Science.gov

Sample records for acid loop extension

  1. Loop gravity: An application and an extension

    NASA Astrophysics Data System (ADS)

    Taveras, Victor Manuel

    In this thesis we address two issues in the area of loop quantum gravity. The first concerns the semiclassical limit in loop quantum cosmology via the use of so-called effective equations. In loop quantum cosmology the quantum dynamics is well understood. We can approximate the full quantum dynamics in the infinite dimensional Hilbert space by projecting it on a finite dimensional submanifold thereof, spanned by suitably chosen semiclassical states. This submanifold is isomorphic with the classical phase space and the projected dynamical flow provides effective equations incorporating the leading quantum corrections to the classical equations of motion. Numerical work has been done in the full theory using quantum states which are semiclassical at late times. These states follow the classical trajectory until the density is on the order of 1% of the Planck density then deviate strongly from the classical trajectory. The effective equations we obtain reproduce this behavior to surprising accuracy. The second issue concerns generalizations of the classical action which is the starting point for loop quantum gravity. In loop quantum gravity one begins with the Einstein-Hilbert action, modified by the addition of the so-called Holst term. Classically, this term does not affect the equations of motion, but it leads to a well-known quantization ambiguity in the quantum theory parametrized by the Barbero-Immirzi parameter, which rescales the eigenvalues of the area and volume operators. We consider the theory obtained by promoting the Barbero-Immirzi parameter to a field. The resulting theory, called Modified Holst Gravity, is equivalent to General Relativity coupled to a pseudo-scalar field. However, this theory turns out to have an unconventional kinetic term for the Barbero-Immirzi field and a rather unnatural coupling with fermions. We then propose a further generalization of the Holst action, which we call Modified Nieh-Yan Gravity, which yields a theory of gravity

  2. Extension of Loop Quantum Gravity to f(R) Theories

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangdong; Ma, Yongge

    2011-04-01

    The four-dimensional metric f(R) theories of gravity are cast into connection-dynamical formalism with real su(2) connections as configuration variables. Through this formalism, the classical metric f(R) theories are quantized by extending the loop quantization scheme of general relativity. Our results imply that the nonperturbative quantization procedure of loop quantum gravity is valid not only for general relativity but also for a rather general class of four-dimensional metric theories of gravity.

  3. Extension of loop quantum gravity to f(R) theories.

    PubMed

    Zhang, Xiangdong; Ma, Yongge

    2011-04-29

    The four-dimensional metric f(R) theories of gravity are cast into connection-dynamical formalism with real su(2) connections as configuration variables. Through this formalism, the classical metric f(R) theories are quantized by extending the loop quantization scheme of general relativity. Our results imply that the nonperturbative quantization procedure of loop quantum gravity is valid not only for general relativity but also for a rather general class of four-dimensional metric theories of gravity.

  4. Lunar base extension program and closed loop life support systems.

    PubMed

    Nitta, K; Ohya, H

    1991-01-01

    Much of papers describing the Lunar Base Construction have been already published. Lunar Base has been considered to be one of the very useful facilities to conduct the excellent scientific program in near future and also to develop the lunar resources such as 3He and oxygen in order to expand the human activities in space. The scale of lunar base and the construction methods to be adopted should be determined based upon the utilization program to be conducted after the initiation of outpost habitation. In order to construct lunar base, it needs to transport lunar base elements such as habitat modules, experiment modules and so on having 20-30 tons weight and to install, connect and activate on lunar surface. The development of transportation system such as OTV enabling to transport over 30 ton payload weight from earth to moon seems to be very difficult in near future, and it seems reasonable to transport three elements per year as described in many papers already published. Therefore, the initial habitat outpost would not have enough volume to produce foods and has to have ECLS system similar to that of space station already going to be developed. After 2-3 years from the initiation of habitation, the addition of food production facilities could be started to expand the habitability of lunar base and finally the complete closed loop life support system could be installed after spending 6-7 years. This paper describes ECLS technologies to be used in the initial habitat outpost and design philosophy of the closed loop technologies to be utilized in the final stage.

  5. Lunar base extension program and closed loop life support systems

    NASA Astrophysics Data System (ADS)

    Nitta, Keiji; Ohya, Haruhiko

    Much of papers describing the Lunar Base Construction have been already published. Lunar Base has been considered to be one of the very useful facilities to conduct the excellent scientific program in near future and also to develop the lunar resources such as 3He and oxygen in order to expand the human activities in space. The scale of lunar base and the construction methods to be adopted should be determined based upon the utilization program to be conducted after the initiation of outpost habitation. In order to construct lunar base, it needs to transport lunar base elements such as habitat modules, experiment modules and so on having 20-30 tons weight and to install, connect and activate on lunar surface. The development of transportation system such as OTV enabling to transport over 30 ton payload weight from earth to moon seems to be very difficult in near future, and it seems reasonable to transport three elements per year as described in many papers already published. /1/. Therefore, the initial habitat outpost would not have enough volume to produce foods and has to have ECLS system similar to that of space station already going to be developed. After 2-3 years from the initiation of habitation, the addition of food production facilities could be started to expand the habitability of lunar base and finally the complete closed loop life support system could be installed after spending 6-7 years. This paper describes ECLS technologies to be used in the initial habitat outpost and design philosophy of the closed loop technologies to be utilized in the final stage.

  6. Intrajejunal volatile fatty acids in the stagnant loop syndrome.

    PubMed

    Chernov, A J; Doe, W F; Gompertz, D

    1972-02-01

    In the stagnant loop syndrome an abnormal anaerobic flora colonizes the small bowel. Anaerobic organisms are characterized by fermentation reactions leading to the production of volatile fatty acids. This paper describes the measurement of intrajejunal volatile fatty acid concentrations in 11 patients with the stagnant loop syndrome. Nine normal persons and 18 patients with gastrointestinal disease without intestinal stasis acted as controls. Acetate and propionate concentrations were greatly increased in the patients with the stagnant loop syndrome and returned to normal in those patients treated with antibiotics. The measurement of intrajejunal volatile fatty acid concentrations as an index of overgrowth of anaerobic organisms is discussed.

  7. Systematic U(1 ) B - L extensions of loop-induced neutrino mass models with dark matter

    NASA Astrophysics Data System (ADS)

    Ho, Shu-Yu; Toma, Takashi; Tsumura, Koji

    2016-08-01

    We study the gauged U(1 ) B - L extensions of the models for neutrino masses and dark matter. In this class of models, tiny neutrino masses are radiatively induced through the loop diagrams, while the origin of the dark matter stability is guaranteed by the remnant of the gauge symmetry. Depending on how the lepton number conservation is violated, these models are systematically classified. We present complete lists for the one-loop Z2 and the two-loop Z3 radiative seesaw models as examples of the classification. The anomaly cancellation conditions in these models are also discussed.

  8. Panoramic radiographs underestimate extensions of the anterior loop and mandibular incisive canal

    PubMed Central

    Nejaim, Yuri; de Freitas, Deborah Queiroz; de Oliveira Santos, Christiano

    2016-01-01

    Purpose The purpose of this study was to detect the anterior loop of the mental nerve and the mandibular incisive canal in panoramic radiographs (PAN) and cone-beam computed tomography (CBCT) images, as well as to determine the anterior/mesial extension of these structures in panoramic and cross-sectional reconstructions using PAN and CBCT images. Materials and Methods Images (both PAN and CBCT) from 90 patients were evaluated by 2 independent observers. Detection of the anterior loop and the incisive canal were compared between PAN and CBCT. The anterior/mesial extension of these structures was compared between PAN and both cross-sectional and panoramic CBCT reconstructions. Results In CBCT, the anterior loop and the incisive canal were observed in 7.7% and 24.4% of the hemimandibles, respectively. In PAN, the anterior loop and the incisive canal were detected in 15% and 5.5% of cases, respectively. PAN presented more difficulties in the visualization of structures. The anterior/mesial extensions ranged from 0.0 mm to 19.0 mm on CBCT. PAN underestimated the measurements by approximately 2.0 mm. Conclusion CBCT appears to be a more reliable imaging modality than PAN for preoperative workups of the anterior mandible. Individual variations in the anterior/mesial extensions of the anterior loop of the mental nerve and the mandibular incisive canal mean that is not prudent to rely on a general safe zone for implant placement or bone surgery in the interforaminal region. PMID:27672611

  9. High adaptability of the omega loop underlies the substrate-spectrum-extension evolution of a class A β-lactamase, PenL

    PubMed Central

    Yi, Hyojeong; Choi, Jin Myung; Hwang, Junghyun; Prati, Fabio; Cao, Thinh-Phat; Lee, Sung Haeng; Kim, Heenam Stanley

    2016-01-01

    The omega loop in β-lactamases plays a pivotal role in substrate recognition and catalysis, and some mutations in this loop affect the adaptability of the enzymes to new antibiotics. Various mutations, including substitutions, deletions, and intragenic duplications resulting in tandem repeats (TRs), have been associated with β-lactamase substrate spectrum extension. TRs are unique among the mutations as they cause severe structural perturbations in the enzymes. We explored the process by which TRs are accommodated in order to test the adaptability of the omega loop. Structures of the mutant enzymes showed that the extra amino acid residues in the omega loop were freed outward from the enzyme, thereby maintaining the overall enzyme integrity. This structural adjustment was accompanied by disruptions of the internal α-helix and hydrogen bonds that originally maintained the conformation of the omega loop and the active site. Consequently, the mutant enzymes had a relaxed binding cavity, allowing for access of new substrates, which regrouped upon substrate binding in an induced-fit manner for subsequent hydrolytic reactions. Together, the data demonstrate that the design of the binding cavity, including the omega loop with its enormous adaptive capacity, is the foundation of the continuous evolution of β-lactamases against new drugs. PMID:27827433

  10. High adaptability of the omega loop underlies the substrate-spectrum-extension evolution of a class A β-lactamase, PenL.

    PubMed

    Yi, Hyojeong; Choi, Jin Myung; Hwang, Junghyun; Prati, Fabio; Cao, Thinh-Phat; Lee, Sung Haeng; Kim, Heenam Stanley

    2016-11-09

    The omega loop in β-lactamases plays a pivotal role in substrate recognition and catalysis, and some mutations in this loop affect the adaptability of the enzymes to new antibiotics. Various mutations, including substitutions, deletions, and intragenic duplications resulting in tandem repeats (TRs), have been associated with β-lactamase substrate spectrum extension. TRs are unique among the mutations as they cause severe structural perturbations in the enzymes. We explored the process by which TRs are accommodated in order to test the adaptability of the omega loop. Structures of the mutant enzymes showed that the extra amino acid residues in the omega loop were freed outward from the enzyme, thereby maintaining the overall enzyme integrity. This structural adjustment was accompanied by disruptions of the internal α-helix and hydrogen bonds that originally maintained the conformation of the omega loop and the active site. Consequently, the mutant enzymes had a relaxed binding cavity, allowing for access of new substrates, which regrouped upon substrate binding in an induced-fit manner for subsequent hydrolytic reactions. Together, the data demonstrate that the design of the binding cavity, including the omega loop with its enormous adaptive capacity, is the foundation of the continuous evolution of β-lactamases against new drugs.

  11. High adaptability of the omega loop underlies the substrate-spectrum-extension evolution of a class A β-lactamase, PenL

    NASA Astrophysics Data System (ADS)

    Yi, Hyojeong; Choi, Jin Myung; Hwang, Junghyun; Prati, Fabio; Cao, Thinh-Phat; Lee, Sung Haeng; Kim, Heenam Stanley

    2016-11-01

    The omega loop in β-lactamases plays a pivotal role in substrate recognition and catalysis, and some mutations in this loop affect the adaptability of the enzymes to new antibiotics. Various mutations, including substitutions, deletions, and intragenic duplications resulting in tandem repeats (TRs), have been associated with β-lactamase substrate spectrum extension. TRs are unique among the mutations as they cause severe structural perturbations in the enzymes. We explored the process by which TRs are accommodated in order to test the adaptability of the omega loop. Structures of the mutant enzymes showed that the extra amino acid residues in the omega loop were freed outward from the enzyme, thereby maintaining the overall enzyme integrity. This structural adjustment was accompanied by disruptions of the internal α-helix and hydrogen bonds that originally maintained the conformation of the omega loop and the active site. Consequently, the mutant enzymes had a relaxed binding cavity, allowing for access of new substrates, which regrouped upon substrate binding in an induced-fit manner for subsequent hydrolytic reactions. Together, the data demonstrate that the design of the binding cavity, including the omega loop with its enormous adaptive capacity, is the foundation of the continuous evolution of β-lactamases against new drugs.

  12. Naturalness made easy: two-loop naturalness bounds on minimal SM extensions

    NASA Astrophysics Data System (ADS)

    Clarke, Jackson D.; Cox, Peter

    2017-02-01

    The main result of this paper is a collection of conservative naturalness bounds on minimal extensions of the Standard Model by (vector-like) fermionic or scalar gauge multiplets. Within, we advocate for an intuitive and physical concept of naturalness built upon the renormalisation group equations. In the effective field theory of the Standard Model plus a gauge multiplet with mass M , the low scale Higgs mass parameter is a calculable function of overline{MS} input parameters defined at some high scale Λ h > M . If the Higgs mass is very sensitive to these input parameters, then this signifies a naturalness problem. To sensibly capture the sensitivity, it is shown how a sensitivity measure can be rigorously derived as a Bayesian model comparison, which reduces in a relevant limit to a Barbieri-Giudice-like fine-tuning measure. This measure is fully generalisable to any perturbative EFT. The interesting results of our two-loop renormalisation group study are as follows: for Λ h = ΛPl we find "10% fine-tuning" bounds on the masses of various gauge multiplets of Mloop.

  13. One-loop corrections to the Higgs self-couplings in the singlet extension

    NASA Astrophysics Data System (ADS)

    Kanemura, Shinya; Kikuchi, Mariko; Yagyu, Kei

    2017-04-01

    We investigate predictions on the triple Higgs boson couplings with radiative corrections in the model with an additional real singlet scalar field. In this model, the second physical scalar state (H) appears in addition to the Higgs boson (h) with the mass 125 GeV. The hhh vertex is calculated at the one-loop level, and its possible deviation from the predictions in the standard model is evaluated under various theoretical constraints. The decay rate of H → hh is also computed at the one-loop level. We also take into account the bound from the precise measurement of the W boson mass, which gives the upper limit on the mixing angle α between two physical Higgs bosons for a given value of the mass of H (mH). We find that the deviation in the hhh coupling from the prediction in the standard model can maximally be about 250%, 150% and 75% for mH = 300, 500 and 1000 GeV, respectively, under the requirement that the cutoff scale of the model is higher than 3 TeV. We also discuss deviations from the standard model prediction in double Higgs boson production from the gluon fusion at the LHC using the one-loop corrected Higgs boson vertices.

  14. Drosophila melanogaster kl-3 and kl-5 Y-loops harbor triple-stranded nucleic acids.

    PubMed

    Piergentili, Roberto; Mencarelli, Caterina

    2008-05-15

    Primary spermatocyte nuclei of Drosophila melanogaster contain three prominent lampbrush-like loops. The development of these structures has been associated with the transcription of three fertility factors located on the Y chromosome, named kl-5, kl-3 and ks-1. These loci have huge physical dimensions and contain extremely long introns. In addition, kl-3 and kl-5 were shown to encode two putative dynein subunits required for the correct assembly of the sperm axoneme. Here, we show that both the kl-5 and kl-3 loops are intensely decorated by monoclonal antibodies recognizing triple-stranded nucleic acids, and that each loop presents a peculiar molecular organization of triplex structures. Moreover, immunostaining of Drosophila hydei primary spermatocytes revealed that also in this species - which diverged from D. melanogaster 58 million years ago - Y-loops are decorated by anti-triplex antibodies, strongly suggesting a conserved role of loop-associated triplexes. Finally, we showed that in D. melanogaster wild-type lines that are raised at the non-permissive temperature of 31+/-0.5 degrees C (which is known to induce male sterility in flies) both the triplex immunostaining and the axonemal dynein heavy chains encoded by kl-3 and kl-5 are no longer detectable, which suggests a functional correlation between loop-associated triplexes, the presence of axonemal proteins and male fertility in fly.

  15. Germinal-center kinase-like kinase co-crystal structure reveals a swapped activation loop and C-terminal extension.

    PubMed

    Marcotte, Douglas; Rushe, Mia; M Arduini, Robert; Lukacs, Christine; Atkins, Kateri; Sun, Xin; Little, Kevin; Cullivan, Michael; Paramasivam, Murugan; Patterson, Thomas A; Hesson, Thomas; D McKee, Timothy; May-Dracka, Tricia L; Xin, Zhili; Bertolotti-Ciarlet, Andrea; Bhisetti, Govinda R; Lyssikatos, Joseph P; Silvian, Laura F

    2017-02-01

    Germinal-center kinase-like kinase (GLK, Map4k3), a GCK-I family kinase, plays multiple roles in regulating apoptosis, amino acid sensing, and immune signaling. We describe here the crystal structure of an activation loop mutant of GLK kinase domain bound to an inhibitor. The structure reveals a weakly associated, activation-loop swapped dimer with more than 20 amino acids of ordered density at the carboxy-terminus. This C-terminal PEST region binds intermolecularly to the hydrophobic groove of the N-terminal domain of a neighboring molecule. Although the GLK activation loop mutant crystallized demonstrates reduced kinase activity, its structure demonstrates all the hallmarks of an "active" kinase, including the salt bridge between the C-helix glutamate and the catalytic lysine. Our compound displacement data suggests that the effect of the Ser170Ala mutation in reducing kinase activity is likely due to its effect in reducing substrate peptide binding affinity rather than reducing ATP binding or ATP turnover. This report details the first structure of GLK; comparison of its activation loop sequence and P-loop structure to that of Map4k4 suggests ideas for designing inhibitors that can distinguish between these family members to achieve selective pharmacological inhibitors.

  16. Extensive amino acid sequence homologies between animal lectins

    SciTech Connect

    Paroutaud, P.; Levi, G.; Teichberg, V.I.; Strosberg, A.D.

    1987-09-01

    The authors have established the amino acid sequence of the ..beta..-D-galactoside binding lectin from the electric eel and the sequences of several peptides from a similar lectin isolated from human placenta. These sequences were compared with the published sequences of peptides derived from the ..beta..-D-galactoside binding lectin from human lung and with sequences deduced from cDNAs assigned to the ..beta..-D-galactoside binding lectins from chicken embryo skin and human hepatomas. Significant homologies were observed. One of the highly conserved regions that contains a tryptophan residue and two glutamic acid resides is probably part of the ..beta..-D-galactoside binding site, which, on the basis of spectroscopic studies of the electric eel lectin, is expected to contain such residues. The similarity of the hydropathy profiles and the predicted secondary structure of the lectins from chicken skin and electric eel, in spite of differences in their amino acid sequences, strongly suggests that these proteins have maintained structural homologies during evolution and together with the other ..beta..-D-galactoside binding lectins were derived form a common ancestor gene.

  17. Cell wall extension in Nitella as influenced by acids and ions.

    PubMed

    Métraux, J P; Taiz, L

    1977-04-01

    The giant internode cells of Nitella axillaris exhibit acid-induced growth similar to that found in higher plants. The threshold pH is 4.5, with a maximum at 3.5. The acid growth effect is transient, lasting no more than 32 min. Extensibility measurements of isolated cell walls showed a similar pattern of acid enhancement. Prolonged boiling in water (12 hr) only partially inhibited the acid-induced wall extensibility and actually increased the extensibility at pH 6. It was concluded that physical, rather than enzymatic, processes were responsible for acid-enhanced continuous extension ("creep") in Nitella walls. A complex cation-sensitive mechanism that affects extensibility was also characterized. Among the stimulatory (wall-softening) cations, divalents were generally more effective than monovalents, with magnesium being the most stimulatory. The inhibitory (wall-hardening) cations included divalents and trivalents, aluminum being the most inhibitory. Ionic effects on extensibility were even less sensitive to prolonged boiling in water than acid effects.

  18. Long-term acid-induced wall extension in an in-vitro system

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.; Cosgrove, D.; Tepfer, M.

    1987-01-01

    When frozen-thawed Avena sativa L. coleoptile and Cucumis sativa L. hypocotyl sections, under tension, are acid-treated, they undergo rapid elongation (acid-extension). The acid-extension response consists of two concurrent phases: a burst of extension which decays exponentially over 1-2 h (ExE), and a constant rate of extension (CE) which can persist for at least 6h. The extension (delta L) is closely represented by the equation: delta L = a-a e(-kt) + C t where a is the total extension of the exponential phase, k is the rate constant for ExE, and c is the rate of linear extension (CE). Low pH and high tension increased a and c, whereas temperature influenced k. The magnitude of the CE (over 50% extension/10 h), the similarity in its time course to auxin-induced growth, and the apparent yield threshold for CE indicate that CE is more likely than ExE to be the type of extension which cell walls undergo during normal auxin-induced growth.

  19. Syntheses of Papyracillic Acids: Application of the Tandem Chain Extension-Acylation Reaction

    PubMed Central

    Mazzone, Jennifer R.; Zercher, Charles K.

    2012-01-01

    A synthetic approach to the papyracillic acid family of natural products has been developed. The spiroacetal core is rapidly assembled through an unprecedented zinc carbenoid-mediated tandem chain extension-acylation reaction. Subsequent functional group manipulation provided access to papyracillic acid B and 4-epi-papyracillic acid C. The successful preparation of these molecules resulted in the clarification of structural assignments of members of this family of natural products. PMID:23013246

  20. Hormetins, antioxidants and prooxidants: defining quercetin-, caffeic acid- and rosmarinic acid-mediated life extension in C. elegans.

    PubMed

    Pietsch, Kerstin; Saul, Nadine; Chakrabarti, Shumon; Stürzenbaum, Stephen R; Menzel, Ralph; Steinberg, Christian E W

    2011-08-01

    Quercetin, Caffeic- and Rosmarinic acid exposure extend lifespan in Caenorhabditis elegans. This comparative study uncovers basic common and contrasting underlying mechanisms: For all three compounds, life extension was characterized by hormetic dose response curves, but hsp-level expression was variable. Quercetin and Rosmarinic acid both suppressed bacterial growth; however, antibacterial properties were not the dominant reason for life extension. Exposure to Quercetin, Caffeic- and Rosmarinic acid resulted in reduced body size, altered lipid-metabolism and a tendency towards a delay in reproductive timing; however the total number of offspring was not affected. An indirect dietary restriction effect, provoked by either chemo-repulsion or diminished pharyngeal pumping was rejected. Quercetin and Caffeic acid were shown to increase the antioxidative capacity in vivo and, by means of a lipofuscin assay, reduce the oxidative damage in the nematodes. Finally, it was possible to demonstrate that the life and thermotolerance enhancing properties of Caffeic- and Rosmarinic acid both rely on osr-1, sek-1, sir-2.1 and unc-43 plus daf-16 in the case of Caffeic acid. Taken together, hormesis, in vivo antioxidative/prooxidative properties, modulation of genetic players, as well as the re-allocation of energy all contribute (to some extent and dependent on the polyphenol) to life extension.

  1. Biodegradation of bromoamine acid using combined airlift loop reactor and biological activated carbon.

    PubMed

    Wang, Jing; Liu, Guangfei; Lu, Hong; Jin, Ruofei; Lei, Tianming; Zhang, Wei; Yang, Hua

    2011-03-01

    The biodegradation of bromoamine acid (BAA) in a combined airlift loop reactor (ALR) and biological activated carbon (BAC) system was investigated. The results showed that the ALR using Sphingomonas xenophaga as inoculum and granular activated carbon (GAC) as carrier, could run steadily for over 3 months at less than 950 mg L(-1) BAA. And the efficiencies of BAA decolorization and COD removal in ALR reached about 90% and 50% within 12h, respectively. When it was further aerated for another 12h, the ALR effluent gradually became yellow due to the auto-oxidation of BAA decolorization products which were identified by HPLC-MS. Further biotreatment of the ALR effluent using BAC showed that the efficiency of TOC removal could reach 90%. Moreover, the release efficiencies of Br(-) and SO(4)(2-) were 73.5% and 67.4%, respectively. It indicated that BAC system was effective in the biodegradation of the auto-oxidative BAA decolorization products.

  2. Complete amino acid sequence of the N-terminal extension of calf skin type III procollagen.

    PubMed Central

    Brandt, A; Glanville, R W; Hörlein, D; Bruckner, P; Timpl, R; Fietzek, P P; Kühn, K

    1984-01-01

    The N-terminal extension peptide of type III procollagen, isolated from foetal-calf skin, contains 130 amino acid residues. To determine its amino acid sequence, the peptide was reduced and carboxymethylated or aminoethylated and fragmented with trypsin, Staphylococcus aureus V8 proteinase and bacterial collagenase. Pyroglutamate aminopeptidase was used to deblock the N-terminal collagenase fragment to enable amino acid sequencing. The type III collagen extension peptide is homologous to that of the alpha 1 chain of type I procollagen with respect to a three-domain structure. The N-terminal 79 amino acids, which contain ten of the 12 cysteine residues, form a compact globular domain. The next 39 amino acids are in a collagenase triplet sequence (Gly- Xaa - Yaa )n with a high hydroxyproline content. Finally, another short non-collagenous domain of 12 amino acids ends at the cleavage site for procollagen aminopeptidase, which cleaves a proline-glutamine bond. In contrast with type I procollagen, the type III procollagen extension peptides contain interchain disulphide bridges located at the C-terminus of the triple-helical domain. PMID:6331392

  3. Uncoupling of retinoic acid signaling from tailbud development before termination of body axis extension.

    PubMed

    Cunningham, Thomas J; Zhao, Xianling; Duester, Gregg

    2011-10-01

    During the early stages of body axis extension, retinoic acid (RA) synthesized in somites by Raldh2 represses caudal fibroblast growth factor (FGF) signaling to limit the tailbud progenitor zone. Excessive RA down-regulates Fgf8 and triggers premature termination of body axis extension, suggesting that endogenous RA may function in normal termination of body axis extension. Here, we demonstrate that Raldh2-/- mouse embryos undergo normal down-regulation of tailbud Fgf8 expression and termination of body axis extension in the absence of RA. Interestingly, Raldh2 expression in wild-type tail somites and tailbud from E10.5 onwards does not result in RA activity monitored by retinoic acid response element (RARE)-lacZ. Treatment of wild-type tailbuds with physiological levels of RA or retinaldehyde induces RARE-lacZ activity, validating the sensitivity of RARE-lacZ and demonstrating that deficient RA synthesis in wild-type tail somites and tailbud is due to a lack of retinaldehyde synthesis. These studies demonstrate an early uncoupling of RA signaling from mouse tailbud development and show that termination of body axis extension occurs in the absence of RA signaling.

  4. A Mutational Analysis of the Active Site Loop Residues in cis-3-Chloroacrylic Acid Dehalogenase

    PubMed Central

    Schroeder, Gottfried K.; Huddleston, Jamison P.; Johnson, William H.; Whitman, Christian P.

    2013-01-01

    cis -3-Chloroacrylic acid dehalogenase (cis-CaaD) from Pseudomonas pavonaceae 170 and a homologue from Corynebacterium glutamicum designated Cg10062 share 34% sequence identity (54% similarity). The former catalyzes a key step in a bacterial catabolic pathway for the nematocide 1,3-dichloropropene, whereas the latter has no known biological activity. Although Cg10062 has the six active site residues (Pro-1, His-28, Arg-70, Arg-73, Tyr-103, Glu-114) that are critical for cis-CaaD activity, it shows only a low level cis-CaaD activity and lacks the specificity of cis-CaaD: Cg10062 processes both isomers of 3-chloroacrylate with a preference for the cis-isomer. Although the basis for these differences is unknown, a comparison of the crystal structures of the enzymes covalently modified by an adduct resulting from their incubation with the same inhibitor offers a possible explanation. A 6-residue active site loop in cis-CaaD shows a strikingly different conformation from that observed in Cg10062: the loop closes down on the active site of cis-CaaD, but not on that of Cg10062. In order to examine what this loop might contribute to cis-CaaD catalysis and specificity, the residues were changed individually to those found in Cg10062. Subsequent kinetic and mechanistic analysis suggests that the T34A mutant of cis-CaaD is more Cg10062-like. The mutant enzyme shows a 4-fold increase in Km (using cis-3-bromoacrylate), but not to the degree observed for Cg10062 (687-fold). The mutation also causes a 4-fold decrease in the burst rate (compared to the wild type cis-CaaD), whereas Cg10062 shows no burst rate. More telling is the reaction of the T34A mutant of cis-CaaD with the alternate substrate, 2,3-butadienoate. In the presence of NaBH4 and the allene, cis-CaaD is completely inactivated after one turnover due to the covalent modification of Pro-1. The same experiment with Cg10062 does not result in the covalent modification of Pro-1. The different outcomes are attributed to

  5. 77 FR 22560 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... International Trade Administration Citric Acid and Certain Citrate Salts From the People's Republic of China... acid and certain citrate salts (``citric acid'') from the People's Republic of China (``PRC'').\\1\\ On...). \\2\\ See Citric Acid and Certain Citrate Salts From the People's Republic of China: Extension of...

  6. 76 FR 17835 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... International Trade Administration A-570-937] Citric Acid and Certain Citrate Salts From the People's Republic... order on citric acid and certain citrate salts (``citric acid'') from the People's Republic of China.... See Citric Acid and Certain Citrate Salts from the People's Republic of China: Notice of Extension...

  7. Extensive mutagenesis of a transcriptional activation domain identifies single hydrophobic and acidic amino acids important for activation in vivo.

    PubMed Central

    Sainz, M B; Goff, S A; Chandler, V L

    1997-01-01

    C1 is a transcriptional activator of genes encoding biosynthetic enzymes of the maize anthocyanin pigment pathway. C1 has an amino terminus homologous to Myb DNA-binding domains and an acidic carboxyl terminus that is a transcriptional activation domain in maize and yeast cells. To identify amino acids critical for transcriptional activation, an extensive random mutagenesis of the C1 carboxyl terminus was done. The C1 activation domain is remarkably tolerant of amino acid substitutions, as changes at 34 residues had little or no effect on transcriptional activity. These changes include introduction of helix-incompatible amino acids throughout the C1 activation domain and alteration of most single acidic amino acids, suggesting that a previously postulated amphipathic alpha-helix is not required for activation. Substitutions at two positions revealed amino acids important for transcriptional activation. Replacement of leucine 253 with a proline or glutamine resulted in approximately 10% of wild-type transcriptional activation. Leucine 253 is in a region of C1 in which several hydrophobic residues align with residues important for transcriptional activation by the herpes simplex virus VP16 protein. However, changes at all other hydrophobic residues in C1 indicate that none are critical for C1 transcriptional activation. The other important amino acid in C1 is aspartate 262, as a change to valine resulted in only 24% of wild-type transcriptional activation. Comparison of our C1 results with those from VP16 reveal substantial differences in which amino acids are required for transcriptional activation in vivo by these two acidic activation domains. PMID:8972191

  8. Complete amino acid sequence of an acidic, cardiotoxic phospholipase A2 from the venom of Ophiophagus hannah (King Cobra): a novel cobra venom enzyme with "pancreatic loop".

    PubMed

    Huang, M Z; Gopalakrishnakone, P; Chung, M C; Kini, R M

    1997-02-15

    A phospholipase A2 (OHV A-PLA2) from the venom of Ophiophagus hannah (King cobra) is an acidic protein exhibiting cardiotoxicity, myotoxicity, and antiplatelet activity. The complete amino acid sequence of OHV A-PLA2 has been determined using a combination of Edman degradation and mass spectrometric techniques. OHV A-PLA2 is composed of a single chain of 124 amino acid residues with 14 cysteines and a calculated molecular weight of 13719 Da. It contains the loop of residues (62-66) found in pancreatic PLA2s and hence belongs to class IB enzymes. This pancreatic loop is between two proline residues (Pro 59 and Pro 68) and contains several hydrophilic amino acids (Ser and Asp). This region has high degree of conformational flexibility and is on the surface of the molecule, and hence it may be a potential protein-protein interaction site. A relatively low sequence homology is found between OHV A-PLA2 and other known cardiotoxic PLA2s, and hence a contiguous segment could not be identified as a site responsible for the cardiotoxic activity.

  9. Molecular dynamics study of Ca(2+) binding loop variants of silver hake parvalbumin with aspartic acid at the "gateway" position.

    PubMed

    Fahie, Kamau; Pitts, Rebecca; Elkins, Kelly; Nelson, Donald J

    2002-04-01

    The helix-loop-helix (i.e., EF-hand) Ca(2+) ion binding motif is characteristic of a large family of high-affinity calcium ion binding proteins, including the parvalbumins, oncomodulins and calmodulins. In this work we describe a set of molecular dynamics computations on the major parvalbumin from the silver hake (SHPV-B) and on functional fragments of this protein, consisting of the first four helical regions (the ABCD fragment), and the internal helix-loop- helix region (the CD fragment). In both whole protein and protein fragments (i.e., ABCD and CD fragments), the 9th loop residue in the calcium ion binding site in the CD helix-loop-helix region (the so-called "gateway" position) has been mutated from glutamic acid to aspartic acid. Aspartic acid is one of the most common residues found at the gateway position in other (non-parvalbumin) EF- hand proteins, but has never been found at the gateway position of any parvalbumin. (Interestingly, aspartic acid does occur at the gateway position in the closely related rat and human oncomodulins.) Consistent with experimental observations, the results of our molecular dynamics simulations show that incorporation of aspartic acid at the gateway position is very disruptive to the structural integrity of the calcium ion coordination site in the whole protein. The aspartic acid mutation is somewhat less disruptive to the calcium ion coordination sites in the two parvalbumin fragments (i.e., the ABCD and CD fragments), presumably due to the higher degree of motional freedom allowable in these protein fragments. One problem associated with the E59D whole protein variant is a prohibitively close approach of the aspartate carboxyl group to the CD calcium ion observed in the energy-minimized (pre-molecular dynamics) structure. This steric situation does not emerge during energy-minimization of the wild-type protein. The damage to the structural integrity of the calcium ion coordination site in the whole protein E59D variant is

  10. Lyophilized Visually Readable Loop-Mediated Isothermal Reverse Transcriptase Nucleic Acid Amplification Test for Detection Ebola Zaire RNA.

    PubMed

    Carter, Christoph; Akrami, Kevan; Hall, Drew; Smith, Davey; Aronoff-Spencer, Eliah

    2017-02-24

    Recent viral outbreaks highlight the need for reliable, yet broadly deployable diagnostics for detection of epidemic and emerging pathogens. In this study we designed and optimized methods to visually detect viral nucleic acid by isothermal amplification and SYBR dye intercalation. We designed and tested loop-mediated isothermal amplification (LAMP) primers and lyophilized reactions to optimize the detection of Zaire Ebola Virus (ZEBOV) and further evolved the LAMP platform to allow room-temperature storage for deployment in resource limited settings. Our results demonstrated excellent sensitivity and specificity for viral nucleic acid sequences with lower limits of detection of less than 100 copies. Moreover, lyophilized reaction mixtures retained activity for prolonged periods under dry conditions at room temperature. This approach offers a way for detection of emerging viruses in resource limited settings.

  11. Amino acids outside of the loops that define the agonist binding site are important for ligand binding to insect nicotinic acetylcholine receptors.

    PubMed

    Liu, Zewen; Han, Zhaojun; Liu, Shuhua; Zhang, Yixi; Song, Feng; Yao, Xiangmei; Gu, Jianhua

    2008-07-01

    Nicotinic acetylcholine (ACh) receptors (nAChRs) are the targets of several kinds of insecticides. Based on the mutagenesis studies of Torpedo californica nAChRs and solved structure of a molluscan, glial-derived soluble ACh-binding protein, a model of the agonist site was constructed with contributing amino acids from three distinct loops (A, B, and C) of the alpha subunits and another three loops (D, E, and F) of the non-alpha subunits. According to this model, most insect nAChR subunits can form the functional heteromeric or homomeric receptors. Actually, insect subunits themselves did not form any functional receptor at various combinations as yet, and only part of them can form the functional receptors with vertebrate non-alpha subunits. These findings suggested that the agonist binding for insect nAChRs was not only contributed by those key amino acids in six loops, but also some unidentified amino acids from other regions. In our previous studies on nAChRs for Nilaparvata lugens, a target-site mutation (Y151S) was found within two alpha subunits (Nlalpha1 and Nlalpha3). In Drosophila S2 cells and Xenopus oocytes, Nlalpha1 can form functional receptors with rat beta2 subunit. However, the same thing was not observed in Nlalpha3. In the present paper, by exchanging the corresponding regions between Nlalpha1 and Nlalpha3 to generate different chimeras, amino acid residues or residue clusters in the regions outside the six loops were found to play essential roles in agonist binding, especially for the amino acid clusters between loop B and C. This result indicated that the residues in the six loops could be necessary, but not enough for the activity of agonist binding.

  12. 76 FR 56158 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Citric Acid and Certain Citrate Salts From the People's Republic of China: Extension of Time Limit for the Final Results of the Countervailing Duty Administrative Review...

  13. 75 FR 74684 - 1-Hydroxyethylidene-1, 1-Diphosphonic Acid From the People's Republic of China: Extension of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration 1-Hydroxyethylidene-1, 1-Diphosphonic Acid From the People's Republic of China: Extension of the Time Limit for the Preliminary Results of the Antidumping Duty Administrative Review AGENCY: Import...

  14. Measuring Plant Cell Wall Extension (Creep) Induced by Acidic pH and by Alpha-Expansin

    PubMed Central

    Durachko, Daniel M.; Cosgrove, Daniel J.

    2009-01-01

    Growing plant cell walls characteristically exhibit a property known as 'acid growth', by which we mean they are more extensible at low pH (< 5) 1. The plant hormone auxin rapidly stimulates cell elongation in young stems and similar tissues at least in part by an acid-growth mechanism 2, 3. Auxin activates a H+ pump in the plasma membrane, causing acidification of the cell wall solution. Wall acidification activates expansins, which are endogenous cell wall-loosening proteins 4, causing the cell wall to yield to the wall tensions created by cell turgor pressure. As a result, the cell begins to enlarge rapidly. This 'acid growth' phenomenon is readily measured in isolated (nonliving) cell wall specimens. The ability of cell walls to undergo acid-induced extension is not simply the result of the structural arrangement of the cell wall polysaccharides (e.g. pectins), but depends on the activity of expansins 5. Expansins do not have any known enzymatic activity and the only way to assay for expansin activity is to measure their induction of cell wall extension. This video report details the sources and preparation techniques for obtaining suitable wall materials for expansin assays and goes on to show acid-induced extension and expansin-induced extension of wall samples prepared from growing cucumber hypocotyls. To obtain suitable cell wall samples, cucumber seedlings are grown in the dark, the hypocotyls are cut and frozen at -80 °C. Frozen hypocotyls are abraded, flattened, and then clamped at constant tension in a special cuvette for extensometer measurements. To measure acid-induced extension, the walls are initially buffered at neutral pH, resulting in low activity of expansins that are components of the native cell walls. Upon buffer exchange to acidic pH, expansins are activated and the cell walls extend rapidly. We also demonstrate expansin activity in a reconstitution assay. For this part, we use a brief heat treatment to denature the native expansins in the

  15. Regulative Loops, Step Loops and Task Loops

    ERIC Educational Resources Information Center

    VanLehn, Kurt

    2016-01-01

    This commentary suggests a generalization of the conception of the behavior of tutoring systems, which the target article characterized as having an outer loop that was executed once per task and an inner loop that was executed once per step of the task. A more general conception sees these two loops as instances of regulative loops, which…

  16. Summary Report on Gamma Radiolysis of TBP/n-dodecane in the Presence of Nitric Acid Using the Radiolysis/Hydrolysis Test Loop

    SciTech Connect

    Dean R. Peterman; Bruce J. Mincher; Catherine L. Riddle; Richard D. Tillotson

    2010-08-01

    Design and installation has been completed for a state-of-the-art radiolysis/hydrolysis test loop system. The system is used to evaluate the effects of gamma radiolysis and acid hydrolysis on the stability and performance of solvent extraction process solvents. The test loop is comprised of two main sections; the solvent irradiation and hydrolysis loop and the solvent reconditioning loop. In the solvent irradiation and hydrolysis loop, aqueous and organic phases are mixed and circulated through a gamma irradiator until the desired absorbed dose is achieved. Irradiation of the mixed phases is more representative of actual conditions in a solvent extraction process. Additionally, the contact of the organic phase with the aqueous phase will subject the solvent components to hydrolysis. This hydrolysis can be accelerated by controlling the system at an elevated temperature. At defined intervals, the organic from the irradiation/hydrolysis loop will be transferred to the solvent reconditioning loop where the solvent is contacted with scrub, strip, and solvent wash solutions which simulate process flowsheet conditions. These two processes are repeated until the total desired dose is achieved. Since all viable solvent extraction components in an advanced fuel cycle must exhibit high radiolytic and hydrolytic stability, this test loop is not limited to any one solvent system but is applicable to all systems of interest. Also, the test loop is not limited to testing of process flowsheets. It is also a valuable tool in support of fundamental research on newly identified extractants/modifiers and the impact of gamma radiation on their stability in a dynamic environment. The investigation of the radiolysis of a TBP/n-dodecane process solvent in contact with aqueous nitric acid has been performed. These studies were intended to confirm/optimize the operability of the test loop system. Additionally, these data are directly applicable to numerous other solvent extraction

  17. Multifunctional Pd/Ni-Co catalyst for hydrogen production by chemical looping coupled with steam reforming of acetic acid.

    PubMed

    Fermoso, Javier; Gil, María V; Rubiera, Fernando; Chen, De

    2014-11-01

    High yield of high-purity H2 from acetic acid, a model compound of bio-oil obtained from the fast pyrolysis of biomass, was produced by sorption-enhanced steam reforming (SESR). An oxygen carrier was introduced into a chemical loop (CL) coupled to the cyclical SESR process to supply heat in situ for the endothermic sorbent regeneration to increase the energy efficiency of the process. A new multifunctional 1 %Pd/20 %Ni-20 %Co catalyst was developed for use both as oxygen carrier in the CL and as reforming catalyst in the SESR whereas a CaO-based material was used as CO2 sorbent. In the sorbent-air regeneration step, the Ni-Co atoms in the catalyst undergo strong exothermic oxidation reactions that provide heat for the CaO decarbonation. The addition of Pd to the Ni-Co catalyst makes the catalyst active throughout the whole SESR-CL cycle. Pd significantly promotes the reduction of Ni-Co oxides to metallic Ni-Co during the reforming stage, which avoids the need for a reduction step after regeneration. H2 yield above 90 % and H2 purity above 99.2 vol % were obtained.

  18. "Opening" the ferritin pore for iron release by mutation of conserved amino acids at interhelix and loop sites.

    PubMed

    Jin, W; Takagi, H; Pancorbo, B; Theil, E C

    2001-06-26

    Ferritin concentrates, stores, and detoxifies iron in most organisms. The iron is a solid, ferric oxide mineral (< or =4500 Fe) inside the protein shell. Eight pores are formed by subunit trimers of the 24 subunit protein. A role for the protein in controlling reduction and dissolution of the iron mineral was suggested in preliminary experiments [Takagi et al. (1998) J. Biol. Chem. 273, 18685-18688] with a proline/leucine substitution near the pore. Localized pore disorder in frog L134P crystals coincided with enhanced iron exit, triggered by reduction. In this report, nine additional substitutions of conserved amino acids near L134 were studied for effects on iron release. Alterations of a conserved hydrophobic pair, a conserved ion pair, and a loop at the ferritin pores all increased iron exit (3-30-fold). Protein assembly was unchanged, except for a slight decrease in volume (measured by gel filtration); ferroxidase activity was still in the millisecond range, but a small decrease indicates slight alteration of the channel from the pore to the oxidation site. The sensitivity of reductive iron exit rates to changes in conserved residues near the ferritin pores, associated with localized unfolding, suggests that the structure around the ferritin pores is a target for regulated protein unfolding and iron release.

  19. A novel, sensitive and label-free loop-mediated isothermal amplification detection method for nucleic acids using luminophore dyes.

    PubMed

    Roy, Sharmili; Wei, Sim Xiao; Ying, Jean Liew Zhi; Safavieh, Mohammadali; Ahmed, Minhaz Uddin

    2016-12-15

    Electrochemiluminescence (ECL) has been widely rendered for nucleic acid testing. Here, we integrate loop-mediated isothermal amplification (LAMP) with ECL technique for DNA detection and quantification. The target LAMP DNA bound electrostatically with [Ru(bpy)3](+2) on the carbon electrode surface, and an ECL reaction was triggered by tripropylamine (TPrA) to yield luminescence. We illustrated this method as a new and highly sensitive strategy for the detection of sequence-specific DNA from different meat species at picogram levels. The proposed strategy renders the signal amplification capacities of TPrA and combines LAMP with inherently high sensitivity of the ECL technique, to facilitate the detection of low quantities of DNA. By leveraging this technique, target DNA of Sus scrofa (pork) meat was detected as low as 1pg/µL (3.43×10(-1)copies/µL). In addition, the proposed technique was applied for detection of Bacillus subtilis DNA samples and detection limit of 10pg/µL (2.2×10(3)copies/µL) was achieved. The advantages of being isothermal, sensitive and robust with ability for multiplex detection of bio-analytes makes this method a facile and appealing sensing modality in hand-held devices to be used at the point-of-care (POC).

  20. Dissecting the chemical interactions and substrate structural signatures governing RNA polymerase II trigger loop closure by synthetic nucleic acid analogues

    PubMed Central

    Xu, Liang; Butler, Kyle Vincent; Chong, Jenny; Wengel, Jesper; Kool, Eric T.; Wang, Dong

    2014-01-01

    The trigger loop (TL) of RNA polymerase II (Pol II) is a conserved structural motif that is crucial for Pol II catalytic activity and transcriptional fidelity. The TL remains in an inactive open conformation when the mismatched substrate is bound. In contrast, TL switches from an inactive open state to a closed active state to facilitate nucleotide addition upon the binding of the cognate substrate to the Pol II active site. However, a comprehensive understanding of the specific chemical interactions and substrate structural signatures that are essential to this TL conformational change remains elusive. Here we employed synthetic nucleotide analogues as ‘chemical mutation’ tools coupling with α-amanitin transcription inhibition assay to systematically dissect the key chemical interactions and structural signatures governing the substrate-coupled TL closure in Saccharomyces cerevisiae Pol II. This study reveals novel insights into understanding the molecular basis of TL conformational transition upon substrate binding during Pol II transcription. This synthetic chemical biology approach may be extended to understand the mechanisms of other RNA polymerases as well as other nucleic acid enzymes in future studies. PMID:24692664

  1. [Treatment of olive mill wastewater by a process combining an intensive treatment (Jet-Loop reactor) followed by an extensive treatment (stabilization ponds)].

    PubMed

    Jail, A; Boukhoubza, F; Nejmeddine, A; Duarte, J C; Sayadi, S; Hassani, L

    2010-04-14

    Olive oil mill wastewater (OMW) is generally recognized as an environmentally troublesome by-product of the olive oil industry as its disposal without any treatment is known to cause serious environmental problems. However, this effluent has a high fertilizing power and constitutes, with urban wastewater, an important low-cost source. Biological treatment of OMW, with a process combining an aerobic reactor, 'Jet-Loop', and waste stabilization ponds, was investigated for possible agricultural reuse. The focus of the present study was to evaluate the contribution and the complementarity of the two systems in the total OMW treatment. Bio-treatment was performed using a 100-litre Jet-Loop reactor working volume achieving a chemical oxygen demand (COD) and phenolic compounds maximum removal rate of 72% and 68%, respectively, at a hydraulic retention time of 10 days. Co-treatment of OMW and domestic wastewater in waste stabilization ponds, with a hydraulic retention time of 22 days, reached a global removal rate of 66% for COD while no trace of phenolic compounds was detected on this level during the entire treatment period. Dynamics of faecal coliforms in stabilization ponds showed a total removal rate of 99.9% (3 logarithmic units (Log.U)). Preliminary results of agronomic tests on the ray-grass have evaluated the fertilizing effect of the final effluent resulting from the co-treatment.

  2. Loop quantization

    SciTech Connect

    Nicolau, A.

    1988-10-01

    Loop unwinding is a known technique for reducing loop overhead, exposing parallelism, and increasing the efficiency of pipelining. Traditional loop unwinding is limited to the innermost loop in a group of nested loops and the amount of unwinding either is fixed or must be specified by the user, on a case by case basis. In this paper the authors present a general technique for automatically unwinding multiply nested loops, explain its advantages over other transformation techniques, and illustrate its practical effectiveness. Lopp Quantization could be beneficial by itself or coupled with other loop transformations.

  3. Complex folding and misfolding effects of deer-specific amino acid substitutions in the β2-α2 loop of murine prion protein

    NASA Astrophysics Data System (ADS)

    Agarwal, Sonya; Döring, Kristina; Gierusz, Leszek A.; Iyer, Pooja; Lane, Fiona M.; Graham, James F.; Goldmann, Wilfred; Pinheiro, Teresa J. T.; Gill, Andrew C.

    2015-10-01

    The β2-α2 loop of PrPC is a key modulator of disease-associated prion protein misfolding. Amino acids that differentiate mouse (Ser169, Asn173) and deer (Asn169, Thr173) PrPC appear to confer dramatically different structural properties in this region and it has been suggested that amino acid sequences associated with structural rigidity of the loop also confer susceptibility to prion disease. Using mouse recombinant PrP, we show that mutating residue 173 from Asn to Thr alters protein stability and misfolding only subtly, whilst changing Ser to Asn at codon 169 causes instability in the protein, promotes oligomer formation and dramatically potentiates fibril formation. The doubly mutated protein exhibits more complex folding and misfolding behaviour than either single mutant, suggestive of differential effects of the β2-α2 loop sequence on both protein stability and on specific misfolding pathways. Molecular dynamics simulation of protein structure suggests a key role for the solvent accessibility of Tyr168 in promoting molecular interactions that may lead to prion protein misfolding. Thus, we conclude that ‘rigidity’ in the β2-α2 loop region of the normal conformer of PrP has less effect on misfolding than other sequence-related effects in this region.

  4. Roles of Amino Acids 161 to 179 in the PSE-4 Ω Loop in Substrate Specificity and in Resistance to Ceftazidime

    PubMed Central

    Therrien, Christian; Sanschagrin, Francois; Palzkill, Timothy; Levesque, Roger C.

    1998-01-01

    The PSE-4 enzyme is a prototype carbenicillin-hydrolyzing enzyme exhibiting high activity against penicillins and early cephalosporins. To understand the mechanism that modulates substrate profiles and to verify the ability of PSE-4 to extend its substrate specificity toward expanded-spectrum cephalosporins, we used random replacement mutagenesis to generate six random libraries from amino acids 162 to 179 in the Ω loop. This region is known from studies with TEM-1 to be implicated in substrate specificity. It was found that the mechanism modulating ceftazidime hydrolysis in PSE-4 was different from that in TEM-1. The specificity of class 2c carbenicillin-hydrolyzing enzymes could not be assigned to the Ω loop of PSE-4. Analysis of the percentage of functional enzymes revealed that the hydrolysis of ampicillin was more affected than hydrolysis of carbenicillin by amino acid substitutions at positions 162 to 164 and 165 to 167. PMID:9756758

  5. Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR.

    PubMed

    Cui, Guiying; Rahman, Kazi S; Infield, Daniel T; Kuang, Christopher; Prince, Chengyu Z; McCarty, Nael A

    2014-08-01

    The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) bears six extracellular loops (ECL1-6); ECL1 is the site of several mutations associated with CF. Mutation R117H has been reported to reduce current amplitude, whereas D110H, E116K, and R117C/L/P may impair channel stability. We hypothesized that these amino acids might not be directly involved in ion conduction and permeation but may contribute to stabilizing the outer vestibule architecture in CFTR. We used cRNA injected oocytes combined with electrophysiological techniques to test this hypothesis. Mutants bearing cysteine at these sites were not functionally modified by extracellular MTS reagents and were blocked by GlyH-101 similarly to WT-CFTR. These results suggest that these three residues do not contribute directly to permeation in CFTR. In contrast, mutants D110R-, E116R-, and R117A-CFTR exhibited instability of the open state and significantly shortened burst duration compared with WT-CFTR and failed to be locked into the open state by AMP-PNP (adenosine 5'-(β,γ-imido) triphosphate); charge-retaining mutants showed mainly the full open state with comparably longer open burst duration. These interactions suggest that these ECL1 residues might be involved in maintaining the outer pore architecture of CFTR. A CFTR homology model suggested that E116 interacts with R104 in both the closed and open states, D110 interacts with K892 in the fully closed state, and R117 interacts with E1126 in the open state. These interactions were confirmed experimentally. The results suggest that D110, E116, and R117 may contribute to stabilizing the architecture of the outer pore of CFTR by interactions with other charged residues.

  6. Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR

    PubMed Central

    Cui, Guiying; Rahman, Kazi S.; Infield, Daniel T.; Kuang, Christopher; Prince, Chengyu Z.

    2014-01-01

    The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) bears six extracellular loops (ECL1–6); ECL1 is the site of several mutations associated with CF. Mutation R117H has been reported to reduce current amplitude, whereas D110H, E116K, and R117C/L/P may impair channel stability. We hypothesized that these amino acids might not be directly involved in ion conduction and permeation but may contribute to stabilizing the outer vestibule architecture in CFTR. We used cRNA injected oocytes combined with electrophysiological techniques to test this hypothesis. Mutants bearing cysteine at these sites were not functionally modified by extracellular MTS reagents and were blocked by GlyH-101 similarly to WT-CFTR. These results suggest that these three residues do not contribute directly to permeation in CFTR. In contrast, mutants D110R-, E116R-, and R117A-CFTR exhibited instability of the open state and significantly shortened burst duration compared with WT-CFTR and failed to be locked into the open state by AMP-PNP (adenosine 5′-(β,γ-imido) triphosphate); charge-retaining mutants showed mainly the full open state with comparably longer open burst duration. These interactions suggest that these ECL1 residues might be involved in maintaining the outer pore architecture of CFTR. A CFTR homology model suggested that E116 interacts with R104 in both the closed and open states, D110 interacts with K892 in the fully closed state, and R117 interacts with E1126 in the open state. These interactions were confirmed experimentally. The results suggest that D110, E116, and R117 may contribute to stabilizing the architecture of the outer pore of CFTR by interactions with other charged residues. PMID:25024266

  7. Acidic substitution of the activation loop tyrosines in TrkA supports nerve growth factor-independent cell survival and neuronal differentiation.

    PubMed

    Gryz, E A; Meakin, S O

    2000-01-20

    TrkA is the receptor tyrosine kinase (RTK) for nerve growth factor (NGF) and stimulates NGF-dependent cell survival and differentiation in primary neurons. TrkA expression in neuronal tumors also supports NGF-dependent differentiation of neuroblastomas and apoptosis of medulloblastomas. Phosphorylation of the activation loop tyrosines in RTK's are essential to activation as well as allosteric changes that facilitate substrate interaction and phosphorylation. Acidic amino acid substitution of the activation loop tyrosines in TrkA, Tyr683Tyr684, was performed to mimic the negative charges normally induced by ligand activation and receptor phosphorylation. A total of eight independent mutants containing single or double substitutions were generated for comparison. Herein, we demonstrate that acidic substitution of the activation loop tyrosines is sufficient to induce allosteric changes required for constitutive TrkA kinase activity as well as phosphorylation of TrkA signaling proteins such as Shc, PLCgamma-1, FRS-2 and erk1/2. The strongest constitutively active TrkA mutants, GluAsp and AspGlu, support NGF-independent neuritogenesis and cell survival to levels approximately 65 and 80-100%, respectively, of NGF-activated wild type TrkA. Thus, constitutively active TrkA may provide a useful strategy in future therapeutic approaches to limit the development and progression of neuronal tumors.

  8. Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths.

    PubMed

    Haslam, Tegan M; Mañas-Fernández, Aurora; Zhao, Lifang; Kunst, Ljerka

    2012-11-01

    Primary aerial surfaces of land plants are coated by a lipidic cuticle, which forms a barrier against transpirational water loss and protects the plant from diverse stresses. Four enzymes of a fatty acid elongase complex are required for the synthesis of very-long-chain fatty acid (VLCFA) precursors of cuticular waxes. Fatty acid elongase substrate specificity is determined by a condensing enzyme that catalyzes the first reaction carried out by the complex. In Arabidopsis (Arabidopsis thaliana), characterized condensing enzymes involved in wax synthesis can only elongate VLCFAs up to 28 carbons (C28) in length, despite the predominance of C29 to C31 monomers in Arabidopsis stem wax. This suggests additional proteins are required for elongation beyond C28. The wax-deficient mutant eceriferum2 (cer2) lacks waxes longer than C28, implying that CER2, a putative BAHD acyltransferase, is required for C28 elongation. Here, we characterize the cer2 mutant and demonstrate that green fluorescent protein-tagged CER2 localizes to the endoplasmic reticulum, the site of VLCFA biosynthesis. We use site-directed mutagenesis to show that the classification of CER2 as a BAHD acyltransferase based on sequence homology does not fit with CER2 catalytic activity. Finally, we provide evidence for the function of CER2 in C28 elongation by an assay in yeast (Saccharomyces cerevisiae).

  9. Extension of UNRES force field to treat polypeptide chains with D-amino-acid residues

    PubMed Central

    Sieradzan, Adam K.; Hansmann, Ulrich H.E.; Scheraga, Harold A.; Liwo, Adam

    2013-01-01

    Coarse-grained force fields for protein simulations are usually designed and parameterized to treat proteins composed of natural L-amino-acid residues. However, D-amino-acid residues occur in bacterial, fungal (e.g., gramicidins), as well as human-designed proteins. For this reason, we have extended the UNRES coarse-grained force field developed in our laboratory to treat systems with D-amino-acid residues. We developed the respective virtual-bond-torsional and double-torsional potentials for rotation about the Cα · · · Cα virtual-bond axis and two consecutive Cα · · · Cα virtual-bond axes, respectively, as functions of virtual-bond-dihedral angles γ. In turn, these were calculated as potentials of mean force (PMFs) from the diabatic energy surfaces of terminally-blocked model compounds for glycine, alanine, and proline. The potential-energy surfaces were calculated by using the ab initio method of molecular quantum mechanics at the Møller-Plesset (MP2) level of theory and the 6-31G(d,p) basis set, with the rotation angles of the peptide groups about Ci-1α⋯Ciα(λ(1)) and Ciα⋯Ci+1α(λ(2)) used as variables, and the energy was minimized with respect to the remaining degrees of freedom. The PMFs were calculated by numerical integration for all pairs and triplets with all possible combinations of types (glycine, alanine, and proline) and chirality (D or L); however, symmetry relations reduce the number of non-equivalent torsional potentials to 13 and the number of double-torsional potentials to 63 for a given C-terminal blocking group. Subsequently, one- (for torsional) and two-dimensional (for double-torsional potentials) Fourier series were fitted to the PMFs to obtain analytical expressions. It was found that the torsional potentials of the x-Y and X-y types, where X and Y are Ala or Pro, respectively, and a lowercase letter denotes D-chirality, have global minima for small absolute values of γ, accounting for the double-helical structure of

  10. Impaired Acid Catalysis by Mutation of a Protein Loop Hinge Residue in a YopH Mutant Revealed by Crystal Structures

    SciTech Connect

    Brandao, T.; Robinson, H; Johnson, S; Hengge, A

    2009-01-01

    Catalysis by the Yersinia protein-tyrosine phosphatase YopH is significantly impaired by the mutation of the conserved Trp354 residue to Phe. Though not a catalytic residue, this Trp is a hinge residue in a conserved flexible loop (the WPD-loop) that must close during catalysis. To learn why this seemingly conservative mutation reduces catalysis by 2 orders of magnitude, we have solved high-resolution crystal structures for the W354F YopH in the absence and in the presence of tungstate and vanadate. Oxyanion binding to the P-loop in W354F is analogous to that observed in the native enzyme. However, the WPD-loop in the presence of oxyanions assumes a half-closed conformation, in contrast to the fully closed state observed in structures of the native enzyme. This observation provides an explanation for the impaired general acid catalysis observed in kinetic experiments with Trp mutants. A 1.4 Angstroms structure of the W354F mutant obtained in the presence of vanadate reveals an unusual divanadate species with a cyclic [VO]2 core, which has precedent in small molecules but has not been previously reported in a protein crystal structure.

