress of MSG preconditioning in spite of the decrease of the amount of iso-alpha acid adsorbed onto the lipid/polymer membrane, and it was indicated that the CPA values increase because the sensor sensitivity was improved by the MSG preconditioning. PMID:26891299

  12. Research on the Changes to the Lipid/Polymer Membrane Used in the Acidic Bitterness Sensor Caused by Preconditioning

    PubMed Central

    Harada, Yuhei; Noda, Junpei; Yatabe, Rui; Ikezaki, Hidekazu; Toko, Kiyoshi

    2016-01-01

    A taste sensor that uses lipid/polymer membranes can evaluate aftertastes felt by humans using Change in membrane Potential caused by Adsorption (CPA) measurements. The sensor membrane for evaluating bitterness, which is caused by acidic bitter substances such as iso-alpha acid contained in beer, needs an immersion process in monosodium glutamate (MSG) solution, called “MSG preconditioning”. However, what happens to the lipid/polymer membrane during MSG preconditioning is not clear. Therefore, we carried out three experiments to investigate the changes in the lipid/polymer membrane caused by the MSG preconditioning, i.e., measurements of the taste sensor, measurements of the amount of the bitterness substance adsorbed onto the membrane and measurements of the contact angle of the membrane surface. The CPA values increased as the preconditioning process progressed, and became stable after 3 d of preconditioning. The response potentials to the reference solution showed the same tendency of the CPA value change during the preconditioning period. The contact angle of the lipid/polymer membrane surface decreased after 7 d of MSG preconditioning; in short, the surface of the lipid/polymer membrane became hydrophilic during MSG preconditioning. The amount of adsorbed iso-alpha acid was increased until 5 d preconditioning, and then it decreased. In this study, we revealed that the CPA values increased with the progress of MSG preconditioning in spite of the decrease of the amount of iso-alpha acid adsorbed onto the lipid/polymer membrane, and it was indicated that the CPA values increase because the sensor sensitivity was improved by the MSG preconditioning. PMID:26891299

  13. Direct transfer of starter substrates from type I fatty acid synthase to type III polyketide synthases in phenolic lipid synthesis.

    PubMed

    Miyanaga, Akimasa; Funa, Nobutaka; Awakawa, Takayoshi; Horinouchi, Sueharu

    2008-01-22

    Alkylresorcinols and alkylpyrones, which have a polar aromatic ring and a hydrophobic alkyl chain, are phenolic lipids found in plants, fungi, and bacteria. In the Gram-negative bacterium Azotobacter vinelandii, phenolic lipids in the membrane of dormant cysts are essential for encystment. The aromatic moieties of the phenolic lipids in A. vinelandii are synthesized by two type III polyketide synthases (PKSs), ArsB and ArsC, which are encoded by the ars operon. However, details of the synthesis of hydrophobic acyl chains, which might serve as starter substrates for the type III polyketide synthases (PKSs), were unknown. Here, we show that two type I fatty acid synthases (FASs), ArsA and ArsD, which are members of the ars operon, are responsible for the biosynthesis of C(22)-C(26) fatty acids from malonyl-CoA. In vivo and in vitro reconstitution of phenolic lipid synthesis systems with the Ars enzymes suggested that the C(22)-C(26) fatty acids produced by ArsA and ArsD remained attached to the ACP domain of ArsA and were transferred hand-to-hand to the active-site cysteine residues of ArsB and ArsC. The type III PKSs then used the fatty acids as starter substrates and carried out two or three extensions with malonyl-CoA to yield the phenolic lipids. The phenolic lipids in A. vinelandii were thus found to be synthesized solely from malonyl-CoA by the four members of the ars operon. This is the first demonstration that a type I FAS interacts directly with a type III PKS through substrate transfer. PMID:18199837

  14. Infrared spectrum of nitric acid dihydrate: Influence of particle shape.

    PubMed

    Wagner, Robert; Möhler, Ottmar; Saathoff, Harald; Stetzer, Olaf; Schurath, Ulrich

    2005-03-24

    In situ Fourier transform infrared (FTIR) extinction spectra of airborne alpha-NAD microparticles generated by two different methods were recorded in the large coolable aerosol chamber AIDA of Forschungszentrum Karlsruhe. The extinction spectrum of alpha-NAD crystals obtained by shock freezing of a HNO3/H2O gas mixture could be accurately reproduced using Mie theory with published refractive indices of alpha-NAD as input. In contrast, Mie theory proved to be inadequate to properly reproduce the infrared extinction spectrum of alpha-NAD crystals which were formed via homogeneous nucleation of supercooled HNO3/H2O solution droplets, evaporating slowly on a time scale of several hours at about 195 K. Much better agreement between measured and calculated extinction spectra was obtained by T-matrix calculations assuming oblate particles with aspect ratios greater than five. This indicates that strongly aspherical alpha-NAD crystals are obtained when supercooled nitric acid solution droplets freeze and grow slowly, a process which has been discussed as a potential pathway to the formation of crystalline polar stratospheric cloud (PSC) particles. PMID:16833561

  15. Dietary Lipid Levels Influence Lipid Deposition in the Liver of Large Yellow Croaker (Larimichthys crocea) by Regulating Lipoprotein Receptors, Fatty Acid Uptake and Triacylglycerol Synthesis and Catabolism at the Transcriptional Level

    PubMed Central

    Yan, Jing; Liao, Kai; Wang, Tianjiao; Mai, Kangsen; Xu, Wei; Ai, Qinghui

    2015-01-01

    Ectopic lipid accumulation has been observed in fish fed a high-lipid diet. However, no information is available on the mechanism by which dietary lipid levels comprehensively regulate lipid transport, uptake, synthesis and catabolism in fish. Therefore, the present study aimed to gain further insight into how dietary lipids affect lipid deposition in the liver of large yellow croaker(Larimichthys crocea). Fish (150.00±4.95 g) were fed a diet with a low (6%), moderate (12%, the control diet) or high (18%) crude lipid content for 10 weeks. Growth performance, plasma biochemical indexes, lipid contents and gene expression related to lipid deposition, including lipoprotein assembly and clearance, fatty acid uptake and triacylglycerol synthesis and catabolism, were assessed. Growth performance was not significantly affected. However, the hepato-somatic and viscera-somatic indexes as well as plasma triacylglycerol, non-esterified fatty acids and LDL-cholesterol levels were significantly increased in fish fed the high-lipid diet. In the livers of fish fed the high-lipid diet, the expression of genes related to lipoprotein clearance (LDLR) and fatty acid uptake (FABP11) was significantly up-regulated, whereas the expression of genes involved in lipoprotein assembly (apoB100), triacylglycerol synthesis and catabolism (DGAT2, CPT I) was significantly down-regulated compared with fish fed the control diet, and hepatic lipid deposition increased. In fish fed the low-lipid diet, the expression of genes associated with lipoprotein assembly and clearance (apoB100, LDLR, LRP-1), fatty acid uptake (CD36, FATP1, FABP3) and triacylglycerol synthesis (FAS) was significantly increased, whereas the expression of triacylglycerol catabolism related genes (ATGL, CPT I) was reduced compared with fish fed the control diet. However, hepatic lipid content in fish fed the low-lipid diet decreased mainly due to low dietary lipid intake. In summary, findings of this study provide molecular

  16. Synthesis and Characterization of Canola Oil-Stearic Acid-Based Trans-Free Structured Lipids for Possible Margarine Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incorporation of stearic acid into canola oil to produce trans-free structured lipid (SL) as a healthy alternative to partially hydrogenated fats for margarine formulation was investigated. Response surface methodology was used to study the effects of Lipozyme RM IM from Rhizomucor Miehei and Candid...

  17. Fatty Acid Composition and Lipid Profile of Diospyros mespiliformis, Albizia lebbeck, and Caesalpinia pulcherrima Seed Oils from Nigeria

    PubMed Central

    Oderinde, Rotimi Ayodele

    2014-01-01

    The screening of lesser-known underutilized seeds as source of food has been a way of finding solution to food insecurity in developing nations. In this regard, oil as a class of food was extracted from the seeds of Diospyros mespiliformis  (4.72 ± 0.2%), Albizia lebbeck  (6.40 ± 0.60%), and Caesalpinia pulcherrima  (7.2 ± 0.30%). The oils were finally analyzed for their fatty acid composition, lipid classes, fatty acid distribution in the lipid fractions, and molecular speciation of the triacylglycerols, glycolipids, and phospholipids. The fatty acid composition of the oils varied with C18:2 fatty acid being the most dominant in the oils. Neutral lipids were the most abundant lipid class found in the oils while molecular species of the triacylglycerol with equivalent carbon chain number C40 was majorly present in the oils of Diospyros mespiliformis and Caesalpinia pulcherrima. The present study presents lesser-known underutilized seeds as possible sources of food. PMID:26904625

  18. Comparison of lipid content and fatty acid composition and their distribution within seeds of 5 small grain species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley, oats, rice, sorghum, and wheat, each with two genotypes, were sequentially abraded by an electric seed scarifier. The pearling fines (PF) and pearled kernels (PK) at each cycle were analyzed for lipid (mostly nonpolar) content and fatty acid (FA)composition. The oil content in whole or deh...

  19. Objective and sensory measures of meat quality and fatty acid profile of longissimus intramuscular lipid from pigs fed crude glycerol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The longissimus dorsi from 87 pigs (43 barrows, 44 gilts) fed corn-soybean meal based diets containing 0, 5, or 10% crude glycerol for 138 days were examined for objective and sensory measures of meat quality and the fatty acid profile of LD lipid was determined. Crude glycerol was obtained from AG ...

  20. BIOCHEMISTRY OF DINOFLAGELLATE LIPIDS, WITH PARTICULAR REFERENCE TO THE FATTY ACID AND STEROL COMPOSITION OF A KARENIA BREVIS BLOOM

    EPA Science Inventory

    Leblond, Jeffrey D., Terence J. Evens and Peter J. Chapman. 2003. Biochemistry of Dinoflagellate Lipids, with Particular Reference to the Fatty Acid and Sterol Composition of a Karenia brevis Bloom. Phycologia. 42(4):324-331. (ERL,GB 1160).

    The harmful marine dinoflagella...

  1. Synthesis and Characterization of Canola Oil-Stearic Acid-Based Trans-Free Structured Lipids for Possible Margarine Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incorporation of stearic acid into canola oil to produce trans-free structured lipid (SL) as a healthy alternative to partially hydrogenated fats for margarine formulation was investigated. Response surface methodology was used to study the effects of lipozyme RM IM from Rhizomucor miehei and Candi...

  2. High yields of fatty acid and neutral lipid production from cassava bagasse hydrolysate (CBH) by heterotrophic Chlorella protothecoides.

    PubMed

    Chen, Junhui; Liu, Xiaoguang; Wei, Dong; Chen, Gu

    2015-09-01

    The fermentation process for high yields of fatty acid and neutral lipid production from cassava bagasse hydrolysate (CBH) was developed by heterotrophic Chlorella protothecoides. An efficient single-step enzymatic hydrolysis of cassava bagasse (CB) by cellulase was firstly developed to produce >30 g/L of reducing sugars. The concentrated CBH was subsequently applied in a batch culture, producing 7.9 g/L of dry biomass with yield of 0.44 g/g reducing sugar and 34.3 wt% of fatty acids and 48.6 wt% of neutral lipids. Furthermore, fed-batch fermentation using CBH achieved higher yields of fatty acids (41.0 wt% and a titer of 5.83 g/L) and neutral lipids (58.4 wt% and yield of 0.22 g/g reducing sugar). Additionally, the fatty acid profile analysis showed that the intercellular lipid was suitable to prepare high-quality biodiesel. This study demonstrated the feasibility of using CBH as low-cost feedstock to produce crude algal oil for sustainable biodiesel production. PMID:26002147

  3. Preparation, Physicochemical Properties, and Transfection Activities of Tartaric Acid-Based Cationic Lipids as Effective Nonviral Gene Delivery Vectors.

    PubMed

    Wan, Ning; Jia, Yi-Yang; Hou, Yi-Lin; Ma, Xi-Xi; He, Yong-Sheng; Li, Chen; Zhou, Si-Yuan; Zhang, Bang-Le

    2016-07-01

    In this work two novel cationic lipids using natural tartaric acid as linking backbone were synthesized. These cationic lipids were simply constructed by tartaric acid backbone using head group 6-aminocaproic acid and saturated hydrocarbon chains dodecanol (T-C12-AH) or hexadecanol (T-C16-AH). The physicochemical properties, gel electrophoresis, transfection activities, and cytotoxicity of cationic liposomes were tested. The optimum formulation for T-C12-AH and T-C16-AH was at cationic lipid/dioleoylphosphatidylethanolamine (DOPE) molar ratio of 1 : 0.5 and 1 : 2, respectively, and N/P charge molar ratio of 1 : 1 and 1 : 1, respectively. Under optimized conditions, T-C12-AH and T-C16-AH showed effective gene transfection capabilities, superior or comparable to that of commercially available transfecting reagent 3β-[N-(N',N'-dimethylaminoethyl)carbamoyl]cholesterol (DC-Chol) and N-[2,3-dioleoyloxypropyl]-N,N,N-trimethylammonium chloride (DOTAP). The results demonstrated that the two novel tartaric acid-based cationic lipids exhibited low toxicity and efficient transfection performance, offering an excellent prospect as nonviral vectors for gene delivery. PMID:27118165

  4. Foamy Virus Protein-Nucleic Acid Interactions during Particle Morphogenesis.

    PubMed

    Hamann, Martin V; Lindemann, Dirk

    2016-01-01

    Compared with orthoretroviruses, our understanding of the molecular and cellular replication mechanism of foamy viruses (FVs), a subfamily of retroviruses, is less advanced. The FV replication cycle differs in several key aspects from orthoretroviruses, which leaves established retroviral models debatable for FVs. Here, we review the general aspect of the FV protein-nucleic acid interactions during virus morphogenesis. We provide a summary of the current knowledge of the FV genome structure and essential sequence motifs required for RNA encapsidation as well as Gag and Pol binding in combination with details about the Gag and Pol biosynthesis. This leads us to address open questions in FV RNA engagement, binding and packaging. Based on recent findings, we propose to shift the point of view from individual glycine-arginine-rich motifs having functions in RNA interactions towards envisioning the FV Gag C-terminus as a general RNA binding protein module. We encourage further investigating a potential new retroviral RNA packaging mechanism, which seems more complex in terms of the components that need to be gathered to form an infectious particle. Additional molecular insights into retroviral protein-nucleic acid interactions help us to develop safer, more specific and more efficient vectors in an era of booming genome engineering and gene therapy approaches. PMID:27589786

