Sample records for acid medium application

  1. Production and optimisation of rosmarinic acid by Satureja hortensis L. callus cultures.

    PubMed

    Tepe, Bektas; Sokmen, Atalay

    2007-11-01

    In this study, production and optimisation of rosmarinic acid, a phenolic acid and an economically important metabolite, was investigated in the callus cultures established from the mature seeds of Satureja hortensis L. (summer savory) plant. Gamborg's B5 basal medium, supplemented with indol butyric acid (IBA) (1.00 mg L(-1)), N6-benzyl aminopurine (6-BA) (1.00 mg L(-1)) and sucrose (2.5%, w/v), was employed for the establishment and maintenance of the callus cultures. Applications were individually prepared by preparing the media containing different IBA/6-BA combinations and sucrose concentrations. All of the applications were carried out in the continuous dark. In the applications, where the effects of IBA/6-BA combinations on the growth and rosmarinic acid accumulation were assayed (1-15 applications), the highest biomass yield was obtained from the medium supplemented with 1.00 mg L(-1) IBA and 5.00 mg L(-1) 6-BA. In the case of the rosmarinic acid accumulation, an opposite relationship was determined between the growth and rosmarinic acid production. While the highest biomass yield was obtained from the medium containing 1.00 mg L(-1) IBA and 5.00 mg L(-1) 6-BA, the highest rosmarinic acid accumulation was obtained from the medium supported with 1.00 mg L(-1) IBA and 1.00 mg L(-1) 6-BA. In the applications where the effects of sucrose concentrations on the growth and rosmarinic acid accumulation were examined, the highest biomass yield was obtained from the medium which is supplemented with 5.0% (w/v) sucrose. In this category, the highest rosmarinic acid accumulation was obtained from the medium which is supported with 3.0% (w/v) sucrose. According to the experiments carried out with the wild S. hortensis, it is found to have 25.02+/-1.21 mg g(-1) rosmarinic acid. No differentiation was observed in any callus during the course of this study.

  2. Antioxidant effect of mono- and dihydroxyphenols in sunflower oil with different levels of naturally present tocopherols

    PubMed Central

    Hrádková, Iveta; Merkl, Roman; Šmidrkal, Jan; Kyselka, Jan; Filip, Vladimír

    2013-01-01

    Antioxidant properties of mono- and dihydroxyphenolic acids and their alkyl esters were examined, with emphasis on the relationship between their molecular structure and antioxidant activity. Test media with different tocopherol level were used for determining the oxidative stability: original refined sunflower oil (total tocopherols 149.0 mg/kg), partially tocopherol-stripped sunflower oil (total tocopherols 8.7 mg/kg) and distilled fatty acid methyl esters (FAME) as a tocopherol-free medium. The chemical reaction of tocopherols with diazomethane tested for the purpose to eliminate their antioxidant activity failed due to the negligible degree of methylation of hydroxyl group in the tocopherol molecule. Caffeic acid and protocatechuic acid (3,4-dihydroxyphenolic acids) and their alkyl esters were found to be more active antioxidants than monohydroxyphenolic acid (p-hydroxybenzoic acid), 2,5-dihydroxyphenolic acid (gentisic acid), 3-methoxy-4-hydroxyphenolic acids (vanillic and ferulic acids) and their corresponding alkyl esters. Naturally present tocopherols in refined sunflower oil proved to have a synergistic effect on gentisic acid but not on its alkyl esters. In contrast, tocopherols showed an antagonistic effect on alkyl esters of caffeic acid, because their protection factors decreased with increasing level of tocopherols in the test medium. Moreover, the antioxidant activity of these alkyl esters decreased with increasing length of their alkyl chain in conformity with the polar paradox hypothesis. Practical applications: Tocopherols as naturally present antioxidants influence considerably the antioxidant activity of other antioxidants added to plant oils used as a test medium. Distilled fatty acid methyl esters prepared from refined sunflower oil may serve as an optimal tocopherol-free test medium. Some alkyl esters of phenolic acids were evaluated to be applicable as natural more lipophilic antioxidants in comparison with phenolic acids. PMID:23997655

  3. Light intensity and N/P nutrient affect the accumulation of lipid and unsaturated fatty acids by Chlorella sp.

    PubMed

    Guo, Xiaoyi; Su, Gaomin; Li, Zheng; Chang, Jingyu; Zeng, Xianhai; Sun, Yong; Lu, Yinghua; Lin, Lu

    2015-09-01

    In this study, different light intensities (80, 160, 240 and 320 μmol/m(2) s) and various mediums including control medium (CM), N/P rich medium (NPM), N rich medium (NM), and P rich medium (PM) were applied for cultivation of Chlorella sp. It was revealed that cultivation of Chlorella sp. in CM under the light intensity of 320 μmol/m(2) s led to a lipid content up to 30% enhancement, which was higher than the results of other cases. A rather high unsaturated fatty acid (UFA) content of 7.5% and unsaturated fatty acid/total fatty acid (UFA/TFA) ratio of 0.73 were obtained under 320 μmol/m(2) s in CM, indicating that the CM-320 system was applicable for the generation of UFA. Moreover, Chlorella sp. cultivated in PM under 320 μmol/m(2) s provided higher TFA content (7.3%), which was appropriate for biofuel production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Novel and economic acid-base indicator based on (p-toluidine) oligomer: Synthesis; characterization and solvatochromism applications

    NASA Astrophysics Data System (ADS)

    Zoromba, M. Sh.

    2017-12-01

    A new (p-toluidine) oligomer (PTO) was facile synthesized and economically routed via chemical oxidative polymerization by potassium dichromate as an initiator in an acidic aqueous medium at room temperature. The characterization of (p-toluidine) oligomer (PTO) has been described by various techniques including Fourier transform infra-red (FTIR), UV-Visible measurements, Mass spectra, H NMR, and thermal gravimetric analysis (TGA). Solvatochromism of PTO was studied in different polaritiy solvents such as acetic acid, acetone, dimethyl formamide, ethanol, isopropanol, chloroform, p-xylene, dichloromethane and carbon teterachloride. The absorption bands were bathochromically shifted with increased polarity of the solvent (positive solvatochromism). PTO shows three isosbestic points at 333, 388 and 472 nm in a binary mixture of acetone and chloroform. The deprotonation constants of PTO were found to be 3.1 and 5.8, based on spectrophotometric calculations. PTO was successfully used as an acid-base indicator; the acid solution color sharply turned from pink (acidic medium) to yellow (basic medium) at the end point.

  5. Response surface optimization of culture medium for enhanced docosahexaenoic acid production by a Malaysian thraustochytrid.

    PubMed

    Manikan, Vidyah; Kalil, Mohd Sahaid; Hamid, Aidil Abdul

    2015-02-27

    Docosahexaenoic acid (DHA, C22:6n-3) plays a vital role in the enhancement of human health, particularly for cognitive, neurological, and visual functions. Marine microalgae, such as members of the genus Aurantiochytrium, are rich in DHA and represent a promising source of omega-3 fatty acids. In this study, levels of glucose, yeast extract, sodium glutamate and sea salt were optimized for enhanced lipid and DHA production by a Malaysian isolate of thraustochytrid, Aurantiochytrium sp. SW1, using response surface methodology (RSM). The optimized medium contained 60 g/L glucose, 2 g/L yeast extract, 24 g/L sodium glutamate and 6 g/L sea salt. This combination produced 17.8 g/L biomass containing 53.9% lipid (9.6 g/L) which contained 44.07% DHA (4.23 g/L). The optimized medium was used in a scale-up run, where a 5 L bench-top bioreactor was employed to verify the applicability of the medium at larger scale. This produced 24.46 g/L biomass containing 38.43% lipid (9.4 g/L), of which 47.87% was DHA (4.5 g/L). The total amount of DHA produced was 25% higher than that produced in the original medium prior to optimization. This result suggests that Aurantiochytrium sp. SW1 could be developed for industrial application as a commercial DHA-producing microorganism.

  6. Oilseed crop with promise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senft, D.

    1986-02-01

    Cuphea, a relatively unknown plant outside the scientific community, might someday provide valuable oils for manufacturing soaps, detergents, surfactants, and lubricants, and may have medical, nutritional and dietetic applications as well. Unique properties of oils found in its seed make cuphea a potentially valuable new crop for the USA. Its seeds contain large quantities of medium-chain fatty acids such as lauric acid, which is used in manufacturing soaps and detergents. Other medium-chain fatty acids in cuphea can be used for clinical treatment of rare human ailments associated with fat absorption. New uses for the fatty acids in the seed maymore » be developed and economic conditions may change, making the crop more or less valuable.« less

  7. A differential medium for the enumeration of the spoilage yeast Zygosaccharomyces bailii in wine.

    PubMed

    Schuller, D; Côrte-Real, M; Leão, C

    2000-11-01

    A collection of yeasts, isolated mostly from spoiled wines, was used in order to develop a differential medium for Zygosaccharomyces bailii. The 118 selected strains of 21 species differed in their origin and resistance to preservatives and belonged to the genera Pichia, Torulaspora, Dekkera, Debaryomyces, Saccharomycodes, Issatchenkia, Kluyveromyces, Kloeckera, Lodderomyces, Schizosaccharomyces, Rhodotorula, Saccharomyces, and Zygosaccharomyces. The design of the culture medium was based on the different ability of the various yeast species to grow in a mineral medium with glucose and formic acid (mixed-substrate medium) as the only carbon and energy sources and supplemented with an acid-base indicator. By manipulating the concentration of the acid and the sugar it was possible to select conditions where only Z. bailii strains gave rise to alkalinization, associated with a color change of the medium (positive response). The final composition of the mixed medium was adjusted as a compromise between the percentage of recovery and selectivity for Z. bailii. This was accomplished by the use of pure or mixed cultures of the yeast strains and applying the membrane filtration methodology. The microbiological analysis of two samples of contaminated Vinho Verde showed that the new medium can be considered as a differential medium to distinguish Z. bailii from other contaminating yeasts, having potential application in the microbiological control of wines and probably other beverages and foods.

  8. Designing and Creating a Synthetic Omega Oxidation Pathway in Saccharomyces cerevisiae Enables Production of Medium-Chain α, ω-Dicarboxylic Acids

    PubMed Central

    Han, Li; Peng, Yanfeng; Zhang, Yuangyuan; Chen, Wujiu; Lin, Yuping; Wang, Qinhong

    2017-01-01

    Medium-chain (C8–C14) α, ω-dicarboxylic acids (α, ω-DCAs), which have numerous applications as raw materials for producing various commodities and polymers in chemical industry, are mainly produced from chemical or microbial conversion of petroleum-derived alkanes or plant-derived fatty acids at present. Recently, significant attention has been gained to microbial production of medium-chain α, ω-DCAs from simple renewable sugars. Here, we designed and created a synthetic omega oxidation pathway in Saccharomyces cerevisiae to produce C10 and C12 α, ω-DCAs from renewable sugars and fatty acids by introducing a heterogeneous cytochrome P450 CYP94C1 and cytochrome reductase ATR1. Furthermore, the deletion of fatty acyl-CoA synthetase genes FAA1 and FAA4 increased the production of medium-chain α, ω-DCAs from 4.690 ± 0.088 mg/L to 12.177 ± 0.420 mg/L and enabled the production of C14 and C16 α, ω-DCAs at low percentage. But blocking β-oxidation pathway by deleting fatty-acyl coenzyme A oxidase gene POX1 and overexpressing different thioesterase genes had no significant impact on the production and the composition of α, ω-dicarboxylic acids. Overall, our study indicated the potential of microbial production of medium-chain α, ω-DCAs from renewable feedstocks using engineered yeast. PMID:29163455

  9. Comparison of the structures of triacylglycerols from native and transgenic medium-chain fatty acid-enriched rape seed oil by liquid chromatography--atmospheric pressure chemical ionization ion-trap mass spectrometry (LC-APCI-ITMS).

    PubMed

    Beermann, Christopher; Winterling, Nadine; Green, Angelika; Möbius, Michael; Schmitt, Joachim J; Boehm, Günther

    2007-04-01

    The sn position of fatty acids in seed oil lipids affects physiological function in pharmaceutical and dietary applications. In this study the composition of acyl-chain substituents in the sn positions of glycerol backbones in triacylglycerols (TAG) have been compared. TAG from native and transgenic medium-chain fatty acid-enriched rape seed oil were analyzed by reversed-phase high performance liquid chromatography coupled with online atmospheric-pressure chemical ionization ion-trap mass spectrometry. The transformation of summer rape with thioesterase and 3-ketoacyl-[ACP]-synthase genes of Cuphea lanceolata led to increased expression of 1.5% (w/w) caprylic acid (8:0), 6.7% (w/w) capric acid (10:0), 0.9% (w/w) lauric acid (12:0), and 0.2% (w/w) myristic acid (14:0). In contrast, linoleic (18:2n6) and alpha-linolenic acid (18:3n3) levels decreased compared with the original seed oil. The TAG sn position distribution of fatty acids was also modified. The original oil included eleven unique TAG species whereas the transgenic oil contained sixty. Twenty species were common to both oils. The transgenic oil included trioctadecenoyl-glycerol (18:1/18:1/18:1) and trioctadecatrienoyl-glycerol (18:3/18:3/18:3) whereas the native oil included only the latter. The transgenic TAG were dominated by combinations of caprylic, capric, lauric, myrisitic, palmitic (16:0), stearic (18:0), oleic (18:1n9), linoleic, arachidic (20:0), behenic (22:0), and lignoceric acids (24:0), which accounted for 52% of the total fat. In the original TAG palmitic, stearic, oleic, and linoleic acids accounted for 50% of the total fat. Medium-chain triacylglycerols with capric and lauric acids combined with stearic, oleic, linoleic, alpha-linolenic, arachidic, and gondoic acids (20:1n9) accounted for 25% of the transgenic oil. The medium-chain fatty acids were mainly integrated into the sn-1/3 position combined with the essential linoleic and alpha-linolenic acids at the sn-2 position. Eight species contained caprylic, capric, and lauric acids in the sn-2 position. The appearance of new TAG in the transgenic oil illustrates the extensive effect of genetic modification on fat metabolism by transformed plants and offers interesting possibilities for improved enteral applications.

  10. Response surface optimization of culture medium for enhanced docosahexaenoic acid production by a Malaysian thraustochytrid

    PubMed Central

    Manikan, Vidyah; Kalil, Mohd Sahaid; Hamid, Aidil Abdul

    2015-01-01

    Docosahexaenoic acid (DHA, C22:6n-3) plays a vital role in the enhancement of human health, particularly for cognitive, neurological, and visual functions. Marine microalgae, such as members of the genus Aurantiochytrium, are rich in DHA and represent a promising source of omega-3 fatty acids. In this study, levels of glucose, yeast extract, sodium glutamate and sea salt were optimized for enhanced lipid and DHA production by a Malaysian isolate of thraustochytrid, Aurantiochytrium sp. SW1, using response surface methodology (RSM). The optimized medium contained 60 g/L glucose, 2 g/L yeast extract, 24 g/L sodium glutamate and 6 g/L sea salt. This combination produced 17.8 g/L biomass containing 53.9% lipid (9.6 g/L) which contained 44.07% DHA (4.23 g/L). The optimized medium was used in a scale-up run, where a 5 L bench-top bioreactor was employed to verify the applicability of the medium at larger scale. This produced 24.46 g/L biomass containing 38.43% lipid (9.4 g/L), of which 47.87% was DHA (4.5 g/L). The total amount of DHA produced was 25% higher than that produced in the original medium prior to optimization. This result suggests that Aurantiochytrium sp. SW1 could be developed for industrial application as a commercial DHA-producing microorganism. PMID:25721623

  11. Selective Precipitation of Thorium lodate from a Tartaric Acid-Hydrogen Peroxide Medium Application to Rapid Spectrophotometric Determination of Thorium in Silicate Rocks and in Ores

    USGS Publications Warehouse

    Grimaldi, F.S.

    1957-01-01

    This paper presents a selective iodate separation of thorium from nitric acid medium containing d-tartaric acid and hydrogen peroxide. The catalytic decomposition of hydrogen peroxide is prevented by the use of 8quinolinol. A few micrograms of thorium are separated sufficiently clean from 30 mg. of such oxides as cerium, zirconium, titanium, niobium, tantalum, scandium, or iron with one iodate precipitation to allow an accurate determination of thorium with the thoronmesotartaric acid spectrophotometric method. The method is successful for the determination of 0.001% or more of thorium dioxide in silicate rocks and for 0.01% or more in black sand, monazite, thorite, thorianite, eschynite, euxenite, and zircon.

  12. Organogel polymers from 10-undecenoic acid and poly(vinyl acetate)

    USDA-ARS?s Scientific Manuscript database

    Organogels are used in a variety of high value applications including the removal of toxic solvents from aqueous environments and the time-controlled release of compounds. One of the most promising gelators is a polyvinyl polymer containing medium chain length carboxylic acids. The existing producti...

  13. Lauric acid-rich medium-chain triglycerides can substitute for other oils in cooking applications and may have limited pathogenicity.

    PubMed

    McCarty, Mark F; DiNicolantonio, James J

    2016-01-01

    Recently, medium-chain triglycerides (MCTs) containing a large fraction of lauric acid (LA) (C12)-about 30%-have been introduced commercially for use in salad oils and in cooking applications. As compared to the long-chain fatty acids found in other cooking oils, the medium-chain fats in MCTs are far less likely to be stored in adipose tissue, do not give rise to 'ectopic fat' metabolites that promote insulin resistance and inflammation, and may be less likely to activate macrophages. When ingested, medium-chain fatty acids are rapidly oxidised in hepatic mitochondria; the resulting glut of acetyl-coenzyme A drives ketone body production and also provokes a thermogenic response. Hence, studies in animals and humans indicate that MCT ingestion is less obesogenic than comparable intakes of longer chain oils. Although LA tends to raise serum cholesterol, it has a more substantial impact on high density lipoprotein (HDL) than low density lipoprotein (LDL) in this regard, such that the ratio of total cholesterol to HDL cholesterol decreases. LA constitutes about 50% of the fatty acid content of coconut oil; south Asian and Oceanic societies which use coconut oil as their primary source of dietary fat tend to be at low cardiovascular risk. Since ketone bodies can exert neuroprotective effects, the moderate ketosis induced by regular MCT ingestion may have neuroprotective potential. As compared to traditional MCTs featuring C6-C10, laurate-rich MCTs are more feasible for use in moderate-temperature frying and tend to produce a lower but more sustained pattern of blood ketone elevation owing to the more gradual hepatic oxidation of ingested laurate.

  14. Lauric acid-rich medium-chain triglycerides can substitute for other oils in cooking applications and may have limited pathogenicity

    PubMed Central

    McCarty, Mark F; DiNicolantonio, James J

    2016-01-01

    Recently, medium-chain triglycerides (MCTs) containing a large fraction of lauric acid (LA) (C12)—about 30%—have been introduced commercially for use in salad oils and in cooking applications. As compared to the long-chain fatty acids found in other cooking oils, the medium-chain fats in MCTs are far less likely to be stored in adipose tissue, do not give rise to ‘ectopic fat’ metabolites that promote insulin resistance and inflammation, and may be less likely to activate macrophages. When ingested, medium-chain fatty acids are rapidly oxidised in hepatic mitochondria; the resulting glut of acetyl-coenzyme A drives ketone body production and also provokes a thermogenic response. Hence, studies in animals and humans indicate that MCT ingestion is less obesogenic than comparable intakes of longer chain oils. Although LA tends to raise serum cholesterol, it has a more substantial impact on high density lipoprotein (HDL) than low density lipoprotein (LDL) in this regard, such that the ratio of total cholesterol to HDL cholesterol decreases. LA constitutes about 50% of the fatty acid content of coconut oil; south Asian and Oceanic societies which use coconut oil as their primary source of dietary fat tend to be at low cardiovascular risk. Since ketone bodies can exert neuroprotective effects, the moderate ketosis induced by regular MCT ingestion may have neuroprotective potential. As compared to traditional MCTs featuring C6–C10, laurate-rich MCTs are more feasible for use in moderate-temperature frying and tend to produce a lower but more sustained pattern of blood ketone elevation owing to the more gradual hepatic oxidation of ingested laurate. PMID:27547436

  15. Safety evaluation of a medium- and long-chain triacylglycerol oil produced from medium-chain triacylglycerols and edible vegetable oil.

    PubMed

    Matulka, R A; Noguchi, O; Nosaka, N

    2006-09-01

    To reduce the incorporation of dietary lipids into adipose tissue, modified fats and oils have been developed, such as medium-chain triacylglycerols (MCT). Typical dietary lipids from vegetable oils, termed long-chain triacylglycerols (LCT), are degraded by salivary, intestinal and pancreatic lipases into two fatty acids and a monoacyl glycerol; whereas, MCT are degraded by the same enzymes into three fatty acids and the simple glycerol backbone. Medium-chain fatty acids (MCFA) are readily absorbed from the small intestine directly into the bloodstream and transported to the liver for hepatic metabolism, while long-chain fatty acids (LCFA) are incorporated into chylomicrons and enter the lymphatic system. MCFA are readily broken down to carbon dioxide and two-carbon fragments, while LCFA are re-esterified to triacylglycerols and either metabolized for energy or stored in adipose tissue. Therefore, consumption of MCT decreases the incorporation of fatty acids into adipose tissue. However, MCT have technological disadvantages precluding their use in many food applications. A possible resolution is the manufacture and use of a triacylglycerol containing both LCT and MCT, termed medium- and long-chain triacylglycerol (MLCT). This manuscript describes studies performed for the safety evaluation of a MLCT oil enzymatically produced from MCT and edible vegetable oil (containing LCT), by a transesterification process. The approximate fatty acid composition of this MLCT consists of caprylic acid (9.7%), capric acid (3.3%), palmitic acid (3.8%), stearic acid (1.7%), oleic acid (51.2%), linoleic acid (18.4%), linolenic acid (9.0%), and other fatty acids (2.9%). The approximate percentages of long (L) and medium (M) fatty acids in the triacylglyerols are as follows: L, L, L (55.1%), L, L, M (35.2%), L, M, M (9.1%), and M, M, M (0.6%). The studies included: (1) acute study in rats (LD50>5000 mg/kg); (2) 6 week repeat-dose safety study via dietary administration to rats (NOAEL of 3500 mg/kg/day), (3) in vitro genotoxicity studies using Salmonella typhimurium and Escherichia coli (negative at 5000 mg/plate), and (4) a four-week, placebo-controlled, double blind, human clinical trial utilizing 20 test subjects (no effects at 42 g MLCT/day). These data are corroborated by other studies published in the peer-reviewed literature on analogous MLCTs.

  16. Stimulation of Erwinia sp. fumarase and aspartase synthesis by changing medium components.

    PubMed

    Bagdasaryan, Z N; Aleksanyan, G A; Mirzoyan, A M; Roseiro, J C; Bagdasaryan, S N

    2005-05-01

    The optimal concentrations of nutrient medium components, aeration conditions, and pH providing for maximum biomass yields, as well as fumarase and L-aspartase activities, during submerged cultivation of Erwinia sp. were determined. The data showed that different concentrations of carbon source (molasses) and pH of the nutrient medium were required to reach the maximum fumarase and L-aspartase activities. Calculations performed by application of the additive lattice model suggested that the combination of these optimized factors would result in 3.2-, 3.4-, and 3.8-fold increases as compared to the experimental means in Erwinia sp. biomass, and L-aspartase and fumarase activities, respectively. The conditions of the fumaric acid biotransformations into L-malic and L-aspartic acids were optimized on the basis of intact Erwinia sp. cells, a fumarase and L-aspartase producer. In the cases of fumarate transformation into L-malic acid and of fumarate transformation into L-aspartic acids, fumarase and L-aspartase activities increased 1.5- and 1.7-fold, respectively. The experimental data were consistent with these estimates to 80% accuracy. In comparison with the additive lattice model, the application of polynomial nonlinear model allowed the between-factor relations to be considered and analyzed, which resulted in 1.1-, 1.27-, and 1.1-fold increases in Erwinia sp. biomass and fumarase and L-aspartase activities for the case of cultivation. In the case of fumarate transformation into L-malic acid, this model demonstrated a 1.7-fold increase in fumarase activity, whereas during fumarate transformation into L-aspartic acid no significant change in aspartase activity was observed.

  17. Electron transport chains of lactic acid bacteria - walking on crutches is part of their lifestyle

    PubMed Central

    Brooijmans, Rob; Hugenholtz, Jeroen

    2009-01-01

    A variety of lactic acid bacteria contain rudimentary electron transport chains that can be reconstituted by the addition of heme and menaquinone to the growth medium. These activated electron transport chains lead to higher biomass production and increased robustness, which is beneficial for industrial applications, but a major concern when dealing with pathogenic lactic acid bacteria. PMID:20948651

  18. Application of microalgae hydrolysate as a fermentation medium for microbial production of 2-pyrone 4,6-dicarboxylic acid.

    PubMed

    Htet, April N; Noguchi, Mana; Ninomiya, Kazuaki; Tsuge, Yota; Kuroda, Kosuke; Kajita, Shinya; Masai, Eiji; Katayama, Yoshihiro; Shikinaka, Kazuhiro; Otsuka, Yuichiro; Nakamura, Masaya; Honda, Ryo; Takahashi, Kenji

    2018-06-01

    Actual biomass of microalgae was tested as a fermentation substrate for microbial production of 2-pyrone 4,6-dicarboxylic acid (PDC). Acid-hydrolyzed green microalgae Chlorella emersonii (algae hydrolysate) was diluted to adjust the glucose concentration to 2 g/L and supplemented with the nutrients of Luria-Bertani (LB) medium (tryptone 10 g/L and yeast extract 5 g/L). When the algae hydrolysate was used as a fermentation source for recombinant Escherichia coli producing PDC, 0.43 g/L PDC was produced with a yield of 20.1% (mol PDC/mol glucose), whereas 0.19 g/L PDC was produced with a yield of 8.6% when LB medium supplemented with glucose was used. To evaluate the potential of algae hydrolysate alone as a fermentation medium for E. coli growth and PDC production, the nutrients of LB medium were reduced from the algae hydrolysate medium. Interestingly, 0.17 g/L PDC was produced even without additional nutrient, which was comparable to the case using pure glucose medium with nutrients of LB medium. When using a high concentration of hydrolysate without additional nutrients, 1.22 g/L PDC was produced after a 24-h cultivation with the yield of 16.1%. Overall, C. emersonii has high potential as cost-effective fermentation substrate for the microbial production of PDC. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Glycerol Dehydration to Acrolein Catalyzed by ZSM‐5 Zeolite in Supercritical Carbon Dioxide Medium

    PubMed Central

    Zou, Bin; Ren, Shoujie

    2016-01-01

    Abstract Supercritical carbon dioxide (SC‐CO2) has been used for the first time as a reaction medium for the dehydration of glycerol to acrolein catalyzed by a solid acid. Unprecedented catalyst stability over 528 hours of time‐on‐stream was achieved and the rate of coke deposition on the zeolite catalyst was the lowest among extensive previous studies, showing potential for industrial application. Coking pathways in SC‐CO2 were also elucidated for future development. The results have potential implications for other dehydration reactions catalyzed by solid acids. PMID:27796088

  20. Films based on neutralized chitosan citrate as innovative composition for cosmetic application.

    PubMed

    Libio, Illen C; Demori, Renan; Ferrão, Marco F; Lionzo, Maria I Z; da Silveira, Nádya P

    2016-10-01

    In this work, citrate and acetate buffers, were investigated as neutralizers to chitosan salts in order to provide biocompatible and stable films. To choose the appropriate film composition for this study, neutralized chitosan citrate and acetate films, with and without the plasticizer glycerol, were prepared and characterized by thickness, moisture content, degree of swelling, total soluble matter in acid medium, simultaneous thermal analysis and differential scanning calorimetry. Chitosan films neutralized in citrate buffer showed greater physical integrity resulted from greater thicknesses, lower moisture absorbance, lower tendency to solubility in the acid medium, and better swelling capacities. According to thermal analyses, these films had higher interaction with water which is considered an important feature for cosmetic application. Since the composition prepared in citrate buffer without glycerol was considered to present better physical integrity, it was applied to investigate hyaluronic acid release in a skin model. Skins treated with those films, with or without hyaluronic acid, show stratum corneum desquamation and hydration within 10min. The results suggest that the neutralized chitosan citrate film prepared without glycerol promotes a cosmetic effect for skin exfoliation in the presence or absence of hyaluronic acid. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Environmentally Friendly Production of D(-) Lactic Acid by Sporolactobacillus nakayamae: Investigation of Fermentation Parameters and Fed-Batch Strategies.

    PubMed

    Michelz Beitel, Susan; Fontes Coelho, Luciana; Sass, Daiane Cristina; Contiero, Jonas

    2017-01-01

    The interest in the production of lactic acid has increased due to its wide range of applications. In the present study, the variables that affect fermentative D(-) lactic acid production were investigated: neutralizing agents, pH, temperature, inoculum percentage, agitation, and concentration of the medium components. An experimental design was applied to determine the optimal concentrations of the medium components and fermentation was studied using different feeding strategies. High production (122.41 g/L) and productivity (3.65 g/L·h) were efficiently achieved by Sporolactobacillus nakayamae in 54 h using a multipulse fed-batch technique with an initial medium containing 35 g/L of yeast extract (byproduct of alcohol production), 60 g/L of crystallized sugar, and 7.5 mL/L of salts. The fermentation process was conducted at 35°C and pH 6.0 controlled by NaOH with a 20% volume of inoculum and agitation at 125 rpm. The production of a high optically pure concentration of D(-) lactic acid combined with an environmentally friendly NaOH-based process demonstrates that S. nakayamae is a promising strain for D(-) lactic acid production.

  2. pH-responsive poly(aspartic acid) hydrogel-coated magnetite nanoparticles for biomedical applications.

    PubMed

    Vega-Chacón, Jaime; Arbeláez, María Isabel Amaya; Jorge, Janaina Habib; Marques, Rodrigo Fernando C; Jafelicci, Miguel

    2017-08-01

    A novel multifunctional nanosystem formed by magnetite nanoparticles coated with pH-responsive poly(aspartic acid) hydrogel was developed. Magnetite nanoparticles (Fe 3 O 4 ) have been intensively investigated for biomedical applications due to their magnetic properties and dimensions similar to the biostructures. Poly(aspartic acid) is a water-soluble, biodegradable and biocompatible polymer, which features makes it a potential candidate for biomedical applications. The nanoparticles surface modification was carried out by crosslinking polysuccinimide on the magnetite nanoparticles surface and hydrolyzing the succinimide units in mild alkaline medium to obtain the magnetic poly(aspartic acid) hydrogel. The surface modification in each step was confirmed by DRIFTS, TEM and zeta potential measurements. The hydrodynamic diameter of the nanosystems decreases as the pH value decreases. The nanosystems showed high colloidal stability in water and no cytotoxicity was detected, which make these nanosystems suitable for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Glycerol Dehydration to Acrolein Catalyzed by ZSM-5 Zeolite in Supercritical Carbon Dioxide Medium.

    PubMed

    Zou, Bin; Ren, Shoujie; Ye, X Philip

    2016-12-08

    Supercritical carbon dioxide (SC-CO 2 ) has been used for the first time as a reaction medium for the dehydration of glycerol to acrolein catalyzed by a solid acid. Unprecedented catalyst stability over 528 hours of time-on-stream was achieved and the rate of coke deposition on the zeolite catalyst was the lowest among extensive previous studies, showing potential for industrial application. Coking pathways in SC-CO 2 were also elucidated for future development. The results have potential implications for other dehydration reactions catalyzed by solid acids. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. Application of acid mine drainage for coagulation/flocculation of microalgal biomass.

    PubMed

    Salama, El-Sayed; Kim, Jung Rae; Ji, Min-Kyu; Cho, Dong-Wan; Abou-Shanab, Reda A I; Kabra, Akhil N; Jeon, Byong-Hun

    2015-06-01

    A novel application of acid mine drainage (AMD) for biomass recovery of two morphologically different microalgae species with respect to AMD dosage, microalgal cell density and pH of medium was investigated. Optimal flocculation of Scenedesmus obliquus and Chlorella vulgaris occurred with 10% dosage of AMD at an initial pH 9 for both 0.5 and 1.0 g/L cell density. The flocculation efficiency was 89% for S. obliquus and 93% for C. vulgaris. Zeta potential (ZP) was increased from -10.66 to 1.77 and -13.19 to 1.33 for S. obliquus and C. vulgaris, respectively. Scanning electron microscope with energy-dispersive X-ray of the microalgae floc confirmed the sweeping floc formation mechanism upon the addition of AMD. Application of AMD for the recovery of microalgae biomass is a cost-effective method, which might further allow reuse of flocculated medium for algal cultivation, thereby contributing to the economic production of biofuel from microalgal biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. PicoGreen dye as an active medium for plastic lasers

    NASA Astrophysics Data System (ADS)

    Pradeep, C.; Vallabhan, C. P. G.; Radhakrishnan, P.; Nampoori, V. P. N.

    2015-08-01

    Deoxyribonucleic acid lipid complex thin films are used as a host material for laser dyes. We tested PicoGreen dye, which is commonly used for the quantification of single and double stranded DNA, for its applicability as lasing medium. PicoGreen dye exhibits enhanced fluorescence on intercalation with DNA. This enormous fluorescence emission is amplified in a planar microcavity to achieve yellow lasing. Here the role of DNA is not only a host medium, but also as a fluorescence dequencher. With the obtained results we have ample reasons to propose PicoGreen dye as a lasing medium, which can lead to the development of DNA based bio-lasers.

  6. An improved agar medium for growth of Geobacillus thermoglucosidarius strains.

    PubMed

    Javed, M; Baghaei-Yazdi, N; Qin, W; Amartey, S

    2017-01-01

    Geobacillus species have potential applications in many biotechnological processes. They are fastidious in their vitamin and amino acid requirements. A new semi-defined agar medium (SDM) was developed which gave consistently high viable cell counts of various G. thermoglucosidasius strains (5×10 8 -6×10 8 cfu/ml) under aerobic conditions at 70°C. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. An efficient, widely applicable cryopreservation of Lilium shoot tips by droplet vitrification

    USDA-ARS?s Scientific Manuscript database

    We report a straightforward and widely applicable cryopreservation method for Lilium shoot tips. This method uses adventitious shoots that were induced from leaf segments cultured for 4 weeks on a shoot regeneration medium containing 1 mg L-1 a-naphthaleneacetic acid (NAA) and 0.5 mg L-1 thidiazuron...

  8. Knocking out the MFE-2 gene of Candida bombicola leads to improved medium-chain sophorolipid production.

    PubMed

    Van Bogaert, Inge N A; Sabirova, Julia; Develter, Dirk; Soetaert, Wim; Vandamme, Erick J

    2009-06-01

    The nonpathogenic yeast Candida bombicola synthesizes sophorolipids. These biosurfactants are composed of the disaccharide sophorose linked to a long-chain hydroxy fatty acid and have potential applications in the food, pharmaceutical, cosmetic and cleaning industries. In order to expand the range of application, a shift of the fatty acid moiety towards medium-chain lengths would be recommendable. However, the synthesis of medium-chain sophorolipids by C. bombicola is a challenging objective. First of all, these sophorolipids can only be obtained by fermentations on unconventional carbon sources, which often have a toxic effect on the cells. Furthermore, medium-chain substrates are partially metabolized in the beta-oxidation pathway. In order to redirect unconventional substrates towards sophorolipid synthesis, the beta-oxidation pathway was blocked on the genome level by knocking out the multifunctional enzyme type 2 (MFE-2) gene. The total gene sequence of the C. bombicola MFE-2 (6033 bp) was cloned (GenBank accession number EU371724), and the obtained nucleotide sequence was used to construct a knock-out cassette. Several knock-out mutants with the correct geno- and phenotype were evaluated in a fermentation on 1-dodecanol. All mutants showed a 1.7-2.9 times higher production of sophorolipids, indicating that in those strains the substrate is redirected towards the sophorolipid synthesis.

  9. Wall Teichoic Acids Are Involved in the Medium-Induced Loss of Function of the Autolysin CD11 against Clostridium difficile

    PubMed Central

    Wu, Xia; Paskaleva, Elena E.; Mehta, Krunal K.; Dordick, Jonathan S.; Kane, Ravi S.

    2016-01-01

    Bacterial lysins are potent antibacterial enzymes with potential applications in the treatment of bacterial infections. Some lysins lose activity in the growth media of target bacteria, and the underlying mechanism remains unclear. Here we use CD11, an autolysin of Clostridium difficile, as a model lysin to demonstrate that the inability of this enzyme to kill C. difficile in growth medium is not associated with inhibition of the enzyme activity by medium, or the modification of the cell wall peptidoglycan. Rather, wall teichoic acids (WTAs) appear to prevent the enzyme from binding to the cells and cleaving the cell wall peptidoglycan. By partially blocking the biosynthetic pathway of WTAs with tunicamycin, cell binding improved and the lytic efficacy of CD11 was significantly enhanced. This is the first report of the mechanism of lysin inactivation in growth medium, and provides insights into understanding the behavior of lysins in complex environments, including the gastrointestinal tract. PMID:27759081

  10. Process for separation and preconcentration of radium from water

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip; Chiarizia, Renato; Bartsch, Richard A.

    1999-01-01

    A process for preconcentrating and separating radium from a contaminated solution containing at least water and radium includes the steps of adding a quantity of a water-soluble macrocyclic polyether to the contaminated solution to form a combined solution. An acid is added to the combined solution to form an acidic combined solution having an ›H.sup.+ ! concentration of about 0.5M. The acidic combined solution is contacted with a sulfonic acid-based strong acid cation exchange medium or a organophilic sulfonic acid medium having a plurality of binding sites thereon to bind the radium thereto and to form a radium-depleted solution. The radium-depleted solution is separated from the strong acid cation exchange medium or organophilic sulfonic acid medium. The radium remaining bound to the exchange medium or organophilic reagent is then stripped from the exchange medium or organophilic medium and the activity of the radium is measured.

  11. Process for separation and preconcentration of radium from water

    DOEpatents

    Dietz, M.; Horwitz, E.P.; Chiarizia, R.; Bartsch, R.A.

    1999-01-26

    A process for preconcentrating and separating radium from a contaminated solution containing at least water and radium includes the steps of adding a quantity of a water-soluble macrocyclic polyether to the contaminated solution to form a combined solution. An acid is added to the combined solution to form an acidic combined solution having an [H{sup +}] concentration of about 0.5M. The acidic combined solution is contacted with a sulfonic acid-based strong acid cation exchange medium or a organophilic sulfonic acid medium having a plurality of binding sites thereon to bind the radium thereto and to form a radium-depleted solution. The radium-depleted solution is separated from the strong acid cation exchange medium or organophilic sulfonic acid medium. The radium remaining bound to the exchange medium or organophilic reagent is then stripped from the exchange medium or organophilic medium and the activity of the radium is measured. 24 figs.

