Science.gov

Sample records for acid mature protein

  1. Enamel proteins mitigate mechanical and structural degradations in mature human enamel during acid attack

    NASA Astrophysics Data System (ADS)

    Lubarsky, Gennady V.; Lemoine, Patrick; Meenan, Brian J.; Deb, Sanjukta; Mutreja, Isha; Carolan, Patrick; Petkov, Nikolay

    2014-04-01

    A hydrazine deproteination process was used to investigate the role of enamel proteins in the acid erosion of mature human dental enamel. Bright field high resolution transmission electron micrographs and x-ray diffraction analysis show no crystallographic changes after the hydrazine treatment with similar nanoscale hydroxyapatite crystallite size and orientation for sound and de-proteinated enamel. However, the presence of enamel proteins reduces the erosion depth, the loss of hardness and the loss of structural order in enamel, following exposure to citric acid. Nanoindentation creep is larger for sound enamel than for deproteinated enamel but it reduces in sound enamel after acid attack. These novel results are consistent with calcium ion-mediated visco-elasticty in enamel matrix proteins as described previously for nacre, bone and dental proteins. They are also in good agreement with a previous double layer force spectroscopy study by the authors which found that the proteins electrochemically buffer enamel against acid attack. Finally, this suggests that acid attack, and more specifically dental erosion, is influenced by ionic permeation through the enamel layer and that it is mitigated by the enamel protein matrix.

  2. A nine-country study of the protein content and amino acid composition of mature human milk

    PubMed Central

    Feng, Ping; Gao, Ming; Burgher, Anita; Zhou, Tian Hui; Pramuk, Kathryn

    2016-01-01

    Background Numerous studies have evaluated protein and amino acid levels in human milk. However, research in this area has been limited by small sample sizes and study populations with little ethnic or racial diversity. Objective Evaluate the protein and amino acid composition of mature (≥30 days) human milk samples collected from a large, multinational study using highly standardized methods for sample collection, storage, and analysis. Design Using a single, centralized laboratory, human milk samples from 220 women (30–188 days postpartum) from nine countries were analyzed for amino acid composition using Waters AccQ-Tag high-performance liquid chromatography and total nitrogen content using the LECO FP-528 nitrogen analyzer. Total protein was calculated as total nitrogen×6.25. True protein, which includes protein, free amino acids, and peptides, was calculated from the total amino acids. Results Mean total protein from individual countries (standard deviation [SD]) ranged from 1,133 (125.5) to 1,366 (341.4) mg/dL; the mean across all countries (SD) was 1,192 (200.9) mg/dL. Total protein, true protein, and amino acid composition were not significantly different across countries except Chile, which had higher total and true protein. Amino acid profiles (percent of total amino acids) did not differ across countries. Total and true protein concentrations and 16 of 18 amino acid concentrations declined with the stage of lactation. Conclusions Total protein, true protein, and individual amino acid concentrations in human milk steadily decline from 30 to 151 days of lactation, and are significantly higher in the second month of lactation compared with the following 4 months. There is a high level of consistency in the protein content and amino acid composition of human milk across geographic locations. The size and diversity of the study population and highly standardized procedures for the collection, storage, and analysis of human milk support the validity and

  3. Functions of defense-related proteins and dehydrogenases in resistance response induced by salicylic acid in sweet cherry fruits at different maturity stages.

    PubMed

    Chan, Zhulong; Wang, Qing; Xu, Xiangbin; Meng, Xianghong; Qin, Guozheng; Li, Boqiang; Tian, Shiping

    2008-11-01

    We report here a comparative analysis of sweet cherry (Prunus avium) fruits proteome induced by salicylic acid (SA) at different maturity stages. The results demonstrated that SA enhanced the resistance of sweet cherry fruits against Penicillium expansum, resulting in lower disease incidences and smaller lesion diameters, especially at earlier maturity stage. Based on proteomics analysis, 13 and 28 proteins were identified after SA treatment at earlier (A) and later (B) maturity stage, respectively. Seven antioxidant proteins and three pathogenesis related-proteins were identified at both A and B stages, while five heat shock proteins and four dehydrogenases were only detected at B stage. SA treatment also stimulated higher transcript levels of peroxidase, but repressed that of catalase. Moreover, some proteins regulated by SA at B maturity stage were identified as enzymes involved in glycolysis and tricarboxylic acid cycle. These findings indicated that younger sweet cherry fruits showed stronger resistance against pathogen invasion after SA treatment. It further indicated that antioxidant proteins were involved in the resistance response of fruits at every maturity stage, while heat shock proteins and dehydrogenases might potentially act as factors only at later maturity stages.

  4. Role of arachidonic acid and protein kinase C during maturation-inducing hormone-dependent meiotic resumption and ovulation in ovarian follicles of Atlantic croaker

    USGS Publications Warehouse

    Patino, R.; Yoshizaki, G.; Bolamba, D.; Thomas, P.

    2003-01-01

    The roles of arachidonic acid (AA) and protein kinase C (PKC) during in vitro maturation-inducing hormone (MIH)-dependent meiotic resumption (maturation) and ovulation were studied in ovarian follicles of Atlantic croaker (Micropogonias undulatus). The requirement for cyclooxygenase (COX) metabolites of AA was examined using a nonspecific COX inhibitor, indomethacin (IM), as well as two COX products, prostaglandin (PG) F2?? and PGE2, whereas the role of lipoxygenase (LOX) was investigated using a specific LOX inhibitor, nordihydroguaiaretic acid (NDGA). The involvement of PKC was examined using phorbol 12-myristate 13-acetate (PMA), a PKC activator, as well as GF109203X (GF), a specific inhibitor of PKC and 1-(5-isoquin- olinesulfonyl)-2-methylpiperazine (H7), nonspecific inhibitor of protein kinases. Genomic mechanisms were examined with the transcription-inhibitor actinomycin D (ActD) and the functionality of heterologous (oocyte-granulosa) gap junctions (GJ) with a dye transfer assay. The AA (100 ??M) and PGF2?? (5 ??M) did not induce maturation, and NDGA (10 ??M) did not affect MIH-dependent maturation. However, IM (100 ??M) partially inhibited MIH-dependent maturation. Conversely, AA and both PGs induced, and IM and NDGA inhibited, MIH-dependent ovulation in matured follicles. The PMA (1 ??g/ml) did not induce maturation but caused ovulation in matured follicles, whereas PKC inhibitors (GF, 5 ??M; H7, 50??M) did not affect MIH-dependent maturation but inhibited MIH- and PMA-dependent ovulation. The PMA-dependent ovulation was inhibited by IM but not by NDGA. In addition, ActD (5 ??M) blocked MIH-dependent, but not PMA-dependent, ovulation, and PGF2?? restored MIH-dependent ovulation in ActD-blocked follicles. The AA and PGs did not induce, and GF did not inhibit, MIH-dependent heterologous GJ uncoupling. In conclusion, AA and PKC mediate MIH-dependent ovulation but not meiotic resumption or heterologous GJ uncoupling in croaker follicles, but a permissive role

  5. Suppression of a signal sequence mutation by an amino acid substitution in the mature portion of the maltose-binding protein.

    PubMed Central

    Cover, W H; Ryan, J P; Bassford, P J; Walsh, K A; Bollinger, J; Randall, L L

    1987-01-01

    An unusual spontaneous pseudorevertant of an Escherichia coli strain carrying the signal sequence point mutation malE14-1 was characterized. The suppressor mutation, malE2261, resulted in a single substitution of an aspartyl residue for a tyrosyl residue at position 283 in the sequence of the mature maltose-binding protein. The precursor retained the malE14-1 point mutation in the signal sequence. The pseudorevertant carrying both malE14-1 and malE2261 exported twice the amount of maltose-binding protein as that of the mutant carrying the malE14-1 allele alone but only 18% of the amount exported by a strain producing wild-type maltose-binding protein. A strain carrying the suppressor allele malE2261 in combination with a wild-type signal sequence exported normal quantities of maltose-binding protein to the periplasm. Mature MalE2261 had a Kd for maltose of 27 microM, compared with 3.6 microM for mature wild-type maltose-binding protein. The precursor species than contained both changes resulting from malE14-1 and malE2261 was significantly less stable in the cytoplasm than was the precursor containing only the change encoded by malE14-1. Images PMID:3553148

  6. Changes in physicochemical characteristics and free amino acids of hawthorn (Crataegus pinnatifida) fruits during maturation.

    PubMed

    Li, Wei-Qin; Hu, Qing-Ping; Xu, Jian-Guo

    2015-05-15

    In this study, changes in physicochemical characteristics associated with fruit quality and free amino acids were investigated during maturation of hawthorn fruits. Significant differences in these parameters were found during maturation. The color turned progressively from mature green to semi-red, to reach bright red; the shape changed gradually from oval to round or approached round; the size, weight, and edible part (flesh/core ratio) of hawthorns increased while the density of intact fruits did not change. The content of moisture, total soluble sugars, soluble pectin, reduced ascorbic acid, total ascorbic acid, fructose, and sucrose increased while crude protein content decreased significantly. The levels of starch, sucrose, titratable acidity, protopectin, pectin, total free amino acids, and total essential amino acids initially increased and then decreased gradually during maturation. The outcomes of this study provide additional and useful information for fresh consumption and processing as well as utilization of dropped unripe hawthorn fruits.

  7. The TadV Protein of Actinobacillus actinomycetemcomitans Is a Novel Aspartic Acid Prepilin Peptidase Required for Maturation of the Flp1 Pilin and TadE and TadF Pseudopilins†

    PubMed Central

    Tomich, Mladen; Fine, Daniel H.; Figurski, David H.

    2006-01-01

    The tad locus of Actinobacillus actinomycetemcomitans encodes genes for the biogenesis of Flp pili, which allow the bacterium to adhere tenaciously to surfaces and form strong biofilms. Although tad (tight adherence) loci are widespread among bacterial and archaeal species, very little is known about the functions of the individual components of the Tad secretion apparatus. Here we characterize the mechanism by which the pre-Flp1 prepilin is processed to the mature pilus subunit. We demonstrate that the tadV gene encodes a prepilin peptidase that is both necessary and sufficient for proteolytic maturation of Flp1. TadV was also found to be required for maturation of the TadE and TadF pilin-like proteins, which we term pseudopilins. Using site-directed mutagenesis, we show that processing of pre-Flp1, pre-TadE, and pre-TadF is required for biofilm formation. Mutation of a highly conserved glutamic acid residue at position +5 of Flp1, relative to the cleavage site, resulted in a processed pilin that was blocked in assembly. In contrast, identical mutations in TadE or TadF had no effect on biofilm formation, indicating that the mechanisms by which Flp1 pilin and the pseudopilins function are distinct. We also determined that two conserved aspartic acid residues in TadV are critical for function of the prepilin peptidase. Together, our results indicate that the A. actinomycetemcomitans TadV protein is a member of a novel subclass of nonmethylating aspartic acid prepilin peptidases. PMID:16980493

  8. [Evolution of tocopherols in relation of unsaturated fatty acids during maturation of seeds of rapeseed (Brassica napus L.)].

    PubMed

    Sebei, Khaled; Boukhchina, Sadok; Kallel, Habib

    2007-01-01

    The oil content increases during the maturation of seeds (rise of 30%), but decreases at the end of seed maturation. Differences between SDS-PAGE total protein profiles were shown. Polyunsaturated fatty acids contents increase during middle-maturation. Contents of alpha and gamma tocopherols increase with time. This increase is explained by the fact that tocopherols participate actively in the protection of membranes whose phospholipids consist of polyunsaturated fatty acids (PUFAs).

  9. Fluorescent proteins: maturation, photochemistry and photophysics.

    PubMed

    Remington, S James

    2006-12-01

    It has long been appreciated that green fluorescent protein (GFP) autocatalytically forms its chromophore in a host-independent process; several of the initial steps in the reaction have recently been elucidated. Nevertheless, the end points of the process are unexpectedly diverse, as six chemically distinct chromophores, including two with three rings, have been identified. All fluorescent proteins continuously produce a low level of reactive oxygen species under illumination, which, in some cases, can lead to host cell death. In one extreme but useful example, the red fluorescent protein KillerRed can be used to selectively destroy cells upon brief illumination. Finally, when photophysical processes such as excited-state proton transfer, reversible photobleaching and photoactivation are understood, useful research tools, for example, real-time biosensors and optical highlighters, can result; however, side effects of their use may lead to significant artifacts in time-dependent microscopy experiments.

  10. Free fatty acids and oxidative changes of a raw goat milk cheese through maturation.

    PubMed

    Delgado, Francisco J; González-Crespo, José; Cava, Ramón; Ramírez, Rosario

    2011-05-01

    Free fatty acids (FFA) and lipid and protein oxidation changes were studied throughout maturation process of a raw goat milk cheese with protected designation of origin. Cheeses were analyzed at 4 different times of maturation, at 1, 30, 60, and 90 d. All FFA significantly increased during maturation and the relative increase was higher for long-chain than medium- or short-chain FFA. At the end of maturation, oleic (C18:1 n9), butyric (C4:0), and palmitic (C16:0) acids were the most abundant. The higher levels of short-chain fatty acids (SCFA) regarding total FFA obtained at the end of Ibores cheese ripening compared with other raw goat milk cheeses, highlight the notable role of SCFA on the flavor of this cheese owing to their low-odor thresholds. Lipid oxidation values significantly increased during maturation process but low levels of malondialdehyde were reported; however, protein oxidation did not significantly change during ripening.

  11. Interferon-γ enhances promyelocytic leukemia protein expression in acute promyelocytic cells and cooperates with all-trans-retinoic acid to induce maturation of NB4 and NB4-R1 cells.

    PubMed

    He, Pengcheng; Liu, Yanfeng; Zhang, Mei; Wang, Xiaoning; Xi, Jieying; Wu, DI; Li, Jing; Cao, Yunxin

    2012-05-01

    In order to investigate the effect and mechanisms of interferon (IFN)-γ in combination with all-trans-retinoic acid (ATRA) on NB4 cells [ATRA-sensitive acute promyelocytic leukemia (APL) cell line] and NB4-R1 cells (ATRA-resistant APL cell line) and to search for a novel approach to solve the problem of ATRA resistance in APL, we initially treated NB4 and NB4-R1 cells with IFN-γ, ATRA and IFN-γ in combination with ATRA, respectively. The cell proliferation was then tested by MTT assay, and the cell differentiation was tested through light microscopy, by NBT test and flow cytometry (FCM). The expression of promyelocytic leukemia (PML) protein was observed by indirect immune fluorescent test. Results showed that ATRA inhibited the growth of NB4 cells, however, it could not inhibit the growth of NB4-R1 cells. IFN-γ inhibited the growth of both NB4 and NB4-R1 cells. Meanwhile, the growth inhibition effect of IFN-γ in combination with ATRA on both NB4 and NB4-R1 cells was significantly stronger than that of any single drug treatment. The results of the NBT reduction test and CD11b antigen detection by FCM indicated that IFN-γ induces the differentiation of NB4 and NB4-R1 cells to some extent. Moreover, the maturation degree of both NB4 and NB4-R1 cells induced by IFN-γ in combination with ATRA was more significant than that of IFN-γ or ATRA alone. After treatment with IFN-γ, the number of fluorescent particles in NB4 and NB4-R1 cell nuclei was higher than those in the control group, which indicated that IFN-γ may induce the expression of PML protein. Together, IFN-γ augments the proliferation inhibition effect of ATRA on NB4 and NB4-R1 cells through enhancing the expression of PML protein. IFN-γ in combination with ATRA not only strengthens the induction differentiation effect of ATRA on NB4 cells, but also can partially induce the maturation of NB4-R1 cells with ATRA resistance.

  12. Effects of adherence, activation and distinct serum proteins on the in vitro human monocyte maturation process.

    PubMed

    Akiyama, Y; Griffith, R; Miller, P; Stevenson, G W; Lund, S; Kanapa, D J; Stevenson, H C

    1988-03-01

    Elutriator-purified human monocytes were cultured in a serum-free (SF) medium, and various serum proteins and functional activating agents were assessed for their effects on the in vitro maturation of human monocytes to macrophages. Following 3 days of suspension culture in Teflon labware, 60% of the monocytes were easily recovered. When varying concentrations of human AB serum (HuAB) were employed, human monocyte maturation progressed rapidly; the kinetics of this maturation process during cell suspension culture were very similar to the pattern observed following adherence culture. In contrast, when SF medium was employed, a marked retardation of the monocyte maturation process was observed; this could not be attributed to any changes in cell recovery and/or viability. Thus, cells could be maintained in their monocytoid form for 3 days when cultured in SF medium. When HuAB was added after 3 days of culture, human monocyte maturation into macrophages proceeded at a normal rate. We attempted to characterize certain of the serum protein(s) found in HuAB which promoted the monocyte maturation process. Human immunoglobulin G (IgG) was found to be the most potent serum protein in increasing 5'-N activity and decreasing peroxidase activity of suspension cultured monocytes. Immunoglobulin M (IgM) and albumin (Alb) were shown not to have significant monocyte maturation activity. Heat-treated human gamma globulin and IgG purified by high-performance liquid chromatography (HPLC) were shown to have patterns identical with that of untreated HGG and IgG with regard to promoting monocyte maturation; F(ab')2 was not an active maturation promoter, indicating the need for an intact Fc portion of the IgG molecule. Fibrinogen and fibronectin also had maturation promoting activity. Finally, addition of the potent monocyte functional activators, muramyl dipeptide (MDP), polyriboinosinic:polyribocytidilic acid (Poly I:C), and lipopolysaccharide (LPS) had no effect on the monocyte

  13. Protein profile of mature soybean seeds and prepared soybean milk.

    PubMed

    Capriotti, Anna Laura; Caruso, Giuseppe; Cavaliere, Chiara; Samperi, Roberto; Stampachiacchiere, Serena; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2014-10-08

    The soybean (Glycine max (L.) Merrill) is economically the most important bean in the world, providing a wide range of vegetable proteins. Soybean milk is a colloidal solution obtained as water extract from swelled and ground soybean seeds. Soybean proteins represent about 35-40% on a dry weight basis and they are receiving increasing attention with respect to their health effects. However, the soybean is a well-recognized allergenic food, and therefore, it is urgent to define its protein components responsible for the allergenicity in order to develop hypoallergenic soybean products for sensitive people. The main aim of this work was the characterization of seed and milk soybean proteome and their comparison in terms of protein content and specific proteins. Using a shotgun proteomics approach, 243 nonredundant proteins were identified in mature soybean seeds.

  14. Protein Composition of the Vaccinia Virus Mature Virion

    SciTech Connect

    Resch, Wolfgang; Hixson, Kim K.; Moore, Ronald J.; Lipton, Mary S.; Moss, Bernard

    2007-02-05

    The protein content of vaccinia virus mature virions, purified by rate zonal and isopycnic centrifugation and solubilized by SDS or a solution of urea and thiourea, was determined by the accurate mass and time tag technology which uses both tandem mass spectrometry and Fourier transform-ion cyclotron resonance mass spectrometry to detect tryptic peptides separated by high-resolution liquid chromatography. Eighty vaccinia virus-encoded proteins representing 37% of the 218 genes annotated in the complete genome sequence were detected in at least three analyses. Ten proteins accounted for approximately 80% of the mass, while the least abundant proteins made up 1% or less of the mass. Thirteen identified proteins were not previously reported as components of virions. On the other hand, 8 previously described virion proteins were not detected here, presumably due to technical reasons including small size and hydrophobicity. In addition to vaccinia virus-encoded proteins, 24 host proteins omitting isoforms were detected. The most abundant of these were cytoskeletal proteins, heat shock proteins, and proteins involved in translation.

  15. Induction of dorsal mesoderm by soluble, mature Vg1 protein.

    PubMed

    Kessler, D S; Melton, D A

    1995-07-01

    Mesoderm induction during Xenopus development has been extensively studied, and two members of the transforming growth factor-beta family, activin beta B and Vg1, have emerged as candidates for a natural inducer of dorsal mesoderm. Heretofore, analysis of Vg1 activity has relied on injection of hybrid Vg1 mRNAs, which have not been shown to direct efficient secretion of ligand and, therefore, the mechanism of mesoderm induction by processed Vg1 protein is unclear. This report describes injection of Xenopus oocytes with a chimeric activin-Vg1 mRNA, encoding the pro-region of activin beta B fused to the mature region of Vg1, resulting in the processing and secretion of mature Vg1. Treatment of animal pole explants with mature Vg1 protein resulted in differentiation of dorsal, but not ventral, mesodermal tissues and dose-dependent activation of both dorsal and ventrolateral mesodermal markers. At high doses, mature Vg1 induced formation of 'embryoids' with a rudimentary axial pattern, head structures including eyes and a functional neuromuscular system. Furthermore, truncated forms of the activin and FGF receptors, which block mesoderm induction in the intact embryo, fully inhibited mature Vg1 activity. To examine the mechanism of inhibition, we have performed receptor-binding assays with radiolabeled Vg1. Finally, follistatin, a specific inhibitor of activin beta B which is shown not to block endogenous dorsal mesoderm induction, failed to inhibit Vg1. The results support a role for endogenous Vg1 in dorsal mesoderm induction during Xenopus development.

  16. A requirement for fatty acid oxidation in the hormone-induced meiotic maturation of mouse oocytes.

    PubMed

    Valsangkar, Deepa; Downs, Stephen M

    2013-08-01

    We have previously shown that fatty acid oxidation (FAO) is required for AMP-activated protein kinase (PRKA)-induced maturation in vitro. In the present study, we have further investigated the role of this metabolic pathway in hormone-induced meiotic maturation. Incorporating an assay with (3)H-palmitic acid as the substrate, we first examined the effect of PRKA activators on FAO levels. There was a significant stimulation of FAO in cumulus cell-enclosed oocytes (CEO) treated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and RSVA405. In denuded oocytes (DO), AICAR stimulated FAO only in the presence of carnitine, the molecule that facilitates fatty acyl CoA entry into the mitochondria. The carnitine palmitoyltransferase 1 activator C75 successfully stimulated FAO in CEO. All three of these activators trigger germinal vesicle breakdown. Meiotic resumption induced by follicle-stimulating hormone (FSH) or amphiregulin was completely inhibited by the FAO inhibitors etomoxir, mercaptoacetate, and malonyl CoA. Importantly, FAO was increased in CEO stimulated by FSH and epidermal growth factor, and this increase was blocked by FAO inhibitors. Moreover, compound C, a PRKA inhibitor, prevented the FSH-induced increase in FAO. Both carnitine and palmitic acid augmented hormonal induction of maturation. In a more physiological setting, etomoxir eliminated human chorionic gonadotropin (hCG)-induced maturation in follicle-enclosed oocytes. In addition, CEO and DO from hCG-treated mice displayed an etomoxir-sensitive increase in FAO, indicating that this pathway was stimulated during in vivo meiotic resumption. Taken together, our data indicate that hormone-induced maturation in mice requires a PRKA-dependent increase in FAO.

  17. Docosahexaenoic acid impairs the maturation of very low density lipoproteins in rat hepatic cells[S

    PubMed Central

    Maitin, Vatsala; Andreo, Ursula; Guo, Liang; Fisher, Edward A.

    2014-01-01

    One mechanism of the lipid-lowering effects of the fish oil n-3 fatty acids [e.g., docosahexaenoic acid (DHA)] in cell and animal models is induced hepatic apolipoprotein B100 (apoB) presecretory degradation. This degradation occurs post-endoplasmic reticulum, but whether DHA induces it before or after intracellular VLDL formation remains unanswered. We found in McA-RH7777 rat hepatic cells that DHA and oleic acid (OA) treatments allowed formation of pre-VLDL particles and their transport to the Golgi, but, in contrast to OA, with DHA pre-VLDL particles failed to quantitatively assemble into fully lipidated (mature) VLDL. This failure required lipid peroxidation and was accompanied by the formation of apoB aggregates (known to be degraded by autophagy). Preventing the exit of proteins from the Golgi blocked the aggregation of apoB but did not restore VLDL maturation, indicating that failure to fully lipidate apoB preceded its aggregation. ApoB autophagic degradation did not appear to require an intermediate step of cytosolic aggresome formation. Taken with other examples in the literature, the results of this study suggest that pre-VLDL particles that are competent to escape endoplasmic reticulum quality control mechanisms but fail to mature in the Golgi remain subject to quality control surveillance late in the secretory pathway. PMID:24136824

  18. Ultrastructure of mature protein body in the starchy endosperm of dry cereal grain.

    PubMed

    Saito, Yuhi; Shigemitsu, Takanari; Tanaka, Kunisuke; Morita, Shigeto; Satoh, Shigeru; Masumura, Takehiro

    2010-01-01

    The development of the protein body in the late stage of seed maturation is poorly understood, because electron-microscopy of mature cereal endosperm is technically difficult. In this study, we attempted to modify the existing method of embedding rice grain in resin. The modified method revealed the ultrastructures of the mature protein body in dry cereal grains.

  19. Structural requirements for parathyroid hormone action in mature bone. Effects on release of cyclic adenosine monophosphate and bone gamma-carboxyglutamic acid-containing protein from perfused rat hindquarters.

    PubMed Central

    Calvo, M S; Fryer, M J; Laakso, K J; Nissenson, R A; Price, P A; Murray, T M; Heath, H

    1985-01-01

    To determine the structural requirements for parathyroid hormone (PTH) activity in mature bone, we perfused the surgically isolated hindquarters of adult male rats with either native bovine PTH-(1-84) [bPTH-(1-84)] or the synthetic amino-terminal fragment, bovine PTH-(1-34) [bPTH-(1-34)]. Changes in the release of cyclic AMP (cAMP) and bone Gla protein (BGP) were monitored as evidence of bone-specific response to PTH; tissue specificity of the cAMP response was confirmed through in vitro examination on nonskeletal tissue response to PTH. Biologically active, monoiodinated 125I-bPTH-(1-84) was administered to determine if mature murine bone cleaves native hormone. We found that perfused rat bone continuously releases BGP, and that both bPTH-(1-84) and bPTH-(1-34) acutely suppress this release. In addition, both hormones stimulate cAMP release from perfused rat hindquarters. When examined on a molar basis, the magnitude of the cAMP response was dose-dependent and similar for both hormones, with doses yielding half-maximal cAMP responses. The response for bPTH-(1-34) was 0.5 nmol and for bPTH-(1-84) was 0.7 nmol. Moreover, biologically active 125I-bPTH-(1-84) was not metabolized in our hindquarter perfusion system. These findings indicate that PTH-(1-84) does not require extraskeletal or skeletal cleavage to an amino-terminal fragment in order to stimulate cAMP generation in, or suppress BGP release from, mature rat bone. PMID:3001148

  20. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition.

    PubMed

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-04-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development.

  1. The Native Form and Maturation Process of Hepatitis C Virus Core Protein

    PubMed Central

    Yasui, Kohichiroh; Wakita, Takaji; Tsukiyama-Kohara, Kyoko; Funahashi, Shin-Ichi; Ichikawa, Masumi; Kajita, Tadahiro; Moradpour, Darius; Wands, Jack R.; Kohara, Michinori

    1998-01-01

    The maturation and subcellular localization of hepatitis C virus (HCV) core protein were investigated with both a vaccinia virus expression system and CHO cell lines stably transformed with HCV cDNA. Two HCV core proteins, with molecular sizes of 21 kDa (p21) and 23 kDa (p23), were identified. The C-terminal end of p23 is amino acid 191 of the HCV polyprotein, and p21 is produced as a result of processing between amino acids 174 and 191. The subcellular localization of the HCV core protein was examined by confocal laser scanning microscopy. Although HCV core protein resided predominantly in the cytoplasm, it was also found in the nucleus and had the same molecular size as p21 in both locations, as determined by subcellular fractionation. The HCV core proteins had different immunoreactivities to a panel of monoclonal antibodies. Antibody 5E3 stained core protein in both the cytoplasm and the nucleus, C7-50 stained core protein only in the cytoplasm, and 499S stained core protein only in the nucleus. These results clearly indicate that the p23 form of HCV core protein is processed to p21 in the cytoplasm and that the core protein in the nucleus has a higher-order structure different from that of p21 in the cytoplasm. HCV core protein in sera of patients with HCV infection was analyzed in order to determine the molecular size of genuinely processed HCV core protein. HCV core protein in sera was found to have exactly the same molecular weight as the p21 protein. These results suggest that p21 core protein is a component of native viral particles. PMID:9621068

  2. Proteolytic maturation of protein C upon engineering the mouse mammary gland to express furin.

    PubMed Central

    Drews, R; Paleyanda, R K; Lee, T K; Chang, R R; Rehemtulla, A; Kaufman, R J; Drohan, W N; Luboń, H

    1995-01-01

    Endoproteolytic processing of the human protein C (HPC) precursor to its mature form involves cleavage of the propeptide after amino acids Lys-2-Arg-1 and removal of a Lys156-Arg157 dipeptide connecting the light and heavy chains. This processing was inefficient in the mammary gland of transgenic mice and pigs. We hypothesized that the protein processing capacity of specific animal organs may be improved by the coexpression of selected processing enzymes. We tested this by targeting expression of the human proprotein processing enzyme, named paired basic amino acid cleaving enzyme (PACE)/furin, or an enzymatically inactive mutant, PACEM, to the mouse mammary gland. In contrast to mice expressing HPC alone, or to HPC/PACEM bigenic mice, coexpression of PACE with HPC resulted in efficient conversion of the precursor to mature protein, with cleavage at the appropriate sites. These results suggest the involvement of PACE in the processing of HPC in vivo and represent an example of the engineering of animal organs into bioreactors with enhanced protein processing capacity. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7479820

  3. Protein and amino acid nutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy cow protein and amino acid nutrition have a significant role in sustainable dairying. Protein, amino acids, and nitrogen are inextricably linked through effects in the rumen, metabolism of the cow, and environmental nutrient management. Feeding systems have been making progress toward emphasiz...

  4. Vaccinia mature virus fusion regulator A26 protein binds to A16 and G9 proteins of the viral entry fusion complex and dissociates from mature virions at low pH.

    PubMed

    Chang, Shu-Jung; Shih, Ao-Chun; Tang, Yin-Liang; Chang, Wen

    2012-04-01

    Vaccinia mature virus enters cells through either endocytosis or plasma membrane fusion, depending on virus strain and cell type. Our previous results showed that vaccinia virus mature virions containing viral A26 protein enter HeLa cells preferentially through endocytosis, whereas mature virions lacking A26 protein enter through plasma membrane fusion, leading us to propose that A26 acts as an acid-sensitive fusion suppressor for mature virus (S. J. Chang, Y. X. Chang, R. Izmailyan R, Y. L. Tang, and W. Chang, J. Virol. 84:8422-8432, 2010). In the present study, we investigated the fusion suppression mechanism of A26 protein. We found that A26 protein was coimmunoprecipitated with multiple components of the viral entry-fusion complex (EFC) in infected HeLa cells. Transient expression of viral EFC components in HeLa cells revealed that vaccinia virus A26 protein interacted directly with A16 and G9 but not with G3, L5 and H2 proteins of the EFC components. Consistently, a glutathione S-transferase (GST)-A26 fusion protein, but not GST, pulled down A16 and G9 proteins individually in vitro. Together, our results supported the idea that A26 protein binds to A16 and G9 protein at neutral pH contributing to suppression of vaccinia virus-triggered membrane fusion from without. Since vaccinia virus extracellular envelope proteins A56/K2 were recently shown to bind to the A16/G9 subcomplex to suppress virus-induced fusion from within, our results also highlight an evolutionary convergence in which vaccinia viral fusion suppressor proteins regulate membrane fusion by targeting the A16 and G9 components of the viral EFC complex. Finally, we provide evidence that acid (pH 4.7) treatment induced A26 protein and A26-A27 protein complexes of 70 kDa and 90 kDa to dissociate from mature virions, suggesting that the structure of A26 protein is acid sensitive.

  5. Effects of maturation, diet, and estradiol on indices of protein degradation in rainbow trout (Oncorhychus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sexual maturation in salmonids requires mobilization of proteins from muscle tissue as evidenced by increased expression of proteolytic genes and decreased muscle protein content. However, it is unknown how ration level affects this proteolytic response. Female diploid rainbow trout (Oncorhynchus ...

  6. Cholera Toxin B Subunit Linked to Glutamic Acid Decarboxylase Suppresses Dendritic Cell Maturation and Function

    PubMed Central

    Odumosu, Oludare; Nicholas, Dequina; Payne, Kimberly; Langridge, William

    2012-01-01

    Dendritic cells are the largest population of antigen presenting cells in the body. One of their main functions is to regulate the delicate balance between immunity and tolerance responsible for maintenance of immunological homeostasis. Disruption of this delicate balance often results in chronic inflammation responsible for initiation of organ specific autoimmune diseases such as rheumatoid arthritis, multiple sclerosis and type I diabetes. The cholera toxin B subunit (CTB) is a weak mucosal adjuvant known for its ability to stimulate immunity to antigenic proteins. However, conjugation of CTB to many autoantigens can induce immunological tolerance resulting in suppression of autoimmunity. In this study, we examined whether linkage of CTB to a 5 kDa C-terminal protein fragment of the major diabetes autoantigen glutamic acid decarboxylase (GAD35), can block dendritic cell (DC) functions such as biosynthesis of co-stimulatory factor proteins CD86, CD83, CD80 and CD40 and secretion of inflammatory cytokines. The results of human umbilical cord blood monocyte-derived DC - GAD35 autoantigen incubation experiments showed that inoculation of immature DCs (iDCs), with CTB-GAD35 protein dramatically suppressed levels of CD86, CD83, CD80 and CD40 co-stimulatory factor protein biosynthesis in comparison with GAD35 alone inoculated iDCs. Surprisingly, incubation of iDCs in the presence of the CTB-autoantigen and the strong immunostimulatory molecules PMA and Ionomycin revealed that CTB-GAD35 was capable of arresting PMA + Ionomycin induced DC maturation. Consistant with this finding, CTB-GAD35 mediated suppression of DC maturation was accompanied by a dramatic decrease in the secretion of the pro-inflammatory cytokines IL-12/23p40 and IL-6 and a significant increase in secretion of the immunosuppressive cytokine IL-10. Taken together, our experimental data suggest that linkage of the weak adjuvant CTB to the dominant type 1 diabetes autoantigen GAD strongly inhibits DC

  7. Amino acid substitutions in the poliovirus maturation cleavage site affect assembly and result in accumulation of provirions.

    PubMed Central

    Ansardi, D C; Morrow, C D

    1995-01-01

    The assembly of infectious poliovirus virions requires a proteolytic cleavage between an asparagine-serine amino acid pair (the maturation cleavage site) in VP0 after encapsidation of the genomic RNA. In this study, we have investigated the effects that mutations in the maturation cleavage site have on P1 polyprotein processing, assembly of subviral intermediates, and encapsidation of the viral genomic RNA. We have made mutations in the maturation cleavage site which change the asparagine-serine amino acid pair to either glutamine-glycine or threonine-serine. The mutations were created by site-directed mutagenesis of P1 cDNAs which were recombined into wild-type vaccinia virus to generate recombinant vaccinia viruses. The P1 polyproteins expressed from the recombinant vaccinia viruses were analyzed for proteolytic processing and assembly defects in cells coinfected with a recombinant vaccinia virus (VV-P3) that expresses the poliovirus 3CD protease. A trans complementation system using a defective poliovirus genome was utilized to assess the capacity of the mutant P1 proteins to encapsidate genomic RNA (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 67:3684-3690, 1993). The mutant P1 proteins containing the glutamine-glycine amino acid pair (VP4-QG) and the threonine-serine pair (VP4-TS) were processed by 3CD provided in trans from VV-P3. The processed capsid proteins VP0, VP3, and VP1 derived from the mutant precursor VP4-QG were unstable and failed to assemble into subviral structures in cells coinfected with VV-P3. However, the capsid proteins derived from VP4-QG did assemble into empty-capsid-like structures in the presence of the defective poliovirus genome. In contrast, the capsid proteins derived from processing of the VP4-TS mutant assembled into subviral intermediates both in the presence and in the absence of the defective genome RNA. By a sedimentation analysis, we determined that the capsid proteins derived from the VP4-TS precursor

  8. Salvianolic acid B suppresses maturation of human monocyte-derived dendritic cells by activating PPARγ

    PubMed Central

    Sun, Aijun; Liu, Hongying; Wang, Shijun; Shi, Dazhuo; Xu, Lei; Cheng, Yong; Wang, Keqiang; Chen, Keji; Zou, Yunzeng; Ge, Junbo

    2011-01-01

    BACKGROUND AND PURPOSE Salvianolic acid B (Sal B), a water-soluble antioxidant derived from a Chinese medicinal herb, is known to be effective in the prevention of atherosclerosis. Here, we tested the hypothesis that the anti-atherosclerotic effect of Sal B might be mediated by suppressing maturation of human monocyte-derived dendritic cells (h-monDC). EXPERIMENTAL APPROACH h-monDC were derived by incubating purified human monocytes with GM-CSF and IL-4. h-monDC were pre-incubated with or without Sal B and stimulated by oxidized low-density lipoprotein (ox-LDL) in the presence or absence of PPARγ siRNA. Expression of h-monDC membrane molecules (CD40, CD86, CD1a, HLA-DR) were analysed by FACS, cytokines were measured by elisa and the TLR4-associated signalling pathway was determined by Western blotting. KEY RESULTS Ox-LDL promoted h-monDC maturation, stimulated CD40, CD86, CD1a, HLA-DR expression and IL-12, IL-10, TNF-α production; and up-regulated TLR4 signalling. These effects were inhibited by Sal B. Sal B also triggered PPARγ activation and promoted PPARγ nuclear translocation, attenuated ox-LDL-induced up-regulation of TLR4 and myeloid differentiation primary-response protein 88 and inhibited the downstream p38-MAPK signalling cascade. Knocking down PPARγ with the corresponding siRNA blocked these effects of Sal B. CONCLUSIONS AND IMPLICATIONS Our data suggested that Sal B effectively suppressed maturation of h-monDC induced by ox-LDL through PPARγ activation. PMID:21649636

  9. Effect of alpha-tocopherol and ascorbic acid on bovine oocyte in vitro maturation.

    PubMed

    Dalvit, G; Llanes, S P; Descalzo, A; Insani, M; Beconi, M; Cetica, P

    2005-04-01

    In vitro culture results in higher oxygen concentrations than in vivo environments, leading to an increased level of reactive oxygen species (ROS) that cause lipid peroxidation of cellular membranes. Alpha-tocopherol (active form of vitamin E) is an antioxidant that protects mammalian cells against lipid peroxidation, which is regenerated by ascorbic acid. The aim of this study was to determine the effect of the addition of alpha-tocopherol and/or ascorbic acid to the maturation medium on bovine oocyte in vitro maturation (IVM) and subsequently on in vitro fertilization (IVF) and embryo development. Cumulus-oocyte complexes (COCs) were matured in Medium 199 (control), and with the addition of alpha-tocopherol and/or ascorbic acid. The concentration of alpha-tocopherol in COCs was determined by high-performance liquid chromatography (HPLC). IVF and in vitro culture (IVC) were carried out in modified synthetic oviductal fluid (mSOF). The quantity of alpha-tocopherol naturally present in COCs diminished by half during IVM (p < 0.05), although in the presence of ascorbic acid it remained constant. A greater amount of alpha-tocopherol was detected in COCs matured in medium supplemented with this antioxidant (p < 0.05), but the addition of alpha-tocopherol plus ascorbic acid maintained higher levels of alpha-tocopherol (p < 0.05). Significant differences were not observed in the percentages of nuclear maturation and fertilization among different treatments. The presence of alpha-tocopherol or ascorbic acid in the maturation medium failed to modify the percentage of blastocysts obtained, unlike the addition of both antioxidants when a significant decrease was observed (p < 0.05). Absorbic acid maintained the antioxidant capacity of the alpha-tocopherol incorporated to COC membranes during IVM. The active form of vitamin E during maturation impaired the acquisition of oocyte developmental competence.

  10. The hormonal herbicide, 2,4-dichlorophenoxyacetic acid, inhibits Xenopus oocyte maturation by targeting translational and post-translational mechanisms.

    PubMed

    LaChapelle, Alexis M; Ruygrok, Michael L; Toomer, MaryEllen; Oost, Jason J; Monnie, Michelle L; Swenson, Jacob A; Compton, Alex A; Stebbins-Boaz, Barbara

    2007-01-01

    The widely used hormonal herbicide, 2,4-dichlorophenoxyacetic acid, blocks meiotic maturation in vitro and is thus a potential environmental endocrine disruptor with early reproductive effects. To test whether maturation inhibition was dependent on protein kinase A, an endogenous maturation inhibitor, oocytes were microinjected with PKI, a specific PKA inhibitor, and exposed to 2,4-D. Oocytes failed to mature, suggesting that 2,4-D is not dependent on PKA activity and likely acts on a downstream target, such as Mos. De novo synthesis of Mos, which is triggered by mRNA poly(A) elongation, was examined. Oocytes were microinjected with radiolabelled in vitro transcripts of Mos RNA and exposed to progesterone and 2,4-D. RNA analysis showed progesterone-induced polyadenylation as expected but none with 2,4-D. 2,4-D-activated MAPK was determined to be cytoplasmic in localization studies but poorly induced Rsk2 phosphorylation and activation. In addition to inhibition of the G2/M transition, 2,4-D caused abrupt reduction of H1 kinase activity in MII phase oocytes. Attempts to rescue maturation in oocytes transiently exposed to 2,4-D failed, suggesting that 2,4-D induces irreversible dysfunction of the meiotic signaling mechanism.

  11. Increased phosphorylation of ribosomal protein S6 during meiotic maturation of Xenopus oocytes.

    PubMed Central

    Nielsen, P J; Thomas, G; Maller, J L

    1982-01-01

    A single ribosomal protein (Mr, 32,000) becomes phosphorylated during progesterone-induced in vitro maturation of Xenopus laevis oocytes. The protein is identified as 40S ribosomal protein S6. Phosphorylation of S6 is monitored by incorporation of 32Pi and by two-dimensional polyacrylamide gel electrophoresis. S6 is minimally phosphorylated in unstimulated oocytes. After progesterone treatment, phosphorylation of S6 precedes germinal vesicle breakdown (GVBD) and is maximal at the time when 50% of the oocytes have undergone GVBD. S6, when maximally phosphorylated, exists in derivatives that correspond to the most highly phosphorylated forms observed in other systems, and the increase in S6 phosphorylation occurs at approximately the same time as the increase in the overall protein synthesis rate reported to occur during oocyte maturation. S6 is also maximally phosphorylated in unfertilized eggs following maturation in vivo. Injection of a partially purified preparation of maturation-promoting factor into immature oocytes induces immediate phosphorylation of S6 and rapidly increases the rate of protein synthesis. Moreover, incubation of ribosomes with this factor and radiolabeled ATP results in labeling of S6. These findings suggest that S6 phosphorylation may be important in the control of protein synthesis during maturation and may also play a role in the mechanism of action of maturation-promoting factor. Images PMID:7045876

  12. Dynamic HypA zinc site is essential for acid viability and proper urease maturation in Helicobacter pylori

    PubMed Central

    Johnson, Ryan C.; Hu, Heidi Q.; Merrell, D. Scott; Maroney, Michael J.

    2015-01-01

    Helicobacter pylori requires urease activity in order to survive in the acid environment of the human stomach. Urease is regulated in part by nickelation, a process that requires the HypA protein, which is a putative nickel metallochaperone that is generally associated with hydrogenase maturation. However, in H. pylori, HypA plays a dual role. In addition to an N-terminal nickel binding site, HypA proteins also contain a structural zinc site that is coordinated by two rigorously conserved CXXC sequences, which in H. pylori are flanked by His residues. These structural Zn sites are known to be dynamic, converting from Zn(Cys)4 centers at pH 7.2 to Zn(Cys)2(His)2 centers at pH 6.3 in the presence of Ni(II) ions. In this study, mutant strains of H. pylori that express zinc site variants of the HypA protein are used to show that the structural changes in the zinc site are important for the acid viability of the bacterium, and that a reduction in acid viability in these variants can be traced in large measure to deficient urease activity. This in turn leads to a model that connects the Zn(Cys)4 coordination to urease maturation. PMID:25608738

  13. Impact of folic acid supplementation on single- and double-stranded RNA degradation in human colostrum and mature milk.

    PubMed

    Kocic, Gordana; Bjelakovic, Ljiljana; Bjelakovic, Bojko; Jevtoci-Stoimenov, Tatjana; Sokolovic, Dusan; Cvetkovic, Tatjana; Kocic, Hristina; Stojanovic, Svetlana; Langerholc, Tomaz; Jonovic, Marina

    2014-07-01

    Sufficient intake of folic acid is necessary for normal embryogenesis, fetal, and neonatal development. Folic acid facilitates nucleic acid internalization, and protects cellular DNA from nuclease degradation. Human milk contains enzymes, antimicrobial proteins, and antibodies, along with macrophages, that protect against infections and allergies. However, little to no information is available on the effects of folic acid supplementation on degradation of nucleic acids in human milk. In the present study, we aimed to determine the RNase activity (free and inhibitor-bound) in colostrum and mature milk, following folic acid supplementation. The study design included a total of 59 women, 27 of whom received 400 μg of folic acid daily periconceptionally and after. Folic acid supplementation increased the free RNase and polyadenylase activity following lactation. However, the increased RNase activity was not due to de novo enzyme synthesis, as the inhibitor-bound (latent) RNase activity was significantly lower and disappeared after one month. Folic acid reduced RNase activity by using double-stranded RNA as substrate. Data suggests that folic acid supplementation may improve viral RNAs degradation and mRNA degradation, but not dsRNA degradation, preserving in this way the antiviral defense.

  14. Nuclear-encoded chloroplast ribosomal protein L12 of Nicotiana tabacum: characterization of mature protein and isolation and sequence analysis of cDNA clones encoding its cytoplasmic precursor.

    PubMed Central

    Elhag, G A; Thomas, F J; McCreery, T P; Bourque, D P

    1992-01-01

    Poly(A)+ mRNA isolated from Nicotiana tabacum (cv. Petite Havana) leaves was used to prepare a cDNA library in the expression vector lambda gt11. Recombinant phage containing cDNAs coding for chloroplast ribosomal protein L12 were identified and sequenced. Mature tobacco L12 protein has 44% amino acid identity with ribosomal protein L7/L12 of Escherichia coli. The longest L12 cDNA (733 nucleotides) codes for a 13,823 molecular weight polypeptide with a transit peptide of 53 amino acids and a mature protein of 133 amino acids. The transit peptide and mature protein share 43% and 79% amino acid identity, respectively, with corresponding regions of spinach chloroplast ribosomal protein L12. The predicted amino terminus of the mature protein was confirmed by partial sequence analysis of HPLC-purified tobacco chloroplast ribosomal protein L12. A single L12 mRNA of about 0.8 kb was detected by hybridization of L12 cDNA to poly(A)+ and total leaf RNA. Hybridization patterns of restriction fragments of tobacco genomic DNA probed with the L12 cDNA suggested the existence of more than one gene for ribosomal protein L12. Characterization of a second cDNA with an identical L12 coding sequence but a different 3'-noncoding sequence provided evidence that at least two L12 genes are expressed in tobacco. Images PMID:1542565

  15. Quantifying protein by bicinchoninic Acid.

    PubMed

    Simpson, Richard J

    2008-08-01

    INTRODUCTIONThis protocol describes a method of quantifying protein that is a variation of the Lowry assay. It uses bicinchoninic acid (BCA) to enhance the detection of Cu(+) generated under alkaline conditions at sites of complexes between Cu(2+) and protein. The resulting chromophore absorbs at 562 nm. This technique is divided into three parts: Standard Procedure, Microprocedure, and 96-Well Microtiter Plate Procedure. For each procedure, test samples are assayed in parallel with protein standards that are used to generate a calibration curve, and the exact concentration of protein in the test samples is interpolated. The standard BCA assay uses large volumes of both reagents and samples and cannot easily be automated. If these issues are important, the Microprocedure is recommended. This in turn can be adapted for use with a microplate reader in the 96-Well Microtiter Plate Procedure. If the microplate reader is interfaced with a computer, more than 1000 samples can be read per hour.

  16. G protein-coupled receptors in child development, growth, and maturation.

    PubMed

    Latronico, Ana Claudia; Hochberg, Ze'ev

    2010-10-12

    G protein-coupled receptors (GPCRs) constitute a large family of cell membrane receptors that affect embryogenesis, development, and child physiology, and they are targets for approved drugs and those still in development. The sensitivity of GPCRs to their respective extracellular hormones, neurotransmitters, and environmental stimulants, as well as their interaction with other receptors and intracellular signaling proteins (such as receptor activity-modifying proteins), contribute to variations in child development, growth, and maturation. Here, we summarize current knowledge about the mechanisms of activation (in either the presence or absence of ligands) that lead to the sensitivities of GPCRs and their respective effects as seen throughout human developmental and maturational phases.

  17. Fatty acid metabolism during maturation affects glucose uptake and is essential to oocyte competence.

    PubMed

    Paczkowski, M; Schoolcraft, W B; Krisher, R L

    2014-10-01

    Fatty acid β-oxidation (FAO) is essential for oocyte maturation in mice. The objective of this study was to determine the effect of etomoxir (a FAO inhibitor; 100 μM), carnitine (1 mM), and palmitic acid (1 or 100 μM) during maturation on metabolism and gene expression of the oocyte and cumulus cells, and subsequent embryo development in the mouse. Carnitine significantly increased embryo development, while there was a decrease in development following maturation with 100 μM palmitic acid or etomoxir (P<0.05) treatment. Glucose consumption per cumulus-oocyte complex (COC) was decreased after treatment with carnitine and increased following etomoxir treatment (P<0.05). Intracellular oocyte lipid content was decreased after carnitine or etomoxir exposure (P<0.05). Abundance of Slc2a1 (Glut1) was increased after etomoxir treatment in the oocyte and cumulus cells (P<0.05), suggesting stimulation of glucose transport and potentially the glycolytic pathway for energy production when FAO is inhibited. Abundance of carnitine palmitoyltransferase 2 (Cpt2) tended to increase in oocytes (P=0.1) after treatment with 100 μM palmitic acid and in cumulus cells after exposure to 1 μM palmitic acid (P=0.07). Combined with carnitine, 1 μM palmitic acid increased the abundance of Acsl3 (P<0.05) and Cpt2 tended to increase (P=0.07) in cumulus cells, suggesting FAO was increased during maturation in response to stimulators and fatty acids. In conclusion, fatty acid and glucose metabolism are related to the mouse COC, as inhibition of FAO increases glucose consumption. Stimulation of FAO decreases glucose consumption and lipid stores, positively affecting subsequent embryo development, while an overabundance of fatty acid or reduced FAO negatively affects oocyte quality.

  18. Prostaglandin E2 restrains macrophage maturation via E prostanoid receptor 2/protein kinase A signaling

    PubMed Central

    Zasłona, Zbigniew; Serezani, Carlos H.; Okunishi, Katsuhide; Aronoff, David M.

    2012-01-01

    Prostaglandin E2 (PGE2) is a lipid mediator that acts by ligating 4 distinct G protein–coupled receptors, E prostanoid (EP) 1 to 4. Previous studies identified the importance of PGE2 in regulating macrophage functions, but little is known about its effect on macrophage maturation. Macrophage maturation was studied in vitro in bone marrow cell cultures, and in vivo in a model of peritonitis. EP2 was the most abundant PGE2 receptor expressed by bone marrow cells, and its expression further increased during macrophage maturation. EP2-deficient (EP2−/−) macrophages exhibited enhanced in vitro maturation compared with wild-type cells, as evidenced by higher F4/80 expression. An EP2 antagonist also increased maturation. In the peritonitis model, EP2−/− mice exhibited a higher percentage of F4/80high/CD11bhigh cells and greater expression of macrophage colony-stimulating factor receptor (M-CSFR) in both the blood and the peritoneal cavity. Subcutaneous injection of the PGE2 analog misoprostol decreased M-CSFR expression in bone marrow cells and reduced the number of peritoneal macrophages in wild-type mice but not EP2−/− mice. The suppressive effect of EP2 ligation on in vitro macrophage maturation was mimicked by a selective protein kinase A agonist. Our findings reveal a novel role for PGE2/EP2/protein kinase A signaling in the suppression of macrophage maturation. PMID:22234697

  19. The protein domains of the Dictyostelium microprocessor that are required for correct subcellular localization and for microRNA maturation.

    PubMed

    Kruse, Janis; Meier, Doreen; Zenk, Fides; Rehders, Maren; Nellen, Wolfgang; Hammann, Christian

    2016-10-02

    The maturation pathways of microRNAs (miRNAs) have been delineated for plants and several animals, belonging to the evolutionary supergroups of Archaeplastida and Opisthokonta, respectively. Recently, we reported the discovery of the microprocessor complex in Dictyostelium discoideum of the Amoebozoa supergroup. The complex is composed of the Dicer DrnB and the dsRBD (double-stranded RNA binding domain) containing protein RbdB. Both proteins localize at nucleoli, where they physically interact, and both are required for miRNA maturation. Here we show that the miRNA phenotype of a ΔdrnB gene deletion strain can be rescued by ectopic expression of a series of DrnB GFP fusion proteins, which consistently showed punctate perinucleolar localization in fluorescence microscopy. These punctate foci appear surprisingly stable, as they persist both disintegration of nucleoli and degradation of cellular nucleic acids. We observed that DrnB expression levels influence the number of microprocessor foci and alter RbdB accumulation. An investigation of DrnB variants revealed that its newly identified nuclear localization signal is necessary, but not sufficient for the perinucleolar localization. Biogenesis of miRNAs, which are RNA Pol II transcripts, is correlated with that localization. Besides its bidentate RNase III domains, DrnB contains only a dsRBD, which surprisingly is dispensable for miRNA maturation. This dsRBD can, however, functionally replace the homologous domain in RbdB. Based on the unique setup of the Dictyostelium microprocessor with a subcellular localization similar to plants, but a protein domain composition similar to animals, we propose a model for the evolutionary origin of RNase III proteins acting in miRNA maturation.

  20. The Role of RING Box Protein 1 in Mouse Oocyte Meiotic Maturation

    PubMed Central

    Zhou, Lin; Yang, Ye; Zhang, Juanjuan; Guo, Xuejiang; Bi, Ye; Li, Xin; Zhang, Ping; Zhang, Junqiang; Lin, Min; Zhou, Zuomin; Shen, Rong; Guo, Xirong; Huo, Ran; Ling, Xiufeng; Sha, Jiahao

    2013-01-01

    RING box protein-1 (RBX1) is an essential component of Skp1-cullin-F-box protein (SCF) E3 ubiquitin ligase and participates in diverse cellular processes by targeting various substrates for degradation. However, the physiological function of RBX1 in mouse oocyte maturation remains unknown. Here, we examined the expression, localization and function of RBX1 during mouse oocyte meiotic maturation. Immunofluorescence analysis showed that RBX1 displayed dynamic distribution during the maturation process: it localized around and migrated along with the spindle and condensed chromosomes. Rbx1 knockdown with the appropriate siRNAs led to a decreased rate of first polar body extrusion and most oocytes were arrested at metaphase I. Moreover, downregulation of Rbx1 caused accumulation of Emi1, an inhibitor of the anaphase-promoting complex/cyclosome (APC/C), which is required for mouse meiotic maturation. In addition, we found apparently increased expression of the homologue disjunction-associated protein securin and cyclin B1, which are substrates of APC/C E3 ligase and need to be degraded for meiotic progression. These results indicate the essential role of the SCFβTrCP-EMI1-APC/C axis in mouse oocyte meiotic maturation. In conclusion, we provide evidence for the indispensable role of RBX1 in mouse oocyte meiotic maturation. PMID:23874827

  1. Response of soil respiration to acid rain in forests of different maturity in southern China.

    PubMed

    Liang, Guohua; Liu, Xingzhao; Chen, Xiaomei; Qiu, Qingyan; Zhang, Deqiang; Chu, Guowei; Liu, Juxiu; Liu, Shizhong; Zhou, Guoyi

    2013-01-01

    The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF), a transitional mixed conifer and broadleaf forest (MF) and an old-growth broadleaved forest (BF)] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR) treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0). Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types.

  2. Response of Soil Respiration to Acid Rain in Forests of Different Maturity in Southern China

    PubMed Central

    Chen, Xiaomei; Qiu, Qingyan; Zhang, Deqiang; Chu, Guowei; Liu, Juxiu; Liu, Shizhong; Zhou, Guoyi

    2013-01-01

    The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF), a transitional mixed conifer and broadleaf forest (MF) and an old-growth broadleaved forest (BF)] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR) treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0). Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types. PMID:23626790

  3. The pivotal role of abscisic acid signaling during transition from seed maturation to germination.

    PubMed

    Yan, An; Chen, Zhong

    2016-11-23

    Seed maturation and germination are two continuous developmental processes that link two distinct generations in spermatophytes; the precise genetic control of these two processes is, therefore, crucially important for the survival of the next generation. Pieces of experimental evidence accumulated so far indicate that a concerted action of endogenous signals and environmental cues is required to govern these processes. Plant hormone abscisic acid (ABA) has been suggested to play a predominant role in directing seed maturation and maintaining seed dormancy under unfavorable environmental conditions until antagonized by gibberellins (GA) and certain environmental cues to allow the commencement of seed germination when environmental conditions are favorable; therefore, the balance of ABA and GA is a major determinant of the timing of seed germination. Due to the advent of new technologies and system biology approaches, molecular studies are beginning to draw a picture of the sophisticated genetic network that drives seed maturation during the past decade, though the picture is still incomplete and many details are missing. In this review, we summarize recent advances in ABA signaling pathway in the regulation of seed maturation as well as the transition from seed maturation to germination, and highlight the importance of system biology approaches in the study of seed maturation.

  4. Activation of 5' adenosine monophosphate-activated protein kinase blocks cumulus cell expansion through inhibition of protein synthesis during in vitro maturation in Swine.

    PubMed

    Santiquet, Nicolas; Sasseville, Maxime; Laforest, Martin; Guillemette, Christine; Gilchrist, Robert B; Richard, François J

    2014-08-01

    The serine/threonine kinase 5' adenosine monophosphate-activated protein kinase (AMPK), a heterotrimeric protein known as a metabolic switch, is involved in oocyte nuclear maturation in mice, cattle, and swine. The present study analyzed AMPK activation in cumulus cell expansion during in vitro maturation (IVM) of porcine cumulus-oocyte complexes (COC). 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) is a well-known activator of AMPK. It inhibited oocyte meiotic resumption in COC. Moreover, cumulus cell expansion did not occur in the presence of AICAR, demonstrating its marked impact on cumulus cells. Activation of AMPK was supported by AICAR-mediated phosphorylation of alpha AMPK subunits. Furthermore, the presence of AICAR increased glucose uptake, a classical response to activation of this metabolic switch in response to depleted cellular energy levels. Neither nuclear maturation nor cumulus expansion was reversed by glucosamine, an alternative substrate in hyaluronic acid synthesis, through the hexosamine biosynthetic pathway, which ruled out possible depletion of substrates. Both increased gap junction communication and phosphodiesterase activity in COC are dependent on protein synthesis during the initial hours of IVM; however, both were inhibited in the presence of AICAR, which supports the finding that activation of AMPK by AICAR mediated inhibition of protein synthesis. Moreover, this protein synthesis inhibition was equivalent to that of the well-known protein synthesis inhibitor cycloheximide, as observed on cumulus expansion and protein concentration. Finally, the phosphorylation level of selected kinases was investigated. The pattern of raptor phosphorylation is supportive of activation of AMPK-mediated inhibition of protein synthesis. In conclusion, AICAR-mediated AMPK activation in porcine COC inhibited cumulus cell expansion and protein synthesis. These results bring new considerations to the importance of this kinase in ovarian

  5. Changes in sugars and organic acids in wolfberry (Lycium barbarum L.) fruit during development and maturation.

    PubMed

    Zhao, Jianhua; Li, Haoxia; Xi, Wanpeng; An, Wei; Niu, Linlin; Cao, Youlong; Wang, Huafang; Wang, Yajun; Yin, Yue

    2015-04-15

    Wolfberry (Lycium barbarum L.) fruits of three cultivars ('Damaye', 'Baihua' and 'Ningqi No.1') were harvested at five different ripening stages and evaluated for sugars and organic acids. Fructose, glucose and total sugar contents increased continually through development and reached their maxima at 34 days after full bloom (DAF). Fructose and glucose were the predominant sugars at maturity, while sucrose content had reduced by maturity. L.barbarum polysaccharides (LBP) content was in the range of 13.03-76.86 mg g(-1)FW during ripening, with a maximum at 20DAF. Citric, tartaric and quinic acids were the main organic acid components during development, and their levels followed similar trends: the highest contents were at 30, 14 and 20DAF, respectively. The significant correlations of fructose and total sugar contents with LBP content during fruit development indicated that they played a key role in LBP accumulation.

  6. Trans fatty acids and fatty acid composition of mature breast milk in turkish women and their association with maternal diet's.

    PubMed

    Samur, Gülhan; Topcu, Ali; Turan, Semra

    2009-05-01

    The aim of this study was to determine the fatty acid composition and trans fatty acid and fatty acid contents of breast milk in Turkish women and to find the effect of breastfeeding mothers' diet on trans fatty acid and fatty acid composition. Mature milk samples obtained from 50 Turkish nursing women were analyzed. Total milk lipids extracts were transmethylated and analyzed by using gas liquid chromatography to determine fatty acids contents. A questionnaire was applied to observe eating habits and 3 days dietary records from mothers were obtained. Daily dietary intake of total energy and nutrients were estimated by using nutrient database. The mean total trans fatty acids contents was 2.13 +/- 1.03%. The major sources of trans fatty acids in mothers' diets were margarines-butter (37.0%), bakery products and confectionery (29.6%). Mothers who had high level of trans isomers in their milk consumed significantly higher amounts of these products. Saturated fatty acids, polyunsaturated fatty acids and monounsaturated fatty acids of human milk constituted 40.7 +/- 4.7%, 26.9 +/- 4.2% and 30.8 +/- 0.6% of the total fatty acids, respectively. The levels of fatty acids in human milk may reflect the current diet of the mother as well as the diet consumed early in pregnancy. Margarines, bakery products and confectionery are a major source of trans fatty acids in maternal diet in Turkey.

  7. The Flavivirus Precursor Membrane-Envelope Protein Complex: Structure and Maturation

    SciTech Connect

    Li, Long; Lok, Shee-Mei; Yu, I-Mei; Zhang, Ying; Kuhn, Richard J.; Chen, Jue; Rossmann, Michael G.

    2008-09-17

    Many viruses go through a maturation step in the final stages of assembly before being transmitted to another host. The maturation process of flaviviruses is directed by the proteolytic cleavage of the precursor membrane protein (prM), turning inert virus into infectious particles. We have determined the 2.2 angstrom resolution crystal structure of a recombinant protein in which the dengue virus prM is linked to the envelope glycoprotein E. The structure represents the prM-E heterodimer and fits well into the cryo-electron microscopy density of immature virus at neutral pH. The pr peptide {beta}-barrel structure covers the fusion loop in E, preventing fusion with host cell membranes. The structure provides a basis for identifying the stages of its pH-directed conformational metamorphosis during maturation, ending with release of pr when budding from the host.

  8. Multiple vitellogenins and product yolk proteins in striped bass, Morone saxatilis: molecular characterization and processing during oocyte growth and maturation.

    PubMed

    Williams, V N; Reading, B J; Hiramatsu, N; Amano, H; Glassbrook, N; Hara, A; Sullivan, C V

    2014-04-01

    The multiple vitellogenin (Vtg) system of striped bass, a perciform species spawning nearly neutrally buoyant eggs in freshwater, was investigated. Vitellogenin cDNA cloning, Western blotting of yolk proteins (YPs) using Vtg and YP type-specific antisera, and tandem mass spectrometry (MS/MS) of the YPs revealed the complex mechanisms of yolk formation and maturation in this species. It was discovered that striped bass possesses a tripartite Vtg system (VtgAa, VtgAb, and VtgC) in which all three forms of Vtg make a substantial contribution to the yolk. The production of Vtg-derived YPs is generally similar to that described for other perciforms. However, novel amino-terminal labeling of oocyte YPs prior to MS/MS identified multiple alternative sites for cleavage of these proteins from their parent Vtg, revealing a YP mixture far more complex than reported previously. This approach also revealed that the major YP product of each form of striped bass Vtg, lipovitellin heavy chain (LvH), undergoes limited degradation to smaller polypeptides during oocyte maturation, unlike the case in marine fishes spawning buoyant eggs in which LvHAa undergoes extensive proteolysis to osmotically active free amino acids. These differences likely reflect the lesser need for hydration of pelagic eggs spawned in freshwater. The detailed characterization of Vtgs and their proteolytic fate(s) during oocyte growth and maturation establishes striped bass as a freshwater model for investigating teleost multiple Vtg systems.

  9. Pleiotropic roles of the matricellular protein Sparc in tendon maturation and ageing

    PubMed Central

    Gehwolf, Renate; Wagner, Andrea; Lehner, Christine; Bradshaw, Amy D.; Scharler, Cornelia; Niestrawska, Justyna A.; Holzapfel, Gerhard A.; Bauer, Hans-Christian; Tempfer, Herbert; Traweger, Andreas

    2016-01-01

    Acute and chronic tendinopathies remain clinically challenging and tendons are predisposed to degeneration or injury with age. Despite the high prevalence of tendon disease in the elderly, our current understanding of the mechanisms underlying the age-dependent deterioration of tendon function remains very limited. Here, we show that Secreted protein acidic and rich in cysteine (Sparc) expression significantly decreases in healthy-aged mouse Achilles tendons. Loss of Sparc results in tendon collagen fibrillogenesis defects and Sparc−/− tendons are less able to withstand force in comparison with their respective wild type counterparts. On the cellular level, Sparc-null and healthy-aged tendon-derived cells exhibited a more contracted phenotype and an altered actin cytoskeleton. Additionally, an elevated expression of the adipogenic marker genes PPARγ and Cebpα with a concomitant increase in lipid deposits in aged and Sparc−/− tendons was observed. In summary, we propose that Sparc levels in tendons are critical for proper collagen fibril maturation and its age-related decrease, together with a change in ECM properties favors lipid accretion in tendons. PMID:27586416

  10. Inhibition of HIV-1 Maturation via Small Molecule Targeting of the Amino-Terminal Domain in the Viral Capsid Protein.

    PubMed

    Wang, Weifeng; Zhou, Jing; Halambage, Upul D; Jurado, Kellie A; Jamin, Augusta V; Wang, Yujie; Engelman, Alan N; Aiken, Christopher

    2017-02-15

    The HIV-1 capsid protein is an attractive therapeutic target owing to its multifunctionality in virus replication and the high fitness cost of amino acid substitutions in capsid to HIV-1 infectivity. To date, small molecule inhibitors have been identified that inhibit HIV-1 capsid assembly and/or impair its function in target cells. Here we describe the mechanism of action of the previously reported capsid-targeting HIV-1 inhibitor, BI compound 1 (C1). We show that C1 acts during HIV-1 maturation to prevent assembly of a mature viral capsid. However, unlike the maturation inhibitor Bevirimat, C1 did not significantly affect the kinetics or fidelity of Gag processing. HIV-1 particles produced in the presence of C1 contained unstable capsids that lacked associated electron density and exhibited impairments in early postentry stages of infection, most notably reverse transcription. C1 inhibited assembly of recombinant HIV-1 CA in vitro and induced aberrant crosslinks in mutant HIV-1 particles capable of spontaneous intersubunit disulfide bonds at the interhexamer interface in the capsid lattice. Resistance to C1 was conferred by a single amino acid substitution within the compound-binding site in the N-terminal domain of the CA protein. Our results demonstrate that the binding site for C1 represents a new pharmacological vulnerability in the capsid assembly stage of the HIV-1 life cycle.IMPORTANCE The HIV-1 capsid protein is an attractive but unexploited target for clinical drug development. Prior studies have identified HIV-1 capsid-targeting compounds that display different mechanisms of action, which in part reflects the requirement for capsid function at both the efferent and afferent phases of viral replication. Here we show that one such compound, Compound 1, interferes with assembly of the conical viral capsid during virion maturation, and results in perturbations at a specific protein-protein interface in the capsid lattice. We also identify and characterize a

  11. The LGI1-ADAM22 protein complex directs synapse maturation through regulation of PSD-95 function.

    PubMed

    Lovero, Kathryn L; Fukata, Yuko; Granger, Adam J; Fukata, Masaki; Nicoll, Roger A

    2015-07-28

    Synapse development is coordinated by a number of transmembrane and secreted proteins that come together to form synaptic organizing complexes. Whereas a variety of synaptogenic proteins have been characterized, much less is understood about the molecular networks that support the maintenance and functional maturation of nascent synapses. Here, we demonstrate that leucine-rich, glioma-inactivated protein 1 (LGI1), a secreted protein previously shown to modulate synaptic AMPA receptors, is a paracrine signal released from pre- and postsynaptic neurons that acts specifically through a disintegrin and metalloproteinase protein 22 (ADAM22) to set postsynaptic strength. We go on to describe a novel role for ADAM22 in maintaining excitatory synapses through PSD-95/Dlg1/zo-1 (PDZ) domain interactions. Finally, we show that in the absence of LGI1, the mature synapse scaffolding protein PSD-95, but not the immature synapse scaffolding protein SAP102, is unable to modulate synaptic transmission. These results indicate that LGI1 and ADAM22 form an essential synaptic organizing complex that coordinates the maturation of excitatory synapses by regulating the functional incorporation of PSD-95.

  12. Protein synthesis inhibitors prevent both spontaneous and hormone-dependent maturation of isolated mouse oocytes

    SciTech Connect

    Downs, S.M. )

    1990-11-01

    The present study was carried out to examine the role of protein synthesis in mouse oocyte maturation in vitro. In the first part of this study, the effects of cycloheximide (CX) were tested on spontaneous meiotic maturation when oocytes were cultured in inhibitor-free medium. CX reversibly suppressed maturation of oocytes as long as maturation was either initially prevented by the phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthine (IBMX), or delayed by follicle-stimulating hormone (FSH). In the second part of this study, the actions of protein synthesis inhibitors were tested on hormone-induced maturation. CEO were maintained in meiotic arrest for 21-22 h with hypoxanthine, and germinal vesicle breakdown (GVB) was induced with follicle-stimulating hormone (FSH). Three different protein synthesis inhibitors (CX, emetine (EM), and puromycin (PUR)) each prevented the stimulatory action of FSH on GVB in a dose-dependent fashion. This was accompanied by a dose-dependent suppression of 3H-leucine incorporation by oocyte-cumulus cell complexes. The action of these inhibitors on FSH- and epidermal growth factor (EGF)-induced GVB was next compared. All three drugs lowered the frequency of GVB in the FSH-treated groups, below even that of the controls (drug + hypoxanthine); the drugs maintained meiotic arrest at the control frequencies in the EGF-treated groups. Puromycin aminonucleoside, an analog of PUR with no inhibitory action on protein synthesis, had no effect. The three inhibitors also suppressed the stimulatory action of FSH on oocyte maturation when meiotic arrest was maintained with the cAMP analog, dbcAMP.

  13. Maturation of murine bone marrow dendritic cells induced by acidic Ginseng polysaccharides.

    PubMed

    Wang, Zuozhou; Meng, Jingjuan; Xia, Yanjie; Meng, Yiming; Du, Lin; Zhang, Zhenjie; Wang, Enhua; Shan, Fengping

    2013-02-01

    In this study, we report that a acidic polysaccharide (AGP) isolated from a Chinese medicinal herb, named Ginseng (Panax giseng C.A. Meyer), induces maturation of bone marrow dendritic cells (BMDCs) via concrete changes both inside and outside BMDCs. The impacts of AGP on BMDCs were assessed with use of conventional scanning electronic microscopy (SEM), transmission electronic microscopy (TEM) for morphology, flow cytometry (FCM) for key surface molecules, cytochemistry assay, FITC-dextran, bio-assay for phagocytosis and enzyme linked immunosorbent assay (ELISA) for production of cytokines. Our results elucidated that PPS promoted maturation of BMDCs via changes as reflected by the down-regulation of acid phosphatase (ACP) activity inside the BMDCs, which occurs when phagocytosis of BMDCs to antigen decreased, while antigen presentation increased upon maturation, higher expression of key surface molecules of MHC II, CD80, CD86, CD83, and CD40, and releasing higher level of cytokines IL-12 and low level of TNF-α. Our study suggest that AGP play marked immunostimulating role on the maturation of murine BMDCs through precise regulation of phagocytosis and enzyme activities inside the BMDCs.

  14. Hypoxia inhibits maturation and trafficking of HERG K+ channel protein: Role of Hsp90 and ROS

    PubMed Central

    Nanduri, Jayasri; Bergson, Pamela; Wang, Ning; Ficker, Eckhard; Prabhakar, Nanduri R.