  5. Bile Acid Metabolome after an Oral Lipid Tolerance Test by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)

    PubMed Central

    Schmid, Andreas; Neumann, Hannah; Karrasch, Thomas; Liebisch, Gerhard; Schäffler, Andreas

    2016-01-01

    Context Besides their role in intestinal resorption of lipids, bile acids are regarded as endocrine and metabolic signaling molecules. The detailed profile of bile acid species in peripheral blood after an oral lipid tolerance test (OLTT) is unknown. Objective We quantified the regulation of 18 bile acids after OLTT in healthy individuals. Material and methods 100 volunteers were characterized by anthropometric and laboratory parameters and underwent OLTT. Venous blood was drawn in the fasted state (0 h) and at 2h, 4h, and 6 h after OLTT. Serum concentrations of 18 bile acids were measured by LC-MS/MS. Results All of the 6 taurine-conjugated bile acids (TUDCA, THDCA, TCA, TCDCA, TDCA, TLCA) and all of the 6 glycine-conjugated bile acids (GUDCA, GHDCA, GCA, GCDCA, GDCA, GLCA) rose significantly at 2h and remained elevated during OLTT. Of the primary bile acids, CA remained unchanged, whereas CDCA significantly decreased at 4h. Of the secondary bile acids, DCA, UDCA and HDCA were not altered, whereas LCA decreased. There was a significant positive correlation between the intestinal feed-back regulator of bile acid synthesis FGF-19 and bile acids. This correlation seems to depend on all of the six taurine-conjugated bile acids and on GCA, GDCA, and GCDCA. Females and users of hormonal contraception displayed higher levels of taurine-conjugated bile acids. Conclusions The novelty of the study is based on the identification of single bile acids during OLTT. LC-MS/MS-based quantification of bile acids in serum provides a reliable tool for future investigation of endocrine and metabolic effects of bile acids. PMID:26863103

  6. Sensitive assay, based on hydroxy fatty acids from lipopolysaccharide lipid A, for Gram-negative bacteria in sediments.

    PubMed Central

    Parker, J H; Smith, G A; Fredrickson, H L; Vestal, J R; White, D C

    1982-01-01

    Biochemical measures have provided insight into the biomass and community structure of sedimentary microbiota without the requirement of selection by growth or quantitative removal from the sediment grains. This study used the assay of the hydroxy fatty acids released from the lipid A of the lipopolysaccharide in sediments to provide an estimate of the gram-negative bacteria. The method was sensitive to picomolar amounts of hydroxy fatty acids. The recovery of lipopolysaccharide hydroxy fatty acids from organisms added to sediments was quantitative. The lipids were extracted from the sediments with single-phase chloroform-methanol extraction. The lipid-extraction residue was hydrolyzed in 1 N HCl, and the hydroxy fatty acids of the lipopolysaccharide were recovered in chloroform for analysis by gas-liquid chromatography. This method proved to be about fivefold more sensitive than the classical phenol-water or trichloroacetic acid methods when applied to marine sediments. By examination of the patterns of hydroxy fatty acids, it was also possible to help define the community structure of the sedimentary gram-negative bacteria. PMID:6817712

  7. Radiation-induced lipid peroxidation in whole grain of rye, wheat and rice: Effects on linoleic and linolenic acid

    NASA Astrophysics Data System (ADS)

    Vaca, C. E.; Harms-Ringdahl, M.

    Changes in the fatty acid composition in lipids after γ-irradation of whole grain of wheat, rye and rice were examined. The radiosensitivity of linoleic acid (18:2) and linolenic acid (18:3) was studied up to a dose of 63 kGy in seeds with different water content and after a post-irradiation storage time of 2 months. At doses in the range recommended for grain desinfestation, i.e. 0.1-1.0 kGy, no detectable degradation of 18:2 and 18:3 was found, but at the highest dose applied, 63 kGy, a degradation in the range from a few percent up to 40% was observed. Under extreme conditions, i.e. pre- and post-irradation treatment with oxygen, or when the flour prepared from the seeds was mixed with water and heated before the extraction of the lipids, a more pronounced degradation of the unsaturated fatty acids was noticed. Lipid peroxidation induced by γ-irradation was estimated using the thiobarbituric acid (TBA) method. High yields of the TBA-reactive material were formed in the three types of grain investigated corresponding to G-values in the range of 12-18. The influence on peroxidation yields of the water content of the seeds was studied in wheat. The origin of the TBA-reactive material formed in the seeds is not yet known, but could only to a minor extent be due to fatty acid peroxidation.

  8. The effect of a lipid-rich diet on the properties and composition of lipoprotein particles from the Golgi apparatus of guinea-pig liver.

    PubMed

    Chapman, M J; Mills, G L; Taylaur, C E

    1973-02-01

    1. A cell fraction rich in Golgi apparatus was isolated from the livers of guinea pigs fed on a lipid-rich diet (1.6% cholesterol, 15% corn oil). 2. The Golgi cisternae and secretory vesicles contained electron-dense particles which were tentatively identified as VLD (very-low-density) and LD (low-density) lipoproteins. Particles of moderate electron density, 150-500nm in diameter, were seen associated with membranous elements of the Golgi-apparatus cell fraction. Disruption of this cell fraction permitted the release of these three species of particles, which were separated into particulate lipid, and VLD and LD lipoproteins. 3. The large particles of moderate electron density, isolated as particulate lipid, were distinct from both species of Golgi particles in their chemical composition and in possessing an immunochemically unreactive apolipoprotein(s). Morphological observations suggest that the particulate lipid arose from cytoplasmic lipid droplets which were present as contaminants of the Golgi-rich fraction. 4. The chemical and immunochemical results are consistent with the suggestion that the Golgi LD particles are precursors of the VLD particles, into which they may be transformed by the addition of both triglyceride and cholesteryl ester. The present results provide further support for the proposal that the Golgi VLD particles are precursors of the serum VLD lipoproteins in the guinea pig. 5. Hepatic Golgi VLD particles isolated from guinea pigs fed on the lipid-rich diet contained significantly higher molar amounts (relative to protein) of both cholesteryl ester and triglyceride than similar particles from animals fed on a normal diet. These results suggest that the type of Golgi VLD particle produced from the LD particle is a direct consequence of the amount and composition of the dietary lipid. 6. Hepatic Golgi LD particles isolated from guinea pigs fed on different diets were similar in chemical composition and contained approx. 50% by weight of

  9. Impact of dietary fatty acids on muscle composition, liver lipids, milt composition and sperm performance in European eel.

    PubMed

    Butts, Ian Anthony Ernest; Baeza, Rosa; Støttrup, Josianne Gatt; Krüger-Johnsen, Maria; Jacobsen, Charlotte; Pérez, Luz; Asturiano, Juan F; Tomkiewicz, Jonna

    2015-05-01

    In order for European eel aquaculture to be sustainable, the life cycle should be completed in captivity. Development of broodstock diets may improve the species' reproductive success in captivity, through the production of high-quality gametes. Here, our aim was to evaluate the influence of dietary regime on muscle composition, and liver lipids prior to induced maturation, and the resulting sperm composition and performance. To accomplish this fish were reared on three "enhanced" diets and one commercial diet, each with different levels of fatty acids, arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Neutral lipids from the muscle and liver incorporated the majority of the fatty acid profile, while phospholipids incorporated only certain fatty acids. Diet had an effect on the majority of sperm fatty acids, on the total volume of extractable milt, and on the percentage of motile sperm. Here, our results suggest that the total volume of extractable milt is a DHA-dependent process, as we found the diets with the highest DHA levels induced the most milt while the diet with the lowest DHA level induced the least amount of milt. The diet with the highest level of ARA induced medium milt volumes but had the highest sperm motility. EPA also seems important for sperm quality parameters since diets with higher EPA percentages had a higher volume of milt and higher sperm motility. In conclusion, dietary fatty acids had an influence on fatty acids in the tissues of male eel and this impacted sperm performance. PMID:25638567

  10. Intestinal-fatty acid binding protein and lipid transport in human intestinal epithelial cells

    SciTech Connect

    Montoudis, Alain; Delvin, Edgard; Menard, Daniel

    2006-01-06

    Intestinal-fatty acid binding protein (I-FABP) is a 14-15 kDa cytoplasmic molecule highly expressed in the enterocyte. Although different functions have been proposed for various FABP family members, the specific function of I-FABP in human intestine remains unclear. Here, we studied the role of I-FABP in molecularly modified normal human intestinal epithelial cells (HIEC-6). cDNA transfection resulted in 90-fold I-FABP overexpression compared to cells treated with empty pQCXIP vector. The high-resolution immunogold technique revealed labeling mainly in the cytosol and confirmed the marked phenotype abundance of I-FABP in cDNA transfected cells. I-FABP overexpression was not associated with alterations in cell proliferation and viability. Studies using these transfected cells cultured with [{sup 14}C]oleic acid did not reveal higher efficiency in de novo synthesis or secretion of triglycerides, phospholipids, and cholesteryl esters compared to cells treated with empty pQCXIP vector only. Similarly, the incubation with [{sup 35}S]methionine did not disclose a superiority in the biogenesis of apolipoproteins (apo) A-I, A-IV, B-48, and B-100. Finally, cells transfected with I-FABP did not exhibit an increased production of chylomicrons, VLDL, LDL, and HDL. Our observations establish that I-FABP overexpression in normal HIEC-6 is not related to cell proliferation, lipid esterification, apo synthesis, and lipoprotein assembly, and, therefore, exclude its role in intestinal fat transport.

  11. Pattern formation in fatty acid-nanoparticle and lipid-nanoparticle mixed monolayers at water surface

    NASA Astrophysics Data System (ADS)

    Choudhuri, M.; Datta, A.; Iyengar, A. N. Sekar; Janaki, M. S.

    2015-06-01

    Dodecanethiol-capped gold nanoparticles (AuNPs) are self-organized in two different amphiphilic monolayers one of which is a single-tailed fatty acid Stearic acid (StA) and the other a double-tailed lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). In the StA-AuNP film the AuNPs self-organize to form an interconnected network of nanoclusters on compression while in the DMPC-AuNP film the AuNPs aggregate to form random, isolated clusters in the film. The long time evolution of the films at constant surface pressure reveals ring structures in the former and diffusion limited aggregates in the latter that with time evolve into an irregular porous maze of AuNPs in the DMPC film. The difference in structure of the AuNP patterns in the two films can be attributed to a difference in the lipophilic interactions between the NPs and the amphiphilic molecules. The mean square intensity fluctuations f(ln) calculated along a typical line for the 2D structures in both the films at initial and final stages of long time evolution reflect the structural changes in the films over time.

  12. Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age

    SciTech Connect

    Keith, Dove; Finlay, Liam; Butler, Judy; Gómez, Luis; Smith, Eric; Moreau, Régis; Hagen, Tory

    2014-07-18

    Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks.

  13. Retinoid acid-related orphan receptor γ, RORγ, participates in diurnal transcriptional regulation of lipid metabolic genes

    PubMed Central

    Takeda, Yukimasa; Kang, Hong Soon; Lih, Fred B.; Jiang, Hongfeng; Blaner, William S.; Jetten, Anton M.

    2014-01-01

    The hepatic circadian clock plays a pivotal role in regulating major aspects of energy homeostasis and lipid metabolism. In this study, we show that RORγ robustly regulates the rhythmic expression of several lipid metabolic genes, including the insulin-induced gene 2a, Insig2a, elongation of very long chain fatty acids-like 3, Elovl3 and sterol 12α-hydroxylase, Cyp8b1, by enhancing their expression at ZT20-4. The time-dependent increase in their expression correlates with the rhythmic expression pattern of RORγ. The enhanced recruitment of RORγ to ROREs in their promoter region, increased histone acetylation, and reporter and mutation analysis support the concept that RORγ regulates the transcription of several lipid metabolic genes directly by binding ROREs in their promoter regulatory region. Consistent with the disrupted expression of a number of lipid metabolic genes, loss of RORγ reduced the level of several lipids in liver and blood in a ZT-preferred manner. Particularly the whole-body bile acid pool size was considerably reduced in RORγ−/− mice in part through its regulation of several Cyp genes. Similar observations were made in liver-specific RORγ-deficient mice. Altogether, our study indicates that RORγ functions as an important link between the circadian clock and the transcriptional regulation of several metabolic genes. PMID:25143535

  14. Lipid transmitter signaling as a new target for treatment of cocaine addiction: new roles for acylethanolamides and lysophosphatidic acid.