  12. Environmentally Friendly Production of D(−) Lactic Acid by Sporolactobacillus nakayamae: Investigation of Fermentation Parameters and Fed-Batch Strategies

    PubMed Central

    Michelz Beitel, Susan; Fontes Coelho, Luciana; Sass, Daiane Cristina

    2017-01-01

    The interest in the production of lactic acid has increased due to its wide range of applications. In the present study, the variables that affect fermentative D(−) lactic acid production were investigated: neutralizing agents, pH, temperature, inoculum percentage, agitation, and concentration of the medium components. An experimental design was applied to determine the optimal concentrations of the medium components and fermentation was studied using different feeding strategies. High production (122.41 g/L) and productivity (3.65 g/L·h) were efficiently achieved by Sporolactobacillus nakayamae in 54 h using a multipulse fed-batch technique with an initial medium containing 35 g/L of yeast extract (byproduct of alcohol production), 60 g/L of crystallized sugar, and 7.5 mL/L of salts. The fermentation process was conducted at 35°C and pH 6.0 controlled by NaOH with a 20% volume of inoculum and agitation at 125 rpm. The production of a high optically pure concentration of D(−) lactic acid combined with an environmentally friendly NaOH-based process demonstrates that S. nakayamae is a promising strain for D(−) lactic acid production. PMID:29081803

  13. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Holographic sensors for diagnostics of solution components

    NASA Astrophysics Data System (ADS)

    Kraiskii, A. V.; Postnikov, V. A.; Suitanov, T. T.; Khamidulin, A. V.

    2010-02-01

    The properties of holographic sensors of two types are studied. The sensors are based on a three-dimensional polymer-network matrix of copolymers of acrylamide, acrylic acid (which are sensitive to the medium acidity and bivalent metal ions) and aminophenylboronic acid (sensitive to glucose). It is found that a change in the ionic composition of a solution results in changes in the distance between layers and in the diffraction efficiency of holograms. Variations in the shape of spectral lines, which are attributed to the inhomogeneity of a sensitive layer, and nonmonotonic changes in the emulsion thickness and diffraction efficiency were observed during transient processes. The composition of the components of a hydrogel medium is selected for systems which can be used as a base for glucose sensors with the mean holographic response in the region of physiological glucose concentration in model solutions achieving 40 nm/(mmol L-1). It is shown that the developed holographic sensors can be used for the visual and instrumental determination of the medium acidity, alcohol content, ionic strength, bivalent metal salts and the quality of water, in particular, for drinking.

  14. ADSORPTION AND MEMBRANE SEPARATION MEASUREMENTS WITH MIXTURES OF ETHANOL, ACETIC ACID, AND WATER

    EPA Science Inventory

    Biomass fermentation produces ethanol and other renewable biofuels. Pervaporation using hydrophobic membranes is potentially a cost-effective means of removing biofuels from fermentation broths for small- to medium-scale applications. Silicalite-filled polydimethylsiloxane (PDMS)...

  15. Adding of ascorbic acid to the culture medium influences the antioxidant status and some biochemical parameters in the hen granulosa cells.

    PubMed

    Capcarova, M; Kolesarova, A; Kalafova, A; Bulla, J; Sirotkin, A V

    2015-07-01

    The aim of the present study was to determine the activity of superoxide dismutase (SOD), total antioxidant status (TAS) of the hen granulosa cells, and selected biochemical parameters, including calcium, phosphorus, sodium, potassium, glucose, cholesterol, proteins, in the culture medium of granulosa cells after exposing them to ascorbic acid in vitro conditions. Ovarian granulosa cells of hens were incubated with various doses of ascorbic acid (E1 0.09 mg/ml, E2 0.13 mg/ml, E3 0.17 mg/ml, E4 0.33 mg/ml, E5 0.5 mg/ml). Ascorbic acid did not manifest antioxidant potential and higher doses of ascorbic acid (0.17; 0.33 and 0.5 mg/ml) decreased the activity of SOD in granulosa cells. Vitamin application resulted in a significantly (p<0.05) higher accumulation of Na+ and K+ in culture media of granulosa cells and decreased the concentration of glucose and proteins. These results indicate that ascorbic acid might be involved in the regulation of selected biochemical and physiological processes in ovarian granulosa cells.

  16. Bile resistance in Lactococcus lactis strains varies with cellular fatty acid composition: analysis by using different growth media.

    PubMed

    Kimoto-Nira, Hiromi; Kobayashi, Miho; Nomura, Masaru; Sasaki, Keisuke; Suzuki, Chise

    2009-05-31

    Bile resistance is one of the basic characteristics of probiotic bacteria. The aim of this study was to investigate the characteristics of bile resistance in lactococci by studying the relationship between bile resistance and cellular fatty acid composition in lactococcci grown on different media. We determined the bile resistance of 14 strains in lactose-free M17 medium supplemented with either glucose only (GM17) or lactose only (LM17). Gas chromatographic analyses of free lipids extracted from the tested strains were used for determining their fatty acid composition. A correlation analysis of all strains grown in both media revealed significant positive correlations between bile resistance and relative contents of hexadecanoic acid and octadecenoic acid, and negative correlations between bile resistance and relative contents of hexadecenoic acid and C-19 cyclopropane fatty acid. It is also a fact that the fatty acids associated with bile resistance depended on species, strain, and/or growth medium. In L. lactis subsp. cremoris strains grown in GM17 medium, the bile-resistant strains had significantly more octadecenoic acid than the bile-sensitive strains. In LM17 medium, bile-resistant strains had significantly more octadecenoic acid and significantly less C-19 cyclopropane fatty acid than the bile-sensitive strains. In L. lactis subsp. lactis strains, bile resistances of some of the tested strains were altered by growth medium. Some strains were resistant to bile in GM17 medium but sensitive to bile in LM17 medium. Some strains were resistant in both media tested. The strains grown in GM17 medium had significantly more hexadecanoic acid and octadecenoic acid, and significantly less tetradecanoic acid, octadecadienoic acid and C-19 cyclopropane fatty acid than the strains grown in LM17 medium. In conclusion, the fatty acid compositions of the bile-resistant lactococci differed from those of the bile-sensitive ones. More importantly, our data suggest that altering their fatty acid composition (i.e. increased hexadecanoic acid and octadecenoic acid and decreased hexadecenoic acid and C-19 cyclopropane fatty acid) by changing growth conditions may be a useful way to enhance their bile resistance in lactococci.

  17. Application of acetate, lactate, and fumarate as electron donors in microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Vasyliv, Oresta M.; Bilyy, Oleksandr I.; Ferensovych, Yaroslav P.; Hnatush, Svitlana O.

    2013-09-01

    Microbial fuel cells (MFCs) are devices that use bacteria as the catalysts to oxidize organic and inorganic matter and generate current. Up to now, several classes of extracellular electron transfer mechanisms have been elucidated for various microorganisms. Shewanellaceae and Geobacteraceae families include the most of model exoelectrogenic microorganisms. Desulfuromonas acetoxidans bacterium inhabits aquatic sedimental sulfur-containing environments and is philogenetically close to representatives of Geobacteraceae family. Two chamber microbial fuel cell (0.3 l volume) was constructed with application of D. acetoxidans IMV B-7384 as anode biocatalyst. Acetic, lactic and fumaric acids were separately applied as organic electron donors for bacterial growth in constructed MFC. Bacterial cultivation in MFC was held during twenty days. Lactate oxidation caused electric power production with the highest value up to 0.071 mW on 64 hour of D. acetoxidans IMV B-7384 growth. Addition of acetic and fumaric acids into bacterial growth medium caused maximal power production up to 0.075 and 0.074 mW respectively on the 40 hour of their growth. Increasing of incubation time up to twentieth day caused decrease of generated electric power till 0.018 mW, 0.042 mW and 0.047 mW under usage of lactic, acetic and fumaric acids respectively by investigated bacteria. Power generation by D. acetoxidans IMV B-7384 was more stabile and durable under application of acetic and fumaric acids as electron donors in constructed MFC, than under addition of lactic acid in the same concentration into the growth medium.

  18. Phytase production by Sporotrichum thermophile in a cost-effective cane molasses medium in submerged fermentation and its application in bread.

    PubMed

    Singh, B; Satyanarayana, T

    2008-12-01

    Phytase production by Sporotrichum thermophile in a cost-effective cane molasses medium in submerged fermentation and its application in bread. The production of phytase by a thermophilic mould S. thermophile was investigated using free and immobilized conidiospores in cane molasses medium in shake flasks, and stirred tank and air-lift fermenters. Among surfactants tested, Tweens (Tween-20, 40 and 80) and sodium oleate increased phytase accumulation, whereas SDS and Triton X-100 inhibited the enzyme production. The mould produced phytase optimally at a(w) 0.95, and it declined sharply below this a(w) value. The enzyme production was comparable in air-lift and stirred tank reactors with a marked reduction in fermentation time. Among the matrices tried, Ca-alginate was the best for conidiospore immobilization, and fungus secreted sustained levels of enzyme titres over five cycles. The phytic acid in the dough was efficiently hydrolysed by the enzyme accompanied by the liberation of soluble phosphate in the bread. The phytase production by S. thermophile was enhanced in the presence of Tween-80 in cane molasses medium. A peak in enzyme production was attained in 48 h in the fermenter when compared with that of 96 h in shake flasks. Ca-alginate immobilized conidiospores germinated to produce fungal growth that secreted sustained levels of phytase over five cycles. The bread made with phytase contained reduced level of phytic acid and a high-soluble phosphate. The phytase accumulation by S. thermophile was increased by the surfactants. The sustainability of enzyme production in stirred tank and air-lift fermenters suggested the possibility for scaling up of phytase. The bread made with phytase contained low level of antinutrient, i.e. phytic acid.

  19. Fatty acid and sterol composition of three phytomonas species.

    PubMed

    Nakamura, C V; Waldow, L; Pelegrinello, S R; Ueda-Nakamura, T; Filho, B A; Filho, B P

    1999-01-01

    Fatty acid and sterol analysis were performed on Phytomonas serpens and Phytomonas sp. grown in chemically defined and complex medium, and P. françai cultivated in complex medium. The three species of the genus Phytomonas had qualitatively identical fatty acid patterns. Oleic, linoleic, and linolenic were the major unsaturated fatty acids. Miristic and stearic were the major saturated fatty acids. Ergosterol was the only sterol isolated from Phytmonas sp. and P. serpens grown in a sterol-free medium, indicating that it was synthesized de novo. When P. françai that does not grow in defined medium was cultivated in a complex medium, cholesterol was the only sterol detected. The fatty acids and sterol isolated from Phytomonas sp. and P. serpens grown in a chemically defined lipid-free medium indicated that they were able to biosynthesize fatty acids and ergosterol from acetate or from acetate precursors such as glucose or threonine.

  20. De novo fatty acid biosynthesis and elongation in very long-chain acyl-CoA dehydrogenase-deficient mice supplemented with odd or even medium-chain fatty acids.

    PubMed

    Tucci, Sara; Behringer, Sidney; Spiekerkoetter, Ute

    2015-11-01

    An even medium-chain triglyceride (MCT)-based diet is the mainstay of treatment in very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD). Previous studies with magnetic resonance spectroscopy have shown an impact of MCT on the average fatty acid chain length in abdominal fat. We therefore assume that medium-chain fatty acids (MCFAs) are elongated and accumulate in tissue as long-chain fatty acids. In this study, we explored the hepatic effects of long-term supplementation with MCT or triheptanoin, an odd-chain C7-based triglyceride, in wild-type and VLCAD-deficient (VLCAD(-/-) ) mice after 1 year of supplementation as compared with a control diet. The de novo biosynthesis and elongation of fatty acids, and peroxisomal β-oxidation, were quantified by RT-PCR. This was followed by a comprehensive analysis of hepatic and cardiac fatty acid profiles by GC-MS. Long-term application of even and odd MCFAs strongly induced de novo biosynthesis and elongation of fatty acids in both wild-type and VLCAD(-/-) mice, leading to an alteration of the hepatic fatty acid profiles. We detected de novo-synthesized and elongated fatty acids, such as heptadecenoic acid (C17:1n9), eicosanoic acid (C20:1n9), erucic acid (C22:1n9), and mead acid (C20:3n9), that were otherwise completely absent in mice under control conditions. In parallel, the content of monounsaturated fatty acids was massively increased. Furthermore, we observed strong upregulation of peroxisomal β-oxidation in VLCAD(-/-) mice, especially when they were fed an MCT diet. Our data raise the question of whether long-term MCFA supplementation represents the most efficient treatment in the long term. Studies on the hepatic toxicity of triheptanoin are still ongoing. © 2015 FEBS.

  1. Improved production of poly-γ-glutamic acid by Bacillus subtilis D7 isolated from Doenjang, a Korean traditional fermented food, and its antioxidant activity.

    PubMed

    Lee, Na-Ri; Lee, Sang-Mee; Cho, Kwang-Sik; Jeong, Seong-Yun; Hwang, Dae-Youn; Kim, Dong-Seob; Hong, Chang-Oh; Son, Hong-Joo

    2014-06-01

    The objectives of this study was to improve poly-γ-glutamic acid (γ-PGA) production by Bacillus subtilis D7 isolated from a Korean traditional fermented food and to assess its antioxidant activity for applications in the cosmetics and pharmaceutical industries. Strain D7 produced γ-PGA in the absence of L-glutamic acid, indicating L-glutamic acid-independent production. However, the addition of L-glutamic acid increased γ-PGA production. Several tricarboxylic acid cycle intermediates and amino acids could serve as the metabolic precursors for γ-PGA production, and the addition of pyruvic acid and D-glutamic acid to culture medium improved the yield of γ-PGA markedly. The maximum yield of γ-PGA obtained was 24.93 ± 0.64 g/l in improved medium, which was about 5.4-fold higher than the yield obtained in basal medium. γ-PGA was found to have 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (46.8 ± 1.5 %), hydroxyl radical scavenging activity (52.0 ± 1.8 %), 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonate (ABTS) radical scavenging activity (42.1 ± 1.8 %), nitric oxide scavenging activity (35.1 ± 1.3 %), reducing power (0.304 ± 0.008), and metal chelating activity (91.3 ± 3.5 %). These results indicate that γ-PGA has a potential use in the food, cosmetics, and biomedical industries for the development of novel products with radical scavenging activity. As far as we are aware, this is the first report to describe the antioxidant activityof γ-PGA produced by bacteria.

  2. The association between different molecular weights of hyaluronic acid and CHAD, HIF-1α, COL2A1 expression in chondrocyte cultures

    PubMed Central

    Sirin, Duygu Yasar; Kaplan, Necati; Yilmaz, Ibrahim; Karaarslan, Numan; Ozbek, Hanefi; Akyuva, Yener; Kaya, Yasin Emre; Oznam, Kadir; Akkaya, Nuray; Guler, Olcay; Akkaya, Semih; Mahirogullari, Mahir

    2018-01-01

    The aim of the present study was to investigate the effects of three different formulations of hyaluronic acid (HA): Low molecular weight (MW) Sinovial One®, medium MW Viscoplus® and high MW Durolane®, on chondrocyte proliferation and collagen type II (COL2A1), hypoxia-inducible factor 1α (HIF-1α) and chondroadherin (CHAD) expression in primary chondrocyte cultures. Standard primary chondrocyte cultures were established from osteochondral tissues surgically obtained from 6 patients with gonarthrosis. Cell morphology was evaluated using an inverted light microscope; cell proliferation was determined with a MTT assay and confirmed with acridine orange/propidium iodide staining. Levels of CHAD, COL2A1 and HIF-1α expression were assessed using specific TaqMan gene expression assays. The results demonstrated the positive effect of HA treatment on cell proliferation, which was independent from the MW. COL2A1 expression increased in the medium and high MW HA treated groups. It was observed that HIF-1α expression increased in the high MW treated group alone. CHAD expression increased only in the medium MW HA treated group. Evaluation of gene expression revealed that levels of expression increased as the duration of HA application increased, in the medium and high MW HA treated groups. In terms of increased viability and proliferation, a longer duration of HA application was more effective. Taken together, it may be concluded that the administration of medium and high MW HA may be a successful way of treating diseases affecting chondrocytes in a clinical setting. PMID:29849772

  3. An HPLC method for the determination of selected amino acids in human embryo culture medium.

    PubMed

    Drábková, Petra; Andrlová, Lenka; Kanďár, Roman

    2017-02-01

    A method for the determination of selected amino acids in culture medium using HPLC with fluorescence detection is described. Twenty hours after intra-cytoplasmic sperm injection, one randomly selected zygote was transferred to the culture medium. After incubation (72 h after fertilization), the culture medium in which the embryo was incubated and blank medium was immediately stored at -80°C. Filtered medium samples were derivatized with ortho-phthalaldehyde (naphthalene-2,3-dicarboxaldehyde), forming highly fluorescent amino acids derivatives. Reverse-phase columns (LichroCART, Purospher STAR RP 18e or Ascentis Express C 18 ) were used for the separation. The derivatives were analyzed by gradient elution with a mobile phase containing ethanol and sodium dihydrogen phosphate. The analytical performance of this method is satisfactory for all amino acids; the intra-assay coefficients of variation were <10% and quantitative recoveries were between 95.5 and 104.4%. Changes in the levels of selected amino acids before and after human embryo cultivation were observed. After embryo incubation, the levels of all amino acids in the medium were increased, apart from aspartate and asparagine. After the cultivation of some embryos, amino acids which were not part of the medium were detected. Low amino acids turnover was observed in some embryos. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Purification and characterization of gamma poly glutamic acid from newly Bacillus licheniformis NRC20.

    PubMed

    Tork, Sanaa E; Aly, Magda M; Alakilli, Saleha Y; Al-Seeni, Madeha N

    2015-03-01

    γ-poly glutamic acid (γ-PGA) has received considerable attention for pharmaceutical and biomedical applications. γ-PGA from the newly isolate Bacillus licheniformis NRC20 was purified and characterized using diffusion distance agar plate, mass spectrometry and thin layer chromatography. All analysis indicated that γ-PGA is a homopolymer composed of glutamic acid. Its molecular weight was determined to be 1266 kDa. It was composed of L- and D-glutamic acid residues. An amplicon of 3050 represents the γ-PGA-coding genes was obtained, sequenced and submitted in genbank database. Its amino acid sequence showed high similarity with that obtained from B. licheniformis strains. The bacterium NRC 20 was independent of L-glutamic acid but the polymer production enhanced when cultivated in medium containing L-glutamic acid as the sole nitrogen source. Finally we can conclude that γ-PGA production from B. licheniformis NRC20 has many promised applications in medicine, industry and nanotechnology. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Composition of plasma and atheromatous plaque among coronary artery disease subjects consuming coconut oil or sunflower oil as the cooking medium.

    PubMed

    Palazhy, Sabitha; Kamath, Prakash; Rajesh, P C; Vaidyanathan, Kannan; Nair, Shiv K; Vasudevan, D M

    2012-12-01

    Coconut oil, which is rich in medium-chain saturated fatty acids, is the principal cooking medium of the people of Kerala, India. Replacement of saturated fat with polyunsaturated fat is effective in reducing serum cholesterol levels. However, the effect of substituting coconut oil with sunflower oil on the fatty acid composition of plaque has not been thoroughly investigated. We therefore evaluated and compared the fatty acid composition of plasma and plaque among subjects consuming coconut oil or sunflower oil as the cooking medium. Endarterectomy samples and plasma samples were obtained from subjects who underwent coronary artery bypass grafts (n = 71). The subjects were grouped based on the type of oil they were using as their cooking medium (coconut oil or sunflower oil). The fatty acid composition in the plaques and the plasma was determined by HPLC and the data were analyzed statistically. Sunflower oil consumers had elevated concentrations of linoleic acid (p = 0.001) in plasma, while coconut oil users had higher myristic acid levels (p = 0.011) in plasma. Medium-chain fatty acids did not differ significantly between the two groups in the plasma. Medium-chain fatty acids were detected in the plaques in both groups of subjects. In contrast to previous reports, long-chain saturated fatty acids dominated the lipid content of plaque in this population, and the fatty acid composition of plaque was not significantly different between the two groups. No correlation between fatty acids of plasma and plaque was observed in either group. A change in cooking medium, although it altered the plasma fatty acid composition, was not reflected in the plaque composition.

  6. Electrospinning and stabilization of chitosan nanofiber mats

    NASA Astrophysics Data System (ADS)

    Grimmelsmann, N.; Grothe, T.; Homburg, S. V.; Ehrmann, A.

    2017-10-01

    Chitosan is of special interest for biotechnological and medical applications due to its antibacterial, antifungal and other intrinsic physical and chemical properties. The biopolymer can, e.g., be used for biotechnological purposes, as a filter medium, in medical products, etc. In all these applications, the inner surface should be maximized to increase the contact area with the filtered medium etc. and thus the chitosan’s efficacy. Chitosan dissolves in acidic solutions, opposite to neutral water. Electrospinning is possible, e.g., by co-spinning with PEO (poly(ethylene oxide)). Tests with different chitosan:PEO ratios revealed that higher PEO fractions resulted in better spinnability and more regular fibre mats, but make stabilization of the fibre structure more challenging.

  7. STABILITY OF MFI ZEOLITE-FILLED PDMS MEMBRANES DURING PERVAPORATIVE ETHANOL RECOVERY FROM AQUEOUS MIXTURES CONTAINING ACETIC ACID

    EPA Science Inventory

    Pervaporation is potentially a cost-effective means of recovering biofuels, such as ethanol, from biomass fermentation broths for small- to medium-scale applications (~2 - 20 million liters per year). Hydrophobic zeolite-filled polydimethylsiloxane (PDMS) membranes have been sho...

  8. [Studies on the role of silicic acid in the development of higher plants].

    PubMed

    Werner, D

    1967-03-01

    Germanium acid, a specific inhibitor of the silicic acid metabolism in diatoms, inhibits the growth of Sinapis alba, Lemna minor, Wolffia arrhiza, Nicotiana tabacum, Tradescantia spec, Zinnia elegans, and Secale cereale when applied in the same concentrations as those used in the case of diatoms (15-75 μg GeO2/ml medium). The growth of Aspergillus niger, Phycomyces blakesleanus, Escherichia coli K 12, Euglena gracilis and Pandorina morum is not influenced by these and higher concentrations of Germanium acid. By application of high concentrations of silicic acid, the growth inhibition produced by germanium acid in Lemna minor is partially reduced. Plants of Lemna minor which have been inhibited by germanium acid are essentially smaller than plants grown in a normal medium; their chlorophyll content is significantly decreased. The growth of the roots in Lemna is particularly inhibited. Isolated growing roots of Lycopersicon pimpinellifolium MILL. are inhibited by small concentrations of Ge(OH)4 (ca. 1,5×10(-4) M/l). In contrast to the growth of older plants, the germination of Secale cereale and Sinapis alba is not influenced by Ge(OH)4. The effects of germanium acid are discussed in relation to the physiological role of silicic acid. The results suggest that the element silicon, in the form of silicic acid, is generally essential for the normal development of higher plants.

  9. Control of Clostridium perfringens-induced necrotic enteritis in broilers by target-released butyric acid, fatty acids and essential oils.

    PubMed

    Timbermont, L; Lanckriet, A; Dewulf, J; Nollet, N; Schwarzer, K; Haesebrouck, F; Ducatelle, R; Van Immerseel, F

    2010-04-01

    The efficacy of target-released butyric acid, medium-chain fatty acids (C(6) to C(12) but mainly lauric acid) and essential oils (thymol, cinnamaldehyde, essential oil of eucalyptus) micro-encapsulated in a poly-sugar matrix to control necrotic enteritis was investigated. The minimal inhibitory concentrations of the different additives were determined in vitro, showing that lauric acid, thymol, and cinnamaldehyde are very effective in inhibiting the growth of Clostridium perfringens. The in vivo effects were studied in two trials in an experimental necrotic enteritis model in broiler chickens. In the first trial, four groups of chickens were fed a diet supplemented with butyric acid, with essential oils, with butyric acid in combination with medium-chain fatty acids, or with butyric acid in combination with medium-chain fatty acids and essential oils. In all groups except for the group receiving only butyric acid, a significant decrease in the number of birds with necrotic lesions was found compared with the infected, untreated control group. In the second trial the same products were tested but at a higher concentration. An additional group was fed a diet supplemented with only medium-chain fatty acids. In all groups except for that receiving butyric acid in combination with medium-chain fatty acids and essential oils, a significant decrease in the number of birds with necrotic lesions was found compared with the infected, untreated control group. These results suggest that butyric acid, medium-chain fatty acids and/or essential oils may contribute to the prevention of necrotic enteritis in broilers.

  10. Mesenchymal stem cell-conditioned medium triggers neuroinflammation and reactive species generation in organotypic cultures of rat hippocampus.

    PubMed

    Horn, Ana Paula; Bernardi, Andressa; Luiz Frozza, Rudimar; Grudzinski, Patrícia Bencke; Hoppe, Juliana Bender; de Souza, Luiz Fernando; Chagastelles, Pedro; de Souza Wyse, Angela Terezinha; Bernard, Elena Aida; Battastini, Ana Maria Oliveira; Campos, Maria Martha; Lenz, Guido; Nardi, Nance Beyer; Salbego, Christianne

    2011-07-01

    Cell therapy using bone marrow-derived mesenchymal stem cells (MSCs) seems to be a new alternative for the treatment of neurodegenerative diseases. Despite several promising results with their use, possible side effects are still unknown. In a previous work, we have shown that MSC-conditioned medium is toxic to hippocampal slice cultures and aggravates cell death induced by oxygen and glucose deprivation. In this work, we investigated whether the inflammatory response and/or reactive species formation could be involved in that toxicity. Rat organotypic hippocampal cultures were exposed for 24 h to conditioned medium from MSCs isolated from rat bone marrow. A marked glial activation was observed after exposure of cultures to MSC-conditioned medium, as evidenced by glial fibrillary acid protein (GFAP) and isolectin B(4) increase. Tumor necrosis factor-α and interleukin-6 levels were increased in the culture medium, and 2,7-dihydrodichlorofluorescein diacetate oxidation (indicating reactive species generation) and inducible nitric oxide synthase (iNOS) immunocontent were also higher after exposure of cultures to MSC-conditioned medium. Antioxidants (ascorbic acid and TROLOX(®)), N(ω)-nitro-l-arginine methyl ester hydrochloride, and anti-inflammatory drugs (indomethacin and dexamethasone) reduced cell death in hippocampal organotypic cultures after their exposure to MSC-conditioned medium. The results obtained here suggest that MSC-secreted factors trigger reactive species generation and neuroinflammation in organotypic cultures of hippocampus, introducing a note of caution in the use of these cells for neurological application.

  11. Phospholipid Fatty Acids as Physiological Indicators of Paracoccus denitrificans Encapsulated in Silica Sol-Gel Hydrogels

    PubMed Central

    Trögl, Josef; Jirková, Ivana; Kuráň, Pavel; Akhmetshina, Elmira; Brovdyová, Tat′jána; Sirotkin, Alexander; Kirilina, Tatiana

    2015-01-01

    The phospholipid fatty acid (PLFA) content was determined in samples of Paracoccus denitrificans encapsulated in silica hydrogel films prepared from prepolymerized tetramethoxysilane (TMOS). Immediately after encapsulation the total PLFA concentration was linearly proportional to the optical density (600 nm) of the input microbial suspension (R2 = 0.99). After 7 days this relationship remained linear, but with significantly decreased slope, indicating a higher extinction of bacteria in suspensions of input concentration 108 cells/mL and higher. trans-Fatty acids, indicators of cytoplasmatic membrane disturbances, were below the detection limit. The cy/pre ratio (i.e., ratio of cyclopropylated fatty acids (cy17:0 + cy19:0) to their metabolic precursors (16:1ω7 + 18:1ω7)), an indicator of the transition of the culture to a stationary growth-phase, decreased depending on co-immobilization of nutrients in the order phosphate buffer > mineral medium > Luria Broth rich medium. The ratio, too, was logarithmically proportional to cell concentration. These results confirm the applicability of total PLFA as an indicator for the determination of living biomass and cy/pre ratio for determination of nutrient limitation of microorganisms encapsulated in sol-gel matrices. This may be of interest for monitoring of sol-gel encapsulated bacteria proposed as optical recognition elements in biosensor construction, as well as other biotechnological applications. PMID:25690547

  12. Selective and cost-effective protocol to separate bioactive triterpene acids from plant matrices using alkalinized ethanol: Application to leaves of Myrtaceae species

    PubMed Central

    Lima, Adélia M. Belem; Siani, Antonio Carlos; Nakamura, Marcos Jun; D’Avila, Luiz Antonio

    2015-01-01

    Background: Triterpenes as betulinic (BA), oleanolic (OA) and ursolic acids (UA) have increasingly gained therapeutic relevance due to their wide scope of pharmacological activities. To fit large-scale demands, exploitable sources of these compounds have to be found and simple, cost-effective methods to extract them developed. Leaf material represents the best plant sustainable raw material. To obtain triterpene acid-rich extracts from leaves of Eugenia, Psidium and Syzygium species (Myrtaceae) by directly treating the dry plant material with alkalinized hydrated ethanol. This procedure was adapted from earlier methods to effect depolymerization of the leaf cutin. Materials and Methods: Extracts were prepared by shaking the milled dry leaves in freshly prepared 2% NaOH in 95% EtOH solution (1:4 w/v) at room temperature for 6 h. Working up the product in acidic aqueous medium led to clear precipitates in which BA, OA and UA were quantified by gas chromatography. Results: Pigment-free and low-polyphenol content extracts (1.2–2.8%) containing 6–50% of total triterpene acids were obtained for the six species assayed. UA (7–20%) predominated in most extracts, but BA preponderated in Eugenia florida (39%). Carried out in parallel, n-hexane defatted leaves led to up to 9% enhancement of total acids in the extracts. The hydroalcoholate treatment of Myrtaceae species dry leaves proved to be a cost-effective and environmentally friendly method to obtain triterpene acids, providing them be resistant to alkaline medium. These combined techniques might be applicable to other plant species and tissues. PMID:26246721

  13. Metabolic Engineering for Enhanced Medium Chain Omega Hydroxy Fatty Acid Production in Escherichia coli

    PubMed Central

    Xiao, Kang; Yue, Xiu-Hong; Chen, Wen-Chao; Zhou, Xue-Rong; Wang, Lian; Xu, Lin; Huang, Feng-Hong; Wan, Xia

    2018-01-01

    Medium chain hydroxy fatty acids (HFAs) at ω-1, 2, or 3 positions (ω-1/2/3) are rare in nature but are attractive due to their potential applications in industry. They can be metabolically engineered in Escherichia coli, however, the current yield is low. In this study, metabolic engineering with P450BM3 monooxygenase was applied to regulate both the chain length and sub-terminal position of HFA products in E. coli, leading to increased yield. Five acyl-acyl carrier protein thioesterases from plants and bacteria were first evaluated for regulating the chain length of fatty acids. Co-expression of the selected thioesterase gene CcFatB1 with a fatty acid metabolism regulator fadR and monooxygenase P450BM3 boosted the production of HFAs especially ω-3-OH-C14:1, in both the wild type and fadD deficient strain. Supplementing renewable glycerol to reduce the usage of glucose as a carbon source further increased the HFAs production to 144 mg/L, representing the highest titer of such HFAs obtained in E. coli under the comparable conditions. This study illustrated an improved metabolic strategy for medium chain ω-1/2/3 HFAs production in E. coli. In addition, the produced HFAs were mostly secreted into culture media, which eased its recovery. PMID:29467747

  14. A lignocellulosic hydrolysate-tolerant Aurantiochytrium sp. mutant strain for docosahexaenoic acid production.

    PubMed

    Qi, Feng; Zhang, Mingliang; Chen, Youwei; Jiang, Xianzhang; Lin, Jinxin; Cao, Xiao; Huang, Jianzhong

    2017-03-01

    To utilize lignocellulosic hydrolysate for docosahexaenoic acid (DHA) production, a novel mutant Aurantiochytrium sp. FN21 with strong tolerance against inhibitory lignocellulosic hydrolysate was obtained through continuous domestication processes from the parent strain Aurantiochytrium sp. FJU-512. Aurantiochytrium sp. FN21 can accumulate 21.3% and 30.7% more DHA compared to its parent strain cultured in fermentation medium and a medium with 50% (v/v) sugarcane bagasse hydrolysate (SBH), respectively. After optimization with different nitrogen sources, the highest lipid (11.84g/L) and DHA (3.15g/L) production were achieved in SBH. The results demonstrated that Aurantiochytrium sp. FN21 has the commercial applications for DHA production using lignocellulosic hydrolysate. In order to elucidate the tolerance mechanism, transcriptomic profiling of the two strains was studied. The highly up-regulated genes and corresponding cellular pathways (TCA cycle, amino acid biosynthesis, fatty acid metabolism and degradation of aromatic compounds) are considered to be associated with the hydrolysate-tolerance of Aurantiochytrium sp. FN21. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Lipozyme RM IM-catalyzed acidolysis of Cinnamomum camphora seed oil with oleic acid to produce human milk fat substitutes enriched in medium-chain fatty acids.

    PubMed

    Zou, Xian-Guo; Hu, Jiang-Ning; Zhao, Man-Li; Zhu, Xue-Mei; Li, Hong-Yan; Liu, Xiao-Ru; Liu, Rong; Deng, Ze-Yuan

    2014-10-29

    In the present study, a human milk fat substitute (HMFS) enriched in medium-chain fatty acids (MCFAs) was synthesized through acidolysis reaction from Cinnamomum camphora seed oil (CCSO) with oleic acid in a solvent-free system. A commercial immobilized lipase, Lipozyme RM IM, from Rhizomucor miehei, was facilitated as a biocatalyst. Effects of different reaction conditions, including substrate molar ratio, enzyme concentration, reaction temperature, and reaction time were investigated using response surface methodology (RSM) to obtain the optimal oleic acid incorporation. After optimization, results showed that the maximal incorporation of oleic acid into HMFS was 59.68%. Compared with CCSO, medium-chain fatty acids at the sn-2 position of HMFS accounted for >70%, whereas oleic acid was occupied predominantly at the sn-1,3 position (78.69%). Meanwhile, triacylglycerol (TAG) components of OCO (23.93%), CCO (14.94%), LaCO (13.58%), OLaO (12.66%), and OOO (11.13%) were determined as the major TAG species in HMFS. The final optimal reaction conditions were carried out as follows: substrate molar ratio (oleic acid/CCSO), 5:1; enzyme concentration, 12.5% (w/w total reactants); reaction temperature, 60 °C; and reaction time, 28 h. The reusability of Lipozyme RM IM in the acidolysis reaction was also evaluated, and it was found that it could be reused up to 9 times without significant loss of activities. Urea inclusion method was used to separate and purify the synthetic product. As the ratio of HMFS/urea increased to 1:2, the acid value lowered to the minimum. In a scale-up experiment, the contents of TAG and total tocopherols in HMFS (modified CCSO) were 77.28% and 12.27 mg/100 g, respectively. All of the physicochemical indices of purified product were within food standards. Therefore, such a MCFA-enriched HMFS produced by using the acidolysis method might have potential application in the infant formula industry.

  16. Demonstration of acid and water recovery systems: Applicability and operational challenges in Indian metal finishing SMEs.

    PubMed

    Balakrishnan, M; Batra, R; Batra, V S; Chandramouli, G; Choudhury, D; Hälbig, T; Ivashechkin, P; Jain, J; Mandava, K; Mense, N; Nehra, V; Rögener, F; Sartor, M; Singh, V; Srinivasan, M R; Tewari, P K

    2018-07-01

    Diffusion dialysis, acid retardation and nanofiltration plants were acquired from Europe and demonstrated in several Indian metal finishing companies over a three year period. These companies are primarily small and medium enterprises (SMEs). Free acid recovery rate from spent pickling baths using diffusion dialysis and retardation was in the range of 78-86% and 30-70% respectively. With nanofiltration, 80% recovery rate of rinse water was obtained. The demonstrations created awareness among the metal finishing companies to reuse resources (acid/water) from the effluent streams. However, lack of efficient oil separators, reliable chemical analysis and trained personnel as well as high investment cost limit the application of these technologies. Local manufacturing, plant customization and centralized treatment are likely to encourage the uptake of such technologies in the Indian metal finishing sector. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Modification of the Technical Properties of Lactobacillus johnsonii NCC 533 by Supplementing the Growth Medium with Unsaturated Fatty Acids ▿

    PubMed Central

    Muller, J. A.; Ross, R. P.; Sybesma, W. F. H.; Fitzgerald, G. F.; Stanton, C.

    2011-01-01

    The aim of this study was to investigate the influence of supplementing growth medium with unsaturated fatty acids on the technical properties of the probiotic strain Lactobacillus johnsonii NCC 533, such as heat and acid tolerance, and inhibition of Salmonella enterica serovar Typhimurium infection. Our results showed that the membrane composition and morphology of L. johnsonii NCC 533 were significantly changed by supplementing a minimal Lactobacillus medium with oleic, linoleic, and linolenic acids. The ratio of saturated to unsaturated plus cyclic fatty acids in the bacterial membrane decreased by almost 2-fold when minimal medium was supplemented with unsaturated fatty acids (10 μg/ml). The subsequent acid and heat tolerance of L. johnsonii decreased by 6- and 20-fold when the strain was grown in the presence of linoleic and linolenic acids, respectively, compared with growth in oleic acid (all at 10 μg/ml). Following acid exposure, significantly higher (P < 0.05) oleic acid content was detected in the membrane when growth medium was supplemented with linoleic or linolenic acid, indicating that saturation of the membrane fatty acids occurred during acid stress. Cell integrity was determined in real time during stressed conditions using a fluorescent viability kit in combination with flow cytometric analysis. Following heat shock (at 62.5°C for 5 min), L. johnsonii was unable to form colonies; however, 60% of the bacteria showed no cell integrity loss, which could indicate that the elevated heat inactivated vital processes within the cell, rendering it incapable of replication. Furthermore, L. johnsonii grown in fatty acid-enriched minimal medium had different adhesion properties and caused a 2-fold decrease in S. enterica serovar Typhimurium UK1-lux invasion of HT-29 epithelial cells compared with bacteria grown in minimal medium alone. This could be related to changes in the hydrophobicity and fluidity of the membrane. Our study shows that technical properties underlying probiotic survivability can be affected by nutrient composition of the growth medium. PMID:21821758

  18. Modification of the technical properties of Lactobacillus johnsonii NCC 533 by supplementing the growth medium with unsaturated fatty acids.

    PubMed

    Muller, J A; Ross, R P; Sybesma, W F H; Fitzgerald, G F; Stanton, C

    2011-10-01

    The aim of this study was to investigate the influence of supplementing growth medium with unsaturated fatty acids on the technical properties of the probiotic strain Lactobacillus johnsonii NCC 533, such as heat and acid tolerance, and inhibition of Salmonella enterica serovar Typhimurium infection. Our results showed that the membrane composition and morphology of L. johnsonii NCC 533 were significantly changed by supplementing a minimal Lactobacillus medium with oleic, linoleic, and linolenic acids. The ratio of saturated to unsaturated plus cyclic fatty acids in the bacterial membrane decreased by almost 2-fold when minimal medium was supplemented with unsaturated fatty acids (10 μg/ml). The subsequent acid and heat tolerance of L. johnsonii decreased by 6- and 20-fold when the strain was grown in the presence of linoleic and linolenic acids, respectively, compared with growth in oleic acid (all at 10 μg/ml). Following acid exposure, significantly higher (P < 0.05) oleic acid content was detected in the membrane when growth medium was supplemented with linoleic or linolenic acid, indicating that saturation of the membrane fatty acids occurred during acid stress. Cell integrity was determined in real time during stressed conditions using a fluorescent viability kit in combination with flow cytometric analysis. Following heat shock (at 62.5°C for 5 min), L. johnsonii was unable to form colonies; however, 60% of the bacteria showed no cell integrity loss, which could indicate that the elevated heat inactivated vital processes within the cell, rendering it incapable of replication. Furthermore, L. johnsonii grown in fatty acid-enriched minimal medium had different adhesion properties and caused a 2-fold decrease in S. enterica serovar Typhimurium UK1-lux invasion of HT-29 epithelial cells compared with bacteria grown in minimal medium alone. This could be related to changes in the hydrophobicity and fluidity of the membrane. Our study shows that technical properties underlying probiotic survivability can be affected by nutrient composition of the growth medium.