  11. Sensory and textural attributes and fatty acid profiles of fillets of extensively and intensively farmed Eurasian perch (Percafluviatilis L.).

    PubMed

    Stejskal, V; Vejsada, P; Cepak, M; Spička, J; Vacha, F; Kouril, J; Policar, T

    2011-12-01

    Sensory attributes, texture and fatty acid profiles of fillets of Eurasian perch (Percafluviatilis L.) reared under two conditions were compared. Perch were reared either in an extensive pond-based (EC) system in polyculture with carp, or intensively cultured (IC) in a recirculation system. Attributes of raw and cooked fillets of marketable perch (120-150g) were compared. No significant differences were found between groups for odour, flavour, aftertaste, or consistency in subjective evaluation of cooked fillets. The texture profile analysis (TPA) showed raw fillets from the EC group to exhibit higher values of hardness, springiness, cohesiveness, and gumminess than the IC group. Fish from the IC group had a lower content of saturated fatty acids (SFA) and polyunsaturated fatty acids (PUFA) and a higher content of monounsaturated fatty acids (MUFA) in comparison to EC perch. The proportion of iso- and anteiso-SFAs was 2.6% in the EC group and 0.75% in the IC group. The content of n-3 PUFA was lower in IC than in EC, while the content of n-6 PUFA was higher in IC than in EC. The ratio of n-3:n-6 PUFA was 1.42 for the IC group and 2.85 for the EC group.

  12. Extensive analysis of milk fatty acids in two fat-tailed sheep breeds during lactation.

    PubMed

    Payandeh, S; Kafilzadeh, F; Juárez, M; de la Fuente, M A; Ghadimi, D; Marín, A L Martínez

    2016-12-01

    The profile of fatty acids (FA) in the milk fat of two Iranian fat-tailed sheep breeds, Sanjabi and Mehraban, was compared during lactation. Eight ewes of each breed, balanced in parity and carrying one foetus, were selected before parturition. Ewes were kept separated in individual pens during the experimental period, under the same management practices and fed the same diet, in order to eliminate any confounding effects on milk FA profile. Milk was sampled at biweekly intervals up to 10 weeks of lactation, starting 2 weeks after parturition. More than 100 FA were determined in milk fat by means of gas chromatography. The milk fat of Sanjabi ewes contained more cis-9 18:1, that of Mehraban ewes was richer in 10:0, 12:0 and 14:0, and no differences were found for 16:0 and 18:0. No breed differences were found for most branched-chain FA. Mehraban ewes showed a higher presence of vaccenic and rumenic acids in their milk fat. The milk fat of Sanjabi ewes had a lower atherogenicity index and n-6/n-3 FA ratio. The contents of several FA showed time-dependent changes, so breed differences were more apparent or disappeared as lactation progressed. The milk fat of Sanjabi ewes showed a better FA profile from the human health point of view.

  13. Extension of shelf life of whole and peeled shrimp with organic acid salts and bifidobacteria.

    PubMed

    Al-Dagal, M M; Bazaraa, W A

    1999-01-01

    Microbiological and sensory characteristics of treated whole and peeled shrimp from the east coast of Saudi Arabia were evaluated. Shrimp samples were treated with organic acid salts with or without Bifidobacterium breve culture and stored in ice. Peeling alone extended the microbiological shelf life by 4 days. Treatment of whole shrimp with sodium acetate alone or potassium sorbate with bifidobacteria prolonged the microbiological shelf life by 3 days and increased the microbial generation time from 12.8 h (control) to 30.1 h or 31.4 h, respectively. The microbiological and sensory shelf life of peeled shrimp treated with sodium acetate was more than 17 days. Sodium acetate extended the microbial lag phase and lengthened the generation time (38.7 h compared to 15.8 h for the control). Micrococci and coryneforms were the predominant microorganisms in whole shrimp during storage. Treatment with sodium acetate maintained better sensory characteristics for peeled shrimp than potassium sorbate combined with bifidobacteria.

  14. Evaluation of an Amino Acid-Based Formula in Infants Not Responding to Extensively Hydrolyzed Protein Formula.

    PubMed

    Vanderhoof, Jon; Moore, Nancy; de Boissieu, Delphine

    2016-11-01

    Nearly 2% to 3% of infants and children younger than 3 years have confirmed cow's milk protein allergy with multiple clinical presentations including atopic dermatitis (AD), diarrhea, and vomiting/spitting up. Although most infants with cow's milk protein allergy experience clinical improvement with the use of an extensively hydrolyzed (EH) formula, highly sensitive infants may require an amino acid-based formula. In this observational, prospective study, 30 infants (1-12 months of age) with a history of weight loss and persistent allergic manifestations while on an EH formula were provided an amino acid-based formula for 12 weeks. Mean weight gain (z score change) improved +0.43 ± 0.28 (mean ± standard deviation) after the 12-week feeding period. Improvement was observed for many allergic symptoms including significant decreases in AD severity (P = 0.02). These results indicate the new amino acid-based infant formula supported healthy weight gain and improvement in allergic manifestations in infants not responding to EH formulas.

  15. NETL - Chemical Looping Reactor

    SciTech Connect

    2013-07-24

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  16. NETL - Chemical Looping Reactor

    ScienceCinema

    None

    2016-07-12

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  17. Activity of ceftazidime/avibactam against isogenic strains of Escherichia coli containing KPC and SHV β-lactamases with single amino acid substitutions in the Ω-loop

    PubMed Central

    Winkler, Marisa L.; Papp-Wallace, Krisztina M.; Bonomo, Robert A.

    2015-01-01

    Objectives The objective of this study was to explore the activity of ceftazidime and ceftazidime/avibactam against a collection of isogenic strains of Escherichia coli DH10B possessing SHV and KPC β-lactamases containing single amino acid substitutions in the Ω-loop (residues 164–179). Methods Ceftazidime and ceftazidime/avibactam MICs were determined by the agar dilution method for a panel of isogenic E. coli strains expressing SHV-1 and KPC-2 with amino acid substitutions at positions 164, 167, 169 or 179. Two KPC-2 β-lactamase variants that possessed elevated MICs of ceftazidime/avibactam were selected for further biochemical analyses. Results Avibactam restored susceptibility to ceftazidime for all Ω-loop variants of SHV-1 with MICs <8 mg/L. In contrast, several of the Arg164 and Asp179 variants of KPC-2 demonstrated MICs of ceftazidime/avibactam >8 mg/L. β-Lactamase kinetics showed that the Asp179Asn variant of KPC-2 demonstrated enhanced kinetic properties against ceftazidime. The Ki app, k2/K and koff of the Arg164Ala and Asp179Asn variant KPC-2 β-lactamases indicated that avibactam effectively inhibited these enzymes. Conclusions Several KPC-2 variants demonstrating ceftazidime resistance as a result of single amino acid substitutions in the Ω-loop were not susceptible to ceftazidime/avibactam (MICs >8 mg/L). We hypothesize that this observation is due to the stabilizing interactions (e.g. hydrogen bonds) of ceftazidime within the active site of variant β-lactamases that prevent avibactam from binding to and inhibiting the β-lactamase. As ceftazidime/avibactam is introduced into the clinic, monitoring for new KPC-2 variants that may exhibit increased ceftazidime kinetics as well as resistance to this novel antibiotic combination will be important. PMID:25957381

  18. The Effect of Surface Modification of Aligned Poly-L-Lactic Acid Electrospun Fibers on Fiber Degradation and Neurite Extension

    PubMed Central

    Schaub, Nicholas J.; Le Beux, Clémentine; Miao, Jianjun; Linhardt, Robert J.; Alauzun, Johan G.; Laurencin, Danielle; Gilbert, Ryan J.

    2015-01-01

    The surface of aligned, electrospun poly-L-lactic acid (PLLA) fibers was chemically modified to determine if surface chemistry and hydrophilicity could improve neurite extension from chick dorsal root ganglia. Specifically, diethylenetriamine (DTA, for amine functionalization), 2-(2-aminoethoxy)ethanol (AEO, for alcohol functionalization), or GRGDS (cell adhesion peptide) were covalently attached to the surface of electrospun fibers. Water contact angle measurements revealed that surface modification of electrospun fibers significantly improved fiber hydrophilicity compared to unmodified fibers (p < 0.05). Scanning electron microscopy (SEM) of fibers revealed that surface modification changed fiber topography modestly, with DTA modified fibers displaying the roughest surface structure. Degradation of chemically modified fibers revealed no change in fiber diameter in any group over a period of seven days. Unexpectedly, neurites from chick DRG were longest on fibers without surface modification (1651 ± 488 μm) and fibers containing GRGDS (1560 ± 107 μm). Fibers modified with oxygen plasma (1240 ± 143 μm) or DTA (1118 ± 82 μm) produced shorter neurites than the GRGDS or unmodified fibers, but were not statistically shorter than unmodified and GRGDS modified fibers. Fibers modified with AEO (844 ± 151 μm) were significantly shorter than unmodified and GRGDS modified fibers (p<0.05). Based on these results, we conclude that fiber hydrophilic enhancement alone on electrospun PLLA fibers does not enhance neurite outgrowth. Further work must be conducted to better understand why neurite extension was not improved on more hydrophilic fibers, but the results presented here do not recommend hydrophilic surface modification for the purpose of improving neurite extension unless a bioactive ligand is used. PMID:26340351

  19. Extracellular Loop 2 of the Free Fatty Acid Receptor 2 Mediates Allosterism of a Phenylacetamide Ago-Allosteric ModulatorS⃞

    PubMed Central

    Smith, Nicola J.; Ward, Richard J.; Stoddart, Leigh A.; Hudson, Brian D.; Kostenis, Evi; Ulven, Trond; Morris, Joanne C.; Tränkle, Christian; Tikhonova, Irina G.; Adams, David R.

    2011-01-01

    Allosteric agonists are powerful tools for exploring the pharmacology of closely related G protein-coupled receptors that have nonselective endogenous ligands, such as the short chain fatty acids at free fatty acid receptors 2 and 3 (FFA2/GPR43 and FFA3/GPR41, respectively). We explored the molecular mechanisms mediating the activity of 4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide (4-CMTB), a recently described phenylacetamide allosteric agonist and allosteric modulator of endogenous ligand function at human FFA2, by combining our previous knowledge of the orthosteric binding site with targeted examination of 4-CMTB structure-activity relationships and mutagenesis and chimeric receptor generation. Here we show that 4-CMTB is a selective agonist for FFA2 that binds to a site distinct from the orthosteric site of the receptor. Ligand structure-activity relationship studies indicated that the N-thiazolyl amide is likely to provide hydrogen bond donor/acceptor interactions with the receptor. Substitution at Leu173 or the exchange of the entire extracellular loop 2 of FFA2 with that of FFA3 was sufficient to reduce or ablate, respectively, allosteric communication between the endogenous and allosteric agonists. Thus, we conclude that extracellular loop 2 of human FFA2 is required for transduction of cooperative signaling between the orthosteric and an as-yet-undefined allosteric binding site of the FFA2 receptor that is occupied by 4-CMTB. PMID:21498659

  20. Picomolar affinity fibronectin domains engineered utilizing loop length diversity, recursive mutagenesis, and loop shuffling.

    PubMed

    Hackel, Benjamin J; Kapila, Atul; Wittrup, K Dane

    2008-09-19

    The 10th type III domain of human fibronectin (Fn3) has been validated as an effective scaffold for molecular recognition. In the current work, it was desired to improve the robustness of selection of stable, high-affinity Fn3 domains. A yeast surface display library of Fn3 was created in which three solvent-exposed loops were diversified in terms of amino acid composition and loop length. The library was screened by fluorescence-activated cell sorting to isolate binders to lysozyme. An affinity maturation scheme was developed to rapidly and broadly diversify populations of clones by random mutagenesis as well as homologous recombination-driven shuffling of mutagenized loops. The novel library and affinity maturation scheme combined to yield stable, monomeric Fn3 domains with 3 pM affinity for lysozyme. A secondary affinity maturation identified a stable 1.1 pM binder, the highest affinity yet reported for an Fn3 domain. In addition to extension of the affinity limit for this scaffold, the results demonstrate the ability to achieve high-affinity binding while preserving stability and the monomeric state. This library design and affinity maturation scheme is highly efficient, utilizing an initial diversity of 2x10(7) clones and screening only 1x10(8) mutants (totaled over all affinity maturation libraries). Analysis of intermediate populations revealed that loop length diversity, loop shuffling, and recursive mutagenesis of diverse populations are all critical components.

  1. Role of four conserved aspartic acid residues of EF-loops in the metal ion binding and in the self-assembly of ciliate Euplotes octocarinatus centrin.

    PubMed

    Liu, Wen; Duan, Lian; Sun, Tijian; Yang, Binsheng

    2016-12-01

    Ciliate Euplotes octocarinatus centrin (EoCen) is an EF-hand calcium-binding protein closely related to the prototypical calcium sensor protein calmodulin. Four mutants (D37K, D73K, D110K and D146K) were created firstly to elucidate the importance of the first aspartic acid residues (Asp37, Asp73, Asp110 and Asp146) in the beginning of the four EF-loops of EoCen. Aromatic-sensitized Tb(3+) fluorescence indicates that the aspartic acid residues are very important for the metal-binding of EoCen, except for Asp73 (in EF-loop II). Resonance light scattering (RLS) measurements for different metal ions (Ca(2+) and Tb(3+)) binding proteins suggest that the order of four conserved aspartic acid residues for contributing to the self-assembly of EoCen is Asp37 > Asp146 > Asp110 > Asp73. Cross-linking experiment also exhibits that Asp37 and Asp146 play critical role in the self-assembly of EoCen. Asp37, in site I, which is located in the N-terminal domain, plays the most important role in the metal ion-dependent self-assembly of EoCen, and there is cooperativity between N-terminal and C-terminal domain (especially the site IV). In addition, the dependence of Tb(3+) induced self-assembly of EoCen and the mutants on various factors, including ionic strength and pH, were characterized using RLS. Finally, 2-p-toluidinylnaphthalene-6-sulfonate (TNS) binding, ionic strength and pH control experiments indicate that in the process of EoCen self-assembly, molecular interactions are mediated by both electrostatic and hydrophobic forces, and the hydrophobic interaction has the important status.

  2. Conserved Aspartic Acid Residues Lining the Extracellular Loop I of Sodium-coupled Bile Acid Transporter ASBT Interact with Na+ and 7α-OH Moieties on the Ligand Cholestane Skeleton*

    PubMed Central

    Hussainzada, Naissan; Da Silva, Tatiana Claro; Zhang, Eric Y.; Swaan, Peter W.

    2008-01-01

    Functional contributions of residues Val-99—Ser-126 lining extracellular loop (EL) 1 of the apical sodium-dependent bile acid transporter were determined via cysteine-scanning mutagenesis, thiol modification, and in silico interpretation. Despite membrane expression for all but three constructs (S112C, Y117C, S126C), most EL1 mutants (64%) were inactivated by cysteine mutation, suggesting a functional role during sodium/bile acid co-transport. A negative charge at conserved residues Asp-120 and Asp-122 is required for transport function, whereas neutralization of charge at Asp-124 yields a functionally active transporter. D124A exerts low affinity for common bile acids except deoxycholic acid, which uniquely lacks a 7α-hydroxyl (OH) group. Overall, we conclude that (i) Asp-122 functions as a Na+ sensor, binding one of two co-transported Na+ ions, (ii) Asp-124 interacts with 7α-OH groups of bile acids, and (iii) apolar EL1 residues map to hydrophobic ligand pharmacophore features. Based on these data, we propose a comprehensive mechanistic model involving dynamic salt bridge pairs and hydrogen bonding involving multiple residues to describe sodium-dependent bile acid transporter-mediated bile acid and cation translocation. PMID:18508772

  3. Antibodies to Yeast Phenylalanine Transfer Ribonucleic Acid Are Specific for the Odd Nucleoside Y in the Anticodon Loop

    PubMed Central

    Fuchs, Sara; Aharonov, Aharon; Sela, Michael; Von Der Haar, Friedrich; Cramer, Friedrich

    1974-01-01

    Antibodies with specificity to a single species of tRNA were elicited in a goat by immunization with a glutaraldehyde conjugate of yeast phenylalanine transfer RNA with bovine gamma globulin. The specificity of the antibodies was studied by a radioimmunoassay measuring the direct binding of [3H]tRNAPhe or the inhibition of the binding. The antibodies formed are predominantly directed towards the characteristic highly modified nucleoside Y, which is located right next to the anticodon. The antibodies bind specifically to tRNAPhe, to oligonucleotides derived by enzymatic digestion from the anticodon loop of tRNAPhe, and to the Y nucleoside itself. tRNA species which do not contain Y in their sequences, or tRNAPhe from which the Y base has been excised, do not bind to the antibodies. Yeast tRNAPhe can be separated from other tRNA species with an immunoadsorbent of antibodies to tRNAPhe. PMID:4527666

  4. Highly Conserved Salt Bridge Stabilizes Rigid Signal Patch at Extracellular Loop Critical for Surface Expression of Acid-sensing Ion Channels*

    PubMed Central

    Yang, Yang; Yu, Ye; Cheng, Jin; Liu, Yan; Liu, Di-Shi; Wang, Jin; Zhu, Michael X.; Wang, Rui; Xu, Tian-Le

    2012-01-01

    Acid-sensing ion channels (ASICs) are non-selective cation channels activated by extracellular acidosis associated with many physiological and pathological conditions. A detailed understanding of the mechanisms that govern cell surface expression of ASICs, therefore, is critical for better understanding of the cell signaling under acidosis conditions. In this study, we examined the role of a highly conserved salt bridge residing at the extracellular loop of rat ASIC3 (Asp107-Arg153) and human ASIC1a (Asp107-Arg160) channels. Comprehensive mutagenesis and electrophysiological recordings revealed that the salt bridge is essential for functional expression of ASICs in a pH sensing-independent manner. Surface biotinylation and immunolabeling of an extracellular epitope indicated that mutations, including even minor alterations, at the salt bridge impaired cell surface expression of ASICs. Molecular dynamics simulations, normal mode analysis, and further mutagenesis studies suggested a high stability and structural constrain of the salt bridge, which serves to separate an adjacent structurally rigid signal patch, important for surface expression, from a flexible gating domain. Thus, we provide the first evidence of structural requirement that involves a stabilizing salt bridge and an exposed rigid signal patch at the destined extracellular loop for normal surface expression of ASICs. These findings will allow evaluation of new strategies aimed at preventing excessive excitability and neuronal injury associated with tissue acidosis and ASIC activation. PMID:22399291

  5. OprG Harnesses the Dynamics of its Extracellular Loops to Transport Small Amino Acids across the Outer Membrane of Pseudomonas aeruginosa.

    PubMed

    Kucharska, Iga; Seelheim, Patrick; Edrington, Thomas; Liang, Binyong; Tamm, Lukas K

    2015-12-01

    OprG is an outer membrane protein of Pseudomonas aeruginosa whose function as an antibiotic-sensitive porin has been controversial and not well defined. Circumstantial evidence led to the proposal that OprG might transport hydrophobic compounds by using a lateral gate in the barrel wall thought to be lined by three conserved prolines. To test this hypothesis and to find the physiological substrates of OprG, we reconstituted the purified protein into liposomes and found it to facilitate the transport of small amino acids such as glycine, alanine, valine, and serine, which was confirmed by Pseudomonas growth assays. The structures of wild-type and a critical proline mutant were determined by nuclear magnetic resonance in dihexanoyl-phosphatidylcholine micellar solutions. Both proteins formed eight-stranded β-barrels with flexible extracellular loops. The interfacial prolines did not form a lateral gate in these structures, but loop 3 exhibited restricted motions in the inactive P92A mutant but not in wild-type OprG.

  6. Fast De Novo Discovery of Low-energy Protein Loop Conformations.

    PubMed

    Wong, Samuel W K; Liu, Jun S; Kou, S C

    2017-04-05

    In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often located on the protein surface, they can have significant roles in determining protein functions and binding properties. Loop prediction without the aid of a structural template requires extensive conformational sampling and energy minimization, which are computationally difficult. In this article we present a new de novo loop sampling method, the Parallely-filtered Energy Targeted All-atom Loop Sampler (PETALS) to rapidly locate low energy conformations. PETALS explores both backbone and side-chain positions of the loop region simultaneously according to the energy function selected by the user, and constructs a non-redundant ensemble of low energy loop conformations using filtering criteria. The method is illustrated with the DFIRE potential and DiSGro energy function for loops, and shown to be highly effective at discovering conformations with near-native (or better) energy. Using the same energy function as the DiSGro algorithm, PETALS samples conformations with both lower RMSDs and lower energies. PETALS is also useful for assessing the accuracy of different energy functions. PETALS runs rapidly, requiring an average time cost of 10 minutes for a length 12 loop on a single 3.2GHz processor core, comparable to the fastest existing de novo methods for generating an ensemble of conformations. This article is protected by copyright. All rights reserved.

  7. 77 FR 1455 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... International Trade Administration Citric Acid and Certain Citrate Salts From the People's Republic of China... acid and certain citrate salts (``citric acid'') from the People's Republic of China (``PRC''). See... of the administrative review of citric acid from the PRC within this time limit....

  8. Loop-to-loop coupling.

    SciTech Connect

    Warne, Larry Kevin; Lucero, Larry Martin; Langston, William L.; Salazar, Robert Austin; Coleman, Phillip Dale; Basilio, Lorena I.; Bacon, Larry Donald

    2012-05-01

    This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.

  9. 76 FR 4288 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Notice of Extension of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Citric Acid and Certain Citrate Salts From the People's Republic of China... review of the antidumping duty order on citric acid and certain citrate salts (``citric acid'') from...

  10. 76 FR 47146 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... International Trade Administration Citric Acid and Certain Citrate Salts From the People's Republic of China...'') published the initiation of the administrative review of the antidumping duty order on citric acid and certain citrate salts (``citric acid'') from the People's Republic of China (``PRC''). See Initiation...

  11. Monte Carlo Modeling-Based Digital Loop-Mediated Isothermal Amplification on a Spiral Chip for Absolute Quantification of Nucleic Acids.

    PubMed

    Xia, Yun; Yan, Shuangqian; Zhang, Xian; Ma, Peng; Du, Wei; Feng, Xiaojun; Liu, Bi-Feng

    2017-03-21

    Digital loop-mediated isothermal amplification (dLAMP) is an attractive approach for absolute quantification of nucleic acids with high sensitivity and selectivity. Theoretical and numerical analysis of dLAMP provides necessary guidance for the design and analysis of dLAMP devices. In this work, a mathematical model was proposed on the basis of the Monte Carlo method and the theories of Poisson statistics and chemometrics. To examine the established model, we fabricated a spiral chip with 1200 uniform and discrete reaction chambers (9.6 nL) for absolute quantification of pathogenic DNA samples by dLAMP. Under the optimized conditions, dLAMP analysis on the spiral chip realized quantification of nucleic acids spanning over 4 orders of magnitude in concentration with sensitivity as low as 8.7 × 10(-2) copies/μL in 40 min. The experimental results were consistent with the proposed mathematical model, which could provide useful guideline for future development of dLAMP devices.

  12. Streptomycin affinity depends on 13 amino acids forming a loop in homology modelled ribosomal S12 protein (rpsL gene) of Lysinibacillus sphaericus DSLS5 associated with marine sponge (Tedania anhelans).

    PubMed

    Suriyanarayanan, Balasubramanian; Lakshmi, Praveena Pothuraju; Santhosh, Ramachandran Sarojini; Dhevendaran, Kandasamy; Priya, Balakrishnan; Krishna, Shivaani

    2016-06-01

    Streptomycin, an antibiotic used against microbial infections, inhibits the protein synthesis by binding to ribosomal protein S12, encoded by rpsL12 gene, and associated mutations cause streptomycin resistance. A streptomycin resistant, Lysinibacillus sphaericus DSLS5 (MIC >300 µg/mL for streptomycin), was isolated from a marine sponge (Tedania anhelans). The characterisation of rpsL12 gene showed a region having similarity to long terminal repeat sequences of murine lukemia virus which added 13 amino acids for loop formation in RpsL12; in addition, a K56R mutation which corresponds to K43R mutation present in streptomycin-resistant Escherichia coli is also present. The RpsL12 protein was modelled and compared with that of Lysinibacillus boronitolerans, Escherichia coli and Mycobacterium tuberculosis. The modelled proteins docked with streptomycin indicate compound had less affinity. The effect of loop on streptomycin resistance was analysed by constructing three different models of RpsL12 by, (i) removing both loop and mutation, (ii) removing the loop alone while retaining the mutation and (iii) without mutation having loop. The results showed that the presence of loop causes streptomycin resistance (decreases the affinity), and it further enhanced in the presence of mutation at 56th codon. Further study will help in understanding the evolution of streptomycin resistance in organisms.

  13. H11-H12 loop retinoic acid receptor mutants exhibit distinct trans-activating and trans-repressing activities in the presence of natural or synthetic retinoids.

    PubMed

    Lefebvre, B; Mouchon, A; Formstecher, P; Lefebvre, P

    1998-06-30

    Retinoids, such as the naturally occurring all-trans-retinoic acid (atRA) and synthetic ligand CD367 modulate ligand-dependent transcription through retinoic acid receptors (RARs). Retinoid binding to RAR is believed to trigger structural transitions in the ligand-binding domain (LBD), leading to helix H1 and helix H12 repositioning and coactivator recruitment and corepressor release. Here, we carried out a detailed mutagenesis analysis of the H11-H12 loop (designated the L box) to study its contribution to hRARalpha activation process. Point mutations that reduced transactivation by atRA also reduced atRA-induced transrepression of AP1 transcription, correlating ligand-induced activation and repression. However, a correlation was not observed with these mutations when tested with another ligand CD367, a synthetic agonist with binding properties identical to those of atRA. Transcription was strongly inhibited in the presence of CD367 for some mutants, thus leading to an inverse agonist activity of this ligand. None of these mutations significantly altered binding affinity for either ligand, indicating that altered transcription was not caused by altered ligand binding by these mutations. Although simple correlations with transcriptional activities were not found, these mutations were also characterized by altered ligand-induced structural transitions, which were distinct for the atRA-hRARalpha or CD367-hRARalpha complexes. These results indicate that amino acids in the L box are involved in specifying trans-repressive and trans-activating properties of the hRARalpha, and support the notion that different agonists induce distinct conformations in the LBD of the receptor.

  14. 76 FR 82275 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... International Trade Administration Citric Acid and Certain Citrate Salts From the People's Republic of China... countervailing duty order on citric acid and certain citrate salts from the People's Republic of China (PRC). See... and Certain Citrate Salts, 74 FR 25705 (May 29, 2009). On May 2, 2011, the Department published...

  15. 76 FR 2648 - Citric Acid and Certain Citrate Salts From People's Republic of China: Extension of Time Limit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Citric Acid and Certain Citrate Salts From People's Republic of China... initiation of administrative review of the countervailing duty order on citric acid and certain citrate...

  16. Simultaneous determination of D-aspartic acid and D-glutamic acid in rat tissues and physiological fluids using a multi-loop two-dimensional HPLC procedure.

    PubMed

    Han, Hai; Miyoshi, Yurika; Ueno, Kyoko; Okamura, Chieko; Tojo, Yosuke; Mita, Masashi; Lindner, Wolfgang; Zaitsu, Kiyoshi; Hamase, Kenji

    2011-11-01

    For a metabolomics study focusing on the analysis of aspartic and glutamic acid enantiomers, a fully automated two-dimensional HPLC system employing a microbore-ODS column and a narrowbore-enantioselective column was developed. By using this system, a detailed distribution of D-Asp and D-Glu besides L-Asp and L-Glu in mammals was elucidated. For the total analysis concept, the amino acids were first pre-column derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) to be sensitively and fluorometrically detected. For the non-stereoselective separation of the analytes in the first dimension a monolithic ODS column (750 mm × 0.53 mm i.d.) was adopted, and a self-packed narrowbore-Pirkle type enantioselective column (Sumichiral OA-2500S, 250 mm × 1.5 mm i.d.) was selected for the second dimension. In the rat plasma, RSD values for intra-day and inter-day precision were less than 6.8%, and the accuracy ranged between 96.1% and 105.8%. The values of LOQ of D-Asp and D-Glu were 5 fmol/injection (0.625 nmol/g tissue). The present method was successfully applied to the simultaneous determination of free aspartic acid and glutamic acid enantiomers in 7 brain areas, 11 peripheral tissues, plasma and urine of Wistar rats. Biologically significant D-Asp values were found in various tissue samples whereas for D-Glu the values were very low possibly indicating less significance.

  17. Development of Reverse Transcription Loop-Mediated Isothermal Amplification for Simple and Rapid Detection of Promyelocytic Leukemia–Retinoic Acid Receptor α mRNA

    PubMed Central

    Hashimoto, Yuki; Hatayama, Yuki; Kojima, Nao; Morishita, Shota; Matsumoto, Satoko; Hosoda, Yuzuru; Hara, Ayako; Motokura, Toru

    2016-01-01

    Background Acute promyelocytic leukemia (APL) is a disease characterized by expression of Promyelocytic Leukemia–Retinoic Acid Receptor α (PML-RARα) chimeric mRNA. Although APL is curable, early death due to hemorrhage is a major problem. Here, we report the development of a simple and rapid diagnostic method for APL based on reverse transcription loop-mediated isothermal amplification (RT-LAMP). Methods An RT-LAMP primer set was designed to detect three types of PML-RARα mRNA in a single reaction. Serial dilutions of plasmid DNA containing bcr1, bcr2, or bcr3 PML-RARα sequences and RNA extracted from bone marrow aspirates of 6 patients with APL were used to compare the results of RT-LAMP and nested PCR assays. Results Plasmid DNA was amplified by RT-LAMP, for which the reaction time was > 4 h shorter and the lower detection limit was higher than for nested RT-PCR. Six of 7 samples tested positive by both methods. Conclusion We developed an RT-LAMP assay for simple and rapid PML-RARα mRNA detection that may be clinically useful for point-of-care testing and APL diagnosis. PMID:28070163

  18. Colorimetric tests for diagnosis of filarial infection and vector surveillance using non-instrumented nucleic acid loop-mediated isothermal amplification (NINA-LAMP)

    PubMed Central

    Poole, Catherine B.; Li, Zhiru; Alhassan, Andy; Guelig, Dylan; Diesburg, Steven; Tanner, Nathan A.; Zhang, Yinhua; Evans, Thomas C.; LaBarre, Paul; Wanji, Samuel; Burton, Robert A.; Carlow, Clotilde K. S.

    2017-01-01

    Accurate detection of filarial parasites in humans is essential for the implementation and evaluation of mass drug administration programs to control onchocerciasis and lymphatic filariasis. Determining the infection levels in vector populations is also important for assessing transmission, deciding when drug treatments may be terminated and for monitoring recrudescence. Immunological methods to detect infection in humans are available, however, cross-reactivity issues have been reported. Nucleic acid-based molecular assays offer high levels of specificity and sensitivity, and can be used to detect infection in both humans and vectors. In this study we developed loop-mediated isothermal amplification (LAMP) tests to detect three different filarial DNAs in human and insect samples using pH sensitive dyes for enhanced visual detection of amplification. Furthermore, reactions were performed in a portable, non-instrumented nucleic acid amplification (NINA) device that provides a stable heat source for LAMP. The efficacy of several strand displacing DNA polymerases were evaluated in combination with neutral red or phenol red dyes. Colorimetric NINA-LAMP assays targeting Brugia Hha I repeat, Onchocerca volvulus GST1a and Wuchereria bancrofti LDR each exhibit species-specificity and are also highly sensitive, detecting DNA equivalent to 1/10-1/5000th of one microfilaria. Reaction times varied depending on whether a single copy gene (70 minutes, O. volvulus) or repetitive DNA (40 min, B. malayi and W. bancrofti) was employed as a biomarker. The NINA heater can be used to detect multiple infections simultaneously. The accuracy, simplicity and versatility of the technology suggests that colorimetric NINA-LAMP assays are ideally suited for monitoring the success of filariasis control programs. PMID:28199317

  19. Single amino acid insertions in extracellular loop 2 of Bombyx mori ABCC2 disrupt its receptor function for Bacillus thuringiensis Cry1Ab and Cry1Ac but not Cry1Aa toxins.

    PubMed

    Tanaka, Shiho; Miyamoto, Kazuhisa; Noda, Hiroaki; Endo, Haruka; Kikuta, Shingo; Sato, Ryoichi

    2016-04-01

    In a previous report, seven Cry1Ab-resistant strains were identified in the silkworm, Bombyx mori; these strains were shown to have a tyrosine insertion at position 234 in extracellular loop 2 of the ABC transporter C2 (BmABCC2). This insertion was confirmed to destroy the receptor function of BmABCC2 and confer the strains resistance against Cry1Ab and Cry1Ac. However, these strains were susceptible to Cry1Aa. In this report, we examined the mechanisms of the loss of receptor function of the transporter by expressing mutations in Sf9 cells. After replacement of one or two of the five amino acid residues in loop 2 of the susceptible BmABCC2 gene [BmABCC2_S] with alanine, cells still showed susceptibility, retaining the receptor function. Five mutants with single amino acid insertions at position 234 in BmABCC2 were also generated, resulting in loop 2 having six amino acids, which corresponds to replacing the tyrosine insertion in the resistant BmABCC2 gene [BmABCC2_R(+(234)Y)] with another amino acid. All five mutants exhibited loss of function against Cry1Ab and Cry1Ac. These results suggest that the amino acid sequence in loop 2 is less important than the loop size (five vs. six amino acids) or loop structure for Cry1Ab and Cry1Ac activity. Several domain-swapped mutant toxins were then generated among Cry1Aa, Cry1Ab, and Cry1Ac, which are composed of three domains. Swapped mutants containing domain II of Cry1Ab or Cry1Ac did not kill Sf9 cells expressing BmABCC2_R(+(234)Y), suggesting that domain II of the Cry toxin is related to the interaction with the receptor function of BmABCC2. This also suggests that different reactions against Bt-toxins in some B. mori strains, that is, Cry1Ab resistance or Cry1Aa susceptibility, are attributable to structural differences in domain II of Cry1A toxins.

  20. Shelf-life extension of vacuum-packaged meat from pheasant (Phasianus colchicus) by lactic acid treatment.

    PubMed

    Pfeifer, Agathe; Smulders, Frans J M; Paulsen, Peter

    2014-07-01

    We investigated the influence of lactic acid treatment of pheasant meat before vacuum-packaged storage of 3, 7, and 10 d at +6°C on microbiota and pH. Breast muscle samples were collected from carcasses of slaughtered as well as from hunted (shot) wild pheasants. Immersion of meat samples in 3% (wt/wt) lactic acid for 60 s effectuated a significant drop in pH of approximately 0.5 to 0.7 units, which remained during the entire storage period. In parallel, total aerobic counts of such treated and stored samples were on an average 1.5 to 1.7 log units lower than in non-acid-treated samples. Similar results were found for Enterobacteriaceae. A significant decrease in pH was measured at d 7 and 10 in the acid-treated samples in comparison with the untreated ones. In summary, the immersion of pheasant breast meat cuts in dilute lactic acid significantly reduced microbiota during vacuum-packed storage, even at slight temperature abuse conditions.

  1. Health beneficial long chain omega-3 fatty acid levels in Australian lamb managed under extensive finishing systems.

    PubMed

    Ponnampalam, Eric N; Butler, Kym L; Jacob, Robin H; Pethick, David W; Ball, Alex J; Edwards, Janelle E Hocking; Geesink, Geert; Hopkins, David L

    2014-02-01

    The variation in levels of the health claimable long chain omega-3 fatty acids, eicosapentaenoic acid (EPA, 20:5n-3) plus docosahexaenoic acid (DHA, 22:6n-3) across production regions of Australia was studied in 5726 lambs over 3 years completed in 87 slaughter groups. The median level of EPA plus DHA differed dramatically between locations and sometimes between slaughters from the same location. The ratio of EPA plus DHA from lambs with high values (97.5% quantile) to lambs with low values (2.5% quantile) also differed dramatically between locations, and between slaughters from the same location. Consistency between years, at a location, was less for the high to low value ratio of EPA plus DHA than for the median value of EPA plus DHA. To consistently obtain high levels of omega-3 fatty acids in Australian lamb, there must be a focus on lamb finishing diets which are likely to need a supply of α-linolenic acid (18:3n-3), the precursor for EPA and DHA.

  2. Extensive amino acid polymorphism at the pgm locus is consistent with adaptive protein evolution in Drosophila melanogaster.

    PubMed Central

    Verrelli, B C; Eanes, W F

    2000-01-01

    PGM plays a central role in the glycolytic pathway at the branch point leading to glycogen metabolism and is highly polymorphic in allozyme studies of many species. We have characterized the nucleotide diversity across the Pgm gene in Drosophila melanogaster and D. simulans to investigate the role that protein polymorphism plays at this crucial metabolic branch point shared with several other enzymes. Although D. melanogaster and D. simulans share common allozyme mobility alleles, we find these allozymes are the result of many different amino acid changes at the nucleotide level. In addition, specific allozyme classes within species contain several amino acid changes, which may explain the absence of latitudinal clines for PGM allozyme alleles, the lack of association of PGM allozymes with the cosmopolitan In(3L)P inversion, and the failure to detect differences between PGM allozymes in functional studies. We find a significant excess of amino acid polymorphisms within D. melanogaster when compared to the complete absence of fixed replacements with D. simulans. There is also strong linkage disequilibrium across the 2354 bp of the Pgm locus, which may be explained by a specific amino acid haplotype that is high in frequency yet contains an excess of singleton polymorphisms. Like G6pd, Pgm shows strong evidence for a branch point enzyme that exhibits adaptive protein evolution. PMID:11102370

  3. Loop Quantum Cosmology.

    PubMed

    Bojowald, Martin

    2008-01-01

    Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.

  4. Trifluoracetic acid-assisted crystallization of vitamin B12 results in protonation of the phosphate group of the nucleotide loop: insight into the influence of crystal packing forces on vitamin B12 structures.

    PubMed

    Marino, Nadia; Rabideau, Amy E; Doyle, Robert P

    2011-01-03

    In the course of experiments concerning our ongoing project on the synthesis of vitamin B(12) (cyanocobalamin, CNCbl) bioconjugates for drug-delivery purposes, we observed the formation of well-shaped red parallelepipeds from a concentrated aqueous solution of the HPLC-purified vitamin. The X-ray structural investigation (MoK(α)) at 98 K on these crystals revealed a CNCbl-TFA salt of formula [CNCbl(H)](TFAc)·14H(2)O (1, where TFA = trifluoracetic acid; TFAc(-) = trifluoracetate anion), in which a proton transfer from the trifluoracetic acid to the phosphate-O4P oxygen atoms is observed. 1 crystallizes in the standard orthorhombic P2(1)2(1)2(1) space group, a = 16.069(2) Å, b = 20.818(2) Å, c = 24.081(2) Å, Z = 4. The final full-matrix least-squares refinements on F(2) converged with R(1) = 4.1% for the 18957 significant reflections, a very low crystallographic residual for cobalamins, which facilitated the analysis of the extensive network of hydrogen bonds within the lattice. To the best of our knowledge, this is the first cobalamin structure to show protonation of the phosphate group of the cobalamin nucleotide loop. In this work, the crystal structure of 1 is analyzed and compared to other CNCbls reported in the literature, namely, CNCbl·3PrOH·12H(2)O (2, PrOH = propyl alcohol), CNCbl·acetone·20H(2)O (3), CNCbl·2LiCl·10.2H(2)O (4), and CNCbl·2KCl·10.6H(2)O (5). The analysis confirmed that protonation of the phosphate leaves the major CNCbl structural parameters unaffected, so that 1 can be considered an "unmodified" Cbl solvate. However, comparison between 1-5 led to interesting findings. In fact, although the cobalt(III) coordination sphere in 1-5 is similar, significant differences could be noted in the upward fold angle of the corrin macrocycle, a parameter commonly related to the steric hindrance of the axial lower "α" nucleotide-base and the electronic trans influence of the upper "β" substituent. This suggests that crystal-packing forces may

  5. Omega—3 fatty acid and ADHD: Blood level analysis and meta-analytic extension of supplementation trials

    PubMed Central

    Hawkey, Elizabeth; Nigg, Joel T.

    2015-01-01

    Interest in the value of Omega—3 (n—3) fatty acid supplementation for treatment of ADHD remains high. No prior meta-analysis has examined whether ADHD is associated with alterations in blood lipid levels and meta-analyses of supplementation have reached conflicting conclusions. Methods We report two new meta-analyses. Study 1 examined blood levels of Omega—3 fatty acids in relation to ADHD. Study 2 examined a larger sample of randomized intervention trials than previously reported. Results Study 1 included 9 studies (n = 586) and found lower overall blood levels of n—3 in individuals with ADHD versus controls (g = 0.42, 95% CI = 0.26–0.59; p < .001). Study 2 included 16 studies (n = 1408) and found that n—3 supplementation improved ADHD composite symptoms; using the best available rating and reporter (g = 0.26, 95% CI = 0.15–0.37; p < .001). Supplementation showed reliable effects on hyperactivity by parent and teacher report, but reliable effects for inattention only by parent report. Conclusions Omega—3 levels are reduced in children with ADHD. Dietary supplementation appears to create modest improvements in symptoms. There is sufficient evidence to consider Omega—3 fatty acids as a possible supplement to established therapies. However it remains unclear whether such intervention should be confined to children with below normal blood levels. PMID:25181335

  6. Repositioning of charged I-II loop amino acid residues within the electric field by beta subunit as a novel working hypothesis for the control of fast P/Q calcium channel inactivation.

    PubMed

    Sandoz, Guillaume; Lopez-Gonzalez, Ignacio; Stamboulian, Séverine; Weiss, Norbert; Arnoult, Christophe; De Waard, Michel

    2004-04-01

    We have investigated the contribution of the Ca(v)beta subunits to the process of inactivation dependent of the I-II loop of Ca(v)alpha(2.1). Two amino acid residues located in the alpha1 interaction domain (AID) of the I-II loop of Ca(v)alpha(2.1) (Arg(387) and Glu(388)) have been directly implicated in voltage-dependent inactivation of this channel. Various point mutations of these residues disrupt the interaction between the I-II loop and the III-IV loop, and thereby modify the inactivation properties of the channel by accelerating its kinetics and shifting the steady-state inactivation curve towards hyperpolarized potentials. A similar disruption is produced by Ca(v)beta(4) subunit association with the I-II loop. Moreover, in the presence of Ca(v)beta(4) subunit, introducing negatively charged residues at positions 387 or 388 slows inactivation kinetics down, whereas introducing positive charges has the opposite effect. The shift of the steady-state inactivation curve is also amino acid charge-dependent. In contrast, mutation of Arg(387) or Glu(388) does not alter the differential regulation of the different Ca(v)beta isoforms on inactivation. These results suggest that the expression of Ca(v)beta(4) alters the contribution of charged residues at positions 387 and 388 to inactivation. We discuss these results with regard to the actual hypotheses on the mechanisms of calcium channel inactivation. We introduce the working concept that Ca(v)beta-subunits produce a conformational repositioning of charged AID residues within the electric field.

  7. Effect of season on fatty acid and terpene profiles of milk from Greek sheep raised under a semi-extensive production system.

    PubMed

    Papaloukas, Loukas; Sinapis, Efthymios; Arsenos, George; Kyriakou, George; Basdagianni, Zoitsa

    2016-08-01

    The objective of the study was to investigate the effect of season on the fatty acid and terpene composition in ewe milk. A total of 760 samples of bulk sheep milk were collected during winter (147 samples), spring (314 samples) and summer (299 samples) of 2011, from 90 commercial farms of dairy sheep from the prefecture of Grevena, Greece. Regarding fatty acid composition, summer samples had higher concentrations of α-linolenic acid, cis-9, trans 11- CLA, trans-11, C18 : 1 and PUFAs but lower content of saturated fatty acids particularly C12 : 0, C14 : 0 and C16 : 0. The winter milk had the lowest content of terpenes, in particular sesquiterpenes, compared to spring and summer milk. The terpene profile of milk samples, in all three seasons, revealed the presence of monoterpenes: a-pinene, b-pinene and D-limonene, especially with a higher frequency of appearance in summer. The most common and abundant sesquiterpenes found in milk samples were β-caryophyllene and α-caryophyllene with a higher frequency of appearance in summer. In conclusion, the available pastures in semi-extensive farming systems can contribute to the production of high quality milk.

  8. Water Stream "Loop-the-Loop"

    ERIC Educational Resources Information Center

    Jefimenko, Oleg

    1974-01-01

    Discusses the design of a modified loop-the-loop apparatus in which a water stream is used to illustrate centripetal forces and phenomena of high-velocity hydrodynamics. Included are some procedures of carrying out lecture demonstrations. (CC)

  9. A Dibasic Amino Acid Pair Conserved in the Activation Loop Directs Plasma Membrane Localization and Is Necessary for Activity of Plant Type I/II Phosphatidylinositol Phosphate Kinase1[W

    PubMed Central

    Mikami, Koji; Saavedra, Laura; Hiwatashi, Yuji; Uji, Toshiki; Hasebe, Mitsuyasu; Sommarin, Marianne

    2010-01-01

    Phosphatidylinositol phosphate kinase (PIPK) is an enzyme involved in the regulation of cellular levels of phosphoinositides involved in various physiological processes, such as cytoskeletal organization, ion channel activation, and vesicle trafficking. In animals, research has focused on the modes of activation and function of PIPKs, providing an understanding of the importance of plasma membrane localization. However, it still remains unclear how this issue is regulated in plant PIPKs. Here, we demonstrate that the carboxyl-terminal catalytic domain, which contains the activation loop, is sufficient for plasma membrane localization of PpPIPK1, a type I/II B PIPK from the moss Physcomitrella patens. The importance of the carboxyl-terminal catalytic domain for plasma membrane localization was confirmed with Arabidopsis (Arabidopsis thaliana) AtPIP5K1. Our findings, in which substitution of a conserved dibasic amino acid pair in the activation loop of PpPIPK1 completely prevented plasma membrane targeting and abolished enzymatic activity, demonstrate its critical role in these processes. Placing our results in the context of studies of eukaryotic PIPKs led us to conclude that the function of the dibasic amino acid pair in the activation loop in type I/II PIPKs is plant specific. PMID:20427464

  10. Short-Term Safety of Zoledronic Acid in Young Patients With Bone Disorders: An Extensive Institutional Experience

    PubMed Central

    George, Sobenna; Weber, David R.; Kaplan, Paige; Hummel, Kelly; Monk, Heather M.

    2015-01-01

    Context: Zoledronic acid (ZA) is increasingly used in young patients with bone disorders. However, data related to the safety of ZA administration in this population are limited. Objective: The study aimed to characterize the short-term safety profile of ZA and identify risk factors for ZA-related adverse events (AEs) in young patients. Design, Setting, and Participants: This was a retrospective chart review of inpatients and outpatients less than 21 years old who received at least one ZA infusion between July 2010 and January 2014 at The Children's Hospital of Philadelphia. Results: Eighty-one patients (56% male; median age, 12 y; age at first infusion, 0.5 to 20 y) with diverse skeletal disorders received a total of 204 infusions. The most common indications were osteoporosis (33% of cohort) and osteogenesis imperfecta (27.2%). The median ZA dose was 0.025 mg/kg (interquartile range, 0.025–0.05); the median dosing interval was 6 months (range, 1 to 25.6 mo). AEs were mild and more common after the first ZA infusion in patients with no previous bisphosphonate exposure: hypophosphatemia (25.2% of infusions), acute phase reactions (19.1%), and hypocalcemia (16.4%). Symptomatic hypocalcemia requiring iv calcium occurred after two infusions. ZA dose was significantly associated with hypophosphatemia, but not other AEs. Hypocalcemia was more common in patients with high bone turnover as assessed by preinfusion alkaline phosphatase levels. AEs were not associated with diagnosis, baseline serum calcium, or calcium/calcitriol supplementation. Conclusion: Acute AEs related to ZA infusion in youths are common, occur principally after the first ZA infusion in bisphosphonate-naive patients, and are typically mild and easily managed. Future prospective studies are needed to determine the potential long-term risks, as well as benefits, of ZA therapy in the pediatric population. PMID:26308295

  11. Extension of Tosèla cheese shelf-life using non-starter lactic acid bacteria.

    PubMed

    Settanni, Luca; Franciosi, Elena; Cavazza, Agostino; Cocconcelli, Pier Sandro; Poznanski, Elisa

    2011-08-01

    Six strains of non-starter lactic acid bacteria (NSLAB) were used to extend the shelf-life of the fresh cheese Tosèla manufactured with pasteurised cows' milk. The acidification kinetics of three Lactobacillus paracasei, one Lactobacillus rhamnosus and two Streptococcus macedonicus were studied in synthetic milk medium. Lb. paracasei NdP78 and NdP88 and S. macedonicus NdP1 and PB14-1 showed an interesting acidifying capacity and were further characterised for growth in UHT milk and production of antimicrobial compounds. Lb. paracasei NdP78 and S. macedonicus NdP1 grew more than 2 log cycles in 6 h. Lb. paracasei NdP78 was also found to produce a bacteriocin-like inhibitory substance (BLIS) active against Listeria monocytogenes. The four NSLAB strains (singly or in combination) were used to produce experimental pilot-scale cheeses which were compared by a panel. The cheese manufactured with the mixed culture Lb. paracasei NdP78 - S. macedonicus NdP1 was the most appreciated for its sensory properties. The cheeses produced at factory-scale showed higher concentrations of lactobacilli (7.90 log CFU/g) and streptococci (6.10 log CFU/g), but a lower development of coliforms (3.10 log CFU/g) and staphylococci (2.78 log CFU/g) than control cheese (4.86, 4.89, 4.93 and 5.00 log CFU/g of lactobacilli, streptococci, coliforms and staphylococci, respectively) processed without NSLAB addition. The food pathogens Salmonella spp. and Listeria monocytogenes were never detected. The dominance of the species inoculated was demonstrated by denaturing gradient gel electrophoresis (DGGE), whereas strain recognition was evaluated by randomly amplified polymorphic DNA (RAPD)-PCR. From the results obtained, Lb. paracasei NdP78 and S. macedonicus NdP1 were able to persist during the storage of Tosèla cheese and their combination influenced positively the sensory characteristics and shelf-life of the final product.

  12. Isolation and characterization of Exodus-2, a novel C-C chemokine with a unique 37-amino acid carboxyl-terminal extension.

    PubMed

    Hromas, R; Kim, C H; Klemsz, M; Krathwohl, M; Fife, K; Cooper, S; Schnizlein-Bick, C; Broxmeyer, H E

    1997-09-15

    Chemokines are a group of small, homologous proteins that regulate leukocyte migration, hemopoiesis, and HIV-1 absorption. We report here the cloning and characterization of a novel murine and human C-C chemokine termed Exodus-2 for its similarity to Exodus-1/MIP-3alpha/LARC, and its chemotactic ability. This novel chemokine has a unique 36 or 37 (murine and human, respectively) amino acid carboxyl-terminal extension not seen in any other chemokine family member. Purified recombinant Exodus-2 was found to have two activities classically associated with chemokines: inhibiting hemopoiesis and stimulating chemotaxis. However, Exodus-2 also had unusual characteristics for C-C chemokines. It selectively stimulated the chemotaxis of T-lymphocytes and was preferentially expressed in lymph node tissue. The combination of these characteristics may be a functional correlate for the unique carboxyl-terminal structure of Exodus-2.

  13. Combined effects of thermosonication and slightly acidic electrolyzed water on the microbial quality and shelf life extension of fresh-cut kale during refrigeration storage.

    PubMed

    Mansur, Ahmad Rois; Oh, Deog-Hwan

    2015-10-01

    This study evaluated the efficacy of thermosonication combined with slightly acidic electrolyzed water (SAcEW) on the shelf life extension of fresh-cut kale during storage at 4 and 7 °C. Each kale (10 ± 0.2 g) was inoculated to contain approximately 6 log CFU/g of Listeria monocytogenes. Each inoculated or uninoculated samples was dip treated at 40 °C for 3 min with deionized water, thermosonication (400 W/L), SAcEW (5 mg/L), sodium chlorite (SC; 100 mg/L), sodium hypochlorite (SH; 100 mg/L), and thermosonication combined with SAcEW, SC, and SH (TS + SAcEW, TS + SC, and TS + SH, respectively). Growths of L. monocytogenes and spoilage microorganisms and changes in sensory (overall visual quality, browning, and off-odour) were evaluated. The results show that lag time and specific growth rate of each microorganism were not significantly (P > 0.05) affected by treatment and storage temperature. Exceeding the unacceptable counts of spoilage microorganisms did not always result in adverse effects on sensory attributes. This study suggests that TS + SAcEW was the most effective method to prolong the shelf life of kale with an extension of around 4 and 6 days at 4 and 7 °C, respectively, and seems to be a promising method for the shelf life extension of fresh produce.

  14. Glycoprotein Degradation in the Blind Loop Syndrome

    PubMed Central

    Prizont, Roberto

    1981-01-01

    Contents obtained from jejunum of normal controls, self-emptying and self-filling blind loop rats were analyzed for the presence of glycoprotein-degrading glycosidases. The blind loop syndrome was documented by the increased fat excretion and slower growth rate of self-filling blind loop rats 6 wk after surgery. With p-nitrophenylglycosides as substrate, the specific activity of α-N-acetylgalactosaminidase, a potential blood group A destroying glycosidase, was 0.90±0.40 mU/mg of protein. This level was 23-fold higher than the specific activity of normal controls. In partially purified self-filling blind loop contents, the activity of α-N-acetylgalactosaminidase was 9- to 70-fold higher than activities of self-emptying and normal controls. Antibiotic treatment with chloromycetin and polymyxin decreased 24-fold the glycosidase levels in self-filling blind loops. In experiments with natural substrate, the blood group A titer of a20,000g supernate from normal jejunal homogenates decreased 128-fold after 24-h incubation with blind loop contents. Normal contents failed to diminish the blood group reactivity of the natural substrate. Furthermore, blind loop contents markedly decreased the blood group A titer of isolated brush borders. Incubation between blind loop bacteria and mucosal homogenates or isolated brush borders labeled with d-[U-14C]glucosamine revealed increased production of labeled ether extractable organic acids. Likewise, intraperitoneal injection of d-[U-14C]glucosamine into self-filling blind loop rats resulted in incorporation of the label into luminal short chain fatty acids. These results suggest that glycosidases may provide a mechanism by which blind loop bacteria obtain sugars from intestinal glycoproteins. The released sugars are used and converted by bacteria into energy and organic acids. This use of the host's glycoproteins would allow blind loop bacteria to grow and survive within the lumen independent of exogenous sources. PMID:6257760

  15. Fast flux locked loop

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  16. The preprocessed doacross loop

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Mirchandaney, Ravi

    1990-01-01

    Dependencies between loop iterations cannot always be characterized during program compilation. Doacross loops typically make use of a-priori knowledge of inter-iteration dependencies to carry out required synchronizations. A type of doacross loop is proposed that allows the scheduling of iterations of a loop among processors without advance knowledge of inter-iteration dependencies. The method proposed for loop iterations requires that parallelizable preprocessing and postprocessing steps be carried out during program execution.

  17. OPE for super loops

    NASA Astrophysics Data System (ADS)

    Sever, Amit; Vieira, Pedro; Wang, Tianheng

    2011-11-01

    We extend the Operator Product Expansion for Null Polygon Wilson loops to the Mason-Skinner-Caron-Huot super loop dual to non MHV gluon amplitudes. We explain how the known tree level amplitudes can be promoted into an infinite amount of data at any loop order in the OPE picture. As an application, we re-derive all one loop NMHV six gluon amplitudes by promoting their tree level expressions. We also present some new all loops predictions for these amplitudes.

  18. The amino acid sequence of Neisseria lactamica PorB surface-exposed loops influences Toll-like receptor 2-dependent cell activation.

    PubMed

    Toussi, Deana N; Carraway, Margaretha; Wetzler, Lee M; Lewis, Lisa A; Liu, Xiuping; Massari, Paola

    2012-10-01

    Toll-like receptors (TLRs) play a major role in host mucosal and systemic defense mechanisms by recognizing a diverse array of conserved pathogen-associated molecular patterns (PAMPs). TLR2, with TLR1 and TLR6, recognizes structurally diverse bacterial products such as lipidated factors (lipoproteins and peptidoglycans) and nonlipidated proteins, i.e., bacterial porins. PorB is a pan-neisserial porin expressed regardless of organisms' pathogenicity. However, commensal Neisseria lactamica organisms and purified N. lactamica PorB (published elsewhere as Nlac PorB) induce TLR2-dependent proinflammatory responses of lower magnitude than N. meningitidis organisms and N. meningitidis PorB (published elsewhere as Nme PorB). Both PorB types bind to TLR2 in vitro but with different apparent specificities. The structural and molecular details of PorB-TLR2 interaction are only beginning to be unraveled and may be due to electrostatic attraction. PorB molecules have significant strain-specific sequence variability within surface-exposed regions (loops) putatively involved in TLR2 interaction. By constructing chimeric recombinant PorB loop mutants in which surface-exposed loop residues have been switched between N. lactamica PorB and N. meningitidis PorB, we identified residues in loop 5 and loop 7 that influence TLR2-dependent cell activation using HEK cells and BEAS-2B cells. These loops are not uniquely responsible for PorB interaction with TLR2, but NF-κB and MAP kinases signaling downstream of TLR2 recognition are likely influenced by a hypothetical "TLR2-binding signature" within the sequence of PorB surface-exposed loops. Consistent with the effect of purified PorB in vitro, a chimeric N. meningitidis strain expressing N. lactamica PorB induces lower levels of interleukin 8 (IL-8) secretion than wild-type N. meningitidis, suggesting a role for PorB in induction of host cell activation by whole bacteria.

  19. Analyses of inter- and intra-patient variation in the V3 loop of the HIV-1 envelope protein

    SciTech Connect

    Korber, B.; Myers, G.; Wolinsky, S.

    1991-09-17

    The third hypervariable domain of the HIV-1 gp120 envelope protein (V3) has been the focus of intensive sequencing efforts. To date, nearly one thousand V3 loop sequences have been stored in the HIV sequence database. Studies have revealed that the V3 loop elicits potent type-specific immune responses, and that it plays a significant role in cell tropism and fusion . The immunogenic tip of the loop can serve as a type-specific neutralizing antibody epitope, as well as a cytotoxic T-cell epitope. A helper T-cell epitope that lies within the amino terminal half of the V3 loop has also been characterized. Despite the richness of the immunologic response to this region, its potential for variation makes it an elusive target for vaccine design. Analyses of sibling sequence sets (sets of viral sequences derived from one person) show that multiple forms of the immunogenic tip of the loop are found within most HIV-1 infected individuals. Viral V3 sequences obtained from epidemiologically unlinked individuals from North America and Europe show extensive variation. However, some amino acid positions distributed throughout the V3 loop are highly conserved, and there is also conservation of the charge class of amino acid able to occupy certain positions relative to the tip of the loop. By contrast, the sequences obtained from many countries throughout the African continent reveal that V3 is a remarkably fluid region with few absolute constraints on the nature of the amino acids that can occupy most positions in the loop. The high degree of heterogeneity in this region is particularly striking in view of its contribution to biologically important viral functions.

  20. Conformationally sensitive proximity of extracellular loops 2 and 4 of the γ-aminobutyric acid (GABA) transporter GAT-1 inferred from paired cysteine mutagenesis.

    PubMed

    Hilwi, Maram; Dayan, Oshrat; Kanner, Baruch I

    2014-12-05

    The sodium- and chloride-coupled GABA transporter GAT-1 is a member of the neurotransmitter:sodium:symporters, which are crucial for synaptic transmission. Structural work on the bacterial homologue LeuT suggests that extracellular loop 4 closes the extracellular solvent pathway when the transporter becomes inward-facing. To test whether this model can be extrapolated to GAT-1, cysteine residues were introduced at positions 359 and 448 of extracellular loop 4 and transmembrane helix 10, respectively. Treatment of HeLa cells, expressing the double cysteine mutant S359C/K448C with the oxidizing reagent copper(II)(1,10-phenantroline)3, resulted in a significant inhibition of [(3)H]GABA transport. However, transport by the single cysteine mutant S359C was also inhibited by the oxidant, whereas its activity was almost 4-fold stimulated by dithiothreitol. Both effects were attenuated when the conserved cysteine residues, Cys-164 and/or Cys-173, were replaced by serine. These cysteines are located in extracellular loop 2, the role of which in the structure and function of the eukaryotic neurotransmitter:sodium:symporters remains unknown. The inhibition of transport of S359C by the oxidant was markedly reduced under conditions expected to increase the proportion of inward-facing transporters, whereas the reactivity of the mutants to a membrane-impermeant sulfhydryl reagent was not conformationally sensitive. Our data suggest that extracellular loops 2 and 4 come into close proximity to each other in the outward-facing conformation of GAT-1.