    PubMed

    Orio, Laura; Pavón, Francisco Javier; Blanco, Eduardo; Serrano, Antonia; Araos, Pedro; Pedraz, María; Rivera, Patricia; Calado, Montserrat; Suárez, Juan; de Fonseca, Fernando Rodríguez

    2013-01-01

    This review analyzes the roles of lipid transmitters, especially those derived from the cleavage of membrane phospholipids, in cocaine-associated behaviors. These lipid signals are important modulators of information processing in the brain, affecting transmitter release, neural plasticity, synaptogenesis, neurogenesis, and cellular energetics. This broad range of actions makes them suitable targets for pharmaceutical development of cocaine addiction therapies because they participate in the main cellular processes underlying the neuroadaptations associated with chronic use of this psychostimulant. The main lipid transmitters reviewed here include a) acylethanolamides and acylglycerols acting on cannabinoid receptors, such as anandamide and 2-arachidonoylglycerol; b) acylethanolamides that do not act on cannabinoid receptors, such as oleoylethanolamide; c) eicosanoids derived from arachidonic acid, including prostaglandins; and d) lysophosphatidic acid, focusing on the role of its LPA-1 receptor. Direct experimental evidence for the significance of these lipids in cocaine-related behaviors is presented and discussed. Additionally, the roles for both their biosynthesis and degradation pathways, as well as the participation of their receptors, are examined. Overall, lipid transmitter signaling can offer new targets for the development of therapies for cocaine addiction. PMID:23574441

  15. Structure-related aspects on water diffusivity in fatty acid-soap and skin lipid model systems.

    PubMed

    Norlén, L; Engblom, J

    2000-01-01

    Simplified skin barrier models are necessary to get a first hand understanding of the very complex morphology and physical properties of the human skin barrier. In addition, it is of great importance to construct relevant models that will allow for rational testing of barrier perturbing/occlusive effects of a large variety of substances. The primary objective of this work was to study the effect of lipid morphology on water permeation through various lipid mixtures (i.e., partly neutralised free fatty acids, as well as a skin lipid model mixture). In addition, the effects of incorporating Azone((R)) (1-dodecyl-azacycloheptan-2-one) into the skin lipid model mixture was studied. Small- and wide-angle X-ray diffraction was used for structure determinations. It is concluded that: (a) the water flux through a crystalline fatty acid-sodium soap-water mixture (s) is statistically significantly higher than the water flux through the corresponding lamellar (L(alpha)) and reversed hexagonal (H(II)) liquid crystalline phases, which do not differ between themselves; (b) the water flux through mixtures of L(alpha)/s decreases statistically significantly with increasing relative amounts of lamellar (L(alpha)) liquid crystalline phase; (c) the addition of Azone((R)) to a skin lipid model system induces a reduction in water flux. However, further studies are needed to more closely characterise the structural basis for the occlusive effects of Azone((R)) on water flux. PMID:10640594

  16. Effect of sex and gonadal hormones on rat plasma lipids during the development of an essential fatty acid deficiency

    PubMed Central

    Lyman, R. L.; Ostwald, Rosemarie; Bouchard, Pauline; Shannon, Angela

    1966-01-01

    1. Male, female and castrated rats treated with oestradiol (30μg./week) or testosterone (2mg./week) were given an essential fatty acid-deficient diet containing 10% of hydrogenated coconut oil for 9 weeks. The concentrations and fatty acid composition of plasma phospholipids, cholesteryl esters and triglycerides were determined. 2. Between the second and third weeks of the deficiency, concentrations of plasma cholesteryl esters, phospholipids and triglycerides decreased, then remained relatively constant. There were no significant differences between males and females, but oestradiol caused a significant rise in plasma phospholipids and triglycerides as compared with testosterone-treated animals. 3. During the first 2 weeks of the deficiency, linoleic acid in the plasma lipids of all groups decreased to low concentrations and changed very little thereafter. 4. Female rats maintained higher percentages and concentrations of arachidonic acid and stearic acid in plasma phospholipids and arachidonic acid in cholesteryl esters than did males. Males had higher proportions of eicosatrienoic acid and oleic acid. There was no sex difference in the fatty acid composition of plasma triglycerides. 5. Oestradiol-treated rats had concentrations of cholesteryl and phospholipid arachidonate comparable with those of female rats and higher than the testosterone-treated group. Eicosatrienoic acid in the oestradiol–treated rats was high and resembled that of the male rats, apparently because of the higher concentration of plasma phospho lipids in this group. 6. Supplementation of the essential fatty acid-deficient rats with linoleate restored plasma cholesteryl and phospholipid linoleate and arachidonate nearly to normal concentrations in a single day. The increase in arachidonic acid in these fractions was accompanied by a similar quantitative decrease in eicosatrienoic acid. 7. These sex differences appear to be related to the smaller size of the female rat and to a more direct

  17. The influence of different combinations of gamma-linolenic, stearidonic and eicosapentaenoic acids on the fatty acid composition of blood lipids and mononuclear cells in human volunteers.

    PubMed

    Miles, Elizabeth A; Banerjee, Tapati; Calder, Philip C

    2004-06-01

    This study set out to identify whether stearidonic acid (18:4n-3; STA) can be used to increase the eicosapentaenoic acid (20:5n-3; EPA) content of plasma lipids and cells in humans and to understand more about the effects of increased consumption of gamma-linolenic acid (18:3n-3; GLA), STA and EPA in humans. Healthy young males were randomised to consume one of seven oil blends for a period of 12 weeks (9g oil/day) (n = 8-12 subjects/group). Palm oil, sunflower oil, an EPA-rich oil, borage oil (rich in GLA), and Echium oil (rich in STA) were blended in various combinations to generate a placebo oil and oils providing approximately 2g GLA + STA + EPA per day, but in different combinations. Blood was collected at 0, 4, 8 and 12 weeks and the fatty acid compositions of plasma triacylglycerols, cholesteryl esters and phospholipids and of peripheral blood mononuclear cells (PBMCs) determined. Significant effects were observed with each lipid fraction. Neither STA nor its derivative 20:4n-3 appeared in any of the lipid fractions studied when STA (up to 1g/day) was consumed. However, STA (1g/day), in combination with GLA (0.9 g/day), increased the proportion of EPA in some lipid fractions, suggesting that STA-rich plant oils may offer a novel means of increasing EPA status. Furthermore, this combination tended to increase the dihomo-gamma-linolenic acid (20:3n-6; DGLA) content of PBMCs, without an increase in arachidonic acid (AA) (20:4n-6) content. EPA consumption increased the EPA content of all lipid fractions studied. Consumption of GLA (2g/day), in the absence of STA or EPA, increased DGLA content with a tendency to increase AA content in some fractions. This effect was prevented by inclusion of EPA in combination with GLA. Thus, this study indicates that STA may be used as a precursor to increase the EPA content of human lipids and that combinations of GLA, STA and EPA can be used to manipulate the fatty acid compositions of lipid pools in subtle ways. Such effects

  18. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut.

    PubMed

    Joyce, Susan A; MacSharry, John; Casey, Patrick G; Kinsella, Michael; Murphy, Eileen F; Shanahan, Fergus; Hill, Colin; Gahan, Cormac G M

    2014-05-20

    Alterations in the gastrointestinal microbiota have been implicated in obesity in mice and humans, but the key microbial functions influencing host energy metabolism and adiposity remain to be determined. Despite an increased understanding of the genetic content of the gastrointestinal microbiome, functional analyses of common microbial gene sets are required. We established a controlled expression system for the parallel functional analysis of microbial alleles in the murine gut. Using this approach we show that bacterial bile salt hydrolase (BSH) mediates a microbe-host dialogue that functionally regulates host lipid metabolism and plays a profound role in cholesterol metabolism and weight gain in the host. Expression of cloned BSH enzymes in the gastrointestinal tract of gnotobiotic or conventionally raised mice significantly altered plasma bile acid signatures and regulated transcription of key genes involved in lipid metabolism (Pparγ, Angptl4), cholesterol metabolism (Abcg5/8), gastrointestinal homeostasis (RegIIIγ), and circadian rhythm (Dbp, Per1/2) in the liver or small intestine. High-level expression of BSH in conventionally raised mice resulted in a significant reduction in host weight gain, plasma cholesterol, and liver triglycerides, demonstrating the overall impact of elevated BSH activity on host physiology. In addition, BSH activity in vivo varied according to BSH allele group, indicating that subtle differences in activity can have significant effects on the host. In summary, we demonstrate that bacterial BSH activity significantly impacts the systemic metabolic processes and adiposity in the host and represents a key mechanistic target for the control of obesity and hypercholesterolemia. PMID:24799697

  19. Induction of a reversible cardiac lipidosis by a dietary long-chain fatty acid (erucic acid). Relationship to lipid accumulation in border zones of myocardial infarcts.

    PubMed Central

    Chien, K. R.; Bellary, A.; Nicar, M.; Mukherjee, A.; Buja, L. M.

    1983-01-01

    Previous studies have demonstrated that cardiac myocytes in the border zone of acute myocardial infarction become markedly overloaded with neutral lipid during the transition from reversible to irreversible injury. To examine directly the role of these changes in neutral lipid metabolism in the development of irreversible cellular injury and associated increases in tissue Ca2+ content, the authors fed rats large amounts of a fatty acid (erucic acid) that is poorly oxidized by the heart and that subsequently accumulates as neutral lipid. Rats fed a high erucic acid (C22:1) diet in the form of 20% rapeseed oil for 3-5 days had a fourfold increase in triglyceride (49.5 +/- 3.8 SEM mg/g wet wt versus 13.6 +/- 13, n = 4) and a 60% increase in long-chain acyl CoA content (166.0 +/- 21.9 versus 91.5 +/- 9.0 nM/g wet wt, n = 4), compared with controls. However, there was no change in long-chain acyl carnitine or total phospholipid content. Histochemical studies showed accumulation of numerous lipid droplets in the myocytes, and electron microscopy revealed localization of lipid vesicles in direct contact with mitochondria, thus mimicking the lipid-laden cells in the border zone regions of acute myocardial infarcts. The acute lipidosis was reversible with either continued feeding of erucic acid for several weeks or conversion to a normal diet. It was not associated with an increased tissue Ca2+ content, nor with cell necrosis. However, continued erucic acid intake for 3 months was associated with focal myocardial degeneration and loss of myocytes. These results suggest that acute increases in neutral lipids, as found in the border zone of acute myocardial infarction, may not be the cause of progression to irreversible damage during acute myocardial injury, but that the persistent presence of similar lipid material over months may result in focal myocardial degeneration. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:6859230

  20. Modulation of ileal bile acid transporter (ASBT) activity by depletion of plasma membrane cholesterol: association with lipid rafts

    PubMed Central

    Annaba, Fadi; Sarwar, Zaheer; Kumar, Pradeep; Saksena, Seema; Turner, Jerrold R.; Dudeja, Pradeep K.; Gill, Ravinder K.; Alrefai, Waddah A.

    2016-01-01

    Apical sodium-dependent bile acid transporter (ASBT) represents a highly efficient conservation mechanism of bile acids via mediation of their active transport across the luminal membrane of terminal ileum. To gain insight into the cellular regulation of ASBT, we investigated the association of ASBT with cholesterol and sphingolipid-enriched specialized plasma membrane microdomains known as lipid rafts and examined the role of membrane cholesterol in maintaining ASBT function. Human embryonic kidney (HEK)-293 cells stably transfected with human ASBT, human ileal brush-border membrane vesicles, and human intestinal epithelial Caco-2 cells were utilized for these studies. Floatation experiments on Optiprep density gradients demonstrated the association of ASBT protein with lipid rafts. Disruption of lipid rafts by depletion of membrane cholesterol with methyl-β-cyclodextrin (MβCD) significantly reduced the association of ASBT with lipid rafts, which was paralleled by a decrease in ASBT activity in Caco-2 and HEK-293 cells treated with MβCD. The inhibition in ASBT activity by MβCD was blocked in the cells treated with MβCD-cholesterol complexes. Kinetic analysis revealed that MβCD treatment decreased the Vmax of the transporter, which was not associated with alteration in the plasma membrane expression of ASBT. Our study illustrates that cholesterol content of lipid rafts is essential for the optimal activity of ASBT and support the association of ASBT with lipid rafts. These findings suggest a novel mechanism by which ASBT activity may be rapidly modulated by alterations in cholesterol content of plasma membrane and thus have important implications in processes related to maintenance of bile acid and cholesterol homeostasis. PMID:18063707

  1. Imaging heterogeneity of membrane and storage lipids in transgenic Camelina sativa seeds with altered fatty acid profiles.

    PubMed

    Horn, Patrick J; Silva, Jillian E; Anderson, Danielle; Fuchs, Johannes; Borisjuk, Ljudmilla; Nazarenus, Tara J; Shulaev, Vladimir; Cahoon, Edgar B; Chapman, Kent D

    2013-10-01

    Engineering compositional changes in oilseeds is typically accomplished by introducing new enzymatic step(s) and/or by blocking or enhancing an existing enzymatic step(s) in a seed-specific manner. However, in practice, the amounts of lipid species that accumulate in seeds are often different from what one would predict from enzyme expression levels, and these incongruences may be rooted in an incomplete understanding of the regulation of seed lipid metabolism at the cellular/tissue level. Here we show by mass spectrometry imaging approaches that triacylglycerols and their phospholipid precursors are distributed differently within cotyledons and the hypocotyl/radicle axis in embryos of the oilseed crop Camelina sativa, indicating tissue-specific heterogeneity in triacylglycerol metabolism. Phosphatidylcholines and triacylglycerols enriched in linoleic acid (C18:2) were preferentially localized to the axis tissues, whereas lipid classes enriched in gadoleic acid (C20:1) were preferentially localized to the cotyledons. Manipulation of seed lipid compositions by heterologous over-expression of an acyl-acyl carrier protein thioesterase, or by suppression of fatty acid desaturases and elongases, resulted in new overall seed storage lipid compositions with altered patterns of distribution of phospholipid and triacylglycerol in transgenic embryos. Our results reveal previously unknown differences in acyl lipid distribution in Camelina embryos, and suggest that this spatial heterogeneity may or may not be able to be changed effectively in transgenic seeds depending upon the targeted enzyme(s)/pathway(s). Further, these studies point to the importance of resolving the location of metabolites in addition to their quantities within plant tissues. PMID:23808562

  2. Omega-3 fatty acid supplementation in primary nephrotic syndrome: effects on plasma lipids and coagulopathy.

    PubMed

    Hall, A V; Parbtani, A; Clark, W F; Spanner, E; Huff, M W; Philbrick, D J; Holub, B J

    1992-12-01

    The effect of fish oil dietary supplementation on the dyslipidemia and coagulopathy of seven patients with nephrotic syndrome and hypoalbuminemia due to primary kidney disease was studied. Plasma lipids, platelet aggregation studies, simplate bleeding time, and fibrinogen levels were determined before and after 6 wk of treatment with fish oil (15 g/day of MaxEPA; 2.7 g of eicosapentenoic acid (EPA) and 1.8 g of docosahexenoic acid. Urea kinetics were determined from urine-urea concentration, urinary proteina, and urine volume. A 3-day dietary intake record was obtained from each patient before and after 6 wk of fish oil supplementation. There was no significant dietary change in protein, fat, or carbohydrate intake over the time period of the study. At study end, total triglycerides decreased from 2.98 +/- 1.31 to 2.18 +/- 1.14 mmol/L (P = 0.002), and very low-density lipoprotein-triglycerides decreased from 2.35 +/- 1.34 to 1.28 +/- 1.07 mmol/L (P = 0.01). Low-density lipoprotein (LDL) cholesterol increased from 5.18 +/- 1.74 to 7.35 +/- 2.83 mmol/L (P = 0.005). No significant changes occurred in bleeding time, platelet count, hematocrit, red blood cell flexibility, or whole blood viscosity. Platelet aggregation responses to collagen and arachidonic acid were consistently reduced after treatment, but there was no change in platelet response to ADP. The platelet membrane phospolipids showed a significantly increased incorporation of EPA after the fish oil diet (P = 0.03).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1477328

  3. [Dynamics of fatty acid composition of total lipids during embryonic development of Atlantic salmon Salmo salar L].