    2009-01-01

    We previously reported that reactive oxygen species (ROS) generated during hypoxia decrease hERG current density and protein expression in HEK cells stably expressing hERG protein. In the present study, we investigated the molecular mechanisms involved in hypoxia induced downregulation of hERG protein. Culturing cells at low temperatures and addition of chemical chaperones during hypoxia restored hERG expression and currents to normoxic levels while antiarrhythmic drugs, which selectively block hERG channels, had no effect on hERG protein levels. Pulse chase studies showed that hypoxia blocks maturation of the core glycosylated form in the endoplasmic reticulum (ER) to the fully glycosylated form on the cell surface. Co-immunoprecipitation experiments revealed that hypoxia inhibited interaction of hERG with Hsp90 chaperone required for maturation, which was restored in the presence of ROS scavengers. These results demonstrate that ROS generated during hypoxia prevents maturation of the hERG protein by inhibiting Hsp90 interaction resulting in decreased protein expression and currents. PMID:19654002

  15. Reactive oxygen species are required for zoledronic acid-induced apoptosis in osteoclast precursors and mature osteoclast-like cells

    PubMed Central

    Tai, Ta-Wei; Chen, Ching-Yu; Su, Fong-Chin; Tu, Yuan-Kun; Tsai, Tsung-Ting; Lin, Chiou-Feng; Jou, I.-Ming

    2017-01-01

    Inhibiting osteoclasts and osteoclast precursors to reduce bone resorption is an important strategy to treat osteoclast-related diseases, such as osteoporosis, inflammatory bone loss, and malignant bone metastasis. However, the mechanism by which apoptosis is induced in the osteoclasts and their precursors are not completely understood. Here, we used nitrogen-containing bisphosphonate zoledronic acid (ZA) to induce cell apoptosis in human and murine osteoclast precursors and mature osteoclast-like cells. Caspase-3-mediated cell apoptosis occurred following the ZA (100 μM) treatment. Reactive oxygen species (ROS) were also generated in a time-dependent manner. Following knock-down of the p47phox expression, which is required for ROS activation, or co-treatment with the ROS inhibitor, N-acetyl-L-cysteine, ZA-induced apoptosis was significantly suppressed in both osteoclast precursors and mature osteoclast-like cells. The ROS-activated mitogen-activated protein kinases pathways did not trigger cell apoptosis. However, a ROS-regulated Mcl-1 decrease simultaneously with glycogen synthase kinase (GSK)-3β promoted cell apoptosis. These findings show that ZA induces apoptosis in osteoclast precursors and mature osteoclast-like cells by triggering ROS- and GSK-3β-mediated Mcl-1 down-regulation. PMID:28281643

  16. Critical roles for WDR72 in calcium transport and matrix protein removal during enamel maturation

    PubMed Central

    Wang, Shih-Kai; Hu, Yuanyuan; Yang, Jie; Smith, Charles E; Nunez, Stephanie M; Richardson, Amelia S; Pal, Soumya; Samann, Andrew C; Hu, Jan C-C; Simmer, James P

    2015-01-01

    Defects in WDR72 (WD repeat-containing protein 72) cause autosomal recessive hypomaturation amelogenesis imperfecta. We generated and characterized Wdr72-knockout/lacZ-knockin mice to investigate the role of WDR72 in enamel formation. In all analyses, enamel formed by Wdr72 heterozygous mice was indistinguishable from wild-type enamel. Without WDR72, enamel mineral density increased early during the maturation stage but soon arrested. The null enamel layer was only a tenth as hard as wild-type enamel and underwent rapid attrition following eruption. Despite the failure to further mineralize enamel deposited during the secretory stage, ectopic mineral formed on the enamel surface and penetrated into the overlying soft tissue. While the proteins in the enamel matrix were successfully degraded, the digestion products remained inside the enamel. Interactome analysis of WDR72 protein revealed potential interactions with clathrin-associated proteins and involvement in ameloblastic endocytosis. The maturation stage mandibular incisor enamel did not stain with methyl red, indicating that the enamel did not acidify beneath ruffle-ended ameloblasts. Attachment of maturation ameloblasts to the enamel layer was weakened, and SLC24A4, a critical ameloblast calcium transporter, did not localize appropriately along the ameloblast distal membrane. Fewer blood vessels were observed in the papillary layer supporting ameloblasts. Specific WDR72 expression by maturation stage ameloblasts explained the observation that enamel thickness and rod decussation (established during the secretory stage) are normal in the Wdr72 null mice. We conclude that WDR72 serves critical functions specifically during the maturation stage of amelogenesis and is required for both protein removal and enamel mineralization. PMID:26247047

  17. [Changes in phenolic acids during maturation and lignification of Scots pine xylem].

    PubMed

    Antonova, G F; Varaksina, T N; Zheleznichenko, T V; Stasova, V V

    2012-01-01

    The content and fractional composition of alcohol soluble phenolic acids (PhA) in cells with different degree maturation and lignification in the course of early and late timber formation in the pine (Pinus sylvestris) during vegetation were studied. Phenolic compounds (PhC), extracted by 80% ethanol, were divided into free and bound fractions of PhA. In turn, the esters and ethers were isolated from bound PhA. The contents of all substances were calculated per dry weight and per cell. Considerable differences have been found to exist in both the contents and the composition of the fractions PhA on successive stages oftracheid maturation of early and late xylem. Early timber tracheids at all secondary wall thickening steps contained PhC less and free PhA more than late timber tracheids. Throughout early timber tracheid maturation, the pool of free PhA per cell declined at the beginning oflignification and then increased gradually while that of bound PhA decreased. The maturation of late timber trecheids were accompanied by the rise of free PhA pool and the diminution of bound PhA pool. In the composition of bound PhA, the ethers were always dominant, and the amount of that in early timber cells was less than in late timber cells. The cells of early xylem at all steps of maturation contained more of ester. The sum total of free hydroxycinnamic acids, precursors of monolignols, gradually decreased during early xylem lignification as the result of the reduction of the pools of p-coumaric, caffeic, ferulic and synapic acids, while that of their ester rised. In the course of late xylem lignification, the pools of free p-coumaric, ferulic and, especially, synapic acids increased. Simultaneously, the amount of ferulic acid ester and synapic acid ether increased too. According to the data, lignin biosynthesis in early xylem and late xylem occurs with different dynamics and the structure of lignins of two xylem types might be different too.

  18. Structural basis for the fast maturation of Arthropoda green fluorescent protein.

    PubMed

    Evdokimov, Artem G; Pokross, Matthew E; Egorov, Nikolay S; Zaraisky, Andrey G; Yampolsky, Ilya V; Merzlyak, Ekaterina M; Shkoporov, Andrey N; Sander, Ian; Lukyanov, Konstantin A; Chudakov, Dmitriy M

    2006-10-01

    Since the cloning of Aequorea victoria green fluorescent protein (GFP) in 1992, a family of known GFP-like proteins has been growing rapidly. Today, it includes more than a hundred proteins with different spectral characteristics cloned from Cnidaria species. For some of these proteins, crystal structures have been solved, showing diversity in chromophore modifications and conformational states. However, we are still far from a complete understanding of the origin, functions and evolution of the GFP family. Novel proteins of the family were recently cloned from evolutionarily distant marine Copepoda species, phylum Arthropoda, demonstrating an extremely rapid generation of fluorescent signal. Here, we have generated a non-aggregating mutant of Copepoda fluorescent protein and solved its high-resolution crystal structure. It was found that the protein beta-barrel contains a pore, leading to the chromophore. Using site-directed mutagenesis, we showed that this feature is critical for the fast maturation of the chromophore.

  19. Generation of a fast maturating red fluorescent protein by a combined approach of elongation mutagenesis and functional salvage screening

    SciTech Connect

    Choi, Eun-Sil; Han, Sang-Soo; Cheong, Dea-Eun; Park, Mi-Young; Kim, Jeong-Sun; Kim, Geun-Joong

    2010-01-01

    Fluorescent proteins that can be useful as indicators or reporters must have rapid maturation time, high quantum yield and photobleaching stability. A red fluorescent protein DsRed that has a high quantum yield and photostability has an innately slow maturation time when compared to other fluorescence proteins. In this study, we combined a functional salvage screen (FSS) and elongation mutagenesis to obtain a DsRed variant that maintained structural features closely linked with a high quantum yield and photostability and evolved to have a rapid maturation time. It is expected that the variant generated here, FmRed (fast maturating red fluorescent protein), will be widely used as an indicator or reporter because it maintained traits superior to that of the wild-type protein and also matured rapidly.

  20. Roles of prenyl protein proteases in maturation of Saccharomyces cerevisiae a-factor.

    PubMed Central

    Boyartchuk, V L; Rine, J

    1998-01-01

    In eukaryotes small secreted peptides are often proteolytically cleaved from larger precursors. In Saccharomyces cerevisiae multiple proteolytic processing steps are required for production of mature 12-amino-acid a-factor from its 36-amino-acid precursor. This study provides additional genetic data supporting a direct role for Afc1p in cleavage of the carboxyl-terminal tripeptide from the CAAX motif of the prenylated a-factor precursor. In addition, Afc1p had a second role in a-factor processing that was independent of, and in addition to, its role in the carboxyl-terminal processing in vivo. Using ubiquitin-a-factor fusions we confirmed that the pro-region of the a-factor precursor was not required for production of the mature pheromone. However, the pro-region of the a-factor precursor contributed quantitatively to a-factor production. PMID:9725832

  1. Selection of dietary protein and carbohydrate by rats: Changes with maturation

    NASA Technical Reports Server (NTRS)

    Yokogoshi, Hidehiko; Theall, Cynthia L.; Wurtman, Richard J.

    1985-01-01

    Weaning (21-day-old; 40-50 g) male rats given simultaneous access to foods, containing 18 percent casein and 15 or 70 percent carbohydrate (dextrin), tended to consume only 29-35 percent as much protein as carbohydrate (i.e., protein/carbohydrate ratios were 0.29-0.35). With maturation, when animals weighed 100 g or more, about half continued this pattern of nutrient choice, but the others abruptly began to consume considerably larger proportions of protein, exhibiting protein/carbohydrate ratios as high as 0.80-1.00. Each adult animal's protein/carbohydrate ratio tended to vary only slightly (s.e. = 3 percent of means). Adult protein/carbohydrate ratios were not correlated with fasting brain 5-HT or 5-HIAA levels. These marked differences among rats in eating behavior would not be observed when--as is usually the case--animals are given access to only one diet.

  2. Distinguishing Proteins From Arbitrary Amino Acid Sequences

    PubMed Central

    Yau, Stephen S.-T.; Mao, Wei-Guang; Benson, Max; He, Rong Lucy

    2015-01-01

    What kinds of amino acid sequences could possibly be protein sequences? From all existing databases that we can find, known proteins are only a small fraction of all possible combinations of amino acids. Beginning with Sanger's first detailed determination of a protein sequence in 1952, previous studies have focused on describing the structure of existing protein sequences in order to construct the protein universe. No one, however, has developed a criteria for determining whether an arbitrary amino acid sequence can be a protein. Here we show that when the collection of arbitrary amino acid sequences is viewed in an appropriate geometric context, the protein sequences cluster together. This leads to a new computational test, described here, that has proved to be remarkably accurate at determining whether an arbitrary amino acid sequence can be a protein. Even more, if the results of this test indicate that the sequence can be a protein, and it is indeed a protein sequence, then its identity as a protein sequence is uniquely defined. We anticipate our computational test will be useful for those who are attempting to complete the job of discovering all proteins, or constructing the protein universe. PMID:25609314

  3. The mitochondrial monothiol glutaredoxin S15 is essential for iron-sulfur protein maturation in Arabidopsis thaliana

    PubMed Central

    Moseler, Anna; Aller, Isabel; Wagner, Stephan; Nietzel, Thomas; Przybyla-Toscano, Jonathan; Mühlenhoff, Ulrich; Lill, Roland; Berndt, Carsten; Rouhier, Nicolas; Schwarzländer, Markus; Meyer, Andreas J.

    2015-01-01

    The iron-sulfur cluster (ISC) is an ancient and essential cofactor of many proteins involved in electron transfer and metabolic reactions. In Arabidopsis, three pathways exist for the maturation of iron-sulfur proteins in the cytosol, plastids, and mitochondria. We functionally characterized the role of mitochondrial glutaredoxin S15 (GRXS15) in biogenesis of ISC containing aconitase through a combination of genetic, physiological, and biochemical approaches. Two Arabidopsis T-DNA insertion mutants were identified as null mutants with early embryonic lethal phenotypes that could be rescued by GRXS15. Furthermore, we showed that recombinant GRXS15 is able to coordinate and transfer an ISC and that this coordination depends on reduced glutathione (GSH). We found the Arabidopsis GRXS15 able to complement growth defects based on disturbed ISC protein assembly of a yeast Δgrx5 mutant. Modeling of GRXS15 onto the crystal structures of related nonplant proteins highlighted amino acid residues that after mutation diminished GSH and subsequently ISC coordination, as well as the ability to rescue the yeast mutant. When used for plant complementation, one of these mutant variants, GRXS15K83/A, led to severe developmental delay and a pronounced decrease in aconitase activity by approximately 65%. These results indicate that mitochondrial GRXS15 is an essential protein in Arabidopsis, required for full activity of iron-sulfur proteins. PMID:26483494

  4. The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron-sulfur proteins.

    PubMed

    Lill, Roland; Dutkiewicz, Rafal; Freibert, Sven A; Heidenreich, Torsten; Mascarenhas, Judita; Netz, Daili J; Paul, Viktoria D; Pierik, Antonio J; Richter, Nadine; Stümpfig, Martin; Srinivasan, Vasundara; Stehling, Oliver; Mühlenhoff, Ulrich

    2015-01-01

    Mitochondria have been derived from alpha-bacterial endosymbionts during the evolution of eukaryotes. Numerous bacterial functions have been maintained inside the organelles including fatty acid degradation, citric acid cycle, oxidative phosphorylation, and the synthesis of heme or lipoic acid cofactors. Additionally, mitochondria have inherited the bacterial iron-sulfur cluster assembly (ISC) machinery. Many of the ISC components are essential for cell viability because they generate a still unknown, sulfur-containing compound for the assembly of cytosolic and nuclear Fe/S proteins that perform important functions in, e.g., protein translation, DNA synthesis and repair, and chromosome segregation. The sulfur-containing compound is exported by the mitochondrial ABC transporter Atm1 (human ABCB7) and utilized by components of the cytosolic iron-sulfur protein assembly (CIA) machinery. An appealing minimal model for the striking compartmentation of eukaryotic Fe/S protein biogenesis is provided by organisms that contain mitosomes instead of mitochondria. Mitosomes have been derived from mitochondria by reductive evolution, during which they have lost virtually all classical mitochondrial tasks. Nevertheless, mitosomes harbor all core ISC components which presumably have been maintained for assisting the maturation of cytosolic-nuclear Fe/S proteins. The current review is centered around the Atm1 export process. We present an overview on the mitochondrial requirements for the export reaction, summarize recent insights into the 3D structure and potential mechanism of Atm1, and explain how the CIA machinery uses the mitochondrial export product for the assembly of cytosolic and nuclear Fe/S proteins.

  5. Roles of the Bacillus anthracis Spore Protein ExsK in Exosporium Maturation and Germination

    DTIC Science & Technology

    2009-12-01

    Bacillus thuringiensis and the nonpathogenic bac- teria Bacillus megaterium and Bacillus odysseyi, have an addi- tional structure called the...exosporium. J. Bacte- riol. 185:3373–3378. 47. Vary, P. S. 1994. Prime time for Bacillus megaterium . Microbiology 140:1001– 1013. 48. Weaver, J., T. J...Microbiology. All Rights Reserved. Roles of the Bacillus anthracis Spore Protein ExsK in Exosporium Maturation and Germination Kari M. Severson,1

  6. Absence of E protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway

    SciTech Connect

    Ortego, Javier; Ceriani, Juan E.; Patino, Cristina; Plana, Juan; Enjuanes, Luis

    2007-11-25

    A recombinant transmissible gastroenteritis coronavirus (rTGEV) in which E gene was deleted (rTGEV-{delta}E) has been engineered. This deletion mutant only grows in cells expressing E protein (E{sup +} cells) indicating that E was an essential gene for TGEV replication. Electron microscopy studies of rTGEV-{delta}E infected BHK-pAPN-E{sup -} cells showed that only immature intracellular virions were assembled. These virions were non-infectious and not secreted to the extracellular medium in BHK-pAPN-E{sup -} cells. RNA and protein composition analysis by RNase-gold and immunoelectron microscopy showed that rTGEV-{delta}E virions contained RNA and also all the structural TGEV proteins, except the deleted E protein. Nevertheless, full virion maturation was blocked. Studies of the rTGEV-{delta}E subcellular localization by confocal and immunoelectron microscopy in infected E{sup -} cells showed that in the absence of E protein virus trafficking was arrested in the intermediate compartment. Therefore, the absence of E protein in TGEV resulted in two actions, a blockade of virus trafficking in the membranes of the secretory pathway, and prevention of full virus maturation.

  7. Dissecting the proteome of pea mature seeds reveals the phenotypic plasticity of seed protein composition.

    PubMed

    Bourgeois, Michael; Jacquin, Françoise; Savois, Vincent; Sommerer, Nicolas; Labas, Valérie; Henry, Céline; Burstin, Judith

    2009-01-01

    Pea (Pisum sativum L.) is the most cultivated European pulse crop and the pea seeds mainly serve as a protein source for monogastric animals. Because the seed protein composition impacts on seed nutritional value, we aimed at identifying the determinants of its variability. This paper presents the first pea mature seed proteome reference map, which includes 156 identified proteins (http://www.inra.fr/legumbase/peaseedmap/). This map provides a fine dissection of the pea seed storage protein composition revealing a large diversity of storage proteins resulting both from gene diversity and post-translational processing. It gives new insights into the pea storage protein processing (especially 7S globulins) as a possible adaptation towards progressive mobilization of the proteins during germination. The nonstorage seed proteome revealed the presence of proteins involved in seed defense together with proteins preparing germination. The plasticity of the seed proteome was revealed for seeds produced in three successive years of cultivation, and 30% of the spots were affected by environmental variations. This work pinpoints seed proteins most affected by environment, highlighting new targets to stabilize storage protein composition that should be further analyzed.

  8. Role of gap junctions and protein kinase A during the development of oocyte maturational competence in Ayu (Plecoglossus altivelis)

    USGS Publications Warehouse

    Yamamoto, Y.; Yoshizaki, G.; Takeuchi, T.; Soyano, K.; Patino, R.

    2008-01-01

    Meiotic resumption in teleost oocytes is induced by a maturation-inducing hormone (MIH). The sensitivity of oocytes to MIH, also known as oocyte maturational competence (OMC), is induced by LH via mechanisms that are not fully understood. A previous study of Ayu (Plecoglossus altivelis) showed the presence of functional heterologous gap junctions (GJs) between oocytes and their surrounding granulosa cells. The objectives of this study were to determine the role of ovarian GJs and of protein kinase A (PKA) during the acquisition of OMC. We examined the effects of the specific GJ inhibitor carbenoxolone (CBX) and 18??-glycyrrhetinic acid (??-GA) on the LH-(hCG)-dependent acquisition of OMC and on MIH-(17,20??-dihydroxy-4-pregnen-3-one)-dependent meiotic resumption; measured the cAMP content of ovarian follicles during the hCG-dependent acquisition of OMC; and determined the effects of PK activators and inhibitors on hCG-dependent OMC. Production of follicular cAMP increased during the hCG-dependent acquisition of OMC. Both GJ inhibitors and the PKA inhibitor H8-dihydrochloride, but not the PKC inhibitor GF109203X, suppressed the hCG-dependent acquisition of OMC in a dose-dependent manner. The PKA activator forskolin induced OMC with a similar potency to hCG. Unlike previous observations with teleosts where disruption of heterologous GJ either blocks or stimulates meiotic resumption, treatment with GJ inhibitors did not affect MIH-dependent meiotic resumption in maturationally competent follicles of Ayu. These observations suggest that ovarian GJs are essential for LH-dependent acquisition of OMC but not for MIH-dependent meiotic resumption, and that the stimulation of OMC by LH is mediated by cAMP-dependent PKA. They are also consistent with the view that a precise balance between GJ-mediated signals (positive or negative) and oocyte maturational readiness is required for hormonally regulated meiotic resumption. ?? 2007 Elsevier Inc. All rights reserved.

  9. The Arabidopsis Chloroplast Stromal N-Terminome: Complexities of Amino-Terminal Protein Maturation and Stability.

    PubMed

    Rowland, Elden; Kim, Jitae; Bhuiyan, Nazmul H; van Wijk, Klaas J

    2015-11-01

    Protein amino (N) termini are prone to modifications and are major determinants of protein stability in bacteria, eukaryotes, and perhaps also in chloroplasts. Most chloroplast proteins undergo N-terminal maturation, but this is poorly understood due to insufficient experimental information. Consequently, N termini of mature chloroplast proteins cannot be accurately predicted. This motivated an extensive characterization of chloroplast protein N termini in Arabidopsis (Arabidopsis thaliana) using terminal amine isotopic labeling of substrates and mass spectrometry, generating nearly 14,000 tandem mass spectrometry spectra matching to protein N termini. Many nucleus-encoded plastid proteins accumulated with two or three different N termini; we evaluated the significance of these different proteoforms. Alanine, valine, threonine (often in N-α-acetylated form), and serine were by far the most observed N-terminal residues, even after normalization for their frequency in the plastid proteome, while other residues were absent or highly underrepresented. Plastid-encoded proteins showed a comparable distribution of N-terminal residues, but with a higher frequency of methionine. Infrequent residues (e.g. isoleucine, arginine, cysteine, proline, aspartate, and glutamate) were observed for several abundant proteins (e.g. heat shock proteins 70 and 90, Rubisco large subunit, and ferredoxin-glutamate synthase), likely reflecting functional regulation through their N termini. In contrast, the thylakoid lumenal proteome showed a wide diversity of N-terminal residues, including those typically associated with instability (aspartate, glutamate, leucine, and phenylalanine). We propose that, after cleavage of the chloroplast transit peptide by stromal processing peptidase, additional processing by unidentified peptidases occurs to avoid unstable or otherwise unfavorable N-terminal residues. The possibility of a chloroplast N-end rule is discussed.

  10. Effect of In Vitro Maturation Technique and Alpha Lipoic Acid Supplementation on Oocyte Maturation Rate: Focus on Oxidative Status of Oocytes

    PubMed Central

    Zavareh, Saeed; Karimi, Isaac; Salehnia, Mojdeh; Rahnama, Ali

    2016-01-01

    Background Therapeutic potential of in vitro maturation (IVM) in infertility is growing with great promise. Although significant progress is obtained in recent years, existing IVM protocols are far from favorable results. The first aim of this study was to investigate whether two step IVM manner change reactive oxygen species (ROS) and total anti- oxidant capacity (TAC) levels. The second aim was to find the effect of alpha lipoic acid (ALA) supplementation on oocyte maturation rate and on ROS/TAC levels during IVM. Materials and Methods In this experimental study, mouse germinal vesicle (GV) oocytes divided into cumulus denuded oocytes (DOs) and cumulus oocyte complexes (COCs) groups. GVs were matured in vitro in the presence or absence of ALA only for 18 hours (control) or with pre-culture of forskolin plus cilostamide for an additional 18 hours. Matured oocytes obtained following 18 and 36 hours based on experimental design. In parallel, the ROS and TAC levels were measured at different time (0, 18 and 36 hours) by 2',7'-dichlorodihydrofluorescein (DCFH) probe and ferric reducing/antioxidant power (FRAP) assay, respectively. Results Maturation rate of COCs was significantly higher than DOs in control group (P<0.05), while there was no significant difference between COCs and DOs when were pre-cultured with forskolin plus cilostamide. ROS and TAC levels was increased and decreased respectively in DOs after 18 hours while in COCs did not change at 18 hours and showed a significant increase and decrease respectively at 36 hours (P<0.05). ROS and TAC levels in the presence of ALA were significantly decreased and increased respectively after 36 hours (P<0.05) whereas, maturation rates of COCs and DOs were similar to their corresponding control groups. Conclusion ALA decreased ROS and increased TAC but could not affect maturation rate of both COCs and DOs in one or two step IVM manner. PMID:26985332

  11. Two zinc finger proteins, OMA-1 and OMA-2, are redundantly required for oocyte maturation in C. elegans.

    PubMed

    Detwiler, M R; Reuben, M; Li, X; Rogers, E; Lin, R

    2001-08-01

    Oocytes are released from meiotic prophase I arrest through a process termed oocyte maturation. We present here a genetic characterization of oocyte maturation, using C. elegans as a model system. We show that two TIS11 zinc finger-containing proteins, OMA-1 and OMA-2, express specifically in maturing oocytes and function redundantly in oocyte maturation. Oocytes in oma-1;oma-2 mutants initiate but do not complete maturation and arrest at a defined point in prophase I. Two maturation signal-induced molecular events, including the maintenance of activated MAP kinase, do not occur in Oma oocytes. The Oma prophase arrest is released by inactivation of a MYT-1-like kinase, suggesting that OMA-1 and OMA-2 function upstream of MYT-1 as positive regulators of prophase progression during meiotic maturation.

  12. A systematic assessment of mature MBP in membrane protein production: overexpression, membrane targeting and purification.

    PubMed

    Hu, Jian; Qin, Huajun; Gao, Fei Philip; Cross, Timothy A

    2011-11-01

    Obtaining enough membrane protein in native or native-like status is still a challenge in membrane protein structure biology. Maltose binding protein (MBP) has been widely used as a fusion partner in improving membrane protein production. In the present work, a systematic assessment on the application of mature MBP (mMBP) for membrane protein overexpression and purification was performed on 42 membrane proteins, most of which showed no or poor expression level in membrane fraction fused with an N-terminal Histag. It was found that most of the small membrane proteins were overexpressed in the native membrane of Escherichia coli when using mMBP. In addition, the proteolysis of the fusions were performed on the membrane without solubilization with detergents, leading to the development of an efficient protocol to directly purify the target membrane proteins from the membrane fraction through a one-step affinity chromatography. Our results indicated that mMBP is an excellent fusion partner for overexpression, membrane targeting and purification of small membrane proteins. The present expression and purification method may be a good solution for the large scale preparation of small membrane proteins in structural and functional studies.

  13. The HIV-1 protein Vpr impairs phagosome maturation by controlling microtubule-dependent trafficking

    PubMed Central

    Dumas, Audrey; Lê-Bury, Gabrielle; Marie-Anaïs, Florence; Herit, Floriane; Mazzolini, Julie; Guilbert, Thomas; Bourdoncle, Pierre; Russell, David G.; Benichou, Serge; Zahraoui, Ahmed

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) impairs major functions of macrophages but the molecular basis for this defect remains poorly characterized. Here, we show that macrophages infected with HIV-1 were unable to respond efficiently to phagocytic triggers and to clear bacteria. The maturation of phagosomes, defined by the presence of late endocytic markers, hydrolases, and reactive oxygen species, was perturbed in HIV-1–infected macrophages. We showed that maturation arrest occurred at the level of the EHD3/MICAL-L1 endosomal sorting machinery. Unexpectedly, we found that the regulatory viral protein (Vpr) was crucial to perturb phagosome maturation. Our data reveal that Vpr interacted with EB1, p150Glued, and dynein heavy chain and was sufficient to critically alter the microtubule plus end localization of EB1 and p150Glued, hence altering the centripetal movement of phagosomes and their maturation. Thus, we identify Vpr as a modulator of the microtubule-dependent endocytic trafficking in HIV-1–infected macrophages, leading to strong alterations in phagolysosome biogenesis. PMID:26504171

  14. Fatty Acid Composition of Developing Sea Buckthorn (Hippophae rhamnoides L.) Berry and the Transcriptome of the Mature Seed

    PubMed Central

    Fatima, Tahira; Snyder, Crystal L.; Schroeder, William R.; Cram, Dustin; Datla, Raju; Wishart, David; Weselake, Randall J.; Krishna, Priti

    2012-01-01

    Background Sea buckthorn (Hippophae rhamnoides L.) is a hardy, fruit-producing plant known historically for its medicinal and nutraceutical properties. The most recognized product of sea buckthorn is its fruit oil, composed of seed oil that is rich in essential fatty acids, linoleic (18∶2ω-6) and α-linolenic (18∶3ω-3) acids, and pulp oil that contains high levels of monounsaturated palmitoleic acid (16∶1ω-7). Sea buckthorn is fast gaining popularity as a source of functional food and nutraceuticals, but currently has few genomic resources; therefore, we explored the fatty acid composition of Canadian-grown cultivars (ssp. mongolica) and the sea buckthorn seed transcriptome using the 454 GS FLX sequencing technology. Results GC-MS profiling of fatty acids in seeds and pulp of berries indicated that the seed oil contained linoleic and α-linolenic acids at 33–36% and 30–36%, respectively, while the pulp oil contained palmitoleic acid at 32–42%. 454 sequencing of sea buckthorn cDNA collections from mature seeds yielded 500,392 sequence reads, which identified 89,141 putative unigenes represented by 37,482 contigs and 51,659 singletons. Functional annotation by Gene Ontology and computational prediction of metabolic pathways indicated that primary metabolism (protein>nucleic acid>carbohydrate>lipid) and fatty acid and lipid biosynthesis pathways were highly represented categories. Sea buckthorn sequences related to fatty acid biosynthesis genes in Arabidopsis were identified, and a subset of these was examined for transcript expression at four developing stages of the berry. Conclusion This study provides the first comprehensive genomic resources represented by expressed sequences for sea buckthorn, and demonstrates that the seed oil of Canadian-grown sea buckthorn cultivars contains high levels of linoleic acid and α-linolenic acid in a close to 1∶1 ratio, which is beneficial for human health. These data provide the foundation for further studies on

  15. Xanthohumol impairs autophagosome maturation through direct inhibition of valosin-containing protein.

    PubMed

    Sasazawa, Yukiko; Kanagaki, Shuhei; Tashiro, Etsu; Nogawa, Toshihiko; Muroi, Makoto; Kondoh, Yasumitsu; Osada, Hiroyuki; Imoto, Masaya

    2012-05-18

    Autophagy is a bulk, nonspecific protein degradation pathway that is involved in the pathogenesis of cancer and neurodegenerative disease. Here, we observed that xanthohumol (XN), a prenylated chalcone present in hops (Humulus lupulus L.) and beer, modulates autophagy. By using XN-immobilized beads, valosin-containing protein (VCP) was identified as a XN-binding protein. VCP has been reported to be an essential protein for autophagosome maturation. Using an in vitro pull down assay, we showed that XN bound directly to the N domain, which is known to mediate cofactor and substrate binding to VCP. These data indicated that XN inhibited the function of VCP, thereby allowing the impairment of autophagosome maturation and resulting in the accumulation of microtubule-associated protein 1 light chain 3-II (LC3-II). This is the first report demonstrating XN as a VCP inhibitor that binds directly to the N domain of VCP. Our finding that XN bound to and inactivated VCP not only reveals the molecular mechanism of XN-modulated autophagy but may also explain how XN exhibits various biological activities that have been reported previously.

  16. Regulation of fatty acid oxidation in mouse cumulus-oocyte complexes during maturation and modulation by PPAR agonists.

    PubMed

    Dunning, Kylie R; Anastasi, Marie R; Zhang, Voueleng J; Russell, Darryl L; Robker, Rebecca L

    2014-01-01

    Fatty acid oxidation is an important energy source for the oocyte; however, little is known about how this metabolic pathway is regulated in cumulus-oocyte complexes. Analysis of genes involved in fatty acid oxidation showed that many are regulated by the luteinizing hormone surge during in vivo maturation, including acyl-CoA synthetases, carnitine transporters, acyl-CoA dehydrogenases and acetyl-CoA transferase, but that many are dysregulated when cumulus-oocyte complexes are matured under in vitro maturation conditions using follicle stimulating hormone and epidermal growth factor. Fatty acid oxidation, measured as production of ³H₂O from [³H]palmitic acid, occurs in mouse cumulus-oocyte complexes in response to the luteinizing hormone surge but is significantly reduced in cumulus-oocyte complexes matured in vitro. Thus we sought to determine whether fatty acid oxidation in cumulus-oocyte complexes could be modulated during in vitro maturation by lipid metabolism regulators, namely peroxisome proliferator activated receptor (PPAR) agonists bezafibrate and rosiglitazone. Bezafibrate showed no effect with increasing dose, while rosiglitazone dose dependently inhibited fatty acid oxidation in cumulus-oocyte complexes during in vitro maturation. To determine the impact of rosiglitazone on oocyte developmental competence, cumulus-oocyte complexes were treated with rosiglitazone during in vitro maturation and gene expression, oocyte mitochondrial activity and embryo development following in vitro fertilization were assessed. Rosiglitazone restored Acsl1, Cpt1b and Acaa2 levels in cumulus-oocyte complexes and increased oocyte mitochondrial membrane potential yet resulted in significantly fewer embryos reaching the morula and hatching blastocyst stages. Thus fatty acid oxidation is increased in cumulus-oocyte complexes matured in vivo and deficient during in vitro maturation, a known model of poor oocyte quality. That rosiglitazone further decreased fatty acid

  17. Thermal stability of ascorbic acid and ascorbic acid oxidase in african cowpea leaves ( Vigna unguiculata ) of different maturities.

    PubMed

    Wawire, Michael; Oey, Indrawati; Mathooko, Francis; Njoroge, Charles; Shitanda, Douglas; Hendrickx, Marc

    2011-03-09

    Cowpea, an African leafy vegetable ( Vigna unguiculata ), contains a high level of vitamin C. The leaves harvested at 4-9 weeks are highly prone to vitamin C losses during handling and processing. Therefore, the purpose of this research was to study the effect of thermal treatment on the stability of ascorbic acid oxidase (AAO), total vitamin C content (l-ascorbic acid, l-AA), and dehydroascorbic acid (DHAA) and l-AA/DHAA ratio in cowpea leaves harvested at different maturities (4, 6, and 8 weeks old). The results showed that AAO activity, total vitamin C content, and l-AA/DHAA ratio in cowpea leaves increased with increasing maturity (up to 8 weeks). Eight-week-old leaves were the best source of total vitamin C and showed a high ratio of l-AA/DHAA (4:1). Thermal inactivation of AAO followed first-order reaction kinetics. Heating at temperatures above 90 °C for short times resulted in a complete AAO inactivation, resulting in a protective effect of l-AA toward enzyme-catalyzed oxidation. Total vitamin C in young leaves (harvested at 4 and 6 weeks) was predominantly in the form of DHAA, and therefore temperature treatment at 30-90 °C for 10 min decreased the total vitamin C content, whereas total vitamin C in 8-week-old cowpea leaves was more than 80% in the form of l-AA, so that a high retention of the total vitamin C can be obtained even after heating and/or reheating (30-90 °C for 10 min) before consumption. The results indicated that the stability of total vitamin C in situ was strongly dependent on the plant maturity stage and the processing conditions applied.

  18. Androgen metabolism and regulation of rat ventral prostate growth and acid phosphatase during sexual maturation.

    PubMed

    Orlowski, J; Bird, C E; Clark, A F

    1988-01-01

    Androgen metabolism and the regulation of rat ventral prostate cell proliferation and secretory function were examined during sexual maturation. Changes in acid phosphatase (AP) characteristics were measured as a marker of androgen-dependent prostatic secretory function. In immature (21-day-old) rats, total AP activity per cell was low (14.2 +/- 1.3 mol p-nitrophenol phosphate hydrolysed/h per mg DNA); it increased threefold as the weight, protein and DNA contents of the prostate increased to adult (65-day) levels. This corresponded with significant (P less than 0.001) increases in the staining intensities of three of the four bands of secretory AP on isoelectric focusing gels. The extent of inhibition of AP by tartrate decreased at the same time. Secretory AP is known to be relatively tartrate-resistant. The changes in AP activity occurred after prostatic 5 alpha-dihydrotestosterone (5 alpha-DHT) levels increased from 4.6 +/- 0.7 pmol/mg DNA (21 days) to reach a peak of 17.6 +/- 2.3 pmol/mg DNA at 58 days. Prostatic 5 alpha-DHT concentrations were always higher than testosterone levels. Prostatic 5 alpha-androstane-3 alpha,17 beta-diol (3 alpha-Adiol) levels were lower than 5 alpha-DHT levels except on day 58 when levels peaked dramatically at 26.2 +/- 5.5 pmol/mg DNA. Changes in prostatic 5 alpha-DHT and 3 alpha-Adiol levels corresponded with changes in 5 alpha-reductase and 3 alpha-hydroxysteroid oxidoreductase (3 alpha-HSOR) activities. The oxidative reaction of 3 alpha-HSOR was approximately fourfold higher than the reductive reaction, indicating a preference for the formation of 5 alpha-DHT. The plasma levels of testosterone, 5 alpha-DHT and 3 alpha-Adiol cannot account for their respective prostatic levels, indicating the importance of the steroid-metabolizing enzymes in regulating intracellular androgen levels. Changes in the AP characteristics could be correlated with the androgen status of the prostate.

  19. Structure of the Dimerization Interface in the Mature HIV-1 Capsid Protein Lattice from Solid State NMR of Tubular Assemblies.

    PubMed

    Bayro, Marvin J; Tycko, Robert

    2016-07-13

    The HIV-1 capsid protein (CA) forms the capsid shell that encloses RNA within a mature HIV-1 virion. Previous studies by electron microscopy have shown that the capsid shell is primarily a triangular lattice of CA hexamers, with variable curvature that destroys the ideal symmetry of a planar lattice. The mature CA lattice depends on CA dimerization, which occurs through interactions between helix 9 segments of the C-terminal domain (CTD) of CA. Several high-resolution structures of the CTD-CTD dimerization interface have been reported, based on X-ray crystallography and multidimensional solution nuclear magnetic resonance (NMR), with significant differences in amino acid side chain conformations and helix 9-helix 9 orientations. In a structural model for tubular CA assemblies based on cryogenic electron microscopy (cryoEM) [Zhao et al. Nature, 2013, 497, 643-646], the dimerization interface is substantially disordered. The dimerization interface structure in noncrystalline CA assemblies and the extent to which this interface is structurally ordered within a curved lattice have therefore been unclear. Here we describe solid state NMR measurements on the dimerization interface in tubular CA assemblies, which contain the curved triangular lattice of a mature virion, including quantitative measurements of intermolecular and intramolecular distances using dipolar recoupling techniques, solid state NMR chemical shifts, and long-range side chain-side chain contacts. When combined with restraints on the distance and orientation between helix 9 segments from the cryoEM study, the solid state NMR data lead to a unique high-resolution structure for the dimerization interface in the noncrystalline lattice of CA tubes. These results demonstrate that CA lattice curvature is not dependent on disorder or variability in the dimerization interface. This work also demonstrates the feasibility of local structure determination within large noncrystalline assemblies formed by high

  20. Effects of Polypropylene Carbonate/Poly(D,L-lactic) Acid/Tricalcium Phosphate Elastic Composites on Improving Osteoblast Maturation.

    PubMed

    Fang, Hsu-Wei; Kao, Wei-Yu; Lin, Pei-I; Chang, Guang-Wei; Hung, Ya-Jung; Chen, Ruei-Ming

    2015-08-01

    Bone tissue engineering utilizing biomaterials to improve osteoblast growth has provided de novo consideration for therapy of bone diseases. Polypropylene carbonate (PPC) is a polymer with a low glass transition temperature but high elasticity. In this study, we developed a new PPC-derived composite by mixing poly-lactic acid (PLA) and tricalcium phosphate (TCP), called PPC/PLA/TCP elastic (PPTE) scaffolds. We also evaluated the beneficial effects of PPTE composites on osteoblast growth and maturation and the possible mechanisms. Compared to PPC polymers, PPTE composites had similar pore sizes and porosities but possessed better hydrophilic surface structures. Biological evaluations further revealed that PPTE composites attracted adhesion of mouse osteoblasts, and these bone cells extended along the porous scaffolds to produce accurate fibroblast-like morphologies. In parallel, seeding mouse osteoblasts onto PPTE composites time-dependently increased cell growth. Sequentially, PPTE composites augmented DNA replication and cell proliferation. Consequently, PPTE composites significantly improved osteoblast mineralization. As to the mechanism, treatment with PPTE composites induced osteopontin (OPN) mRNA and protein expression and alkaline phosphatase activity. Taken together, this study showed that PPTE composites with porous and hydrophilic surfaces can stimulate osteoblast adhesion, proliferation, and maturation through an OPN-dependent mechanism. Therefore, the de novo PPTE scaffolds may have biomaterial potential for bone regeneration.

  1. The heat shock protein 70 cochaperone hip enhances functional maturation of glucocorticoid receptor.

    PubMed

    Nelson, Gregory M; Prapapanich, Viravan; Carrigan, Patricia E; Roberts, Patricia J; Riggs, Daniel L; Smith, David F

    2004-07-01

    Multiple molecular chaperones interact with steroid receptors to promote functional maturation and stability of receptor complexes. The heat shock protein (Hsp)70 cochaperone Hip has been identified in conjunction with Hsp70, Hsp90, and the Hsp70/Hsp90 cochaperone Hop/Sti1p in receptor complexes during an intermediate stage of receptor assembly, but a functional requirement for Hip in the receptor assembly process has not been established. Because the budding yeast Saccharomyces cerevisiae contains orthologs for most of the receptor-associated chaperones yet lacks an orthologous Hip gene, we exploited the well-established yeast model for steroid receptor function to ask whether Hip can alter steroid receptor function in vivo. Introducing human Hip into yeast enhances hormone-dependent activation of a reporter gene by glucocorticoid receptor (GR). Because Hip does not similarly enhance signaling by mineralocorticoid, progesterone, or estrogen receptors, a general effect on transcription can be excluded. Instead, Hip promotes functional maturation of GR without increasing steady-state levels of GR protein. Unexpectedly, Hip binding to Hsp70 is not critical for boosting GR responsiveness to hormone. In conclusion, Hip functions by a previously unrecognized mechanism to promote the efficiency of GR maturation in cells.

  2. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    PubMed

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China.

  3. Resistance to benzalkonium chloride, peracetic acid and nisin during formation of mature biofilms by Listeria monocytogenes.

    PubMed

    Saá Ibusquiza, P; Herrera, J J R; Cabo, M L

    2011-05-01

    Increase of resistance to the application of benzalkonium chloride (BAC), peracetic acid (PA) and nisin during biofilm formation at 25 °C by three strains of Listeria monocytogenes (CECT 911, CECT 4032, CECT 5873 and BAC-adapted CECT 5873) in different scenarios was compared. For this purpose, resistance after 4 and 11-days of biofilm formation was quantified in terms of lethal dose 90% values (LD(90)), determined according with a dose-response logistic mathematical model. Microscopic analyses after 4 and 11-days of L. monocytogenes biofilm formation were also carried out. Results demonstrated a relation between the microscopic structure and the resistance to the assayed biocides in matured biofilms. The worst cases being biofilms formed by the strain 4032 (in both stainless steel and polypropylene), which showed a complex "cloud-type" structure that correlates with the highest resistance of this strain against the three biocides during biofilm maturation. However, that increase in resistance and complexity appeared not to be dependent on initial bacterial adherence, thus indicating mature biofilms rather than planctonic cells or early-stage biofilms must be considered when disinfection protocols have to be optimized. PA seemed to be the most effective of the three disinfectants used for biofilms. We hypothesized both its high oxidizing capacity and low molecular size could suppose an advantage for its penetration inside the biofilm. We also demonstrated that organic material counteract with the biocides, thus indicating the importance of improving cleaning protocols. Finally, by comparing strains 5873 and 5873 adapted to BAC, several adaptative cross-responses between BAC and nisin or peracetic acid were identified.

  4. The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity.

    PubMed

    Lolicato, Francesca; Brouwers, Jos F; de Lest, Chris H A van; Wubbolts, Richard; Aardema, Hilde; Priore, Paola; Roelen, Bernard A J; Helms, J Bernd; Gadella, Bart M

    2015-01-01

    Mobilization of fatty acids from adipose tissue during metabolic stress increases the amount of free fatty acids in blood and follicular fluid and is associated with impaired female fertility. In a previous report, we described the effects of the three predominant fatty acids in follicular fluid (saturated palmitate and stearate and unsaturated oleate) on oocyte maturation and quality. In the current study, the effects of elevated fatty acid levels on cumulus cells were investigated. In a dose-dependent manner, the three fatty acids induced lipid storage in cumulus cells accompanied by an enhanced immune labeling of perilipin-2, a marker for lipid droplets. Lipidomic analysis confirmed incorporation of the administered fatty acids into triglyceride, resulting in a 3- to 6-fold increase of triglyceride content. In addition, palmitate selectively induced ceramide formation, which has been implicated in apoptosis. Indeed, of the three fatty acids tested, palmitate induced reactive oxygen species formation, caspase 3 activation, and mitochondria deterioration, leading to degeneration of the cumulus cell layers. This effect could be mimicked by addition of the ceramide-C2 analog and could be inhibited by the ceramide synthase inhibitor fumonisin-B1. Interfering with the intactness of the cumulus cell layers, either by mechanical force or by palmitate treatment, resulted in enhanced uptake of lipids in the oocyte and increased radical formation. Our results show that cumulus cells act as a barrier, protecting oocytes from in vitro induced lipotoxic effects. We suggest that this protective function of the cumulus cell layers is important for the developmental competence of the oocyte. The relevance of our findings for assisted reproduction technologies is discussed.

  5. SLC27 fatty acid transport proteins.

    PubMed

    Anderson, Courtney M; Stahl, Andreas

    2013-01-01

    The uptake and metabolism of long chain fatty acids (LCFA) are critical to many physiological and cellular processes. Aberrant accumulation or depletion of LCFA underlie the pathology of numerous metabolic diseases. Protein-mediated transport of LCFA has been proposed as the major mode of LCFA uptake and activation. Several proteins have been identified to be involved in LCFA uptake. This review focuses on the SLC27 family of fatty acid transport proteins, also known as FATPs, with an emphasis on the gain- and loss-of-function animal models that elucidate the functions of FATPs in vivo and how these transport proteins play a role in physiological and pathological situations.

  6. Sequential domain assembly of ribosomal protein S3 drives 40S subunit maturation

    PubMed Central

    Mitterer, Valentin; Murat, Guillaume; Réty, Stéphane; Blaud, Magali; Delbos, Lila; Stanborough, Tamsyn; Bergler, Helmut; Leulliot, Nicolas; Kressler, Dieter; Pertschy, Brigitte

    2016-01-01

    Eukaryotic ribosomes assemble by association of ribosomal RNA with ribosomal proteins into nuclear precursor particles, which undergo a complex maturation pathway coordinated by non-ribosomal assembly factors. Here, we provide functional insights into how successive structural re-arrangements in ribosomal protein S3 promote maturation of the 40S ribosomal subunit. We show that S3 dimerizes and is imported into the nucleus with its N-domain in a rotated conformation and associated with the chaperone Yar1. Initial assembly of S3 with 40S precursors occurs via its C-domain, while the N-domain protrudes from the 40S surface. Yar1 is replaced by the assembly factor Ltv1, thereby fixing the S3 N-domain in the rotated orientation and preventing its 40S association. Finally, Ltv1 release, triggered by phosphorylation, and flipping of the S3 N-domain into its final position results in the stable integration of S3. Such a stepwise assembly may represent a new paradigm for the incorporation of ribosomal proteins. PMID:26831757

  7. Phosphorylation of ribosomal proteins during meiotic maturation and following activation in starfish oocytes: its relationship with changes of intracellular pH.

    PubMed

    Peaucellier, G; Picard, A; Robert, J J; Capony, J P; Labbe, J C; Doree, M

    1988-01-01

    An increased phosphorylation of ribosomal protein S6 has been shown to be correlated with an increase of intracellular pH (pHi) and with stimulation of protein synthesis in many systems. In this research changes in ribosome phosphorylation following hormone-induced meiotic maturation and fertilization or activation by ionophore A23187 were investigated in starfish oocytes. The hormone was found to stimulate, even in the absence of external Na+, the phosphorylation on serine residues of an Mr 31,000 protein identified as S6, as well as that of an acidic Mr 47,000 protein, presumably S1, on threonine residues. Phosphorylation of ribosomes was an early consequence of hormonal stimulation and did not decrease after completion of meiotic maturation. Fertilization or activation by ionophore of prophase-arrested oocytes also stimulated ribosome phosphorylation. Only S6 was labeled in this case, but to a lesser extent than upon hormone-induced meiotic maturation. Changes in pHi were monitored with ion-specific microelectrodes throughout meiotic maturation and following either fertilization or activation. The pHi did not change before germinal vesicle breakdown (GVBD) following hormone addition, but it increased before first polar body emission. It also increased following fertilization or activation by ionophore or the microinjection of Ca-EGTA. In all cases, alkalinization did not depend on activation of an amiloride-sensitive Na+/H+ exchanger. Microinjection of an alkaline Hepes buffer or external application of ammonia, both of which increased pHi, prevented unfertilized oocytes from arresting after formation of the female pronucleus and induced chromosome cycling. Phosphorylation of S6 was still observed following fertilization or induction of maturation when pHi was decreased by external application of acetate, a treatment which suppressed the emission of polar bodies. Protein synthesis increased in prophase-arrested oocytes after fertilization or activation. It also

  8. Amyloid Oligomers and Mature Fibrils Prepared from an Innocuous Protein Cause Diverging Cellular Death Mechanisms*

    PubMed Central

    Harte, Níal P.; Klyubin, Igor; McCarthy, Eoin K.; Min, Soyoung; Garrahy, Sarah Ann; Xie, Yongjing; Davey, Gavin P.; Boland, John J.; Rowan, Michael J.; Mok, K. Hun

    2015-01-01

    Despite significant advances, the molecular identity of the cytotoxic species populated during in vivo amyloid formation crucial for the understanding of neurodegenerative disorders is yet to be revealed. In this study lysozyme prefibrillar oligomers and fibrils in both mature and sonicated states have been isolated through an optimized ultrafiltration/ultracentrifugation method and characterized with various optical spectroscopic techniques, atomic force microscopy, and transmission electron microscopy. We examined their level and mode of toxicity on rat pheochromocytoma (PC12) cells in both differentiated and undifferentiated states. We find that oligomers and fibrils display cytotoxic capabilities toward cultured cells in vitro, with oligomers producing elevated levels of cellular injury toward undifferentiated PC12 cells (PC12undiff). Furthermore, dual flow cytometry staining experiments demonstrate that the oligomers and mature fibrils induce divergent cellular death pathways (apoptosis and secondary necrosis, respectively) in these PC12 cells. We have also shown that oligomers but not sonicated mature fibrils inhibit hippocampal long term potentiation, a form of synaptic plasticity implicated in learning and memory, in vivo. We conclude that our in vitro and in vivo findings confer a level of resistance toward amyloid fibrils, and that the PC 12-based comparative cytotoxicity assay can provide insights into toxicity differences between differently aggregated protein species. PMID:26221033

  9. Atypical protein kinase C couples cell sorting with primitive endoderm maturation in the mouse blastocyst.

    PubMed

    Saiz, Néstor; Grabarek, Joanna B; Sabherwal, Nitin; Papalopulu, Nancy; Plusa, Berenika

    2013-11-01

    During mouse pre-implantation development, extra-embryonic primitive endoderm (PrE) and pluripotent epiblast precursors are specified in the inner cell mass (ICM) of the early blastocyst in a 'salt and pepper' manner, and are subsequently sorted into two distinct layers. Positional cues provided by the blastocyst cavity are thought to be instrumental for cell sorting; however, the sequence of events and the mechanisms that control this segregation remain unknown. Here, we show that atypical protein kinase C (aPKC), a protein associated with apicobasal polarity, is specifically enriched in PrE precursors in the ICM prior to cell sorting and prior to overt signs of cell polarisation. aPKC adopts a polarised localisation in PrE cells only after they reach the blastocyst cavity and form a mature epithelium, in a process that is dependent on FGF signalling. To assess the role of aPKC in PrE formation, we interfered with its activity using either chemical inhibition or RNAi knockdown. We show that inhibition of aPKC from the mid blastocyst stage not only prevents sorting of PrE precursors into a polarised monolayer but concomitantly affects the maturation of PrE precursors. Our results suggest that the processes of PrE and epiblast segregation, and cell fate progression are interdependent, and place aPKC as a central player in the segregation of epiblast and PrE progenitors in the mouse blastocyst.

  10. Glucose Regulated Protein 78 Phosphorylation in Sperm Undergoes Dynamic Changes during Maturation

    PubMed Central

    Lobo, Vivian; Rao, Parimala; Gajbhiye, Rahul; Kulkarni, Vijay; Parte, Priyanka

    2015-01-01

    GRP78, a resident endoplasmic reticulum (ER) chaperone involved in protein transport, folding and assembly, has been reported in sperm. It is shown to be localized in the neck region of human sperm. We have previously reported GRP78 to be less phosphorylated in asthenozoosperm.The present study aimed to determine whether sperm GRP78 undergoes phosphorylation changes during epididymal maturation and whether there are any differences in GRP78 phosphoforms in asthenozoosperm vis-à-vis normozoosperm. Testicular- and cauda epididymal- sperm from adult male Holtzman rats, and semen ejaculates collected from normal and asthenozoospermic individuals were investigated. DIGE carried out to determine phosphorylation of GRP78 in asthenozoosperm and normal sperm reveals a shift in the location of GRP78 of asthenozoosperm towards the alkaline pH, indicative of reduced GRP78 phosphorylation. Immunoprecipitation studies using antibodies specific to GRP78, serine-, threonine-, and tyrosine phosphorylation and Pan phospho antibody demonstrates GRP78 to be phosphorylated at all three residues in rat spermatozoa. Phosphatase assays using Calf intestinal alkaline phosphatase and Lambda protein phosphatase followed by nanofluidic proteomic immunoassay (NIA) show that in rat, GP4.96, GP4.94 and GP4.85 are the three phosphoforms in mature (caudal) sperm as against two phosphoforms GP4.96and GP4.94in immature (testicular) sperm. In mature human sperm GP5.04, GP4.96, and GP4.94were the 3 phosphoforms observed. GP4.94[P = 0.014]andGP5.04 [P = 0.02] are significantly reduced in asthenozoosperm. Ours is the first report indicating GRP78 in sperm to be phosphorylated at serine, threonine and tyrosine residues contrary to published literature reporting GRP78 not to be tyrosine phosphorylated. We report the presence of GRP78 phosphoforms in rat- and human- sperm and our data suggest that GRP78 phosphorylation in sperm undergoes spatial reorganization during epididymal maturation. Significant

  11. Transcriptome and metabolome analyses of sugar and organic acid metabolism in Ponkan (Citrus reticulata) fruit during fruit maturation.

    PubMed

    Lin, Qiong; Wang, Chengyang; Dong, Wencheng; Jiang, Qing; Wang, Dengliang; Li, Shaojia; Chen, Ming; Liu, Chunrong; Sun, Chongde; Chen, Kunsong

    2015-01-01

    Ponkan (Citrus reticulata Blanco cv. Ponkan) is an important mandarin citrus in China. However, the low ratio of sugars to organic acids makes it less acceptable for consumers. In this work, three stages (S120, early development stage; S195, commercial harvest stage; S205, delayed harvest stage) of Ponkan fruit were selected for study. Among 28 primary metabolites analyzed in fruit, sugars increased while organic acids in general decreased. RNA-Seq analysis was carried out and 19,504 genes were matched to the Citrus clementina genome, with 85 up-regulated and 59 down-regulated genes identified during fruit maturation. A sucrose phosphate synthase (SPS) gene was included in the up-regulated group, and this was supported by the transcript ratio distribution. Expression of two asparagine transferases (AST), and a specific ATP-citrate lyase (ACL) and glutamate decarboxylase (GAD) members increased during fruit maturation. It is suggested that SPS, AST, ACL and GAD coordinately contribute to sugar accumulation and organic acid degradation during Ponkan fruit maturation. Both the glycolysis pathway and TCA cycle were accelerated during later maturation, indicating the flux change from sucrose metabolism to organic acid metabolism was enhanced, with citrate degradation occurring mainly through the gamma-aminobutyric acid (GABA) and acetyl-CoA pathways.

  12. Bile acid-FXRα pathways regulate male sexual maturation in mice

    PubMed Central

    Vega, Aurélie; Sédes, Lauriane; Rouaisnel, Betty; de Haze, Angélique; Baron, Silvère; Schoonjans, Kristina; Caira, Françoise; Volle, David H.

    2016-01-01

    The bile acid receptor Farnesol-X-Receptor alpha (FRXα) is a member of the nuclear receptor superfamily. FRXα is expressed in the interstitial compartment of the adult testes, which contain the Leydig cells. In adult, short term treatment (12 hours) with FRXα agonist inhibits the expression of steroidogenic genes via the induction of the Small heterodimer partner (SHP). However the consequences of FRXα activation on testicular pathophysiology have never been evaluated. We demonstrate here that mice fed a diet supplemented with bile acid during pubertal age show increased incidence of infertility. This is associated with altered differentiation and increase apoptosis of germ cells due to lower testosterone levels. At the molecular level, next to the repression of basal steroidogenesis via the induction expression of Shp and Dax-1, two repressors of steroidogenesis, the main action of the BA-FRXα signaling is through lowering the Leydig cell sensitivity to the hypothalamo-pituitary axis, the main regulator of testicular endocrine function. In conclusion, BA-FRXα signaling is a critical actor during sexual maturation. PMID:26848619

  13. Effects of feeding level and sexual maturation on carcass and fillet characteristics and indices of protein degradation in rainbow trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sexual maturation in many species of fish including salmonids requires mobilization of energy and nutrient resources to support gonad growth. During sexual maturation, particularly vitellogenesis, proteins are mobilized from muscle tissue, which is evidenced by increased expression of proteolytic g...

  14. Identification of YbeY-Protein Interactions Involved in 16S rRNA Maturation and Stress Regulation in Escherichia coli

    PubMed Central

    Vercruysse, Maarten; Köhrer, Caroline; Shen, Yang; Proulx, Sandra; Ghosal, Anubrata; Davies, Bryan W.; RajBhandary, Uttam L.

    2016-01-01

    ABSTRACT YbeY is part of a core set of RNases in Escherichia coli and other bacteria. This highly conserved endoribonuclease has been implicated in several important processes such as 16S rRNA 3′ end maturation, 70S ribosome quality control, and regulation of mRNAs and small noncoding RNAs, thereby affecting cellular viability, stress tolerance, and pathogenic and symbiotic behavior of bacteria. Thus, YbeY likely interacts with numerous protein or RNA partners that are involved in various aspects of cellular physiology. Using a bacterial two-hybrid system, we identified several proteins that interact with YbeY, including ribosomal protein S11, the ribosome-associated GTPases Era and Der, YbeZ, and SpoT. In particular, the interaction of YbeY with S11 and Era provides insight into YbeY’s involvement in the 16S rRNA maturation process. The three-way association between YbeY, S11, and Era suggests that YbeY is recruited to the ribosome where it could cleave the 17S rRNA precursor endonucleolytically at or near the 3′ end maturation site. Analysis of YbeY missense mutants shows that a highly conserved beta-sheet in YbeY—and not amino acids known to be important for YbeY’s RNase activity—functions as the interface between YbeY and S11. This protein-interacting interface of YbeY is needed for correct rRNA maturation and stress regulation, as missense mutants show significant phenotypic defects. Additionally, structure-based in silico prediction of putative interactions between YbeY and the Era-30S complex through protein docking agrees well with the in vivo results. PMID:27834201

  15. Role of glycoconjugates of 3-methyl-4-hydroxyoctanoic acid in the evolution of oak lactone in wine during oak maturation.

    PubMed

    Wilkinson, Kerry L; Prida, Andrei; Hayasaka, Yoji

    2013-05-08

    Oak lactone is a natural component of oak wood, but it also exists in glycoconjugate precursor forms. This study concerned the role of glycoconjugates of 3-methyl-4-hydroxyoctanoic acid, specifically a galloylglucoside, glucoside, and rutinoside, in the evolution of oak lactone during cooperage and maturation. The glycoconjugate profiles of 10 French oak samples were obtained by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) using stable isotope dilution analysis. The galloylglucoside was found to be the predominant glycoconjugate precursor and ranged in concentration from 110 to 354 μg/g. Maturation trials indicated the galloylglucoside undergoes acid-catalyzed hydrolysis after extraction into wine; after 12 months of maturation, the glucoside was the most abundant precursor, present at between 2- and 11-fold higher concentrations than those observed for powdered oak. Thermal degradation of glycoconjugates was observed only when oak samples were heated at 200 °C for 30 min, demonstrating their thermal stability.

  16. Detection of non-protein amino acids in the presence of protein amino acids. II.

    NASA Technical Reports Server (NTRS)

    Shapshak, P.; Okaji, M.

    1972-01-01

    Studies conducted with the JEOL 5AH amino acid analyzer are described. This instrument makes possible the programming of the chromatographic process. Data are presented showing the separations of seventeen non-protein amino acids in the presence of eighteen protein amino acids. It is pointed out that distinct separations could be obtained in the case of a number of chemically similar compounds, such as ornithine and lysine, N-amidino alanine and arginine, and iminodiacetic acid and S-carboxymethyl cysteine and aspartic acid.

  17. Omega-3 fatty acid deficiency during brain maturation reduces neuronal and behavioral plasticity in adulthood.

    PubMed

    Bhatia, Harsharan Singh; Agrawal, Rahul; Sharma, Sandeep; Huo, Yi-Xin; Ying, Zhe; Gomez-Pinilla, Fernando

    2011-01-01

    Omega-3-fatty acid DHA is a structural component of brain plasma membranes, thereby crucial for neuronal signaling; however, the brain is inefficient at synthesizing DHA. We have asked how levels of dietary n-3 fatty acids during brain growth would affect brain function and plasticity during adult life. Pregnant rats and their male offspring were fed an n-3 adequate diet or n-3 deficient diets for 15 weeks. Results showed that the n-3 deficiency increased parameters of anxiety-like behavior using open field and elevated plus maze tests in the male offspring. Behavioral changes were accompanied by a level reduction in the anxiolytic-related neuropeptide Y-1 receptor, and an increase in the anxiogenic-related glucocorticoid receptor in the cognitive related frontal cortex, hypothalamus and hippocampus. The n-3 deficiency reduced brain levels of docosahexaenoic acid (DHA) and increased the ratio n-6/n-3 assessed by gas chromatography. The n-3 deficiency reduced the levels of BDNF and signaling through the BDNF receptor TrkB, in proportion to brain DHA levels, and reduced the activation of the BDNF-related signaling molecule CREB in selected brain regions. The n-3 deficiency also disrupted the insulin signaling pathways as evidenced by changes in insulin receptor (IR) and insulin receptor substrate (IRS). DHA deficiency during brain maturation reduces plasticity and compromises brain function in adulthood. Adequate levels of dietary DHA seem crucial for building long-term neuronal resilience for optimal brain performance and aiding in the battle against neurological disorders.

  18. The role of ERp44 in maturation of serotonin transporter protein.

    PubMed

    Freyaldenhoven, Samuel; Li, Yicong; Kocabas, Arif M; Ziu, Enrit; Ucer, Serra; Ramanagoudr-Bhojappa, Raman; Miller, Grover P; Kilic, Fusun

    2012-05-18

    In heterologous and endogenous expression systems, we studied the role of ERp44 and its complex partner endoplasmic reticulum (ER) oxidase 1-α (Ero1-Lα) in mechanisms regulating disulfide bond formation for serotonin transporter (SERT), an oligomeric glycoprotein. ERp44 is an ER lumenal chaperone protein that favors the maturation of disulfide-linked oligomeric proteins. ERp44 plays a critical role in the release of proteins from the ER via binding to Ero1-Lα. Mutation in the thioredoxin-like domain hampers the association of ERp44C29S with SERT, which has three Cys residues (Cys-200, Cys-209, and Cys-109) on the second external loop. We further explored the role of the protein chaperones through shRNA knockdown experiments for ERp44 and Ero1-Lα. Those efforts resulted in increased SERT localization to the plasma membrane but decreased serotonin (5-HT) uptake rates, indicating the importance of the ERp44 retention mechanism in the proper maturation of SERT proteins. These data were strongly supported with the data received from the N-biotinylaminoethyl methanethiosulfonate (MTSEA-biotin) labeling of SERT on ERp44 shRNA cells. MTSEA-biotin only interacts with the free Cys residues from the external phase of the plasma membrane. Interestingly, it appears that Cys-200 and Cys-209 of SERT in ERp44-silenced cells are accessible to labeling by MTSEA-biotin. However, in the control cells, these Cys residues are occupied and produced less labeling with MTSEA-biotin. Furthermore, ERp44 preferentially associated with SERT mutants (C200S, C209S, and C109A) when compared with wild type. These interactions with the chaperone may reflect the inability of Cys-200 and Cys-209 SERT mutants to form a disulfide bond and self-association as evidenced by immunoprecipitation assays. Based on these collective findings, we hypothesize that ERp44 together with Ero1-Lα plays an important role in disulfide formation of SERT, which may be a prerequisite step for the assembly of SERT

  19. Nucleic acids, proteins, and chirality

    NASA Technical Reports Server (NTRS)

    Usher, D. A.; Profy, A. T.; Walstrum, S. A.; Needels, M. C.; Bulack, S. C.; Lo, K. M.

    1984-01-01

    The present investigation is concerned with experimental results related, in one case, to the chirality of nucleotides, and, in another case, to the possibility of a link between the chirality of nucleic acids, and that of peptides. It has been found that aminoacylation of the 'internal' hydroxyl group of a dinucleoside monophosphate can occur stereoselectively. However, this reaction has not yet been made a part of a working peptide synthesis scheme. The formation and cleavage of oligonucleotides is considered. In the event of the formation of a helical complex between the oligonucleotide and the polymer, 1-prime,5-prime-bonds in the oligomer are found to become more resistant towards cleavage. The conditions required for peptide bond formation are examined, taking into account the known structures of RNA and possible mechanisms for prebiotic peptide bond formation. The possibility is considered that the 2-prime,5-prime-internucleotide linkage could have played an important part in the early days of biological peptide synthesis.

  20. Aspartic acid-484 of nascent placental alkaline phosphatase condenses with a phosphatidylinositol glycan to become the carboxyl terminus of the mature enzyme.

    PubMed Central

    Micanovic, R; Bailey, C A; Brink, L; Gerber, L; Pan, Y C; Hulmes, J D; Udenfriend, S

    1988-01-01

    A carboxyl-terminal chymotryptic peptide from mature human placental alkaline phosphatase was purified by HPLC and monitored by a specific RIA. Sequencing and amino acid assay showed that the carboxyl terminus of the peptide was aspartic acid, representing residue 484 of the proenzyme as deduced from the corresponding cDNA. Further analysis of the peptide showed it to be a peptidoglycan containing one residue of ethanolamine, one residue of glucosamine, and two residues of neutral hexose. The inositol glycan is apparently linked to the alpha carboxyl group of the aspartic acid through the ethanolamine. Location of the inositol glycan on Asp-484 of the proenzyme indicates that a 29-residue peptide is cleaved from the nascent protein during the post-translational condensation with the phosphatidylinositol-glycan. PMID:3422741

  1. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation.

    PubMed

    Tovar, Jorge; León-Avila, Gloria; Sánchez, Lidya B; Sutak, Robert; Tachezy, Jan; van der Giezen, Mark; Hernández, Manuel; Müller, Miklós; Lucocq, John M

    2003-11-13

    Giardia intestinalis (syn. lamblia) is one of the most widespread intestinal protozoan pathogens worldwide, causing hundreds of thousands of cases of diarrhoea each year. Giardia is a member of the diplomonads, often described as an ancient protist group whose primitive nature is suggested by the lack of typical eukaryotic organelles (for example, mitochondria, peroxisomes), the presence of a poorly developed endomembrane system and by their early branching in a number of gene phylogenies. The discovery of nuclear genes of putative mitochondrial ancestry in Giardia and the recent identification of mitochondrial remnant organelles in amitochondrial protists such as Entamoeba histolytica and Trachipleistophora hominis suggest that the eukaryotic amitochondrial state is not a primitive condition but is rather the result of reductive evolution. Using an in vitro protein reconstitution assay and specific antibodies against IscS and IscU--two mitochondrial marker proteins involved in iron-sulphur cluster biosynthesis--here we demonstrate that Giardia contains mitochondrial remnant organelles (mitosomes) bounded by double membranes that function in iron-sulphur protein maturation. Our results indicate that Giardia is not primitively amitochondrial and that it has retained a functional organelle derived from the original mitochondrial endosymbiont.

  2. Role of protein haptenation in triggering maturation events in the dendritic cell surrogate cell line THP-1

    SciTech Connect

    Megherbi, Rym; Kiorpelidou, Evanthia; Foster, Brian; Rowe, Cliff; Naisbitt, Dean J.; Goldring, Christopher E.; Park, B. Kevin

    2009-07-15

    Dendritic cell (DC) maturation in response to contact sensitizers is a crucial step in the induction of sensitization reactions; however the underlying mechanism of activation remains unknown. To test whether the extent of protein haptenation is a determinant in DC maturation, we tested the effect of five dinitrophenyl (DNP) analogues of different reactivity, on maturation markers in the cell line, THP-1. The potencies of the test compounds in upregulating CD54 levels, inducing IL-8 release and triggering p38 MAPK phosphorylation did not correlate with their ability to deplete intracellular glutathione (GSH) levels or cause cell toxicity. However, the compounds' potency at inducing p38 phosphorylation was significantly associated with the amount of intracellular protein adducts formed (p < 0.05). Inhibition experiments show that, at least for DNFB, p38 MAP kinase signalling controls compound-specific changes in CD54 expression and IL-8 release. 2D-PAGE analysis revealed that all the DNP analogues appeared to bind similar proteins. The analogues failed to activate NFkB, however, they activated Nrf2, which was used as a marker of oxidative stress. Neither GSH depletion, by use of buthionine sulfoximine, nor treatment with the strongly lysine-reactive hapten penicillin elicited maturation. We conclude that protein haptenation, probably through reactive cysteine residues may be a trigger for maturation events in this in vitro model and that p38 activation may be a discriminatory marker for the classification of potency of chemical sensitizers.

  3. Role of protein haptenation in triggering maturation events in the dendritic cell surrogate cell line THP-1.

    PubMed

    Megherbi, Rym; Kiorpelidou, Evanthia; Foster, Brian; Rowe, Cliff; Naisbitt, Dean J; Goldring, Christopher E; Park, B Kevin

    2009-07-15

    Dendritic cell (DC) maturation in response to contact sensitizers is a crucial step in the induction of sensitization reactions; however the underlying mechanism of activation remains unknown. To test whether the extent of protein haptenation is a determinant in DC maturation, we tested the effect of five dinitrophenyl (DNP) analogues of different reactivity, on maturation markers in the cell line, THP-1. The potencies of the test compounds in upregulating CD54 levels, inducing IL-8 release and triggering p38 MAPK phosphorylation did not correlate with their ability to deplete intracellular glutathione (GSH) levels or cause cell toxicity. However, the compounds' potency at inducing p38 phosphorylation was significantly associated with the amount of intracellular protein adducts formed (p<0.05). Inhibition experiments show that, at least for DNFB, p38 MAP kinase signalling controls compound-specific changes in CD54 expression and IL-8 release. 2D-PAGE analysis revealed that all the DNP analogues appeared to bind similar proteins. The analogues failed to activate NFkB, however, they activated Nrf2, which was used as a marker of oxidative stress. Neither GSH depletion, by use of buthionine sulfoximine, nor treatment with the strongly lysine-reactive hapten penicillin elicited maturation. We conclude that protein haptenation, probably through reactive cysteine residues may be a trigger for maturation events in this in vitro model and that p38 activation may be a discriminatory marker for the classification of potency of chemical sensitizers.

  4. Primary structures of the precursor and mature forms of stearoyl-acyl carrier protein desaturase from safflower embryos and requirement of ferredoxin for enzyme activity.

    PubMed Central

    Thompson, G A; Scherer, D E; Foxall-Van Aken, S; Kenny, J W; Young, H L; Shintani, D K; Kridl, J C; Knauf, V C

    1991-01-01

    Stearoyl-acyl carrier protein (ACP) desaturase (EC 1.14.99.6) catalyzes the principal conversion of saturated fatty acids to unsaturated fatty acids in the synthesis of vegetable oils. Stearoyl-ACP desaturase was purified from developing embryos of safflower seed, and extensive amino acid sequence was determined. The amino acid sequence was used in conjunction with polymerase chain reactions to clone a full-length cDNA. The primary structure of the protein, as deduced from the nucleotide sequence of the cDNA, includes a 33-amino-acid transit peptide not found in the purified enzyme. Expression in Escherichia coli of a gene encoding the mature form of stearoyl-ACP desaturase did not result in an altered fatty acid composition. However, active enzyme was detected when assayed in vitro with added spinach ferredoxin. The lack of significant activity in vitro without added ferredoxin and the lack of observed change in fatty acid composition indicate that ferredoxin is a required cofactor for the enzyme and that E. coli ferredoxin functions poorly, if at all, as an electron donor for the plant enzyme. Images PMID:2006194

  5. Bioaugmentation treatment of mature landfill leachate by new isolated ammonia nitrogen and humic acid resistant microorganism.

    PubMed

    Yu, Dahai; Yang, Jiyu; Teng, Fei; Feng, Lili; Fang, Xuexun; Ren, Hejun

    2014-07-01

    The mature landfill leachate, which is characterized by a high concentration of ammonia nitrogen (NH3-N) and humic acid (HA), poses a challenge to biotreatment methods, due to the constituent toxicity and low biodegradable fraction of the organics. In this study, we applied bioaugmentation technology in landfill leachate degradation by introducing a domesticated NH3-N and HA resistant bacteria strain, which was identified as Bacillus cereus (abbreviated as B. cereus Jlu) and Enterococcus casseliflavus (abbreviated as E. casseliflavus Jlu), respectively. The isolated strains exhibited excellent tolerant ability for NH3-N and HA and they could also greatly improved the COD (chemical oxygen demand), NH3-N and HA removal rate, and efficiency of bioaugmentation degradation of landfill leachate. Only 3 days was required for the domesticated bacteria to remove about 70.0% COD, compared with 9 days' degradation for the undomesticated (autochthonous) bacteria to obtain a similar removal rate. An orthogonal array was then used to further improve the COD and NH3-N removal rate. Under the optimum condition, the COD removal rate in leachate by using E. casseliflavus Jlu and B. cereus Jlu increased to 86.0% and 90.0%, respectively after, 2 days of degradation. The simultaneous removal of NH3-N and HA with more than 50% and 40% removal rate in leachate by employing the sole screened strain was first observed.

  6. Alimentary proteins, amino acids and cholesterolemia.

    PubMed

    Blachier, François; Lancha, Antonio H; Boutry, Claire; Tomé, Daniel

    2010-01-01

    Numerous data from both epidemiological and experimental origins indicate that some alimentary proteins and amino acids in supplements can modify the blood LDL cholesterol, HDL cholesterol and total cholesterol. After an initial approval of the health claim for soy protein consumption for the prevention of coronary heart disease, more recently it has been concluded from an overall analysis of literature that isolated soy protein with isoflavones only slightly decrease LDL and total cholesterol. Other plant extracts and also some proteins from animal origin have been reported to exert a lowering effect on blood cholesterol when compared with a reference protein (often casein). The underlying mechanisms are still little understood. Individual amino acids and mixture of amino acids have also been tested (mostly in animal studies) for their effects on cholesterol parameters and on cholesterol metabolism. Methionine, lysine, cystine, leucine, aspartate and glutamate have been tested individually and in combination in different models of either normo or hypercholesterolemic animals and found to be able to modify blood cholesterol and/or LDL cholesterol and/or HDL cholesterol. It is however not known if these results are relevant to human nutrition.