  1. Hypoxia pathway and hypoxia-mediated extensive extramedullary hematopoiesis are involved in ursolic acid's anti-metastatic effect in 4T1 tumor bearing mice

    PubMed Central

    Gao, Jian-Li; Shui, Yan-Mei; Jiang, Wei; Huang, En-Yi; Shou, Qi-Yang; Ji, Xin; He, Bai-Cheng; Lv, Gui-Yuan; He, Tong-Chuan

    2016-01-01

    Hypoxic in the tumor mass is leading to the myeloproliferative-like disease (leukemoid reaction) and anemia of body, which characterized by strong extensive extramedullary hematopoiesis (EMH) in spleen. As the key transcription factor of hypoxia, hypoxia-inducible factor-1 (HIF-1) activates the expression of genes essential for EMH processes including enhanced blood cell production and angiogenesis. We found ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid, inhibited growth of breast cancer both in vivo and in vitro. The suppression was mediated through the inhibition of multiple cell pathways linked to inflammation, proliferation, angiogenesis, and metastasis. UA also suppressed the leukemoid reaction and the EMH phenomenon of the tumor bearing mice without any significant suppression on body weight (i.p. by 20 mg/kg for 28 days). This is associated with the significant decrease in white blood cells (WBC), platelets (PLT) and spleen weight. During this process, we also detected the down-regulation of cell proliferative genes (PCNA, and β-catenin), and metastatic genes (VEGF, and HIF-1α), as well as the depression of nuclear protein intensity of HIF-1α. Furthermore, the expression of E2F1, p53 and MDM2 genes were increased in UA group when the VEGF and HIF-1α was over-expressed. Cancer cells were sensitive to UA treating after the silencing of HIF-1α and the response of Hypoxic pathway reporter to UA was suppressed when HIF-1α was over expressed. Overall, our results from experimental and predictive studies suggest that the anticancer activity of UA may be at least in part caused by suppressing the cancer hypoxia and hypoxia-mediated EMH. PMID:27708244

  2. Pseudonoise code tracking loop

    NASA Technical Reports Server (NTRS)

    Laflame, D. T. (Inventor)

    1980-01-01

    A delay-locked loop is presented for tracking a pseudonoise (PN) reference code in an incoming communication signal. The loop is less sensitive to gain imbalances, which can otherwise introduce timing errors in the PN reference code formed by the loop.

  3. Phenylacetic Acid Is ISR Determinant Produced by Bacillus fortis IAGS162, Which Involves Extensive Re-modulation in Metabolomics of Tomato to Protect against Fusarium Wilt.

    PubMed

    Akram, Waheed; Anjum, Tehmina; Ali, Basharat

    2016-01-01

    Bacillus fortis IAGS162 has been previously shown to induce systemic resistance in tomato plants against Fusarium wilt disease. In the first phase of current study, the ISR determinant was isolated from extracellular metabolites of this bacterium. ISR bioassays combined with solvent extraction, column chromatography and GC/MS analysis proved that phenylacetic acid (PAA) was the potential ISR determinant that significantly ameliorated Fusarium wilt disease of tomato at concentrations of 0.1 and 1 mM. In the second phase, the biochemical basis of the induced systemic resistance (ISR) under influence of PAA was elucidated by performing non-targeted whole metabolomics through GC/MS analysis. Tomato plants were treated with PAA and fungal pathogen in various combinations. Exposure to PAA and subsequent pathogen challenge extensively re-modulated tomato metabolic networks along with defense related pathways. In addition, various phenylpropanoid precursors were significantly up-regulated in treatments receiving PAA. This work suggests that ISR elicitor released from B. fortis IAGS162 contributes to resistance against fungal pathogens through dynamic reprogramming of plant pathways that are functionally correlated with defense responses.

  4. Phenylacetic Acid Is ISR Determinant Produced by Bacillus fortis IAGS162, Which Involves Extensive Re-modulation in Metabolomics of Tomato to Protect against Fusarium Wilt

    PubMed Central

    Akram, Waheed; Anjum, Tehmina; Ali, Basharat

    2016-01-01

    Bacillus fortis IAGS162 has been previously shown to induce systemic resistance in tomato plants against Fusarium wilt disease. In the first phase of current study, the ISR determinant was isolated from extracellular metabolites of this bacterium. ISR bioassays combined with solvent extraction, column chromatography and GC/MS analysis proved that phenylacetic acid (PAA) was the potential ISR determinant that significantly ameliorated Fusarium wilt disease of tomato at concentrations of 0.1 and 1 mM. In the second phase, the biochemical basis of the induced systemic resistance (ISR) under influence of PAA was elucidated by performing non-targeted whole metabolomics through GC/MS analysis. Tomato plants were treated with PAA and fungal pathogen in various combinations. Exposure to PAA and subsequent pathogen challenge extensively re-modulated tomato metabolic networks along with defense related pathways. In addition, various phenylpropanoid precursors were significantly up-regulated in treatments receiving PAA. This work suggests that ISR elicitor released from B. fortis IAGS162 contributes to resistance against fungal pathogens through dynamic reprogramming of plant pathways that are functionally correlated with defense responses. PMID:27148321

  5. A study of FM threshold extension techniques

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Loch, F. J.

    1972-01-01

    The characteristics of three postdetection threshold extension techniques are evaluated with respect to the ability of such techniques to improve the performance of a phase lock loop demodulator. These techniques include impulse-noise elimination, signal correlation for the detection of impulse noise, and delta modulation signal processing. Experimental results from signal to noise ratio data and bit error rate data indicate that a 2- to 3-decibel threshold extension is readily achievable by using the various techniques. This threshold improvement is in addition to the threshold extension that is usually achieved through the use of a phase lock loop demodulator.

  6. AGRICULTURAL EXTENSION.

    ERIC Educational Resources Information Center

    FARQUHAR, R.N.

    AUSTRALIAN AGRICULTURAL EXTENSION HAS LONG EMPHASIZED TECHNICAL ADVISORY SERVICE AT THE EXPENSE OF THE SOCIOECONOMIC ASPECTS OF FARM PRODUCTION AND FARM LIFE. ONLY IN TASMANIA HAS FARM MANAGEMENT BEEN STRESSED. DEMANDS FOR THE WHOLE-FARM APPROACH HAVE PRODUCED A TREND TOWARD GENERALISM FOR DISTRICT OFFICERS IN MOST STATES. THE FEDERAL GOVERNMENT,…

  7. Diagnostic fragment-ion-based and extension strategy coupled to DFIs intensity analysis for identification of chlorogenic acids isomers in Flos Lonicerae Japonicae by HPLC-ESI-MS(n).

    PubMed

    Zhang, Jia-Yu; Zhang, Qian; Li, Ning; Wang, Zi-Jian; Lu, Jian-Qiu; Qiao, Yan-Jiang

    2013-01-30

    A method of modified diagnostic fragment-ion-based extension strategy (DFIBES) coupled to DFIs (diagnostic fragmentation ions) intensity analysis was successfully established to simultaneously screen and identify the chlorogenic acids (CGAs) in Flos Lonicerae Japonicae (FLJ) by HPLC-ESI-MS(n). DFIs, such as m/z 191 [quinic acid-H](-), m/z 179 [caffeic acid-H](-) and m/z 173 [quinic acid-H-H2O](-) were determined or proposed from the fragmentation patterns analysis of corresponding reference substances for every chemical family of CGAs. A "structure extension" method was then proposed based on the well-demonstrated fragmentation patterns and was successively applied into the rapid screening of CGAs in FLJ. Considering that substitution isomerism is a common phenomenon, a full ESI-MS(n) fragmentation analysis according to the intensity of DFIs has been performed to identify the CGA isomers. Based on the DFIs and intensity analysis, 41 peaks attributed to CGAs including 4 caffeoylquinic acids (CQA), 7 CQA glycosides, 6 dicaffeoylquinic acids (DiCQA), 10 DiCQA glycosides, 1 tricaffeoylquinic acids (TriCQA), 4p-coumaroylquinic acids (pCoQA), 3 feruloylquinic acids (FQA) and 6 caffeoylferuloylquinic acids (CFQA) were identified preliminarily in a 65-min chromatographic run. It was the first time to systematically report the presence of CGAs in FLJ, especially for CQA glycosides, DiCQA glycosides, TriCQA, pCoQA and CFQA. All the results indicated that the method of developed DFIBES coupled to DFIs analysis was feasible, reliable and universal for screening and identifying the constituents with the same carbon skeletons especially the isomeric compounds from the complex extract of TCMs.

  8. LOOP CALCULUS AND BELIEF PROPAGATION FOR Q-ARY ALPHABET: LOOP TOWER

    SciTech Connect

    CHERTKOV, MICHAEL; CHERNYAK, VLADIMIR

    2007-01-10

    Loop calculus introduced in [1], [2] constitutes a new theoretical tool that explicitly expresses symbol Maximum-A-Posteriori (MAP) solution of a general statistical inference problem via a solution of the Belief Propagation (BP) equations. This finding brought a new significance to the BP concept, which in the past was thought of as just a loop-free approximation. In this paper they continue a discussion of the Loop Calculus, partitioning the results into three Sections. In Section 1 they introduce a new formulation of the Loop Calculus in terms of a set of transformations (gauges) that keeping the partition function of the problem invariant. The full expression contains two terms referred to as the 'ground state' and 'excited states' contributions. The BP equations are interpreted as a special (BP) gauge fixing condition that emerges as a special orthogonality constraint between the ground state and excited states, which also selects loop contributions as the only surviving ones among the excited states. In Section 2 they demonstrate how the invariant interpretation of the Loop Calculus, introduced in Section 1, allows a natural extension to the case of a general q-ary alphabet, this is achieved via a loop tower sequential construction. The ground level in the tower is exactly equivalent to assigning one color (out of q available) to the 'ground state' and considering all 'excited' states colored in the remaining (q-1) colors, according to the loop calculus rule. Sequentially, the second level in the tower corresponds to selecting a loop from the previous step, colored in (q-1) colors, and repeating the same ground vs excited states splitting procedure into one and (q-2) colors respectively. The construction proceeds till the full (q-1)-levels deep loop tower (and the corresponding contributions to the partition function) are established. In Section 3 they discuss an ultimate relation between the loop calculus and the Bethe-Free energy variational approach of [3].

  9. Dynamics of closed-loop systems containing flexible bodies

    NASA Technical Reports Server (NTRS)

    Tadikonda, Sivakumar S. K.; Singh, Ramendra P.

    1991-01-01

    An important characteristic of flexible multibody systems containing closed-loop topologies is that the component modes used to describe individual bodies will no longer be independent because of loop closure constraints. Thus, the issue of component modal selection becomes even more complicated. In addition, the foreshortening effect that has been studied extensively in the literature in the context of open-loop topologies will also be present in these constraint equations. Simulation results presented demonstrate the effects of modal selection and foreshortening on the dynamic response of closed-loop flexible systems.

  10. Fairy “tails”: flexibility and function of intrinsically disordered extensions in the photosynthetic world

    PubMed Central

    Thieulin-Pardo, Gabriel; Avilan, Luisana; Kojadinovic, Mila; Gontero, Brigitte

    2015-01-01

    Intrinsically Disordered Proteins (IDPs), or protein fragments also called Intrinsically Disordered Regions (IDRs), display high flexibility as the result of their amino acid composition. They can adopt multiple roles. In globular proteins, IDRs are usually found as loops and linkers between secondary structure elements. However, not all disordered fragments are loops: some proteins bear an intrinsically disordered extension at their C- or N-terminus, and this flexibility can affect the protein as a whole. In this review, we focus on the disordered N- and C-terminal extensions of globular proteins from photosynthetic organisms. Using the examples of the A2B2-GAPDH and the α Rubisco activase isoform, we show that intrinsically disordered extensions can help regulate their “host” protein in response to changes in light, thereby participating in photosynthesis regulation. As IDPs are famous for their large number of protein partners, we used the examples of the NAC, bZIP, TCP, and GRAS transcription factor families to illustrate the fact that intrinsically disordered extremities can allow a protein to have an increased number of partners, which directly affects its regulation. Finally, for proteins from the cryptochrome light receptor family, we describe how a new role for the photolyase proteins may emerge by the addition of an intrinsically disordered extension, while still allowing the protein to absorb blue light. This review has highlighted the diverse repercussions of the disordered extension on the regulation and function of their host protein and outlined possible future research avenues. PMID:26042223

  11. The AP-3 adaptor complex mediates sorting of yeast and mammalian PQ-loop-family basic amino acid transporters to the vacuolar/lysosomal membrane

    PubMed Central

    Llinares, Elisa; Barry, Abdoulaye Oury; André, Bruno

    2015-01-01

    The limiting membrane of lysosomes in animal cells and that of the vacuole in yeast include a wide variety of transporters, but little is known about how these proteins reach their destination membrane. The mammalian PQLC2 protein catalyzes efflux of basic amino acids from the lysosome, and the similar Ypq1, −2, and −3 proteins of yeast perform an equivalent function at the vacuole. We here show that the Ypq proteins are delivered to the vacuolar membrane via the alkaline phosphatase (ALP) trafficking pathway, which requires the AP-3 adaptor complex. When traffic via this pathway is deficient, the Ypq proteins pass through endosomes from where Ypq1 and Ypq2 properly reach the vacuolar membrane whereas Ypq3 is missorted to the vacuolar lumen via the multivesicular body pathway. When produced in yeast, PQLC2 also reaches the vacuolar membrane via the ALP pathway, but tends to sort to the vacuolar lumen if AP-3 is defective. Finally, in HeLa cells, inhibiting the synthesis of an AP-3 subunit also impairs sorting of PQLC2 to lysosomes. Our results suggest the existence of a conserved AP-3-dependent trafficking pathway for proper delivery of basic amino acid exporters to the yeast vacuole and to lysosomes of human cells. PMID:26577948

  12. Multiprotein DNA Looping

    NASA Astrophysics Data System (ADS)

    Vilar, Jose M. G.; Saiz, Leonor

    2006-06-01

    DNA looping plays a fundamental role in a wide variety of biological processes, providing the backbone for long range interactions on DNA. Here we develop the first model for DNA looping by an arbitrarily large number of proteins and solve it analytically in the case of identical binding. We uncover a switchlike transition between looped and unlooped phases and identify the key parameters that control this transition. Our results establish the basis for the quantitative understanding of fundamental cellular processes like DNA recombination, gene silencing, and telomere maintenance.

  13. Introduction to Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  14. Loop Quantum Gravity and Asymptotically Flat Spaces

    NASA Astrophysics Data System (ADS)

    Arnsdorf, Matthias

    2002-12-01

    Remarkable progress has been made in the field of non-perturbative (loop) quantum gravity in the last decade or so and it is now a rigorously defined kinematical theory (c.f. [5] for a review and references). We are now at the stage where physical applications of loop quantum gravity can be studied and used to provide checks for the consistency of the quantisation programme. Equally, old fundamental problems of canonical quantum gravity such as the problem of time or the interpretation of quantum cosmology need to be reevaluated seriously. These issues can be addressed most profitably in the asymptotically flat sector of quantum gravity. Indeed, it is likely that we should obtain a quantum theory for this special case even if it is not possible to quantise full general relativity. The purpose of this summary is to advertise the extension of loop quantum gravity to this sector that was developed in [1]...

  15. Explaining Warm Coronal Loops

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.; Karpen, Judy T.; Patsourakos, Spiros

    2008-01-01

    One of the great mysteries of coronal physics that has come to light in the last few years is the discovery that warn (- 1 INK) coronal loops are much denser than expected for quasi-static equilibrium. Both the excess densities and relatively long lifetimes of the loops can be explained with bundles of unresolved strands that are heated impulsively to very high temperatures. Since neighboring strands are at different stages of cooling, the composite loop bundle is multi-thermal, with the distribution of temperatures depending on the details of the "nanoflare storm." Emission hotter than 2 MK is predicted, but it is not clear that such emission is always observed. We consider two possible explanations for the existence of over-dense warm loops without corresponding hot emission: (1) loops are bundles of nanoflare heated strands, but a significant fraction of the nanoflare energy takes the form of a nonthermal electron beam rather then direct plasma heating; (2) loops are bundles of strands that undergo thermal nonequilibrium that results when steady heating is sufficiently concentrated near the footpoints. We present numerical hydro simulations of both of these possibilities and explore the observational consequences, including the production of hard X-ray emission and absorption by cool material in the corona.

  16. Acidic substitution of the activation loop tyrosines in TrkA supports nerve growth factor-dependent, but not nerve growth factor-independent, differentiation and cell cycle arrest in the human neuroblastoma cell line, SY5Y.

    PubMed

    Gryz, Ela A; Meakin, Susan O

    2003-11-27

    TrkA is the receptor tyrosine kinase (RTK) for nerve growth factor (NGF) and stimulates NGF-dependent cell survival and differentiation in primary neurons and also differentiation of neuroblastomas and apoptosis of medulloblastomas. We have previously shown that aspartic acid and glutamic acid substitution (AspGlu and GluAsp) of the activation loop tyrosines in TrkA (Tyr(683) and Tyr(684)) supports NGF-independent neuritogenesis and cell survival in PC12 cell-derived nnr5 cells. In this study, the AspGlu and GluAsp mutant Trks have been analysed for their ability to support NGF-independent and NGF-dependent neuritogenesis, proliferation and cell signalling in the human neuroblastoma cell line, SY5Y. We find that the AspGlu and GluAsp mutant Trks support NGF-dependent, but not NGF-independent, autophosphorylation, neuritogenic responses and/or inhibit cell cycle progression. The NGF-dependent neuritogenic responses are lower for the mutant Trks (approximately 30-60% for AspGlu and 50-60% for GluAsp), relative to wild-type TrkA. While both the AspGlu and GluAsp mutant Trks support NGF-dependent transient phosphorylation of Shc, PLCgamma-1, AKT, FRS2, SH2B as well as prolonged MAP kinase activation, the GluAsp mutant induces stronger NGF-dependent tyrosine phosphorylation of FRS2 and SH2B, as well as a stronger reduction in bromodeoxyuridine (BrdU) incorporation. Collectively, these data suggest that neither absolute levels of receptor autophosphorylation, high levels of TrkA expression nor the activation of a specific signalling pathway is dominant and absolutely essential for neuritogenesis and cell cycle arrest of SY5Y cells.

  17. R loops: new modulators of genome dynamics and function.

    PubMed

    Santos-Pereira, José M; Aguilera, Andrés

    2015-10-01

    R loops are nucleic acid structures composed of an RNA-DNA hybrid and a displaced single-stranded DNA. Recently, evidence has emerged that R loops occur more often in the genome and have greater physiological relevance, including roles in transcription and chromatin structure, than was previously predicted. Importantly, however, R loops are also a major threat to genome stability. For this reason, several DNA and RNA metabolism factors prevent R-loop formation in cells. Dysfunction of these factors causes R-loop accumulation, which leads to replication stress, genome instability, chromatin alterations or gene silencing, phenomena that are frequently associated with cancer and a number of genetic diseases. We review the current knowledge of the mechanisms controlling R loops and their putative relationship with disease.

  18. Extensive esterification of adrenal C19-delta 5-sex steroids to long-chain fatty acids in the ZR-75-1 human breast cancer cell line

    SciTech Connect

    Poulin, R.; Poirier, D.; Merand, Y.; Theriault, C.; Belanger, A.; Labrie, F.

    1989-06-05

    Estrogen-sensitive human breast cancer cells (ZR-75-1) were incubated with the 3H-labeled adrenal C19-delta 5-steroids dehydroepiandrosterone (DHEA) and its fully estrogenic derivative, androst-5-ene-3 beta,17 beta-diol (delta 5-diol) for various time intervals. When fractionated by solvent partition, Sephadex LH-20 column chromatography and silica gel TLC, the labeled cell components were largely present (40-75%) in three highly nonpolar, lipoidal fractions. Mild alkaline hydrolysis of these lipoidal derivatives yielded either free 3H-labeled DHEA or delta 5-diol. The three lipoidal fractions cochromatographed with the synthetic DHEA 3 beta-esters, delta 5-diol 3 beta (or 17 beta)-monoesters and delta 5-diol 3 beta,17 beta-diesters of long-chain fatty acids. DHEA and delta 5-diol were mainly esterified to saturated and mono-unsaturated fatty acids. For delta 5-diol, the preferred site of esterification of the fatty acids is the 3 beta-position while some esterification also takes place at the 17 beta-position. Time course studies show that ZR-75-1 cells accumulate delta 5-diol mostly (greater than 95%) as fatty acid mono- and diesters while DHEA is converted to delta 5-diol essentially as the esterified form. Furthermore, while free C19-delta 5-steroids rapidly diffuse out of the cells after removal of the precursor (3H)delta 5-diol, the fatty acid ester derivatives are progressively hydrolyzed, and DHEA and delta 5-diol thus formed are then sulfurylated prior to their release into the culture medium. The latter process however is rate-limited, since new steady-state levels of free steroids and fatty acid esters are rapidly reached and maintained for extended periods of time after removal of precursor, thus maintaining minimal concentrations of intracellular steroids.

  19. Extension of a PBPK model for ethylene glycol and glycolic acid to include the competitive formation and clearance of metabolites associated with kidney toxicity in rats and humans

    SciTech Connect

    Corley, R.A.; Saghir, S.A.; Bartels, M.J.; Hansen, S.C.; Creim, J.; McMartin, K.E.; Snellings, W.M.

    2011-02-01

    A previously developed PBPK model for ethylene glycol and glycolic acid was extended to include glyoxylic acid, oxalic acid, and the precipitation of calcium oxalate that is associated with kidney toxicity in rats and humans. The development and evaluation of the PBPK model was based upon previously published pharmacokinetic studies coupled with measured blood and tissue partition coefficients and rates of in vitro metabolism of glyoxylic acid to oxalic acid, glycine and other metabolites using primary hepatocytes isolated from male Wistar rats and humans. Precipitation of oxalic acid with calcium in the kidneys was assumed to occur only at concentrations exceeding the thermodynamic solubility product for calcium oxalate. This solubility product can be affected by local concentrations of calcium and other ions that are expressed in the model using an ion activity product estimated from toxicity studies such that calcium oxalate precipitation would be minimal at dietary exposures below the NOAEL for kidney toxicity in the sensitive male Wistar rat. The resulting integrated PBPK predicts that bolus oral or dietary exposures to ethylene glycol would result in typically 1.4-1.6-fold higher peak oxalate levels and 1.6-2-fold higher AUC's for calcium oxalate in kidneys of humans as compared with comparably exposed male Wistar rats over a dose range of 1-1000 mg/kg. The converse (male Wistar rats predicted to have greater oxalate levels in the kidneys than humans) was found for inhalation exposures although no accumulation of calcium oxalate is predicted to occur until exposures are well in excess of the theoretical saturated vapor concentration of 200 mg/m{sup 3}. While the current model is capable of such cross-species, dose, and route-of-exposure comparisons, it also highlights several areas of potential research that will improve confidence in such predictions, especially at low doses relevant for most human exposures.

  20. Bouncing loop quantum cosmology in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Haro, J.; Makarenko, A. N.; Myagky, A. N.; Odintsov, S. D.; Oikonomou, V. K.

    2015-12-01

    We develop an effective Gauss-Bonnet extension of loop quantum cosmology, by introducing holonomy corrections in modified F (G ) theories of gravity. Within the context of our formalism, we provide a perturbative expansion in the critical density, a parameter characteristic of loop quantum gravity theories, and we result in having leading order corrections to the classical F (G ) theories of gravity. After extensively discussing the formalism, we present a reconstruction method that makes it possible to find the loop quantum cosmology corrected F (G ) theory that can realize various cosmological scenarios. We exemplify our theoretical constructions by using bouncing cosmologies, and we investigate which loop quantum cosmology corrected Gauss-Bonnet modified gravities can successfully realize such cosmologies.

  1. Extensive reduction of cell viability and enhanced matrix production in Pseudomonas aeruginosa PAO1 flow biofilms treated with a D-amino acid mixture.

    PubMed

    Sanchez, Zoe; Tani, Akio; Kimbara, Kazuhide

    2013-02-01

    Treatment of Pseudomonas aeruginosa PAO1 flow biofilms with a D-amino acid mixture caused significant reductions in cell biomass by 75% and cell viability by 71%. No biofilm disassembly occurred, and matrix production increased by 30%, thereby providing a thick protective cover for remaining viable or persister cells.

  2. Smart feedback loops

    NASA Astrophysics Data System (ADS)

    Chepurnov, A. S.; Gribov, I. V.; Gudkov, K. A.; Shumakov, A. V.; Shvedunov, V. I.

    1994-12-01

    It is necessary to find the golden mean in allocating the processing resources of a computer control system. Traditionally, feedback loops operate at the lower levels to ensure safe and stable operation of the accelerator. At present we use analogue and digital feedback loops. Some systems, such as the RF, require more complex algorithms. A possible way of providing these, using digital signal processors is described. The results of tests with the Race-Track Microtron Linac are given and the sources of the main internal and external disturbances have been analysed.

  3. Concentric Loop Surface Coil

    NASA Astrophysics Data System (ADS)

    Hernández-Flores, R.; Rodríguez-González, A. O.; Salgado-Lujambio, P.; Barrios-Alvarez, F. A.

    2002-08-01

    A surface coil for MRI consisted of two concentric loops was developed for brain imaging. Prior to build the coil prototype, the magnetic field (B1) generated by the coil was numerically simulated. This field simulation is based on the Biot-Savart law for the circular- and square-shaped loops. From these theoretical results, we can appreciate an improvement on the B1 homogeneity. Brain images obtained at 1.5 Tesla show a good sensitivity in a particular region of interest. Also, these images compared well against images obtained with a circular-shaped coil. This receiver coil can generate high quality brain images.

  4. Wilson-loop instantons

    NASA Technical Reports Server (NTRS)

    Lee, Kimyeong; Holman, Richard; Kolb, Edward W.

    1987-01-01

    Wilson-loop symmetry breaking is considered on a space-time of the form M4 x K, where M4 is a four-dimensional space-time and K is an internal space with nontrivial and finite fundamental group. It is shown in a simple model that the different vacua obtained by breaking a non-Abelian gauge group by Wilson loops are separated in the space of gauge potentials by a finite energy barrier. An interpolating gauge configuration is then constructed between these vacua and shown to have minimum energy. Finally some implications of this construction are discussed.

  5. Detection and Characterization of R Loop Structures.

    PubMed

    Boque-Sastre, Raquel; Soler, Marta; Guil, Sonia

    2017-01-01

    R loops are special three stranded nucleic acid structures that comprise a nascent RNA hybridized with the DNA template strand, leaving a non-template DNA single-stranded. More specifically, R loops form in vivo as G-rich RNA transcripts invade the DNA duplex and anneal to the template strand to generate an RNA:DNA hybrid, leaving the non-template, G-rich DNA strand in a largely single-stranded conformation (Aguilera and Garcia-Muse, Mol Cell 46:115-124, 2012).DNA-RNA hybrids are a natural occurrence within eukaryotic cells, with levels of these hybrids increasing at sites with high transcriptional activity, such as during transcription initiation, repression, and elongation. RNA-DNA hybrids influence genomic instability, and growing evidence points to an important role for R loops in active gene expression regulation (Ginno et al., Mol Cell 45, 814-825, 2012; Sun et al., Science 340: 619-621, 2013; Bhatia et al., Nature 511, 362-365, 2014). Analysis of the occurrence of such structures is therefore of increasing relevance and herein we describe methods for the in vivo and in vitro identification and characterization of R loops in mammalian systems.R loops (DNA:RNA hybrids and the associated single-stranded DNA) have been traditionally associated with threats to genome integrity, making some regions of the genome more prone to DNA-damaging and mutagenic agents. Initially considered to be rare byproducts of transcription, over the last decade accumulating evidence has pointed to a new view in which R loops form more frequently than previously thought. The R loop field has become an increasingly expanded area of research, placing these structures as a major threat to genome stability but also as potential regulators of gene expression. Special interest has arisen as they have also been linked to a variety of diseases, including neurological disorders and cancer, positioning them as potential therapeutic targets [5].

  6. Phase-locked loops. [analog, hybrid, discrete and digital systems

    NASA Technical Reports Server (NTRS)

    Gupta, S. C.

    1974-01-01

    The basic analysis and design procedures are described for the realization of analog phase-locked loops (APLL), hybrid phase-locked loops (HPLL), discrete phase-locked loops, and digital phase-locked loops (DPLL). Basic configurations are diagrammed, and performance curves are given. A discrete communications model is derived and developed. The use of the APLL as an optimum angle demodulator and the Kalman-Bucy approach to APLL design are discussed. The literature in the area of phase-locked loops is reviewed, and an extensive bibliography is given. Although the design of APLLs is fairly well documented, work on discrete, hybrid, and digital PLLs is scattered, and more will have to be done in the future to pinpoint the formal design of DPLLs.

  7. Livermore Compiler Analysis Loop Suite

    SciTech Connect

    Hornung, R. D.

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizations and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermore Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.

  8. Closing the Loop Sampler.

    ERIC Educational Resources Information Center

    California Integrated Waste Management Board, Sacramento.

    Closing the Loop (CTL) is a science curriculum designed to introduce students to integrated waste management through awareness. This document presents five lesson plans focusing on developing an understanding of natural resources, solid wastes, conservation, and the life of landfills. Contents include: (1) "What Are Natural Resources?"; (2)…

  9. Combining Long-Term Watershed Monitoring at Buck Creek with Spatially Extensive Ecosystem Data to Understand the Processes of Acid Rain Effects and Recovery

    NASA Astrophysics Data System (ADS)

    Lawrence, G. B.; Ross, D. S.; Sullivan, T. J.; McDonnell, T. C.; Bailey, S. W.; Dukett, J. E.

    2014-12-01

    The Buck Creek Monitoring Watershed, in the western Adirondack Region of New York, has provided long-term data back to 1982 for tracking acid rain effects and recovery, and for supporting fundamental research on environmental change. At Buck Creek, monitoring acidic deposition effects as they worsened, then diminished, has advanced our understanding of key biogeochemical processes such as Al mobilization. Although Al mobilization has been one of the primary adverse effects of acidic deposition, in the recovery phase it is now affecting terrestrial and aquatic ecosystems in new ways that could be both positive and negative, as soils and surface waters respond to further declines in acidic deposition. Using stream Al measurements from Buck Creek over varying seasons and flows, a new index, the base cation surplus (BCS), was developed to account for dissolved organic carbon (DOC) effects on the relationship between ANC and inorganic Al. Mobilization of inorganic Al, the form toxic to biota, occurs below a BCS of zero, regardless of DOC concentrations. Soil and stream data from Adirondack surveys showed that a BCS value of zero corresponds to a soil base saturation value in the B horizon of approximately 12%. Additional Adirondack survey work indicated that, where sugar maple stands grew in soils with base saturation values below 12%, seedling regeneration was nearly zero, suggesting a link between Al mobilization and impairment of tree regeneration. In recovering Adirondack lakes, the BCS was also used to show that increasing trends in DOC were accelerating decreases of inorganic Al beyond what would be expected from the increasing trends of ANC. Similar decreases of inorganic Al in Buck Creek, were coupled with increases in organic Al concentrations, which resulted in no trend in total Al concentrations despite a strong increase in pH. Sampling of Buck Creek soils in 1997, and again in 2009-2010, indicated a substantial decrease in forest floor exchangeable Al, of

  10. COLD TEST LOOP INTEGRATED TEST LOOP RESULTS

    SciTech Connect

    Abraham, TJ

    2003-10-22

    A testing facility (Cold Test Loop) was constructed and operated to demonstrate the efficacy of the Accelerated Waste Retrieval (AWR) Project's planned sluicing approach to the remediation of Silos 1 and 2 at the Fernald Environmental Management Project near Cincinnati, Ohio. The two silos contain almost 10,000 tons of radium-bearing low-level waste, which consists primarily of solids of raffinates from processing performed on ores from the Democratic Republic of Congo (commonly referred to as ''Belgium Congo ores'') for the recovery of uranium. These silos are 80 ft in diameter, 36 ft high to the center of the dome, and 26.75 ft to the top of the vertical side walls. The test facility contained two test systems, each designed for a specific purpose. The first system, the Integrated Test Loop (ITL), a near-full-scale plant including the actual equipment to be installed at the Fernald Site, was designed to demonstrate the sluicing operation and confirm the selection of a slurry pump, the optimal sluicing nozzle operation, and the preliminary design material balance. The second system, the Component Test Loop (CTL), was designed to evaluate many of the key individual components of the waste retrieval system over an extended run. The major results of the initial testing performed during July and August 2002 confirmed that the AWR approach to sluicing was feasible. The ITL testing confirmed the following: (1) The selected slurry pump (Hazleton 3-20 type SHW) performed well and is suitable for AWR application. However, the pump's motor should be upgraded to a 200-hp model and be driven by a 150-hp variable-frequency drive (VFD). A 200-hp VFD is not much more expensive and would allow the pump to operate at full speed. (2) The best nozzle performance was achieved by using 15/16-in. nozzles operated alternately. This configuration appeared to most effectively mine the surrogate. (3) The Solartron densitometer, which was tested as an alternative mass flow measurement

  11. Decreased Degradation of Internalized Follicle-Stimulating Hormone Caused by Mutation of Aspartic Acid 6.30550 in a Protein Kinase-CK2 Consensus Sequence in the Third Intracellular Loop of Human Follicle-Stimulating Hormone Receptor1

    PubMed Central

    Kluetzman, Kerri S.; Thomas, Richard M.; Nechamen, Cheryl A.; Dias, James A.

    2011-01-01

    A naturally occurring mutation in follicle-stimulating hormone receptor (FSHR) gene has been reported: an amino acid change to glycine occurs at a conserved aspartic acid 550 (D550, D567, D6.30567). This residue is contained in a protein kinase-CK2 consensus site present in human FSHR (hFSHR) intracellular loop 3 (iL3). Because CK2 has been reported to play a role in trafficking of some receptors, the potential roles for CK2 and D550 in FSHR function were evaluated by generating a D550A mutation in the hFSHR. The hFSHR-D550A binds hormone similarly to WT-hFSHR when expressed in HEK293T cells. Western blot analyses showed lower levels of mature hFSHR-D550A. Maximal cAMP production of both hFSHR-D550A as well as the naturally occurring mutation hFSHR-D550G was diminished, but constitutive activity was not observed. Unexpectedly, when 125I-hFSH bound to hFSHR-D550A or hFSHR-D550G, intracellular accumulation of radiolabeled FSH was observed. Both sucrose and dominant-negative dynamin blocked internalization of radiolabeled FSH and its commensurate intracellular accumulation. Accumulation of radiolabeled FSH in cells transfected with hFSHR-D550A is due to a defect in degradation of hFSH as measured in pulse chase studies, and confocal microscopy imaging revealed that FSH accumulated in large intracellular structures. CK2 kinase activity is not required for proper degradation of internalized FSH because inhibition of CK2 kinase activity in cells expressing hFSHR did not uncouple degradation of internalized radiolabeled FSH. Additionally, the CK2 consensus site in FSHR iL3 is not required for binding because CK2alpha coimmunoprecipitated with hFSHR-D550A. Thus, mutation of D550 uncouples the link between internalization and degradation of hFSH. PMID:21270425

  12. Characterization of the wild type and truncated form of a neutral GH10 xylanase from Coprinus cinereus: Roles of C-terminal basic amino acid-rich extension in its SDS resistance, thermostability and activity.

    PubMed

    Hu, Hang; Chen, Kaixiang; Li, Lulu; Long, Liangkun; Ding, Shaojun

    2017-02-07

    A neutral xylanase (Ccxyn) was identified from Coprinus cinereus. It has a single GH10 catalytic domain with a basic amino acid-rich extension (PVRRK) at C-terminus. In this study, the wild-type (Ccxyn) and C-terminus truncated xylanase (CcXynΔ5C) were heterologously expressed in Pichia pastoris and their characteristics were comparatively analyzed with aims to examine the effect of this extension on the enzyme function. The circular dichorism (CD) analysis indicated that both enzymes in general had a similar structure, but CcXynΔ5C contained less α-helices (42.9%) and more random coil contents (35.5%) than CcXyn (47.0% and 32.8%, respectively). Both enzymes had same pH (7.0) and temperature (45°C) optima, and similar substrate specificity on different xylans. They all hydrolyzed beechwood xylan primarily to xylobiose and xylotriose. The amounts of xylobiose and xylotriose account for 91.5% and 92.2 % (w/w) of total xylooligosaccharides (XOS) generated from beechwood by Ccxyn and CcxynΔ5C, respectively. However, truncation of C-terminal 5-amino acids extension significantly improves its thermostability, SDS resistance and pH stability at pH 6.0-9.0. Furthermore, CcxynΔ5C exhibited much lower Km value than Ccxyn (0.27 mg ml⁻¹ vs 0.83 mg ml⁻¹), therefore, the catalytic efficiency of CcXynΔ5C was 2.4 times higher than that of CcXyn. These properties make CcxynΔ5C a good model for the structure-function study of (α/β)₈-barrel folded enzyme and a promising candidate for various applications, especially in the detergent industry and XOS production.

  13. Loop-loop interactions govern multiple steps in indole-3-glycerol phosphate synthase catalysis.

    PubMed

    Zaccardi, Margot J; O'Rourke, Kathleen F; Yezdimer, Eric M; Loggia, Laura J; Woldt, Svenja; Boehr, David D

    2014-03-01

    Substrate binding, product release, and likely chemical catalysis in the tryptophan biosynthetic enzyme indole-3-glycerol phosphate synthase (IGPS) are dependent on the structural dynamics of the β1α1 active-site loop. Statistical coupling analysis and molecular dynamic simulations had previously indicated that covarying residues in the β1α1 and β2α2 loops, corresponding to Arg54 and Asn90, respectively, in the Sulfolobus sulfataricus enzyme (ssIGPS), are likely important for coordinating functional motions of these loops. To test this hypothesis, we characterized site mutants at these positions for changes in catalytic function, protein stability and structural dynamics for the thermophilic ssIGPS enzyme. Although there were only modest changes in the overall steady-state kinetic parameters, solvent viscosity and solvent deuterium kinetic isotope effects indicated that these amino acid substitutions change the identity of the rate-determining step across multiple temperatures. Surprisingly, the N90A substitution had a dramatic effect on the general acid/base catalysis of the dehydration step, as indicated by the loss of the descending limb in the pH rate profile, which we had previously assigned to Lys53 on the β1α1 loop. These changes in enzyme function are accompanied with a quenching of ps-ns and µs-ms timescale motions in the β1α1 loop as measured by nuclear magnetic resonance studies. Altogether, our studies provide structural, dynamic and functional rationales for the coevolution of residues on the β1α1 and β2α2 loops, and highlight the multiple roles that the β1α1 loop plays in IGPS catalysis. Thus, substitution of covarying residues in the active-site β1α1 and β2α2 loops of indole-3-glycerol phosphate synthase results in functional, structural, and dynamic changes, highlighting the multiple roles that the β1α1 loop plays in enzyme catalysis and the importance of regulating the structural dynamics of this loop through noncovalent

  14. A Novel Loop Domain in Superantigens Extends Their T Cell Receptor Recognition Site

    SciTech Connect

    Gunther,S.; Varma, A.; Moza, B.; Kasper, K.; Wyatt, A.; Zhu, P.; Nur-ur Rahman, A.; Li, Y.; Mariuzza, R.; et al.

    2007-01-01

    Superantigens (SAGs) interact with host immune receptors to induce a massive release of inflammatory cytokines that can lead to toxic shock syndrome and death. Bacterial SAGs can be classified into five distinct evolutionary groups. Group V SAGs are characterized by the {alpha}3-{beta}8 loop, a unique {approx}15 amino acid residue extension that is required for optimal T cell activation. Here, we report the X-ray crystal structures of the group V SAG staphylococcal enterotoxin K (SEK) alone and in complex with the TCR hV{beta}5.1 domain. SEK adopts a unique TCR binding orientation relative to other SAG-TCR complexes, which results in the {alpha}3-{beta}8 loop contacting the apical loop of framework region 4, thereby extending the known TCR recognition site of SAGs. These interactions are absolutely required for TCR binding and T cell activation by SEK, and dictate the TCR V{beta} domain specificity of SEK and other group V SAGs.

  15. Loop Heat Pipes and Capillary Pumped Loops: An Applications Perspective

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Ku, Jentung; Swanson, Theodore; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    Capillary pumped loops (CPLS) and loop heat pipes (LHPS) are versatile two-phase heat transfer devices which have recently gained increasing acceptance in space applications. Both systems work based on the same principles and have very similar designs. Nevertheless, some differences exist in the construction of the evaporator and the hydro-accumulator, and these differences lead to very distinct operating characteristics for each loop. This paper presents comparisons of the two loops from an applications perspective, and addresses their impact on spacecraft design, integration, and test. Some technical challenges and issues for both loops are also addressed.

  16. Short loop length and high thermal stability determine genomic instability induced by G-quadruplex-forming minisatellites

    PubMed Central

    Piazza, Aurèle; Adrian, Michael; Samazan, Frédéric; Heddi, Brahim; Hamon, Florian; Serero, Alexandre; Lopes, Judith; Teulade-Fichou, Marie-Paule; Phan, Anh Tuân; Nicolas, Alain

    2015-01-01

    G-quadruplexes (G4) are polymorphic four-stranded structures formed by certain G-rich nucleic acids, with various biological roles. However, structural features dictating their formation and/or functionin vivo are unknown. InS. cerevisiae, the pathological persistency of G4 within the CEB1 minisatellite induces its rearrangement during leading-strand replication. We now show that several other G4-forming sequences remain stable. Extensive mutagenesis of the CEB25 minisatellite motif reveals that only variants with very short (≤ 4 nt) G4 loops preferentially containing pyrimidine bases trigger genomic instability. Parallel biophysical analyses demonstrate that shortening loop length does not change the monomorphic G4 structure of CEB25 variants but drastically increases its thermal stability, in correlation with thein vivo instability. Finally, bioinformatics analyses reveal that the threat for genomic stability posed by G4 bearing short pyrimidine loops is conserved inC. elegans and humans. This work provides a framework explanation for the heterogeneous instability behavior of G4-forming sequencesin vivo, highlights the importance of structure thermal stability, and questions the prevailing assumption that G4 structures with short or longer loops are as likely to formin vivo. PMID:25956747

  17. Aurora Australis, Sinuous Loop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This view of the Aurora Australis or Southern Lights (location unknown) shows a sinuous looping band of airglow above the Earth Limb. Calculated to be in the 80 - 120 km altitude region, auroral activity is due to exitation of atomic oxygen in the upper atmosphere by radiation from the van Allen Radiation Belts and is most common above the 65 degree north and south latitude range during the spring and fall of the year.

  18. Loop Quantum Cosmology.

    PubMed

    Bojowald, Martin

    2005-01-01

    Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.

  19. Loops of Jupiter

    NASA Astrophysics Data System (ADS)

    Opolski, Antoni

    2014-12-01

    Professor Antoni Opolski was actively interested in astronomy after his retirement in 1983. He especially liked to study the works of the famous astronomer Copernicus getting inspiration for his own work. Opolski started his work on planetary loops in 2011 continuing it to the end of 2012 . During this period calculations, drawings, tables, and basic descriptions of all the planets of the Solar System were created with the use of a piece of paper and a pencil only. In 2011 Antoni Opolski asked us to help him in editing the manuscript and preparing it for publication. We have been honored having the opportunity to work on articles on planetary loops with Antoni Opolski in his house for several months. In the middle of 2012 the detailed material on Jupiter was ready. However, professor Opolski improved the article by smoothing the text and preparing new, better drawings. Finally the article ''Loops of Jupiter'', written by the 99- year old astronomer, was published in the year of his 100th birthday.

  20. Verification of Loop Diagnostics

    NASA Technical Reports Server (NTRS)

    Winebarger, A.; Lionello, R.; Mok, Y.; Linker, J.; Mikic, Z.

    2014-01-01

    Many different techniques have been used to characterize the plasma in the solar corona: density-sensitive spectral line ratios are used to infer the density, the evolution of coronal structures in different passbands is used to infer the temperature evolution, and the simultaneous intensities measured in multiple passbands are used to determine the emission measure. All these analysis techniques assume that the intensity of the structures can be isolated through background subtraction. In this paper, we use simulated observations from a 3D hydrodynamic simulation of a coronal active region to verify these diagnostics. The density and temperature from the simulation are used to generate images in several passbands and spectral lines. We identify loop structures in the simulated images and calculate the loop background. We then determine the density, temperature and emission measure distribution as a function of time from the observations and compare with the true temperature and density of the loop. We find that the overall characteristics of the temperature, density, and emission measure are recovered by the analysis methods, but the details of the true temperature and density are not. For instance, the emission measure curves calculated from the simulated observations are much broader than the true emission measure distribution, though the average temperature evolution is similar. These differences are due, in part, to inadequate background subtraction, but also indicate a limitation of the analysis methods.

  1. Chemical Looping Combustion Kinetics

    SciTech Connect

    Edward Eyring; Gabor Konya

    2009-03-31

    One of the most promising methods of capturing CO{sub 2} emitted by coal-fired power plants for subsequent sequestration is chemical looping combustion (CLC). A powdered metal oxide such as NiO transfers oxygen directly to a fuel in a fuel reactor at high temperatures with no air present. Heat, water, and CO{sub 2} are released, and after H{sub 2}O condensation the CO{sub 2} (undiluted by N{sub 2}) is ready for sequestration, whereas the nickel metal is ready for reoxidation in the air reactor. In principle, these processes can be repeated endlessly with the original nickel metal/nickel oxide participating in a loop that admits fuel and rejects ash, heat, and water. Our project accumulated kinetic rate data at high temperatures and elevated pressures for the metal oxide reduction step and for the metal reoxidation step. These data will be used in computational modeling of CLC on the laboratory scale and presumably later on the plant scale. The oxygen carrier on which the research at Utah is focused is CuO/Cu{sub 2}O rather than nickel oxide because the copper system lends itself to use with solid fuels in an alternative to CLC called 'chemical looping with oxygen uncoupling' (CLOU).

  2. Force distribution in a semiflexible loop

    PubMed Central

    Waters, James T.; Kim, Harold D.

    2017-01-01

    Loops undergoing thermal fluctuations are prevalent in nature. Ringlike or cross-linked polymers, cyclic macromolecules, and protein-mediated DNA loops all belong to this category. Stability of these molecules are generally described in terms of free energy, an average quantity, but it may also be impacted by local fluctuating forces acting within these systems. The full distribution of these forces can thus give us insights into mechanochemistry beyond the predictive capability of thermodynamics. In this paper, we study the force exerted by an inextensible semiflexible polymer constrained in a looped state. By using a simulation method termed “phase-space sampling,” we generate the equilibrium distribution of chain conformations in both position and momentum space. We compute the constraint forces between the two ends of the loop in this chain ensemble using Lagrangian mechanics, and show that the mean of these forces is equal to the thermodynamic force. By analyzing kinetic and potential contributions to the forces, we find that the mean force acts in the direction of increasing extension not because of bending stress, but in spite of it. Furthermore, we obtain a distribution of constraint forces as a function of chain length, extension, and stiffness. Notably, increasing contour length decreases the average force, but the additional freedom allows fluctuations in the constraint force to increase. The force distribution is asymmetric and falls off less sharply than a Gaussian distribution. Our work exemplifies a system where large-amplitude fluctuations occur in a way unforeseen by a purely thermodynamic framework, and offers computational tools useful for efficient, unbiased simulation of a constrained system. PMID:27176436

  3. Modelling the coordination of the controls of stomatal aperture, transpiration, leaf growth, and abscisic acid: update and extension of the Tardieu–Davies model

    PubMed Central

    Tardieu, François; Simonneau, Thierry; Parent, Boris

    2015-01-01

    Stomatal aperture, transpiration, leaf growth, hydraulic conductance, and concentration of abscisic acid in the xylem sap ([ABA] xyl) vary rapidly with time of day. They follow deterministic relations with environmental conditions and interact in such a way that a change in any one of them affects all the others. Hence, approaches based on measurements of one variable at a given time or on paired correlations are prone to a confusion of effects, in particular for studying their genetic variability. A dynamic model allows the simulation of environmental effects on the variables, and of multiple feedbacks between them at varying time resolutions. This paper reviews the control of water movement through the plant, stomatal aperture and growth, and translates them into equations in a model. It includes recent progress in understanding the intrinsic and environmental controls of tissue hydraulic conductance as a function of transpiration rate, circadian rhythms, and [ABA] xyl. Measured leaf water potential is considered as the water potential of a capacitance representing mature tissues, which reacts more slowly to environmental cues than xylem water potential and expansive growth. Combined with equations for water and ABA fluxes, it results in a dynamic model able to simulate variables with genotype-specific parameters. It allows adaptive roles for hydraulic processes to be proposed, in particular the circadian oscillation of root hydraulic conductance. The script of the model, in the R language, is included together with appropriate documentation and examples. PMID:25770586

  4. Synergistic Effect of Slightly Acidic Electrolyzed Water and Ultrasound at Mild Heat Temperature in Microbial Reduction and Shelf-Life Extension of Fresh-Cut Bell Pepper.

    PubMed

    Luo, Ke; Oh, Deog-Hwan

    2015-09-01

    The objectives of this study were to evaluate the effect of combined treatments (slightly acidic electrolyzed water (SAEW), ultrasound (US), or mild heat (60°C)) on the growth of Listeria monocytogenes and Salmonella enterica serovar Typhimurium in fresh-cut bell pepper, and the shelf-life and sensory quality (color and texture) were followed during storage at 4°C and 25°C. An additional 0.65, 1.72, and 2.70 log CFU/g reduction was achieved by heat treatments at 60°C for 1 min for DW, SAEW, and SAEW+US, respectively. Regardless of the type of pathogen, the combined treatment (SAEW+US+60°C) achieved a significantly (p < 0.05) longer lag time in all treatment groups. This combined treatment also prolonged the shelf-life of bell pepper up to 8 days and 30 h for the storage at 4°C and 25°C, respectively. There was also no significant difference in the color and hardness of treated (SAEW+US+60°C) bell pepper from that of control during the storage. This new hurdle approach is thus expected to improve the microbial safety of bell peppers during storage and distribution.

  5. Modelling the coordination of the controls of stomatal aperture, transpiration, leaf growth, and abscisic acid: update and extension of the Tardieu-Davies model.

    PubMed

    Tardieu, François; Simonneau, Thierry; Parent, Boris

    2015-04-01

    Stomatal aperture, transpiration, leaf growth, hydraulic conductance, and concentration of abscisic acid in the xylem sap ([ABA]xyl) vary rapidly with time of day. They follow deterministic relations with environmental conditions and interact in such a way that a change in any one of them affects all the others. Hence, approaches based on measurements of one variable at a given time or on paired correlations are prone to a confusion of effects, in particular for studying their genetic variability. A dynamic model allows the simulation of environmental effects on the variables, and of multiple feedbacks between them at varying time resolutions. This paper reviews the control of water movement through the plant, stomatal aperture and growth, and translates them into equations in a model. It includes recent progress in understanding the intrinsic and environmental controls of tissue hydraulic conductance as a function of transpiration rate, circadian rhythms, and [ABA]xyl. Measured leaf water potential is considered as the water potential of a capacitance representing mature tissues, which reacts more slowly to environmental cues than xylem water potential and expansive growth. Combined with equations for water and ABA fluxes, it results in a dynamic model able to simulate variables with genotype-specific parameters. It allows adaptive roles for hydraulic processes to be proposed, in particular the circadian oscillation of root hydraulic conductance. The script of the model, in the R language, is included together with appropriate documentation and examples.

  6. An Extensible Information Grid for Risk Management

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Bell, David G.

    2003-01-01

    This paper describes recent work on developing an extensible information grid for risk management at NASA - a RISK INFORMATION GRID. This grid is being developed by integrating information grid technology with risk management processes for a variety of risk related applications. To date, RISK GRID applications are being developed for three main NASA processes: risk management - a closed-loop iterative process for explicit risk management, program/project management - a proactive process that includes risk management, and mishap management - a feedback loop for learning from historical risks that escaped other processes. This is enabled through an architecture involving an extensible database, structuring information with XML, schemaless mapping of XML, and secure server-mediated communication using standard protocols.

  7. Coupled dual loop absorption heat pump

    DOEpatents

    Sarkisian, Paul H.; Reimann, Robert C.; Biermann, Wendell J.

    1985-01-01

    A coupled dual loop absorption system which utilizes two separate complete loops. Each individual loop operates at three temperatures and two pressures. This low temperature loop absorber and condenser are thermally coupled to the high temperature loop evaporator, and the high temperature loop condenser and absorber are thermally coupled to the low temperature generator.

  8. Two-loop SL(2) form factors and maximal transcendentality

    NASA Astrophysics Data System (ADS)

    Loebbert, Florian; Sieg, Christoph; Wilhelm, Matthias; Yang, Gang

    2016-12-01

    Form factors of composite operators in the SL(2) sector of N = 4 SYM theory are studied up to two loops via the on-shell unitarity method. The non-compactness of this subsector implies the novel feature and technical challenge of an unlimited number of loop momenta in the integrand's numerator. At one loop, we derive the full minimal form factor to all orders in the dimensional regularisation parameter. At two loops, we construct the complete integrand for composite operators with an arbitrary number of covariant derivatives, and we obtain the remainder functions as well as the dilatation operator for composite operators with up to three covariant derivatives. The remainder functions reveal curious patterns suggesting a hidden maximal uniform transcendentality for the full form factor. Finally, we speculate about an extension of these patterns to QCD.

  9. Closed loop orbit trim using GPS

    NASA Technical Reports Server (NTRS)

    Parkinson, B. W.; Axelrad, P.

    1989-01-01

    This paper describes an onboard closed-loop navigation and control system capable of executing extremely precise orbit maneuvers. It uses information from the Global Positioning System (GPS) and an onboard controller to perform orbit adjustments. As a result, the system circumvents the need for extensive ground support. The particular application considered is an orbit injection system for NASA's Gravity Probe B (GP-B) spacecraft. Eccentricity adjustments of 0.0004 to 0.005, and inclination and node changes of 0.001 to 0.01 deg are demonstrated. The same technique can be adapted to other satellite missions.

  10. Optical parametric loop mirror

    NASA Astrophysics Data System (ADS)

    Mori, K.; Morioka, T.; Saruwatari, M.

    1995-06-01

    A novel configuration for four-wave mixing (FWM) is proposed that offers the remarkable feature of inherently separating the FWM wave from the input pump and signal waves and suppressing their background amplified stimulated emission without optical filtering. In the proposed configuration, an optical parametric loop mirror, two counterpropagating FWM waves generated in a Sagnac interferometer interfere with a relative phase difference that is introduced deliberately. FWM frequency-conversion experiments in a polarization-maintaining fiber achieved more than 35 dB of input-wave suppression against the FWM wave.

  11. Closing the loop.

    PubMed

    Dassau, E; Atlas, E; Phillip, M

    2011-02-01

    Closed-loop algorithms can be found in every aspect of everyday modern life. Automation and control are used constantly to provide safety and to improve quality of life. Closed-loop systems and algorithms can be found in home appliances, automobiles, aviation and more. Can one imagine nowadays driving a car without ABS, cruise control or even anti-sliding control? Similar principles of automation and control can be used in the management of diabetes mellitus (DM). The idea of an algorithmic/technological way to control glycaemia is not new and has been researched for more than four decades. However, recent improvements in both glucose-sensing technology and insulin delivery together with advanced control and systems engineering made this dream of an artificial pancreas possible. The artificial pancreas may be the next big step in the treatment of DM since the use of insulin analogues. An artificial pancreas can be described as internal or external devices that use continuous glucose measurements to automatically manage exogenous insulin delivery with or without other hormones in an attempt to restore glucose regulation in individuals with DM using a control algorithm. This device as described can be internal or external; can use different types of control algorithms with bi-hormonal or uni-hormonal design; and can utilise different ways to administer them. The different designs and implementations have transitioned recently from in silico simulations to clinical evaluation stage with practical applications in mind. This may mark the beginning of a new era in diabetes management with the introduction of semi-closed-loop systems that can prevent or minimise nocturnal hypoglycaemia, to hybrid systems that will manage blood glucose (BG) levels with minimal user intervention to finally fully automated systems that will take the user out of the loop. More and more clinical trials will be needed for the artificial pancreas to become a reality but initial encouraging

  12. Response of an all digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Garodnick, J.; Greco, J.; Schilling, D. L.

    1974-01-01

    An all digital phase-locked loop (DPLL) is designed, analyzed, and tested. Three specific configurations are considered, generating first, second, and third order DPLL's; and it is found, using a computer simulation of a noise spike, and verified experimentally, that of these configurations the second-order system is optimum from the standpoint of threshold extension. This substantiates results obtained for analog PLL's.

  13. An Examination of the Relationship between Active Site Loop Size and Thermodynamic Activation Parameters for Orotidine 5′-Monophosphate Decarboxylase from Mesophilic and Thermophilic Organisms†

    PubMed Central

    Toth, Krisztina; Amyes, Tina L.; Wood, B. McKay; Chan, Kui K.; Gerlt, John A.; Richard, John P.

    2009-01-01

    Closure of the active site phosphate gripper loop of orotidine 5′-monophosphate decarboxylase from Saccharomyces cerevisiae (ScOMPDC) over the bound substrate orotidine 5′-monophosphate (OMP) activates the bound substrate for decarboxylation by at least 104-fold [Amyes, T. L., Richard, J. P., and Tait, J. J. (2005) J. Am. Chem. Soc. 127, 15708-15709]. The 19 residue phosphate gripper loop of the mesophilic ScOMPDC is much larger than the 9 residue loop at the ortholog from the thermophile Methanothermobacter thermautotrophicus (MtOMPDC). This difference in loop size results in a small decrease in the total intrinsic phosphate binding energy of the phosphodianion group of OMP from 11.9 to 11.6 kcal/mol, along with a modest decrease in the extent of activation by phosphite dianion of decarboxylation of the truncated substrate 1-(β-D-erythrofuranosyl)orotic acid. The activation parameters ΔH‡ and ΔS‡ for kcat for decarboxylation of OMP are 3.6 kcal/mol and 10 cal/K/mol more positive, respectively, for MtOMPDC than for ScOMPDC. We suggest that these differences are related to the difference in size of the active site loops at the mesophilic ScOMPDC and the thermophilic MtOMPDC. The greater enthalpic transition state stabilization available from the more extensive loop-substrate interactions for the ScOMPDC-catalyzed reaction is largely balanced by a larger entropic requirement for immobilization of the larger loop at this enzyme. PMID:19618917

  14. Loop expansion and the bosonic representation of loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Bianchi, E.; Guglielmon, J.; Hackl, L.; Yokomizo, N.

    2016-10-01

    We introduce a new loop expansion that provides a resolution of the identity in the Hilbert space of loop quantum gravity on a fixed graph. We work in the bosonic representation obtained by the canonical quantization of the spinorial formalism. The resolution of the identity gives a tool for implementing the projection of states in the full bosonic representation onto the space of solutions to the Gauss and area matching constraints of loop quantum gravity. This procedure is particularly efficient in the semiclassical regime, leading to explicit expressions for the loop expansions of coherent, heat kernel and squeezed states.

  15. High temperature storage loop :

    SciTech Connect

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  16. Ekpyrotic loop quantum cosmology

    SciTech Connect

    Wilson-Ewing, Edward

    2013-08-01

    We consider the ekpyrotic paradigm in the context of loop quantum cosmology. In loop quantum cosmology the classical big-bang singularity is resolved due to quantum gravity effects, and so the contracting ekpyrotic branch of the universe and its later expanding phase are connected by a smooth bounce. Thus, it is possible to explicitly determine the evolution of scalar perturbations, from the contracting ekpyrotic phase through the bounce and to the post-bounce expanding epoch. The possibilities of having either one or two scalar fields have been suggested for the ekpyrotic universe, and both cases will be considered here. In the case of a single scalar field, the constant mode of the curvature perturbations after the bounce is found to have a blue spectrum. On the other hand, for the two scalar field ekpyrotic model where scale-invariant entropy perturbations source additional terms in the curvature perturbations, the power spectrum in the post-bounce expanding cosmology is shown to be nearly scale-invariant and so agrees with observations.