    PubMed

    Murzina, S A; Nefedova, Z A; Ripatti, P O; Nemova, N N; Markova, L V

    2012-01-01

    Dynamics of fatty acid composition of total lipids was studied for freshwater salmon Salmo salar L. during its embryonic development from blastula (3 hours) up to hatching (108 days) as well as in unfertilized eggs. Stable amount of total and some saturated, monounsaturated and polyunsaturated fatty acids (PUFA) of total lipids was observed during embryonic development. Considerable changes in fatty acid composition were observed at the stage of prelarvae hatching, i.e., significant decrease of (n-6) PUFA (18:2(n-6) and 20:4(n-6)) and (n-3) PUFA and increase of total and some saturated and monounsaturated fatty acids was registered. Change in saturation ratio of membrane lipids justifies the presence of the biochemical mechanism forwarded on regulation of cell membrane enzymes in accordance with the changes of internal physiological processes taking place in the organism and fluctuations of external environmental conditions or the preparation period (as reproduction). Data on peculiarities of transformation and utilization of fatty acids during salmon embryonic development may be used for understanding of their functional role in the developing organism as well as for assessing the quality of the caviar. PMID:22650081

  4. Effects of ozone and peroxyacetyl nitrate on polar lipids and Fatty acids in leaves of morning glory and kidney bean.

    PubMed

    Nouchi, I; Toyama, S

    1988-07-01

    To compare the effects of ozone and peroxyacetyl nitrate (PAN) on leaf lipids, fatty acids and malondialdehyde (MDA), morning glory (Pharbitis nil Choisy cv Scarlet O'Hara) and kidney bean (Phaseolus vulgaris L. cv Gintebo) plants were exposed to either ozone (0.15 microliter per liter for 8 hours) or PAN (0.10 microliter per liter for up to 8 hours). Ozone increased phospholipids in morning glory and decreased in kidney bean at the initial stage (2-4 hours) of exposure, while it scarcely changed glycolipids, the unsaturated fatty acids, and MDA in both plants. A large reduction of glycolipids occurred 1 day after ozone exposure in both plants. PAN caused marked drops in phospholipids and glycolipids in kidney bean at relatively late stage (6-8 hours) of exposure, while it increased phosphatidic acid and decreased the unsaturated fatty acids, an increase which was accompanied by a large increase in MDA. These results suggest that ozone may not directly oxidize unsaturated fatty acids at the initial stage of exposure, but may alter polar lipid metabolism, particularly phospholipids. On the other hand, PAN may abruptly and considerably degrade phospholipids and glycolipids by peroxidation or hydrolysis at the late stage of exposure. The present study shows that ozone and PAN affect polar lipids in different manners. PMID:16666199

  5. Metabolic Encephalopathy and Lipid Storage Myopathy Associated with a Presumptive Mitochondrial Fatty Acid Oxidation Defect in a Dog

    PubMed Central

    Biegen, Vanessa R.; McCue, John P.; Donovan, Taryn A.; Shelton, G. Diane

    2015-01-01

    A 1-year-old spayed female Shih Tzu presented for episodic abnormalities of posture and mentation. Neurological examination was consistent with a bilaterally symmetric multifocal encephalopathy. The dog had a waxing-and-waning hyperlactemia and hypoglycemia. Magnetic resonance imaging revealed bilaterally symmetric cavitated lesions of the caudate nuclei with less severe abnormalities in the cerebellar nuclei. Empirical therapy was unsuccessful, and the patient was euthanized. Post-mortem histopathology revealed bilaterally symmetric necrotic lesions of the caudate and cerebellar nuclei and multi-organ lipid accumulation, including a lipid storage myopathy. Malonic aciduria and ketonuria were found on urinary organic acid screen. Plasma acylcarnitine analysis suggested a fatty acid oxidation defect. Fatty acid oxidation disorders are inborn errors of metabolism documented in humans, but poorly described in dogs. Although neurological signs have been described in humans with this group of diseases, descriptions of advanced imaging, and histopathology are severely lacking. This report suggests that abnormalities of fatty acid metabolism may cause severe, bilateral gray matter necrosis, and lipid accumulation in multiple organs including the skeletal muscles, liver, and kidneys. Veterinarians should be aware that fatty acid oxidation disorders, although potentially fatal, may be treatable. A timely definitive diagnosis is essential in guiding therapy. PMID:26664991

  6. Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition.

    PubMed

    Sulochana, Sujitha Balakrishnan; Arumugam, Muthu

    2016-08-01

    Scenedesmus quadricauda, accumulated more lipid but with a drastic reduction in biomass yield during nitrogen starvation. Abscisic acid (ABA) being a stress responsible hormone, its effect on growth and biomass with sustainable lipid yield during nitrogen depletion was studied. The result revealed that the ABA level shoots up at 24h (27.21pmol/L) during the onset of nitrogen starvation followed by a sharp decline. The external supplemented ABA showed a positive effect on growth pattern (38×10(6)cells/ml) at a lower concentration. The dry biomass yield is also increasing up to 2.1 fold compared to nitrogen deficient S. quadricauda. The lipid content sustains in 1 and 2μM concentration of ABA under nitrogen-deficient condition. The fatty acid composition of ABA treated S. quadricauda cultures with respect to nitrogen-starved cells showed 11.17% increment in saturated fatty acid content, the desired lipid composition for biofuel application. PMID:26949054

  7. Ambient temperature and nutritional stress influence fatty acid composition of structural and fuel lipids in Japanese quail (Coturnix japonica) tissues.

    PubMed

    Ben-Hamo, Miriam; McCue, Marshall D; Khozin-Goldberg, Inna; McWilliams, Scott R; Pinshow, Berry

    2013-10-01

    In birds, fatty acids (FA) serve as the primary metabolic fuel during exercise and fasting, and their composition affects metabolic rate and thus energy requirements. To ascertain the relationship between FAs and metabolic rate, a distinction should be made between structural and fuel lipids. Indeed, increased unsaturation of structural lipid FAs brings about increased cell metabolism, and changes in the FA composition of fuel lipids affects metabolic rate through selective mobilization and increasing availability of specific FAs. We examined the effects of acclimation to a low ambient temperature (Ta: 12.7±3.0°C) and nutritional status (fed or unfed) on the FA composition of four tissues in Japanese quail, Coturnix japonica. Differentiating between neutral (triglycerides) and polar (phospholipids) lipids, we tested the hypothesis that both acclimation to low Ta and nutritional status modify FA composition of triglycerides and phospholipids. We found that both factors affect FA composition of triglycerides, but not the composition of phospholipids. We also found changes in liver triacylglyceride FA composition in the low-Ta acclimated quail, namely, the two FAs that differed, oleic acid (18:1) and arachidonic acid (20:4), were associated with thermoregulation. In addition, the FAs that changed with nutritional status were all reported to be involved in regulation of glucose metabolism, and thus we suggest that they also play a role in the response to fasting. PMID:23796822

  8. Visible Light-Induced Lipid Peroxidation of Unsaturated Fatty Acids in the Retina and the Inhibitory Effects of Blueberry Polyphenols.

    PubMed

    Liu, Yixiang; Zhang, Di; Hu, Jimei; Liu, Guangming; Chen, Jun; Sun, Lechang; Jiang, Zedong; Zhang, Xichun; Chen, Qingchou; Ji, Baoping

    2015-10-28

    The lipid peroxidation of unsaturated fatty acids (UFAs) in the retina not only threatens visual cells but also affects the physiological health of the retina. In this work, the potential damages caused by daily visible light exposure on retinal UFAs were evaluated via a simulated in vitro model. At the same time, the benefits of dietary supplementation of blueberries to the eyes were also assessed. After prolonged light exposure, lipid peroxidation occurred for both docosahexaenoic and arachidonic acids (DHA and AA, respectively). The oxidized UFAs presented obvious cytotoxicity and significantly inhibited cell growth in retinal pigment epithelium cells. Among the different blueberry polyphenol fractions, the flavonoid-rich fraction, in which quercetin was discovered as the main component, was considerably better in preventing visible light-induced DHA lipid peroxidation than the anthocyanin- and phenolic acid-rich fractions. Then the retinal protective activity of blueberry polyphenols against light-induced retinal injury was confirmed in vivo. On the basis of the above results, inhibiting lipid peroxidation of UFAs in the retina is proposed to be another important function mechanism for antioxidants to nourish eyes. PMID:26456696

  9. Effect of the amino acid composition of cyclic peptides on their self-assembly in lipid bilayers.

    PubMed

    Danial, Maarten; Perrier, Sébastien; Jolliffe, Katrina A

    2015-02-28

    The effect of amino acid composition on the formation of transmembrane channels in lipid bilayers upon self-assembly of alt-(L,D)-α-cyclic octapeptides has been investigated. Cyclic peptides comprising D-leucine, alternating with different combinations of L-azidolysine, L-lysine(Alloc), L-lysine and L-tryptophan were synthesized and the size of pores formed via self-assembly of these molecules in lipid bilayers was elucidated using large unilamellar vesicle fluorescence assays and dynamic light scattering. Pore formation was examined in large unilamellar vesicles made up of egg yolk phosphatidylcholine or Escherichia coli total lipid extract. From these analyses, we have established that cyclic peptides with charged side chains form large pores while those with neutral side chains form unimeric pores. Furthermore, the cyclic peptides that consist of non-symmetric amino acid configurations possess a higher membrane activity than the cyclic peptides with a symmetric amino acid configuration. In addition, we have found that peptide amphiphilicity plays a vital role in selective partitioning between bilayers that consist of egg yolk phosphatidylcholine and those comprised of E. coli total lipid extract. These results suggest that selective transbilayer channel formation via self-assembly may be a viable alternative for many applications that currently use more expensive, multistep synthesis methods. PMID:25566760

  10. Fatty acids for controlled release applications: A comparison between prilling and solid lipid extrusion as manufacturing techniques.

    PubMed

    Vervaeck, A; Monteyne, T; Siepmann, F; Boone, M N; Van Hoorebeke, L; De Beer, T; Siepmann, J; Remon, J P; Vervaet, C

    2015-11-01

    The aim of the present study was to evaluate the solid state characteristics, drug release and stability of fatty acid-based formulations after processing via prilling and solid lipid extrusion. Myristic acid (MA), stearic acid (SA) and behenic acid (BA) were used as matrix formers combined with metoprolol tartrate (MPT) as model drug. The prilling process allowed complete dissolution of MPT in the molten fatty acid phase, generating semi-crystalline MPT and the formation of hydrogen bonds between drug and fatty acids in the solid prills. In contrast, as solid lipid extrusion (SLE) induced only limited melting of the fatty acids, molecular interaction with the drug was inhibited, yielding crystalline MPT. Although the addition of a low melting fatty acid allowed more MPT/fatty acid interaction during extrusion, crystalline MPT was detected after processing. Mathematical modeling revealed that the extrudates exhibited a higher apparent drug/water mobility than prills of the same composition, probably due to differences in the inner systems' structure. Irrespective of the processing method, mixed fatty acid systems (e.g. MA/BA) exhibited a lower matrix porosity, resulting in a slower drug release rate. Solid state analysis of these systems indicated that the crystalline structure of the fatty acids was maintained after SLE, while prilling generated a reduced MA crystallinity. Binary MPT/fatty acid systems processed via extrusion showed better stability during storage at 40 °C than the corresponding prills. Although mixed fatty acid systems were stable at 25 °C, stability problems were encountered during storage at 40 °C: a faster release was obtained from the prills, whereas drug release from the extrudates was slower. PMID:26428938

  11. The effects of season on fatty acid composition and ω3/ω6 ratios of northern pike ( Esox lucius L., 1758) muscle lipids

    NASA Astrophysics Data System (ADS)

    Mert, Ramazan; Bulut, Sait; Konuk, Muhsin

    2015-01-01

    In the present study, the effects of season on fatty acid composition, total lipids, and ω3/ω6 ratios of northern pike muscle lipids in Kizilirmak River (Kirikkale, Turkey) were investigated. A total of 35 different fatty acids were determined in gas chromatography. Among these, palmitic, oleic, and palmitoleic acids had the highest proportion. The main polyunsaturated fatty acids (PUFAs) were found to be docosahexaenoic acid, eicosapentaenoic acid, and arachidonic acid. There were more PUFAs than monounsaturated fatty acids (MUFA) in all seasons. Similarly, the percentages of ω3 fatty acids were higher than those of total ω6 fatty acids in the fatty acid composition. ω3/ω6 ratios were calculated as 1.53, 1.32, 1.97, and 1.71 in spring, summer, autumn and winter, respectively. Overall, we found that the fatty acid composition and ω3/ω6 fatty acid ratio in the muscle of northern pike were significantly influenced by season.