  7. Electrocatalysis in proteins, nucleic acids and carbohydrates.

    PubMed

    Paleček, Emil; Bartošík, Martin; Ostatná, Veronika; Trefulka, Mojmír

    2012-02-01

    The ability of proteins to catalyze hydrogen evolution has been known for more than 80 years, but the poorly developed d.c. polarographic "pre-sodium wave" was of little analytical use. Recently, we have shown that by using constant current chronopotentiometric stripping analysis, proteins produce a well-developed peak H at hanging mercury drop and solid amalgam electrodes. Peak H sensitively reflects changes in protein structures due to protein denaturation, single amino acid exchange, etc. at the picomole level. Unmodified DNA and RNA do not yield such a peak, but they produce electrocatalytic voltammetric signals after modification with osmium tetroxide complexes with nitrogen ligands [Os(VIII)L], binding covalently to pyrimidine bases in nucleic acids. Recently, it has been shown that six-valent [Os(VI)L] complexes bind to 1,2-diols in polysaccharides and oligosaccharides, producing voltammetric responses similar to those of DNA-Os(VIII)L adducts. Electrocatalytic peaks produced by Os-modified nucleic acids, proteins (reaction with tryptophan residues) and carbohydrates are due to the catalytic hydrogen evolution, allowing determination of oligomers at the picomolar level.

  8. Protein domain of chicken alpha(1)-acid glycoprotein is responsible for chiral recognition.

    PubMed

    Sadakane, Yutaka; Matsunaga, Hisami; Nakagomi, Kazuya; Hatanaka, Yasumaru; Haginaka, Jun

    2002-07-19

    Ovoglycoprotein from chicken egg whites (OGCHI) has been used as a chiral selector to separate drug enantiomers. However, neither the amino acid sequence of OGCHI nor the responsible part for the chiral recognition (protein domain or sugar moiety) has yet to be determined. First, we isolated a cDNA clone encoding OGCHI, and clarified the amino acid sequence of OGCHI, which consists of 203 amino acids including a predictable signal peptide of 20 amino acids. The mature OGCHI shows 31-32% identities to rabbit and human alpha(1)-acid glycoproteins (alpha(1)-AGPs). Thus, OGCHI should be the chicken alpha(1)-AGP. Second, the recombinant chicken alpha(1)-AGP was prepared by the Escherichia coli expression system, and its chiral recognition ability was confirmed by capillary electrophoresis. Since proteins expressed in E. coli are not modified by any sugar moieties, this result shows that the protein domain of the chicken alpha(1)-AGP is responsible for the chiral recognition.

  9. Nfu facilitates the maturation of iron-sulfur proteins and participates in virulence in Staphylococcus aureus

    PubMed Central

    Mashruwala, Ameya A.; Pang, Yun Y.; Rosario-Cruz, Zuelay; Chahal, Harsimranjit K.; Benson, Meredith A.; Anzaldi-Mike, Laura L.; Skaar, Eric P.; Torres, Victor J.; Nauseef, William M.; Boyd, Jeffrey M.

    2015-01-01

    Summary The acquisition and metabolism of iron (Fe) by the human pathogen Staphylococcus aureus is critical for disease progression. S. aureus requires Fe to synthesize inorganic cofactors called iron-sulfur (Fe-S) clusters, which are required for functional Fe-S proteins. In this study we investigated the mechanisms utilized by S. aureus to metabolize Fe-S clusters. We identified that S. aureus utilizes the Suf biosynthetic system to synthesize Fe-S clusters and we provide genetic evidence suggesting that the sufU and sufB gene products are essential. Additional biochemical and genetic analyses identified Nfu as a Fe-S cluster carrier, which aids in the maturation of Fe-S proteins. We find that deletion of the nfu gene negatively impacts staphylococcal physiology and pathogenicity. A nfu mutant accumulates both increased intracellular non-incorporated Fe and endogenous reactive oxygen species (ROS) resulting in DNA damage. In addition, a strain lacking Nfu is sensitive to exogenously supplied ROS and reactive nitrogen species. Congruous with ex vivo findings, a nfu mutant strain is more susceptible to oxidative killing by human polymorphonuclear leukocytes and displays decreased tissue colonization in a murine model of infection. We conclude that Nfu is necessary for staphylococcal pathogenesis and establish Fe-S cluster metabolism as an attractive antimicrobial target. PMID:25388433

  10. Targeted inhibition of oncogenic miR-21 maturation with designed RNA-binding proteins

    PubMed Central

    Chen, Yu; Yang, Fan; Zubovic, Lorena; Pavelitz, Tom; Yang, Wen; Godin, Katherine; Walker, Matthew; Zheng, Suxin; Macchi, Paolo; Varani, Gabriele

    2016-01-01

    The RNA Recognition Motif (RRM) is the largest family of eukaryotic RNA-binding proteins. Engineered RRMs with new specificity would provide valuable tools and an exacting test of our understanding of specificity. We have achieved the first successful re-design of the specificity of an RRM using rational methods and demonstrated re-targeting of activity in cells. We engineered the conserved RRM of human Rbfox proteins to specifically bind to the terminal loop of miR-21 precursor with high affinity and inhibit its processing by Drosha and Dicer. We further engineered Giardia Dicer by replacing its PAZ domain with the designed RRM. The reprogrammed enzyme degrades pre-miR-21 specifically in vitro and suppresses mature miR-21 levels in cells, which results in increased expression of PDCD4 and significantly decreased viability for cancer cells. The results demonstrate the feasibility of engineering the sequence-specificity of RRMs and of using this ubiquitous platform for diverse biological applications. PMID:27428511

  11. Mature Surfactant Protein-B Expression by Immunohistochemistry as a Marker for Surfactant System Development in the Fetal Sheep Lung.

    PubMed

    Lock, Mitchell C; McGillick, Erin V; Orgeig, Sandra; Zhang, Song; McMillen, I Caroline; Morrison, Janna L

    2015-11-01

    Evaluation of the number of type II alveolar epithelial cells (AECs) is an important measure of the lung's ability to produce surfactant. Immunohistochemical staining of these cells in lung tissue commonly uses antibodies directed against mature surfactant protein (SP)-C, which is regarded as a reliable SP marker of type II AECs in rodents. There has been no study demonstrating reliable markers for surfactant system maturation by immunohistochemistry in the fetal sheep lung despite being widely used as a model to study lung development. Here we examine staining of a panel of surfactant pro-proteins (pro-SP-B and pro-SP-C) and mature proteins (SP-B and SP-C) in the fetal sheep lung during late gestation in the saccular/alveolar phase of development (120, 130, and 140 days), with term being 150 ± 3 days, to identify the most reliable marker of surfactant producing cells in this species. Results from this study indicate that during late gestation, use of anti-SP-B antibodies in the sheep lung yields significantly higher cell counts in the alveolar epithelium than SP-C antibodies. Furthermore, this study highlights that mature SP-B antibodies are more reliable markers than SP-C antibodies to evaluate surfactant maturation in the fetal sheep lung by immunohistochemistry.

  12. Maturation and Activity of Sterol Regulatory Element Binding Protein 1 Is Inhibited by Acyl-CoA Binding Domain Containing 3

    PubMed Central

    Chen, Yong; Patel, Vishala; Bang, Sookhee; Cohen, Natalie; Millar, John; Kim, Sangwon F.

    2012-01-01

    Imbalance of lipid metabolism has been linked with pathogenesis of a variety of human pathological conditions such as diabetes, obesity, cancer and neurodegeneration. Sterol regulatory element binding proteins (SREBPs) are the master transcription factors controlling the homeostasis of fatty acids and cholesterol in the body. Transcription, expression, and activity of SREBPs are regulated by various nutritional, hormonal or stressful stimuli, yet the molecular and cellular mechanisms involved in these adaptative responses remains elusive. In the present study, we found that overexpressed acyl-CoA binding domain containing 3 (ACBD3), a Golgi-associated protein, dramatically inhibited SREBP1-sensitive promoter activity of fatty acid synthase (FASN). Moreover, lipid deprivation-stimulated SREBP1 maturation was significantly attenuated by ACBD3. With cell fractionation, gene knockdown and immunoprecipitation assays, it was showed that ACBD3 blocked intracellular maturation of SREBP1 probably through directly binding with the lipid regulator rather than disrupted SREBP1-SCAP-Insig1 interaction. Further investigation revealed that acyl-CoA domain-containing N-terminal sequence of ACBD3 contributed to its inhibitory effects on the production of nuclear SREBP1. In addition, mRNA and protein levels of FASN and de novo palmitate biosynthesis were remarkably reduced in cells overexpressed with ACBD3. These findings suggest that ACBD3 plays an essential role in maintaining lipid homeostasis via regulating SREBP1's processing pathway and thus impacting cellular lipogenesis. PMID:23166793

  13. Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth.

    PubMed

    Dai, Shaojun; Li, Lei; Chen, Taotao; Chong, Kang; Xue, Yongbiao; Wang, Tai

    2006-04-01

    As a highly reduced organism, pollen performs specialized functions to generate and carry sperm into the ovule by its polarily growing pollen tube. Yet the molecular genetic basis of these functions is poorly understood. Here, we identified 322 unique proteins, most of which were not reported previously to be in pollen, from mature pollen of Oryza sativa L. ssp japonica using a proteomic approach, 23% of them having more than one isoform. Functional classification reveals that an overrepresentation of the proteins was related to signal transduction (10%), wall remodeling and metabolism (11%), and protein synthesis, assembly and degradation (14%), as well as carbohydrate and energy metabolism (25%). Further, 11% of the identified proteins are functionally unknown and do not contain any conserved domain associated with known activities. These analyses also identified 5 novel proteins by de novo sequencing and revealed several important proteins, mainly involved in signal transduction (such as protein kinases, receptor kinase-interacting proteins, guanosine 5'-diphosphate dissociation inhibitors, C2 domain-containing proteins, cyclophilins), protein synthesis, assembly and degradation (such as prohibitin, mitochondrial processing peptidase, putative UFD1, AAA+ ATPase), and wall remodeling and metabolism (such as reversibly glycosylated polypeptides, cellulose synthase-like OsCsLF7). The study is the first close investigation, to our knowledge, of protein complement in mature pollen, and presents useful molecular information at the protein level to further understand the mechanisms underlying pollen germination and tube growth.

  14. Conformations of amino acids in proteins.

    PubMed

    Hovmöller, Sven; Zhou, Tuping; Ohlson, Tomas

    2002-05-01

    The main-chain conformations of 237 384 amino acids in 1042 protein subunits from the PDB were analyzed with Ramachandran plots. The populated areas of the empirical Ramachandran plot differed markedly from the classical plot in all regions. All amino acids in alpha-helices are found within a very narrow range of phi, psi angles. As many as 40% of all amino acids are found in this most populated region, covering only 2% of the Ramachandran plot. The beta-sheet region is clearly subdivided into two distinct regions. These do not arise from the parallel and antiparallel beta-strands, which have quite similar conformations. One beta region is mainly from amino acids in random coil. The third and smallest populated area of the Ramachandran plot, often denoted left-handed alpha-helix, has a different position than that originally suggested by Ramachandran. Each of the 20 amino acids has its own very characteristic Ramachandran plot. Most of the glycines have conformations that were considered to be less favoured. These results may be useful for checking secondary-structure assignments in the PDB and for predicting protein folding.

  15. Expression of a Novel Ciliary Protein, IIIG9, During the Differentiation and Maturation of Ependymal Cells.

    PubMed

    Cifuentes, M; Baeza, V; Arrabal, P M; Visser, R; Grondona, J M; Saldivia, N; Martínez, F; Nualart, F; Salazar, K

    2017-02-13

    IIIG9 is the regulatory subunit 32 of protein phosphatase 1 (PPP1R32), a key phosphatase in the regulation of ciliary movement. IIIG9 localization is restricted to cilia in the trachea, fallopian tube, and testicle, suggesting its involvement in the polarization of ciliary epithelium. In the adult brain, IIIG9 mRNA has only been detected in ciliated ependymal cells that cover the ventricular walls. In this work, we prepared a polyclonal antibody against rat IIIG9 and used this antibody to show for the first time the ciliary localization of this protein in adult ependymal cells. We demonstrated IIIG9 localization at the apical border of the ventricular wall of 17-day-old embryonic (E17) and 1-day-old postnatal (PN1) brains and at the level of ependymal cilia at 10- and 20-day-old postnatal (PN10-20) using temporospatial distribution analysis and comparing the localization with a ciliary marker. Spectral confocal and super-resolution Structured Illumination Microscopy (SIM) analysis allowed us to demonstrate that IIIG9 shows a punctate pattern that is preferentially located at the borders of ependymal cilia in situ and in cultures of ependymocytes obtained from adult rat brains. Finally, by immunogold ultrastructural analysis, we showed that IIIG9 is preferentially located between the axoneme and the ciliary membrane. Taken together, our data allow us to conclude that IIIG9 is localized in the cilia of adult ependymal cells and that its expression is correlated with the process of ependymal differentiation and with the maturation of radial glia. Similarly, its particular localization within ependymal cilia suggests a role of this protein in the regulation of ciliary movement.

  16. Measurement of protein using bicinchoninic acid.

    PubMed

    Smith, P K; Krohn, R I; Hermanson, G T; Mallia, A K; Gartner, F H; Provenzano, M D; Fujimoto, E K; Goeke, N M; Olson, B J; Klenk, D C

    1985-10-01

    Bicinchoninic acid, sodium salt, is a stable, water-soluble compound capable of forming an intense purple complex with cuprous ion (Cu1+) in an alkaline environment. This reagent forms the basis of an analytical method capable of monitoring cuprous ion produced in the reaction of protein with alkaline Cu2+ (biuret reaction). The color produced from this reaction is stable and increases in a proportional fashion over a broad range of increasing protein concentrations. When compared to the method of Lowry et al., the results reported here demonstrate a greater tolerance of the bicinchoninate reagent toward such commonly encountered interferences as nonionic detergents and simple buffer salts. The stability of the reagent and resulting chromophore also allows for a simplified, one-step analysis and an enhanced flexibility in protocol selection. This new method maintains the high sensitivity and low protein-to-protein variation associated with the Lowry technique.

  17. Proteomic comparison between maturation drying and prematurely imposed drying of Zea mays seeds reveals a potential role of maturation drying in preparing proteins for seed germination, seedling vigor, and pathogen resistance.

    PubMed

    Wang, Wei-Qing; Ye, Jian-Qing; Rogowska-Wrzesinska, Adelina; Wojdyla, Katarzyna I; Jensen, Ole Nørregaard; Møller, Ian Max; Song, Song-Quan

    2014-02-07

    We have studied the role(s) of maturation drying in the acquisition of germinability, seedling vigor and pathogen resistance by comparing the proteome changes in maize embryo and endosperm during mature and prematurely imposed drying. Prematurely imposed dried seeds at 40 days after pollination (DAP) germinated almost as well as mature seeds (at 65 DAP), but their seedling growth was slower and they were seriously infected by fungi. A total of 80 and 114 proteins were identified to change at least two-fold (p < 0.05) in abundance during maturation drying in embryo and endosperm, respectively. Fewer proteins (48 and 59 in embryo and endosperm, respectively) changed in abundance during prematurely imposed drying. A number of proteins, 33 and 38 in embryo and endosperm, respectively, changed similarly in abundance during both maturation and prematurely imposed drying. Storage proteins were abundant in this group and may contribute to the acquisition of seed germinability. However, a relatively large number of proteins changed in the embryo (47 spots) and endosperm (76 spots) specifically during maturation drying. Among these proteins, storage proteins in the embryo and defense proteins in the endosperm may be particularly important for seedling vigor and resistance to fungal infection, respectively.

  18. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis.

    PubMed

    Baud, Sébastien; Mendoza, Monica Santos; To, Alexandra; Harscoët, Erwana; Lepiniec, Loïc; Dubreucq, Bertrand

    2007-06-01

    The WRINKLED1 (WRI1) transcription factor has been shown to play a role of the utmost importance during oil accumulation in maturing seeds of Arabidopsis thaliana. However, little is known about the regulatory processes involved. In this paper, comprehensive functional analyses of three new mutants corresponding to null alleles of wri1 confirm that the induction of WRI1 is a prerequisite for fatty acid synthesis and is important for normal embryo development. The strong expression of WRI1 specifically detected at the onset of the maturation phase in oil-accumulating tissues of A. thaliana seeds is fully consistent with this function. Complementation experiments carried out with various seed-specific promoters emphasized the importance of a tight regulation of WRI1 expression for proper oil accumulation, raising the question of the factors controlling WRI1 transcription. Interestingly, molecular and genetic analyses using an inducible system demonstrated that WRI1 is a target of LEAFY COTYLEDON2 and is necessary for the regulatory action of LEC2 towards fatty acid metabolism. In addition to this, quantitative RT-PCR experiments suggested that several genes encoding enzymes of late glycolysis, the fatty acid synthesis pathway, and the biotin and lipoic acid biosynthetic pathways are targets of WRI1. Taken together, these results indicate new relationships in the regulatory model for the control of oil synthesis in maturing A. thaliana seeds. In addition, they exemplify how metabolic and developmental processes affecting the developing embryo can be coordinated at the molecular level.

  19. Combined epidermal growth factor and hyaluronic acid supplementation of in vitro maturation medium and its impact on bovine oocyte proteome and competence.

    PubMed

    Ríos, G L; Buschiazzo, J; Mucci, N C; Kaiser, G G; Cesari, A; Alberio, R H

    2015-03-15

    The conditions for in vitro oocyte maturation impact on cytoplasmic and nuclear processes in the oocyte. These events are differentially influenced by the nature of the maturation inducer and the presence of intact cumulus in cumulus-oocyte complexes. Epidermal growth factor is the main growth factor promoting oocyte maturation. Also, hyaluronic acid (HA) produced by cumulus cells is known to be responsible for the correct structural and functional organization of the cumulus during oocyte maturation. Therefore, we evaluated the developmental competence of bovine oocytes matured in vitro in a maturation medium supplemented with both EGF and HA, compared to FSH and fetal bovine serum (FBS). In addition, the impact of IVM conditions on the proteomic profile of metaphase II bovine oocytes was analyzed by two-dimensional electrophoresis. Cumulus-oocyte complexes were matured in two media: (1) 10 ng/mL EGF, 15 μg/mL HA, and 100-μM cysteamine and (2) 0.01 UI/mL rh-FSH and 10% FBS. The percentages of first polar body and embryo production and the kinetics of embryo development and oocyte proteomic profiles were analyzed. Oocytes matured in the presence of EGF-HA showed an increase (6%, P < 0.05) in the percentage of polar body extrusion. The blastocyst rate was 3% (P < 0.05) higher in the FSH-FBS group, but no differences were found in the rate of expanded blastocyst neither in total embryo production between IVM conditions. Cleavage rate of oocytes matured with FSH-FBS was 5% higher (P < 0.05) with respect to EGF-HA-matured oocytes when evaluated 30 hours after fertilization. However, at Day 7, those inseminated oocytes that underwent division at a correct timing showed that although there are still early blastocysts in the FSH-FBS condition, EGF-HA embryos have developed completely into blastocysts. Still, the production rate of those embryos that achieved expansion was similar between both maturation conditions. On the other hand, noncleaved presumptive

  20. Effect of Maturity on Phenolics (Phenolic Acids and Flavonoids) Profile of Strawberry Cultivars and Mulberry Species from Pakistan

    PubMed Central

    Mahmood, Tahir; Anwar, Farooq; Abbas, Mateen; Saari, Nazamid

    2012-01-01

    In this study, we investigated how the extent of ripeness affects the yield of extract, total phenolics, total flavonoids, individual flavonols and phenolic acids in strawberry and mulberry cultivars from Pakistan. In strawberry, the yield of extract (%), total phenolics (TPC) and total flavonoids (TFC) ranged from 8.5–53.3%, 491–1884 mg gallic acid equivalents (GAE)/100 g DW and 83–327 mg catechin equivalents (CE)/100 g DW, respectively. For the different species of mulberry the yield of extract (%), total phenolics and total flavonoids of 6.9–54.0%, 201–2287 mg GAE/100 g DW and 110–1021 mg CE/100 g DW, respectively, varied significantly as fruit maturity progressed. The amounts of individual flavonols and phenolic acid in selected berry fruits were analyzed by RP-HPLC. Among the flavonols, the content of myricetin was found to be high in Morus alba (88 mg/100 g DW), the amount of quercetin as high in Morus laevigata (145 mg/100 g DW) while kaempferol was highest in the Korona strawberry (98 mg/100 g DW) at fully ripened stage. Of the six phenolic acids detected, p-hydroxybenzoic and p-coumaric acid were the major compounds in the strawberry. M. laevigata and M. nigra contained p-coumaric acid and vanillic acid while M. macroura and M. alba contained p-hydroxy-benzoic acid and chlorogenic acid as the major phenolic acids. Overall, a trend to an increase in the percentage of extraction yield, TPC, TFC, flavonols and phenolic acids was observed as maturity progressed from un-ripened to fully-ripened stages. PMID:22605997

  1. Effect of maturity on phenolics (phenolic acids and flavonoids) profile of strawberry cultivars and mulberry species from Pakistan.

    PubMed

    Mahmood, Tahir; Anwar, Farooq; Abbas, Mateen; Saari, Nazamid

    2012-01-01

    In this study, we investigated how the extent of ripeness affects the yield of extract, total phenolics, total flavonoids, individual flavonols and phenolic acids in strawberry and mulberry cultivars from Pakistan. In strawberry, the yield of extract (%), total phenolics (TPC) and total flavonoids (TFC) ranged from 8.5-53.3%, 491-1884 mg gallic acid equivalents (GAE)/100 g DW and 83-327 mg catechin equivalents (CE)/100 g DW, respectively. For the different species of mulberry the yield of extract (%), total phenolics and total flavonoids of 6.9-54.0%, 201-2287 mg GAE/100 g DW and 110-1021 mg CE/100 g DW, respectively, varied significantly as fruit maturity progressed. The amounts of individual flavonols and phenolic acid in selected berry fruits were analyzed by RP-HPLC. Among the flavonols, the content of myricetin was found to be high in Morus alba (88 mg/100 g DW), the amount of quercetin as high in Morus laevigata (145 mg/100 g DW) while kaempferol was highest in the Korona strawberry (98 mg/100 g DW) at fully ripened stage. Of the six phenolic acids detected, p-hydroxybenzoic and p-coumaric acid were the major compounds in the strawberry. M. laevigata and M. nigra contained p-coumaric acid and vanillic acid while M. macroura and M. alba contained p-hydroxy-benzoic acid and chlorogenic acid as the major phenolic acids. Overall, a trend to an increase in the percentage of extraction yield, TPC, TFC, flavonols and phenolic acids was observed as maturity progressed from un-ripened to fully-ripened stages.

  2. Proteomic Analysis of the Protein Expression Profile in the Mature Nigella sativa (Black Seed).

    PubMed

    Alanazi, Ibrahim O; Benabdelkamel, Hicham; Alfadda, Assim A; AlYahya, Sami A; Alghamdi, Waleed M; Aljohi, Hasan A; Almalik, Abdulaziz; Masood, Afshan

    2016-08-01

    Nigella sativa (N. sativa) seed has been used as an important nutritional flavoring agent and in traditional medicine for treating many illnesses since ancient times. Understanding the proteomic component of the seed may lead to enhance the understanding of its structural and biological functional complexity. In this study, we have analyzed its proteome profile based on gel-based proteome mapping technique that includes one-dimensional gel electrophoresis followed by liquid chromatography and tandem mass spectrometry strategy. We have not come across any such studies that have been performed in N. sativa seeds up to date. A total of 277 proteins were identified, and their functional, metabolic, and location-wise annotations were carried out using the UniProt database. The majority of proteins identified in the proteome dataset based on their function were those involved in enzyme catalytic activity, nucleotide binding, and protein binding while the major cellular processes included regulation of biological process followed by regulation of secondary biological process, cell organization and biogenesis, protein metabolism, and transport. The identified proteome was localized mainly to the nucleus then to the cytoplasm, plasma membrane, mitochondria, plastid, and others. A majority of the proteins were involved in biochemical pathways involving carbohydrate metabolism, amino acid and shikimate pathway, lipid metabolism, nucleotide, cell organization and biogenesis, transport, and defense processes. The identified proteins in the dataset help to improve our understanding of the pathways involved in N. sativa seed metabolism and its biochemical features and detail out useful information that may help to utilize these proteins. This study could thus pave a way for future further high-throughput studies using a more targeted proteomic approach.

  3. The novel endosomal membrane protein Ema interacts with the class C Vps-HOPS complex to promote endosomal maturation.

    PubMed

    Kim, Sungsu; Wairkar, Yogesh P; Daniels, Richard W; DiAntonio, Aaron

    2010-03-08

    Endosomal maturation is critical for accurate and efficient cargo transport through endosomal compartments. Here we identify a mutation of the novel Drosophila gene, ema (endosomal maturation defective) in a screen for abnormal synaptic overgrowth and defective protein trafficking. Ema is an endosomal membrane protein required for trafficking of fluid-phase and receptor-mediated endocytic cargos. In the ema mutant, enlarged endosomal compartments accumulate as endosomal maturation fails, with early and late endosomes unable to progress into mature degradative late endosomes and lysosomes. Defective endosomal down-regulation of BMP signaling is responsible for the abnormal synaptic overgrowth. Ema binds to and genetically interacts with Vps16A, a component of the class C Vps-HOPS complex that promotes endosomal maturation. The human orthologue of ema, Clec16A, is a candidate susceptibility locus for autoimmune disorders, and its expression rescues the Drosophila mutant demonstrating conserved function. Characterizing this novel gene family identifies a new component of the endosomal pathway and provides insights into class C Vps-HOPS complex function.

  4. Hypoxia inhibits maturation and trafficking of hERG K(+) channel protein: Role of Hsp90 and ROS.

    PubMed

    Nanduri, Jayasri; Bergson, Pamela; Wang, Ning; Ficker, Eckhard; Prabhakar, Nanduri R

    2009-10-16

    We previously reported that reactive oxygen species (ROS) generated during hypoxia decrease hERG current density and protein expression in HEK cells stably expressing hERG protein. In the present study, we investigated the molecular mechanisms involved in hypoxia-induced downregulation of hERG protein. Culturing cells at low temperatures and addition of chemical chaperones during hypoxia restored hERG expression and currents to normoxic levels while antiarrhythmic drugs, which selectively block hERG channels, had no effect on hERG protein levels. Pulse chase studies showed that hypoxia blocks maturation of the core glycosylated form in the endoplasmic reticulum (ER) to the fully glycosylated form on the cell surface. Co-immunoprecipitation experiments revealed that hypoxia inhibited interaction of hERG with Hsp90 chaperone required for maturation, which was restored in the presence of ROS scavengers. These results demonstrate that ROS generated during hypoxia prevents maturation of the hERG protein by inhibiting Hsp90 interaction resulting in decreased protein expression and currents.

  5. Bovine whey protein concentrate supplementation modulates maturation of immune system in suckling rats.

    PubMed

    Pérez-Cano, Francisco J; Marín-Gallén, Silvia; Castell, Margarida; Rodríguez-Palmero, María; Rivero, Montserrat; Franch, Angels; Castellote, Cristina

    2007-10-01

    During neonatal life, challenges from breast milk and microbial flora promote immune system maturation. Immunonutrition in these stages may become an important way to increase natural defence systems. The aim of this study was to determine the effect of a daily bovine milk whey protein concentrate (WPC) supplement on the intestinal and systemic immune systems in suckling rats. The composition of intraepithelial and lamina propria lymphocytes (IEL and LPL) was analysed by flow cytometry. Systemic and intestinal humoral immune responses were determined by sera Ig levels and Ig-secreting cell quantification by ELISA and ELISPOT, respectively. From birth, suckling Wistar rats were supplemented with WPC or standard infant formula (SIF). The WPC group showed the same proportion of most of the main mucosal cell subsets as the reference animals. However, in the first days of life WPC enhanced the innate immunity by increasing the NK cell proportion in both epithelial and lamina propria (LP) compartments. A rise in intestinal CD8alphaalpha+ IEL was also induced by WPC supplementation. A time-course of sera Ig levels and spontaneous IgA, IgM and IgG production by LPL and mononuclear cells from blood and spleen, in the WPC group, exhibited a similar pattern to those pups fed only by dam's milk. In summary, the present results show the effects of WPC on enhancing mucosal innate immunity during early life.

  6. Whey protein processing influences formula-induced gut maturation in preterm pigs.

    PubMed

    Li, Yanqi; Østergaard, Mette V; Jiang, Pingping; Chatterton, Dereck E W; Thymann, Thomas; Kvistgaard, Anne S; Sangild, Per T

    2013-12-01

    Immaturity of the gut predisposes preterm infants to nutritional challenges potentially leading to clinical complications such as necrotizing enterocolitis. Feeding milk formulas is associated with greater risk than fresh colostrum or milk, probably due to loss of bioactive proteins (e.g., immunoglobulins, lactoferrin, insulin-like growth factor, transforming growth factor-β) during industrial processing (e.g., pasteurization, filtration, spray-drying). We hypothesized that the processing method for whey protein concentrate (WPC) would affect gut maturation in formula-fed preterm pigs used as a model for preterm infants. Fifty-five caesarean-delivered preterm pigs were distributed into 4 groups given 1 of 4 isoenergetic diets: formula containing conventional WPC (filtration, multi-pasteurization, standard spray-drying) (CF); formula containing gently treated WPC (reduced filtration and pasteurization, gentle spray-drying) (GF); formula containing minimally treated WPC (rennet precipitation, reduced filtration, heat treatment <40°C, freeze-drying) (MF); and bovine colostrum (used as a positive reference group) (BC). Relative to CF, GF, and MF pigs, BC pigs had greater villus heights, lactose digestion, and absorption and lower gut permeability (P < 0.05). MF and BC pigs had greater plasma citrulline concentrations than CF and GF pigs and intestinal interleukin-8 was lower in BC pigs than in the other groups (P < 0.05). MF pigs had lower concentrations of intestinal claudin-4, cleaved caspase-3, and phosphorylated c-Jun than CF pigs (P < 0.05). The conventional and gently treated WPCs had similar efficacy in stimulating proliferation of porcine intestinal epithelial cells. We conclude that processing of WPC affects intestinal structure, function, and integrity when included in formulas for preterm pigs. Optimization of WPC processing technology may be important to preserve the bioactivity and nutritional value of formulas for sensitive newborns.

  7. Outer membrane protein OmpQ of Bordetella bronchiseptica is required for mature biofilm formation.

    PubMed

    Cattelan, Natalia; Villalba, María Inés; Parisi, Gustavo; Arnal, Laura; Serra, Diego Omar; Aguilar, Mario; Yantorno, Osvaldo

    2016-02-01

    Bordetella bronchiseptica, an aerobic Gram-negative bacterium, is capable of colonizing the respiratory tract of diverse animals and chronically persists inside the hosts by forming biofilm. Most known virulence factors in Bordetella species are regulated by the BvgAS two-component transduction system. The Bvg-activated proteins play a critical role during host infection. OmpQ is an outer membrane porin protein which is expressed under BvgAS control. Here, we studied the contribution of OmpQ to the biofilm formation process by B. bronchiseptica. We found that the lack of expression of OmpQ did not affect the growth kinetics and final biomass of B. bronchiseptica under planktonic growth conditions. The ΔompQ mutant strain displayed no differences in attachment level and in early steps of biofilm formation. However, deletion of the ompQ gene attenuated the ability of B. bronchiseptica to form a mature biofilm. Analysis of ompQ gene expression during the biofilm formation process by B. bronchiseptica showed a dynamic expression pattern, with an increase of biofilm culture at 48 h. Moreover, we demonstrated that the addition of serum anti-OmpQ had the potential to reduce the biofilm biomass formation in a dose-dependent manner. In conclusion, we showed for the first time, to the best of our knowledge, evidence of the contribution of OmpQ to a process of importance for B. bronchiseptica pathobiology. Our results indicate that OmpQ plays a role during the biofilm development process, particularly at later stages of development, and that this porin could be a potential target for strategies of biofilm formation inhibition.

  8. The mechanism of dehydration in chromophore maturation of wild-type green fluorescent protein: A theoretical study

    NASA Astrophysics Data System (ADS)

    Ma, Yingying; Yu, Jian-Guo; Sun, Qiao; Li, Zhen; Smith, Sean C.

    2015-07-01

    An interesting aspect of the green fluorescent protein (GFP) is its autocatalytic chromophore maturation. Numerous experimental studies have indicated that dehydration is the last step in the chromophore maturation process of wild-type GFP. Based on the crystal structure of wild-type GFP, the mechanism of the reverse reaction of dehydration was investigated by using density functional theory (DFT) in this study. Our results proposed that the dehydration is exothermic. Moreover, the rate-limiting step of the mechanism is the proton on guanidinium of Arg96 transferring to the β-carbon anion of Tyr66, which is consistent with the experimental observation.

  9. Role of perinatal long-chain omega-3 fatty acids in cortical circuit maturation: Mechanisms and implications for psychopathology

    PubMed Central

    McNamara, Robert K; Vannest, Jennifer J; Valentine, Christina J

    2015-01-01

    Accumulating translational evidence suggests that the long-chain omega-3 fatty acid docosahexaenoic acid (DHA) plays a role in the maturation and stability of cortical circuits that are impaired in different recurrent psychiatric disorders. Specifically, rodent and cell culture studies find that DHA preferentially accumulates in synaptic and growth cone membranes and promotes neurite outgrowth, dendritic spine stability, and synaptogenesis. Additional evidence suggests that DHA may play a role in microglia-mediated synaptic pruning, as well as myelin development and resilience. In non-human primates n-3 fatty acid insufficiency during perinatal development leads to widespread deficits in functional connectivity in adult frontal cortical networks compared to primates raised on DHA-fortified diet. Preterm delivery in non-human primates and humans is associated with early deficits in cortical DHA accrual. Human preterm birth is associated with long-standing deficits in myelin integrity and cortical circuit connectivity and increased risk for attention deficit/hyperactivity disorder (ADHD), mood, and psychotic disorders. In general, ADHD and mood and psychotic disorders initially emerge during rapid periods of cortical circuit maturation and are characterized by DHA deficits, myelin pathology, and impaired cortical circuit connectivity. Together these associations suggest that early and uncorrected deficits in fetal brain DHA accrual may represent a modifiable risk factor for cortical circuit maturation deficits in psychiatric disorders, and could therefore have significant implications for informing early intervention and prevention strategies. PMID:25815252

  10. LAMP proteins account for the maturation delay during the establishment of the Coxiella burnetii-containing vacuole.

    PubMed

    Schulze-Luehrmann, Jan; Eckart, Rita A; Ölke, Martha; Saftig, Paul; Liebler-Tenorio, Elisabeth; Lührmann, Anja

    2016-02-01

    The obligate intracellular pathogen Coxiella burnetii replicates in a large phagolysosomal-like vacuole. Currently, both host and bacterial factors required for creating this replicative parasitophorous C. burnetii-containing vacuole (PV) are poorly defined. Here, we assessed the contributions of the most abundant proteins of the lysosomal membrane, LAMP-1 and LAMP-2, to the establishment and maintenance of the PV. Whereas these proteins were not critical for uptake of C. burnetii, they influenced the intracellular replication of C. burnetii. In LAMP-1/2 double-deficient fibroblasts as well as in LAMP-1/2 knock-down cells, C. burnetii establishes a significantly smaller, yet faster maturing vacuole, which harboured more bacteria. The accelerated maturation of PVs in LAMP double-deficient fibroblasts, which was partially or fully reversed by ectopic expression of LAMP-1 or LAMP-2, respectively, was characterized by an increased fusion rate with endosomes, lysosomes and bead-containing phagosomes, but not by different fusion kinetics with autophagy vesicles. These findings establish that LAMP proteins are critical for the maturation delay of PVs. Unexpectedly, neither the creation of the spacious vacuole nor the delay in maturation was found to be prerequisites for the intracellular replication of C. burnetii.

  11. Internal Proteins of the Procapsid and Mature Capsids of Herpes Simplex Virus 1 Mapped by Bubblegram Imaging

    PubMed Central

    Wu, Weimin; Newcomb, William W.; Cheng, Naiqian; Aksyuk, Anastasia; Winkler, Dennis C.

    2016-01-01

    ABSTRACT The herpes simplex virus 1 (HSV-1) capsid is a huge assembly, ∼1,250 Å in diameter, and is composed of thousands of protein subunits with a combined mass of ∼200 MDa, housing a 100-MDa genome. First, a procapsid is formed through coassembly of the surface shell with an inner scaffolding shell; then the procapsid matures via a major structural transformation, triggered by limited proteolysis of the scaffolding proteins. Three mature capsids are found in the nuclei of infected cells. A capsids are empty, B capsids retain a shrunken scaffolding shell, and C capsids—which develop into infectious virions—are filled with DNA and ostensibly have expelled the scaffolding shell. The possible presence of other internal proteins in C capsids has been moot as, in cryo-electron microscopy (cryo-EM), they would be camouflaged by the surrounding DNA. We have used bubblegram imaging to map internal proteins in all four capsids, aided by the discovery that the scaffolding protein is exceptionally prone to radiation-induced bubbling. We confirmed that this protein forms thick-walled inner shells in the procapsid and the B capsid. C capsids generate two classes of bubbles: one occupies positions beneath the vertices of the icosahedral surface shell, and the other is distributed throughout its interior. A likely candidate is the viral protease. A subpopulation of C capsids bubbles particularly profusely and may represent particles in which expulsion of scaffold and DNA packaging are incomplete. Based on the procapsid structure, we propose that the axial channels of hexameric capsomers afford the pathway via which the scaffolding protein is expelled. IMPORTANCE In addition to DNA, capsids of tailed bacteriophages and their distant relatives, herpesviruses, contain internal proteins. These proteins are often essential for infectivity but are difficult to locate within the virion. A novel adaptation of cryo-EM based on detecting gas bubbles generated by radiation

  12. Inadequacy of prebiotic synthesis as origin of proteinous amino acids.

    PubMed

    Wong, J T; Bronskill, P M

    1979-07-18

    The production of some nonproteinous, and lack of production of other proteinous, amino acids in model prebiotic synthesis, along with the instability of glutamine and asparagine, suggest that not all of the 20 present day proteinous amino acids gained entry into proteins directly from the primordial soup. Instead, a process of active co-evolution of the genetic code and its constituent amino acids would have to precede the final selection of these proteinous amono acids.

  13. Functional role of the bovine oocyte-specific protein JY-1 in meiotic maturation, cumulus expansion, and subsequent embryonic development.

    PubMed

    Lee, Kyung-Bon; Wee, Gabbine; Zhang, Kun; Folger, Joseph K; Knott, Jason G; Smith, George W

    2014-03-01

    Oocyte-expressed genes regulate key aspects of ovarian follicular development and early embryogenesis. We previously demonstrated a requirement of the oocyte-specific protein JY-1 for bovine early embryogenesis. Given that JY-1 is present in oocytes throughout folliculogenesis, and oocyte-derived JY-1 mRNA is temporally regulated postfertilization, we hypothesized that JY-1 levels in oocytes impact nuclear maturation and subsequent early embryogenesis. A novel model system, whereby JY-1 small interfering RNA was microinjected into cumulus-enclosed germinal vesicle-stage oocytes and meiotic arrest maintained for 48 h prior to in vitro maturation (IVM), was validated and used to determine the effect of reduced oocyte JY-1 expression on nuclear maturation, cumulus expansion, and embryonic development after in vitro fertilization. Depletion of JY-1 protein during IVM effectively reduced cumulus expansion, percentage of oocytes progressing to metaphase II, proportion of embryos that cleaved early, total cleavage rates and development to 8- to 16-cell stage, and totally blocked development to the blastocyst stage relative to controls. Supplementation with JY-1 protein during oocyte culture rescued effects of JY-1 depletion on meiotic maturation, cumulus expansion, and early cleavage, but did not rescue development to 8- to 16-cell and blastocyst stages. However, effects of JY-1 depletion postfertilization on development to 8- to 16-cell and blastocyst stages were rescued by JY-1 supplementation during embryo culture. In conclusion, these results support an important functional role for oocyte-derived JY-1 protein during meiotic maturation in promoting progression to metaphase II, cumulus expansion, and subsequent embryonic development.

  14. Honokiol reverses alcoholic fatty liver by inhibiting the maturation of sterol regulatory element binding protein-1c and the expression of its downstream lipogenesis genes

    SciTech Connect

    Yin Huquan; Kim, Youn-Chul; Chung, Young-Suk; Kim, Young-Chul; Shin, Young-Kee; Lee, Byung-Hoon

    2009-04-01

    Ethanol induces hepatic steatosis via a complex mechanism that is not well understood. Among the variety of molecules that have been proposed to participate in this mechanism, the sterol regulatory element (SRE)-binding proteins (SREBPs) have been identified as attractive targets for therapeutic intervention. In the present study, we evaluated the effects of honokiol on alcoholic steatosis and investigated its possible effect on the inhibition of SREBP-1c maturation. In in vitro studies, H4IIEC3 rat hepatoma cells developed increased lipid droplets when exposed to ethanol, but co-treatment with honokiol reversed this effect. Honokiol inhibited the maturation of SREBP-1c and its translocation to the nucleus, the binding of nSREBP-1c to SRE or SRE-related sequences of its lipogenic target genes, and the expression of genes for fatty acid synthesis. In contrast, magnolol, a structural isomer of honokiol, had no effect on nSREBP-1c levels. Male Wistar rats fed with a standard Lieber-DeCarli ethanol diet for 4 weeks exhibited increased hepatic triglyceride and decreased hepatic glutathione levels, with concomitantly increased serum alanine aminotransferase and TNF-{alpha} levels. Daily administration of honokiol (10 mg/kg body weight) by gavage during the final 2 weeks of ethanol treatment completely reversed these effects on hepatotoxicity markers, including hepatic triglyceride, hepatic glutathione, and serum TNF-{alpha}, with efficacious abrogation of fat accumulation in the liver. Inhibition of SREBP-1c protein maturation and of the expression of Srebf1c and its target genes for hepatic lipogenesis were also observed in vivo. A chromatin immunoprecipitation assay demonstrated inhibition of specific binding of SREBP-1c to the Fas promoter by honokiol in vivo. These results demonstrate that honokiol has the potential to ameliorate alcoholic steatosis by blocking fatty acid synthesis regulated by SREBP-1c.

  15. Activation of Protein Kinase A in Mature Osteoblasts Promotes a Major Bone Anabolic Response.

    PubMed

    Tascau, Liana; Gardner, Thomas; Anan, Hussein; Yongpravat, Charlie; Cardozo, Christopher P; Bauman, William A; Lee, Francis Y; Oh, Daniel S; Tawfeek, Hesham A

    2016-01-01

    Protein kinase A (PKA) regulates osteoblast cell function in vitro and is activated by important bone mass modulating agents. We determined whether PKA activation in osteoblasts is sufficient to mediate a bone anabolic response. Thus, a mouse model conditionally expressing a constitutively active PKA (CA-PKA) in osteoblasts (CA-PKA-OB mouse) was developed by crossing a 2.3-kb α1 (I)-collagen promoter-Cre mouse with a floxed-CA-PKA mouse. Primary osteoblasts from the CA-PKA-OB mice exhibited higher basal PKA activity than those from control mice. Microcomputed tomographic analysis revealed that CA-PKA-OB female mice had an 8.6-fold increase in femoral but only 1.16-fold increase in lumbar 5 vertebral bone volume/total volume. Femur cortical thickness and volume were also higher in the CA-PKA-OB mice. In contrast, alterations in many femoral microcomputed tomographic parameters in male CA-PKA-OB mice were modest. Interestingly, the 3-dimensional structure model index was substantially lower both in femur and lumbar 5 of male and female CA-PKA-OB mice, reflecting an increase in the plate to rod-like structure ratio. In agreement, femurs from female CA-PKA-OB mice had greater load to failure and were stiffer compared with those of control mice. Furthermore, the CA-PKA-OB mice had higher levels of serum bone turnover markers and increased osteoblast and osteoclast numbers per total tissue area compared with control animals. In summary, constitutive activation of PKA in osteoblasts is sufficient to increase bone mass and favorably modify bone architecture and improve mechanical properties. PKA activation in mature osteoblasts is, therefore, an important target for designing anabolic drugs for treating diseases with bone loss.

  16. Complementation of Seed Maturation Phenotypes by Ectopic Expression of ABSCISIC ACID INSENSITIVE3, FUSCA3 and LEAFY COTYLEDON2 in Arabidopsis.

    PubMed

    Roscoe, Thomas T; Guilleminot, Jocelyne; Bessoule, Jean-Jacques; Berger, Frédéric; Devic, Martine

    2015-06-01

    ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3) and LEAFY COTYLEDON2 (LEC2), collectively the AFL, are master regulators of seed maturation processes. This study examined the role of AFL in the production of seed reserves in Arabidopsis. Quantification of seed reserves and cytological observations of afl mutant embryos show that protein and lipid but not starch reserves are spatially regulated by AFL. Although AFL contribute to a common regulation of reserves, ABI3 exerts a quantitatively greater control over storage protein content whereas FUS3 controls lipid content to a greater extent. Although ABI3 controls the reserve content throughout the embryo, LEC2 and FUS3 regulate reserves in distinct embryonic territories. By analyzing the ability of an individual ectopically expressed AFL to suppress afl phenotypes genetically, we show that conserved domains common to each component of the AFL are sufficient for the initiation of storage product synthesis and the establishment of embryo morphology. This confirms redundancy among the AFL and indicates a threshold necessary for function within the AFL pool. Since no individual AFL was able to suppress the tolerance to desiccation, mid- and late-maturation programs were uncoupled.

  17. Protein and Amino Acid Profiles of Different Whey Protein Supplements.

    PubMed

    Almeida, Cristine C; Alvares, Thiago S; Costa, Marion P; Conte-Junior, Carlos A

    2016-01-01

    Whey protein (WP) supplements have received increasing attention by consumers due to the high nutritional value of the proteins and amino acids they provide. However, some WP supplements may not contain the disclosed amounts of the ingredients listed on the label, compromising the nutritional quality and the effectiveness of these supplements. The aim of this study was to evaluate and compare the contents of total protein (TP), α-lactalbumin (α-LA), β-lactoglobulin (β-LG), free essential amino acids (free EAA), and free branched-chain amino acids (free BCAA), amongst different WP supplements produced by U.S. and Brazilian companies. Twenty commercial brands of WP supplements were selected, ten manufactured in U.S. (WP-USA) and ten in Brazil (WP-BRA). The TP was analyzed using the Kjeldahl method, while α-LA, β-LG, free EAA, and free BCAA were analyzed using HPLC system. There were higher (p < 0.05) concentrations of TP, α-LA, β-LG, and free BCAA in WP-USA supplements, as compared to the WP-BRA supplements; however, there was no difference (p > 0.05) in the content of free EAA between WP-USA and WP-BRA. Amongst the 20 brands evaluated, four WP-USA and seven WP-BRA had lower (p < 0.05) values of TP than those specified on the label. In conclusion, the WP-USA supplements exhibited better nutritional quality, evaluated by TP, α-LA, β-LG, and free BCAA when compared to WP-BRA.

  18. Effects of feeding grass or red clover silage cut at two maturity stages in dairy cows. 1. Nitrogen metabolism and supply of amino acids.

    PubMed

    Vanhatalo, A; Kuoppala, K; Ahvenjärvi, S; Rinne, M

    2009-11-01

    This study investigated the effects of plant species (red clover vs. timothy-meadow fescue) and forage maturity at primary harvest (early vs. late cut silage) on rumen fermentation, nutrient digestion, and nitrogen metabolism including omasal canal AA flow and plasma AA concentration in lactating cows. Five dairy cows equipped with rumen cannulas were used in a study designed as a 5 x 5 Latin square with 21-d periods. The diets consisted of early-cut and late-cut grass and red clover silage, respectively, and a mixture of late-cut grass and early-cut red clover silages given ad libitum with 9 kg/d of a standard concentrate. Grass silage dry matter intake tended to decrease but that of red clover silages tended to increase with advancing maturity. Milk yields were unchanged among treatments, milk protein and fat concentrations being lower for red clover than for grass silage diets. Rumen fluid pH was unchanged but volatile fatty acid and ammonia concentrations were higher for red clover than for grass silage diets. Intake of N, and omasal canal flows of total nonammonia N (NAN), microbial NAN, and dietary NAN were higher for red clover than for grass silage diets but were not affected by forage maturity. However, microbial NAN flow and amount of N excreted in the feces decreased with advancing maturity for grass diets but increased for red clover diets. Apparent ruminal N degradability of the diets was unchanged, but true ruminal N degradability decreased and efficiency of microbial synthesis increased with red clover diets compared with grass silage diets. Omasal canal flows of AA, except those for Met and Cys, were on average 20% higher for red clover than grass silage diets. Omasal canal digesta concentrations of Leu, Phe, branched-chain, and essential AA were higher but those of Met lower for red clover than for grass silage diets. Plasma AA concentrations, except for His (unchanged) and Met (lower), were higher for red clover than for grass diets. However, none

  19. Sex Steroid Modulation of Fatty Acid Utilization and Fatty Acid Binding Protein Concentration in Rat Liver

    PubMed Central

    Ockner, Robert K.; Lysenko, Nina; Manning, Joan A.; Monroe, Scott E.; Burnett, David A.

    1980-01-01

    The mechanism by which sex steroids influence very low density hepatic lipoprotein triglyceride production has not been fully elucidated. In previous studies we showed that [14C]oleate utilization and incorporation into triglycerides were greater in hepatocyte suspensions from adult female rats than from males. The sex differences were not related to activities of the enzymes of triglyceride biosynthesis, whereas fatty acid binding protein (FABP) concentration in liver cytosol was greater in females. These findings suggested that sex differences in lipoprotein could reflect a sex steroid influence on the availability of fatty acids for hepatocellular triglyceride biosynthesis. In the present studies, sex steroid effects on hepatocyte [14C]oleate utilization and FABP concentration were investigated directly. Hepatocytes from immature (30-d-old) rats exhibited no sex differences in [14C]oleate utilization. With maturation, total [14C]oleate utilization and triglyceride biosynthesis increased moderately in female cells and decreased markedly in male cells; the profound sex differences in adults were maximal by age 60 d. Fatty acid oxidation was little affected. Rats were castrated at age 30 d, and received estradiol, testosterone, or no hormone until age 60 d, when hepatocyte [14C]oleate utilization was studied. Castration virtually eliminated maturational changes and blunted the sex differences in adults. Estradiol or testosterone largely reproduced the appropriate adult pattern of [14C]oleate utilization regardless of the genotypic sex of the treated animal. In immature females and males, total cytosolic FABP concentrations were similar. In 60-d-old animals, there was a striking correlation among all groups (females, males, castrates, and hormone-treated) between mean cytosolic FABP concentration on the one hand, and mean total [14C]oleate utilization (r = 0.91) and incorporation into triglycerides (r = 0.94) on the other. In 30-d-old animals rates of [14C

  20. Effects of threonine supplementation on whole-body protein synthesis and plasma metabolites in growing and mature horses.

    PubMed

    Mastellar, S L; Moffet, A; Harris, P A; Urschel, K L

    2016-01-01

    Current equine threonine requirement estimates do not account for probable use of threonine to maintain gut health and mucin synthesis. The objective of this study was to determine if threonine supplementation (+Thr) would increase whole-body protein synthesis (WBPS) in weanling colts (Study 1) and adult mares (Study 2). Both studies used a crossover design, where each of six animals was studied twice while receiving the isonitrogenous diets. The basal diets contained lower threonine levels (Basal) than the threonine (+Thr) supplemented diets. Threonine intakes in mg/kg BW/day were as follows: 79 (Basal) and 162 (+Thr) for Study 1 and 58 (Basal) and 119 (+Thr) for Study 2, in comparison to the NRC estimated requirements of 81 and 33 mg/kg BW/day for weanling and mature horses, respectively. Following 5 days of adaptation, blood samples were taken before and 90 min after the morning concentrate meal. The next day, whole-body phenylalanine kinetics were determined using a 2 h primed, constant infusion of [(13)C]sodium bicarbonate followed by a 4 h primed, constant infusion of [1-(13)C]phenylalanine. Most plasma amino acid (AA) concentrations were elevated post-feeding (P < 0.01). Lysine and valine plasma concentrations were lower (P <0.10), while methionine, threonine, and glycine plasma concentrations were greater (P <0.10) 90 min post concentrate meal feeding with +Thr in both studies. Phenylalanine flux, intake, oxidation and non-oxidative disposal were similar between treatments (P > 0.05). These findings suggest that supplementation of a single AA can affect the metabolism of several AAs and threonine was not a limiting AA in these diets.

  1. Fatty acid partitioning varies across fillet regions during sexual maturation in female rainbow trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rainbow trout (Oncorhynchus mykiss) are commonly reared as diploids (2N, two sets of chromosomes) or triploids (3N, three sets of chromosomes). Sexual maturation in 2N has negative effects on production efficiency, nutrient retention, and fillet quality. On the other hand, 3N female rainbow trout ...

  2. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    PubMed

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  3. Oocyte maturation in Xenopus laevis is blocked by the hormonal herbicide, 2,4-dichlorophenoxy acetic acid.

    PubMed

    Stebbins-Boaz, Barbara; Fortner, Katherine; Frazier, Jessie; Piluso, Suzanne; Pullen, Samuel; Rasar, Melissa; Reid, William; Sinclair, Kristin; Winger, Elisa

    2004-02-01

    Oocyte maturation is dependent on a complex program of morphological, ultrastructural, and biochemical signaling events, and if disrupted could lead to decreased fertility and population decline. The in vitro sensitivity of amphibian oocytes and oocyte maturation to plant growth factor and widely used hormonal herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), was examined in this study to determine its potential impact on early development and possible contribution to the global amphibian decline. Progesterone, which acts through a membrane receptor, triggers meiotic maturation in full grown (stage VI) Xenopus oocytes, characterized by cytoskeletal reorganization, nuclear dissolution, chromosome condensation, and spindle formation. Biochemically, the Mos/MAPK/MPF signaling pathway is activated, in part dependent on translational activation of specific maternal mRNAs such as c-Mos. Light microscopy revealed unusual asymmetric morphotypes in oocytes exposed to 2,4-D alone characterized by a white spot and bulge, termed coning, in the animal pole where the germinal vesicle (nucleus) persisted intact. Treatment of oocytes with cytochalasin B, a microfilament inhibitor, blocked these morphotypes but nocodazole, a microtubule depolymerizing agent, did not. Confocal microscopy showed that 2,4-D, itself, caused substantial depolymerization of perinuclear microtubules. Importantly, 2,4-D blocked progesterone-induced maturation as measured by the lack of nuclear breakdown, confirmed by the lack of Mos expression, MPF activation, and cytoplasmic polyadenylation of cyclin B1 mRNA. However, Western blot analysis and U0126 inhibitor studies showed that 2,4-D, either alone or in the presence of progesterone, induced MAPK phosphorylation through MAPKK. These results show that 2,4-D disrupts oocyte cytoskeletal organization and blocks maturation while stimulating an independent MAPK signaling pathway.

  4. Selenite promotes all-trans retinoic acid-induced maturation of acute promyelocytic leukemia cells

    PubMed Central

    Misra, Sougat; Selvam, Arun Kumar; Wallenberg, Marita; Ambati, Aditya; Matolcsy, András; Magalhaes, Isabelle; Lauter, Gilbert; Björnstedt, Mikael

    2016-01-01

    Selective targeting of the PML/RARα oncoprotein demonstrates a successful molecular targeted therapy in acute promyelocytic leukemia (APL) with a typical t(15:17) chromosomal translocation. The zinc-thiolate coordination is critical for structural stability of zinc finger proteins, including the PML moiety of PML/RARα. Based on the known interaction of redox-active selenium compounds with thiolate ligands of zinc, we herein have investigated the abrogatory effects of selenite alone or in combination with all-trans retinoic acid on PML/RARα and the possible effects on differentiation in these cells. At pharmacological concentrations, selenite inhibited the proliferation and survival of APL originated NB4 cells. In combination with ATRA, it potentiated the differentiation of NB4 cells without any differentiating effects of its own as a single agent. Concordant with our hypothesis, PML/RARα oncoprotein expression was completely abrogated by selenite. Increased expression of RAR, PU.1 and FOXO3A transcription factors in the combined treatment suggested the plausible basis for increased differentiation in these cells. We show that selenite at clinically achievable dose targets PML/RARα oncoprotein for degradation and potentiates differentiation of promyelocytic leukemic cells in combination with ATRA. The present investigation reveals the hitherto unknown potential of selenite in targeted abrogation of PML/RARα in APL cells with prospective therapeutic value. PMID:27732960

  5. Complete nucleotide and derived amino acid sequence of cDNA encoding the mitochondrial uncoupling protein of rat brown adipose tissue: lack of a mitochondrial targeting presequence.

    PubMed Central

    Ridley, R G; Patel, H V; Gerber, G E; Morton, R C; Freeman, K B

    1986-01-01

    A cDNA clone spanning the entire amino acid sequence of the nuclear-encoded uncoupling protein of rat brown adipose tissue mitochondria has been isolated and sequenced. With the exception of the N-terminal methionine the deduced N-terminus of the newly synthesized uncoupling protein is identical to the N-terminal 30 amino acids of the native uncoupling protein as determined by protein sequencing. This proves that the protein contains no N-terminal mitochondrial targeting prepiece and that a targeting region must reside within the amino acid sequence of the mature protein. Images PMID:3012461

  6. Megakaryocytic Maturation in Response to Shear Flow Is Mediated by the Activator Protein 1 (AP-1) Transcription Factor via Mitogen-activated Protein Kinase (MAPK) Mechanotransduction.

    PubMed

    Luff, Stephanie A; Papoutsakis, Eleftherios T

    2016-04-08

    Megakaryocytes (MKs) are exposed to shear flow as they migrate from the bone marrow hematopoietic compartment into circulation to release pro/preplatelets into circulating blood. Shear forces promote DNA synthesis, polyploidization, and maturation in MKs, and platelet biogenesis. To investigate mechanisms underlying these MK responses to shear, we carried out transcriptional analysis on immature and mature stem cell-derived MKs exposed to physiological shear. In immature (day (d)9) MKs, shear exposure up-regulated genes related to growth and MK maturation, whereas in mature (d12) MKs, it up-regulated genes involved in apoptosis and intracellular transport. Following shear-flow exposure, six activator protein 1 (AP-1) transcripts (ATF4,JUNB,JUN,FOSB,FOS, andJUND) were up-regulated at d9 and two AP-1 proteins (JunD and c-Fos) were up-regulated both at d9 and d12. We show that mitogen-activated protein kinase (MAPK) signaling is linked to both the shear stress response and AP-1 up-regulation. c-Jun N-terminal kinase (JNK) phosphorylation increased significantly following shear stimulation, whereas JNK inhibition reduced shear-induced JunD expression. Although p38 phosphorylation did not increase following shear flow, its inhibition reduced shear-induced JunD and c-Fos expression. JNK inhibition reduced fibrinogen binding and P-selectin expression of d12 platelet-like particles (PLPs), whereas p38 inhibition reduced fibrinogen binding of d12 PLPs. AP-1 expression correlated with increased MK DNA synthesis and polyploidization, which might explain the observed impact of shear on MKs. To summarize, we show that MK exposure to shear forces results in JNK activation, AP-1 up-regulation, and downstream transcriptional changes that promote maturation of immature MKs and platelet biogenesis in mature MKs.

  7. A Novel and Conserved Plasmodium Sporozoite Membrane Protein SPELD is Required for Maturation of Exo-erythrocytic Forms

    PubMed Central

    Al-Nihmi, Faisal Mohammed Abdul; Kolli, Surendra Kumar; Reddy, Segireddy Rameswara; Mastan, Babu S.; Togiri, Jyothi; Maruthi, Mulaka; Gupta, Roshni; Sijwali, Puran Singh; Mishra, Satish; Kumar, Kota Arun

    2017-01-01

    Plasmodium sporozoites are the infective forms of malaria parasite to vertebrate host and undergo dramatic changes in their transcriptional repertoire during maturation in mosquito salivary glands. We report here the role of a novel and conserved Plasmodium berghei protein encoded by PBANKA_091090 in maturation of Exo-erythrocytic Forms (EEFs) and designate it as Sporozoite surface Protein Essential for Liver stage Development (PbSPELD). PBANKA_091090 was previously annotated as PB402615.00.0 and its transcript was recovered at maximal frequency in the Serial Analysis of the Gene Expression (SAGE) of Plasmodium berghei salivary gland sporozoites. An orthologue of this transcript was independently identified in Plasmodium vivax sporozoite microarrays and was designated as Sporozoite Conserved Orthologous Transcript-2 (scot-2). Functional characterization through reverse genetics revealed that PbSPELD is essential for Plasmodium liver stage maturation. mCherry transgenic of PbSPELD localized the protein to plasma membrane of sporozoites and early EEFs. Global microarray analysis of pbspeld ko revealed EEF attenuation being associated with down regulation of genes central to general transcription, cell cycle, proteosome and cadherin signaling. pbspeld mutant EEFs induced pre-erythrocytic immunity with 50% protective efficacy. Our studies have implications for attenuating the human Plasmodium liver stages by targeting SPELD locus. PMID:28067322

  8. The Arabidopsis Chloroplast Stromal N-Terminome: Complexities of Amino-Terminal Protein Maturation and Stability1[OPEN

    PubMed Central

    Rowland, Elden; Kim, Jitae; Bhuiyan, Nazmul H.; van Wijk, Klaas J.

    2015-01-01

    Protein amino (N) termini are prone to modifications and are major determinants of protein stability in bacteria, eukaryotes, and perhaps also in chloroplasts. Most chloroplast proteins undergo N-terminal maturation, but this is poorly understood due to insufficient experimental information. Consequently, N termini of mature chloroplast proteins cannot be accurately predicted. This motivated an extensive characterization of chloroplast protein N termini in Arabidopsis (Arabidopsis thaliana) using terminal amine isotopic labeling of substrates and mass spectrometry, generating nearly 14,000 tandem mass spectrometry spectra matching to protein N termini. Many nucleus-encoded plastid proteins accumulated with two or three different N termini; we evaluated the significance of these different proteoforms. Alanine, valine, threonine (often in N-α-acetylated form), and serine were by far the most observed N-terminal residues, even after normalization for their frequency in the plastid proteome, while other residues were absent or highly underrepresented. Plastid-encoded proteins showed a comparable distribution of N-terminal residues, but with a higher frequency of methionine. Infrequent residues (e.g. isoleucine, arginine, cysteine, proline, aspartate, and glutamate) were observed for several abundant proteins (e.g. heat shock proteins 70 and 90, Rubisco large subunit, and ferredoxin-glutamate synthase), likely reflecting functional regulation through their N termini. In contrast, the thylakoid lumenal proteome showed a wide diversity of N-terminal residues, including those typically associated with instability (aspartate, glutamate, leucine, and phenylalanine). We propose that, after cleavage of the chloroplast transit peptide by stromal processing peptidase, additional processing by unidentified peptidases occurs to avoid unstable or otherwise unfavorable N-terminal residues. The possibility of a chloroplast N-end rule is discussed. PMID:26371235

  9. In vitro maturation of dromedary (Camelus dromedarius) oocytes: effect of different protein supplementations and epidermal growth factor*.

    PubMed

    Wani, Na; Wernery, U

    2010-10-01

    The present experiment was aimed to compare the effect of different protein supplementation sources, foetal calf serum (FCS), oestrous dromedary serum (EDS) and BSA, in experiment 1, and the effect of different concentrations of epidermal growth factor (EGF), in experiment 2, on in vitro nuclear maturation of the dromedary oocytes. Cumulus oocyte complexes (COCs) were harvested from the ovaries collected from a local slaughterhouse by aspirating the visible follicles in PBS supplemented with 5% FCS. Pooled COCs were randomly distributed to 4-well culture plates containing 500 μl of the maturation medium and cultured at 38.5 °C in an atmosphere of 5% CO(2) in air for 32-36 h. The basic maturation medium consisted of TCM-199 supplemented with 0.1 mg/ml L-glutamine, 0.8 mg/ml sodium bicarbonate, 0.25 mg/ml pyruvate, 50 μg/ml gentamicin, 10 μg/ml bFSH, 10 μg/ml bLH and 1 μg/ml estradiol. In experiment 1, this medium was supplemented with 10% FCS, 10% EDS or 0.4% BSA, whereas in experiment 2, it was supplemented with 0.4% BSA and 0, 10, 20 or 50 ng/ml of EGF. The oocytes were fixed, stained with 1% aceto-orcein stain and their nuclear status was evaluated. Oocytes were classified as germinal vesicle, diakinesis, metaphase-I, anaphase-I (A-I), metaphase-II (M-II) and those with degenerated, fragmented, scattered, activated or without visible chromatin as others. There was no difference (p > 0.05) observed in the proportion of oocytes reaching M-II stage between the media supplemented with FCS (71.5 ± 4.8), EDS (72.8 ± 2.9) and BSA (72.7 ± 6.2). In experiment 2, a higher proportion (p < 0.05) of oocytes reached M-II stage when the medium was supplemented with 20 ng/ml of EGF (81.4 ± 3.2) when compared with the media supplemented with 10 ng/ml (66.9 ± 4.1) and control (67.2 ± 7.1) groups. It may be concluded that the maturation media for dromedary camel oocytes can be supplemented with any of the three protein sources, i.e. FCS, EDS and BSA without any

  10. Nucleic acids encoding human trithorax protein

    DOEpatents

    Evans, Glen A.; Djabali, Malek; Selleri, Licia; Parry, Pauline

    2001-01-01

    In accordance with the present invention, there is provided an isolated peptide having the characteristics of human trithorax protein (as well as DNA encoding same, antisense DNA derived therefrom and antagonists therefor). The invention peptide is characterized by having a DNA binding domain comprising multiple zinc fingers and at least 40% amino acid identity with respect to the DNA binding domain of Drosophila trithorax protein and at least 70% conserved sequence with respect to the DNA binding domain of Drosophila trithorax protein, and wherein said peptide is encoded by a gene located at chromosome 11 of the human genome at q23. Also provided are methods for the treatment of subject(s) suffering from immunodeficiency, developmental abnormality, inherited disease, or cancer by administering to said subject a therapeutically effective amount of one of the above-described agents (i.e., peptide, antagonist therefor, DNA encoding said peptide or antisense DNA derived therefrom). Also provided is a method for the diagnosis, in a subject, of immunodeficiency, developmental abnormality, inherited disease, or cancer associated with disruption of chromosome 11 at q23.

  11. Bone morphogenetic protein 1 is expressed in porcine ovarian follicles and promotes oocyte maturation and early embryonic development

    PubMed Central

    LEI, Xiaocan; CUI, Kuiqing; CAI, Xiaoyan; REN, Yanping; LIU, Qingyou; SHI, Deshun

    2016-01-01

    In the present study, we tried to determine whether bone morphogenetic protein 1 (BMP1) plays a role in ovarian follicular development and early embryo development. We systematically investigated the expression and influence of BMP1 during porcine follicle and early embryonic development. Immunohistochemistry demonstrated that the BMP1 protein is expressed in granular cells and oocytes during follicular development, from primary to pre-ovulatory follicles, including atretic follicles and the corpus luteum. The mRNA expression of BMP1 significantly increased as the porcine follicles grew. Immunofluorescence analysis indicated that BMP1 was expressed in cumulus-oocyte complexes (COCs), oocytes and porcine embryos during early in vitro culture. qPCR and western blot analysis showed that the expression of BMP1 was significantly up-regulated in mature porcine oocytes and COCs compared to immature oocytes and COCs. BMP1 is expressed in early porcine embryos, and its expression reaches a peak at the 8-cell stage. To determine the effect of BMP1 on the maturation of oocytes and the development of early embryos, various concentrations of BMP1 recombinant protein or antibody were added to the in vitro culture media, respectively. BMP1 significantly affected the porcine oocyte maturation rate, the cleavage rate and the blastocyst development rate of embryos cultured in vitro in a positive way, as well as the blastocyst cell number. In conclusion, BMP1 is expressed throughout porcine ovarian follicle development and early embryogenesis, and it promotes oocyte maturation and the developmental ability of embryos during early in vitro culture. PMID:27890905

  12. Embryonic poly(A)-binding protein (EPAB) is required for oocyte maturation and female fertility in mice

    PubMed Central

    Guzeloglu-Kayisli, Ozlem; Lalioti, Maria D.; Aydiner, Fulya; Sasson, Isaac; Ilbay, Orkan; Sakkas, Denny; Lowther, Katie M.; Mehlmann, Lisa M.; Seli, Emre

    2014-01-01

    Gene expression during oocyte maturation and early embryogenesis up to zygotic genome activation requires translational activation of maternally-derived mRNAs. EPAB [embryonic poly(A)-binding protein] is the predominant poly(A)-binding protein during this period in Xenopus, mouse and human. In Xenopus oocytes, ePAB stabilizes maternal mRNAs and promotes their translation. To assess the role of EPAB in mammalian reproduction, we generated Epab-knockout mice. Although Epab−/− males and Epab+/− of both sexes were fertile, Epab−/− female mice were infertile, and could not generate embryos or mature oocytes in vivo or in vitro. Epab−/− oocytes failed to achieve translational activation of maternally-stored mRNAs upon stimulation of oocyte maturation, including Ccnb1 (cyclin B1) and Dazl (deleted in azoospermia-like) mRNAs. Microinjection of Epab mRNA into Epab−/− germinal vesicle stage oocytes did not rescue maturation, suggesting that EPAB is also required for earlier stages of oogenesis. In addition, late antral follicles in the ovaries of Epab−/− mice exhibited impaired cumulus expansion, and a 8-fold decrease in ovulation, associated with a significant down-regulation of mRNAs encoding the EGF (epidermal growth factor)-like growth factors Areg (amphiregulin), Ereg (epiregulin) and Btc (betacellulin), and their downstream regulators, Ptgs2 (prostaglandin synthase 2), Has2 (hyaluronan synthase 2) and Tnfaip6 (tumour necrosis factor α-induced protein 6). The findings from the present study indicate that EPAB is necessary for oogenesis, folliculogenesis and female fertility in mice. PMID:22621333

  13. The Drosophila chromosomal protein Mst77F is processed to generate an essential component of mature sperm chromatin

    PubMed Central

    2016-01-01

    In most animals, the bulk of sperm DNA is packaged with sperm nuclear basic proteins (SNBPs), a diverse group of highly basic chromosomal proteins notably comprising mammalian protamines. The replacement of histones with SNBPs during spermiogenesis allows sperm DNA to reach an extreme level of compaction, but little is known about how SNBPs actually function in vivo. Mst77F is a Drosophila SNBP with unique DNA condensation properties in vitro, but its role during spermiogenesis remains unclear. Here, we show that Mst77F is required for the compaction of sperm DNA and the production of mature sperm, through its cooperation with protamine-like proteins Mst35Ba/b. We demonstrate that Mst77F is incorporated in spermatid chromatin as a precursor protein, which is subsequently processed through the proteolysis of its N-terminus. The cleavage of Mst77F is very similar to the processing of protamine P2 during human spermiogenesis and notably leaves the cysteine residues in the mature protein intact, suggesting that they participate in the formation of disulfide cross-links. Despite the rapid evolution of SNBPs, sperm chromatin condensation thus involves remarkably convergent mechanisms in distantly related animals. PMID:27810970

  14. [Fatty acids in mature breast milk from low socioeconomic levels of Venezuelan women: influence of temperature and time of storage].

    PubMed

    Bosch, Virgilio; Golfetto, Iván; Alonso, Hilda; Laurentin, Zuly; Materan, Mercedes; García, Ninoska

    2009-03-01

    Fatty acids in mature breast milk from low socioeconomic levels of Venezuelan women: influence of temperature and time of storage. Breast milk is the main food in infants from birth until six months old. It is important to know if precarious life conditions could limit some nutrients in mother's milk. The objective of this study is to evaluate the total fat and essential long chain fatty acids in mature breast milk from low socioeconomic levels in Venezuelan women. The values of total fat (3.56 +/- 1.18 g/%) are similar that reported in the literature, however the sume of LC-PUFA n-3 was 0.3 +/- 0.04% which is related whith low n-3 fatty acid maternal diet.The sume LC-PUFA n-3 contained in this study is below most of the reviewed publications. The average amount of 22:6 n-3 in breast milk offered to newborn one month old (750 ml/day) is below estimated requirements (70 mg/day). The majority of these samples provide to the infants, the amount of DHA estimated as convenient to sustain normal growth. Also it was explored how the time (8h to 24 h) and temperatura (+4 degrees C, +15 degrees C, and +25 degrees C) can affect its composition. This data will permit to select the best condiitions of sampling and storage of mother's milk in future investigations in different regions of Venezuela. Most of the breast milk fatty acids tolerate some hours at room temperature (25 degrees C) but essential long chain fatty acids are very vulnerable. We propose that, in consequence, that samples should be transported in sterile conditions in dry ice to the laboratory in a few hours and should be kept at -70 degrees C until their analysis.

  15. Protein export by the mycobacterial SecA2 system is determined by the preprotein mature domain.

    PubMed

    Feltcher, Meghan E; Gibbons, Henry S; Ligon, Lauren S; Braunstein, Miriam

    2013-02-01

    At the core of the bacterial general secretion (Sec) pathway is the SecA ATPase, which powers translocation of unfolded preproteins containing Sec signal sequences through the SecYEG membrane channel. Mycobacteria have two nonredundant SecA homologs: SecA1 and SecA2. While the essential SecA1 handles "housekeeping" export, the nonessential SecA2 exports a subset of proteins and is required for Mycobacterium tuberculosis virulence. Currently, it is not understood how SecA2 contributes to Sec export in mycobacteria. In this study, we focused on identifying the features of two SecA2 substrates that target them to SecA2 for export, the Ms1704 and Ms1712 lipoproteins of the model organism Mycobacterium smegmatis. We found that the mature domains of Ms1704 and Ms1712, not the N-terminal signal sequences, confer SecA2-dependent export. We also demonstrated that the lipid modification and the extreme N terminus of the mature protein do not impart the requirement for SecA2 in export. We further showed that the Ms1704 mature domain can be efficiently exported by the twin-arginine translocation (Tat) pathway. Because the Tat system exports only folded proteins, this result implies that SecA2 substrates can fold in the cytoplasm and suggests a putative role of SecA2 in enabling export of such proteins. Thus, the mycobacterial SecA2 system may represent another way that bacteria solve the problem of exporting proteins that can fold in the cytoplasm.