  17. Quantitation of inhibition of DNA methylation of the retinoic acid receptor beta gene by 5-Aza-2'-deoxycytidine in tumor cells using a single-nucleotide primer extension assay.

    PubMed

    Bovenzi, V; Momparler, R L

    2000-05-15

    The expression of several cancer-related genes has been reported to be silenced by DNA methylation of their promoter region. 5-Aza-2'-deoxycytidine (5-AZA-CdR), a potent and specific inhibitor of DNA methylation, can reactivate the in vitro expression of these genes. In future clinical trials in tumor therapy with 5-AZA-CdR a method to quantitate its inhibition of methylation of specific tumor suppressor genes would provide important data for the analysis of the therapeutic efficacy of this analogue. We have modified the methylation-sensitive single-nucleotide primer extension assay reported by Gonzalgo and Jones (Nucleic Acids Res. 25, 2529-2531, 1997). Genomic DNA was treated with bisulfite and a fragment of the promoter region of the human retinoic acid receptor beta (RARbeta) gene, a tumor suppressor gene, was amplified using seminested PCR. Using two different primers we quantitated the inhibition of methylation produced by 5-AZA-CdR at two specific CpG sites in the RARbeta promoter in a human colon and a breast carcinoma cell line. The results obtained with the modified assay show a precise and reproducible quantitation of inhibition of DNA methylation produced by 5-AZA-CdR in tumor cells.

  18. The double loop mattress suture

    PubMed Central

    Biddlestone, John; Samuel, Madan; Creagh, Terry; Ahmad, Tariq

    2014-01-01

    An interrupted stitch type with favorable tissue characteristics will reduce local wound complications. We describe a novel high-strength, low-tension repair for the interrupted closure of skin, cartilage, and muscle, the double loop mattress stitch, and compare it experimentally with other interrupted closure methods. The performance of the double loop mattress technique in porcine cartilage and skeletal muscle is compared with the simple, mattress, and loop mattress interrupted sutures in both a novel porcine loading chamber and mechanical model. Wound apposition is assessed by electron microscopy. The performance of the double loop mattress in vivo was confirmed using a series of 805 pediatric laparotomies/laparoscopies. The double loop mattress suture is 3.5 times stronger than the loop mattress in muscle and 1.6 times stronger in cartilage (p ≤ 0.001). Additionally, the double loop mattress reduces tissue tension by 66% compared with just 53% for the loop mattress (p ≤ 0.001). Wound gapping is equal, and wound eversion appears significantly improved (p ≤ 0.001) compared with the loop mattress in vitro. In vivo, the double loop mattress performs as well as the loop mattress and significantly better than the mattress stitch in assessments of wound eversion and dehiscence. There were no episodes of stitch extrusion in our series of patients. The mechanical advantage of its intrinsic pulley arrangement gives the double loop mattress its favorable properties. Wound dehiscence is reduced because this stitch type is stronger and exerts less tension on the tissue than the mattress stitch. We advocate the use of this novel stitch wherever a high-strength, low-tension repair is required. These properties will enhance wound repair, and its application will be useful to surgeons of all disciplines. PMID:24698436

  19. Enhancement of surface nonwettability by grafting loops.

    PubMed

    Pei, Han-Wen; Liu, Xiao-Li; Liu, Hong; Zhu, You-Liang; Lu, Zhong-Yuan

    2017-02-08

    We present a computer simulation study on the nonwettability of a flat surface tethered with deformable looped polymer chains. Two kinds of loops are studied: monodispersed loops (loops with the same length) and polydispersed loops (loops with different lengths). Both kinds of loops include two arrangements: with regularly tethered sites and with randomly tethered sites. Regularly grafted loops form typical grooves on the surface, while randomly grafted loops form a more rugged surface. For monodispersed loops, we analyze the factors that influence the nonwettability when varying the rigidity of the loops. The loops are divided into two categories based on their rigidity according to our previous analysis procedure (Phys. Chem. Chem. Phys., 2016, 18, 18767-18775): rigid loops and flexible loops. It is found that the loop can partially form a re-entrant-like structure, which is helpful to increase the nonwettability of the surface. The surfaces with grafted loops have increased nonwettability, especially those grafted with flexible chains. However, the contact angle on the loop structure cannot further increase for the rigid chains due to a large top layer density (Phys. Chem. Chem. Phys., 2016, 18, 18767-18775). For polydispersed loops, the contact angle is highly related to the rigidity of the long loops that contact the droplet. Different from monodispersed loops, the mechanism of the nonwettability of polydispersed loops is attributed to the supporting ability (rigidity) of long loops.

  20. Unstable anisotropic loop quantum cosmology

    SciTech Connect

    Nelson, William; Sakellariadou, Mairi

    2009-09-15

    We study stability conditions of the full Hamiltonian constraint equation describing the quantum dynamics of the diagonal Bianchi I model in the context of loop quantum cosmology. Our analysis has shown robust evidence of an instability in the explicit implementation of the difference equation, implying important consequences for the correspondence between the full loop quantum gravity theory and loop quantum cosmology. As a result, one may question the choice of the quantization approach, the model of lattice refinement, and/or the role of the ambiguity parameters; all these should, in principle, be dictated by the full loop quantum gravity theory.

  1. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  2. Loop-the-Loop: Bringing Theory into Practice

    ERIC Educational Resources Information Center

    Suwonjandee, N.; Asavapibhop, B.

    2012-01-01

    During the Thai high-school physics teacher training programme, we used an aluminum loop-the-loop system built by the Institute for the Promotion of Teaching Science and Technology (IPST) to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. There were 27 high-school teachers from three provinces,…

  3. Accountability in Extension

    ERIC Educational Resources Information Center

    Lutz, Arlen E.; Swoboda, Donald W.

    1972-01-01

    Authors discuss the advantages of the EMIS/SEMIS (Extension Management Information System/State Extension Management Information System), point out some of its deficiencies, and suggest ways to strengthen and improve it. (Editor)

  4. Dynamic PID loop control

    SciTech Connect

    Pei, L.; Klebaner, A.; Theilacker, J.; Soyars, W.; Martinez, A.; Bossert, R.; DeGraff, B.; Darve, C.; /Fermilab

    2011-06-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.

  5. Pulse thermal loop

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark M. (Inventor)

    2002-01-01

    A pulse thermal loop heat transfer system includes a means to use pressure rises in a pair of evaporators to circulate a heat transfer fluid. The system includes one or more valves that iteratively, alternately couple the outlets the evaporators to the condenser. While flow proceeds from one of the evaporators to the condenser, heating creates a pressure rise in the other evaporator, which has its outlet blocked to prevent fluid from exiting the other evaporator. When the flow path is reconfigured to allow flow from the other evaporator to the condenser, the pressure in the other evaporator is used to circulate a pulse of fluid through the system. The reconfiguring of the flow path, by actuating or otherwise changing the configuration of the one or more valves, may be triggered when a predetermined pressure difference between the evaporators is reached.

  6. Vortex loops and Majoranas

    SciTech Connect

    Chesi, Stefano; Jaffe, Arthur; Loss, Daniel; Pedrocchi, Fabio L.

    2013-11-15

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry.

  7. Loop Quantum Gravity.

    PubMed

    Rovelli, Carlo

    2008-01-01

    The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  8. Uranyl Nitrate Flow Loop

    SciTech Connect

    Ladd-Lively, Jennifer L

    2008-10-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO{sub 2}), uranium tetrafluoride (UF{sub 4}), and uranium hexafluoride (UF{sub 6})] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF{sub 6} product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study

  9. Cooled artery extension

    NASA Technical Reports Server (NTRS)

    Gernert, Nelson J. (Inventor)

    1990-01-01

    An artery vapor trap. A heat pipe artery is constructed with an extension protruding from the evaporator end of the heat pipe beyond the active area of the evaporator. The vapor migrates into the artery extension because of gravity or liquid displacement, and cooling the extension condenses the vapor to liquid, thus preventing vapor lock in the working portion of the artery by removing vapor from within the active artery. The condensed liquid is then transported back to the evaporator by the capillary action of the artery extension itself or by wick located within the extension.

  10. The Projectile Inside the Loop

    ERIC Educational Resources Information Center

    Varieschi, Gabriele U.

    2006-01-01

    The loop-the-loop demonstration can be easily adapted to study the kinematics of projectile motion, when the moving body falls inside the apparatus. Video capturing software can be used to reveal peculiar geometrical effects of this simple but educational experiment.

  11. RCD+: Fast loop modeling server

    PubMed Central

    López-Blanco, José Ramón; Canosa-Valls, Alejandro Jesús; Li, Yaohang; Chacón, Pablo

    2016-01-01

    Modeling loops is a critical and challenging step in protein modeling and prediction. We have developed a quick online service (http://rcd.chaconlab.org) for ab initio loop modeling combining a coarse-grained conformational search with a full-atom refinement. Our original Random Coordinate Descent (RCD) loop closure algorithm has been greatly improved to enrich the sampling distribution towards near-native conformations. These improvements include a new workflow optimization, MPI-parallelization and fast backbone angle sampling based on neighbor-dependent Ramachandran probability distributions. The server starts by efficiently searching the vast conformational space from only the loop sequence information and the environment atomic coordinates. The generated closed loop models are subsequently ranked using a fast distance-orientation dependent energy filter. Top ranked loops are refined with the Rosetta energy function to obtain accurate all-atom predictions that can be interactively inspected in an user-friendly web interface. Using standard benchmarks, the average root mean squared deviation (RMSD) is 0.8 and 1.4 Å for 8 and 12 residues loops, respectively, in the challenging modeling scenario in where the side chains of the loop environment are fully remodeled. These results are not only very competitive compared to those obtained with public state of the art methods, but also they are obtained ∼10-fold faster. PMID:27151199

  12. Improved code-tracking loop

    NASA Technical Reports Server (NTRS)

    Laflame, D. T.

    1980-01-01

    Delay-locked loop tracks pseudonoise codes without introducing dc timing errors, because it is not sensitive to gain imbalance between signal processing arms. "Early" and "late" reference codes pass in combined form through both arms, and each arm acts on both codes. Circuit accomodates 1 dB weaker input signals with tracking ability equal to that of tau-dither loops.

  13. Wilson Loop Diagrams and Positroids

    NASA Astrophysics Data System (ADS)

    Agarwala, Susama; Marin-Amat, Eloi

    2017-03-01

    In this paper, we study a new application of the positive Grassmannian to Wilson loop diagrams (or MHV diagrams) for scattering amplitudes in N= 4 Super Yang-Mill theory ( N = 4 SYM). There has been much interest in studying this theory via the positive Grassmannians using BCFW recursion. This is the first attempt to study MHV diagrams for planar Wilson loop calculations (or planar amplitudes) in terms of positive Grassmannians. We codify Wilson loop diagrams completely in terms of matroids. This allows us to apply the combinatorial tools in matroid theory used to identify positroids (non-negative Grassmannians) to Wilson loop diagrams. In doing so, we find that certain non-planar Wilson loop diagrams define positive Grassmannians. While non-planar diagrams do not have physical meaning, this finding suggests that they may have value as an algebraic tool, and deserve further investigation.

  14. Loop-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Slagle, Frank D.; Notestein, John E.

    1984-01-01

    The present invention is directed to a combustion apparatus in the configuration of a oblong annulus defining a closed loop. Particulate coal together with a sulfur sorbent such as sulfur or dolomite is introduced into the closed loop, ignited, and propelled at a high rate of speed around the loop. Flue gas is withdrawn from a location in the closed loop in close proximity to an area in the loop where centrifugal force imposed upon the larger particulate material maintains these particulates at a location spaced from the flue gas outlet. Only flue gas and smaller particulates resulting from the combustion and innerparticle grinding are discharged from the combustor. This structural arrangement provides increased combustion efficiency due to the essentially complete combustion of the coal particulates as well as increased sulfur absorption due to the innerparticle grinding of the sorbent which provides greater particle surface area.

  15. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2014-01-01

    A loop heat pipe must start successfully before it can commence its service. The start-up transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe start-up behaviors. Topics include the four start-up scenarios, the initial fluid distribution between the evaporator and reservoir that determines the start-up scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power start-up, and methods to enhance the start-up success. Also addressed are the thermodynamic constraint between the evaporator and reservoir in the loop heat pipe operation, the superheat requirement for nucleate boiling, pressure spike and pressure surge during the start-up transient, and repeated cycles of loop start-up andshutdown under certain conditions.

  16. Higher dimensional loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangdong

    2016-07-01

    Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n+1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n+1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n+1 dimensional model and the 3+1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology.

  17. Large loop conformation sampling using the activation relaxation technique, ART-nouveau method.

    PubMed

    St-Pierre, Jean-François; Mousseau, Normand

    2012-07-01

    We present an adaptation of the ART-nouveau energy surface sampling method to the problem of loop structure prediction. This method, previously used to study protein folding pathways and peptide aggregation, is well suited to the problem of sampling the conformation space of large loops by targeting probable folding pathways instead of sampling exhaustively that space. The number of sampled conformations needed by ART nouveau to find the global energy minimum for a loop was found to scale linearly with the sequence length of the loop for loops between 8 and about 20 amino acids. Considering the linear scaling dependence of the computation cost on the loop sequence length for sampling new conformations, we estimate the total computational cost of sampling larger loops to scale quadratically compared to the exponential scaling of exhaustive search methods.

  18. Mining protein loops using a structural alphabet and statistical exceptionality

    PubMed Central

    2010-01-01

    significant level of amino-acid conservation with at least four significant positions and 87% of long loops contain at least one such word. We complement our analysis with the detection of statistically over-represented patterns of structural letters as in conventional DNA sequence analysis. About 30% (930) of structural words are over-represented, and cover about 40% of loop lengths. Interestingly, these words exhibit lower structural variability and higher sequential specificity, suggesting structural or functional constraints. Conclusions We developed a method to systematically decompose and study protein loops using recurrent structural motifs. This method is based on the structural alphabet HMM-SA and not on structural alignment and geometrical parameters. We extracted meaningful structural motifs that are found in both short and long loops. To our knowledge, it is the first time that pattern mining helps to increase the signal-to-noise ratio in protein loops. This finding helps to better describe protein loops and might permit to decrease the complexity of long-loop analysis. Detailed results are available at http://www.mti.univ-paris-diderot.fr/publication/supplementary/2009/ACCLoop/. PMID:20132552

  19. Modeling loop entropy.

    PubMed

    Chirikjian, Gregory S

    2011-01-01

    Proteins fold from a highly disordered state into a highly ordered one. Traditionally, the folding problem has been stated as one of predicting "the" tertiary structure from sequential information. However, new evidence suggests that the ensemble of unfolded forms may not be as disordered as once believed, and that the native form of many proteins may not be described by a single conformation, but rather an ensemble of its own. Quantifying the relative disorder in the folded and unfolded ensembles as an entropy difference may therefore shed light on the folding process. One issue that clouds discussions of "entropy" is that many different kinds of entropy can be defined: entropy associated with overall translational and rotational Brownian motion, configurational entropy, vibrational entropy, conformational entropy computed in internal or Cartesian coordinates (which can even be different from each other), conformational entropy computed on a lattice, each of the above with different solvation and solvent models, thermodynamic entropy measured experimentally, etc. The focus of this work is the conformational entropy of coil/loop regions in proteins. New mathematical modeling tools for the approximation of changes in conformational entropy during transition from unfolded to folded ensembles are introduced. In particular, models for computing lower and upper bounds on entropy for polymer models of polypeptide coils both with and without end constraints are presented. The methods reviewed here include kinematics (the mathematics of rigid-body motions), classical statistical mechanics, and information theory.

  20. Insertion of Argos sequences into the B-loop of epidermal growth factor results in a low-affinity ligand with strong agonistic activity.

    PubMed

    van de Poll, M L; van Vugt, M J; Lenferink, A E; van Zoelen, E J

    1997-06-17

    Recently, it has been shown that the activation of the Drosophila EGF receptor (DER) by its natural ligand Spitz is inhibited by Argos [Schweitzer, R., et al. (1995) Nature 376, 699-702]. Argos and Spitz both have an EGF-like domain which in the case of Argos differs from that of Spitz and other EGF receptor agonists in that it has an extended B-loop of 20 amino acids instead of 10 amino acids which in addition contains an unusual cluster of charged residues. To investigate whether B-loop sequences are an important determinant for receptor activation and play a causal role in the antagonistic activity of Argos, three human (h)EGF mutants were constructed in which amino acids derived from the Argos B-loop were introduced. In one mutant (E3A4E/B10), replacement of four amino acids in the B-loop of hEGF (123, E24, D27, and K28) by the corresponding Argos residues neither altered the binding affinity of the growth factor for the hEGF receptor nor did it change its ability to induce a mitogenic response. Insertion of 2 additional Argos residues (E3A4E/B12) or extension of the B-loop by 10 amino acids (E3A4E/B20) resulted, however, in a significant loss of binding affinity. In spite of this, both E3A4E/B12 and E3A4E/B20 appeared to be strong agonists for the hEGF receptor with similar dose-response curves for mitogenic activity and MAPK activation as wild-type hEGF. These data show that several nonconservative substitutions in the hEGF B-loop are tolerated without affecting receptor binding or activation. Furthermore, they show that receptor binding and receptor signaling efficiency can be uncoupled which is a prerequisite for the development of receptor antagonists.

  1. Wilson loops in minimal surfaces

    SciTech Connect

    Drukker, Nadav; Gross, David J.; Ooguri, Hirosi

    1999-04-27

    The AdS/CFT correspondence suggests that the Wilson loop of the large N gauge theory with N = 4 supersymmetry in 4 dimensions is described by a minimal surface in AdS{sub 5} x S{sup 5}. The authors examine various aspects of this proposal, comparing gauge theory expectations with computations of minimal surfaces. There is a distinguished class of loops, which the authors call BPS loops, whose expectation values are free from ultra-violet divergence. They formulate the loop equation for such loops. To the extent that they have checked, the minimal surface in AdS{sub 5} x S{sup 5} gives a solution of the equation. The authors also discuss the zig-zag symmetry of the loop operator. In the N = 4 gauge theory, they expect the zig-zag symmetry to hold when the loop does not couple the scalar fields in the supermultiplet. They will show how this is realized for the minimal surface.

  2. Torque-wrench extension

    NASA Technical Reports Server (NTRS)

    Peterson, D. H.

    1981-01-01

    Torque-wrench extension makes it easy to install and remove fasteners that are beyond reach of typical wrenches or are located in narrow spaces that prevent full travel of wrench handle. At same time, tool reads applied torque accurately. Wrench drive system, for torques up to 125 inch-pounds, uses 2 standard drive-socket extensions in aluminum frame. Extensions are connected to bevel gear that turns another bevel gear. Gears produce 1:1 turn ratio through 90 degree translation of axis of rotation. Output bevel has short extension that is used to attach 1/4-inch drive socket.

  3. University of Wisconsin - Extension

    MedlinePlus

    ... Vendor ACH Signup UW-Extension Working For You Business and Entrepreneurship About Center for Technology Commercialization Small Business Development Centers Continuing and Online Education About Degree ...

  4. Digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Cliff, R. A. (Inventor)

    1975-01-01

    An digital phase-locked loop is provided for deriving a loop output signal from an accumulator output terminal. A phase detecting exclusive OR gate is fed by the loop digital input and output signals. The output of the phase detector is a bi-level digital signal having a duty cycle indicative of the relative phase of the input and output signals. The accumulator is incremented at a first rate in response to a first output level of the phase detector and at a second rate in response to a second output level of the phase detector.

  5. Open loop distribution system design

    SciTech Connect

    Glamocanin, V. ); Filipovic, V. . Elektrotechnicki fakulet)

    1993-10-01

    The ability to supply consumers of an urban area, with minimum interruption during a feeder segment or substation transformer outage, is assured by a uniform cable size of the feeder segments along the entire loop. Based on the criterion of the uniform cable size, a loop configuration is obtained first by minimizing the installation costs, and then an open loop solution is found by minimizing the power losses. Heuristic rules are proposed and used to obtain an initial solution, as well as to improve current solutions.

  6. Optical loop framing

    SciTech Connect

    Kalibjian, R.; Chong, Y.P.; Prono, D.S.; Cavagnolo, H.R.

    1984-06-01

    The ATA provides an electron beam pulse of 70-ns duration at a 1-Hz rate. Our present optical diagnostics technique involve the imaging of the visible light generated by the beam incident onto the plant of a thin sheet of material. It has already been demonstrated that the light generated has a sufficiently fast temporal reponse in performing beam diagnostics. Notwithstanding possible beam emittance degradation due to scattering in the thin sheet, the observation of beam spatial profiles with relatively high efficiencies has provided data complementary to that obtained from beam wall current monitors and from various x-ray probes and other electrical probes. The optical image sensor consists of a gated, intensified television system. The gate pulse of the image intensifier can be appropriately delayed to give frames that are time-positioned from the head to the tail of the beam with a minimum gate time of 5-ns. The spatial correlation of the time frames from pulse to pulse is very good for a stable electron beam; however, when instabilities do occur, it is difficult to properly assess the spatial composition of the head and the tail of the beam on a pulse-to-pulse basis. Multiple gating within a pulse duration becomes desirable but cannot be performed because the recycle time (20-ms) of the TV system is much longer than the beam pulse. For this reason we have developed an optical-loop framing technique that will allow the recording of two frames within one pulse duration with our present gated/intensified TV system.

  7. Three-loop vacuum integrals with arbitrary masses

    NASA Astrophysics Data System (ADS)

    Freitas, Ayres

    2016-11-01

    Three-loop vacuum integrals are an important building block for the calculation of a wide range of three-loop corrections. Until now, analytical results for integrals with only one and two independent mass scales are known, but in the electroweak Standard Model and many extensions thereof, one often encounters more mass scales of comparable magnitude. For this reason, a numerical approach for the evaluation of three-loop vacuum integrals with arbitrary mass pattern is proposed here. Concretely, one can identify a basic set of three master integral topologies. With the help of dispersion relations, each of these can be transformed into one-dimensional or, for the most complicated case, two-dimensional integrals in terms of elementary functions, which are suitable for efficient numerical integration.

  8. Loop Electrosurgical Excision Procedure (LEEP)

    MedlinePlus

    ... that acts like a scalpel (surgical knife). An electric current is passed through the loop, which cuts away ... A procedure in which an instrument works with electric current to destroy tissue. Local Anesthesia: The use of ...

  9. Integrated optical phase locked loop.

    SciTech Connect

    Lentine, Anthony L.; Kim, Jungwon; Trotter, Douglas Chandler; DeRose, Christopher T.; Kartner, Franz X.; Byun, Hyunil; Nejadmalayeri, Amir H.; Watts, Michael R.; Zortman, William A.

    2010-12-01

    A silicon photonics based integrated optical phase locked loop is utilized to synchronize a 10.2 GHz voltage controlled oscillator with a 509 MHz mode locked laser, achieving 32 fs integrated jitter over 300 kHz bandwidth.

  10. SDO Sees Flourishing Magnetic Loops

    NASA Video Gallery

    A bright set of loops near the edge of the sun’s face grew and shifted quickly after the magnetic field was disrupted by a small eruption on Nov. 25, 2015. Charged particles emitting light in extre...

  11. SDO Sees Brightening Magnetic Loops

    NASA Video Gallery

    Two active regions sprouted arches of bundled magnetic loops in this video from NASA’s Solar Dynamics Observatory taken on Nov. 11-12, 2015. Charged particles spin along the magnetic field, tracing...

  12. Kentucky's Urban Extension Focus

    ERIC Educational Resources Information Center

    Young, Jeffery; Vavrina, Charles

    2014-01-01

    Defining the success of Urban Extension units is sometimes challenging. For those Extension agents, specialists, administrators, and others who have worked to bring solid, research-based programming to urban communities, it is no surprise that working in these communities brings its own unique and sometimes difficult challenges. Kentucky's Urban…

  13. Priorities for Extension.

    ERIC Educational Resources Information Center

    Hayward, J. A.

    Agricultural extension is one component in an array including research, training, education, marketing, international trade, etc. which develop together to bring about growth, and sustained growth determines the priorities for extension. These priorities depend inevitably on the stage of development of a country or region, and on the current…

  14. Observations of loops and prominences

    NASA Technical Reports Server (NTRS)

    Strong, Keith T.

    1994-01-01

    We review recent observations by the Yohkoh-SXT (Soft X-ray Telescope) in collaboration with other spacecraft and ground-based observatories of coronal loops and prominences. These new results point to problems that SoHO will be able to address. With a unique combination of rapid-cadence digital imaging (greater than or equal to 32 s full-disk and greater than or equal to 2 s partial-frame images), high spatial resolution (greater than or equal to 2.5 arcsec pixels), high sensitivity (EM less than or equal to 10(exp 42) cm(exp -3)), a low-scatter mirror, and large dynamic range, SXT can observe a vast range of targets on the Sun. Over the first 21 months of Yohkoh operations SXT has taken over one million images of the corona and so is building up an invaluable long-term database on the large-scale corona and loop geometry. The most striking thing about the SXT images is the range of loop sizes and shapes. The active regions are a bright tangle of magnetic field lines, surrounded by a network of large-scale quiet-Sun loops stretching over distances in excess of 105 km. The cross-section of most loops seems to be constant. Loops displaying significant Gamma's are the exception, not the rule, implying the presence of widespread currents in the corona. All magnetic structures show changes. Time scales range from seconds to months. The question of how these structures are formed, become filled with hot plasma, and are maintained is still open. While we see the propagation of brightenings along the length of active-region loops and in X-ray jets with velocities of several hundred km/s, much higher velocities are seen in the quiet Sun. In XBP flares, for example, velocities of over 1000 km/s are common. Active-region loops seem to be in constant motion, moving slowly outward, carrying plasma with them. During flares, loops often produce localized brightenings at the base and later at the apex of the loop. Quiescent filaments and prominences have been observed regularly

  15. LETS: An Expressional Loop Notation.

    DTIC Science & Technology

    1982-10-01

    r - ..’ -rI- x- - r ,11 V~ The Expressional Metaphor 2- Waters i "The Expressional Metaphor ’lhe key property of expressions which makes them...development of a notation which has the property of decomposability. Viewing Loops as Expressions Involving Sequences In order to represent loops as...a DEFUNS or LETS. For example, the function EPLIST takes in a discnbodied plist and returns two values: a sequence of the property names. and a

  16. Closed loop spray cooling apparatus

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Schwab, W. B.; Furman, E. R. (Inventor)

    1979-01-01

    A closed loop apparatus for jet spraying coolant against the back of a radiation target is described. The coolant is circulated through a closed loop with a bubble of inert gas being maintained around the spray. Mesh material is disposed between the bubble and the surface of the liquid coolant which is below the bubble at a predetermined level. In a second arrangement no inert gas is used, the bubble consists of vapor produced when the coolant is sprayed against the target.

  17. High temperature loop heat pipes

    SciTech Connect

    Anderson, W.G.; Bland, J.J.; Fershtater, Y.; Goncharov, K.A.; Nikitkin, M.; Juhasz, A.

    1995-12-31

    Advantages of loop heat pipes over conventional heat pipes include self-priming during start-up, improved tolerance for noncondensible gas, and ability for ground testing in any orientation. The applications for high temperature, alkali-metal working fluid loop heat pipes include space radiators, and bimodal systems. A high temperature loop heat pipe was fabricated and tested at 850 K, using cesium as the working fluid. Previous loop heat pipes were tested with ambient temperature working fluids at temperatures below about 450 K. The loop heat pipe had a titanium envelope, and a titanium aluminide wick. The maximum cesium loop heat pipe power was only about 600 watts, which was lower the predicted 1,000 W power. The power limitation may be due to a wettability problem with the cesium not completely wetting the titanium aluminide wick. This would reduce the pumping capability of the wick, and the maximum power that the heat pipe could carry. This problem could be solved by using a refractory metal powder wick, since the alkali metals are known to wet refractory metal wicks.

  18. THE CORONAL LOOP INVENTORY PROJECT

    SciTech Connect

    Schmelz, J. T.; Pathak, S.; Christian, G. M.; Dhaliwal, R. S. S.; Paul, K. S.

    2015-11-01

    Most coronal physicists now seem to agree that loops are composed of tangled magnetic strands and have both isothermal and multithermal cross-field temperature distributions. As yet, however, there is no information on the relative importance of each of these categories, and we do not know how common one is with respect to the other. In this paper, we investigate these temperature properties for all loop segments visible in the 171-Å image of AR 11294, which was observed by the Atmospheric Imaging Assembly (AIA) on 2011 September 15. Our analysis revealed 19 loop segments, but only 2 of these were clearly isothermal. Six additional segments were effectively isothermal, that is, the plasma emission to which AIA is sensitive could not be distinguished from isothermal emission, within measurement uncertainties. One loop had both isothermal transition region and multithermal coronal solutions. Another five loop segments require multithermal plasma to reproduce the AIA observations. The five remaining loop segments could not be separated reliably from the background in the crucial non-171-Å AIA images required for temperature analysis. We hope that the direction of coronal heating models and the efforts modelers spend on various heating scenarios will be influenced by these results.

  19. Loop Models from SOHO Observations

    NASA Astrophysics Data System (ADS)

    Landini, M.; Brković , A.; Landi, E.; Rüedi, I.; Solanki, S.

    1999-01-01

    The Coronal Diagnostic Spectrometer (CDS) on SOHO is a grazing/normal incidence spectrograph, aimed to produce stigmatic spectra of selected regions of the solar surface in six spectral windows of the extreme ultraviolet from 150 Å to 785 Å (Harrison et al. 1995). In the present work, CDS, EIT, MDI and Yohkoh observations of active region lops have been analyzed. These observations are part of JOP 54. CDS monochromatic images from lines at different temperatures have been co-aligned with EIT and MDI images, and loop structures have been clearly identified using Fe XVI emission lines. Density sensitive lines and lines from adjacent stages of ionization of Fe ions have been used to measure electron density and temperature along the loop length; these measurements have been used to determine the electron pressure along the loop and test the constant pressure assumption commonly used in loop modeling. The observations have been compared with a static, isobaric loop model (Landini and Monsignori Fossi 1975) assuming a temperature-constant heating function in the energy balance equation. Good agreement is found for the temperature distribution along the loop at the coronal level. The model pressure is somewhat higher than obtained from density sensitive line ratios.

  20. HIPK2 catalytic activity and subcellular localization are regulated by activation-loop Y354 autophosphorylation

    PubMed Central

    Siepi, Francesca; Gatti, Veronica; Camerini, Serena; Crescenzi, Marco; Soddu, Silvia

    2013-01-01

    HIPK2 (homeodomain-interacting protein kinase-2) binds to and phosphorylates, at Ser and Thr residues, a large number of targets involved in cell division and cell fate decision in response to different physiological or stress stimuli. Inactivation of HIPK2 has been observed in human and mouse cancers supporting its role as a tumor suppressor. Despite the biological relevance of this kinase, very little is known on how HIPK2 becomes catalytically active. Based on sequence homologies, HIPK2 has been taxonomically classified as a subfamily member of the dual-specificity tyrosine-regulated kinases (DYRKs) and the activation-loop Y354 of HIPK2 has been found phosphorylated in different cells; however, the relevance of this Y phosphorylation is presently unknown. Here, we show that HIPK2, which is extensively phosphorylated at S/T sites throughout its functional domains, becomes catalytically active by autophosphorylation at the activation-loop Y354. In particular, we found that, in analogy to DYRKs, HIPK2-Y354 phosphorylation is an autocatalytic event and its prevention, through Y354 substitution with non-phosphorylatable amino acids or by using the kinase inhibitor purvalanol A, induces a strong reduction of the HIPK2 S/T-kinase activity on different substrates. Interestingly, at variance from DYRKs, inhibition of HIPK2-Y354 phosphorylation induces a strong out-of-target Y-kinase activity in cis and a strong cytoplasmic relocalization of the kinase. Together, these results demonstrate that the catalytic activity, substrate specificity, and subcellular localization of HIPK2 are regulated by autophosphorylation of its activation-loop Y354. PMID:23485397

  1. Geothermal Loop Experimental Facility. Final report

    SciTech Connect

    Not Available

    1980-04-01

    Research at the Geothermal Loop Experimental Facility was successfully concluded in September 1979. In 13,000 hours of operation over a three and one half year period, the nominal 10 megawatt electrical equivalent GLEF provided the opportunity to identify problems in working with highly saline geothermal fluids and to develop solutions that could be applied to a commercial geothermal power plant producing electricity. A seven and one half year period beginning in April 1972, with early well flow testing and ending in September 1979, with the completion of extensive facility and reservoir operations is covered. During this period, the facility was designed, constructed and operated in several configurations. A comprehensive reference document, addressing or referencing documentation of all the key areas investigated is presented.

  2. Run-time parallelization and scheduling of loops

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Mirchandaney, Ravi; Baxter, Doug

    1988-01-01

    The class of problems that can be effectively compiled by parallelizing compilers is discussed. This is accomplished with the doconsider construct which would allow these compilers to parallelize many problems in which substantial loop-level parallelism is available but cannot be detected by standard compile-time analysis. We describe and experimentally analyze mechanisms used to parallelize the work required for these types of loops. In each of these methods, a new loop structure is produced by modifying the loop to be parallelized. We also present the rules by which these loop transformations may be automated in order that they be included in language compilers. The main application area of the research involves problems in scientific computations and engineering. The workload used in our experiment includes a mixture of real problems as well as synthetically generated inputs. From our extensive tests on the Encore Multimax/320, we have reached the conclusion that for the types of workloads we have investigated, self-execution almost always performs better than pre-scheduling. Further, the improvement in performance that accrues as a result of global topological sorting of indices as opposed to the less expensive local sorting, is not very significant in the case of self-execution.

  3. Filter for third order phase locked loops

    NASA Technical Reports Server (NTRS)

    Crow, R. B.; Tausworthe, R. C. (Inventor)

    1973-01-01

    Filters for third-order phase-locked loops are used in receivers to acquire and track carrier signals, particularly signals subject to high doppler-rate changes in frequency. A loop filter with an open-loop transfer function and set of loop constants, setting the damping factor equal to unity are provided.

  4. Tests of the Extension and Deadbolt Models of Integrin Activation*

    PubMed Central

    Zhu, Jieqing; Boylan, Brian; Luo, Bing-Hao; Newman, Peter J.; Springer, Timothy A.

    2007-01-01

    Despite extensive evidence that integrin conformational changes between bent and extended conformations regulate affinity for ligands, an alternative hypothesis has been proposed in which a “deadbolt” can regulate affinity for ligand in the absence of extension. Here, we tested both the deadbolt and the extension models. According to the deadbolt model, a hairpin loop in the β3 tail domain could act as a deadbolt to restrain the displacement of the β3 I domain β6-α7 loop and maintain integrin in the low affinity state. We found that mutating or deleting the β3 tail domain loop has no effect on ligand binding by either αIIbβ3 or αVβ3 integrins. In contrast, we found that mutations that lock integrins in the bent conformation with disulfide bonds resist inside-out activation induced by cytoplasmic domain mutation. Furthermore, we demonstrated that extension is required for accessibility to fibronectin but not smaller fragments. The data demonstrate that integrin extension is required for ligand binding during integrin inside-out signaling and that the deadbolt does not regulate integrin activation. PMID:17301049

  5. Kalman Orbit Optimized Loop Tracking

    NASA Technical Reports Server (NTRS)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  6. Canonical DNA Repair Pathways Influence R-Loop-Driven Genome Instability.

    PubMed

    Stirling, Peter C; Hieter, Philip

    2016-07-22

    DNA repair defects create cancer predisposition in humans by fostering a higher rate of mutations. While DNA repair is quite well characterized, recent studies have identified previously unrecognized relationships between DNA repair and R-loop-mediated genome instability. R-loops are three-stranded nucleic acid structures in which RNA binds to genomic DNA to displace a loop of single-stranded DNA. Mutations in homologous recombination, nucleotide excision repair, crosslink repair, and DNA damage checkpoints have all now been linked to formation and function of transcription-coupled R-loops. This perspective will summarize recent literature linking DNA repair to R-loop-mediated genomic instability and discuss how R-loops may contribute to mutagenesis in DNA-repair-deficient cancers.

  7. Study of the open loop and closed loop oscillator techniques

    SciTech Connect

    Baker, Benjamin; Riley, Tony; Langbehn, Adam; Imel, George R.; Benzerga, M. Lamine; Aryal, Harishchandra

    2015-07-01

    This paper presents some aspects of a five year study undertaken at Idaho State University of the measurement of very small worth reactivity samples comparing open and closed loop oscillator techniques. The study conclusively demonstrated the equivalency of the two techniques with regard to uncertainties in reactivity values, i.e., limited by reactor noise. As those results are thoroughly documented in recent publications, in this paper we will concentrate on the support work that was necessary. For example, we describe in some detail the construction and calibration of a pilot rod for the closed loop system. We discuss the campaign to measure the required reactor parameters necessary for inverse-kinetics. Finally, we briefly discuss the transfer of the open loop technique to other reactor systems. (authors)

  8. Lattice calculation of the Polyakov loop and Polyakov loop correlators

    NASA Astrophysics Data System (ADS)

    Weber, Johannes Heinrich

    2017-03-01

    We discuss calculations of the Polyakov loop and of Polyakov loop correlators using lattice gauge theory. We simulate QCD with 2+1 flavors and almost physical quark masses using the highly improved staggered quark action (HISQ).We demonstrate that the entropy derived from the Polyakov loop is a good probe of color screening. In particular, it allows for scheme independent and quantitative conclusions about the deconfinement aspects of the crossover and for a rigorous study of the onset of weak-coupling behavior at high temperatures. We examine the correlators for small and large separations and identify vacuum-like and screening regimes in the thermal medium. We demonstrate that gauge-independent screening properties can be obtained even from gauge-fixed singlet correlators and that we can pin down the asymptotic regime.

  9. Study of the Open Loop and Closed Loop Oscillator Techniques

    SciTech Connect

    Imel, George R.; Baker, Benjamin; Riley, Tony; Langbehn, Adam; Aryal, Harishchandra; Benzerga, M. Lamine

    2015-04-11

    This report presents the progress and completion of a five-year study undertaken at Idaho State University of the measurement of very small worth reactivity samples comparing open and closed loop oscillator techniques.The study conclusively demonstrated the equivalency of the two techniques with regard to uncertainties in reactivity values, i.e., limited by reactor noise. As those results are thoroughly documented in recent publications, in this report we will concentrate on the support work that was necessary. For example, we describe in some detail the construction and calibration of a pilot rod for the closed loop system. We discuss the campaign to measure the required reactor parameters necessary for inverse-kinetics. Finally, we briefly discuss the transfer of the open loop technique to other reactor systems.

  10. Loop coupled resonator optical waveguides.

    PubMed

    Song, Junfeng; Luo, Lian-Wee; Luo, Xianshu; Zhou, Haifeng; Tu, Xiaoguang; Jia, Lianxi; Fang, Qing; Lo, Guo-Qiang

    2014-10-06

    We propose a novel coupled resonator optical waveguide (CROW) structure that is made up of a waveguide loop. We theoretically investigate the forbidden band and conduction band conditions in an infinite periodic lattice. We also discuss the reflection- and transmission- spectra, group delay in finite periodic structures. Light has a larger group delay at the band edge in a periodic structure. The flat band pass filter and flat-top group delay can be realized in a non-periodic structure. Scattering matrix method is used to calculate the effects of waveguide loss on the optical characteristics of these structures. We also introduce a tunable coupling loop waveguide to compensate for the fabrication variations since the coupling coefficient of the directional coupler in the loop waveguide is a critical factor in determining the characteristics of a loop CROW. The loop CROW structure is suitable for a wide range of applications such as band pass filters, high Q microcavity, and optical buffers and so on.

  11. Bandwidth controller for phase-locked-loop

    NASA Technical Reports Server (NTRS)

    Brockman, Milton H. (Inventor)

    1992-01-01

    A phase locked loop utilizing digital techniques to control the closed loop bandwidth of the RF carrier phase locked loop in a receiver provides high sensitivity and a wide dynamic range for signal reception. After analog to digital conversion, a digital phase locked loop bandwidth controller provides phase error detection with automatic RF carrier closed loop tracking bandwidth control to accommodate several modes of transmission.

  12. Digital phase-lock loop

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess B. (Inventor)

    1991-01-01

    An improved digital phase lock loop incorporates several distinctive features that attain better performance at high loop gain and better phase accuracy. These features include: phase feedback to a number-controlled oscillator in addition to phase rate; analytical tracking of phase (both integer and fractional cycles); an amplitude-insensitive phase extractor; a more accurate method for extracting measured phase; a method for changing loop gain during a track without loss of lock; and a method for avoiding loss of sampled data during computation delay, while maintaining excellent tracking performance. The advantages of using phase and phase-rate feedback are demonstrated by comparing performance with that of rate-only feedback. Extraction of phase by the method of modeling provides accurate phase measurements even when the number-controlled oscillator phase is discontinuously updated.

  13. Many Ways to Loop DNA

    PubMed Central

    Griffith, Jack D.

    2013-01-01

    In the 1960s, I developed methods for directly visualizing DNA and DNA-protein complexes using an electron microscope. This made it possible to examine the shape of DNA and to visualize proteins as they fold and loop DNA. Early applications included the first visualization of true nucleosomes and linkers and the demonstration that repeating tracts of adenines can cause a curvature in DNA. The binding of DNA repair proteins, including p53 and BRCA2, has been visualized at three- and four-way junctions in DNA. The trombone model of DNA replication was directly verified, and the looping of DNA at telomeres was discovered. PMID:24005675

  14. All digital pulsewidth control loop

    NASA Astrophysics Data System (ADS)

    Huang, Hong-Yi; Jan, Shiun-Dian; Pu, Ruei-Iun

    2013-03-01

    This work presents an all-digital pulsewidth control loop (ADPWCL). The proposed system accepts a wide range of input duty cycles and performs a fast correction to the target output pulsewidth. An all-digital delay-locked loop (DLL) with fast locking time using a simplified time to digital converter and a new differential two-step delay element is proposed. The area of the delay element is much smaller than that in conventional designs, while having the same delay range. A test chip is verified in a 0.18-µm CMOS process. The measured duty cycle ranges from 4% to 98% with 7-bit resolution.

  15. Reionization from cosmic string loops

    SciTech Connect

    Olum, Ken D.; Vilenkin, Alexander

    2006-09-15

    Loops formed from a cosmic string network at early times would act as seeds for early formation of halos, which would form galaxies and lead to early reionization. With reasonable guesses about astrophysical and string parameters, the cosmic string scale G{mu} must be no more than about 3x10{sup -8} to avoid conflict with the reionization redshift found by WMAP. The bound is much stronger for superstring models with a small string reconnection probability. For values near the bound, cosmic string loops may explain the discrepancy between the WMAP value and theoretical expectations.

  16. Pharmacokinetics of para-Aminosalicylic Acid in HIV-Uninfected and HIV-Coinfected Tuberculosis Patients Receiving Antiretroviral Therapy, Managed for Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis

    PubMed Central

    de Kock, Lizanne; Sy, Sherwin K. B.; Diacon, Andreas H.; Prescott, Kim; Hernandez, Kenneth R.; Yu, Mingming; Derendorf, Hartmut; Donald, Peter R.

    2014-01-01

    The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis prompted the reintroduction of para-aminosalicylic acid (PAS) to protect companion anti-tuberculosis drugs from additional acquired resistance. In sub-Saharan Africa, MDR/XDR tuberculosis with HIV coinfection is common, and concurrent treatment of HIV infection and MDR/XDR tuberculosis is required. Out of necessity, patients receive multiple drugs, and PAS therapy is frequent; however, neither potential drug interactions nor the effects of HIV infection are known. Potential drug-drug interaction with PAS and the effect of HIV infection was examined in 73 pulmonary tuberculosis patients; 22 (30.1%) were HIV coinfected. Forty-one pulmonary MDR or XDR tuberculosis patients received 4 g PAS twice daily, and in a second crossover study, another 32 patients were randomized, receiving 4 g PAS twice daily or 8 g PAS once daily. A PAS population pharmacokinetic model in two dosing regimens was developed; potential covariates affecting its pharmacokinetics were examined, and Monte Carlo simulations were conducted evaluating the pharmacokinetic-pharmacodynamic index. The probability of target attainment (PTA) to maintain PAS levels above MIC during the dosing interval was estimated by simulation of once-, twice-, and thrice-daily dosing regimens not exceeding 12 g daily. Concurrent efavirenz (EFV) medication resulted in a 52% increase in PAS clearance and a corresponding >30% reduction in mean PAS area under the concentration curve in 19 of 22 HIV-M. tuberculosis-coinfected patients. Current practice recommends maintenance of PAS concentrations at ≥1 μg/ml (the MIC of M. tuberculosis), but the model predicts that at only a minimum dose of 4 g twice daily can this PTA be achieved in at least 90% of the population, whether or not EFV is concomitantly administered. Once-daily dosing of 12 g PAS will not provide PAS concentrations exceeding the MIC over the entire dosing

  17. The C-terminal extension of PrhG impairs its activation of hrp expression and virulence in Ralstonia solanacearum.

    PubMed

    Zhang, Yong; Luo, Feng; Hikichi, Yasufumi; Kiba, Akinori; Yasuo, Igarashi; Ohnishi, Kouhei

    2015-04-01

    Ralstonia solanacearum is the second most destructive bacterial plant pathogens worldwide and HrpG is the master regulator of its pathogenicity. PrhG is a close paralogue of HrpG and both belong to OmpR/PhoB family of two-component response regulators. Despite a high similarity (72% global identity and 96% similarity in helix-loop-helix domain), they display distinct roles in pathogenicity. HrpG is necessary for the bacterial growth in planta and pathogenicity, while PrhG is dispensable for bacterial growth in planta and contributes little to pathogenicity. The main difference between HrpG and PrhG is the 50-amino-acid-long C-terminal extension in PrhG (amino-acid residues 230-283), which is absent in HrpG. When this extension is deleted, truncated PrhGs (under the control of its native promoter) allowed complete recovery of bacterial growth in planta and wild-type virulence of hrpG mutant. This novel finding demonstrates that the extension region in PrhG is responsible for the functional difference between HrpG and PrhG, which may block the binding of PrhG to target promoters and result in impaired activation of hrp expression by PrhG and reduced virulence of R. solanacearum.

  18. SIMULATIONS OF SOLAR JETS CONFINED BY CORONAL LOOPS

    SciTech Connect

    Wyper, P. F.; DeVore, C. R. E-mail: c.richard.devore@nasa.gov

    2016-03-20

    Coronal jets are collimated, dynamic events that occur over a broad range of spatial scales in the solar corona. In the open magnetic field of coronal holes, jets form quasi-radial spires that can extend far out into the heliosphere, while in closed-field regions the jet outflows are confined to the corona. We explore the application of the embedded-bipole model to jets occurring in closed coronal loops. In this model, magnetic free energy is injected slowly by footpoint motions that introduce twist within the closed dome of the jet source region, and is released rapidly by the onset of an ideal kink-like instability. Two length scales characterize the system: the width (N) of the jet source region and the footpoint separation (L) of the coronal loop that envelops the jet source. We find that both the conditions for initiation and the subsequent dynamics are highly sensitive to the ratio L/N. The longest-lasting and most energetic jets occur along long coronal loops with large L/N ratios, and share many of the features of open-field jets, while smaller L/N ratios produce shorter-duration, less energetic jets that are affected by reflections from the far-loop footpoint. We quantify the transition between these behaviors and show that our model replicates key qualitative and quantitative aspects of both quiet Sun and active-region loop jets. We also find that the reconnection between the closed dome and surrounding coronal loop is very extensive: the cumulative reconnected flux at least matches the total flux beneath the dome for small L/N, and is more than double that value for large L/N.

  19. Closed-Loop Neuromorphic Benchmarks

    PubMed Central

    Stewart, Terrence C.; DeWolf, Travis; Kleinhans, Ashley; Eliasmith, Chris

    2015-01-01

    Evaluating the effectiveness and performance of neuromorphic hardware is difficult. It is even more difficult when the task of interest is a closed-loop task; that is, a task where the output from the neuromorphic hardware affects some environment, which then in turn affects the hardware's future input. However, closed-loop situations are one of the primary potential uses of neuromorphic hardware. To address this, we present a methodology for generating closed-loop benchmarks that makes use of a hybrid of real physical embodiment and a type of “minimal” simulation. Minimal simulation has been shown to lead to robust real-world performance, while still maintaining the practical advantages of simulation, such as making it easy for the same benchmark to be used by many researchers. This method is flexible enough to allow researchers to explicitly modify the benchmarks to identify specific task domains where particular hardware excels. To demonstrate the method, we present a set of novel benchmarks that focus on motor control for an arbitrary system with unknown external forces. Using these benchmarks, we show that an error-driven learning rule can consistently improve motor control performance across a randomly generated family of closed-loop simulations, even when there are up to 15 interacting joints to be controlled. PMID:26696820

  20. Telomeres thrown for a loop.

    PubMed

    Haber, James E

    2004-11-19

    A remarkable paper from the de Lange lab (Wang et al., 2004) in a recent issue of Cell reveals that homologous recombination can result in the abrupt shortening of telomeres in a process that appears to involve reciprocal crossing over within the t-loop structure that protects chromosome ends.

  1. Bimodal loop-gap resonator

    NASA Astrophysics Data System (ADS)

    Piasecki, W.; Froncisz, W.; Hyde, James S.

    1996-05-01

    A bimodal loop-gap resonator for use in electron paramagnetic resonance (EPR) spectroscopy at S band is described. It consists of two identical one-loop-one-gap resonators in coaxial juxtaposition. In one mode, the currents in the two loops are parallel and in the other antiparallel. By introducing additional capacitors between the loops, the frequencies of the two modes can be made to coincide. Details are given concerning variable coupling to each mode, tuning of the resonant frequency of one mode to that of the other, and adjustment of the isolation between modes. An equivalent circuit is given and network analysis carried out both experimentally and theoretically. EPR applications are described including (a) probing of the field distributions with DPPH, (b) continuous wave (cw) EPR with a spin-label line sample, (c) cw electron-electron double resonance (ELDOR), (d) modulation of saturation, and (e) saturation-recovery (SR) EPR. Bloch induction experiments can be performed when the sample extends half way through the structure, but microwave signals induced by Mx and My components of magnetization cancel when it extends completely through. This latter situation is particularly favorable for SR, modulation of saturation, and ELDOR experiments, which depend on observing Mz indirectly using a second weak observing microwave source.

  2. Ponderomotive Acceleration in Coronal Loops

    NASA Astrophysics Data System (ADS)

    Dahlburg, R. B.; Laming, J. M.; Taylor, B. D.; Obenschain, K.

    2016-11-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  3. Loop quantum cosmology gravitational baryogenesis

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-11-01

    Loop quantum cosmology is an appealing quantum completion of classical cosmology, which brings along various theoretical features which in many cases offer a remedy for or modify various classical cosmology aspects. In this paper we address the gravitational baryogenesis mechanism in the context of loop quantum cosmology. As we demonstrate, when loop quantum cosmology effects are taken into account in the resulting Friedmann equations for a flat Friedmann-Robertson-Walker Universe, then even for a radiation-dominated Universe, the predicted baryon-to-entropy ratio from the gravitational baryogenesis mechanism is non-zero, in contrast to the Einstein-Hilbert case, in which case the baryon-to-entropy ratio is zero. We also discuss various other cases apart from the radiation domination case, and we discuss how the baryon-to-entropy ratio is affected from the parameters of the quantum theory. In addition, we use illustrative exact solutions of loop quantum cosmology and we investigate under which circumstances the baryon-to-entropy ratio can be compatible with the observational constraints.

  4. Vocabulary Extension through Poetry.

    ERIC Educational Resources Information Center

    Surajlal, K. C.

    1986-01-01

    Based on the notion that teaching vocabulary extension in isolation makes little impact on students, a three-part exercise, designed to develop students' vocabulary through poetry while providing meaningful enjoyment, uses the poem "The Hawk" by A. C. Benson. In the first class period, students are introduced to both the exercise and the poem and…

  5. Extensible Systems Dynamics Framework

    DTIC Science & Technology

    2008-04-01

    pedigree information across communities-of-interest and across network boundaries. 15. SUBJECT TERMS Ptolemy II, Systems Dynamics, PMESII, National...3 4.2 ADAPT THE PTOLEMY II FRAMEWORK TO ENSURE A WELL-SUITED MODELING...report of activities in the Extensible Systems Dynamics Framework project performed by the Ptolemy Project, University of California, Berkeley for

  6. Mobile Applications for Extension

    ERIC Educational Resources Information Center

    Drill, Sabrina L.

    2012-01-01

    Mobile computing devices (smart phones, tablets, etc.) are rapidly becoming the dominant means of communication worldwide and are increasingly being used for scientific investigation. This technology can further our Extension mission by increasing our power for data collection, information dissemination, and informed decision-making. Mobile…

  7. Targeting Extension Publications.

    ERIC Educational Resources Information Center

    Nehiley, James M.; William, Ray D.

    1980-01-01

    A study on the readability of publications of the Florida Cooperative Extension Service shows that most are written at the 12th-grade level, though the average Floridian reads at the sixth-grade level. The materials present a barrier to comprehension by limited-resource audiences in Florida. (JOW)

  8. 40 CFR 76.12 - Phase I NOX compliance extension.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.12 Phase I NOX compliance extension. (a... Administrator will approve the plan and revise the Acid Rain permit governing the unit in the plan in order to... the complete petition. The Acid Rain permit governing the unit will be revised in order to...

  9. 40 CFR 76.12 - Phase I NOX compliance extension.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.12 Phase I NOX compliance extension. (a... Administrator will approve the plan and revise the Acid Rain permit governing the unit in the plan in order to... the complete petition. The Acid Rain permit governing the unit will be revised in order to...

  10. 40 CFR 76.12 - Phase I NOX compliance extension.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.12 Phase I NOX compliance extension. (a... Administrator will approve the plan and revise the Acid Rain permit governing the unit in the plan in order to... the complete petition. The Acid Rain permit governing the unit will be revised in order to...

  11. 40 CFR 76.12 - Phase I NOX compliance extension.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.12 Phase I NOX compliance extension. (a... Administrator will approve the plan and revise the Acid Rain permit governing the unit in the plan in order to... the complete petition. The Acid Rain permit governing the unit will be revised in order to...

  12. Inherent directionality explains the lack of feedback loops in empirical networks

    PubMed Central

    Domínguez-García, Virginia; Pigolotti, Simone; Muñoz, Miguel A.

    2014-01-01

    We explore the hypothesis that the relative abundance of feedback loops in many empirical complex networks is severely reduced owing to the presence of an inherent global directionality. Aimed at quantifying this idea, we propose a simple probabilistic model in which a free parameter γ controls the degree of inherent directionality. Upon strengthening such directionality, the model predicts a drastic reduction in the fraction of loops which are also feedback loops. To test this prediction, we extensively enumerated loops and feedback loops in many empirical biological, ecological and socio-technological directed networks. We show that, in almost all cases, empirical networks have a much smaller fraction of feedback loops than network randomizations. Quite remarkably, this empirical finding is quantitatively reproduced, for all loop lengths, by our model by fitting its only parameter γ. Moreover, the fitted value of γ correlates quite well with another direct measurement of network directionality, performed by means of a novel algorithm. We conclude that the existence of an inherent network directionality provides a parsimonious quantitative explanation for the observed lack of feedback loops in empirical networks. PMID:25531727

  13. Inherent directionality explains the lack of feedback loops in empirical networks.

    PubMed

    Domínguez-García, Virginia; Pigolotti, Simone; Muñoz, Miguel A

    2014-12-22

    We explore the hypothesis that the relative abundance of feedback loops in many empirical complex networks is severely reduced owing to the presence of an inherent global directionality. Aimed at quantifying this idea, we propose a simple probabilistic model in which a free parameter γ controls the degree of inherent directionality. Upon strengthening such directionality, the model predicts a drastic reduction in the fraction of loops which are also feedback loops. To test this prediction, we extensively enumerated loops and feedback loops in many empirical biological, ecological and socio-technological directed networks. We show that, in almost all cases, empirical networks have a much smaller fraction of feedback loops than network randomizations. Quite remarkably, this empirical finding is quantitatively reproduced, for all loop lengths, by our model by fitting its only parameter γ. Moreover, the fitted value of γ correlates quite well with another direct measurement of network directionality, performed by means of a novel algorithm. We conclude that the existence of an inherent network directionality provides a parsimonious quantitative explanation for the observed lack of feedback loops in empirical networks.

  14. Phylogenetic analysis and comparison between cow and buffalo (including Egyptian buffaloes) mitochondrial displacement-loop regions.

    PubMed

    Ramadan, Hassan A I; El-Hefnawi, Mahmoud M

    2008-08-01

    Mitochondrial DNA (mtDNA) analysis has been used extensively for phylogenetic analysis studies and systematics. The displacement loop (D-loop) region inside the mtDNA is a non-coding part whose analysis can indicate variations between closely related populations. This paper reports for the first time the characterization and analysis of the complete sequence of the D-loop region from Egyptian buffaloes and analysis in conjunction with previously published Indian and European Bubalus bubalis and Bos sub-tribe sequences. In the entire D-loop of the Egyptian buffaloes, we identified four haplotypes and nine polymorphic sites from the nine sequenced D-loop regions--while in the studied set of buffaloes we identified 28 polymorphic sites in the entire D-loop, and 49 polymorphic sites in the case of cows. Alignment between buffaloes and cows to evaluate the characteristics of the D-loop region showed that the second region of the conserved sequence block (CSB2) is apparently the most variable region in the D-loop between cows and buffaloes, with four insertions in all buffaloes and two substitutions, followed by the second region of the extended termination associated sequence (ETAS2) with a substitution rate of 1/10. The Egyptian buffaloes were shown to be closest to the Italian counterparts, exemplifying the closeness of ethnicity and the history of civilization of that region.

  15. Evolution in a Braided Loop Ensemble

    NASA Video Gallery

    This braided loop has several loops near the 'base' that appear to be unwinding with significant apparent outflow. This is evidence of untwisting, and the braided structure also seeming to unwind w...

  16. Gamut Extension for Cinema.

    PubMed

    Zamir, Syed Waqas; Vazquez-Corral, Javier; Bertalmio, Marcelo

    2017-04-01

    Emerging display technologies are able to produce images with a much wider color gamut than those of conventional distribution gamuts for cinema and TV, creating an opportunity for the development of gamut extension algorithms (GEAs) that exploit the full color potential of these new systems. In this paper, we present a novel GEA, implemented as a PDE-based optimization procedure related to visual perception models, that performs gamut extension (GE) by taking into account the analysis of distortions in hue, chroma, and saturation. User studies performed using a digital cinema projector under cinematic (low ambient light, large screen) conditions show that the proposed algorithm outperforms the state of the art, producing gamut extended images that are perceptually more faithful to the wide-gamut ground truth, as well as free of color artifacts and hue shifts. We also show how currently available image quality metrics, when applied to the GE problem, provide results that do not correlate with users' choices.

  17. A conserved P-loop anchor limits the structural dynamics that mediate nucleotide dissociation in EF-Tu

    NASA Astrophysics Data System (ADS)

    Mercier, Evan; Girodat, Dylan; Wieden, Hans-Joachim

    2015-01-01

    The phosphate-binding loop (P-loop) is a conserved sequence motif found in mononucleotide-binding proteins. Little is known about the structural dynamics of this region and its contribution to the observed nucleotide binding properties. Understanding the underlying design principles is of great interest for biomolecular engineering applications. We have used rapid-kinetics measurements in vitro and molecular dynamics (MD) simulations in silico to investigate the relationship between GTP-binding properties and P-loop structural dynamics in the universally conserved Elongation Factor (EF) Tu. Analysis of wild type EF-Tu and variants with substitutions at positions in or adjacent to the P-loop revealed a correlation between P-loop flexibility and the entropy of activation for GTP dissociation. The same variants demonstrate more backbone flexibility in two N-terminal amino acids of the P-loop during force-induced EF-Tu.GTP dissociation in Steered Molecular Dynamics simulations. Amino acids Gly18 and His19 are involved in stabilizing the P-loop backbone via interactions with the adjacent helix C. We propose that these P-loop/helix C interactions function as a conserved P-loop anchoring module and identify the presence of P-loop anchors within several GTPases and ATPases suggesting their evolutionary conservation.