  19. Sulfonamide Resistance of Propionibacteria: Nutrition and Transporta

    PubMed Central

    Reddy, M. S.; Williams, F. D.; Reinbold, G. W.

    1973-01-01

    Three variations of a synthetic growth medium were used to study the folic acid and p-aminobenzoic acid (PABA) requirements of Propionibacterium. P. shermanii, P. freudenreichii, P. thoenii, and P. arabinosum synthesize folic acid and do not require PABA or folic acid. P. pentosaceum, P. jensenii, and P. rubrum are stimulated by folic acid or PABA, but do not show an absolute requirement. P. peterssonii shows a requirement for either PABA or folic acid. The addition of 300 μg of sulfadiazine per ml did not inhibit growth of propionibacteria in the synthetic medium, synthetic medium plus PABA, or synthetic medium plus folic acid. P. freudenreichii was not inhibited even when 500 μg of sulfadiazine per ml was added to the synthetic medium, nor did it degrade sulfadiazine significantly. Trimethoprim totally inhibited the growth of Propionibacterium. Radioactive sulfadiazine was transported by sulfadiazine-sensitive Escherichia coli but not by P. freudenreichii, indicating that the sulfadiazine resistance of propionibacteria could be mainly due to their inability to transport sulfonamides. PMID:4586139

  20. Lipases as biocatalysts for the synthesis of structured lipids.

    PubMed

    Jala, Ram Chandra Reddy; Hu, Peng; Yang, Tiankui; Jiang, Yuanrong; Zheng, Yan; Xu, Xuebing

    2012-01-01

    Structured lipids (SL) are broadly referred to as modified or synthetic oils and fats or lipids with functional or pharmaceutical applications. Some structured lipids, such as triglycerides that contain both long-chain (mainly essential) fatty acids and medium- or short-chain fatty acids and also artificial products that mimic the structure of natural materials, namely human milk fat substitutes and cocoa butter equivalents, have been discussed. Further, other modified or synthetic lipids, such as structured phospholipids and synthetic phenolic lipids are also included in this chapter. For all the products described in this chapter, enzymatic production in industry has been already conducted in one way or another. Cocoa butter equivalents, healthy oil containing medium-chain fatty acids, phosphatidyl serine, and phenol lipids from enzyme technology have been reported for commercial operation. As the demand for better quality functional lipids is increasing, the production of structured lipids becomes an interesting area. Thus, in this chapter we have discussed latest developments as well as present industrial situation of all commercially important structured lipids.

  1. PHAGE FORMATION IN STAPHYLOCOCCUS MUSCAE CULTURES

    PubMed Central

    Price, Winston H.

    1950-01-01

    1. Four strains of Staphylococcus muscae have been isolated which differ in their growth rates and phage syntheses in Fildes' synthetic medium. 2. Two of the strains when singly infected cannot release phage in Fildes' synthetic medium unless a substance present in certain acid-hydrolyzed proteins is added to the medium. One of these strains also requires other substance(s) present in acid-hydrolyzed proteins in order to grow in Fildes' medium. 3. The two strains which do not require the addition of the phage-stimulating factor have been found either to synthesize this substance, or one similar to it. One of these strains will not grow in Fildes' medium unless substance(s) present in acid-hydrolyzed proteins is added to the medium. 4. The purified acid-hydrolyzed protein factor necessary for virus liberation does not affect the multiplication rate of uninfected S. muscae cells in Fildes' synthetic medium. 5. The substance is not needed for the adsorption or the invasion of the host cell by the virus. In the absence of the factor, the virus is adsorbed to the cell and "kills" it. 6. An analysis carried out by means of the one-step growth curve technique has indicated that the substance is not concerned simply with the mechanism of virus release, but is necessary for some initial stage in virus synthesis. 7. With one bacterial strain not requiring the AHPF, aspartic acid had to be present at least during the minimum latent period for the cell to form virus. 8. In the absence of aspartic acid, the virus was adsorbed to the cell and killed it, but no virus was released from singly infected bacteria. 9. If the cells were grown in a medium containing aspartic acid and then resuspended in the medium minus aspartic acid, no virus was released, although such cells contained at least two times the amount of aspartic acid necessary for the burst size in the complete medium. 10. Aspartic acid, a constituent of the virus particle, appears from an analysis of one-step growth curves to take part in the initial phase of phage synthesis. 11. The effect of amino acids on virus formation is discussed in relation to the time sequence of virus protein and desoxyribonucleic acid synthesis. PMID:14824494

  2. Method for loading lipsomes with ionizable phosphorylated hydrophobic compounds, pharmaceutical preparations and a method for administering the preparations

    DOEpatents

    Mehlhorn, Rolf Joachim

    1998-10-27

    A method of entrapping ionizable compounds, preferably phosphorylated hydrophobic compounds, into liposomes having transmembrane gradients is disclosed. The procedures involve forming liposomes in an acidic medium or a basic medium, adding to the acidic medium a cationic compound or to the basic medium an anionic compound and then adding a base to the cationic-containing medium or an acid to the anionic-containing medium, thereby inducing the ionizable compound into the liposomes' internal aqueous phase. The compound-entrapped liposomes prepared in accordance with the disclosed methods may be used as pharmaceutical preparations. Methods of administering such pharmaceutical preparations are also disclosed.

  3. Essential components for ex vivo proliferation of mesenchymal stromal cells.

    PubMed

    Fekete, Natalie; Rojewski, Markus Thomas; Lotfi, Ramin; Schrezenmeier, Hubert

    2014-02-01

    Mesenchymal stromal cells (MSCs) are highly interesting candidates for clinical applications in regenerative medicine. Due to their low occurrence in human tissues, extensive in vitro expansion is necessary to obtain sufficient cell numbers applicable as a clinical dose in the context of cellular therapy. Current cell culture media formulations for the isolation and expansion of MSCs include fetal calf serum (FCS), human AB serum (ABS), or human platelet lysate (PL) as a supplement. However, these established supplements are inherently ill-defined formulations that contain a variety of bioactive molecules in varying batch-to-batch compositions and the risk of transmitting pathogens that escape routine screening procedures. In this study, we have comparatively characterized the capacity of commonly used basal media, such as the Minimum Essential Medium alpha (αMEM), Dulbecco's modified Eagle's medium (DMEM), Iscove's Modified Dulbecco's Medium (IMDM), and RPMI 1640 as well as human- and animal-derived supplements, that is, PL, ABS, and FCS to stimulate cell proliferation. MSC proliferation was observed to be optimal in the PL-supplemented αMEM. Using a combinatorial approach, we then assessed a library of soluble factors, including mitogens (TGF-β1, Activin A, bFGF, EGF, IGF-I, PDGF-BB, and VEGF), chemokines (CCL21, CCL25, CXCL12, and RANTES), proteins (human serum albumin), lipids (e.g., oleic acid, linoleic acid, and arachidonic acid), and hormones (dexamethasone, insulin, and TSH), to create a defined medium as well as coating of cell culture surfaces to promote robust MSC proliferation in vitro. A combination of recombinant human factors partially met the nutritional requirements of bone marrow-derived MSCs, and was able to promote cell proliferation comparable to about 5% PL if supplemented with auxiliary 0.6%-1.2% PL. Maximal MSC proliferation was achieved by combining 5% PL with a cocktail of recombinant factors and did not depend on coating of cell culture surfaces.

  4. Medium-chain fatty acid synthesis in lactating-rabbit mammary gland. Intracellular concentration and specificity of medium-chain acyl thioester hydrolase.

    PubMed Central

    Knudsen, J

    1979-01-01

    The concentration of medium-chain acyl thioester hydrolase and of fatty acid synthetase was determined by rocket immunoelectrophoresis in nine different particle-free supernatant fractions from lactating-rabbit mammary gland. The molar ratio of the hydrolase to fatty acid synthetase was 1.99 +/- 0.66 (mean +/- S.D.). A rate-limiting concentration of malonyl-CoA was required to ensure the predominant synthesis of medium-chain fatty acids when 2 mol of the hydrolase was added per mol of fatty acid synthetase. The interaction of the hydrolase with fatty acid synthetase was concentration-dependent, though an optimum concentration of hydrolase to synthetase could not be obtained. The lactating-rabbit mammary gland hydrolase altered the pattern of fatty acids synthesized by fatty acid synthetases prepared from cow, goat, sheep and rabbit lactating mammary glands, rabbit liver and cow adipose tissue. PMID:574008

  5. Dehulling of cuphea seed for the production of crude oil with low chlorophyll content

    USDA-ARS?s Scientific Manuscript database

    Cuphea (PSR23) seed oil is rich in medium chain fatty acids (MCFAs). MCFAs are used in soaps, detergents, cosmetics, lubricants, and food applications. Currently, cuphea is being grown to provide oil needed for research. The oil can be extracted effectively by screw pressing flaked whole seeds. ...

  6. Process for producing biodiesel, lubricants, and fuel and lubricant additives in a critical fluid medium

    DOEpatents

    Ginosar, Daniel M.; Fox, Robert V.

    2005-05-03

    A process for producing alkyl esters useful in biofuels and lubricants by transesterifying glyceride- or esterifying free fatty acid-containing substances in a single critical phase medium is disclosed. The critical phase medium provides increased reaction rates, decreases the loss of catalyst or catalyst activity and improves the overall yield of desired product. The process involves the steps of dissolving an input glyceride- or free fatty acid-containing substance with an alcohol or water into a critical fluid medium; reacting the glyceride- or free fatty acid-containing substance with the alcohol or water input over either a solid or liquid acidic or basic catalyst and sequentially separating the products from each other and from the critical fluid medium, which critical fluid medium can then be recycled back in the process. The process significantly reduces the cost of producing additives or alternatives to automotive fuels and lubricants utilizing inexpensive glyceride- or free fatty acid-containing substances, such as animal fats, vegetable oils, rendered fats, and restaurant grease.

  7. Effect of Acidity of a Medium on Riboflavin Photodestruction

    NASA Astrophysics Data System (ADS)

    Astanov, S. Kh.; Turdiev, M.; Sharipov, M. Z.; Kurtaliev, É. N.; Nizomov, N. N.

    2016-03-01

    Effect of acidity of a medium on the spectroscopic characteristics of riboflavin aqueous solutions is investigated by the method of fluorescent and absorption spectroscopy. Significant deformation of the electronic spectra of riboflavin aqueous solutions irradiated with unfiltered light of a PRK-2 lamp is observed. It is established that riboflavin photostability in an acid medium is about twice as much as the photostability in a neutral medium, which is caused by the formation of a protonated species.

  8. Method for loading lipsomes with ionizable phosphorylated hydrophobic compounds, pharmaceutical preparations and a method for administering the preparations

    DOEpatents

    Mehlhorn, R.J.

    1998-10-27

    A method of entrapping ionizable compounds, preferably phosphorylated hydrophobic compounds, into liposomes having transmembrane gradients is disclosed. The procedures involve forming liposomes in an acidic medium or a basic medium, adding to the acidic medium a cationic compound or to the basic medium an anionic compound and then adding a base to the cationic-containing medium or an acid to the anionic-containing medium, thereby inducing the ionizable compound into the liposomes` internal aqueous phase. The compound-entrapped liposomes prepared in accordance with the disclosed methods may be used as pharmaceutical preparations. Methods of administering such pharmaceutical preparations are also disclosed. 2 figs.

  9. Cashew apple juice as microbial cultivation medium for non-immunogenic hyaluronic acid production.

    PubMed

    Oliveira, Adriano H; Ogrodowski, Cristiane C; de Macedo, André C; Santana, Maria Helena A; Gonçalves, Luciana R B

    2013-12-01

    In this work, natural cashew apple juice was used as cultivation medium as an alternative to substitute brain heart infusion medium. The effect of aeration and juice supplementation with yeast extract on the production of hyaluronic acid in batch fermentation was also investigated. Similar levels of cell mass were obtained in inoculum using cashew apple juice supplemented with yeast extract or the conventional brain heart infusion medium. Fermentation in Erlenmeyer flasks produced low biomass and hyaluronic acid concentrations. The hyaluronic acid concentration and viscosity increased from 0.15 g/L and 3.87 cP (no aeration or medium supplementation) to 1.76 g/L and 107 cP, when aeration (2 vvm) and 60 g/L of yeast extract were used. The results suggest the production of low-molecular weight hyaluronic acid oligomers instead of the high molecular weight polymer.

  10. Cashew apple juice as microbial cultivation medium for non-immunogenic hyaluronic acid production

    PubMed Central

    Oliveira, Adriano H.; Ogrodowski, Cristiane C.; de Macedo, André C.; Santana, Maria Helena A.; Gonçalves, Luciana R.B.

    2013-01-01

    In this work, natural cashew apple juice was used as cultivation medium as an alternative to substitute brain heart infusion medium. The effect of aeration and juice supplementation with yeast extract on the production of hyaluronic acid in batch fermentation was also investigated. Similar levels of cell mass were obtained in inoculum using cashew apple juice supplemented with yeast extract or the conventional brain heart infusion medium. Fermentation in Erlenmeyer flasks produced low biomass and hyaluronic acid concentrations. The hyaluronic acid concentration and viscosity increased from 0.15 g/L and 3.87 cP (no aeration or medium supplementation) to 1.76 g/L and 107 cP, when aeration (2 vvm) and 60 g/L of yeast extract were used. The results suggest the production of low-molecular weight hyaluronic acid oligomers instead of the high molecular weight polymer. PMID:24688498

  11. Piper nigrum: micropropagation, antioxidative enzyme activities, and chromatographic fingerprint analysis for quality control.

    PubMed

    Ahmad, Nisar; Abbasi, Bilal Haider; Rahman, Inayat ur; Fazal, Hina

    2013-04-01

    A reliable in vitro regeneration system for the economical and medicinally important Piper nigrum L. has been established. Callus and shoot regeneration was encouraged from leaf portions on Murashige and Skoog (MS) medium augmented with varied concentrations of plant growth regulators. A higher callus production (90 %) was observed in explants incubated on MS medium incorporated with 1.0 mg L(-1) 6-benzyladenine (BA) along with 0.5 mg L(-1) gibberellic acid after 4 weeks of culture. Moreover, a callogenic response of 85 % was also recorded for 1.0 mg L(-1) BA in combination with 0.25 mg L(-1) α-naphthalene acetic acid (NAA) and 0.25 mg L(-1) 2,4-dichlorophenoxyacetic acid or 0.5 mg L(-1) indole butyric acid (IBA) along with 0.25 mg L(-1) NAA and indole acetic acid. Subsequent sub-culturing of callus after 4 weeks of culture onto MS medium supplemented with 1.5 mg L(-1) thiodiazoran or 1.5 mg L(-1) IBA induced 100 % shoot response. Rooted plantlets were achieved on medium containing varied concentrations of auxins. The antioxidative enzyme activities [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)] revealed that significantly higher SOD was observed in regenerated plantlets than in other tissues. However, POD, CAT, and APX were higher in callus than in other tissues. A high-performance liquid chromatography (HPLC) fingerprint analysis protocol was established for quality control in different in vitro-regenerated tissues of P. nigrum L. During analysis, most of the common peaks represent the active principle "piperine." The chemical contents, especially piperine, showed variation from callus culture to whole plantlet regeneration. Based on the deviation in chromatographic peaks, the in vitro-regenerated plantlets exhibit a nearly similar piperine profile to acclimated plantlets. The in vitro regeneration system and HPLC fingerprint analysis established here brought a novel approach to the quality control of in vitro plantlets, producing metabolites of interest with substantial applications for the conservation of germplasm.

  12. Culture medium optimization for acetic acid production by a persimmon vinegar-derived bacterium.

    PubMed

    Kim, Jin-Nam; Choo, Jong-Sok; Wee, Young-Jung; Yun, Jong-Sun; Ryu, Hwa-Won

    2005-01-01

    A new acetic acid-producing microorganism, Acetobacter sp. RKY4, was isolated from Korean traditional persimmon vinegar, and we optimized the culture medium for acetic acid production from ethanol using the newly isolated Acetobacter sp. RKY4. The optimized culture medium for acetic acid production using this microorganism was found to be 40 g/L ethanol, 10 g/L glycerol, 10 g/L corn steep liquor, 0.5 g/L MgSO4.7H2O, and 1.0 g/L (NH4)H2PO4. Acetobacter sp. RKY4 produced 47.1 g/L of acetic acid after 48 h of fermentation in a 250 mL Erlenmeyer flask containing 50 mL of the optimized medium.

  13. Physiology of Growth and Sporulation in Bacillus cereus I. Effect of Glutamic and Other Amino Acids

    PubMed Central

    Buono, F.; Testa, R.; Lundgren, D. G.

    1966-01-01

    Buono, F. (Syracuse University, Syracuse, N.Y.), R. Testa, and D. G. Lundgren. Physiology of growth and sporulation in Bacillus cereus. I. Effect of glutamic and other amino acids. J. Bacteriol. 91:2291–2299. 1966.—Growth and sporulation were studied in Bacillus cereus by use of an active culture technique and a synthetic medium. A high level of glutamic acid (70 mm) was required for optimal growth and glucose oxidation followed by sporulation even though relatively little glutamic acid was consumed (14 mm). Optimal growth occurred with a combination of 14 mm glutamic acid and 56 mm (NH4)2SO4, aspartic acid, or alanine. Ornithine or arginine at 70 mm could replace glutamic acid in the synthetic medium without affecting the normal growth cycle. Glutamic acid was not replaced by any other amino acid, by (NH4)2SO4, or by a combination of either α-ketoglutarate or pyruvate plus (NH4)2SO4. Enzyme assays of cell-free extracts prepared from cells harvested at different times were used to study the metabolism of glutamic acid. Glutamic-oxaloacetic and glutamic-pyruvate transaminases were completely activated (or derepressed) during early stages of sporulation (period of 6 to 8 hr). Alanine dehydrogenase responded in a similar manner, but the levels of this enzyme were much higher throughout the culture cycle. Neither glutamic dehydrogenase nor α-ketoglutarate dehydrogenase was detected. Sporulation in a replacement salts medium was studied with cells harvested at different times from the synthetic medium. Cultures 2 to 6 hr old were unable to sporulate in the replacement salts medium unless glutamic acid (7.0 mm) was present. By the 6th hr, cells were in the early stages of sporulation, showing spore septa development. Cultures 8 hr old sporulated in the replacement salts medium. Other metabolic intermediates able to replace glutamic acid in the replacement salts medium were alanine, aspartic acid, and glutamine at equimolar concentrations. Also, ammonium ions in combination with pyruvic, oxaloacetic, α-ketoglutaric, or fumaric acid replaced glutamic acid. The likely role of these metabolites is discussed. PMID:4957615

  14. In vitro characterization of pH-sensitive azithromycin-loaded methoxy poly (ethylene glycol)-block-poly (aspartic acid-graft-imidazole) micelles.

    PubMed

    Teng, Fangfang; Deng, Peizong; Song, Zhimei; Zhou, Feilong; Feng, Runliang; Liu, Na

    2017-06-15

    In order to improve azithromycin's antibacterial activity in acidic medium, monomethoxy poly (ethylene glycol)-block-poly (aspartic acid-graft-imidazole) copolymer was synthesized through allylation, free radical addition, ring-opening polymerization and amidation reactions with methoxy poly (ethylene glycol) as raw material. Drug loading capacity and encapsulation efficiency of azithromycin-loaded micelles prepared via thin film hydration method were 11.58±0.86% and 96.06±1.93%, respectively. The drug-loaded micelles showed pH-dependent property in the respects of particle size, zeta potential at the range of pH 5.5-7.8. It could control drug in vitro release and demonstrate higher release rate at pH 6.0 than that at pH 7.4. In vitro antibacterial experiment indicated that the activity of azithromycin-loaded micelles against S. aureus was superior to free azithromycin in medium at both pH 6.0 and pH 7.4. Using fluorescein as substitute with pH-dependent fluorescence decrease property, laser confocal fluorescence microscopy analysis confirmed that cellular uptake of micelles was improved due to protonation of copolymer's imidazole groups at pH 6.0. The enhanced cellular uptake and release of drug caused its activity enhancement in acidic medium when compared with free drug. The micellar drug delivery system should be potential application in the field of bacterial infection treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA) production

    PubMed Central

    Lin, Qian

    2013-01-01

    γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in central nervous system, and its application in drugs and functional foods has attracted great attention. To enhance production of γ-aminobutyric acid, Lactobacillus rhamnosus YS9, a strain isolated from Chinese traditional fermented food pickled vegetable, was grown under submerged fermentation. Its cultivation conditions were investigated. When culture pH condition was adjusted to the optimal pH of glutamate decarboxylase activity, culture of Lb. rhamnosus YS9 in medium supplemented with 200 mM of monosodium glutamate and 200 μM of pyridoxal phosphate (PLP), produced 187 mM of GABA. PMID:24159304

  16. Genetic Code Expansion of Mammalian Cells with Unnatural Amino Acids.

    PubMed

    Brown, Kalyn A; Deiters, Alexander

    2015-09-01

    The expansion of the genetic code of mammalian cells enables the incorporation of unnatural amino acids into proteins. This is achieved by adding components to the protein biosynthetic machinery, specifically an engineered aminoacyl-tRNA synthetase/tRNA pair. The unnatural amino acids are chemically synthesized and supplemented to the growth medium. Using this methodology, fundamental new chemistries can be added to the functional repertoire of the genetic code of mammalian cells. This protocol outlines the steps necessary to incorporate a photocaged lysine into proteins and showcases its application in the optical triggering of protein translocation to the nucleus. Copyright © 2015 John Wiley & Sons, Inc.

  17. World market and biotechnological production of itaconic acid.

    PubMed

    Cunha da Cruz, Juliana; Machado de Castro, Aline; Camporese Sérvulo, Eliana Flávia

    2018-03-01

    The itaconic acid (IA) world market is expected to exceed 216 million of dollars by 2020 as a result of an increasing demand for bio-based chemicals. The potential of this organic acid produced by fermentation mainly with filamentous fungi relies on the vast industrial applications of polymers derived from it. The applications may be as a superabsorbent polymer for personal care or agriculture, unsaturated polyester resin for the transportation industry, poly(methyl methacrylate) for electronic devices, among many others. However, the existence of other substitutes and the high production cost limit the current IA market. IA manufacturing is done mainly in China and other Asia-Pacific countries. Higher economic feasibility and production worldwide may be achieved with the use of low-cost feedstock of local origin and with the development of applications targeted to specific local markets. Moreover, research on the biological pathway for IA synthesis and the effect of medium composition are important for amplifying the knowledge about the production of that biochemical with great market potential.

  18. Optimization of the Synthesis of Structured Phosphatidylcholine with Medium Chain Fatty Acid.

    PubMed

    Ochoa-Flores, Angélica A; Hernández-Becerra, Josafat A; Cavazos-Garduño, Adriana; Vernon-Carter, Eduardo J; García, Hugo S

    2017-11-01

    Structured phosphatidylcholine was successfully produced by acidolysis between phosphatidylcholine and free medium chain fatty acid, using phospholipase A 1 immobilized on Duolite A568. Response surface methodology was applied to optimize the reaction system using three process parameters: molar ratio of substrates (phosphatidylcholine to free medium chain fatty acid), enzyme loading, and reaction temperature. All parameters evaluated showed linear and quadratic significant effects on the production of modified phosphatidylcholine; molar ratio of substrates contributed positively, but temperature influenced negatively. Increased enzyme loading also led to increased production of modified phosphatidylcholine but only during the first 9 hours of the acidolysis reaction. Optimal conditions obtained from the model were a ratio of phosphatidylcholine to free medium chain fatty acid of 1:15, an enzyme loading of 12%, and a temperature of 45°C. Under these conditions a production of modified phosphatidylcholine of 52.98 % were obtained after 24 h of reaction. The prediction was confirmed from the verification experiments; the production of modified phosphatidylcholine was 53.02%, the total yield of phosphatidylcholine 64.28% and the molar incorporation of medium chain fatty acid was 42.31%. The acidolysis reaction was scaled-up in a batch reactor with a similar production of modified phosphatidylcholine, total yield of phosphatidylcholine and molar incorporation of medium chain fatty acid. Purification by column chromatography of the structured phosphatidylcholine yielded 62.53% of phosphatidylcholine enriched with 42.52% of medium chain fatty acid.

  19. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics.

    PubMed

    Sun, Hongli; Wu, Chengtie; Dai, Kerong; Chang, Jiang; Tang, Tingting

    2006-11-01

    In the present study, the effects of a calcium magnesium silicate bioactive ceramic (akermanite) on proliferation and osteoblastic differentiation of human bone marrow stromal cells (hBMSC) have been investigated and compared with the classical ceramic (beta-tricalcium phosphate, beta-TCP). Akermanite and beta-TCP disks were seeded with hBMSC and kept in growth medium or osteogenic medium for 10 days. Proliferation and osteoblastic differentiation were evaluated on day 1, 4, 7 and 10. The data from the Alamar Blue assay and lactic acid production assay showed that hBMSC proliferated more significantly on akermanite than on beta-TCP. The analysis of osteoblast-related genes, including alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP) and osteocalcin (OC), indicated that akermanite ceramics enhanced the expression of osteoblast-related genes, but type I collagen (COL I) showed no noticeable difference among akermanite and beta-TCP ceramics. Furthermore, this stimulatory effect was observed not only in osteogenic medium, but also in normal growth medium without osteogenic reagents such as l-ascorbic acid, glycerophosphate and dexamethasone. This result suggests that akermanite can promote osteoblastic differentiation of hBMSC in vitro even without osteogenic reagents, and may be used as a bioactive material for bone regeneration and tissue engineering applications.

  20. Melatonin enhances lipid production in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions via a multi-level mechanism.

    PubMed

    Zhao, Yongteng; Li, Dafei; Xu, Jun-Wei; Zhao, Peng; Li, Tao; Ma, Huixian; Yu, Xuya

    2018-07-01

    In this study, melatonin (MT) promoted lipid accumulation in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions. The lipid accumulation increased 1.22- and 1.36-fold compared with a nitrogen-starved medium and a normal BG-11 medium, respectively. The maximum lipid content was 51.38%. The reactive oxygen species (ROS) level in the presence of melatonin was lower than that in the control group, likely because of the high antioxidant activities. The application of melatonin upregulated the gibberellin acid (GA) production and rbcL and accD expression levels but downregulated the abscisic acid (ABA) content and pepc expression levels. These findings demonstrated that exogenous melatonin could further improve the lipid production in Monoraphidium sp. QLY-1 by regulating antioxidant systems, signalling molecules, and lipid biosynthesis-related gene expression under nitrogen deficiency conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Controlled graft copolymerization of lactic acid onto starch in a supercritical carbon dioxide medium.

    PubMed

    Salimi, Kouroush; Yilmaz, Mehmet; Rzayev, Zakir M O; Piskin, Erhan

    2014-12-19

    This work presents a new approach for the synthesis of a starch-g-poly L-lactic acid (St-g-PLA) copolymer via the graft copolymerization of LA onto starch using stannous 2-ethyl hexanoate (Sn(Oct)2) as a catalyst in a supercritical carbon dioxide (scCO2) medium. The effects of several process parameters, including the pressure, temperature, scCO2 flow rate and reaction time, on the polymerization yield and grafting degree were studied. Amorphous graft St-g-PLA copolymers with increased thermal stability and processability were produced with a high efficiency. The maximum grafting degree (i.e., 52% PLA) was achieved with the following reaction conditions: 6h, 100°C, 200 bar and a 1:3 (w/w) ratio of St/LA. It was concluded that these low cost biobased graft biopolymers are potential candidates for several environment-friendly applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Research and Application of Lipoic Acid in Plants

    NASA Astrophysics Data System (ADS)

    Xiao, Renjie; Wang, Xiran; Jiang, Leiyu; Tang, Haoru

    2018-01-01

    Lipoic acid is a kind of small molecular compound with strong oxidizing properties. It has been widely used in medicine and has achieved good results since its discovery. However, it is less used in plants, and the biosynthetic pathway is not clear. The content in the plant is mainly measured by high-performance liquid chromatography(HPLC). At present, it is mainly used as an additive to the culture medium for plant tissue culture and Agrobacterium-mediated plant genetic transformation, in order to reduce the browning rate of explants, improve Agrobacterium-mediated genetic transformation efficiency.

  3. Physical Characterization of Magnetic Bacteria and Their Electromagnetic Properties in the Frequency Range 1-400 GHz

    DTIC Science & Technology

    1986-05-14

    PA IA 50 mg lipoic acid 50 mP --- TABLE 2. Estimated maximum cell concentrations based upon the elemental composition of the growth medium. In medium...Added amount per liter Tartaric acid 0.37 g Succinic acid 0.37 g Sodium acetate 0.05 g Sodium nitrate 0.17 g Monopotassium phosphate 0.69 g Sodium...Distilled water I liter ) Alternatively, 0.03 g ascorbic acid *±) Stock solution of 2.7 g/L FeC13 and 1.9 g/L Quinic acid ***) Mineral medium (pH 6.5 w/KOH

  4. Clean fuels from bioconversion of solar energy. Annual report, 21 January 1980-20 January 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feighner, S.D.; Sikka, H.C.

    1981-03-01

    The study seeks to enhance glycolic acid excretion by unicellular algae. The strains of algae selected to evaluate glycolic acid accumulation in culture medium were: Chlorella pyrenoidosa (UTEX 395), Chlamydomonas reinhardtii (UTEX 89), Scenedesmus obliquus (UTEX 393), and Ankistrodesmus braunii (UTEX 245). C. pyrenoidosa and C. reinhardtii, based on the amount of glycolic acid produced, were selected for further study. Initial experiments were conducted to measure the effect of different environmental growth conditions on the rate of glycolic accumulation in defined culture medium. The most pronounced effect on glycolic acid excretion was obtained by varying the concentration of carbon dioxidemore » in air. At 1% CO2 in air, C. pyrenoidosa accumulated 5.2 ppm glycolic acid in culture medium. Neither the pH of the culture medium nor the incubation temperature affected glycolic acid accumulation by growing C. pyrenoidosa cultures.« less

  5. Synthesis of medium-chain fatty acids and their incorporation into triacylglycerols by cell-free fractions from Cuphea embryos.

    PubMed

    Deerberg, S; von Twickel, J; Förster, H H; Cole, T; Fuhrmann, J; Heise, K P

    1990-02-01

    During their rapid maturation period, seeds of Cuphea wrightii A. Gray mainly accumulate medium-chain fatty acids (C8 to C14) in their storage lipids. The rate of lipid deposition (40-50 mg·d(-1)·(g fresh weight)(-1)) is fourfold higher than in seeds of Cuphea racemosa (L. f.) Spreng, which accumulate long-chain fatty acids (C16 to C18). Measurements of the key enzymes of fatty-acid synthesis in cell-free extracts of seeds of different maturities from Cuphea wrightii show that malonyl-CoA synthesis may be a triggering factor for the observed high capacity for fatty-acid synthesis. Experiments on the incorporation of [1-(14)C]acetate into fatty acids by purified plastid preparations from embryos of Cuphea wrightii have demonstrated that the biosynthesis of medium-chain fatty acids (C8 to C14) is localized in the plastid. Thus, in the presence of cofactors for lipid synthesis (ATP, NADPH, NADH, acyl carrier protein, and sn-glycerol-3-phosphate), purified plastid fractions predominantly synthesized free fatty acids, 30% of which were of medium chain length. Transesterification of the freshly synthesized fatty acids to coenzyme A and recombination with the microsomal fraction of the embryo homogenate induced triacylglycerol synthesis. It also stimulated fatty-acid synthesis by a factor 2-3 and increased the relative amount of medium-chain fatty acids bound to triacylglycerols, which corresponded to about 60-80% in this lipid fraction.

  6. [Relationship between the culture medium and the fatty acid composition of diphtheria and non-pathogenic corynebacteria].

    PubMed

    Vasiurenko, Z P; Siniak, K M

    1977-04-01

    The gasochromatic method was applied to the study of the cellular fatty acids composition in diphtheria and nonpathogenic corynebacteria (diphtheroids and psendo diptheria bacillus). Marked differences in the content of unsaturated fatty acids were revealed in them. Thus, palmito leic acid served the preponderant unsaturated fatty acid in Corynebacteria diphtheriae, and unsaturated fatty acids with 18 carbon atoms (octadeconoic and linoleic)--in nonpathogenic corynebacteria. The mentioned changes permit use this sign as differential. When grown on Loeffler's medium all the corynebacteria under study had a similar fatty acid composition characterized by the prevalence of unsaturated fatty acids with 18 carbon atoms. On the basis of studying the fatty acid spectrum of the nutrient media used it is supposed that one of the factors determining the revealed dependence of the corynebacterial fatty acid composition on the culture medium was the fatty acid composition of the latter.

  7. Triacylglycerol synthesis in goat mammary gland. The effect of ATP, Mg2+ and glycerol 3-phosphate on the esterification of fatty acids synthesized de novo.

    PubMed Central

    Hansen, H O; Grunnet, I; Knudsen, J

    1984-01-01

    Goat mammary-gland microsomal fraction by itself induces synthesis of medium-chain-length fatty acids by goat mammary fatty acid synthetase and incorporates short- and medium-chain fatty acids into triacylglycerol. Addition of ATP in the absence or presence of Mg2+ totally inhibits triacylglycerol synthesis from short- and medium-chain fatty acids, and severely inhibits synthesis de novo of medium-chain fatty acids. The inhibition by ATP of fatty acid synthesis and triacylglycerol synthesis de novo can be relieved by glycerol 3-phosphate. The effect of ATP could not be mimicked by the non-hydrolysable ATP analogue, adenosine 5'-[beta,gamma-methylene]triphosphate and could not be shown to be caused by inhibition of the diacylglycerol acyltransferase by a phosphorylation reaction. Possible explanations for the mechanism of the inhibition by ATP are discussed, and a hypothetical model for its action is outlined. PMID:6547605

  8. Growth medium sterilization using decomposition of peracetic acid for more cost-efficient production of omega-3 fatty acids by Aurantiochytrium.

    PubMed

    Cho, Chang-Ho; Shin, Won-Sub; Woo, Do-Wook; Kwon, Jong-Hee

    2018-06-01

    Aurantiochytrium can produce significant amounts of omega-3 fatty acids, specifically docosahexaenoic acid and docosapentaenoic acid. Use of a glucose-based medium for heterotrophic growth is needed to achieve a high growth rate and production of abundant lipids. However, heat sterilization for reliable cultivation is not appropriate to heat-sensitive materials and causes a conversion of glucose via browning (Maillard) reactions. Thus, the present study investigated the use of a direct degradation of Peracetic acid (PAA) for omega-3 production by Aurantiochytrium. Polymer-based bioreactor and glucose-containing media were chemically co-sterilized by 0.04% PAA and neutralized through a reaction with ferric ion (III) in HEPES buffer. Mono-cultivation was achieved without the need for washing steps and filtration, thereby avoiding the heat-induced degradation and dehydration of glucose. Use of chemically sterilized and neutralized medium, rather than heat-sterilized medium, led to a twofold faster growth rate and greater productivity of omega-3 fatty acids.

  9. Synthesis and excretion of glycerol teichoic acid during growth of two streptococcal species.

    PubMed Central

    Joseph, R; Shockman, G D

    1975-01-01

    Examination of both supernatant culture medium and cell pellets after exponential- and stationary-phase growth of Streptococcus mutans strain FA-1 and Streptococcus faecalis ATCC 9790 (S. faecium) showed the presence of [-3H]glycerol-labeled material that possessed several of the properties of glycerol teichoic acid. In the supernatant medium of S. mutans FA-1, an apparently large-molecular-size material, which eluted from agarose columns with the Kd value expected of a lipoteichoic acid, was observed. Large amounts of this material were present in supernatants during the stationary phase. In contrast, with S. faecalis only an apparently lower-molecular-weight form, with a Kd consistent with deacylated glycerol teichoic acid, was found in the growth medium. Both organisms had high-molecular-weight lipoteichoic acid in the cells along with the deacylated glycerol teichoic acid. The presence of relatively large amounts of glycerol teichoic acids in the medium was considered to be a result of excretion of these compounds rather than a result of cellular lysis. PMID:807523

  10. Propyl gallate synthesis using acidophilic tannase and simultaneous production of tannase and gallic acid by marine Aspergillus awamori BTMFW032.

    PubMed

    Beena, P S; Basheer, Soorej M; Bhat, Sarita G; Bahkali, Ali H; Chandrasekaran, M

    2011-07-01

    Marine Aspergillus awamori BTMFW032, recently reported by us, produce acidophilic tannase as extracellular enzyme. Here, we report the application of this enzyme for synthesis of propyl gallate by direct transesterification of tannic acid and in tea cream solubilisation besides the simultaneous production of gallic acid along with tannase under submerged fermentation by this fungus. This acidophilic tannase enabled synthesis of propyl gallate by direct transesterification of tannic acid using propanol as organic reaction media under low water conditions. The identity of the product was confirmed with thin layer chromatography and Fourier transform infrared spectroscopy. It was noted that 699 U/ml of enzyme could give 60% solubilisation of tea cream within 1 h. Enzyme production medium was optimized adopting Box-Behnken design for simultaneous synthesis of tannase and gallic acid. Process variables including tannic acid, sodium chloride, ferrous sulphate, dipotassium hydrogen phosphate, incubation period and agitation were recognized as the critical factors that influenced tannase and gallic acid production. The model obtained predicted 4,824.61 U/ml of tannase and 136.206 μg/ml gallic acid after 48 h of incubation, whereas optimized medium supported 5,085 U/ml tannase and 372.6 μg/ml of gallic acid production after 36 and 84 h of incubation, respectively, with a 15-fold increase in both enzyme and gallic acid production. Results indicated scope for utilization of this acidophilic tannase for transesterification of tannic acid into propyl gallate, tea cream solubilisation and simultaneous production of gallic acid along with tannase.

  11. Importance of medium chain fatty acids in animal nutrition

    NASA Astrophysics Data System (ADS)

    Baltić, B.; Starčević, M.; Đorđević, J.; Mrdović, B.; Marković, R.