  16. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2011-12-06

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  17. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  18. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2011-03-22

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  19. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2008-10-07

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  20. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2009-04-28

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  1. Effects of wheat maturation stage and cooking method on dietary fiber and phytic acid contents of firik, a wheat-based local food.

    PubMed

    Ozboy, O; Ozkaya, B; Ozkaya, H; Köksel, H

    2001-10-01

    Samples of two durum wheat cultivars (cvs. Duraking and Ege 88) at different maturation stages (13, 16, 19, 22, 25 days post anthesis) were processed into firik (a wheat-based specialty food) using two different cooking methods: roasting (scorching) on flames and boiling at atmospheric pressure. Both the acid detergent and neutral detergent fiber contents of the firiks produced from two durum wheat samples decreased significantly (p < 0.01) with maturation. Total P contents of the firiks of both cultivars produced by both methods showed a significant downward trend within the period of maturation while their phytic acid contents showed a significant upward trend (p < 0.01). It was possible to obtain a reduced phytic acid, high fiber product from the wheats harvested at early stages of maturation (13 and 16 days after anthesis).

  2. Protective effects of antioxidants on linoleic acid-treated bovine oocytes during maturation and subsequent embryo development.

    PubMed

    Khalil, Wael A; Marei, Waleed F A; Khalid, Muhammad

    2013-07-15

    Linoleic acid (LA; n-6, 18:2) is the most abundant polyunsaturated fatty acid in the ovarian follicular fluid and is known to inhibit oocyte maturation and its subsequent development. In the present study, we investigated how its effects on cumulus cell expansion, oocyte nuclear maturation, and blastocyst development are altered by supplementation of the media with vitamin E (VE; 100 μM) and glutathione peroxidase (GPx; 1 μM) either alone or in combination, and whether it has any effect on the mRNA expression of GPx1, GPx4, or superoxide dismutase (SOD2) in the bovine cumulus oocyte complexes (COCs). LA supplementation of the culture media significantly (P ≤ 0.05) reduced the percentage of COCs exhibiting full cumulus cell expansion and the percentage of oocytes reaching metaphase II stage, and lowered the blastocyst rate compared with controls. And these inhibitory effects were associated with a reduction in the relative mRNA expression of GPx1 and SOD2 but not of GPx4 compared with controls. However, VE and GPx, both alone and in combination, completely abrogated the inhibitory effects of LA on nuclear maturation of oocytes and blastocyst rate but failed to do so for cumulus cell expansion. In conclusion, these data suggest that the detrimental effects of LA on oocyte developmental competence are mediated, at least in part, by a reduction in GPx1 and SOD2 mRNA expression. Moreover, VE and GPx may provide protection to most of the inhibitory effects of LA.

  3. Overexpression of poly(A) binding protein prevents maturation-specific deadenylation and translational inactivation in Xenopus oocytes.

    PubMed Central

    Wormington, M; Searfoss, A M; Hurney, C A

    1996-01-01

    The translational regulation of maternal mRNAs is the primary mechanism by which stage-specific programs of protein synthesis are executed during early development. Translation of a variety of maternal mRNAs requires either the maintenance or cytoplasmic elongation of a 3' poly(A) tail. Conversely, deadenylation results in translational inactivation. Although its precise function remains to be elucidated, the highly conserved poly(A) binding protein I (PABP) mediates poly(A)-dependent events in translation initiation and mRNA stability. Xenopus oocytes contain less than one PABP per poly(A) binding site suggesting that the translation of maternal mRNAs could be either limited by or independent of PABP. In this report, we have analyzed the effects of overexpressing PABP on the regulation of mRNAs during Xenopus oocyte maturation. Increased levels of PABP prevent the maturation-specific deadenylation and translational inactivation of maternal mRNAS that lack cytoplasmic polyadenylation elements. Overexpression of PABP does not interfere with maturation-specific polyadenylation, but reduces the recruitment of some mRNAs onto polysomes. Deletion of the C-terminal basic region and a single RNP motif from PABP significantly reduces both its binding to polyadenylated RNA in vivo and its ability to prevent deadenylation. In contrast to a yeast PABP-dependent poly(A) nuclease, PABP inhibits Xenopus oocyte deadenylase in vitro. These results indicate that maturation-specific deadenylation in Xenopus oocytes is facilitated by a low level of PABP consistent with a primary function for PABP to confer poly(A) stability. Images PMID:8631310

  4. Cellular Retinoic Acid Binding Protein and Breast Cancer

    DTIC Science & Technology

    2006-05-01

    fatty acid probe anilinonaphtalene-8- sulphonic acid (ANS) was measured. ANS readily associates with various FABPs and its fluorescence is highly...DAMD17-03-1-0249 TITLE: Cellular Retinoic Acid Binding Protein and Breast Cancer PRINCIPAL INVESTIGATOR: Leslie J. (Willmert) Donato...DATES COVERED (From - To) 14 Apr 03 – 13 Apr 06 5a. CONTRACT NUMBER Cellular Retinoic Acid Binding Protein and Breast Cancer 5b. GRANT NUMBER

  5. Chromodomain, Helicase and DNA-binding CHD1 protein, CHR5, are involved in establishing active chromatin state of seed maturation genes.

    PubMed

    Shen, Yuan; Devic, Martine; Lepiniec, Loïc; Zhou, Dao-Xiu

    2015-08-01

    Chromatin modification and remodelling are the basis for epigenetic regulation of gene expression. LEAFY COTYLEDON 1 (LEC1), LEAFY COTYLEDON 2 (LEC2), ABSCISIC ACID-INSENSITIVE 3 (ABI3) and FUSCA3 (FUS3) are key regulators of embryo development and are repressed after seed maturation. The chromatin remodelling CHD3 protein PICKLE (PKL) is involved in the epigenetic silencing of the genes. However, the chromatin mechanism that establishes the active state of these genes during early embryo development is not clear. We show that the Arabidopsis CHD1-related gene, CHR5, is activated during embryo development. Mutation of the gene reduced expression of LEC1, ABI3 and FUS3 in developing embryo and accumulation of seed storage proteins. Analysis of double mutants revealed an antagonistic function between CHR5 and PKL in embryo gene expression and seed storage protein accumulation, which likely acted on the promoter region of the genes. CHR5 was shown to be associated with the promoters of ABI3 and FUS3 and to be required to reduce nucleosome occupancy near the transcriptional start site. The results suggest that CHR5 is involved in establishing the active state of embryo regulatory genes by reducing nucleosomal barrier, which may be exploited to enhance seed protein production.

  6. Proteomic analysis of the mature Brassica stigma reveals proteins with diverse roles in vegetative and reproductive development.

    PubMed

    Nazemof, Nazila; Couroux, Philippe; Xing, Tim; Robert, Laurian S

    2016-09-01

    The stigma, the specialized apex of the Brassicaceae gynoecium, plays a role in pollen capture, discrimination, hydration, germination, and guidance. Despite this crucial role in reproduction, the global proteome underlying Brassicaceae stigma development and function remains largely unknown. As a contribution towards the characterization of the Brassicaceae dry stigma global proteome, more than 2500 Brassica napus mature stigma proteins were identified using three different gel-based proteomics approaches. Most stigma proteins participated in Metabolic Processes, Responses to Stimulus or Stress, Cellular or Developmental Processes, and Transport. The stigma was found to express a wide variety of proteins with demonstrated roles in cellular and organ development including proteins known to be involved in cellular expansion and morphogenesis, embryo development, as well as gynoecium and stigma development. Comparisons to a corresponding proteome from a very morphologically different Poaceae dry stigma showed a very similar distribution of proteins among different functional categories, but also revealed evident distinctions in protein composition especially in glucosinolate and carotenoid metabolism, photosynthesis, and self-incompatibility. To our knowledge, this study reports the largest Brassicaceae stigma protein dataset described to date.

  7. Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation

    PubMed Central

    Lokareddy, Ravi K.; Sankhala, Rajeshwer S.; Roy, Ankoor; Afonine, Pavel V.; Motwani, Tina; Teschke, Carolyn M.; Parent, Kristin N.; Cingolani, Gino

    2017-01-01

    Tailed bacteriophages and herpesviruses assemble infectious particles via an empty precursor capsid (or ‘procapsid') built by multiple copies of coat and scaffolding protein and by one dodecameric portal protein. Genome packaging triggers rearrangement of the coat protein and release of scaffolding protein, resulting in dramatic procapsid lattice expansion. Here, we provide structural evidence that the portal protein of the bacteriophage P22 exists in two distinct dodecameric conformations: an asymmetric assembly in the procapsid (PC-portal) that is competent for high affinity binding to the large terminase packaging protein, and a symmetric ring in the mature virion (MV-portal) that has negligible affinity for the packaging motor. Modelling studies indicate the structure of PC-portal is incompatible with DNA coaxially spooled around the portal vertex, suggesting that newly packaged DNA triggers the switch from PC- to MV-conformation. Thus, we propose the signal for termination of ‘Headful Packaging' is a DNA-dependent symmetrization of portal protein. PMID:28134243

  8. Design of a Protein-Targeting System for Lactic Acid Bacteria

    PubMed Central

    Dieye, Y.; Usai, S.; Clier, F.; Gruss, A.; Piard, J.-C.

    2001-01-01

    We designed an expression and export system that enabled the targeting of a reporter protein (the staphylococcal nuclease Nuc) to specific locations in Lactococcus lactis cells, i.e., cytoplasm, cell wall, or medium. Optimization of protein secretion and of protein cell wall anchoring was performed with L. lactis cells by modifying the signals located at the N and C termini, respectively, of the reporter protein. Efficient translocation of precursor (∼95%) is obtained using the signal peptide from the lactococcal Usp45 protein and provided that the mature protein is fused to overall anionic amino acids at its N terminus; those residues prevented interactions of Nuc with the cell envelope. Nuc could be covalently anchored to the peptidoglycan by using the cell wall anchor motif of the Streptococcus pyogenes M6 protein. However, the anchoring step proved to not be totally efficient in L. lactis, as considerable amounts of protein remained membrane associated. Our results may suggest that the defect is due to limiting sortase in the cell. The optimized expression and export vectors also allowed secretion and cell wall anchoring of Nuc in food-fermenting and commensal strains of Lactobacillus. In all strains tested, both secreted and cell wall-anchored Nuc was enzymatically active, suggesting proper enzyme folding in the different locations. These results provide the first report of a targeting system in lactic acid bacteria in which the final location of a protein is controlled and biological activity is maintained. PMID:11418555

  9. Structural Requirements for Function of Yeast GGAs in Vacuolar Protein Sorting, α-Factor Maturation, and Interactions with Clathrin

    PubMed Central

    Mullins, Chris; Bonifacino, Juan S.

    2001-01-01

    The GGAs (Golgi-localized, gamma-ear-containing, ARF-binding proteins) are a family of multidomain adaptor proteins involved in protein sorting at the trans-Golgi network of eukaryotic cells. Here we present results from a functional characterization of the two Saccharomyces cerevisiae GGAs, Gga1p and Gga2p. We show that deletion of both GGA genes causes defects in sorting of carboxypeptidase Y (CPY) and proteinase A to the vacuole, vacuolar morphology, and maturation of α-factor. A structure-function analysis reveals a requirement of the VHS, GAT, and hinge for function, while the GAE domain is less important. We identify putative clathrin-binding motifs in the hinge domain of both yeast GGAs. These motifs are shown to mediate clathrin binding in vitro. While mutation of these motifs alone does not block function of the GGAs in vivo, combining these mutations with truncations of the hinge and GAE domains diminishes function, suggesting functional cooperation between different clathrin-binding elements. Thus, these observations demonstrate that the yeast GGAs play important roles in the CPY pathway, vacuole biogenesis, and α-factor maturation and identify structural determinants that are critical for these functions. PMID:11689690

  10. Nucleotide and nucleic acid status in shoot tips from juvenile and mature clones of Sequoiadendron giganteum during rest and growth phases.

    PubMed

    Monteuuis, O; Gendraud, M

    1987-09-01

    Nucleoside triphosphate and nucleic acid contents of shoot tips of juvenile and mature clones of Sequoiadendron giganteum Buchholz were analyzed during rest and growth phases. In both juvenile and mature clones, shoot growth activity was characterized by significant increases in ATP, non-adenylic nucleoside triphosphate (NTP) and RNA levels. During the rest period, both ATP/NTP and RNA/DNA ratios were significantly higher in the juvenile clone than in the mature clone. However, during the growth phase, only the ATP/NTP ratio was higher in the juvenile than in the mature clone. The results suggest that the physiological differences between shoot tips of juvenile and mature tissues during the rest phase tend to decline as active shoot growth commences. This conclusion is consistent with morphological observations and with the varying organogenetic capacities of in vitro cultures of explants removed from stock plants at different times.

  11. Multisite clickable modification of proteins using lipoic acid ligase.

    PubMed

    Plaks, Joseph G; Falatach, Rebecca; Kastantin, Mark; Berberich, Jason A; Kaar, Joel L

    2015-06-17

    Approaches that allow bioorthogonal and, in turn, site-specific chemical modification of proteins present considerable opportunities for modulating protein activity and stability. However, the development of such approaches that enable site-selective modification of proteins at multiple positions, including internal sites within a protein, has remained elusive. To overcome this void, we have developed an enzymatic approach for multisite clickable modification based on the incorporation of azide moieties in proteins using lipoic acid ligase (LplA). The ligation of azide moieties to the model protein, green fluorescent protein (GFP), at the N-terminus and two internal sites using lipoic acid ligase was shown to proceed efficiently with near-complete conversion. Modification of the ligated azide groups with poly(ethylene glycol) (PEG), α-d-mannopyranoside, and palmitic acid resulted in highly homogeneous populations of protein-polymer, protein-sugar, and protein-fatty acid conjugates. The homogeneity of the conjugates was confirmed by mass spectrometry (MALDI-TOF) and SDS-PAGE electrophoresis. In the case of PEG attachment, which involved the use of strain-promoted azide-alkyne click chemistry, the conjugation reaction resulted in highly homogeneous PEG-GFP conjugates in less than 30 min. As further demonstration of the utility of this approach, ligated GFP was also covalently immobilized on alkyne-terminated self-assembled monolayers. These results underscore the potential of this approach for, among other applications, site-specific multipoint protein PEGylation, glycosylation, fatty acid modification, and protein immobilization.

  12. Effect of the addition of insulin-transferrin-selenium and/or L-ascorbic acid to the in vitro maturation of prepubertal bovine oocytes on cytoplasmic maturation and embryo development.

    PubMed

    Córdova, B; Morató, R; Izquierdo, D; Paramio, T; Mogas, T

    2010-11-01

    This study examines the effects of adding insulin-transferrin-selenium (ITS) and/or L-ascorbic acid (ASC) to a conventional medium for maturing prepubertal calf oocytes on chromosome organization, cortical granule (CG) distribution, and embryo development to the blastocyst stage. Cumulus-oocyte complexes (COCs) were matured in medium TCM 199 containing PVA and EGF (control), and supplemented with ITS and/or ASC for 12 or 24 h at 38.5 °C in a 5% CO(2) atmosphere. Calf oocytes matured with ITS + ASC or ASC for 12 h showed significantly higher percentages of peripherally distributed CG (83.3% and 86.2% respectively) than control oocytes (71.4%) or those matured with ITS alone (71.4%). No effects on chromosome organization were detected. Conversely, 24 h of supplementation did not affect CG distribution patterns, while the addition of ASC gave rise to significantly higher percentages of oocytes showing a normal alignment of their chromosomes (72.9%) compared to controls (58.7%). At 48 hpi, similar cleavage rates were observed among treatments regardless of the treatment time. However, the presence of ITS + ASC for 12 h rendered significantly higher blastocyst rates than those recorded in the remaining groups. Supplementation for 24 h with ITS or ITS + ASC had no significant effects on the percentage of blastocysts obtained, while the presence of ASC significantly reduced the proportions of embryos developing to the blastocyst stage. Our data suggest that ITS plus L-ascorbic acid supplementation during the first 12 h of in vitro maturation improves cytoplasm maturation and the developmental competence of embryos produced from prepubertal calf oocytes.

  13. Nitric oxide synthase (NOS) inhibition during porcine in vitro maturation modifies oocyte protein S-nitrosylation and in vitro fertilization.

    PubMed

    Romero-Aguirregomezcorta, Jon; Santa, Ángela Patricia; García-Vázquez, Francisco Alberto; Coy, Pilar; Matás, Carmen

    2014-01-01

    Nitric oxide (NO) is a molecule involved in many reproductive processes. Its importance during oocyte in vitro maturation (IVM) has been demonstrated in various species although sometimes with contradictory results. The objective of this study was to determine the effect of NO during IVM of cumulus oocyte complexes and its subsequent impact on gamete interaction in porcine species. For this purpose, IVM media were supplemented with three NOS inhibitors: NG-nitro-L-arginine methyl ester (L-NAME), NG-monomethyl-L-arginine (L-NMMA) and aminoguanidine (AG). A NO donor, S-nitrosoglutathione (GSNO), was also used. The effects on the cumulus cell expansion, meiotic resumption, zona pellucida digestion time (ZPdt) and, finally, on in vitro fertilization (IVF) parameters were evaluated. The oocyte S-nitrosoproteins were also studied by in situ nitrosylation. The results showed that after 42 h of IVM, AG, L-NAME and L-NMMA had an inhibitory effect on cumulus cell expansion. Meiotic resumption was suppressed only when AG was added, with 78.7% of the oocytes arrested at the germinal vesicle state (P<0.05). Supplementation of the IVM medium with NOS inhibitors or NO donor did not enhance the efficiency of IVF, but revealed the importance of NO in maturation and subsequent fertilization. Furthermore, protein S-nitrosylation is reported for the first time as a pathway through which NO exerts its effect on porcine IVM; therefore, it would be important to determine which proteins are nitrosylated in the oocyte and their functions, in order to throw light on the mechanism of action of NO in oocyte maturation and subsequent fertilization.

  14. Signaling adaptor protein SH2B1 enhances neurite outgrowth and accelerates the maturation of human induced neurons.

    PubMed

    Hsu, Yi-Chao; Chen, Su-Liang; Wang, Ya-Jean; Chen, Yun-Hsiang; Wang, Dan-Yen; Chen, Linyi; Chen, Chia-Hsiang; Chen, Hwei-Hsien; Chiu, Ing-Ming

    2014-06-01

    Recent advances in somatic cell reprogramming have highlighted the plasticity of the somatic epigenome, particularly through demonstrations of direct lineage reprogramming of adult mouse and human fibroblasts to induced pluripotent stem cells (iPSCs) and induced neurons (iNs) under defined conditions. However, human cells appear to be less plastic and have a higher epigenetic hurdle for reprogramming to both iPSCs and iNs. Here, we show that SH2B adaptor protein 1β (SH2B1) can enhance neurite outgrowth of iNs reprogrammed from human fibroblasts as early as day 14, when combined with miR124 and transcription factors BRN2 and MYT1L (IBM) under defined conditions. These SH2B1-enhanced iNs (S-IBM) showed canonical neuronal morphology, and expressed multiple neuronal markers, such as TuJ1, NeuN, and synapsin, and functional proteins for neurotransmitter release, such as GABA, vGluT2, and tyrosine hydroxylase. Importantly, SH2B1 accelerated mature process of functional neurons and exhibited action potentials as early as day 14; without SH2B1, the IBM iNs do not exhibit action potentials until day 21. Our data demonstrate that SH2B1 can enhance neurite outgrowth and accelerate the maturation of human iNs under defined conditions. This approach will facilitate the application of iNs in regenerative medicine and in vitro disease modeling.

  15. XBP1s Links the Unfolded Protein Response to the Molecular Architecture of Mature N-Glycans

    PubMed Central

    Dewal, Mahender B.; DiChiara, Andrew S.; Antonopoulos, Aristotelis; Taylor, Rebecca J.; Harmon, Chyleigh J.; Haslam, Stuart M.; Dell, Anne; Shoulders, Matthew D.

    2015-01-01

    SUMMARY The molecular architecture of the mature N-glycome is dynamic, with consequences for both normal and pathologic processes. Elucidating cellular mechanisms that modulate the N-linked glycome is, therefore, crucial. The unfolded protein response (UPR) is classically responsible for maintaining proteostasis in the secretory pathway by defining levels of chaperones and quality control proteins. Here, we employ chemical biology methods for UPR regulation to show that stress-independent activation of the UPR’s XBP1s transcription factor also induces a panel of N-glycan maturation-related enzymes. The downstream consequence is a distinctive shift towards specific hybrid and complex N-glycans on N-glycoproteins produced from XBP1s-activated cells, which we characterize by mass spectrometry. Pulse-chase studies attribute this shift specifically to altered N-glycan processing, rather than to changes in degradation or secretion rates. Our findings implicate XBP1s in a new role for N-glycoprotein biosynthesis, unveiling an important link between intracellular stress responses and the molecular architecture of extracellular N-glycoproteins. PMID:26496683

  16. Ribosomal protein L11 is related to brain maturation during the adult phase in Apis cerana cerana (Hymenoptera, Apidae).

    PubMed

    Meng, Fei; Lu, Wenjing; Yu, Feifei; Kang, Mingjiang; Guo, Xingqi; Xu, Baohua

    2012-05-01

    Ribosomal proteins (RPs) play pivotal roles in developmental regulation. The loss or mutation of ribosomal protein L11 (RPL11) induces various developmental defects. However, few RPs have been functionally characterized in Apis cerana cerana. In this study, we isolated a single copy gene, AccRPL11, and characterized its connection to brain maturation. AccRPL11 expression was highly concentrated in the adult brain and was significantly induced by abiotic stresses such as pesticides and heavy metals. Immunofluorescence assays demonstrated that AccRPL11 was localized to the medulla, lobula and surrounding tissues of esophagus in the brain. The post-transcriptional knockdown of AccRPL11 gene expression resulted in a severe decrease in adult brain than in other tissues. The expression levels of other brain development-related genes, p38, ERK2, CacyBP and CREB, were also reduced. Immunofluorescence signal attenuation was also observed in AccRPL11-rich regions of the brain in dsAccRPL11-injected honeybees. Taken together, these results suggest that AccRPL11 may be functional in brain maturation in honeybee adults.

  17. Ribosomal protein L11 is related to brain maturation during the adult phase in Apis cerana cerana (Hymenoptera, Apidae)

    NASA Astrophysics Data System (ADS)

    Meng, Fei; Lu, Wenjing; Yu, Feifei; Kang, Mingjiang; Guo, Xingqi; Xu, Baohua

    2012-05-01

    Ribosomal proteins (RPs) play pivotal roles in developmental regulation. The loss or mutation of ribosomal protein L11 ( RPL11) induces various developmental defects. However, few RPs have been functionally characterized in Apis cerana cerana. In this study, we isolated a single copy gene, AccRPL11, and characterized its connection to brain maturation. AccRPL11 expression was highly concentrated in the adult brain and was significantly induced by abiotic stresses such as pesticides and heavy metals. Immunofluorescence assays demonstrated that AccRPL11 was localized to the medulla, lobula and surrounding tissues of esophagus in the brain. The post-transcriptional knockdown of AccRPL11 gene expression resulted in a severe decrease in adult brain than in other tissues. The expression levels of other brain development-related genes, p38, ERK2, CacyBP and CREB, were also reduced. Immunofluorescence signal attenuation was also observed in AccRPL11-rich regions of the brain in ds AccRPL11-injected honeybees. Taken together, these results suggest that AccRPL11 may be functional in brain maturation in honeybee adults.

  18. VPS33B regulates protein sorting into and maturation of α-granule progenitor organelles in mouse megakaryocytes.

    PubMed

    Bem, Danai; Smith, Holly; Banushi, Blerida; Burden, Jemima J; White, Ian J; Hanley, Joanna; Jeremiah, Nadia; Rieux-Laucat, Frédéric; Bettels, Ruth; Ariceta, Gema; Mumford, Andrew D; Thomas, Steven G; Watson, Steve P; Gissen, Paul

    2015-07-09

    Arthrogryposis, renal dysfunction, and cholestasis (ARC) syndrome is caused by deficiencies in the trafficking proteins VPS33B or VIPAR, and is associated with a bleeding diathesis and a marked reduction in platelet α-granules. We generated a tamoxifen-inducible mouse model of VPS33B deficiency, Vps33b(fl/fl)-ER(T2), and studied the platelet phenotype and α-granule biogenesis. Ultrastructural analysis of Vps33b(fl/fl)-ER(T2) platelets identified a marked reduction in α-granule count and the presence of small granule-like structures in agreement with the platelet phenotype observed in ARC patients. A reduction of ∼65% to 75% was observed in the α-granule proteins von Willebrand factor and P-selectin. Although platelet aggregation responses were not affected, a defect in δ-granule secretion was observed. Under arteriolar shear conditions, Vps33b(fl/fl)-ER(T2) platelets were unable to form stable aggregates, and tail-bleeding measurement revealed a bleeding diathesis. Analysis of bone marrow-derived megakaryocytes (MKs) by conventional and immuno-electron microscopy from Vps33b(fl/fl)-ER(T2) mice revealed a reduction in mature type-II multivesicular bodies (MVB II) and an accumulation of large vacuoles. Proteins that are normally stored in α-granules were underrepresented in MVB II and proplatelet extensions. These results demonstrate that abnormal protein trafficking and impairment in MVB maturation in MKs underlie the α-granule deficiency in Vps33b(fl/fl)-ER(T2) mouse and ARC patients.

  19. VPS33B regulates protein sorting into and maturation of α-granule progenitor organelles in mouse megakaryocytes

    PubMed Central

    Bem, Danai; Smith, Holly; Banushi, Blerida; Burden, Jemima J.; White, Ian J.; Hanley, Joanna; Jeremiah, Nadia; Rieux-Laucat, Frédéric; Bettels, Ruth; Ariceta, Gema; Mumford, Andrew D.; Thomas, Steven G.; Watson, Steve P.

    2015-01-01

    Arthrogryposis, renal dysfunction, and cholestasis (ARC) syndrome is caused by deficiencies in the trafficking proteins VPS33B or VIPAR, and is associated with a bleeding diathesis and a marked reduction in platelet α-granules. We generated a tamoxifen-inducible mouse model of VPS33B deficiency, Vps33bfl/fl-ERT2, and studied the platelet phenotype and α-granule biogenesis. Ultrastructural analysis of Vps33bfl/fl-ERT2 platelets identified a marked reduction in α-granule count and the presence of small granule-like structures in agreement with the platelet phenotype observed in ARC patients. A reduction of ∼65% to 75% was observed in the α-granule proteins von Willebrand factor and P-selectin. Although platelet aggregation responses were not affected, a defect in δ-granule secretion was observed. Under arteriolar shear conditions, Vps33bfl/fl-ERT2 platelets were unable to form stable aggregates, and tail-bleeding measurement revealed a bleeding diathesis. Analysis of bone marrow-derived megakaryocytes (MKs) by conventional and immuno-electron microscopy from Vps33bfl/fl-ERT2 mice revealed a reduction in mature type-II multivesicular bodies (MVB II) and an accumulation of large vacuoles. Proteins that are normally stored in α-granules were underrepresented in MVB II and proplatelet extensions. These results demonstrate that abnormal protein trafficking and impairment in MVB maturation in MKs underlie the α-granule deficiency in Vps33bfl/fl-ERT2 mouse and ARC patients. PMID:25947942

  20. Downregulation of protein 4.1R, a mature centriole protein, disrupts centrosomes, alters cell cycle progression, and perturbs mitotic spindles and anaphase.

    PubMed

    Krauss, Sharon Wald; Spence, Jeffrey R; Bahmanyar, Shirin; Barth, Angela I M; Go, Minjoung M; Czerwinski, Debra; Meyer, Adam J

    2008-04-01

    Centrosomes nucleate and organize interphase microtubules and are instrumental in mitotic bipolar spindle assembly, ensuring orderly cell cycle progression with accurate chromosome segregation. We report that the multifunctional structural protein 4.1R localizes at centrosomes to distal/subdistal regions of mature centrioles in a cell cycle-dependent pattern. Significantly, 4.1R-specific depletion mediated by RNA interference perturbs subdistal appendage proteins ninein and outer dense fiber 2/cenexin at mature centrosomes and concomitantly reduces interphase microtubule anchoring and organization. 4.1R depletion causes G(1) accumulation in p53-proficient cells, similar to depletion of many other proteins that compromise centrosome integrity. In p53-deficient cells, 4.1R depletion delays S phase, but aberrant ninein distribution is not dependent on the S-phase delay. In 4.1R-depleted mitotic cells, efficient centrosome separation is reduced, resulting in monopolar spindle formation. Multipolar spindles and bipolar spindles with misaligned chromatin are also induced by 4.1R depletion. Notably, all types of defective spindles have mislocalized NuMA (nuclear mitotic apparatus protein), a 4.1R binding partner essential for spindle pole focusing. These disruptions contribute to lagging chromosomes and aberrant microtubule bridges during anaphase/telophase. Our data provide functional evidence that 4.1R makes crucial contributions to the structural integrity of centrosomes and mitotic spindles which normally enable mitosis and anaphase to proceed with the coordinated precision required to avoid pathological events.

  1. Protein and sulfur amino acid requirements of broiler breeder hens.

    PubMed

    Harms, R H; Wilson, H R

    1980-02-01

    Two experiments were conducted with Cobb color-sexed broiler breeder hens to determine their protein and sulfur amino acid requirement. A daily intake between 400 and 478 mg of methionine and between 722 and 839 mg of total sulfur amino acids was necessary for maximum egg production, the latter in a diet of 13.07% protein. Slightly lower levels supported maximum body weights. Hens laying at the highest rate consumed 23.4 g of protein per day.

  2. Los Alamos sequence analysis package for nucleic acids and proteins.

    PubMed Central

    Kanehisa, M I

    1982-01-01

    An interactive system for computer analysis of nucleic acid and protein sequences has been developed for the Los Alamos DNA Sequence Database. It provides a convenient way to search or verify various sequence features, e.g., restriction enzyme sites, protein coding frames, and properties of coded proteins. Further, the comprehensive analysis package on a large-scale database can be used for comparative studies on sequence and structural homologies in order to find unnoted information stored in nucleic acid sequences. PMID:6174934

  3. Incorporation of Precursors into Ribonucleic Acid, Protein, Glycoprotein, and Lipoprotein of Avian Myeloblastosis Virions

    PubMed Central

    Baluda, M. A.; Nayak, D. P.

    1969-01-01

    Freshly explanted leukemic myeloblasts produce avian myeloblastosis virus (AMV) at a constant rate without any obvious cytopathic effect; therefore, subviral components are continually synthesized at a steady rate. The incorporation of various radioactive precursors into virions was monitored by determination of radioactivity in purified virus after density equilibrium sedimentation in preformed sucrose gradients. The kinetics of incorporation of 3H-uridine have shown that there is an average time interval of 3 to 4 hr (half-life) between the time viral ribo-nucleic acid (RNA) is synthesized and the time it is released as a mature virus particle; this represents the average time interval spent by AMV-RNA in an intracellular pool. Studies with 14C-phenylalanine have revealed that some protein synthesis takes place at or near the cell surface immediately prior to maturation and release of virus. 14C-glucosamine also appears to be incorporated into the outer viral envelope shortly before maturation. On the other hand, there is an average lag of about 16 to 20 hr before 14C-ethanolamine incorporated into intracellular lipoprotein appears in free virions; this probably reflects the kinetics of replacement of cellular surface membrane. Actinomycin D inhibits AMV-RNA within 30 min but permits the maturation of AMV to continue for at least 2 hr. AMV released in the presence of actinomycin D contains AMV-RNA synthesized before the addition of the drug. PMID:4311791

  4. Capsid proteins from human immunodeficiency virus type 1 and simian immunodeficiency virus SIVmac can coassemble into mature cores of infectious viruses.

    PubMed

    Chen, Jianbo; Pathak, Vinay K; Peng, Weiqun; Hu, Wei-Shau

    2008-09-01

    We have recently shown that the Gag polyproteins from human immunodeficiency virus type 1 (HIV-1) and HIV-2 can coassemble and functionally complement each other. During virion maturation, the Gag polyproteins undergo proteolytic cleavage to release mature proteins including capsid (CA), which refolds and forms the outer shell of a cone-shaped mature core. Less than one-half of the CA proteins present within the HIV-1 virion are required to form the mature core. Therefore, it is unclear whether the mature core in virions containing both HIV-1 and HIV-2 Gag consists of CA proteins from a single virus or from both viruses. To determine whether CA proteins from two different viruses can coassemble into mature cores of infectious viruses, we exploited the specificity of the tripartite motif 5alpha protein from the rhesus monkey (rhTRIM5alpha) for cores containing HIV-1 CA (hCA) but not the simian immunodeficiency virus SIV(mac) CA protein (sCA). If hCA and sCA cannot coassemble into the same core when equal amounts of sCA and hCA are coexpressed, the infectivities of such virus preparations in cells should be inhibited less than twofold by rhTRIM5alpha. However, if hCA and sCA can coassemble into the same core structure to form a mixed core, rhTRIM5alpha would be able to recognize such cores and significantly restrict virus infectivity. We examined the restriction phenotypes of viruses containing both hCA and sCA. Our results indicate that hCA and sCA can coassemble into the same mature core to produce infectious virus. To our knowledge, this is the first demonstration of functional coassembly of heterologous CA protein into the retroviral core.

  5. EXTRACTS OF IRRADIATED MATURE HUMAN TOOTH CROWNS CONTAIN MMP-20 PROTEIN AND ACTIVITY

    PubMed Central

    MCGUIRE, J.D.; MOUSA, A.A.; ZHANG, BO J.; TODOKI, L.S.; HUFFMAN, N.T.; CHANDRABABU, K.B.; MORADIAN-OLDAK, J.; KEIGHTLEY, A.; WANG, Y.; WALKER, M.P.; GORSKI, J.P.

    2014-01-01

    Objectives We recently demonstrated a significant correlation between enamel delamination and tooth-level radiation dose in oral cancer patients. Since radiation can induce the synthesis and activation of matrix metalloproteinases, we hypothesized that irradiated teeth may contain active matrix metalloproteinases. Materials and Methods Extracted teeth from oral cancer patients treated with radiotherapy and from healthy subjects were compared. Extracted mature third molars from healthy subjects were irradiated in vitro and/or incubated for 0 to 6 months at 37°C. All teeth were then pulverized, extracted, and extracts subjected to proteomic and enzymatic analyses. Results Screening of irradiated crown extracts using mass spectrometry identified MMP-20 (enamelysin) which is expressed developmentally in dentin and enamel but believed to be removed prior to tooth eruption. MMP-20 was composed of catalytically active forms at Mr=43, 41, 24 and 22 kDa and was immunolocalized predominantly to the morphological dentin enamel junction. The proportion of different sized MMP-20 forms changed with incubation and irradiation. While the pattern was not altered directly by irradiation of healthy teeth with 70 G, subsequent incubation at 37°C for 3–6 months with or without prior irradiation caused the proportion of Mr=24–22 kDa MMP-20 bands to increase dramatically. Extracts of teeth from oral cancer patients who received >70 Gy radiation also contained relatively more 24 and 22 kDa MMP-20 than those of healthy age-related teeth. Conclusion MMP-20 is a radiation-resistant component of mature tooth crowns enriched in the dentin-enamel. We speculate that MMP-20 catalyzed degradation of organic matrix at this site could lead to enamel delamination associated with oral cancer radiotherapy. PMID:24607847

  6. Amino acid sequences of proteins from Leptospira serovar pomona.

    PubMed

    Alves, S F; Lefebvre, R B; Probert, W

    2000-01-01

    This report describes a partial amino acid sequences from three putative outer envelope proteins from Leptospira serovar pomona. In order to obtain internal fragments for protein sequencing, enzymatic and chemical digestion was performed. The enzyme clostripain was used to digest the proteins 32 and 45 kDa. In situ digestion of 40 kDa molecular weight protein was accomplished using cyanogen bromide. The 32 kDa protein generated two fragments, one of 21 kDa and another of 10 kDa that yielded five residues. A fragment of 24 kDa that yielded nineteen residues of amino acids was obtained from 45 kDa protein. A fragment with a molecular weight of 20 kDa, yielding a twenty amino acids sequence from the 40 kDa protein.

  7. Kainic acid inhibits protein amino acid incorporation in select rat brain regions.

    PubMed

    Planas, A M; Soriano, M A; Ferrer, I; Rodríguez-Farré, E

    1994-11-21

    Regional incorporation of labelled methionine into proteins was studied with quantitative autoradiography in different regions of the rat brain 2.5 h following systemic kainic acid administration. Labelled protein concentration was found reduced to approximately 40% of control values in the pyramidal cell layer of hippocampus, piriform, entorhinal and perirhinal cortices, ventral lateral septum and mediodorsal thalamic nucleus. These regions showed increased levels of label not incorporated into proteins, indicating that free labelled methionine was available for protein synthesis. Reduction of protein amino acid incorporation in those brain regions selectively affected by kainic acid may be involved in subsequent tissue damage.

  8. Amino acid metabolism and protein synthesis in malarial parasites*

    PubMed Central

    Sherman, I. W.

    1977-01-01

    Malaria-infected red cells and free parasites have limited capabilities for the biosynthesis of amino acids. Therefore, the principal amino acid sources for parasite protein synthesis are the plasma free amino acids and host cell haemoglobin. Infected cells and plasmodia incorporate exogenously supplied amino acids into protein. However, the hypothesis that amino acid utilization (from an external source) is related to availability of that amino acid in haemoglobin is without universal support: it is true for isoleucine and for Plasmodium knowlesi and P. falciparum, but not for methionine, cysteine, and other amino acids, and it does not apply to P. lophurae. More by default than by direct evidence, haemoglobin is believed to be the main amino acid reservoir available to the intraerythrocytic plasmodium. Haemoglobin, ingested via the cytostome, is held in food vacuoles where auto-oxidation takes place. As a consequence, haem is released and accumulates in the vacuole as particulate haemozoin (= malaria pigment). Current evidence favours the view that haemozoin is mainly haematin. Acid and alkaline proteases (identified in crude extracts from mammalian and avian malarias) are presumably secreted directly into the food vacuole. They then digest the denatured globin and the resulting amino acids are incorporated into parasite protein. Cell-free protein synthesizing systems have been developed using P. knowlesi and P. lophurae ribosomes. In the main these systems are typically eukaryotic. Studies of amino acid metabolism are exceedingly limited. Arginine, lysine, methionine, and proline are incorporated into protein, whereas glutamic acid is metabolized via an NADP-specific glutamic dehydrogenase. Glutamate oxidation generates NADPH and auxiliary energy (in the form of α-ketoglutarate). The role of red cell glutathione in the economy of the parasite remains obscure. Important goals for future research should be: quantitative assessment of the relative importance of

  9. Calcineurin B homologous protein 3 promotes the biosynthetic maturation, cell surface stability, and optimal transport of the Na+/H+ exchanger NHE1 isoform.

    PubMed

    Zaun, Hans C; Shrier, Alvin; Orlowski, John

    2008-05-02

    Calcineurin B homologous protein (CHP) 1 and 2 are Ca(2+)-binding proteins that modulate several cellular processes, including cytoplasmic pH by positively regulating plasma membrane-type Na(+)/H(+) exchangers (NHEs). Recently another CHP-related protein, termed tescalcin or CHP3, was also shown to interact with the ubiquitous NHE1 isoform, but seemingly suppressed its activity. However, the precise physical and functional nature of this association was not examined in detail. In this study, biochemical and cellular studies were undertaken to further delineate this relationship. Glutathione S-transferase-NHE1 fusion protein pulldown assays revealed that full-length CHP3 binds directly to the proximal juxtamembrane C-terminal region (amino acids 505-571) of rat NHE1 in the same region that binds CHP1 and CHP2. The interaction was further validated by coimmunoprecipitation and coimmunolocalization experiments using full-length CHP3 and wild-type NHE1 in transfected Chinese hamster ovary AP-1 cells. Simultaneous mutation of four hydrophobic residues within this region ((530)FLDHLL(535)) to either Ala, Gln, or Arg (FL-A, FL-Q, or FL-R) abrogated this interaction both in vitro and in intact cells. The NHE1 mutants were sorted properly to the cell surface but showed markedly reduced (FL-A) or minimal (FL-R and FL-Q) activity. Interestingly, and contrary to an earlier finding, ectopic coexpression of CHP3 up-regulated the cell surface activity of wild-type NHE1. This stimulation was not observed with the CHP3 binding-defective mutants. Mechanistically, overexpression of CHP3 did not alter the H(+) sensitivity of wild-type NHE1 but rather promoted its biosynthetic maturation and half-life at the cell surface, thereby increasing the steady-state abundance of functional NHE1 protein.

  10. KINETICS OF AMINO ACID INCORPORATION INTO SERUM PROTEINS

    PubMed Central

    Green, H.; Anker, H. S.

    1955-01-01

    1. The effect of varying body temperature on the rate of amino acid incorporation into serum protein does not give support to the idea that the rate of this process is adjusted in vivo to restore those protein molecules destroyed by thermal denaturation. The experimentally observed Q10 was about 3.9. 2. When amino acids are injected into the blood of animals in a steady state of serum protein turnover, a period of time elapses before these amino acids can be found in the serum proteins. This has been called transit time. At a given temperature (31°) it is the same in rabbits, turtles, and Limulus (1 hour). In rabbits and turtles it has a Q10 of 3.2. It appears to be specifically related to the process of synthesis (or release) of serum proteins. 3. It was not possible to affect the transit time or the incorporation rate by the administration of amino acid analogues. PMID:13221773

  11. Interaction of milk whey protein with common phenolic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

    2014-01-01

    Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of α-lactalbumin and β-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of α-helix and an increase in the amounts of β-sheet and turn structures.

  12. Proteomics analysis in mature seed of four peanut cultivars using two-dimensional gel electrophoresis reveals distinct differential expression of storage, anti-nutritive, and allergenic proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein profiles of total seed proteins isolated from mature seeds of four peanut cultivars, New Mexico Valencia C (NM Valencia C), Tamspan 90, Georgia Green, and NC-7, were studied using two-dimensional gel electrophoresis coupled with nano electrospray ionization liquid chromatography tandem mass ...

  13. Ribosomal protein L3 bound to 23S precursor rRNA stimulates its maturation by Mini-III ribonuclease.

    PubMed

    Redko, Yulia; Condon, Ciarán

    2009-03-01

    Ribosomal RNAs (rRNAs) are processed from larger primary transcripts in every living system known. The maturation of 23S rRNA in Bacillus subtilis is catalysed by Mini-III, a member of the RNase III family of enzymes that lacks the characteristic double-stranded RNA binding domain of its relatives. We have previously shown that Mini-III processing of 23S precursor rRNA in assembled 50S ribosomal subunits is much more efficient than a substrate with no ribosomal proteins bound, suggesting that one or more large subunit proteins act as a cofactor for Mini-III cleavage. Here we show that this cofactor is ribosomal protein L3. Stimulation of the Mini-III cleavage reaction is through L3 binding to its normal site at the 3' end of 23S rRNA. We present indirect evidence that suggests that L3 acts at the level of substrate, rather than enzyme conformation. We also discuss the potential implication of using ribosomal protein cofactors in rRNA processing for ribosome quality control.

  14. Amino acid composition of proteins reduces deleterious impact of mutations

    PubMed Central

    Hormoz, Sahand

    2013-01-01

    The evolutionary origin of amino acid occurrence frequencies in proteins (composition) is not yet fully understood. We suggest that protein composition works alongside the genetic code to minimize impact of mutations on protein structure. First, we propose a novel method for estimating thermodynamic stability of proteins whose sequence is constrained to a fixed composition. Second, we quantify the average deleterious impact of substituting one amino acid with another. Natural proteome compositions are special in at least two ways: 1) Natural compositions do not generate more stable proteins than the average random composition, however, they result in proteins that are less susceptible to damage from mutations. 2) Natural proteome compositions that result in more stable proteins (i.e. those of thermophiles) are also tuned to have a higher tolerance for mutations. This is consistent with the observation that environmental factors selecting for more stable proteins also enhance the deleterious impact of mutations. PMID:24108121

  15. NqrM (DUF539) Protein Is Required for Maturation of Bacterial Na+-Translocating NADH:Quinone Oxidoreductase

    PubMed Central

    Kostyrko, Vitaly A.; Bertsova, Yulia V.; Serebryakova, Marina V.; Baykov, Alexander A.

    2015-01-01

    ABSTRACT Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) catalyzes electron transfer from NADH to ubiquinone in the bacterial respiratory chain, coupled with Na+ translocation across the membrane. Na+-NQR maturation involves covalent attachment of flavin mononucleotide (FMN) residues, catalyzed by flavin transferase encoded by the nqr-associated apbE gene. Analysis of complete bacterial genomes has revealed another putative gene (duf539, here renamed nqrM) that usually follows the apbE gene and is present only in Na+-NQR-containing bacteria. Expression of the Vibrio harveyi nqr operon alone or with the associated apbE gene in Escherichia coli, which lacks its own Na+-NQR, resulted in an enzyme incapable of Na+-dependent NADH or reduced nicotinamide hypoxanthine dinucleotide (dNADH) oxidation. However, fully functional Na+-NQR was restored when these genes were coexpressed with the V. harveyi nqrM gene. Furthermore, nqrM lesions in Klebsiella pneumoniae and V. harveyi prevented production of functional Na+-NQR, which could be recovered by an nqrM-containing plasmid. The Na+-NQR complex isolated from the nqrM-deficient strain of V. harveyi lacks several subunits, indicating that nqrM is necessary for Na+-NQR assembly. The protein product of the nqrM gene, NqrM, contains a single putative transmembrane α-helix and four conserved Cys residues. Mutating one of these residues (Cys33 in V. harveyi NqrM) to Ser completely prevented Na+-NQR maturation, whereas mutating any other Cys residue only decreased the yield of the mature protein. These findings identify NqrM as the second specific maturation factor of Na+-NQR in proteobacteria, which is presumably involved in the delivery of Fe to form the (Cys)4[Fe] center between subunits NqrD and NqrE. IMPORTANCE Na+-translocating NADH:quinone oxidoreductase complex (Na+-NQR) is a unique primary Na+ pump believed to enhance the vitality of many bacteria, including important pathogens such as Vibrio cholerae, Vibrio

  16. The protein digestibility-corrected amino acid score.

    PubMed

    Schaafsma, G

    2000-07-01

    The protein digestibility-corrected amino acid score (PDCAAS) has been adopted by FAO/WHO as the preferred method for the measurement of the protein value in human nutrition. The method is based on comparison of the concentration of the first limiting essential amino acid in the test protein with the concentration of that amino acid in a reference (scoring) pattern. This scoring pattern is derived from the essential amino acid requirements of the preschool-age child. The chemical score obtained in this way is corrected for true fecal digestibility of the test protein. PDCAAS values higher than 100% are not accepted as such but are truncated to 100%. Although the principle of the PDCAAS method has been widely accepted, critical questions have been raised in the scientific community about a number of issues. These questions relate to 1) the validity of the preschool-age child amino acid requirement values, 2) the validity of correction for fecal instead of ileal digestibility and 3) the truncation of PDCAAS values to 100%. At the time of the adoption of the PDCAAS method, only a few studies had been performed on the amino acid requirements of the preschool-age child, and there is still a need for validation of the scoring pattern. Also, the scoring pattern does not include conditionally indispensable amino acids. These amino acids also contribute to the nutrition value of a protein. There is strong evidence that ileal, and not fecal, digestibility is the right parameter for correction of the amino acid score. The use of fecal digestibility overestimates the nutritional value of a protein, because amino acid nitrogen entering the colon is lost for protein synthesis in the body and is, at least in part, excreted in urine as ammonia. The truncation of PDCAAS values to 100% can be defended only for the limited number of situations in which the protein is to be used as the sole source of protein in the diet. For evaluation of the nutritional significance of proteins as

  17. Shark Attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation.

    PubMed

    Zielonka, Stefan; Weber, Niklas; Becker, Stefan; Doerner, Achim; Christmann, Andreas; Christmann, Christine; Uth, Christina; Fritz, Janine; Schäfer, Elena; Steinmann, Björn; Empting, Martin; Ockelmann, Pia; Lierz, Michael; Kolmar, Harald

    2014-12-10

    A novel method for stepwise in vitro affinity maturation of antigen-specific shark vNAR domains is described that exclusively relies on semi-synthetic repertoires derived from non-immunized sharks. Target-specific molecules were selected from a CDR3-randomized bamboo shark (Chiloscyllium plagiosum) vNAR library using yeast surface display as platform technology. Various antigen-binding vNAR domains were easily isolated by screening against several therapeutically relevant antigens, including the epithelial cell adhesion molecule (EpCAM), the Ephrin type-A receptor 2 (EphA2), and the human serine protease HTRA1. Affinity maturation was demonstrated for EpCAM and HTRA1 by diversifying CDR1 of target-enriched populations which allowed for the rapid selection of nanomolar binders. EpCAM-specific vNAR molecules were produced as soluble proteins and more extensively characterized via thermal shift assays and biolayer interferometry. Essentially, we demonstrate that high-affinity binders can be generated in vitro without largely compromising the desirable high thermostability of the vNAR scaffold.

  18. A comparison of two strategies for affinity maturation of a BH3 peptide toward pro-survival Bcl-2 proteins.

    PubMed

    Zhang, Siyan; Long, Angel; Link, A James

    2012-03-16

    The Bcl-2 family of proteins regulates apoptosis at the level of mitochondrial permeabilization. Pro-death members of the family, including Bak and Bax, initiate apoptosis, whereas pro-survival members such as Bcl-x(L) and Mcl-1 antagonize the function of Bak and Bax via heterodimeric interactions. These heterodimeric interactions are primarily mediated by the binding of the helical amphipathic BH3 domain from a pro-death protein to a hydrophobic cleft on the surface of the pro-survival protein. Since high levels of pro-survival Bcl-2 proteins are present in many cancers, peptides corresponding to pro-death BH3 domains hold promise as therapeutics. Here we apply a high-throughput flow cytometry assay to engineer the Bak BH3 domain for improved affinity toward the pro-survival proteins Bcl-x(L) and Mcl-1. Two strategies, engineering the hydrophobic face of the Bak BH3 peptide and increasing its overall helicity, are successful in identifying Bak BH3 variants with improved affinity to Bcl-x(L) and Mcl-1. Hydrophobic face engineering of the Bak BH3 peptide led to variants with up to a 15-fold increase in affinity for Bcl-x(L) and increased specificity toward Bcl-x(L). Engineering of the helicity of Bak BH3 led to modest (3- to 4-fold) improvements in affinity with retention of promiscuous binding to all pro-survival proteins. HeLa cell killing studies demonstrate that the affinity matured Bak BH3 variants retain their expected biological function.

  19. Dynamic Pattern of HOXB9 Protein Localization during Oocyte Maturation and Early Embryonic Development in Mammals

    PubMed Central

    Sauvegarde, Caroline; Paul, Delphine; Bridoux, Laure; Jouneau, Alice; Degrelle, Séverine; Hue, Isabelle; Rezsohazy, René; Donnay, Isabelle

    2016-01-01

    Background We previously showed that the homeodomain transcription factor HOXB9 is expressed in mammalian oocytes and early embryos. However, a systematic and exhaustive study of the localization of the HOXB9 protein, and HOX proteins in general, during mammalian early embryonic development has so far never been performed. Results The distribution of HOXB9 proteins in oocytes and the early embryo was characterized by immunofluorescence from the immature oocyte stage to the peri-gastrulation period in both the mouse and the bovine. HOXB9 was detected at all studied stages with a dynamic expression pattern. Its distribution was well conserved between the two species until the blastocyst stage and was mainly nuclear. From that stage on, trophoblastic cells always showed a strong nuclear staining, while the inner cell mass and the derived cell lines showed important dynamic variations both in staining intensity and in intra-cellular localization. Indeed, HOXB9 appeared to be progressively downregulated in epiblast cells and only reappeared after gastrulation had well progressed. The protein was also detected in the primitive endoderm and its derivatives with a distinctive presence in apical vacuoles of mouse visceral endoderm cells. Conclusions Together, these results could suggest the existence of unsuspected functions for HOXB9 during early embryonic development in mammals. PMID:27798681

  20. The Significance of Protein Maturation by Plastidic Type I Signal Peptidase 1 for Thylakoid Development in Arabidopsis Chloroplasts1[C][W][OA

    PubMed Central

    Shipman-Roston, Rebecca L.; Ruppel, Nicholas J.; Damoc, Catalina; Phinney, Brett S.; Inoue, Kentaro

    2010-01-01

    Thylakoids are the chloroplast internal membrane systems that house light-harvesting and electron transport reactions. Despite the important functions and well-studied constituents of thylakoids, the molecular mechanism of their development remains largely elusive. A recent genetic study has demonstrated that plastidic type I signal peptidase 1 (Plsp1) is vital for proper thylakoid development in Arabidopsis (Arabidopsis thaliana) chloroplasts. Plsp1 was also shown to be necessary for processing of an envelope protein, Toc75, and a thylakoid lumenal protein, OE33; however, the relevance of the protein maturation in both of the two distinct subcompartments for proper chloroplast development remained unknown. Here, we conducted an extensive analysis of the plsp1-null mutant to address the significance of lumenal protein maturation in thylakoid development. Plastids that lack Plsp1 were found to accumulate vesicles of variable sizes in the stroma. Analyses of the mutant plastids revealed that the lack of Plsp1 causes a reduction in accumulation of thylakoid proteins and that Plsp1 is involved in maturation of two additional lumenal proteins, OE23 and plastocyanin. Further immunoblotting and electron microscopy immunolocalization studies showed that OE33 associates with the stromal vesicles of the mutant plastids. Finally, we used a genetic complementation system to demonstrate that accumulation of improperly processed forms of Toc75 in the plastid envelope does not disrupt normal plant development. These results suggest that proper maturation of lumenal proteins may be a key process for correct assembly of thylakoids. PMID:20097790

  1. Protein packing: dependence on protein size, secondary structure and amino acid composition.

    PubMed

    Fleming, P J; Richards, F M

    2000-06-02

    We have used the occluded surface algorithm to estimate the packing of both buried and exposed amino acid residues in protein structures. This method works equally well for buried residues and solvent-exposed residues in contrast to the commonly used Voronoi method that works directly only on buried residues. The atomic packing of individual globular proteins may vary significantly from the average packing of a large data set of globular proteins. Here, we demonstrate that these variations in protein packing are due to a complex combination of protein size, secondary structure composition and amino acid composition. Differences in protein packing are conserved in protein families of similar structure despite significant sequence differences. This conclusion indicates that quality assessments of packing in protein structures should include a consideration of various parameters including the packing of known homologous proteins. Also, modeling of protein structures based on homologous templates should take into account the packing of the template protein structure.

  2. Re-evaluation of turbidimetry of proteins by use of aromatic sulfonic acids and chloroacetic acids.

    PubMed

    Ebina, S; Nagai, Y

    1979-02-01

    From studies on 11 different proteins (including native albumin and albumin with reduced disulfide-bridges) treated with sulfosalicylic, 2-naphthalenesulfonic, toluenesulfonic, dichloroacetic, or trichloroacetic acids, we elucidate the interactions determining the resulting turbidities and other factors affecting turbidities, and we discuss the clinical utility of such turbidimetry. At least three interactions are important in determining turbidity: reduction of positive charges on the protein, hydrogen bonding of the non-ionized chloroacetic acids with the protein, and hydrophobic interaction of the aromatic sulfonic acids with albumin. Turbidity varies appreciably with the species of acid and protein, concentrations of acid, temperature, and standing time after acid is added. We conclude that this technique should be restricted to confirming proteinuria.

  3. The flavinyl transferase ApbE of Pseudomonas stutzeri matures the NosR protein required for nitrous oxide reduction.

    PubMed

    Zhang, Lin; Trncik, Christian; Andrade, Susana L A; Einsle, Oliver

    2017-02-01

    The copper-containing enzyme nitrous oxide reductase (N2OR) catalyzes the transformation of nitrous oxide (N2O) to dinitrogen (N2) in microbial denitrification. Several accessory factors are essential for assembling the two copper sites CuA and CuZ, and for maintaining the activity. In particular, the deletion of either the transmembrane iron-sulfur flavoprotein NosR or the periplasmic protein NosX, a member of the ApbE family, abolishes N2O respiration. Here we demonstrate through biochemical and structural studies that the ApbE protein from Pseudomonas stutzeri, where the nosX gene is absent, is a monomeric FAD-binding protein that can serve as the flavin donor for NosR maturation via covalent flavinylation of a threonine residue. The flavin transfer reaction proceeds both in vivo and in vitro to generate post-translationally modified NosR with covalently bound FMN. Only FAD can act as substrate and the reaction requires a divalent cation, preferably Mg(2+) that was also present in the crystal structure. In addition, the reaction is species-specific to a certain extent.

  4. Somatic cytokinesis and pollen maturation in Arabidopsis depend on TPLATE, which has domains similar to coat proteins.

    PubMed

    Van Damme, Daniël; Coutuer, Silvie; De Rycke, Riet; Bouget, Francois-Yves; Inzé, Dirk; Geelen, Danny

    2006-12-01

    TPLATE was previously identified as a potential cytokinesis protein targeted to the cell plate. Disruption of TPLATE in Arabidopsis thaliana leads to the production of shriveled pollen unable to germinate. Vesicular compartmentalization of the mature pollen is dramatically altered, and large callose deposits accumulate near the intine cell wall layer. Green fluorescent protein (GFP)-tagged TPLATE expression under the control of the pollen promoter Lat52 complements the phenotype. Downregulation of TPLATE in Arabidopsis seedlings and tobacco (Nicotiana tabacum) BY-2 suspension cells results in crooked cell walls and cell plates that fail to insert into the mother wall. Besides accumulating at the cell plate, GFP-fused TPLATE is temporally targeted to a narrow zone at the cell cortex where the cell plate connects to the mother wall. TPLATE-GFP also localizes to subcellular structures that accumulate at the pollen tube exit site in germinating pollen. Ectopic callose depositions observed in mutant pollen also occur in RNA interference plants, suggesting that TPLATE is implicated in cell wall modification. TPLATE contains domains similar to adaptin and beta-COP coat proteins. These data suggest that TPLATE functions in vesicle-trafficking events required for site-specific cell wall modifications during pollen germination and for anchoring of the cell plate to the mother wall at the correct cortical position.

  5. Effects of feeding level and sexual maturation on fatty acid composition of energy stores in diploid and triploid rainbow trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sexual maturation is an energy demanding, physiological process that alters growth efficiency and compromises muscle quality in many food-fish species. Lipid mobilization supplies energy required for this process. To study the effect of ration level on fatty acid mobilization, diploid (2N) rainbow t...

  6. The NSm proteins of Rift Valley fever virus are dispensable for maturation, replication and infection

    PubMed Central

    Bird, Brian H.; Albariño, Cesar G.; Nichol, Stuart T.

    2007-01-01

    Rift Valley fever (RVF) virus belongs to the Bunyaviridae family of segmented negative-strand RNA viruses and causes mosquito-borne disease in sub-Saharan Africa. We report the development of a T7 RNA polymerase driven plasmid-based genetic system for the virulent Egyptian isolate, ZH501. We have used this system to rescue a virus that has a 387 nucleotide deletion on the genomic M segment that eliminates the coding region for two non-structural proteins known as NSm. This virus, ΔNSm rZH501, is indistinguishable from the parental ZH501 strain with respect to expression of structural proteins and growth in cultured mammalian cells. PMID:17070883

  7. BIOACTIVE PROTEINS, PEPTIDES, AND AMINO ACIDS FROM MACROALGAE(1).

    PubMed

    Harnedy, Pádraigín A; FitzGerald, Richard J

    2011-04-01

    Macroalgae are a diverse group of marine organisms that have developed complex and unique metabolic pathways to ensure survival in highly competitive marine environments. As a result, these organisms have been targeted for mining of natural biologically active components. The exploration of marine organisms has revealed numerous bioactive compounds that are proteinaceous in nature. These include proteins, linear peptides, cyclic peptides and depsipeptides, peptide derivatives, amino acids, and amino acid-like components. Furthermore, some species of macroalgae have been shown to contain significant levels of protein. While some protein-derived bioactive peptides have been characterized from macroalgae, macroalgal proteins currently still represent good candidate raw materials for biofunctional peptide mining. This review will provide an overview of the important bioactive amino-acid-containing compounds that have been identified in macroalgae. Moreover, the potential of macroalgal proteins as substrates for the generation of biofunctional peptides for utilization as functional foods to provide specific health benefits will be discussed.

  8. Changes in Carboxy Methylation and Tyrosine Phosphorylation of Protein Phosphatase PP2A Are Associated with Epididymal Sperm Maturation and Motility

    PubMed Central

    Dudiki, Tejasvi; Kadunganattil, Suraj; Ferrara, John K.; Kline, Douglas W.; Vijayaraghavan, Srinivasan

    2015-01-01

    Mammalian sperm contain the serine/threonine phosphatases PP1γ2 and PP2A. The role of sperm PP1γ2 is relatively well studied. Here we confirm the presence of PP2A in sperm and show that it undergoes marked changes in methylation (leucine 309), tyrosine phosphorylation (tyrosine 307) and catalytic activity during epididymal sperm maturation. Spermatozoa isolated from proximal caput, distal caput and caudal regions of the epididymis contain equal immuno-reactive amounts of PP2A. Using demethyl sensitive antibodies we show that PP2A is methylated at its carboxy terminus in sperm from the distal caput and caudal regions but not in sperm from the proximal caput region of the epididymis. The methylation status of PP2A was confirmed by isolation of PP2A with microcystin agarose followed by alkali treatment, which causes hydrolysis of protein carboxy methyl esters. Tyrosine phosphorylation of sperm PP2A varied inversely with methylation. That is, PP2A was tyrosine phosphorylated when it was demethylated but not when methylated. PP2A demethylation and its reciprocal tyrosine phosphorylation were also affected by treatment of sperm with L-homocysteine and adenosine, which are known to elevate intracellular S-adenosylhomocysteine, a feedback inhibitor of methyltransferases. Catalytic activity of PP2A declined during epididymal sperm maturation. Inhibition of PP2A by okadaic acid or by incubation of caudal epididymal spermatozoa with L-homocysteine and adenosine resulted in increase of sperm motility parameters including percent motility, velocity, and lateral head amplitude. Demethylation or pharmacological inhibition of PP2A also leads to an increase in phosphorylation of glycogen synthase kinase-3 (GSK3). Our results show for the first time that changes in PP2A activity due to methylation and tyrosine phosphorylation occur in sperm and that these changes may play an important role in the regulation of sperm function. PMID:26569399

  9. Processing of the L1 52/55k Protein by the Adenovirus Protease: a New Substrate and New Insights into Virion Maturation

    PubMed Central

    Pérez-Berná, Ana J.; Mangel, Walter F.; McGrath, William J.; Graziano, Vito; Flint, Jane

    2014-01-01

    Late in adenovirus assembly, the viral protease (AVP) becomes activated and cleaves multiple copies of three capsid and three core proteins. Proteolytic maturation is an absolute requirement to render the viral particle infectious. We show here that the L1 52/55k protein, which is present in empty capsids but not in mature virions and is required for genome packaging, is the seventh substrate for AVP. A new estimate on its copy number indicates that there are about 50 molecules of the L1 52/55k protein in the immature virus particle. Using a quasi-in vivo situation, i.e., the addition of recombinant AVP to mildly disrupted immature virus particles, we show that cleavage of L1 52/55k is DNA dependent, as is the cleavage of the other viral precursor proteins, and occurs at multiple sites, many not conforming to AVP consensus cleavage sites. Proteolytic processing of L1 52/55k disrupts its interactions with other capsid and core proteins, providing a mechanism for its removal during viral maturation. Our results support a model in which the role of L1 52/55k protein during assembly consists in tethering the viral core to the icosahedral shell and in which maturation proceeds simultaneously with packaging, before the viral particle is sealed. PMID:24227847

  10. Inhibitory effect of presenilin inhibitor LY411575 on maturation of hepatitis C virus core protein, production of the viral particle and expression of host proteins involved in pathogenicity.

    PubMed

    Otoguro, Teruhime; Tanaka, Tomohisa; Kasai, Hirotake; Yamashita, Atsuya; Moriishi, Kohji

    2016-11-01

    Hepatitis C virus (HCV) core protein is responsible for the formation of infectious viral particles and induction of pathogenicity. The C-terminal transmembrane region of the immature core protein is cleaved by signal peptide peptidase (SPP) for maturation of the core protein. SPP belongs to the family of presenilin-like aspartic proteases. Some presenilin inhibitors are expected to suppress HCV infection and production; however, this anti-HCV effect has not been investigated in detail. In this study, presenilin inhibitors were screened to identify anti-HCV compounds. Of the 13 presenilin inhibitors tested, LY411575 was the most potent inhibitor of SPP-dependent cleavage of HCV core protein. Production of intracellular core protein and supernatant infectious viral particles from HCV-infected cells was significantly impaired by LY411575 in a dose-dependent manner (half maximum inhibitory concentration = 0.27 μM, cytotoxic concentration of the extracts to cause death to 50% of viable cells > 10 μM). No effect of LY411575 on intracellular HCV RNA in the subgenomic replicon cells was detected. LY411575 synergistically promoted daclatasvir-dependent inhibition of viral production, but not that of viral replication. Furthermore, LY411575 inhibited HCV-related production of reactive oxygen species and expression of NADPH oxidases and vascular endothelial growth factor. Taken together, our data suggest that LY411575 suppresses HCV propagation through SPP inhibition and impairs host gene expressions related to HCV pathogenicity.

  11. Proteasomal Activity Is Required to Initiate and to Sustain Translational Activation of Messenger RNA Encoding the Stem-Loop-Binding Protein During Meiotic Maturation in Mice1

    PubMed Central

    Yang, Qin; Allard, Patrick; Huang, Michael; Zhang, Wenling; Clarke, Hugh J.

    2009-01-01

    Developmentally regulated translation plays a key role in controlling gene expression during oogenesis. In particular, numerous mRNA species are translationally repressed in growing oocytes and become translationally activated during meiotic maturation. While many studies have focused on a U-rich sequence, termed the cytoplasmic polyadenylation element (CPE), located in the 3′-untranslated region (UTR) and the CPE-binding protein (CPEB) 1, multiple mechanisms likely contribute to translational control in oocytes. The stem-loop-binding protein (SLBP) is expressed in growing oocytes, where it is required for the accumulation of nonpolyadenylated histone mRNAs, and then accumulates substantially during meiotic maturation. We report that, in immature oocytes, Slbp mRNA carries a short poly(A) tail, and is weakly translated, and that a CPE-like sequence in the 3′-UTR is required to maintain this low activity. During maturation, Slbp mRNA becomes polyadenylated and translationally activated. Unexpectedly, proteasomal activity is required both to initiate and to sustain translational activation. This proteasomal activity is not required for the polyadenylation of Slbp mRNA during early maturation; however, it is required for a subsequent deadenylation of the mRNA that occurs during late maturation. Moreover, although CPEB1 is degraded during maturation, inhibiting its degradation by blocking mitogen-activated protein kinase 1/3 activity does not prevent the accumulation of SLBP, indicating that CPEB1 is not the protein whose degradation is required for translational activation of Slbp mRNA. These results identify a new role for proteasomal activity in initiating and sustaining translational activation during meiotic maturation. PMID:19759367

  12. Glutathione and abscisic acid supplementation influences somatic embryo maturation and hormone endogenous levels during somatic embryogenesis in Podocarpus lambertii Klotzsch ex Endl.

    PubMed

    Fraga, Hugo Pacheco de Freitas; Vieira, Leila do Nascimento; Puttkammer, Catarina Corrêa; Dos Santos, Henrique Pessoa; Garighan, Julio de Andrade; Guerra, Miguel Pedro

    2016-12-01

    Here we propose a protocol for embryogenic cultures induction, proliferation and maturation for the Brazilian conifer Podocarpus lambertii, and investigated the effect of abscisic acid (ABA) and glutathione (GSH) supplementation on the maturation phase. ABA, zeatin (Z) and salicylic acid (SA) endogenous levels were quantified. Number of somatic embryos obtained in ABA-supplemented treatment was significant higher than in ABA-free treatment, showing the relevance of ABA supplementation during somatic embryos maturation. Histological analysis showed the stereotyped sequence of developmental stages in conifer somatic embryos, reaching the late torpedo-staged embryo. GSH supplementation in maturation culture medium improved the somatic embryos number and morphological features. GSH 0mM and GSH 0.1mM treatments correlated with a decreased ABA endogenous level during maturation, while GSH 0.5mM treatment showed constant levels. All treatments resulted in decreased Z endogenous levels, supporting the concept that cytokinins are important during the initial cell division but not for the later stages of embryo development. The lowest SA levels found in GSH 0.5mM treatment were coincident with early embryonic development, and this treatment resulted in the highest development of somatic embryos. Thus, a correlation between lower SA levels and improved somatic embryo formation can be hypothesized.

  13. [Lipid- and protein-degrading processes during the maturation of ham].

    PubMed

    López Bote, C; Córdoba, J J; Antequera, T

    1993-02-01

    In the present work we review the main degradative pathways for lipids and proteins along the ripening of dry cured hams, with special emphasis on Iberian pig hams. Maximum proteolytic activity is found around the first stages (salting) and specially at the dryer. Lipolytic activity seems to be also higher in this stage. During the steps that follow the post-salting period the oxidation seems to be activated. The products from proteolytic and lipolytic processes might react among each other during the final steps in the cellar.

  14. Conformational Entropy of Intrinsically Disordered Proteins from Amino Acid Triads

    PubMed Central

    Baruah, Anupaul; Rani, Pooja; Biswas, Parbati

    2015-01-01

    This work quantitatively characterizes intrinsic disorder in proteins in terms of sequence composition and backbone conformational entropy. Analysis of the normalized relative composition of the amino acid triads highlights a distinct boundary between globular and disordered proteins. The conformational entropy is calculated from the dihedral angles of the middle amino acid in the amino acid triad for the conformational ensemble of the globular, partially and completely disordered proteins relative to the non-redundant database. Both Monte Carlo (MC) and Molecular Dynamics (MD) simulations are used to characterize the conformational ensemble of the representative proteins of each group. The results show that the globular proteins span approximately half of the allowed conformational states in the Ramachandran space, while the amino acid triads in disordered proteins sample the entire range of the allowed dihedral angle space following Flory’s isolated-pair hypothesis. Therefore, only the sequence information in terms of the relative amino acid triad composition may be sufficient to predict protein disorder and the backbone conformational entropy, even in the absence of well-defined structure. The predicted entropies are found to agree with those calculated using mutual information expansion and the histogram method. PMID:26138206

  15. Synthetic amphibian peptides and short amino-acids derivatives against planktonic cells and mature biofilm of Providencia stuartii clinical strains.

    PubMed

    Ostrowska, Kinga; Kamysz, Wojciech; Dawgul, Małgorzata; Różalski, Antoni

    2014-01-01

    Over the last decade, the growing number of multidrug resistant strains limits the use of many of the currently available chemotherapeutic agents. Furthermore, bacterial biofilm, due to its complex structure, constitutes an effective barrier to conventional antibiotics. The in vitro activities of naturally occurring peptide (Citropin 1.1), chemically engineered analogue (Pexiganan), newly-designed, short amino-acid derivatives (Pal-KK-NH2, Pal-KKK-NH2, Pal-RRR-NH2) and six clinically used antimicrobial agents (Gatifloxacin, Ampicilin, Cefotaxime, Ceftriaxone, Cefuroxime and Cefalexin) were investigated against planktonic cells and mature biofilm of multidrug-resistant Providencia stuartii strains, isolated from urological catheters. The MICs, MBCs values were determined by broth microdilution technique. Inhibition of biofilm formation by antimicrobial agents as well as biofilm susceptibility assay were tested using a surrogate model based on the Crystal Violet method. The antimicrobial activity of amino-acids derivatives and synthetic peptides was compared to that of clinically used antibiotics. For planktonic cells, MICs of peptides and antibiotics ranged between 1 and 256 μg/ml and 256 and ≥ 2048 μg/ml, respectively. The MBCs values of Pexiganan, Citropin 1.1 and amino-acids derivatives were between 16 and 256 μg/ml, 64 and 256 μg/ml and 16 and 512 μg/ml, respectively. For clinically used antibiotics the MBCs values were above 2048 μg/ml. All of the tested peptides and amino-acids derivatives, showed inhibitory activity against P. stuartii biofilm formation, in relation to their concentrations. Pexiganan and Citropin 1.1 in concentration range 32 and 256 μg/ml caused both strong and complete suppression of biofilm formation. None of the antibiotics caused complete inhibition of biofilm formation process. The biofilm susceptibility assay verified the extremely poor antibiofilm activity of conventional antibiotics compared to synthetic peptides. The

  16. Characterization of cDNA clones encoding rabbit and human serum paraoxonase: The mature protein retains its signal sequence

    SciTech Connect

    Hassett, C.; Richter, R.J.; Humbert, R.; Omiecinski, C.J.; Furlong, C.E. ); Chapline, C.; Crabb, J.W. )

    1991-10-22

    Serum paraoxonase hydrolyzes the toxic metabolites of a variety of organophosphorus insecticides. High serum paraoxonase levels appear to protect against the neurotoxic effects of organophosphorus substrates of this enzyme. The amino acid sequence accounting for 42% of rabbit paraoxonase was determined. From these data, two oligonucleotide probes were synthesized and used to screen a rabbit liver cDNA library. Human paraoxonase clones were isolated from a liver cDNA library by using the rabbit cDNA as a hybridization probe. Inserts from three of the longest clones were sequenced, and one full-length clone contained an open reading frame encoding 355 amino acids, four less than the rabbit paraoxonase protein. Amino-terminal sequences derived from purified rabbit and human paraoxonase proteins suggested that the signal sequence is retained, with the exception of the initiator methionine residue. Characterization of the rabbit and human paraoxonase cDNA clones confirms that the signal sequences are not processed, except for the N-terminal methionine residue. The rabbit and human cDNA clones demonstrate striking nucleotide and deduced amino acid similarities (greater than 85%), suggesting an important metabolic role and constraints on the evolution of this protein.

  17. Isolation and properties of the acid site-specific endonuclease from mature eggs of the sea urchin Strongylocentrotus intermedius

    SciTech Connect

    Sibirtsev, Yu.T.; Konechnyi, A.A.; Rasskazov, V.A.