  18. A conserved P-loop anchor limits the structural dynamics that mediate nucleotide dissociation in EF-Tu.

    PubMed

    Mercier, Evan; Girodat, Dylan; Wieden, Hans-Joachim

    2015-01-08

    The phosphate-binding loop (P-loop) is a conserved sequence motif found in mononucleotide-binding proteins. Little is known about the structural dynamics of this region and its contribution to the observed nucleotide binding properties. Understanding the underlying design principles is of great interest for biomolecular engineering applications. We have used rapid-kinetics measurements in vitro and molecular dynamics (MD) simulations in silico to investigate the relationship between GTP-binding properties and P-loop structural dynamics in the universally conserved Elongation Factor (EF) Tu. Analysis of wild type EF-Tu and variants with substitutions at positions in or adjacent to the P-loop revealed a correlation between P-loop flexibility and the entropy of activation for GTP dissociation. The same variants demonstrate more backbone flexibility in two N-terminal amino acids of the P-loop during force-induced EF-Tu · GTP dissociation in Steered Molecular Dynamics simulations. Amino acids Gly18 and His19 are involved in stabilizing the P-loop backbone via interactions with the adjacent helix C. We propose that these P-loop/helix C interactions function as a conserved P-loop anchoring module and identify the presence of P-loop anchors within several GTPases and ATPases suggesting their evolutionary conservation.

  19. Optimum design of hybrid phase locked loops

    NASA Technical Reports Server (NTRS)

    Lee, P.; Yan, T.

    1981-01-01

    The design procedure of phase locked loops is described in which the analog loop filter is replaced by a digital computer. Specific design curves are given for the step and ramp input changes in phase. It is shown that the designed digital filter depends explicitly on the product of the sampling time and the noise bandwidth of the phase locked loop. This technique of optimization can be applied to the design of digital analog loops for other applications.

  20. Fragmentation of cosmic-string loops

    NASA Technical Reports Server (NTRS)

    York, Thomas

    1989-01-01

    The fragmentation of cosmic string loops is discussed, and the results of a simulation of this process are presented. The simulation can evolve any of a large class of loops essentially exactly, including allowing fragments that collide to join together. Such reconnection enhances the production of small fragments, but not drastically. With or without reconnections, the fragmentation process produces a collection of nonself-intersecting loops whose typical length is on the order of the persistence length of the initial loop.

  1. Sea urchin egg mitochondrial DNA contains a short displacement loop (D-loop) in the replication origin region.

    PubMed Central

    Jacobs, H T; Herbert, E R; Rankine, J

    1989-01-01

    Based on solution hybridization using single-stranded probes, native mitochondrial DNA extracted from sea urchin eggs contains a displacement-loop (D-loop) of approximately 70-80 nt. This maps to the single extended unassigned sequence of the genome, between the genes for tRNA(thr) and tRNA(pro), which also appears to contain the origin of first-strand replication. The D-loop commences at or close to a site of supercoil-dependent S1 nuclease hypersensitivity, adjacent to a run of 20 consecutive C residues, terminates near to the boundary of tRNA(thr), and appears to be composed at least partly of RNA, based on the sensitivity of the assays to RNase H. These experiments imply that the mechanisms of replication initiation in sea urchin and vertebrate mtDNAs are very similar, and suggest that the developmental restriction on mtDNA synthesis in eggs and embryos is maintained at the level of D-loop extension. Images PMID:2555781

  2. Teachers' Perception of Looping in Secondary Schools

    ERIC Educational Resources Information Center

    Chakey, Dennis J.

    2014-01-01

    The purpose of this qualitative study was to gain an understanding of secondary teachers' perception of the looping process. The research questions revealed teachers' opinions of the looping process and its impact on the overall educational experience. Participants within this study had experiences teaching within the looping process and within a…

  3. Data-aided carrier tracking loops

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Simon, M. K.

    1973-01-01

    Power in composite signal sidebands is used to enhance signal-to-noise ratio in carrier tracking loop, thereby reducing radio loss and decreasing probability of receiver error. By adding quadrature channel to phase-lock-loop detector circuit of receiver, dc component can be fed back into carrier tracking loop.

  4. Loop connectors in dentogenic diastema

    PubMed Central

    Nayar, Sanjna; Jayesh, Raghevendra; Venkateshwaran; Dinakarsamy, V.

    2015-01-01

    Patients with a missing tooth along with diastema have limited treatment options to restore the edentulous space. The use of a conventional fixed partial denture (FPD) to replace the missing tooth may result in too wide anterior teeth leading to poor esthetics. Loss of anterior teeth with existing diastema may result in excess space available for pontic. This condition presents great esthetic challenge for prosthodontist. If implant supported prosthesis is not possible because of inadequate bone support, FPD along with loop connector may be a treatment option to maintain the diastema and provide optimal esthetic restoration. Here, we report a clinical case where FPD along with loop connector was used to achieve esthetic rehabilitation in maxillary anterior region in which midline diastema has been maintained. PMID:26015732

  5. Microgyroscope with closed loop output

    NASA Technical Reports Server (NTRS)

    Challoner, A. Dorian (Inventor); Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor); Cargille, Donald R. (Inventor)

    2002-01-01

    A micro-gyroscope (10) having closed loop operation by a control voltage (V.sub.TY), that is demodulated by an output signal of the sense electrodes (S1, S2), providing Coriolis torque rebalance to prevent displacement of the micro-gyroscope (10) on the output axis (y-axis). The present invention provides wide-band, closed-loop operation for a micro-gyroscope (10) and allows the drive frequency to be closely tuned to a high Q sense axis resonance. A differential sense signal (S1-S2) is compensated and fed back by differentially changing the voltage on the drive electrodes to rebalance Coriolis torque. The feedback signal is demodulated in phase with the drive axis signal (K.sub..omega..crclbar..sub.x) to produce a measure of the Coriolis force.

  6. Grain boundary loops in graphene

    NASA Astrophysics Data System (ADS)

    Cockayne, Eric; Rutter, Gregory M.; Guisinger, Nathan P.; Crain, Jason N.; First, Phillip N.; Stroscio, Joseph A.

    2011-05-01

    Topological defects can affect the physical properties of graphene in unexpected ways. Harnessing their influence may lead to enhanced control of both material strength and electrical properties. Here we present a class of topological defects in graphene composed of a rotating sequence of dislocations that close on themselves, forming grain boundary loops that either conserve the number of atoms in the hexagonal lattice or accommodate vacancy or interstitial reconstruction, while leaving no unsatisfied bonds. One grain boundary loop is observed as a “flower” pattern in scanning tunneling microscopy studies of epitaxial graphene grown on SiC(0001). We show that the flower defect has the lowest energy per dislocation core of any known topological defect in graphene, providing a natural explanation for its growth via the coalescence of mobile dislocations.

  7. Loop Variables in String Theory

    NASA Astrophysics Data System (ADS)

    Sathiapalan, B.

    The loop variable approach is a proposal for a gauge-invariant generalization of the sigma-model renormalization group method of obtaining equations of motion in string theory. The basic guiding principle is space-time gauge invariance rather than world sheet properties. In essence it is a version of Wilson's exact renormalization group equation for the world sheet theory. It involves all the massive modes and is defined with a finite world sheet cutoff, which allows one to go off the mass-shell. On shell the tree amplitudes of string theory are reproduced. The equations are gauge-invariant off shell also. This paper is a self-contained discussion of the loop variable approach as well as its connection with the Wilsonian RG.

  8. DNA Looping, Supercoiling and Tension

    NASA Astrophysics Data System (ADS)

    Finzi, Laura

    2007-11-01

    In complex organisms, activation or repression of gene expression by proteins bound to enhancer or silencer elements located several kilobases away from the promoter is a well recognized phenomenon. However, a mechanistic understanding of any of these multiprotein interactions is still incomplete. Part of the difficulty in characterizing long-range interactions is the complexity of the regulatory systems and also an underestimation of the effect of DNA supercoiling and tension. Supercoiling is expected to promote interactions between DNA sites because it winds the DNA into compact plectonemes in which distant DNA segments more frequently draw close. The idea that DNA is also under various levels of tension is becoming more widely accepted. Forces that stretch the double helix in vivo are the electrostatic repulsion among the negatively charged phosphate groups along the DNA backbone, the action of motor enzymes perhaps acting upon a topologically constrained sequence of DNA or chromosome segregation during cell mitosis following DNA replication. Presently, little is known about the tension acting on DNA in vivo, but characterization of how physiological regulatory processes, such as loop formation, depend on DNA tension in vitro will indicate the stretching force regimes likely to exist in vivo. In this light, the well studied CI protein of bacteriophage l, which was recently found to cause a of 3.8 kbp loop in DNA, is an ideal system in which to characterize long-range gene regulation. The large size of the loop lends itself to single-molecule techniques, which allow characterization of the dynamics of CI-mediated l DNA looping under controlled levels of supercoiling and tension. Such experiments are being used to discover the principles of long-range interactions in l and in more complex systems.

  9. Molecular Loops in the Galactic Center: Evidence for Magnetic Flotation

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Yamamoto, Hiroaki; Fujishita, Motosuji; Kudo, Natsuko; Torii, Kazufumi; Nozawa, Satoshi; Takahashi, Kunio; Matsumoto, Ryoji; Machida, Mami; Kawamura, Akiko; Yonekura, Yoshinori; Mizuno, Norikazu; Onishi, Toshikazu; Mizuno, Akira

    2006-10-01

    The central few hundred parsecs of the Milky Way host a massive black hole and exhibit very violent gas motion and high temperatures in molecular gas. The origin of these properties has been a mystery for the past four decades. Wide-field imaging of the 12CO (rotational quantum number J = 1 to 0) 2.6-millimeter spectrum has revealed huge loops of dense molecular gas with strong velocity dispersions in the galactic center. We present a magnetic flotation model to explain that the formation of the loops is due to magnetic buoyancy caused by the Parker instability. The model has the potential to offer a coherent explanation for the origin of the violent motion and extensive heating of the molecular gas in the galactic center.

  10. Conformal loop quantum gravity coupled to the standard model

    NASA Astrophysics Data System (ADS)

    Campiglia, Miguel; Gambini, Rodolfo; Pullin, Jorge

    2017-01-01

    We argue that a conformally invariant extension of general relativity coupled to the standard model is the fundamental theory that needs to be quantized. We show that it can be treated by loop quantum gravity techniques. Through a gauge fixing and a modified Higgs mechanism particles acquire mass and one recovers general relativity coupled to the standard model. The theory suggests new views with respect to the definition of the Hamiltonian constraint in loop quantum gravity, the semi-classical limit and the issue of finite renormalization in quantum field theory in quantum space-time. It also gives hints about the elimination of ambiguities that arise in quantum field theory in quantum space-time in the calculation of back-reaction.

  11. Loops in inflationary correlation functions

    NASA Astrophysics Data System (ADS)

    Tanaka, Takahiro; Urakawa, Yuko

    2013-12-01

    We review the recent progress regarding the loop corrections to the correlation functions in the inflationary universe. A naive perturbation theory predicts that the loop corrections generated during inflation suffer from various infrared (IR) pathologies. Introducing an IR cutoff by hand is neither satisfactory nor enough to fix the problem of a secular growth, which may ruin the predictive power of inflation models if the inflation lasts sufficiently long. We discuss the origin of the IR divergences and explore the regularity conditions of the loop corrections for the adiabatic perturbation, the iso-curvature perturbation, and the tensor perturbation, in turn. These three kinds of perturbations have qualitative differences, but in discussing the IR regularity there is a feature common to all cases, which is the importance of the proper identification of observable quantities. Genuinely, observable quantities should respect the gauge invariance from the view point of a local observer. Interestingly, we find that the requirement of the IR regularity restricts the allowed quantum states.

  12. The cys-loop ligand-gated ion channel gene superfamily of the parasitoid wasp, Nasonia vitripennis.

    PubMed

    Jones, A K; Bera, A N; Lees, K; Sattelle, D B

    2010-03-01

    Members of the cys-loop ligand-gated ion channel (cysLGIC) superfamily mediate chemical neurotransmission and are studied extensively as potential targets of drugs used to treat neurological disorders, such as Alzheimer's disease. Insect cys-loop LGICs also have central roles in the nervous system and are targets of highly successful insecticides. Here, we describe the cysLGIC superfamily of the parasitoid wasp, Nasonia vitripennis, which is emerging as a highly useful model organism and is deployed as a biological control of insect pests. The wasp superfamily consists of 26 genes, which is the largest insect cysLGIC superfamily characterized, whereas Drosophila melanogaster, Apis mellifera and Tribolium castaneum have 23, 21 and 24, respectively. As with Apis, Drosophila and Tribolium, Nasonia possesses ion channels predicted to be gated by acetylcholine, gamma-amino butyric acid, glutamate and histamine, as well as orthologues of the Drosophila pH-sensitive chloride channel (pHCl), CG8916 and CG12344. Similar to other insects, wasp cysLGIC diversity is broadened by alternative splicing and RNA A-to-I editing, which may also serve to generate species-specific receptor isoforms. These findings on N. vitripennis enhance our understanding of cysLGIC functional genomics and provide a useful basis for the study of their function in the wasp model, as well as for the development of improved insecticides that spare a major beneficial insect species.

  13. Dynamic Aperture-based Solar Loop Segmentation

    NASA Technical Reports Server (NTRS)

    Lee, Jon Kwan; Newman, Timothy S.; Gary, G. Allen

    2006-01-01

    A new method to automatically segment arc-like loop structures from intensity images of the Sun's corona is introduced. The method constructively segments credible loop structures by exploiting the Gaussian-like shape of loop cross-sectional intensity profiles. The experimental results show that the method reasonably segments most of the well-defined loops in coronal images. The method is only the second published automated solar loop segmentation method. Its advantage over the other published method is that it operates independently of supplemental time specific data.

  14. Modeling Phase-Locked Loops Using Verilog

    DTIC Science & Technology

    2007-11-01

    a charge pump, the phase detector has a tri-state output that can drive a opamp loop filter directly. This signal is conditioned by the charge pump...then it can directly drive an opamp based loop filter. Most loop filters are based upon an integrator loop. The integrator loop filter is advantageous...replaced with an accumulator. The opamp circuit can be replaced by a digital filter using Z-transform theory z=exp(jwT), where T is the sampling

  15. Hyperstaticity and loops in frictional granular packings

    NASA Astrophysics Data System (ADS)

    Tordesillas, Antoinette; Lam, Edward; Metzger, Philip T.

    2009-06-01

    The hyperstatic nature of granular packings of perfectly rigid disks is analyzed algebraically and through numerical simulation. The elementary loops of grains emerge as a fundamental element in addressing hyperstaticity. Loops consisting of an odd number of grains behave differently than those with an even number. For odd loops, the latent stresses are exterior and are characterized by the sum of frictional forces around each loop. For even loops, the latent stresses are interior and are characterized by the alternating sum of frictional forces around each loop. The statistics of these two types of loop sums are found to be Gibbsian with a "temperature" that is linear with the friction coefficient μ when μ<1.

  16. High-temperature helium-loop facility

    SciTech Connect

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100/sup 0/F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system.

  17. Chemical Looping Technology: Oxygen Carrier Characteristics.

    PubMed

    Luo, Siwei; Zeng, Liang; Fan, Liang-Shih

    2015-01-01

    Chemical looping processes are characterized as promising carbonaceous fuel conversion technologies with the advantages of manageable CO2 capture and high energy conversion efficiency. Depending on the chemical looping reaction products generated, chemical looping technologies generally can be grouped into two types: chemical looping full oxidation (CLFO) and chemical looping partial oxidation (CLPO). In CLFO, carbonaceous fuels are fully oxidized to CO2 and H2O, as typically represented by chemical looping combustion with electricity as the primary product. In CLPO, however, carbonaceous fuels are partially oxidized, as typically represented by chemical looping gasification with syngas or hydrogen as the primary product. Both CLFO and CLPO share similar operational features; however, the optimum process configurations and the specific oxygen carriers used between them can vary significantly. Progress in both CLFO and CLPO is reviewed and analyzed with specific focus on oxygen carrier developments that characterize these technologies.

  18. Selectivity of fungal sesquiterpene synthases: role of the active site's H-1 alpha loop in catalysis.

    PubMed

    López-Gallego, Fernando; Wawrzyn, Grayson T; Schmidt-Dannert, Claudia

    2010-12-01

    Sesquiterpene synthases are responsible for the cyclization of farnesyl pyrophosphate into a myriad of structurally diverse compounds with various biological activities. We examine here the role of the conserved active site H-α1 loop in catalysis in three previously characterized fungal sesquiterpene synthases. The H-α1 loops of Cop3, Cop4, and Cop6 from Coprinus cinereus were altered by site-directed mutagenesis and the resultant product profiles were analyzed by gas chromatography-mass spectrometry and compared to the wild-type enzymes. In addition, we examine the effect of swapping the H-α1 loop from the promiscuous enzyme Cop4 with the more selective Cop6 and the effect of acidic or basic conditions on loop mutations in Cop4. Directed mutations of the H-α1 loop had a marked effect on the product profile of Cop3 and Cop4, while little to no change was shown in Cop6. Swapping of the Cop4 and Cop6 loops with one another was again shown to influence the product profile of Cop4, while the product profile of Cop6 remained identical to the wild-type enzyme. The loop mutations in Cop4 also implicate specific residues responsible for the pH sensitivity of the enzyme. These results affirm the role of the H-α1 loop in catalysis and provide a potential target to increase the product diversity of terpene synthases.

  19. Contributions of Charged Residues in Structurally Dynamic Capsid Surface Loops to Rous Sarcoma Virus Assembly

    PubMed Central

    Heyrana, Katrina J.; Goh, Boon Chong; Nguyen, Tam-Linh N.; England, Matthew R.; Bewley, Maria C.; Schulten, Klaus

    2016-01-01

    ABSTRACT Extensive studies of orthoretroviral capsids have shown that many regions of the CA protein play unique roles at different points in the virus life cycle. The N-terminal domain (NTD) flexible-loop (FL) region is one such example: exposed on the outer capsid surface, it has been implicated in Gag-mediated particle assembly, capsid maturation, and early replication events. We have now defined the contributions of charged residues in the FL region of the Rous sarcoma virus (RSV) CA to particle assembly. Effects of mutations on assembly were assessed in vivo and in vitro and analyzed in light of new RSV Gag lattice models. Virus replication was strongly dependent on the preservation of charge at a few critical positions in Gag-Gag interfaces. In particular, a cluster of charges at the beginning of FL contributes to an extensive electrostatic network that is important for robust Gag assembly and subsequent capsid maturation. Second-site suppressor analysis suggests that one of these charged residues, D87, has distal influence on interhexamer interactions involving helix α7. Overall, the tolerance of FL to most mutations is consistent with current models of Gag lattice structures. However, the results support the interpretation that virus evolution has achieved a charge distribution across the capsid surface that (i) permits the packing of NTD domains in the outer layer of the Gag shell, (ii) directs the maturational rearrangements of the NTDs that yield a functional core structure, and (iii) supports capsid function during the early stages of virus infection. IMPORTANCE The production of infectious retrovirus particles is a complex process, a choreography of protein and nucleic acid that occurs in two distinct stages: formation and release from the cell of an immature particle followed by an extracellular maturation phase during which the virion proteins and nucleic acids undergo major rearrangements that activate the infectious potential of the virion. This

  20. Closing the tau loop: the missing tau mutation.

    PubMed

    McCarthy, Allan; Lonergan, Roisin; Olszewska, Diana A; O'Dowd, Sean; Cummins, Gemma; Magennis, Brian; Fallon, Emer M; Pender, Niall; Huey, Edward D; Cosentino, Stephanie; O'Rourke, Killian; Kelly, Brendan D; O'Connell, Martin; Delon, Isabelle; Farrell, Michael; Spillantini, Maria Grazia; Rowland, Lewis P; Fahn, Stanley; Craig, Peter; Hutton, Michael; Lynch, Tim

    2015-10-01

    Frontotemporal lobar degeneration comprises a group of disorders characterized by behavioural, executive, language impairment and sometimes features of parkinsonism and motor neuron disease. In 1994 we described an Irish-American family with frontotemporal dementia linked to chromosome 17 associated with extensive tau pathology. We named this disinhibition-dementia-parkinsonism-amyotrophy complex. We subsequently identified mutations in the MAPT gene. Eleven MAPT gene splice site stem loop mutations were identified over time except for 5' splice site of exon 10. We recently identified another Irish family with autosomal dominant early amnesia and behavioural change or parkinsonism associated with the 'missing' +15 mutation at the intronic boundary of exon 10. We performed a clinical, neuropsychological and neuroimaging study on the proband and four siblings, including two affected siblings. We sequenced MAPT and performed segregation analysis. We looked for a biological effect of the tau variant by performing real-time polymerase chain reaction analysis of RNA extracted from human embryonic kidney cells transfected with exon trapping constructs. We found a c.915+15A>C exon 10/intron 10 stem loop mutation in all affected subjects but not in the unaffected. The c.915+15A>C variant caused a shift in tau splicing pattern to a predominantly exon 10+ pattern presumably resulting in predominant 4 repeat tau and little 3 repeat tau. This strongly suggests that the c.915+15A>C variant is a mutation and that it causes frontotemporal dementia linked to chromosome 17 in this pedigree by shifting tau transcription and translation to +4 repeat tau. Tau (MAPT) screening should be considered in families where amnesia or atypical parkinsonism coexists with behavioural disturbance early in the disease process. We describe the final missing stem loop tau mutation predicted 15 years ago. Mutations have now been identified at all predicted sites within the 'stem' when the stem-loop

  1. An advanced threshold-extension tracking filter for satellite video reception

    NASA Astrophysics Data System (ADS)

    Rogers, W. M.

    Developments related to frequency-modulated television transmission via satellite repeaters have hade large commercial applications in connection with earth terminals for satellite TV reception. Difficulties concerning the assurance of a satisfactory quality of video and audio reception are related to the threshold phenomenon, which exists in any realizable FM receiver. Its onset cannot be eliminated, but it can be delayed with a more sophisticated 'threshold-extension demodulator' (TED). For given performance criteria, the best threshold extension available usually results in the lowest overall earth terminal cost. Suitable threshold-extension techniques are discussed, taking into account the employment of open-loop and closed-loop tracking filters. A description is provided of a TED which represents a new closed-loop tracking filter invention. Attention is given to advanced tracking filter implementation, performance results, and projected and potential future applications.

  2. Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect

    Joshi, Abhinaya; Lou, Xinsheng; Neuschaefer, Carl; Chaudry, Majid; Quinn, Joseph

    2012-07-31

    This document provides the results of the project through September 2009. The Phase I project has recently been extended from September 2009 to March 2011. The project extension will begin work on Chemical Looping (CL) Prototype modeling and advanced control design exploration in preparation for a scale-up phase. The results to date include: successful development of dual loop chemical looping process models and dynamic simulation software tools, development and test of several advanced control concepts and applications for Chemical Looping transport control and investigation of several sensor concepts and establishment of two feasible sensor candidates recommended for further prototype development and controls integration. There are three sections in this summary and conclusions. Section 1 presents the project scope and objectives. Section 2 highlights the detailed accomplishments by project task area. Section 3 provides conclusions to date and recommendations for future work.

  3. Loop-linker PCR: an advanced PCR technique for genome walking.

    PubMed

    Trinh, Quoclinh; Shi, Hui; Xu, Wentao; Hao, Junran; Luo, Yunbo; Huang, Kunlun

    2012-10-01

    In this article, we developed a novel PCR method, termed loop-linker PCR, to isolate flanking sequences in transgenic crops. The novelty of this approach is its use of a stem-loop structure to design a loop-linker adapter. The adapter is designed to form a nick site when ligated with restricted DNA. This modification not only can prevent the self-ligation of adapters but also promotes the elongation of the 3' end of the loop-linker adapter to generate a stem-loop structure in the ligation products. Moreover, the suppressive effect of the stem-loop structure decreases nonspecific amplification and increases the success rate of the approach; all extension products will suppress exponential amplification except from the ligation product that contains the specific primer binding site. Using this method, 442, 1830, 107, and 512 bp left border flanking sequences were obtained from the transgenic maizes LY038, DAS-59122-7, Event 3272, and the transgenic soybean MON89788, respectively. The experimental results demonstrated that loop-linker PCR is an efficient, reliable, and cost-effective method for identifying flanking sequences in transgenic crops and could be applied for other genome walking applications.

  4. Testing of a Neon Loop Heat Pipe for Large Area Cryocooling

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Robinson, Franklin Lee

    2014-01-01

    Cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks is required for future NASA missions. A cryogenic loop heat pipe (CLHP) can provide a closed-loop cooling system for this purpose and has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A neon CLHP was tested extensively in a thermal vacuum chamber using a cryopump as the heat sink to characterize its transient and steady performance and verify its ability to cool large areas or components. Tests conducted included loop cool-down from the ambient temperature, startup, power cycle, heat removal capability, loop capillary limit and recovery from a dry-out, low power operation, and long duration steady state operation. The neon CLHP demonstrated robust operation. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully by applying power to both the pump and evaporator without any pre-conditioning. It could adapt to changes in the pump power andor evaporator power, and reach a new steady state very quickly. The evaporator could remove heat loads between 0.25W and 4W. When the pump capillary limit was exceeded, the loop could resume its normal function by reducing the pump power. Steady state operations were demonstrated for up to 6 hours. The ability of the neon loop to cool large areas was therefore successfully verified.

  5. A molecular characterization of the agonist binding site of a nematode cys-loop GABA receptor

    PubMed Central

    Kaji, Mark D; Kwaka, Ariel; Callanan, Micah K; Nusrat, Humza; Desaulniers, Jean-Paul; Forrester, Sean G

    2015-01-01

    Background and Purpose Cys-loop GABA receptors represent important targets for human chemotherapeutics and insecticides and are potential targets for novel anthelmintics (nematicides). However, compared with insect and mammalian receptors, little is known regarding the pharmacological characteristics of nematode Cys-loop GABA receptors. Here we have investigated the agonist binding site of the Cys-loop GABA receptor UNC-49 (Hco-UNC-49) from the parasitic nematode Haemonchus contortus. Experimental Approach We used two-electrode voltage-clamp electrophysiology to measure channel activation by classical GABA receptor agonists on Hco-UNC-49 expressed in Xenopus laevis oocytes, along with site-directed mutagenesis and in silico homology modelling. Key Results The sulphonated molecules P4S and taurine had no effect on Hco-UNC-49. Other classical Cys-loop GABAA receptor agonists tested on the Hco-UNC-49B/C heteromeric channel had a rank order efficacy of GABA > trans-4-aminocrotonic acid > isoguvacine > imidazole-4-acetic acid (IMA) > (R)-(−)-4-amino-3-hydroxybutyric acid [R(−)-GABOB] > (S)-(+)-4-amino-3-hydroxybutyric acid [S(+)-GABOB] > guanidinoacetic acid > isonipecotic acid > 5-aminovaleric acid (DAVA) (partial agonist) > β-alanine (partial agonist). In silico ligand docking revealed some variation in binding between agonists. Mutagenesis of a key serine residue in binding loop C to threonine had minimal effects on GABA and IMA but significantly increased the maximal response to DAVA and decreased twofold the EC50 for R(−)- and S(+)-GABOB. Conclusions and Implications The pharmacological profile of Hco-UNC-49 differed from that of vertebrate Cys-loop GABA receptors and insect resistance to dieldrin receptors, suggesting differences in the agonist binding pocket. These findings could be exploited to develop new drugs that specifically target GABA receptors of parasitic nematodes. PMID:25850584

  6. Non-extensive radiobiology

    SciTech Connect

    Sotolongo-Grau, O.; Rodriguez-Perez, D.; Antoranz, J. C.; Sotolongo-Costa, O.

    2011-03-14

    The expression of survival factors for radiation damaged cells is based on probabilistic assumptions and experimentally fitted for each tumor, radiation and conditions. Here we show how the simplest of these radiobiological models can be derived from the maximum entropy principle of the classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff hypothesis, motivated by clinical observations. A generalization of the exponential, the logarithm and the product to a non-extensive framework, provides a simple formula for the survival fraction corresponding to the application of several radiation doses on a living tissue. The obtained expression shows a remarkable agreement with the experimental data found in the literature, also providing a new interpretation of some of the parameters introduced anew. It is also shown how the presented formalism may have direct application in radiotherapy treatment optimization through the definition of the potential effect difference, simply calculated between the tumour and the surrounding tissue.

  7. Extensive Nonadditivity of Privacy

    NASA Astrophysics Data System (ADS)

    Smith, Graeme; Smolin, John A.

    2009-09-01

    Quantum information theory establishes the ultimate limits on communication and cryptography in terms of channel capacities for various types of information. The private capacity is particularly important because it quantifies achievable rates of quantum key distribution. We study the power of quantum channels with limited private capacity, focusing on channels that dephase in random bases. These display extensive nonadditivity of private capacity: a channel with 2log⁡d input qubits that has a private capacity less than 2, but when used together with a second channel with zero private capacity, the joint capacity jumps to (1/2)log⁡d. In contrast to earlier work which found nonadditivity vanishing as a fraction of input size or conditional on unproven mathematical assumptions, this provides a natural setting manifesting nonadditivity of privacy of the strongest possible sort.

  8. Extensive nonadditivity of privacy.

    PubMed

    Smith, Graeme; Smolin, John A

    2009-09-18

    Quantum information theory establishes the ultimate limits on communication and cryptography in terms of channel capacities for various types of information. The private capacity is particularly important because it quantifies achievable rates of quantum key distribution. We study the power of quantum channels with limited private capacity, focusing on channels that dephase in random bases. These display extensive nonadditivity of private capacity: a channel with 2logd input qubits that has a private capacity less than 2, but when used together with a second channel with zero private capacity, the joint capacity jumps to (1/2)logd. In contrast to earlier work which found nonadditivity vanishing as a fraction of input size or conditional on unproven mathematical assumptions, this provides a natural setting manifesting nonadditivity of privacy of the strongest possible sort.

  9. Dirac Loops in Carbon Allotropes

    NASA Astrophysics Data System (ADS)

    Mullen, Kieran; Uchoa, Bruno; Glatzhofer, D.

    2015-03-01

    We propose a family of structures that have ``Dirac loops'': closed lines in momentum space with Dirac-like quasiparticles, on which the density of states vanishes linearly with energy. The structures all possess the planar trigonal connectivity present in graphene, but are three dimensional. We discuss the consequences of their multiply-connected Fermi surface for transport, including the presence of three dimensional Integer Quantum Hall effect. In the presence of spin-orbit coupling, we show that those structures may have topological surface states. We discuss the feasibility of realizing the structures as an allotrope of carbon. Work supported by NSF Grants DMR-1310407 and DMR-1352604.

  10. Singularities in loop quantum cosmology.

    PubMed

    Cailleteau, Thomas; Cardoso, Antonio; Vandersloot, Kevin; Wands, David

    2008-12-19

    We show that simple scalar field models can give rise to curvature singularities in the effective Friedmann dynamics of loop quantum cosmology (LQC). We find singular solutions for spatially flat Friedmann-Robertson-Walker cosmologies with a canonical scalar field and a negative exponential potential, or with a phantom scalar field and a positive potential. While LQC avoids big bang or big rip type singularities, we find sudden singularities where the Hubble rate is bounded, but the Ricci curvature scalar diverges. We conclude that the effective equations of LQC are not in themselves sufficient to avoid the occurrence of curvature singularities.

  11. Simultaneous determination of arsenic, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in fertilizers by microwave acid digestion and inductively coupled plasma-optical emission spectrometry detection: single-laboratory validation of a modification and extension of AOAC 2006.03.

    PubMed

    Webb, Sharon; Bartos, James; Boles, Rhonda; Hasty, Elaine; Thuotte, Ethel; Thiex, Nancy J

    2014-01-01

    A single-laboratory validation study was conducted for the simultaneous determination of arsenic, cadmium, calcium, cobalt, copper, chromium, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in all major types of commercial fertilizer products by microwave digestion and inductively coupled plasma-optical emission spectroscopy analysis. This validation study proposes an extension and modification of AOAC 2006.03. The extension is the inclusion of calcium, copper, iron, magnesium, manganese, and zinc, and the modification is incorporation of hydrochloric acid in the digestion system. This dual acid digestion utilizes both hydrochloric and nitric acids in a 3 to 9 mL volume ratio/100 mL. In addition to 15 of the 30 original validation materials used in the 2006.03 collaborative study, National Institute of Standards and Technology Standard Reference Material 695 and Magruder 2009-06 were incorporated as accuracy materials. The main benefits of this proposed method are a significant increase in laboratory efficiency when compared to the use of both AOAC Methods 965.09 and 2006.03 to achieve the same objective and an enhanced recovery of several metals.

  12. Responses of a triple mutant defective in three iron deficiency-induced Basic Helix-Loop-Helix genes of the subgroup Ib(2) to iron deficiency and salicylic acid.

    PubMed

    Maurer, Felix; Naranjo Arcos, Maria Augusta; Bauer, Petra

    2014-01-01

    Plants are sessile organisms that adapt to external stress by inducing molecular and physiological responses that serve to better cope with the adverse growth condition. Upon low supply of the micronutrient iron, plants actively increase the acquisition of soil iron into the root and its mobilization from internal stores. The subgroup Ib(2) BHLH genes function as regulators in this response, however their concrete functions are not fully understood. Here, we analyzed a triple loss of function mutant of BHLH39, BHLH100 and BHLH101 (3xbhlh mutant). We found that this mutant did not have any iron uptake phenotype if iron was provided. However, under iron deficiency the mutant displayed a more severe leaf chlorosis than the wild type. Microarray-based transcriptome analysis revealed that this mutant phenotype resulted in the mis-regulation of 198 genes, out of which only 15% were associated with iron deficiency regulation itself. A detailed analysis revealed potential targets of the bHLH transcription factors as well as genes reflecting an exaggerated iron deficiency response phenotype. Since the BHLH genes of this subgroup have been brought into the context of the plant hormone salicylic acid, we investigated whether the 3xbhlh mutant might have been affected by this plant signaling molecule. Although a very high number of genes responded to SA, also in a differential manner between mutant and wild type, we did not find any indication for an association of the BHLH gene functions in SA responses upon iron deficiency. In summary, our study indicates that the bHLH subgroup Ib(2) transcription factors do not only act in iron acquisition into roots but in other aspects of the adaptation to iron deficiency in roots and leaves.

  13. Turning an Extension Aide into an Extension Agent

    ERIC Educational Resources Information Center

    Seevers, Brenda; Dormody, Thomas J.

    2010-01-01

    For any organization to remain sustainable, a renewable source of faculty and staff needs to be available. The Extension Internship Program for Juniors and Seniors in High School is a new tool for recruiting and developing new Extension agents. Students get "hands on" experience working in an Extension office and earn college credit…

  14. Functional Characterization of Antibodies against Neisseria gonorrhoeae Opacity Protein Loops

    PubMed Central

    Cole, Jessica G.; Jerse, Ann E.

    2009-01-01

    Background The development of a gonorrhea vaccine is challenged by the lack of correlates of protection. The antigenically variable neisserial opacity (Opa) proteins are expressed during infection and have a semivariable (SV) and highly conserved (4L) loop that could be targeted in a vaccine. Here we compared antibodies to linear (Ablinear) and cyclic (Abcyclic) peptides that correspond to the SV and 4L loops and selected hypervariable (HV2) loops for surface-binding and protective activity in vitro and in vivo. Methods/Findings AbSV cyclic bound a greater number of different Opa variants than AbSV linear, including variants that differed by seven amino acids. Antibodies to the 4L peptide did not bind Opa-expressing bacteria. AbSV cyclic and AbHV2 cyclic, but not AbSV linear or AbHV2 linear agglutinated homologous Opa variants, and AbHV2BD cyclic but not AbHV2BD linear blocked the association of OpaB variants with human endocervical cells. Only AbHV2BD linear were bactericidal against the serum resistant parent strain. Consistent with host restrictions in the complement cascade, the bactericidal activity of AbHV2BD linear was increased 8-fold when rabbit complement was used. None of the antibodies was protective when administered vaginally to mice. Antibody duration in the vagina was short-lived, however, with <50% of the antibodies recovered 3 hrs post-administration. Conclusions We conclude that an SV loop-specific cyclic peptide can be used to induce antibodies that recognize a broad spectrum of antigenically distinct Opa variants and have agglutination abilities. HV2 loop-specific cyclic peptides elicited antibodies with agglutination and adherence blocking abilities. The use of human complement when testing the bactericidal activity of vaccine-induced antibodies against serum resistant gonococci is also important. PMID:19956622

  15. A renormalization group analysis of the Hill model and its HEIDI extension

    NASA Astrophysics Data System (ADS)

    Basso, L.; Fischer, O.; van der Bij, J. J.

    2014-03-01

    The parameter space of the simplest extension of the standard model is studied in the light of the 125 GeV Higgs boson discovery. The Hill model extends the scalar sector of the standard model with a real singlet, that mixes with the standard model Higgs boson only via cubic interactions. The two-loop standard model renormalization group equations are completed with the one-loop Hill equations. Stability up to the Planck scale is possible without tension with the other parameters. An extension with more singlet fields, in particular a higher-dimensional (HEIDI) field, is presented.

  16. Two loop correction to interference in $gg \\to ZZ$

    SciTech Connect

    Campbell, John M.; Ellis, R. Keith; Czakon, Michal; Kirchner, Sebastian

    2016-08-01

    We present results for the production of a pair of on-shell Z bosons via gluon-gluon fusion. This process occurs both through the production and decay of the Higgs boson, and through continuum production where the Z boson couples to a loop of massless quarks or to a massive quark. We calculate the interference of the two processes and its contribution to the cross section up to and including order O(α$_{s}^{3}$ ). The two-loop contributions to the amplitude are all known analytically, except for the continuum production through loops of top quarks of mass m. The latter contribution is important for the invariant mass of the two Z bosons, (as measured by the mass of their leptonic decay products, m$_{4l}$), in a regime where m$_{4l}$ ≥ 2m because of the contributions of longitudinal bosons. We examine all the contributions to the virtual amplitude involving top quarks, as expansions about the heavy top quark limit combined with a conformal mapping and Padé approximants. Comparison with the analytic results, where known, allows us to assess the validity of the heavy quark expansion, and it extensions. We give results for the NLO corrections to this interference, including both real and virtual radiation.

  17. Two loop correction to interference in $$gg \\to ZZ$$

    DOE PAGES

    Campbell, John M.; Ellis, R. Keith; Czakon, Michal; ...

    2016-08-01

    We present results for the production of a pair of on-shell Z bosons via gluon-gluon fusion. This process occurs both through the production and decay of the Higgs boson, and through continuum production where the Z boson couples to a loop of massless quarks or to a massive quark. We calculate the interference of the two processes and its contribution to the cross section up to and including order O(αmore » $$_{s}^{3}$$ ). The two-loop contributions to the amplitude are all known analytically, except for the continuum production through loops of top quarks of mass m. The latter contribution is important for the invariant mass of the two Z bosons, (as measured by the mass of their leptonic decay products, m$$_{4l}$$), in a regime where m$$_{4l}$$ ≥ 2m because of the contributions of longitudinal bosons. We examine all the contributions to the virtual amplitude involving top quarks, as expansions about the heavy top quark limit combined with a conformal mapping and Padé approximants. Comparison with the analytic results, where known, allows us to assess the validity of the heavy quark expansion, and it extensions. We give results for the NLO corrections to this interference, including both real and virtual radiation.« less

  18. Magnetic monopole in the loop representation

    SciTech Connect

    Leal, Lorenzo; Lopez, Alexander

    2006-01-15

    We quantize, within the Loop Representation formalism, the electromagnetic field in the presence of a static magnetic pole. It is found that the loop-dependent physical wave functionals of the quantum Maxwell theory become multivalued, through a topological phase factor depending on the solid angle subtended at the monopole by a surface bounded by the loop. It is discussed how this fact generalizes what occurs in ordinary quantum mechanics in multiply connected spaces.

  19. LMFBR with booster pump in pumping loop

    DOEpatents

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  20. Catheterization of Intestinal Loops in Ruminants Does Not Adversely Affect Loop Function

    PubMed Central

    Inglis, G Douglas; Kastelic, John P; Uwiera, Richard R E

    2010-01-01

    Catheterized intestinal loops may be a valuable model to elucidate key components of the host response to various treatments within the small intestine of ruminants. We examined whether catheterizing ileal loops in sheep affected the overall health of animals and intestinal function, whether a bacterial treatment could be introduced into the loops through the catheters, and whether broad-spectrum antibiotics could sterilize the loops. Escherichia coli cells transformed to express the GFP gene were introduced readily into the loops through the catheters, and GFP E. coli cells were localized within the injected loops. Catheterized loops, interspaces, and intact ileum exhibited no abnormalities in tissue appearance or electrical resistance. Expression of the IFNγ, IL1α, IL4, IL6, IL12p40, IL18, TGFβ1, and TNFα cytokine genes did not differ significantly among the intact ileum, catheterized loops, and interspaces, nor did the expression of the gene for inducible nitric oxide synthase. Broad-spectrum antibiotics administered during surgery did not sterilize the loops or interspaces and did not substantively change the composition of the microbiota. However, antibiotics reduced the overall number of bacterial cells within the loop and the relative abundance of community constituents. We concluded that catheterization of intestinal loops did not adversely affect health or loop function in sheep. Furthermore, allowing animals to recover fully from surgery and to clear pharmaceuticals will remove any confounding effects due to these factors, making catheterized intestinal loops a feasible model for studying host responses in ruminants. PMID:21262134

  1. Extensible Wind Towers

    NASA Astrophysics Data System (ADS)

    Sinagra, Marco; Tucciarelli, Tullio

    The diffusion of wind energy generators is restricted by their strong landscape impact. The PERIMA project is about the development of an extensible wind tower able to support a wind machine for several hundred kW at its optimal working height, up to more than 50 m. The wind tower has a telescopic structure, made by several tubes located inside each other with their axis in vertical direction. The lifting force is given by a jack-up system confined inside a shaft, drilled below the ground level. In the retracted tower configuration, at rest, tower tubes are hidden in the foundation of the telescopic structure, located below the ground surface, and the wind machine is the only emerging part of the system. The lifting system is based on a couple of oleodynamic cylinders that jack-up a central tube connected to the top of the tower by a spring, with a diameter smaller than the minimum tower diameter and with a length a bit greater than the length of the extended telescopic structure. The central tube works as plunger and lifts all telescopic elements. The constraint between the telescopic elements is ensured by special parts, which are kept in traction by the force of the spring and provide the resisting moment. The most evident benefit of the proposed system is attained with the use of a two-blade propeller, which can be kept horizontal in the retracted tower configuration.

  2. The BGAN extension programme

    NASA Astrophysics Data System (ADS)

    Rivera, Juan J.; Trachtman, Eyal; Richharia, Madhavendra

    2005-11-01

    Mobile satellite telecommunications systems have undergone an enormous evolution in the last decades, with the interest in having advanced telecommunications services available on demand, anywhere and at any time, leading to incredible advances. The demand for braodband data is therefore rapidly gathering pace, but current solutions are finding it increasingly difficult to combine large bandwidth with ubiquitous coverage, reliability and portability. The BGAN (Broadband Global Area Network) system, designed to operate with the Inmarsat-4 satellites, provides breakthrough services that meet all of these requirements. It will enable broadband connection on the move, delivering all the key tools of the modern office. Recognising the great impact that Inmarsat's BGAN system will have on the European satellite communications industry, and the benefits that it will bring to a wide range of European industries, in 2003 ESA initiated the "BGAN Extension" project. Its primary goals are to provide the full range of BGAN services to truly mobile platforms, operating in aeronautical, vehicular and maritime environments, and to introduce a multicast service capability. The project is supported by the ARTES Programme which establishes a collaboration agreement between ESA, Inmarsat and a group of key industrial and academic institutions which includes EMS, Logica, Nera and the University of Surrey (UK).

  3. Multi-instrument observations of coronal loops

    NASA Astrophysics Data System (ADS)

    Scott, Jason Terrence

    This document exhibits results of analysis from data collected with multiple EUV satellites (SOHO, TRACE, STEREO, Hinode, and SDO). The focus is the detailed observation of coronal loops using multiple instruments, i.e. filter imagers and spectrometers. Techniques for comparing the different instruments and deriving loop parameters are demonstrated. Attention is given to the effects the different instruments may introduce into the data and their interpretation. The assembled loop parameters are compared to basic energy balance equations and scaling laws. Discussion of the blue-shifted, asymmetric, and line broadened spectral line profiles near the footpoints of coronal loops is made. The first quantitative analysis of the anti-correlation between intensity and spectral line broadening for isolated regions along loops and their footpoints is presented. A magnetic model of an active region shows where the separatrices meet the photospheric boundary. At the boundary, the spectral data reveal concentrated regions of increased blue-shifted outflows, blue wing asymmetry, and line broadening. This is found just outside the footpoints of bright loops. The intensity and line broadening in this region are anti-correlated. A comparison of the similarities in the spectroscopic structure near the footpoints of the arcade loops and more isolated loops suggests the notion of consistent structuring for the bright loops forming an apparent edge of an active region core.

  4. Conservation law for linked cosmic string loops

    NASA Astrophysics Data System (ADS)

    Bekenstein, Jacob D.

    1992-05-01

    Taking a cue from the connection between fluid helicity and the linkage between closed vortices in ordinary turbulent flow, we examine topological restrictions on the linkage of cosmic string loops (or superfluid quantum vortex rings). The analog of helicity in these cases vanishes, but loops (and vortex rings) can link together, the extent of linkage (knotting included) being related to the contorsion of the loops or rings by a topological conservation law. This law is respected by intercommunication. One consequence is that total loop contorsion is quantized in integers.

  5. Unified framework for systematic loop transformations

    SciTech Connect

    Lu, L.C.; Chen, M.

    1990-10-01

    This paper presents a formal mathematical framework which unifies the existing loop transformations. This framework also includes more general classes of loop transformations, which can extract more parallelism from a class of programs than the existing techniques. We classify schedules into three classes: uniform, subdomain-variant, and statement-variant. Viewing from the degree of parallelism to be gained by loop transformation, the schedules can also be classified as single-sequential level, multiple-sequential level, and mixed schedules. We also illustrate the usefulness of the more general loop transformation with an example program.

  6. Transcription of potato spindle tuber viroid by RNA polymerase II starts in the left terminal loop

    SciTech Connect

    Kolonko, Nadine; Bannach, Oliver; Aschermann, Katja; Hu, Kang-Hong; Moors, Michaela; Schmitz, Michael; Steger, Gerhard; Riesner, Detlev . E-mail: riesner@biophys.uni-duesseldorf.de

    2006-04-10

    Viroids are single-stranded, circular RNAs of 250 to 400 bases, that replicate autonomously in their host plants but do not code for a protein. Viroids of the family Pospiviroidae, of which potato spindle tuber viroid (PSTVd) is the type strain, are replicated by the host's DNA-dependent RNA polymerase II in the nucleus. To analyze the initiation site of transcription from the (+)-stranded circles into (-)-stranded replication intermediates, we used a nuclear extract from a non-infected cell culture of the host plant S. tuberosum. The (-)-strands, which were de novo-synthesized in the extract upon addition of circular (+)-PSTVd, were purified by affinity chromatography. This purification avoided contamination by host nucleic acids that had resulted in a misassignment of the start site in an earlier study. Primer-extension analysis of the de novo-synthesized (-)-strands revealed a single start site located in the hairpin loop of the left terminal region in circular PSTVd's secondary structure. This start site is supported further by analysis of the infectivity and replication behavior of site-directed mutants in planta.

  7. Closed-Loop Neuroscience and Non-Invasive Brain Stimulation: A Tale of Two Loops

    PubMed Central

    Zrenner, Christoph; Belardinelli, Paolo; Müller-Dahlhaus, Florian; Ziemann, Ulf

    2016-01-01

    Closed-loop neuroscience is receiving increasing attention with recent technological advances that enable complex feedback loops to be implemented with millisecond resolution on commodity hardware. We summarize emerging conceptual and methodological frameworks that are available to experimenters investigating a “brain in the loop” using non-invasive brain stimulation and briefly review the experimental and therapeutic implications. We take the view that closed-loop neuroscience in fact deals with two conceptually quite different loops: a “brain-state dynamics” loop, used to couple with and modulate the trajectory of neuronal activity patterns, and a “task dynamics” loop, that is the bidirectional motor-sensory interaction between brain and (simulated) environment, and which enables goal-directed behavioral tasks to be incorporated. Both loops need to be considered and combined to realize the full experimental and therapeutic potential of closed-loop neuroscience. PMID:27092055

  8. Self-condensation of a thiazole-peptide bearing a 21-membered loop into a library of giant macrocycles with multiple orthogonal loops.

    PubMed

    Singh, Yogendra; Hoang, Huy N; Flanagan, Bernadine; Fairlie, David P

    2006-03-16

    [reaction: see text] Tetrapeptide analogue H-[Glu-Ser-Lys(Thz)]-OH, containing a turn-inducing thiazole constraint, was used as a template to produce a 21-membered structurally characterized loop by linking Glu and Lys side chains with a Val-Ile dipeptide. This template was oligomerized in one pot to a library (cyclo-[1](n)(), n = 2-10) of giant symmetrical macrocycles (up to 120-membered rings), fused to 2-10 appended loops that were carried intact through multiple oligomerization (chain extension) and cyclization (chain terminating) reactions of the template. A three-dimensional solution structure for cyclo-[1](3) shows all three appended loops projecting from the same face of the macrocycle. This is a promising approach to separating peptide motifs over large distances.

  9. Closing the loop with blur

    NASA Astrophysics Data System (ADS)

    Tani, Jacopo

    A great variety of systems use image sensors to provide measurements for closed loop operation. A drawback of using image sensors in real-time feedback is that they provide measurements at slower sampling rates as compared to the actuators, typically around 30 Hz for CCD cameras, hence acting as the bottleneck for closed loop control bandwidths. While high speed cameras exist, higher frame rates imply an upper bound on exposures which lowers the signal-to-noise-ratio (SNR), reducing measurements accuracy. The integrative nature of image sensors though offers the opportunity to prolong the exposure window and collect motion blurred measurements. This research describes how to exploit the dynamic information of observed system outputs, encoded in motion blur, to control fast systems at the fast rate through slow rate image sensors. In order to achieve this objective it is necessary to (a) design a controller providing fast rate input to the system based on the slow image measurements. Ideally such a controller would require a fast rate estimate of the system's state variables in order to provide the necessary control action, therefore an (b) image blur based estimator is to be developed. State estimators typically need a model of the system in order to provide their estimates, so (c) a system identification problem has to be addressed, where a reliable model describing the frequency content of the system, up to frequencies corresponding to the fast rate, has to be determined through slow rate image sensor measurements. Alternatively when such a procedure is not possible for lack, e.g., of knowledge of the input to the system, then (d) a method to reconstruct the output signal frequency content up to frequencies above those set by the limitations of the sampling theorem is to be devised. Therefore in order to "close the loop with blur", this work describes how to pose and solve the problems of, namely: system identification , state estimation, closed loop control and

  10. Delay locked loop integrated circuit.

    SciTech Connect

    Brocato, Robert Wesley

    2007-10-01

    This report gives a description of the development of a Delay Locked Loop (DLL) integrated circuit (IC). The DLL was developed and tested as a stand-alone IC test chip to be integrated into a larger application specific integrated circuit (ASIC), the Quadrature Digital Waveform Synthesizer (QDWS). The purpose of the DLL is to provide a digitally programmable delay to enable synchronization between an internal system clock and external peripherals with unknown clock skew. The DLL was designed and fabricated in the IBM 8RF process, a 0.13 {micro}m CMOS process. It was designed to operate with a 300MHz clock and has been tested up to 500MHz.

  11. DNA looping mediates nucleosome transfer

    PubMed Central

    Brennan, Lucy D.; Forties, Robert A.; Patel, Smita S.; Wang, Michelle D.

    2016-01-01

    Proper cell function requires preservation of the spatial organization of chromatin modifications. Maintenance of this epigenetic landscape necessitates the transfer of parental nucleosomes to newly replicated DNA, a process that is stringently regulated and intrinsically linked to replication fork dynamics. This creates a formidable setting from which to isolate the central mechanism of transfer. Here we utilized a minimal experimental system to track the fate of a single nucleosome following its displacement, and examined whether DNA mechanics itself, in the absence of any chaperones or assembly factors, may serve as a platform for the transfer process. We found that the nucleosome is passively transferred to available dsDNA as predicted by a simple physical model of DNA loop formation. These results demonstrate a fundamental role for DNA mechanics in mediating nucleosome transfer and preserving epigenetic integrity during replication. PMID:27808093

  12. Closed loop steam cooled airfoil

    DOEpatents

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  13. UWB communication receiver feedback loop

    DOEpatents

    Spiridon, Alex; Benzel, Dave; Dowla, Farid U.; Nekoogar, Faranak; Rosenbury, Erwin T.

    2007-12-04

    A novel technique and structure that maximizes the extraction of information from reference pulses for UWB-TR receivers is introduced. The scheme efficiently processes an incoming signal to suppress different types of UWB as well as non-UWB interference prior to signal detection. Such a method and system adds a feedback loop mechanism to enhance the signal-to-noise ratio of reference pulses in a conventional TR receiver. Moreover, sampling the second order statistical function such as, for example, the autocorrelation function (ACF) of the received signal and matching it to the ACF samples of the original pulses for each transmitted bit provides a more robust UWB communications method and system in the presence of channel distortions.

  14. R-loopDB: a database for R-loop forming sequences (RLFS) and R-loops

    PubMed Central

    Jenjaroenpun, Piroon; Wongsurawat, Thidathip; Sutheeworapong, Sawannee; Kuznetsov, Vladimir A.

    2017-01-01

    R-loopDB (http://rloop.bii.a-star.edu.sg) was originally constructed as a collection of computationally predicted R-loop forming sequences (RLFSs) in the human genic regions. The renewed R-loopDB provides updates, improvements and new options, including access to recent experimental data. It includes genome-scale prediction of RLFSs for humans, six other animals and yeast. Using the extended quantitative model of RLFSs (QmRLFS), we significantly increased the number of RLFSs predicted in the human genes and identified RLFSs in other organism genomes. R-loopDB allows searching of RLFSs in the genes and in the 2 kb upstream and downstream flanking sequences of any gene. R-loopDB exploits the Ensembl gene annotation system, providing users with chromosome coordinates, sequences, gene and genomic data of the 1 565 795 RLFSs distributed in 121 056 genic or proximal gene regions of the covered organisms. It provides a comprehensive annotation of Ensembl RLFS-positive genes including 93 454 protein coding genes, 12 480 long non-coding RNA and 7 568 small non-coding RNA genes and 7 554 pseudogenes. Using new interface and genome viewers of R-loopDB, users can search the gene(s) in multiple species with keywords in a single query. R-loopDB provides tools to carry out comparative evolution and genome-scale analyses in R-loop biology. PMID:27899586

  15. Three-loop cusp anomalous dimension and a conjecture for n loops

    NASA Astrophysics Data System (ADS)

    Kidonakis, Nikolaos

    2016-05-01

    I present analytical expressions for the massive cusp anomalous dimension in QCD through three loops, first calculated in 2014, in terms of elementary functions and ordinary polylogarithms. I observe interesting relations between the results at different loops and provide a conjecture for the n-loop cusp anomalous dimension in terms of the lower-loop results. I also present numerical results and simple approximate formulas for the cusp anomalous dimension relevant to top-quark production.

  16. Gravitational steady states of solar coronal loops

    NASA Astrophysics Data System (ADS)

    Sugiyama, Linda E.; Asgari-Targhi, M.

    2017-02-01

    Coronal loops on the surface of the sun appear to consist of curved, plasma-confining magnetic flux tubes or "ropes," anchored at both ends in the photosphere. Toroidal loops carrying current are inherently unstable to expansion in the major radius due to toroidal-curvature-induced imbalances in the magnetic and plasma pressures. An ideal MHD analysis of a simple isolated loop with density and pressure higher than the surrounding corona, based on the theory of magnetically confined toroidal plasmas, shows that the radial force balance depends on the loop internal structure and varies over parameter space. It provides a unified picture of simple loop steady states in terms of the plasma beta βo, the inverse aspect ratio ɛ =a /Ro , and the MHD gravitational parameter G ̂≡g a /vA2 , all at the top of the loop, where g is the acceleration due to gravity, a the average minor radius, and vA the shear Alfvén velocity. In the high and low beta tokamak orderings, βo=2 noT /(Bo2/2 μo)˜ɛ1 and ɛ2 , that fit many loops, the solar gravity can sustain nonaxisymmetric steady states at G ̂˜ɛ βo that represent the maximum stable height. At smaller G ̂≤ɛ2βo , the loop is axisymmetric to leading order and stabilized primarily by the two fixed loop ends. Very low beta, nearly force-free, steady states with βo˜ɛ3 may also exist, with or without gravity, depending on higher order effects. The thin coronal loops commonly observed in solar active regions have ɛ ≃0.02 and fit the high beta steady states. G ̂ increases with loop height. Fatter loops in active regions that form along magnetic neutral lines and may lead to solar flares and Coronal Mass Ejections have ɛ ≃0.1 -0.2 and may fit the low beta ordering. Larger loops tend to have G ̂>ɛ βo and be unstable to radial expansion because the exponential hydrostatic reduction in the density at the loop-top reduces the gravitational force -ρG ̂ R ̂ below the level that balances expansion, in agreement with

  17. Multiple LacI-mediated loops revealed by Bayesian statistics and tethered particle motion

    PubMed Central

    Johnson, Stephanie; van de Meent, Jan-Willem; Phillips, Rob; Wiggins, Chris H.; Lindén, Martin

    2014-01-01

    The bacterial transcription factor LacI loops DNA by binding to two separate locations on the DNA simultaneously. Despite being one of the best-studied model systems for transcriptional regulation, the number and conformations of loop structures accessible to LacI remain unclear, though the importance of multiple coexisting loops has been implicated in interactions between LacI and other cellular regulators of gene expression. To probe this issue, we have developed a new analysis method for tethered particle motion, a versatile and commonly used in vitro single-molecule technique. Our method, vbTPM, performs variational Bayesian inference in hidden Markov models. It learns the number of distinct states (i.e. DNA–protein conformations) directly from tethered particle motion data with better resolution than existing methods, while easily correcting for common experimental artifacts. Studying short (roughly 100 bp) LacI-mediated loops, we provide evidence for three distinct loop structures, more than previously reported in single-molecule studies. Moreover, our results confirm that changes in LacI conformation and DNA-binding topology both contribute to the repertoire of LacI-mediated loops formed in vitro, and provide qualitatively new input for models of looping and transcriptional regulation. We expect vbTPM to be broadly useful for probing complex protein–nucleic acid interactions. PMID:25120267

  18. Dihedral-like constructions of automorphic loops

    NASA Astrophysics Data System (ADS)

    Aboras, Mouna

    In this dissertation we study dihedral-like constructions of automorphic loops. Automorphic loops are loops in which all inner mappings are automorphisms. We start by describing a generalization of the dihedral construction for groups. Namely, if (G, +) is an abelian group, m > 1 and alpha ∈2 Aut(G), let Dih(m, G, alpha) on Zm x G be defined by. (i, u)(j, v) = (i + j, ((--1)ju + v)alpha ij). We prove that the resulting loop is automorphic if and only if m = 2 or (alpha2 = 1 and m is even) or (m is odd, alpha = 1 and exp(G) ≤ 2). In the last case, the loop is a group. The case m = 2 was introduced by Kinyon, Kunen, Phillips, and Vojtechovsky. We study basic structural properties of dihedral-like automorphic loops. We describe certain subloops, including: nucleus, commutant, center, associator subloop and derived subloop. We prove theorems for dihedral-like automorphic loops analogous to the Cauchy and Lagrange theorems for groups, and further we discuss the coset decomposition in dihedral-like automorphic loops. We show that two finite dihedral-like automorphic loops Dih( m, G, alpha) and Dih(m¯, G¯, [special character omitted]) are isomorphic if and only if m = m¯, G ≅ G¯ and alpha is conjugate to [special character omitted] in Aut(G). We describe the automorphism group of Q and its subgroup consisting of inner mappings of Q. Finally, due to the solution to the isomorphism problem, we are interested in studying conjugacy classes of automorphism groups of finite abelian groups. Then we describe all dihedral-like automorphic loops of order < 128 up to isomorphism. We conclude with a description of all dihedral-like automorphic loops of order < 64 up to isotopism.