    2017-09-01

    Fats in animal and human nutrition are a common subject of research. These studies most often pay attention to particular fat groups (saturated, unsaturated, polyunsaturated fats or fats grouped by the length of their fatty acid chains into short, medium or long chain fatty acids). Medium chain fatty acids (MCFAs) have two main sources: milk and coconut oil. To date, research has shown these acids have positive effects on health, production, feed digestibility and lower body and muscle fats in broilers and swine. MCFAs possess antibacterial, anticoccidial and antiviral effects. Also, it has been proven that these acids act synergistically if they are used together with organic acids, essential oils, or probiotics. Nowadays, commercial MCFA products are available for use in animal nutrition as feed additives.

  12. Boric acid-enhanced embedding medium for cryomicrotomy.

    PubMed

    Lim, Jin Ik; Park, Hun-Kuk

    2012-05-01

    A polyvinyl alcohol (PVA)/polyethylene glycol (PEG)-based resin is commonly used as a cryoembedding medium for the histological analysis of frozen tissue sections. However, it is not easy to obtain sufficient numbers of satisfactory reproducible sections owing to the differences between the mechanical properties of the medium and embedded tissue and the low cohesive force of the medium. We describe a modified PVA-based cryoembedding medium, composed of PVA (10wt% and 15wt%) with the addition of boric acid (from 0 to 5wt%), that can improve the sectioning properties and efficiency of frozen tissue for histological analysis. The amount of load under the same compressive displacement as well as cohesive force increased with increasing boric acid and PVA contents. 15wt% PVA and 3wt% boric acid was determined as an optimal composition for cryoembedding material based on the sectioning efficiency measured by the numbers of unimpaired sectioned slices and the amount of load under the same compressive displacement test. On the basis of the results of routine hematoxylin and eosin staining of cryosections of tissue embedded in a medium with 3wt% boric acid and PVA, it was concluded that the modified PVA cryoembedding medium can improve the efficiency of cryosectioning for subsequent histological or histochemical analysis of various tissues. Copyright © 2011 Elsevier GmbH. All rights reserved.

  13. Initial pH of medium affects organic acids production but do not affect phosphate solubilization.

    PubMed

    Marra, Leandro M; de Oliveira-Longatti, Silvia M; Soares, Cláudio R F S; de Lima, José M; Olivares, Fabio L; Moreira, Fatima M S

    2015-06-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization.

  14. Sphagnan--a pectin-like polymer isolated from Sphagnum moss can inhibit the growth of some typical food spoilage and food poisoning bacteria by lowering the pH.

    PubMed

    Stalheim, T; Ballance, S; Christensen, B E; Granum, P E

    2009-03-01

    Investigate if the antibacterial effect of sphagnan, a pectin-like carbohydrate polymer extracted from Sphagnum moss, can be accounted for by its ability to lower the pH. Antibacterial activity of sphagnan was assessed and compared to that of three other acids. Sphagnan in its acid form was able to inhibit growth of various food poisoning and spoilage bacteria on low-buffering solid growth medium, whereas sphagnan in its sodium form at neutral pH had no antibacterial activity. At similar acidic pH, sphagnan had comparable antibacterial activity to that of hydrochloric acid and a control rhamnogalacturonan pectin in its acid form. Sphagnan in its acid form is a weak macromolecular acid that can inhibit bacterial growth by lowering the pH of environments with a low buffering capacity. It has previously been suggested that sphagnan is an antimicrobial polysaccharide in the leaves of Sphagnum moss with a broad range of potential practical applications. Our results now show that sphagnan in its acid form can indeed inhibit bacterial growth, but only of acid-sensitive species. These findings represent increased knowledge towards our understanding on how sphagnan or Sphagnum moss might be used in practical applications.

  15. pH responsive micelle self-assembled from a new amphiphilic peptide as anti-tumor drug carrier.

    PubMed

    Liang, Ju; Wu, Wen-Lan; Xu, Xiao-Ding; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2014-02-01

    An acid-responsive amphiphilic peptide that contains KKGRGDS sequence in hydrophilic head and VVVVVV sequence in hydrophobic tail was designed and prepared. In neutral or basic medium, this amphiphilic peptide can self-assemble into micelles through hydrogen bonding and hydrophobic interactions. If changing the solution pH to an acidic environment, the electrostatic repulsion interaction among the ionized lysine (K) residues will prevent the self-assembly of the amphiphilic peptide, leading to the dissociation of micelles. The anti-tumor drug of doxorubicin (DOX) was chosen and loaded into the self-assembled micelles of the amphiphilic peptide to investigate the influence of external pH change on the drug release behavior. As expected, the micelles show a sustained DOX release in neutral medium (pH 7.0) but fast release behavior in acidic medium (pH 5.0). When incubating these DOX-loaded micelles with HeLa and COS7 cells, due to the over-expression of integrins on cancer cells, the micelles can efficiently use the tumor-targeting function of RGD sequence to deliver the drug into HeLa cells. Combined with the low cytotoxicity of the amphiphilic peptide against both HeLa and COS7 cells, the amphiphilic peptide reported in this work may be promising in clinical application for targeted drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Enhanced Bioavailability of Curcumin Nanoemulsions Stabilized with Phosphatidylcholine Modified with Medium Chain Fatty Acids.

    PubMed

    Ochoa-Flores, Angélica A; Hernández-Becerra, Josafat A; Cavazos-Garduño, Adriana; Soto-Rodríguez, Ida; Sanchez-Otero, Maria Guadalupe; Vernon-Carter, Eduardo J; García, Hugo S

    2017-01-01

    Curcumin is a natural, oil-soluble polyphenolic compound with potent anticancer, anti-inflammatory, and antioxidant activities. In its free form, it is very poorly absorbed in the gut due to its very low solubility. The use of nanoemulsions as carrier is a feasible way for improving curcumin bioavailability. To this end, the choice of emulsifying agent for stabilizing the nanoemulsions is of the upmost importance for achieving a desired functionality. Phosphatidylcholine (PC) and phosphatidycholine enriched (PCE) with medium chain fatty acids (42.5 mol %) in combination with glycerol as co-surfactant, were used for preparing oil-in water nanoemulsions coded as NEPC and NEPCE, respectively. NEPCE displayed significantly smaller mean droplet size (30 nm), equal entrapment efficiency (100%), better droplet stability and suffered lower encapsulation efficiency loss (3%) during storage time (120 days, 4ºC) than NEPC. Bioavailability, measured in terms of area under the curve of curcumin concentration versus time, and maximum curcumin plasma concentration, was in general terms significantly higher for NEPCE than for NEPC, and for curcumin coarse aqueous suspension (CCS). Also, NEPCE produced significantly higher curcumin concentrations in liver and lung than NEPC and CCS. These data support the role of phosphatidylcholine enriched with medium chain fatty acids to increase the bioavailability of nanoemulsions for therapeutic applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Degradation of a model pollutant ferulic acid by the endophytic fungus Phomopsis liquidambari.

    PubMed

    Xie, Xing-Guang; Dai, Chuan-Chao

    2015-03-01

    Biodegradation of ferulic acid, by an endophytic fungus called Phomopsis liquidambari was investigated in this study. This strain can use ferulic acid as the sole carbon for growth. Both in mineral salt medium and in soil, more than 97% of added ferulic acid was degraded within 48 h. The metabolites were identified and quantified using GC-MS and HPLC-MS. Ferulic acid was first decarboxylated to 4-vinyl guaiacol and then oxidized to vanillin and vanillic acid, followed by demethylation to protocatechuic acid, which was further degraded through the β-ketoadipate pathway. During degradation, ferulic acid decarboxylase, laccase and protocatechuate 3,4-dioxygenase activities and their gene transcription levels were significantly affected by the variation of substrate and product concentrations. Moreover, ferulic acid degradation was determined to some extent by P. liquidambari laccase. This study is the first report of an endophytic fungus that has a great potential for practical application in ferulic acid-contaminated environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Pantothenic acid biosynthesis in zymomonas

    DOEpatents

    Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V.

    2014-07-01

    Zymomonas is unable to synthesize pantothenic acid and requires this essential vitamin in growth medium. Zymomonas strains transformed with an operon for expression of 2-dehydropantoate reductase and aspartate 1-decarboxylase were able to grow in medium lacking pantothenic acid. These strains may be used for ethanol production without pantothenic acid supplementation in seed culture and fermentation media.

  19. Magnetic Responsive Hydrogel Material Delivery System II

    DTIC Science & Technology

    2010-08-29

    phase. MNPs have found very useful applications in bioseparation, drug delivery system, hyperthermia for cancer therapy, and magnetic resonance...and the poly(N-isoproplyacrylamide) (poly(NIPAAm) shell in aqueous medium. Magnetic nanoparticles (MNPs) were coated with first oleic acid (OA) and...potentially important in target delivery of therapeutic agent in vivo, hyperthermic treatment of tumors, magnetic resonance imaging (MRI) as contrasting

  20. Flow behavior of regenerated wool-keratin proteins in different mediums.

    PubMed

    Alemdar, Ayse; Iridag, Yesim; Kazanci, Murat

    2005-04-01

    Keratin is abundantly present in nature and the major component of hair, wool, feather, nail and horns. Dissolution of keratin is often required when non-textile applications are demanded. However, the low solubility of keratin in water is the major problem. It becomes unstable and precipitated when stored for a long time. Therefore, it is necessary to find a good solvent that provides high stability and easy processibility. In this research, we used formic acid and dimethylformamide (DMF) to dissolve regenerated keratin protein films. It is shown that formic acid is a good solvent for regenerated keratin proteins for the purpose of storage. Transparent and stable regenerated keratin solution is obtained in formic acid.

  1. Cytotoxicity analysis of EDTA and citric acid applied on murine resident macrophages culture.

    PubMed

    Amaral, K F; Rogero, M M; Fock, R A; Borelli, P; Gavini, G

    2007-05-01

    To assess the ex vivo cytotoxicity of EDTA and citric acid solutions on macrophages. The cytotoxicity of 17% EDTA and 15% citric acid was evaluated on murine macrophage cultures using MTT-Tetrazolium method [3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide]. A total of 5 x 10(5) cells were plated in medium culture with 17% EDTA or 15% citric acid. Fresh medium was used as a control. Toxicity values were analysed statistically by anova and Tukey's test (P<0.05) at short (0, 6, 12, 24 h) and medium periods (1, 3, 5, 7 days), using ELISA absorbance. On the short term, both EDTA (0.253 nm) and citric acid (0.260 nm) exhibited cytotoxic effects on macrophage cultures (P<0.05). On the medium term, statistical differences were observed (P<0.05) between the groups. EDTA (0.158 nm) and citric acid (0.219 nm) were cytotoxic when compared with the control group; EDTA-reduced macrophage viability significantly more than citric acid (P<0.05). Both EDTA and citric acid had effects on macrophages cells ex vivo, but citric acid was less toxic in periods from 1 to 7 days of use.

  2. Actinobacillus succinogenes ATCC 55618 Fermentation Medium Optimization for the Production of Succinic Acid by Response Surface Methodology

    PubMed Central

    Zhu, Li-Wen; Wang, Cheng-Cheng; Liu, Rui-Sang; Li, Hong-Mei; Wan, Duan-Ji; Tang, Ya-Jie

    2012-01-01

    As a potential intermediary feedstock, succinic acid takes an important place in bulk chemical productions. For the first time, a method combining Plackett-Burman design (PBD), steepest ascent method (SA), and Box-Behnken design (BBD) was developed to optimize Actinobacillus succinogenes ATCC 55618 fermentation medium. First, glucose, yeast extract, and MgCO3 were identified to be key medium components by PBD. Second, preliminary optimization was run by SA method to access the optimal region of the key medium components. Finally, the responses, that is, the production of succinic acid, were optimized simultaneously by using BBD, and the optimal concentration was located to be 84.6 g L−1 of glucose, 14.5 g L−1 of yeast extract, and 64.7 g L−1 of MgCO3. Verification experiment indicated that the maximal succinic acid production of 52.7 ± 0.8 g L−1 was obtained under the identified optimal conditions. The result agreed with the predicted value well. Compared with that of the basic medium, the production of succinic acid and yield of succinic acid against glucose were enhanced by 67.3% and 111.1%, respectively. The results obtained in this study may be useful for the industrial commercial production of succinic acid. PMID:23093852

  3. Effect of medium pH on chemical selectivity of oxalic acid biosynthesis by Aspergillus niger W78C in submerged batch cultures with sucrose as a carbon source.

    PubMed

    Walaszczyk, Ewa; Podgórski, Waldemar; Janczar-Smuga, Małgorzata; Dymarska, Ewelina

    2018-01-01

    The pH of the medium is the key environmental parameter of chemical selectivity of oxalic acid biosynthesis by Aspergillus niger . The activity of the enzyme oxaloacetate hydrolase, which is responsible for decomposition of oxaloacetate to oxalate and acetate inside the cell of the fungus, is highest at pH 6. In the present study, the influence of pH in the range of 3-7 on oxalic acid secretion by A. niger W78C from sucrose was investigated. The highest oxalic acid concentration, 64.3 g dm -3 , was reached in the medium with pH 6. The chemical selectivity of the process was 58.6% because of the presence of citric and gluconic acids in the cultivation broth in the amount of 15.3 and 30.2 g dm -3 , respectively. Both an increase and a decrease of medium pH caused a decrease of oxalic acid concentration. The obtained results confirm that pH 6 of the carbohydrate medium is appropriate for oxalic acid synthesis by A. niger , but the chemical selectivity of the process described in this paper was high in comparison to values reported previously in the literature.

  4. Methods And Devices For Characterizing Duplex Nucleic Acid Molecules

    DOEpatents

    Akeson, Mark; Vercoutere, Wenonah; Haussler, David; Winters-Hilt, Stephen

    2005-08-30

    Methods and devices are provided for characterizing a duplex nucleic acid, e.g., a duplex DNA molecule. In the subject methods, a fluid conducting medium that includes a duplex nucleic acid molecule is contacted with a nanopore under the influence of an applied electric field and the resulting changes in current through the nanopore caused by the duplex nucleic acid molecule are monitored. The observed changes in current through the nanopore are then employed as a set of data values to characterize the duplex nucleic acid, where the set of data values may be employed in raw form or manipulated, e.g., into a current blockade profile. Also provided are nanopore devices for practicing the subject methods, where the subject nanopore devices are characterized by the presence of an algorithm which directs a processing means to employ monitored changes in current through a nanopore to characterize a duplex nucleic acid molecule responsible for the current changes. The subject methods and devices find use in a variety of applications, including, among other applications, the identification of an analyte duplex DNA molecule in a sample, the specific base sequence at a single nulceotide polymorphism (SNP), and the sequencing of duplex DNA molecules.

  5. An investigation into the mechanisms of drug release from taste-masking fatty acid microspheres.

    PubMed

    Qi, Sheng; Deutsch, David; Craig, Duncan Q M

    2008-09-01

    Fatty acid microspheres based on stearic and palmitic acids are known to form effective taste masking systems, although the mechanisms by which the drug is preferentially released in the lower gastrointestinal tract are not known. The objective of the present study was to identify the mechanisms involved, with a particular view to clarify the role of acid soap formation in the dissolution process. Microspheres were prepared by a spray chilling process. Using benzoic acid as a model drug and an alkaline dissolution medium, a faster drug release was observed in the mixed fatty acid formulation (50:50 stearic:palmitic acid (w/w)) compared to the single fatty acid component systems. Thermal and powder X-ray diffraction studies indicated a greater degree of acid soap formation for the mixed formulation in alkaline media compared to the single fatty acid systems. Particle size and porosity studies indicated a modest reduction in size for the mixed systems and an increase in porosity on immersion in the dissolution medium. It is proposed that the mixed fatty acid system form a mixed crystal system which in turn facilitates interaction with the dissolution medium, thereby leading to a greater propensity for acid soap formation which in turn forms a permeable liquid crystalline phase through which the drug may diffuse. The role of dissolution of palmitic acid into the dissolution medium is also discussed as a secondary mechanism.

  6. The effect of environmental pH on polymeric transfection efficiency.

    PubMed

    Kang, Han Chang; Samsonova, Olga; Kang, Sun-Woong; Bae, You Han

    2012-02-01

    Although polymers, polyplexes, and cells are exposed to various extracellular and intracellular pH environments during polyplex preparation and polymeric transfection, the impact of environmental pH on polymeric transfection has not yet been investigated. This study aims to understand the influence of environmental pH on polymeric transfection by modulating the pH of the transfection medium or the culture medium. Changes in the extracellular pH affected polymeric transfection by way of complex factors such as pH-induced changes in polymer characteristics (e.g., proton buffering capacity and ionization), polyplex characteristics (e.g., size, surface charge, and decomplexation), and cellular characteristics (e.g., cellular uptake, cell cycle phases, and intracellular pH environment). Notably, acidic medium delayed endocytosis, endosomal acidification, cytosolic release, and decomplexation of polyplexes, thereby negatively affecting gene expression. However, acidic medium inhibited mitosis and reduced dilution of gene expression, resulting in increased transfection efficiency. Compared to pH 7.4 medium, acidic transfection medium reduced gene expression 1.6-7.7-fold whereas acidic culture medium enhanced transfection efficiency 2.1-2.6-fold. Polymeric transfection was affected more by the culture medium than by the transfection medium. Understanding the effects of extracellular pH during polymeric transfection may stimulate new strategies for determining effective and safe polymeric gene carriers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Promotive role of 5-aminolevulinic acid on chromium-induced morphological, photosynthetic, and oxidative changes in cauliflower (Brassica oleracea botrytis L.).

    PubMed

    Ahmad, Rehan; Ali, Shafaqat; Hannan, Fakhir; Rizwan, Muhammad; Iqbal, Muhammad; Hassan, Zaidul; Akram, Nudrat Aisha; Maqbool, Saliha; Abbas, Farhat

    2017-03-01

    Chromium (Cr) is among the most toxic pollutants in the environment that adversely affect the living organisms and physiological processes in different plants. The present study investigated the effect of 15 mg L -1 of 5-aminolevulinic acid (ALA) on morpho-physiological attributes of cauliflower (Brassica oleracea botrytis L.) under different Cr concentrations (0, 10, 100, and 200 μM) in the growth medium. The results showed that Cr stress decreased the growth, biomass, photosynthetic, and gas exchange parameters. Chromium stress enhanced the activities of enzymatic antioxidants, catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) in response to oxidative stress caused by the elevated levels of malondialdehyde (MDA), hydrogen peroxide (H 2 O 2 ), and electrolyte leakage (EL) in both roots and leaves of cauliflower. Chromium concentrations and total Cr uptake were increased in leaves, stems, and roots with increasing Cr levels in the culture medium. Foliar application of ALA increased the plant growth parameters, biomass, gas exchange parameters, and photosynthetic pigments under Cr stress compared to the treatments without ALA. Foliar application ALA decreased the levels of MDA, EL, and H 2 O 2 while further improved the performance of antioxidant in both leaves and roots compared to only Cr-stressed plant. Chromium concentrations and total Cr uptake were decreased by the ALA application compared to treatments without ALA application. The results of the present study indicated that foliar application of ALA might be beneficial in minimizing Cr uptake and its toxic effects in cauliflower.

  8. Production of nearly monodisperse Fe3O4 and Fe@Fe3O4 nanoparticles in aqueous medium and their surface modification for biomedical applications

    NASA Astrophysics Data System (ADS)

    Tegafaw, Tirusew; Xu, Wenlong; Lee, Sang Hyup; Chae, Kwon Seok; Chang, Yongmin; Lee, Gang Ho

    2017-02-01

    Iron (Fe)-based nanoparticles are extremely valuable in biomedical applications owing to their low toxicity and high magnetization values at room temperature. In this study, we synthesized nearly monodisperse iron oxide (Fe3O4) and Fe@Fe3O4 (core: Fe, shell: Fe3O4) nanoparticles in aqueous medium under argon flow and then, coated them with various biocompatible ligands and silica. In this study, eight types of surface-modified nanoparticles were investigated, namely, Fe3O4@PAA (PAA = polyacrylic acid; Mw of PAA = 5100 amu and 15,000 amu), Fe3O4@PAA-FA (FA = folic acid; Mw of PAA = 5100 amu and 15,000 amu), Fe3O4@PEI-fluorescein (PEI = polyethylenimine; Mw of PEI = 1300 amu), Fe@Fe3O4@PEI (Mw of PEI = 10,000 amu), Fe3O4@SiO2 and Fe@Fe3O4@SiO2 nanoparticles. We characterized the prepared surface-modified nanoparticles using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) absorption spectroscopy, a superconducting quantum interference device (SQUID), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy and confocal microscopy. Finally, we measured the cytotoxicity of the samples. The results indicate that the surface-modified nanoparticles are biocompatible and are potential candidates for various biomedical applications.

  9. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica.

    PubMed

    Aymé, Laure; Jolivet, Pascale; Nicaud, Jean-Marc; Chardot, Thierry

    2015-01-01

    Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics.

  10. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica

    PubMed Central

    Aymé, Laure; Jolivet, Pascale; Nicaud, Jean-Marc; Chardot, Thierry

    2015-01-01

    Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics. PMID:26581109

  11. Microbial biosynthesis and secretion of l-malic acid and its applications.

    PubMed

    Chi, Zhe; Wang, Zhi-Peng; Wang, Guang-Yuan; Khan, Ibrar; Chi, Zhen-Ming

    2016-01-01

    l-Malic acid has many uses in food, beverage, pharmaceutical, chemical and medical industries. It can be produced by one-step fermentation, enzymatic transformation of fumaric acid to l-malate and acid hydrolysis of polymalic acid. However, the process for one-step fermentation is preferred as it has many advantages over any other process. The pathways of l-malic acid biosynthesis in microorganisms are partially clear and three metabolic pathways including non-oxidative pathway, oxidative pathway and glyoxylate cycle for the production of l-malic acid from glucose have been identified. Usually, high levels of l-malate are produced under the nitrogen starvation conditions, l-malate, as a calcium salt, is secreted from microbial cells and CaCO3 can play an important role in calcium malate biosynthesis and regulation. However, it is still unclear how it is secreted into the medium. To enhance l-malate biosynthesis and secretion by microbial cells, it is very important to study the mechanisms of l-malic acid biosynthesis and secretion at enzymatic and molecular levels.

  12. Selective retension of active cells employing low centrifugal force at the medium change during suspension culture of Chinese hamster ovary cells producing tPA.

    PubMed

    Takagi, M; Ilias, M; Yoshida, T

    2000-01-01

    The effect of centrifugal force applied for cell separation at the medium change on the growth, metabolism and tissue plasminogen activator (tPA) productivity of Chinese hamster ovary (CHO) cells suspension culture was investigated. The viability of the precipitated cells increased exponentially as the centrifugal force decreased. However, the cell recovery was lower than 91% when centrifugal forces applied for 5 min was less than 67 x g. In cultures incubated for 474 h with 7 medium changes employing centrifugal forces ranging from 67 to 364 x g, a centrifugal force lower than 119 x g resulted in higher specific rates of growth, glucose consumption, and lactate and tPA production during the whole culture period. On the other hand, daily centrifugation at 67 to 537 x g without discarding the supernatant had no effect on the specific rates. The cultures inoculated with cells precipitated at a centrifugal force of 67 x g showed apparently higher specific rates of metabolism compared to those inoculated with cells in the supernatant. The cells in the supernatant and the precipitate obtained following centrifugation at 67 x g have average diameters of 15.5 and 17.4 microm, respectively. The intracellular contents of amino acids, especially nonessential amino acids, of the precipitated cells were markedly higher than those of the cells in the supernatant. These results indicate that large cells with high amino acid content and metabolic activity were selectively retained in the culture by means of centrifugation at low forces such as 67 x g. Consequently, application of a low centrifugal force is recommended for medium change in order to maintain higher specific productivity of suspended mammalian cells in perfusion culture.

  13. Isolation and identification of biocellulose-producing bacterial strains from Malaysian acidic fruits.

    PubMed

    Voon, W W Y; Rukayadi, Y; Meor Hussin, A S

    2016-05-01

    Biocellulose (BC) is pure extracellular cellulose produced by several species of micro-organisms that has numerous applications in the food, biomedical and paper industries. However, the existing biocellulose-producing bacterial strain with high yield was limited. The aim of this study was to isolate and identify the potential biocellulose-producing bacterial isolates from Malaysian acidic fruits. One hundred and ninety-three bacterial isolates were obtained from 19 local acidic fruits collected in Malaysia and screened for their ability to produce BC. A total of 15 potential bacterial isolates were then cultured in standard Hestrin-Schramm (HS) medium statically at 30°C for 2 weeks to determine the BC production. The most potent bacterial isolates were identified using 16S rRNA gene sequence analysis, morphological and biochemical characteristics. Three new and potent biocellulose-producing bacterial strains were isolated from soursop fruit and identified as Stenotrophomonas maltophilia WAUPM42, Pantoea vagans WAUPM45 and Beijerinckia fluminensis WAUPM53. Stenotrophomonas maltophilia WAUPM42 was the most potent biocellulose-producing bacterial strain that produced the highest amount of BC 0·58 g l(-1) in standard HS medium. Whereas, the isolates P. vagans WAUPM45 and B. fluminensis WAUPM53 showed 0·50 and 0·52 g l(-1) of BC production, respectively. Biocellulose (BC) is pure extracellular cellulose that is formed by many micro-organisms in the presence of carbon source and acidic condition. It can replace plant-based cellulose in multifarious applications due to its unique characteristics. In this study, three potential biocellulose-producing bacterial strains were obtained from Malaysian acidic fruits and identified as Stenotrophomonas maltophilia WAUPM42, Pantoea vagans WAUPM45 and Beijerinckia fluminensis WAUPM53. This study reports for the first time the new biocellulose-producing bacterial strains isolated from Malaysian acidic fruits. © 2016 The Society for Applied Microbiology.

  14. l-Pyroglutamate Spontaneously Formed from l-Glutamate Inhibits Growth of the Hyperthermophilic Archaeon Sulfolobus solfataricus

    PubMed Central

    Park, Chan B.; Lee, Sun Bok; Ryu, Dewey D. Y.

    2001-01-01

    Identification of physiological and environmental factors that limit efficient growth of hyperthermophiles is important for practical application of these organisms to the production of useful enzymes or metabolites. During fed-batch cultivation of Sulfolobus solfataricus in medium containing l-glutamate, we observed formation of l-pyroglutamic acid (PGA). PGA formed spontaneously from l-glutamate under culture conditions (78°C and pH 3.0), and the PGA formation rate was much higher at an acidic or alkaline pH than at neutral pH. It was also found that PGA is a potent inhibitor of S. solfataricus growth. The cell growth rate was reduced by one-half by the presence of 5.1 mM PGA, and no growth was observed in the presence of 15.5 mM PGA. On the other hand, the inhibitory effect of PGA on cell growth was alleviated by addition of l-glutamate or l-aspartate to the medium. PGA was also produced from the l-glutamate in yeast extract; the PGA content increased to 8.5% (wt/wt) after 80 h of incubation of a yeast extract solution at 78°C and pH 3.0. In medium supplemented with yeast extract, cell growth was optimal in the presence of 3.0 g of yeast extract per liter, and higher yeast extract concentrations resulted in reduced cell yields. The extents of cell growth inhibition at yeast extract concentrations above the optimal concentration were correlated with the PGA concentration in the culture broth. Although other structural analogues of l-glutamate, such as l-methionine sulfoxide, glutaric acid, succinic acid, and l-glutamic acid γ-methyl ester, also inhibited the growth of S. solfataricus, the greatest cell growth inhibition was observed with PGA. We also observed that unlike other glutamate analogues, N-acetyl-l-glutamate enhanced the growth of S. solfataricus. This compound was stable under cell culture conditions, and replacement of l-glutamate with N-acetyl-l-glutamate in the medium resulted in increased cell density. PMID:11472943

  15. Use of Nonspecific, Glutamic Acid-Free, Media and High Glycerol or High Amylase as Inducing Parameters for Screening Bacillus Isolates Having High Yield of Polyglutamic Acid

    PubMed Central

    Baxi, Nandita N.

    2014-01-01

    Out of fifty-five Bacillus isolates obtained from ten different regional locations and sources, seven showed the ability to consistently produce specific extracellular polymeric substance (EPS) on rich as well as synthetic but nonspecific media which did not contain glutamic acid. The isolates were identified as either Bacillus licheniformis or Bacillus subtilis. The EPS from all isolates was resistant to alpha protease, proteinase K, and was thus of high molecular weight. Further it was detected after SDS-PAGE by methylene blue but not by coomassie blue R staining as in case of proteins with high proportion of acidic amino acids. Cell-free EPS, after acid hydrolysis, showed absence of carbohydrates and presence of only glutamic acid. Thus the native the EPS from all seven isolates was confirmed to be gamma polyglutamic acid (PGA) and not exopolysaccharide. The Bacillus isolate T which produced maximum polymer on all media tested had higher amylase: protease activity as compared to other strains. If inoculum was developed in rich medium as compared to synthetic medium, the PGA produced increased by twofold in the subsequent synthetic production medium. Similarly, use of inoculum consisting of young and vegetative cells also increased the PGA production by twofold though amount of inoculum did not affect yield of PGA. Though PGA was produced in even in the absence of glutamic acid supplementation in the production medium by all isolates, the yield of PGA increased by fourfold in the presence glutamic acid and the maximum yield was 30 g/l for isolate K. The supplementation of glutamine instead of glutamic acid into the medium caused an increase in the viscosity of the non-Newtonian solution of PGA. PMID:27379328

  16. Use of Nonspecific, Glutamic Acid-Free, Media and High Glycerol or High Amylase as Inducing Parameters for Screening Bacillus Isolates Having High Yield of Polyglutamic Acid.

    PubMed

    Baxi, Nandita N

    2014-01-01

    Out of fifty-five Bacillus isolates obtained from ten different regional locations and sources, seven showed the ability to consistently produce specific extracellular polymeric substance (EPS) on rich as well as synthetic but nonspecific media which did not contain glutamic acid. The isolates were identified as either Bacillus licheniformis or Bacillus subtilis. The EPS from all isolates was resistant to alpha protease, proteinase K, and was thus of high molecular weight. Further it was detected after SDS-PAGE by methylene blue but not by coomassie blue R staining as in case of proteins with high proportion of acidic amino acids. Cell-free EPS, after acid hydrolysis, showed absence of carbohydrates and presence of only glutamic acid. Thus the native the EPS from all seven isolates was confirmed to be gamma polyglutamic acid (PGA) and not exopolysaccharide. The Bacillus isolate T which produced maximum polymer on all media tested had higher amylase: protease activity as compared to other strains. If inoculum was developed in rich medium as compared to synthetic medium, the PGA produced increased by twofold in the subsequent synthetic production medium. Similarly, use of inoculum consisting of young and vegetative cells also increased the PGA production by twofold though amount of inoculum did not affect yield of PGA. Though PGA was produced in even in the absence of glutamic acid supplementation in the production medium by all isolates, the yield of PGA increased by fourfold in the presence glutamic acid and the maximum yield was 30 g/l for isolate K. The supplementation of glutamine instead of glutamic acid into the medium caused an increase in the viscosity of the non-Newtonian solution of PGA.

  17. A serum-free medium for colony growth and hyaluronic acid production by Streptococcus zooepidemicus NJUST01.

    PubMed

    Zhang, Jianfa; Ding, Xia; Yang, Liuyan; Kong, Zhiming

    2006-08-01

    A hyaluronic acid (HA)-producing strain, Streptococcus zooepidemicus NJUST01, can grow in a serum-free agar medium, with starch as exclusive carbon source, but not glucose, sucrose, dextrine, xylose, or lactose. In this starch medium, the strain NJUST01 reproduced successively at 37 degrees C for 60 generations, with no obvious variation on morphology and physiology, but colonies of the strain after 60th generation could not produce a clear hemolytic zone on sheep blood agar plates. Hyaluronic acid production by the strain NJUST01 was analyzed relative to the starch medium. Employing a multifactor cross experiment, an optimum medium revealed for hyaluronic acid production was composed of 5% starch, 0.3% glucose, 0.5% peptone, 0.15% MgSO4, and 2.0% K2HPO4. The amount of HA 6.7 g/l was obtained in batch fermentation on a rotary shaker at 37 degrees C, 220 rpm for 36 h.

  18. Haloarchaea Endowed with Phosphorus Solubilization Attribute Implicated in Phosphorus Cycle

    PubMed Central

    Yadav, Ajar Nath; Sharma, Divya; Gulati, Sneha; Singh, Surender; Dey, Rinku; Pal, Kamal Krishna; Kaushik, Rajeev; Saxena, Anil Kumar

    2015-01-01

    Archaea are unique microorganisms that are present in ecological niches of high temperature, pH and salinity. A total of 157 archaea were obtained from thirteen sediment, water and rhizospheric soil samples collected from Rann of Kutch, Gujarat, India. With an aim to screen phosphate solubilizing archaea, a new medium was designed as Haloarchaea P Solubilization (HPS) medium. The medium supported the growth and P solubilization activity of archaea. Employing the HPS medium, twenty isolates showed the P-solubilization. Phosphate solubilizing archaea were identified as seventeen distinct species of eleven genera namely Haloarcula, Halobacterium, Halococcus, Haloferax, Halolamina, Halosarcina, Halostagnicola, Haloterrigena, Natrialba, Natrinema and Natronoarchaeum. Natrinema sp. strain IARI-WRAB2 was identified as the most efficient P-solubilizer (134.61 mg/L) followed by Halococcus hamelinensis strain IARI-SNS2 (112.56 mg/L). HPLC analysis detected seven different kinds of organic acids, namely: gluconic acid, citric acid, formic acid, fumaric acid succinic acid, propionic acid and tartaric acid from the cultures of these isolates. These phosphate solubilizing halophilic archaea may play a role in P nutrition to vegetation growing in these hypersaline soils. This is the first report for these haloarchaea to solubilize considerable amount of P by production of organic acids and lowering of pH. PMID:26216440

  19. Economic co-production of poly(malic acid) and pullulan from Jerusalem artichoke tuber by Aureobasidium pullulans HA-4D.

    PubMed

    Xia, Jun; Xu, Jiaxing; Liu, Xiaoyan; Xu, Jiming; Wang, Xingfeng; Li, Xiangqian

    2017-02-23

    poly(L-malic acid) (PMA) is a water-soluble polyester with many attractive properties in medicine and food industries, but the high cost of PMA fermentation has restricted its further application for large-scale production. To overcome this problem, PMA production from Jerusalem artichoke tubers was successfully performed. Additionally, a valuable exopolysaccharide, pullulan, was co-produced with PMA by Aureobasidum pullulans HA-4D. The Jerusalem artichoke medium for PMA and pullulan co-production contained only 100 g/L hydrolysate sugar, 30 g/L CaCO 3 and 1 g/L NaNO 3 . Compared with the glucose medium, the Jerusalem artichoke medium resulted in a higher PMA concentration (114.4 g/L) and a lower pullulan concentration (14.3 g/L) in a 5 L bioreactor. Meanwhile, the activity of pyruvate carboxylase and malate dehydrogenas was significantly increased, while the activity of α-phosphoglucose mutase, UDP-glucose pyrophosphorylase and glucosyltransferase was not affected. To assay the economic-feasibility, large-scale production in a 1 t fermentor was performed, yielding 117.5 g/L PMA and 15.2 g/L pullulan. In this study, an economical co-production system for PMA and pullulan from Jerusalem artichoke was developed. The medium for PMA and pullulan co-production was significantly simplified when Jerusalem artichoke tubers were used. With the simplified medium, PMA production was obviously stimulated, which would be associated with the improved activity of pyruvate carboxylase and malate dehydrogenas.

  20. A new method for the measurement of protein turnover.

    PubMed Central

    Humphrey, T J; Davies, D D

    1975-01-01

    A new technique for the determination of rate constants of protein degradation is described. By using the method, half-lives of total soluble protein of Lemna minor during growth on full culture medium and distilled water were measured. The method involves incubating Lemna on a growth medium containing 3H2O. After a short exposure (20 min) to 3H-labelled culture medium, 3H was found in soluble amino acids, especially aspartate, glutamate, glutamine and alanine. After transfer to a 3H-free medium for 30 min, 80% of the 3H originally present in soluble amino acids was lost. These results suggest that 3H enters and leaves amino acids at the alpha-carbon atom, a conclusion supported by the observed labelling of glutamates. The exchange of H and 3H on the alpha-carbon atom is catalysed by transaminases and the speed of this exchange ensures that when the 3H2O is removed, the 3H in free amino acids is rapidly lost, thereby eliminating problems connected with metabolic pools and recycling. After an exposure of 20 min to 3H-labelled medium all protein amino acids, except for arginine, were found to be radioactive. The loss of radioactivity from protein amino acids was used to measure protein degradation. PMID:1156391

  1. Enterobacter sp. LU1 as a novel succinic acid producer - co-utilization of glycerol and lactose.

    PubMed

    Podleśny, Marcin; Jarocki, Piotr; Wyrostek, Jakub; Czernecki, Tomasz; Kucharska, Jagoda; Nowak, Anna; Targoński, Zdzisław

    2017-03-01

    Succinic acid is an important C4-building chemical platform for many applications. A novel succinic acid-producing bacterial strain was isolated from goat rumen. Phylogenetic analysis based on the 16S rRNA sequence and physiological analysis indicated that the strain belongs to the genus Enterobacter. This is the first report of a wild bacterial strain from the genus Enterobacter that is capable of efficient succinic acid production. Co-fermentation of glycerol and lactose significantly improved glycerol utilization under anaerobic conditions, debottlenecking the utilization pathway of this valuable biodiesel waste product. Succinic acid production reached 35 g l -1 when Enterobacter sp. LU1 was cultured in medium containing 50 g l -1 of glycerol and 25 g l -1 of lactose as carbon sources. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Modulation of antimicrobial metabolites production by the fungus Aspergillus parasiticus

    PubMed Central

    Bracarense, Adriana A.P.; Takahashi, Jacqueline A.

    2014-01-01

    Biosynthesis of active secondary metabolites by fungi occurs as a specific response to the different growing environments. Changes in this environment alter the chemical and biological profiles leading to metabolites diversification and consequently to novel pharmacological applications. In this work, it was studied the influence of three parameters (fermentation length, medium composition and aeration) in the biosyntheses of antimicrobial metabolites by the fungus Aspergillus parasiticus in 10 distinct fermentation periods. Metabolism modulation in two culturing media, CYA and YES was evaluated by a 22 full factorial planning (ANOVA) and on a 23 factorial planning, role of aeration, medium composition and carbohydrate concentration were also evaluated. In overall, 120 different extracts were prepared, their HPLC profiles were obtained and the antimicrobial activity against A. flavus, C. albicans, E. coli and S. aureus of all extracts was evaluated by microdilution bioassay. Yield of kojic acid, a fine chemical produced by the fungus A. parasiticus was determined in all extracts. Statistical analyses pointed thirteen conditions able to modulate the production of bioactive metabolites by A. parasiticus. Effect of carbon source in metabolites diversification was significant as shown by the changes in the HPLC profiles of the extracts. Most of the extracts presented inhibition rates higher than that of kojic acid as for the extract obtained after 6 days of fermentation in YES medium under stirring. Kojic acid was not the only metabolite responsible for the activity since some highly active extracts showed to possess low amounts of this compound, as determined by HPLC. PMID:24948950

  3. Metabolome analysis reveals the effect of carbon catabolite control on the poly(γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945.