    1986-01-10

    An acid site-specific endonuclease has been detected in mature sea urchin eggs and cells of embryos at early stages of differentiation. Fractionation with ammonium sulfate, followed by chromatography on columns with DEAE, phosphocellulose, and hydroxyapatite resulted in an 18,000-fold purification. The molecular weight of the enzyme was determined at approx. 29,000, the optimum pH 5.5. The activity of the enzyme does not depend on divalent metal ions, EDTA, ATP, and tRNA, but it is modulated to a substantial degree by NaCl. The maximum rate of cleavage of the DNA supercoil (form I) is observed at 100 mM NaCl. Increasing the NaCl concentration to 350 mM only slightly lowers the rate of cleavage of form I, yielding form II, but entirely suppresses the accumulation of form III. Restriction analysis of the products of enzymatic hydrolysis of Co1E1 and pBR322 DNA showed that at the early stages of hydrolysis the enzyme exhibits pronounced specificity for definite sites, the number of which is 12 for Co1 E1 DNA and 8 sites for pBR322 DNA.

  18. California Hass Avocado: Profiling of Carotenoids, tocopherol, fatty acid, and fat content during maturation and from different growing areas

    PubMed Central

    Lu, Qing-Yi; Zhang, Yanjun; Wang, Yue; Wang, David; Lee, Ru-po; Gao, Kun; Byrns, Russell; Heber, David

    2009-01-01

    The California Hass avocado (Persea Americana) is an example of a domesticated berry fruit that matures on the tree during its growing season but ripens only after being harvested. Avocados are typically harvested multiple times during the growing season in California. Previous research has demonstrated potential health benefits of avocados and extracts of avocado against inflammation and cancer cell growth, but seasonal variations in the phytochemical profile of the fruits being studied may affect the results obtained in future research. Therefore in the present study, avocados were harvested in January, April, July and September 2008 from four different growing locations in California (San Luis Obispo, Ventura, Riverside and San Diego), and analyzed fortotal fat content, fatty acid profile, carotenoids and vitamin E. A significant increase in total carotenoid and fat content of avocados from all regions was noted as the season progressed from January to September. Four carotenoids not previously described in the avocado were quantified. The total content of carotenoids was highly correlated with total fat content (r=0.99, p<0.001) demonstrating a remarkable degree of constancy of carotenoid intake per gram of fat content in the California Hass avocado.. Future clinical research on the health benefits of the avocado should specify the time of harvest, degree of ripening, growing area and the total phytochemical profile of the fruit or extract being studied. These steps will enable researchers to account for potential nutrient-nutrient interactions that might affect the research outcomes. PMID:19813713

  19. California Hass avocado: profiling of carotenoids, tocopherol, fatty acid, and fat content during maturation and from different growing areas.

    PubMed

    Lu, Qing-Yi; Zhang, Yanjun; Wang, Yue; Wang, David; Lee, Ru-po; Gao, Kun; Byrns, Russell; Heber, David

    2009-11-11

    The California Hass avocado ( Persea americana ) is an example of a domesticated berry fruit that matures on the tree during its growing season but ripens only after being harvested. Avocados are typically harvested multiple times during the growing season in California. Previous research has demonstrated potential health benefits of avocados and extracts of avocado against inflammation and cancer cell growth, but seasonal variations in the phytochemical profile of the fruits being studied may affect the results obtained in future research. Therefore, in the present study, avocados were harvested in January, April, July, and September, 2008, from four different growing locations in California (San Luis Obispo, Ventura, Riverside, and San Diego) and analyzed for total fat content, fatty acid profile, carotenoids, and vitamin E. A significant increase in total carotenoid and fat content of avocados from all regions was noted as the season progressed from January to September. Four carotenoids not previously described in the avocado were quantified. The total content of carotenoids was highly correlated with the total fat content (r = 0.99, p < 0.001) demonstrating a remarkable degree of constancy of carotenoid intake per gram of fat content in the California Hass avocado. Future clinical research on the health benefits of the avocado should specify the time of harvest, degree of ripening, growing area, and the total phytochemical profile of the fruit or extract being studied. These steps will enable researchers to account for potential nutrient-nutrient interactions that might affect the research outcomes.

  20. Protein turnover, amino acid profile and amino acid flux in juvenile shrimp Litopenaeus vannamei: effects of dietary protein source.

    PubMed

    Mente, Eleni; Coutteau, Peter; Houlihan, Dominic; Davidson, Ian; Sorgeloos, Patrick

    2002-10-01

    The effect of dietary protein on protein synthesis and growth of juvenile shrimps Litopenaeus vannamei was investigated using three different diets with equivalent protein content. Protein synthesis was investigated by a flooding dose of tritiated phenylalanine. Survival, specific growth and protein synthesis rates were higher, and protein degradation was lower, in shrimps fed a fish/squid/shrimp meal diet, or a 50% laboratory diet/50% soybean meal variant diet, than in those fed a casein-based diet. The efficiency of retention of synthesized protein as growth was 94% for shrimps fed the fish meal diet, suggesting a very low protein turnover rate; by contrast, the retention of synthesized protein was only 80% for shrimps fed the casein diet. The amino acid profile of the casein diet was poorly correlated with that of the shrimps. 4 h after a single meal the protein synthesis rates increased following an increase in RNA activity. A model was developed for amino acid flux, suggesting that high growth rates involve a reduction in the turnover of proteins, while amino acid loss appears to be high.

  1. Lipid modification of proteins in Archaea: attachment of a mevalonic acid-based lipid moiety to the surface-layer glycoprotein of Haloferax volcanii follows protein translocation.

    PubMed Central

    Konrad, Zvia; Eichler, Jerry

    2002-01-01

    Once the newly synthesized surface (S)-layer glycoprotein of the halophilic archaeaon Haloferax volcanii has traversed the plasma membrane, the protein undergoes a membrane-related, Mg(2+)-dependent maturation event, revealed as an increase in the apparent molecular mass and hydrophobicity of the protein. To test whether lipid modification of the S-layer glycoprotein could explain these observations, H. volcanii cells were incubated with a radiolabelled precursor of isoprene, [(3)H]mevalonic acid. In Archaea, isoprenoids serve as the major hydrophobic component of archaeal membrane lipids and have been shown to modify other haloarchaeal S-layer glycoproteins, although little is known of the mechanism, site or purpose of such modification. In the present study we report that the H. volcanii S-layer glycoprotein is modified by a derivative of mevalonic acid and that maturation of the protein was prevented upon treatment with mevinolin (lovastatin), an inhibitor of mevalonic acid biosynthesis. These findings suggest that lipid modification of S-layer glycoproteins is a general property of halophilic archaea and, like S-layer glycoprotein glycosylation, lipid-modification of the S-layer glycoproteins takes place on the external cell surface, i.e. following protein translocation across the membrane. PMID:12069685

  2. Yolk proteins during ovary and egg development of mature female freshwater crayfish (Cherax quadricarinatus).

    PubMed

    Serrano-Pinto, Vania; Vazquez-Boucard, Celia; Villarreal-Colmenares, Humberto

    2003-01-01

    Vitellins from ovaries and eggs at different stages of development in freshwater crayfish (Cherax quadricarinatus) were examined by chromatography, PAGE and SDS-PAGE. With these methods, two forms of vitellin (Vt1 and Vt2) were observed in ovaries and eggs (stages I and V). In ovaries in secondary vitellogenesis, native molecular mass was 470 (Vt1) and 440 (Vt2) kDa. The electrophoretic pattern of the eggs proved to be more complex. The protein molecular mass depend on the development stage of the egg: stage I, 650 kDa (Vt1) and 440 kDa (Vt2); stage V, 390 kDa (Vt1) and 340 kDa (Vt2). The identified vitellins appear to be lipo-glycocarotenoprotein. A similar vitellin polypeptide composition was observed in the two forms of vitellin from ovaries and eggs in stage V. In ovaries the SDS-PAGE analysis showed four subunits with molecular weights of approximately 180, 120, 95 and 80 kDa (Vt1 and Vt2). The polypeptide composition in the two forms of vitellins in stage I and stage III eggs were different at 195, 190, 130 and 110 kDa (Vt1) and 116 and 107 kDa (Vt2). On the other hand, in stage V eggs, 110, 95, 87 and 75 kDa (Vt1 and Vt2) were identified. Two antibodies (Ab1 and Ab2) were prepared against the purified proteins of stage V eggs and their specificity was demonstrated by radial immunoprecipitation, and Western blotting analysis. Two forms of vitellins were also found in stage V eggs after chromatography on Sepharose CL-2B column and hydroxylapatite and polyacrylamide gel electrophoresis.

  3. Identification of new proteins in follicular fluid from mature human follicles by direct sample rehydration method of two-dimensional polyacrylamide gel electrophoresis.

    PubMed

    Lee, Han-Chul; Lee, Sang-Wha; Lee, Kyo Won; Lee, Sook-Whan; Cha, Kwang-Yul; Kim, Kye Hyun; Lee, Suman

    2005-06-01

    Human follicular fluid (HFF) includes various biologically active proteins which can affect follicle growth and oocyte fertilization. Thus far, these proteins from mature follicles in human follicular fluid have been poorly characterized. Here, two-dimensional polyacrylamide gel electrophoresis (2-DE) with matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was used to identify new proteins in HFF. Mature follicular fluids were obtained from five females after oocyte collection during in vitro fertilization (IVF). We directly rehydrated HFF samples, obtained high-resolution 2-DE maps, and processed them for 2-DE and MALDI-MS. One hundred eighty spots were detected and 10 of these spots were identified. By the 2-DE database, six of them had been reported, as proteins already existing in HFF. Hormone sensitive lipase (HSL), Unnamed protein product 1 (UPP1), Unnamed protein product 2 (UPP2), and apolipoprotein A-IV precursor were newly detected. HSL and apolipoprotein A-IV participate in lipid metabolism. UPP1 has a homology with selenocysteine lyase. We found by RT-PCR that these genes are expressed from human primary granulosa cells. The proteins identified here may emerge as potential candidates for specific functions during folliculogenesis, hormone secretion regulation, or oocyte maturation. Further functional analysis of these proteins is necessitated to determine their biological implications.

  4. Comparative proteomic exploration of whey proteins in human and bovine colostrum and mature milk using iTRAQ-coupled LC-MS/MS.

    PubMed

    Yang, Mei; Cao, Xueyan; Wu, Rina; Liu, Biao; Ye, Wenhui; Yue, Xiqing; Wu, Junrui

    2017-02-20

    Whey, an essential source of dietary nutrients, is widely used in dairy foods for infants. A total of 584 whey proteins in human and bovine colostrum and mature milk were identified and quantified by the isobaric tag for relative and absolute quantification (iTRAQ) proteomic method. The 424 differentially expressed whey proteins were identified and analyzed according to gene ontology (GO) annotation, Kyoto encyclopedia of genes and genomes (KEGG) pathway, and multivariate statistical analysis. Biological processes principally involved biological regulation and response to stimulus. Major cellular components were extracellular region part and extracellular space. The most prevalent molecular function was protein binding. Twenty immune-related proteins and 13 proteins related to enzyme regulatory activity were differentially expressed in human and bovine milk. Differentially expressed whey proteins participated in many KEGG pathways, including major complement and coagulation cascades and in phagosomes. Whey proteins show obvious differences in expression in human and bovine colostrum and mature milk, with consequences for biological function. The results here increase our understanding of different whey proteomes, which could provide useful information for the development and manufacture of dairy products and nutrient food for infants. The advanced iTRAQ proteomic approach was used to analyze differentially expressed whey proteins in human and bovine colostrum and mature milk.

  5. Identification of protein N-termini in Cyanophora paradoxa cyanelles: transit peptide composition and sequence determinants for precursor maturation

    PubMed Central

    Köhler, Daniel; Dobritzsch, Dirk; Hoehenwarter, Wolfgang; Helm, Stefan; Steiner, Jürgen M.; Baginsky, Sacha

    2015-01-01

    Glaucophyta, rhodophyta, and chloroplastida represent the three main evolutionary lineages that diverged from a common ancestor after primary endosymbiosis. Comparative analyses between members of these three lineages are a rich source of information on ancestral plastid features. We analyzed the composition and the cleavage site of cyanelle transit peptides from the glaucophyte Cyanophora paradoxa by terminal amine labeling of substrates (TAILS), and compared their characteristics to those of representatives of the chloroplastida. Our data show that transit peptide architecture is similar between members of these two lineages. This entails a comparable modular structure, an overrepresentation of serine or alanine and similarities in the amino acid composition around the processing peptidase cleavage site. The most distinctive difference is the overrepresentation of phenylalanine in the N-terminal 1–10 amino acids of cyanelle transit peptides. A quantitative proteome analysis with periplasm-free cyanelles identified 42 out of 262 proteins without the N-terminal phenylalanine, suggesting that the requirement for phenylalanine in the N-terminal region is not absolute. Proteins in this set are on average of low abundance, suggesting that either alternative import pathways are operating specifically for low abundance proteins or that the gene model annotation is incorrect for proteins with fewer EST sequences. We discuss these two possibilities and provide examples for both interpretations. PMID:26257763

  6. Mitotic apparatus: the selective extraction of protein with mild acid.

    PubMed

    Bibring, T; Baxandall, J

    1968-07-26

    The treatment of isolated mitotic apparatus with mild (pH 3) hydrochloric acid results in the extraction of less than 10 percent of its protein, accompanied by the selective morphological disappearance of the microtubules. The same extraction can be shown to dissolve outer doublet microtubules from sperm flagella. A protein with points of similarity to the flagellar microtubule protein is the major component of the extract from mitotic apparatus.

  7. Mycobacterial heat shock protein 70 induces interleukin-10 production: immunomodulation of synovial cell cytokine profile and dendritic cell maturation

    PubMed Central

    DETANICO, T; RODRIGUES, L; SABRITTO, A C; KEISERMANN, M; BAUER, M E; ZWICKEY, H; BONORINO, C

    2004-01-01

    Cytokines are key modulators of the immune responses that take place in the inflamed synovium of arthritis patients. Consequently, substances that can reverse the inflammatory profile of the inflamed joint are potential tools for clinical management of the disease. Mycobacterial heat shock protein 70 (MTBHSP70) has been found to protect rats from experimentally induced arthritis through the induction of interleukin (IL)-10-producing T cells. In this study, we have demonstrated that MTBHSP70 induces IL-10 production in synoviocytes from arthritis patients and peripheral blood monoculear cells (PBMCs) from both patients and healthy controls. IL-10 production was accompanied by a decrease in tumour necrosis factor (TNF)-α production by synovial cells. Separation studies showed that the target cells were mainly monocytes. Accordingly, we observed that MTBHSP70 delayed maturation of murine bone marrow-derived dendritic cells. Our results suggest that MTBHSP may act on antigen-presenting cells (APCs) to modulate the cytokine response in arthritis and support an anti-inflammatory role for this protein, suggesting that it may be of therapeutic use in the modulation of arthritis. PMID:14738465

  8. Nonfeed application of rendered animal proteins for microbial production of eicosapentaenoic acid by the fungus Pythium irregulare.

    PubMed

    Liang, Yi; Garcia, Rafael A; Piazza, George J; Wen, Zhiyou

    2011-11-23

    Rendered animal proteins are well suited for animal nutrition applications, but the market is maturing, and there is a need to develop new uses for these products. The objective of this study is to explore the possibility of using animal proteins as a nutrient source for microbial production of omega-3 polyunsaturated fatty acids by the microalga Schizochytrium limacinum and the fungus Pythium irregulare. To be absorbed by the microorganisms, the proteins needed to be hydrolyzed into small peptides and free amino acids. The utility of the protein hydrolysates for microorganisms depended on the hydrolysis method used and the type of microorganism. The enzymatic hydrolysates supported better cell growth performance than the alkali hydrolysates did. P. irregulare displayed better overall growth performance on the experimental hydrolysates compared to S. limacinum. When P. irregulare was grown in medium containing 10 g/L enzymatic hydrolysate derived from meat and bone meal or feather meal, the performance of cell growth, lipid synthesis, and omega-3 fatty acid production was comparable to the that of culture using commercial yeast extract. The fungal biomass derived from the animal proteins had 26-29% lipid, 32-34% protein, 34-39% carbohydrate, and <2% ash content. The results show that it is possible to develop a nonfeed application for rendered animal protein by hydrolysis of the protein and feeding to industrial microorganisms which can produce omega-3 fatty acids for making omega-3-fortified foods or feeds.

  9. Manipulating Fatty Acid Biosynthesis in Microalgae for Biofuel through Protein-Protein Interactions

    PubMed Central

    Blatti, Jillian L.; Beld, Joris; Behnke, Craig A.; Mendez, Michael; Mayfield, Stephen P.; Burkart, Michael D.

    2012-01-01

    Microalgae are a promising feedstock for renewable fuels, and algal metabolic engineering can lead to crop improvement, thus accelerating the development of commercially viable biodiesel production from algae biomass. We demonstrate that protein-protein interactions between the fatty acid acyl carrier protein (ACP) and thioesterase (TE) govern fatty acid hydrolysis within the algal chloroplast. Using green microalga Chlamydomonas reinhardtii (Cr) as a model, a structural simulation of docking CrACP to CrTE identifies a protein-protein recognition surface between the two domains. A virtual screen reveals plant TEs with similar in silico binding to CrACP. Employing an activity-based crosslinking probe designed to selectively trap transient protein-protein interactions between the TE and ACP, we demonstrate in vitro that CrTE must functionally interact with CrACP to release fatty acids, while TEs of vascular plants show no mechanistic crosslinking to CrACP. This is recapitulated in vivo, where overproduction of the endogenous CrTE increased levels of short-chain fatty acids and engineering plant TEs into the C. reinhardtii chloroplast did not alter the fatty acid profile. These findings highlight the critical role of protein-protein interactions in manipulating fatty acid biosynthesis for algae biofuel engineering as illuminated by activity-based probes. PMID:23028438

  10. Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions.

    PubMed

    Blatti, Jillian L; Beld, Joris; Behnke, Craig A; Mendez, Michael; Mayfield, Stephen P; Burkart, Michael D

    2012-01-01

    Microalgae are a promising feedstock for renewable fuels, and algal metabolic engineering can lead to crop improvement, thus accelerating the development of commercially viable biodiesel production from algae biomass. We demonstrate that protein-protein interactions between the fatty acid acyl carrier protein (ACP) and thioesterase (TE) govern fatty acid hydrolysis within the algal chloroplast. Using green microalga Chlamydomonas reinhardtii (Cr) as a model, a structural simulation of docking CrACP to CrTE identifies a protein-protein recognition surface between the two domains. A virtual screen reveals plant TEs with similar in silico binding to CrACP. Employing an activity-based crosslinking probe designed to selectively trap transient protein-protein interactions between the TE and ACP, we demonstrate in vitro that CrTE must functionally interact with CrACP to release fatty acids, while TEs of vascular plants show no mechanistic crosslinking to CrACP. This is recapitulated in vivo, where overproduction of the endogenous CrTE increased levels of short-chain fatty acids and engineering plant TEs into the C. reinhardtii chloroplast did not alter the fatty acid profile. These findings highlight the critical role of protein-protein interactions in manipulating fatty acid biosynthesis for algae biofuel engineering as illuminated by activity-based probes.

  11. Germinal Center B-Cell-Associated Nuclear Protein (GANP) Involved in RNA Metabolism for B Cell Maturation.

    PubMed

    Sakaguchi, N; Maeda, K

    2016-01-01

    Germinal center B-cell-associated nuclear protein (GANP) is upregulated in germinal center B cells against T-cell-dependent antigens in mice and humans. In mice, GANP depletion in B cells impairs antibody affinity maturation. Conversely, its transgenic overexpression augments the generation of high-affinity antigen-specific B cells. GANP associates with AID in the cytoplasm, shepherds AID into the nucleus, and augments its access to the rearranged immunoglobulin (Ig) variable (V) region of the genome in B cells, thereby precipitating the somatic hypermutation of V region genes. GANP is also upregulated in human CD4(+) T cells and is associated with APOBEC3G (A3G). GANP interacts with A3G and escorts it to the virion cores to potentiate its antiretroviral activity by inactivating HIV-1 genomic cDNA. Thus, GANP is characterized as a cofactor associated with AID/APOBEC cytidine deaminase family molecules in generating diversity of the IgV region of the genome and genetic alterations of exogenously introduced viral targets. GANP, encoded by human chromosome 21, as well as its mouse equivalent on chromosome 10, contains a region homologous to Saccharomyces Sac3 that was characterized as a component of the transcription/export 2 (TREX-2) complex and was predicted to be involved in RNA export and metabolism in mammalian cells. The metabolism of RNA during its maturation, from the transcription site at the chromosome within the nucleus to the cytoplasmic translation apparatus, needs to be elaborated with regard to acquired and innate immunity. In this review, we summarize the current knowledge on GANP as a component of TREX-2 in mammalian cells.

  12. Characterization and expression of proprotein convertases in CHO cells: Efficient proteolytic maturation of human bone morphogenetic protein-7.

    PubMed

    Sathyamurthy, Madhavi; Kim, Che Lin; Bang, You Lim; Kim, Young Sik; Jang, Ju Woong; Lee, Gyun Min

    2015-03-01

    Bone morphogenetic protein-7 (BMP-7) is synthesized as a precursor that requires proteolytic cleavage of the propeptide by proprotein convertases (PCs) for its functional activity. A high-level expression of BMP-7 in CHO cells (CHO-BMP-7) resulted in secretion of a mixture of inactive precursor and active BMP-7. In an effort to achieve efficient processing of BMP-7 in CHO cells, PCs responsible for cleavage of the precursors in CHO cells were characterized. Analysis of the mRNA expression levels of four PCs (furin, PACE4, PC5/6, and PC7) revealed that only furin and PC7 genes are expressed in CHO-BMP-7 cells. Specific inhibition of the PCs by hexa-D-arginine (D6R) or decanoyl-RVKR-chloromethyl ketone (RVKR-CMK) further revealed that furin is mainly responsible for the proteolytic processing of BMP-7. To identify a more efficient PC for BMP-7 processing, the four PC genes were transiently expressed in CHO-BMP-7 cells, respectively. Among these, PC5/6 was found to be the most efficient in BMP-7 processing. Stable overexpression of PC5/6ΔC, a secreted form of PC5/6, significantly improved mature BMP-7 production in CHO-BMP-7 cells. When the maximum BMP-7 concentration was obtained in the culture of CHO-BMP-7 cells, approximately 88% of BMP-7 was unprocessed. In contrast, no precursor was found in the culture of PC5/6ΔC-overexpressing cells (clone #97). Furthermore, the in vitro biological activity of the mature BMP-7 from PC5/6ΔC-overexpressing cells was comparable to that from CHO-BMP-7 cells. Taken together, the present results indicate that overexpression of PC5/6ΔC in CHO-BMP-7 cells is an efficient means of increasing the yield of BMP-7.

  13. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    NASA Astrophysics Data System (ADS)

    Refsgaard, Hanne H. F.; Tsai, Lin; Stadtman, Earl R.

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(III)/O2] depends on the degree of unsaturation of the fatty acid. The fatty acid-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate < methyl linolenate < methyl arachidonate. The amounts of alkyl hydroperoxides, malondialdehyde, and a number of other aldehydes that accumulated when polyunsaturated fatty acids were oxidized in the presence of BSA were significantly lower than that observed in the absence of BSA. Direct treatment of proteins with various lipid hydroperoxides led to a slight increase in the formation of protein carbonyl derivatives, whereas treatment with the hydroperoxides together with Fe(II) led to a substantial increase in the formation of protein carbonyls. These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (α,β-unsaturated aldehydes) with lysine residues (Michael addition reactions) and also by interactions with alkoxyl radicals obtained by Fe(II) cleavage of lipid hydroperoxides that are formed. In addition, saturated aldehydes derived from the polyunsaturated fatty acids likely react with lysine residues to form Schiff base adducts.

  14. IR-UV photochemistry of protein-nucleic acid systems

    SciTech Connect

    Kozub, J.; Edwards, G.

    1995-12-31

    UV light has often been used to induce the formation of covalent bonds between DNA (or RNA) and tightly-bound protein molecules. However, the internal photoreactions of nucleic acids and proteins limit the yield and complicate the analysis of intermolecular crosslinks. In an ongoing search for improved reaction specificity or new photoreactions in these systems, we have employed UV photons from a Nd:YAG-pumped dye laser and mid-IR photons from the Vanderbilt FEL. Having crosslinked several protein-nucleic acid systems with nanosecond UV laser pulses, we are currently studying the effect of various IR wavelengths on a model system (gene 32 protein and poly[dT]). We have found that irradiation with sufficiently intense FEL macropulses creates an altered form of gene 32 protein which was not observed with UV-only irradiation. The electrophoretic nobility of the product is consistent with the formation of a specific protein-protein crosslink. No evidence of the non-specific protein damage typically induced by UV light is found. The yield of the new photoproduct is apparently enhanced by exposure to FEL macropulses which are synchronized with UV laser pulses. With ideal exposure parameters, the two-color reaction effectively competes with UV-only reactions. Experiments designed to determine the reaction mechanism and to demonstrate FEL-induced reactions in other protein-nucleic acid systems are currently underway.

  15. Centrosomal protein CP110 controls maturation of the mother centriole during cilia biogenesis

    PubMed Central

    Yadav, Sharda Prasad; Sharma, Neel Kamal; Liu, Chunqiao; Dong, Lijin; Li, Tiansen; Swaroop, Anand

    2016-01-01

    ABSTRACT Defects in cilia centrosomal genes cause pleiotropic clinical phenotypes, collectively called ciliopathies. Cilia biogenesis is initiated by the interaction of positive and negative regulators. Centriolar coiled coil protein 110 (CP110) caps the distal end of the mother centriole and is known to act as a suppressor to control the timing of ciliogenesis. Here, we demonstrate that CP110 promotes cilia formation in vivo, in contrast to findings in cultured cells. Cp110−/− mice die shortly after birth owing to organogenesis defects as in ciliopathies. Shh signaling is impaired in null embryos and primary cilia are reduced in multiple tissues. We show that CP110 is required for anchoring of basal bodies to the membrane during cilia formation. CP110 loss resulted in an abnormal distribution of core components of subdistal appendages (SDAs) and of recycling endosomes, which may be associated with premature extension of axonemal microtubules. Our data implicate CP110 in SDA assembly and ciliary vesicle docking, two requisite early steps in cilia formation. We suggest that CP110 has unique context-dependent functions, acting as both a suppressor and a promoter of ciliogenesis. PMID:26965371

  16. Nucleic acid compositions and the encoding proteins

    DOEpatents

    Preston, III, James F.; Chow, Virginia; Nong, Guang; Rice, John D.; St. John, Franz J.

    2014-09-02

    The subject invention provides at least one nucleic acid sequence encoding an aldouronate-utilization regulon isolated from Paenibacillus sp. strain JDR-2, a bacterium which efficiently utilizes xylan and metabolizes aldouronates (methylglucuronoxylosaccharides). The subject invention also provides a means for providing a coordinately regulated process in which xylan depolymerization and product assimilation are coupled in Paenibacillus sp. strain JDR-2 to provide a favorable system for the conversion of lignocellulosic biomass to biobased products. Additionally, the nucleic acid sequences encoding the aldouronate-utilization regulon can be used to transform other bacteria to form organisms capable of producing a desired product (e.g., ethanol, 1-butanol, acetoin, 2,3-butanediol, 1,3-propanediol, succinate, lactate, acetate, malate or alanine) from lignocellulosic biomass.

  17. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro.

    PubMed

    Carlsson, Johan A; Wold, Agnes E; Sandberg, Ann-Sofie; Östman, Sofia M

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violet low) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells.

  18. Expression of stimulated by retinoic acid gene 8 (Stra8) and maturation of murine gonocytes and spermatogonia induced by retinoic acid in vitro.

    PubMed

    Zhou, Qing; Li, Ying; Nie, Rong; Friel, Patrick; Mitchell, Debra; Evanoff, Ryan M; Pouchnik, Derek; Banasik, Brent; McCarrey, John R; Small, Christopher; Griswold, Michael D

    2008-03-01

    Vitamin A deficiency in the mouse results in an arrest in the progression of undifferentiated spermatogonia to differentiating spermatogonia. The supplement of retinol to vitamin-A-deficient mice reinitiates spermatogenesis in a synchronous manner throughout the testes. It is unclear whether the effects of retinoids are the result of a direct action on germ cells or are indirectly mediated through Sertoli cells. The expression of Stimulated by retinoic acid gene 8 (Stra8), which is required for spermatogenesis, is directly related to the availability of retinoic acid (RA). Analysis of gene expression by microarrays revealed moderate levels of Stra8 transcript in gonocytes and high levels in A and B spermatogonia. Stra8 mRNA levels were greatly reduced or absent in germ cells once they entered meiosis. This study examined the effect of retinoic acid on cultured neonatal testes and isolated gonocytes/spermatogonia in vitro. THY1(+) and KIT(+) germ cells were isolated by magnetic-activated cell sorting from the testes of mice of different ages. Isolated germ cells were cultured and treated with either vehicle (ethanol) or RA without feeder cells. We found that 1) Stra8 is predominantly expressed in premeiotic germ cells, 2) RA stimulates gonocyte DNA replication and differentiation in cultured neonatal testes, 3) in the absence of feeder cells, RA directly induces the transition of undifferentiated spermatogonia to differentiating spermatogonia by stimulating Stra8 and Kit gene expression, 4) RA dramatically stimulates Stra8 expression in undifferentiated spermatogonia but has a lesser impact in differentiating spermatogonia, 5) endogenous Stra8 gene expression is higher in differentiating spermatogonia than in undifferentiated spermatogonia and could mediate the RA effects on spermatogonial maturation, and 6) RA stimulates a group of genes involved in the metabolism, storage, transport, and signaling of retinoids.

  19. Real-time measurements of amino acid and protein hydroperoxides using coumarin boronic acid.

    PubMed

    Michalski, Radoslaw; Zielonka, Jacek; Gapys, Ewa; Marcinek, Andrzej; Joseph, Joy; Kalyanaraman, Balaraman

    2014-08-08

    Hydroperoxides of amino acid and amino acid residues (tyrosine, cysteine, tryptophan, and histidine) in proteins are formed during oxidative modification induced by reactive oxygen species. Amino acid hydroperoxides are unstable intermediates that can further propagate oxidative damage in proteins. The existing assays (oxidation of ferrous cation and iodometric assays) cannot be used in real-time measurements. In this study, we show that the profluorescent coumarin boronic acid (CBA) probe reacts with amino acid and protein hydroperoxides to form the corresponding fluorescent product, 7-hydroxycoumarin. 7-Hydroxycoumarin formation was catalase-independent. Based on this observation, we have developed a fluorometric, real-time assay that is adapted to a multiwell plate format. This is the first report showing real-time monitoring of amino acid and protein hydroperoxides using the CBA-based assay. This approach was used to detect protein hydroperoxides in cell lysates obtained from macrophages exposed to visible light and photosensitizer (rose bengal). We also measured the rate constants for the reaction between amino acid hydroperoxides (tyrosyl, tryptophan, and histidine hydroperoxides) and CBA, and these values (7-23 M(-1) s(-1)) were significantly higher than that measured for H2O2 (1.5 M(-1) s(-1)). Using the CBA-based competition kinetics approach, the rate constants for amino acid hydroperoxides with ebselen, a glutathione peroxidase mimic, were also determined, and the values were within the range of 1.1-1.5 × 10(3) M(-1) s(-1). Both ebselen and boronates may be used as small molecule scavengers of amino acid and protein hydroperoxides. Here we also show formation of tryptophan hydroperoxide from tryptophan exposed to co-generated fluxes of nitric oxide and superoxide. This observation reveals a new mechanism for amino acid and protein hydroperoxide formation in biological systems.

  20. A gain-of-function mutation in oma-1, a C. elegans gene required for oocyte maturation, results in delayed degradation of maternal proteins and embryonic lethality.

    PubMed

    Lin, Rueyling

    2003-06-01

    In vertebrates, oocytes undergo maturation, arrest in metaphase II, and can then be fertilized by sperm. Fertilization initiates molecular events that lead to the activation of early embryonic development. In Caenorhabditis elegans, where no delay between oocyte maturation and fertilization is apparent, oocyte maturation and fertilization must be tightly coordinated. It is not clear what coordinates the transition from an oocyte to an embryo in C. elegans, but regulated turnover of oocyte-specific proteins contributes to the process. We describe here a gain-of-function mutation (zu405) in a gene that is essential for oocyte maturation, oma-1. In wild type animals, OMA-1 protein is expressed at a high level exclusively in oocytes and newly fertilized embryos and is degraded rapidly after the first mitotic division. The zu405 mutation results in improper degradation of the OMA-1 protein in embryos. In oma-1(zu405) embryos, the C blastomere is transformed to the EMS blastomere fate, resulting in embryonic lethality. We show that degradation of several maternally supplied cell fate determinants, including SKN-1, PIE-1, MEX-3, and MEX-5, is delayed in oma-1(zu405) mutant embryos. In wild type embryos, SKN-1 functions in EMS for EMS blastomere fate specification. A decreased level of maternal SKN-1 protein in the C blastomere relative to EMS is believed to be responsible for this cell expressing the C, instead of the EMS, fate. Delayed degradation of maternal SKN-1 protein in oma-1(zu405) embryos and resultant elevated levels in C blastomere is likely responsible for the observed C-to-EMS blastomere fate transformation. These observations suggest that oma-1, in addition to its role in oocyte maturation, contributes to early embryonic development by regulating the temporal degradation of maternal proteins in early C. elegans embryos.

  1. Functional domains of the fatty acid transport proteins: studies using protein chimeras.

    PubMed

    DiRusso, Concetta C; Darwis, Dina; Obermeyer, Thomas; Black, Paul N

    2008-03-01

    Fatty acid transport proteins (FATP) function in fatty acid trafficking pathways, several of which have been shown to participate in the transport of exogenous fatty acids into the cell. Members of this protein family also function as acyl CoA synthetases with specificity towards very long chain fatty acids or bile acids. These proteins have two identifying sequence motifs: The ATP/AMP motif, an approximately 100 amino acid segment required for ATP binding and common to members of the adenylate-forming super family of proteins, and the FATP/VLACS motif that consists of approximately 50 amino acid residues and is restricted to members of the FATP family. This latter motif has been implicated in fatty acid transport in the yeast FATP orthologue Fat1p. In the present studies using a yeast strain containing deletions in FAT1 (encoding Fat1p) and FAA1 (encoding the major acyl CoA synthetase (Acsl) Faa1p) as an experimental platform, the phenotypic and functional properties of specific murine FATP1-FATP4 and FATP6-FATP4 protein chimeras were evaluated in order to define elements within these proteins that further distinguish the fatty acid transport and activation functions. As expected from previous work FATP1 and FATP4 were functional in the fatty acid transport pathway, while and FATP6 was not. All three isoforms were able to activate the very long chain fatty acids arachidonate (C(20:4)) and lignocerate (C(24:0)), but with distinguishing activities between saturated and highly unsaturated ligands. A 73 amino acid segment common to FATP1 and FATP4 and between the ATP/AMP and FATP/VLACS motifs was identified by studying the chimeras, which is hypothesized to contribute to the transport function.

  2. Plasma amino acid response to graded levels of escape protein.

    PubMed

    Gibb, D J; Klopfenstein, T J; Britton, R A; Lewis, A J

    1992-09-01

    A trial was conducted to examine the potential of using plasma amino acid responses to graded levels of escape protein to determine limiting amino acids in cattle. Growing calves (n = 120; mean BW = 220 +/- 21 kg) were fed a basal diet of corncob:sorghum silage (61:39) and were individually supplemented with distillers' dried grains (DDG), heat-damaged DDG (H-DDG), feather meal (FTH), or urea. The urea supplement was mixed with DDG and H-DDG to allow 0, 20, 35, 50, 65, or 80% of the supplemental CP to come from distillers' protein and maintain an 11.5% CP diet. Urea supplement was mixed with FTH to allow 0, 22, 39, 56, 73, or 90% of the supplemental CP to come from FTH. Dietary CP ranged from 11.5% at the 0% level to 17.3% at the 90% level. Plasma concentration of most essential plasma amino acids responded (P less than .10) linearly and(or) quadratically to increased escape protein. The broken-line response of plasma methionine at low DDG intake suggested that methionine was limiting at low levels of escape protein. An initial decrease followed by a plateau fit by a broken line indicated that histidine became limiting in FTH diets, and lysine eventually became limiting for DDG, H-DDG, and FTH diets before maximum BW gain was reached. Results indicate that plasma amino acid responses may identify amino acids that become limiting with increasing escape protein.

  3. An investigation of the effects of simulated acid rain and elevated ozone on the physiology of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings and mature trees

    SciTech Connect

    Momen, B.

    1993-12-31

    This study investigated the combined effects of simulated acid rain and ozone on foliar water relations, carbon and nitrogen contents, gas exchange, and respiration of ponderosa pine seedlings and mature trees grown in the field at the USDA Forest Service Tree Improvement Center in Chico, California. Acid rain levels (pH 5.1 and 3) were applied weekly on foliage only, from January to April, 1992. Plants were exposed to ozone levels (ambient and twice ambient) during the day only, from August to December, 1990, and from September to November, 1992. Results suggested that elevated ozone, particularly in combination with strong acid, caused osmotic adjustment that may benefit plants during drought. The observed effects of pollutants are similar to the reported effects of drought on plant water relations. Elevated ozone decreased foliar nitrogen content and thus increased the C:N ratio, particularly in seedlings. Stomatal conductance was not affected by pollutants but net photosynthesis was decreased by elevated ozone, especially in mature trees. The greater sensitivity of net photosynthesis of mature trees to elevated ozone was contrary to all other plant characteristics investigated. Elevated ozone increased seedling respiration. Under controlled, temperature, light, and vapor pressure deficit conditions, net photosynthesis responded positively to increases in plant age, light intensity, and rain pH, but negatively to increases in tissue age, heat, and ozone concentration. Overall results indicated that acid rain and elevated ozone declined the carbon pool of ponderosa pine due to increased respiration and decreased net photosynthesis. Pollutant effects were more profound in mid-summer when ozone concentrations were highest. On many occasions the effects of acid rain and ozone levels interacted. Seedlings were more sensitive to pollutants than mature trees.

  4. Stimulation of nonselective amino acid export by glutamine dumper proteins.

    PubMed

    Pratelli, Réjane; Voll, Lars M; Horst, Robin J; Frommer, Wolf B; Pilot, Guillaume

    2010-02-01

    Phloem and xylem transport of amino acids involves two steps: export from one cell type to the apoplasm, and subsequent import into adjacent cells. High-affinity import is mediated by proton/amino acid cotransporters, while the mechanism of export remains unclear. Enhanced expression of the plant-specific type I membrane protein Glutamine Dumper1 (GDU1) has previously been shown to induce the secretion of glutamine from hydathodes and increased amino acid content in leaf apoplasm and xylem sap. In this work, tolerance to low concentrations of amino acids and transport analyses using radiolabeled amino acids demonstrate that net amino acid uptake is reduced in the glutamine-secreting GDU1 overexpressor gdu1-1D. The net uptake rate of phenylalanine decreased over time, and amino acid net efflux was increased in gdu1-1D compared with the wild type, indicating increased amino acid export from cells. Independence of the export from proton gradients and ATP suggests that overexpression of GDU1 affects a passive export system. Each of the seven Arabidopsis (Arabidopsis thaliana) GDU genes led to similar phenotypes, including increased efflux of a wide spectrum of amino acids. Differences in expression profiles and functional properties suggested that the GDU genes fulfill different roles in roots, vasculature, and reproductive organs. Taken together, the GDUs appear to stimulate amino acid export by activating nonselective amino acid facilitators.

  5. The multiple roles of fatty acid handling proteins in brain

    PubMed Central

    Moullé, Valentine S. F.; Cansell, Céline; Luquet, Serge; Cruciani-Guglielmacci, Céline

    2012-01-01

    Lipids are essential components of a living organism as energy source but also as constituent of the membrane lipid bilayer. In addition fatty acid (FA) derivatives interact with many signaling pathways. FAs have amphipathic properties and therefore require being associated to protein for both transport and intracellular trafficking. Here we will focus on several FA handling proteins, among which the fatty acid translocase/CD36 (FAT/CD36), members of fatty acid transport proteins (FATPs), and lipid chaperones fatty acid-binding proteins (FABPs). A decade of extensive studies has helped decipher the mechanism of action of these proteins in peripheral tissue with high lipid metabolism. However, considerably less information is available regarding their role in the brain, despite the high lipid content of this tissue. This review will primarily focus on the recent studies that have highlighted the crucial role of lipid handling proteins in brain FA transport, neuronal differentiation and development, cognitive processes and brain diseases. Finally a special focus will be made on the recent studies that have revealed the role of FAT/CD36 in brain lipid sensing and nervous control of energy balance. PMID:23060810

  6. Okadaic acid: the archetypal serine/threonine protein phosphatase inhibitor.

    PubMed

    Dounay, A B; Forsyth, C J

    2002-11-01

    As the first recognized member of the "okadaic acid class" of phosphatase inhibitors, the marine natural product okadaic acid is perhaps the most well-known member of a diverse array of secondary metabolites that have emerged as valuable probes for studying the roles of various cellular protein serine/threonine phosphatases. This review provides a historical perspective on the role that okadaic acid has played in stimulating a broad spectrum of modern scientific research as a result of the natural product's ability to bind to and inhibit important classes of protein serine / threonine phosphatases. The relationships between the structure and biological activities of okadaic acid are briefly reviewed, as well as the structural information regarding the particular cellular receptors protein phosphatases 1 (PP1) and 2A. Laboratory syntheses of okadaic acid and its analogs are thoroughly reviewed. Finally, an interpretation of the critical contacts observed between okadaic acid and PP1 by X-ray crystallography is provided, and specific molecular recognition hypotheses that are testable via the synthesis and assay of non-natural analogs of okadaic acid are suggested.

  7. A critical role for Syk protein tyrosine kinase in Fc receptor-mediated antigen presentation and induction of dendritic cell maturation.

    PubMed

    Sedlik, Christine; Orbach, Daniel; Veron, Philippe; Schweighoffer, Edina; Colucci, Francesco; Gamberale, Romina; Ioan-Facsinay, Andrea; Verbeek, Sjef; Ricciardi-Castagnoli, Paola; Bonnerot, Christian; Tybulewicz, Victor L J; Di Santo, James; Amigorena, Sebastian

    2003-01-15

    Dendritic cells (DCs) are the only APCs capable of initiating adaptive immune responses. The initiation of immune responses requires that DCs 1) internalize and present Ags; and 2) undergo a differentiation process, called "maturation", which transforms DCs into efficient APCs. DC maturation may be initiated by the engagement of different surface receptors, including certain cytokine receptors (such as TNFR), Toll-like receptors, CD40, and FcRs. The early activation events that link receptor engagement and DC maturation are not well characterized. We found that FcR engagement by immune complexes induced the phosphorylation of Syk, a protein tyrosine kinase acting immediately downstream of FcRs. Syk was dispensable for DC differentiation in vitro and in vivo, but was strictly required for immune complexes internalization and subsequent Ag presentation to T lymphocytes. Importantly, Syk was also required for the induction of DC maturation and IL-12 production after FcR engagement, but not after engagement of other surface receptors, such as TNFR or Toll-like receptors. Therefore, protein tyrosine phosphorylation by Syk represents a novel pathway for the induction of DC maturation.

  8. Effects of plant species, stage of maturity, and level of formic acid addition on lipolysis, lipid content, and fatty acid composition during ensiling.

    PubMed

    Koivunen, E; Jaakkola, S; Heikkilä, T; Lampi, A-M; Halmemies-Beauchet-Filleau, A; Lee, M R F; Winters, A L; Shingfield, K J; Vanhatalo, A

    2015-09-01

    . In conclusion, results suggest that formic acid addition during the ensilage of RC decreases lipolysis . For both plant species, total PPO activity was not associated with the extent of lipolysis . However, bound phenols formed via PPO activity appear to have a role in protecting lipid and protein against degradation in grass and lowering proteolysis of RC during ensiling.

  9. Roles of intrinsic disorder in protein-nucleic acid interactions.

    PubMed

    Dyson, H Jane

    2012-01-01

    Interactions between proteins and nucleic acids typify the role of disordered segments, linkers, tails and other entities in the function of complexes that must form with high affinity and specificity but which must be capable of dissociating when no longer needed. While much of the emphasis in the literature has been on the interactions of disordered proteins with other proteins, disorder is also frequently observed in nucleic acids (particularly RNA) and in the proteins that interact with them. The interactions of disordered proteins with DNA most often manifest as molding of the protein onto the B-form DNA structure, although some well-known instances involve remodeling of the DNA structure that seems to require that the interacting proteins be disordered to various extents in the free state. By contrast, induced fit in RNA-protein interactions has been recognized for many years-the existence and prevalence of this phenomenon provides the clearest possible evidence that RNA and its interactions with proteins must be considered as highly dynamic, and the dynamic nature of RNA and its multiplicity of folded and unfolded states is an integral part of its nature and function.

  10. Evaluation of ARG protein expression in mature B cell lymphomas compared to non-neoplastic reactive lymph node.

    PubMed

    Kabiri, Zahra; Salehi, Mansoor; Mokarian, Fariborz; Mohajeri, Mohammad Reza; Mahmoodi, Farzaneh; Keyhanian, Kianoosh; Doostan, Iman; Ataollahi, Mohammad Reza; Modarressi, Mohammad Hossein

    2009-01-01

    The participation of Abl-Related Gene (ARG) is demonstrated in pathogenesis of different human malignancies. However there is no conclusive evidence on ARG expression level in mature B cell lymphomas. In this study we evaluated ARG protein expression in Follicular Lymphoma (FL), Burkitt's Lymphoma (BL) and Diffused Large B Cell Lymphoma (DLBCL) in comparison with non-neoplastic lymph nodes. Semi-quantitative fluorescent ImmunoHistoChemistry was applied on 14, 7 and 4 patients with DLBCL, FL and BL respectively, adding to 4 normal and 4 reactive lymph nodes. The mean ratio of ARG/GAPDH expression was significantly different (p<0.00) between lymphomas and control samples, with DLBCL having the highest ARG expression amongst all. Over expression of ARG was seen in FL and BL, with FL expressing statistically more ARG than BL. Moreover, the ARG/GAPDH expression ratio increased from DLBCL stage I towards stage VI, all showing significantly more ARG expression than FL and BL (in all cases p<0.00).

  11. CRL4-DCAF1 ubiquitin E3 ligase directs protein phosphatase 2A degradation to control oocyte meiotic maturation.

    PubMed

    Yu, Chao; Ji, Shu-Yan; Sha, Qian-Qian; Sun, Qing-Yuan; Fan, Heng-Yu

    2015-08-18

    Oocyte meiosis is a specialized cell cycle that gives rise to fertilizable haploid gametes and is precisely controlled in various dimensions. We recently found that E3 ubiquitin ligase CRL4 is required for female fertility by regulating DNA hydroxymethylation to maintain oocyte survival and to promote zygotic genome reprogramming. However, not all phenotypes of CRL4-deleted oocytes could be explained by this mechanism. Here we show that CRL4 controls oocyte meiotic maturation by proteasomal degradation of protein phosphatase 2A scaffold subunit, PP2A-A. Oocyte-specific deletion of DDB1 or DCAF1 (also called VPRBP) results in delayed meiotic resumption and failure to complete meiosis I along with PP2A-A accumulation. DCAF1 directly binds to and results in the poly-ubiquitination of PP2A-A. Moreover, combined deletion of Ppp2r1a rescues the meiotic defects caused by DDB1/DCAF1 deficiency. These results provide in vivo evidence that CRL4-directed PP2A-A degradation is physiologically essential for regulating oocyte meiosis and female fertility.

  12. A general method of protein purification for recombinant unstructured non-acidic proteins.

    PubMed

    Campos, Francisco; Guillén, Gabriel; Reyes, José L; Covarrubias, Alejandra A

    2011-11-01

    Typical late embryogenesis abundant (LEA) proteins accumulate in response to water deficit imposed by the environment or by plant developmental programs. Because of their physicochemical properties, they can be considered as hydrophilins and as a paradigm of intrinsically unstructured proteins (IUPs) in plants. To study their biophysical and biochemical characteristics large quantities of highly purified protein are required. In this work, we report a fast and simple purification method for non-acidic recombinant LEA proteins that does not need the addition of tags and that preserves their in vitro protective activity. The method is based on the enrichment of the protein of interest by boiling the bacterial protein extract, followed by a differential precipitation with trichloroacetic acid (TCA). Using this procedure we have obtained highly pure recombinant LEA proteins of groups 1, 3, and 4 and one recombinant bacterial hydrophilin. This protocol will facilitate the purification of this type of IUPs, and could be particularly useful in proteomic projects/analyses.

  13. Substitution of aspartic acid with glutamic acid increases the unfolding transition temperature of a protein.

    PubMed

    Lee, Duck Yeon; Kim, Kyeong-Ae; Yu, Yeon Gyu; Kim, Key-Sun

    2004-07-30

    Proteins from thermophiles are more stable than those from mesophiles. Several factors have been suggested as causes for this greater stability, but no general rule has been found. The amino acid composition of thermophile proteins indicates that the content of polar amino acids such as Asn, Gln, Ser, and Thr is lower, and that of charged amino acids such as Arg, Glu, and Lys is higher than in mesophile proteins. Among charged amino acids, however, the content of Asp is even lower in thermophile proteins than in mesophile proteins. To investigate the reasons for the lower occurrence of Asp compared to Glu in thermophile proteins, Glu was substituted with Asp in a hyperthermophile protein, MjTRX, and Asp was substituted with Glu in a mesophile protein, ETRX. Each substitution of Glu with Asp decreased the Tm of MjTRX by about 2 degrees C, while each substitution of Asp with Glu increased the Tm of ETRX by about 1.5 degrees C. The change of Tm destabilizes the MjTRX by 0.55 kcal/mol and stabilizes the ETRX by 0.45 kcal/mol in free energy.

  14. Comparative proteomic analysis of differentially expressed proteins in β-aminobutyric acid enhanced Arabidopsis thaliana tolerance to simulated acid rain.

    PubMed

    Liu, Tingwu; Jiang, Xinwu; Shi, Wuliang; Chen, Juan; Pei, Zhenming; Zheng, Hailei

    2011-05-01

    Acid rain is a worldwide environmental issue that has seriously destroyed forest ecosystems. As a highly effective and broad-spectrum plant resistance-inducing agent, β-aminobutyric acid could elevate the tolerance of Arabidopsis when subjected to simulated acid rain. Using comparative proteomic strategies, we analyzed 203 significantly varied proteins of which 175 proteins were identified responding to β-aminobutyric acid in the absence and presence of simulated acid rain. They could be divided into ten groups according to their biological functions. Among them, the majority was cell rescue, development and defense-related proteins, followed by transcription, protein synthesis, folding, modification and destination-associated proteins. Our conclusion is β-aminobutyric acid can lead to a large-scale primary metabolism change and simultaneously activate antioxidant system and salicylic acid, jasmonic acid, abscisic acid signaling pathways. In addition, β-aminobutyric acid can reinforce physical barriers to defend simulated acid rain stress.

  15. Defined amino acids in the gag proteins of human immunodeficiency virus type 1 are functionally active during virus assembly.

    PubMed

    Kattenbeck, B; Rohrhofer, A; Niedrig, M; Wolf, H; Modrow, S

    1996-01-01

    A structurally highly ordered arrangement of the polyprotein precursor, Pr55gag is a necessary prerequisite for assembly, budding and maturation of the human immunodeficiency virus type 1 (HIV-1). In particular, distinct regions of the matrix protein (p17) and the capsid protein (p24) contained within Pr55gag are functionally active during these processes. In order to determine such regions we exchanged amino acid triplets within p17 (amino acids 46-61) and p24 (amino acids 341-352) for alanine residues and deleted the whole regions. Synthetic peptides derived from these regions had been shown previously to inhibit the production of infectious virus. The effect of the mutations on the release of viral particles was investigated by using recombinant baculoviruses for the expression of mutated Pr55gag as virus-like particles and by use of the respective HI proviruses for monitoring the production of infectious particles.

  16. Protein quality and utilization of timothy, oat-supplemented timothy, and alfalfa at differing harvest maturities in exercised Arabian horses.

    PubMed

    Woodward, A D; Nielsen, B D; Liesman, J; Lavin, T; Trottier, N L

    2011-12-01

    To evaluate the protein quality and postgut N utilization of full-bloom timothy hay, oat-supplemented timothy-hay diets, and alfalfa hay harvested at different maturities, apparent whole tract N digestibility, urinary N excretion, and serum AA profiles were determined in light to moderately exercised Arabian horses. Six Arabian geldings (16.0 ± 0.3 yr; 467 ± 11 kg of BW) were randomly allocated to a 6 × 6 Latin square design. Diets included full-bloom timothy grass hay (G), G + 0.2% BW oat (G1), G + 0.4% BW oat (G2), mid-bloom alfalfa (A1), early-bloom alfalfa (A2), and early-bud alfalfa hay (A3). Forages were fed at 1.6% of the BW of the horse (as-fed). Each period consisted of an 11-d adaptation period followed by total collection of feces and urine for 3 d. Blood samples were taken on d 11 for analysis of serum AA concentrations. During the 3-d collection period, urine and feces were collected every 8 h and measured and weighed, respectively. Approximately 10% of the total urine volume and fecal weight per period was retained for N analyses. Fecal DM output was less (P < 0.05) in A1, A2, or A3 compared with G, G1, or G2. Apparent whole tract N digestibility was greater (P < 0.01) in A1, A2, and A3 compared with G, G1, or G2, and was greater (P < 0.05) in G1 and G2 compared with G. Nitrogen retention was not different from zero, and there were no differences (P > 0.05) in N retention among diets. Urinary N excretion and total N excretion were greater (P < 0.05) in A1, A2, and A3 compared with G, G1, or G2. Plasma concentrations for the majority of AA increased curvilinearly in response to feeding G, A1, A2, and A3 (quadratic, P < 0.05), with values appearing to maximize 2-h postfeeding. Although alfalfa N digestibility increased with decreasing harvest maturity, N retention did not differ and urinary volume and N excretion increased, indicating that postabsorptive N utilization decreased. In contrast, inclusion of oats at either 0.2 or 0.4% of the BW of the

  17. Incorporating significant amino acid pairs and protein domains to predict RNA splicing-related proteins with functional roles.

    PubMed

    Hsu, Justin Bo-Kai; Huang, Kai-Yao; Weng, Tzu-Ya; Huang, Chien-Hsun; Lee, Tzong-Yi

    2014-01-01

    Machinery of pre-mRNA splicing is carried out through the interaction of RNA sequence elements and a variety of RNA splicing-related proteins (SRPs) (e.g. spliceosome and splicing factors). Alternative splicing, which is an important post-transcriptional regulation in eukaryotes, gives rise to multiple mature mRNA isoforms, which encodes proteins with functional diversities. However, the regulation of RNA splicing is not yet fully elucidated, partly because SRPs have not yet been exhaustively identified and the experimental identification is labor-intensive. Therefore, we are motivated to design a new method for identifying SRPs with their functional roles in the regulation of RNA splicing. The experimentally verified SRPs were manually curated from research articles. According to the functional annotation of Splicing Related Gene Database, the collected SRPs were further categorized into four functional groups including small nuclear Ribonucleoprotein, Splicing Factor, Splicing Regulation Factor and Novel Spliceosome Protein. The composition of amino acid pairs indicates that there are remarkable differences among four functional groups of SRPs. Then, support vector machines (SVMs) were utilized to learn the predictive models for identifying SRPs as well as their functional roles. The cross-validation evaluation presents that the SVM models trained with significant amino acid pairs and functional domains could provide a better predictive performance. In addition, the independent testing demonstrates that the proposed method could accurately identify SRPs in mammals/plants as well as effectively distinguish between SRPs and RNA-binding proteins. This investigation provides a practical means to identifying potential SRPs and a perspective for exploring the regulation of RNA splicing.

  18. Incorporating significant amino acid pairs and protein domains to predict RNA splicing-related proteins with functional roles

    NASA Astrophysics Data System (ADS)

    Hsu, Justin Bo-Kai; Huang, Kai-Yao; Weng, Tzu-Ya; Huang, Chien-Hsun; Lee, Tzong-Yi

    2014-01-01

    Machinery of pre-mRNA splicing is carried out through the interaction of RNA sequence elements and a variety of RNA splicing-related proteins (SRPs) (e.g. spliceosome and splicing factors). Alternative splicing, which is an important post-transcriptional regulation in eukaryotes, gives rise to multiple mature mRNA isoforms, which encodes proteins with functional diversities. However, the regulation of RNA splicing is not yet fully elucidated, partly because SRPs have not yet been exhaustively identified and the experimental identification is labor-intensive. Therefore, we are motivated to design a new method for identifying SRPs with their functional roles in the regulation of RNA splicing. The experimentally verified SRPs were manually curated from research articles. According to the functional annotation of Splicing Related Gene Database, the collected SRPs were further categorized into four functional groups including small nuclear Ribonucleoprotein, Splicing Factor, Splicing Regulation Factor and Novel Spliceosome Protein. The composition of amino acid pairs indicates that there are remarkable differences among four functional groups of SRPs. Then, support vector machines (SVMs) were utilized to learn the predictive models for identifying SRPs as well as their functional roles. The cross-validation evaluation presents that the SVM models trained with significant amino acid pairs and functional domains could provide a better predictive performance. In addition, the independent testing demonstrates that the proposed method could accurately identify SRPs in mammals/plants as well as effectively distinguish between SRPs and RNA-binding proteins. This investigation provides a practical means to identifying potential SRPs and a perspective for exploring the regulation of RNA splicing.

  19. Ultrastructural and biochemical evidence for the presence of mature steroidogenic acute regulatory protein (StAR) in the cytoplasm of human luteal cells.

    PubMed

    Sierralta, Walter D; Kohen, Paulina; Castro, Olga; Muñoz, Alex; Strauss, Jerome F; Devoto, Luigi

    2005-10-20

    The distribution of the steroidogenic acute regulatory protein (StAR) inside thecal and granulosa-lutein cells of human corpus luteum (CL) was assessed by immunoelectron microscopy. We found greater levels of StAR immunolabeling in steroidogenic cells from early- and mid-than in late luteal phase CL and lower levels in cells from women treated with a GnRH antagonist in the mid-luteal phase. Immunoelectron microscopy revealed significant levels of StAR antigen in the mitochondria and in the cytoplasm of luteal cells. The 30 kDa mature StAR protein was present in both mitochondria and cytosol (post-mitochondrial) fractions from homogenates of CL at different ages, whereas cytochrome c and mitochondrial HSP70 were detected only in the mitochondrial fraction. Therefore, we hypothesized that either appreciable processing of StAR 37 kDa pre-protein occurs outside the mitochondria, or mature StAR protein is selectively released into the cytoplasm after mitochondrial processing. The presence of mature StAR in the cytoplasm is consonant with the notion that StAR acts on the outer mitochondrial membrane to effect sterol import, and that StAR may interact with other cytoplasmic proteins involved in cholesterol metabolism, including hormone sensitive lipase.

  20. Nucleic Acid Programmable Protein Array: A Just-In-Time Multiplexed Protein Expression and Purification Platform

    PubMed Central

    Qiu, Ji; LaBaer, Joshua

    2012-01-01

    Systematic study of proteins requires the availability of thousands of proteins in functional format. However, traditional recombinant protein expression and purification methods have many drawbacks for such study at the proteome level. We have developed an innovative in situ protein expression and capture system, namely NAPPA (nucleic acid programmable protein array), where C-terminal tagged proteins are expressed using an in vitro expression system and efficiently captured/purified by antitag antibodies coprinted at each spot. The NAPPA technology presented in this chapter enable researchers to produce and display fresh proteins just in time in a multiplexed high-throughput fashion and utilize them for various downstream biochemical researches of interest. This platform could revolutionize the field of functional proteomics with it ability to produce thousands of spatially separated proteins in high density with narrow dynamic rand of protein concentrations, reproducibly and functionally. PMID:21943897

  1. Nucleic acid programmable protein array a just-in-time multiplexed protein expression and purification platform.

    PubMed

    Qiu, Ji; LaBaer, Joshua

    2011-01-01

    Systematic study of proteins requires the availability of thousands of proteins in functional format. However, traditional recombinant protein expression and purification methods have many drawbacks for such study at the proteome level. We have developed an innovative in situ protein expression and capture system, namely NAPPA (nucleic acid programmable protein array), where C-terminal tagged proteins are expressed using an in vitro expression system and efficiently captured/purified by antitag antibodies coprinted at each spot. The NAPPA technology presented in this chapter enable researchers to produce and display fresh proteins just in time in a multiplexed high-throughput fashion and utilize them for various downstream biochemical researches of interest. This platform could revolutionize the field of functional proteomics with it ability to produce thousands of spatially separated proteins in high density with narrow dynamic rand of protein concentrations, reproducibly and functionally.

  2. Suppression of muscle protein turnover and amino acid degradation by dietary protein deficiency

    NASA Technical Reports Server (NTRS)

    Tawa, N. E. Jr; Goldberg, A. L.

    1992-01-01

    To define the adaptations that conserve amino acids and muscle protein when dietary protein intake is inadequate, rats (60-70 g final wt) were fed a normal or protein-deficient (PD) diet (18 or 1% lactalbumin), and their muscles were studied in vitro. After 7 days on the PD diet, both protein degradation and synthesis fell 30-40% in skeletal muscles and atria. This fall in proteolysis did not result from reduced amino acid supply to the muscle and preceded any clear decrease in plasma amino acids. Oxidation of branched-chain amino acids, glutamine and alanine synthesis, and uptake of alpha-aminoisobutyrate also fell by 30-50% in muscles and adipose tissue of PD rats. After 1 day on the PD diet, muscle protein synthesis and amino acid uptake decreased by 25-40%, and after 3 days proteolysis and leucine oxidation fell 30-45%. Upon refeeding with the normal diet, protein synthesis also rose more rapidly (+30% by 1 day) than proteolysis, which increased significantly after 3 days (+60%). These different time courses suggest distinct endocrine signals for these responses. The high rate of protein synthesis and low rate of proteolysis during the first 3 days of refeeding a normal diet to PD rats contributes to the rapid weight gain ("catch-up growth") of such animals.

  3. Statins reduce amyloid β-peptide production by modulating amyloid precursor protein maturation and phosphorylation through a cholesterol-independent mechanism in cultured neurons.

    PubMed

    Hosaka, Ai; Araki, Wataru; Oda, Akiko; Tomidokoro, Yasushi; Tamaoka, Akira

    2013-03-01

    Statins, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, have been reported to attenuate amyloid-β peptide (Aβ) production in various cellular models. However, the mechanisms by which statins affect neuronal Aβ production have not yet been clarified. Here, we investigated this issue in rat primary cortical neurons using two statins, pitavastatin (PV) and atorvastatin (AV). Treatment of neurons with 0.2-2.5 μM PV or AV for 4 days induced a concentration- and time-dependent reduction in the secretion of both Aβ40 and Aβ42. Moreover, Western blot analyses of cell lysates showed that treatment with PV or AV significantly reduced expression levels of the mature form of amyloid precursor protein (APP) and Thr668-phosphorylated APP (P-APP), but not immature form of APP; the decreases in P-APP levels were more notable than those of mature APP levels. The statin treatment did not alter expression of BACE1 (β-site APP-cleaving enzyme 1) or γ-secretase complex proteins (presenilin 1, nicastrin, APH-1, and PEN-2). In neurons overexpressing APP via recombinant adenoviruses, PV or AV similarly reduced Aβ secretion and the levels of mature APP and P-APP. Statins also markedly reduced cellular cholesterol content in neurons in a concentration-dependent manner. Co-treatment with mevalonate reversed the statin-induced decreases in Aβ secretion and mature APP and P-APP levels, whereas co-treatment with cholesterol did not, despite recovery of cellular cholesterol levels. Finally, cell-surface biotinylation experiments revealed that both statins significantly reduced the levels of cell-surface P-APP without changing those of cell surface mature APP. These results suggest that statins reduce Aβ production by selectively modulating APP maturation and phosphorylation through a mechanism independent of cholesterol reduction in cultured neurons.

  4. Zinc-finger protein ZFP318 is essential for expression of IgD, the alternatively spliced Igh product made by mature B lymphocytes.

    PubMed

    Enders, Anselm; Short, Alanna; Miosge, Lisa A; Bergmann, Hannes; Sontani, Yovina; Bertram, Edward M; Whittle, Belinda; Balakishnan, Bhavani; Yoshida, Kaoru; Sjollema, Geoff; Field, Matthew A; Andrews, T Daniel; Hagiwara, Hiromi; Goodnow, Christopher C

    2014-03-25

    IgD and IgM are produced by alternative splicing of long primary RNA transcripts from the Ig heavy chain (Igh) locus and serve as the receptors for antigen on naïve mature B lymphocytes. IgM is made selectively in immature B cells, whereas IgD is coexpressed with IgM when the cells mature into follicular or marginal zone B cells, but the transacting factors responsible for this regulated change in splicing have remained elusive. Here, we use a genetic screen in mice to identify ZFP318, a nuclear protein with two U1-type zinc fingers found in RNA-binding proteins and no known role in the immune system, as a critical factor for IgD expression. A point mutation in an evolutionarily conserved lysine-rich domain encoded by the alternatively spliced Zfp318 exon 10 abolished IgD expression on marginal zone B cells, decreased IgD on follicular B cells, and increased IgM, but only slightly decreased the percentage of B cells and did not decrease expression of other maturation markers CD21, CD23, or CD62L. A targeted Zfp318 null allele extinguished IgD expression on mature B cells and increased IgM. Zfp318 mRNA is developmentally regulated in parallel with IgD, with little in pro-B cells, moderate amounts in immature B cells, and high levels selectively in mature follicular B cells. These findings identify ZFP318 as a crucial factor regulating the expression of the two major antibody isotypes on the surface of most mature B cells.

  5. Urinary intestinal fatty acid binding protein predicts necrotizing enterocolitis.

    PubMed

    Gregory, Katherine E; Winston, Abigail B; Yamamoto, Hidemi S; Dawood, Hassan Y; Fashemi, Titilayo; Fichorova, Raina N; Van Marter, Linda J

    2014-06-01

    Necrotizing enterocolitis, characterized by sudden onset and rapid progression, remains the most significant gastrointestinal disorder among premature infants. In seeking a predictive biomarker, we found intestinal fatty acid binding protein, an indicator of enterocyte damage, was substantially increased within three and seven days before the diagnosis of necrotizing enterocolitis.

  6. [Photochemistry and UV Spectroscopy of Proteins and Nucleic Acids].

    PubMed

    Wierzchowski, Kazimierz Lech

    2015-01-01

    The article presents a short history of David Shugar studies in the field of photochemistry and UV spectroscopy of proteins and nucleic acids, carried out since the late 1940s. to the beginning of the 1970s. of the 20th century, with some references to the state of related research in those days.

  7. Amino acid nutrition beyond methionine and lysine for milk protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amino acids are involved in many important physiological processes affecting the production, health, and reproduction of high-producing dairy cows. Most research and recommendations for lactating dairy cows has focused on methionine and lysine for increasing milk protein yield. This is because these...

  8. Stimulation of protein synthesis by phosphatidic acid in rat cardiomyocytes.

    PubMed

    Xu, Y J; Yau, L; Yu, L P; Elimban, V; Zahradka, P; Dhalla, N S

    1996-12-13

    Phosphatidic acid (PA) was observed to stimulate protein synthesis in adult cardiomyocytes in a time- and concentration-dependent manner. The maximal stimulation in protein synthesis (142 +/- 12% vs 100% as the control) was achieved at 10 microM PA within 60 min and was inhibited by actinomycin D (107 +/- 4% of the control) or cycloheximide (105 +/- 6% of the control). The increase in protein synthesis due to PA was attenuated or abolished by preincubation of cardiomyocytes with a tyrosine kinase inhibitor, genistein (94 +/- 9% of the control), phospholipase C inhibitors 2-nitro-4-carboxyphenyl N,N-diphenyl carbamate or carbon-odithioic acid O-(octahydro-4,7-methanol-1H-inden-5-yl (101 +/- 6 and 95 +/- 5% of the control, respectively), protein kinase C inhibitors staurosporine or polymyxin B (109 +/- 3 and 93 +/- 3% of the control), and chelators of extracellular and intracellular free Ca2+ EGTA or BAPTA/AM (103 +/- 6 and 95 +/- 6% of the control, respectively). PA at different concentrations (0.1 to 100 microM) also caused phosphorylation of a cell surface protein of approximately 24 kDa. In addition, mitogen-activated protein kinase was stimulated by PA in a concentration-dependent manner; maximal stimulation (217 +/- 6% of the control) was seen at 10 microM PA. These data suggest that PA increases protein synthesis in adult rat cardiomyocytes and thus may play an important role in the development of cardiac hypertrophy.

  9. Uses of phage display in agriculture: sequence analysis and comparative modeling of late embryogenesis abundant client proteins suggest protein-nucleic acid binding functionality.

    PubMed

    Kushwaha, Rekha; Downie, A Bruce; Payne, Christina M

    2013-01-01

    A group of intrinsically disordered, hydrophilic proteins-Late Embryogenesis Abundant (LEA) proteins-has been linked to survival in plants and animals in periods of stress, putatively through safeguarding enzymatic function and prevention of aggregation in times of dehydration/heat. Yet despite decades of effort, the molecular-level mechanisms defining this protective function remain unknown. A recent effort to understand LEA functionality began with the unique application of phage display, wherein phage display and biopanning over recombinant Seed Maturation Protein homologs from Arabidopsis thaliana and Glycine max were used to retrieve client proteins at two different temperatures, with one intended to represent heat stress. From this previous study, we identified 21 client proteins for which clones were recovered, sometimes repeatedly. Here, we use sequence analysis and homology modeling of the client proteins to ascertain common sequence and structural properties that may contribute to binding affinity with the protective LEA protein. Our methods uncover what appears to be a predilection for protein-nucleic acid interactions among LEA client proteins, which is suggestive of subcellular residence. The results from this initial computational study will guide future efforts to uncover the protein protective mechanisms during heat stress, potentially leading to phage-display-directed evolution of synthetic LEA molecules.

  10. Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain.

    PubMed

    Ferland, Russell J; Cherry, Timothy J; Preware, Patricia O; Morrisey, Edward E; Walsh, Christopher A

    2003-05-26

    Foxp2 and Foxp1 are recently identified members of the Fox family of winged-helix/forkhead transcription factor genes. A recent study has found that mutations in human FOXP2 produce a severe language disorder. Since Foxp2 appears to be important in language, we wanted to explore the expression of this gene and a homologous gene, Foxp1, in the developing brain. In the present study, we investigated the time course and localization of Foxp2 and Foxp1 mRNA and protein expression in the developing and adult mouse using in situ hybridization and immunohistochemistry. Foxp2 and Foxp1 are expressed as early as E12.5 and persist into adulthood. Foxp2 and Foxp1 were most highly expressed in the developing and mature basal ganglia. Expression of Foxp2 was also observed in the cerebral cortex (layer 6), cerebellum (Purkinje neurons), and thalamus. Foxp1 expression was observed in the cerebral cortex (layers 3-5), hippocampus (CA1), and thalamus. Very little ventricular zone expression was observed for Foxp2 and Foxp1 and the expression of both of these genes occurred following neuronal migration, suggesting a role for these genes in postmigratory neuronal differentiation. Furthermore, we demonstrated the expression of FOXP2 in human fetal brain by RT-PCR, in the perisylvian area of the left and right cerebral hemispheres, as well as in the frontal and occipital cortices. Overall, the widespread expression of Foxp2 in the developing brain makes it difficult to draw specific conclusions about which areas of Foxp2 expression are critical to human language function.

  11. Network-based characterization of the synaptic proteome reveals that removal of epigenetic regulator Prmt8 restricts proteins associated with synaptic maturation.

    PubMed

    Lee, Patrick Kia Ming; Goh, Wilson Wen Bin; Sng, Judy Chia Ghee

    2017-02-01

    The brain adapts to dynamic environmental conditions by altering its epigenetic state, thereby influencing neuronal transcriptional programs. An example of an epigenetic modification is protein methylation, catalyzed by protein arginine methyltransferases (PRMT). One member, Prmt8, is selectively expressed in the central nervous system during a crucial phase of early development, but little else is known regarding its function. We hypothesize Prmt8 plays a role in synaptic maturation during development. To evaluate this, we used a proteome-wide approach to characterize the synaptic proteome of Prmt8 knockout versus wild-type mice. Through comparative network-based analyses, proteins and functional clusters related to neurite development were identified to be differentially regulated between the two genotypes. One interesting protein that was differentially regulated was tenascin-R (TNR). Chromatin immunoprecipitation demonstrated binding of PRMT8 to the tenascin-r (Tnr) promoter. TNR, a component of perineuronal nets, preserves structural integrity of synaptic connections within neuronal networks during the development of visual-somatosensory cortices. On closer inspection, Prmt8 removal increased net formation and decreased inhibitory parvalbumin-positive (PV+) puncta on pyramidal neurons, thereby hindering the maturation of circuits. Consequently, visual acuity of the knockout mice was reduced. Our results demonstrated Prmt8's involvement in synaptic maturation and its prospect as an epigenetic modulator of developmental neuroplasticity by regulating structural elements such as the perineuronal nets.

  12. Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins.

    PubMed

    Thomas, Marshall P; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron J; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-06-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. In this study, we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein targets, whereas adding RNA to recombinant RNA binding protein substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Preincubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G. During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps, which bind NE and cathepsin G. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and neutrophil extracellular traps in a DNA-dependent manner. Thus, high-affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation.

  13. Characterization of dedifferentiating human mature adipocytes from the visceral and subcutaneous fat compartments: fibroblast-activation protein alpha and dipeptidyl peptidase 4 as major components of matrix remodeling.