  12. Effect of culture conditions on growth, lipid content, and fatty acid composition of Aurantiochytrium mangrovei strain BL10

    PubMed Central

    2012-01-01

    This study explored the influence of various culture conditions on the biomass, lipid content, production of docosahexaenoic acid (DHA), and fatty acid composition of Aurantiochytrium mangrovei strain BL10. The variables examined in this study include the species and concentration of salt, the concentrations of the two substrates glucose and yeast extract, the level of dissolved oxygen, the cerulenin treatment, and the stages of BL10 growth. Our results demonstrate that BL10 culture produces maximum biomass when salinity levels are between 0.2 and 3.0%. Decreasing salinity to 0.1% resulted in a considerable decrease in the biomass, lipid content, DHA production, and DHA to palmitic acid (PA) (DHA/PA) ratio, signifying deterioration in the quality of the oil produced. The addition of 0.9% sodium sulfate to replenish salinity from 0.1% to 1.0% successfully recovered biomass, lipid content and DHA production levels; however, this also led to a decrease in DHA/PA ratio. An increase in oxygen and cerulenin levels resulted in a concomitant decrease in the DHA to docosapentaenoic acid (DPA) (DHA/DPA) ratio in BL10 oil. Furthermore, the DHA/DPA and DHA/PA ratios varied considerably before and after the termination of cell division, which occurred around the 24 hour mark. These results could serve as a foundation for elucidating the biochemistry underlying the accumulation of lipids, and a definition of the extrinsic (environmental or nutritional) and intrinsic (cell growth stage) factors that influence lipid quality and the production of DHA by BL10. PMID:22883641

  13. Dual Role for Phospholipid:Diacylglycerol Acyltransferase: Enhancing Fatty Acid Synthesis and Diverting Fatty Acids from Membrane Lipids to Triacylglycerol in Arabidopsis Leaves[C][W

    PubMed Central

    Fan, Jilian; Yan, Chengshi; Zhang, Xuebin; Xu, Changcheng

    2013-01-01

    There is growing interest in engineering green biomass to expand the production of plant oils as feed and biofuels. Here, we show that PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1 (PDAT1) is a critical enzyme involved in triacylglycerol (TAG) synthesis in leaves. Overexpression of PDAT1 increases leaf TAG accumulation, leading to oil droplet overexpansion through fusion. Ectopic expression of oleosin promotes the clustering of small oil droplets. Coexpression of PDAT1 with oleosin boosts leaf TAG content by up to 6.4% of the dry weight without affecting membrane lipid composition and plant growth. PDAT1 overexpression stimulates fatty acid synthesis (FAS) and increases fatty acid flux toward the prokaryotic glycerolipid pathway. In the trigalactosyldiacylglycerol1-1 mutant, which is defective in eukaryotic thylakoid lipid synthesis, the combined overexpression of PDAT1 with oleosin increases leaf TAG content to 8.6% of the dry weight and total leaf lipid by fourfold. In the plastidic glycerol-3-phosphate acyltransferase1 mutant, which is defective in the prokaryotic glycerolipid pathway, PDAT1 overexpression enhances TAG content at the expense of thylakoid membrane lipids, leading to defects in chloroplast division and thylakoid biogenesis. Collectively, these results reveal a dual role for PDAT1 in enhancing fatty acid and TAG synthesis in leaves and suggest that increasing FAS is the key to engineering high levels of TAG accumulation in green biomass. PMID:24076979

  14. Mono-ubiquitylated ORF45 Mediates Association of KSHV Particles with Internal Lipid Rafts for Viral Assembly and Egress

    PubMed Central

    Wang, Xin; Zhu, Nannan; Li, Wenwei; Zhu, Fanxiu; Wang, Yan; Yuan, Yan

    2015-01-01

    Herpesviruses acquire their envelope by budding into the lumen of cytoplasmic membrane vesicles. This process is initiated by component(s) on viral particles, which recognize the budding site where the viral glycoproteins are present and recruit cellular cargo transport and sorting machinery to the site to complete the budding process. Proteins in the tegument layer, connecting capsid and envelope, are candidates for the recognition of budding sites on vesicle membrane and induction of budding and final envelopment. We examined several outer and matrix tegument proteins of Kaposi’s sarcoma-associated herpesvirus (KSHV) and found that ORF45 associates with lipid rafts (LRs) of cellular membrane. LRs are membrane micro-domains, which have been implicated as relay stations in intracellular signaling and transport including viral entry and virion assembly. The ability of ORF45 to target LR is dependent on the mono-ubiquitylation of ORF45 at Lys297 as the mutation at Lys297 (K297R) abolished LR-association of ORF45. The K297R mutation also impairs ORF45 and viral particle co-localization with trans-Golgi network and endosomes, but facilitates ORF45 and viral particles co-localizing with lysosomes. More importantly, the recombinant KSHV carrying ORF45 K297R mutant (BAC-K297R) was found severely defective in producing mature and infectious virion particles in comparison to wild type KSHV (BAC16). Taken together, our results reveal a new function of KSHV tegument protein ORF45 in targeting LR of host cell membrane, promoting viral particles co-localization with trans-Golgi and endosome vesicles and facilitating the maturation and release of virion particles, suggesting that ORF45 plays a role in bringing KSHV particles to the budding site on cytoplasmic vesicle membrane and triggering the viral budding process for final envelopment and virion maturation. PMID:26650119

  15. Effect of alpha-linolenic acid-rich Camelina sativa oil on serum fatty acid composition and serum lipids in hypercholesterolemic subjects.

    PubMed

    Karvonen, Henna M; Aro, Antti; Tapola, Niina S; Salminen, Irma; Uusitupa, Matti I j; Sarkkinen, Essi S

    2002-10-01

    Camelina sativa-derived oil (camelina oil) is a good source of alpha-linolenic acid. The proportion of alpha-linolenic acid in serum fatty acids is associated with the risk of cardiovascular diseases. We studied the effects of camelina oil on serum lipids and on the fatty acid composition of total lipids in comparison to rapeseed and olive oils in a parallel, double-blind setting. Sixty-eight hypercholesterolemic subjects aged 28 to 65 years were randomly assigned after a 2-week pretrial period to 1 of 3 oil groups: camelina oil, olive oil, and rapeseed oil. Subjects consumed daily 30 g (actual intake, approximately 33 mL) of test oils for 6 weeks. In the camelina group, the proportion of alpha-linolenic acid in fatty acids of serum lipids was significantly higher (P <.001) compared to the 2 other oil groups at the end of the study: 2.5 times higher compared to the rapeseed oil group and 4 times higher compared to the olive oil group. Respectively the proportions of 2 metabolites of alpha-linolenic acid (eicosapentaenoic and docosapentaenoic acids) increased and differed significantly in the camelina group from those in other groups. During the intervention, the serum low-density lipoprotein (LDL) cholesterol concentration decreased significantly by 12.2% in the camelina oil group, 5.4% in the rapeseed oil group, and 7.7% in the olive oil group. In conclusion, camelina oil significantly elevated the proportions of alpha-linolenic acid and its metabolites in serum of mildly or moderately hypercholesterolemic subjects. Camelina oil's serum cholesterol-lowering effect was comparable to that of rapeseed and olive oils. PMID:12370843

  16. Kinetics and Products of Heterogeneous Oxidation of Oleic acid, Linoleic acid and Linolenic acid in Aerosol Particles by Hydroxyl radicals

    NASA Astrophysics Data System (ADS)

    Nah, T.; Leone, S. R.; Wilson, K. R.

    2010-12-01

    A significant mass fraction of atmospheric aerosols is composed of a variety of oxidized organic compounds with varying functional groups that may affect the rate at which they chemically age. Here we study the heterogeneous reaction of OH radicals with different sub-micron, alkenoic acid particles: Oleic acid (OA), Linoleic acid (LA), and Linolenic acid (LNA), in the presence of H2O2 and O2. This research explores how OH addition reactions initiate chain reactions that rapidly transform the chemical composition of an organic particle. Particles are chemically aged in a photochemical flow tube reactor where they are exposed to OH radicals (~ 1011 molecule cm-3 s) that are produced by the photolysis of H2O2 at 254 nm. The aerosols are then sized and their composition analyzed via Atmospheric Pressure Chemical Ionization (APCI). Detailed kinetic measurements show that the reactive uptake coefficient is larger than 1, indicating the presence of secondary chemistry occurring in the condensed phase. Reactive uptake coefficient is found to scale linearly with the number of double bonds present in the molecule. In addition, the reactive uptake coefficient is found to depend sensitively upon the concentrations of O2 in the photochemical flow tube reactor, indicating that O2 plays a role in secondary chemistry. In the absence of O2 the reactive uptake coefficient increases to ~ 8, 5 and 3 for LNA, LA, and OA, respectively. The reactive uptake coefficient approaches values of 6, 4 and 2 for LNA, LA, and OA respectively when 18% of the total nitrogen flow is replaced with O2. Mechanistic pathways and products will also be presented herein.

  17. The roles of lipids and nucleic acids in HIV-1 assembly

    PubMed Central

    Alfadhli, Ayna; Barklis, Eric

    2014-01-01

    During HIV-1 assembly, precursor Gag (PrGag) proteins are delivered to plasma membrane (PM) assembly sites, where they are triggered to oligomerize and bud from cells as immature virus particles. The delivery and triggering processes are coordinated by the PrGag matrix (MA) and nucleocapsid (NC) domains. Targeting of PrGag proteins to membranes enriched in cholesterol and phosphatidylinositol-4,5-bisphosphate (PI[4,5]P2) is mediated by the MA domain, which also has been shown to bind both RNA and DNA. Evidence suggests that the nucleic-acid-binding function of MA serves to inhibit PrGag binding to inappropriate intracellular membranes, prior to delivery to the PM. At the PM, MA domains putatively trade RNA ligands for PI(4,5)P2 ligands, fostering high-affinity membrane binding. Triggering of oligomerization, budding, and virus particle release results when NC domains on adjacent PrGag proteins bind to viral RNA, leading to capsid (CA) domain oligomerization. This process leads to the assembly of immature virus shells in which hexamers of membrane-bound MA trimers appear to organize above interlinked CA hexamers. Here, we review the functions of retroviral MA proteins, with an emphasis on the nucleic-acid-binding capability of the HIV-1 MA protein, and its effects on membrane binding. PMID:24917853

  18. Disorders of Lipid Metabolism

    MedlinePlus

    ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism Fats (lipids) are ... carbohydrates and low in fats. Supplements of the amino acid carnitine may be helpful. The long-term outcome ...

  19. Relation of fatty acid composition in lead-exposed mallards to fat mobilization, lipid peroxidation and alkaline phosphatase activity

    USGS Publications Warehouse

    Mateo, R.; Beyer, W.N.; Spann, J.W.; Hoffman, D.J.

    2003-01-01

    The increase of n-6 polyunsaturated fatty acids (PUFA) in animal tissues has been proposed as a mechanism of Pb poisoning through lipid peroxidation or altered eicosanoids metabolism. We have studied fatty acid (FA) composition in liver and brain of mallards (Anas platyrhynchos) feeding for three weeks on diets containing combinations of low or high levels of vitamin E (20 or 200 UI/kg) and Pb (0 or 2 g/kg). Saturated FA, n-6 PUFA and total concentrations of FA were higher in livers of Pb-exposed mallards, but not in their brains. The percentage of n-6 PUFA in liver and brain was slightly higher in Pb-exposed mallards. The increase of n-6 PUFA in liver was associated with increased triglycerides and cholesterol in plasma, thus could be in part attributed to feed refusal and fat mobilization. The hepatic ratios between adrenic acid (22:4 n-6) and arachidonic acid (20:4 n-6) or between adrenic acid and linoleic acid (18:2 n-6) were higher in Pb exposed birds, supporting the existing hypothesis of increased fatty acid elongation by Pb. Among the possible consequences of increased n-6 PUFA concentration in tissues, we found increased lipid peroxidation in liver without important histopathological changes, and decreased plasma alkaline phosphatase activity that may reflect altered bone metabolism in birds.

  20. Lipids in the diet and the fatty acid profile in beef: a review and recent patents on the topic.

    PubMed

    Ladeira, Marcio M; Machado Neto, Otavio R; Chizzotti, Mario L; Oliveira, Dalton M; Chalfun Junior, Antonio

    2012-08-01

    The objective of this review is to report how the use of lipid sources in diets for ruminants can affect the fatty acid profile of beef. In addition, recent patents that can be utilized to alter the fatty acid profile in the meat, or which concern the synthesis of conjugated fatty acids will be reviewed. The industrial production of conjugated linoleic acid (CLA) has already started and the commercial products present isomers cis-9, trans-11; trans-9, cis-11; and trans-10, cis-12. Patents on the biological synthesis of isomer C18:2 cis-9, trans-11 from the linoleic acid have also been published. However, the economic production of CLA in industrial scale is a difficult process. Most of the patents published for CLA production utilize bacteria of the genera Bifidobacterium sp. and Propionibacterium sp. Lipid supplementation, with the objective to improve the fatty acid profile of beef, can be done through the use of patented products, such as genetically modified oilseeds and calcium soaps of fatty acids. PMID:22702746

  1. Filled hydrogel particles as a delivery system for n-3 long chain PUFA in low-fat frankfurters: Consequences for product characteristics with special reference to lipid oxidation.

    PubMed

    Salcedo-Sandoval, Lorena; Cofrades, Susana; Ruiz-Capillas, Claudia; Jiménez-Colmenero, Francisco

    2015-12-01

    This article examines the suitability of filled hydrogel particles for use as a delivery system for n-3 long chain PUFAs in low-fat frankfurters. Their effects on product characteristics over chilled storage were compared with those of frankfurters containing all-pork fat (control) or a comparable amount of fish oil (n-3 LCPUFA) incorporated in liquid form or in an oil-in-water emulsion. In modified samples n-3 fatty acids ranged between 801.34 to 996.37 mg/100g as opposed to 66 mg/100g in all-pork fat product. As compared with the control, hardness and chewiness values were similar (P>0.05) in filled hydrogel frankfurter. The presence of fish oil favoured lipid oxidation to varying degrees depending on delivery system, in descending order: direct oil addition>oil-in-water emulsion>hydrogels. Sensory evaluation demonstrated the advantages, from a sensory point of view, of hydrogel filled particles as n-3 delivery systems in frankfurters. PMID:26232749

  2. Impact of methods used to express levels of circulating fatty acids on the degree and direction of associations with blood lipids in humans.