    PubMed

    Mitsunaga, Hitoshi; Meissner, Lena; Palmen, Thomas; Bamba, Takeshi; Büchs, Jochen; Fukusaki, Eiichiro

    2016-04-01

    Poly(γ-glutamic acid) (PGA) is a polymer composed of L- and/or D-glutamic acids that is produced by Bacillus sp. Because the polymer has various features as water soluble, edible, non-toxic and so on, it has attracted attention as a candidate for many applications such as foods, cosmetics and so on. However, although it is well known that the intracellular metabolism of Bacillus sp. is mainly regulated by catabolite control, the effect of the catabolite control on the PGA producing Bacillus sp. is largely unknown. This study is the first report of metabolome analysis on the PGA producing Bacillus sp. that reveals the effect of carbon catabolite control on the metabolism of PGA producing Bacillus licheniformis ATCC 9945. Results showed that the cells cultivated in glycerol-containing medium showed higher PGA production than the cells in glucose-containing medium. Furthermore, metabolome analysis revealed that the activators of CcpA and CodY, global regulatory proteins of the intracellular metabolism, accumulated in the cells cultivated in glycerol-containing and glucose-containing medium, respectively, with CodY apparently inhibiting PGA production. Moreover, the cells seemed to produce glutamate from citrate and ammonium using glutamine synthetase/glutamate synthase. Pulsed addition of di-ammonium hydrogen citrate, as suggested by the metabolome result, was able to achieve the highest value so far for PGA production in B. licheniformis. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Acid soil infertility effects on peanut yields and yield components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blamey, F.P.C.

    1983-01-01

    The interpretation of soil amelioration experiments with peanuts is made difficult by the unpredictibility of the crop and by the many factors altered when ameliorating acid soils. The present study was conducted to investigate the effects of lime and gypsum applications on peanut kernel yield via the three first order yield components, pods per ha, kernels per pod, and kernel mass. On an acid medium sandy loam soil (typic Plinthustult), liming resulted in a highly significant kernel yield increase of 117% whereas gypsum applications were of no significant benefit. As indicated by path coefficient analysis, an increase in the numbermore » of pods per ha was markedly more important in increasing yield than an increase in either the number of kernels per pod or kernel mass. Furthermore, exch. Al was found to be particularly detrimental to pod number. It was postulated that poor peanut yields resulting from acid soil infertility were mainly due to the depressive effect of exch. Al on pod number. Exch. Ca appeared to play a secondary role by ameliorating the adverse effects of exch. Al.« less

  5. Application of an Acyl-CoA Ligase from Streptomyces aizunensis for Lactam Biosynthesis

    DOE PAGES

    Zhang, Jingwei; Barajas, Jesus F.; Burdu, Mehmet; ...

    2017-04-17

    ε-Caprolactam and δ-valerolactam are important commodity chemicals used in the manufacture of nylons, with millions of tons produced annually. Biological production of these highly valued chemicals has been limited due to a lack of enzymes that cyclize ω-amino fatty acid precursors to corresponding lactams under ambient conditions. In this study, we demonstrated production of these chemicals using ORF26, an acyl-CoA ligase involved in the biosynthesis of ECO-02301 in Streptomyces aizunensis. This enzyme has a broad substrate spectrum and can cyclize 4-aminobutyric acid into γ-butyrolactam, 5-aminovaleric acid into δ-valerolactam and 6-aminocaproic acid into ε-caprolactam. Recombinant E. coli expressing ORF26 produced valerolactammore » and caprolactam when 5-aminovaleric acid and 6-aminocaproic acid were added to the culture medium. Upon coexpressing ORF26 with a metabolic pathway that produced 5-aminovaleric acid from lysine, we were able to demonstrate production of δ-valerolactam from lysine.« less

  6. Green synthesis of isopropyl myristate in novel single phase medium Part I: Batch optimization studies.

    PubMed

    Vadgama, Rajeshkumar N; Odaneth, Annamma A; Lali, Arvind M

    2015-12-01

    Isopropyl myristate finds many applications in food, cosmetic and pharmaceutical industries as an emollient, thickening agent, or lubricant. Using a homogeneous reaction phase, non-specific lipase derived from Candida antartica, marketed as Novozym 435, was determined to be most suitable for the enzymatic synthesis of isopropyl myristate. The high molar ratio of alcohol to acid creates novel single phase medium which overcomes mass transfer effects and facilitates downstream processing. The effect of various reaction parameters was optimized to obtain a high yield of isopropyl myristate. Effect of temperature, agitation speed, organic solvent, biocatalyst loading and batch operational stability of the enzyme was systematically studied. The conversion of 87.65% was obtained when the molar ratio of isopropyl alcohol to myristic acid (15:1) was used with 4% (w/w) catalyst loading and agitation speed of 150 rpm at 60 °C. The enzyme has also shown good batch operational stability under optimized conditions.

  7. Using straw hydrolysate to cultivate Chlorella pyrenoidosa for high-value biomass production and the nitrogen regulation for biomass composition.

    PubMed

    Zhang, Tian-Yuan; Wang, Xiao-Xiong; Wu, Yin-Hu; Wang, Jing-Han; Deantes-Espinosa, Victor M; Zhuang, Lin-Lan; Hu, Hong-Ying; Wu, Guang-Xue

    2017-11-01

    Heterotrophic cultivation of Chlorella pyrenoidosa based on straw substrate was proposed as a promising approach in this research. The straw pre-treated by ammonium sulfite method was enzymatically hydrolyzed for medium preparation. The highest intrinsic growth rate of C. pyrenoidosa reached to 0.097h -1 in hydrolysate medium, which was quicker than that in glucose medium. Rising nitrogen concentration could significantly increase protein content and decrease lipid content in biomass, meanwhile fatty acids composition kept stable. The highest protein and lipid content in microalgal biomass reached to 62% and 32% under nitrogen excessive and deficient conditions, respectively. Over 40% of amino acids and fatty acids in biomass belonged to essential amino acids (EAA) and essential fatty acids (EFA), which were qualified for high-value uses. This research revealed the rapid biomass accumulation property of C. pyrenoidosa in straw hydrolysate medium and the effectiveness of nitrogen regulation to biomass composition at heterotrophic condition. Copyright © 2017. Published by Elsevier Ltd.

  8. [Specific odor component produced by Mycobacterium lepraemurium on Ogawa yolk medium].

    PubMed

    Mori, T; Aishima, T

    1992-11-01

    When Mycobacterium lepraemurium is grown on the 1% Ogawa yolk medium, it produces a specific odor. This odor was not observed in other easily cultivable acid-fast bacilli. Therefore, identification of the components responsible for the specific odor produced by M. lepraemurium was attempted. The odor components were extracted for overnight with sterilized and distilled water from the Ogawa yolk medium on which M. lepraemurium had been cultivated for two months. The odor components in the extract was adsorbed on refined charcoal. After washing with distilled water for three times, the charcoal was dried. Then the odor components were eluted from the charcoal with ethanol and the eluate was condensed under nitrogen gas flow at 40 degrees C. The condensate was analyzed by Gas-Chromatography-Mass-Spectrum (GC-MS). Phenylethanol and phenylacetic acid were identified as major odor components. A mixture of authentic phenylacetic acid, its methyl and ethyl esters, smelled similar to the odor of cultivated medium of M. lepraemurium. Thus, phenylacetic acid was identified as the key odor component produced by M. lepraemurium. When initial isolation culture of M. lepraemurium from murine leproma was cultivated on the Ogawa yolk medium by adding phenylacetic acid, growth inhibition was brought by the compound.

  9. Beta-ketoacyl-acyl carrier protein synthase IV: a key enzyme for regulation of medium-chain fatty acid synthesis in Cuphea lanceolata seeds.

    PubMed

    Schütt, Burkhardt Siegfried; Abbadi, Amine; Loddenkötter, Brigitte; Brummel, Monika; Spener, Friedrich

    2002-09-01

    With the aim of elucidating the mechanisms involved in the biosynthesis of medium-chain fatty acids in Cuphea lanceolata Ait., a crop accumulating up to 90% decanoic acid in seed triacylglycerols, cDNA clones of a beta-ketoacyl-acyl carrier protein (ACP) synthase IV (clKAS IV, EC 2.3.1.41) were isolated from C. lanceolata seed embryos. The amino acid sequence deduced from clKAS IV cDNA showed 80% identity to other plant KAS II-type enzymes, 55% identity towards plant KAS I and over 90% towards other Cuphea KAS IV-type sequences. Recombinant clKAS IV was functionally overexpressed in Escherichia coli, and substrate specificity of purified enzyme showed strong preference for elongation of short-chain and medium-chain acyl-ACPs (C4- to C10-ACP) with nearly equal activity. Further elongation steps were catalysed with distinctly less activity. Moreover, short- and medium-chain acyl-ACPs exerted a chain-length-specific and concentration-dependent substrate inhibition of clKAS IV. Based on these findings a regulatory mechanism for medium-chain fatty acid synthesis in C. lanceolata is presented.

  10. pH-sensitive Itaconic acid based polymeric hydrogels for dye removal applications.

    PubMed

    Sakthivel, M; Franklin, D S; Guhanathan, S

    2016-12-01

    A series of Itaconic Acid (IA) based pH-sensitive polymeric hydrogels were synthesized by condensation polymerization of Itaconic Acid (IA) with Ethylene Glycol (EG) in the presence of an acid medium resulted into pre-polymer. Further, pre-polymer were co-polymerized with Acrylic Acid (AA) through free radical polymerization using Potassium persulphate (KPS). The structural and surface morphological characterizations of the synthesized hydrogels were studied using FT-IR spectroscopy and Scanning Electron Microscope (SEM) respectively. The swelling and swelling equilibrium were performed at varies pH (4.0-10.0). Further, the effects of IA, EG and AA on swelling properties have also been investigated. Thermal stability of synthesized hydrogels have been investigated by TGA, DTA and DSC. The synthesized hydrogels have shown good ability to uptake a Cationic dye. The Methylene blue has been chosen as a model cationic dye. The results of dye removal using IA hydrogels found to have excellent dye removal capacity. Such kind of IA based hydrogels may be recommended for eco-friendly environmental application. viz., removal of dyes and metal ions and sewage water treatment, purification of water etc. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Differential regulation of fatty acid biosynthesis in two Chlorella species in response to nitrate treatments and the potential of binary blending microalgae oils for biodiesel application.

    PubMed

    Cha, Thye San; Chen, Jian Woon; Goh, Eng Giap; Aziz, Ahmad; Loh, Saw Hong

    2011-11-01

    This study was undertaken to investigate the effects of different nitrate concentrations in culture medium on oil content and fatty acid composition of Chlorella vulgaris (UMT-M1) and Chlorella sorokiniana (KS-MB2). Results showed that both species produced significant higher (p<0.05) oil content at nitrate ranging from 0.18 to 0.66 mM with C. vulgaris produced 10.20-11.34% dw, while C. sorokiniana produced 15.44-17.32% dw. The major fatty acids detected include C16:0, C18:0, C18:1, C18:2 and C18:3. It is interesting to note that both species displayed differentially regulated fatty acid accumulation patterns in response to nitrate treatments at early stationary growth phase. Their potential use for biodiesel application could be enhanced by exploring the concept of binary blending of the two microalgae oils using developed mathematical equations to calculate the oil mass blending ratio and simultaneously estimated the weight percentage (wt.%) of desirable fatty acid compositions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Extracellular chromone derivatives in cell cultures of Pimpinella anisum. Influence of elicitation with methyl jasmonate and 2β-methyl cyclodextrins.

    PubMed

    Soto-Argel, Camilo; Hidalgo, Diego; Palazon, Javier; Corchete, Purificación

    2018-02-01

    To explore the potentiality of undifferentiated Pimpinella anisum L. cell cultures for the production of secondary metabolites by means of elicitation. Two chromone compounds were secreted to the medium of undifferentiated cultures of P. anisum: 4-methoxyfuro[3,2-g]chromen-7-one, known as bergapten, which is constitutive to anise, and 5-hydroxy-7-methoxy-2-methylchromen-4-one, the rare chromone eugenin, not yet described in P. anisum. Caffeoyl quinic acid species were also identified in the biomass. Elicitation with methyl jasmonate enhanced chromone accumulation in the medium and stimulated phenolic acid metabolism in the biomass (11 mg caffeoyl quinic acids g -1 DW cells). The application of 2,6-dimethyl-β-cyclodextrins to cultures led to an intense accumulation of chromones, with nearly 10 mg l -1 bergapten and 150 mg l -1 eugenin being accumulated extracellularly after optimal elicitation conditions. The significant amounts of eugenin obtained in the anise cultures and the stability of production over long periods of time can be of interest for its biotechnological production and for future studies on biosynthesis regulation.

  13. Comparative studies of various hyaluronic acids produced by microbial fermentation for potential topical ophthalmic applications.

    PubMed

    Guillaumie, Fanny; Furrer, Pascal; Felt-Baeyens, Olivia; Fuhlendorff, Birgit L; Nymand, Søren; Westh, Peter; Gurny, Robert; Schwach-Abdellaoui, Khadija

    2010-03-15

    This work presents a comparative study of various hyaluronic acids (HA) produced by fermentation of either Bacillus subtilis or Streptococcus towards the selection of an optimal molecular weight (MW) HA for the preparation of topical ophthalmic formulations. The influence of HA MW on water binding capacity, sterile filtration, rheological properties, precorneal residence time and ocular tolerance of ophthalmic solutions was investigated. Molecular weight did not affect hydration of hyaluronic acid according to differential scanning calorimetry (DSC). In general, medium MW HA (0.6-1 MDa) resulted in solutions that were superior in terms of sterile filtration and kinematic viscosity requirements compared to high MW HA (>1 MDa). Moreover, all HA-based solutions exhibited well-defined viscoelastic properties that depend on MW. Gamma scintigraphic data indicated that HA MW at 0.1% concentration (w/v) and HA origin did not significantly affect the corneal residence time on rabbit eyes. A 0.3% solution of high MW HA had a prolonged residence time in the precorneal area compared to a medium MW HA at the same concentration. Finally, an in vivo ocular irritation test based on confocal laser scanning ophthalmoscopy (CLSO) conclusively showed the excellent tolerance of both Bacillus-derived HA and Streptococcus-derived HA after topical instillation onto the corneal surface. Overall, this comprehensive work highlights the superiority of medium MW hyaluronic acid for topical ophthalmic formulations based on their physico-chemical and biological properties, tolerance and handling. Such solutions are expected to enhance tear film stability, to allow for maximum comfort, and to exhibit high residence times, while being biocompatible and easy to sterile filter. (c) 2009 Wiley Periodicals, Inc.

  14. Stereospecific distribution of plamitic acid in the triacylglycerols of rat adipocytes. Effects of varying the composition of the substrate fatty acid in vitro

    PubMed Central

    Christie, William W.; Hunter, Margaret L.

    1980-01-01

    The effects of inclusion of different fatty acids in the medium on the rate of esterification of palmitic acid and its stereospecific distribution among the three positions of the triacyl-sn-glycerols by preparations of rat adipocytes in vitro have been determined. Myristic acid, stearic acid, oleic acid and linoleic acid were used as diluents and the concentration of the combined unesterified fatty acids in the medium was held constant; only the proportion of palmitic acid was varied. The amount of palmitic acid esterified was always linearly related to its relative concentration in the medium and was not significantly affected by the nature of the diluent fatty acid chosen. Constant relative proportions were recovered in triacylglycerols and in intermediates in each instance. The amount of palmitic acid esterified to each of the positions of the triacyl-sn-glycerols was linearly dependent on the relative proportion in the medium but the nature of the relationship was markedly influenced by which fatty acid was present. When stearic acid was present, simple relationships were found over the whole range tested. When either myristic acid, oleic acid or linoleic acid was present, abrupt changes in the manner of esterification of palmitic acid were observed in position sn-1 when the relative concentrations of palmitic acid and the diluent reached critical values, which differed with each fatty acid. In position sn-2 when oleic acid or linoleic acid was present, a similar change was observed, and in position sn-3 it was obtained with myristic acid as diluent. The results are discussed in terms of changes in the relative affinities of the acyltransferases for palmitic acid. Palmitic acid was esterified into various molecular species in proportions that indicated acylation with non-correlative specificity at higher relative concentrations but not at lower. PMID:7236215

  15. Amino Acid and Vitamin Requirements of Several Bacteroides Strains

    PubMed Central

    Quinto, Grace

    1966-01-01

    Nutritional studies were performed on nine Bacteroides strains, by use of the methodology and media of anaerobic rumen microbiology. Ristella perfoetens CCI required l-arginine hydrochloride, l-tryptophan, l-leucine, l-histidine hydrochloride, l-cysteine hydrochloride, dl-valine, dl-tyrosine, and the vitamin calcium-d-pantothenate, since scant turbidity developed in media without these nutrients. R. perfoetens was stimulated by glycine, dl-lysine hydrochloride, dl-isoleucine, l-proline, l-glutamic acid, dl-alanine, dl-phenylalanine, dl-methionine, and the vitamins nicotinamide and p-aminobenzoic acid, since maximal turbidity developed more slowly in media without these nutrients than in complete medium. Medium A-23, which was devised for R. perfoetens, contained salts, 0.0002% nicotinamide and calcium d-pantothenate, 0.00001% p-aminobenzoic acid, 0.044% l-tryptophan, 0.09% l-glutamic acid, and 0.1% of the other 13 amino acids listed above. Zuberella clostridiformis and seven strains of R. pseudoinsolita did not require vitamins, and showed no absolute requirement for any one amino acid. Various strains produced maximal turbidity more slowly in media deficient in l-proline, glycine, l-glutamic acid, dl-serine, l-histidine hydrochloride, dl-alanine, or l-cysteine hydrochloride, than in complete medium. These eight strains grew optimally in medium A-23 plus 0.1% dl-serine but without vitamins. PMID:16349673

  16. Regeneration of Stevia Plant Through Callus Culture

    PubMed Central

    Patel, R. M.; Shah, R. R.

    2009-01-01

    Stevia rebaudiana Bertoni that conventionally propagated by seed or by cuttings or clump division which has a limitation of quality and quantity seed material. In present study, callus culture technique was tried to achieve rapid plant multiplication for quality seed material. Callus induction and multiplication medium was standardized from nodal as well as leaf sagments. It is possible to maintain callus on Murashige and Skoog medium supplemented with 6-benzyl amino purine and naphthalene acetic acid. Maximum callus induction was obtained on Murashige and Skoog medium incorporated with 6-benzyl amino purine (2.0-3.0 mg/l) and naphthalene acetic acid (2.0 mg/l) treatments. However, Murashige and Skoog medium containing 2.0 mg/l 6-benzyl amino purine+2.0 mg/l naphthalene acetic acid was found to be the best for callus induction. Higher regeneration frequency was noticed with Murashige and Skoog medium supplemented with 2.0 mg/l 6-benzyl amino purine+0.2 mg/l naphthalene acetic acid. Regenerated plants were rooted better on ¼ Murashige and Skoog strength supplemented with 0.1 mg/l indole-3-butyric acid. The rooted plantlets were hardened successfully in tera care medium with 63 per cent survival rate. The developed protocol can be utilized for mass production of true to type planting material on large scale independent of season, i.e. external environmental conditions. PMID:20177455

  17. Medium optimization for pyrroloquinoline quinone (PQQ) production by Methylobacillus sp. zju323 using response surface methodology and artificial neural network-genetic algorithm.

    PubMed

    Wei, Peilian; Si, Zhenjun; Lu, Yao; Yu, Qingfei; Huang, Lei; Xu, Zhinan

    2017-08-09

    Methylobacillus sp. zju323 was adopted to improve the biosynthesis of pyrroloquinoline quinone (PQQ) by systematic optimization of the fermentation medium. The Plackett-Burman design was implemented to screen for the key medium components for the PQQ production. CoCl 2  · 6H 2 O, ρ-amino benzoic acid, and MgSO 4  · 7H 2 O were found capable of enhancing the PQQ production most significantly. A five-level three-factor central composite design was used to investigate the direct and interactive effects of these variables. Both response surface methodology (RSM) and artificial neural network-genetic algorithm (ANN-GA) were used to predict the PQQ production and to optimize the medium composition. The results showed that the medium optimized by ANN-GA was better than that by RSM in maximizing PQQ production and the experimental PQQ concentration in the ANN-GA-optimized medium was improved by 44.3% compared with that in the unoptimized medium. Further study showed that this ANN-GA-optimized medium was also effective in improving PQQ production by fed-batch mode, reaching the highest PQQ accumulation of 232.0 mg/L, which was about 47.6% increase relative to that in the original medium. The present work provided an optimized medium and developed a fed-batch strategy which might be potentially applicable in industrial PQQ production.

  18. Application of AlkBGT and AlkL from Pseudomonas putida GPo1 for Selective Alkyl Ester ω-Oxyfunctionalization in Escherichia coli

    PubMed Central

    Eggink, Gerrit; Weusthuis, Ruud A.

    2016-01-01

    ABSTRACT The enzyme system AlkBGT from Pseudomonas putida GPo1 can efficiently ω-functionalize fatty acid methyl esters. Outer membrane protein AlkL boosts this ω-functionalization. In this report, it is shown that whole cells of Escherichia coli expressing the AlkBGT system can also ω-oxidize ethyl nonanoate (NAEE). Coexpression of AlkBGT and AlkL resulted in 1.7-fold-higher ω-oxidation activity on NAEE. With this strain, initial activity on NAEE was 70 U/g (dry weight) of cells (gcdw), 67% of the initial activity on methyl nonanoate. In time-lapse conversions with 5 mM NAEE the main product was 9-hydroxy NAEE (3.6 mM), but also 9-oxo NAEE (0.1 mM) and 9-carboxy NAEE (0.6 mM) were formed. AlkBGT also ω-oxidized ethyl, propyl, and butyl esters of fatty acids ranging from C6 to C10. Increasing the length of the alkyl chain improved the ω-oxidation activity of AlkBGT on esters of C6 and C7 fatty acids. From these esters, application of butyl hexanoate resulted in the highest ω-oxidation activity, 82 U/gcdw. Coexpression of AlkL only had a positive effect on ω-functionalization of substrates with a total length of C11 or longer. These findings indicate that AlkBGT(L) can be applied as a biocatalyst for ω-functionalization of ethyl, propyl, and butyl esters of medium-chain fatty acids. IMPORTANCE Fatty acid esters are promising renewable starting materials for the production of ω-hydroxy fatty acid esters (ω-HFAEs). ω-HFAEs can be used to produce sustainable polymers. Chemical conversion of the fatty acid esters to ω-HFAEs is challenging, as it generates by-products and needs harsh reaction conditions. Biocatalytic production is a promising alternative. In this study, biocatalytic conversion of fatty acid esters toward ω-HFAEs was investigated using whole cells. This was achieved with recombinant Escherichia coli cells that produce the AlkBGT enzymes. These enzymes can produce ω-HFAEs from a wide variety of fatty acid esters. Medium-chain-length acids (C6 to C10) esterified with ethanol, propanol, or butanol were applied. This is a promising production platform for polymer building blocks that uses renewable substrates and mild reaction conditions. PMID:27084021

  19. Physico-chemical properties and cytotoxic potential of Cordyceps sinensis metabolites.

    PubMed

    Lee, Eun-Jeong; Jang, Ka-Hee; Im, Seon-Young; Lee, Yoon-Kyung; Farooq, Muhammad; Farhoudi, Rozbeh; Lee, Dong-Jin

    2015-01-01

    This study was conducted to estimate the antioxidant activities, biochemical properties and biological activities of one of the entomopathogenic fungi, Cordyceps sinensis. Analysis of fungal metabolites indicated that the most abundant free sugar was glucose; the highest component of organic acids was citric acid from 10-day culture medium and the glutamate was the predominant amino acid observed from 3-day culture medium. Maximum total polyphenols and flavonoids were detected in the 15-day culture medium. For cytotoxicity test, three cancer cell lines, HepG2 (liver), MCF-7 (breast) and A549 (lung) were used. The IC50 values of the highest toxicity of HepG2 cell lines were observed from 10-day cultured medium, whereas the highest toxicity of MCF-7 and A549 was observed on 5-day cultured medium. This is the first study reporting on the strong antioxidant and cytotoxic potential of C. sinensis. Culture medium of C. sinensis may thus be used as an effective antioxidant and anticancer treatment of natural origin.

  20. Cultivation of Arthrospira (spirulina) platensis in desalinator wastewater and salinated synthetic medium: protein content and amino-acid profile

    PubMed Central

    Volkmann, Harriet; Imianovsky, Ulisses; Oliveira, Jorge L.B.; Sant’Anna, Ernani S.

    2008-01-01

    Arthrospira (Spirulina) platensis was cultivated in laboratory under controlled conditions (30°C, photoperiod of 12 hours light/dark provided by fluorescent lamps at a light intensity of 140 μmol photons.m-2.s-1 and constant bubbling air) in three different culture media: (1) Paoletti medium (control), (2) Paoletti supplemented with 1 g.L-1 NaCl (salinated water) and (3) Paoletti medium prepared with desalinator wastewater. The effects of these treatments on growth, protein content and amino acid profile were measured. Maximum cell concentrations observed in Paoletti medium, Paoletti supplemented with salinated water or with desalinator wastewater were 2.587, 3.545 and 4.954 g.L-1, respectively. Biomass in medium 3 presented the highest protein content (56.17%), while biomass in medium 2 presented 48.59% protein. All essential amino acids, except lysine and tryptophan, were found in concentrations higher than those requiried by FAO. PMID:24031187

  1. Enhanced chemiluminescence of cerium(IV)-Tween 85 system and the analytical application.

    PubMed

    Li, Shifeng; Qian, Li; Zhu, Yan; Liu, Manman; Gao, Yinping; Ni, Yonghong

    2013-01-01

    The oxidation reaction between cerium(IV) and Tween 85 in sulfuric acid medium produced weak chemiluminescence (CL). In this paper, it was found that citrate could strongly enhance the CL of cerium(IV)-Tween 85-polyphenol system. Based on studies of ultraviolet-visible spectra and CL spectra, the CL enhancement mechanism had been proposed. It was surmised that the light emission was from an excited oxygen molecular pair O2((1)Δg)O2((1)∑g(-)). The maximum emission wavelength was about 478 nm. The effects of 17 amino acids and 29 organic compounds on cerium(IV)-Tween 85-citrate CL were investigated by a flow injection procedure. This study showed the present system had a wide application for the determination of these compounds. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Nanomolar detection of hypochlorite by a rhodamine-based chiral hydrazide in absolute aqueous media: application in tap water analysis with live-cell imaging.

    PubMed

    Goswami, Shyamaprosad; Das, Avijit Kumar; Manna, Abhishek; Maity, Anup Kumar; Saha, Partha; Quah, Ching Kheng; Fun, Hoong-Kun; Abdel-Aziz, Hatem A

    2014-07-01

    By employing the oxidation property of hypochlorite (OCl(-)), a novel rhodamine-based hydrazide of the chiral acid ((S)-(-)-2-pyrrolidone-5-carboxylic acid) (RHHP) was designed and synthesized for detection of OCl(-) absolutely in aqueous medium at nanomolar level. The structure of the chiral sensor was also proved by the X-ray crystallography. The bioactivity and the application of the probe for detection of OCl(-) in natural water system have been demonstrated. A plausible mechanism for oxidation of the sensor followed by hydrolysis is also proposed. The sensibility of the receptor toward OCl(-) was studied in absolute aqueous media, and the detection limit of hypochlorite-mediated oxidation to the receptor in nanomolar level makes this platform (RHHP) an ultrasensitive and unique system for OCl(-) oxidation.

  3. KAS IV: a 3-ketoacyl-ACP synthase from Cuphea sp. is a medium chain specific condensing enzyme.

    PubMed

    Dehesh, K; Edwards, P; Fillatti, J; Slabaugh, M; Byrne, J

    1998-08-01

    cDNA clones encoding a novel 3-ketoacyl-ACP synthase (KAS) have been isolated from Cuphea. The amino acid sequence of this enzyme is different from the previously characterized classes of KASs, designated KAS I and III, and similar to those designated as KAS II. To define the acyl chain specificity of this enzyme, we generated transgenic Brassica plants over-expressing the cDNA encoded protein in a seed specific manner. Expression of this enzyme in transgenic Brassica seeds which normally do not produce medium chain fatty acids does not result in any detectable modification of the fatty acid profile. However, co-expression of the Cuphea KAS with medium chain specific thioesterases, capable of production of either 12:0 or 8:0/10:0 fatty acids in seed oil, strongly enhances the levels of these medium chain fatty acids as compared with seed oil of plants expressing the thioesterases alone. By contrast, co-expression of the Cuphea KAS along with an 18:0/18.1-ACP thioesterase does not result in any detectable modification of the fatty acids. These data indicate that the Cuphea KAS reported here has a different acyl-chain specificity to the previously characterized KAS I, II and III. Therefore, we designate this enzyme KAS IV, a medium chain specific condensing enzyme.

  4. Enhanced production of optically pure d (-) lactic acid from nutritionally rich Borassus flabellifer sugar and whey protein hydrolysate based-fermentation medium.

    PubMed

    Reddy Tadi, Subbi Rami; E V R, Arun; Limaye, Anil Mukund; Sivaprakasam, Senthilkumar

    2017-03-01

    The aim of this study is to optimize the production of optically pure d (-) lactic acid (DLA) employing a cost-effective production medium. Based on the designed biomass approach, Sporolactobacillus inulinus NBRC 13595 was found to exhibit high DLA titer (19.0 g L -1 ) and optical purity (99.6%). A cost-effective medium was constituted using Palmyra palm jaggery (PJ) from Borassus flabellifer and whey protein hydrolysate (WPH) as carbon and nitrogen sources, respectively. Plackett-Burman design indicated that PJ, WPH, and MnSO 4 as significant variables influence DLA production. A rotatable central composite design and response surface methodology were used to optimize the PJ and WPH concentrations. A maximum DLA titer (170.14 g L -1 ) was predicted for 222.24 g L -1 of PJ and 11.99 g L -1 of WPH, respectively. Fermentation experimental results exhibited a maximum DLA titer (189.0 ± 8.53 g L -1 ) and productivity (5.25 ± 0.24 g L -1 H -1 ), which is the highest ever reported for DLA production from a renewable feedstock in the batch process. The present investigation substantiates that the potential application of economically viable raw feedstocks (PJ and WPH) for enhanced DLA production, which is attributed to 2.5-fold reduction in DLA production cost compared with conventional medium. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  5. A defined medium for Leishmania culture allows definition of essential amino acids.

    PubMed

    Nayak, Archana; Akpunarlieva, Snezhana; Barrett, Michael; Burchmore, Richard

    2018-02-01

    Axenic culture of Leishmania is generally performed in rich, serum-supplemented media which sustain robust growth over multiple passages. The use of such undefined media, however, obscures proteomic analyses and confounds the study of metabolism. We have established a simple, defined culture medium that supports the sustained growth of promastigotes over multiple passages and which yields parasites that have similar infectivity to macrophages to parasites grown in a conventional semi-defined medium. We have exploited this medium to investigate the amino acid requirements of promastigotes in culture and have found that phenylalanine, tryptophan, arginine, leucine, lysine and valine are essential for viability in culture. Most of the 20 proteogenic amino acids promote growth of Leishmania promastigotes, with the exception of alanine, asparagine, and glycine. This defined medium will be useful for further studies of promastigote substrate requirements, and will facilitate future proteomic and metabolomic analyses. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Improved acid tolerance of Lactobacillus pentosus by error-prone whole genome amplification.

    PubMed

    Ye, Lidan; Zhao, Hua; Li, Zhi; Wu, Jin Chuan

    2013-05-01

    Acid tolerance of Lactobacillus pentosus ATCC 8041 was improved by error-prone amplification of its genomic DNA using random primers and Taq DNA polymerase. The resulting amplification products were transferred into wild-type L. pentosus by electroporation and the transformants were screened for growth on low-pH agar plates. After only one round of mutation, one mutant (MT3) was identified that was able to completely consume 20 g/L of glucose to produce lactic acid at a yield of 95% in 1L MRS medium at pH 3.8 within 36 h, whereas no growth or lactic acid production was observed for the wild-type strain under the same conditions. The acid tolerance of mutant MT3 remained genetically stable for at least 25 subcultures. Therefore, the error-prone whole genome amplification technique is a very powerful tool for improving phenotypes of this lactic acid bacterium and may also be applicable for other microorganisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Application of nitrogen metabolism in autotrophic bacteria to chemosynthetic bioregeneration in space missions, supplement

    NASA Technical Reports Server (NTRS)

    Wixom, R. L.

    1974-01-01

    The chemolithotroph, Hydrogenomonas eutropha, was considered as a life support, bioregenerative system. This project focuses on several metabolic functions that are related to the proposed nitrogen cycle between man and this microbe. Specifically this organism has the capability to utilize as the sole nitrogen source such urine components as urea and fifteen individual amino acids, but not nine other amino acids. The effectiveness of utilization was high for many amino acids. Several specific growth inhibitions were also observed. The enzyme that catalyzes the incorporation of ammonia in the medium into amino acids was identified as a NADP-specific, L-glutamate dehydrogenase. This enzyme has a constitutive nature. This organism can synthesize all of its amino acids from carbon dioxide and ammonia. Therefore with the background literature of multiple pathways of individual amino acid biosyntheses, our evidence to date is consistent with the Hydrogeneomonas group having the same pathway of valine-isoleucine formation as the classical E. coli.

  8. Growth and acid production of Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 in the fermentation of algal carcass.

    PubMed

    Li, C; Zhang, G F; Mao, X; Wang, J Y; Duan, C Y; Wang, Z J; Liu, L B

    2016-06-01

    Algal carcass is a low-value byproduct of algae after its conversion to biodiesel. Dried algal carcass is rich in protein, carbohydrate, and multiple amino acids, and it is typically well suited for growth and acid production of lactic acid bacteria. In this study, Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 was used to ferment different algal carcass media (ACM), including 2% ACM, 2% ACM with 1.9% glucose (ACM-G), and 2% ACM with 1.9% glucose and 2g/L amino acid mixture (ACM-GA). Concentrations of organic acids (lactic acid and acetic acid), acetyl-CoA, and ATP were analyzed by HPLC, and activities of lactate dehydrogenase (LDH), acetokinase (ACK), pyruvate kinase (PK), and phosphofructokinase (PFK) were determined by using a chemical approach. The growth of L. bulgaricus cells in ACM-GA was close to that in the control medium (de Man, Rogosa, and Sharpe). Lactic acid and acetic acid contents were greatly reduced when L. bulgaricus cells were grown in ACM compared with the control medium. Acetyl-CoA content varied with organic acid content and was increased in cells grown in different ACM compared with the control medium. The ATP content of L. bulgaricus cells in ACM was reduced compared with that of cells grown in the control medium. Activities of PFK and ACK of L. bulgaricus cells grown in ACM were higher and those of PK and LDH were lower compared with the control. Thus, ACM rich in nutrients may serve as an excellent substrate for growth by lactic acid bacteria, and addition of appropriate amounts of glucose and amino acids can improve growth and acid production. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Awakening sleeping beauty: production of propionic acid in Escherichia coli through the sbm operon requires the activity of a methylmalonyl-CoA epimerase.

    PubMed

    Gonzalez-Garcia, Ricardo Axayacatl; McCubbin, Tim; Wille, Annalena; Plan, Manuel; Nielsen, Lars Keld; Marcellin, Esteban

    2017-07-17

    Propionic acid is used primarily as a food preservative with smaller applications as a chemical building block for the production of many products including fabrics, cosmetics, drugs, and plastics. Biological production using propionibacteria would be competitive against chemical production through hydrocarboxylation of ethylene if native producers could be engineered to reach near-theoretical yield and good productivity. Unfortunately, engineering propionibacteria has proven very challenging. It has been suggested that activation of the sleeping beauty operon in Escherichia coli is sufficient to achieve propionic acid production. Optimising E. coli production should be much easier than engineering propionibacteria if tolerance issues can be addressed. Propionic acid is produced in E. coli via the sleeping beauty mutase operon under anaerobic conditions in rich medium via amino acid degradation. We observed that the sbm operon enhances amino acids degradation to propionic acid and allows E. coli to degrade isoleucine. However, we show here that the operon lacks an epimerase reaction that enables propionic acid production in minimal medium containing glucose as the sole carbon source. Production from glucose can be restored by engineering the system with a methylmalonyl-CoA epimerase from Propionibacterium acidipropionici (0.23 ± 0.02 mM). 1-Propanol production was also detected from the promiscuous activity of the native alcohol dehydrogenase (AdhE). We also show that aerobic conditions are favourable for propionic acid production. Finally, we increase titre 65 times using a combination of promoter engineering and process optimisation. The native sbm operon encodes an incomplete pathway. Production of propionic acid from glucose as sole carbon source is possible when the pathway is complemented with a methylmalonyl-CoA epimerase. Although propionic acid via the restored succinate dissimilation pathway is considered a fermentative process, the engineered pathway was shown to be functional under anaerobic and aerobic conditions.

  10. A novel regulatory system in plants involving medium-chain fatty acids.

    PubMed

    Hunzicker, Gretel Mara

    2009-12-01

    Polyethylene glycol sorbitan monoacylates (Tween) are detergents of widespread use in plant sciences. However, little is known about the plant response to these compounds. Interestingly, the structure of Tweens' detergents (especially from Tween 20) resembles the lipid A structure from gram-negative bacteria polysaccharides (a backbone with short saturated fatty acids). Thus, different assays (microarray, GC-MS, RT-PCR, Northern blots, alkalinization and mutant analyses) were conducted in order to elucidate physiological changes in the plant response to Tween 20 detergent. Tween 20 causes a rapid and complex change in transcript abundance which bears all characteristics of a pathogenesis-associated molecular pattern (PAMP)/elicitor-induced defense response, and they do so at concentrations which cause no detectable deleterious effects on plant cellular integrity. In the present work, it is shown that the PAMP/elicitor-induced defense responses are caused by medium-chain fatty acids which are efficiently released from the Tween backbone by the plant, notably lauric acid (12:0) and methyl lauric acid. These compounds induce the production of ethylene, medium alkalinization and gene activation in a jasmonate-independent manner. Medium-chain fatty acids are thus novel elicitors/regulators of plant pathogen defense as they have being proved in animals.

  11. [Synthesis of amino acids of Bacillus subtilis IMV V-7023 in the medium with glycerophosphates].

    PubMed

    Tserkovniak, L S; Roĭ, A O; Kurdysh, I K

    2009-01-01

    It was shown that under cultivation of Bacillus subtilis IMVV-7023 in the nutrient medium with glycerophosphate biologically active substances are accumulated in the culture liquid. They influence positively the seeds growth and formation of plant germs. The bacteria synthesize amino acids in this medium, their quantitative structure differs from the type of carbon nutrition and cultivation time of the cells.

  12. Quality, antioxidative ability, and cell proliferation-enhancing activity of fermented black soybean broths with various supplemental culture medium.