    PubMed

    Lessard, Julie; Pelletier, Mélissa; Biertho, Laurent; Biron, Simon; Marceau, Simon; Hould, Frédéric-Simon; Lebel, Stéfane; Moustarah, Fady; Lescelleur, Odette; Marceau, Picard; Tchernof, André

    2015-01-01

    Mature adipocytes can reverse their phenotype to become fibroblast-like cells. This is achieved by ceiling culture and the resulting cells, called dedifferentiated fat (DFAT) cells, are multipotent. Beyond the potential value of these cells for regenerative medicine, the dedifferentiation process itself raises many questions about cellular plasticity and the pathways implicated in cell behavior. This work has been performed with the objective of obtaining new information on adipocyte dedifferentiation, especially pertaining to new targets that may be involved in cellular fate changes. To do so, omental and subcutaneous mature adipocytes sampled from severely obese subjects have been dedifferentiated by ceiling culture. An experimental design with various time points along the dedifferentiation process has been utilized to better understand this process. Cell size, gene and protein expression as well as cytokine secretion were investigated. Il-6, IL-8, SerpinE1 and VEGF secretion were increased during dedifferentiation, whereas MIF-1 secretion was transiently increased. A marked decrease in expression of mature adipocyte transcripts (PPARγ2, C/EBPα, LPL and Adiponectin) was detected early in the process. In addition, some matrix remodeling transcripts (FAP, DPP4, MMP1 and TGFβ1) were rapidly and strongly up-regulated. FAP and DPP4 proteins were simultaneously induced in dedifferentiating mature adipocytes supporting a potential role for these enzymes in adipose tissue remodeling and cell plasticity.

  14. Characterization of Dedifferentiating Human Mature Adipocytes from the Visceral and Subcutaneous Fat Compartments: Fibroblast-Activation Protein Alpha and Dipeptidyl Peptidase 4 as Major Components of Matrix Remodeling

    PubMed Central

    Lessard, Julie; Pelletier, Mélissa; Biertho, Laurent; Biron, Simon; Marceau, Simon; Hould, Frédéric-Simon; Lebel, Stéfane; Moustarah, Fady; Lescelleur, Odette; Marceau, Picard; Tchernof, André

    2015-01-01

    Mature adipocytes can reverse their phenotype to become fibroblast-like cells. This is achieved by ceiling culture and the resulting cells, called dedifferentiated fat (DFAT) cells, are multipotent. Beyond the potential value of these cells for regenerative medicine, the dedifferentiation process itself raises many questions about cellular plasticity and the pathways implicated in cell behavior. This work has been performed with the objective of obtaining new information on adipocyte dedifferentiation, especially pertaining to new targets that may be involved in cellular fate changes. To do so, omental and subcutaneous mature adipocytes sampled from severely obese subjects have been dedifferentiated by ceiling culture. An experimental design with various time points along the dedifferentiation process has been utilized to better understand this process. Cell size, gene and protein expression as well as cytokine secretion were investigated. Il-6, IL-8, SerpinE1 and VEGF secretion were increased during dedifferentiation, whereas MIF-1 secretion was transiently increased. A marked decrease in expression of mature adipocyte transcripts (PPARγ2, C/EBPα, LPL and Adiponectin) was detected early in the process. In addition, some matrix remodeling transcripts (FAP, DPP4, MMP1 and TGFβ1) were rapidly and strongly up-regulated. FAP and DPP4 proteins were simultaneously induced in dedifferentiating mature adipocytes supporting a potential role for these enzymes in adipose tissue remodeling and cell plasticity. PMID:25816202

  15. Kinetic study of sulphuric acid hydrolysis of protein feathers.

    PubMed

    Ben Hamad Bouhamed, Sana; Kechaou, Nabil

    2017-02-28

    Poultry feather keratin is the most important by-product from the poultry industry due to its abundance. Different methods have been still applied to process this by-product such as enzymatic hydrolysis which is expensive and inapplicable at the industrial level. This paper presents a study of acid hydrolysis of poultry feathers using different types of acids, sulphuric acid concentration, different temperatures and solid to liquid ratio to obtain a liquid product rich in peptides. The feathers analysis revealed a crude protein content of 88.83%. A maximum peptides production of 676 mg/g was reached using sulphuric acid, 1 molar acid concentration and 50 g/l solid to liquid ratio at a temperature of 90 °C after 300 min. A reaction scheme for protein aggregation and decomposition to polypeptides and amino acids was proposed and a kinetic model for peptides production was developed. The proposed kinetic model proved to be well adapted to the experimental data with R (2) = 0.99.

  16. Interference of N-hydroxysuccinimide with bicinchoninic acid protein assay.

    PubMed

    Vashist, Sandeep Kumar; Dixit, Chandra Kumar

    2011-07-29

    We report here substantial interference from N-hydroxysuccinimide (NHS) in the bicinchoninic acid (BCA) protein assay. NHS is one of the most commonly used crosslinking agents in bioanalytical sciences, which can lead to serious potential errors in the BCA protein assay based protein estimation if it is present in the protein analyte solution. It was identified to be a reducing substance, which interferes with the BCA protein assay by reducing Cu(2+) in the BCA working reagent. The absorbance peak and absorbance signal of NHS were very similar to those of bovine serum albumin (BSA), thereby indicating a similar BCA reaction mechanism for NHS and protein. However, the combined absorbance of NHS and BSA was not additive. The time-response measurements of the BCA protein assay showed consistent single-phase kinetics for NHS and gradually decreasing kinetics for BSA. The error in protein estimation due to the presence of NHS was counteracted effectively by plotting additional BCA standard curve for BSA with a fixed concentration of NHS. The difference between the absorbance values of BSA and BSA with a fixed NHS concentration provided the absorbance contributed by NHS, which was then subtracted from the total absorbance of analyte sample to determine the actual absorbance of protein in the analyte sample.

  17. Fatty acid composition of porcine cumulus oocyte complexes (COC) during maturation: effect of the lipid modulators trans-10, cis-12 conjugated linoleic acid (t10,c12 CLA) and forskolin.

    PubMed

    Prates, E G; Alves, S P; Marques, C C; Baptista, M C; Horta, A E M; Bessa, R J B; Pereira, R M

    2013-05-01

    The effect of maturation and of two lipid modulators supplementation along in vitro maturation (IVM) on fatty acid (FA) and dimethylacetal (DMA) composition of porcine cumulus oocyte complexes (COC) were studied. Abattoir-derived immature COC were analyzed for FA and DMA or submitted to IVM as follows: control group; t10,c12 CLA group, t10,c12 CLA supplementation for 44 h; Forskolin group, forskolin supplementation during the initial 2 h; t10,c12 CLA + forskolin group, t10,c12 CLA for 44 h and forskolin for just 2h. Each experimental group had five replicates. FA analysis of oocytes, cumulus cells (CC), follicular fluid, and culture media were performed by gas-liquid chromatography. Oocytes and their CC had different FA composition. Oocytes were richer in saturated FA (SFA) preferentially maintaining their FA profile during maturation. Mature CC had the highest polyunsaturated FA (PUFA) content. Five individual and total SFA, and monounsaturated FA (MUFA), notably oleic acid (c9-18:1), percentages were lower (P ≤ 0.023) in mature than in immature CC. t10,c12 CLA was accumulated by COC from t10,c12 CLA and t10,c12 CLA + forskolin groups, mostly in CC where MUFA and an eicosatrienoic isomer decreased (P ≤ 0.043). Nevertheless, PUFA or FA and DMA total content were not affected. Arachidonic acid was reduced in t10,c12 CLA + forskolin CC and hexadecanal-DMA-16:0 in t10,c12 CLA CC. Forskolin alone increased (P ≤ 0.043) c9-18:1 in oocytes. In conclusion, maturation process clearly changed porcine COC FA and DMA profiles, mostly of CC, also more susceptible to modifications induced by t10,c12 CLA. This possibility of manipulating COC lipid composition during IVM could be used to improve oocyte quality/cryopreservation efficiency.

  18. LYZL6, an acidic, bacteriolytic, human sperm-related protein, plays a role in fertilization

    PubMed Central

    Huang, Peng; Li, Wenshu; Yang, Zhifang; Zhang, Ning; Xu, Yixin; Bao, Jianying; Jiang, Deke; Dong, Xianping

    2017-01-01

    Lysozyme-like proteins (LYZLs) belong to the c-type lysozyme/α-lactalbumin family and are selectively expressed in the mammalian male reproductive tract. Two members, human sperm lysozyme-like protein (SLLP) -1 and mouse LYZL4, have been reported to contribute to fertilization but show no bacteriolytic activity. Here, we focused on the possible contribution of LYZL6 to immunity and fertilization. In humans, LYZL6 was selectively expressed by the testis and epididymis and became concentrated on spermatozoa. Native LYZL6 isolated from sperm extracts exhibited bacteriolytic activity against Micrococcus lysodeikticus. Recombinant LYZL6 (rLYZL6) reached its peak activity at pH 5.6 and 15 mM of Na+, and could inhibit the growth of Gram-positive, but not Gram-negative bacteria. Nevertheless, the bacteriolytic activity of rLYZL6 proved to be much lower than that of human lysozyme under physiological conditions. Immunodetection with a specific antiserum localized the LYZL6 protein on the postacrosomal membrane of mature spermatozoa. Immunoneutralization of LYZL6 significantly decreased the numbers of human spermatozoa fused with zona-free hamster eggs in a dose-dependent manner in vitro. Thus, we report here for the first time that LYZL6, an acidic, bacteriolytic and human sperm-related protein, is likely important for fertilization but not for the innate immunity of the male reproductive tract. PMID:28182716

  19. Cutting edge: FYCO1 recruitment to dectin-1 phagosomes is accelerated by light chain 3 protein and regulates phagosome maturation and reactive oxygen production.

    PubMed

    Ma, Jun; Becker, Courtney; Reyes, Christopher; Underhill, David M

    2014-02-15

    L chain 3 (LC3)-associated phagocytosis is a process in which LC3, a protein canonically involved in engulfing intracellular materials (autophagy), is recruited to traditional phagosomes during internalization of extracellular payloads. LC3's association with phagosomes has been implicated in regulating microbial killing, Ag processing, and phagosome maturation; however, the mechanism by which LC3 influences these processes has not been clear. In this study, we report that FYVE and coiled-coil domain containing 1 (FYCO1), a protein previously implicated in autophagosome trafficking, is recruited directly by LC3 to Dectin-1 phagosomes. During LC3-associated phagocytosis, FYCO1 recruitment facilitates maturation of early p40phox(+) phagosomes into late LAMP1(+) phagosomes. When FYCO1 is lacking, phagosomes stay p40phox(+) longer and produce more reactive oxygen.

  20. A conserved patch of hydrophobic amino acids modulates Myb activity by mediating protein-protein interactions.

    PubMed

    Dukare, Sandeep; Klempnauer, Karl-Heinz

    2016-07-01

    The transcription factor c-Myb plays a key role in the control of proliferation and differentiation in hematopoietic progenitor cells and has been implicated in the development of leukemia and certain non-hematopoietic tumors. c-Myb activity is highly dependent on the interaction with the coactivator p300 which is mediated by the transactivation domain of c-Myb and the KIX domain of p300. We have previously observed that conservative valine-to-isoleucine amino acid substitutions in a conserved stretch of hydrophobic amino acids have a profound effect on Myb activity. Here, we have explored the function of the hydrophobic region as a mediator of protein-protein interactions. We show that the hydrophobic region facilitates Myb self-interaction and binding of the histone acetyl transferase Tip60, a previously identified Myb interacting protein. We show that these interactions are affected by the valine-to-isoleucine amino acid substitutions and suppress Myb activity by interfering with the interaction of Myb and the KIX domain of p300. Taken together, our work identifies the hydrophobic region in the Myb transactivation domain as a binding site for homo- and heteromeric protein interactions and leads to a picture of the c-Myb transactivation domain as a composite protein binding region that facilitates interdependent protein-protein interactions of Myb with regulatory proteins.

  1. A rapid method for detecting protein-nucleic acid interactions by protein induced fluorescence enhancement

    PubMed Central

    Valuchova, Sona; Fulnecek, Jaroslav; Petrov, Alexander P.; Tripsianes, Konstantinos; Riha, Karel

    2016-01-01

    Many fundamental biological processes depend on intricate networks of interactions between proteins and nucleic acids and a quantitative description of these interactions is important for understanding cellular mechanisms governing DNA replication, transcription, or translation. Here we present a versatile method for rapid and quantitative assessment of protein/nucleic acid (NA) interactions. This method is based on protein induced fluorescence enhancement (PIFE), a phenomenon whereby protein binding increases the fluorescence of Cy3-like dyes. PIFE has mainly been used in single molecule studies to detect protein association with DNA or RNA. Here we applied PIFE for steady state quantification of protein/NA interactions by using microwell plate fluorescence readers (mwPIFE). We demonstrate the general applicability of mwPIFE for examining various aspects of protein/DNA interactions with examples from the restriction enzyme BamHI, and the DNA repair complexes Ku and XPF/ERCC1. These include determination of sequence and structure binding specificities, dissociation constants, detection of weak interactions, and the ability of a protein to translocate along DNA. mwPIFE represents an easy and high throughput method that does not require protein labeling and can be applied to a wide range of applications involving protein/NA interactions. PMID:28008962

  2. Dietary protein's and dietary acid load's influence on bone health.

    PubMed

    Remer, Thomas; Krupp, Danika; Shi, Lijie

    2014-01-01

    A variety of genetic, mechano-response-related, endocrine-metabolic, and nutritional determinants impact bone health. Among the nutritional influences, protein intake and dietary acid load are two of the factors most controversially discussed. Although in the past high protein intake was often assumed to exert a primarily detrimental impact on bone mass and skeletal health, the majority of recent studies indicates the opposite and suggests a bone-anabolic influence. Studies examining the influence of alkalizing diets or alkalizing supplement provision on skeletal outcomes are less consistent, which raises doubts about the role of acid-base status in bone health. The present review critically evaluates relevant key issues such as acid-base terminology, influencing factors of intestinal calcium absorption, calcium balance, the endocrine-metabolic milieu related to metabolic acidosis, and some methodological aspects of dietary exposure and bone outcome examinations. It becomes apparent that for an adequate identification and characterization of either dietary acid load's or protein's impact on bone, the combined assessment of both nutritional influences is necessary.

  3. Phagolysosome maturation of macrophages was reduced by PE_PGRS 62 protein expressing in Mycobacterium smegmatis and induced in IFN-γ priming.

    PubMed

    Huang, Ying; Zhou, Xiangmei; Bai, Yu; Yang, Lifeng; Yin, Xiaomin; Wang, Zhigang; Zhao, Deming

    2012-11-09

    Mycobacterium bovis parasitizes host macrophages and has developed strategies to survive within macrophages. Research on mycobacteria-specific PE_PGRS genes indicates that they code for cell surface proteins that may influence virulence. To further elucidate the molecular pathogenesis of tuberculosis and host response to M. bovis, we explored the mechanisms by which PE_PGRS62 protein increase persistence of mycobacterium within host macrophages. We found that the M. smegmatis strain expressing M. bovis PE_PGRS 62 protein reduced phagolysosome maturation in human macrophages, and significantly decreased the mRNA expression of IL-1β in a dose- and time-dependent. We identified that IFN-γ priming of macrophages immediately prior to infection with PE_PGRS62 expressing M. smegmantis, enhanced the maturation of phagolysosomes and induced IL-1β production both that the protein and mRNA levels and further activated the NF-κB pathway. Overall, we demonstrated that PE_PGRS62 protein altered the immune environment of the host cells, which suggested that the pathogenic PE_PGRS62 protein altering the immune mechanism might be involved in the pathogenesis of mycobacterial disease and hence influenced host cell responses to M. bovis infection.

  4. Secreted Protein Acidic and Rich in Cysteine in Ocular Tissue

    PubMed Central

    Scavelli, Kurt; Chatterjee, Ayan

    2015-01-01

    Abstract Secreted protein acidic and rich in cysteine (SPARC), also known as osteonectin or BM-40, is the prototypical matricellular protein. Matricellular proteins are nonstructural secreted proteins that provide an integration between cells and their surrounding extracellular matrix (ECM). Regulation of the ECM is important in maintaining the physiologic function of tissues. Elevated levels of SPARC have been identified in a variety of diseases involving pathologic tissue remodeling, such as hepatic fibrosis, systemic sclerosis, and certain carcinomas. Within the eye, SPARC has been identified in the trabecular meshwork, lens, and retina. Studies have begun to show the role of SPARC in these tissues and its possible role, specifically in primary open-angle glaucoma, cataracts, and proliferative vitreoretinopathy. SPARC may, therefore, be a therapeutic target in the treatment of certain ocular diseases. Further investigation into the mechanism of action of SPARC will be necessary in the development of SPARC-targeted therapy. PMID:26167673

  5. Saturated fatty acids modulate autophagy's proteins in the hypothalamus.

    PubMed

    Portovedo, Mariana; Ignacio-Souza, Letícia M; Bombassaro, Bruna; Coope, Andressa; Reginato, Andressa; Razolli, Daniela S; Torsoni, Márcio A; Torsoni, Adriana S; Leal, Raquel F; Velloso, Licio A; Milanski, Marciane

    2015-01-01

    Autophagy is an important process that regulates cellular homeostasis by degrading dysfunctional proteins, organelles and lipids. In this study, the hypothesis that obesity could lead to impairment in hypothalamic autophagy in mice was evaluated by examining the hypothalamic distribution and content of autophagic proteins in animal with obesity induced by 8 or 16 weeks high fat diet to induce obesity and in response to intracerebroventricular injections of palmitic acid. The results showed that chronic exposure to a high fat diet leads to an increased expression of inflammatory markers and downregulation of autophagic proteins. In obese mice, autophagic induction leads to the downregulation of proteins, such as JNK and Bax, which are involved in the stress pathways. In neuron cell-line, palmitate has a direct effect on autophagy even without inflammatory activity. Understanding the cellular and molecular bases of overnutrition is essential for identifying new diagnostic and therapeutic targets for obesity.

  6. Giardia lamblia binding immunoglobulin protein triggers maturation of dendritic cells via activation of TLR4-MyD88-p38 and ERK1/2 MAPKs.

    PubMed

    Lee, H-Y; Kim, J; Noh, H J; Kim, H-P; Park, S-J

    2014-12-01

    Much remains unknown about the mammalian immune response to Giardia lamblia, a protozoan pathogen that causes diarrhoeal outbreaks. We fractionated protein extracts of G. lamblia trophozoites by Viva-spin centrifugation, DEAE ion exchange and gel filtration chromatography. Resultant fractions were screened for antigenic molecules by western blots analysis using anti-G. lamblia antibodies (Abs), resulting in identification of G. lamblia binding immunoglobulin protein (GlBiP). Maturation of mouse dendritic cells (DCs) in response to recombinant GlBiP (rGlBiP) was detected by increased expression of surface molecules such as CD80, CD86 and MHC class II; these mature DCs, produced pro-inflammatory cytokines (TNF-α, IL-12 and IL-6). Especially, the truncated rGlBiP containing the heat-shock protein 70 domain-induced cytokine production from mouse DCs. rGlBiP-induced DC activation was initiated by TLR4 in a MyD88-dependent way and occurred through activation of p38 and ERK1/2 MAPKs as well as increased activity of NF-κB and AP-1. Moreover, CD4(+) T cells stimulated with rGlBiP-treated DCs produced high levels of IL-2 and IFN-γ. Together, our results suggest that GlBiP contributes to maturation of DCs via activation of TLR4-MyD88-p38, ERK1/2 MAPK, NF-κB and AP-1.

  7. Electricity-free, sequential nucleic acid and protein isolation.

    PubMed

    Pawlowski, David R; Karalus, Richard J

    2012-05-15

    Traditional and emerging pathogens such as Enterohemorrhagic Escherichia coli (EHEC), Yersinia pestis, or prion-based diseases are of significant concern for governments, industries and medical professionals worldwide. For example, EHECs, combined with Shigella, are responsible for the deaths of approximately 325,000 children each year and are particularly prevalent in the developing world where laboratory-based identification, common in the United States, is unavailable (1). The development and distribution of low cost, field-based, point-of-care tools to aid in the rapid identification and/or diagnosis of pathogens or disease markers could dramatically alter disease progression and patient prognosis. We have developed a tool to isolate nucleic acids and proteins from a sample by solid-phase extraction (SPE) without electricity or associated laboratory equipment (2). The isolated macromolecules can be used for diagnosis either in a forward lab or using field-based point-of-care platforms. Importantly, this method provides for the direct comparison of nucleic acid and protein data from an un-split sample, offering a confidence through corroboration of genomic and proteomic analysis. Our isolation tool utilizes the industry standard for solid-phase nucleic acid isolation, the BOOM technology, which isolates nucleic acids from a chaotropic salt solution, usually guanidine isothiocyanate, through binding to silica-based particles or filters (3). CUBRC's proprietary solid-phase extraction chemistry is used to purify protein from chaotropic salt solutions, in this case, from the waste or flow-thru following nucleic acid isolation(4). By packaging well-characterized chemistries into a small, inexpensive and simple platform, we have generated a portable system for nucleic acid and protein extraction that can be performed under a variety of conditions. The isolated nucleic acids are stable and can be transported to a position where power is available for PCR amplification

  8. Controlled expression of nif and isc iron-sulfur protein maturation components reveals target specificity and limited functional replacement between the two systems.

    PubMed

    Dos Santos, Patricia C; Johnson, Deborah C; Ragle, Brook E; Unciuleac, Mihaela-Carmen; Dean, Dennis R

    2007-04-01

    The nitrogen-fixing organism Azotobacter vinelandii contains at least two systems that catalyze formation of [Fe-S] clusters. One of these systems is encoded by nif genes, whose products supply [Fe-S] clusters required for maturation of nitrogenase. The other system is encoded by isc genes, whose products are required for maturation of [Fe-S] proteins that participate in general metabolic processes. The two systems are similar in that they include an enzyme for the mobilization of sulfur (NifS or IscS) and an assembly scaffold (NifU or IscU) upon which [Fe-S] clusters are formed. Normal cellular levels of the Nif system, which supplies [Fe-S] clusters for the maturation of nitrogenase, cannot also supply [Fe-S] clusters for the maturation of other cellular [Fe-S] proteins. Conversely, when produced at the normal physiological levels, the Isc system cannot supply [Fe-S] clusters for the maturation of nitrogenase. In the present work we found that such target specificity for IscU can be overcome by elevated production of NifU. We also found that NifU, when expressed at normal levels, is able to partially replace the function of IscU if cells are cultured under low-oxygen-availability conditions. In contrast to the situation with IscU, we could not establish conditions in which the function of IscS could be replaced by NifS. We also found that elevated expression of the Isc components, as a result of deletion of the regulatory iscR gene, improved the capacity for nitrogen-fixing growth of strains deficient in either NifU or NifS.

  9. Controlled Expression of nif and isc Iron-Sulfur Protein Maturation Components Reveals Target Specificity and Limited Functional Replacement between the Two Systems▿ †

    PubMed Central

    Dos Santos, Patricia C.; Johnson, Deborah C.; Ragle, Brook E.; Unciuleac, Mihaela-Carmen; Dean, Dennis R.

    2007-01-01

    The nitrogen-fixing organism Azotobacter vinelandii contains at least two systems that catalyze formation of [Fe-S] clusters. One of these systems is encoded by nif genes, whose products supply [Fe-S] clusters required for maturation of nitrogenase. The other system is encoded by isc genes, whose products are required for maturation of [Fe-S] proteins that participate in general metabolic processes. The two systems are similar in that they include an enzyme for the mobilization of sulfur (NifS or IscS) and an assembly scaffold (NifU or IscU) upon which [Fe-S] clusters are formed. Normal cellular levels of the Nif system, which supplies [Fe-S] clusters for the maturation of nitrogenase, cannot also supply [Fe-S] clusters for the maturation of other cellular [Fe-S] proteins. Conversely, when produced at the normal physiological levels, the Isc system cannot supply [Fe-S] clusters for the maturation of nitrogenase. In the present work we found that such target specificity for IscU can be overcome by elevated production of NifU. We also found that NifU, when expressed at normal levels, is able to partially replace the function of IscU if cells are cultured under low-oxygen-availability conditions. In contrast to the situation with IscU, we could not establish conditions in which the function of IscS could be replaced by NifS. We also found that elevated expression of the Isc components, as a result of deletion of the regulatory iscR gene, improved the capacity for nitrogen-fixing growth of strains deficient in either NifU or NifS. PMID:17237162

  10. Inhibitors of HIV-1 maturation: Development of structure-activity relationship for C-28 amides based on C-3 benzoic acid-modified triterpenoids.

    PubMed

    Swidorski, Jacob J; Liu, Zheng; Sit, Sing-Yuen; Chen, Jie; Chen, Yan; Sin, Ny; Venables, Brian L; Parker, Dawn D; Nowicka-Sans, Beata; Terry, Brian J; Protack, Tricia; Rahematpura, Sandhya; Hanumegowda, Umesh; Jenkins, Susan; Krystal, Mark; Dicker, Ira B; Meanwell, Nicholas A; Regueiro-Ren, Alicia

    2016-04-15

    We have recently reported on the discovery of a C-3 benzoic acid (1) as a suitable replacement for the dimethyl succinate side chain of bevirimat (2), an HIV-1 maturation inhibitor that reached Phase II clinical trials before being discontinued. Recent SAR studies aimed at improving the antiviral properties of 2 have shown that the benzoic acid moiety conferred topographical constraint to the pharmacophore and was associated with a lower shift in potency in the presence of human serum albumin. In this manuscript, we describe efforts to improve the polymorphic coverage of the C-3 benzoic acid chemotype through modifications at the C-28 position of the triterpenoid core. The dimethylaminoethyl amides 17 and 23 delivered improved potency toward bevirimat-resistant viruses while increasing C24 in rat oral PK studies.

  11. In silico comparative analysis of DNA and amino acid sequences for prion protein gene.

    PubMed

    Kim, Y; Lee, J; Lee, C

    2008-01-01

    Genetic variability might contribute to species specificity of prion diseases in various organisms. In this study, structures of the prion protein gene (PRNP) and its amino acids were compared among species of which sequence data were available. Comparisons of PRNP DNA sequences among 12 species including human, chimpanzee, monkey, bovine, ovine, dog, mouse, rat, wallaby, opossum, chicken and zebrafish allowed us to identify candidate regulatory regions in intron 1 and 3'-untranslated region (UTR) in addition to the coding region. Highly conserved putative binding sites for transcription factors, such as heat shock factor 2 (HSF2) and myocite enhancer factor 2 (MEF2), were discovered in the intron 1. In 3'-UTR, the functional sequence (ATTAAA) for nucleus-specific polyadenylation was found in all the analysed species. The functional sequence (TTTTTAT) for maturation-specific polyadenylation was identically observed only in ovine, and one or two nucleotide mismatches in the other species. A comparison of the amino acid sequences in 53 species revealed a large sequence identity. Especially the octapeptide repeat region was observed in all the species but frog and zebrafish. Functional changes and susceptibility to prion diseases with various isoforms of prion protein could be caused by numeric variability and conformational changes discovered in the repeat sequences.

  12. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4

    PubMed Central

    Li, Shao-jia; Yin, Xue-ren; Xie, Xiu-lan; Allan, Andrew C.; Ge, Hang; Shen, Shu-ling; Chen, Kun-song

    2016-01-01

    Organic acids are essential to fruit flavor. The vacuolar H+ transporting adenosine triphosphatase (V-ATPase) plays an important role in organic acid transport and accumulation. However, less is known of V-ATPase interacting proteins and their relationship with organic acid accumulation. The relationship between V-ATPase and citric acid was investigated, using the citrus tangerine varieties ‘Ordinary Ponkan (OPK)’ and an early maturing mutant ‘Zaoshu Ponkan (ZPK)’. Five V-ATPase genes (CitVHA) were predicted as important to citric acid accumulation. Among the genes, CitVHA-c4 was observed, using a yeast two-hybrid screen, to interact at the protein level with an ethylene response factor, CitERF13. This was verified using bimolecular fluorescence complementation assays. A similar interaction was also observed between Arabidopsis AtERF017 (a CitERF13 homolog) and AtVHA-c4 (a CitVHA-c4 homolog). A synergistic effect on citric acid levels was observed between V-ATPase proteins and interacting ERFs when analyzed using transient over-expression in tobacco and Arabidopsis mutants. Furthermore, the transcript abundance of CitERF13 was concomitant with CitVHA-c4. CitERF13 or AtERF017 over-expression leads to significant citric acid accumulation. This accumulation was abolished in an AtVHA-c4 mutant background. ERF-VHA interactions appear to be involved in citric acid accumulation, which was observed in both citrus and Arabidopsis. PMID:26837571

  13. Sulfo-N-hydroxysuccinimide interferes with bicinchoninic acid protein assay.

    PubMed

    Vashist, Sandeep Kumar; Zhang, BinBin; Zheng, Dan; Al-Rubeaan, Khalid; Luong, John H T; Sheu, Fwu-Shan

    2011-10-01

    This study revealed a major interference from sulfo-N-hydroxysuccinimide (sulfo-NHS) in the bicinchoninic acid (BCA) protein assay. Sulfo-NHS, a common reagent used in bioconjugation and analytical biochemistry, exhibited absorbance signals and absorbance peaks at 562 nm, comparable to bovine serum albumin (BSA). However, the combined absorbance of sulfo-NHS and BSA was not strictly additive. The sulfo-NHS interference was suggested to be caused by the reduction of Cu(2+) in the BCA Kit's reagent B (4% cupric sulfate) in a manner similar to that of the protein.

  14. Hypochlorous acid-mediated protein oxidation: how important are chloramine transfer reactions and protein tertiary structure?

    PubMed

    Pattison, David I; Hawkins, Clare L; Davies, Michael J

    2007-08-28

    Hypochlorous acid (HOCl) is a powerful oxidant generated from H2O2 and Cl- by the heme enzyme myeloperoxidase, which is released from activated leukocytes. HOCl possesses potent antibacterial properties, but excessive production can lead to host tissue damage that occurs in numerous human pathologies. As proteins and amino acids are highly abundant in vivo and react rapidly with HOCl, they are likely to be major targets for HOCl. In this study, two small globular proteins, lysozyme and insulin, have been oxidized with increasing excesses of HOCl to determine whether the pattern of HOCl-mediated amino acid consumption is consistent with reported kinetic data for isolated amino acids and model compounds. Identical experiments have been carried out with mixtures of N-acetyl amino acids (to prevent reaction at the alpha-amino groups) that mimic the protein composition to examine the role of protein structure on reactivity. The results indicate that tertiary structure facilitates secondary chlorine transfer reactions of chloramines formed on His and Lys side chains. In light of these data, second-order rate constants for reactions of Lys side chain and Gly chloramines with Trp side chains and disulfide bonds have been determined, together with those for further oxidation of Met sulfoxide by HOCl and His side chain chloramines. Computational kinetic models incorporating these additional rate constants closely predict the experimentally observed amino acid consumption. These studies provide insight into the roles of chloramine formation and three-dimensional structure on the reactions of HOCl with isolated proteins and demonstrate that kinetic models can predict the outcome of HOCl-mediated protein oxidation.

  15. Polyunsaturated Branched-Chain Fatty Acid Geranylgeranoic Acid Induces Unfolded Protein Response in Human Hepatoma Cells

    PubMed Central

    Iwao, Chieko; Shidoji, Yoshihiro

    2015-01-01

    The acyclic diterpenoid acid geranylgeranoic acid (GGA) has been reported to induce autophagic cell death in several human hepatoma-derived cell lines; however, the molecular mechanism for this remains unknown. In the present study, several diterpenoids were examined for ability to induce XBP1 splicing and/or lipotoxicity for human hepatoma cell lines. Here we show that three groups of diterpenoids emerged: 1) GGA, 2,3-dihydro GGA and 9-cis retinoic acid induce cell death and XBP1 splicing; 2) all-trans retinoic acid induces XBP1 splicing but little cell death; and 3) phytanic acid, phytenic acid and geranylgeraniol induce neither cell death nor XBP1 splicing. GGA-induced ER stress/ unfolded protein response (UPR) and its lipotoxicity were both blocked by co-treatment with oleic acid. The blocking activity of oleic acid for GGA-induced XBP1 splicing was not attenuated by methylation of oleic acid. These findings strongly suggest that GGA at micromolar concentrations induces the so-called lipid-induced ER stress response/UPR, which is oleate-suppressive, and shows its lipotoxicity in human hepatoma cells. PMID:26186544

  16. EZH2 is required for mouse oocyte meiotic maturation by interacting with and stabilizing spindle assembly checkpoint protein BubRI

    PubMed Central

    Qu, Yi; Lu, Danyu; Jiang, Hao; Chi, Xiaochun; Zhang, Hongquan

    2016-01-01

    Enhancer of zeste homolog 2 (EZH2) trimethylates histone H3 Lys 27 and plays key roles in a variety of biological processes. Stability of spindle assembly checkpoint protein BubR1 is essential for mitosis in somatic cells and for meiosis in oocytes. However, the role of EZH2 in oocyte meiotic maturation was unknown. Here, we presented a mechanism underlying EZH2 control of BubR1 stability in the meiosis of mouse oocytes. We identified a methyltransferase activity-independent function of EZH2 by demonstrating that EZH2 regulates spindle assembly and the polar body I extrusion. EZH2 was increased with the oocyte progression from GVBD to MII, while EZH2 was concentrated on the chromosomes. Interestingly, inhibition of EZH2 methyltranferase activity by DZNep or GSK343 did not affect oocyte meiotic maturation. However, depletion of EZH2 by morpholino led to chromosome misalignment and abnormal spindle assembly. Furthermore, ectopic expression of EZH2 led to oocyte meiotic maturation arrested at the MI stage followed by chromosome misalignment and aneuploidy. Mechanistically, EZH2 directly interacted with and stabilized BubR1, an effect driving EZH2 into the concert of meiosis regulation. Collectively, we provided a paradigm that EZH2 is required for mouse oocyte meiotic maturation. PMID:27226494

  17. An amino acid depleted cell-free protein synthesis system for the incorporation of non-canonical amino acid analogs into proteins.

    PubMed

    Singh-Blom, Amrita; Hughes, Randall A; Ellington, Andrew D

    2014-05-20

    Residue-specific incorporation of non-canonical amino acids into proteins is usually performed in vivo using amino acid auxotrophic strains and replacing the natural amino acid with an unnatural amino acid analog. Herein, we present an efficient amino acid depleted cell-free protein synthesis system that can be used to study residue-specific replacement of a natural amino acid by an unnatural amino acid analog. This system combines a simple methodology and high protein expression titers with a high-efficiency analog substitution into a target protein. To demonstrate the productivity and efficacy of a cell-free synthesis system for residue-specific incorporation of unnatural amino acids in vitro, we use this system to show that 5-fluorotryptophan and 6-fluorotryptophan substituted streptavidin retain the ability to bind biotin despite protein-wide replacement of a natural amino acid for the amino acid analog. We envisage this amino acid depleted cell-free synthesis system being an economical and convenient format for the high-throughput screening of a myriad of amino acid analogs with a variety of protein targets for the study and functional characterization of proteins substituted with unnatural amino acids when compared to the currently employed in vivo methodologies.

  18. Nucleic acid (cDNA) and amino acid sequences of the maize endosperm protein glutelin-2.

    PubMed Central

    Prat, S; Cortadas, J; Puigdomènech, P; Palau, J

    1985-01-01

    The cDNA coding for a glutelin-2 protein from maize endosperm has been cloned and the complete amino acid sequence of the protein derived for the first time. An immature maize endosperm cDNA bank was screened for the expression of a beta-lactamase:glutelin-2 (G2) fusion polypeptide by using antibodies against the purified 28 kd G2 protein. A clone corresponding to the 28 kd G2 protein was sequenced and the primary structure of this protein was derived. Five regions can be defined in the protein sequence: an 11 residue N-terminal part, a repeated region formed by eight units of the sequence Pro-Pro-Pro-Val-His-Leu, an alternating Pro-X stretch 21 residues long, a Cys rich domain and a C-terminal part rich in Gln. The protein sequence is preceded by 19 residues which have the characteristics of the signal peptide found in secreted proteins. Unlike zeins, the main maize storage proteins, 28 kd glutelin-2 has several homologous sequences in common with other cereal storage proteins. Images PMID:3839076

  19. [Standardization criteria for the study of fetal lung maturity by means of gas-liquid chromatography of the fatty acid content of the amniotic fluid].

    PubMed

    Lantieri, P B; Ciangherotti, S; Diani, F; Pecorari, D

    1979-08-15

    Gas-chromatographic analysis of the fatty acids (P/S ratio) in 10 samples of amniotic fluid and 10 samples of the pellets obtained after centrifugation of amniotic fluid at 3500 X g for 60 minutes were carried out to evaluate the effects of contaminants that might be present in amniotic fluid. The P/S ratio is used as an index of the degree of maturity of the fetal or neonatal lung. We propose a standard procedure of centrifugation for 60 minutes at 3500 X g followed by extraction and gas-chromatography as a rapid, valid way to measure the P/S ratio.

  20. Hyperdimensional Analysis of Amino Acid Pair Distributions in Proteins

    PubMed Central

    Henriksen, Svend B.; Arnason, Omar; Söring, Jón; Petersen, Steffen B.

    2011-01-01

    Our manuscript presents a novel approach to protein structure analyses. We have organized an 8-dimensional data cube with protein 3D-structural information from 8706 high-resolution non-redundant protein-chains with the aim of identifying packing rules at the amino acid pair level. The cube contains information about amino acid type, solvent accessibility, spatial and sequence distance, secondary structure and sequence length. We are able to pose structural queries to the data cube using program ProPack. The response is a 1, 2 or 3D graph. Whereas the response is of a statistical nature, the user can obtain an instant list of all PDB-structures where such pair is found. The user may select a particular structure, which is displayed highlighting the pair in question. The user may pose millions of different queries and for each one he will receive the answer in a few seconds. In order to demonstrate the capabilities of the data cube as well as the programs, we have selected well known structural features, disulphide bridges and salt bridges, where we illustrate how the queries are posed, and how answers are given. Motifs involving cysteines such as disulphide bridges, zinc-fingers and iron-sulfur clusters are clearly identified and differentiated. ProPack also reveals that whereas pairs of Lys residues virtually never appear in close spatial proximity, pairs of Arg are abundant and appear at close spatial distance, contrasting the belief that electrostatic repulsion would prevent this juxtaposition and that Arg-Lys is perceived as a conservative mutation. The presented programs can find and visualize novel packing preferences in proteins structures allowing the user to unravel correlations between pairs of amino acids. The new tools allow the user to view statistical information and visualize instantly the structures that underpin the statistical information, which is far from trivial with most other SW tools for protein structure analysis. PMID:22174733

  1. Probing the segmental mobility and energy of the active zones of a protein chain (aspartic acid protease) by a coarse-grained bond-fluctuation Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Pandey, Ras; Farmer, Barry

    2008-03-01

    A protein chain such as aspartic acid protease is described by a specific sequence of 99 residues each with its own specific characteristics. In a coarse-grained description, the backbone of a protein chain is described by nodes tethered together by peptide bonds where each node (the amino acid group) is characterized by molecular weight and hydrophobicity. A well-developed and somewhat mature computational modeling tool for the polymer chain such as the bond-fluctuation model is used to study such a specific protein chain with its constitutive amino groups and their sequence. The relative magnitude of hydrophobicity is used to develop appropriate interaction potentials for these amino acid groups in explicit solvent. The Metropolis algorithm is used to move each node and solvent constituent. Local energy and mobility of each amino group are analyzed along with global energy, mobility, and conformation of the protein chain. Effect of the solvent interaction and its concentration on these quantities will be presented.

  2. The biological activities of protein/oleic acid complexes reside in the fatty acid.

    PubMed

    Fontana, Angelo; Spolaore, Barbara; Polverino de Laureto, Patrizia

    2013-06-01

    A complex formed by human α-lactalbumin (α-LA) and oleic acid (OA), named HAMLET, has been shown to have an apoptotic activity leading to the selective death of tumor cells. In numerous publications it has been reported that in the complex α-LA is monomeric and adopts a partly folded or "molten globule" state, leading to the idea that partly folded proteins can have "beneficial effects". The protein/OA molar ratio initially has been reported to be 1:1, while recent data have indicated that the OA-complex is given by an oligomeric protein capable of binding numerous OA molecules per protein monomer. Proteolytic fragments of α-LA, as well as other proteins unrelated to α-LA, can form OA-complexes with biological activities similar to those of HAMLET, thus indicating that a generic protein can form a cytotoxic complex under suitable experimental conditions. Moreover, even the selective tumoricidal activity of HAMLET-like complexes has been questioned. There is recent evidence that the biological activity of long chain unsaturated fatty acids, including OA, can be ascribed to their effect of perturbing the structure of biological membranes and consequently the function of membrane-bound proteins. In general, it has been observed that the cytotoxic effects exerted by HAMLET-like complexes are similar to those reported for OA alone. Overall, these findings can be interpreted by considering that the protein moiety does not have a toxic effect on its own, but merely acts as a solubilising agent for the inherently toxic fatty acid.

  3. Gentiana manshurica Kitagawa reverses acute alcohol-induced liver steatosis through blocking sterol regulatory element-binding protein-1 maturation.

    PubMed

    Lian, Li-Hua; Wu, Yan-Ling; Song, Shun-Zong; Wan, Ying; Xie, Wen-Xue; Li, Xin; Bai, Ting; Ouyang, Bing-Qing; Nan, Ji-Xing

    2010-12-22

    This study was undertaken to investigate the protective effects of Gentiana manshurica Kitagawa (GM) on acute alcohol-induced fatty liver. Mice were treated with ethanol (5 g/kg of body weight) by gavage every 12 h for a total of three doses to induce acute fatty liver. Methanol extract of GM (50, 100, or 200 mg/kg) or silymarin (100 mg/kg) was gavaged simultaneously with ethanol for three doses. GM administration significantly reduced the increases in serum ALT and AST levels, the serum and hepatic triglyceride levels, at 4 h after the last ethanol administration. GM was also found to prevent ethanol-induced hepatic steatosis and necrosis, as indicated by liver histopathological studies. Additionally, GM suppressed the elevation of malondialdehyde (MDA) levels, restored the glutathione (GSH) levels, and enhanced the superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities. The concurrent administration of GM efficaciously abrogated cytochrome P450 2E1 (CYP2E1) induction. Moreover, GM significantly reduced the nuclear translocation of sterol regulatory element-binding protein-1 (nSREBP-1) in ethanol-treated mice. These data indicated that GM possessed the ability to prevent ethanol-induced acute liver steatosis, possibly through blocking CYP2E1-mediated free radical scavenging effects and SREBP-1-regulated fatty acid synthesis. Especially, GM may be developed as a potential therapeutic candidate for ethanol-induced oxidative damage in liver.

  4. Longitudinal evolution of true protein, amino acids and bioactive proteins in breast milk: a developmental perspective.

    PubMed

    Lönnerdal, Bo; Erdmann, Peter; Thakkar, Sagar K; Sauser, Julien; Destaillats, Frédéric

    2017-03-01

    The protein content of breast milk provides a foundation for estimating protein requirements of infants. Because it serves as a guideline for regulatory agencies issuing regulations for infant formula composition, it is critical that information on the protein content of breast milk is reliable. We have therefore carried out a meta-analysis of the protein and amino acid contents of breast milk and how they evolve during lactation. As several bioactive proteins are not completely digested in the infant and therefore represent "non-utilizable" protein, we evaluated the quantity, mechanism of action and digestive fate of several major breast milk proteins. A better knowledge of the development of the protein contents of breast milk and to what extent protein utilization changes with age of the infant will help improve understanding of protein needs in infancy. It is also essential when designing the composition of infant formulas, particularly when the formula uses a "staging" approach in which the composition of the formula is modified in stages to reflect changes in breast milk and changing requirements as the infant ages.

  5. Phytic acid reduction in soy protein improves zinc bioavailability

    SciTech Connect

    Zhou, J.R.; Wong, M.S.; Burns, R.A.; Erdman, J.W. Jr. Mead Johnson Research Center, Evansville, IN )

    1991-03-15

    The objective of this study was to confirm previous studies that have suggested that reduction of phytic acid in soy improved zinc bioavailability (BV). Two commercially-produced soybean isolates containing either a normal phytic acid level or a reduced level were formulated into diets so as to provide 6 or 9 ppm zinc. Control diets were egg white protein-based and contained 3, 6 or 9 ppm zinc from zinc carbonate. Weanling male rats were fed these diets for 21 days and food intake and weight gain monitored. Slope ratio analysis of total tibia zinc content compared to total zinc intake revealed that zinc BV from reduced phytic acid soy isolate-containing diets was indistinguishable from control egg white diets. In contrast, zinc BV from normal soy isolate diets was significantly reduced compared to reduced phytic acid and control diets. These results coupled with other results indicate that phytic acid is the inhibitory factor in soybean products that results in reduced zinc BV.

  6. Effect of the Kinetin-Naphthaleneacetic Acid Interaction Upon Total RNA and Protein in Senescing Detached Leaves 1

    PubMed Central

    Vonabrams, G. J.; Pratt, Harlan K.

    1968-01-01

    The interaction between kinetin and naphthaleneacetic acid in the regulation of senescence of excised tissue of mature broccoli leaves has been used to examine the extent of synchrony between changes in chlorophyll, RNA, and protein. Kinetin increased the net uptake of 14C-labeled orotic acid and leucine. Naphthaleneacetic acid decreased the effect of kinetin on net uptake after long treatment, but in short-time treatments the auxin increased the effect of kinetin on net uptake. Results of long (24 hr) treatments indicated a general synchrony between the loss of RNA, protein, and chlorophyll. Naphthaleneacetic acid reduced the stabilizing effect of kinetin upon chlorophyll content and upon the content and synthesis of RNA. In short-time experiments, however, RNA content and synthesis were transiently increased by kinetin, and further increased by kinetin plus naphthaleneacetic acid, while chlorophyll content decreased in the presence of kinetin and decreased further in the presence of kinetin plus naphthaleneacetic acid. Actinomycin-D accelerated the loss of chlorophyll, RNA and protein and strongly depressed the rate of RNA synthesis. In the presence of actinomycin-D the stabilizing effect of kinetin upon RNA was substantially reduced. In contrast, the chlorophyll and protein contents remained higher than in the control. Actinomycin-D did not nullify the basal incorporation of orotic acid into RNA, nor did it negate the effect of kinetin upon incorporation. The failure of synchrony between changes in chlorophyll and RNA does not substantiate the proposal that kinetin regulates senescence by a direct effect upon DNA-dependent RNA synthesis. Images PMID:5700020

  7. A Catalog of Proteins Expressed in the AG Secreted Fluid during the Mature Phase of the Chinese Mitten Crabs (Eriocheir sinensis)

    PubMed Central

    He, Lin; Li, Qing; Liu, Lihua; Wang, Yuanli; Xie, Jing; Yang, Hongdan; Wang, Qun

    2015-01-01

    The accessory gland (AG) is an important component of the male reproductive system of arthropods, its secretions enhance fertility, some AG proteins bind to the spermatozoa and affect its function and properties. Here we report the first comprehensive catalog of the AG secreted fluid during the mature phase of the Chinese mitten crab (Eriocheir sinensis). AG proteins were separated by one-dimensional gel electrophoresis and analyzed by reverse phase high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). Altogether, the mass spectra of 1173 peptides were detected (1067 without decoy and contaminants) which allowed for the identification of 486 different proteins annotated upon the NCBI database (http://www.ncbi.nlm.nih.gov/) and our transcritptome dataset. The mass spectrometry proteomics data have been deposited at the ProteomeXchange with identifier PXD000700. An extensive description of the AG proteome will help provide the basis for a better understanding of a number of reproductive mechanisms, including potentially spermatophore breakdown, dynamic functional and morphological changes in sperm cells and sperm acrosin enzyme vitality. Thus, the comprehensive catalog of proteins presented here can serve as a valuable reference for future studies of sperm maturation and regulatory mechanisms involved in crustacean reproduction. PMID:26305468

  8. Degradation of a polyadenylated rRNA maturation by-product involves one of the three RRP6-like proteins in Arabidopsis thaliana.

    PubMed

    Lange, Heike; Holec, Sarah; Cognat, Valérie; Pieuchot, Laurent; Le Ret, Monique; Canaday, Jean; Gagliardi, Dominique

    2008-05-01

    Yeast Rrp6p and its human counterpart, PM/Scl100, are exosome-associated proteins involved in the degradation of aberrant transcripts and processing of precursors to stable RNAs, such as the 5.8S rRNA, snRNAs, and snoRNAs. The activity of yeast Rrp6p is stimulated by the polyadenylation of its RNA substrates. We identified three RRP6-like proteins in Arabidopsis thaliana: AtRRP6L3 is restricted to the cytoplasm, whereas AtRRP6L1 and -2 have different intranuclear localizations. Both nuclear RRP6L proteins are functional, since AtRRP6L1 complements the temperature-sensitive phenotype of a yeast rrp6Delta strain and mutation of AtRRP6L2 leads to accumulation of an rRNA maturation by-product. This by-product corresponds to the excised 5' part of the 18S-5.8S-25S rRNA precursor and accumulates as a polyadenylated transcript, suggesting that RRP6L2 is involved in poly(A)-mediated RNA degradation in plant nuclei. Interestingly, the rRNA maturation by-product is a substrate of AtRRP6L2 but not of AtRRP6L1. This result and the distinctive subcellular distribution of AtRRP6L1 to -3 indicate a specialization of RRP6-like proteins in Arabidopsis.

  9. AP-1/σ1A and AP-1/σ1B adaptor-proteins differentially regulate neuronal early endosome maturation via the Rab5/Vps34-pathway

    PubMed Central

    Candiello, Ermes; Kratzke, Manuel; Wenzel, Dirk; Cassel, Dan; Schu, Peter

    2016-01-01

    The σ1 subunit of the AP-1 clathrin-coated-vesicle adaptor-protein complex is expressed as three isoforms. Tissues express σ1A and one of the σ1B and σ1C isoforms. Brain is the tissue with the highest σ1A and σ1B expression. σ1B-deficiency leads to severe mental retardation, accumulation of early endosomes in synapses and fewer synaptic vesicles, whose recycling is slowed down. AP-1/σ1A and AP-1/σ1B regulate maturation of these early endosomes into multivesicular body late endosomes, thereby controlling synaptic vesicle protein transport into a degradative pathway. σ1A binds ArfGAP1, and with higher affinity brain-specific ArfGAP1, which bind Rabex-5. AP-1/σ1A-ArfGAP1-Rabex-5 complex formation leads to more endosomal Rabex-5 and enhanced, Rab5GTP-stimulated Vps34 PI3-kinase activity, which is essential for multivesicular body endosome formation. Formation of AP-1/σ1A-ArfGAP1-Rabex-5 complexes is prevented by σ1B binding of Rabex-5 and the amount of endosomal Rabex-5 is reduced. AP-1 complexes differentially regulate endosome maturation and coordinate protein recycling and degradation, revealing a novel molecular mechanism by which they regulate protein transport besides their established function in clathrin-coated-vesicle formation. PMID:27411398

  10. AP-1/σ1A and AP-1/σ1B adaptor-proteins differentially regulate neuronal early endosome maturation via the Rab5/Vps34-pathway.

    PubMed

    Candiello, Ermes; Kratzke, Manuel; Wenzel, Dirk; Cassel, Dan; Schu, Peter

    2016-07-14

    The σ1 subunit of the AP-1 clathrin-coated-vesicle adaptor-protein complex is expressed as three isoforms. Tissues express σ1A and one of the σ1B and σ1C isoforms. Brain is the tissue with the highest σ1A and σ1B expression. σ1B-deficiency leads to severe mental retardation, accumulation of early endosomes in synapses and fewer synaptic vesicles, whose recycling is slowed down. AP-1/σ1A and AP-1/σ1B regulate maturation of these early endosomes into multivesicular body late endosomes, thereby controlling synaptic vesicle protein transport into a degradative pathway. σ1A binds ArfGAP1, and with higher affinity brain-specific ArfGAP1, which bind Rabex-5. AP-1/σ1A-ArfGAP1-Rabex-5 complex formation leads to more endosomal Rabex-5 and enhanced, Rab5(GTP)-stimulated Vps34 PI3-kinase activity, which is essential for multivesicular body endosome formation. Formation of AP-1/σ1A-ArfGAP1-Rabex-5 complexes is prevented by σ1B binding of Rabex-5 and the amount of endosomal Rabex-5 is reduced. AP-1 complexes differentially regulate endosome maturation and coordinate protein recycling and degradation, revealing a novel molecular mechanism by which they regulate protein transport besides their established function in clathrin-coated-vesicle formation.

  11. A medium-chain fatty acid, capric acid, inhibits RANKL-induced osteoclast differentiation via the suppression of NF-κB signaling and blocks cytoskeletal organization and survival in mature osteoclasts.

    PubMed

    Kim, Hyun-Ju; Yoon, Hye-Jin; Kim, Shin-Yoon; Yoon, Young-Ran

    2014-08-01

    Fatty acids, important components of a normal diet, have been reported to play a role in bone metabolism. Osteoclasts are bone-resorbing cells that are responsible for many bone-destructive diseases such as osteoporosis. In this study, we investigated the impact of a medium-chain fatty acid, capric acid, on the osteoclast differentiation, function, and survival induced by receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor (MCSF). Capric acid inhibited RANKL-mediated osteoclastogenesis in bone marrow-derived macrophages and suppressed RANKL-induced IκBα phosphorylation, p65 nuclear translocation, and NF-κB transcriptional activity. Capric acid further blocked the RANKL-stimulated activation of ERK without affecting JNK or p38. The induction of NFATc1 in response to RANKL was also attenuated by capric acid. In addition, capric acid abrogated M-CSF and RANKL-mediated cytoskeleton reorganization, which is crucial for the efficient bone resorption of osteoclasts. Capric acid also increased apoptosis in mature osteoclasts through the induction of Bim expression and the suppression of ERK activation by M-CSF. Together, our results reveal that capric acid has inhibitory effects on osteoclast development. We therefore suggest that capric acid may have potential therapeutic implications for the treatment of bone resorption-associated disorders.

  12. The beta subunit of the Drosophila melanogaster ATP synthase: cDNA cloning, amino acid analysis and identification of the protein in adult flies.

    PubMed

    Peña, P; Garesse, R

    1993-09-15

    The cDNA encoding the Drosophila melanogaster beta subunit of H+ ATP synthase has been cloned and sequenced. The predicted mature protein is highly homologous to the equivalent beta subunits of other organisms and is preceded by a signal peptide of 31 amino acids, that although not conserved at primary sequence level has the characteristics of leader peptides present in other mitochondrial proteins. We have raised polyclonal antibodies that specifically recognize the beta H+ ATP synthase subunit present in Drosophila melanogaster protein extracts. This is the first time that a gene of the ATP synthase complex has been characterized in the invertebrate phyla.

  13. Combining Amine-Reactive Cross-Linkers and Photo-Reactive Amino Acids for 3D-Structure Analysis of Proteins and Protein Complexes.

    PubMed

    Lössl, Philip; Sinz, Andrea

    2016-01-01

    During the last 15 years, the combination of chemical cross-linking and high-resolution mass spectrometry (MS) has matured into an alternative approach for analyzing 3D-structures of proteins and protein complexes. Using the distance constraints imposed by the cross-links, models of the protein or protein complex under investigation can be created. The majority of cross-linking studies are currently conducted with homobifunctional amine-reactive cross-linkers. We extend this "traditional" cross-linking/MS strategy by adding complementary photo-cross-linking data. For this, the diazirine-containing unnatural amino acids photo-leucine and photo-methionine are incorporated into the proteins and cross-link formation is induced by UV-A irradiation. The advantage of the photo-cross-linking strategy is that it is not restricted to lysine residues and that hydrophobic regions in proteins can be targeted, which is advantageous for investigating membrane proteins. We consider the strategy of combining cross-linkers with orthogonal reactivities and distances to be ideally suited for maximizing the amount of structural information that can be gained from a cross-linking experiment.

  14. Binding Characteristics of Small Molecules that Mimic Nucleocapsid Protein-induced Maturation of Stem-loop-1 of HIV-1 RNA†

    PubMed Central

    Chung, Janet; Ulyanov, Nikolai B.; Guilbert, Christophe; Mujeeb, Anwer; James, Thomas L.

    2010-01-01

    As a retrovirus, the human immunodeficiency virus (HIV-1) packages two copies of the RNA genome as a dimer in the infectious virion. Dimerization is initiated at the dimer initiation site (DIS) which encompasses stem-loop 1 (SL1) in the 5’-UTR of the genome. Study of genomic dimerization has been facilitated by the discovery that short RNA fragments containing SL1 can dimerize spontaneously without any protein factors. Based on the palindromic nature of SL1, a kissing loop model has been proposed. First, a metastable kissing dimer is formed via standard Watson-Crick base pairs and then converted into a more stable extended dimer by the viral nucleocapsid protein (NCp7). This dimer maturation in vitro is believed to mimic initial steps in the RNA maturation in vivo, which is correlated with viral infectivity. We previously discovered a small molecule activator, Lys-Ala-7-amido-4-methylcoumarin (KA-AMC), which facilitates dimer maturation in vitro, and determined aspects of its structure-activity relationship. In this report, we present measurements of the binding affinity of the activators and characterization of their interactions with the SL1 RNA. Guanidinium groups and increasing positive charge on the side chain enhance affinity and activity, but features in the aromatic ring at least partially decouple affinity from activity. Although KA-AMC can bind to multiple structural motifs, NMR study showed KA-AMC preferentially binds to unique structural motifs, such as the palindromic loop and the G-rich internal loop in the SL1 RNA. NCp7 binds to SL1 only an order of magnitude tighter than the best small molecule ligand tested. The study presented here provides guidelines for design of superior small molecule binders to the SL1 RNA that have the potential of being developed as an antiviral by either interfering with SL1-NCp7 interaction at the packaging and/or maturation stages. PMID:20565056

  15. Role of a redox-based methylation switch in mRNA life cycle (pre- and post-transcriptional maturation) and protein turnover: implications in neurological disorders.

    PubMed

    Trivedi, Malav S; Deth, Richard C

    2012-01-01

    Homeostatic synaptic scaling in response to neuronal stimulus or activation, and due to changes in cellular niche, is an important phenomenon for memory consolidation, retrieval, and other similar cognitive functions (Turrigiano and Nelson, 2004). Neurological disorders and cognitive disabilities in autism, Rett syndrome, schizophrenia, dementia, etc., are strongly correlated to alterations in protein expression (both synaptic and cytoplasmic; Cajigas et al., 2010). This correlation suggests that efficient temporal regulation of synaptic protein expression is important for synaptic plasticity. In addition, equilibrium between mRNA processing, protein translation, and protein turnover is a critical sensor/trigger for recording synaptic information, normal cognition, and behavior (Cajigas et al., 2010). Thus a regulatory switch, which controls the lifespan, maturation, and processing of mRNA, might influence cognition and adaptive behavior. Here, we propose a two part novel hypothesis that methylation might act as this suggested coordinating switch to critically regulate mRNA maturation at (1) the pre-transcription level, by regulating precursor-RNA processing into mRNA, via other non-coding RNAs and their influence on splicing phenomenon, and (2) the post-transcription level by modulating the regulatory functions of ribonucleoproteins and RNA binding proteins in mRNA translation, dendritic translocation as well as protein synthesis and synaptic turnover. DNA methylation changes are well recognized and highly correlated to gene expression levels as well as, learning and memory; however, RNA methylation changes are recently characterized and yet their functional implications are not established. This review article provides some insight on the intriguing consequences of changes in methylation levels on mRNA life-cycle. We also suggest that, since methylation is under the control of glutathione anti-oxidant levels (Lertratanangkoon et al., 1997), the redox status of

  16. Lipid content and essential fatty acid (EFA) composition of mature Congolese breast milk are influenced by mothers' nutritional status: impact on infants' EFA supply.

    PubMed

    Rocquelin, G; Tapsoba, S; Dop, M C; Mbemba, F; Traissac, P; Martin-Prével, Y

    1998-03-01

    Optimum infant growth and development, especially neurodevelopment and visual acuity, require sufficient n-6 and n-3 essential fatty acid supplies from the placenta or breast milk. The lipid content and fatty acid composition of mature breast milk were measured in samples from 102 randomly selected Congolese mothers of 5-month-old infants, residing in a suburban district of Brazzaville. Mean body mass index (BMI) was 22.3; 14% of mothers were energy-deficient and 22% were overweight. Breast milk samples from these mothers were low in lipids (mean, 28.70 g/l), and 75% had a lipid content below reference values. Adequate lipid content was associated with a maternal diet high in carbohydrates and low in fats. Breast milk was rich in 8:0-14:0 fatty acids (25.97% of total fatty acids) and in polyunsaturated fatty acids, especially n-3. These findings appear related to Congolese mothers' frequent consumption of high-carbohydrate foods such as processed cassava roots, wheat bread, and doughnuts known to enhance 8:0-14:0 fatty acid biosynthesis, as well as locally produced foods such as fish, vegetable oil, leafy green vegetables, and high-fat fruit that provide n-6 and n-3 essential fatty acids. Milk lipid content was inversely associated with the maternal BMI, but was unrelated to maternal age or socioeconomic status. Since the essential fatty acid content of traditional complementary foods is lower than that present in breast milk, Congolese mothers should be encouraged to postpone the introduction of such foods until their infant is 4-6 months old.

  17. Quantifying the impact of exogenous abscisic acid and gibberellins on pre-maturity α-amylase formation in developing wheat grains

    PubMed Central

    Kondhare, Kirtikumar R.; Hedden, Peter; Kettlewell, Peter S.; Farrell, Aidan D.; Monaghan, James M.

    2014-01-01

    To study the role of abscisic acid (ABA) and gibberellins (GA) in pre-maturity α-amylase (PMA) formation in developing wheat grain, two glasshouse experiments were conducted under controlled conditions in the highly PMA-susceptible genotype Rialto. The first, determined the relative efficacy of applying hormone solutions by injection into the peduncle compared to direct application to the intact grain. The second, examined the effects of each hormone, applied by either method, at mid-grain development on PMA in mature grains. In the first experiment, tritiated ABA (3H-ABA) and gibberellic acid (3H-GA3) were diluted with unlabelled ABA (100 µM) and GA3 (50 µM), respectively, and applied at mid-grain development using both methods. Spikes were harvested after 24, 48 and 72 h from application, and hormone taken up by grains was determined. After 72 h, the uptake per grain in terms of hormones applied was approximately 13% for ABA and 8% for GA3 when applied onto the grains, and approximately 17% for ABA and 5% for GA3 when applied by injection. In the second experiment, applied ABA reduced, whereas applied GA3 increased α-amylase activity. This confirmed that exogenously applied ABA and GA were absorbed in sufficient amounts to alter grain metabolism and impact on PMA. PMID:24942128

  18. Structures of Adenovirus Incomplete Particles Clarify Capsid Architecture and Show Maturation Changes of Packaging Protein L1 52/55k

    PubMed Central

    Condezo, Gabriela N.; Marabini, Roberto; Ayora, Silvia; Carazo, José M.; Alba, Raúl; Chillón, Miguel

    2015-01-01

    ABSTRACT Adenovirus is one of the most complex icosahedral, nonenveloped viruses. Even after its structure was solved at near-atomic resolution by both cryo-electron microscopy and X-ray crystallography, the location of minor coat proteins is still a subject of debate. The elaborated capsid architecture is the product of a correspondingly complex assembly process, about which many aspects remain unknown. Genome encapsidation involves the concerted action of five virus proteins, and proteolytic processing by the virus protease is needed to prime the virion for sequential uncoating. Protein L1 52/55k is required for packaging, and multiple cleavages by the maturation protease facilitate its release from the nascent virion. Light-density particles are routinely produced in adenovirus infections and are thought to represent assembly intermediates. Here, we present the molecular and structural characterization of two different types of human adenovirus light particles produced by a mutant with delayed packaging. We show that these particles lack core polypeptide V but do not lack the density corresponding to this protein in the X-ray structure, thereby adding support to the adenovirus cryo-electron microscopy model. The two types of light particles present different degrees of proteolytic processing. Their structures provide the first glimpse of the organization of L1 52/55k protein inside the capsid shell and of how this organization changes upon partial maturation. Immature, full-length L1 52/55k is poised beneath the vertices to engage the virus genome. Upon proteolytic processing, L1 52/55k disengages from the capsid shell, facilitating genome release during uncoating. IMPORTANCE Adenoviruses have been extensively characterized as experimental systems in molecular biology, as human pathogens, and as therapeutic vectors. However, a clear picture of many aspects of their basic biology is still lacking. Two of these aspects are the location of minor coat proteins in

  19. Retinoic acid binding protein in normal and neopolastic rat prostate.

    PubMed

    Gesell, M S; Brandes, M J; Arnold, E A; Isaacs, J T; Ueda, H; Millan, J C; Brandes, D

    1982-01-01

    Sucrose density gradient analysis of cytosol from normal and neoplastic rat prostatic tissues exhibited a peak of (3H) retinoic acid binding in the 2S region, corresponding to the cytoplasmic retinoic acid binding protein (cRABP). In the Fisher-Copenhagen F1 rat, cRABP was present in the lateral lobe, but could not be detected in the ventral nor in the dorsal prostatic lobes. Four sublines of the R-3327 rat prostatic tumor contained similar levels of this binding protein. The absence of cRABP in the normal tissue of origin of the R-3327 tumor, the rat dorsal prostate, and reappearance in the neoplastic tissues follows a pattern described in other human and animal tumors. The occurrence of cRABP in the well-differentiated as well as in the anaplastic R-3327 tumors in which markers which reflect a state of differentiation and hormonal regulation, such as androgen receptor, 5 alpha reductase, and secretory acid phosphatase are either markedly reduced or absent, points to cRABP as a marker of malignant transformation.

  20. Dynamics of palmitic acid complexed with rat intestinal fatty acid binding protein.

    PubMed

    Zhu, L; Kurian, E; Prendergast, F G; Kemple, M D

    1999-02-02

    Dynamics of palmitic acid (PA), isotopically enriched with 13C at the second, seventh, or terminal methyl position, were investigated by 13C NMR. Relaxation measurements were made on PA bound to recombinant rat intestinal fatty acid binding protein (I-FABP) at pH 5.5 and 23 degreesC, and, for comparison, on PA incorporated into 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (MPPC) micelles, and dissolved in methanol. The 13C relaxation data, T1, and steady-state nuclear Overhauser effect (NOE) obtained at two different magnetic fields were interpreted using the model-free approach [Lipari, G., and Szabo, A. (1982) J. Am. Chem. Soc. 104, 4546-4559]. The overall rotational correlation time of the fatty acid.protein complex was 2.5 +/- 0.4 ns, which is substantially less than the value expected for the protein itself (>6 ns). Order parameters (S2), which are a measure of the amplitude of the internal motion of individual C-H vectors with respect to the PA molecule, while largest for C-2 and smallest for the methyl carbon, were relatively small (<0.4) in the protein complex. S2 values for given C-H vectors also were smaller for PA in the MPPC micelles and in methanol than in the protein complex. Correlation times reflective of the time scale of the internal motion of the C-H vectors were in all cases <60 ps. These results support the view that the fatty acid is not rigidly anchored within the I-FABP binding pocket, but rather has considerable freedom to move within the pocket.

  1. Minimal genome encoding proteins with constrained amino acid repertoire

    PubMed Central

    Tsoy, Olga; Yurieva, Marina; Kucharavy, Andrey; O'Reilly, Mary; Mushegian, Arcady

    2013-01-01

    Minimal bacterial gene set comprises the genetic elements needed for survival of engineered bacterium on a rich medium. This set is estimated to include 300–350 protein-coding genes. One way of simplifying an organism with such a minimal genome even further is to constrain the amino acid content of its proteins. In this study, comparative genomics approaches and the results of gene knockout experiments were used to extrapolate the minimal gene set of mollicutes, and bioinformatics combined with the knowledge-based analysis of the structure-function relationships in these proteins and their orthologs, paralogs and analogs was applied to examine the challenges of completely replacing the rarest residue, cysteine. Among several known functions of cysteine residues, their roles in the active centers of the enzymes responsible for deoxyribonucleoside synthesis and transfer RNA modification appear to be crucial, as no alternative chemistry is known for these reactions. Thus, drastic reduction of the content of the rarest amino acid in a minimal proteome appears to be possible, but its complete elimination is challenging. PMID:23873957

  2. Retroviral nucleocapsid proteins possess potent nucleic acid strand renaturation activity.

    PubMed Central

    Dib-Hajj, F.; Khan, R.; Giedroc, D. P.

    1993-01-01

    The nucleocapsid protein (NC) is the major genomic RNA binding protein that plays integral roles in the structure and replication of all animal retroviruses. In this report, select biochemical properties of recombinant Mason-Pfizer monkey virus (MPMV) and HIV-1 NCs are compared. Evidence is presented that two types of saturated Zn2 NC-polynucleotide complexes can be formed under conditions of low [NaCl] that differ in apparent site-size (n = 8 vs. n = 14). The formation of one or the other complex appears dependent on the molar ratio of NC to RNA nucleotide with the putative low site-size mode apparently predominating under conditions of protein excess. Both MPMV and HIV-1 NCs kinetically facilitate the renaturation of two complementary DNA strands, suggesting that this is a general property of retroviral NCs. NC proteins increase the second-order rate constant for renaturation of a 149-bp DNA fragment by more than four orders of magnitude over that obtained in the absence of protein at 37 degrees C. The protein-assisted rate is 100-200-fold faster than that obtained at 68 degrees C, 1 M NaCl, solution conditions considered to be optimal for strand renaturation. Provided that sufficient NC is present to coat all strands, the presence of 400-1,000-fold excess nonhomologous DNA does not greatly affect the reaction rate. The HIV-1 NC-mediated renaturation reaction functions stoichiometrically, requiring a saturated strand of DNA nucleotide:NC ratio of about 7-8, rather than 14. Under conditions of less protein, the rate acceleration is not realized. The finding of significant nucleic acid strand renaturation activity may have important implications for various events of reverse transcription particularly in initiation and cDNA strand transfer. PMID:8443601

  3. Asymmetric cryo-EM structure of the canonical Allolevivirus Qβ reveals a single maturation protein and the genomic ssRNA in situ

    PubMed Central

    Gorzelnik, Karl V.; Cui, Zhicheng; Reed, Catrina A.; Jakana, Joanita; Young, Ry; Zhang, Junjie

    2016-01-01

    Single-stranded (ss) RNA viruses infect all domains of life. To date, for most ssRNA virions, only the structures of the capsids and their associated protein components have been resolved to high resolution. Qβ, an ssRNA phage specific for the conjugative F-pilus, has a T = 3 icosahedral lattice of coat proteins assembled around its 4,217 nucleotides of genomic RNA (gRNA). In the mature virion, the maturation protein, A2, binds to the gRNA and is required for adsorption to the F-pilus. Here, we report the cryo-electron microscopy (cryo-EM) structures of Qβ with and without symmetry applied. The icosahedral structure, at 3.7-Å resolution, resolves loops not previously seen in the published X-ray structure, whereas the asymmetric structure, at 7-Å resolution, reveals A2 and the gRNA. A2 contains a bundle of α-helices and replaces one dimer of coat proteins at a twofold axis. The helix bundle binds gRNA, causing denser packing of RNA in its proximity, which asymmetrically expands the surrounding coat protein shell to potentially facilitate RNA release during infection. We observe a fixed pattern of gRNA organization among all viral particles, with the major and minor grooves of RNA helices clearly visible. A single layer of RNA directly contacts every copy of the coat protein, with one-third of the interactions occurring at operator-like RNA hairpins. These RNA–coat interactions stabilize the tertiary structure of gRNA within the virion, which could further provide a roadmap for capsid assembly. PMID:27671640

  4. Diabetes and pancreatic exocrine dysfunction due to mutations in the carboxyl ester lipase gene-maturity onset diabetes of the young (CEL-MODY): a protein misfolding disease.

    PubMed

    Johansson, Bente B; Torsvik, Janniche; Bjørkhaug, Lise; Vesterhus, Mette; Ragvin, Anja; Tjora, Erling; Fjeld, Karianne; Hoem, Dag; Johansson, Stefan; Ræder, Helge; Lindquist, Susanne; Hernell, Olle; Cnop, Miriam; Saraste, Jaakko; Flatmark, Torgeir; Molven, Anders; Njølstad, Pål R

    2011-10-07

    CEL-maturity onset diabetes of the young (MODY), diabetes with pancreatic lipomatosis and exocrine dysfunction, is due to dominant frameshift mutations in the acinar cell carboxyl ester lipase gene (CEL). As Cel knock-out mice do not express the phenotype and the mutant protein has an altered and intrinsically disordered tandem repeat domain, we hypothesized that the disease mechanism might involve a negative effect of the mutant protein. In silico analysis showed that the pI of the tandem repeat was markedly increased from pH 3.3 in wild-type (WT) to 11.8 in mutant (MUT) human CEL. By stably overexpressing CEL-WT and CEL-MUT in HEK293 cells, we found similar glycosylation, ubiquitination, constitutive secretion, and quality control of the two proteins. The CEL-MUT protein demonstrated, however, a high propensity to form aggregates found intracellularly and extracellularly. Different physicochemical properties of the intrinsically disordered tandem repeat domains of WT and MUT proteins may contribute to different short and long range interactions with the globular core domain and other macromolecules, including cell membranes. Thus, we propose that CEL-MODY is a protein misfolding disease caused by a negative gain-of-function effect of the mutant proteins in pancreatic tissues.