  19. The Cygnus Loop: An Older Supernova Remnant.

    ERIC Educational Resources Information Center

    Straka, William

    1987-01-01

    Describes the Cygnus Loop, one of brightest and most easily studied of the older "remnant nebulae" of supernova outbursts. Discusses some of the historical events surrounding the discovery and measurement of the Cygnus Loop and makes some projections on its future. (TW)

  20. Formation of Chromosomal Domains by Loop Extrusion.

    PubMed

    Fudenberg, Geoffrey; Imakaev, Maxim; Lu, Carolyn; Goloborodko, Anton; Abdennur, Nezar; Mirny, Leonid A

    2016-05-31

    Topologically associating domains (TADs) are fundamental structural and functional building blocks of human interphase chromosomes, yet the mechanisms of TAD formation remain unclear. Here, we propose that loop extrusion underlies TAD formation. In this process, cis-acting loop-extruding factors, likely cohesins, form progressively larger loops but stall at TAD boundaries due to interactions with boundary proteins, including CTCF. Using polymer simulations, we show that this model produces TADs and finer-scale features of Hi-C data. Each TAD emerges from multiple loops dynamically formed through extrusion, contrary to typical illustrations of single static loops. Loop extrusion both explains diverse experimental observations-including the preferential orientation of CTCF motifs, enrichments of architectural proteins at TAD boundaries, and boundary deletion experiments-and makes specific predictions for the depletion of CTCF versus cohesin. Finally, loop extrusion has potentially far-ranging consequences for processes such as enhancer-promoter interactions, orientation-specific chromosomal looping, and compaction of mitotic chromosomes.

  1. External Tank CIL Closed Loop Verification System

    NASA Technical Reports Server (NTRS)

    Hartley, Eugene A., Jr.

    2005-01-01

    Lockheed Martin was requested to develop a closed loop CIL system following the Challenger accident. The system that was developed has proven to be very robust with minimal problems since implementation, having zero escapes in the last 7 years (27 External Tanks). We are currently investigating expansion of the CIL Closed Loop system to include "MI" CILs.

  2. Loop calculus for lattice gauge theories

    SciTech Connect

    Gambini, R.; Leal, L.; Trias, A.

    1989-05-15

    Hamiltonian calculations are performed using a loop-labeled basis where the full set of identities for the SU(/ital N/) gauge models has been incorporated. The loops are classified as clusterlike structures and the eigenvalue problem leads to a linear set of finite-difference equations easily amenable to numerical treatment. Encouraging results are reported for SU(2) at spatial dimension 2.

  3. On Novice Loop Boundaries and Range Conceptions

    ERIC Educational Resources Information Center

    Ginat, David

    2004-01-01

    The paper presents a study of novice difficulties with range conceptions in loop design. CS2 students were asked to solve four related enumeration tasks, which required various loop boundary specifications. The student solutions varied considerably in conciseness and efficiency. The solution diversity reveals significant differences in range…

  4. Vacuum Energy Sequestering and Graviton Loops.

    PubMed

    Kaloper, Nemanja; Padilla, Antonio

    2017-02-10

    We recently formulated a local mechanism of vacuum energy sequester. This mechanism automatically removes all matter loop contributions to vacuum energy from the stress energy tensor which sources the curvature. Here we adapt the local vacuum energy sequestering mechanism to also cancel all the vacuum energy loops involving virtual gravitons, in addition to the vacuum energy generated by matter fields alone.

  5. Complete renormalization of QCD at five loops

    NASA Astrophysics Data System (ADS)

    Luthe, Thomas; Maier, Andreas; Marquard, Peter; Schröder, York

    2017-03-01

    We present new analytical five-loop Feynman-gauge results for the anomalous dimensions of ghost field and -vertex, generalizing the known values for SU(3) to a general gauge group. Together with previously published results on the quark mass and -field anomalous dimensions and the Beta function, this completes the 5-loop renormalization program of gauge theories in that gauge.

  6. Vacuum Energy Sequestering and Graviton Loops

    NASA Astrophysics Data System (ADS)

    Kaloper, Nemanja; Padilla, Antonio

    2017-02-01

    We recently formulated a local mechanism of vacuum energy sequester. This mechanism automatically removes all matter loop contributions to vacuum energy from the stress energy tensor which sources the curvature. Here we adapt the local vacuum energy sequestering mechanism to also cancel all the vacuum energy loops involving virtual gravitons, in addition to the vacuum energy generated by matter fields alone.

  7. Spring control of wire harness loops

    NASA Technical Reports Server (NTRS)

    Curcio, P. J.

    1979-01-01

    Negator spring control guides wire harness between movable and fixed structure. It prevents electrical wire harness loop from jamming or being severed as wire moves in response to changes in position of aircraft rudder. Spring-loaded coiled cable controls wire loop regardless of rudder movement.

  8. Acquisition performance of various QPSK carrier tracking loops

    NASA Technical Reports Server (NTRS)

    Hinedi, S.; Shah, B.

    1992-01-01

    The frequency and phase acquisition performance of three quadrature phase shift keying (QPSK) carrier tracking loops, the MAP estimation loop, the Costas crossover loop, and the generalized Costas loop, is described. Acquisition time and probability of acquisition as a function of both loop signal-to-noise ratio and frequency offset to loop bandwidth ratio are obtained via computer simulations for type II and III loops. It is shown that the MAP loop, which results in the smallest squaring loss for all signal-to-noise ratios, is sometimes outperformed by the other two loops in terms of acquisition time and acquisition probability.

  9. DNA looping increases the range of bistability in a stochastic model of the lac genetic switch

    NASA Astrophysics Data System (ADS)

    Earnest, Tyler M.; Roberts, Elijah; Assaf, Michael; Dahmen, Karin; Luthey-Schulten, Zaida

    2013-04-01

    Conditions and parameters affecting the range of bistability of the lac genetic switch in Escherichia coli are examined for a model which includes DNA looping interactions with the lac repressor and a lactose analogue. This stochastic gene-mRNA-protein model of the lac switch describes DNA looping using a third transcriptional state. We exploit the fast bursting dynamics of mRNA by combining a novel geometric burst extension with the finite state projection method. This limits the number of protein/mRNA states, allowing for an accelerated search of the model's parameter space. We evaluate how the addition of the third state changes the bistability properties of the model and find a critical region of parameter space where the phenotypic switching occurs in a range seen in single molecule fluorescence studies. Stochastic simulations show induction in the looping model is preceded by a rare complete dissociation of the loop followed by an immediate burst of mRNA rather than a slower build up of mRNA as in the two-state model. The overall effect of the looped state is to allow for faster switching times while at the same time further differentiating the uninduced and induced phenotypes. Furthermore, the kinetic parameters are consistent with free energies derived from thermodynamic studies suggesting that this minimal model of DNA looping could have a broader range of application.

  10. Fast, vacancy-free climb of prismatic dislocation loops in bcc metals

    PubMed Central

    Swinburne, Thomas D.; Arakawa, Kazuto; Mori, Hirotaro; Yasuda, Hidehiro; Isshiki, Minoru; Mimura, Kouji; Uchikoshi, Masahito; Dudarev, Sergei L.

    2016-01-01

    Vacancy-mediated climb models cannot account for the fast, direct coalescence of dislocation loops seen experimentally. An alternative mechanism, self climb, allows prismatic dislocation loops to move away from their glide surface via pipe diffusion around the loop perimeter, independent of any vacancy atmosphere. Despite the known importance of self climb, theoretical models require a typically unknown activation energy, hindering implementation in materials modeling. Here, extensive molecular statics calculations of pipe diffusion processes around irregular prismatic loops are used to map the energy landscape for self climb in iron and tungsten, finding a simple, material independent energy model after normalizing by the vacancy migration barrier. Kinetic Monte Carlo simulations yield a self climb activation energy of 2 (2.5) times the vacancy migration barrier for 1/2〈111〉 (〈100〉) dislocation loops. Dislocation dynamics simulations allowing self climb and glide show quantitative agreement with transmission electron microscopy observations of climbing prismatic loops in iron and tungsten, confirming that this novel form of vacancy-free climb is many orders of magnitude faster than what is predicted by traditional climb models. Self climb significantly influences the coarsening rate of defect networks, with important implications for post-irradiation annealing. PMID:27549928

  11. Fast, vacancy-free climb of prismatic dislocation loops in bcc metals

    NASA Astrophysics Data System (ADS)

    Swinburne, Thomas D.; Arakawa, Kazuto; Mori, Hirotaro; Yasuda, Hidehiro; Isshiki, Minoru; Mimura, Kouji; Uchikoshi, Masahito; Dudarev, Sergei L.

    2016-08-01

    Vacancy-mediated climb models cannot account for the fast, direct coalescence of dislocation loops seen experimentally. An alternative mechanism, self climb, allows prismatic dislocation loops to move away from their glide surface via pipe diffusion around the loop perimeter, independent of any vacancy atmosphere. Despite the known importance of self climb, theoretical models require a typically unknown activation energy, hindering implementation in materials modeling. Here, extensive molecular statics calculations of pipe diffusion processes around irregular prismatic loops are used to map the energy landscape for self climb in iron and tungsten, finding a simple, material independent energy model after normalizing by the vacancy migration barrier. Kinetic Monte Carlo simulations yield a self climb activation energy of 2 (2.5) times the vacancy migration barrier for 1/2<111> (<100>) dislocation loops. Dislocation dynamics simulations allowing self climb and glide show quantitative agreement with transmission electron microscopy observations of climbing prismatic loops in iron and tungsten, confirming that this novel form of vacancy-free climb is many orders of magnitude faster than what is predicted by traditional climb models. Self climb significantly influences the coarsening rate of defect networks, with important implications for post-irradiation annealing.

  12. Hydration structure of antithrombin conformers and water transfer during reactive loop insertion.

    PubMed Central

    Liang, J; McGee, M P

    1998-01-01

    The serine protease inhibitor antithrombin undergoes extensive conformational changes during functional interaction with its target proteases. Changes include insertion of the reactive loop region into a beta-sheet structure in the protein core. We explore the possibility that these changes are linked to water transfer. Volumes of water transferred during inhibition of coagulation factor Xa are compared to water-permeable volumes in the x-ray structure of two different antithrombin conformers. In one conformer, the reactive loop is largely exposed to solvent, and in the other, the loop is inserted. Hydration fingerprints of antithrombin (that is, water-permeable pockets) are analyzed to determine their location, volume, and size of access pores, using alpha shape-based methods from computational geometry. Water transfer during reactions is calculated from changes in rate with osmotic pressure. Hydration fingerprints prove markedly different in the two conformers. There is an excess of 61-76 water molecules in loop-exposed as compared to loop-inserted conformers. Quantitatively, rate increases with osmotic pressure are consistent with the transfer of 73 +/- 7 water molecules. This study demonstrates that conformational changes of antithrombin, including loop insertion, are linked to water transfer from antithrombin to bulk solution. It also illustrates the combined use of osmotic stress and analytical geometry as a new and effective tool for structure/function studies. PMID:9675160

  13. Fast, vacancy-free climb of prismatic dislocation loops in bcc metals.

    PubMed

    Swinburne, Thomas D; Arakawa, Kazuto; Mori, Hirotaro; Yasuda, Hidehiro; Isshiki, Minoru; Mimura, Kouji; Uchikoshi, Masahito; Dudarev, Sergei L

    2016-08-23

    Vacancy-mediated climb models cannot account for the fast, direct coalescence of dislocation loops seen experimentally. An alternative mechanism, self climb, allows prismatic dislocation loops to move away from their glide surface via pipe diffusion around the loop perimeter, independent of any vacancy atmosphere. Despite the known importance of self climb, theoretical models require a typically unknown activation energy, hindering implementation in materials modeling. Here, extensive molecular statics calculations of pipe diffusion processes around irregular prismatic loops are used to map the energy landscape for self climb in iron and tungsten, finding a simple, material independent energy model after normalizing by the vacancy migration barrier. Kinetic Monte Carlo simulations yield a self climb activation energy of 2 (2.5) times the vacancy migration barrier for 1/2〈111〉 (〈100〉) dislocation loops. Dislocation dynamics simulations allowing self climb and glide show quantitative agreement with transmission electron microscopy observations of climbing prismatic loops in iron and tungsten, confirming that this novel form of vacancy-free climb is many orders of magnitude faster than what is predicted by traditional climb models. Self climb significantly influences the coarsening rate of defect networks, with important implications for post-irradiation annealing.

  14. Optimization of shRNA inhibitors by variation of the terminal loop sequence.

    PubMed

    Schopman, Nick C T; Liu, Ying Poi; Konstantinova, Pavlina; ter Brake, Olivier; Berkhout, Ben

    2010-05-01

    Gene silencing by RNA interference (RNAi) can be achieved by intracellular expression of a short hairpin RNA (shRNA) that is processed into the effective small interfering RNA (siRNA) inhibitor by the RNAi machinery. Previous studies indicate that shRNA molecules do not always reflect the activity of corresponding synthetic siRNAs that attack the same target sequence. One obvious difference between these two effector molecules is the hairpin loop of the shRNA. Most studies use the original shRNA design of the pSuper system, but no extensive study regarding optimization of the shRNA loop sequence has been performed. We tested the impact of different hairpin loop sequences, varying in size and structure, on the activity of a set of shRNAs targeting HIV-1. We were able to transform weak inhibitors into intermediate or even strong shRNA inhibitors by replacing the loop sequence. We demonstrate that the efficacy of these optimized shRNA inhibitors is improved significantly in different cell types due to increased siRNA production. These results indicate that the loop sequence is an essential part of the shRNA design. The optimized shRNA loop sequence is generally applicable for RNAi knockdown studies, and will allow us to develop a more potent gene therapy against HIV-1.

  15. DNA looping increases the range of bistability in a stochastic model of the lac genetic switch.

    PubMed

    Earnest, Tyler M; Roberts, Elijah; Assaf, Michael; Dahmen, Karin; Luthey-Schulten, Zaida

    2013-04-01

    Conditions and parameters affecting the range of bistability of the lac genetic switch in Escherichia coli are examined for a model which includes DNA looping interactions with the lac repressor and a lactose analogue. This stochastic gene-mRNA-protein model of the lac switch describes DNA looping using a third transcriptional state. We exploit the fast bursting dynamics of mRNA by combining a novel geometric burst extension with the finite state projection method. This limits the number of protein/mRNA states, allowing for an accelerated search of the model's parameter space. We evaluate how the addition of the third state changes the bistability properties of the model and find a critical region of parameter space where the phenotypic switching occurs in a range seen in single molecule fluorescence studies. Stochastic simulations show induction in the looping model is preceded by a rare complete dissociation of the loop followed by an immediate burst of mRNA rather than a slower build up of mRNA as in the two-state model. The overall effect of the looped state is to allow for faster switching times while at the same time further differentiating the uninduced and induced phenotypes. Furthermore, the kinetic parameters are consistent with free energies derived from thermodynamic studies suggesting that this minimal model of DNA looping could have a broader range of application.

  16. REVIEWS OF TOPICAL PROBLEMS: Coronal magnetic loops

    NASA Astrophysics Data System (ADS)

    Zaitsev, Valerii V.; Stepanov, Alexander V.

    2008-11-01

    The goal of this review is to outline some new ideas in the physics of coronal magnetic loops, the fundamental structural elements of the atmospheres of the Sun and flaring stars, which are involved in phenomena such as stellar coronal heating, flare energy release, charged particle acceleration, and the modulation of optical, radio, and X-ray emissions. The Alfvén-Carlqvist view of a coronal loop as an equivalent electric circuit allows a good physical understanding of loop processes. Describing coronal loops as MHD-resonators explains various ways in which flaring emissions from the Sun and stars are modulated, whereas modeling them by magnetic mirror traps allows one to describe the dynamics and emission of high-energy particles. Based on these approaches, loop plasma and fast particle parameters are obtained and models for flare energy release and stellar corona heating are developed.

  17. Damped transverse oscillations of interacting coronal loops

    NASA Astrophysics Data System (ADS)

    Soler, Roberto; Luna, Manuel

    2015-10-01

    Damped transverse oscillations of magnetic loops are routinely observed in the solar corona. This phenomenon is interpreted as standing kink magnetohydrodynamic waves, which are damped by resonant absorption owing to plasma inhomogeneity across the magnetic field. The periods and damping times of these oscillations can be used to probe the physical conditions of the coronal medium. Some observations suggest that interaction between neighboring oscillating loops in an active region may be important and can modify the properties of the oscillations. Here we theoretically investigate resonantly damped transverse oscillations of interacting nonuniform coronal loops. We provide a semi-analytic method, based on the T-matrix theory of scattering, to compute the frequencies and damping rates of collective oscillations of an arbitrary configuration of parallel cylindrical loops. The effect of resonant damping is included in the T-matrix scheme in the thin boundary approximation. Analytic and numerical results in the specific case of two interacting loops are given as an application.

  18. A communication scheme for the distrubted execution of loop nests with while loops

    SciTech Connect

    Griebl, M.; Lengauer, C.

    1995-10-01

    The mathematical model for the parallelization, or {open_quotes}space-time mapping,{close_quotes} of loop nests is the polyhedron model. The presence of while loops in the nest complicates matters for two reasons: (1) the parallelized loop nest does not correspond to a polyhedron but instead to a subset that resembles a (multi-dimensional) comb and (2) it is not clear when the entire loop nest has terminated. We describe a communication scheme which can deal with both problems and which can be added to the parallel target loop nest by a compiler.

  19. All one-loop scalar vertices in the effective potential approach

    NASA Astrophysics Data System (ADS)

    Camargo-Molina, José Eliel; Morais, António P.; Pasechnik, Roman; Sampaio, Marco O. P.; Wessén, Jonas

    2016-08-01

    Using the one-loop Coleman-Weinberg effective potential, we derive a general analytic expression for all the derivatives of the effective potential with respect to any number of classical scalar fields. The result is valid for a renormalisable theory in four dimensions with any number of scalars, fermions or gauge bosons. This result corresponds to the zero-external momentum contribution to a general one-loop diagram with N scalar external legs. We illustrate the use of the general result in two simple scalar singlet extensions of the Standard Model, to obtain the dominant contributions to the triple couplings of light scalar particles under the zero external momentum approximation.

  20. Using principal component analysis to find correlations between loop-related and thermodynamic variables for G-quadruplex-forming sequences.

    PubMed

    Jaumot, Joaquim; Gargallo, Raimundo

    2010-08-01

    The application of Principal Component Analysis (PCA) is proposed here as a simple means of revealing correlations between thermodynamic variables corresponding to folding equilibria of intramolecular G-quadruplexes and Watson-Crick duplexes, and the length of loops in the corresponding guanine-rich DNA sequences. To this end, two previously studied data sets were analyzed (Arora and Maiti, J. Phys. Chem. B. 2009 and Kumar and Maiti, Nucleic Acids. Res. 2008). All of the sequences considered shared the common structure 5'- GGG - loop1 - GGG - loop2 - GGG - loop3 - GGG -3'. PCA of these data sets supported a series of correlations between the variables studied. First, the association of loop length with thermodynamic stability and quadruplex structure was corroborated. Secondly, it is proposed that the addition of ethylene glycol produces a stronger stabilization on those sequences showing long loop1 and/or loop3. Thirdly, it is proposed that a low content of adenine in loop1 and/or loop3 will produce an increase in the stability of G-quadruplex and its related Watson-Crick duplex.

  1. Contrasting HIV phylogenetic relationships and V3 loop protein similarities

    SciTech Connect

    Korber, B. Santa Fe Inst., NM ); Myers, G. )

    1992-01-01

    At least five distinct sequence subtypes of HIV-I can be identified from the major centers of the AMS pandemic. While it is too early to tell whether these subtypes are serologically or phenotypically similar or distinct in terms of properties such as pathogenicity and transmissibility, we can begin to investigate their potential for phenotypic divergence at the protein sequence level. Phylogenetic analysis of HIV DNA sequences is being widely used to examine lineages of different viral strains as they evolve and spread throughout the globe. We have identified five distinct HIV-1 subtypes (designated A-E), or clades, based on phylogenetic clustering patterns generated from genetic information from both the gag and envelope (env) genes from a spectrum of international isolates. Our initial observations concerning both HIV-1 and HIV-2 sequences indicate that conserved patterns in protein chemistry may indeed exist across distant lineages. Such patterns in V3 loop amino acid chemistry may be indicative of stable lineages or convergence within this highly variable, though functionally and immunologically critical, region. We think that there may be parallels between the apparently stable HIV-2 V3 lineage and the previously mentioned HIV-1 V3 loops which are very similar at the protein level despite being distant by cladistic analysis, and which do not possess the distinctive positively charged residues. Highly conserved V3 loop protein sequences are also encountered in SIVAGMs and CIVs (chimpanzee viral strains), which do not appear to be pathogenic in their wild-caught natural hosts.

  2. Contrasting HIV phylogenetic relationships and V3 loop protein similarities

    SciTech Connect

    Korber, B. |; Myers, G.

    1992-12-31

    At least five distinct sequence subtypes of HIV-I can be identified from the major centers of the AMS pandemic. While it is too early to tell whether these subtypes are serologically or phenotypically similar or distinct in terms of properties such as pathogenicity and transmissibility, we can begin to investigate their potential for phenotypic divergence at the protein sequence level. Phylogenetic analysis of HIV DNA sequences is being widely used to examine lineages of different viral strains as they evolve and spread throughout the globe. We have identified five distinct HIV-1 subtypes (designated A-E), or clades, based on phylogenetic clustering patterns generated from genetic information from both the gag and envelope (env) genes from a spectrum of international isolates. Our initial observations concerning both HIV-1 and HIV-2 sequences indicate that conserved patterns in protein chemistry may indeed exist across distant lineages. Such patterns in V3 loop amino acid chemistry may be indicative of stable lineages or convergence within this highly variable, though functionally and immunologically critical, region. We think that there may be parallels between the apparently stable HIV-2 V3 lineage and the previously mentioned HIV-1 V3 loops which are very similar at the protein level despite being distant by cladistic analysis, and which do not possess the distinctive positively charged residues. Highly conserved V3 loop protein sequences are also encountered in SIVAGMs and CIVs (chimpanzee viral strains), which do not appear to be pathogenic in their wild-caught natural hosts.

  3. Cygnus Loop Supernova Blast Wave

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This is an image of a small portion of the Cygnus Loop supernova remnant, which marks the edge of a bubble-like, expanding blast wave from a colossal stellar explosion, occurring about 15,000 years ago. The HST image shows the structure behind the shock waves, allowing astronomers for the first time to directly compare the actual structure of the shock with theoretical model calculations. Besides supernova remnants, these shock models are important in understanding a wide range of astrophysical phenomena, from winds in newly-formed stars to cataclysmic stellar outbursts. The supernova blast is slamming into tenuous clouds of insterstellar gas. This collision heats and compresses the gas, causing it to glow. The shock thus acts as a searchlight revealing the structure of the interstellar medium. The detailed HST image shows the blast wave overrunning dense clumps of gas, which despite HST's high resolution, cannot be resolved. This means that the clumps of gas must be small enough to fit inside our solar system, making them relatively small structures by interstellar standards. A bluish ribbon of light stretching left to right across the picture might be a knot of gas ejected by the supernova; this interstellar 'bullet' traveling over three million miles per hour (5 million kilometres) is just catching up with the shock front, which has slowed down by ploughing into interstellar material. The Cygnus Loop appears as a faint ring of glowing gases about three degrees across (six times the diameter of the full Moon), located in the northern constellation, Cygnus the Swan. The supernova remnant is within the plane of our Milky Way galaxy and is 2,600 light-years away. The photo is a combination of separate images taken in three colors, oxygen atoms (blue) emit light at temperatures of 30,000 to 60,000 degrees Celsius (50,000 to 100,000 degrees Farenheit). Hydrogen atoms (green) arise throughout the region of shocked gas. Sulfur atoms (red) form when the gas cools to

  4. Quantitation of interactions between two DNA loops demonstrates loop domain insulation in E. coli cells

    PubMed Central

    Priest, David G.; Kumar, Sandip; Yan, Yan; Dunlap, David D.; Dodd, Ian B.; Shearwin, Keith E.

    2014-01-01

    Eukaryotic gene regulation involves complex patterns of long-range DNA-looping interactions between enhancers and promoters, but how these specific interactions are achieved is poorly understood. Models that posit other DNA loops—that aid or inhibit enhancer–promoter contact—are difficult to test or quantitate rigorously in eukaryotic cells. Here, we use the well-characterized DNA-looping proteins Lac repressor and phage λ CI to measure interactions between pairs of long DNA loops in E. coli cells in the three possible topological arrangements. We find that side-by-side loops do not affect each other. Nested loops assist each other’s formation consistent with their distance-shortening effect. In contrast, alternating loops, where one looping element is placed within the other DNA loop, inhibit each other’s formation, thus providing clear support for the loop domain model for insulation. Modeling shows that combining loop assistance and loop interference can provide strong specificity in long-range interactions. PMID:25288735

  5. Sequence–structure relationships in RNA loops: establishing the basis for loop homology modeling

    PubMed Central

    Schudoma, Christian; May, Patrick; Nikiforova, Viktoria; Walther, Dirk

    2010-01-01

    The specific function of RNA molecules frequently resides in their seemingly unstructured loop regions. We performed a systematic analysis of RNA loops extracted from experimentally determined three-dimensional structures of RNA molecules. A comprehensive loop-structure data set was created and organized into distinct clusters based on structural and sequence similarity. We detected clear evidence of the hallmark of homology present in the sequence–structure relationships in loops. Loops differing by <25% in sequence identity fold into very similar structures. Thus, our results support the application of homology modeling for RNA loop model building. We established a threshold that may guide the sequence divergence-based selection of template structures for RNA loop homology modeling. Of all possible sequences that are, under the assumption of isosteric relationships, theoretically compatible with actual sequences observed in RNA structures, only a small fraction is contained in the Rfam database of RNA sequences and classes implying that the actual RNA loop space may consist of a limited number of unique loop structures and conserved sequences. The loop-structure data sets are made available via an online database, RLooM. RLooM also offers functionalities for the modeling of RNA loop structures in support of RNA engineering and design efforts. PMID:19923230

  6. 35. WEST END ELEVATION, PROPOSED EXTENSION OF COAL HOUSE, EXTENSIONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. WEST END ELEVATION, PROPOSED EXTENSION OF COAL HOUSE, EXTENSIONS OF ENGINE AND COAL HOUSES, DEER ISLAND PUMPING STATION, METROPOLITAN WATER AND SEWERAGE BOARD, METROPOLITAN SEWERAGE WORKS, JANUARY 1908, SHEET NO. 7. Aperture card 6498-7. - Deer Island Pumping Station, Boston, Suffolk County, MA

  7. 34. PLAN, PROPOSED EXTENSION OF COAL HOUSE, EXTENSIONS OF ENGINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. PLAN, PROPOSED EXTENSION OF COAL HOUSE, EXTENSIONS OF ENGINE AND COAL HOUSES, DEER ISLAND PUMPING STATION, METROPOLITAN WATER AND SEWERAGE BOARD, METROPOLITAN SEWARAGE WORKS, JANUARY 1909, SHEET NO. 11. Aperture card 6498-11. - Deer Island Pumping Station, Boston, Suffolk County, MA

  8. Extensive cortical involvement in leptomeningeal carcinomatosis.

    PubMed

    Ayzenberg, I; Börnke, C; Tönnes, C; Ziebarth, W; Lavrov, A; Lukas, C

    2012-12-01

    We present a 77-year-old previously well patient with facial asymmetry and progressive weakness of the lower extremities. An initial MRI revealed slight contrast enhancement of the meninges. Three consecutive cerebrospinal fluid examinations demonstrated low glucose concentration, marked elevation of total protein and moderate pleocytosis. No tumor cells, fungi, acid-fast bacilli or mycobacterial DNA were found. The patient's level of consciousness deteriorated dramatically, and follow-up MRI showed widespread extensive cortical hyperintensities. The lesions showed restricted diffusion on diffusion-weighted images as well as low values on the corresponding apparent diffusion coefficient maps, the changes consistent with diffuse cytotoxic edema. Neuropathological examination findings were of leptomeningeal carcinomatosis (LMC) with diffuse continuous infiltration of the cerebral cortex, cerebellum and spinal cord. The autopsy revealed a subcentimetre adenocarcinoma of the lung. To our knowledge, this is the first report demonstrating extensive cortical involvement in adenocarcinomatous LMC.

  9. Welding torch gas cup extension

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1988-01-01

    The invention relates to a gas shielded electric arc welding torch having a detachable gas cup extension which may be of any desired configuration or length. The gas cup extension assembly is mounted on a standard electric welding torch gas cup to enable welding in areas with limited access. The gas cup assembly has an upper tubular insert that fits within the gas cup such that its lower portion protrudes thereform and has a lower tubular extension that is screwed into the lower portion. The extension has a rim to define the outer perimeter of the seat edge about its entrance opening so a gasket may be placed to effect an airtight seal between the gas cup and extension. The tubular extension may be made of metal or cermaic material that can be machined. The novelty lies in the use of an extension assembly for a standard gas cup of an electric arc welding torch which extension assembly is detachable permitting the use of a number of extensions which may be of different configurations and materials and yet fit the standard gas cup.

  10. Robotic hand with modular extensions

    DOEpatents

    Salisbury, Curt Michael; Quigley, Morgan

    2015-01-20

    A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.

  11. Looping charged elastic rods: applications to protein-induced DNA loop formation.

    PubMed

    Cherstvy, A G

    2011-01-01

    We analyze looping of thin charged elastic filaments under applied torques and end forces, using the solution of linear elasticity theory equations. In application to DNA, we account for its polyelectrolyte character and charge renormalization, calculating electrostatic energies stored in the loops. We argue that the standard theory of electrostatic persistence is only valid when the loop's radius of curvature and close-contact distance are much larger than the Debye screening length. We predict that larger twist rates are required to trigger looping of charged rods as compared with neutral ones. We then analyze loop shapes formed on charged filaments of finite length, mimicking DNA looping by proteins with two DNA-binding domains. We find optimal loop shapes at different salt amounts, minimizing the sum of DNA elastic, DNA electrostatic, and protein elastic energies. We implement a simple model where intercharge repulsions do not affect the loop shape directly but can choose the energy-optimized shape from the allowed loop types. At low salt concentrations more open loops are favored due to enhanced repulsion of DNA charges, consistent with the results of computer simulations on formation of DNA loops by lac repressor. Then, we model the precise geometry of DNA binding by the lac tetramer and explore loop shapes, varying the confined DNA length and protein opening angle. The characteristics of complexes obtained, such as the total loop energy, stretching forces required to maintain its shape, and the reduction of electrostatic energy with increment of salt, are in good agreement with the outcomes of more elaborate numerical calculations for lac-repressor-induced DNA looping.

  12. Simulation methods for looping transitions.

    PubMed

    Gaffney, B J; Silverstone, H J

    1998-09-01

    Looping transitions occur in field-swept electron magnetic resonance spectra near avoided crossings and involve a single pair of energy levels that are in resonance at two magnetic field strengths, before and after the avoided crossing. When the distance between the two resonances approaches a linewidth, the usual simulation of the spectra, which results from a linear approximation of the dependence of the transition frequency on magnetic field, breaks down. A cubic approximation to the transition frequency, which can be obtained from the two resonance fields and the field-derivatives of the transition frequencies, along with linear (or better) interpolation of the transition-probability factor, restores accurate simulation. The difference is crucial for accurate line shapes at fixed angles, as in an oriented single crystal, but the difference turns out to be a smaller change in relative intensity for a powder spectrum. Spin-3/2 Cr3+ in ruby and spin-5/2 Fe3+ in transferrin oxalate are treated as examples.

  13. Closed-loop neurostimulation: the clinical experience.

    PubMed

    Sun, Felice T; Morrell, Martha J

    2014-07-01

    Neurostimulation is now an established therapy for the treatment of movement disorders, pain, and epilepsy. While most neurostimulation systems available today provide stimulation in an open-loop manner (i.e., therapy is delivered according to preprogrammed settings and is unaffected by changes in the patient's clinical symptoms or in the underlying disease), closed-loop neurostimulation systems, which modulate or adapt therapy in response to physiological changes, may provide more effective and efficient therapy. At present, few such systems exist owing to the complexities of designing and implementing implantable closed-loop systems. This review focuses on the clinical experience of four implantable closed-loop neurostimulation systems: positional-adaptive spinal cord stimulation for treatment of pain, responsive cortical stimulation for treatment of epilepsy, closed-loop vagus nerve stimulation for treatment of epilepsy, and concurrent sensing and stimulation for treatment of Parkinson disease. The history that led to the development of the closed-loop systems, the sensing, detection, and stimulation technology that closes the loop, and the clinical experiences are presented.

  14. Mitotic chromosome compaction via active loop extrusion

    NASA Astrophysics Data System (ADS)

    Goloborodko, Anton; Imakaev, Maxim; Marko, John; Mirny, Leonid; MIT-Northwestern Team

    During cell division, two copies of each chromosome are segregated from each other and compacted more than hundred-fold into the canonical X-shaped structures. According to earlier microscopic observations and the recent Hi-C study, chromosomes are compacted into arrays of consecutive loops of ~100 kilobases. Mechanisms that lead to formation of such loop arrays are largely unknown. Here we propose that, during cell division, chromosomes can be compacted by enzymes that extrude loops on chromatin fibers. First, we use computer simulations and analytical modeling to show that a system of loop-extruding enzymes on a chromatin fiber self-organizes into an array of consecutive dynamic loops. Second, we model the process of loop extrusion in 3D and show that, coupled with the topo II strand-passing activity, it leads to robust compaction and segregation of sister chromatids. This mechanism of chromosomal condensation and segregation does not require additional proteins or specific DNA markup and is robust against variations in the number and properties of such loop extruding enzymes. Work at NU was supported by the NSF through Grants DMR-1206868 and MCB-1022117, and by the NIH through Grants GM105847 and CA193419. Work at MIT was supported by the NIH through Grants GM114190 R01HG003143.

  15. Bootstrapping an NMHV amplitude through three loops

    NASA Astrophysics Data System (ADS)

    Dixon, Lance J.; von Hippel, Matt

    2014-10-01

    We extend the hexagon function bootstrap to the next-to-maximally-helicity-violating (NMHV) configuration for six-point scattering in planar = 4 super-Yang-Mills theory at three loops. Constraints from the differential equation, from the operator product expansion (OPE) for Wilson loops with operator insertions, and from multi-Regge factorization, lead to a unique answer for the three-loop ratio function. The three-loop result also predicts additional terms in the OPE expansion, as well as the behavior of NMHV amplitudes in the multi-Regge limit at one higher logarithmic accuracy (NNLL) than was used as input. Both predictions are in agreement with recent results from the flux-tube approach. We also study the multi-particle factorization of multi-loop amplitudes for the first time. We find that the function controlling this factorization is purely logarithmic through three loops. We show that a function U , which is closely related to the parity-even part of the ratio function V , is remarkably simple; only five of the nine possible final entries in its symbol are non-vanishing. We study the analytic and numerical behavior of both the parity-even and parity-odd parts of the ratio function on simple lines traversing the space of cross ratios ( u, v, w), as well as on a few two-dimensional planes. Finally, we present an empirical formula for V in terms of elements of the coproduct of the six-gluon MHV remainder function R 6 at one higher loop, which works through three loops for V (four loops for R 6).

  16. Extensive Reading Coursebooks in China

    ERIC Educational Resources Information Center

    Renandya, Willy A.; Hu, Guangwei; Xiang, Yu

    2015-01-01

    This article reports on a principle-based evaluation of eight dedicated extensive reading coursebooks published in mainland China and used in many universities across the country. The aim is to determine the extent to which these coursebooks reflect a core set of nine second language acquisition and extensive reading principles. Our analysis shows…

  17. Repeat Customer Success in Extension

    ERIC Educational Resources Information Center

    Bess, Melissa M.; Traub, Sarah M.

    2013-01-01

    Four multi-session research-based programs were offered by two Extension specialist in one rural Missouri county. Eleven participants who came to multiple Extension programs could be called "repeat customers." Based on the total number of participants for all four programs, 25% could be deemed as repeat customers. Repeat customers had…

  18. Energy Crisis vs. Extension Opportunities

    ERIC Educational Resources Information Center

    Liles, Harold R.

    1978-01-01

    Discusses what steps were taken by the Cooperative Extension Service in Oklahoma, after the energy crisis began, to help landowners make better decisions regarding oil and gas leases. Oklahoma's Extension educational efforts in mineral rights management have been successful because they met the needs of the people. (EM)

  19. Extension and the Practicing Veterinarian

    ERIC Educational Resources Information Center

    Meyerholz, G. W.

    1974-01-01

    In order for Extension programs of veterinary medicine to succeed, good relationships are needed among university veterinarians, practicing local veterinarians, county Extension agents and the clientele. This author attempts to define some roles and relationships and offer some suggestions for the improvement of relationships to increase…

  20. GNU Fortran Cray Pointer Extension

    SciTech Connect

    Langton, J. A.

    2005-07-27

    The gfortran compiler is a Fortran front end to the GNU Compiler Collection. The Cray Pointer extension adds to this existing compiler support for Cray-style integer pointers. This non-standard but widely used extension adds the functionality of C-like pointers to the Fortran language.

  1. Detecting neutrino magnetic moments with conducting loops

    NASA Astrophysics Data System (ADS)

    Apyan, Aram; Apyan, Armen; Schmitt, Michael

    2008-02-01

    It is well established that neutrinos have mass, yet it is very difficult to measure those masses directly. Within the standard model of particle physics, neutrinos will have an intrinsic magnetic moment proportional to their mass. We examine the possibility of detecting the magnetic moment using a conducting loop. According to Faraday’s law of induction, a magnetic dipole passing through a conducting loop induces an electromotive force in the loop. We compute this electromotive force for neutrinos in several cases, based on a fully covariant formulation of the problem. We discuss prospects for a real experiment, as well as the possibility to test the relativistic formulation of intrinsic magnetic moments.

  2. Loop-quantum-gravity vertex amplitude.

    PubMed

    Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo

    2007-10-19

    Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.

  3. Parallel Digital Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Sadr, Ramin; Shah, Biren N.; Hinedi, Sami M.

    1995-01-01

    Wide-band microwave receivers of proposed type include digital phase-locked loops in which band-pass filtering and down-conversion of input signals implemented by banks of multirate digital filters operating in parallel. Called "parallel digital phase-locked loops" to distinguish them from other digital phase-locked loops. Systems conceived as cost-effective solution to problem of filtering signals at high sampling rates needed to accommodate wide input frequency bands. Each of M filters process 1/M of spectrum of signal.

  4. The sorting sequence of the peroxisomal integral membrane protein PMP47 is contained within a short hydrophilic loop

    PubMed Central

    1996-01-01

    No targeting sequence for peroxisomal integral membrane proteins has yet been identified. We have previously shown that a region of 67 amino acids is necessary to target Pmp47, a protein that spans the membrane six times, to peroxisomes. This region comprises two membrane spans and the intervening loop. We now demonstrate that the 20 amino acid loop, which is predicted to face the matrix, is both necessary and sufficient for peroxisomal targeting. Sufficiency was demonstrated with both chloramphenicol acetyltransferase and green fluorescent protein as carriers. There is a cluster of basic amino acids in the middle of the loop that we predict protrudes from the membrane surface into the matrix by a flanking stem structure. We show that the targeting signal is composed of this basic cluster and a block of amino acids immediately down-stream from it. PMID:8609161

  5. Boosted Fast Flux Loop Alternative Cooling Assessment

    SciTech Connect

    Glen R. Longhurst; Donna Post Guillen; James R. Parry; Douglas L. Porter; Bruce W. Wallace

    2007-08-01

    The Gas Test Loop (GTL) Project was instituted to develop the means for conducting fast neutron irradiation tests in a domestic radiation facility. It made use of booster fuel to achieve the high neutron flux, a hafnium thermal neutron absorber to attain the high fast-to-thermal flux ratio, a mixed gas temperature control system for maintaining experiment temperatures, and a compressed gas cooling system to remove heat from the experiment capsules and the hafnium thermal neutron absorber. This GTL system was determined to provide a fast (E > 0.1 MeV) flux greater than 1.0E+15 n/cm2-s with a fast-to-thermal flux ratio in the vicinity of 40. However, the estimated system acquisition cost from earlier studies was deemed to be high. That cost was strongly influenced by the compressed gas cooling system for experiment heat removal. Designers were challenged to find a less expensive way to achieve the required cooling. This report documents the results of the investigation leading to an alternatively cooled configuration, referred to now as the Boosted Fast Flux Loop (BFFL). This configuration relies on a composite material comprised of hafnium aluminide (Al3Hf) in an aluminum matrix to transfer heat from the experiment to pressurized water cooling channels while at the same time providing absorption of thermal neutrons. Investigations into the performance this configuration might achieve showed that it should perform at least as well as its gas-cooled predecessor. Physics calculations indicated that the fast neutron flux averaged over the central 40 cm (16 inches) relative to ATR core mid-plane in irradiation spaces would be about 1.04E+15 n/cm2-s. The fast-to-thermal flux ratio would be in excess of 40. Further, the particular configuration of cooling channels was relatively unimportant compared with the total amount of water in the apparatus in determining performance. Thermal analyses conducted on a candidate configuration showed the design of the water coolant and

  6. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) method extension to quantify simultaneously melamine and cyanuric acid in egg powder and soy protein in addition to milk products.

    PubMed

    Rodriguez Mondal, Ana Mary; Desmarchelier, Aurélien; Konings, Erik; Acheson-Shalom, Ruth; Delatour, Thierry

    2010-11-24

    As a consequence of the adulteration of infant formulas and milk powders with melamine (MEL) in China in 2008, much attention has been devoted to the analysis of MEL [and cyanuric acid (CA)] in dairy products. Several methods based on high-performance liquid chromatography (HPLC), liquid chromatography-tandem mass spectrometry (LC-MS/MS), nuclear magnetic resonance (NMR), or Raman spectroscopy have been described in the literature. However, no method is available for the simultaneous determination of MEL and CA in other raw materials, which are considered as high-risk materials for economically motivated adulteration. The present paper reports the results of an interlaboratory-based performance evaluation conducted with seven laboratories worldwide. The purpose was to demonstrate the ability of a cleanup-free LC-MS/MS method, originally developed for cow's milk and milk-powdered infant formula, to quantify MEL and CA in egg powder and soy protein. Limit of detection (LOD) and limit of quantification (LOQ) were 0.02 and 0.05 mg/kg for MEL in egg powder and soy protein, respectively. For CA, LOD and LOQ were 0.05 and 0.10 mg/kg in egg powder and 1.0 and 1.50 mg/kg in soy protein, respectively. Recoveries ranged within a 97-113% range for both MEL and CA in egg powder and soy protein. Reproducibility values (RSD(R)) from seven laboratories were within a 5.4-11.7% range for both analytes in the considered matrices. Horwitz ratio (HorRat) values between 0.4 and 0.7 indicate acceptable among-laboratory precision for the method described.

  7. Hierarchical loop detection for mobile outdoor robots

    NASA Astrophysics Data System (ADS)

    Lang, Dagmar; Winkens, Christian; Häselich, Marcel; Paulus, Dietrich

    2012-01-01

    Loop closing is a fundamental part of 3D simultaneous localization and mapping (SLAM) that can greatly enhance the quality of long-term mapping. It is essential for the creation of globally consistent maps. Conceptually, loop closing is divided into detection and optimization. Recent approaches depend on a single sensor to recognize previously visited places in the loop detection stage. In this study, we combine data of multiple sensors such as GPS, vision, and laser range data to enhance detection results in repetitively changing environments that are not sufficiently explained by a single sensor. We present a fast and robust hierarchical loop detection algorithm for outdoor robots to achieve a reliable environment representation even if one or more sensors fail.

  8. A magnetohydrodynamic theory of coronal loop transients

    NASA Technical Reports Server (NTRS)

    Yeh, T.

    1982-01-01

    The physical and geometrical characteristics of solar coronal loop transients are described in an MHD model based on Archimedes' MHD buoyancy force. The theory was developed from interpretation of coronagraphic data, particularly from Skylab. The brightness of a loop is taken to indicate the electron density, and successive pictures reveal the electron enhancement in different columns. The forces which lift the loop off the sun surface are analyzed as an MHD buoyancy force affecting every mass element by imparting an inertial force necessary for heliocentrifugal motion. Thermal forces are responsible for transferring the ambient stress to the interior of the loop to begin the process. The kinematic and hydrostatic buoyancy overcome the gravitational force, and a flux rope can then curve upward, spiralling like a corkscrew with varying cross section around the unwinding solar magnetic field lines.

  9. Mathematical Modeling of Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Kaya, Tarik; Ku, Jentung; Hoang, Triem T.; Cheung, Mark L.

    1998-01-01

    The primary focus of this study is to model steady-state performance of a Loop Heat Pipe (LHP). The mathematical model is based on the steady-state energy balance equations at each component of the LHP. The heat exchange between each LHP component and the surrounding is taken into account. Both convection and radiation environments are modeled. The loop operating temperature is calculated as a function of the applied power at a given loop condition. Experimental validation of the model is attempted by using two different LHP designs. The mathematical model is tested at different sink temperatures and at different elevations of the loop. Tbc comparison of the calculations and experimental results showed very good agreement (within 3%). This method proved to be a useful tool in studying steady-state LHP performance characteristics.

  10. Four-loop screened perturbation theory

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Kyllingstad, Lars

    2008-10-01

    We study the thermodynamics of massless ϕ4-theory using screened perturbation theory. In this method, the perturbative expansion is reorganized by adding and subtracting a thermal mass term in the Lagrangian. We calculate the free energy through four loops expanding in a double power expansion in m/T and g2, where m is the thermal mass and g is the coupling constant. The expansion is truncated at order g7 and the loop expansion is shown to have better convergence properties than the weak-coupling expansion. The free energy at order g6 involves the four-loop triangle sum-integral evaluated by Gynther, Laine, Schröder, Torrero, and Vuorinen using the methods developed by Arnold and Zhai. The evaluation of the free energy at order g7 requires the evaluation of a nontrivial three-loop sum-integral, which we calculate by the same methods.

  11. Open-loop digital frequency multiplier

    NASA Technical Reports Server (NTRS)

    Moore, R. C.

    1977-01-01

    Monostable multivibrator is implemented by using digital integrated circuits where multiplier constant is too large for conventional phase-locked-loop integrated circuit. A 400 Hz clock is generated by divide-by-N counter from 1 Hz timing reference.

  12. CHY loop integrands from holomorphic forms

    NASA Astrophysics Data System (ADS)

    Gomez, Humberto; Mizera, Sebastian; Zhang, Guojun

    2017-03-01

    Recently, the Cachazo-He-Yuan (CHY) approach for calculating scattering amplitudes has been extended beyond tree level. In this paper, we introduce a way of constructing CHY integrands for Φ3 theory up to two loops from holomorphic forms on Riemann surfaces. We give simple rules for translating Feynman diagrams into the corresponding CHY integrands. As a complementary result, we extend the Λ-algorithm, originally introduced in arXiv:1604.05373, to two loops. Using this approach, we are able to analytically verify our prescription for the CHY integrands up to seven external particles at two loops. In addition, it gives a natural way of extending to higher-loop orders.

  13. A multiple-pass ring oscillator based dual-loop phase-locked loop

    NASA Astrophysics Data System (ADS)

    Danfeng, Chen; Junyan, Ren; Jingjing, Deng; Wei, Li; Ning, Li

    2009-10-01

    A dual-loop phase-locked loop (PLL) for wideband operation is proposed. The dual-loop architecture combines a coarse-tuning loop with a fine-tuning one, enabling a wide tuning range and low voltage-controlled oscillator (VCO) gain without poisoning phase noise and reference spur suppression performance. An analysis of the phase noise and reference spur of the dual-loop PLL is emphasized. A novel multiple-pass ring VCO is designed for the dual-loop application. It utilizes both voltage-control and current-control simultaneously in the delay cell. The PLL is fabricated in Jazz 0.18-μm RF CMOS technology. The measured tuning range is from 4.2 to 5.9 GHz. It achieves a low phase noise of -99 dBc/Hz @ 1 MHz offset from a 5.5 GHz carrier.

  14. Deployable radiator with flexible line loop

    NASA Technical Reports Server (NTRS)

    Keeler, Bryan V. (Inventor); Lehtinen, Arthur Mathias (Inventor); McGee, Billy W. (Inventor)

    2003-01-01

    Radiator assembly (10) for use on a spacecraft (12) is provided including at least one radiator panel assembly (26) repeatably movable between a panel stowed position (28) and a panel deployed position (36), at least two flexible lines (40) in fluid communication with the at least one radiator panel assembly (26) and repeatably movable between a stowage loop (42) and a flattened deployed loop (44).

  15. Miniature loops in the solar corona

    NASA Astrophysics Data System (ADS)

    Barczynski, K.; Peter, H.; Savage, S. L.

    2017-03-01

    Context. Magnetic loops filled with hot plasma are the main building blocks of the solar corona. Usually they have lengths of the order of the barometric scale height in the corona that is 50 Mm. Aims: Previously it has been suggested that miniature versions of hot loops exist. These would have lengths of only 1 Mm barely protruding from the chromosphere and spanning across just one granule in the photosphere. Such short loops are well established at transition region temperatures (0.1 MK), and we investigate if such miniature loops also exist at coronal temperatures (>1 MK). Methods: We used extreme UV (EUV) imaging observations from the High-resolution Coronal Imager (Hi-C) at an unprecedented spatial resolution of 0.3'' to 0.4''. Together with EUV imaging and magnetogram data from the Solar Dynamics Observatory (SDO) and X-Ray Telescope (XRT) data from Hinode we investigated the spatial, temporal and thermal evolution of small loop-like structures in the solar corona above a plage region close to an active region and compared this to a moss area within the active region. Results: We find that the size, motion and temporal evolution of the loop-like features are consistent with photospheric motions, suggesting a close connection to the photospheric magnetic field. Aligned magnetograms show that one of their endpoints is rooted at a magnetic concentration. Their thermal structure, as revealed together with the X-ray observations, shows significant differences to moss-like features. Conclusions: Considering different scenarios, these features are most probably miniature versions of hot loops rooted at magnetic concentrations at opposite sides of a granule in small emerging magnetic loops (or flux tubes).

  16. Simple system for locating ground loops.

    PubMed

    Bellan, P M

    2007-06-01

    A simple low-cost system for rapid identification of the cables causing ground loops in complex instrumentation configurations is described. The system consists of an exciter module that generates a 100 kHz ground loop current and a detector module that determines which cable conducts this test current. Both the exciter and detector are magnetically coupled to the ground circuit so there is no physical contact to the instrumentation system under test.

  17. Can Chemical Looping Combustion Use CFB Technology?

    SciTech Connect

    Gamwo, I.K.

    2006-11-01

    Circulating Fluidized Bed (CFB) technology has demonstrated an unparalleled ability to achieve low SO2 and NOx emissions for coal-fired power plants without CO2 capture. Chemical Looping combustion (CLC) is a novel fuel combustion technology which appears as a leading candidate in terms of competitiveness for CO2 removal from flue gas. This presentaion deals with the adaptation of circulating fluidized bed technology to Chemical looping combustion

  18. Onset of inflation in loop quantum cosmology

    SciTech Connect

    Germani, Cristiano; Nelson, William; Sakellariadou, Mairi

    2007-08-15

    Using a Liouville measure, similar to the one proposed recently by Gibbons and Turok, we investigate the probability that single-field inflation with a polynomial potential can last long enough to solve the shortcomings of the standard hot big bang model, within the semiclassical regime of loop quantum cosmology. We conclude that, for such a class of inflationary models and for natural values of the loop quantum cosmology parameters, a successful inflationary scenario is highly improbable.

  19. Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop

    SciTech Connect

    Manohar S. Sohal; Piyush Sabharwall; Pattrick Calderoni; Alan K. Wertsching; S. Brandon Grover

    2010-09-01

    This report develops a proposal to design and construct a forced convection test loop. A detailed test plan will then be conducted to obtain data on heat transfer, thermodynamic, and corrosion characteristics of the molten salts and fluid-solid interaction. In particular, this report outlines an experimental research and development test plan. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project highlighted how thermophysical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report describes the options available to reach such objectives. In particular, that report outlines an experimental research and development test plan that would include following steps: •Molten Salts: The candidate molten salts for investigation will be selected. •Materials of Construction: Materials of construction for the test loop, heat exchangers, and fluid-solid corrosion tests in the test loop will also be selected. •Scaling Analysis: Scaling analysis to design the test loop will be performed. •Test Plan: A comprehensive test plan to include all the tests that are being planned in the short and long term time frame will be developed. •Design the Test Loop: The forced convection test loop will be designed including extensive mechanical design, instrument selection, data acquisition system, safety requirements, and related precautionary measures. •Fabricate the Test Loop. •Perform the Tests. •Uncertainty Analysis: As a part of the data collection, uncertainty analysis will

  20. Looping through the Lamb Shift

    SciTech Connect

    Hazi, A U

    2007-02-06

    Sometimes in science, a small measurement can have big ramifications. For a team of Livermore scientists, such was the case when they measured a small shift in the spectrum of extremely ionized atoms of uranium. The measurement involves the Lamb shift, a subtle change in the energy of an electron orbiting an atom's nucleus. The precision of the Livermore result was 10 times greater than that of existing measurements, making it the best measurement to date of a complicated correction to the simplest quantum description of how atoms behave. The measurement introduces a new realm in the search for deviations between the theory of quantum electrodynamics (QED), which is an extension of quantum mechanics, and the real world. Such deviations, if discovered, would have far-reaching consequences, indicating that QED is not a fundamental theory of nature.

  1. Multiple Flow Loop SCADA System Implemented on the Production Prototype Loop

    SciTech Connect

    Baily, Scott A.; Dalmas, Dale Allen; Wheat, Robert Mitchell; Woloshun, Keith Albert; Dale, Gregory E.

    2015-11-16

    The following report covers FY 15 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production prototype gas flow loop. The goal of this effort is to expand the existing system to include a second flow loop with a larger production-sized blower. Besides testing the larger blower, this system will demonstrate the scalability of our solution to multiple flow loops.

  2. Space Station evolution study oxygen loop closure

    NASA Technical Reports Server (NTRS)

    Wood, M. G.; Delong, D.

    1993-01-01

    In the current Space Station Freedom (SSF) Permanently Manned Configuration (PMC), physical scars for closing the oxygen loop by the addition of oxygen generation and carbon dioxide reduction hardware are not included. During station restructuring, the capability for oxygen loop closure was deferred to the B-modules. As such, the ability to close the oxygen loop in the U.S. Laboratory module (LAB A) and the Habitation A module (HAB A) is contingent on the presence of the B modules. To base oxygen loop closure of SSF on the funding of the B-modules may not be desirable. Therefore, this study was requested to evaluate the necessary hooks and scars in the A-modules to facilitate closure of the oxygen loop at or subsequent to PMC. The study defines the scars for oxygen loop closure with impacts to cost, weight and volume and assesses the effects of byproduct venting. In addition, the recommended scenarios for closure with regard to topology and packaging are presented.

  3. Gulf of Mexico Loop Current path variability

    NASA Astrophysics Data System (ADS)

    Donohue, K. A.; Watts, D. R.; Hamilton, P.; Leben, R.; Kennelly, M.; Lugo-Fernández, A.

    2016-12-01

    Loop Current, LC, path variability exhibits a continuum of spatial and temporal scales, all are called meanders in this work. They arise from a variety of processes, including short and long waves, frontal eddies with or without closed cores and developing baroclinic instability. They have been extensively studied with satellite sea surface temperature SST, and height, SSH. Yet, these systems provide an incomplete view into LC meandering: SST measurements are hampered by cloud coverage and low thermal contrast in summer months and SSH measurements by altimeter temporal and spatial resolution. In an effort to resolve LC meander temporal and spatial scales, they are investigated using a mesoscale resolving in situ array deployed in the Gulf of Mexico. The array, which consisted of twenty-five inverted echo sounders with pressure gauges, PIES, and current meter moorings, was deployed April 2009 and recovered in October-November 2011. The broad extent of the array, nominally 89° W to 85° W, 25° N to 27° N, enabled quantitative mapping of the regional circulation. LC meander properties are characterized as a function of spatial distribution of energy, frequency, wavenumber, and phase speed. Dispersion characteristics and meander scales are comparable to those found in the Gulf Stream. Phase speeds increase with frequency and range from 8 to 50 km d-1. Wavelengths associated with each band are as follows: 460 km for the 100 to 40 d band, 350 km for the 40 to 20 d band, 270 km for the 20 to 10 d band and 230 km for the 10 to 3 d band. The strongest variability is in the 100 to 40 d band. Spatially the 100 to 40 d variability is concentrated to east of the Mississippi Fan, growing and propagating downstream along the eastern portion of the LC. Meanders between 40 and 20 d propagate along the full encompassed length of the LC. Their temporal amplitudes peak at the time of LC eddy detachment and separation. Meanders with shorter periods than 20 d do not always propagate

  4. Selectivity of Fungal Sesquiterpene Synthases: Role of the Active Site's H-1α Loop in Catalysis▿ †

    PubMed Central

    López-Gallego, Fernando; Wawrzyn, GraysonT.; Schmidt-Dannert, Claudia

    2010-01-01

    Sesquiterpene synthases are responsible for the cyclization of farnesyl pyrophosphate into a myriad of structurally diverse compounds with various biological activities. We examine here the role of the conserved active site H-α1 loop in catalysis in three previously characterized fungal sesquiterpene synthases. The H-α1 loops of Cop3, Cop4, and Cop6 from Coprinus cinereus were altered by site-directed mutagenesis and the resultant product profiles were analyzed by gas chromatography-mass spectrometry and compared to the wild-type enzymes. In addition, we examine the effect of swapping the H-α1 loop from the promiscuous enzyme Cop4 with the more selective Cop6 and the effect of acidic or basic conditions on loop mutations in Cop4. Directed mutations of the H-α1 loop had a marked effect on the product profile of Cop3 and Cop4, while little to no change was shown in Cop6. Swapping of the Cop4 and Cop6 loops with one another was again shown to influence the product profile of Cop4, while the product profile of Cop6 remained identical to the wild-type enzyme. The loop mutations in Cop4 also implicate specific residues responsible for the pH sensitivity of the enzyme. These results affirm the role of the H-α1 loop in catalysis and provide a potential target to increase the product diversity of terpene synthases. PMID:20889795

  5. Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2

  6. Closed-loop control of flow-induced cavity oscillations

    NASA Astrophysics Data System (ADS)

    Song, Qi

    Flow-induced cavity oscillations are a coupled flow-acoustic problem in which the inherent closed-loop system dynamics can lead to large unsteady pressure levels in and around the cavity, resulting in both broadband noise and discrete tones. This problem exists in many practical environments, such as landing gear bays and weapon delivery systems on aircraft, and automobile sunroofs and windows. Researchers in both fluid dynamics and controls have been working on this problem for more than fifty years. This is because not only is the physical nature of this problem rich and complex, but also it has become a standard test bed for controller deign and implementation in flow control. The ultimate goal of this research is to minimize the cavity acoustic tones and the broadband noise level over a range of freestream Mach numbers. Although open-loop and closed-loop control methodologies have been explored extensively in recent years, there are still some issues that need to be studied further. For example, a low-order theoretical model suitable for controller design does not exist. Most recent flow-induced cavity models are based either on Rossiter's semi-expirical formula or a proper orthogonal decomposition (POD) based models. These models cannot be implemented in adaptive controller design directly. In addition, closed-loop control of high subsonic and supersonic flows remains an unexplored area. In order to achieve these objectives, an analytical system model is first developed in this research. This analytical model is a transfer function based model and it can be used as a potential model for controller design. Then, a MIMO system identification algorithm is derived and combined with the generalized prediction control (GPC) algorithm. The resultant integration of adaptive system ID and GPC algorithms can potentially track nonstationary cavity dynamics and reduce the flow-induced oscillations. A novel piezoelectric-driven synthetic jet actuator array is designed for

  7. Putting Extension on a Spot

    ERIC Educational Resources Information Center

    Lawrence, James E.