    PubMed

    Lin, Chih-Chien; Wu, Pey-Shiuan; Liang, David Woei-Ming; Kwan, Chang-Chin; Chen, Yi-Shyan

    2012-01-01

    The fermented soybean-based foods have played an important role in traditional diets around the world for many centuries, and Bacillus subtilis is typically used in the fermentation of soybean-based foods. The fermentation process may improve not only the flavor but also the nutritional value of food, and substances produced in this fermented broth were affected by many factors including culture medium and the selected soybeans. In this study, we use 3 potential culture mediums in the fermentation of black soybean and the fermented black soybean broths were used for the examination of amino acid composition, total phenolics content, flavonoids and anthocyanins contents, the antioxidant properties, and cytotoxicity. Our results indicated that the fermented black soybean broth, fermentation III, have the most abundant essential amino acid (79.77 mg/g), phenolics (19.33 mg/g), flavonoids (46.01 mg/g), and anthocyanins (1.06 mg/g). Besides, all of the fermented black soybean broths exhibited the significant antioxidative abilities with 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effect, reducing power and ferrous ion chelating effect. In addition, the fermented black soybean broths demonstrated the cell proliferation-enhancing activity in Detroit 551 cells. The cells were augmented up to the maximum value of 183.6% (compared with control) at 10 mg/mL of the fermentation I. Therefore, the different supplemental culture medium fermented black soybean broths may be used as a functional ingredient in the products of nutritional drinks and health foods. The present study illustrated the potential of various supplemental culture medium fermented black soybean broths in the application of functional ingredient for nutritional drinks and health foods. © 2011 Institute of Food Technologists®

  13. Nitric acid recycling and copper nitrate recovery from effluent.

    PubMed

    Jô, L F; Marcus, R; Marcelin, O

    2014-01-01

    The recycling of nitric acid and copper nitrate contained in an industrial effluent was studied. The experiments conducted on such a medium showed that the presence of copper nitrate significantly improves nitric acid-water separation during distillation in an azeotropic medium. At the temperature of the azeotrope, however, this metal salt starts to precipitate, making the medium pasty, thus inhibiting the nitric acid extraction process. The optimisation of parameters such as column efficiency and adding water to the boiler at the azeotrope temperature are recommended in this protocol in order to collect the various components while avoiding the formation of by-products: NOx compounds. Thus, the absence of column, along with the addition of a small volume of water at a temperature of 118 °C, significantly increases the yield, allowing 94 % nitric acid to be recovered at the end of the process, along with the residual copper nitrate. The resulting distillate, however, is sufficiently dilute to not be used as is. Rectification is required to obtain concentrated nitric acid at 15 mol·l(-1), along with a weakly acidic distillate from the distillation front. This latter is quenched using potassium hydroxide and is used as a fertiliser solution for horticulture or sheltered market gardening. This process thus allows complete recycling of all the medium's components, including that of the distillate resulting from the nitric acid rectification operation.

  14. Tuned apatitic materials: Synthesis, characterization and potential antimicrobial applications

    NASA Astrophysics Data System (ADS)

    Fierascu, Irina; Fierascu, Radu Claudiu; Somoghi, Raluca; Ion, Rodica Mariana; Moanta, Adriana; Avramescu, Sorin Marius; Damian, Celina Maria; Ditu, Lia Mara

    2018-04-01

    Inorganic antimicrobial materials can be viable for multiple applications (related to its use for new buildings with special requirements related to microbiological loading, such as hospital buildings and for consolidation of cultural heritage constructions); also the use of substituted hydroxyapatites for protection of stone artefacts against environmental factors (acidic rain) and biodeterioration it's an option to no longer use of toxic substances. This paper presents methods of synthesis and characterization of the material from the point of view of the obtained structures and final applications. The materials were characterized in terms of composition and morphology (using X-ray Diffraction, X-ray Fluorescence, Inductively coupled plasma-atomic emission spectrometry, Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy, Surface area and pore size determination). Antimicrobial activity was tested against filamentous fungi strains and pathogenic bacteria strains, using both spot on lawn qualitative method (on agar medium) and serial microdilution quantitative method (in broth medium). Further, it was evaluated the anti-biofilm activity of the tested samples toward the most important microbial strains implicated in biofilm development, using crystal violet stained biofilms microtiter assay, followed by spectrophotometric quantitative evaluation.

  15. Optimization of D-lactic acid production using unutilized biomass as substrates by multiple parallel fermentation.

    PubMed

    Mufidah, Elya; Wakayama, Mamoru

    2016-12-01

    This study investigated the optimization of D-lactic acid production from unutilized biomass, specifically banana peel and corncob by multiple parallel fermentation (MPF) with Leuconostoc mesenteroides and Aspergillus awamori. The factors involved in MPF that were assessed in this study comprised banana peel and corncob, KH 2 PO 4 , Tween 80, MgSO 4 ·7H 2 O, NaCl, yeast extract, and diammonium hydrogen citrate to identify the optimal concentration for D-lactic acid production. Optimization of these component factors was performed using the Taguchi method with an L8 orthogonal array. The optimal concentrations for the effectiveness of MPF using biomass substrates were as follows: (1) banana peel, D-lactic acid production was 31.8 g/L in medium containing 15 % carbon source, 0.5 % KH 2 PO 4 , 0.1 % Tween 80, 0.05 % MgSO 4 ·7H 2 O, 0.05 % NaCl, 1.5 % yeast extract, and 0.2 % diammonium hydrogen citrate. (2) corncob, D-lactic acid production was 38.3 g/L in medium containing 15 % of a carbon source, 0.5 % KH 2 PO 4 , 0.1 % Tween 80, 0.05 % MgSO 4 ·7H 2 O, 0.1 % NaCl, 1.0 % yeast extract, and 0.4 % diammonium hydrogen citrate. Thus, both banana peel and corncob are unutilized potential resources for D-lactic acid production. These results indicate that MPF using L. mesenteroides and A. awamori could constitute part of a potential industrial application of the currently unutilized banana peel and corncob biomass for D-lactic acid production.

  16. Antimicrobial Activity of Chitosan Derivatives Containing N-Quaternized Moieties in Its Backbone: A Review

    PubMed Central

    Martins, Alessandro F.; Facchi, Suelen P.; Follmann, Heveline D. M.; Pereira, Antonio G. B.; Rubira, Adley F.; Muniz, Edvani C.

    2014-01-01

    Chitosan, which is derived from a deacetylation reaction of chitin, has attractive antimicrobial activity. However, chitosan applications as a biocide are only effective in acidic medium due to its low solubility in neutral and basic conditions. Also, the positive charges carried by the protonated amine groups of chitosan (in acidic conditions) that are the driving force for its solubilization are also associated with its antimicrobial activity. Therefore, chemical modifications of chitosan are required to enhance its solubility and broaden the spectrum of its applications, including as biocide. Quaternization on the nitrogen atom of chitosan is the most used route to render water-soluble chitosan-derivatives, especially at physiological pH conditions. Recent reports in the literature demonstrate that such chitosan-derivatives present excellent antimicrobial activity due to permanent positive charge on nitrogen atoms side-bonded to the polymer backbone. This review presents some relevant work regarding the use of quaternized chitosan-derivatives obtained by different synthetic paths in applications as antimicrobial agents. PMID:25402643

  17. Ultrasound assisted immersion freezing of broccoli (Brassica oleracea L. var. botrytis L.).

    PubMed

    Xin, Ying; Zhang, Min; Adhikari, Benu

    2014-09-01

    The aim of this study was to research the ultrasound-assisted freezing (UAF) of broccoli. CaCl2 solution was used as freezing medium. The comparative advantage of using UAF over normal freezing on the freezing time, cell-wall bound calcium to total calcium ratio, textural properties, color, drip loss and L-ascorbic acid contents was evaluated. The application of UAF at selected acoustic intensity with a range of 0.250-0.412 W/cm(2) decreased the freezing time and the loss of cell-wall bound calcium content. Compared to normal freezing, the values of textural properties, color, L-ascorbic acid content were better preserved and the drip loss was significantly minimized by the application of UAF. However, when outside that range of acoustic intensity, the quality of the ultrasound-assisted frozen broccoli was inferior compared to that of the normally frozen samples. Selected the appropriate acoustic intensity was very important for the application of UAF. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Poly (γ-glutamic acid)/beta-TCP nanocomposites via in situ copolymerization: Preparation and characterization.

    PubMed

    Shu, Xiu-Lin; Shi, Qing-Shan; Feng, Jin; Yang, Yun-Hua; Zhou, Gang; Li, Wen-Ru

    2016-07-01

    A series biodegradable poly (γ-glutamic acid)/beta-tricalcium phosphate (γ-PGA/TCP) nanocomposites were prepared which were composed of poly-γ-glutamic acid polymerized in situ with β-tricalcium phosphate and physiochemically characterized as bone graft substitutes. The particle size via dynamic light scattering, the direct morphological characterization via transmission electron microscopy and field emission scanning electron microscope, which showed that γ-PGA and β-TCP were combined compactly at 80℃, and the γ-PGA/TCP nanocomposites had homogenous and nano-sized grains with narrow particle size distributions. The water uptake and retention abilities, in vitro degradation properties, cytotoxicity in the simulated medium, and protein release of these novel γ-PGA/TCP composites were investigated. Cell proliferation in composites was nearly twice than β-TCP when checked in vitro using MC3T3 cell line. We also envision the potential use of γ-PGA/TCP systems in bone growth factor or orthopedic drug delivery applications in future bone tissue engineering applications. These observations suggest that the γ-PGA/TCP are novel nanocomposites with great potential for application in the field of bone tissue engineering. © The Author(s) 2016.

  19. Use of the short-term inflammatory response in the mouse peritoneal cavity to assess the biological activity of leached vitreous fibers.

    PubMed Central

    Donaldson, K; Addison, J; Miller, B G; Cullen, R T; Davis, J M

    1994-01-01

    We used a special-purpose glass microfiber sample, Johns-Manville Code 100/475, to study the effects of various acid and alkali treatments on biological activity as assessed by inflammation in the mouse peritoneal cavity, the leaching of Si, and the phase contrast optical microscopy (PCOM) fiber number. We used mild and medium treatments with oxalic acid and Tris buffer and harsh treatment with concentrated HCl and NaOH. Mild oxalic acid and Tris treatment for 2 weeks had no effect on any of the end-points, but prolonging the mild oxalic acid treatment time to 2 months reduced the biological activity and the fiber number. Medium oxalic acid treatment reduced the biological activity and the fiber number and caused a loss of Si. Medium Tris alkali treatment reduced the PCOM-countable fibers and the biological activity but did not cause a substantial loss of Si. Harsh treatment with strong HCl did not affect the fiber number or cause leaching but the biological activity was reduced; strong NaOH reduced the fiber number and biological activity, and caused marked leaching of Si. The medium oxalic acid conditions (pH 1.4) were more acid than those found in lung cells but produced the same effects (reduction in fiber number and biological activity) as the more physiological mild treatment (pH 4.0), when prolonged. This study suggests that medium oxalic acid treatment can be used as a short-term assay to compare loss of Si, reduction in fiber number, and change in biological activity of vitreous fibers.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7882922

  20. High-level production of recombinant trypsin in transgenic rice cell culture through utilization of an alternative carbon source and recycling system.

    PubMed

    Kim, Nan-Sun; Yu, Hwa-Young; Chung, Nguyen-Duc; Kwon, Tae-Ho; Yang, Moon-Sik

    2014-09-01

    Productivity of recombinant bovine trypsin using a rice amylase 3D promoter has been studied in transgenic rice suspension culture. Alternative carbon sources were added to rice cell suspension cultures in order to improve the production of recombinant bovine trypsin. It was demonstrated that addition of alternative carbon sources such as succinic acid, fumaric acid and malic acid in the culture medium could increase the productivity of recombinant bovine trypsin 3.8-4.3-fold compared to those in the control medium without carbon sources. The highest accumulated trypsin reached 68.2 mg/L on day 5 in the culture medium with 40 mM fumaric acid. The feasibility of repeated use of the cells for recombinant trypsin production was tested in transgenic rice cell suspension culture with the culture medium containing the combination of variable sucrose concentration and 40 mM fumaric acid. Among the used combinations, the combination of 1% sucrose and 40 mM fumaric acid resulted in a yield of up to 53 mg/L five days after incubation. It also increased 31% (W/W) of dry cell weight and improved 43% of cell viability compared to that in control medium without sucrose. Based on these data, recycling of the trypsin production process with repeated 1% sucrose and 40 mM fumaric acid supplying-harvesting cycles was developed in flask scale culture. Recombinant bovine trypsin could be stably produced with a yield of up to 53-39 mg/L per cycle during five recycling cycles. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Removal of iron interferences by solvent extraction for geochemical analysis by atomic-absorption spectrophotometry

    USGS Publications Warehouse

    Zhou, L.; Chao, T.T.; Sanzolone, R.F.

    1985-01-01

    Iron is a common interferent in the determination of many elements in geochemical samples. Two approaches for its removal have been taken. The first involves removal of iron by extraction with methyl isobutyl ketone (MIBK) from hydrochloric acid medium, leaving the analytes in the aqueous phase. The second consists of reduction of iron(III) to iron(II) by ascorbic acid to minimize its extraction into MIBK, so that the analytes may be isolated by extraction. Elements of interest can then be determined using the aqueous solution or the organic extract, as appropriate. Operating factors such as the concentration of hydrochloric acid, amounts of iron present, number of extractions, the presence or absence of a salting-out agent, and the optimum ratio of ascorbic acid to iron have been determined. These factors have general applications in geochemical analysis by atomic-absorption spectrophotometry. ?? 1985.

  2. Folding control in cyclic peptides through N-methylation pattern selection: formation of antiparallel beta-sheet dimers, double reverse turns and supramolecular helices by 3alpha,gamma cyclic peptides.

    PubMed

    Amorín, Manuel; Castedo, Luis; Granja, Juan R

    2008-01-01

    Peptide foldamers constitute a growing class of nanomaterials with potential applications in a wide variety of chemical, medical and technological fields. Here we describe the preparation and structural characteristics of a new class of cyclic peptide foldamers (3alpha,gamma-CPs) that, depending on their backbone N-methylation patterns and the medium, can either remain as flat rings that dimerize through arrays of hydrogen bonds of antiparallel beta-sheet type, or can fold into twisted double reverse turns that, in the case of double gamma-turns, associate in nonpolar solvents to form helical supramolecular structures. A 3alpha,gamma-CP consists of a number of multiples of a repeat unit made up of four amino acid residues of alternating chirality: three corresponding to alpha-amino acids and one to a gamma-amino acid (a cis-3-aminocycloalkanecarboxylic acid).

  3. Poly(ionic liquid) based chemosensors for detection of basic amino acids in aqueous medium

    NASA Astrophysics Data System (ADS)

    Li, Xinjuan; Wang, Kai; Ma, Nana; Jia, Xianbin

    2017-09-01

    Naked-eye detection of amino acids in water is of great significance in the field of bio-analytical applications. Herein, polymerized ionic liquids (PILs) with controlled chain length structures were synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization and post-quaternization approach. The amino acids recognition performance of PILs with different alkyl chain lengths and molecular weights was evaluated by naked-eye color change and ultraviolet-visible (UV-vis) spectral studies. These PILs were successfully used for highly sensitive and selective detection of Arg, Lys and His in water. The recognition performance was improved effectively with increased molecular weight of PILs. The biosensitivity of the PILs in water was strongly dependent on their aggregation effect and polarization effect. Highly sensitive and selective detection of amino acids was successfully accomplished by introducing positively charged pyridinium moieties and controlled RAFT radical polymerization.

  4. Micropropagation of Phalaenopsis and Doritaenopsis by culturing shoot tips of flower stalk buds.

    PubMed

    Tokuhara, K; Mii, M

    1993-11-01

    Green Protocorm-like Bodies (PLB) with high multiplication capacity were induced from shoot tips of flower stalk buds having 1 or 2 leaf primordia using New Dogashima Medium (NDM) containing 0.1 mg l(-1) α-naphthaleneacetic acid (NAA) and 1 mg 1(-1) 6-benzylaminopurine (BAP). These PLB were subcultured on the same medium. More than 10,000 PLBs were obtained from a few buds on a single flower stalk within one year. After transfer onto NDM containing no plant growth regulator (PGR), the PLB developed into plantlets. The micropropagation method formulated in this study was applicable to 12 different genotypes. These results suggest that the methodology could be used on a commercial scale for vegetative propagation of Phalaenopsis and Doritaenopsis.

  5. Short- and medium-chain fatty acids enhance the cell surface expression and transport capacity of the bile salt export pump (BSEP/ABCB11).

    PubMed

    Kato, Takuya; Hayashi, Hisamitsu; Sugiyama, Yuichi

    2010-09-01

    The reduced expression of the bile salt export pump (BSEP/ABCB11) at the canalicular membrane is associated with cholestasis-induced hepatotoxicity due to the accumulation of bile acids in hepatocytes. We previously reported that 4-phenylbutyrate (4PBA), an approved drug for urea cycle disorders, is a promising agent for intrahepatic cholestasis because it increases both the cell surface expression and the transport capacity of BSEP. In the present study, we searched for effective compounds other than 4PBA by focusing on short- and medium-chain fatty acids, which have similar characteristics to 4PBA such as their low-molecular-weight and a carboxyl group. In transcellular transport studies using Madin-Darby canine kidney (MDCK) II cells, all short- and medium-chain fatty acids tested except for formate, acetate, and hexanoic acid showed more potent effects on wild type (WT) BSEP-mediated [3H]taurocholate transport than did 4PBA. The increase in WT BSEP transport with butyrate and octanoic acid treatment correlated with an increase in its expression at the cell surface. Two PFIC2-type variants, E297G and D482G BSEP, were similarly affected with both compounds treatment. The prolonged half-life of cell surface-resident WT BSEP was responsible for this increased octanoic acid-stimulated transport, but not for that of butyrate. In conclusion, short- and medium-chain fatty acids have potent effects on the increase in WT and PFIC2-type BSEP-mediated transport in MDCK II cells. Although both short- and medium-chain fatty acids enhance the transport capacity of WT and PFIC2-type BSEP by inducing those expressions at the cell surface, the underlying mechanism seems to differ between fatty acids. 2010 Elsevier B.V. All rights reserved.

  6. The Effect of Aggressive Corrosion Mediums on the Microstructure and Properties of Mild Steel

    NASA Astrophysics Data System (ADS)

    Araoyinbo, A. O.; Salleh, M. A. A. Mohd; Rahmat, A.; Azmi, A. I.; Rahim, W. M. F. Wan Abd; Achitei, D. C.; Jin, T. S.

    2018-06-01

    Mild steel is known to be one of the major construction materials and have been extensively used in most chemical and material industries due to its interesting properties which can be easily altered to suit various application areas. In this research, mild steel is exposed to different aggressive mediums in order to observe the effect of these interactions on its surface morphology and properties. The mild steel used was cut into dimensions of 7 cm length and width of 3 cm. The aggressive mediums used are 100 mls of aqueous solution of hydrochloric acid, sodium hydroxide (40 g/L), and sodium chloride (35 g/L) at room temperature. The characterizations performed are the hardness test with the Rockwell hardness tester, the surface morphology by optical microscope, surface roughness and the weight loss from the immersion test. It was observed that the hardness value and the weight loss for the different cut samples of mild steel immersed in the different aggressive mediums reduces with prolong exposure and severe pitting form of corrosion was present on its surface.

  7. Development and application of a new biotechnology of the molasses in-situ method; detailed evaluation for selected wells in the Romashkino carbonate reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, M.; Lungerhausen, D.; Murtada, H.

    1995-12-31

    On the basis of different laboratory studies, by which special strains of the type Clostridium tyrobutyricum were found, the application of molasses in-situ method for the enhanced recovery of oil in Romashkino oil field was executed. In an anaerobic, 6%-molasses medium the strains produce about 11,400 mg/l of organic acids (especially butyric acid), 3,200 mg/l ethanol, butanol, etc., and more than 350 ml/g of molasses biogas with a content of 80% C0{sub 2} and 20% H{sub 2}. The metabolics of Clostridium tyrobutyricum depress the growth of SRB, whereas methanogenic bacteria grow in an undiluted fermented molasses medium very well. Inmore » this way the dominant final fermentation process is methanogenesis. By laboratory studies with original cores under the conditions of the carbonate reservoir in Bashkir, the recovery of oil increased from 15% after waterflooding to 29% OOIP during the treatment with molasses and bacteria. We developed a new biotechnological method for a self-regulated, automatic continuous culture and constructed a special pilot plant with a high technical standard. The plant produced during the pilot on Romashkino field (September 1992 to August 1994) about 1,000 m{sup 3} of clean inoculum with a content of 3-4 billion cells per ml. This inoculum was injected in slugs together with 15,000 m{sup 3} of molasses medium, first in one, later in five wells. We will demonstrate for two example wells the complex microbiological and chemical changes in the oil, gas, and water phases, and their influences on the recover of oil.« less

  8. Effect of amino acids on tannase biosynthesis by Bacillus licheniformis KBR6.

    PubMed

    Mohapatra, Pradeep K Das; Pati, Bikas R; Mondal, Keshab C

    2009-04-01

    Microbial tannase (tannin acyl hydrolase, EC 3.1.1.20), a hydrolysable tannin-degrading enzyme, has gained importance in various industrial processes, and is used extensively in the manufacture of instant tea, beer, wine, and gallic acid. Tannase is an inducible enzyme, and hydrolysable tannin, especially tannic acid, is the sole inducer. This study is of the effect of various amino acids and their analogues on tannase biosynthesis by Bacillus licheniformis KBR6 to ascertain the mode of action of these growth factors on tannase biosynthesis from microbial origin. Enzyme production was carried out in enriched tannic acid medium through submerged fermentation for 20 h at 35 degrees C. Different amino acids at a concentration of 0.05 g% (w/v) were added to the culture medium immediately after sterilization. Culture supernatant was used as the source of the enzyme and the quantity of tannase was estimated by the colorimetric assay method. Growth of the organism was estimated according to biomass dry weight. Maximum tannase (2.87-fold that of the control) was synthesized by B. licheniformis KBR6 when alanine was added to the culture medium. Other amino acids, such as DL-serine, L-cystine, glycine, L-ornithine, aspartic acid, L-glutamic acid, DL-valine, L-leucine and L-lysine, also induced tannase synthesis. L-Cysteine monohydrochloride and DL-threonine were the most potent inhibitors. Regulation of tannase biosynthesis by B. licheniformis in the presence of various amino acids is shown. This information will be helpful for formulating an enriched culture medium for industrial-scale tannase production.

  9. Acyl CoA profiles of transgenic plants that accumulate medium-chain fatty acids indicate inefficient storage lipid synthesis in developing oilseeds.

    PubMed

    Larson, Tony R; Edgell, Teresa; Byrne, James; Dehesh, Katayoon; Graham, Ian A

    2002-11-01

    Several Brassica napus lines transformed with genes responsible for the synthesis of medium- or long-chain fatty acids were examined to determine limiting factor(s) for the subsequent accumulation of these fatty acids in seed lipids. Examination of a decanoic acid (10:0) accumulating line revealed a disproportionately high concentration of 10:0 CoA during seed development compared to long-chain acyl CoAs isolated from the same tissues, suggesting that poor incorporation of 10:0 CoA into seed lipids limits 10:0 fatty acid accumulation. This relationship was also seen for dodecanoyl (12:0) CoA and fatty acid in a high 12:0 line, but not for octadecanoic (18:0) CoA and fatty acid in a high 18:0 line. Comparison of 10:0 CoA and fatty acid proportions from seeds at different developmental stages for transgenic B. napus and Cuphea hookeriana, the source plant for the medium-chain thioesterase and 3-ketoacyl-ACP synthase transgenes, revealed that C. hookeriana incorporates 10:0 CoA into seed lipids more efficiently than transgenic B. napus. Furthermore, beta-oxidation and glyoxylate cycle activities were not increased above wild type levels during seed development in the 8:0/10:0 line, suggesting that lipid catabolism was not being induced in response to the elevated 10:0 CoA concentrations. Taken together, these data suggest that transgenic plants that are engineered to synthesize medium-chain fatty acids may lack the necessary mechanisms, such as specific acyltransferases, to incorporate these fatty acids efficiently into seed lipids.

  10. Identification of a novel amino acid racemase from a hyperthermophilic archaeon Pyrococcus horikoshii OT-3 induced by D-amino acids.

    PubMed

    Kawakami, Ryushi; Ohmori, Taketo; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2015-08-01

    To date, there have been few reports analyzing the amino acid requirement for growth of hyperthermophilic archaea. We here found that the hyperthermophilic archaeon Pyrococcus horikoshii OT-3 requires Thr, Leu, Val, Phe, Tyr, Trp, His and Arg in the medium for growth, and shows slow growth in medium lacking Met or Ile. This largely corresponds to the presence, or absence, of genes related to amino acid biosynthesis in its genome, though there are exceptions. The amino acid requirements were dramatically lost by addition of D-isomers of Met, Leu, Val, allo-Ile, Phe, Tyr, Trp and Arg. Tracer analysis using (14)C-labeled D-Trp showed that D-Trp in the medium was used as a protein component in the cells, suggesting the presence of D-amino acid metabolic enzymes. Pyridoxal 5'-phosphate (PLP)-dependent racemase activity toward Met, Leu and Phe was detected in crude extract of P. horikoshii and was enhanced in cells grown in the medium supplemented with D-amino acids, especially D-allo-Ile. The gene encoding the racemase was narrowed down to one open reading frame on the basis of enzyme purification from P. horikoshii cells, and the recombinant enzyme exhibited PLP-dependent racemase activity toward several amino acids, including Met, Leu and Phe, but not Pro, Asp or Glu. This is the first report showing the presence in a hyperthermophilic archaeon of a PLP-dependent amino acid racemase with broad substrate specificity that is likely responsible for utilization of D-amino acids for growth.

  11. In situ synthesis of twelve dialkyltartrate-boric acid complexes and two polyols-boric acid complexes and their applications as chiral ion-pair selectors in nonaqueous capillary electrophoresis.

    PubMed

    Wang, Li-Juan; Yang, Juan; Yang, Geng-Liang; Chen, Xing-Guo

    2012-07-27

    In this paper, twelve dialkyltartrate-boric acid complexes and two polyols-boric acid complexes were in situ synthesized by the reaction of different dialkyltartrates or polyols with boric acid in methanol containing triethylamine. All of the twelve dialkyltartrate-boric acid complexes were found to have relatively good chiral separation performance in nonaqueous capillary electrophoresis (NACE). Their chiral recognition effects in terms of both enantioselectivity (α) and resolution (R(s)) were similar when the number of carbon atoms was below six in the alkyl group of alcohol moiety. The dialkyltartrates containing alkyl groups of different structures but the same number of carbon atoms, i.e. one of straight chain and one of branched chain, also provided similar chiral recognition effects. Furthermore, it was demonstrated for the first time that two methanol insoluble polyols, D-mannitol and D-sorbitol, could react with boric acid to prepare chiral ion-pair selectors using methanol as the solvent medium. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Genetic incorporation of recycled unnatural amino acids.

    PubMed

    Ko, Wooseok; Kim, Sanggil; Jo, Kyubong; Lee, Hyun Soo

    2016-02-01

    The genetic incorporation of unnatural amino acids (UAAs) into proteins has been a useful tool for protein engineering. However, most UAAs are expensive, and the method requires a high concentration of UAAs, which has been a drawback of the technology, especially for large-scale applications. To address this problem, a method to recycle cultured UAAs was developed. The method is based on recycling a culture medium containing the UAA, in which some of essential nutrients were resupplemented after each culture cycle, and induction of protein expression was controlled with glucose. Under optimal conditions, five UAAs were recycled for up to seven rounds of expression without a decrease in expression level, cell density, or incorporation fidelity. This method can generally be applied to other UAAs; therefore, it is useful for reducing the cost of UAAs for genetic incorporation and helpful for expanding the use of the technology to industrial applications.

  13. Application of low-cost algal nitrogen source feeding in fuel ethanol production using high gravity sweet potato medium.

    PubMed

    Shen, Yu; Guo, Jin-Song; Chen, You-Peng; Zhang, Hai-Dong; Zheng, Xu-Xu; Zhang, Xian-Ming; Bai, Feng-Wu

    2012-08-31

    Protein-rich bloom algae biomass was employed as nitrogen source in fuel ethanol fermentation using high gravity sweet potato medium containing 210.0 g l(-1) glucose. In batch mode, the fermentation could not accomplish even in 120 h without any feeding of nitrogen source. While, the feeding of acid-hydrolyzed bloom algae powder (AHBAP) notably promoted fermentation process but untreated bloom algae powder (UBAP) was less effective than AHBAP. The fermentation times were reduced to 96, 72, and 72 h if 5.0, 10.0, and 20.0 g l(-1) AHBAP were added into medium, respectively, and the ethanol yields and productivities increased with increasing amount of feeding AHBAP. The continuous fermentations were performed in a three-stage reactor system. Final concentrations of ethanol up to 103.2 and 104.3 g l(-1) with 4.4 and 5.3 g l(-1) residual glucose were obtained using the previously mentioned medium feeding with 20.0 and 30.0 g l(-1) AHBAP, at dilution rate of 0.02 h(-1). Notably, only 78.5 g l(-1) ethanol and 41.6 g l(-1) residual glucose were obtained in the comparative test without any nitrogen source feeding. Amino acids analysis showed that approximately 67% of the protein in the algal biomass was hydrolyzed and released into the medium, serving as the available nitrogen nutrition for yeast growth and metabolism. Both batch and continuous fermentations showed similar fermentation parameters when 20.0 and 30.0 g l(-1) AHBAP were fed, indicating that the level of available nitrogen in the medium should be limited, and an algal nitrogen source feeding amount higher than 20.0 g l(-1) did not further improve the fermentation performance. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Process and apparatus for the production of BI-213 cations

    DOEpatents

    Horwitz, E. Philip; Hines, John J.; Chiarizia, Renato; Dietz, Mark

    1998-01-01

    A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed.

  15. Process and apparatus for the production of Bi-213 cations

    DOEpatents

    Horwitz, E.P.; Hines, J.J.; Chiarizia, R.; Dietz, M.

    1998-12-29

    A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed. 7 figs.

  16. New Culture Medium Containing Ionic Concentrations of Nutrients Similar to Concentrations Found in the Soil Solution †

    PubMed Central

    Angle, J. Scott; McGrath, Stephen P.; Chaney, Rufus L.

    1991-01-01

    A new growth medium which closely approximates the composition of the soil solution is presented. This soil solution equivalent (SSE) medium contains the following components (millimolar): NO3, 2.5; NH4, 2.5; HPO4, 0.005; Na, 2.5; Ca, 4.0; Mg, 2.0; K, 0.503; Cl, 4.0; SO4, 5.0; ethylenediamine-di(o-hydroxyphenylacetic acid), 0.02; and MES [2-(N-morpholino)ethanesulfonic acid] (to maintain the pH at 6.0), 10, plus 0.1% arabinose. The advantages of the SSE medium are discussed. PMID:16348614

  17. Effect of soil application of humic acid on nutrients uptake, essential oil and chemical compositions of garden thyme (Thymus vulgaris L.) under greenhouse conditions.

    PubMed

    Noroozisharaf, Alireza; Kaviani, Maryam

    2018-05-01

    Humic acid is natural biological organic, which has a high effect on plant growth and quality. However, the mechanisms of the promoting effect of humic acid on the volatile composition were rarely reported. In this study, the effects of soil application of humic acid on the chemical composition and nutrients uptake of Thymus vulgaris were investigated. Treatments comprised 0, 50, 75 and 100 g m -2 . Essential oil was extracted by hydrodistillation and analyzed using GC-MS and GC-FID. Essential oil content was enhanced by increase of the humic acid level and its content ranged from 0.8% (control) to 2.0% (75 g m -2 ). Thirty-two volatile compounds were identified and these compounds were considerably affected by humic acid. The highest percentage of thymol (74.15%), carvacrol (6.20%), p -cymene (4.24%), borneol (3.42%), trans -caryophyllene (1.70%) and cis -sabinene hydrate (1.35%) as major compounds were observed in T. vulgaris under 100 g m -2 humic acid. There was a linear relationship ( R 2  = 97%) between humic acid levels and thymol as a major compound. The oils were dominated by oxygenated monoterpenes followed by monoterpene hydrocarbons and sesquiterpene hydrocarbons. Based on the path coefficient analysis, the highest direct effects on essential oil content were observed in monoterpene esters (3.465) and oxygenated sesquiterpenes (3.146). The humic acid application also enhanced the uptake of N, P, K, Mg and Fe in garden thyme. The highest N (2.42%), P (0.75%), K (2.63%), Mg (0.23%) and Fe (1436.58 ppm) were observed in medium supplemented with 100 g m -2 humic acid. In all, the utilization of humic acid could positively change nutrients uptake, essential oil content and its major constituents in T. vulgaris .

  18. Nonfeed application of rendered animal proteins for microbial production of eicosapentaenoic acid by the fungus Pythium irregulare.

    PubMed

    Liang, Yi; Garcia, Rafael A; Piazza, George J; Wen, Zhiyou

    2011-11-23

    Rendered animal proteins are well suited for animal nutrition applications, but the market is maturing, and there is a need to develop new uses for these products. The objective of this study is to explore the possibility of using animal proteins as a nutrient source for microbial production of omega-3 polyunsaturated fatty acids by the microalga Schizochytrium limacinum and the fungus Pythium irregulare. To be absorbed by the microorganisms, the proteins needed to be hydrolyzed into small peptides and free amino acids. The utility of the protein hydrolysates for microorganisms depended on the hydrolysis method used and the type of microorganism. The enzymatic hydrolysates supported better cell growth performance than the alkali hydrolysates did. P. irregulare displayed better overall growth performance on the experimental hydrolysates compared to S. limacinum. When P. irregulare was grown in medium containing 10 g/L enzymatic hydrolysate derived from meat and bone meal or feather meal, the performance of cell growth, lipid synthesis, and omega-3 fatty acid production was comparable to the that of culture using commercial yeast extract. The fungal biomass derived from the animal proteins had 26-29% lipid, 32-34% protein, 34-39% carbohydrate, and <2% ash content. The results show that it is possible to develop a nonfeed application for rendered animal protein by hydrolysis of the protein and feeding to industrial microorganisms which can produce omega-3 fatty acids for making omega-3-fortified foods or feeds.

  19. Direct Electric Current Treatment under Physiologic Saline Conditions Kills Staphylococcus epidermidis Biofilms via Electrolytic Generation of Hypochlorous Acid

    PubMed Central

    Sandvik, Elizabeth L.; McLeod, Bruce R.; Parker, Albert E.; Stewart, Philip S.

    2013-01-01

    The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10th strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log10 CFU/cm2 were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm2) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm2) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications. PMID:23390518

  20. Direct electric current treatment under physiologic saline conditions kills Staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid.

    PubMed

    Sandvik, Elizabeth L; McLeod, Bruce R; Parker, Albert E; Stewart, Philip S

    2013-01-01

    The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10(th) strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log(10) CFU/cm(2) were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm(2)) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm(2)) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications.

  1. Some Factors Influencing Acid Production by an Oxytetracycline-Resistant Strain of Streptococcus lactis1

    PubMed Central

    Mikolajcik, E. M.; Harper, W. J.; Gould, I. A.

    1963-01-01

    Induction of oxytetracycline resistance in a strain of Streptococcus lactis caused this organism to display reduced acid production, salt tolerance, pyruvate synthesis, growth at alkaline pH, and a loss in ability to produce ammonia from arginine. α-Ketoglutaric and oxaloacetic acids were found to accumulate in the growth medium of resistant cells, in contrast to none in the medium of susceptible cells. No free arginine could be detected in the intracellular fraction of resistant cells, but arginine was present in the intracellular fraction of susceptible cells and decreased in concentration upon the addition of oxytetracycline to the growth medium. Depressed acid production in milk by the oxytetracycline resistant strain is evidently a consequence of the inability of this organism to metabolize arginine effectively. PMID:14063784

  2. Oxidation of isoniazid by quinolinium dichromate in an aqueous acid medium and kinetic determination of isoniazid in pure and pharmaceutical formulations.

    PubMed

    Kulkarni, Raviraj M; Bilehal, Dinesh C; Nandibewoor, Sharanappa T

    2004-04-01

    The kinetics of oxidation of isoniazid in acidic medium was studied spectrophotometrically. The reaction between QDC and isoniazid in acid medium exhibits (4:1) stoichiometry (QDC:isoniazid). The reaction showed first order kinetics in quinolinium dichromate (QDC) concentration and an order of less than unity in isoniazid (INH) and acid concentrations. The oxidation reaction proceeds via a protonated QDC species, which forms a complex with isoniazid. The latter decomposes in a slow step to give a free radical derived from isoniazid and an intermediate chromium(V), which is followed, by subsequent fast steps to give the products. The reaction constants involved in the mechanism are evaluated. Isoniazid was analyzed by kinetic methods in pure and pharmaceutical formulations.

  3. Outer membrane vesicles (OMV) production of Neisseria meningitidis serogroup B in batch process.

    PubMed

    Santos, Sílvia; Arauz, Luciana Juncioni de; Baruque-Ramos, Júlia; Lebrun, Ivo; Carneiro, Sylvia Mendes; Barreto, Sandra Alves; Schenkman, Rocilda Perazzini Furtado

    2012-09-14

    Serogroup B outer membrane vesicles (OMV) with iron regulated proteins (IRP) from Neisseria meningitidis constitute the antigen for the vaccine against the disease caused by this bacterium. Aiming to enhance final OMV concentration, seven batch experiments were carried out under four different conditions: (i) with original Catlin medium; (ii) with original Catlin medium and lactate and amino acids pulse at the 6th cultivation hour; (iii) with Catlin medium with double initial concentrations of lactate and amino acids and (iv) Catlin medium without glycerol and with double initial concentrations of lactate and amino acids. The cultivation experiments were carried out in a 7-L bioreactor under the following conditions: 36°C, 0.5atm, overlay air 1L/min, agitation: 250-850 rpm, and O(2) control at 10%, 20 h. After lactate and amino acids exhaustion, cell growth reached stationary phase and a significant release increase of OMV was observed. According to the Luedeking & Piret model, OMV liberation is non-growth associated. Glycerol was not consumed during cultivation. The maximum OMV concentration value attained was 162 mg/L with correspondent productivity of 8.1mg/(Lh) employing Catlin medium with double initial concentrations of lactate and amino acids. The obtained OMV satisfied constitution and protein pattern criteria and were suitable for vaccine production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Genetic elicitation by inducible expression of β-cryptogein stimulates secretion of phenolics from Coleus blumei hairy roots.