  5. Effects of arachidonic acid supplementation in maturation diet on female reproductive performance and larval quality of giant river prawn (Macrobrachium rosenbergii)

    PubMed Central

    Pratoomyot, Jarunan; Siranonthana, Nisa; Senanan, Wansuk

    2016-01-01

    The giant river prawn (Macrobrachium rosenbergii) is one of the most farmed freshwater crustaceans in the world. Its global production has been stalling in the past decade due to the inconsistent quality of broodstock and hatchery-produced seeds. A better understanding of the role of nutrition in maturation diets will help overcome some of the production challenges. Arachidonic acid (20:4 n-6, ARA) is a fatty acid precursor of signaling molecules important for crustacean reproduction, prostaglandins E and F of the series II (PGE2 and PGF2α), and is often lacking in maturation diets of shrimp and prawns. We examined the effects of ARA in a combination of different fish oil (FO) and soybean oil (SO) blends on females’ reproductive performance and larval quality. Adult females (15.22 ± 0.13 g and 11.12 ± 0.09 cm) were fed six isonitrogenous and isolipidic diets containing one of two different base compositions (A or B), supplemented with one of three levels of Mortierella alpine-derived ARA (containing 40% active ARA): 0, 1 or 2% by ingredient weight. The two base diets differed in the percentages of (FO and SO with diet A containing 2% SO and 2% FO and diet B containing 2.5% SO and 1.5% FO, resulting in differences in proportional contents of dietary linoleic acid (18:2n-6, LOA) and docosahexaenoic acid (22:6n-3, DHA)). After the eight-week experiment, prawns fed diet B with 1 and 2% ARA supplement (B1 and B2) exhibited the highest gonadosomatic index (GSI), hepatosomatic index (HSI), egg clutch weight, fecundity, hatching rate, number of larvae, and reproductive effort compared to those fed other diets (p ≤ 0.05). Larvae from these two dietary treatments also had higher tolerance to low salinity (2 ppt). The maturation period was not significantly different among most treatments (p ≥ 0.05). ARA supplementation, regardless of the base diet, significantly improved GSI, HSI, egg clutch weight and fecundity. However, the diets with an enhanced ARA and LOA

  6. Extraction and proteome analysis of starch granule-associated proteins in mature wheat kernel (Triticum aestivum L.).

    PubMed

    Bancel, Emmanuelle; Rogniaux, Hélène; Debiton, Clément; Chambon, Christophe; Branlard, Gérard

    2010-06-04

    Starch consists of the two glucose polymers, amylose and amylopectin, and is deposited as semicrystalline granules inside plastids. The starch granule proteome is particularly challenging to study due to the amount of interfering compounds (sugars, storage proteins), the very low starch granule-associated protein content and also the dynamic range of abundant proteins. Here we present the protocol for extraction and 2-DE of wheat starch granule-associated proteins whose most important steps are: (i) washing and sonication to remove interfering compounds (storage proteins) from the surface of the granules, (ii) scanning electron microscopy (SEM) observations to monitor purification and granules swelling, (iii) appropriate protein extraction and solubilization to obtain enough proteins for Coomassie blue staining and proteomic analysis. Our objective was to minimize the amount of contamination by storage proteins and to preserve the structure of the starch and of starch-associated proteins and to maximize the number of polypeptides that can be resolved. For quantitative proteomic analysis of proteins associated with wheat starch granules, we developed a two-step protein extraction protocol including TCA/acetone precipitation and phenol extraction. With this protocol, proteins were extracted from wheat starch granules and solubilized and satisfactory blue-stained 2-DE protein maps were obtained. The majority of the spots associated with starch granules were identified by peptide mass fingerprinting and MS/MS and functionally classified into carbohydrate metabolism and stress defense.

  7. Fat area and lipid droplet morphology of porcine oocytes during in vitro maturation with trans-10, cis-12 conjugated linoleic acid and forskolin.

    PubMed

    Prates, E G; Marques, C C; Baptista, M C; Vasques, M I; Carolino, N; Horta, A E M; Charneca, R; Nunes, J T; Pereira, R M

    2013-04-01

    Lipid droplets (LD) in porcine oocytes form a dark mass reaching almost all cytoplasm. Herein we investigated changes in fat areas, cytoplasmic tone and LD morphology during in vitro maturation (IVM) of porcine oocytes cultured with 100 μM trans-10, cis-12 conjugated linoleic acid (t10,c12 CLA) or 10 μM forskolin at different time periods. Four groups were constituted: control, excipient, t10,c12 CLA and forskolin, with drugs being supplemented during 44 to 48 h and the initial 22 to 24 h in Experiments 1 and 2, respectively. In Experiment 3, forskolin was supplemented for the first 2 h. Matured oocytes were inseminated with frozen-thawed boar semen and cleavage rate recorded. Before and during IVM, samples of oocytes were evaluated for LD, total and fat areas and fat gray value or for meiotic progression. Results showed that forskolin supplementation during 44 to 48 h or 22 to 24 h inhibits oocyte maturation (exp. 1: forskolin = 5.1 ± 8.0%, control = 72.6 ± 5.0%; exp. 2: forskolin = 24.3 ± 7.4%, control = 71.6 ± 5.6%) and cleavage (exp. 1: forskolin = 0.0 ± 0.0%, control = 55.4 ± 4.1%; exp. 2: forskolin = 8.3 ± 3.3%, control = 54.5 ± 3.0%). Forskolin also reduced oocyte and fat areas. In Experiment 3, forskolin negative effect on oocyte maturation and cleavage disappeared, although minor (P ⩽ 0.03) LD and oocyte fat areas were identified at 22 to 24 h of IVM. Oocytes supplemented with t10,c12 CLA during 44 to 48 h presented a lighter (P ⩽ 0.04) colour tone cytoplasm than those of control and forskolin. In conclusion, t10,c12 CLA and forskolin were capable of modifying the distribution and morphology of cytoplasmic LD during porcine oocyte maturation, thus reducing its lipid content in a time-dependent manner.

  8. Competition between the Rex1 exonuclease and the La protein affects both Trf4p-mediated RNA quality control and pre-tRNA maturation

    PubMed Central

    Copela, Laura A.; Fernandez, Cesar F.; Sherrer, R. Lynn; Wolin, Sandra L.

    2008-01-01

    Although nascent noncoding RNAs can undergo maturation to functional RNAs or degradation by quality control pathways, the events that influence the choice of pathway are not understood. We report that the targeting of pre-tRNAs and certain other noncoding RNAs for decay by the TRAMP pathway is strongly influenced by competition between the La protein and the Rex1 exonuclease for access to their 3′ ends. The La protein binds the 3′ ends of many nascent noncoding RNAs, protecting them from exonucleases. We demonstrate that unspliced, end-matured, partially aminoacylated pre-tRNAs accumulate in yeast lacking the TRAMP subunit Trf4p, indicating that these pre-tRNAs normally undergo decay. By comparing RNA extracted from wild-type and mutant yeast strains, we show that Rex1p is the major exonuclease involved in pre-tRNA trailer trimming and may also function in nuclear CCA turnover. As the accumulation of end-matured pre-tRNAs in trf4Δ cells requires Rex1p, these pre-tRNAs are formed by exonucleolytic trimming. Accumulation of truncated forms of 5S rRNA and SRP RNA in trf4Δ cells also requires Rex1p. Overexpression of the La protein Lhp1p reduces both exonucleolytic pre-tRNA trimming in wild-type cells and the accumulation of defective RNAs in trf4Δ cells. Our experiments reveal that one consequence of Rex1p-dependent 3′ trimming is the generation of aberrant RNAs that are targeted for decay by TRAMP. PMID:18456844

  9. Expression of the nuclear RING finger protein SNURF/RNF4 during rat testis development suggests a role in spermatid maturation.

    PubMed

    Yan, Wei; Hirvonen-Santti, Sirpa J; Palvimo, Jorma J; Toppari, Jorma; Jänne, Olli A

    2002-10-01

    A small nuclear RING finger protein, termed SNURF (or RNF4), is a coregulator of androgen receptor-dependent transcription. To elucidate the physiological role of SNURF in vivo, cell type-specific localization and changes in SNURF mRNA and protein accumulation were followed during testicular development and spermatogenesis of the rat. Two SNURF transcripts, approximately 3.0 and 1.6 kb in size, were detected in adult rat testis. Both mRNA species are capable of encoding full-length SNURF protein. The 3.0 kb SNURF mRNA is persistently expressed in Sertoli cells of both immature and mature testes, whereas the expression of the 1.6 kb transcript appears after day 30 of postnatal life and is restricted to step 4-11 spermatids. Increased accumulation of SNURF in step 4-11 spermatids, which do not express the androgen receptor, indicates that SNURF action is not restricted to the regulation of androgen signaling. Germ cell expression of SNURF coincides with the last transcriptional activity of the haploid genome and alterations in chromatin structure, suggesting that SNURF is involved in the regulation of processes required for late steps of spermatid maturation.

  10. Identification of the Mycobacterium tuberculosis protein PE-PGRS62 as a novel effector that functions to block phagosome maturation and inhibit iNOS expression.

    PubMed

    Thi, Emily P; Hong, Chris Joon Ho; Sanghera, Gaganjit; Reiner, Neil E

    2013-05-01

    Using a genetic screen in yeast we found that Mycobacterium tuberculosis PE-PGRS62 was capable of disrupting yeast vacuolar protein sorting, suggesting effects on endosomal trafficking. To study the impact of PE-PGRS62 on macrophage function, we infected murine macrophages with Mycobacterium smegmatis expressing PE-PGRS62. Infected cells displayed phagosome maturation arrest. Phagosomes acquired Rab5, but displayed a significant defect in Rab7 and LAMP-1 acquisition. Macrophages infected with M. smegmatis expressing PE-PGRS62 also expressed two- to threefold less iNOS protein when compared with cells infected with wild-type bacteria. Consistent with this, cells infected with a Mycobacterium marinum transposon mutant for the PE-PGRS62 orthologue showed greater iNOS protein expression when compared to cells infected with wild-type organisms. Complementation restored the ability of the mutant to inhibit iNOS expression. No differences in iNOS transcript levels were observed, suggesting that PE-PGRS62 effects on iNOS expression occurred post-transcriptionally. Marked differences in colony morphology were also seen in M. smegmatis expressing PE-PGRS62 and in the M. marinum transposon mutant, suggesting that PE-PGRS62 may affect cell wall composition. These findings suggest that PE-PGRS62 supports virulence via inhibition of phagosome maturation and iNOS expression, and these phenotypes may be linked to effects on bacterial cell wall composition.

  11. An amino acid code for irregular and mixed protein packing.

    PubMed

    Joo, Hyun; Chavan, Archana G; Fraga, Keith J; Tsai, Jerry

    2015-12-01

    To advance our understanding of protein tertiary structure, the development of the knob-socket model is completed in an analysis of the packing in irregular coil and turn secondary structure packing as well as between mixed secondary structure. The knob-socket model simplifies packing based on repeated patterns of two motifs: a three-residue socket for packing within secondary (2°) structure and a four-residue knob-socket for tertiary (3°) packing. For coil and turn secondary structure, knob-sockets allow identification of a correlation between amino acid composition and tertiary arrangements in space. Coil contributes almost as much as α-helices to tertiary packing. In irregular sockets, Gly, Pro, Asp, and Ser are favored, while in irregular knobs, the preference order is Arg, Asp, Pro, Asn, Thr, Leu, and Gly. Cys, His,Met, and Trp are not favored in either. In mixed packing, the knob amino acid preferences are a function of the socket that they are packing into, whereas the amino acid composition of the sockets does not depend on the secondary structure of the knob. A unique motif of a coil knob with an XYZ β-sheet socket may potentially function to inhibit β-sheet extension. In addition, analysis of the preferred crossing angles for strands within a β-sheet and mixed α-helice/β-sheet identifies canonical packing patterns useful in protein design. Lastly, the knob-socket model abstracts the complexity of protein tertiary structure into an intuitive packing surface topology map.

  12. An Amino Acid Code for Irregular and Mixed Protein Packing

    PubMed Central

    Joo, Hyun; Chavan, Archana; Fraga, Keith; Tsai, Jerry

    2015-01-01

    To advance our understanding of protein tertiary structure, the development of the knob-socket model is completed in an analysis of the packing in irregular coil and turn secondary structure packing as well as between mixed secondary structure. The knob-socket model simplifies packing based on repeated patterns of 2 motifs: a 3 residue socket for packing within 2° structure and a 4 residue knob-socket for 3° packing. For coil and turn secondary structure, knob-sockets allow identification of a correlation between amino acid composition and tertiary arrangements in space. Coil contributes almost as much as α-helices to tertiary packing. Irregular secondary structure involves 3 residue cliques of consecutive contacting residues or XYZ sockets. In irregular sockets, Gly, Pro, Asp and Ser are favored, while Cys, His, Met and Trp are not. For irregular knobs, the preference order is Arg, Asp, Pro, Asn, Thr, Leu, and Gly, while Cys, His, Met and Trp are not. In mixed packing, the knob amino acid preferences are a function of the socket that they are packing into, whereas the amino acid composition of the sockets does not depend on the secondary structure of the knob. A unique motif of a coil knob with an XYZ β-sheet socket may potentially function to inhibit β-sheet extension. In addition, analysis of the preferred crossing angles for strands within a β-sheet and mixed α-helices/β-sheets identifies canonical packing patterns useful in protein design. Lastly, the knob-socket model abstracts the complexity of protein tertiary structure into an intuitive packing surface topology map. PMID:26370334

  13. Simplified protein design biased for prebiotic amino acids yields a foldable, halophilic protein

    PubMed Central

    Longo, Liam M.; Lee, Jihun; Blaber, Michael

    2013-01-01

    A compendium of different types of abiotic chemical syntheses identifies a consensus set of 10 “prebiotic” α-amino acids. Before the emergence of biosynthetic pathways, this set is the most plausible resource for protein formation (i.e., proteogenesis) within the overall process of abiogenesis. An essential unsolved question regarding this prebiotic set is whether it defines a “foldable set”—that is, does it contain sufficient chemical information to permit cooperatively folding polypeptides? If so, what (if any) characteristic properties might such polypeptides exhibit? To investigate these questions, two “primitive” versions of an extant protein fold (the β-trefoil) were produced by top-down symmetric deconstruction, resulting in a reduced alphabet size of 12 or 13 amino acids and a percentage of prebiotic amino acids approaching 80%. These proteins show a substantial acidification of pI and require high salt concentrations for cooperative folding. The results suggest that the prebiotic amino acids do comprise a foldable set within the halophile environment. PMID:23341608

  14. Quercetin, kaempferol, myricetin, and fatty acid content among several Hibiscus sabdariffa accession calyces based on maturity in a greenhouse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavonols including quercetin, kaempferol, myricetin, and fatty acids in plants have many useful health attributes including antioxidants, cholesterol lowering, and cancer prevention. Six accessions of roselle, Hibiscus sabdariffa calyces were evaluated for quercetin, kaempferol, and myricetin conte...

  15. Reversible lysine modification on proteins by using functionalized boronic acids.

    PubMed

    Cal, Pedro M S D; Frade, Raquel F M; Cordeiro, Carlos; Gois, Pedro M P

    2015-05-26

    Iminoboronates have been utilized to successfully install azide and alkyne bioorthogonal functions on proteins, which may then be further reacted with their bioorthogonal counterparts. These constructs were also used to add polyethylene glycol (PEG) to insulin, a modification which has been shown to be reversible in the presence of fructose. Finally, iminoboronates were used to assemble a folic acid/paclitaxel small-molecule/drug conjugate in situ with an IC50  value of 20.7 nM against NCI-H460 cancer cells and negligible cytotoxicity against the CRL-1502 noncancer cells.

  16. Photolabeling of brain membrane proteins by lysergic acid diethylamide

    SciTech Connect

    Mahon, A.C.; Hartig, P.R.

    1982-04-05

    /sup 3/H-Lysergic acid diethylamide (/sup 3/H-LSD) is irreversibly incorporated into bovine caudate membranes during ultraviolet light illumination. The incorporated radioligand apparently forms a covalent bond with a sub-population of the membrane proteins. Although the photolabeling pattern differs significantly from the Coomassie blue staining pattern on SDS gels, the photolabeling is apparently not specific for LSD binding sites associated with neurotransmitter receptors. /sup 3/H-LSD photolabeling can occur during prolonged exposure of membrane samples to room lighting and thus may introduce artifacts into receptor binding assays.

  17. Acid-base chemistry of frustrated water at protein interfaces.

    PubMed

    Fernández, Ariel

    2016-01-01

    Water molecules at a protein interface are often frustrated in hydrogen-bonding opportunities due to subnanoscale confinement. As shown, this condition makes them behave as a general base that may titrate side-chain ammonium and guanidinium cations. Frustration-based chemistry is captured by a quantum mechanical treatment of proton transference and shown to remove same-charge uncompensated anticontacts at the interface found in the crystallographic record and in other spectroscopic information on the aqueous interface. Such observations are untenable within classical arguments, as hydronium is a stronger acid than ammonium or guanidinium. Frustration enables a directed Grotthuss mechanism for proton transference stabilizing same-charge anticontacts.

  18. Structure and function analysis of protein-nucleic acid complexes

    NASA Astrophysics Data System (ADS)

    Kuznetsova, S. A.; Oretskaya, T. S.

    2016-05-01

    The review summarizes published data on the results and achievements in the field of structure and function analysis of protein-nucleic acid complexes by means of main physical and biochemical methods, including X-ray diffraction, nuclear magnetic resonance spectroscopy, electron and atomic force microscopy, small-angle X-ray and neutron scattering, footprinting and cross-linking. Special attention is given to combined approaches. The advantages and limitations of each method are considered, and the prospects of their application for wide-scale structural studies in vivo are discussed. The bibliography includes 145 references.

  19. Compositional Variation in Sugars and Organic Acids at Different Maturity Stages in Selected Small Fruits from Pakistan

    PubMed Central

    Mahmood, Tahir; Anwar, Farooq; Abbas, Mateen; Boyce, Mary C.; Saari, Nazamid

    2012-01-01

    Selected soluble sugars and organic acids were analyzed in strawberry, sweet cherry, and mulberry fruits at different ripening stages by HPLC. The amounts of fructose, glucose and sucrose were found to be: strawberry (1.79–2.86, 1.79–2.25 and 0.01–0.25 g/100 g FW), sweet cherry (0.76–2.35, 0.22–3.39 and 0.03–0.13 g/100 g) and mulberry (3.07–9.41, 1.53–4.95 and 0.01–0.25 g/100 g) at un-ripened to fully-ripened stages, respectively. The strawberry, sweet cherry and mulberry mainly contained tartaric, citric and ascorbic acids in the range of 16–55, 70–1934 and 11–132 mg/100 g; 2–8, 2–10 and 10–17 mg/100 g; 2–118, 139–987 and 2–305 mg/100 g at un-ripened to fully-ripened stages, respectively. Fructose and glucose were established to be the major sugars in all the tested fruit while citric and ascorbic acid were the predominant organic acids in strawberry and mulberry while tartaric acid was mainly present in sweet cherry. The tested fruits mostly showed an increase in the concentration of sugars and organic acids with ripening. PMID:22408396

  20. BCR-crosslinking induces a transcription of protein phosphatase component G5PR that is required for mature B-cell survival

    SciTech Connect

    Huq Ronny, Faisal Mahmudul; Igarashi, Hideya; Sakaguchi, Nobuo . E-mail: nobusaka@kaiju.medic.kumamoto-u.ac.jp

    2006-02-03

    BCR-crosslinking triggers activation-induced cell death (AICD) selectively in the restricted stage of B-cell differentiation. We examined the transcription of a protein phosphatase subunit G5PR in immature and mature B-cells, because absence of this factor augmented cell sensitivity to AICD, associated with increased activation of JNK and Bim. BCR-crosslinking-induced G5pr transcription in AICD-resistant mature splenic IgM{sup lo}IgD{sup hi} B-cells but not in AICD susceptible immature IgM{sup hi}IgD{sup lo} B-cells. Thus, G5pr induction correlated with the prevention of AICD; High in mature splenic CD23{sup hi} B-cells but low in immature B-cells of neonatal mice, sub-lethally irradiated mice, or xid mice. Lack of G5pr upregulation was associated with the prolonged activation of JNK. The G5pr cDNA transfection protected an immature B-cell line WEHI-231 from BCR-mediated AICD. The differential expression of G5PR might be responsible for the antigen-dependent selection of B-cells.

  1. Reduced expression of the mouse ribosomal protein Rpl17 alters the diversity of mature ribosomes by enhancing production of shortened 5.8S rRNA

    PubMed Central

    Wang, Minshi; Parshin, Andrey V.; Shcherbik, Natalia; Pestov, Dimitri G.

    2015-01-01

    Processing of rRNA during ribosome assembly can proceed through alternative pathways but it is unclear whether this could affect the structure of the ribosome. Here, we demonstrate that shortage of a ribosomal protein can change pre-rRNA processing in a way that over time alters ribosome diversity in the cell. Reducing the amount of Rpl17 in mouse cells led to stalled 60S subunit maturation, causing degradation of most of the synthesized precursors. A fraction of pre-60S subunits, however, were able to complete maturation, but with a 5′-truncated 5.8S rRNA, which we named 5.8SC. The 5′ exoribonuclease Xrn2 is involved in the generation of both 5.8SC and the canonical long form of 5.8S rRNA. Ribosomes containing 5.8SC rRNA are present in various mouse and human cells and engage in translation. These findings uncover a previously undescribed form of mammalian 5.8S rRNA and demonstrate that perturbations in ribosome assembly can be a source of heterogeneity in mature ribosomes. PMID:25995445

  2. Reduced expression of the mouse ribosomal protein Rpl17 alters the diversity of mature ribosomes by enhancing production of shortened 5.8S rRNA.

    PubMed

    Wang, Minshi; Parshin, Andrey V; Shcherbik, Natalia; Pestov, Dimitri G

    2015-07-01

    Processing of rRNA during ribosome assembly can proceed through alternative pathways but it is unclear whether this could affect the structure of the ribosome. Here, we demonstrate that shortage of a ribosomal protein can change pre-rRNA processing in a way that over time alters ribosome diversity in the cell. Reducing the amount of Rpl17 in mouse cells led to stalled 60S subunit maturation, causing degradation of most of the synthesized precursors. A fraction of pre-60S subunits, however, were able to complete maturation, but with a 5'-truncated 5.8S rRNA, which we named 5.8SC. The 5' exoribonuclease Xrn2 is involved in the generation of both 5.8S(C) and the canonical long form of 5.8S rRNA. Ribosomes containing 5.8S(C) rRNA are present in various mouse and human cells and engage in translation. These findings uncover a previously undescribed form of mammalian 5.8S rRNA and demonstrate that perturbations in ribosome assembly can be a source of heterogeneity in mature ribosomes.

  3. A critical role for the protein kinase PKK in the maintenance of recirculating mature B cells and the development of B1 cells.

    PubMed

    Chen, Luojing; Oleksyn, David; Pulvino, Mary; Sanz, Ignacio; Ryan, Daniel; Ryan, Charlotte; Lin, Chyuan-Sheng; Poligone, Brian; Pentland, Alice P; Ritchlin, Christopher; Zhao, Jiyong

    2016-04-01

    Protein kinase C associated kinase (PKK) regulates NF-κB activation and is required for the survival of certain lymphoma cells. Mice lacking PKK die soon after birth, and previous studies suggest that the role of PKK in B cell development might be context dependent. We have generated a mouse strain harboring conditional null alleles for PKK and a Cre-recombinase transgene under the control of the endogenous CD19 promoter. In the present study, we show that knockout of PKK in B cells results in the reduction of long-lived recirculating mature B cell population in lymph nodes and bone marrow as well as a decrease in peritoneal B1 cells, while PKK deficiency has no apparent effect on early B cell development in bone marrow or the development of follicular and marginal zone B cells in the spleen. In addition, we demonstrate that PKK-deficient B cells display defective proliferation and survival responses to stimulation of B cell receptor (BCR), which may underlie the reduction of recirculating mature B cells in PKK mutant mice. Consistently, BCR-mediated NF-κB activation, known to be required for the survival of activated but not resting B cells, is attenuated in PKK-deficient B cells. Thus, our results reveal a critical role of PKK in the maintenance of recirculating mature B cells as well as the development of B1 cells in mice.

  4. Protein disulfide isomerase-P5, down-regulated in the final stage of boar epididymal sperm maturation, catalyzes disulfide formation to inhibit protein function in oxidative refolding of reduced denatured lysozyme.

    PubMed

    Akama, Kuniko; Horikoshi, Tomoe; Sugiyama, Atsushi; Nakahata, Satoko; Akitsu, Aoi; Niwa, Nobuyoshi; Intoh, Atsushi; Kakui, Yasutaka; Sugaya, Michiko; Takei, Kazuo; Imaizumi, Noriaki; Sato, Takaya; Matsumoto, Rena; Iwahashi, Hitoshi; Kashiwabara, Shin-ichi; Baba, Tadashi; Nakamura, Megumi; Toda, Tosifusa

    2010-06-01

    In mammalian spermiogenesis, sperm mature during epididymal transit to get fertility. The pig sharing many physiological similarities with humans is considered a promising animal model in medicine. We examined the expression profiles of proteins from boar epididymal caput, corpus, and cauda sperm by two-dimensional gel electrophoresis and peptide mass fingerprinting. Our results indicated that protein disulfide isomerase-P5 (PDI-P5) human homolog was down-regulated from the epididymal corpus to cauda sperm, in contrast to the constant expression of protein disulfide isomerase A3 (PDIA3) human homolog. To examine the functions of PDIA3 and PDI-P5, we cloned and sequenced cDNAs of pig PDIA3 and PDI-P5 protein precursors. Each recombinant pig mature PDIA3 and PDI-P5 expressed in Escherichia coli showed thiol-dependent disulfide reductase activities in insulin turbidity assay. Although PDIA3 showed chaperone activity to promote oxidative refolding of reduced denatured lysozyme, PDI-P5 exhibited anti-chaperone activity to inhibit oxidative refolding of lysozyme at an equimolar ratio. SDS-PAGE and Western blotting analysis suggested that disulfide cross-linked and non-productively folded lysozyme was responsible for the anti-chaperone activity of PDI-P5. These results provide a molecular basis and insights into the physiological roles of PDIA3 and PDI-P5 in sperm maturation and fertilization.

  5. Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis

    PubMed Central

    Hong, Seok Hoon; Kwon, Yong-Chan; Jewett, Michael C.

    2014-01-01

    Incorporating non-standard amino acids (NSAAs) into proteins enables new chemical properties, new structures, and new functions. In recent years, improvements in cell-free protein synthesis (CFPS) systems have opened the way to accurate and efficient incorporation of NSAAs into proteins. The driving force behind this development has been three-fold. First, a technical renaissance has enabled high-yielding (>1 g/L) and long-lasting (>10 h in batch operation) CFPS in systems derived from Escherichia coli. Second, the efficiency of orthogonal translation systems (OTSs) has improved. Third, the open nature of the CFPS platform has brought about an unprecedented level of control and freedom of design. Here, we review recent developments in CFPS platforms designed to precisely incorporate NSAAs. In the coming years, we anticipate that CFPS systems will impact efforts to elucidate structure/function relationships of proteins and to make biomaterials and sequence-defined biopolymers for medical and industrial applications. PMID:24959531

  6. Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis

    NASA Astrophysics Data System (ADS)

    Hong, Seok Hoon; Kwon, Yong-Chan; Jewett, Michael

    2014-06-01

    Incorporating non-standard amino acids (NSAAs) into proteins enables new chemical properties, new structures, and new functions. In recent years, improvements in cell-free protein synthesis (CFPS) systems have opened the way to accurate and efficient incorporation of NSAAs into proteins. The driving force behind this development has been three-fold. First, a technical renaissance has enabled high-yielding (>1 g/L) and long-lasting (>10 h in batch operation) CFPS in systems derived from Escherichia coli. Second, the efficiency of orthogonal translation systems has improved. Third, the open nature of the CFPS platform has brought about an unprecedented level of control and freedom of design. Here, we review recent developments in CFPS platforms designed to precisely incorporate NSAAs. In the coming years, we anticipate that CFPS systems will impact efforts to elucidate structure/function relationships of proteins and to make biomaterials and sequence-defined biopolymers for medical and industrial applications.

  7. Gonadotropin-dependent oocyte maturational competence requires activation of the protein kinase A pathway and synthesis of RNA and protein in ovarian follicles of Nibe, Nibea mitsukurii (Teleostei, Sciaenidae)

    USGS Publications Warehouse

    Yoshizaki, G.; Shusa, M.; Takeuchi, T.; Patino, R.

    2002-01-01

    Luteinizing hormone- (LH)-dependent ovarian follicle maturation has been recently described in two stages for teleost fishes. The oocyte's ability to respond to the steroidal maturation-inducing hormone (MIH), also known as oocyte maturational competence (OMC), is acquired during the first stage; whereas the MIH-dependent resumption of meiosis occurs during the second stage. However, studies directly addressing OMC have been performed with a limited number of species and therefore the general relevance of the two-stage model and its mechanisms remain uncertain. In this study, we examined the hormonal regulation of OMC and its basic transduction mechanisms in ovarian follicles of the sciaenid teleost, Nibe (Nibea mitsukurii). Exposure to MIH [17,20??-dihydroxy-4-pregnen-3-one or 17,20??,21-trihydroxy-4-pregnen-3-one] stimulated germinal vesicle breakdown (index of meiotic resumption) in full-grown follicles primed with human chorionic gonadotropin (HCG, an LH-like gonadotropin) but not in those pre-cultured in plain incubation medium. The induction of OMC by HCG was mimicked by protein kinase A (PKA) activators (forskolin and dibutyryl cyclic AMP), and blocked by specific inhibitors of PKA (H89 and H8) as well as inhibitors of RNA (actinomycin D) and protein (cycloheximide) synthesis. Forskolin-induced OMC was also inhibited by actinomycin D and cycloheximide. A strong activator of protein kinase C, PMA, inhibited HCG-dependent OMC. In conclusion, OMC in Nibe ovarian follicles is gonadotropin-dependent and requires activation of the PKA pathway followed by gene transcription and translation events. These observations are consistent with the two-stage model of ovarian follicle maturation proposed for other teleosts, and suggest that Nibe can be used as new model species for mechanistic studies of ovarian follicle differentiation and maturation in fishes.

  8. Photo-CIDNP NMR spectroscopy of amino acids and proteins.

    PubMed

    Kuhn, Lars T

    2013-01-01

    Photo-chemically induced dynamic nuclear polarization (CIDNP) is a nuclear magnetic resonance (NMR) phenomenon which, among other things, is exploited to extract information on biomolecular structure via probing solvent-accessibilities of tryptophan (Trp), tyrosine (Tyr), and histidine (His) amino acid side chains both in polypeptides and proteins in solution. The effect, normally triggered by a (laser) light-induced photochemical reaction in situ, yields both positive and/or negative signal enhancements in the resulting NMR spectra which reflect the solvent exposure of these residues both in equilibrium and during structural transformations in "real time". As such, the method can offer - qualitatively and, to a certain extent, quantitatively - residue-specific structural and kinetic information on both the native and, in particular, the non-native states of proteins which, often, is not readily available from more routine NMR techniques. In this review, basic experimental procedures of the photo-CIDNP technique as applied to amino acids and proteins are discussed, recent improvements to the method highlighted, and future perspectives presented. First, the basic principles of the phenomenon based on the theory of the radical pair mechanism (RPM) are outlined. Second, a description of standard photo-CIDNP applications is given and it is shown how the effect can be exploited to extract residue-specific structural information on the conformational space sampled by unfolded or partially folded proteins on their "path" to the natively folded form. Last, recent methodological advances in the field are highlighted, modern applications of photo-CIDNP in the context of biological NMR evaluated, and an outlook into future perspectives of the method is given.

  9. Molecular evolution of monotreme and marsupial whey acidic protein genes.

    PubMed

    Sharp, Julie A; Lefèvre, Christophe; Nicholas, Kevin R

    2007-01-01

    Whey acidic protein (WAP), a major whey protein present in milk of a number of mammalian species has characteristic cysteine-rich domains known as four-disulfide cores (4-DSC). Eutherian WAP, expressed in the mammary gland throughout lactation, has two 4-DSC domains, (DI-DII) whereas marsupial WAP, expressed only during mid-late lactation, contains an additional 4-DSC (DIII), and has a DIII-D1-DII configuration. We report the expression and evolution of echidna (Tachyglossus aculeatus) and platypus (Onithorhynchus anatinus) WAP cDNAs. Predicted translation of monotreme cDNAs showed echidna WAP contains two 4-DSC domains corresponding to DIII-DII, whereas platypus WAP contains an additional domain at the C-terminus with homology to DII and has the configuration DIII-DII-DII. Both monotreme WAPs represent new WAP protein configurations. We propose models for evolution of the WAP gene in the mammalian lineage either through exon loss from an ancient ancestor or by rapid evolution via the process of exon shuffling. This evolutionary outcome may reflect differences in lactation strategy between marsupials, monotremes, and eutherians, and give insight to biological function of the gene products. WAP four-disulfide core domain 2 (WFDC2) proteins were also identified in echidna, platypus and tammar wallaby (Macropus eugenii) lactating mammary cells. WFDC2 proteins are secreted proteins not previously associated with lactation. Mammary gland expression of tammar WFDC2 during the course of lactation showed WFDC2 was elevated during pregnancy, reduced in early lactation and absent in mid-late lactation.

  10. Dependence of intestinal amino acid uptake on dietary protein or amino acid levels

    SciTech Connect

    Karasov, W.H.; Solberg, D.H.; Diamond, J.M.

    1987-05-01

    To understand how intestinal amino acid (AA) transport is regulated by dietary substrate levels, the authors measured uptake of seven radioactively-labelled AAs and glucose across the jejunal brush-border membrane of mice kept on one of three isocaloric rations differing in nitrogen content. In the high-protein ration, uptake increased by 77-81% for the nonessential, less toxic AAs, proline, and aspartate but only by 32-61% for the more toxic essential AAs tested. In the nitrogen-deficient ration, uptake decreased for the nonessential aspartate and proline but stayed constant or increased for essential AAs and for the nonessential alanine. These patterns imply independent regulation of the intestine's various AA transporters. With decreasing dietary AA (or protein), the imino acid and acidic AA private transporters are repressed, while activities of the basic AA transporter and the neutral AA public transporter decrease to an asymptote or else go through a minimum. These regulatory patterns can be understood as a compromise among conflicting constraints imposed by protein's multiple roles as a source of calories, nitrogen, and essential AAs and by the toxicity of essential AAs at high concentrations.

  11. 170 SUPPLEMENT OF GROWTH DIFFERENTIATION FACTOR 8 ON PORCINE OOCYTE DURING IN VITRO MATURATION ACTIVATES SMAD2 AND cAMP RESPONSIVE ELEMENT BINDING PROTEIN SIGNALING.

    PubMed

    Yoon, J D; Lee, E; Hyun, S-H

    2016-01-01

    Growth differentiation factor 8 (GDF8) is a member of the transforming growth factor-β family that has been identified as a strong physiological regulator. The purpose of this study is to investigate the effects of GDF8 on porcine oocytes during in vitro maturation (IVM). We investigated reactive oxygen species (ROS) levels, specific gene transcription levels in oocytes and cumulus cells (CC) after IVM, and specific protein expression and activation levels in matured CC by Western blotting. Each concentration (0, 1, 10, and 100ngmL(-1)) of GDF8 was added in maturation medium (TCM199) during process of IVM. Data were analysed by ANOVA followed by Duncan using SPSS (IBM Corp., Armonk, NY). Data are presented as the mean (replicate numbers) and differences were considered significant at P<0.05. After 44h of IVM, oocytes are mechanically denuded from CC with 0.1% hyaluronidase and only metaphase II stage oocytes are counted as nuclear matured oocytes. Each group of matured oocytes are stained by 2',7'-dichlorodihydrofluorescein diacetate and the fluorescence was captured as graphic files under an epifluorescence microscope. The fluorescence intensities of oocytes were measured using Image J software (National Institutes for Health, Bethesda, MD). The groups treated with 10 and 100ngmL(-1) of GDF8 showed significantly more than 10% decrease in intracellular ROS levels compared with other groups (5 times). To assess the effect of GDF8 on specific gene transcription level changes as a dose response during IVM, real-time PCR was performed. In matured oocytes, the developmental competence marker POU5F1, antioxidant enzymes regulator NRF2, and antiapoptosis gene BCL-2 mRNA transcription levels were significantly increased in the 10ngmL(-1) treatment group compared with control (4 times). In CC, the 10ngmL(-1) treatment groups showed significantly higher PCNA and NRF2 mRNA levels, and the 1 and 10ngmL(-1) treatment groups observed significantly increased cumulus expansion

  12. Maturation of recombinant hepatitis B virus surface antigen particles.

    PubMed

    Zhao, Qinjian; Wang, Yang; Freed, Daniel; Fu, Tong-Ming; Gimenez, Juan A; Sitrin, Robert D; Washabaugh, Michael W

    2006-01-01

    The major surface antigen of Hepatitis B virus (HBsAg) is a cysteine-rich, lipid-bound protein with 226 amino acids. Recombinant HBsAg (rHBsAg) with associated lipids can self-assemble into 22-nm immunogenic spherical particles, which are used in licensed Hepatitis B vaccines. Little is known about the structural evolvement or maturation upon assembly beyond an elevated level of disulfide formation. In this paper, we further characterized the maturation of HBsAg particles with respect to their degree of cross-linking, morphological changes, and changes in conformational flexibility. The lipid-containing rHBsAg particles undergo KSCN- and heat-induced maturation by formation of additional intra- and inter-molecular disulfide bonds. Direct measurements with atomic force microscopy (AFM) revealed morphological changes upon maturation through KSCN-induced and heat-/storage-incurred oxidative refolding. Particle uniformity and regularity was greatly improved, and protrusions formed by the protein subunits were more prominent on the surface of the mature particles. Decreased conformational flexibility in the mature rHBsAg particles was demonstrated by millisecond-scale unfolding kinetics in the presence of an environment-sensitive conformation probe. Both the accessible hydrophobic cavities under native conditions and the changeable hydrophobic cavities upon denaturant-induced unfolding showed substantial decrease upon maturation of the rHBsAg particles. These changes in the structural properties may be critical for the antigenicity and immuno-genicity of this widely-used vaccine component.

  13. The natural non-protein amino acid N-β-methylamino-L-alanine (BMAA) is incorporated into protein during synthesis.

    PubMed

    Glover, W Broc; Mash, Deborah C; Murch, Susan J

    2014-11-01

    N-β-methylamino-L-alanine (BMAA) is an amino acid produced by cyanobacteria and accumulated through trophic levels in the environment and natural food webs. Human exposure to BMAA has been linked to progressive neurodegenerative diseases, potentially due to incorporation of BMAA into protein. The insertion of BMAA and other non-protein amino acids into proteins may trigger protein misfunction, misfolding and/or aggregation. However, the specific mechanism by which BMAA is associated with proteins remained unidentified. Such studies are challenging because of the complexity of biological systems and samples. A cell-free in vitro protein synthesis system offers an excellent approach for investigation of changing amino acid composition in protein. In this study, we report that BMAA incorporates into protein as an error in synthesis when a template DNA sequence is used. Bicinchoninic acid assay of total protein synthesis determined that BMAA effectively substituted for alanine and serine in protein product. LC-MS/MS confirmed that BMAA was selectively inserted into proteins in place of other amino acids, but isomers N-(2-aminoethyl)glycine (AEG) and 2,4-diaminobutyric acid (DAB) did not share this characteristic. Incorporation of BMAA into proteins was significantly higher when genomic DNA from post-mortem brain was the template. About half of BMAA in the synthetic proteins was released with denaturation with sodium dodecylsulfonate and dithiothreitol, but the remaining BMAA could only be released by acid hydrolysis. Together these data demonstrate that BMAA is incorporated into the amino acid backbone of proteins during synthesis and also associated with proteins through non-covalent bonding.

  14. Ribonucleic Acid Regulation in Permeabilized Cells of Escherichia coli Capable of Ribonucleic Acid and Protein Synthesis1

    PubMed Central

    Atherly, Alan G.

    1974-01-01

    A cell permeabilization procedure is described that reduces viability less than 10% and does not significantly reduce the rates of ribonucleic acid and protein synthesis when appropriately supplemented. Permeabilization abolishes the normal stringent coupling of protein and ribonucleic acid synthesis. PMID:4364330

  15. Competitive Binding to Cuprous Ions of Protein and BCA in the Bicinchoninic Acid Protein Assay

    PubMed Central

    Huang, Tao; Long, Mian; Huo, Bo

    2010-01-01

    Although Bicinchoninic acid (BCA) has been widely used to determine protein concentration, the mechanism of interaction between protein, copper ion and BCA in this assay is still not well known. Using the Micro BCA protein assay kit (Pierce Company), we measured the absorbance at 562 nm of BSA solutions with different concentrations of protein, and also varied the BCA concentration. When the concentration of protein was increased, the absorbance exhibited the known linear and nonlinear increase, and then reached an unexpected plateau followed by a gradual decrease. We introduced a model in which peptide chains competed with BCA for binding to cuprous ions. Formation of the well-known chromogenic complex of BCA-Cu1+-BCA was competed with the binding of two peptide bonds (NTPB) to cuprous ion, and there is the possibility of the existence of two new complexes. A simple equilibrium equation was established to describe the correlations between the substances in solution at equilibrium, and an empirical exponential function was introduced to describe the reduction reaction. Theoretical predictions of absorbance from the model were in good agreement with the measurements, which not only validated the competitive binding model, but also predicted a new complex of BCA-Cu1+-NTPB that might exist in the final solution. This work provides a new insight into understanding the chemical bases of the BCA protein assay and might extend the assay to higher protein concentration. PMID:21625379

  16. Competitive Binding to Cuprous Ions of Protein and BCA in the Bicinchoninic Acid Protein Assay.

    PubMed

    Huang, Tao; Long, Mian; Huo, Bo

    2010-01-01

    Although Bicinchoninic acid (BCA) has been widely used to determine protein concentration, the mechanism of interaction between protein, copper ion and BCA in this assay is still not well known. Using the Micro BCA protein assay kit (Pierce Company), we measured the absorbance at 562 nm of BSA solutions with different concentrations of protein, and also varied the BCA concentration. When the concentration of protein was increased, the absorbance exhibited the known linear and nonlinear increase, and then reached an unexpected plateau followed by a gradual decrease. We introduced a model in which peptide chains competed with BCA for binding to cuprous ions. Formation of the well-known chromogenic complex of BCA-Cu(1+)-BCA was competed with the binding of two peptide bonds (NTPB) to cuprous ion, and there is the possibility of the existence of two new complexes. A simple equilibrium equation was established to describe the correlations between the substances in solution at equilibrium, and an empirical exponential function was introduced to describe the reduction reaction. Theoretical predictions of absorbance from the model were in good agreement with the measurements, which not only validated the competitive binding model, but also predicted a new complex of BCA-Cu(1+)-NTPB that might exist in the final solution. This work provides a new insight into understanding the chemical bases of the BCA protein assay and might extend the assay to higher protein concentration.

  17. Effects of forage intake level on nitrogen net flux by portal-drained viscera of mature sheep with abomasal infusion of an amino acid mixture.

    PubMed

    EL-Sabagh, M; Sugino, T; Obitsu, T; Taniguchi, K

    2013-10-01

    This study aimed to investigate the pattern of nitrogen (N) metabolites flux across the portal-drained viscera (PDV) of mature sheep over a wide range of forage intake, and to determine the effect of dry matter intake (DMI) on the PDV recovery of an abomasally infused amino acids (AA) mixture. Four Suffolk mature sheep (61.4 ± 3.6 kg BW) surgically fitted with abomasal cannulae and multi-catheters were fed four levels of DMI of lucerne hay cubes ranging from 0.4 to 1.6 fold the metabolizable energy requirements for maintenance. Each period lasted for 17 days: 7 days for diet adaptation, 5 days for measurement of N balance and N metabolites flux under basal pre-infusion conditions (basal phase) and 5 days for determining the recovery of the infused AA (584 mmol/day) across the PDV (infusion phase). Six sets of blood samples were collected on the last day of both basal and infusion phases. Increasing DMI increased portal release of AA and enhanced N retention. At 0.4 M and as a proportion of digested N, there was a marked drop in total AA-N release accompanied by greater ammonia-N release and urea-N uptake across the PDV. The incremental recovery ratio of infused AA across the PDV was altered with increasing DMI accounting for 0.88, 1.12, 1.23 and 1.31 at 0.4, 0.8, 1.2 and 1.6 M, respectively. In addition, across the individual AA, the net portal recovery ratio of infused methionine and valine increased linearly (P < 0.05) while that of phenylalanine, branched-chain AA and total essential AA tended to increase linearly (P < 0.10) with increasing DMI. These results indicated that DMI affects the net portal recovery of AA available in the small intestine of mature sheep.

  18. Effect of insulin-transferrin-selenium (ITS) and l-ascorbic acid (AA) during in vitro maturation on in vitro bovine embryo development.

    PubMed

    Guimarães, A L S; Pereira, S A; Diógenes, M N; Dode, M A N

    2016-12-01

    The aim of this study was to evaluate the effect of adding a combination of insulin, transferrin and selenium (ITS) and l-ascorbic acid (AA) during in vitro maturation (IVM) and in vitro culture (IVC) on in vitro embryo production. To verify the effect of the supplements, cleavage and blastocyst rates, embryo size and total cell number were performed. Embryonic development data, embryo size categorization and kinetics of maturation were analyzed by chi-squared test, while the total cell number was analyzed by a Kruskal-Wallis test (P < 0.05). When ITS was present during IVM, IVC or the entire culture, all treatments had a cleavage and blastocyst rates and embryo quality, similar to those of the control group (P < 0.05). Supplementation of IVM medium with ITS and AA for 12 h or 24 h showed that the last 12 h increased embryo production (51.6%; n = 220) on D7 compared with the control (39.5%; n = 213). However, no improvement was observed in blastocyst rate when less competent oocytes, obtained from 1-3 mm follicles, were exposed to ITS + AA for the last 12 h of IVM, with a blastocyst rate of 14.9% (n = 47) compared with 61.0% (n = 141) in the control group. The results suggest that the addition of ITS alone did not affect embryo production; however, when combined with AA in the last 12 h of maturation, there was improvement in the quantity and quality of embryos produced. Furthermore, the use of ITS and AA during IVM did not improve the competence of oocytes obtained from small follicles.

  19. Shedding light on proteins, nucleic acids, cells, humans and fish

    NASA Technical Reports Server (NTRS)

    Setlow, Richard B.

    2002-01-01

    I was trained as a physicist in graduate school. Hence, when I decided to go into the field of biophysics, it was natural that I concentrated on the effects of light on relatively simple biological systems, such as proteins. The wavelengths absorbed by the amino acid subunits of proteins are in the ultraviolet (UV). The wavelengths that affect the biological activities, the action spectra, also are in the UV, but are not necessarily parallel to the absorption spectra. Understanding these differences led me to investigate the action spectra for affecting nucleic acids, and the effects of UV on viruses and cells. The latter studies led me to the discovery of the important molecular nature of the damages affecting DNA (cyclobutane pyrimidine dimers) and to the discovery of nucleotide excision repair. Individuals with the genetic disease xeroderma pigmentosum (XP) are extraordinarily sensitive to sunlight-induced skin cancer. The finding, by James Cleaver, that their skin cells were defective in DNA repair strongly suggested that DNA damage was a key step in carcinogenesis. Such information was important for estimating the wavelengths in sunlight responsible for human skin cancer and for predicting the effects of ozone depletion on the incidence of non-melanoma skin cancer. It took experiments with backcross hybrid fish to call attention to the probable role of the longer UV wavelengths not absorbed by DNA in the induction of melanoma. These reflections trace the biophysicist's path from molecules to melanoma.

  20. Specific high-affinity binding of fatty acids to epidermal cytosolic proteins

    SciTech Connect

    Raza, H.; Chung, W.L.; Mukhtar, H. )

    1991-08-01

    Cytosol from rat, mouse, and human skin or rat epidermis was incubated with (3H)arachidonic acid, (14C)retinoic acid, (14C)oleic acid, (3H)leukotriene A4, (3H)prostaglandin E2 (PGE2) or (3H) 15-hydroxyeicosatetraenoic acid (15-HETE), and protein-bound ligands were separated using Lipidex-1000 at 4C to assess the binding specificity. The binding of oleic acid and arachidonic acid with rat epidermal cytosol was rapid, saturable, and reversible. Binding of oleic acid was competed out with the simultaneous addition of other ligands and found to be in the following order: arachidonic acid greater than oleic acid greater than linoleic acid greater than lauric acid greater than leukotriene A4 greater than 15-HETE = PGE1 greater than PGE2 = PGF2. Scatchard analysis of the binding with arachidonic acid, oleic acid, and retinoic acid revealed high-affinity binding sites with the dissociation constant in the nM range. SDS-PAGE analysis of the oleic acid-bound epidermal cytosolic protein(s) revealed maximum binding at the 14.5 kDa region. The presence of the fatty acid-binding protein in epidermal cytosol and its binding to fatty acids and retinoic acid may be of significance both in the trafficking and the metabolism of fatty acids and retinoids across the skin.

  1. Detection of Protein-Protein Interaction Within an RNA-Protein Complex Via Unnatural-Amino-Acid-Mediated Photochemical Crosslinking.

    PubMed

    Yeh, Fu-Lung; Tung, Luh; Chang, Tien-Hsien

    2016-01-01

    Although DExD/H-box proteins are known to unwind RNA duplexes and modulate RNA structures in vitro, it is highly plausible that, in vivo, some may function to remodel RNA-protein complexes. Precisely how the latter is achieved remains a mystery. We investigated this critical issue by using yeast Prp28p, an evolutionarily conserved DExD/H-box splicing factor, as a model system. To probe how Prp28p interacts with spliceosome, we strategically placed p-benzoyl-phenylalanine (BPA), a photoactivatable unnatural amino acid, along the body of Prp28p in vivo. Extracts prepared from these engineered strains were then used to assemble in vitro splicing reactions for BPA-mediated protein-protein crosslinkings. This enabled us, for the first time, to "capture" Prp28p in action. This approach may be applicable to studying the roles of other DExD/H-box proteins functioning in diverse RNA-related pathways, as well as to investigating protein-protein contacts within an RNA-protein complex.

  2. Nucleic acid-binding specificity of human FUS protein

    PubMed Central

    Wang, Xueyin; Schwartz, Jacob C.; Cech, Thomas R.

    2015-01-01

    FUS, a nuclear RNA-binding protein, plays multiple roles in RNA processing. Five specific FUS-binding RNA sequence/structure motifs have been proposed, but their affinities for FUS have not been directly compared. Here we find that human FUS binds all these sequences with Kdapp values spanning a 10-fold range. Furthermore, some RNAs that do not contain any of these motifs bind FUS with similar affinity. FUS binds RNA in a length-dependent manner, consistent with a substantial non-specific component to binding. Finally, investigation of FUS binding to different nucleic acids shows that it binds single-stranded DNA with three-fold lower affinity than ssRNA of the same length and sequence, while binding to double-stranded nucleic acids is weaker. We conclude that FUS has quite general nucleic acid-binding activity, with the various proposed RNA motifs being neither necessary for FUS binding nor sufficient to explain its diverse binding partners. PMID:26150427

  3. Mature adipocyte-derived dedifferentiated fat cells can trans-differentiate into osteoblasts in vitro and in vivo only by all-trans retinoic acid.

    PubMed

    Oki, Yoshinao; Watanabe, Saiko; Endo, Tuyoshi; Kano, Koichiro

    2008-01-01

    We investigated whether de-differentiated fat (DFAT) cells, a mature adipocyte-derived preadipocyte cell line, can be induced to trans-differentiate into osteoblasts in vitro and in vivo. All-trans retinoic acid (RA) induced expression of osteoblast-specific mRNAs encoding Cbfa1/Runx2, osterix, alkaline phosphatase, osteopontin, parathyroid hormone receptor, and osteocalcin in the DFAT cells, but did not induce the expression of adipocyte-specific mRNAs encoding PPARgamma2, C/EBPalpha, and GLUT4. Moreover, alkaline phosphatase activity was expressed in DFAT cells and the cells underwent mineralization of the bone matrix in vitro. Furthermore, when DFAT cells were transplanted subcutaneously into C57BL/6N mice in diffusion chambers, these cells formed ectopic osteoid tissue without any host cell-invasion of the chambers. These results indicate that DFAT cells derived from mature adipocytes can be converted into fully differentiated osteoblasts in vitro and in vivo using RA. DFAT cells provide a unique model for studying the lineage commitment of the adipocytes and osteoblasts derived from mesenchymal stem cells. Identification of the pathways that regulate these processes could lead to the development of new therapeutic strategies for control of unwarranted growth of bone and adipose tissue.

  4. Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score of three Mediterranean cephalopods.

    PubMed

    Zlatanos, Spiros; Laskaridis, Kostas; Feist, Christian; Sagredos, Angelos

    2006-10-01

    Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score (PDCAAS) in three commercially important cephalopods of the Mediterranean sea (cuttlefish, octopus and squid) were determined. The results of the proximate analysis showed that these species had very high protein:fat ratios similar to lean beef. Docosahexaenoic, palmitic and eicosipentaenoic acid were the most abundant fatty acids among analyzed species. The amount of n-3 fatty acids was higher than that of saturated, monounsaturated and n-6 fatty acids. Despite the fact that cephalopods contain small amounts of fat they were found quite rich in n-3 fatty acids. Finally, PDCAAS indicated that these organisms had a very good protein quality.

  5. Maternal folic acid supplementation to dams on marginal protein level alters brain fatty acid levels of their adult offspring.

    PubMed

    Rao, Shobha; Joshi, Sadhana; Kale, Anvita; Hegde, Mahabaleshwar; Mahadik, Sahebarao

    2006-05-01

    Studies on fetal programming of adult diseases have highlighted the importance of maternal nutrition during pregnancy. Folic acid and long-chain essential polyunsaturated fatty acids (LC-PUFAs) have independent effects on fetal growth. However, folic acid effects may also involve alteration of LC-PUFA metabolism. Because marginal deficiency of LC-PUFAs during critical periods of brain growth and development is associated with risks for adult diseases, it is highly relevant to investigate how maternal supplementation of such nutrients can alter brain fatty acid levels. We examined the impact of folic acid supplementation, conventionally used in maternal intervention, on brain essential fatty acid levels and plasma corticosterone concentrations in adult offspring at 11 months of age. Pregnant female rats from 4 groups (6 in each) were fed with casein diets either with 18 g protein/100 g diet (control diet) or treatment diets that were marginal in protein (MP), such as 12 g protein/100 g diet supplemented with 8 mg folic acid (FAS/MP), 12 g protein/100 g diet without folic acid (FAD/MP), or 12 g protein/100 g diet (MP) with 2 mg folic acid. Pups were weaned to a standard laboratory diet with 18 g protein/100 g diet. All male adult offspring in the FAS/MP group showed lower docosahexaenoic acid (P<.05) as compared with control adult offspring (6.04+/-2.28 vs 10.33+/-0.86 g/100 g fatty acids) and higher n-6/n-3 ratio (P<.05). Docosahexaenoic acid levels in FAS/MP adult offspring were also lower (P<.05) when compared with the MP group. Plasma corticosterone concentrations were higher (P<.05) in male adult offspring from the FAS/MP group compared with control as well as the MP adult offspring. Results suggest that maternal folic acid supplementation at MP intake decreased brain docosahexaenoic acid levels probably involving corticosterone increase.

  6. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues.

    PubMed

    Kim, Hyun Uk; Jung, Su-Jin; Lee, Kyeong-Ryeol; Kim, Eun Ha; Lee, Sang-Min; Roh, Kyung Hee; Kim, Jong-Bum

    2013-01-01

    The LEAFY COTYLEDON2 (LEC2) gene plays critically important regulatory roles during both early and late embryonic development. Here, we report the identification of the LEC2 gene from the castor bean plant (Ricinus communis), and characterize the effects of its overexpression on gene regulation and lipid metabolism in transgenic Arabidopsis plants. LEC2 exists as a single-copy gene in castor bean, is expressed predominantly in embryos, and encodes a protein with a conserved B3 domain, but different N- and C-terminal domains to those found in LEC2 from Arabidopsis. Ectopic overexpression of LEC2 from castor bean under the control of the cauliflower mosaic virus (CaMV) 35S promoter in Arabidopsis plants induces the accumulation of transcripts that encodes five major transcription factors (the LEAFY COTYLEDON1 (LEC1), LEAFY COTYLEDON1-LIKE (L1L), FUSCA3 (FUS3), and ABSCISIC ACID INSENSITIVE 3 (ABI3) transcripts for seed maturation, and WRINKELED1 (WRI1) transcripts for fatty acid biosynthesis), as well as OLEOSIN transcripts for the formation of oil bodies in vegetative tissues. Transgenic Arabidopsis plants that express the LEC2 gene from castor bean show a range of dose-dependent morphological phenotypes and effects on the expression of LEC2-regulated genes during seedling establishment and vegetative growth. Expression of castor bean LEC2 in Arabidopsis increased the expression of fatty acid elongase 1 (FAE1) and induced the accumulation of triacylglycerols, especially those containing the seed-specific fatty acid, eicosenoic acid (20:1(Δ11)), in vegetative tissues.

  7. Assessing the Chemical Accuracy of Protein Structures via Peptide Acidity

    PubMed Central

    Anderson, Janet S.; Hernández, Griselda; LeMaster, David M.

    2012-01-01

    Although the protein native state is a Boltzmann conformational ensemble, practical applications often require a representative model from the most populated region of that distribution. The acidity of the backbone amides, as reflected in hydrogen exchange rates, is exquisitely sensitive to the surrounding charge and dielectric volume distribution. For each of four proteins, three independently determined X-ray structures of differing crystallographic resolution were used to predict exchange for the static solvent-exposed amide hydrogens. The average correlation coefficients range from 0.74 for ubiquitin to 0.93 for Pyrococcus furiosus rubredoxin, reflecting the larger range of experimental exchange rates exhibited by the latter protein. The exchange prediction errors modestly correlate with the crystallographic resolution. MODELLER 9v6-derived homology models at ~60% sequence identity (36% identity for chymotrypsin inhibitor CI2) yielded correlation coefficients that are ~0.1 smaller than for the cognate X-ray structures. The most recently deposited NOE-based ubiquitin structure and the original NMR structure of CI2 fail to provide statistically significant predictions of hydrogen exchange. However, the more recent RECOORD refinement study of CI2 yielded predictions comparable to the X-ray and homology model-based analyses. PMID:23182463

  8. Mycobacterium tuberculosis PE25/PPE41 protein complex induces activation and maturation of dendritic cells and drives Th2-biased immune responses.

    PubMed

    Chen, Wei; Bao, Yige; Chen, Xuerong; Burton, Jeremy; Gong, Xueli; Gu, Dongqing; Mi, Youjun; Bao, Lang

    2016-04-01

    Mycobacterium tuberculosis evades innate host immune responses by parasitizing macrophages and causes significant morbidity and mortality around the world. A mycobacterial antigen that can activate dendritic cells (DCs) and elicit effective host innate immune responses will be vital to the development of an effective TB vaccine. The M. tuberculosis genes PE25/PPE41 encode proteins which have been associated with evasion of the host immune response. We constructed a PE25/PPE41 complex gene via splicing by overlapping extension and expressed it successfully in E. coli. We investigated whether this protein complex could interact with DCs to induce effective host immune responses. The PE25/PPE41 protein complex induced maturation of isolated mouse DCs in vitro, increasing expression of cell surface markers (CD80, CD86 and MHC-II), thereby promoting Th2 polarization via secretion of pro-inflammatory cytokines IL-4 and IL-10. In addition, PE25/PPE41 protein complex-activated DCs induced proliferation of mouse CD4(+) and CD8(+) T cells, and a strong humoral response in immunized mice. The sera of five TB patients were also highly reactive to this antigen. These findings suggest that interaction of the PE25/PPE41 protein complex with DCs may be of great immunological significance.

  9. Cellular repressor of E1A-stimulated genes is a bona fide lysosomal protein which undergoes proteolytic maturation during its biosynthesis

    SciTech Connect

    Schaehs, Philipp; Weidinger, Petra; Probst, Olivia C.; Svoboda, Barbara; Stadlmann, Johannes; Beug, Hartmut; Waerner, Thomas; Mach, Lukas

    2008-10-01

    Cellular repressor of E1A-stimulated genes (CREG) has been reported to be a secretory glycoprotein implicated in cellular growth and differentiation. We now show that CREG is predominantly localized within intracellular compartments. Intracellular CREG was found to lack an N-terminal peptide present in the secreted form of the protein. In contrast to normal cells, CREG is largely secreted by fibroblasts missing both mannose 6-phosphate receptors. This is not observed in cells lacking only one of them. Mass spectrometric analysis of recombinant CREG revealed that the protein contains phosphorylated oligosaccharides at either of its two N-glycosylation sites. Cellular CREG was found to cosediment with lysosomal markers upon subcellular fractionation by density-gradient centrifugation. In fibroblasts expressing a CREG-GFP fusion construct, the heterologous protein was detected in compartments containing lysosomal proteins. Immunolocalization of endogenous CREG confirmed that intracellular CREG is localized in lysosomes. Proteolytic processing of intracellular CREG involves the action of lysosomal cysteine proteinases. These results establish that CREG is a lysosomal protein that undergoes proteolytic maturation in the course of its biosynthesis, carries the mannose 6-phosphate recognition marker and depends on the interaction with mannose 6-phosphate receptors for efficient delivery to lysosomes.

  10. Preparation of the cortical reaction: maturation-dependent migration of SNARE proteins, clathrin, and complexin to the porcine oocyte's surface blocks membrane traffic until fertilization.

    PubMed

    Tsai, Pei-Shiue; van Haeften, Theo; Gadella, Bart M

    2011-02-01

    The cortical reaction is a calcium-dependent exocytotic process in which the content of secretory granules is released into the perivitellin space immediately after fertilization, which serves to prevent polyspermic fertilization. In this study, we investigated the involvement and the organization of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins in the docking and fusion of the cortical granule membrane with the oolemma in porcine oocytes. During meiotic maturation, secretory vesicles that were labeled with a granule-specific binding lectin, peanut agglutinin (PNA), migrated toward the oocyte's surface. This surface-orientated redistribution behavior was also observed for the oocyte-specific SNARE proteins SNAP23 and VAMP1 that colocalized with the PNA-labeled structures in the cortex area just under the oolemma and with the exclusive localization area of complexin (a trans-SNARE complex-stabilizing protein). The coming together of these proteins serves to prevent the spontaneous secretion of the docked cortical granules and to prepare the oocyte's surface for the cortical reaction, which should probably be immediately compensated for by a clathrin-mediated endocytosis. In vitro fertilization resulted in the secretion of the cortical granule content and the concomitant release of complexin and clathrin into the oocyte's cytosol, and this is considered to stimulate the observed endocytosis of SNARE-containing membrane vesicles.

  11. Snake venom. The amino acid sequence of protein A from Dendroaspis polylepis polylepis (black mamba) venom.

    PubMed

    Joubert, F J; Strydom, D J

    1980-12-01

    Protein A from Dendroaspis polylepis polylepis venom comprises 81 amino acids, including ten half-cystine residues. The complete primary structures of protein A and its variant A' were elucidated. The sequences of proteins A and A', which differ in a single position, show no homology with various neurotoxins and non-neurotoxic proteins and represent a new type of elapid venom protein.

  12. Escherichia coli harboring a natural IncF conjugative F plasmid develops complex mature biofilms by stimulating synthesis of colanic acid and Curli.

    PubMed

    May, Thithiwat; Okabe, Satoshi

    2008-11-01

    It has been shown that Escherichia coli harboring the derepressed IncFI and IncFII conjugative F plasmids form complex mature biofilms by using their F-pilus connections, whereas a plasmid-free strain forms only patchy biofilms. Therefore, in this study we investigated the contribution of a natural IncF conjugative F plasmid to the formation of E. coli biofilms. Unlike the presence of a derepressed F plasmid, the presence of a natural IncF F plasmid promoted biofilm formation by generating the cell-to-cell mating F pili between pairs of F(+) cells (approximately two to four pili per cell) and by stimulating the formation of colanic acid and curli meshwork. Formation of colanic acid and curli was required after the initial deposition of F-pilus connections to generate a three-dimensional mushroom-type biofilm. In addition, we demonstrated that the conjugative factor of F plasmid, rather than a pilus synthesis function, was involved in curli production during biofilm formation, which promoted cell-surface interactions. Curli played an important role in the maturation process. Microarray experiments were performed to identify the genes involved in curli biosynthesis and regulation. The results suggested that a natural F plasmid was more likely an external activator that indirectly promoted curli production via bacterial regulatory systems (the EnvZ/OmpR two-component regulators and the RpoS and HN-S global regulators). These data provided new insights into the role of a natural F plasmid during the development of E. coli biofilms.

  13. Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score.

    PubMed

    Miao, Zhichao; Westhof, Eric

    2015-06-23

    We describe a general binding score for predicting the nucleic acid binding probability in proteins. The score is directly derived from physicochemical and evolutionary features and integrates a residue neighboring network approach. Our process achieves stable and high accuracies on both DNA- and RNA-binding proteins and illustrates how the main driving forces for nucleic acid binding are common. Because of the effective integration of the synergetic effects of the network of neighboring residues and the fact that the prediction yields a hierarchical scoring on the protein surface, energy funnels for nucleic acid binding appear on protein surfaces, pointing to the dynamic process occurring in the binding of nucleic acids to proteins.

  14. Expression and activity of multidrug resistance proteins in mature endothelial cells and their precursors: A challenging correlation

    PubMed Central

    Bielawska-Pohl, Aleksandra; Wojtowicz, Karolina; Jura, Roksana; Paprocka, Maria; Wojdat, Elżbieta; Kozłowska, Urszula; Klimczak, Aleksandra; Grillon, Catherine; Kieda, Claudine; Duś, Danuta

    2017-01-01

    Active cellular transporters of harmful agents—multidrug resistance (mdr) proteins—are present in tumor, stem and endothelial cells, among others. While mdr proteins are broadly studied in tumor cells, their role in non-tumor cells and the significance of their action not connected with removal of harmful xenobiotics is less extensively documented. Proper assessment of mdr proteins expression is difficult. Mdr mRNA presence is most often evaluated but that does not necessarily correlate with the protein level. The protein expression itself is difficult to determine; usually cells with mdr overexpression are studied, not cells under physiological conditions, in which a low expression level of mdr protein is often insufficient for detection in vitro. Various methods are used to identify mdr mRNA and protein expression, together with functional tests demonstrating their biological drug transporting activities. Data comparing different methods of investigating expression of mdr mRNAs and their corresponding proteins are still scarce. In this article we present the results of a study concerning mdr mRNA and protein expression. Our goal was to search for the best method to investigate the expression level and functional activity of five selected mdr proteins—MDR1, BCRP, MRP1, MRP4 and MRP5—in established in vitro cell lines of human endothelial cells (ECs) and their progenitors. Endothelial cells demonstrated mdr presence at the mRNA level, which was not always confirmed at the protein level or in functional tests. Therefore, several different assays had to be applied for evaluation of mdr proteins expression and functions in endothelial cells. Among them functional tests seemed to be the most conclusive, although not very specific. PMID:28212450

  15. Thermophysical properties of starch and whey protein composite prepared in presence of organic acid and esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, we prepared starch and protein composite by reactive mixing in presence of various organic acids and found that use of these acid esters resulted in composites with good mechanical properties. In this study, concentration (% w/w) of acid citrates in the starch-protein composites were var...

  16. Defining meal requirements for protein to optimize metabolic roles of amino acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary protein provides essential amino acids (EAAs) for the synthesis of new proteins plus an array of other metabolic functions; many of these functions are sensitive to postprandial plasma and intracellular amino acid concentrations. Recent research has focused on amino acids as metabolic signal...

  17. Fatty Acid-Binding Protein 5 Facilitates the Blood-Brain Barrier Transport of Docosahexaenoic Acid.

    PubMed

    Pan, Yijun; Scanlon, Martin J; Owada, Yuji; Yamamoto, Yui; Porter, Christopher J H; Nicolazzo, Joseph A

    2015-12-07

    The brain has a limited ability to synthesize the essential polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) from its omega-3 fatty acid precursors. Therefore, to maintain brain concentrations of this PUFA at physiological levels, plasma-derived DHA must be transported across the blood-brain barrier (BBB). While DHA is able to partition into the luminal membrane of brain endothelial cells, its low aqueous solubility likely limits its cytosolic transfer to the abluminal membrane, necessitating the requirement of an intracellular carrier protein to facilitate trafficking of this PUFA across the BBB. As the intracellular carrier protein fatty acid-binding protein 5 (FABP5) is expressed at the human BBB, the current study assessed the putative role of FABP5 in the brain endothelial cell uptake and BBB transport of DHA in vitro and in vivo, respectively. hFAPB5 was recombinantly expressed and purified from Escherichia coli C41(DE3) cells and the binding affinity of DHA to hFABP5 assessed using isothermal titration calorimetry. The impact of FABP5 siRNA on uptake of (14)C-DHA into immortalized human brain microvascular endothelial (hCMEC/D3) cells was assessed. An in situ transcardiac perfusion method was optimized in C57BL/6 mice and subsequently used to compare the BBB influx rate (Kin) of (14)C-DHA between FABP5-deficient (FABP5(-/-)) and wild-type (FABP5(+/+)) C57BL/6 mice. DHA bound to hFABP5 with an equilibrium dissociation constant of 155 ± 8 nM (mean ± SEM). FABP5 siRNA transfection decreased hCMEC/D3 mRNA and protein expression of FABP5 by 53.2 ± 5.5% and 44.8 ± 13.7%, respectively, which was associated with a 14.1 ± 2.7% reduction in (14)C-DHA cellular uptake. By using optimized conditions for the in situ transcardiac perfusion (a 1 min preperfusion (10 mL/min) followed by perfusion of (14)C-DHA (1 min)), the Kin of (14)C-DHA was 0.04 ± 0.01 mL/g/s. Relative to FABP5(+/+) mice, the Kin of (14)C-DHA decreased 36.7 ± 12.4% in FABP5(-/-) mice

  18. Exogenous amino acids stimulate net muscle protein synthesis in the elderly.

    PubMed Central

    Volpi, E; Ferrando, A A; Yeckel, C W; Tipton, K D; Wolfe, R R

    1998-01-01

    We have investigated the response of amino acid transport and protein synthesis in healthy elderly individuals (age 71+/-2 yr) to the stimulatory effect of increased amino acid availability. Muscle protein synthesis and breakdown, and amino acid transport were measured in the postabsorptive state and during the intravenous infusion of an amino acid mixture. Muscle-free amino acid kinetics were calculated by means of a three compartment model using data obtained by femoral arterio-venous catheterization and muscle biopsies from the vastus lateralis during the infusion of stable isotope tracers of amino acids. In addition, muscle protein fractional synthetic rate (FSR) was measured. Peripheral amino acid infusion significantly increased amino acid delivery to the leg, amino acid transport, and muscle protein synthesis when measured either with the three compartment model (P < 0.05) or with the traditional precursor-product approach (FSR increased from 0. 0474+/-0.0054 to 0.0940+/-0.0143%/h, P < 0.05). Because protein breakdown did not change during amino acid infusion, a positive net balance of amino acids across the muscle was achieved. We conclude that, although muscle mass is decreased in the elderly, muscle protein anabolism can nonetheless be stimulated by increased amino acid availability. We thus hypothesize that muscle mass could be better maintained with an increased intake of protein or amino acids. PMID:9576765

  19. The DUF59 Containing Protein SufT Is Involved in the Maturation of Iron-Sulfur (FeS) Proteins during Conditions of High FeS Cofactor Demand in Staphylococcus aureus

    PubMed Central

    Bhatt, Shiven; Poudel, Saroj; Boyd, Eric S.; Boyd, Jeffrey M.

    2016-01-01

    Proteins containing DUF59 domains have roles in iron-sulfur (FeS) cluster assembly and are widespread throughout Eukarya, Bacteria, and Archaea. However, the function(s) of this domain is unknown. Staphylococcus aureus SufT is composed solely of a DUF59 domain. We noted that sufT is often co-localized with sufBC, which encode for the Suf FeS cluster biosynthetic machinery. Phylogenetic analyses indicated that sufT was recruited to the suf operon, suggesting a role for SufT in FeS cluster assembly. A S. aureus ΔsufT mutant was defective in the assembly of FeS proteins. The DUF59 protein Rv1466 from Mycobacterium tuberculosis partially corrected the phenotypes of a ΔsufT mutant, consistent with a widespread role for DUF59 in FeS protein maturation. SufT was dispensable for FeS protein maturation during conditions that imposed a low cellular demand for FeS cluster assembly. In contrast, the role of SufT was maximal during conditions imposing a high demand for FeS cluster assembly. SufT was not involved in the repair of FeS clusters damaged by reactive oxygen species or in the physical protection of FeS clusters from oxidants. Nfu is a FeS cluster carrier and nfu displayed synergy with sufT. Furthermore, introduction of nfu upon a multicopy plasmid partially corrected the phenotypes of the ΔsufT mutant. Biofilm formation and exoprotein production are critical for S. aureus pathogenesis and vancomycin is a drug of last-resort to treat staphylococcal infections. Defective FeS protein maturation resulted in increased biofilm formation, decreased production of exoproteins, increased resistance to vancomycin, and the appearance of phenotypes consistent with vancomycin-intermediate resistant S. aureus. We propose that SufT, and by extension the DUF59 domain, is an accessory factor that functions in the maturation of FeS proteins. In S. aureus, the involvement of SufT is maximal during conditions of high demand for FeS proteins. PMID:27517714

  20. RAP, the sole octotricopeptide repeat protein in Arabidopsis, is required for chloroplast 16S rRNA maturation.

    PubMed

    Kleinknecht, Laura; Wang, Fei; Stübe, Roland; Philippar, Katrin; Nickelsen, Jörg; Bohne, Alexandra-Viola

    2014-02-01

    The biogenesis and activity of chloroplasts in both vascular plants and algae depends on an intracellular network of nucleus-encoded, trans-acting factors that control almost all aspects of organellar gene expression. Most of these regulatory factors belong to the helical repeat protein superfamily, which includes tetratricopeptide repeat, pentatricopeptide repeat, and the recently identified octotricopeptide repeat (OPR) proteins. Whereas green algae express many different OPR proteins, only a single orthologous OPR protein is encoded in the genomes of most land plants. Here, we report the characterization of the only OPR protein in Arabidopsis thaliana, RAP, which has previously been implicated in plant pathogen defense. Loss of RAP led to a severe defect in processing of chloroplast 16S rRNA resulting in impaired chloroplast translation and photosynthesis. In vitro RNA binding and RNase protection assays revealed that RAP has an intrinsic and specific RNA binding capacity, and the RAP binding site was mapped to the 5' region of the 16S rRNA precursor. Nucleoid localization of RAP was shown by transient green fluorescent protein import assays, implicating the nucleoid as the site of chloroplast rRNA processing. Taken together, our data indicate that the single OPR protein in Arabidopsis is important for a basic process of chloroplast biogenesis.