    PubMed

    Sergeant, Susan; Ruczinski, Ingo; Ivester, Priscilla; Lee, Tammy C; Morgan, Timothy M; Nicklas, Barbara J; Mathias, Rasika A; Chilton, Floyd H

    2016-01-28

    Numerous studies have examined relationships between disease biomarkers (such as blood lipids) and levels of circulating or cellular fatty acids. In such association studies, fatty acids have typically been expressed as the percentage of a particular fatty acid relative to the total fatty acids in a sample. Using two human cohorts, this study examined relationships between blood lipids (TAG, and LDL, HDL or total cholesterol) and circulating fatty acids expressed either as a percentage of total or as concentration in serum. The direction of the correlation between stearic acid, linoleic acid, dihomo-γ-linolenic acid, arachidonic acid and DHA and circulating TAG reversed when fatty acids were expressed as concentrations v. a percentage of total. Similar reversals were observed for these fatty acids when examining their associations with the ratio of total cholesterol:HDL-cholesterol. This reversal pattern was replicated in serum samples from both human cohorts. The correlations between blood lipids and fatty acids expressed as a percentage of total could be mathematically modelled from the concentration data. These data reveal that the different methods of expressing fatty acids lead to dissimilar correlations between blood lipids and certain fatty acids. This study raises important questions about how such reversals in association patterns impact the interpretation of numerous association studies evaluating fatty acids and their relationships with disease biomarkers or risk. PMID:26615716

  3. Keys to Lipid Selection in Fatty Acid Amide Hydrolase Catalysis: Structural Flexibility, Gating Residues and Multiple Binding Pockets

    PubMed Central

    Palermo, Giulia; Bauer, Inga; Campomanes, Pablo; Cavalli, Andrea; Armirotti, Andrea; Girotto, Stefania; Rothlisberger, Ursula; De Vivo, Marco

    2015-01-01

    The fatty acid amide hydrolase (FAAH) regulates the endocannabinoid system cleaving primarily the lipid messenger anandamide. FAAH has been well characterized over the years and, importantly, it represents a promising drug target to treat several diseases, including inflammatory-related diseases and cancer. But its enzymatic mechanism for lipid selection to specifically hydrolyze anandamide, rather than similar bioactive lipids, remains elusive. Here, we clarify this mechanism in FAAH, examining the role of the dynamic paddle, which is formed by the gating residues Phe432 and Trp531 at the boundary between two cavities that form the FAAH catalytic site (the “membrane-access” and the “acyl chain-binding” pockets). We integrate microsecond-long MD simulations of wild type and double mutant model systems (Phe432Ala and Trp531Ala) of FAAH, embedded in a realistic membrane/water environment, with mutagenesis and kinetic experiments. We comparatively analyze three fatty acid substrates with different hydrolysis rates (anandamide > oleamide > palmitoylethanolamide). Our findings identify FAAH’s mechanism to selectively accommodate anandamide into a multi-pocket binding site, and to properly orient the substrate in pre-reactive conformations for efficient hydrolysis that is interceded by the dynamic paddle. Our findings therefore endorse a structural framework for a lipid selection mechanism mediated by structural flexibility and gating residues between multiple binding cavities, as found in FAAH. Based on the available structural data, this exquisite catalytic strategy for substrate specificity seems to be shared by other lipid-degrading enzymes with similar enzymatic architecture. The mechanistic insights for lipid selection might assist de-novo enzyme design or drug discovery efforts. PMID:26111155

  4. Acid sphingomyelinase regulates glucose and lipid metabolism in hepatocytes through AKT activation and AMP-activated protein kinase suppression

    PubMed Central

    Osawa, Yosuke; Seki, Ekihiro; Kodama, Yuzo; Suetsugu, Atsushi; Miura, Kouichi; Adachi, Masayuki; Ito, Hiroyasu; Shiratori, Yoshimune; Banno, Yoshiko; Olefsky, Jerrold M.; Nagaki, Masahito; Moriwaki, Hisataka; Brenner, David A.; Seishima, Mitsuru

    2011-01-01

    Acid sphingomyelinase (ASM) regulates the homeostasis of sphingolipids, including ceramides and sphingosine-1-phosphate (S1P). Because sphingolipids regulate AKT activation, we investigated the role of ASM in hepatic glucose and lipid metabolism. Initially, we overexpressed ASM in the livers of wild-type and diabetic db/db mice by adenovirus vector (Ad5ASM). In these mice, glucose tolerance was improved, and glycogen and lipid accumulation in the liver were increased. Using primary cultured hepatocytes, we confirmed that ASM increased glucose uptake, glycogen deposition, and lipid accumulation through activation of AKT and glycogen synthase kinase-3β. In addition, ASM induced up-regulation of glucose transporter 2 accompanied by suppression of AMP-activated protein kinase (AMPK) phosphorylation. Loss of sphingosine kinase-1 (SphK1) diminished ASM-mediated AKT phosphorylation, but exogenous S1P induced AKT activation in hepatocytes. In contrast, SphK1 deficiency did not affect AMPK activation. These results suggest that the SphK/S1P pathway is required for ASM-mediated AKT activation but not for AMPK inactivation. Finally, we found that treatment with high-dose glucose increased glycogen deposition and lipid accumulation in wild-type hepatocytes but not in ASM−/− cells. This result is consistent with glucose intolerance in ASM−/− mice. In conclusion, ASM modulates AKT activation and AMPK inactivation, thus regulating glucose and lipid metabolism in the liver.—Osawa, Y., Seki, E., Kodama, Y., Suetsugu, A., Miura, K., Adachi, M., Ito, H., Shiratori, Y., Banno, Y., Olefsky, J. M., Nagaki, M., Moriwaki, H., Brenner, D. A., Seishima, M. Acid sphingomyelinase regulates glucose and lipid metabolism in hepatocytes through AKT activation and AMP-activated protein kinase suppression. PMID:21163859

  5. Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents.

    PubMed

    Kougias, P G; Boe, K; Einarsdottir, E S; Angelidaki, I

    2015-08-01

    Foaming is one of the major operational problems in biogas plants, and dealing with foaming incidents is still based on empirical practices. Various types of antifoams are used arbitrarily to combat foaming in biogas plants, but without any scientific support this action can lead to serious deterioration of the methanogenic process. Many commercial antifoams are derivatives of fatty acids or oils. However, it is well known that lipids can induce foaming in manure based biogas plants. This study aimed to elucidate the effect of rapeseed oil and oleic acid on foam reduction and process performance in biogas reactors fed with protein or lipid rich substrates. The results showed that both antifoams efficiently suppressed foaming. Moreover rapeseed oil resulted in stimulation of the biogas production. Finally, it was reckoned that the chemical structure of lipids, and more specifically their carboxylic ends, is responsible for their foam promoting or foam counteracting behaviour. Thus, it was concluded that the fatty acids and oils could suppress foaming, while salt of fatty acids could generate foam. PMID:25978353

  6. Selection for low erucic acid and genetic mapping of loci affecting the accumulation of very long-chain fatty acids in meadowfoam seed storage lipids.

    PubMed

    Gandhi, S D; Kishore, V K; Crane, J M; Slabaugh, M B; Knapp, S J

    2009-06-01

    Erucic acid (22:1(13)) has been identified as an anti-nutritional compound in meadowfoam (Limnanthes alba) and other oilseeds in the Brassicales, a classification which has necessitated the development of low erucic acid cultivars for human consumption. The erucic acid concentrations of meadowfoam wild types (8%-24%) surpass industry standards for human consumption (acid lines and identify loci affecting the accumulation of 22:1(13) and other very long-chain fatty acids (VLCFAs) in meadowfoam seed storage lipids. LE76, a low erucic acid line, was developed by 3 cycles of selection in an ethyl methanesulfonate-treated wildtype population. LE76 produced 3% 22:1(13), threefold less than the M0 population. Wildtype x LE76 F2 populations produced continuous, approximately normal erucic and dienoic acid distributions. Loss-of-function mutations apparently did not segregate and individuals with low 22:1(13) concentrations (lipids by genotyping and phenotyping wildtype x low erucic acid F2 progeny. Composite interval mapping identified 3 moderately large-effect erucic acid QTL. The low erucic acid parent transmitted favorable alleles for 2 of 3 QTL, suggesting low erucic acid cultivars can be developed by combining favorable alleles transmitted by wildtype and low erucic acid parents. PMID:19483773

  7. Nicotinic acid supplementation in diet favored intramuscular fat deposition and lipid metabolism in finishing steers.

    PubMed

    Yang, Zhu-Qing; Bao, Lin-Bin; Zhao, Xiang-Hui; Wang, Can-Yu; Zhou, Shan; Wen, Lu-Hua; Fu, Chuan-Bian; Gong, Jian-Ming; Qu, Ming-Ren

    2016-06-01

    Nicotinic acid (NA) acting as the precursor of NAD(+)/NADH and NADP(+)/NADPH, participates in many biochemical processes, e.g. lipid metabolism. The main purpose of this study was to investigate the effects of dietary NA on carcass traits, meat quality, blood metabolites, and fat deposition in Chinese crossbred finishing steers. Sixteen steers with the similar body weight and at the age of 24 months were randomly allocated into control group (feeding basal diet) and NA group (feeding basal diet + 1000 mg/kg NA). All experimental cattle were fed a 90% concentrate diet and 10% forage straw in a 120-day feeding experiment. The results showed that supplemental NA in diet increased longissimus area, intramuscular fat content (17.14% vs. 9.03%), marbling score (8.08 vs. 4.30), redness (a*), and chroma (C*) values of LD muscle, but reduced carcass fat content (not including imtramuscular fat), pH24 h and moisture content of LD muscle, along with no effect on backfat thickness. Besides, NA supplementation increased serum HDL-C concentration, but decreased the serum levels of LDL-C, triglyceride, non-esterified fatty acid, total cholesterol, and glycated serum protein. In addition, NA supplementation increased G6PDH and ICDH activities of LD muscle. These results suggested that NA supplementation in diet improves the carcass characteristics and beef quality, and regulates the compositions of serum metabolites. Based on the above results, NA should be used as the feed additive in cattle industry. PMID:27048556

  8. Gallic Acid Ameliorated Impaired Glucose and Lipid Homeostasis in High Fat Diet-Induced NAFLD Mice

    PubMed Central

    Chao, Jung; Huo, Teh-Ia; Cheng, Hao-Yuan; Tsai, Jen-Chieh; Liao, Jiunn-Wang; Lee, Meng-Shiou; Qin, Xue-Mei; Hsieh, Ming-Tsuen; Pao, Li-Heng; Peng, Wen-Huang

    2014-01-01

    Gallic acid (GA), a naturally abundant plant phenolic compound in vegetables and fruits, has been shown to have potent anti-oxidative and anti-obesity activity. However, the effects of GA on nonalcoholic fatty liver disease (NAFLD) are poorly understood. In this study, we investigated the beneficial effects of GA administration on nutritional hepatosteatosis model by a more “holistic view” approach, namely 1H NMR-based metabolomics, in order to prove efficacy and to obtain information that might lead to a better understanding of the mode of action of GA. Male C57BL/6 mice were placed for 16 weeks on either a normal chow diet, a high fat diet (HFD, 60%), or a high fat diet supplemented with GA (50 and 100 mg/kg/day, orally). Liver histopathology and serum biochemical examinations indicated that the daily administration of GA protects against hepatic steatosis, obesity, hypercholesterolemia, and insulin resistance among the HFD-induced NAFLD mice. In addition, partial least squares discriminant analysis scores plots demonstrated that the cluster of HFD fed mice is clearly separated from the normal group mice plots, indicating that the metabolic characteristics of these two groups are distinctively different. Specifically, the GA-treated mice are located closer to the normal group of mice, indicating that the HFD-induced disturbances to the metabolic profile were partially reversed by GA treatment. Our results show that the hepatoprotective effect of GA occurs in part through a reversing of the HFD caused disturbances to a range of metabolic pathways, including lipid metabolism, glucose metabolism (glycolysis and gluconeogenesis), amino acids metabolism, choline metabolism and gut-microbiota-associated metabolism. Taken together, this study suggested that a 1H NMR-based metabolomics approach is a useful platform for natural product functional evaluation. The selected metabolites are potentially useful as preventive action biomarkers and could also be used to help

  9. OXIDATIVE STRESS AND LIPID MEDIATORS INDUCED IN ALVEOLAR MACHROPHAGES BY ULTRAFINE PARTICLES

    EPA Science Inventory

    In ambient aerosols, ultrafine particles (UFP) and their agglomerates are considered to be major factors contributing to adverse health effects. Reactivity of agglomerated UFP of elemental carbon (EC), Printex 90, Printex G, and diesel exhaust particles (DEP) was evaluated by the...

  10. Synthesis of hydroxyeicosatetraenoic acids (HETE's) by adrenal glomerulosa cells and incorporation into cellular lipids

    SciTech Connect

    Campbell, W.B.; Richards, C.F.; Brady, M.T.; Falck, J.R.

    1986-03-05

    The role of lipoxygenase metabolites of arachidonic acid (AA) in the regulation of aldosterone secretion was studied in isolated rat adrenal glomerulosa cells. Cells were incubated with /sup 14/C-AA in the presence of angiotensin (AII). The media was extracted, metabolites isolated by HPLC, and structures of the metabolites determined by UV absorbance and mass spectrometry. The major products were 12- and 15-HETE with lesser amounts of 11- and 5-HETE. When adrenal cells were incubated with 15-, 12- or 5-HPETE or their respective HETE's (0.03-300nM), there was no significant change in basal or AII-stimulated aldosterone release. Cells were incubated with (/sup 3/H)-AA, -5-HETE, -15-HETE, -12-HETE or -LTB. The cellular lipids were extracted and analyzed by TLC. AA was incorporated into phospholipids (22%), cholesterol esters (50%) and triglycerides (21%). Neither the HETE's or LTB/sub 4/ were incorporated into phospholipids. 5-HETE was taken up into di- and mono-glycerides. The rates of incorporation of AA and 5-HETE were similar (+ 1/2 = 10 min). The incorporation of 5-HETE into glycerol esters did not modify the release of aldosterone by the cells. Thus, while adrenal cells synthesize HETE's, these eicosanoids do not appear to alter the synthesis of aldosterone.