    PubMed

    Vuković, Rosemary; Bauer, Nataša; Curković-Perica, Mirna

    2013-02-01

    The accumulation of phenolic compounds in plants is often part of the defense response against stress and pathogen attack, which can be triggered and activated by elicitors. Oomycetal proteinaceous elicitor, β-cryptogein, induces hypersensitive response and systemic acquired resistance against some pathogens. In order to test the effect of endogenously synthesized cryptogein protein on phenolic compounds accumulation in tissue, and secretion into the culture medium, Coleus blumei hairy roots were generated. Agrobacterium rhizogenes was employed to insert synthetic crypt gene, encoding β-cryptogein, under the control of alcohol-inducible promoter. The expression of β-cryptogein, in C. blumei hairy roots, was controlled by application of 1% and 2% ethanol, during 21 days induction period. Ethanol-induced expression of β-cryptogein caused significant decrease of soluble phenolics and rosmarinic acid (RA) in hairy root lines and increase of phenolics, RA and caffeic acid in culture medium. These data suggest that β-cryptogein might be a potential regulatory factor for phenolics secretion from the roots. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Pulse Q-switched Nd:YAG laser ablation grown cinnamon nanomorphologies: Influence of different liquid medium

    NASA Astrophysics Data System (ADS)

    Salim, Ali Aqeel; Bidin, Noriah

    2017-12-01

    Broad range of biomedical applications demands accurate synthesis and characterization of various nanoparticles. We report the characterization of cinnamon nanoparticles (CNPs) grown via simple pulsed laser ablation in liquid (PLAL). The influence of different liquid media (olive oil, ethanol, and citric acid each of volume 4 ml) on the growth morphology, structure and optical properties of CNPs is determined. Q-switched 1064-Nd: YAG laser of 10 ns pulse duration, 1 Hz repetition rate, 532 nm s harmonic generation and laser fluence of 6.37 J/cm2 is used to irradiate the cinnamon targets immersed in those liquids. Samples are characterized using TEM, HRTEM, SAED, FTIR, UV-Vis and Photoluminescence measurements. TEM images revealed the nucleation of CNPs of average size 18.36 nm (in olive oil), 21.48 nm (in ethanol), and 29.56 nm (in citric acid). Morphology of CNPs is demonstrated to be sensitive to the liquid medium. Our simple and innovative method may constitute a basis to produce CNPs of desired size distribution potential for the development of nanobiomedicine.

  6. Role of Abscisic Acid in the Induction of Freezing Tolerance in Brassica napus Suspension-Cultured Cells 1

    PubMed Central

    Johnson-Flanagan, Anne M.; Huiwen, Zhong; Thiagarajah, Mohan R.; Saini, Hargurdeep S.

    1991-01-01

    Brassica napus suspension-cultured cells could be hardened in 6 days at 25°C by the addition of mefluidide or ABA to the culture medium. Cells treated with mefluidide (10 milligrams per liter) or ABA (50 micromolar) attained an LT50 of −17.5°C or −18°C, respectively, while the LT50 for the comparable nonhardened control (sucrose) was −10°C. The increased freezing tolerance of mefluidide-treated cells was paralleled by a 4- to 23-fold increase in ABA, as measured by gas-liquid chromatography using electron capture detection. Application of 1 milligram per liter of fluridone, an inhibitor of abscisic acid biosynthesis, prevented the mefluidide-induced increase in freezing tolerance and the accumulation of ABA. Both these inhibitory effects of fluridone were overridden by 50 micromolar ABA in the culture medium. On the basis of these results, we concluded that increased ABA levels are important for the induction of freezing tolerance in suspension-cultured cells. PMID:16668089

  7. Evaluation of RGM Medium for Isolation of Nontuberculous Mycobacteria from Respiratory Samples from Patients with Cystic Fibrosis in the United States.

    PubMed

    Plongla, Rongpong; Preece, Clair L; Perry, John D; Gilligan, Peter H

    2017-05-01

    A novel selective agar (RGM medium) has been advocated for the isolation of rapidly growing mycobacteria from the sputa of cystic fibrosis (CF) patients. The aim of this study was to compare RGM medium to Burkholderia cepacia selective agar (BCSA) and a standard acid-fast bacillus (AFB) culture method for the isolation of nontuberculous mycobacteria (NTM) from patients with CF. The applicability of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the identification of NTM isolated on RGM medium was also assessed. Respiratory samples ( n = 869) were collected from 487 CF patients and inoculated directly onto RGM medium and BCSA. Cultures were incubated at 30°C and examined for up to 28 days. A subset of 212 samples (from 172 patients) was also cultured by using a mycobacterial growth indicator tube (MGIT) and on Lowenstein-Jensen medium following dual decontamination. By using a combination of all methods, 98 mycobacteria were isolated from 869 samples (11.3%). The sensitivity of RGM medium (96.9%) was significantly higher than that of BCSA (35.7%) for the isolation of mycobacteria ( P < 0.0001). The sensitivity of RGM medium was also superior to that of standard AFB culture for the isolation of mycobacteria (92.2% versus 47.1%; P < 0.0001). MALDI-TOF MS was effective for the identification of mycobacteria in RGM medium. RGM medium offers a simple and highly effective tool for the isolation of NTM from patients with CF. Extended incubation of RGM medium for 28 days facilitates the isolation of slow-growing species, including members of the Mycobacterium avium complex (MAVC). Copyright © 2017 American Society for Microbiology.

  8. An EPR and EMF study of Belousov-Zhabotinsky oscillators: Veratric acid and veratraidehyde in a water-acetonitrile medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalitha, P.V.; Ramaswamy, R.; Ramakrishnan, G.

    1992-09-17

    Electron paramagnetic resonance and potentiometric techniques using a platinium indicator electrode/ion selective electrode, are used to study Belousov-Zhabotinsky oscillatory reactions involving veratric acid and veratraldehyde as substrates in a mixed medium. These two techniques have yield a good correlation.

  9. Characteristic odor components of volatile oil from the cultivation medium of Lactobacillus acidophilus.

    PubMed

    Ono, Toshirou; Yonejima, Yasunori; Ikeda, Atsushi; Kashima, Yusei; Nakaya, Satoshi; Miyazawa, Mitsuo

    2014-01-01

    Volatile oils obtained from both the liquid medium after incubation (MAI) and liquid medium before incubation (MBI) in the cultivation process of Lactobacillus acidophilus were isolated by hydrodistillation (HD) and analyzed to investigate the utility of the liquid waste. The composition of the volatile oils was analyzed by capillary gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). In total, 46 and 19 compounds were detected in the volatile oils from MAI (MAI oil) and MBI (MBI oil), respectively. The principle components of MAI oil were fatty acids, including pentanoic acid (12.75%), heptanoic acid (14.05%), and nonanoic acid (14.04%). The important aroma-active compounds in the oils were detected by GC-MS/Olfactometry (GC-O), and their intensity of aroma were measured by aroma extraction dilution analysis (AEDA). Pyrazines were determined as key aroma components; in particular, 2-ethyl-5-methylpyrazine was the most primary aroma-active compound in MAI oil. In addition, as the characteristic aroma-active compounds, 3-(methylthio)-propanal, trimethylpyrazine, and pentanoic acid were also detected in MAI oil. These results imply that the waste medium after incubation of L. acidophilus may be utilized as a source of volatile oils.

  10. Production Strategies and Applications of Microbial Single Cell Oils

    PubMed Central

    Ochsenreither, Katrin; Glück, Claudia; Stressler, Timo; Fischer, Lutz; Syldatk, Christoph

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) of the ω-3 and ω-6 class (e.g., α-linolenic acid, linoleic acid) are essential for maintaining biofunctions in mammalians like humans. Due to the fact that humans cannot synthesize these essential fatty acids, they must be taken up from different food sources. Classical sources for these fatty acids are porcine liver and fish oil. However, microbial lipids or single cell oils, produced by oleaginous microorganisms such as algae, fungi and bacteria, are a promising source as well. These single cell oils can be used for many valuable chemicals with applications not only for nutrition but also for fuels and are therefore an ideal basis for a bio-based economy. A crucial point for the establishment of microbial lipids utilization is the cost-effective production and purification of fuels or products of higher value. The fermentative production can be realized by submerged (SmF) or solid state fermentation (SSF). The yield and the composition of the obtained microbial lipids depend on the type of fermentation and the particular conditions (e.g., medium, pH-value, temperature, aeration, nitrogen source). From an economical point of view, waste or by-product streams can be used as cheap and renewable carbon and nitrogen sources. In general, downstream processing costs are one of the major obstacles to be solved for full economic efficiency of microbial lipids. For the extraction of lipids from microbial biomass cell disruption is most important, because efficiency of cell disruption directly influences subsequent downstream operations and overall extraction efficiencies. A multitude of cell disruption and lipid extraction methods are available, conventional as well as newly emerging methods, which will be described and discussed in terms of large scale applicability, their potential in a modern biorefinery and their influence on product quality. Furthermore, an overview is given about applications of microbial lipids or derived fatty acids with emphasis on food applications. PMID:27761130

  11. A Novel Methodology for the Synthesis of Acyloxy Castor Polyol Esters: Low Pour Point Lubricant Base Stocks.

    PubMed

    Kamalakar, Kotte; Mahesh, Goli; Prasad, Rachapudi B N; Karuna, Mallampalli S L

    2015-01-01

    Castor oil, a non-edible oil containing hydroxyl fatty acid, ricinoleic acid (89.3 %) was chemically modified employing a two step procedure. The first step involved acylation (C(2)-C(6) alkanoic anhydrides) of -OH functionality employing a green catalyst, Kieselguhr-G and solvent free medium. The catalyst after reaction was filtered and reused several times without loss in activity. The second step is esterification of acylated castor fatty acids with branched mono alcohol, 2-ethylhexanol and polyols namely neopentyl glycol (NPG), trimethylolpropane (TMP) and pentaerythritol (PE) to obtain 16 novel base stocks. The base stocks when evaluated for different lubricant properties have shown very low pour points (-30 to -45°C) and broad viscosity ranges 20.27 cSt to 370.73 cSt, higher viscosity indices (144-171), good thermal and oxidative stabilities, and high weld load capacities suitable for multi-range industrial applications such as hydraulic fluids, metal working fluids, gear oil, forging and aviation applications. The study revealed that acylated branched mono- and polyol esters rich in monounsaturation is desirable for developing low pour point base stocks.

  12. Changes of MK medium during storage of human cornea.

    PubMed Central

    Hasany, S M; Basu, P K

    1987-01-01

    By comparing the composition of McCarey-Kaufman (MK) medium before and after corneal storage we attempted to identify specific physiological changes in the medium as predictors of tissue damage. We also tried to determine if hydrocortisone (a lysosomal membrane stabiliser) added to the medium could reduce tissue damage during storage. Corneas (human and rabbit) were stored in the MK medium with and without hydrocortisone for 4 days at 4 degrees C. The water and nitrogen contents of the stored cornea were compared with those of the fresh cornea. The medium was analysed before and after corneal storage to determine the concentrations of glucose, protein, and amino acids as well as pH and osmolarity. Scanning electron microscopy (SEM) was used to estimate the degree of the corneal endothelial cell damage. The nitrogen contents and dry weights of the steroid treated and untreated stored corneas were similar to those of the fresh unstored cornea. The steroid treated cornea contained a lesser amount of water than the untreated cornea. The cornea stored in medium without steroid took up a greater amount of glucose from the medium than the cornea stored in medium with steroid. As compared with their concentrations in the fresh unused medium the concentrations of leucine, lysine, and glycine were lower and that of glutamic acid was higher in both the media used for corneal storage. However, the steroid treated storage medium as compared with the untreated storage medium had a greater reduction in the lowering of leucine, lysine, and glycine, and a lesser reduction in the increase of glutamic acid. Steroid treated medium also had a lesser amount of protein released from the stored cornea. Changes in the pH and osmolarity of the media before and after corneal storage were not remarkable. SEM showed that the endothelial cells of the cornea stored in the medium containing steroid were less damaged than those of the cornea stored in the medium without steroid. Images PMID:3620430

  13. Acceleration of adventitious shoots by interaction between exogenous hormone and adenine sulphate in Althaea officinalis L.

    PubMed

    Naz, Ruphi; Anis, M

    2012-11-01

    In the current study attempts were made to investigate the effects of three different phases of callus induction followed by adventitious regeneration from leaf segments (central and lateral vein). Callus induction was observed in Murashige and Skoog's (MS) medium supplemented with 15.0 μM 2,4-dichloro phenoxy acetic acid (2,4-D). Adventitious shoot buds formation was achieved on MS medium supplemented with 7.5 μM 2,4-D and 20.0 μM AdS in liquid medium as it induced 19.2 ± 0.58 buds in central vein explants. Addition of different growth regulators (cytokinins-6-benzyladenine, kinetin and 2-isopentenyl adenine alone or in combination with auxins-indole-3-acetic acid, indole-3-butyric acid and α-naphthalene acetic acid, improved the shoot regeneration efficiency, in which 5.0 μM 6-benzyl adenine along with 0.25 μM α-naphthalene acetic acid was shown to be the most effective medium for maximum shoot regeneration (81.3 %) with 24.6 number of shoots and 4.4 ± 0.08 cm shoot length per explant. Leaf culture of central veins led to better shoot formation capacity in comparison to lateral vein. Rooting was readily achieved on the differentiated shoots on 1/2 MS medium augmented with 20.0 μM indole-3-butyric acid. The plants were successfully hardened off in sterile soilrite followed by their establishment in garden soil with 80 % survival rate.

  14. Characteristics and optimized fermentation of a novel magnetotactic bacterium, Magnetospirillum sp. ME-1.

    PubMed

    Ke, Linfeng; Chen, Yajun; Liu, Pengming; Liu, Shan; Wu, Dandan; Yuan, Yihui; Wu, Yan; Gao, Meiying

    2018-03-04

    Magnetotactic bacteria (MTB) can biosynthesize magnetosomes, which have great potential for applications. A new MTB strain, Magnetospirillum sp. ME-1, was isolated and cultivated from freshwater sediments of East Lake (Wuhan, China) using the limiting dilution method. ME-1 had a chain of 17 ± 4 magnetosomes in the form of cubooctahedral crystals with a shape factor of 0.89. ME-1 was closest to Magnetospirillum sp. XM-1 according to 16S rRNA gene sequence similarity. Compared with XM-1, ME-1 possessed additional copy of mamPA and a larger mamO in magnetosome-specific genes. ME-1 had an intact citric acid cycle, and complete pathway models of ammonium assimilation and dissimilatory nitrate reduction. Potential carbon and nitrogen sources in these pathways were confirmed to be used in ME-1. Adipate was determined to be used in the fermentation medium as a new kind of dicarboxylic acid. The optimized fermentation medium was determined by orthogonal tests. The large-scale production of magnetosomes was achieved and the magnetosome yield (wet weight) reached 120 mg/L by fed-batch cultivation of ME-1 at 49 h in a 10-L fermenter with the optimized fermentation medium. This study may provide insights into the isolation and cultivation of other new MTB strains and the production of magnetosomes.

  15. Production, purification, and characterization of an extracellular acid protease from the marine Antarctic yeast Rhodotorula mucilaginosa L7.

    PubMed

    Lario, Luciana Daniela; Chaud, Luciana; Almeida, María das Graças; Converti, Attilio; Durães Sette, Lara; Pessoa, Adalberto

    2015-11-01

    The production, purification, and characterization of an extracellular protease released by Rhodotorula mucilaginosa L7 were evaluated in this study. This strain was isolated from an Antarctic marine alga and previously selected among others based on the capacity to produce the highest extracellular proteolytic activity in preliminary tests. R. mucilaginosa L7 was grown in Saboraud-dextrose medium at 25 °C, and the cell growth, pH of the medium, extracellular protease production and the glucose and protein consumption were determined as a function of time. The protease was then purified, and the effects of pH, temperature, and salt concentration on the catalytic activity and enzyme stability were determined. Enzyme production started at the beginning of the exponential phase of growth and reached a maximum after 48 h, which was accompanied by a decrease in the pH as well as reductions of the protein and glucose concentrations in the medium. The purified protease presented optimal catalytic activity at pH 5.0 and 50 °C. Finally, the enzyme was stable in the presence of high concentrations of NaCl. These characteristics are of interest for future studies and may lead to potential biotechnological applications that require enzyme activity and stability under acidic conditions and/or high salt concentrations. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  16. Rewritable three-dimensional holographic data storage via optical forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yetisen, Ali K., E-mail: ayetisen@mgh.harvard.edu; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Montelongo, Yunuen

    2016-08-08

    The development of nanostructures that can be reversibly arranged and assembled into 3D patterns may enable optical tunability. However, current dynamic recording materials such as photorefractive polymers cannot be used to store information permanently while also retaining configurability. Here, we describe the synthesis and optimization of a silver nanoparticle doped poly(2-hydroxyethyl methacrylate-co-methacrylic acid) recording medium for reversibly recording 3D holograms. We theoretically and experimentally demonstrate organizing nanoparticles into 3D assemblies in the recording medium using optical forces produced by the gradients of standing waves. The nanoparticles in the recording medium are organized by multiple nanosecond laser pulses to produce reconfigurablemore » slanted multilayer structures. We demonstrate the capability of producing rewritable optical elements such as multilayer Bragg diffraction gratings, 1D photonic crystals, and 3D multiplexed optical gratings. We also show that 3D virtual holograms can be reversibly recorded. This recording strategy may have applications in reconfigurable optical elements, data storage devices, and dynamic holographic displays.« less

  17. Current and emerging challenges in toxicopathology: Carcinogenic threshold of phenobarbital and proof of arsenic carcinogenicity using rat medium-term bioassays for carcinogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukushima, Shoji; Morimura, Keiichirou; Wanibuchi, Hideki

    2005-09-01

    For the last 25 years, Prof. Nobuyuki Ito and his laboratory have focused on the development of liver medium-term bioassay system for detection of carcinogens in F344 rats utilizing glutathione S-transferase placental form (GST-P)-positive foci as an end point marker. In this presentation, the outline and samples of medium-term bioassay systems were described. Furthermore, our data demonstrated the presence of a threshold for the non-genotoxic carcinogen, phenobarbital (PB), and the lack of linearity in the low-dose area of the dose-response curve, providing evidence for hormesis. In addition, the establishment and applications of multiorgan carcinogenicity bioassay (DMBDD model), used for themore » examination of the carcinogenicity of genotoxic and non-genotoxic chemicals, are discussed. Dimethylarsinic acid, one of organic arsenics, was found to be carcinogenic in rat bladder using DMBDD model and carcinogenicity test.« less

  18. Growth inhibition of Cronobacter spp. strains in reconstituted powdered infant formula acidified with organic acids supported by natural stomach acidity.

    PubMed

    Zhu, S; Schnell, S; Fischer, M

    2013-09-01

    Cronobacter is associated with outbreaks of rare, but life-threatening cases of meningitis, necrotizing enterocolitis, and sepsis in newborns. This study was conducted to determine the effect of organic acids on growth of Cronobacter in laboratory medium and reconstituted powdered infant formula (PIF) as well as the bacteriostatic effect of slightly acidified infant formula when combined with neonatal gastric acidity. Inhibitory effect of seven organic acids on four acid sensitive Cronobacter strains was determined in laboratory medium with broth dilution method at pH 5.0, 5.5 and 6.0. Acetic, butyric and propionic acids were most inhibitive against Cronobacter in the laboratory medium. The killing effect of these three acids was partially buffered in reconstituted PIF. Under neonatal gastric acid condition of pH 5.0, the slightly acidified formula which did not exert inhibition effect solely reduced significantly the Cronobacter populations. A synergistic effect of formula moderately acidified with organic acid combined with the physiological infant gastric acid was visible in preventing the rapid growth of Cronobacter in neonatal stomach. The study contributed to a better understanding of the inhibitory effect of organic acids on Cronobacter growth in different matrixes and provided new ideas in terms of controlling bacteria colonization and translocation by acidified formula. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Carbon dioxide capture using resin-wafer electrodeionization

    DOEpatents

    Lin, YuPo J.; Snyder, Seth W.; Trachtenberg, Michael S.; Cowan, Robert M.; Datta, Saurav

    2015-09-08

    The present invention provides a resin-wafer electrodeionization (RW-EDI) apparatus including cathode and anode electrodes separated by a plurality of porous solid ion exchange resin wafers, which when in use are filled with an aqueous fluid. The apparatus includes one or more wafers comprising a basic ion exchange medium, and preferably includes one or more wafers comprising an acidic ion exchange medium. The wafers are separated from one another by ion exchange membranes. The fluid within the acidic and/or basic ion exchange wafers preferably includes, or is in contact with, a carbonic anhydrase (CA) enzyme to facilitate conversion of bicarbonate ion to carbon dioxide within the acidic medium. A pH suitable for exchange of CO.sub.2 is electrochemically maintained within the basic and acidic ion exchange wafers by applying an electric potential across the cathode and anode.

  20. Influence of environmental pH on G2-phase arrest caused by ionizing radiation.

    PubMed

    Park, Heon Joo; Lee, Sang Hwa; Chung, HyunSook; Rhee, Yun Hee; Lim, Byung Uk; Ha, Sung Whan; Griffin, Robert J; Lee, Hyung Sik; Song, Chang Won; Choi, Eun Kyung

    2003-01-01

    We investigated the effects of an acidic environment on the G2/M-phase arrest, apoptosis, clonogenic death, and changes in cyclin B1-CDC2 kinase activity caused by a 4-Gy irradiation in RKO.C human colorectal cancer cells in vitro. The time to reach peak G2/M-phase arrest after irradiation was delayed in pH 6.6 medium compared to that in pH 7.5 medium. Furthermore, the radiation-induced G2/M-phase arrest decayed more slowly in pH 6.6 medium than in pH 7.5 medium. Finally, there was less radiation-induced apoptosis and clonogenic cell death in pH 6.6 medium than in pH 7.5 medium. It appeared that the prolongation of G2-phase arrest after irradiation in the acidic environment allowed for greater repair of radiation-induced DNA damage, thereby decreasing the radiation-induced cell death. The prolongation of G2-phase arrest after irradiation in the acidic pH environment appeared to be related at least in part to a prolongation of the phosphorylation of CDC2, which inhibited cyclin B1-CDC2 kinase activity.

  1. Automated GC-MS analysis of free amino acids in biological fluids.

    PubMed

    Kaspar, Hannelore; Dettmer, Katja; Gronwald, Wolfram; Oefner, Peter J

    2008-07-15

    A gas chromatography-mass spectrometry (GC-MS) method was developed for the quantitative analysis of free amino acids as their propyl chloroformate derivatives in biological fluids. Derivatization with propyl chloroformate is carried out directly in the biological samples without prior protein precipitation or solid-phase extraction of the amino acids, thereby allowing automation of the entire procedure, including addition of reagents, extraction and injection into the GC-MS. The total analysis time was 30 min and 30 amino acids could be reliably quantified using 19 stable isotope-labeled amino acids as internal standards. Limits of detection (LOD) and lower limits of quantification (LLOQ) were in the range of 0.03-12 microM and 0.3-30 microM, respectively. The method was validated using a certified amino acid standard and reference plasma, and its applicability to different biological fluids was shown. Intra-day precision for the analysis of human urine, blood plasma, and cell culture medium was 2.0-8.8%, 0.9-8.3%, and 2.0-14.3%, respectively, while the inter-day precision for human urine was 1.5-14.1%.

  2. Application of GPCR Structures for Modelling of Free Fatty Acid Receptors.

    PubMed

    Tikhonova, Irina G

    2017-01-01

    Five G protein-coupled receptors (GPCRs) have been identified to be activated by free fatty acids (FFA). Among them, FFA1 (GPR40) and FFA4 (GPR120) bind long-chain fatty acids, FFA2 (GPR43) and FFA3 (GPR41) bind short-chain fatty acids and GPR84 binds medium-chain fatty acids. Free fatty acid receptors have now emerged as potential targets for the treatment of diabetes, obesity and immune diseases. The recent progress in crystallography of GPCRs has now enabled the elucidation of the structure of FFA1 and provided reliable templates for homology modelling of other FFA receptors. Analysis of the crystal structure and improved homology models, along with mutagenesis data and structure activity, highlighted an unusual arginine charge-pairing interaction in FFA1-3 for receptor modulation, distinct structural features for ligand binding to FFA1 and FFA4 and an arginine of the second extracellular loop as a possible anchoring point for FFA at GPR84. Structural data will be helpful for searching novel small-molecule modulators at the FFA receptors.

  3. Physico-chemical characteristics and functional properties of chitin and chitosan produced by Mucor circinelloides using yam bean as substrate.

    PubMed

    Fai, Ana Elizabeth C; Stamford, Thayza C M; Stamford-Arnaud, Thatiana M; Santa-Cruz, Petrus D'Amorim; da Silva, Marta C Freitas; Campos-Takaki, Galba M; Stamford, Tânia L M

    2011-08-23

    Microbiological processes were used for chitin and chitosan production by Mucor circinelloides (UCP 050) grown in yam bean (Pachyrhizus erosus L. Urban) medium. The polysaccharides were extracted by alkali-acid treatment and structural investigations by X-ray diffraction, Fourier transform IR analysis, viscosity and thermal analysis by TG, DTG, and DTA were done. The highest biomass yield (20.7 g/L) was obtained at 96 hours. The highest levels of chitosan (64 mg/g) and chitin (500 mg/g) were produced at 48 and 72 hours, respectively. It was demonstrated that yam bean shows great potential as an economic medium and it is possible to achieve a good yield of chitosan with chemical properties that enable its use in biotechnological applications.

  4. [Culture medium based on biogas slurry and breeding of oil Chlorella].

    PubMed

    Zhao, Feng-Min; Mei, Shuai; Cao, You-Fu; Ding, Jin-Feng; Xu, Jia-Jie; Li, Shu-Jun

    2014-06-01

    The oil chlorella cultivation and biogas slurry treatment were combined. The biogas slurry provided water and nutrient for growing chlorella, at the same time, harmless treatment of biogas slurry was realized. This paper cultivated 4 species of oil chlorella in the mixed medium of biogas slurry and green algae medium (the volume ratios were 1 : 9, 1 : 3, 1 : 1 and 3 : 1, respectively), and compared their oil productivity to select the best oil chlorella species and the optimal culture medium. The results showed that, the combination of medium and chlorella species to reach the highest oil productivity was a volume ratio of 1 : 3 and the chlorella species BJ05, and the oil productivity of chlorella BJ05 was 9.20 mg x (L x d)(-1), higher than that in green algae medium [8.66 mg x (L x d)(-1)]. In mixed medium with a volume ratio of 1:3, the effect of adding different nutrients into the green algae medium on the oil productivity was examined, and the results showed that, sodium carbonate and citric acid had no negative effect on the oil productivity of chlorella BJ05. in the absence of sodium carbonate and citric acid, the oil productivity of chlorella BJ05 was 9.36 mg x (L x d)(-1), and the removal of COD (chemical oxygen demand), total nitrogen, total phosphorus and ammonia nitrogen rates were 59%, 75%, 61% and 100%, respectively. Deficiency in other nutrients had negative effect on the oil productivity. Therefore, the culture medium was further optimized to the mixed medium of biogas slurry and green algae medium with a volume ratio of 1 : 3 and without addition of sodium carbonate and citric acid.

  5. The Effect of Time, Roasting Temperature, and Grind Size on Caffeine and Chlorogenic Acid Concentrations in Cold Brew Coffee.

    PubMed

    Fuller, Megan; Rao, Niny Z

    2017-12-21

    The extraction kinetics and equilibrium concentrations of caffeine and 3-chlorogenic acid (3-CGA) in cold brew coffee were investigated by brewing four coffee samples (dark roast/medium grind, dark roast/coarse grind, medium roast/medium grind, medium roast/coarse grind) using cold and hot methods. 3-CGA and caffeine were found at higher concentrations in cold brew coffee made with medium roast coffees, rather than dark roast. The grind size did not impact 3-CGA and caffeine concentrations of cold brew samples significantly, indicating that the rate determining step in extraction for these compounds did not depend on surface area. Caffeine concentrations in cold brew coarse grind samples were substantially higher than their hot brew counterparts. 3-CGA concentrations and pH were comparable between cold and hot brews. This work suggests that the difference in acidity of cold brew coffee is likely not due to 3-CGA or caffeine concentrations considering that most acids in coffee are highly soluble and extract quickly. It was determined that caffeine and 3-CGA concentrations reached equilibrium according to first order kinetics between 6 and 7 hours in all cold brew samples instead of 10 to 24 hours outlined in typical cold brew methods.

  6. Monascus ruber as cell factory for lactic acid production at low pH.

    PubMed

    Weusthuis, Ruud A; Mars, Astrid E; Springer, Jan; Wolbert, Emil Jh; van der Wal, Hetty; de Vrije, Truus G; Levisson, Mark; Leprince, Audrey; Houweling-Tan, G Bwee; Pha Moers, Antoine; Hendriks, Sjon Na; Mendes, Odette; Griekspoor, Yvonne; Werten, Marc Wt; Schaap, Peter J; van der Oost, John; Eggink, Gerrit

    2017-07-01

    A Monascus ruber strain was isolated that was able to grow on mineral medium at high sugar concentrations and 175g/l lactic acid at pH 2.8. Its genome and transcriptomes were sequenced and annotated. Genes encoding lactate dehydrogenase (LDH) were introduced to accomplish lactic acid production and two genes encoding pyruvate decarboxylase (PDC) were knocked out to subdue ethanol formation. The strain preferred lactic acid to glucose as carbon source, which hampered glucose consumption and therefore also lactic acid production. Lactic acid consumption was stopped by knocking out 4 cytochrome-dependent LDH (CLDH) genes, and evolutionary engineering was used to increase the glucose consumption rate. Application of this strain in a fed-batch fermentation resulted in a maximum lactic acid titer of 190g/l at pH 3.8 and 129g/l at pH 2.8, respectively 1.7 and 2.2 times higher than reported in literature before. Yield and productivity were on par with the best strains described in literature for lactic acid production at low pH. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. Effect of various surface treatment methods on the bond strength of the heat-pressed ceramic samples.

    PubMed

    Saraçoğlu, A; Cura, C; Cötert, H S

    2004-08-01

    This in vitro study was conducted to evaluate the interaction between the shear bond strength and the surface treatment method for a commercial dental ceramic. Ninety bonded ceramic units were manufactured for this study. Each unit was made by luting two cylinder-shaped ceramic samples to each other with a resin-composite luting agent. The units were then divided into nine groups, containing 10 units in each group. Samples from each group were treated with one of the following: etching with 4.9% hydrofluoric acid for 10, 20 and 40 s, 9.5% hydrofluoric acid for 10, 20 and 40 s, 40% orthophosphoric acid for 40 s, air abrasion with alumina in 50-microm particles, and grinding with a high-speed diamond bur. The treated samples were then silanated and luted with a resin-composite luting agent. The luted units were then loaded to failure. Two samples from each group were neither silanated nor luted after the surface treatment procedure, and morphological changes obtained by various surface treatment regimens were investigated by scanning electron microscopy. A statistically significant difference was observed among the mean shear bond strengths of the groups prepared with different surface treatment techniques (P = 0.00). Hydrofluoric acid appeared to be the most suitable chemical medium to produce a reliable ceramic bond. Etching time and concentration of the acidic medium were also observed as important prognostic variates. Orthophosphoric acid treatment was observed to be the least effective surface treatment method on the heat-pressed ceramic samples. Physical applications such as bur grinding and air blasting maintained stronger bonds than the orthophosphoric acid, while producing weaker bonds than surfaces treated with hydrofluoric acid in all concentrations and etching periods. The effect of the silane priming agent was not considered in this study. Copyright 2004 Blackwell Publishing Ltd.

  8. Sialidase activities of cultured human fibroblasts and the metabolism of GM3 ganglioside

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usuki, S.; Lyu, S.C.; Sweeley, C.C.

    1988-05-15

    Free sialic acid has been found in the cell-conditioned medium of human foreskin fibroblasts. It is proposed that the accumulation of extracellular sialic acid may result from the hydrolysis of GM3 ganglioside on the cell surface of these fibroblasts. Sialidase activities with GM3 ganglioside and sialyllactitol as substrates were demonstrated in cell-conditioned medium, and the levels of their activities correlated positively with cell density. The GM3 sialidase activity at pH 4.5 was 4.1 and 38 pmol/h/ml of medium at sparse and confluent densities, respectively; the corresponding activities with sialyllactitol as the substrate were 12 and 75 pmol/h/ml of medium (pHmore » 4.5). The pH versus activity profiles with GM3 as the substrate suggested the presence of a second sialidase with an optimal activity at pH 6.5 in the conditioned medium of preconfluent cells. This activity was virtually absent in the medium of contact-inhibited cells and could not be assayed with sialyllactitol as the substrate. The turnover of cell surface GM3 was assessed by pulse labeling human foreskin fibroblasts with a radioactive precursor of sialic acid ((1-14C)N-acetylmannosamine) and a radioactive precursor of ceramide ((3,3-3H2)serine). During a chase period of 24 h turnover of the doubly labeled cellular GM3 was observed; there was a loss of about 35% of the 14C-labeled sialic acid without any measureable loss of 3H-labeled ceramide from GM3. We have speculated that the enzyme-catalyzed removal of sialic acid from the GM3 ganglioside on the extracellular aspect of the plasma membrane may be a necessary event involved in the modulation of cell growth.« less

  9. Condensing enzymes from Cuphea wrightii associated with medium chain fatty acid biosynthesis.

    PubMed

    Slabaugh, M B; Leonard, J M; Knapp, S J

    1998-03-01

    Seed oils of most Cuphea species contain > 90% medium chain (C8-C14) fatty acids. Thioesterases with specificity for these substrates are important determinants of the medium chain phenotype. The role of condensing enzymes, however, has not been investigated. cDNA clones encoding beta-ketoacyl-acyl carrier protein (ACP) synthase (KAS) were isolated from C. wrightii, a C10/C12-producing species. Deduced amino acid sequences of four unique clones were approximately 60% identical to plant KAS I sequences and approximately 75% identical to a distinct class of KAS sequences recently identified in castor and barley. A 46 kDa protein that was observed only in developing and mature seed was detected using antiserum directed against recombinant Cuphea KAS protein. The 46 kDa protein was abundant in developing seeds of six medium chain-producing Cuphea species but barely detected in one long chain-producing species. A 48 kDa protein identified immunologically as KAS I was expressed in both medium and long chain-producing Cuphea species and was detected in all tissues tested. In in vitro assays, extracts from C. wrightii and C. viscosissima developing embryos were unable to extend fatty acid chains beyond C10 following treatment with 10 microns cerulenin, a potent inhibitor of KAS I. However, a C. viscosissima mutant, cpr-1, whose seed oils are deficient in caprate relative to wild type, was impaired in extension of C8 to C10 in this assay and Western analysis revealed a specific deficiency in 46 kDa KAS in cpr-1 embryos. These results implicate cerulenin-resistant condensing activity in production of medium chain fatty acids in Cuphea.

  10. Growth yields and fermentation balance of Bacteroides fragilis cultured in glucose-enriched medium.

    PubMed

    Frantz, J C; McCallum, R E

    1979-03-01

    Bacteroides fragilis is an obligate anaerobic bacterium classified with the gram-negative, non-sporeforming bacilli and is the Bacteroides species most frequently isolated from human infections. In the present study, experiments were designed to investigate growth characteristics of B. fragilis in a complex medium. In a minimal defined medium, which was employed for comparison purposes, B. fragilis grew with a generation time of 2 h. Growth of the organism in glucose-enriched medium used in the present study was superior. Maximum generation time was 60 min. Total and viable cells (colony-forming units) were 8.9 x 10(9) and 2.1 x 10(9), respectively, at maximum measurable growth. The molar growth yield (Ym) was 51.5. Growth yields were found to reach a maximum 2 to 3 h before maximum growth and to vary with respect to the phase of growth. Estimates of the fermentation products indicated that glucose was the sole energy substrate. Major products included acetic acid, propionic acid, lactic acid, and succinic acid. Other products included ethyl alcohol, pyruvic acid, and fumaric acid. No attempt was made to recover CO2 or formic acid. The OR balances from two experiments were 0.013 and -0.093 and the respective carbon recoveries were 6.268 and 6.241. The results of the present study show that B. fragilis is capable of rapid rates of growth in vitro by using glucose as the sole energy source.

  11. Citric acid assisted phytoremediation of copper by Brassica napus L.

    PubMed

    Zaheer, Ihsan Elahi; Ali, Shafaqat; Rizwan, Muhammad; Farid, Mujahid; Shakoor, Muhammad Bilal; Gill, Rafaqa Ali; Najeeb, Ullah; Iqbal, Naeem; Ahmad, Rehan

    2015-10-01

    Use of organic acids for promoting heavy metals phytoextraction is gaining worldwide attention. The present study investigated the influence of citric acid (CA) in enhancing copper (Cu) uptake by Brassica napus L. seedlings. 6 Weeks old B. napus seedlings were exposed to different levels of copper (Cu, 0, 50 and 100µM) alone or with CA (2.5mM) in a nutrient medium for 40 days. Exposure to elevated Cu levels (50 and 100µM) significantly reduced the growth, biomass production, chlorophyll content, gas exchange attributes and soluble proteins of B. napus seedlings. In addition, Cu toxicity increased the production of hydrogen peroxide (H2O2), malondialdehyde (MDA) and electrolyte leakage (EL) in leaf and root tissues of B. napus. Activities of antioxidant enzymes such as guaiacol peroxidase (POD), superoxide dismutase (SOD), catalases (CAT), ascorbate peroxidase (APX) in root and shoot tissues of B. napus were increased in response to lower Cu concentration (50µM) but increased under higher Cu concentration (100µM). Addition of CA into nutrient medium significantly alleviated Cu toxicity effects on B. napus seedlings by improving photosynthetic capacity and ultimately plant growth. Increased activities of antioxidant enzymes in CA-treated plants seems to play a role in capturing of stress-induced reactive oxygen species as was evident from lower level of H2O2, MDA and EL in CA-treated plants. Increasing Cu concentration in the nutrient medium significantly increased Cu concentration in in B. napus tissues. Cu uptake was further increased by CA application. These results suggested that CA might be a useful strategy for increasing phytoextraction of Cu from contaminated soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Optimum production and characterization of an acid protease from marine yeast Metschnikowia reukaufii W6b

    NASA Astrophysics Data System (ADS)

    Li, Jing; Peng, Ying; Wang, Xianghong; Chi, Zhenming

    2010-12-01

    The marine yeast strain W6b isolated from sediment of the South China Sea was found to produce a cell-bound acid protease. The crude acid protease produced by this marine yeast showed the highest activity at pH 3.5 and 40 °C. The optimal pH and temperature for the crude acid protease were in agreement with those for acid protease produced by the terrestrial yeasts. The optimal medium of the acid protease production was seawater containing 1.0% glucose, 1.5% casein, and 0.5% yeast extract, and the optimal cultivation conditions of the acid protease production were pH 4.0, a temperature of 25 °C and a shaking speed of 140 rmin-1. Under the optimal conditions, 72.5 UmL-1 of acid protease activity could be obtained in cell suspension within 48 h of fermentation at shake flask level. The acid protease production was induced by high-molecular-weight nitrogen sources and repressed by low-molecular-weight nitrogen sources. Skimmed-milk-clotting test showed that the crude acid protease from the cell suspension of the yeast W6b had high skimmed milk coagulability. The acid protease produced by M. reukaufii W6b may have highly potential applications in cheese, food and fermentation industries.