  1. In silico survey of the mitochondrial protein uptake and maturation systems in the brown alga Ectocarpus siliculosus.

    PubMed

    Delage, Ludovic; Leblanc, Catherine; Nyvall Collén, Pi; Gschloessl, Bernhard; Oudot, Marie-Pierre; Sterck, Lieven; Poulain, Julie; Aury, Jean-Marc; Cock, J Mark

    2011-01-01

    The acquisition of mitochondria was a key event in eukaryote evolution. The aim of this study was to identify homologues of the components of the mitochondrial protein import machinery in the brown alga Ectocarpus and to use this information to investigate the evolutionary history of this fundamental cellular process. Detailed searches were carried out both for components of the protein import system and for related peptidases. Comparative and phylogenetic analyses were used to investigate the evolution of mitochondrial proteins during eukaryote diversification. Key observations include phylogenetic evidence for very ancient origins for many protein import components (Tim21, Tim50, for example) and indications of differences between the outer membrane receptors that recognize the mitochondrial targeting signals, suggesting replacement, rearrangement and/or emergence of new components across the major eukaryotic lineages. Overall, the mitochondrial protein import components analysed in this study confirmed a high level of conservation during evolution, indicating that most are derived from very ancient, ancestral proteins. Several of the protein import components identified in Ectocarpus, such as Tim21, Tim50 and metaxin, have also been found in other stramenopiles and this study suggests an early origin during the evolution of the eukaryotes.

  2. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta; Lital , Schultz; Peter G. , Zhang; Zhiwen

    2010-10-12

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  3. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2011-08-30

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  4. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [San Diego, CA

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  5. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  6. Complex RNA maturation pathway for a chloroplast ribosomal protein operon with an internal tRNA cistron.

    PubMed Central

    Christopher, D A; Hallick, R B

    1990-01-01

    We have studied the expression of a large chloroplast ribosomal protein operon from Euglena gracilis that resembles the Escherichia coli S10 and spc ribosomal protein operons. We present evidence that 11 ribosomal protein genes, a tRNA gene, and a new locus, orf214/orf302, are expressed as a single transcription unit. The primary transcript also contains at least 15 group II and group III introns. Gene-specific probes for each ribosomal protein gene, orf214/orf302, and for trnl hybridized to a common pre-mRNA of an estimated size of 8.3 kilobases. This is the RNA size predicted for a full-length transcript of the entire operon after splicing of all 15 introns. Polycistronic ribosomal protein mRNAs accumulated primarily as spliced hepta-, hexa-, penta-, tetra-, tri-, and dicistronic mRNAs, which were presumed to arise by stepwise processing of the 8.3-kilobase pre-mRNA. A novel finding was the cotranscription of the trnl gene as an internal cistron within the ribosomal protein operon. Several combined mRNA/tRNA molecules, such as the pentacistronic rpl5-rps8-rpl36-trnl-rps14, were characterized. The occurrence of the orf214/orf302 is a unique feature of the Euglena operon, distinguishing it from all chloroplast and prokaryotic ribosomal protein operons characterized to date. The orf214/orf302 are not similar to any known genes but are cotranscribed with the ribosomal protein loci and encode stable RNA species of 2.4, 1.8, and 1.4 kilobases. PMID:2136640

  7. Interfacial inhibitors of protein-nucleic acid interactions.

    PubMed

    Pommier, Yves; Marchand, Christophe

    2005-07-01

    This essay develops the paradigm of "Interfacial Inhibitors" (Pommier and Cherfils, TiPS, 2005, 28: 136) for inhibitory drugs beside orthosteric (competitive or non-competitive) and allosteric inhibitors. Interfacial inhibitors bind with high selectivity to a binding site involving two or more macromolecules within macromolecular complexes undergoing conformational changes. Interfacial binding traps (generally reversibly) a transition state of the complex, resulting in kinetic inactivation. The exemplary case of interfacial inhibitor of protein-DNA interface is camptothecin and its clinical derivatives. We will also provide examples generalizing the interfacial inhibitor concept to inhibitors of topoisomerase II (anthracyclines, ellipticines, epipodophyllotoxins), gyrase (quinolones, ciprofloxacin, norfloxacin), RNA polymerases (alpha-amanitin and actinomycin D), and ribosomes (antibiotics such as streptomycin, hygromycin B, tetracycline, kirromycin, fusidic acid, thiostrepton, and possibly cycloheximide). We discuss the implications of the interfacial inhibitor concept for drug discovery.

  8. Multiple vitellogenins and product yolk proteins in European sea bass (Dicentrarchus labrax): Molecular characterization, quantification in plasma, liver and ovary, and maturational proteolysis.

    PubMed

    Yilmaz, Ozlem; Prat, Francisco; Ibáñez, A Jose; Köksoy, Sadi; Amano, Haruna; Sullivan, Craig V

    2016-01-01

    Three complete vitellogenin (Vtg) polypeptides of European sea bass (Dicentrarchus labrax), an acanthomorph teleost spawning pelagic eggs in seawater, were deduced from cDNA and identified as VtgAa, VtgAb and VtgC based on current Vtg nomenclature and phylogeny. Label free quantitative mass spectrometry verified the presence of the three sea bass Vtgs or their product yolk proteins (YPs) in liver, plasma and ovary of postvitellogenic females. As evidenced by normalized spectral counts, VtgAb-derived protein was 2- to 5-fold more abundant, depending on sample type, than for VtgAa, while VtgC-derived protein was less abundant, albeit only 3-fold lower than for VtgAb in the ovary. Western blotting with Vtg type-specific antisera raised against corresponding gray mullet (Mugil cephalus) lipovitellins (Lvs) detected all three types of sea bass Vtg in the blood plasma of gravid females and/or estrogenized males and showed that all three forms of sea bass Lv undergo limited partial degradation during oocyte maturation. The comparatively high levels of VtgC-derived YPs in fully-grown oocytes and the maturational proteolysis of all three types of Lv differ from what has been reported for other teleosts spawning pelagic eggs in seawater but are similar to recent findings for two species of North American Moronidae, the striped bass (Morone saxatilis) and white perch (Morone americana), which spawn pelagic and demersal eggs, respectively in fresh water. Together with the high Vtg sequence homologies and virtually identical structural features of each type of Vtg between species, these findings indicate that the moronid multiple Vtg systems do not substantially vary with reproductive environment.

  9. Parsing the life-shortening effects of dietary protein: effects of individual amino acids.

    PubMed

    Arganda, Sara; Bouchebti, Sofia; Bazazi, Sepideh; Le Hesran, Sophie; Puga, Camille; Latil, Gérard; Simpson, Stephen J; Dussutour, Audrey

    2017-01-11

    High-protein diets shorten lifespan in many organisms. Is it because protein digestion is energetically costly or because the final products (the amino acids) are harmful? To answer this question while circumventing the life-history trade-off between reproduction and longevity, we fed sterile ant workers on diets based on whole proteins or free amino acids. We found that (i) free amino acids shortened lifespan even more than proteins; (ii) the higher the amino acid-to-carbohydrate ratio, the shorter ants lived and the lower their lipid reserves; (iii) for the same amino acid-to-carbohydrate ratio, ants eating free amino acids had more lipid reserves than those eating whole proteins; and (iv) on whole protein diets, ants seem to regulate food intake by prioritizing sugar, while on free amino acid diets, they seem to prioritize amino acids. To test the effect of the amino acid profile, we tested diets containing proportions of each amino acid that matched the ant's exome; surprisingly, longevity was unaffected by this change. We further tested diets with all amino acids under-represented except one, finding that methionine, serine, threonine and phenylalanine are especially harmful. All together, our results show certain amino acids are key elements behind the high-protein diet reduction in lifespan.

  10. Clustering amino acid contents of protein domains: biochemical functions of proteins and implications for origin of biological macromolecules.

    PubMed

    Torshin, I Y

    2001-04-01

    Structural classes of protein domains correlate with their amino acid compositions. Several successful algorithms (that use only amino acid composition) have been elaborated for the prediction of structural class or potential biochemical significance. This work deals with dynamic classification (clustering) of the domains on the basis of their amino acid composition. Amino acid contents of domains from a non-redundant PDB set were clustered in 20-dimensional space of amino acid contents. Despite the variations of an empirical parameter and non-redundancy of the set, only one large cluster (tens-hundreds of proteins) surrounded by hundreds of small clusters (1-5 proteins), was identified. The core of the largest cluster contains at least 64% DNA (nucleotide)-interacting protein domains from various sources. About 90% of the proteins of the core are intracellular proteins. 83% of the DNA/nucleotide interacting domains in the core belong to the mixed alpha-beta folds (a+b, a/b), 14% are all-alpha (mostly helices) and all-beta (mostly beta-strands) proteins. At the same time, when core domains that belong to one organism (E.coli) are considered, over 80% of them prove to be DNA/nucleotide interacting proteins. The core is compact: amino acid contents of domains from the core lie in relatively narrow and specific ranges. The core also contains several Fe-S cluster-binding domains, amino acid contents of the core overlap with ferredoxin and CO-dehydrogenase clusters, the oldest known proteins. As Fe-S clusters are thought to be the first biocatalysts, the results are discussed in relation to contemporary experiments and models dealing with the origin of biological macromolecules. The origin of most primordial proteins is considered here to be a result of co-adsorption of nucleotides and amino acids on specific clays, followed by en-block polymerization of the adsorbed mixtures of amino acids.

  11. Thermodynamics of the interaction of globular proteins with powdered stearic acid in acid pH.

    PubMed

    Mitra, Atanu; Chattoraj, D K; Chakraborty, P

    2006-06-01

    Adsorption isotherms of different globular proteins and gelatin on strearic acid particles have been studied as a function of biopolymer concentration, ionic strength of the medium, and temperature. The effect of neutral salts including CaCl2, Na3PO4, and urea on the adsorption isotherms has been also investigated. It is observed that the extent of adsorption (Gamma2(1)) increases in two steps with the increase of biopolymer concentration (C2) in the bulk. Gamma2(1) increases with an increase of C2 until a steady maximum value Gamma2(m) is reached at a critical concentration C2(m). After initial saturation, Gamma2(1) again increases from Gamma2(m) without reaching any limiting value due to the surface aggregation of the protein. The values of the standard free energy change for adsorption have been calculated on the basis of the Gibbs equation. The standard entropy and enthalpy changes are also calculated.

  12. Loss of the Sec1/Munc18-family proteins VPS-33.2 and VPS-33.1 bypasses a block in endosome maturation in Caenorhabditis elegans

    PubMed Central

    Solinger, Jachen A.; Spang, Anne

    2014-01-01

    The end of the life of a transport vesicle requires a complex series of tethering, docking, and fusion events. Tethering complexes play a crucial role in the recognition of membrane entities and bringing them into close opposition, thereby coordinating and controlling cellular trafficking events. Here we provide a comprehensive RNA interference analysis of the CORVET and HOPS tethering complexes in metazoans. Knockdown of CORVET components promoted RAB-7 recruitment to subapical membranes, whereas in HOPS knockdowns, RAB-5 was found also on membrane structures close to the cell center, indicating the RAB conversion might be impaired in the absence of these tethering complexes. Unlike in yeast, metazoans have two VPS33 homologues, which are Sec1/Munc18 (SM)-family proteins involved in the regulation of membrane fusion. We assume that in wild type, each tethering complex contains a specific SM protein but that they may be able to substitute for each other in case of absence of the other. Of importance, knockdown of both SM proteins allowed bypass of the endosome maturation block in sand-1 mutants. We propose a model in which the SM proteins in tethering complexes are required for coordinated flux of material through the endosomal system. PMID:25273556

  13. Cytosolic Fe-S Cluster Protein Maturation and Iron Regulation Are Independent of the Mitochondrial Erv1/Mia40 Import System*

    PubMed Central

    Ozer, Hatice K.; Dlouhy, Adrienne C.; Thornton, Jeremy D.; Hu, Jingjing; Liu, Yilin; Barycki, Joseph J.; Balk, Janneke; Outten, Caryn E.

    2015-01-01

    The sulfhydryl oxidase Erv1 partners with the oxidoreductase Mia40 to import cysteine-rich proteins in the mitochondrial intermembrane space. In Saccharomyces cerevisiae, Erv1 has also been implicated in cytosolic Fe-S protein maturation and iron regulation. To investigate the connection between Erv1/Mia40-dependent mitochondrial protein import and cytosolic Fe-S cluster assembly, we measured Mia40 oxidation and Fe-S enzyme activities in several erv1 and mia40 mutants. Although all the erv1 and mia40 mutants exhibited defects in Mia40 oxidation, only one erv1 mutant strain (erv1-1) had significantly decreased activities of cytosolic Fe-S enzymes. Further analysis of erv1-1 revealed that it had strongly decreased glutathione (GSH) levels, caused by an additional mutation in the gene encoding the glutathione biosynthesis enzyme glutamate cysteine ligase (GSH1). To address whether Erv1 or Mia40 plays a role in iron regulation, we measured iron-dependent expression of Aft1/2-regulated genes and mitochondrial iron accumulation in erv1 and mia40 strains. The only strain to exhibit iron misregulation is the GSH-deficient erv1-1 strain, which is rescued with addition of GSH. Together, these results confirm that GSH is critical for cytosolic Fe-S protein biogenesis and iron regulation, whereas ruling out significant roles for Erv1 or Mia40 in these pathways. PMID:26396185

  14. Elucidation of the involvement of p14, a sperm protein during maturation, capacitation and acrosome reaction of caprine spermatozoa.

    PubMed

    Nandi, Pinki; Ghosh, Swatilekha; Jana, Kuladip; Sen, Parimal C

    2012-01-01

    Mammalian sperm capacitation is an essential prerequisite to fertilization. Although progress is being made in understanding the physiology and biochemistry of capacitation, little has been yet explored about the potential role(s) of individual sperm cell protein during this process. Therefore elucidation of the role of different sperm proteins in the process of capacitation might be of great importance to understand the process of fertilization. The present work describes the partial characterization of a 14-kDa protein (p14) detected in goat spermatozoa using an antibody directed against the purified protein. Confocal microscopic analysis reveals that the protein is present in both the intracellular and extracellular regions of the acrosomal and postacrosomal portion of caudal sperm head. Though subcellular localization shows that p14 is mainly cytosolic, however it is also seen to be present in peripheral plasma membrane and soluble part of acrosome. Immuno-localization experiment shows change in the distribution pattern of this protein upon induction of capacitation in sperm cells. Increased immunolabeling in the anterior head region of live spermatozoa is also observed when these cells are incubated under capacitating conditions, whereas most sperm cells challenged with the calcium ionophore A23187 to acrosome react, lose their labeling almost completely. Intracellular distribution of p14 also changes significantly during acrosome reaction. Interestingly, on the other hand the antibody raised against this 14-kDa sperm protein enhances the forward motility of caprine sperm cells. Rose-Bengal staining method shows that this anti-p14 antibody also decreases the number of acrosome reacted cells if incubated with capacitated sperm cells before induction of acrosome reaction. All these results taken together clearly indicate that p14 is intimately involved and plays a critical role in the acrosomal membrane fusion event.

  15. Determination of the amount of protein and amino acids extracted from the microbial protein (SCP) of lignocellulosic wastes.

    PubMed

    Ahmadi, A R; Ghoorchian, H; Hajihosaini, R; Khanifar, J

    2010-04-15

    With the increasing world population, the use of lignocellulosic wastes for production of microbial protein as animal feed becomes a necessity of our time. In order to verify the most productive protein, the amount of protein and amino acid extracted from Single Cell Protein (SCP) needs to be determined by an effective method. In this study Microbial protein was produced by treatment of wheat straw with Pleurotus florida; with heat at 100 degrees C and NaOH 2% as substrate by solid state fermentation. Concentration of protein was 62.8% per 100 g of dried microbial protein. Then the extracted protein hydrolyzed with HCl 6 Normal for 48 h under 110 degrees C temperature condition. Then the amino acids analyzed by using A-200 Amino Nova analyzer. The results of this study indicated that the ratio of essential amino acids to total amino acids was 65.6%. The concentration of essnyial amino acids were: Lysine = 9.5, histidine = 19.8, threonine = 0.6, valine = 6.6, methionine = 2.1, isoleucine = 7.3, leucine = 6.8, phenylalanine = 4.3 and arginine = 8.3 g/100 g of extracted protein that indicated the obtained microbial protein can be a good or suitable substitute in the food program of animal feed.

  16. Salicylic acid enhances Staphylococcus aureus extracellular adhesin protein expression.

    PubMed

    Alvarez, Lucía P; Barbagelata, María S; Cheung, Ambrose L; Sordelli, Daniel O; Buzzola, Fernanda R

    2011-11-01

    One of the virulence factors required by Staphylococcus aureus at the early stages of infection is Eap, a secreted adhesin that binds many host proteins and is upregulated by the two-component regulatory system saeRS. The S. aureus Newman strain harbors a mutation in saeS that is thought to be responsible for the high level of Eap expression in this strain. This study was designed to ascertain whether salicylic acid (SAL) affects the expression of Eap and the internalization of S. aureus into epithelial cells. The strain Newman treated with SAL exhibited increased levels of eap transcription and protein expression. Furthermore, SAL treatment increased the eap promoter activity. SAL treatment enhanced Eap expression in the Newman and in other S. aureus strains that do not carry the mutation in saeS. Internalization of S. aureus eap and sae mutants into the MAC-T epithelial cells was significantly decreased compared with the wild-type counterparts. In conclusion, we demonstrated that a low concentration of SAL increased S. aureus Eap expression possibly due to enhancement of sae. SAL may create the conditions for S. aureus persistence in the host, not only by decreasing the capsular polysaccharide expression as shown before, but also by enhancing Eap expression.

  17. Crystal growth of proteins, nucleic acids, and viruses in gels.

    PubMed

    Lorber, Bernard; Sauter, Claude; Théobald-Dietrich, Anne; Moreno, Abel; Schellenberger, Pascale; Robert, Marie-Claire; Capelle, Bernard; Sanglier, Sarah; Potier, Noëlle; Giegé, Richard

    2009-11-01

    Medium-sized single crystals with perfect habits and no defect producing intense and well-resolved diffraction patterns are the dream of every protein crystallographer. Crystals of biological macromolecules possessing these characteristics can be prepared within a medium in which mass transport is restricted to diffusion. Chemical gels (like polysiloxane) and physical gels (such as agarose) provide such an environment and are therefore suitable for the crystallisation of biological macromolecules. Instructions for the preparation of each type of gel are given to urge crystal growers to apply diffusive media for enhancing crystallographic quality of their crystals. Examples of quality enhancement achieved with silica and agarose gels are given. Results obtained with other substances forming gel-like media (such as lipidic phases and cellulose derivatives) are presented. Finally, the use of gels in combination with capillary tubes for counter-diffusion experiments is discussed. Methods and techniques implemented with proteins can also be applied to nucleic acids and nucleoprotein assemblies such as viruses.

  18. Small acid soluble proteins for rapid spore identification.

    SciTech Connect

    Branda, Steven S.; Lane, Todd W.; VanderNoot, Victoria A.; Jokerst, Amanda S.

    2006-12-01

    This one year LDRD addressed the problem of rapid characterization of bacterial spores such as those from the genus Bacillus, the group that contains pathogenic spores such as B. anthracis. In this effort we addressed the feasibility of using a proteomics based approach to spore characterization using a subset of conserved spore proteins known as the small acid soluble proteins or SASPs. We proposed developing techniques that built on our previous expertise in microseparations to rapidly characterize or identify spores. An alternative SASP extraction method was developed that was amenable to both the subsequent fluorescent labeling required for laser-induced fluorescence detection and the low ionic strength requirements for isoelectric focusing. For the microseparations, both capillary isoelectric focusing and chip gel electrophoresis were employed. A variety of methods were evaluated to improve the molecular weight resolution for the SASPs, which are in a molecular weight range that is not well resolved by the current methods. Isoelectric focusing was optimized and employed to resolve the SASPs using UV absorbance detection. Proteomic signatures of native wild type Bacillus spores and clones genetically engineered to produce altered SASP patterns were assessed by slab gel electrophoresis, capillary isoelectric focusing with absorbance detection as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection.

  19. Intestinal Fatty-Acid Binding Protein and Metronidazole Response in Premature Infants

    PubMed Central

    Sampson, Mario R.; Bloom, Barry T.; Arrieta, Antonio; Capparelli, Edmund; Benjamin, Daniel K.; Smith, P. Brian; Kearns, Gregory L.; van den Anker, John; Cohen-Wolkowiez, Michael

    2014-01-01

    Objectives In premature infants with suspected intra-abdominal infection, biomarkers for treatment response to antimicrobial therapy are lacking. Intestinal fatty acid-binding protein (I-FABP) is specific to the enterocyte and is released in response to intestinal mucosal injury. I-FABP has not been evaluated as a surrogate marker of disease response to antimicrobial therapy. We examined the relationship between metronidazole exposure and urinary I-FABP concentrations in premature infants with suspected intra-abdominal infection. Study design We conducted an intravenous metronidazole pharmacokinetic study, collecting ≤3 urine samples per infant for I-FABP concentration measurements. We analyzed the relationship between I-FABP concentrations and measures of metronidazole exposure and pharmacokinetics, maturational factors, and other covariates. Results Twenty-six samples from 19 premature infants were obtained during metronidazole treatment. When analyzed without regard to presence of necrotic gastrointestinal disease, there were no significant associations between predictor variables and I-FABP concentrations. However, when the sample was limited to premature infants with necrotic gastrointestinal disease, an association was found between average predicted metronidazole concentration and I-FABP concentration (p=0.006). Conclusion While a predictive association between urinary I-FABP and metronidazole systemic exposure was not observed, the data suggest the potential of this endogenous biomarker to serve as a pharmacodynamic surrogate for antimicrobial treatment of serious abdominal infections in neonates and infants. PMID:25318626

  20. Tobacco mosaic virus-directed reprogramming of auxin/indole acetic acid protein transcriptional responses enhances virus phloem loading

    PubMed Central

    Collum, Tamara D.; Padmanabhan, Meenu S.; Hsieh, Yi-Cheng; Culver, James N.

    2016-01-01

    Vascular phloem loading has long been recognized as an essential step in the establishment of a systemic virus infection. In this study, an interaction between the replication protein of tobacco mosaic virus (TMV) and phloem-specific auxin/indole acetic acid (Aux/IAA) transcriptional regulators was found to modulate virus phloem loading in an age-dependent manner. Promoter expression studies show that in mature tissues TMV 126/183-kDa–interacting Aux/IAAs predominantly express and accumulate within the nuclei of phloem companion cells (CCs). Furthermore, CC Aux/IAA nuclear localization is disrupted upon infection with an interacting virus. In situ analysis of virus spread shows that the inability to disrupt Aux/IAA CC nuclear localization correlates with a reduced ability to load into the vascular tissue. Subsequent systemic movement assays also demonstrate that a virus capable of disrupting Aux/IAA localization is significantly more competitive at moving out of older plant tissues than a noninteracting virus. Similarly, CC expression and overaccumulation of a degradation-resistant Aux/IAA-interacting protein was found to inhibit TMV accumulation and phloem loading selectively in flowering plants. Transcriptional expression studies demonstrate a role for Aux/IAA-interacting proteins in the regulation of salicylic and jasmonic acid host defense responses as well as virus-specific movement factors, including pectin methylesterase, that are involved in regulating plasmodesmata size-exclusion limits and promoting virus cell-to-cell movement. Combined, these findings indicate that TMV directs the reprogramming of auxin-regulated gene expression within the vascular phloem of mature tissues as a means to enhance phloem loading and systemic spread. PMID:27118842

  1. Tobacco mosaic virus-directed reprogramming of auxin/indole acetic acid protein transcriptional responses enhances virus phloem loading.

    PubMed

    Collum, Tamara D; Padmanabhan, Meenu S; Hsieh, Yi-Cheng; Culver, James N

    2016-05-10

    Vascular phloem loading has long been recognized as an essential step in the establishment of a systemic virus infection. In this study, an interaction between the replication protein of tobacco mosaic virus (TMV) and phloem-specific auxin/indole acetic acid (Aux/IAA) transcriptional regulators was found to modulate virus phloem loading in an age-dependent manner. Promoter expression studies show that in mature tissues TMV 126/183-kDa-interacting Aux/IAAs predominantly express and accumulate within the nuclei of phloem companion cells (CCs). Furthermore, CC Aux/IAA nuclear localization is disrupted upon infection with an interacting virus. In situ analysis of virus spread shows that the inability to disrupt Aux/IAA CC nuclear localization correlates with a reduced ability to load into the vascular tissue. Subsequent systemic movement assays also demonstrate that a virus capable of disrupting Aux/IAA localization is significantly more competitive at moving out of older plant tissues than a noninteracting virus. Similarly, CC expression and overaccumulation of a degradation-resistant Aux/IAA-interacting protein was found to inhibit TMV accumulation and phloem loading selectively in flowering plants. Transcriptional expression studies demonstrate a role for Aux/IAA-interacting proteins in the regulation of salicylic and jasmonic acid host defense responses as well as virus-specific movement factors, including pectin methylesterase, that are involved in regulating plasmodesmata size-exclusion limits and promoting virus cell-to-cell movement. Combined, these findings indicate that TMV directs the reprogramming of auxin-regulated gene expression within the vascular phloem of mature tissues as a means to enhance phloem loading and systemic spread.

  2. The LIM homeodomain protein Lhx6 regulates maturation of interneurons and network excitability in the mammalian cortex.

    PubMed

    Neves, Guilherme; Shah, Mala M; Liodis, Petros; Achimastou, Angeliki; Denaxa, Myrto; Roalfe, Grant; Sesay, Abdul; Walker, Matthew C; Pachnis, Vassilis

    2013-08-01

    Deletion of LIM homeodomain transcription factor-encoding Lhx6 gene in mice results in defective tangential migration of cortical interneurons and failure of differentiation of the somatostatin (Sst)- and parvalbumin (Pva)-expressing subtypes. Here, we characterize a novel hypomorphic allele of Lhx6 and demonstrate that reduced activity of this locus leads to widespread differentiation defects in Sst(+) interneurons, but relatively minor and localized changes in Pva(+) interneurons. The reduction in the number of Sst-expressing cells was not associated with a loss of interneurons, because the migration and number of Lhx6-expressing interneurons and expression of characteristic molecular markers, such as calretinin or Neuropeptide Y, were not affected in Lhx6 hypomorphic mice. Consistent with a selective deficit in the differentiation of Sst(+) interneurons in the CA1 subfield of the hippocampus, we observed reduced expression of metabotropic Glutamate Receptor 1 in the stratum oriens and characteristic changes in dendritic inhibition, but normal inhibitory input onto the somatic compartment of CA1 pyramidal cells. Moreover, Lhx6 hypomorphs show behavioral, histological, and electroencephalographic signs of recurrent seizure activity, starting from early adulthood. These results demonstrate that Lhx6 plays an important role in the maturation of cortical interneurons and the formation of inhibitory circuits in the mammalian cortex.

  3. PROTEIN METABOLISM IN REGENERATING WOUND TISSUE: FUNCTION OF THE SULFUR AMINO ACIDS.

    DTIC Science & Technology

    PROTEINS, *TISSUES(BIOLOGY), METABOLISM, TISSUES(BIOLOGY), REGENERATION(ENGINEERING), WOUNDS AND INJURIES, TISSUES(BIOLOGY), TRACER STUDIES, METHIONINE, COLLAGEN, TYROSINE, BIOSYNTHESIS, AMINO ACIDS .

  4. Hydroxyindole Carboxylic Acid-Based Inhibitors for Receptor-Type Protein Tyrosine Protein Phosphatase Beta

    PubMed Central

    Zeng, Li-Fan; Zhang, Ruo-Yu; Bai, Yunpeng; Wu, Li; Gunawan, Andrea M.

    2014-01-01

    Abstract Aims: Protein tyrosine phosphatases (PTPs) play an important role in regulating a wide range of cellular processes. Understanding the role of PTPs within these processes has been hampered by a lack of potent and selective PTP inhibitors. Generating potent and selective probes for PTPs remains a significant challenge because of the highly conserved and positively charged PTP active site that also harbors a redox-sensitive Cys residue. Results: We describe a facile method that uses an appropriate hydroxyindole carboxylic acid to anchor the inhibitor to the PTP active site and relies on the secondary binding elements introduced through an amide-focused library to enhance binding affinity for the target PTP and to impart selectivity against off-target phosphatases. Here, we disclose a novel series of hydroxyindole carboxylic acid-based inhibitors for receptor-type tyrosine protein phosphatase beta (RPTPβ), a potential target that is implicated in blood vessel development. The representative RPTPβ inhibitor 8b-1 (L87B44) has an IC50 of 0.38 μM and at least 14-fold selectivity for RPTPβ over a large panel of PTPs. Moreover, 8b-1 also exhibits excellent cellular activity and augments growth factor signaling in HEK293, MDA-MB-468, and human umbilical vein endothelial cells. Innovation: The bicyclic salicylic acid pharmacophore-based focused library approach may provide a potential solution to overcome the bioavailability issue that has plagued the PTP drug discovery field for many years. Conclusion: A novel method is described for the development of bioavailable PTP inhibitors that utilizes bicyclic salicylic acid to anchor the inhibitors to the active site and peripheral site interactions to enhance binding affinity and selectivity. Antioxid. Redox Signal. 20, 2130–2140. PMID:24180557

  5. Changes of Phosphatidylcholine and Fatty Acids in Germ Cells during Testicular Maturation in Three Developmental Male Morphotypes of Macrobrachium rosenbergii Revealed by Imaging Mass Spectrometry

    PubMed Central

    Siangcham, Tanapan; Chansela, Piyachat; Hayasaka, Takahiro; Masaki, Noritaka; Sroyraya, Morakot; Poljaroen, Jaruwan; Suwansa-ard, Saowaros; Engsusophon, Attakorn; Hanna, Peter J.; Sobhon, Prasert; Setou, Mitsutoshi

    2015-01-01

    Testis maturation, germ cell development and function of sperm, are related to lipid composition. Phosphatidylcholines (PCs) play a key role in the structure and function of testes. As well, increases of polyunsaturated fatty acids (PUFA) and highly unsaturated fatty acids (HUFA), especially arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) are essential for male fertility. This study is the first report to show the composition and distribution of PCs and total fatty acids (FAs) in three groups of seminiferous tubules (STs) classified by cellular associations [i.e., A (STs with mostly early germ cells), B (STs with mostly spermatids), and C (STs with spermatozoa)], in three morphotypes of Macrobrachium rosenbergii, [i.e., small male (SM), orange claw male (OC), and blue claw male (BC)]. Thin layer chromatography exhibited levels of PCs reaching maxima in STs of group B. Imaging mass spectrometry showed remarkably high signals corresponding to PC (16:0/18:1), PC (18:0/18:2), PC (18:2/20:5), and PC (16:0/22:6) in STs of groups A and B. Moreover, most signals were detected in the early developing cells and the intertubular area, but not at the area containing spermatozoa. Finally, gas chromatography-mass spectrometry indicated that the major FAs present in the testes were composed of 14:0, 16:0, 17:0, 18:0, 16:1, 18:1, 18:2, 20:1, 20:2, 20:4, 20:5, and 22:6. The testes of OC contained the greatest amounts of these FAs while the testes of BC contained the least amounts of these FAs, and there was more EPA (20:5) in the testes of SM and OC than those in the BC. The increasing amounts of FAs in the SM and OC indicate that they are important for spermatogenesis and spermiogenesis. This knowledge will be useful in formulating diets containing PUFA and HUFA for prawn broodstocks in order to improve testis development, and lead to increased male fecundity. PMID:25781176

  6. Amino acid composition of Lagenaria siceraria seed flour and protein fractions.

    PubMed

    Ogunbusola, Moriyike Esther; Fagbemi, Tayo Nathaniel; Osundahunsi, Oluwatooyin Faramade

    2010-12-01

    Defatted seed flours of Lagenaria siceraria (calabash and bottle gourd) were fractionated into their major protein fractions. The amino acid composition of seed flours and their protein fractions were determined and the protein quality was evaluated. Glutamic acid (139-168 mg/g protein) was the most abundant amino acid followed by aspartic acid (89.0-116 mg/g protein) in both the seed flours and their protein fractions. The total essential amino acid ranged from 45.8 to 51.5%. The predicted protein efficiency ratio and the predicted biological value ranged from 2.4 to 2.9 and 8.7 to 44.0, respectively. Lysine and sulphur amino acids were mostly concentrated in the globulin fractions. The first and second limiting amino acids in seed flours and protein fractions were methionine and valine or threonine. The seed flours contained adequate essential amino acids required by growing school children and adults. The seed has potential as protein supplement in cereal based complementary diets or in the replacement of animal proteins in conventional foods.

  7. Solvent accessible surface area-based hot-spot detection methods for protein-protein and protein-nucleic acid interfaces.

    PubMed

    Munteanu, Cristian R; Pimenta, António C; Fernandez-Lozano, Carlos; Melo, André; Cordeiro, Maria N D S; Moreira, Irina S

    2015-05-26

    Due to the importance of hot-spots (HS) detection and the efficiency of computational methodologies, several HS detecting approaches have been developed. The current paper presents new models to predict HS for protein-protein and protein-nucleic acid interactions with better statistics compared with the ones currently reported in literature. These models are based on solvent accessible surface area (SASA) and genetic conservation features subjected to simple Bayes networks (protein-protein systems) and a more complex multi-objective genetic algorithm-support vector machine algorithms (protein-nucleic acid systems). The best models for these interactions have been implemented in two free Web tools.

  8. Partial amino acid sequence of human pancreatic stone protein, a novel pancreatic secretory protein.

    PubMed Central

    Montalto, G; Bonicel, J; Multigner, L; Rovery, M; Sarles, H; De Caro, A

    1986-01-01

    Pancreatic stone protein (PSP) is the major organic component of human pancreatic stones. With the use of monoclonal antibody immunoadsorbents, five immunoreactive forms (PSP-S) with close Mr values (14,000-19,000) were isolated from normal pancreatic juice. By CM-Trisacryl M chromatography the lowest-Mr form (PSP-S1) was separated from the others and some of its molecular characteristics were investigated. The Mr of the PSP-S1 polypeptide chain calculated from the amino acid composition was about 16,100. The N-terminal sequences (40 residues) of PSP and PSP-S1 are identical, which suggests that the peptide backbone is the same for both of these polypeptides. The PSP-S1 sequence was determined up to residue 65 and was found to be different from all other known protein sequences. Images Fig. 1. PMID:3541906

  9. Experimental evolution of a green fluorescent protein composed of 19 unique amino acids without tryptophan.

    PubMed

    Kawahara-Kobayashi, Akio; Hitotsuyanagi, Mitsuhiro; Amikura, Kazuaki; Kiga, Daisuke

    2014-04-01

    At some stage of evolution, genes of organisms may have encoded proteins that were synthesized using fewer than 20 unique amino acids. Similar to evolution of the natural 19-amino-acid proteins GroEL/ES, proteins composed of 19 unique amino acids would have been able to evolve by accumulating beneficial mutations within the 19-amino-acid repertoire encoded in an ancestral genetic code. Because Trp is thought to be the last amino acid included in the canonical 20-amino-acid repertoire, this late stage of protein evolution could be mimicked by experimental evolution of 19-amino-acid proteins without tryptophan (Trp). To further understand the evolution of proteins, we tried to mimic the evolution of a 19-amino-acid protein involving the accumulation of beneficial mutations using directed evolution by random mutagenesis on the whole targeted gene sequence. We created active 19-amino-acid green fluorescent proteins (GFPs) without Trp from a poorly fluorescent 19-amino-acid mutant, S1-W57F, by using directed evolution with two rounds of mutagenesis and selection. The N105I and S205T mutations showed beneficial effects on the S1-W57F mutant. When these two mutations were combined on S1-W57F, we observed an additive effect on the fluorescence intensity. In contrast, these mutations showed no clear improvement individually or in combination on GFPS1, which is the parental GFP mutant composed of 20 amino acids. Our results provide an additional example for the experimental evolution of 19-amino-acid proteins without Trp, and would help understand the mechanisms underlying the evolution of 19-amino-acid proteins. (236 words).

  10. Experimental Evolution of a Green Fluorescent Protein Composed of 19 Unique Amino Acids without Tryptophan

    NASA Astrophysics Data System (ADS)

    Kawahara-Kobayashi, Akio; Hitotsuyanagi, Mitsuhiro; Amikura, Kazuaki; Kiga, Daisuke

    2014-04-01

    At some stage of evolution, genes of organisms may have encoded proteins that were synthesized using fewer than 20 unique amino acids. Similar to evolution of the natural 19-amino-acid proteins GroEL/ES, proteins composed of 19 unique amino acids would have been able to evolve by accumulating beneficial mutations within the 19-amino-acid repertoire encoded in an ancestral genetic code. Because Trp is thought to be the last amino acid included in the canonical 20-amino-acid repertoire, this late stage of protein evolution could be mimicked by experimental evolution of 19-amino-acid proteins without tryptophan (Trp). To further understand the evolution of proteins, we tried to mimic the evolution of a 19-amino-acid protein involving the accumulation of beneficial mutations using directed evolution by random mutagenesis on the whole targeted gene sequence. We created active 19-amino-acid green fluorescent proteins (GFPs) without Trp from a poorly fluorescent 19-amino-acid mutant, S1-W57F, by using directed evolution with two rounds of mutagenesis and selection. The N105I and S205T mutations showed beneficial effects on the S1-W57F mutant. When these two mutations were combined on S1-W57F, we observed an additive effect on the fluorescence intensity. In contrast, these mutations showed no clear improvement individually or in combination on GFPS1, which is the parental GFP mutant composed of 20 amino acids. Our results provide an additional example for the experimental evolution of 19-amino-acid proteins without Trp, and would help understand the mechanisms underlying the evolution of 19-amino-acid proteins. (236 words)

  11. Solution NMR structure, backbone dynamics, and heme-binding properties of a novel cytochrome c maturation protein CcmE from Desulfovibrio vulgaris.

    PubMed

    Aramini, James M; Hamilton, Keith; Rossi, Paolo; Ertekin, Asli; Lee, Hsiau-Wei; Lemak, Alexander; Wang, Huang; Xiao, Rong; Acton, Thomas B; Everett, John K; Montelione, Gaetano T

    2012-05-08

    Cytochrome c maturation protein E, CcmE, plays an integral role in the transfer of heme to apocytochrome c in many prokaryotes and some mitochondria. A novel subclass featuring a heme-binding cysteine has been identified in archaea and some bacteria. Here we describe the solution NMR structure, backbone dynamics, and heme binding properties of the soluble C-terminal domain of Desulfovibrio vulgaris CcmE, dvCcmE'. The structure adopts a conserved β-barrel OB fold followed by an unstructured C-terminal tail encompassing the CxxxY heme-binding motif. Heme binding analyses of wild-type and mutant dvCcmE' demonstrate the absolute requirement of residue C127 for noncovalent heme binding in vitro.

  12. Prebiotic Synthesis of Hydrophobic and Protein Amino Acids

    PubMed Central

    Ring, David; Wolman, Yecheskel; Friedmann, Nadav; Miller, Stanley L.

    1972-01-01

    The formation of amino acids by the action of electric discharges on a mixture of methane, nitrogen, and water with traces of ammonia was studied in detail. The presence of glycine, alanine, α-amino-n-butyric acid, α-aminoisobutyric acid, valine, norvaline, isovaline, leucine, isoleucine, alloisoleucine, norleucine, proline, aspartic acid, glutamic acid, serine, threonine, allothreonine, α-hydroxy-γ-aminobutyric acid, and α,γ-diaminobutyric acid was confirmed by ion-exchange chromatography and gas chromatography-mass spectrometry. All of the primary α-amino acids found in the Murchison Meteorite have been synthesized by this electric discharge experiment. PMID:4501592

  13. Effect of microwaves (2450-MHz) on the immune system in mice: studies of nucleic acid and protein synthesis

    SciTech Connect

    Wiktor-Jedrzejczak, W.; Ahmed, A.; Czerski, P.; Leach, W.M.; Sell, K.W.

    1980-01-01

    CBA/J adult male mice were given single or triple exposures to 2450-mHz microwaves in an environmentally controlled wave guide facility. The average absorbed dose rate for a single exposure varied from 12 to 15 mW/g. Sham-exposed mice served as controls. Lymphoid cells were collected and tested for metabolic activity on days 3, 6, and 9 following a single exposure, and on days 9, 12, and 16 following triple exposures on days 0, 3, and 6. Cells were cultured in vitro for four hours to seven days before their metabolic rates were assayed. Under these conditions, microwaves failed to produce any detectable change in deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein synthesis, as measured by the incorporation of methyl(3H)-thymidine (3H-TDR) (DNA substrate), 3H-uridine (3H-UR) (RNA substrate), and 3H-leucine (protein substrate) by spleen, bone marrow, and peripheral blood lymphocytes (PBL) in vitro. These data suggest that microwave-induced increases in the frequency of complement-receptor (CR)- or surface-immunoglobulin (sIg)-bearing cells were not associated with a concomitant increase in cell proliferation and/or protein synthesis, and favor the concept that microwaves under these conditions stimulate already existing B-cell precursors for maturation.

  14. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality.

    PubMed

    Sarwar Gilani, G; Wu Xiao, Chao; Cockell, Kevin A

    2012-08-01

    Dietary antinutritional factors have been reported to adversely affect the digestibility of protein, bioavailability of amino acids and protein quality of foods. Published data on these negative effects of major dietary antinutritional factors are summarized in this manuscript. Digestibility and the quality of mixed diets in developing countries are considerably lower than of those in developed regions. For example, the digestibility of protein in traditional diets from developing countries such as India, Guatemala and Brazil is considerably lower compared to that of protein in typical North American diets (54-78 versus 88-94 %). Poor digestibility of protein in the diets of developing countries, which are based on less refined cereals and grain legumes as major sources of protein, is due to the presence of less digestible protein fractions, high levels of insoluble fibre, and/or high concentrations of antinutritional factors present endogenously or formed during processing. Examples of naturally occurring antinutritional factors include glucosinolates in mustard and canola protein products, trypsin inhibitors and haemagglutinins in legumes, tannins in legumes and cereals, gossypol in cottonseed protein products, and uricogenic nucleobases in yeast protein products. Heat/alkaline treatments of protein products may yield Maillard reaction compounds, oxidized forms of sulphur amino acids, D-amino acids and lysinoalanine (LAL, an unnatural nephrotoxic amino acid derivative). Among common food and feed protein products, soyabeans are the most concentrated source of trypsin inhibitors. The presence of high levels of dietary trypsin inhibitors from soyabeans, kidney beans or other grain legumes have been reported to cause substantial reductions in protein and amino acid digestibility (up to 50 %) and protein quality (up to 100 %) in rats and/or pigs. Similarly, the presence of high levels of tannins in sorghum and other cereals, fababean and other grain legumes can cause

  15. PrpJ, a PP2C-type protein phosphatase located on the plasma membrane, is involved in heterocyst maturation in the cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Jang, Jichan; Wang, Li; Jeanjean, Robert; Zhang, Cheng-Cai

    2007-04-01

    Protein phosphatases play important roles in the regulation of cell growth, division and differentiation. The cyanobacterium Anabaena PCC 7120 is able to differentiate heterocysts specialized in nitrogen fixation. To protect the nitrogenase from inactivation by oxygen, heterocyst envelope possesses a layer of polysaccharide and a layer of glycolipids. In the present study, we characterized All1731 (PrpJ), a protein phosphatase from Anabaena PCC 7120. prpJ was constitutively expressed in both vegetative cells and heterocysts. Under diazotrophic conditions, the mutant DeltaprpJ (S20) did not grow, lacked only one of the two heterocyst glycolipids, and fragmented extensively at the junctions between developing cells and vegetative cells. No heterocyst glycolipid layer could be observed in the mutant by electron microscopy. The inactivation of prpJ affected the expression of hglE(A) and nifH, two genes necessary for the formation of the glycolipid layer of heterocysts and the nitrogenase respectively. PrpJ displayed a phosphatase activity characteristic of PP2C-type protein phosphatases, and was localized on the plasma membrane. The function of prpJ establishes a new control point for heterocyst maturation because it regulates the synthesis of only one of the two heterocyst glycolipids while all other genes so far analysed regulate the synthesis of both heterocyst glycolipids.

  16. ADP-ribosylation factor 1 protein regulates trypsinogen activation via organellar trafficking of procathepsin B protein and autophagic maturation in acute pancreatitis.

    PubMed

    Orlichenko, Lidiya; Stolz, Donna B; Noel, Pawan; Behari, Jaideep; Liu, Shiguang; Singh, Vijay P

    2012-07-13

    Several studies have suggested that autophagy might play a deleterious role in acute pancreatitis via intra-acinar activation of digestive enzymes. The prototype for this phenomenon is cathepsin B-mediated trypsin generation. To determine the organellar basis of this process, we investigated the subcellular distribution of the cathepsin B precursor, procathepsin B. We found that procathepsin B is enriched in Golgi-containing microsomes, suggesting a role for the ADP-ribosylation (ARF)-dependent trafficking of cathepsin B. Indeed, caerulein treatment increased processing of procathepsin B, whereas a known ARF inhibitor brefeldin A (BFA) prevented this. Similar treatment did not affect processing of procathepsin L. BFA-mediated ARF1 inhibition resulted in reduced cathepsin B activity and consequently reduced trypsinogen activation. However, formation of light chain 3 (LC3-II) was not affected, suggesting that BFA did not prevent autophagy induction. Instead, sucrose density gradient centrifugation and electron microscopy showed that BFA arrested caerulein-induced autophagosomal maturation. Therefore, ARF1-dependent trafficking of procathepsin B and the maturation of autophagosomes results in cathepsin B-mediated trypsinogen activation induced by caerulein.

  17. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    PubMed

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein.

  18. Differential transcriptional regulation of L-ascorbic acid content in peel and pulp of citrus fruits during development and maturation.

    PubMed

    Alós, Enriqueta; Rodrigo, María J; Zacarías, Lorenzo

    2014-05-01

    Citrus fruits are an important source of ascorbic acid (AsA) for human nutrition, but the main pathways involved in its biosynthesis and their regulation are still not fully characterized. To study the transcriptional regulation of AsA accumulation, expression levels of 13 genes involved in AsA biosynthesis, 5 in recycling and 5 in degradation were analyzed in peel and pulp of fruit of two varieties with different AsA concentration: Navel orange (Citrus sinensis) and Satsuma mandarin (Citrus unshiu). AsA accumulation in peel and pulp correlated with the transcriptional profiling of the L-galactose pathway genes, and the myo-inositol pathway appeared to be also relevant in the peel of immature-green orange. Differences in AsA content between varieties were associated with differential gene expression of GDP-mannose pyrophosphorylase (GMP), GDP-L-galactose phosphorylase (GGP) and L-galactose-1-phosphate phosphatase (GPP), myo-inositol oxygenase in peel, and GGP and GPP in pulp. Relative expressions of monodehydroascorbate reductase 3 (MDHAR3) and dehydroascorbate reductase1 (DHAR1) correlated with AsA accumulation during development and ripening in peel and pulp, respectively, and were more highly expressed in the variety with higher AsA contents. Collectively, results indicated a differential regulation of AsA concentration in peel and pulp of citrus fruits that may change during the different stages of fruit development. The L-galactose pathway appears to be predominant in both tissues, but AsA concentration is regulated by complex mechanisms in which degradation and recycling also play important roles.

  19. Phenotypic Stability, Matrix Elaboration, and Functional Maturation of Nucleus Pulposus Cells Encapsulated in Photocrosslinkable Hyaluronic Acid Hydrogels

    PubMed Central

    Kim, Dong Hwa; Martin, John T.; Elliott, Dawn M.; Smith, Lachlan J.; Mauck, Robert L.

    2014-01-01

    Degradation of the nucleus pulposus (NP) is an early hallmark of intervertebral disc degeneration. The capacity for endogenous regeneration in the NP is limited due to the low cellularity and poor nutrient supply of this avascular tissue. Towards restoring the NP, a number of biomaterials have been explored for cell delivery. These materials must support the NP cell phenotype while promoting the elaboration of an NP-like extracellular matrix in the shortest possible time. Our previous work with chondrocytes and mesenchymal stem cells demonstrated that hydrogels based on hyaluronic acid (HA) are effective at promoting matrix production and the development of functional material properties. However, this material has not been evaluated in the context of NP cells. Therefore, to test this material for NP regeneration, bovine NP cells were encapsulated in 1% w/vol HA hydrogels at either a low seeding density (20 × 106 cells/ml) or a high seeding density (60 × 106 cells/ml), and constructs were cultured over an 8 week period. These engineered NP cell-laden HA hydrogels showed functional matrix accumulation, with increasing matrix content and mechanical properties with time in culture at both seeding densities. Furthermore, encapsulated cells showed NP-specific gene expression profiles that were significantly higher than expanded NP cells prior to encapsulation, suggesting a restoration of phenotype. Interestingly, these levels were higher at the lower seeding density compared to the higher seeding density. These findings support the use of HA-based hydrogels for NP tissue engineering and cellular therapies directed at restoration or replacement of the endogenous NP. PMID:25448344

  20. Soy protein/soy polysaccharide complex nanogels: folic acid loading, protection, and controlled delivery.

    PubMed

    Ding, Xuzhe; Yao, Ping

    2013-07-09

    In this study, we developed a facile approach to produce nanogels via self-assembly of folic acid, soy protein, and soy polysaccharide. High-pressure homogenization was introduced to break down the original aggregates of soy protein, which benefits the binding of soy protein with soy polysaccharide and folic acid at pH 4.0. After a heat treatment that causes the soy protein denaturation and gelation, folic acid-loaded soy protein/soy polysaccharide complex nanogels were fabricated. The nanogels have a polysaccharide surface that makes the nanogels dispersible in acidic conditions where folic acid is insoluble and soy protein forms precipitates after heating. More importantly, the protein and polysaccharide can inhibit the reactions between dissolved oxygen and folic acid during UV irradiation. After the preparation and storage of the nanogels in the presence of heat, oxygen, and light in acidic conditions, most of the folic acid molecules in the nanogels remain in their natural structure and can be released rapidly at neutral pH, that is, in the intestine. Because most food and beverages are acidic, the nanogels are a suitable delivery system of folic acid in food and beverages.

  1. Identification of Dynamic Changes in Proteins Associated with the Cellular Cytoskeleton after Exposure to Okadaic Acid

    PubMed Central

    Opsahl, Jill A.; Ljostveit, Sonja; Solstad, Therese; Risa, Kristin; Roepstorff, Peter; Fladmark, Kari E.

    2013-01-01

    Exposure of cells to the diarrhetic shellfish poison, okadaic acid, leads to a dramatic reorganization of cytoskeletal architecture and loss of cell-cell contact. When cells are exposed to high concentrations of okadaic acid (100–500 nM), the morphological rearrangement is followed by apoptotic cell death. Okadaic acid inhibits the broad acting Ser/Thr protein phosphatases 1 and 2A, which results in hyperphosphorylation of a large number of proteins. Some of these hyperphosphorylated proteins are most likely key players in the reorganization of the cell morphology induced by okadaic acid. We wanted to identify these phosphoproteins and searched for them in the cellular lipid rafts, which have been found to contain proteins that regulate cytoskeletal dynamics and cell adhesion. By using stable isotope labeling by amino acids in cell culture cells treated with okadaic acid (400 nM) could be combined with control cells before the isolation of lipid rafts. Protein phosphorylation events and translocations induced by okadaic acid were identified by mass spectrometry. Okadaic acid was shown to regulate the phosphorylation status and location of proteins associated with the actin cytoskeleton, microtubules and cell adhesion structures. A large number of these okadaic acid-regulated proteins have previously also been shown to be similarly regulated prior to cell proliferation and migration. Our results suggest that okadaic acid activates general cell signaling pathways that induce breakdown of the cortical actin cytoskeleton and cell detachment. PMID:23708184

  2. NfuA, a new factor required for maturing Fe/S proteins in Escherichia coli under oxidative stress and iron starvation conditions.

    PubMed

    Angelini, Sandra; Gerez, Catherine; Ollagnier-de Choudens, Sandrine; Sanakis, Yiannis; Fontecave, Marc; Barras, Frédéric; Py, Béatrice

    2008-05-16

    Iron/sulfur (Fe/S) proteins are central to the functioning of cells in both prokaryotes and eukaryotes. Here, we show that the yhgI gene, which we renamed nfuA, encodes a two-domain protein that is required for Fe/S biogenesis in Escherichia coli. The N-terminal domain resembles the so-called Fe/S A-type scaffold but, curiously, has lost the functionally important Cys residues. The C-terminal domain shares sequence identity with Nfu proteins. Mössbauer and UV-visible spectroscopic analyses revealed that, upon reconstitution, NfuA binds a [4Fe-4S] cluster. Moreover, NfuA can transfer this cluster to apo-aconitase. Mutagenesis studies indicated that the N- and C-terminal domains are important for NfuA function in vivo. Similarly, the functional importance of Cys residues present in the Nfu-like domain was demonstrated in vivo by introducing Cys-->Ser mutations. In vivo investigations revealed that the nfuA gene is important for E. coli to sustain oxidative stress and iron starvation. Also, combining nfuA with either isc or suf mutations led to additive phenotypic deficiencies, indicating that NfuA is a bona fide new player in Isc- and Suf-dependent Fe/S biogenesis pathways. Taken together, these data demonstrate that NfuA intervenes in the maturation of apoproteins in E. coli, allowing them to acquire Fe/S clusters. By taking into account results from numerous previous transcriptomic studies that had suggested a link between NfuA and protein misfolding, we discuss the possibility that NfuA could act as a scaffold/chaperone for damaged Fe/S proteins.

  3. BindML/BindML+: Detecting Protein-Protein Interaction Interface Propensity from Amino Acid Substitution Patterns.

    PubMed

    Wei, Qing; La, David; Kihara, Daisuke

    2017-01-01

    Prediction of protein-protein interaction sites in a protein structure provides important information for elucidating the mechanism of protein function and can also be useful in guiding a modeling or design procedures of protein complex structures. Since prediction methods essentially assess the propensity of amino acids that are likely to be part of a protein docking interface, they can help in designing protein-protein interactions. Here, we introduce BindML and BindML+ protein-protein interaction sites prediction methods. BindML predicts protein-protein interaction sites by identifying mutation patterns found in known protein-protein complexes using phylogenetic substitution models. BindML+ is an extension of BindML for distinguishing permanent and transient types of protein-protein interaction sites. We developed an interactive web-server that provides a convenient interface to assist in structural visualization of protein-protein interactions site predictions. The input data for the web-server are a tertiary structure of interest. BindML and BindML+ are available at http://kiharalab.org/bindml/ and http://kiharalab.org/bindml/plus/ .

  4. Expanding the Cyanuric Acid Hydrolase Protein Family to the Fungal Kingdom

    PubMed Central

    Dodge, Anthony G.; Preiner, Chelsea S.

    2013-01-01

    The known enzymes that open the s-triazine ring, the cyanuric acid hydrolases, have been confined almost exclusively to the kingdom Bacteria and are all homologous members of the rare cyanuric acid hydrolase/barbiturase protein family. In the present study, a filamentous fungus, Sarocladium sp. strain CA, was isolated from soil by enrichment culturing using cyanuric acid as the sole source of nitrogen. A reverse-genetic approach identified a fungal cyanuric acid hydrolase gene composed of two exons and one intron. The translated spliced sequence was 39 to 53% identical to previously characterized bacterial cyanuric acid hydrolases. The sequence was used to generate a gene optimized for expression in Escherichia coli and encoding an N-terminally histidine-tagged protein. The protein was purified by nickel affinity and anion-exchange chromatography. The purified protein was shown by 13C nuclear magnetic resonance (13C-NMR) to produce carboxybiuret as the product, which spontaneously decarboxylated to yield biuret and carbon dioxide. The protein was very narrow in substrate specificity, showing activity only with cyanuric acid and N-methyl cyanuric acid. Barbituric acid was an inhibitor of enzyme activity. Sequence analysis identified genes with introns in other fungi from the Ascomycota that, if spliced, are predicted to encode proteins with cyanuric acid hydrolase activity. The Ascomycota cyanuric acid hydrolase homologs are most closely related to cyanuric acid hydrolases from Actinobacteria. PMID:24039269

  5. Amino Acid Flux from Metabolic Network Benefits Protein Translation: the Role of Resource Availability.

    PubMed

    Hu, Xiao-Pan; Yang, Yi; Ma, Bin-Guang

    2015-06-09

    Protein translation is a central step in gene expression and affected by many factors such as codon usage bias, mRNA folding energy and tRNA abundance. Despite intensive previous studies, how metabolic amino acid supply correlates with protein translation efficiency remains unknown. In this work, we estimated the amino acid flux from metabolic network for each protein in Escherichia coli and Saccharomyces cerevisiae by using Flux Balance Analysis. Integrated with the mRNA expression level, protein abundance and ribosome profiling data, we provided a detailed description of the role of amino acid supply in protein translation. Our results showed that amino acid supply positively correlates with translation efficiency and ribosome density. Moreover, with the rank-based regression model, we found that metabolic amino acid supply facilitates ribosome utilization. Based on the fact that the ribosome density change of well-amino-acid-supplied genes is smaller than poorly-amino-acid-supply genes under amino acid starvation, we reached the conclusion that amino acid supply may buffer ribosome density change against amino acid starvation and benefit maintaining a relatively stable translation environment. Our work provided new insights into the connection between metabolic amino acid supply and protein translation process by revealing a new regulation strategy that is dependent on resource availability.

  6. Brain maturation and epilepsy.

    PubMed

    Dulac, Olivier; Milh, Mathieu; Holmes, Gregory L

    2013-01-01

    At full term, both glutamate and gamma-amino-butyric acid (GABA) are excitatory; cortical synapses are beginning to appear, there is little myelin in the cerebral hemispheres, and long tracts hardly start to develop. Neonatal myoclonic encephalopathy can result from premature activation of N-methyl-D-aspartate (NMDA) transmission. Benign neonatal seizures and migrating partial seizures in infancy could involve excessive or premature excitability of deep cortical layers. Benign rolandic epilepsy and continuous spike waves in slow sleep are consistent with an excess of both excitatory and inhibitory cortical synapses. West and Lennox-Gastaut syndromes express age-related diffuse cortical hyperexcitability, the pattern depending on the age of occurrence; synchronization of spikes is becoming possible with maturation of the myelin. Idiopathic generalized epilepsy is itself modulated by maturation that causes frontal hyperexcitability generating myoclonic-astatic seizures, between the ages of infantile and juvenile myoclonic epilepsies. Physiological delay of hippocampo-neocortical pathways maturation could account for the delayed occurrence of mesial temporal epilepsy following infantile damage, whereas premature maturation could contribute to fronto-temporal damage characteristic of fever-induced epileptic encephalopathy in school-age children, a dramatic school-age epileptic encephalopathy.

  7. Addition of Amino Acids to Further Stabilize Lyophilized Sucrose-Based Protein Formulations: I. Screening of 15 Amino Acids in Two Model Proteins.

    PubMed

    Forney-Stevens, Kelly M; Bogner, Robin H; Pikal, Michael J

    2016-02-01

    In small amounts, the low molecular weight excipients-sorbitol and glycerol-have been shown to stabilize lyophilized sucrose-based protein formulations. The purpose of this study was to explore the use of amino acids as low molecular weight excipients to similarly enhance stability. Model proteins, recombinant human serum albumin and α-chymotrypsin, were formulated with sucrose in combination with one of 15 amino acid additives. Each formulation was lyophilized at 1:1:0.3 (w/w) protein-sucrose-amino acid. Percent total soluble aggregate was measured by size-exclusion chromatography before and after storage at 50 °C for 2 months. Classical thought might suggest that the addition of the amino acids to the sucrose-protein formulations would be destabilizing because of a decrease in the system's glass transition temperature. However, significant improvement in storage stability was observed for almost all formulations at the ratio of amino acid used. Weak correlations were found between the extent of stabilization and both amino acid molar volume and side-chain charge. The addition of amino acids at a modest level generally improves storage stability, often by more than a 50% increase, for lyophilized sucrose-based protein formulations.

  8. Ajulemic acid, a nonpsychoactive cannabinoid acid, suppresses osteoclastogenesis in mononuclear precursor cells and induces apoptosis in mature osteoclast-like cells.

    PubMed

    George, Kerri L; Saltman, Laura H; Stein, Gary S; Lian, Jane B; Zurier, Robert B

    2008-03-01

    Oral administration of ajulemic acid (AjA), a cannabinoid acid devoid of psychoactivity, prevents joint tissue injury in rats with adjuvant induced arthritis. Because activation of osteoclasts is central to the pathogenesis of bone erosion in patients with rheumatoid arthritis (RA), we investigated the influence of AjA on osteoclast differentiation and survival. Osteoclast cultures were established by stimulation of RAW264.7 cells and primary mouse bone marrow cultures with receptor activator of NF-kappaB ligand (RANKL). Simultaneous addition of AjA (15 and 30 microM) and RANKL to both culture systems significantly suppressed development of multinucleated osteoclasts (osteoclastogenesis) in a dose dependent manner, as determined by quantification of multinuclear, tartrate-resistant acid phosphatase (TRAP)-positive cells. AjA impaired growth of RAW264.7 monocytes and prevented further osteoclast formation in cultures in which osteoclastogenesis had already begun. Reduction by AjA of both monocyte growth and osteoclast formation was associated with apoptosis, assayed by annexin V and propidium iodide staining, and caspase activity. The anti-osteoclastogenic effects of AjA did not require the continuous presence of AjA in the cell cultures. Based on these findings, we propose that AjA or other nonpsychoactive synthetic analogs of Cannabis constituents may be useful therapy for diseases such as RA and osteoporosis in which bone resorption is a central feature.

  9. Lack of the Matricellular Protein SPARC (Secreted Protein, Acidic and Rich in Cysteine) Attenuates Liver Fibrogenesis in Mice

    PubMed Central

    Atorrasagasti, Catalina; Kippes, Néstor; Malvicini, Mariana; Alaniz, Laura; Garcia, Mariana; Piccioni, Flavia; Fiore, Esteban J.; Bayo, Juan; Bataller, Ramón; Guruceaga, Elizabeth; Corrales, Fernando; Podhajcer, Osvaldo; Mazzolini, Guillermo

    2013-01-01

    Introduction Secreted Protein, Acidic and Rich in Cysteine (SPARC) is a matricellular protein involved in many biological processes and found over-expressed in cirrhotic livers. By mean of a genetic approach we herein provide evidence from different in vivo liver disease models suggesting a profibrogenic role for SPARC. Methods Two in vivo models of liver fibrosis, based on TAA administration and bile duct ligation, were developed on SPARC wild-type (SPARC+/+) and knock-out (SPARC−/−) mice. Hepatic SPARC expression was analyzed by qPCR. Fibrosis was assessed by Sirius Red staining, and the maturation state of collagen fibers was analyzed using polarized light. Necroinflammatory activity was evaluated by applying the Knodell score and liver inflammatory infiltration was characterized by immunohistochemistry. Hepatic stellate cell activation was assessed by α-SMA immunohistochemistry. In addition, pro-fibrogenic genes and inflammatory cytokines were measured by qPCR and/or ELISA. Liver gene expression profile was analyzed in SPARC−/− and SPARC+/+ mice using Affymetrix Mouse Gene ST 1.0 array. Results SPARC expression was found induced in fibrotic livers of mouse and human. SPARC−/− mice showed a reduction in the degree of inflammation, mainly CD4+ cells, and fibrosis. Consistently, collagen deposits and mRNA expression levels were decreased in SPARC−/− mice when compared to SPARC+/+ mice; in addition, MMP-2 expression was increased in SPARC−/− mice. A reduction in the number of activated myofibroblasts was observed. Moreover, TGF-β1 expression levels were down-regulated in the liver as well as in the serum of TAA-treated knock-out animals. Ingenuity Pathway Analysis (IPA) analysis suggested several gene networks which might involve protective mechanisms of SPARC deficiency against liver fibrogenesis and a better established machinery to repair DNA and detoxify from external chemical stimuli. Conclusions Overall our data suggest that SPARC plays

  10. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries.

    PubMed

    Prentice, Boone M; McLuckey, Scott A

    2013-02-01

    Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field.

  11. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries

    PubMed Central

    Prentice, Boone M.

    2013-01-01

    Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field. PMID:23257901

  12. The amino acid sequence of protein CM-3 from Dendroaspis polylepis polylepis (black mamba) venom.

    PubMed

    Joubert, F J

    1985-01-01

    Protein CM-3 from Dendroaspis polylepis polylepis venom was purified by gel filtration and ion exchange chromatography. It comprises 65 amino acids including eight half-cystines. The complete amino acid sequence of protein CM-3 has been elucidated. The sequence (residues 1-50) resembles that of the N-terminal sequence of the subunits of a synergistic type protein and residues 51-65 that of the C-terminal sequence of an angusticeps type protein. Mixtures of protein CM-3 and angusticeps type proteins showed no apparent synergistic effect, in that their toxicity in combination was no greater than the sum of their individual toxicities.

  13. Toward amino acid typing for proteins in FFLUX.

    PubMed

    Fletcher, Timothy L; Popelier, Paul L A

    2017-03-05

    Continuing the development of the FFLUX, a multipolar polarizable force field driven by machine learning, we present a modern approach to atom-typing and building transferable models for predicting atomic properties in proteins. Amino acid atomic charges in a peptide chain respond to the substitution of a neighboring residue and this response can be categorized in a manner similar to atom-typing. Using a machine learning method called kriging, we are able to build predictive models for an atom that is defined, not only by its local environment, but also by its neighboring residues, for a minimal additional computational cost. We found that prediction errors were up to 11 times lower when using a model specific to the correct group of neighboring residues, with a mean prediction of ∼0.0015 au. This finding suggests that atoms in a force field should be defined by more than just their immediate atomic neighbors. When comparing an atom in a single alanine to an analogous atom in a deca-alanine helix, the mean difference in charge is 0.026 au. Meanwhile, the same difference between a trialanine and a deca-alanine helix is only 0.012 au. When compared to deca-alanine models, the transferable models are up to 20 times faster to train, and require significantly less ab initio calculation, providing a practical route to modeling large biological systems. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  14. Genetic introduction of a diketone-containing amino acid into proteins.

    PubMed

    Zeng, Huaqiang; Xie, Jianming; Schultz, Peter G

    2006-10-15

    An orthogonal tRNA/aminoacyl-tRNA synthetase pair was evolved that makes possible the site-specific incorporation of an unnatural amino acid bearing a beta-diketone side chain into proteins in Escherichia coli with high translational efficiency and fidelity. Proteins containing this unnatural amino acid can be efficiently and selectively modified with hydroxylamine derivatives of fluorophores and other biophysical probes.

  15. Lactobacillus kefiri shows inter-strain variations in the amino acid sequence of the S-layer proteins.

    PubMed

    Malamud, Mariano; Carasi, Paula; Bronsoms, Sílvia; Trejo, Sebastián A; Serradell, María de Los Angeles

    2017-04-01

    The S-layer is a proteinaceous envelope constituted by subunits that self-assemble to form a two-dimensional lattice that covers the surface of different species of Bacteria and Archaea, and it could be involved in cell recognition of microbes among other several distinct functions. In this work, both proteomic and genomic approaches were used to gain knowledge about the sequences of the S-layer protein (SLPs) encoding genes expressed by six aggregative and sixteen non-aggregative strains of potentially probiotic Lactobacillus kefiri. Peptide mass fingerprint (PMF) analysis confirmed the identity of SLPs extracted from L. kefiri, and based on the homology with phylogenetically related species, primers located outside and inside the SLP-genes were employed to amplify genomic DNA. The O-glycosylation site SASSAS was found in all L. kefiri SLPs. Ten strains were selected for sequencing of the complete genes. The total length of the mature proteins varies from 492 to 576 amino acids, and all SLPs have a calculated pI between 9.37 and 9.60. The N-terminal region is relatively conserved and shows a high percentage of positively charged amino acids. Major differences among strains are found in the C-terminal region. Different groups could be distinguished regarding the mature SLPs and the similarities observed in the PMF spectra. Interestingly, SLPs of the aggregative strains are 100% homologous, although these strains were isolated from different kefir grains. This knowledge provides relevant data for better understanding of the mechanisms involved in SLPs functionality and could contribute to the development of products of biotechnological interest from potentially probiotic bacteria.

  16. ORAL AND INTRAVENOUSLY ADMINISTERED AMINO ACIDS PRODUCE SIMILAR EFFECTS ON MUSCLE PROTEIN SYNTHESIS IN THE ELDERLY

    PubMed Central

    Rasmussen, B.B.; Wolfe, R.R.; Volpi, E.

    2011-01-01

    BACKGROUND Muscle protein synthesis is stimulated in the elderly when amino acid availability is increased. OBJECTIVE To determine which mode of delivery of amino acids (intravenous vs. oral ingestion) is more effective in stimulating the rate of muscle protein synthesis in elderly subjects. DESIGN Fourteen elderly subjects were assigned to one of two groups. Following insertion of femoral arterial and venous catheters, subjects were infused with a primed, continuous infusion of L-[ring-2H5] phenylalanine. Blood samples and muscle biopsies were obtained to measure muscle protein fractional synthesis rate (FSR) with the precursor-product model, phenylalanine kinetics across the leg with the three-pool model, and whole body phenylalanine kinetics. Protein metabolism parameters were measured in the basal period, and during the administration of oral amino acids (n=8) or a similar amount of intravenous amino acids (n=6). RESULTS Enteral and parenteral amino acid administration increased amino acid arterial concentrations and delivery to the leg to a similar extent in both groups. Muscle protein synthesis as measured by both FSR, and the three-pool model, increased during amino acid administration (P < 0.05 vs. basal) in both groups with no differences between groups. Whole body proteolysis did not change with the oral amino acids whereas it increased slightly during parenteral amino acid administration. CONCLUSIONS Increased amino acid availability stimulates the rate of muscle protein synthesis independent of the route of administration (enteral vs. parenteral). PMID:12459885

  17. Theoretical studies of chromophore maturation in the wild-type green fluorescent protein: ONIOM(DFT:MM) investigation of the mechanism of cyclization.

    PubMed

    Ma, Yingying; Sun, Qiao; Li, Zhen; Yu, Jian-Guo; Smith, Sean C

    2012-02-02

    The availability of a gene encoding green fluorescence immediately stimulates interest in the puzzle of autocatalytic formation of the green fluorescent protein (GFP) chromophore. Numerous experimental and theoretical studies have indicated that cyclization is the first and most important step in the maturation process of the GFP. In our previous paper based on cluster models [J. Phys. Chem. B2010, 114, 9698-9705], two possible mechanisms have been investigated with the conclusion that the backbone condensation initiated by deprotonation of the Gly67 amide nitrogen is easier than deprotonation of the Tyr66 α-carbon. However, the impact of the protein environment on the reaction mechanism remains to be explored. In this paper, we investigated the two possible mechanisms with inclusion of protein environmental effects by using molecular dynamics (MD) and combined quantum mechanics/molecular mechanics (QM/MM) calculations. Our calculations reveal no hydrogen bonding network that would facilitate deprotonation of the amide nitrogen of Gly67, although it is the lower energy pathway in the cluster model system. Contrastingly, there is a hydrogen bonding network between Tyr66 α-carbon and Glu222, which is in good agreement with X-ray data. The ONIOM studies show that proton transfer from Tyr66 α-carbon to Glu222 is a long-distance charge transfer process. The charge distribution of the MM region has a significant perturbation to the wave function for the QM region, with the QM energy for the proton transfer product being increased under the influence of the electrostatic protein environment. The barrier for the rate-limiting step in cyclization is quite high, about 40.0 kcal/mol in the case of ONIOM-EE.

  18. Site specific incorporation of heavy atom-containing unnatural amino acids into proteins for structure determination

    DOEpatents

    Xie, Jianming; Wang, Lei; Wu, Ning; Schultz, Peter G.

    2008-07-15

    Translation systems and other compositions including orthogonal aminoacyl tRNA-synthetases that preferentially charge an orthogonal tRNA with an iodinated or brominated amino acid are provided. Nucleic acids encoding such synthetases are also described, as are methods and kits for producing proteins including heavy atom-containing amino acids, e.g., brominated or iodinated amino acids. Methods of determining the structure of a protein, e.g., a protein into which a heavy atom has been site-specifically incorporated through use of an orthogonal tRNA/aminoacyl tRNA-synthetase pair, are also described.

  19. The byssus of the zebra mussel, Dreissena polymorpha. I: Morphology and in situ protein processing during maturation.

    PubMed

    Rzepecki, L M; Waite, J H

    1993-10-01

    The zebra mussel, Dreissena polymorpha, owes its notoriety as a biofouler to its adhesive skills and opportunism. Adhesion by the adult mussel to hard substrata is mediated by a nonliving extracorporeal structure called the byssus, which is superficially similar to the byssus of marine mussels in that it consists of a tight bundle of sclerotized threads tipped by adhesive plaques. Juvenile zebra mussels secrete a homologous structure on settlement, but they also employ an elongated belaying byssus while climbing that consists of an elastic, mucous filament anchored at irregular intervals by a byssal thread and plaque. This multiply anchored belaying line can be 20 to 30 times the mussel length. Histochemical tests show that the thread and plaque of both kinds of byssus contains a complex distribution of proteins that are subject to chemical processing after secretion. This processing may result from the formation of crosslinks following the catecholoxidase-catalyzed oxidation of peptidyl 3,4-dihydroxyphenylalanine during sclerotization.

  20. Retinoic acid promotes mouse splenic B cell surface IgG expression and maturation stimulated by CD40 and IL-4

    PubMed Central

    Chen, Qiuyan; Ross, A Catharine

    2008-01-01

    Retinoic acid (RA) increases antibody production in vivo but its role in B-cell activation is unclear. In a model of purified mouse splenic B cells stimulated by CD40 coreceptor (as a surrogate of T cell co-stimulation), IL-4, a principal Th-2 cytokine, and ligation of the B-cell antigen receptor, CD40 engagement or IL-4 alone induced B-cell activation indicated by increased Igγ1 germline transcripts, cell proliferation, and surface (s)IgG1 expression, while triple stimulation with the combination of anti-CD40/IL-4/anti-μ synergized to heighten B-cell activation. Although RA was growth inhibitory for anti-CD40-activated B cells, RA increased the proportion of B cells that had more differentiated phenotypes, such as expression of higher level of activation-induced deaminase, Blimp-1, CD138/syndecan-1 and sIgG1. Overall, RA can promote B-cell maturation at the population level by increasing the number of sIgG1 and CD138 expressing cells, which may be related to the potentiation of humoral immunity in vivo. PMID:18082674

  1. Amino Acid and Protein Metabolism in Bermuda Grass During Water Stress 12

    PubMed Central

    Barnett, N. M.; Naylor, A. W.

    1966-01-01

    The ability of Arizona Common and Coastal Bermuda grass [Cynodon dactylon (L.) Pers.] to synthesize amino acids and proteins during water stress was investigated. Amino acids were continually synthesized during the water stress treatments, but protein synthesis was inhibited and protein levels decreased. Water stress induc