  11. Doxorubicin hydrochloride-oleic acid conjugate loaded nanostructured lipid carriers for tumor specific drug release.

    PubMed

    Zhao, Shuangni; Minh, Le Van; Li, Na; Garamus, Vasil M; Handge, Ulrich A; Liu, Jianwen; Zhang, Rongguang; Willumeit-Römer, Regine; Zou, Aihua

    2016-09-01

    The hydrophilic drug Doxorubicin hydrochloride (DOX) paired with oleic acid (OA) was successfully incorporated into nanostructured lipid carriers (NLCs) by a high-pressure homogenization (HPH) method. Drug nanovehicles with proper physico-chemical characteristics (less than 200nm with narrow size distribution, spherical shape, layered internal organization, and negative electrical charge) were prepared and characterized by dynamic light scattering, zeta potential measurements, transmission electron microscopy, small-angle X-ray scattering and differential scanning calorimetry. The drug loading and entrapment efficiency of DOX-OA/NLCs were 4.09% and 97.80%, respectively. A pH-dependent DOX release from DOX-OA/NLCs, i.e., fast at pH 3.8 and 5.7 and sustained at pH 7.4, was obtained. A cytotoxicity assay showed that DOX-OA/NLCs had comparable cytotoxicity to pure DOX and were favorably taken up by HCT 116 cells. The intracellular distribution of DOX was also studied using a confocal laser scanning microscope. All of these results demonstrated that DOX-OA/NLCs could be a promising drug delivery system with tumor-specific DOX release for cancer treatment. PMID:27137808

  12. Coating Solid Lipid Nanoparticles with Hyaluronic Acid Enhances Antitumor Activity against Melanoma Stem-like Cells

    PubMed Central

    Shen, Hongxin; Shi, Sanjun; Zhang, Zhirong; Gong, Tao; Sun, Xun

    2015-01-01

    Successful anticancer chemotherapy requires targeting tumors efficiently and further potential to eliminate cancer stem cell (CSC) subpopulations. Since CD44 is present on many types of CSCs, and it binds specially to hyaluronic acid (HA), we tested whether coating solid lipid nanoparticles with hyaluronan (HA-SLNs)would allow targeted delivery of paclitaxel (PTX) to CD44-overexpressing B16F10 melanoma cells. First, we developed a model system based on melanoma stem-like cells for experiments in vitro and in mouse xenografts, and we showed that cells expressing high levels of CD44 (CD44+) displayed a strong CSC phenotype while cells expressing low levels of CD44 (CD44-) did not. This phenotype included sphere and colony formation, higher proportion of side population cells, expression of CSC-related markers (ALDH, CD133, Oct-4) and tumorigenicity in vivo. Next we showed that administering PTX-loaded HA-SLNs led to efficient intracellular delivery of PTX and induced substantial apoptosis in CD44+ cells in vitro. In the B16F10-CD44+ lung metastasis model, PTX-loaded HA-SLNs targeted the tumor-bearing lung tissues well and subsequently exhibited significant antitumor effects with a relative low dose of PTX, which provided significant survival benefit without evidence of adverse events. These findings suggest that the HA-SLNs targeting system shows promise for enhancing cancer therapy. PMID:25897340

  13. Development of nucleic acid vaccines: use of self-amplifying RNA in lipid nanoparticles.

    PubMed

    Rodríguez-Gascón, Alicia; del Pozo-Rodríguez, Ana; Solinís, María Ángeles

    2014-01-01

    Self-amplifying RNA or RNA replicon is a form of nucleic acid-based vaccine derived from either positive-strand or negative-strand RNA viruses. The gene sequences encoding structural proteins in these RNA viruses are replaced by mRNA encoding antigens of interest as well as by RNA polymerase for replication and transcription. This kind of vaccine has been successfully assayed with many different antigens as vaccines candidates, and has been shown to be potent in several animal species, including mice, nonhuman primates, and humans. A key challenge to realizing the broad potential of self-amplifying vaccines is the need for safe and effective delivery methods. Ideally, an RNA nanocarrier should provide protection from blood nucleases and extended blood circulation, which ultimately would increase the possibility of reaching the target tissue. The delivery system must then be internalized by the target cell and, upon receptor-mediated endocytosis, must be able to escape from the endosomal compartment into the cell cytoplasm, where the RNA machinery is located, while avoiding degradation by lysosomal enzymes. Further, delivery systems for systemic administration ought to be well tolerated upon administration. They should be safe, enabling the multiadministration treatment modalities required for improved clinical outcomes and, from a developmental point of view, production of large batches with reproducible specifications is also desirable. In this review, the concept of self-amplifying RNA vaccines and the most promising lipid-based delivery systems are discussed. PMID:24748793

  14. Stearoyl-CoA Desaturase-1: Is It the Link between Sulfur Amino Acids and Lipid Metabolism?

    PubMed Central

    Poloni, Soraia; Blom, Henk J.; Schwartz, Ida V. D.

    2015-01-01

    An association between sulfur amino acids (methionine, cysteine, homocysteine and taurine) and lipid metabolism has been described in several experimental and population-based studies. Changes in the metabolism of these amino acids influence serum lipoprotein concentrations, although the underlying mechanisms are still poorly understood. However, recent evidence has suggested that the enzyme stearoyl-CoA desaturase-1 (SCD-1) may be the link between these two metabolic pathways. SCD-1 is a key enzyme for the synthesis of monounsaturated fatty acids. Its main substrates C16:0 and C18:0 and products palmitoleic acid (C16:1) and oleic acid (C18:1) are the most abundant fatty acids in triglycerides, cholesterol esters and membrane phospholipids. A significant suppression of SCD-1 has been observed in several animal models with disrupted sulfur amino acid metabolism, and the activity of SCD-1 is also associated with the levels of these amino acids in humans. This enzyme also appears to be involved in the etiology of metabolic syndromes because its suppression results in decreased fat deposits (regardless of food intake), improved insulin sensitivity and higher basal energy expenditure. Interestingly, this anti-obesogenic phenotype has also been described in humans and animals with sulfur amino acid disorders, which is consistent with the hypothesis that SCD-1 activity is influenced by these amino acids, in particularly cysteine, which is a strong and independent predictor of SCD-1 activity and fat storage. In this narrative review, we discuss the evidence linking sulfur amino acids, SCD-1 and lipid metabolism. PMID:26046927

  15. Food availability and reproduction affects lipid and fatty acid composition of the brown mussel, Perna perna, raised in suspension culture.

    PubMed

    Narváez, Mirle; Freites, L; Guevara, M; Mendoza, J; Guderley, H; Lodeiros, C J; Salazar, G

    2008-02-01

    We examined the influence of the reproductive cycle and environmental factors on variations of the condition index (CI), tissue dry mass, shell size, total lipid content, and relative percent of fatty acids in the mussel, Perna perna. Spat or juveniles were reared to commercial size (70 mm) in suspension culture in the Golfo de Cariaco, Venezuela between May and October 2004. The dry mass of soft tissues and shell, a visual assessment of gonadal status and the organism lipid profile were established every fortnight. In parallel, we measured the environmental conditions, following chlorophyll a, salinity, temperature and seston levels. After an initial decrease, the CI rose and remained high until August after which it decreased continuously until October. Total lipid values also decreased initially, after which they showed two periods of rapid recuperation and depletion, the first between May and August and the second between August and October. Similar tendencies were noted in the fatty acids, C18:3n-3, C18:4n-3 and C22:6n-3. Correlation analysis found no significant relationships between environmental parameters and the variations in total lipids. However, significant correlations were noted between fatty acids and specific environmental parameters. In particular, temperature was inversely correlated with C14:0, C16:1n-7, C18:0, C18:1n-9 and 20:5n-3. Chlorophyll a was positively correlated with C14:0, C16:1n-7, C18:1n-7, C18:4n-3 and 20:4n-6. On the other hand, gametogenesis had an effect on C14:0, C16:1n-7, C18:1n-9 and C18:1n-7, while spawned and gonadal regression states had an effect on fatty acid 20:4n-6. Temperature and chlorophyll a levels strongly influenced the proportion of mussels spawning, suggesting that their influence upon lipid composition may be secondary to their impact upon reproduction. Despite the thermal stability of this tropical system, the lipid composition of mussels changed markedly during the study, reflecting the central role of diet

  16. Impact of dietary lipids on sow milk composition and balance of essential fatty acids during lactation in prolific sows.

    PubMed

    Rosero, D S; Odle, J; Mendoza, S M; Boyd, R D; Fellner, V; van Heugten, E

    2015-06-01

    Two studies were designed to determine the effects of supplementing diets with lipid sources of EFA (linoleic and α-linolenic acid) on sow milk composition to estimate the balance of EFA for sows nursing large litters. In Exp. 1, 30 sows, equally balanced by parity (1 and 3 to 5) and nursing 12 pigs, were fed diets supplemented with 6% animal-vegetable blend (A-V), 6% choice white grease (CWG), or a control diet without added lipid. Diets were corn-soybean meal based with 8% corn distiller dried grains with solubles and 6% wheat middlings and contained 3.25 g standardized ileal digestible Lys/Mcal ME. Sows fed lipid-supplemented diets secreted greater amounts of fat (P = 0.082; 499 and 559 g/d for control and lipid-added diets, respectively) than sows fed the control diet. The balance of EFA was computed as apparent ileal digestible intake of EFA minus the outflow of EFA in milk. For sows fed the control diet, the amount of linoleic acid secreted in milk was greater than the amount consumed, throughout lactation. This resulted in a pronounced negative balance of linoleic acid (-22.4, -38.0, and -14.1 g/d for d 3, 10, and 17 of lactation, respectively). In Exp. 2, 50 sows, equally balanced by parity and nursing 12 pigs, were randomly assigned to a 2 × 2 factorial arrangement of diets plus a control diet without added lipids. Factors included linoleic acid (2.1% and 3.3%) and α-linolenic acid (0.15% and 0.45%). The different concentrations of EFA were obtained by adding 4% of different mixtures of canola, corn, and flaxseed oils to diets. The n-6 to n-3 fatty acid ratios in the diets ranged from 5 to 22. Increasing supplemental EFA increased (P < 0.001) milk concentrations of linoleic (16.7% and 20.8%, for 2.1% and 3.3% linoleic acid, respectively) and α-linolenic acid (P < 0.001; 1.1 and 1.9% for 0.15 and 0.45% α-linolenic acid, respectively). Increasing supplemental EFA increased the estimated balance of α-linolenic acid (P < 0.001; -0.2 and 5.3 g/d for 0

  17. High-Throughput Screening of Saturated Fatty Acid Influence on Nanostructure of Lyotropic Liquid Crystalline Lipid Nanoparticles.

    PubMed

    Tran, Nhiem; Hawley, Adrian M; Zhai, Jiali; Muir, Benjamin W; Fong, Celesta; Drummond, Calum J; Mulet, Xavier

    2016-05-10

    Self-assembled lyotropic liquid crystalline lipid nanoparticles have been developed for a wide range of biomedical applications with an emerging focus for use as delivery vehicles for drugs, genes, and in vivo imaging agents. In this study, we report the generation of lipid nanoparticle libraries with information regarding mesophase and lattice parameter, which can aid the selection of formulation for a particular end-use application. In this study we elucidate the phase composition parameters that influence the internal structure of lipid nanoparticles produced from monoolein, monopalmitolein and phytantriol incorporating a variety of saturated fatty acids (FA) with different chain lengths at varying concentrations and temperatures. The material libraries were established using high throughput formulation and screening techniques, including synchrotron small-angle X-ray scattering. The results demonstrate the rich polymorphism of lipid nanoparticles with nonlamellar mesophases in the presence of saturated FAs. The inclusion of saturated FAs within the lipid nanoparticles promotes a gradual phase transition at all temperatures studied toward structures with higher negative surface curvatures (e.g., from inverse bicontinuous cubic phase to hexagonal phase and then emulsified microemulsion). The three partial phase diagrams produced are discussed in terms of the influence of FA chain length and concentration on nanoparticle internal mesophase structure and lattice parameters. The study also highlights a compositionally dependent coexistence of multiple mesophases, which may indicate the presence of multicompartment nanoparticles containing cubic/cubic and cubic/hexagonal mesophases. PMID:27023315

  18. Monounsaturated fatty acids reduce the barrier of stratum corneum lipid membranes by enhancing the formation of a hexagonal lateral packing.

    PubMed

    Mojumdar, Enamul H; Helder, Richard W J; Gooris, Gert S; Bouwstra, Joke A

    2014-06-10

    The effectiveness of the skin barrier underlies the outer layer of the skin: the stratum corneum (SC). However, in several skin diseases this barrier is impaired. In two inflammatory skin diseases, atopic eczema and Netherton syndrome, an increased level of monounsaturated fatty acids (MUFAs) has been observed as opposed to healthy skin. In the present study, we aimed to investigate the effect of MUFAs on the lipid organization and skin lipid barrier using an in vitro model membrane system, the stratum corneum substitute (SCS), mimicking the SC lipid composition and organization. To achieve our goal, the SCS has been prepared with increasing levels of MUFAs using various chain length. Permeation studies and trans-epidermal water loss measurements show that an increment of MUFAs reduces the lipid barrier in the SCS. The increased level of unsaturation exerts its effect by reducing the packing density in the lipid organization, while the lamellar phases are not affected. Our findings indicate that increased levels of MUFAs may contribute to the impaired skin barrier in diseased skin. PMID:24818519

  19. Lipid droplets in activated mast cells - a significant source of triglyceride-derived arachidonic acid for eicosanoid production.

    PubMed

    Dichlberger, Andrea; Schlager, Stefanie; Kovanen, Petri T; Schneider, Wolfgang J

    2016-08-15

    Mast cells are potent effectors of immune reactions and key players in various inflammatory diseases such as atherosclerosis, asthma, and rheumatoid arthritis. The cellular defense response of mast cells represents a unique and powerful system, where external signals can trigger cell activation resulting in a stimulus-specific and highly coordinated release of a plethora of bioactive mediators. The arsenal of mediators encompasses preformed molecules stored in cytoplasmic secretory granules, as well as newly synthesized proteinaceous and lipid mediators. The release of mediators occurs in strict chronological order and requires proper coordination between the endomembrane system and various enzymatic machineries. For the generation of lipid mediators, cytoplasmic lipid droplets have been shown to function as a major intracellular pool of arachidonic acid, the precursor for eicosanoid biosynthesis. Recent studies have revealed that not only phospholipids in mast cell membranes, but also triglycerides in mast cell lipid droplets are a substrate source for eicosanoid formation. The present review summarizes current knowledge about mast cell lipid droplet biology, and discusses expansions and challenges of traditional mechanistic models for eicosanoid production. PMID:26164793

  20. Subcellular Localization of Secondary Lipid Metabolites Including Fragrance Volatiles in Carnation Petals.

    PubMed Central

    Hudak, K. A.; Thompson, J. E.