    1970-01-01

    Between and during television programs from WNBF-TV, Binghamton, New York, the Extension Service is providing public service announcements giving information on nutrition, food stamps, forage pests, outdoor recreation, farm safety, environmental quality, and many other subjects. (EB)

  8. Supervisory control of a pilot-scale cooling loop

    SciTech Connect

    Kris Villez; Venkat Venkatasubramanian; Humberto Garcia

    2011-08-01

    We combine a previously developed strategy for Fault Detection and Identification (FDI) with a supervisory controller in closed loop. The combined method is applied to a model of a pilot-scale cooling loop of a nuclear plant, which includes Kalman filters and a model-based predictive controller as part of normal operation. The system has two valves available for flow control meaning that some redundancy is available. The FDI method is based on likelihood ratios for different fault scenarios which in turn are derived from the application of the Kalman filter. A previously introduced extension of the FDI method is used here to enable detection and identification of non-linear faults like stuck valve problems and proper accounting of the time of fault introduction. The supervisory control system is designed so to take different kinds of actions depending on the status of the fault diagnosis task and on the type of identified fault once diagnosis is complete. Some faults, like sensor bias and drift, are parametric in nature and can be adjusted without need for reconfiguration of the regulatory control system. Other faults, like a stuck valve problem, require reconfiguration of the regulatory control system. The whole strategy is demonstrated for several scenarios.

  9. Boiler-turbine life extension

    SciTech Connect

    Natzkov, S.; Nikolov, M.

    1995-12-01

    The design life of the main power equipment-boilers and turbines is about 105 working hours. The possibilities for life extension are after normatively regulated control tests. The diagnostics and methodology for Boilers and Turbines Elements Remaining Life Assessment using up to date computer programs, destructive and nondestructive control of metal of key elements of units equipment, metal creep and low cycle fatigue calculations. As well as data for most common damages and some technical decisions for elements life extension are presented.

  10. Performance evaluation of the time delay digital tanlock loop architectures

    NASA Astrophysics Data System (ADS)

    Al-Kharji Al-Ali, Omar; Anani, Nader; Al-Qutayri, Mahmoud; Al-Araji, Saleh; Ponnapalli, Prasad

    2016-01-01

    This article presents the architectures, theoretical analyses and testing results of modified time delay digital tanlock loop (TDTLs) system. The modifications to the original TDTL architecture were introduced to overcome some of the limitations of the original TDTL and to enhance the overall performance of the particular systems. The limitations addressed in this article include the non-linearity of the phase detector, the restricted width of the locking range and the overall system acquisition speed. Each of the modified architectures was tested by subjecting the system to sudden positive and negative frequency steps and comparing its response with that of the original TDTL. In addition, the performance of all the architectures was evaluated under noise-free as well as noisy environments. The extensive simulation results using MATLAB/SIMULINK demonstrate that the new architectures overcome the limitations they addressed and the overall results confirmed significant improvements in performance compared to the conventional TDTL system.

  11. Gravitational Two-Loop Counterterm Is Asymptotically Safe

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Knorr, Benjamin; Lippoldt, Stefan; Saueressig, Frank

    2016-05-01

    Weinberg's asymptotic safety scenario provides an elegant mechanism to construct a quantum theory of gravity within the framework of quantum field theory based on a non-Gaussian fixed point of the renormalization group flow. In this work we report novel evidence for the validity of this scenario, using functional renormalization group techniques to determine the renormalization group flow of the Einstein-Hilbert action supplemented by the two-loop counterterm found by Goroff and Sagnotti. The resulting system of beta functions comprises three scale-dependent coupling constants and exhibits a non-Gaussian fixed point which constitutes the natural extension of the one found at the level of the Einstein-Hilbert action. The fixed point exhibits two ultraviolet attractive and one repulsive direction supporting a low-dimensional UV-critical hypersurface. Our result vanquishes the long-standing criticism that asymptotic safety will not survive once a "proper perturbative counterterm" is included in the projection space.

  12. ENTHALPY-BASED THERMAL EVOLUTION OF LOOPS. II. IMPROVEMENTS TO THE MODEL

    SciTech Connect

    Cargill, P. J.; Bradshaw, S. J.; Klimchuk, J. A.

    2012-06-20

    This paper develops the zero-dimensional (0D) hydrodynamic coronal loop model 'Enthalpy-based Thermal Evolution of Loops' (EBTEL) proposed by Klimchuk et al., which studies the plasma response to evolving coronal heating, especially impulsive heating events. The basis of EBTEL is the modeling of mass exchange between the corona and transition region (TR) and chromosphere in response to heating variations, with the key parameter being the ratio of the TR to coronal radiation. We develop new models for this parameter that now include gravitational stratification and a physically motivated approach to radiative cooling. A number of examples are presented, including nanoflares in short and long loops, and a small flare. The new features in EBTEL are important for accurate tracking of, in particular, the density. The 0D results are compared to a 1D hydro code (Hydrad) with generally good agreement. EBTEL is suitable for general use as a tool for (1) quick-look results of loop evolution in response to a given heating function, (2) extensive parameter surveys, and (3) situations where the modeling of hundreds or thousands of elemental loops is needed. A single run takes a few seconds on a contemporary laptop.

  13. Enthalpy-based Thermal Evolution of Loops. II. Improvements to the Model

    NASA Astrophysics Data System (ADS)

    Cargill, P. J.; Bradshaw, S. J.; Klimchuk, J. A.

    2012-06-01

    This paper develops the zero-dimensional (0D) hydrodynamic coronal loop model "Enthalpy-based Thermal Evolution of Loops" (EBTEL) proposed by Klimchuk et al., which studies the plasma response to evolving coronal heating, especially impulsive heating events. The basis of EBTEL is the modeling of mass exchange between the corona and transition region (TR) and chromosphere in response to heating variations, with the key parameter being the ratio of the TR to coronal radiation. We develop new models for this parameter that now include gravitational stratification and a physically motivated approach to radiative cooling. A number of examples are presented, including nanoflares in short and long loops, and a small flare. The new features in EBTEL are important for accurate tracking of, in particular, the density. The 0D results are compared to a 1D hydro code (Hydrad) with generally good agreement. EBTEL is suitable for general use as a tool for (1) quick-look results of loop evolution in response to a given heating function, (2) extensive parameter surveys, and (3) situations where the modeling of hundreds or thousands of elemental loops is needed. A single run takes a few seconds on a contemporary laptop.

  14. Facilitation of polymer looping and giant polymer diffusivity in crowded solutions of active particles

    NASA Astrophysics Data System (ADS)

    Shin, Jaeoh; Cherstvy, Andrey G.; Kim, Won Kyu; Metzler, Ralf

    2015-11-01

    We study the dynamics of polymer chains in a bath of self-propelled particles (SPP) by extensive Langevin dynamics simulations in a two-dimensional model system. Specifically, we analyse the polymer looping properties versus the SPP activity and investigate how the presence of the active particles alters the chain conformational statistics. We find that SPPs tend to extend flexible polymer chains, while they rather compactify stiffer semiflexible polymers, in agreement with previous results. Here we show that higher activities of SPPs yield a higher effective temperature of the bath and thus facilitate the looping kinetics of a passive polymer chain. We explicitly compute the looping probability and looping time in a wide range of the model parameters. We also analyse the motion of a monomeric tracer particle and the polymer’s centre of mass in the presence of the active particles in terms of the time averaged mean squared displacement, revealing a giant diffusivity enhancement for the polymer chain via SPP pooling. Our results are applicable to rationalising the dimensions and looping kinetics of biopolymers at constantly fluctuating and often actively driven conditions inside biological cells or in suspensions of active colloidal particles or bacteria cells.

  15. The complete two-loop integrated jet thrust distribution in soft-collinear effective theory

    SciTech Connect

    von Manteuffel, Andreas; Schabinger, Robert M.; Zhu, Hua Xing

    2014-03-01

    In this work, we complete the calculation of the soft part of the two-loop integrated jet thrust distribution in e+e- annihilation. This jet mass observable is based on the thrust cone jet algorithm, which involves a veto scale for out-of-jet radiation. The previously uncomputed part of our result depends in a complicated way on the jet cone size, r, and at intermediate stages of the calculation we actually encounter a new class of multiple polylogarithms. We employ an extension of the coproduct calculus to systematically exploit functional relations and represent our results concisely. In contrast to the individual contributions, the sum of all global terms can be expressed in terms of classical polylogarithms. Our explicit two-loop calculation enables us to clarify the small r picture discussed in earlier work. In particular, we show that the resummation of the logarithms of r that appear in the previously uncomputed part of the two-loop integrated jet thrust distribution is inextricably linked to the resummation of the non-global logarithms. Furthermore, we find that the logarithms of r which cannot be absorbed into the non-global logarithms in the way advocated in earlier work have coefficients fixed by the two-loop cusp anomalous dimension. We also show that in many cases one can straightforwardly predict potentially large logarithmic contributions to the integrated jet thrust distribution at L loops by making use of analogous contributions to the simpler integrated hemisphere soft function.

  16. Structure of a cardiotoxic phospholipase A(2) from Ophiophagus hannah with the "pancreatic loop".

    PubMed

    Zhang, Hai-Long; Xu, Su-Juan; Wang, Qiu-Yan; Song, Shi-Ying; Shu, Yu-Yan; Lin, Zheng-Jiong

    2002-06-01

    The crystal structure of an acidic phospholipase A(2) from Ophiophagus hannah (king cobra) has been determined by molecular replacement at 2.6-A resolution to a crystallographic R factor of 20.5% (R(free)=23.3%) with reasonable stereochemistry. The venom enzyme contains an unusual "pancreatic loop." The conformation of the loop is well defined and different from those in pancreas PLA(2), showing its structural variability. This analysis provides the first structure of a PLA(2)-type cardiotoxin. The sites related to the cardiotoxic and myotoxic activities are explored and the oligomer observed in the crystalline state is described.

  17. Black holes in loop quantum gravity: the complete space-time.

    PubMed

    Gambini, Rodolfo; Pullin, Jorge

    2008-10-17

    We consider the quantization of the complete extension of the Schwarzschild space-time using spherically symmetric loop quantum gravity. We find an exact solution corresponding to the semiclassical theory. The singularity is eliminated but the space-time still contains a horizon. Although the solution is known partially numerically and therefore a proper global analysis is not possible, a global structure akin to a singularity-free Reissner-Nordström space-time including a Cauchy horizon is suggested.

  18. Agricultural extension and mass media.

    PubMed

    Perraton, H

    1983-12-01

    To learn more about the use of the mass media for agricultural extension, the World Bank has considered the efforts of 2 units: INADES-formation in West Africa and the Extension Aids Branch of Malawi. The INADES-formation study focuses on Cameroon but also considers work in Rwanda and the Ivory Coast. Some general conclusions emerge from a comparison of the 2 organizations. Malawi operates an extension service which reaches farmers through extension agents, through farmer training centers, and through mass media. The Extension Aids Branch (EAB) has responsibility for its media work and broadcasts 4 1/2 hours of radio each week. Its 6 regular radio programs include a general program which interviews farmers, a music request program in which the music is interspersed with farming advice, a farming family serial, and a daily broadcast of agricultural news and information. The 17 cinema vans show some agricultural films, made by EAB, some entertainment films, and some government information films from departments other than the ministry of agriculture. EAB also has a well-developed program of research and evaluation of its own work. INADES-formation, the training section of INADES, works towards social and economic development of the population. It teaches peasant farmers and extension agents and does this through running face-to-face seminars, by publishing a magazine, "Agripromo," and through correspondence courses. In 1978-79 INADES-formation enrolled some 4500 farmers and extension agents as students. Both of these organizations work to teach farmers better agriculture techniques, and both were created in response to the fact that agricultural extension agents cannot meet all the farmers in their area. Despite the similarity of objective, there are differences in methods and philosophy. The EAB works in a single country and uses a variety of mass media, with print playing a minor role. INADES-formation is an international and nongovernmental organization and its

  19. An Antibody Loop Replacement Design Feasibility Study and a Loop-Swapped Dimer Structure

    SciTech Connect

    Clark, L.; Boriack-Sjodin, P; Day, E; Eldredge, J; Fitch, C; Jarpe, M; Miller, S; Li, Y; Simon, K; van Vlijmen, H

    2009-01-01

    A design approach was taken to investigate the feasibility of replacing single complementarity determining region (CDR) antibody loops. This approach may complement simpler mutation-based strategies for rational antibody design by expanding conformation space. Enormous crystal structure diversity is available, making CDR loops logical targets for structure-based design. A detailed analysis for the L1 loop shows that each loop length takes a distinct conformation, thereby allowing control on a length scale beyond that accessible to simple mutations. The L1 loop in the anti-VLA1 antibody was replaced with the L2 loop residues longer in an attempt to add an additional hydrogen bond and fill space on the antibody-antigen interface. The designs expressed well, but failed to improve affinity. In an effort to learn more, one design was crystallized and data were collected at 1.9 {angstrom} resolution. The designed L1 loop takes the qualitatively desired conformation; confirming that loop replacement by design is feasible. The crystal structure also shows that the outermost loop (residues Leu51-Ser68) is domain swapped with another monomer. Tryptophan fluorescence measurements were used to monitor unfolding as a function of temperature and indicate that the loop involved in domain swapping does not unfold below 60C. The domain-swapping is not directly responsible for the affinity loss, but is likely a side-effect of the structural instability which may contribute to affinity loss. A second round of design was successful in eliminating the dimerization through mutation of a residue (Leu51Ser) at the joint of the domain-swapped loop.

  20. TRUEX Radiolysis Testing Using the INL Radiolysis Test Loop: FY-2012 Status Report

    SciTech Connect

    Dean R. Peterman; Lonnie G. Olson; Richard D. Tillotson; Rocklan G. McDowell; Jack D. Law

    2012-09-01

    The INL radiolysis test loop has been used to evaluate the affect of radiolytic degradation upon the efficacy of the strip section of the TRUEX flowsheet for the recovery of trivalent actinides and lanthanides from acidic solution. The nominal composition of the TRUEX solvent used in this study is 0.2 M CMPO and 1.4 M TBP dissolved in n-dodecane and the nominal composition of the TRUEX strip solution is 1.5 M lactic acid and 0.050 M diethylenetriaminepentaacetic acid. Gamma irradiation of a mixture of TRUEX process solvent and stripping solution in the test loop does not adversely impact flowsheet performance as measured by stripping americium ratios. The observed increase in americium stripping distribution ratios with increasing absorbed dose indicates the radiolytic production of organic soluble degradation compounds.

  1. Suppressing Transients In Digital Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1993-01-01

    Loop of arbitrary order starts in steady-state lock. Method for initializing variables of digital phase-locked loop reduces or eliminates transients in phase and frequency typically occurring during acquisition of lock on signal or when changes made in values of loop-filter parameters called "loop constants". Enables direct acquisition by third-order loop without prior acquisition by second-order loop of greater bandwidth, and eliminates those perturbations in phase and frequency lock occurring when loop constants changed by arbitrarily large amounts.

  2. Acquisition Performances Of QPSK Carrier-Tracking Loops

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami M.; Shah, Biren N.

    1992-01-01

    Report presents comparative study of acquisition performances of several types of carrier-signal-tracking loops for reception of quadrature phase-shift keying (QPSK) signals. Loops classified into three types: maximum a-posteriori, (MAP) estimation loop, Costas cross-over loop, and generalized Costas loop. Mathematical models developed. In-phase and quadrature signals generated numerically and processed according to loop algorithms. Results show though MAP loop produces smallest squaring loss at all signal-to-noise ratios, others sometimes exhibit shorter acquisition time and greater probability of acquisition.

  3. Closing the tau loop: the missing tau mutation

    PubMed Central

    McCarthy, Allan; Lonergan, Roisin; Olszewska, Diana A.; O’Dowd, Sean; Cummins, Gemma; Magennis, Brian; Fallon, Emer M.; Pender, Niall; Huey, Edward D.; Cosentino, Stephanie; O’Rourke, Killian; Kelly, Brendan D.; O’Connell, Martin; Delon, Isabelle; Farrell, Michael; Spillantini, Maria Grazia; Rowland, Lewis P.; Fahn, Stanley; Craig, Peter; Hutton, Michael

    2015-01-01

    Frontotemporal lobar degeneration comprises a group of disorders characterized by behavioural, executive, language impairment and sometimes features of parkinsonism and motor neuron disease. In 1994 we described an Irish-American family with frontotemporal dementia linked to chromosome 17 associated with extensive tau pathology. We named this disinhibition-dementia-parkinsonism-amyotrophy complex. We subsequently identified mutations in the MAPT gene. Eleven MAPT gene splice site stem loop mutations were identified over time except for 5’ splice site of exon 10. We recently identified another Irish family with autosomal dominant early amnesia and behavioural change or parkinsonism associated with the ‘missing’ +15 mutation at the intronic boundary of exon 10. We performed a clinical, neuropsychological and neuroimaging study on the proband and four siblings, including two affected siblings. We sequenced MAPT and performed segregation analysis. We looked for a biological effect of the tau variant by performing real-time polymerase chain reaction analysis of RNA extracted from human embryonic kidney cells transfected with exon trapping constructs. We found a c.915+15A>C exon 10/intron 10 stem loop mutation in all affected subjects but not in the unaffected. The c.915+15A>C variant caused a shift in tau splicing pattern to a predominantly exon 10+ pattern presumably resulting in predominant 4 repeat tau and little 3 repeat tau. This strongly suggests that the c.915+15A>C variant is a mutation and that it causes frontotemporal dementia linked to chromosome 17 in this pedigree by shifting tau transcription and translation to +4 repeat tau. Tau (MAPT) screening should be considered in families where amnesia or atypical parkinsonism coexists with behavioural disturbance early in the disease process. We describe the final missing stem loop tau mutation predicted 15 years ago. Mutations have now been identified at all predicted sites within the ‘stem’ when the

  4. Open-loop versus closed-loop control of MEMS devices: choices and issues

    NASA Astrophysics Data System (ADS)

    Borovic, B.; Liu, A. Q.; Popa, D.; Cai, H.; Lewis, F. L.

    2005-10-01

    From a controls point of view, micro electromechanical systems (MEMS) can be driven in an open-loop and closed-loop fashion. Commonly, these devices are driven open-loop by applying simple input signals. If these input signals become more complex by being derived from the system dynamics, we call such control techniques pre-shaped open-loop driving. The ultimate step for improving precision and speed of response is the introduction of feedback, e.g. closed-loop control. Unlike macro mechanical systems, where the implementation of the feedback is relatively simple, in the MEMS case the feedback design is quite problematic, due to the limited availability of sensor data, the presence of sensor dynamics and noise, and the typically fast actuator dynamics. Furthermore, a performance comparison between open-loop and closed-loop control strategies has not been properly explored for MEMS devices. The purpose of this paper is to present experimental results obtained using both open- and closed-loop strategies and to address the comparative issues of driving and control for MEMS devices. An optical MEMS switching device is used for this study. Based on these experimental results, as well as computer simulations, we point out advantages and disadvantages of the different control strategies, address the problems that distinguish MEMS driving systems from their macro counterparts, and discuss criteria to choose a suitable control driving strategy.

  5. Students' Understanding of Loops and Nested Loops in Computer Programming: An APOS Theory Perspective

    ERIC Educational Resources Information Center

    Cetin, Ibrahim

    2015-01-01

    The purpose of this study is to explore students' understanding of loops and nested loops concepts. Sixty-three mechanical engineering students attending an introductory programming course participated in the study. APOS (Action, Process, Object, Schema) is a constructivist theory developed originally for mathematics education. This study is the…

  6. Parameterizing loop fusion for automated empirical tuning

    SciTech Connect

    Zhao, Y; Yi, Q; Kennedy, K; Quinlan, D; Vuduc, R

    2005-12-15

    Traditional compilers are limited in their ability to optimize applications for different architectures because statically modeling the effect of specific optimizations on different hardware implementations is difficult. Recent research has been addressing this issue through the use of empirical tuning, which uses trial executions to determine the optimization parameters that are most effective on a particular hardware platform. In this paper, we investigate empirical tuning of loop fusion, an important transformation for optimizing a significant class of real-world applications. In spite of its usefulness, fusion has attracted little attention from previous empirical tuning research, partially because it is much harder to configure than transformations like loop blocking and unrolling. This paper presents novel compiler techniques that extend conventional fusion algorithms to parameterize their output when optimizing a computation, thus allowing the compiler to formulate the entire configuration space for loop fusion using a sequence of integer parameters. The compiler can then employ an external empirical search engine to find the optimal operating point within the space of legal fusion configurations and generate the final optimized code using a simple code transformation system. We have implemented our approach within our compiler infrastructure and conducted preliminary experiments using a simple empirical search strategy. Our results convey new insights on the interaction of loop fusion with limited hardware resources, such as available registers, while confirming conventional wisdom about the effectiveness of loop fusion in improving application performance.

  7. ABJ Wilson loops and Seiberg duality

    NASA Astrophysics Data System (ADS)

    Shinji, Hirano; Keita, Nii; Masaki, Shigemori

    2014-11-01

    We study supersymmetric Wilson loops in the {N} = 6 supersymmetric U(N_1)_k × U(N_2)_{-k} Chern-Simons-matter (CSM) theory, the ABJ theory, at finite N_1, N_2, and k. This generalizes our previous study on the ABJ partition function. First computing the Wilson loops in the U(N_1) × U(N_2) lens space matrix model exactly, we perform an analytic continuation, N_2 to -N_2, to obtain the Wilson loops in the ABJ theory that is given in terms of a formal series and is only valid in perturbation theory. Via a Sommerfeld-Watson-type transform, we provide a nonperturbative completion that renders the formal series well defined at all couplings. This is given by min (N_1,N_2)-dimensional integrals that generalize the “mirror description” of the partition function of the ABJM theory. Using our results, we find the maps between the Wilson loops in the original and Seiberg dual theories and prove the duality. In our approach we can explicitly see how the perturbative and nonperturbative contributions to the Wilson loops are exchanged under the duality. The duality maps are further supported by a heuristic yet very useful argument based on the brane configuration as well as an alternative derivation based on that of Kapustin and Willett (arXiv:1302.2164 [hep-th]).

  8. Active region coronal loops - Structural and variability

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard M.; Strong, Keith T.; Harrison, Richard A.; Gary, G. A.

    1988-01-01

    X-ray images of a pair of active region loops are studied which show significant, short time-scale variability in the line fluxes of O VIII, Ne IX, and Mg XI and in the 3.5-11.5 keV soft X-ray bands. Vector magnetograms and high-resolution UV images were used to model the three-dimensional characteristics of the loops. X-ray light curves were generated spanning four consecutive orbits for both loops individually, and light curves of the loop tops and brightest points were also generated. The largest variations involve flux changes of up to several hundred percent on time scales of 10 minutes. No significant H-alpha flare activity is reported, and loop temperatures remain in the four to six million K range. The decay phases of the light curves indicate radiative cooling, inhibition of conduction, and some type of 'continued heating' due to ongoing, underlying activity at the microflare level.

  9. Bootstrapping the Three-Loop Hexagon

    SciTech Connect

    Dixon, Lance J.; Drummond, James M.; Henn, Johannes M.; /Humboldt U., Berlin /Santa Barbara, KITP

    2011-11-08

    We consider the hexagonal Wilson loop dual to the six-point MHV amplitude in planar N = 4 super Yang-Mills theory. We apply constraints from the operator product expansion in the near-collinear limit to the symbol of the remainder function at three loops. Using these constraints, and assuming a natural ansatz for the symbol's entries, we determine the symbol up to just two undetermined constants. In the multi-Regge limit, both constants drop out from the symbol, enabling us to make a non-trivial confirmation of the BFKL prediction for the leading-log approximation. This result provides a strong consistency check of both our ansatz for the symbol and the duality between Wilson loops and MHV amplitudes. Furthermore, we predict the form of the full three-loop remainder function in the multi-Regge limit, beyond the leading-log approximation, up to a few constants representing terms not detected by the symbol. Our results confirm an all-loop prediction for the real part of the remainder function in multi-Regge 3 {yields} 3 scattering. In the multi-Regge limit, our result for the remainder function can be expressed entirely in terms of classical polylogarithms. For generic six-point kinematics other functions are required.

  10. Congenital preretinal arterial loop: Is it a misnomer?

    PubMed Central

    Raman, Rajiv; Gella, Laxmi; Kazi, M. S.

    2017-01-01

    We describe a case of recurrent spontaneous vitreous haemorrhage due to congenital retinal arterial loop. The pre-optical coherence tomography showed the loop to be intraretinal rather than pre retinal. Thus the term pre retinal arterial loop is a misnomer. The arterial loop is in the superficial layer of retinal nerve fiber layer. We also demonstrated preretinal posterior hyaloid tissue attached on the retinal arterial loop, which may be the cause of traction and spontaneous recurrent VH. PMID:28298870

  11. Linear phase demodulator including a phase locked loop with auxiliary feedback loop

    NASA Technical Reports Server (NTRS)

    Rippy, R. R. (Inventor)

    1976-01-01

    A phase modulated wave that may have no carrier power is demodulated by a phase locked loop including a phase detector for deriving an A.C. data output signal having a magnitude and a phase indicative of the phase of the modulated wave. A feedback loop responsive to the data output signal restores power to the carrier frequency component to the loop. In one embodiment, the feedback loop includes a phase modulator responsive to the phase modulated wave and the data output signal. In a second embodiment, carrier frequency power is restored by differentiating the data output signal and supplying the differentiated signal to an input of a voltage controlled oscillator included in the phase locked loop.

  12. Performance of a Treatment Loop for Recycling Spent Rinse Waters

    SciTech Connect

    DONOVAN,ROBERT PATRICK; TIMON,ROBERT P.; DEBUSK,MICHAEL JOHN; JONES,RONALD V.; ROGERS,DARELL M.

    2000-11-15

    This paper summarizes an evaluation of a treatment loop designed to upgrade the quality of spent rinse waters discharged from 10 wet benches located in the fab at Sandia's Microelectronics Development Laboratory (MDL). The goal of the treatment loop is to make these waters, presently being discharged to the fab's acid waste neutralization (AWN) station, suitable for recycling as feed water back into the fab's ultrapure water (UPW) plant. The MDL typically operates 2 shifts per day, 5 days per week. Without any treatment, the properties of the spent rinse waters now being collected have been shown to be compatible with recycling about 30% (50/168) of the time (weekends primarily, when the fab is idling) which corresponds to about 12% of the present water discharged from the fab to the AWN. The primary goal of adding a treatment loop is to increase the percentage of recyclable water from these 10 wet benches to near 100%, increasing the percentage of total recyclable water to near 40% of the total present fab discharge to the AWN. A second goal is to demonstrate compatibility with recycling this treated spent rinse water to the present R/O product water tank, reducing both the present volume of R/O reject water and the present load on the R/O. The approach taken to demonstrate achieving these goals is to compare all the common metrics of water quality for the treated spent rinse waters with those of the present R/O product water. Showing that the treated rinse water is equal or superior in quality to the water presently stored in the R/O tank by every metric all the time is assumed to be sufficient argument for proceeding with plans to incorporate recycling of these spent rinse waters back into MDL's R/O tank.

  13. Specificity of SNP detection with molecular beacons is improved by stem and loop separation with spacers.

    PubMed

    Farzan, Valentina M; Markelov, Mikhail L; Skoblov, Alexander Yu; Shipulin, German A; Zatsepin, Timofei S

    2017-03-13

    Molecular beacons (MBs) are valuable tools in molecular biology, clinical diagnostics and analytical chemistry. Here we describe a novel approach for the design of MBs with nucleotide or non-nucleotide linkers between the stem and loop regions. Such modified MBs have significantly improved specificity and performance for single nucleotide polymorphism (SNP) detection. These advantages are especially distinct, when compared to the classic MBs, in the case of possible interactions between the stem and loop regions. We demonstrated the applicability of such modified MBs for the discrimination of common Factor V, NOS3 and ADRB2 SNPs in model plasmids and in clinical samples. The developed approach could be applicable not only to fluorescently labeled MBs, but also to other biosensors based on nucleic acids with stem-loop structures.

  14. Structural Study of a Flexible Active Site Loop in Human Indoleamine 2,3-Dioxygenase and Its Functional Implications.

    PubMed

    Álvarez, Lucía; Lewis-Ballester, Ariel; Roitberg, Adrián; Estrin, Darío A; Yeh, Syun-Ru; Marti, Marcelo A; Capece, Luciana

    2016-05-17

    Human indoleamine 2,3-dioxygenase catalyzes the oxidative cleavage of tryptophan to N-formyl kynurenine, the initial and rate-limiting step in the kynurenine pathway. Additionally, this enzyme has been identified as a possible target for cancer therapy. A 20-amino acid protein segment (the JK loop), which connects the J and K helices, was not resolved in the reported hIDO crystal structure. Previous studies have shown that this loop undergoes structural rearrangement upon substrate binding. In this work, we apply a combination of replica exchange molecular dynamics simulations and site-directed mutagenesis experiments to characterize the structure and dynamics of this protein region. Our simulations show that the JK loop can be divided into two regions: the first region (JK loop(C)) displays specific and well-defined conformations and is within hydrogen bonding distance of the substrate, while the second region (JK loop(N)) is highly disordered and exposed to the solvent. The peculiar flexible nature of JK loop(N) suggests that it may function as a target for post-translational modifications and/or a mediator for protein-protein interactions. In contrast, hydrogen bonding interactions are observed between the substrate and Thr379 in the highly conserved "GTGG" motif of JK loop(C), thereby anchoring JK loop(C) in a closed conformation, which secures the appropriate substrate binding mode for catalysis. Site-directed mutagenesis experiments confirm the key role of this residue, highlighting the importance of the JK loop(C) conformation in regulating the enzymatic activity. Furthermore, the existence of the partially and totally open conformations in the substrate-free form suggests a role of JK loop(C) in controlling substrate and product dynamics.

  15. Molecular mechanisms of neurite extension.

    PubMed Central

    Valtorta, F; Leoni, C

    1999-01-01

    The extension of neurites is a major task of developing neurons, requiring a significant metabolic effort to sustain the increase in molecular synthesis necessary for plasma membrane expansion. In addition, neurite extension involves changes in the subsets of expressed proteins and reorganization of the cytomatrix. These phenomena are driven by environmental cues which activate signal transduction processes as well as by the intrinsic genetic program of the cell. The present review summarizes some of the most recent progress made in the elucidation of the molecular mechanisms underlying these processes. PMID:10212488

  16. Double reference pulsed phase locked loop

    NASA Technical Reports Server (NTRS)

    Heyman, J. S. (Inventor)

    1986-01-01

    A double reference pulse phase locked loop is described which measures the phase shift between tone burst signals initially derived from the same periodic signal source (voltage controlled oscillator) and delayed by different amounts because of two different paths. A first path is from the transducer to the surface of a sample and back. A second path is from the transducer to the opposite surface and back. A first pulse phase locked loop including a phase detector and a phase shifter forces the tone burst signal delayed by the second path in phase quadrature with the periodic signal source. A second pulse phase locked loop including a second phase detector forces the tone burst signals delayed by the first path into phase quadrature with the phase shifted periodic signal source.

  17. Mass flow in loop type coronal transients

    NASA Technical Reports Server (NTRS)

    Anzer, U.; Poland, A. I.

    1979-01-01

    Coronal transients having characteristics of a well-defined loop structure are examined, particularly with respect to temporal changes in the density and mass per unit length along the loop over periods of several days after the initial eruption. Measurements of mass distributions as a function of time are presented for eight transients, and one particular transient with a fairly simple configuration is investigated in more detail. Theoretical calculations are combined with the masses and densities derived from the observations to obtain estimates of the material flow in the transients; this flow is modeled on the assumption that magnetic forces drive and confine the loop. The flow field is found to be diverging everywhere, indicating that the density decreases in time. It is inferred that the transient legs are approximately in hydrostatic equilibrium and that most of the mass of the transient is lost from the sun during the initial phase.

  18. Closed-loop approach to thermodynamics

    NASA Astrophysics Data System (ADS)

    Goupil, C.; Ouerdane, H.; Herbert, E.; Benenti, G.; D'Angelo, Y.; Lecoeur, Ph.

    2016-09-01

    We present the closed-loop approach to linear nonequilibrium thermodynamics considering a generic heat engine dissipatively connected to two temperature baths. The system is usually quite generally characterized by two parameters: the output power P and the conversion efficiency η , to which we add a third one, the working frequency ω . We establish that a detailed understanding of the effects of the dissipative coupling on the energy conversion process requires only knowing two quantities: the system's feedback factor β and its open-loop gain A0, which product A0β characterizes the interplay between the efficiency, the output power, and the operating rate of the system. By raising the abstract hermodynamic analysis to a higher level, the feedback loop approach provides a versatile and economical, hence fairly efficient, tool for the study of any conversion engine operation for which a feedback factor can be defined.

  19. Counting primary loops in polymer gels

    PubMed Central

    Zhou, Huaxing; Woo, Jiyeon; Cok, Alexandra M.; Wang, Muzhou; Olsen, Bradley D.; Johnson, Jeremiah A.

    2012-01-01

    Much of our fundamental knowledge related to polymer networks is built on an assumption of ideal end-linked network structure. Real networks invariably possess topological imperfections that negatively affect mechanical properties; modifications of classical network theories have been developed to account for these defects. Despite decades of effort, there are no known experimental protocols for precise quantification of even the simplest topological network imperfections: primary loops. Here we present a simple conceptual framework that enables primary loop quantification in polymeric materials. We apply this framework to measure the fraction of primary loop junctions in trifunctional PEG-based hydrogels. We anticipate that the concepts described here will open new avenues of theoretical and experimental research related to polymer network structure. PMID:23132947

  20. Digital tanlock loop architecture with no delay

    NASA Astrophysics Data System (ADS)

    Al-Kharji AL-Ali, Omar; Anani, Nader; Al-Araji, Saleh; Al-Qutayri, Mahmoud; Ponnapalli, Prasad

    2012-02-01

    This article proposes a new architecture for a digital tanlock loop which eliminates the time-delay block. The ? (rad) phase shift relationship between the two channels, which is generated by the delay block in the conventional time-delay digital tanlock loop (TDTL), is preserved using two quadrature sampling signals for the loop channels. The proposed system outperformed the original TDTL architecture, when both systems were tested with frequency shift keying input signal. The new system demonstrated better linearity and acquisition speed as well as improved noise performance compared with the original TDTL architecture. Furthermore, the removal of the time-delay block enables all processing to be digitally performed, which reduces the implementation complexity. Both the original TDTL and the new architecture without the delay block were modelled and simulated using MATLAB/Simulink. Implementation issues, including complexity and relation to simulation of both architectures, are also addressed.

  1. Current loop signal conditioning: Practical applications

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F.

    1995-01-01

    This paper describes a variety of practical application circuits based on the current loop signal conditioning paradigm. Equations defining the circuit response are also provided. The constant current loop is a fundamental signal conditioning circuit concept that can be implemented in a variety of configurations for resistance-based transducers, such as strain gages and resistance temperature detectors. The circuit features signal conditioning outputs which are unaffected by extremely large variations in lead wire resistance, direct current frequency response, and inherent linearity with respect to resistance change. Sensitivity of this circuit is double that of a Wheatstone bridge circuit. Electrical output is zero for resistance change equals zero. The same excitation and output sense wires can serve multiple transducers. More application arrangements are possible with constant current loop signal conditioning than with the Wheatstone bridge.

  2. Nucleic acid amplification: Alternative methods of polymerase chain reaction

    PubMed Central

    Fakruddin, Md; Mannan, Khanjada Shahnewaj Bin; Chowdhury, Abhijit; Mazumdar, Reaz Mohammad; Hossain, Md. Nur; Islam, Sumaiya; Chowdhury, Md. Alimuddin

    2013-01-01

    Nucleic acid amplification is a valuable molecular tool not only in basic research but also in application oriented fields, such as clinical medicine development, infectious diseases diagnosis, gene cloning and industrial quality control. A comperehensive review of the literature on the principles, applications, challenges and prospects of different alternative methods of polymerase chain reaction (PCR) was performed. PCR was the first nucleic acid amplification method. With the advancement of research, a no of alternative nucleic acid amplification methods has been developed such as loop mediated isothermal amplification, nucleic acid sequence based amplification, strand displacement amplification, multiple displacement amplification. Most of the alternative methods are isothermal obviating the need for thermal cyclers. Though principles of most of the alternate methods are relatively complex than that of PCR, they offer better applicability and sensitivity in cases where PCR has limitations. Most of the alternate methods still have to prove themselves through extensive validation studies and are not available in commercial form; they pose the potentiality to be used as replacements of PCR. Continuous research is going on in different parts of the world to make these methods viable technically and economically. PMID:24302831

  3. Nucleic acid amplification: Alternative methods of polymerase chain reaction.

    PubMed

    Fakruddin, Md; Mannan, Khanjada Shahnewaj Bin; Chowdhury, Abhijit; Mazumdar, Reaz Mohammad; Hossain, Md Nur; Islam, Sumaiya; Chowdhury, Md Alimuddin

    2013-10-01

    Nucleic acid amplification is a valuable molecular tool not only in basic research but also in application oriented fields, such as clinical medicine development, infectious diseases diagnosis, gene cloning and industrial quality control. A comperehensive review of the literature on the principles, applications, challenges and prospects of different alternative methods of polymerase chain reaction (PCR) was performed. PCR was the first nucleic acid amplification method. With the advancement of research, a no of alternative nucleic acid amplification methods has been developed such as loop mediated isothermal amplification, nucleic acid sequence based amplification, strand displacement amplification, multiple displacement amplification. Most of the alternative methods are isothermal obviating the need for thermal cyclers. Though principles of most of the alternate methods are relatively complex than that of PCR, they offer better applicability and sensitivity in cases where PCR has limitations. Most of the alternate methods still have to prove themselves through extensive validation studies and are not available in commercial form; they pose the potentiality to be used as replacements of PCR. Continuous research is going on in different parts of the world to make these methods viable technically and economically.

  4. Quantum Monte Carlo with directed loops.

    PubMed

    Syljuåsen, Olav F; Sandvik, Anders W

    2002-10-01

    We introduce the concept of directed loops in stochastic series expansion and path-integral quantum Monte Carlo methods. Using the detailed balance rules for directed loops, we show that it is possible to smoothly connect generally applicable simulation schemes (in which it is necessary to include backtracking processes in the loop construction) to more restricted loop algorithms that can be constructed only for a limited range of Hamiltonians (where backtracking can be avoided). The "algorithmic discontinuities" between general and special points (or regions) in parameter space can hence be eliminated. As a specific example, we consider the anisotropic S=1/2 Heisenberg antiferromagnet in an external magnetic field. We show that directed-loop simulations are very efficient for the full range of magnetic fields (zero to the saturation point) and anisotropies. In particular, for weak fields and anisotropies, the autocorrelations are significantly reduced relative to those of previous approaches. The back-tracking probability vanishes continuously as the isotropic Heisenberg point is approached. For the XY model, we show that back tracking can be avoided for all fields extending up to the saturation field. The method is hence particularly efficient in this case. We use directed-loop simulations to study the magnetization process in the two-dimensional Heisenberg model at very low temperatures. For LxL lattices with L up to 64, we utilize the step structure in the magnetization curve to extract gaps between different spin sectors. Finite-size scaling of the gaps gives an accurate estimate of the transverse susceptibility in the thermodynamic limit: chi( perpendicular )=0.0659+/-0.0002.

  5. Coronal Loops: Evolving Beyond the Isothermal Approximation

    NASA Astrophysics Data System (ADS)

    Schmelz, J. T.; Cirtain, J. W.; Allen, J. D.

    2002-05-01

    Are coronal loops isothermal? A controversy over this question has arisen recently because different investigators using different techniques have obtained very different answers. Analysis of SOHO-EIT and TRACE data using narrowband filter ratios to obtain temperature maps has produced several key publications that suggest that coronal loops may be isothermal. We have constructed a multi-thermal distribution for several pixels along a relatively isolated coronal loop on the southwest limb of the solar disk using spectral line data from SOHO-CDS taken on 1998 Apr 20. These distributions are clearly inconsistent with isothermal plasma along either the line of sight or the length of the loop, and suggested rather that the temperature increases from the footpoints to the loop top. We speculated originally that these differences could be attributed to pixel size -- CDS pixels are larger, and more `contaminating' material would be expected along the line of sight. To test this idea, we used CDS iron line ratios from our data set to mimic the isothermal results from the narrowband filter instruments. These ratios indicated that the temperature gradient along the loop was flat, despite the fact that a more complete analysis of the same data showed this result to be false! The CDS pixel size was not the cause of the discrepancy; rather, the problem lies with the isothermal approximation used in EIT and TRACE analysis. These results should serve as a strong warning to anyone using this simplistic method to obtain temperature. This warning is echoed on the EIT web page: ``Danger! Enter at your own risk!'' In other words, values for temperature may be found, but they may have nothing to do with physical reality. Solar physics research at the University of Memphis is supported by NASA grant NAG5-9783. This research was funded in part by the NASA/TRACE MODA grant for Montana State University.

  6. Coronal Loops: Observations and Modeling of Confined Plasma.

    PubMed

    Reale, Fabio

    Coronal loops are the building blocks of the X-ray bright solar corona. They owe their brightness to the dense confined plasma, and this review focuses on loops mostly as structures confining plasma. After a brief historical overview, the review is divided into two separate but not independent parts: the first illustrates the observational framework, the second reviews the theoretical knowledge. Quiescent loops and their confined plasma are considered and, therefore, topics such as loop oscillations and flaring loops (except for non-solar ones, which provide information on stellar loops) are not specifically addressed here. The observational section discusses the classification, populations, and the morphology of coronal loops, its relationship with the magnetic field, and the loop stranded structure. The section continues with the thermal properties and diagnostics of the loop plasma, according to the classification into hot, warm, and cool loops. Then, temporal analyses of loops and the observations of plasma dynamics, hot and cool flows, and waves are illustrated. In the modeling section, some basics of loop physics are provided, supplying fundamental scaling laws and timescales, a useful tool for consultation. The concept of loop modeling is introduced and models are divided into those treating loops as monolithic and static, and those resolving loops into thin and dynamic strands. More specific discussions address modeling the loop fine structure and the plasma flowing along the loops. Special attention is devoted to the question of loop heating, with separate discussion of wave (AC) and impulsive (DC) heating. Large-scale models including atmosphere boxes and the magnetic field are also discussed. Finally, a brief discussion about stellar coronal loops is followed by highlights and open questions.

  7. Quasi-periodic processes in the flare loop generated by sudden temperature enhancements at loop footpoints

    NASA Astrophysics Data System (ADS)

    Karlický, M.; Jelínek, P.

    2016-05-01

    Aims: During the impulsive flare phase, the plasma at the flare loop footpoints is rapidly heated by particle beams. In the present paper, we study processes that occur after this sudden heating in a two-dimensional magnetic loop. Methods: We adopt a 2D magnetohydrodynamic (MHD) model, in which we solve a full set of the ideal time-dependent MHD equations by means of the FLASH code, using the adaptive mesh refinement (AMR) method. Periods in the processes are estimated by the wavelet analysis technique. Results: We consider a model of the solar atmosphere with a symmetric magnetic loop. The length of this loop in the corona is approximately 21.5 Mm. At both loop footpoints, at the transition region, we initiate the Gaussian temperature (pressure) perturbation with the maximum temperature 14, 7, or 3.5 times higher than the unperturbed temperature. In the corona, the perturbations produce supersonic blast shocks with the Mach number of about 1.1, but well below Alfvén velocities. We consider cases with the same perturbations at both footpoints (symmetric case) and one with different perturbations (asymmetric case). In the symmetric case, the shocks move along both loop legs upwards to the top of the loop, where they interact and form a transient compressed region. Then they continue in their motion to the transition region at the opposite side of the loop, where they are reflected upwards, and so on. At the top of the loop, the shock appears periodically with the period of about 170 s. In the loop legs during this period, a double peak of the plasma parameters, which is connected with two arrivals of shocks, is detected: firstly, when the shock moves up and then when the shock, propagating from the opposite loop leg, moves down. Increasing the distance of the detection point in the loop leg from the top of the loop, the time interval between these shock arrivals increases. Thus, at these detection points, the processes with shorter periods can be detected. After

  8. Loop Optimization for Tensor Network Renormalization

    NASA Astrophysics Data System (ADS)

    Yang, Shuo; Gu, Zheng-Cheng; Wen, Xiao-Gang

    2017-03-01

    We introduce a tensor renormalization group scheme for coarse graining a two-dimensional tensor network that can be successfully applied to both classical and quantum systems on and off criticality. The key innovation in our scheme is to deform a 2D tensor network into small loops and then optimize the tensors on each loop. In this way, we remove short-range entanglement at each iteration step and significantly improve the accuracy and stability of the renormalization flow. We demonstrate our algorithm in the classical Ising model and a frustrated 2D quantum model.

  9. Temperature Oscillations in Loop Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Kobel, Mark; Rogers, Paul; Kaya, Tarik; Paquin, Krista C. (Technical Monitor)

    2000-01-01

    Loop heat pipes (LHPs) are versatile two-phase heat transfer devices that have gained increasing acceptance for space and terrestrial applications. The operating temperature of an LHP is a function of its operating conditions. The LHP usually reaches a steady operating temperature for a given heat load and sink temperature. The operating temperature will change when the heat load and/or the sink temperature changes, but eventually reaches another steady state in most cases. Under certain conditions, however, the loop operating temperature never really reaches a true steady state, but instead becomes oscillatory. This paper discusses the temperature oscillation phenomenon using test data from a miniature LHP.

  10. Anomaly freedom in perturbative loop quantum gravity

    SciTech Connect

    Bojowald, Martin; Hossain, Golam Mortuza; Kagan, Mikhail; Shankaranarayanan, S.

    2008-09-15

    A fully consistent linear perturbation theory for cosmology is derived in the presence of quantum corrections as they are suggested by properties of inverse volume operators in loop quantum gravity. The underlying constraints present a consistent deformation of the classical system, which shows that the discreteness in loop quantum gravity can be implemented in effective equations without spoiling space-time covariance. Nevertheless, nontrivial quantum corrections do arise in the constraint algebra. Since correction terms must appear in tightly controlled forms to avoid anomalies, detailed insights for the correct implementation of constraint operators can be gained. The procedures of this article thus provide a clear link between fundamental quantum gravity and phenomenology.

  11. Three loop cusp anomalous dimension in QCD.

    PubMed

    Grozin, Andrey; Henn, Johannes M; Korchemsky, Gregory P; Marquard, Peter

    2015-02-13

    We present the full analytic result for the three loop angle-dependent cusp anomalous dimension in QCD. With this result, infrared divergences of planar scattering processes with massive particles can be predicted to that order. Moreover, we define a closely related quantity in terms of an effective coupling defined by the lightlike cusp anomalous dimension. We find evidence that this quantity is universal for any gauge theory and use this observation to predict the nonplanar n(f)-dependent terms of the four loop cusp anomalous dimension.

  12. LCL Current Control Loop Stability Design

    NASA Astrophysics Data System (ADS)

    Delepaut, Christophe; Kuremyr, Tobias; Martin, Manuel; Tonicello, Ferdinando

    2014-08-01

    Latching Current Limiters include a control loop meant at limiting the current in case of downstream failure. Such current control loop consists typically of a simple proportional feedback gain from a current measurement shunt resistance and may result in very limited phase margin for specified operating conditions. The present paper investigates the combination of a proportional and derivative feedback to mitigate the lack of stability margin, providing a comprehensive overview on designing Latching Current Limiters for stability. For illustration purpose, a LCL based on radiation hardened ITAR free components is considered. A breadboard has been manufactured and the reported phase margin measurements demonstrate performances in line with the analytic results.

  13. Similarity Metrics for Closed Loop Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.; Yang, Lee C.; Bedrossian, Naz; Hall, Robert A.

    2008-01-01

    To what extent and in what ways can two closed-loop dynamic systems be said to be "similar?" This question arises in a wide range of dynamic systems modeling and control system design applications. For example, bounds on error models are fundamental to the controller optimization with modern control design methods. Metrics such as the structured singular value are direct measures of the degree to which properties such as stability or performance are maintained in the presence of specified uncertainties or variations in the plant model. Similarly, controls-related areas such as system identification, model reduction, and experimental model validation employ measures of similarity between multiple realizations of a dynamic system. Each area has its tools and approaches, with each tool more or less suited for one application or the other. Similarity in the context of closed-loop model validation via flight test is subtly different from error measures in the typical controls oriented application. Whereas similarity in a robust control context relates to plant variation and the attendant affect on stability and performance, in this context similarity metrics are sought that assess the relevance of a dynamic system test for the purpose of validating the stability and performance of a "similar" dynamic system. Similarity in the context of system identification is much more relevant than are robust control analogies in that errors between one dynamic system (the test article) and another (the nominal "design" model) are sought for the purpose of bounding the validity of a model for control design and analysis. Yet system identification typically involves open-loop plant models which are independent of the control system (with the exception of limited developments in closed-loop system identification which is nonetheless focused on obtaining open-loop plant models from closed-loop data). Moreover the objectives of system identification are not the same as a flight test and

  14. A double-loop tracking system.

    NASA Technical Reports Server (NTRS)

    Yuen, J. H.

    1972-01-01

    A nonlinear analysis which can be used to assess certain statistical characteristics of double-loop tracking systems is presented. It takes into account the mutual coupling effects of the loops in the system. Two approaches are taken to obtain steady-state probability density functions (pdf's) of the system phase errors. From these pdf's, important system performance statistics, e.g., the phase-error variances, can be calculated, thus illustrating the application and usefulness of the analysis. The analysis is applied to a satellite transponder as an example.

  15. Toward loop quantization of plane gravitational waves

    NASA Astrophysics Data System (ADS)

    Hinterleitner, Franz; Major, Seth

    2012-03-01

    The polarized Gowdy model in terms of Ashtekar-Barbero variables is reduced with an additional constraint derived from the Killing equations for plane gravitational waves with parallel rays. The new constraint is formulated in a diffeomorphism invariant manner and, when it is included in the model, the resulting constraint algebra is first class, in contrast to the prior work done in special coordinates. Using an earlier work by Banerjee and Date, the constraints are expressed in terms of classical quantities that have an operator equivalent in loop quantum gravity, making these plane gravitational wave spacetimes accessible to loop quantization techniques.

  16. Extension Resources for International Trade

    ERIC Educational Resources Information Center

    Seal, Susan D.

    2016-01-01

    With the opening of additional trade partnerships, the reduction of global transportation and communication costs, and the increase in demand for U.S. agricultural products and services, international trade is an area of great importance to more and more Extension clients and stakeholders. This article provides information about the primary…

  17. Hemorrhagic Longitudinally Extensive Transverse Myelitis.

    PubMed

    Wu, Chris Y; Riangwiwat, Tanawan; Nakamoto, Beau K

    2016-01-01

    Longitudinally extensive transverse myelitis (LETM) may be associated with viral triggers, including both infections and vaccinations. We present a case of a healthy immunocompetent 33-year-old woman who developed a hemorrhagic LETM 2 weeks after seasonal influenza vaccination. Hemorrhagic LETM has not to our knowledge been reported after influenza vaccination. It may represent a forme fruste variant of acute hemorrhagic leukoencephalitis.

  18. Slope Extensions to ASL Library

    SciTech Connect

    Gay, David

    2010-03-31

    Extensions to the AMPL/solver interface library (http://netlib.sandia.gov/ampl/solvers) to compute bounds on algebraic expressions, plus a test program. use in uncertainty quantification and global optimization algorithms. This software is not primarily for military applications.

  19. Removing the Tension from Extension

    ERIC Educational Resources Information Center

    Bradley, Lucy; Driscoll, Elizabeth; Bardon, Robert

    2012-01-01

    Job burnout and stress begin with day-to-day frustrations, roadblocks, and unmet expectations. These can transform job satisfaction and, ultimately, career choices, affecting the quality of programs, expense to universities, and relationships with the community. A series of innovative statewide workshops involving 97 agents and Extension directors…

  20. Extensions of 2D gravity

    SciTech Connect

    Sevrin, A.

    1993-06-01

    After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.

  1. NACRE Update and Extension Project

    SciTech Connect

    Aikawa, Masayuki; Arnould, Marcel; Takahashi, Kohji; Arai, Koji; Utsunomiya, Hiroaki

    2006-04-26

    NACRE, the 'nuclear astrophysics compilation of reaction rates', has been widely utilized in stellar evolution and nucleosynthesis studies since its publication in 1999. We describe here the current status of a Konan-Universite Libre de Brussels (ULB) joint project that aims at its update and extension.

  2. Unstable extension of Enceladus' lithosphere

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; Beyer, Ross A.; Showman, Adam P.

    2007-12-01

    Regions near Enceladus' equator, Sarandib and Diyar Planitia, contain extensive sets of parallel ridges and troughs that may be diagnostic of the region's formation conditions. We present photoclinometry profiles across these ridges and troughs, which indicate that they are periodic, low-slope features with dominant wavelengths of 3 to 4 km and amplitudes between 100 and 400 m. The morphology of these terrains is consistent with formation via unstable extension of the lithosphere. Our numerical modeling demonstrates that unstable extension can generate large-scale topography under Enceladus-like conditions. Comparison of our photoclinometry profiles with the dominant wavelengths produced by our numerical model permits estimation of the background heat flow at the time the Sarandib-Diyar province formed. We estimate heat flows of 110 to 220mWm, suggesting that resurfacing of the planitiae was accompanied by strong, localized heating. The extension necessary to produce the ridges and troughs may have been caused by now-inactive diapirs, internal phase changes, or other mechanisms. Our heat flux estimates imply elastic thickness at the time of resurfacing of 0.4 to 1.4 km, which are sufficient to have allowed satellite reorientation if the province was underlain by a low-density region. It is therefore plausible that Enceladus has experienced multiple heating events, each leading to localized resurfacing and global reorientation.

  3. Protective coatings on extensible biofibres

    NASA Astrophysics Data System (ADS)

    Holten-Andersen, Niels; Fantner, Georg E.; Hohlbauch, Sophia; Waite, J. Herbert; Zok, Frank W.

    2007-09-01

    Formulating effective coatings for use in nano- and biotechnology poses considerable technical challenges. If they are to provide abrasion resistance, coatings must be hard and adhere well to the underlying substrate. High hardness, however, comes at the expense of extensibility. This property trade-off makes the design of coatings for even moderately compliant substrates problematic, because substrate deformation easily exceeds the strain limit of the coating. Although the highest strain capacity of synthetic fibre coatings is less than 10%, deformable coatings are ubiquitous in biological systems. With an eye to heeding the lessons of nature, the cuticular coatings of byssal threads from two species of marine mussels, Mytilus galloprovincialis and Perna canaliculus, have been investigated. Consistent with their function to protect collagenous fibres in the byssal-thread core, these coatings show hardness and stiffness comparable to those of engineering plastics and yet are surprisingly extensible; the tensile failure strain of P. canaliculus cuticle is about 30% and that of M. galloprovincialis is a remarkable 70%. The difference in extensibility is attributable to the presence of deformable microphase-separated granules within the cuticle of M. galloprovincialis. The results have important implications in the design of bio-inspired extensible coatings.

  4. Rule Induction with Extension Matrices.

    ERIC Educational Resources Information Center

    Wu, Xindong

    1998-01-01

    Presents a heuristic, attribute-based, noise-tolerant data mining program, HCV (Version 2.0) based on the newly-developed extension matrix approach. Outlines some techniques implemented in the HCV program for noise handling and discretization of continuous domains; an empirical comparison shows that rules generated by HCV are more compact than the…

  5. Strategic Opportunities for Cooperative Extension

    ERIC Educational Resources Information Center

    National Association of State Universities and Land-Grant Colleges, 2007

    2007-01-01

    In this new century, opportunities exist to help advance America's greatness in the midst of many challenges. Energy, water, food, environment, health, economic productivity, global competitiveness, and the quality of the living environments are all paramount to the future. Extension is, as a part of higher education, prepared to create new…

  6. Nuclear power plant life extension

    SciTech Connect

    Carlson, D.D.; Bustard, L.D.; Harrison, D.L.

    1986-01-01

    Nuclear plant life extension represents an opportunity to achieve additional productive years of operation from existing nuclear power facilities. This is particularly important since operating licenses for over 50 GW of nuclear capacity will expire by the year 2010. By the year 2015, 85% of the total planned nuclear electric capacity will face retirement due to license expirations. Achieving additional productive years of operation from the nation's existing light water reactors is the goal of ongoing utility, vendor, US Department of Energy, and Electric Power Research Institute programs. Identifying potential technical issues associated with extending plant life and scoping realistic solutions represent first steps toward the development of a coordinated national plant life extension strategy. This is a substantial effort that must consider the breadth of issues associated with nuclear power plant design, operation, and licensing, and the numerous potential plant life extension strategies that may be appropriate to different utilities. Such an effort must enlist the expertise of the full spectrum of organizations in the nuclear industry including utilities, vendors, consultants, national laboratories, and professional organizations. A primary focus of these efforts is to identify operational changes and improvements in record-keeping, which, if implemented now, could enhance and preserve the life extension option.

  7. Three determinants in ezrin are responsible for cell extension activity.

    PubMed Central

    Martin, M; Roy, C; Montcourrier, P; Sahuquet, A; Mangeat, P

    1997-01-01

    The ERM proteins--ezrin, radixin, and moesin--are key players in membrane-cytoskeleton interactions. In insect cells infected with recombinant baculoviruses, amino acids 1-115 of ezrin were shown to inhibit an actin- and tubulin-dependent cell-extension activity located in ezrin C-terminal domain (ezrin310-586), whereas full-length ezrin1-586 did not induce any morphological change. To refine the mapping of functional domains of ezrin, 30 additional constructs were overexpressed in Sf9 cells, and the resulting effect of each was qualitatively and semiquantitatively compared. The removal of amino acids 13-30 was sufficient to release a cell-extension phenotype. This effect was abrogated if the 21 distal-most C-terminal amino acids were subsequently deleted (ezrin31-565), confirming the existence of a head-to-tail regulation in the whole molecule. Surprisingly, the deletion in full-length ezrin of the same 21 amino acids provided strong cell-extension competence to ezrin1-565, and this property was recovered in N-terminal constructs as short as ezrin1-310. Within ezrin1-310, amino acid sequences 13-30 and 281-310 were important determinants and acted in cooperation to induce cytoskeleton mobilization. In addition, these same residues are part of a new actin-binding site characterized in vitro in ezrin N-terminal domain. Images PMID:9285824

  8. Mutational trends in V3 loop protein sequences observed in different genetic lineages of human immunodeficiency virus type 1.

    PubMed Central

    Korber, B T; MacInnes, K; Smith, R F; Myers, G

    1994-01-01

    Highly variable international human immunodeficiency virus type 1 envelope sequences can be assigned to six major clades, or phylogenetically defined subtypes, designated A through F. These subtypes are approximately equidistant in terms of evolutionary distance measured by nucleotide sequences. This radiation from a common ancestral sequence may have been in step with the spread of the pandemic. In this study, V3 loop protein sequence relationships within these major clades are analyzed to determine how the different lineages might be evolving with respect to this biologically important domain. The V3 loop has been shown to influence viral phenotype and to elicit both humoral and cellular immune responses. To identify patterns in V3 loop amino acid evolution, we cluster the sequences by a phenetic principle which evaluates protein similarities on the basis of amino acid identities and similarities irrespective of evolutionary relationships. When phenetic clustering patterns are superimposed upon phylogenetic subtype classifications, two interesting mutational trends are revealed. First, a set of identical, or highly similar, V3 loop protein sequences can be identified within two otherwise dissimilar genetic subtypes, A and C. Second, the D subtype sequences are found to possess the most radically divergent set of V3 loop sequences. These and other patterns characteristic of the V3 loop reflect the acquisition of specific biological properties during the apparently recent evolution of the human immunodeficiency virus type 1 lineages. PMID:8084005

  9. Modulation of DNA loop lifetimes by the free energy of loop formation

    PubMed Central

    Chen, Yi-Ju; Johnson, Stephanie; Mulligan, Peter; Spakowitz, Andrew J.; Phillips, Rob

    2014-01-01

    Storage and retrieval of the genetic information in cells is a dynamic process that requires the DNA to undergo dramatic structural rearrangements. DNA looping is a prominent example of such a structural rearrangement that is essential for transcriptional regulation in both prokaryotes and eukaryotes, and the speed of such regulations affects the fitness of individuals. Here, we examine the in vitro looping dynamics of the classic Lac repressor gene-regulatory motif. We show that both loop association and loop dissociation at the DNA-repressor junctions depend on the elastic deformation of the DNA and protein, and that both looping and unlooping rates approximately scale with the looping J factor, which reflects the system’s deformation free energy. We explain this observation by transition state theory and model the DNA–protein complex as an effective worm-like chain with twist. We introduce a finite protein–DNA binding interaction length, in competition with the characteristic DNA deformation length scale, as the physical origin of the previously unidentified loop dissociation dynamics observed here, and discuss the robustness of this behavior to perturbations in several polymer parameters. PMID:25411314

  10. Radiation Enhanced Absorption of Frank Loops by Nanovoids in Cu

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Zhang, X.; Wang, J.