    1997-01-01

    Pulse-chase labeling of carnation (Dianthus caryophyllus L. cv Improved White Sim) petals with [14C]acetate has provided evidence for a hydrophobic subcompartment of lipid-protein particles within the cytosol that resemble oil bodies, are formed by blebbing from membranes, and are enriched in lipid metabolites (including fragrance volatiles) derived from membrane fatty acids. Fractionation of the petals during pulse-chase labeling revealed that radiolabeled fatty acids appear first in microsomal membranes and subsequently in cytosolic lipid-protein particles, indicating that the particles originate from membranes. This interpretation is supported by the finding that the cytosolic lipid-protein particles contain phospholipid as well as the same fatty acids found in microsomal membranes. Radiolabeled polar lipid metabolites (methanol/water-soluble) were detectable in both in situ lipid-protein particles isolated from the cytosol and those generated in vitro from isolated radiolabeled microsomal membranes. The lipid-protein particles were also enriched in hexanal, trans-2-hexenal, 1-hexanol, 3-hexen-1-ol, and 2-hexanol, volatiles of carnation flower fragrance that are derived from membrane fatty acids through the lipoxygenase pathway. Therefore, secondary lipid metabolites, including components of fragrance, appear to be formed within membranes of petal tissue and are subsequently released from the membrane bilayers into the cytosol by blebbing of lipid-protein particles. PMID:12223738

  1. Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production.

    PubMed

    Mishra, Pranjul; Park, Gyu-Yeon; Lakshmanan, Meiyappan; Lee, Hee-Seok; Lee, Hongweon; Chang, Matthew Wook; Ching, Chi Bun; Ahn, Jungoh; Lee, Dong-Yup

    2016-09-01

    Recently, the bio-production of α,ω-dicarboxylic acids (DCAs) has gained significant attention, which potentially leads to the replacement of the conventional petroleum-based products. In this regard, the lipid accumulating yeast Candida tropicalis, has been recognized as a promising microbial host for DCA biosynthesis: it possess the unique ω-oxidation pathway where the terminal carbon of α-fatty acids is oxidized to form DCAs with varying chain lengths. However, despite such industrial importance, its cellular physiology and lipid accumulation capability remain largely uncharacterized. Thus, it is imperative to better understand the metabolic behavior of this lipogenic yeast, which could be achieved by a systems biological approach. To this end, herein, we reconstructed the genome-scale metabolic model of C. tropicalis, iCT646, accounting for 646 unique genes, 945 metabolic reactions, and 712 metabolites. Initially, the comparative network analysis of iCT646 with other yeasts revealed several distinctive metabolic reactions, mainly within the amino acid and lipid metabolism including the ω-oxidation pathway. Constraints-based flux analysis was, then, employed to predict the in silico growth rates of C. tropicalis which are highly consistent with the cellular phenotype observed in glucose and xylose minimal media chemostat cultures. Subsequently, the lipid accumulation capability of C. tropicalis was explored in comparison with Saccharomyces cerevisiae, indicating that the formation of "citrate pyruvate cycle" is essential to the lipid accumulation in oleaginous yeasts. The in silico flux analysis also highlighted the enhanced ability of pentose phosphate pathway as NADPH source rather than malic enzyme during lipogenesis. Finally, iCT646 was successfully utilized to highlight the key directions of C. tropicalis strain design for the whole cell biotransformation application to produce long-chain DCAs from alkanes. Biotechnol. Bioeng. 2016;113: 1993-2004.

  2. Acyl-CoA N-acyltransferase influences fertility by regulating lipid metabolism and jasmonic acid biogenesis in cotton

    PubMed Central

    Fu, Wenfeng; Shen, Ying; Hao, Juan; Wu, Jianyong; Ke, Liping; Wu, Caiyun; Huang, Kai; Luo, Binglun; Xu, Mingfeng; Cheng, Xiaofei; Zhou, Xueping; Sun, Jie; Xing, Chaozhu; Sun, Yuqiang

    2015-01-01

    Cotton (Gossypium spp.) is an important economic crop and there is obvious heterosis in cotton, fertility has played an important role in this heterosis. However, the genes that exhibit critical roles in anther development and fertility are not well understood. Here, we report an acyl-CoA N-acyltransferase (EC2.3; GhACNAT) that plays a key role in anther development and fertility. Suppression of GhACNAT by virus-induced gene silencing in transgenic cotton (G. hirsutum L. cv. C312) resulted in indehiscent anthers that were full of pollen, diminished filaments and stamens, and plant sterility. We found GhACNAT was involved in lipid metabolism and jasmonic acid (JA) biosynthesis. The genes differentially expressed in GhACNAT-silenced plants and C312 were mainly involved in catalytic activity and transcription regulator activity in lipid metabolism. In GhACNAT-silenced plants, the expression levels of genes involved in lipid metabolism and jasmonic acid biosynthesis were significantly changed, the amount of JA in leaves and reproductive organs was significantly decreased compared with the amounts in C312. Treatments with exogenous methyl jasmonate rescued anther dehiscence and pollen release in GhACNAT-silenced plants and caused self-fertility. The GhACNAT gene may play an important role in controlling cotton fertility by regulating the pathways of lipid synthesis and JA biogenesis. PMID:26134787

  3. The Phosphatidic Acid Binding Site of the Arabidopsis Trigalactosyldiacylglycerol 4 (TGD4) Protein Required for Lipid Import into Chloroplasts*

    PubMed Central

    Wang, Zhen; Anderson, Nicholas Scott; Benning, Christoph

    2013-01-01

    Chloroplast membrane lipid synthesis relies on the import of glycerolipids from the ER. The TGD (TriGalactosylDiacylglycerol) proteins are required for this lipid transfer process. The TGD1, -2, and -3 proteins form a putative ABC (ATP-binding cassette) transporter transporting ER-derived lipids through the inner envelope membrane of the chloroplast, while TGD4 binds phosphatidic acid (PtdOH) and resides in the outer chloroplast envelope. We identified two sequences in TGD4, amino acids 1–80 and 110–145, which are necessary and sufficient for PtdOH binding. Deletion of both sequences abolished PtdOH binding activity. We also found that TGD4 from 18:3 plants bound specifically and with increased affinity PtdOH. TGD4 did not interact with other proteins and formed a homodimer both in vitro and in vivo. Our results suggest that TGD4 is an integral dimeric β-barrel lipid transfer protein that binds PtdOH with its N terminus and contains dimerization domains at its C terminus. PMID:23297418

  4. Vertical distribution of lipids, fatty acids and organochlorine contaminants in the blubber of southern hemisphere humpback whales (Megaptera novaeangliae).

    PubMed

    Waugh, Courtney A; Nichols, Peter D; Schlabach, Martin; Noad, Michael; Bengtson Nash, Susan

    2014-03-01

    Persistent organic pollutants (POPs), such as toxic lipophilic organochlorine (OC) compounds, accumulate in the blubber tissue of marine mammals. Toxicological sampling methods most frequently target only the superficial blubber layer. Vertical distribution of these contaminants through the blubber mantle may, however, not be homogenous and could reflect any dissemination of lipids and fatty acids (FAs). It is therefore critical to assess stratification patterns in a species of interest as a quality control measure for interpretation of toxicological data. Here, we analysed and compared the distribution of lipids, FAs, and OCs in the outermost and innermost blubber layer of southern hemisphere humpback whales. FA stratification was evident for short-chain (≤18) monounsaturated fatty acids (SC-MUFA), which were concentrated in the outer layer, consistent with the thermoregulatory role of this blubber layer. This stratification was, however, not reflected in OC distribution, which was similar in the inner and outer blubber layers of male humpback whales. By comparison, a noticeable gradient in total blubber lipid from the outer to the inner layer was observed in two lactating females, which coincided with higher lipid normalised contaminant levels in the inner layer. This study contains the most comprehensive assessment of humpback whale blubber stratification to date, however, further investigation of biological and ecological influencing factors is required. PMID:24315760

  5. Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age.

    PubMed

    Keith, Dove; Finlay, Liam; Butler, Judy; Gómez, Luis; Smith, Eric; Moreau, Régis; Hagen, Tory

    2014-07-18

    It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks. PMID:24944020

  6. Lipids and Composition of Fatty Acids of Saccharina latissima Cultivated Year-Round in Integrated Multi-Trophic Aquaculture.

    PubMed

    Marinho, Gonçalo S; Holdt, Susan L; Jacobsen, Charlotte; Angelidaki, Irini

    2015-07-01

    This study is evaluating the seasonal lipid and fatty acid composition of the brown seaweed Saccharina latissima. Biomass was sampled throughout the year (bi-monthly) at the commercial cultivation site near a fish farm in an integrated multi-trophic aquaculture (IMTA) and at a reference site in Denmark (2013-2014). Generally, there was no difference in the biomass composition between sites; however, significant seasonal changes were found. The lipid concentration varied from 0.62%-0.88% dry weight (DW) in July to 3.33%-3.35% DW in November (p < 0.05) in both sites. The fatty acid composition in January was significantly different from all the other sampling months. The dissimilarities were mainly explained by changes in the relative abundance of 20:5n-3 (13.12%-33.35%), 14:0 (11.07%-29.37%) and 18:1n-9 (10.15%-16.94%). Polyunsaturated fatty acids (PUFA's) made up more than half of the fatty acids with a maximum in July (52.3%-54.0% fatty acid methyl esters; FAME). This including the most appreciated health beneficial PUFA's, eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), but also arachidonic (ARA) and stearidonic acid (SDA), which are not found in land vegetables such as cabbage and lettuce. Compared to fat (salmon) and lean fish (cod) this seaweed species contains higher proportions of ARA and SDA, but lower EPA (only cod) and DHA. Conclusively, the season of harvest is important for the choice of lipid quantity and quality, but the marine vegetables provide better sources of EPA, DHA and long-chain (LC)-PUFA's in general compared to traditional vegetables. PMID:26184241

  7. Lipids and Composition of Fatty Acids of Saccharina latissima Cultivated Year-Round in Integrated Multi-Trophic Aquaculture

    PubMed Central

    Marinho, Gonçalo S.; Holdt, Susan L.; Jacobsen, Charlotte; Angelidaki, Irini

    2015-01-01

    This study is evaluating the seasonal lipid and fatty acid composition of the brown seaweed Saccharina latissima. Biomass was sampled throughout the year (bi-monthly) at the commercial cultivation site near a fish farm in an integrated multi-trophic aquaculture (IMTA) and at a reference site in Denmark (2013–2014). Generally, there was no difference in the biomass composition between sites; however, significant seasonal changes were found. The lipid concentration varied from 0.62%–0.88% dry weight (DW) in July to 3.33%–3.35% DW in November (p < 0.05) in both sites. The fatty acid composition in January was significantly different from all the other sampling months. The dissimilarities were mainly explained by changes in the relative abundance of 20:5n-3 (13.12%–33.35%), 14:0 (11.07%–29.37%) and 18:1n-9 (10.15%–16.94%). Polyunsaturated fatty acids (PUFA’s) made up more than half of the fatty acids with a maximum in July (52.3%–54.0% fatty acid methyl esters; FAME). This including the most appreciated health beneficial PUFA’s, eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), but also arachidonic (ARA) and stearidonic acid (SDA), which are not found in land vegetables such as cabbage and lettuce. Compared to fat (salmon) and lean fish (cod) this seaweed species contains higher proportions of ARA and SDA, but lower EPA (only cod) and DHA. Conclusively, the season of harvest is important for the choice of lipid quantity and quality, but the marine vegetables provide better sources of EPA, DHA and long-chain (LC)-PUFA’s in general compared to traditional vegetables. PMID:26184241

  8. Noncatalytic transformation of the crude lipid of ChlorellaI vulgaris into fatty acid methyl ester (FAME) with charcoal via a thermo-chemical process.

    PubMed

    Kwon, Eilhann E; Jeon, Young Jae; Yi, Haakrho

    2013-02-01

    The noncatalytic transformation of the crude lipid of Chlorella vulgaris (C. vulgaris) into fatty acid methyl ester (FAME) via a thermo-chemical process was mainly investigated in this work. The crude lipid of C. vulgaris was recovered by means of solvent extraction from C. vulgaris cultivated in a raceway pond. The conventional catalyzed transesterification of crude lipid of C. vulgaris is notably inhibited by the impurities contained in the crude lipid of C. vulgaris. These impurities are inevitably derived from the solvent extraction process for C. vulgaris. However, this work presents the noncatalytic transesterification of microalgal lipid into FAME, which could be an alternative option. For example, the noncatalytic transformation of microalgal lipid into FAME provides evidence that the esterification of free fatty acids (FFAs) and the transesterification of triglycerides can be combined into a single step less susceptible to the impurities and with a high conversion efficiency (∼97%). PMID:23294646

  9. Effects of Formulation Variables on the Particle Size and Drug Encapsulation of Imatinib-Loaded Solid Lipid Nanoparticles.

    PubMed

    Gupta, Biki; Poudel, Bijay Kumar; Pathak, Shiva; Tak, Jin Wook; Lee, Hee Hyun; Jeong, Jee-Heon; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-06-01

    Imatinib (IMT), an anticancer agent, inhibits receptor tyrosine kinases and is characterized by poor aqueous solubility, extensive first-pass metabolism, and rapid clearance. The aims of the current study are to prepare imatinib-loaded solid lipid nanoparticles (IMT-SLN) and study the effects of associated formulation variables on particle size and drug encapsulation on IMT-SLN using an experimental design. IMT-SLN was optimized by use of a "combo" approach involving Plackett-Burman design (PBD) and Box-Behnken design (BBD). PBD screening resulted in the determination of organic-to-aqueous phase ratio (O/A), drug-to-lipid ratio (D/L), and amount of Tween® 20 (Tw20) as three significant variables for particle size (S z), drug loading (DL), and encapsulation efficiency (EE) of IMT-SLN, which were used for optimization by BBD, yielding an optimized criteria of O/A = 0.04, D/L = 0.03, and Tw20 = 2.50% w/v. The optimized IMT-SLN exhibited monodispersed particles with a size range of 69.0 ± 0.9 nm, ζ-potential of -24.2 ± 1.2 mV, and DL and EE of 2.9 ± 0.1 and 97.6 ± 0.1% w/w, respectively. Results of in vitro release study showed a sustained release pattern, presumably by diffusion and erosion, with a higher release rate at pH 5.0, compared to pH 7.4. In conclusion, use of the combo experimental design approach enabled clear understanding of the effects of various formulation variables on IMT-SLN and aided in the preparation of a system which exhibited desirable physicochemical and release characteristics. PMID:26304931