    2016-01-01

    Neutron and heavy ion irradiations generally induce voids in metallic materials, and continuous radiations typically result in void swelling and mechanical failure of the irradiated materials. Recent experiments showed that nanovoids in nanotwinned copper could act as sinks for radiation-induced Frank loops, significantly mitigating radiation damage. In this paper, we report on structural evolution of Frank loops under cascades and address the role of nanovoids in absorbing Frank loops in detail by using molecular dynamics simulations. Results show that a stand-alone Frank loop is stable under cascades. When Frank loops are adjacent to nanovoids, the diffusion of a group of atoms from the loop into nanovoids is accomplished via the formation and propagation of dislocation loops. The loop-nanovoid interactions result in the shrinkage of the nanovoids and the Frank loops.

  11. Radiation Enhanced Absorption of Frank Loops by Nanovoids in Cu

    SciTech Connect

    Chen, Youxing; Zhang, Xinghang; Wang, Jian

    2016-11-01

    Neutron and heavy ion irradiation generally induces voids in metallic materials, and continuous radiations typically result in void swelling and mechanical failure of the irradiated materials. Recent experiments showed that nanovoids in nanotwinned copper could act as sinks for radiation-induced Frank loops, significantly mitigating radiation damage [Y. Chen et al., Nat. Commun. 6:7036 (2015)]. In this paper, we report on structural evolution of Frank loops under cascades and address the role of nanovoids in absorbing Frank loops in detail by using molecular dynamics simulations. Results show that a stand-alone Frank loop is stable under cascades. When Frank loops are adjacent to nanovoids, the diffusion of a group of atoms from the loop into nanovoids is accomplished via the formation and propagation of dislocation loops. The loop-nanovoid interactions result in the shrinkage of the nanovoids and the Frank loops.

  12. Radiation Enhanced Absorption of Frank Loops by Nanovoids in Cu

    DOE PAGES

    Chen, Youxing; Zhang, Xinghang; Wang, Jian

    2016-11-01

    Neutron and heavy ion irradiation generally induces voids in metallic materials, and continuous radiations typically result in void swelling and mechanical failure of the irradiated materials. Recent experiments showed that nanovoids in nanotwinned copper could act as sinks for radiation-induced Frank loops, significantly mitigating radiation damage [Y. Chen et al., Nat. Commun. 6:7036 (2015)]. In this paper, we report on structural evolution of Frank loops under cascades and address the role of nanovoids in absorbing Frank loops in detail by using molecular dynamics simulations. Results show that a stand-alone Frank loop is stable under cascades. When Frank loops are adjacentmore » to nanovoids, the diffusion of a group of atoms from the loop into nanovoids is accomplished via the formation and propagation of dislocation loops. The loop-nanovoid interactions result in the shrinkage of the nanovoids and the Frank loops.« less

  13. Sensory feedback in prosthetics: a standardized test bench for closed-loop control.

    PubMed

    Dosen, Strahinja; Markovic, Marko; Hartmann, Cornelia; Farina, Dario

    2015-03-01

    Closing the control loop by providing sensory feedback to the user of a prosthesis is an important challenge, with major impact on the future of prosthetics. Developing and comparing closed-loop systems is a difficult task, since there are many different methods and technologies that can be used to implement each component of the system. Here, we present a test bench developed in Matlab Simulink for configuring and testing the closed-loop human control system in standardized settings. The framework comprises a set of connected generic blocks with normalized inputs and outputs, which can be customized by selecting specific implementations from a library of predefined components. The framework is modular and extensible and it can be used to configure, compare and test different closed-loop system prototypes, thereby guiding the development towards an optimal system configuration. The use of the test bench was demonstrated by investigating two important aspects of closed-loop control: performance of different electrotactile feedback interfaces (spatial versus intensity coding) during a pendulum stabilization task and feedforward methods (joystick versus myocontrol) for force control. The first experiment demonstrated that in the case of trained subjects the intensity coding might be superior to spatial coding. In the second experiment, the control of force was rather poor even with a stable and precise control interface (joystick), demonstrating that inherent characteristics of the prosthesis can be an important limiting factor when considering the overall effectiveness of the closed-loop control. The presented test bench is an important instrument for investigating different aspects of human manual control with sensory feedback.

  14. Electromagnetic Response of a Large Circular Loop Source on a Layered Earth: A New Computation Method

    NASA Astrophysics Data System (ADS)

    Singh, Nagendra Pratap; Mogi, Toru

    2005-01-01

    Integral expressions of electromagnetic (EM) field components due to a large circular loop source carrying an alternating (ac) current and placed on or above the surface of a layered earth model are transformed to such suitable forms that facilitate numerical computation of field response in quasi-static as well as non-quasi-static regions. The improper integrals occurring in expressions of EM field components are evaluated by converting these integrals into the convergent integrals using the process of subtraction or addition of an integral expression inside the integral sign and subsequently adjusting it or its equivalent analytic expression outside the integral sign. The adjusted integral expressions, in turn, are evaluated using the functional relationships described in this paper. The computation method based on this formulation takes into consideration the effects of both conduction as well as displacement currents, and is well suitable for any position of the source loop either in the air or on the surface of the model, in contrary to the earlier methods which face convergence problem. Moreover, the formulation is equally efficient for computing the EM response at any arbitrary receiver position either inside or outside the source loop. For illustrating the accuracy and applicability of the method and studying the nature of EM response of a loop source over a layered earth model, we have applied it for the computation of amplitude and phase of Hz field over the various 2-layer and 3-layer models. Results show their characteristic variations, and depict good resolution for the subsurface layering. The results are in agreement with those of the published results for the quasi-static region, and are new extension of quasi-static variation in the non-quasi-static region. The agreement of computed results with published results demonstrates the accuracy of the method. Moreover, this is the initial presentation of numerical results for an arbitrary in-loop point

  15. Revisiting GNRA and UNCG folds: U-turns versus Z-turns in RNA hairpin loops

    PubMed Central

    2017-01-01

    When thinking about RNA three-dimensional structures, coming across GNRA and UNCG tetraloops is perceived as a boon since their folds have been extensively described. Nevertheless, analyzing loop conformations within RNA and RNP structures led us to uncover several instances of GNRA and UNCG loops that do not fold as expected. We noticed that when a GNRA does not assume its “natural” fold, it adopts the one we typically associate with a UNCG sequence. The same folding interconversion may occur for loops with UNCG sequences, for instance within tRNA anticodon loops. Hence, we show that some structured tetranucleotide sequences starting with G or U can adopt either of these folds. The underlying structural basis that defines these two fold types is the mutually exclusive stacking of a backbone oxygen on either the first (in GNRA) or the last nucleobase (in UNCG), generating an oxygen–π contact. We thereby propose to refrain from using sequences to distinguish between loop conformations. Instead, we suggest using descriptors such as U-turn (for “GNRA-type” folds) and a newly described Z-turn (for “UNCG-type” folds). Because tetraloops adopt for the largest part only two (inter)convertible turns, we are better able to interpret from a structural perspective loop interchangeability occurring in ribosomes and viral RNA. In this respect, we propose a general view on the inclination for a given sequence to adopt (or not) a specific fold. We also suggest how long-noncoding RNAs may adopt discrete but transient structures, which are therefore hard to predict. PMID:27999116

  16. Revisiting GNRA and UNCG folds: U-turns versus Z-turns in RNA hairpin loops.

    PubMed

    D'Ascenzo, Luigi; Leonarski, Filip; Vicens, Quentin; Auffinger, Pascal

    2017-03-01

    When thinking about RNA three-dimensional structures, coming across GNRA and UNCG tetraloops is perceived as a boon since their folds have been extensively described. Nevertheless, analyzing loop conformations within RNA and RNP structures led us to uncover several instances of GNRA and UNCG loops that do not fold as expected. We noticed that when a GNRA does not assume its "natural" fold, it adopts the one we typically associate with a UNCG sequence. The same folding interconversion may occur for loops with UNCG sequences, for instance within tRNA anticodon loops. Hence, we show that some structured tetranucleotide sequences starting with G or U can adopt either of these folds. The underlying structural basis that defines these two fold types is the mutually exclusive stacking of a backbone oxygen on either the first (in GNRA) or the last nucleobase (in UNCG), generating an oxygen-π contact. We thereby propose to refrain from using sequences to distinguish between loop conformations. Instead, we suggest using descriptors such as U-turn (for "GNRA-type" folds) and a newly described Z-turn (for "UNCG-type" folds). Because tetraloops adopt for the largest part only two (inter)convertible turns, we are better able to interpret from a structural perspective loop interchangeability occurring in ribosomes and viral RNA. In this respect, we propose a general view on the inclination for a given sequence to adopt (or not) a specific fold. We also suggest how long-noncoding RNAs may adopt discrete but transient structures, which are therefore hard to predict.

  17. A Conserved Surface Loop in Type I Dehydroquinate Dehydratases Positions an Active Site Arginine and Functions in Substrate Binding

    SciTech Connect

    Light, Samuel H.; Minasov, George; Shuvalova, Ludmilla; Peterson, Scott N.; Caffrey, Michael; Anderson, Wayne F.; Lavie, Arnon

    2012-04-18

    Dehydroquinate dehydratase (DHQD) catalyzes the third step in the biosynthetic shikimate pathway. We present three crystal structures of the Salmonella enterica type I DHQD that address the functionality of a surface loop that is observed to close over the active site following substrate binding. Two wild-type structures with differing loop conformations and kinetic and structural studies of a mutant provide evidence of both direct and indirect mechanisms of involvement of the loop in substrate binding. In addition to allowing amino acid side chains to establish a direct interaction with the substrate, closure of the loop necessitates a conformational change of a key active site arginine, which in turn positions the substrate productively. The absence of DHQD in humans and its essentiality in many pathogenic bacteria make the enzyme a target for the development of nontoxic antimicrobials. The structures and ligand binding insights presented here may inform the design of novel type I DHQD inhibiting molecules.

  18. Building an Extension Network in Vietnam.

    ERIC Educational Resources Information Center

    Poussard, H.

    1999-01-01

    Agricultural extension in Vietnam is in transition as the economy moves to a market orientation. The national extension service created in 1993 is constrained by lack of funding, staff, and access to current extension knowledge. (SK)

  19. Extension Handbook. Processes and Practices. Second Edition.

    ERIC Educational Resources Information Center

    Blackburn, Donald J., Ed.

    This book contains the following papers about processes and practices in extension education in Canada: "Historical Roots" (Blackburn, Flaherty); "Transitions and Directions in Extension" (Blackburn, Flaherty); "Applying Learning Theory in Extension Work" (Griffith); "Understanding and Applying Motivation…

  20. Extrasensitive phase-locked-loop circuit

    NASA Technical Reports Server (NTRS)

    Nyiri, E. J.

    1977-01-01

    Modified phase-locked loop (PLL) generates clock from incoming data signal. To minimize effects of threshold phase-detector gain variations, the PLL uses a dither oscillator, a dither band-pass filter, and correlator instead of coherent amplitude detector.

  1. BIOREACTOR DESIGN - OUTER LOOP LANDFILL, LOUISVILLE, KY

    EPA Science Inventory

    Bioreactor field demonstration projects are underway at the Outer Loop Landfill in Louisville, KY, USA. The research effort is a cooperative research effort between US EPA and Waste Management Inc. Two primary kinds of municipal waste bioreactors are under study at this site. ...

  2. Parachute Line Hook Includes Integral Loop Expander

    NASA Technical Reports Server (NTRS)

    Bayless, G. B.

    1983-01-01

    Parachute packing simplified with modified line hook. One person packs parachutes for test recovery vehicles faster than previously two-person team. New line hook includes expander that opens up two locking loops so parachute lines are pulled through them. Parachutes are packed at high pressure to be compressed into limited space available in test vehicles.

  3. Looping for Long-Term Success

    ERIC Educational Resources Information Center

    Coash, Vicki; Watkins, Karen

    2005-01-01

    At Santa Maria Middle School in southwest Phoenix, Arizona, teachers have decided to maintain their relationships with their students by looping through sixth, seventh, and eighth grades. Here, they describe the results of the first three years of the program, discussing the development of their team's priorities and the strategies they embraced…

  4. Can Thermal Nonequilibrium Explain Coronal Loops?

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.; Karpen, Judy T.; Antiochos, Spiro K.

    2010-01-01

    Any successful model of coronal loops must explain a number of observed properties. For warm (approx. 1 MK) loops, these include: 1. excess density, 2. flat temperature profile, 3. super-hydrostatic scale height, 4. unstructured intensity profile, and 5. 1000-5000 s lifetime. We examine whether thermal nonequilibrium can reproduce the observations by performing hydrodynamic simulations based on steady coronal heating that decreases exponentially with height. We consider both monolithic and multi-stranded loops. The simulations successfully reproduce certain aspects of the observations, including the excess density, but each of them fails in at least one critical way. -Xonolithic models have far too much intensity structure, while multi-strand models are either too structured or too long-lived. Storms of nanoflares remain the only viable explanation for warm loops that has been proposed so far. Our results appear to rule out the widespread existence of heating that is both highly concentrated low in the corona and steady or quasi-steady (slowly varying or impulsive with a rapid cadence). Active regions would have a very different appearance if the dominant heating mechanism had these properties. Thermal nonequilibrium may nonetheless play an important role in prominences and catastrophic cooling e(veen.gts..,coronal rain) that occupy a small fraction of the coronal volume. However, apparent inconsistencies between the models and observations of cooling events have yet to be understood.

  5. Energy Release in Driven Twisted Coronal Loops

    NASA Astrophysics Data System (ADS)

    Bareford, M. R.; Gordovskyy, M.; Browning, P. K.; Hood, A. W.

    2016-01-01

    We investigate magnetic reconnection in twisted magnetic fluxtubes, representing coronal loops. The main goal is to establish the influence of the field geometry and various thermodynamic effects on the stability of twisted fluxtubes and on the size and distribution of heated regions. In particular, we aim to investigate to what extent the earlier idealised models, based on the initially cylindrically symmetric fluxtubes, are different from more realistic models, including the large-scale curvature, atmospheric stratification, thermal conduction and other effects. In addition, we compare the roles of Ohmic heating and shock heating in energy conversion during magnetic reconnection in twisted loops. The models with straight fluxtubes show similar distribution of heated plasma during the reconnection: it initially forms a helical shape, which subsequently becomes very fragmented. The heating in these models is rather uniformly distributed along fluxtubes. At the same time, the hot plasma regions in curved loops are asymmetric and concentrated close to the loop tops. Large-scale curvature has a destabilising influence: less twist is needed for instability. Footpoint convergence normally delays the instability slightly, although in some cases, converging fluxtubes can be less stable. Finally, introducing a stratified atmosphere gives rise to decaying wave propagation, which has a destabilising effect.

  6. Warm inflationary model in loop quantum cosmology

    SciTech Connect

    Herrera, Ramon

    2010-06-15

    A warm inflationary universe model in loop quantum cosmology is studied. In general we discuss the condition of inflation in this framework. By using a chaotic potential, V({phi}){proportional_to}{phi}{sup 2}, we develop a model where the dissipation coefficient {Gamma}={Gamma}{sub 0}=constant. We use recent astronomical observations for constraining the parameters appearing in our model.

  7. Interstitial loop transformations in FeCr

    SciTech Connect

    Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.; Xu, Haixuan

    2015-03-27

    Here, we improve the Self-Evolving Atomistic Kinetic Monte Carlo (SEAKMC) algorithm by integrating the Activation Relaxation Technique nouveau (ARTn), a powerful open-ended saddle-point search method, into the algorithm. We use it to investigate the reaction of 37-interstitial 1/2[1 1 1] and 1/2[View the MathML source] loops in FeCr at 10 at.% Cr. They transform into 1/2[1 1 1], 1/2[View the MathML source], [1 0 0] and [0 1 0] 74-interstitial clusters with an overall barrier of 0.85 eV. We find that Cr decoration locally inhibits the rotation of crowdions, which dictates the final loop orientation. Moreover, the final loop orientation depends on the details of the Cr decoration. Generally, a region of a given orientation is favored if Cr near its interface with a region of another orientation is able to inhibit reorientation at this interface more than the Cr present at the other interfaces. Also, we find that substitutional Cr atoms can diffuse from energetically unfavorable to energetically favorable sites within the interlocked 37-interstitial loops conformation with barriers of less than 0.35 eV.

  8. Interstitial loop transformations in FeCr

    DOE PAGES

    Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.; ...

    2015-03-27

    Here, we improve the Self-Evolving Atomistic Kinetic Monte Carlo (SEAKMC) algorithm by integrating the Activation Relaxation Technique nouveau (ARTn), a powerful open-ended saddle-point search method, into the algorithm. We use it to investigate the reaction of 37-interstitial 1/2[1 1 1] and 1/2[View the MathML source] loops in FeCr at 10 at.% Cr. They transform into 1/2[1 1 1], 1/2[View the MathML source], [1 0 0] and [0 1 0] 74-interstitial clusters with an overall barrier of 0.85 eV. We find that Cr decoration locally inhibits the rotation of crowdions, which dictates the final loop orientation. Moreover, the final loop orientationmore » depends on the details of the Cr decoration. Generally, a region of a given orientation is favored if Cr near its interface with a region of another orientation is able to inhibit reorientation at this interface more than the Cr present at the other interfaces. Also, we find that substitutional Cr atoms can diffuse from energetically unfavorable to energetically favorable sites within the interlocked 37-interstitial loops conformation with barriers of less than 0.35 eV.« less

  9. Fun with higher-loop Feynman diagrams

    NASA Astrophysics Data System (ADS)

    Luthe, Thomas; Schröder, York

    2016-10-01

    We review recent progress that we have achieved in evaluating the class of fully massive vacuum integrals at five loops. After discussing topics that arise in classification, evaluation and algorithmic codification of this specific set of Feynman integrals, we present some selected new results for their expansions around 4 — 2ε dimensions.

  10. Particle scattering in loop quantum gravity.

    PubMed

    Modesto, Leonardo; Rovelli, Carlo

    2005-11-04

    We devise a technique for defining and computing -point functions in the context of a background-independent gravitational quantum field theory. We construct a tentative implementation of this technique in a perturbatively finite model defined using spin foam techniques in the context of loop quantum gravity.

  11. Selective purge for hydrogenation reactor recycle loop

    DOEpatents

    Baker, Richard W.; Lokhandwala, Kaaeid A.

    2001-01-01

    Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

  12. Wilson-loop symmetry breaking reexamined

    NASA Astrophysics Data System (ADS)

    Nakamura, A.; Shiraishi, K.

    1988-12-01

    The splitting in energy of gauge field vacua on the non-simply connected space S 3/Z 2 is reconsidered. We show the calculation to the one-loop level for a Yang-Mills vector with a ghost field. We confirm our previous result and give a solution to the question posed by Freire, Romão and Barroso.

  13. Closed Loop System Identification with Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.

    2004-01-01

    High performance control design for a flexible space structure is challenging since high fidelity plant models are di.cult to obtain a priori. Uncertainty in the control design models typically require a very robust, low performance control design which must be tuned on-orbit to achieve the required performance. Closed loop system identi.cation is often required to obtain a multivariable open loop plant model based on closed-loop response data. In order to provide an accurate initial plant model to guarantee convergence for standard local optimization methods, this paper presents a global parameter optimization method using genetic algorithms. A minimal representation of the state space dynamics is employed to mitigate the non-uniqueness and over-parameterization of general state space realizations. This control-relevant system identi.cation procedure stresses the joint nature of the system identi.cation and control design problem by seeking to obtain a model that minimizes the di.erence between the predicted and actual closed-loop performance.

  14. Loop Current Eddy formation and baroclinic instability

    NASA Astrophysics Data System (ADS)

    Donohue, K. A.; Watts, D. R.; Hamilton, P.; Leben, R.; Kennelly, M.

    2016-12-01

    The formation of three Loop Current Eddies, Ekman, Franklin, and Hadal, during the period April 2009 through November 2011 was observed by an array of moored current meters and bottom mounted pressure equipped inverted echo sounders. The array design, areal extent nominally 89° W to 85° W, 25° N to 27° N with 30-50 km mesoscale resolution, permits quantitative mapping of the regional circulation at all depths. During Loop Current Eddy detachment and formation events, a marked increase in deep eddy kinetic energy occurs coincident with the growth of a large-scale meander along the northern and eastern parts of the Loop Current. Deep eddies develop in a pattern where the deep fields were offset and leading upper meanders consistent with developing baroclinic instability. The interaction between the upper and deep fields is quantified by evaluating the mean eddy potential energy budget. Largest down-gradient heat fluxes are found along the eastern side of the Loop Current. Where strong, the horizontal down-gradient eddy heat flux (baroclinic conversion rate) nearly balances the vertical down-gradient eddy heat flux indicating that eddies extract available potential energy from the mean field and convert eddy potential energy to eddy kinetic energy.

  15. Aesthetic rehabilitation with multiple loop connectors

    PubMed Central

    Kalra, Ashish; Gowda, Mahesh E.; Verma, Kamal

    2013-01-01

    Patients with a missing tooth along with diastema have limited treatment options to restore the edentulous space. The use of a conventional fixed partial denture (FPD) to replace the missing tooth may result in too wide anterior teeth leading to poor esthetics. The diastema resulting from the missing central incisors can be managed with implant-supported prosthesis or FPD with loop connectors. An old lady reported with chief complaints of missing upper anterior teeth due to trauma. Her past dental history revealed that she was having generalized spacing between her upper anterior teeth. Considering her esthetic requirement of maintaining the diastema between 12, 11, 22, and 21, the treatment option of 06 units porcelain fused to metal FPD from canine to canine with intermittent loop connectors between 21, 22, 11, 12 was planned. Connectors basically link different parts of FPDs. The modified FPD with loop connectors enhanced the natural appearance of the restoration, maintained the diastemas and the proper emergence profile, and preserve the remaining tooth structure of abutment teeth. This clinical report discussed a method for fabrication of a modified FPD with loop connectors to restore the wide span created by missing central incisors. PMID:23853468

  16. Recent Advances in Loop Quantum Cosmology

    NASA Astrophysics Data System (ADS)

    Singh, Parampreet

    2007-04-01

    Einstein's theory of classical general relativity explains the dynamics of our universe at low energies to an excellent precision. However, it breaks down at the Planck scale before the big bang singularity is reached. Relativity thus fails to tell us about the origin of our cosmos and leaves open various questions which are expected to be answered by a quantum theory of gravity. We will review recent developments in loop quantum cosmology which is a quantization of cosmological spacetimes based on loop quantum gravity -- a non-perturbative background independent quantization of gravity. Because, of fundamental discreteness of quantum geometry underlying loop quantum gravity, novel features arise. In particular, for quantum states representing a large classical universe at late times there is an upper bound on the gravitational curvature, of the order of 1/(Planck length)^2. Thus, non-perturbative quantum gravity effects forbid the cosmological dynamics from entering a regime where curvature or energy density blow up. Evolution in loop quantum cosmology is non-singular. In models studied so far, the backward evolution of our expanding universe does not lead to a big bang but a big bounce to a contracting branch when the gravitational curvature reaches Planck scale. These results which have now been established for various homogeneous spacetimes provide a new paradigm of the genesis of our universe and lead to useful insights on the generic resolution of space-like singularities through quantum gravity effects.

  17. A simple second-order digital phase-locked loop.

    NASA Technical Reports Server (NTRS)

    Tegnelia, C. R.

    1972-01-01

    A simple second-order digital phase-locked loop has been designed for the Viking Orbiter 1975 command system. Excluding analog-to-digital conversion, implementation of the loop requires only an adder/subtractor, two registers, and a correctable counter with control logic. The loop considers only the polarity of phase error and corrects system clocks according to a filtered sequence of this polarity. The loop is insensitive to input gain variation, and therefore offers the advantage of stable performance over long life. Predictable performance is guaranteed by extreme reliability of acquisition, yet in the steady state the loop produces only a slight degradation with respect to analog loop performance.

  18. Loop Evolution Observed with AIA and Hi-C

    NASA Technical Reports Server (NTRS)

    Mulu-Moore, Fana; Winebarger, Amy R.; Cirtain, Jonathan W.; Kobayashi, Ken; Korreck, Kelly E.; Golub, Leon; Kuzin, Sergei; Walsh, Robert William; DeForest, Craig E.; De Pontieu, Bart; Title, Alan M.; Weber, Mark

    2012-01-01

    In the past decade, the evolution of EUV loops has been used to infer the loop substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this presentation we discuss the first results of loop analysis comparing AIA and Hi-C data. In the past decade, the evolution of EUV loops has been used to infer the loop substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this presentation we discuss the first results of loop analysis comparing AIA and Hi-C data.

  19. Protocols for configuring computation loops on a distributed multiprocessor system

    SciTech Connect

    Woei Lin; Chuan-lin Wu

    1983-01-01

    Protocols for configuring computation loops in a multiprocessing system are examined. Processing nodes are connected by a reconfigurable communication subnet using a multistage interconnection network. Configuration protocols are presented in terms of distributed algorithms such that processing nodes are configured in loop topologies. The configurability of loop topologies is first investigated. It is verified that the communication subnet can emulate loop distributed systems. It is also proven that multiple loops of various lengths can be configured in the distributed network. The technique demonstrated for configuring loop topologies can be used to configure other computation topologies. 6 references.

  20. Gravitational Smoothing of Kinks on Cosmic String Loops

    NASA Astrophysics Data System (ADS)

    Wachter, Jeremy M.; Olum, Ken D.

    2017-02-01

    We analyze the effect of gravitational backreaction on cosmic string loops with kinks, which is an important determinant of the shape, and thus the potential observability, of string loops which may exist in the Universe today. Kinks are not rounded off, but may be straightened out. This means that backreaction will only cause loops with kinks to develop cusps after some potentially large fraction of their lifetimes. In some loops, symmetries prevent even this process, so that the loop evaporates in a self-similar fashion and the kinks are unchanged. As an example, we discuss backreaction on the rectangular Garfinkle-Vachaspati loop.

  1. Gravitational Smoothing of Kinks on Cosmic String Loops.

    PubMed

    Wachter, Jeremy M; Olum, Ken D

    2017-02-03

    We analyze the effect of gravitational backreaction on cosmic string loops with kinks, which is an important determinant of the shape, and thus the potential observability, of string loops which may exist in the Universe today. Kinks are not rounded off, but may be straightened out. This means that backreaction will only cause loops with kinks to develop cusps after some potentially large fraction of their lifetimes. In some loops, symmetries prevent even this process, so that the loop evaporates in a self-similar fashion and the kinks are unchanged. As an example, we discuss backreaction on the rectangular Garfinkle-Vachaspati loop.

  2. Constructing QCD one-loop amplitudes

    SciTech Connect

    Forde, Darren; /SLAC /UCLA

    2008-02-22

    In the context of constructing one-loop amplitudes using a unitarity bootstrap approach we discuss a general systematic procedure for obtaining the coefficients of the scalar bubble and triangle integral functions of one-loop amplitudes. Coefficients are extracted after examining the behavior of the cut integrand as the unconstrained parameters of a specifically chosen parameterization of the cut loop momentum approach infinity. Measurements of new physics at the forthcoming experimental program at CERN's Large Hadron Collider (LHC) will require a precise understanding of processes at next-to-leading order (NLO). This places increased demands for the computation of new one-loop amplitudes. This in turn has spurred recent developments towards improved calculational techniques. Direct calculations using Feynman diagrams are in general inefficient. Developments of more efficient techniques have usually centered around unitarity techniques [1], where tree amplitudes are effectively 'glued' together to form loops. The most straightforward application of this method, in which the cut loop momentum is in D = 4, allows for the computation of 'cut-constructible' terms only, i.e. (poly)logarithmic containing terms and any related constants. QCD amplitudes contain, in addition to such terms, rational pieces which cannot be derived using such cuts. These 'missing' rational parts can be extracted using cut loop momenta in D = 4-2 {var_epsilon}. The greater difficulty of such calculations has restricted the application of this approach, although recent developments [3, 4] have provided new promise for this technique. Recently the application of on-shell recursion relations [5] to obtaining the 'missing' rational parts of one-loop processes [6] has provided an alternative very promising solution to this problem. In combination with unitarity methods an 'on-shell bootstrap' approach provides an efficient technique for computing complete one-loop QCD amplitudes [7]. Additionally

  3. Role of the large cytoplasmic loop of the alpha 7 neuronal nicotinic acetylcholine receptor subunit in receptor expression and function.

    PubMed

    Valor, Luis M; Mulet, José; Sala, Francisco; Sala, Salvador; Ballesta, Juan J; Criado, Manuel

    2002-06-25

    The role of the large intracellular loop of the nicotinic acetylcholine receptor (nAChR) alpha7 subunit in the expression of functional channels was studied. For this purpose, systematic deletions and substitutions were made throughout the loop and the ability of the mutated alpha7 subunits to support expression of functional nAChRs at the Xenopus oocyte membrane was tested. Surface nAChR expression was abolished upon removal of sequences at two regions, a 29-amino acid segment close to the N-terminus of the loop (amino acids 297-325) and adjacent to the third transmembrane region and an 11-amino acid segment near the fourth transmembrane region. Some residues (amino acids 317-322) within the 29 amino acids N-terminal segment could be substituted by others but not deleted without loss of expression, suggesting that a certain structure, determined by the number of amino acids rather than by their identity, has to be maintained in this region. The contiguous sequence M323 K324 R325 did not tolerate deletions and substitutions. Removal of the rest of the cytoplasmic loop was not deleterious; even higher expression levels (2-4-fold) were obtained upon large deletions of the loop (Delta399-432 and Delta339-370). High expression levels were observed provided that a minimal sequence of three amino acids (E371, G372, and M373) was present. In addition, some electrophysiological properties of mutant nAChRs were modified. Substitution of the EGM sequence by other protein segments produced a variety of effects, but, in general, insertions were not well tolerated, suggesting the existence of tight structural restrictions in the large cytoplasmic region of the rat alpha7 subunit.

  4. Temporary umbilical loop colostomy for anorectal malformations.

    PubMed

    Hamada, Yoshinori; Takada, Kohei; Nakamura, Yusuke; Sato, Masahito; Kwon, A-Hon

    2012-11-01

    Transumbilical surgical procedures have been reported to be a feasible, safe, and cosmetically excellent procedure for various pediatric surgical diseases. Umbilical loop colostomies have previously been created in patients with Hirschsprung's disease, but not in patients with anorectal malformations (ARMs). We assessed the feasibility and cosmetic results of temporal umbilical loop colostomy (TULC) in patients with ARMs. A circumferential skin incision was made at the base of the umbilical cord under general anesthesia. The skin, subcutaneous tissue, and fascia were cored out vertically, and the umbilical vessels and urachal remnant were individually ligated apart from the opening in the fascia. A loop colostomy was created in double-barreled fashion with a high chimney more than 2 cm above the level of the skin. The final size of the opening in the skin and fascia was modified according to the size of the bowel. The bowel wall was fixed separately to the peritoneum and fascia with interrupted 5-0 absorbable sutures. The bowel was opened longitudinally and everted without suturing to the skin. The loop was divided 7 days postoperatively, and diversion of the oral bowel was completed. The colostomy was closed 2-3 months after posterior saggital anorectoplasty through a peristomal skin incision followed by end-to-end anastomosis. Final wound closure was performed in a semi-opened fashion to create a deep umbilicus. TULCs were successfully created in seven infants with rectourethral bulbar fistula or rectovestibular fistula. Postoperative complications included mucosal prolapse in one case. No wound infection or spontaneous umbilical ring narrowing was observed. Skin problems were minimal, and stoma care could easily be performed by attaching stoma bag. Healing of umbilical wounds after TULC closure was excellent. The umbilicus may be an alternative stoma site for temporary loop colostomy in infants with intermediate-type anorectal malformations, who undergo radical

  5. DYNAMICS OF THE FLARING LOOP SYSTEM OF 2005 AUGUST 22 OBSERVED IN MICROWAVES AND HARD X-RAYS

    SciTech Connect

    Reznikova, V. E.; Melnikov, V. F.; Shibasaki, K.

    2010-11-20

    We studied the spatial dynamics of the flaring loop in the 2005 August 22 event using microwave (NoRH) and hard X-ray (RHESSI) observations together with complementary data from SOHO/MDI, SMART at Hida, SOHO/EIT, and TRACE. We have found that (1) the pre-flare morphology of the active region exhibits a strongly sheared arcade seen in H{alpha} and the J-shape filament seen in EUV; (2) energy release and high-energy electron acceleration occur in a sequence along the extensive arcade; (3) the shear angle and the parallel (to the magnetic neutral line) component of the footpoint (FP) distance steadily decrease during the flare process; (4) the radio loop shrinks in length and height during the first emission peak, and later it grows; after the fourth peak the simultaneous descending of the brightest loop and formation of a new microwave loop at a higher altitude occur; (5) the hard X-ray coronal source is located higher than the microwave loop apex and shows faster upward motion; (6) the first peak on microwave time profiles is present in both the loop top and FP regions. However, the emission peaks that follow are present only in the FP regions. We conclude that after the first emission peak the acceleration site is located over the flaring arcade and particles are accelerated along magnetic field lines. We make use of the collapsing magnetic trap model to understand some observational effects.

  6. Hemorrhagic Longitudinally Extensive Transverse Myelitis

    PubMed Central

    Wu, Chris Y.; Riangwiwat, Tanawan

    2016-01-01

    Longitudinally extensive transverse myelitis (LETM) may be associated with viral triggers, including both infections and vaccinations. We present a case of a healthy immunocompetent 33-year-old woman who developed a hemorrhagic LETM 2 weeks after seasonal influenza vaccination. Hemorrhagic LETM has not to our knowledge been reported after influenza vaccination. It may represent a forme fruste variant of acute hemorrhagic leukoencephalitis. PMID:27847660

  7. Wilms' tumor with intracardiac extension.

    PubMed

    Martinez-Guerra, G; Ruano-Aguilar, J; Rivera-Luna, R; Cardenas-Cardos, R; Avila-Ramirez, E; Braun-Roth, G; Altamirano-Alvarez, E; Moreno-Hidalgo, A; Flamand-Rodriguez, E L

    1992-02-01

    Intracardiac tumor extension from nephroblastoma is a rare event. We report on two cases with this peculiar condition who presented with a different set of signs and symptoms. Both were diagnosed in life but only one could be properly managed on time. Emphasis is made upon the most reliable methodology for early detection and the surgical approach as the only plausible way to solve this particular complication.

  8. Mechanical heterogeneities and lithospheric extension

    NASA Astrophysics Data System (ADS)

    Duretz, Thibault; Petri, Benoit; Mohn, Geoffroy; Schenker, Filippo L.; Schmalholz, Stefan

    2016-04-01

    Detailed geological and geophysical studies of passive margins have highlighted the multi-stage and depth-dependent aspect of lithospheric thinning. Lithospheric thinning involves a variety of structures (normal faults, low angle detachments, extensional shear zones, extraction faults) and leads to a complex architecture of passive margins (with e.g. necking zone, mantle exhumation, continental allochthons). The processes controlling the generation and evolution of these structures as well as the impact of pre-rift inheritance are so far incompletely understood. In this study, we investigate the impact of pre-rift inheritance on the development of rifted margins using two-dimensional thermo-mechanical models of lithospheric thinning. To first order, we represent the pre-rift mechanical heterogeneities with lithological layering. The rheologies are kept simple (visco-plastic) and do not involve any strain softening mechanism. Our models show that mechanical layering causes multi-stage and depth-dependent extension. In the initial rifting phase, lithospheric extension is decoupled: as the crust undergoes thinning by brittle (frictional-plastic) faults, the lithospheric mantle accommodates extension by symmetric ductile necking. In a second rifting phase, deformation in the crust and lithospheric mantle is coupled and marks the beginning of an asymmetric extension stage. Low angle extensional shear zones develop across the lithosphere and exhume subcontinental mantle. Furthemore, crustal allochthons and adjacent basins develop coevally. We describe as well the thermal evolution predicted by the numerical models and discuss the first-order implications of our results in the context of the Alpine geological history.

  9. Extensions to total variation denoising

    NASA Astrophysics Data System (ADS)

    Blomgren, Peter; Chan, Tony F.; Mulet, Pep

    1997-10-01

    The total variation denoising method, proposed by Rudin, Osher and Fatermi, 92, is a PDE-based algorithm for edge-preserving noise removal. The images resulting from its application are usually piecewise constant, possibly with a staircase effect at smooth transitions and may contain significantly less fine details than the original non-degraded image. In this paper we present some extensions to this technique that aim to improve the above drawbacks, through redefining the total variation functional or the noise constraints.

  10. An Extension for ESO Headquarters

    NASA Astrophysics Data System (ADS)

    Fischer, Robert; Walsh, Jeremy

    2009-03-01

    The ESO Headquarters was completed in 1980, but is now too small to house all the ESO staff and currently only about 50% reside in the original building. A decision was taken to seek an extension to the Headquarters building in close proximity to the current one and a competition was launched for architectural designs. Three designs were shortlisted and the process of selection for the final design is described. Construction will begin in 2010 and is due for completion in 2012.

  11. Slow Magnetoacoustic Wave Oscillation of an Expanding Coronal Loop

    NASA Astrophysics Data System (ADS)

    Schmidt, J. M.; Ofman, L.

    2011-10-01

    We simulated an expanding loop or slow coronal mass ejection (CME) in the solar corona dimensioned with size parameters taken from real coronal expanding loops observed with the STEREO spacecraft. We find that the loop expands to Sun's size within about one hour, consistent with slow CME observations. At the top of the loop, plasma is being blown off the loop, enabled with the reconnection between the loop's flux rope magnetic field and the radial magnetic field of the Sun, thus yielding feeding material for the formation of the slow solar wind. This mechanism is in accordance with the observed blob formation of the slow solar wind. We find wave packets traveling with local sound speed downward toward the footpoints of the loop, already seen in coronal seismology observations and simulations of stationary coronal loops. Here, we generalize these results for an expanding medium. We also find a reflection of the wave packets, identified as slow magnetoacoustic waves, at the footpoints of the loop. This confirms the formation of standing waves within the coronal loop. In particular, the reflected waves can partly escape the loop top and contribute to the heating of the solar wind. The present study improves our understanding on how loop material can emerge to form blobs, major ingredients of slow CMEs, and how the release of the wave energy stored in slow magnetoacoustic waves, and transported away from the Sun within expanding loops, contributes to the acceleration and formation of the slow solar wind.

  12. Direct measurement of loop gain and bandwidth of phase-locked loop for mode-locked laser.

    PubMed

    Hou, Dong; Tian, Jie; Sun, Fuyu; Huang, Xianhe

    2016-07-25

    A simple and robust technique for measuring the loop gain and bandwidth of a phase-locking loop (PLL) for mode-locked laser is proposed. This technique can be used for the real-time measurement of the PLL's real loop gain and bandwidth in a closed loop without breaking its locking state. The agreement of the experimental result and theoretical calculation proves the validity of the proposed technique for measuring the loop gain and bandwidth. This technique with a simple configuration can be easily expanded to other laser's locking system whose loop gain and bandwidth should be measured in advance.

  13. Is a closing "GA pair" a rule for stable loop-loop RNA complexes?

    PubMed

    Ducongé, F; Di Primo, C; Toulme, J J

    2000-07-14

    RNA hairpin aptamers specific for the trans-activation-responsive (TAR) RNA element of human immunodeficiency virus type 1 were identified by in vitro selection (Ducongé, F., and Toulmé, J. J. (1999) RNA 5, 1605-1614). The high affinity sequences selected at physiological magnesium concentration (3 mm) were shown to form a loop-loop complex with the targeted TAR RNA. The stability of this complex depends on the aptamer loop closing "GA pair" as characterized by preliminary electrophoretic mobility shift assays. Thermal denaturation monitored by UV-absorption spectroscopy and binding kinetics determined by surface plasmon resonance show that the GA pair is crucial for the formation of the TAR-RNA aptamer complex. Both thermal denaturation and surface plasmon resonance experiments show that any other "pairs" leads to complexes whose stability decreases in the order AG > GG > GU > AA > GC > UA > CA, CU. The binding kinetics indicate that stability is controlled by the off-rate rather than by the on-rate. Comparison with the complex formed with the TAR* hairpin, a rationally designed TAR RNA ligand (Chang, K. Y., and Tinoco, I. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 8705-8709), demonstrates that the GA pair is a key determinant which accounts for the 50-fold increased stability of the TAR-aptamer complex (K(d) = 2.0 nm) over the TAR-TAR* one (K(d) = 92. 5 nm) at physiological concentration of magnesium. Replacement of the wild-type GC pair next to the loop of RNA I' by a GA pair stabilizes the RNA I'-RNA II' loop-loop complex derived from the one involved in the control of the ColE1 plasmid replication. Thus, the GA pair might be the preferred one for stable loop-loop interactions.

  14. Chemical Looping Reforming for H2, CO and Syngas Production

    SciTech Connect

    Bhavsar,Saurabh; Najera,Michelle; Solunke,Rahul; Veser,Götz

    2001-06-06

    We demonstrate that the extension of CLC onto oxidants beyond air opens new, highly efficient pathways for production of ultra-pure hydrogen, activation of CO{sub 2} via reduction to CO, and are currently working on production of syngas using nanocomposite Fe-BHA. CLR hold great potential due to fuel flexibility and CO{sub 2} capture. Chemical Looping Combustion (CLC) is a novel clean combustion technology which offers an elegant and highly efficient route for fossil fuel combustion. In CLC, combustion of a fuel is broken down into two spatially separated steps. In the reducer, the oxygen carrier (typically a metal) supplies the stoichiometric oxygen required for fuel combustion. In the oxidizer, the oxygen-depleted carrier is then re-oxidized with air. After condensation of steam from the effluent of the reducer, a high-pressure, high-purity sequestration-ready CO{sub 2} stream is obtained. In the present study, we apply the CLC principle to the production of high-purity H{sub 2}, CO, and syngas streams by replacing air with steam and/or CO{sub 2} as oxidant, respectively. Using H{sub 2}O as oxidant, pure hydrogen streams can be obtained. Similarly, using CO{sub 2} as oxidant, CO is obtained, thus opening an efficient route for CO{sub 2} utilization. Using steam and CO{sub 2} mixtures for carrier oxidation should thus allow production of syngas with adjustable CO:H{sub 2} ratios. Overall, these processes result in Chemical Looping Reforming (CLR), i.e. the net overall reaction is the steam and/or dry reforming of the respective fuel.

  15. Simple Analytic Expressions for the Magnetic Field of a Circular Current Loop

    NASA Technical Reports Server (NTRS)

    Simpson, James C.; Lane, John E.; Immer, Christopher D.; Youngquist, Robert C.

    2001-01-01

    Analytic expressions for the magnetic induction (magnetic flux density, B) of a simple planar circular current loop have been published in Cartesian and cylindrical coordinates [1,2], and are also known implicitly in spherical coordinates [3]. In this paper, we present explicit analytic expressions for B and its spatial derivatives in Cartesian, cylindrical, and spherical coordinates for a filamentary current loop. These results were obtained with extensive use of Mathematica "TM" and are exact throughout all space outside of the conductor. The field expressions reduce to the well-known limiting cases and satisfy V · B = 0 and V x B = 0 outside the conductor. These results are general and applicable to any model using filamentary circular current loops. Solenoids of arbitrary size may be easily modeled by approximating the total magnetic induction as the sum of those for the individual loops. The inclusion of the spatial derivatives expands their utility to magnetohydrodynamics where the derivatives are required. The equations can be coded into any high-level programming language. It is necessary to numerically evaluate complete elliptic integrals of the first and second kind, but this capability is now available with most programming packages.

  16. Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary systems

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1987-01-01

    In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.

  17. Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary systems

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1985-01-01

    In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.

  18. Testing of a Loop Heat Pipe with Two Evaporators and Two Condensers

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Birur, Gaj; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Most existing Loop Heat Pipes (LHPs) consist of one single evaporator and one single condenser. LHPs with multiple evaporators will be very desirable for cooling multiple heat sources or a heat source with large thermal footprints. Extending the LHP technology to include multiple evaporators and multiple condensers faces some challenges, including the interaction between individual compensation chambers, operating temperature stability, and adaptability to rapid power and sink temperature transients. This paper describe extensive testing of an LHP with two evaporators and two condensers. Tests performed include start-up, power cycle, sink temperature cycle, reservoir temperature cycle, and capillary limit. Test results showed that the loop could operate successfully under various heat load and sink conditions. The loop operating temperature is a function of the total heat load, the heat load distribution between the two evaporators, and temperatures of the two condenser sinks. Under most conditions, only one reservoir contained two-phase fluid and the other reservoir was completely liquid filled. Moreover, control of the loop operating temperature could shift from one reservoir to the other as the test condition changed.

  19. Coal Combustion Products Extension Program

    SciTech Connect

    Tarunjit S. Butalia; William E. Wolfe

    2003-12-31

    The primary objective of the CCP Extension Program is to promote the responsible uses of Ohio CCPs that are technically sound, environmentally safe, and commercially competitive. A secondary objective is to assist other CCP generating states (particularly neighboring states) in establishing CCP use programs within their states. The goal of the CCP extension program at OSU is to work with CCP stakeholders to increase the overall CCP state utilization rate to more than 30% by the year 2005. The program aims to increase FGD utilization for Ohio to more than 20% by the year 2005. The increased utilization rates are expected to be achieved through increased use of CCPs for highway, mine reclamation, agricultural, manufacturing, and other civil engineering uses. In order to accomplish these objectives and goals, the highly successful CCP pilot extension program previously in place at the university has been expanded and adopted by the university as a part of its outreach and engagement mission. The extension program is an innovative technology transfer program with multiple sponsors. The program is a collaborative effort between The Ohio State University (College of Engineering and University Extension Service), United States Department of Energy's National Energy Technology Laboratory, Ohio Department of Development's Coal Development Office, and trade associations such as the American Coal Ash Association as well as the Midwest Coal Ash Association. Industry co-sponsors include American Electric Power, Dravo Lime Company, and ISG Resources. Implementation of the proposed project results in both direct and indirect as well as societal benefits. These benefits include (1) increased utilization of CCPs instead of landfilling, (2) development of proper construction and installation procedures, (3) education of regulators, specification-writers, designers, construction contractors, and the public, (4) emphasis on recycling and decrease in the need for landfill space, (5

  20. Polyakov loop and correlator of Polyakov loops at next-to-next-to-leading order

    SciTech Connect

    Brambilla, Nora; Vairo, Antonio; Ghiglieri, Jacopo; Petreczky, Peter

    2010-10-01

    We study the Polyakov loop and the correlator of two Polyakov loops at finite temperature in the weak-coupling regime. We calculate the Polyakov loop at order g{sup 4}. The calculation of the correlator of two Polyakov loops is performed at distances shorter than the inverse of the temperature and for electric screening masses larger than the Coulomb potential. In this regime, it is accurate up to order g{sup 6}. We also evaluate the Polyakov-loop correlator in an effective field theory framework that takes advantage of the hierarchy of energy scales in the problem and makes explicit the bound-state dynamics. In the effective field theory framework, we show that the Polyakov-loop correlator is at leading order in the multipole expansion the sum of a color-singlet and a color-octet quark-antiquark correlator, which are gauge invariant, and compute the corresponding color-singlet and color-octet free energies.

  1. Application of loop analysis for evaluation of malaria control interventions

    PubMed Central

    2014-01-01

    Background Despite continuous efforts and recent rapid expansion in the financing and implementation of malaria control interventions, malaria still remains one of the most devastating global health issues. Even in countries that have been successful in reducing the incidence of malaria, malaria control is becoming more challenging because of the changing epidemiology of malaria and waning community participation in control interventions. In order to improve the effectiveness of interventions and to promote community understanding of the necessity of continued control efforts, there is an urgent need to develop new methodologies that examine the mechanisms by which community-based malaria interventions could reduce local malaria incidence. Methods This study demonstrated how the impact of community-based malaria control interventions on malaria incidence can be examined in complex systems by qualitative analysis combined with an extensive review of literature. First, sign digraphs were developed through loop analysis to analyse seven interventions: source reduction, insecticide/larvicide use, biological control, treatment with anti-malarials, insecticide-treated mosquito net/long-lasting insecticidal net, non-chemical personal protection measures, and educational intervention. Then, for each intervention, the sign digraphs and literature review were combined to analyse a variety of pathways through which the intervention can influence local malaria incidence as well as interactions between variables involved in the system. Through loop analysis it is possible to see whether increases in one variable qualitatively increases or decreases other variables or leaves them unchanged and the net effect of multiple, interacting variables. Results Qualitative analysis, specifically loop analysis, can be a useful tool to examine the impact of community-based malaria control interventions. Without relying on numerical data, the analysis was able to describe pathways through

  2. Parametric Multi-Level Tiling of Imperfectly Nested Loops

    SciTech Connect

    Hartono, Albert; Baskaran, Muthu M.; Bastoul, Cedric; Cohen, Albert; Krishnamoorthy, Sriram; Norris, Boyana; Ramanujam, J.; Sadayappan, Ponnuswamy

    2009-05-18

    Tiling is a critical loop transformation for generating high-performance code on modern architectures. Efficient generation of multilevel tiled code is essential to exploit several levels of parallelism and/or to maximize data reuse in deep memory hierarchies. Tiled loops with parameterized tile sizes (not compile time constants) facilitate runtime feedback and dynamic optimizations used in iterative compilation and automatic tuning. The existing parametric multilevel tiling approach has focused on transformation for perfectly nested loops, where all assignment statements are contained inside the innermost loop of a loop nest. Previous solutions to tiling for imperfect loop nests are limited to the case where tile sizes are fixed. In this paper, we present an approach to parameterized multilevel tiling for imperfectly nested loops. Our tiling algorithm generates loops that iterate over full rectangular tiles that are amenable for potential compiler optimizations such as register tiling. Experimental results using a number of computational benchmarks demonstrate the effectiveness of our tiling approach.

  3. Loop Redundant of Industrial Ethernet Applied to Airport

    NASA Astrophysics Data System (ADS)

    Yangfan

    This paper describes the technical characteristics of Loop redundant of industrial ethernet, further details the scheme execution planning of Loop redundant of industrial ethernet and the overall schedule relation between ring network implementation and airport construction period.

  4. 8. JAMESTOWN ISLAND LOOP ROAD, VIEW TO NORTHEAST OF WINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. JAMESTOWN ISLAND LOOP ROAD, VIEW TO NORTHEAST OF WINE MAKING SIGN (STOP 5). NOTE WICKET MADE OF VINES IN FOREGROUND. - Jamestown Island Loop Road, Jamestown Island, Jamestown, James City County, VA

  5. Effective potential for Polyakov loops in lattice QCD

    NASA Astrophysics Data System (ADS)

    Nemoto, Y.; RBC Collaboration

    2003-05-01

    Toward the derivation of an effective theory for Polyakov loops in lattice QCD, we examine Polyakov loop correlation functions using the multi-level algorithm which was recently developed by Luscher and Weisz.

  6. Scalable extensions of HEVC for next generation services

    NASA Astrophysics Data System (ADS)

    Misra, Kiran; Segall, Andrew; Zhao, Jie; Kim, Seung-Hwan

    2013-02-01

    The high efficiency video coding (HEVC) standard being developed by ITU-T VCEG and ISO/IEC MPEG achieves a compression goal of reducing the bitrate by half for the same visual quality when compared with earlier video compression standards such as H.264/AVC. It achieves this goal with the use of several new tools such as quad-tree based partitioning of data, larger block sizes, improved intra prediction, the use of sophisticated prediction of motion information, inclusion of an in-loop sample adaptive offset process etc. This paper describes an approach where the HEVC framework is extended to achieve spatial scalability using a multi-loop approach. The enhancement layer inter-predictive coding efficiency is improved by including within the decoded picture buffer multiple up-sampled versions of the decoded base layer picture. This approach has the advantage of achieving significant coding gains with a simple extension of the base layer tools such as inter-prediction, motion information signaling etc. Coding efficiency of the enhancement layer is further improved using adaptive loop filter and internal bit-depth increment. The performance of the proposed scalable video coding approach is compared to simulcast transmission of video data using high efficiency model version 6.1 (HM-6.1). The bitrate savings are measured using Bjontegaard Delta (BD) rate for a spatial scalability factor of 2 and 1.5 respectively when compared with simulcast anchors. It is observed that the proposed approach provides an average luma BD rate gains of 33.7% and 50.5% respectively.

  7. The Seasonality Of The Loop Current

    NASA Astrophysics Data System (ADS)

    Hall, Cody Alan

    A total of 20 Loop Current eddy separation event dates were derived from Seasat and ERS-1 satellite altimetry, Coastal Zone Color Scanner chlorophyll-a images, Advanced Very High Resolution Radiometer sea surface temperature images, Horizon Marine, Inc. EddyWatch(TM) reports, and Climatology and Simulation of Eddies Eddy Joint Industry Project Gulf Eddy Model analyses spanning mid-1978 - 1992. There were many inconsistencies between the new "pre-altimetry" reanalysis dates derived from mostly non-altimeter data and dates published in past literature based on earlier versions of the pre-altimetry record. The reanalysis dates were derived from a larger compilation of data types and, consequently, were not as affected by intermittent and seasonal data outages common with past records. Therefore, the reanalysis dates are likely more accurate. About 30 Loop Current eddy separation dates were derived from altimetry data spanning 1993 -- 2012. The pre-altimetry and altimetry reanalysis dates along with similar altimetry dates published in other literature exhibit statistically significant seasonality. Eddy separation events are more likely in the months March, August, and September, and less likely in December. Reanalysis event dates were objectively divided into "spring" and "fall" seasons using a k-means clustering algorithm. The estimated spring and fall season centers are March 2nd and August 23 rd, respectively, with seasonal boundaries on May 22nd and December 3rd. The altimetry data suggest that Loop Current intrusion/retreat is dominantly an annual process. Loop Current metrics such as maximum northern boundary latitude and area are relatively high from January through about July and low in September and October. February metrics are statistically different than metrics in either October or November or both. This annual process is primarily driven by and dynamically linked to geostrophic currents seaward of the Campeche Bank shelf break forced by Kelvin waves

  8. Io: Mountains and crustal extension

    NASA Technical Reports Server (NTRS)

    Heath, M. J.

    1985-01-01

    It is argued that there is good reason to conclude that mountains on Io, like those on Earth, are subject to growth and decay. The decay of mountains will be assisted by the ability of SO sub 2 to rot silicate rock and by explosive escape of sub-surface SO sub 2 from aquifers (Haemus Mons is seen to be covered by bright material, presumably fallout from a SO sub 2 rich plume which had been active on the mountain flanks). On the west side of the massif at 10 degrees S, 270 degrees W a rugged surface consists of long ridges running perpendicular to the downslope direction, suggesting tectonic denudation with crustal blocks sliding down the mountain flank. Tectonic denudation may be assisted, as in the case of the Bearpaw Mountains, Montana by overloading mountain flanks with volcanic products. The surfaces of some massifs exhibit a well developed, enigmatic corrugated terrain, consisting of complex ridge systems. Ridges may bifurcate, anastomose to form closed depressions and form concentric loops. Taken together, observations of morphology, heat flux, surface deposits and styles of volcanism may point to the existence of lithosphere domains with distinct compositions and tectonic regimes.

  9. 48 CFR 570.405 - Lease extensions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Lease extensions. 570.405... Requirements 570.405 Lease extensions. (a) This section applies to extension of the term of a lease to provide for continued occupancy on a short-term basis. (b) If the value of a lease extension will exceed...

  10. General University Extension. Bulletin, 1926, No. 5

    ERIC Educational Resources Information Center

    Shelby, Thomas H.

    1926-01-01

    This report concerns itself with the growth and progress of "general" university extension for the biennial period 1922-1924. By general university extension is meant extension activities of universities and colleges in the fields not covered by agricultural and home economics extension under the Federal subsidy acts through the Federal land-grant…

  11. 14 CFR § 1260.23 - Extensions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Provisions § 1260.23 Extensions. Extensions October 2000 (a) It is NASA policy to provide maximum possible continuity in funding grant-supported research and educational activities, therefore, grants may be extended.... NASA generally only approves such extensions within funds already made available. Any extension...

  12. 14 CFR 1260.23 - Extensions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Provisions § 1260.23 Extensions. Extensions October 2000 (a) It is NASA policy to provide maximum possible continuity in funding grant-supported research and educational activities, therefore, grants may be extended.... NASA generally only approves such extensions within funds already made available. Any extension...

  13. 14 CFR 1260.23 - Extensions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Provisions § 1260.23 Extensions. Extensions October 2000 (a) It is NASA policy to provide maximum possible continuity in funding grant-supported research and educational activities, therefore, grants may be extended.... NASA generally only approves such extensions within funds already made available. Any extension...

  14. 14 CFR 1260.23 - Extensions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Provisions § 1260.23 Extensions. Extensions October 2000 (a) It is NASA policy to provide maximum possible continuity in funding grant-supported research and educational activities, therefore, grants may be extended.... NASA generally only approves such extensions within funds already made available. Any extension...

  15. 14 CFR 1260.23 - Extensions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Provisions § 1260.23 Extensions. Extensions October 2000 (a) It is NASA policy to provide maximum possible continuity in funding grant-supported research and educational activities, therefore, grants may be extended.... NASA generally only approves such extensions within funds already made available. Any extension...

  16. Extensions to PIFCGT: Multirate output feedback and optimal disturbance suppression

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.

    1986-01-01

    New control synthesis procedures for digital flight control systems were developed. The theoretical developments are the solution to the problem of optimal disturbance suppression in the presence of windshear. Control synthesis is accomplished using a linear quadratic cost function, the command generator tracker for trajectory following and the proportional-integral-filter control structure for practical implementation. Extensions are made to the optimal output feedback algorithm for computing feedback gains so that the multirate and optimal disturbance control designs are computed and compared for the advanced transport operating system (ATOPS). The performance of the designs is demonstrated by closed-loop poles, frequency domain multiinput sigma and eigenvalue plots and detailed nonlinear 6-DOF aircraft simulations in the terminal area in the presence of windshear.

  17. Renormalization group invariants in the MSSM and its extensions

    NASA Astrophysics Data System (ADS)

    Demir, Durmus A.

    2005-11-01

    We derive one-loop renormalization group (RG) invariant observables and analyze their phenomenological implications in the MSSM and its μ problem solving extensions, U(1)' model and NMSSM. We show that there exist several RG invariants in the gauge, Yukawa and soft-breaking sectors of each model. In general, RG invariants are highly useful for projecting experimental data to messenger scale, for revealing correlations among the model parameters, and for probing the mechanism that breaks supersymmetry. The Yukawa couplings and trilinear soft terms in U(1)' model and NMSSM do not form RG invariants though there exist approximate invariants in low tan β domain. In the NMSSM, there are no invariants that contain the Higgs mass-squareds. We provide a comparative analysis of RG invariants in all three models and analyze their model-building and phenomenological implications by a number of case studies.

  18. Space Shuttle mission extension capability

    NASA Technical Reports Server (NTRS)

    Fraser, W. M., Jr.

    1984-01-01

    Space Shuttle missions are currently limited to 11 days, primarily due to depletion of the power reactants (hydrogen and oxygen). A power system Mission Extension Kit (MEK) is described which could provide the capability to stay on orbit 10 additional days. These extra days would benefit Space Station construction and missions such as materials processing, earth and celestial observation, and life science studies (Spacelab). Other constraints to longer missions which may dictate minor Orbiter modifications will be discussed. The power system MEK is particularly desirable because of its existing flight qualified hardware which can be delivered within 3 to 4 years.

  19. Quantum Tunneling Time: Relativistic Extensions

    NASA Astrophysics Data System (ADS)

    Xu, Dai-Yu; Wang, Towe; Xue, Xun

    2013-11-01

    Several years ago, in quantum mechanics, Davies proposed a method to calculate particle's traveling time with the phase difference of wave function. The method is convenient for calculating the sojourn time inside a potential step and the tunneling time through a potential hill. We extend Davies' non-relativistic calculation to relativistic quantum mechanics, with and without particle-antiparticle creation, using Klein-Gordon equation and Dirac Equation, for different forms of energy-momentum relation. The extension is successful only when the particle and antiparticle creation/annihilation effect is negligible.

  20. Coal Combustion Products Extension Program

    SciTech Connect

    Tarunjit S. Butalia; William E. Wolfe

    2006-01-11

    This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to 40% by 2010, the CCP Extension Program be