  13. Citric acid production in Yarrowia lipolytica SWJ-1b yeast when grown on waste cooking oil.

    PubMed

    Liu, Xiaoyan; Lv, Jinshun; Xu, Jiaxing; Zhang, Tong; Deng, Yuanfang; He, Jianlong

    2015-03-01

    In this study, citric acid was produced from waste cooking oil by Yarrowia lipolytica SWJ-1b. To get the maximal yield of citric acid, the compositions of the medium for citric acid production were optimized, and our results showed that extra nitrogen and magnesium rather than vitamin B1 and phosphate were needed for CA accumulation when using waste cooking oil. The results also indicated that the optimal initial concentration of the waste cooking oil in the medium for citric acid production was 80.0 g/l, and the ideal inoculation size was 1 × 10(7) cells/l of medium. We also reported that during 10-l fermentation, 31.7 g/l of citric acid, 6.5 g/l of isocitric acid, 5.9 g/l of biomass, and 42.1 g/100.0 g cell dry weight of lipid were attained from 80.0 g/l of waste cooking oil within 336 h. At the end of the fermentation, 94.6 % of the waste cooking oil was utilized by the cells of Y. lipolytica SWJ-1b, and the yield of citric acid was 0.4 g/g waste cooking oil, which suggested that waste cooking oil was a suitable carbon resource for citric acid production.

  14. Cytotoxic effects of polybasic acids, poly(alkenoic acid)s, and the monomers with various functional groups on human pulp fibroblasts.

    PubMed

    Kurata, Shigeaki; Morishita, Kumiko; Kawase, Toshio; Umemoto, Kozo

    2011-01-01

    This study evaluated the cytotoxicity of various polybasic acids, poly(alkenoic acid)s, and the monomers with various acidic functional groups such as carboxyl, phosphoryl, and sulfo group. The cell growth of fibroblasts cultivated in medium containing polybasic acids and polymers up to the concentration to 5 mmol/L was not significantly different compared with that of control without their acids. On the other hand, the cell growth fibroblasts cultivated in medium containing 1 mmol/L of the monomers with acryloyloxy and phosphoryl or carboxyl group decreased remarkably compared with that of the control and the cells were probably lifeless. Those exposed to the monomers with a ether bond and a carboxyl group or a amide bond and a sulfo group was not significantly different compared with that of control.

  15. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp.

    NASA Astrophysics Data System (ADS)

    Rodriguez, Hilda; Gonzalez, Tania; Goire, Isabel; Bashan, Yoav

    2004-11-01

    In vitro gluconic acid formation and phosphate solubilization from sparingly soluble phosphorus sources by two strains of the plant growth-promoting bacteria A. brasilense (Cd and 8-I) and one strain of A. lipoferum JA4 were studied. Strains of A. brasilense were capable of producing gluconic acid when grown in sparingly soluble calcium phosphate medium when their usual fructose carbon source is amended with glucose. At the same time, there is a reduction in pH of the medium and release of soluble phosphate. To a greater extent, gluconic acid production and pH reduction were observed for A. lipoferum JA4. For the three strains, clearing halos were detected on solid medium plates with calcium phosphate. This is the first report of in vitro gluconic acid production and direct phosphate solubilization by A. brasilense and the first report of P solubilization by A. lipoferum. This adds to the very broad spectrum of plant growth-promoting abilities of this genus.

  16. Method for the production of dicarboxylic acids

    DOEpatents

    Nghiem, N.P.; Donnelly, M.; Millard, C.S.; Stols, L.

    1999-02-09

    The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of (a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; (b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; (c) controllably releasing oxygen to maintain the aerobic atmosphere; (d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/l up to about 1 g/l; (e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; (f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of {>=}1 g/l; and (g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism. 7 figs.

  17. Method for the production of dicarboxylic acids

    DOEpatents

    Nghiem, Nhuan Phu; Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1999-01-01

    The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; c) controllably releasing oxygen to maintain the aerobic atmosphere; d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/L up to about 1 g/L; e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of .gtoreq.1 g/L; and g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism.

  18. Antibacterial properties of the skin mucus of the freshwater fishes, Rita rita and Channa punctatus.

    PubMed

    Kumari, U; Nigam, A K; Mitial, S; Mitial, A K

    2011-07-01

    The skin mucus of Rita rita and Channa punctatus was investigated to explore the possibilities of its antibacterial properties. Skin mucus was extracted in acidic solvents (0.1% trifluoroacetic acid and 3% acetic acid) and in triple distilled water (aqueous medium). The antibacterial activity of the mucus extracts was analyzed, using disc diffusion method, against five strains of bacteria--the Gram-positive Staphylococcus aureus and Micrococcus luteus; and the Gram negative Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi. In both Rita rita and Channa punctatus, the skin mucus extracted in acidic solvents as well as in aqueous medium show antibacterial activity against Staphylococcus aureus and Micrococcus luteus. Nevertheless, the activity is higher in acidic solvents than that in aqueous medium. The acidic mucus extracts of Rita rita, show antibacterial activity against Salmonella typhi as well. The results suggest that fish skin mucus have bactericidal properties and thus play important role in the protection of fish against the invasion of pathogens. Fish skin mucus could thus be regarded as a potential source of novel antibacterial components.

  19. Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84.

    PubMed

    Wang, Jinghong; Wu, Xiaosu; Simonavicius, Nicole; Tian, Hui; Ling, Lei

    2006-11-10

    Free fatty acids (FFAs) play important physiological roles in many tissues as an energy source and as signaling molecules in various cellular processes. Elevated levels of circulating FFAs are associated with obesity, dyslipidemia, and diabetes. Here we show that GPR84, a previously orphan G protein-coupled receptor, functions as a receptor for medium-chain FFAs with carbon chain lengths of 9-14. Medium-chain FFAs elicit calcium mobilization, inhibit 3',5'-cyclic AMP production, and stimulate [35S]guanosine 5'-O-(3-thiotriphosphate) binding in a GPR84-dependent manner. The activation of GPR84 by medium-chain FFAs couples primarily to a pertussis toxin-sensitive G(i/o) pathway. In addition, we show that GPR84 is selectively expressed in leukocytes and markedly induced in monocytes/macrophages upon activation by lipopolysaccharide. Furthermore, we demonstrate that medium-chain FFAs amplify lipopolysaccharide-stimulated production of the proinflammatory cytokine interleukin-12 p40 through GPR84. Our results indicate a role for GPR84 in directly linking fatty acid metabolism to immunological regulation.

  20. Ammonium removal from high-strength aqueous solutions by Australian zeolite.

    PubMed

    Wijesinghe, D Thushari N; Dassanayake, Kithsiri B; Sommer, Sven G; Jayasinghe, Guttila Y; J Scales, Peter; Chen, Deli

    2016-07-02

    Removal of ammonium nitrogen (NH4(+)-N) particularly from sources which are highly rich in nitrogen is important for addressing environmental pollution. Zeolites, aluminosilicate minerals, are commonly used as commercial adsorbents and ion-exchange medium in number of commercial applications due to its high adsorption capacity of ammonium (NH4(+)). However, detailed investigations on NH4(+) adsorption and ion exchange capacities of Australian natural zeolites are rare, particularly under higher NH4(+) concentrations in the medium. Therefore, this study was conducted to determine NH4(+) adsorption characteristics of Australian natural zeolites at high NH4(+) concentrations with and without other chemical compounds in an aqueous solution. Results showed that initial NH4(+) concentration, temperature, reaction time, and pH of the solution had significant effects on NH4(+) adsorption capacity of zeolite. Increased retention time and temperature generally had a positive impact on adsorption. Freundlich model fitted well with adsorption process of Australian natural zeolites; however, Langmuir model had best fitted for the adsorption process of sodium (Na(+)) treated zeolites. NaCl treatment increased the NH4(+) adsorption capacity of Australian zeolites by 25% at 1000 mg-N, NH4(+) solution. The maximum adsorption capacity of both natural Australian zeolites and Na(+) treated zeolites were estimated as 9.48 and 11.83 mg-N/g, respectively, which is lower than many zeolites from other sources. Compared to the NH4(+) only medium, presence of other competitive ions and acetic acid in the medium (resembling composition in digested swine manure slurries) reduced NH4(+) removal of natural and Na(+) treated zeolites by 44% and 57%, respectively. This suggests detailed investigations are required to determine practically achievable NH4(+) -N removal potential of zeolites for applications in complex mediums such as animal manure slurries.

  1. A flow injection chemiluminescence method for determination of nalidixic acid based on KMnO4-morin sensitized with CdS quantum dots

    NASA Astrophysics Data System (ADS)

    Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza; Joo, Sang Woo

    2016-02-01

    A simple and sensitive flow injection chemiluminescence (CL) method was developed for determination of nalidixic acid by application of CdS quantum dots (QDs) in KMnO4-morin CL system in acidic medium. Optical and structural features of L-cysteine capped CdS quantum dots which were synthesized via hydrothermal approach were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), and ultraviolet-visible (UV-Vis) spectroscopy. Moreover, the potential mechanism of the proposed CL method was described using the results of the kinetic curves of CL systems, the spectra of CL, PL and UV-Vis analyses. The CL intensity of the KMnO4-morin-CdS QDs system was considerably increased in the presence of nalidixic acid. Under the optimum condition, the enhanced CL intensity was linearly proportional to the concentration of nalidixic acid in the range of 0.0013 to 21.0 mg L- 1, with a detection limit of (3σ) 0.003 mg L- 1. Also, the proposed CL method was utilized for determination of nalidixic acid in environmental water samples, and commercial pharmaceutical formulation to approve its applicability. Furthermore, corona discharge ionization ion mobility spectrometry (CD-IMS) method was utilized for determination of nalidixic acid and the results of real sample analysis by two proposed methods were compared. Comparison the analytical features of these methods represented that the proposed CL method is preferable to CD-IMS method for determination of nalidixic acid due to its high sensitivity and precision.

  2. A flow injection chemiluminescence method for determination of nalidixic acid based on KMnO₄-morin sensitized with CdS quantum dots.

    PubMed

    Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza; Joo, Sang Woo

    2016-02-05

    A simple and sensitive flow injection chemiluminescence (CL) method was developed for determination of nalidixic acid by application of CdS quantum dots (QDs) in KMnO4-morin CL system in acidic medium. Optical and structural features of L-cysteine capped CdS quantum dots which were synthesized via hydrothermal approach were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), and ultraviolet-visible (UV-Vis) spectroscopy. Moreover, the potential mechanism of the proposed CL method was described using the results of the kinetic curves of CL systems, the spectra of CL, PL and UV-Vis analyses. The CL intensity of the KMnO4-morin-CdS QDs system was considerably increased in the presence of nalidixic acid. Under the optimum condition, the enhanced CL intensity was linearly proportional to the concentration of nalidixic acid in the range of 0.0013 to 21.0 mg L(-1), with a detection limit of (3σ) 0.003 mg L(-1). Also, the proposed CL method was utilized for determination of nalidixic acid in environmental water samples, and commercial pharmaceutical formulation to approve its applicability. Furthermore, corona discharge ionization ion mobility spectrometry (CD-IMS) method was utilized for determination of nalidixic acid and the results of real sample analysis by two proposed methods were compared. Comparison the analytical features of these methods represented that the proposed CL method is preferable to CD-IMS method for determination of nalidixic acid due to its high sensitivity and precision. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. In vitro propagation, carotenoid, fatty acid and tocopherol content of Ajuga multiflora Bunge.

    PubMed

    Sivanesan, Iyyakkannu; Saini, Ramesh Kumar; Noorzai, Rafi; Zamany, Ahmad Jawid; Kim, Doo Hwan

    2016-06-01

    The effect of plant growth regulators on shoot proliferation from shoot tip explants of Ajuga multiflora was studied. The highest number of shoots (17.1) was observed when shoot tip explants were cultured on Murashige and Skoog (MS) medium fortified with 8.0 µM 6-Benzyladenine (BA) and 2.7 µM α-naphthaleneacetic acid (NAA). The mean number of shoots per explant was increased 1.6-fold in liquid medium as compared with semi-solid medium. Maximum rooting (100 %) with an average of 7.2 roots per shoot was obtained on MS basal medium. Rooted plantlets were successfully acclimatised in the greenhouse with 100 % survival rate. Composition of carotenoids, fatty acids and tocopherols was also studied from leaves of greenhouse-grown plants and in vitro-regenerated shoots of A. multiflora. The greatest amounts of carotenoids, fatty acids and tocopherols were obtained from leaves of in vitro-regenerated shoots cultured on MS basal medium, followed by leaves of greenhouse-grown plants and leaves of in vitro-regenerated shoots cultured on MS basal medium with 2.0 µM BA or thidiazuron. The most abundant carotenoid in A. multiflora leaves was all-E-lutein (89.4-382.6 μg g -1  FW) followed by all-E-β-carotene (32.0-156.7 μg g -1  FW), 9'-Z-neoxanthin (14.2-63.4 μg g -1  FW), all-E-violaxanthin (13.0-45.9 μg g -1  FW), all-E-zeaxanthin (1.3-2.5 μg g -1  FW) and all-E-β-cryptoxanthin (0.3-0.9 μg g -1  FW). α-Tocopherol was the predominant tocopherol in A. multiflora leaves. Linolenic acid (49.03-52.59 %) was detected in higher amounts in A. multiflora leaf samples followed by linoleic acid (18.95-21.39 %) and palmitic acid (15.79-18.66 %).

  4. Maple sap as a rich medium to grow probiotic lactobacilli and to produce lactic acid.

    PubMed

    Cochu, A; Fourmier, D; Halasz, A; Hawari, J

    2008-12-01

    To demonstrate the feasibility of growing lactobacilli and producing lactic acid using maple sap as a sugar source and to show the importance of oligosaccharides in the processes. Two maple sap samples (Cetta and Pinnacle) and purified sucrose were used as carbon sources in the preparation of three culture media. Compared with the sucrose-based medium, both maple sap-based media produced increased viable counts in two strains out of five by a factor of four to seven. Maple sap-based media also enhanced lactic acid production in three strains. Cetta sap was found to be more efficient than Pinnacle sap in stimulating lactic acid production and, was also found to be richer in various oligosaccharides. The amendment of the Pinnacle-based medium with trisaccharides significantly stimulated Lactobacillus acidophilus AC-10 to grow and produce lactic acid. Maple sap, particularly if rich in oligosaccharides, represents a good carbon source for the growth of lactobacilli and the production of lactic acid. This study provides a proof-of-concept, using maple sap as a substrate for lactic acid production and for the development of a nondairy probiotic drink.

  5. Kinetic Aspects of Leaching Zinc from Waste Galvanizing Zinc by Using Hydrochloric Acid Solutions

    NASA Astrophysics Data System (ADS)

    Sminčáková, Emília; Trpčevská, Jarmila; Pirošková, Jana

    2017-10-01

    In this work, the results of acid leaching of flux skimmings coming from two plants are presented. Sample A contained two phases, Zn(OH)Cl and NH4Cl. In sample B, the presence of three phases, Zn5(OH)8Cl2·H2O, (NH4)2(ZnCl4) and ZnCl2(NH3)2, was proved. The aqueous solution of hydrochloric acid and distilled water was used as the leaching medium. The effects of the leaching time, temperature and concentration of the leaching medium on the zinc extraction were investigated. The apparent activation energy, E a = 4.61 kJ mol-1, and apparent reaction order n = 0.18 for sample A, and the values E a = 6.28 kJ mol-1 and n = 0.33 for sample B were experimentally determined. Zinc leaching in acid medium is a diffusion-controlled process.

  6. A defined, glucose-limited mineral medium for the cultivation of Listeria spp.

    PubMed

    Schneebeli, Rudolf; Egli, Thomas

    2013-04-01

    Members of the genus Listeria are fastidious bacteria with respect to their nutritional requirements, and several minimal media described in the literature fail to support growth of all Listeria spp. Furthermore, strict limitation by a single nutrient, e.g., the carbon source, has not been demonstrated for any of the published minimal media. This is an important prerequisite for defined studies of growth and physiology, including "omics." Based on a theoretical analysis of previously published mineral media for Listeria, an improved, well-balanced growth medium was designed. It supports the growth, not only of all tested Listeria monocytogenes strains, but of all other Listeria species, with the exception of L. ivanovii. The growth performance of L. monocytogenes strain Scott A was tested in the newly designed medium; glucose served as the only carbon and energy source for growth, whereas neither the supplied amino acids nor the buffering and complexing components (MOPS [morpholinepropanesulfonic acid] and EDTA) supported growth. Omission of amino acids, trace elements, or vitamins, alone or in combination, resulted in considerably reduced biomass yields. Furthermore, we monitored the specific growth rates of various Listeria strains cultivated in the designed mineral medium and compared them to growth in complex medium (brain heart infusion broth [BHI]). The novel mineral medium was optimized for the commonly used strain L. monocytogenes Scott A to achieve optimum cell yields and maximum specific growth rates. This mineral medium is the first published synthetic medium for Listeria that has been shown to be strictly carbon (glucose) limited.

  7. Characterization of nitrate-reducing and amino acid-using bacteria prominent in nitrotoxin-enriched equine cecal populations

    USDA-ARS?s Scientific Manuscript database

    In the present study, populations of equine cecal microbes enriched for enhanced rates of 3-nitro-1-propionic acid (NPA) or nitrate metabolism were diluted and cultured for NPA-metabolizing bacteria on a basal enrichment medium (BEM) or tryptose soy agar (TSA) medium supplemented with either 5 mM NP...

  8. Oxidation kinetics of crystal violet by potassium permanganate in acidic medium

    NASA Astrophysics Data System (ADS)

    Khan, Sameera Razi; Ashfaq, Maria; Mubashir; Masood, Summyia

    2016-05-01

    The oxidation kinetics of crystal violet (a triphenylmethane dye) by potassium permanganate was focused in an acidic medium by the spectrophotometric method at 584 nm. The oxidation reaction of crystal violet by potassium permanganate is carried out in an acidic medium at different temperatures ranging within 298-318 K. The kinetic study was carried out to investigate the effect of the concentration, ionic strength and temperature. The reaction followed first order kinetics with respect to potassium permanganate and crystal violet and the overall rate of the reaction was found to be second order. Thermodynamic activation parameters like the activation energy ( E a), enthalpy change (Δ H*), free energy change (Δ G*), and entropy change (Δ S*) have also been evaluated.

  9. Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings.

    PubMed

    Busolo, Maria A; Fernandez, Patricia; Ocio, Maria J; Lagaron, Jose M

    2010-11-01

    This paper presents a comprehensive performance study of polylactic acid (PLA) biocomposites, obtained by solvent casting, containing a novel silver-based antimicrobial layered silicate additive for use in active food packaging applications. The silver-based nanoclay showed strong antimicrobial activity against Gram-negative Salmonella spp. Despite the fact that no exfoliation of the silver-based nanoclay in PLA was observed, as suggested by transmission electron microscopy (TEM) and wide angle X-ray scattering (WAXS) experiments, the additive dispersed nicely throughout the PLA matrix to a nanoscale, yielding nanobiocomposites. The films were highly transparent with enhanced water barrier and strong biocidal properties. Silver migration from the films to a slightly acidified water medium, considered an aggressive food simulant, was measured by stripping voltammetry. Silver migration accelerated after 6 days of exposure. Nevertheless, the study suggests that migration levels of silver, within the specific migration levels referenced by the European Food Safety Agency (EFSA), exhibit antimicrobial activity, supporting the potential application of this biocidal additive in active food-packaging applications to improve food quality and safety.

  10. Ascorbic acid treatment elevates follicle stimulating hormone and testosterone plasma levels and enhances sperm quality in albino Wistar rats.

    PubMed

    Okon, Uduak Akpan; Utuk, Ikponoabasi Ibanga

    2016-01-01

    Infertility issues have been linked to the effect of oxidative reaction in the reproductive system. This study evaluated the effect of ascorbic acid, on fertility parameters of male albino Wistar rats was studied. Eighteen albino Wistar rats weighed between 178 g and 241 g were used, randomly assigned into three groups. Group 1 was the control group; oral gavaged 5 ml of distilled water; Groups 2 and 3 were administered medium dose (250 mg/kg) and high dose of ascorbic acid (400 mg/kg), respectively; twice daily for 21 days. Blood samples were obtained by cardiac puncture, and blood serum was obtained for hormonal assay, and the testes were harvested for sperm analysis. Follicle stimulating hormone levels significantly increased in the high-dose group as compared to both the control and medium dose groups. Luteinizing hormone levels in the medium dose group decreased significantly as compared to the control group. Testosterone significantly increased in both the medium- and high-dose groups as compared to the control group. Sperm motility increased significantly in the high-dose group as compared to both control and medium-dose groups. Percentage sperm concentration decreased significantly in the medium-dose group when compared to the control and increased significantly in the high-dose group as compared to the medium-dose group. For percentage normal morphology, there was a dose-dependent increase in the test groups when compared to control group. These results are indicative of a positive influence of ascorbic acid on male fertility modulators and may therefore, serve as a potential adjuvant treatment for male infertility cases.

  11. Retinoic acid stimulation of human dermal fibroblast proliferation is dependent on suboptimal extracellular Ca2+ concentration.

    PubMed Central

    Varani, J.; Shayevitz, J.; Perry, D.; Mitra, R. S.; Nickoloff, B. J.; Voorhees, J. J.

    1990-01-01

    Human dermal fibroblasts failed to proliferate when cultured in medium containing 0.15 mmol/l (millimolar) Ca2+ (keratinocyte growth medium [KGM]) but did when the external Ca2+ concentration was raised to 1.4 mmol/l. All-trans retinoic acid (retinoic acid) stimulated proliferation in KGM but did not further stimulate growth in Ca2(+)-supplemented KGM. The ability of retinoic acid to stimulate proliferation was inhibited in KGM prepared without Ca2+ or prepared with 0.03 mmol/l Ca2+ and in KGM treated with 1 mmol/l ethylene-glycol-bis-(beta-aminoethyl ether)N,N'-tetra acetic acid. Using 45Ca2+ to measure Ca2+ influx and efflux, it was found that retinoic acid minimally increased Ca2+ uptake into fibroblasts. In contrast, retinoic acid treatment of fibroblasts that had been pre-equilibrated for 1 day with 45Ca2+ inhibited release of intracellular Ca2+ into the extracellular fluid. Retinoic acid also stimulated 35S-methionine incorporation into trichloroacetic acid-precipitable material but in contrast to its effect on proliferation, stimulation of 35S-methionine incorporation occurred in both high-Ca2+ and low-Ca2+ medium. These data indicate that retinoic acid stimulation of proliferation, but not protein synthesis, is dependent on the concentration of Ca2+ in the extracellular environment. PMID:2356860

  12. Effect of boric acid solution on cartilage metabolism.

    PubMed

    Benderdour, M; Hess, K; Gadet, M D; Dousset, B; Nabet, P; Belleville, F

    1997-05-08

    Pelvic cartilage of chick embryo was used to demonstrate that presence of boron in culture medium decreases synthesis of proteoglycans, collagen and total proteins but on the other hand increases the release of these macromolecules. However, when glucose concentration in culture medium is brought to 22mM, the synthesis decrease is no longer observed, whereas release increase persists. Proteins released into the culture medium included heat shock proteins (70 hsp) and tumor necrosis factor alpha (TNF alpha). The amount of phosphorylated proteins was enhanced in presence of boron while endoprotease activity in cartilage and in culture medium was significantly augmented. The in vitro effects of boric acid may explain its in vivo effect on wound healing.

  13. Hormonal induction and antihormonal inhibition of tracheary element differentiation in Zinnia cell cultures

    NASA Technical Reports Server (NTRS)

    Church, D. L.; Galston, A. W.

    1988-01-01

    Mechanically isolated mesophyll cells of Zinnia elegans L. cv Envy differentiate to tracheary elements when cultured in inductive medium containing sufficient auxin and cytokinin. Tracheary element differentiation was induced by the three auxins (alpha-naphthaleneacetic acid, indole-3-acetic acid, and 2,4-dichlorophenoxyacetic acid) and four cytokinins (6-benzyladenine, kinetin, 2-isopentenyladenine and zeatin) tested. Tracheary element formation is inhibited or delayed if the inductive medium is supplemented with an anticytokinin, antiauxin, or inhibitor of auxin transport.

  14. Survival of Escherichia coli O157:H7 ATCC 43895 in a Model Apple Juice Medium with Different Concentrations of Proline and Caffeic Acid

    PubMed Central

    Reinders, Robert D.; Biesterveld, Steef; Bijker, Peter G. H.

    2001-01-01

    The effects of proline and caffeic acid on the survival of Shiga toxin-producing Escherichia coli (STEC) O157:H7 strain ATCC 43895 in a model apple juice medium were studied. It is hypothesized that the inhibitory effect of caffeic acid may explain why almost all outbreaks of STEC O157:H7 infections linked to apple juice or cider have occurred in October or November. PMID:11375209

  15. Effect of medium acidity on the thermodynamics and kinetics of the reaction of pyridoxal 5'-phosphate with isoniazid in an aqueous solution

    NASA Astrophysics Data System (ADS)

    Gamov, G. A.; Zavalishin, M. N.; Usacheva, T. R.; Sharnin, V. A.

    2017-05-01

    Thermodynamic characteristics of the formation of the Schiff base between isoniazid and pyridoxal 5'-phosphate in an aqueous solution at different pH values of a medium are determined by means of spectrophotometry and calorimetric titration. The process kinetics is studied spectrophotometrically, and the reaction rate constants for the formation of the imine at different acidities of a medium are determined. Biochemical aspects of the binding of pyridoxal 5'-phosphate into stable compounds are discussed.

  16. The effect of propionic acid and valeric acid on the cell cycle in root meristems of Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tramontano, W.A.; Yang, Shauyu; Delillo, A.R.

    1990-01-01

    Propionic acid and valeric acid at 1mM reduced the mitotic index of root meristem cells of Pisum sativum to < 1% after 12 hr in aerated White's medium. This effect varied with different acid concentrations. After a 12 hr exposure to either acid, seedlings transferred to fresh medium without either acid, resumed their normal mitotic index after 12 hr, with a burst of mitosis 8 hr post-transfer. Exposure of root meristem cells to either acid also inhibited ({sup 3}H)-TdR incorporation. Neither acid significantly altered the distribution of meristematic cells in G1 and G2 after 12 hr. The incorporation of ({supmore » 3}H) - uridine was also unaltered by the addition of either acid. This information suggests that propionic acid and valeric acid, limit progression through the cell cycle by inhibiting DNA synthesis and arresting cells in G1 and G2. These results were consistent with previous data which utilized butyric acid.« less

  17. Aerobic biodegradation of 2,2'-dithiodibenzoic acid produced from dibenzothiophene metabolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, R.F.; Cheng, S.M.; Fedorak, P.M.

    Dibenzothiophene is a sulfur heterocycle found in crude oils and coal. The biodegradation of dibenzothiophene through the Kodama pathway by Pseudomonas sp. strain BT1d leads to the formation of three disulfides: 2-oxo-2-(2-thiophenyl)ethanoic acid disulfide, 2-oxo-2-(2-thiophenyl)ethanoic acid-2-benzoic acid disulfide, and 2,2'-dithiodibenzoic acid. When provided as the carbon and sulfur source in liquid medium, 2,2'-dithiodibenzoic acid was degraded by soil enrichment cultures. Two bacterial isolates, designated strains RM1 and RM6, degraded 2,2'-dithiodibenzoic acid when combined in the medium. Isolate RM6 was found to have an absolute requirement for vitamin B{sub 12}, and it degraded 2,2'-dithiodibenzoic acid in pure culture when the mediummore » was supplemented with this vitamin. Isolate RM6 also degraded 2,2'-dithiodibenzoic acid in medium containing sterilized supernatants from cultures of isolate RM1 grown on glucose or benzoate. Isolate RM6 was identified as a member of the genus Variovorax using the Biolog system and 16S rRNA gene analysis. Although the mechanism of disulfide metabolism could not be determined, benzoic acid was detected as a transient metabolite of 2,2'-dithiodibenzoic acid biodegradation by Variovorax sp. strain RM6. In pure culture, this isolate mineralized 2,2'-dithiodibenzoic acid, releasing 59% of the carbon as carbon dioxide and 88% of the sulfur as sulfate.« less

  18. Production of 5-hydroxy-7-methoxy-4-methylphthalide in a culture of Penicillium crustosum.

    PubMed

    Valente, Angela M M P; Ferreira, Antonio G; Daolio, Cristina; Rodrigues Filho, Edson; Boffo, Elisangela F; Souza, Antonia Q L; Sebastianes, Fernanda L S; Melo, Itamar S

    2013-01-01

    The chemical reactions carried out by microorganisms have been used as a tool in modern chemistry. This paper reports the production of mycophenolic acid and a new phthalide by the endophytic fungus Penicillium crustosum obtained from coffee seeds. The fungus was cultivated in a liquid medium for a period of seven days and after that the culture medium was divided into four treatments: A, B, C and D, to which different organic substances were added. Treatment A was maintained as the control to evaluate the occurrence of biotransformation. Organic acids were added to the culture media of treatments B (ferulic and quinic acids) and C [cinnamic and 3,4-(methylenedioxy) cinnamic acids], and caffeine was added in the treatment D. All these organic compounds were dissolved in DMSO, and the fermentation was maintained for more 13 days, totalizing 20 days. Mycophenolic acid was isolated from the culture with no added acids (treatment A). Mycophenolic acid and a new phthalide, 5-hydroxy-7-methoxy-4-methylphthalide were isolated from treatments B and C, and mycophenolic acid and caffeine (added to the culture medium) were isolated from treatment D. The structures were determined by NMR techniques and confirmed by MS and MS/MS techniques.

  19. Butanol production by a Clostridium beijerinckii mutant with high ferulic acid tolerance.

    PubMed

    Liu, Jun; Guo, Ting; Wang, Dong; Xu, Jiahui; Ying, Hanjie

    2016-09-01

    A mutant strain of Clostridium beijerinckii, with high tolerance to ferulic acid, was generated using atmospheric pressure glow discharge and high-throughput screening of C. beijerinckii NCIMB 8052. The mutant strain M11 produced 7.24 g/L of butanol when grown in P2 medium containing 30 g/L of glucose and 0.5 g/L of ferulic acid, which is comparable to the production from non-ferulic acid cultures (8.11 g/L of butanol). When 0.8 g/L of ferulic acid was introduced into the P2 medium, C. beijerinckii M11 grew well and produced 4.91 g/L of butanol. Both cell growth and butanol production of C. beijerinckii M11 were seriously inhibited when 0.9 g/L of ferulic acid was added into the P2 medium. Furthermore, C. beijerinckii M11 could produce 6.13 g/L of butanol using non-detoxified hemicellulosic hydrolysate from diluted sulfuric acid-treated corn fiber (SAHHC) as the carbon source. These results demonstrate that C. beijerinckii M11 has a high ferulic acid tolerance and is able to use non-detoxified SAHHC for butanol production. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  20. THE PRODUCTION OF VOLATILE FATTY ACIDS BY BACTERIA OF THE DYSENTERY GROUP

    PubMed Central

    Zoller, Harper F.; Clark, W. Mansfield

    1921-01-01

    These studies show: 1. A close agreement exists among all the organisms studied in the total quantity of volatile fatty acids produced and in the ratio of formic to acetic, under aerobic conditions, and in the presence of 1 per cent of glucose. 2. When grown upon peptone alone, with free access of air to the cultures, volatile fatty acids are produced in appreciable quantities, although the reaction of the solution has gone more alkaline as shown by colorimetric pH tests. Formic acid is not found, but in its place we obtain propionic acid. 3. Upon exhaustion of air from the non-sugar medium the bacteria again produce formic acid, and in addition some butyric. This is true for both Shiga and non-Shiga cultures. The reaction is distinctly more acid. 4. The presence of glucose in the medium from which the air has been pumped furnishes a condition which provokes about the same type and degree of fermentation that operates in the glucose medium bathed in air at atmospheric pressure. 5. The enormous quantity of formic acid produced by these bacteria may play a significant part in the digestive disturbances and toxic symptoms accompanying their infection of the human intestinal tract. PMID:19871867

  1. Ethylene promotes mycelial growth and ganoderic acid biosynthesis in Ganoderma lucidum.

    PubMed

    Zhang, Guang; Ren, Ang; Wu, Fengli; Yu, Hanshou; Shi, Liang; Zhao, Mingwen

    2017-02-01

    To investigate the effects of ethylene, in the form of ethephon (2-chloroethylphosphonic acid), on mycelial growth and ganoderic acid (GA) accumulation in the higher basidiomycete Ganoderma lucidum. Treatment with both 10 and 15 mM ethephon enhanced the growth of G. lucidum on solid CYM plates and in CYM liquid medium. After optimization using response surface methodology, GA reached 33 mg/g dry cell weight (DW), an increase of 90 %, compared with the control. Lanosterol and squalene contents were 31 and 2.4 μg/g DW, being increased by 1.2- and 0.6-fold, respectively, in response to ethephon. Additionally, the transcriptional levels of hydroxymethylglutaryl-CoA reductase, squalene synthase and oxidosqualene cyclase were up-regulated by 2.6-, 4.3- and 3.8-fold, respectively, compared with the control group. This approach provides an efficient strategy for improving GA accumulation in G. lucidum, with potential future applications.

  2. In vitro cultures of Bacopa monnieri and an analysis of selected groups of biologically active metabolites in their biomass.

    PubMed

    Muszyńska, Bożena; Łojewski, Maciej; Sułkowska-Ziaja, Katarzyna; Szewczyk, Agnieszka; Gdula-Argasińska, Joanna; Hałaszuk, Patrycja

    2016-11-01

    Bacopa monnieri L. Pennell (Scrophulariaceae) is one of the most important plants in the system of Indian medicine (Ayurveda). This paper studies the optimal growth of B. monnieri for effective accumulation of metabolites. Biomass growth of this plant could be accomplished in liquid cultures on Murashige & Skoog medium. Powdered shoots of in vitro cultures of B. monnieri were extracted by methanol for indole compounds, phenolic compounds and bacosides for RP-HPLC analysis. Fatty acid analysis was performed via gas chromatography. Anti-inflammatory effect of B. monnieri extracts was evaluated in the A549 cells. COX-2 and cPGES expression was analyzed using Western blots. l-Tryptophan and serotonin were found in biomass from in vitro cultures of B. monnieri on MS medium and in biomass from the MS mediums enriched with the different additions such as of 0.1 g/L magnesium sulphate, 0.1 g/L zinc hydroaspartate, 0.1 g/L l-tryptophan, 0.25 g/L serine, 0.5 g/L serine and 0.5 mg/L anthranilic acid. The content of l-tryptophan and serotonin compounds was significant in biomass from medium with the addition of 0.1 g/L zinc hydroaspartate (0.72 mg/g dry weight and 1.19, respectively). Phenolic compounds identified in biomass from the same variants of MS medium were chlorogenic acid (ranging from 0.20 to 0.70 mg/g dry weight), neochlorogenic acid (ranging from 0.11 to 0.40 mg/g dry weight) and caffeic acid (ranging from 0.01 to 0.04 mg/g dry weight). The main group of fatty acids in biomass was saturated fatty acids (53.4%). The predominant fatty acid was palmitic acid. A significant decrease of COX-2 and cPGES expression was observed in the A549 cells activated with LPS and treated with B. monnieri extracts. As far as we know, this is the first analysis of indole compounds and phenolic acids in this plant. The multi-therapeutic effect of B. monnieri is expressed by the activity of bacosides. Information about the presence of indole and phenolic compounds, and fatty acids in this plant is limited, but the content of these compounds might participate in the physiological activity of B. monnieri.

  3. Production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei using rice-based ethanol stillage with simultaneous recovery and re-use of medium salts.

    PubMed

    Bhattacharyya, Anirban; Saha, Jayeeta; Haldar, Saubhik; Bhowmic, Asit; Mukhopadhyay, Ujjal Kumar; Mukherjee, Joydeep

    2014-03-01

    Haloferax mediterranei holds promise for competitive industrial-scale production of polyhydroxyalkanoate (PHA) because cheap carbon sources can be used thus lowering production costs. Although high salt concentration in production medium permits a non-sterile, low-cost process, salt disposal after process completion is a problem as current environmental standards do not allow total dissolved solids (TDS) above 2000 mg/l in discharge water. As the first objective of this work, the waste product of rice-based ethanol industry, stillage, was used for the production of PHA by H. mediterranei in shake flasks. Utilization of raw stillage led to 71 ± 2% (of dry cell weight) PHA accumulation and 16.42 ± 0.02 g/l PHA production. The product yield coefficient was 0.35 while 0.17 g/l h volumetric productivity was attained. Simultaneous reduction of BOD5 and COD values of stillage by 83% was accomplished. The PHA was isolated by osmotic lysis of cells, purification by sodium dodecyl sulfate and organic solvents. The biopolymer was identified as poly-3-(hydroxybutyrate-co-15.4 mol%-hydroxyvalerate) (PHBV). This first report on utilization of rice-based ethanol stillage for PHBV production by H. mediterranei is currently the most cost effective. As the second objective, directional properties of decanoic acid together with temperature dependence of water solubility in decanoic acid were applied for two-stage desalination of the spent stillage medium. We report for the first time, recovery and re-use of 96% of the medium salts for PHA production thus removing the major bottleneck in the potential application of H. mediterranei for industrial production of PHBV. Final discharge water had TDS content of 670 mg/l.

  4. [Microbial synthesis of deuterium labelled L-phenylalanine with different levels of isotopic enrichment by facultative methylotrophic bacterium Brevibacterium methylicum with RMP assimilation of carbon].

    PubMed

    Mosin, O V; Shvets, V I; Skladnev, D A; Ignatov, I

    2014-01-01

    The preparative microbial synthesis of amino acids labelled with stable isotopes, including deuterium ( 2 H), suitable for biomedical applications by methylotrophic bacteria was studied using L-phenylalanine as example. This amino acid is secreted by Gram-negative aerobic facultative methylotrophic bacteria Brevibacterium methylicum, assimilating methanol via ribulose-5-monophosphate (RMP) cycle of assimilation of carbon, The data on adaptation of L-phenylalanine secreted by methylotrophic bacterium В. methylicum to the maximal concentration of deuterium in the growth medium with 98% 2 Н 2 O and 2% [ 2 Н]methanol, and biosynthesis of deuterium labelled L-phenylalanine With different levels of enrichment are presented. The strain was adapted by means of plating initial cells on firm (2% agarose) minimal growth media with an increasing gradient of 2 Н 2 O concentration from 0; 24.5; 49.0; 73.5 up to 98% 2 Н 2 O followed by subsequent selection of separate colonies stable to the action of 2 Н 2 O. These colonies were capable to produce L-phenylalanine. L-phenylalanine was extracted from growth medium by extraction with isopropanol with the subsequent crystallization in ethanol (output 0.65 g/l). The developed method of microbial synthesis allows to obtain deuterium labelled L-phenylalanine with different levels of isotopic enrichment, depending on concentration of 2 Н 2 O in growth media, from 17% (on growth medium with 24,5% 2 Н 2 O) up to 75% (on growth medium with 98% 2 Н 2 O) of deuterium in the molecule that is confirmed with the data of the electron impact (EI) mass- spectrometry analysis of methyl ethers of N-dimethylamino(naphthalene)-5-sulfochloride (dansyl) phenylalanine in these experimental conditions.

  5. Discovery and Characterization of a Novel Small-Molecule Agonist for Medium-Chain Free Fatty Acid Receptor G Protein-Coupled Receptor 84.

    PubMed

    Zhang, Qing; Yang, Hui; Li, Jing; Xie, Xin

    2016-05-01

    G protein-coupled receptor 84 (GPR84) is a free fatty acid receptor activated by medium-chain free fatty acids with 9-14 carbons. It is expressed mainly in the immune-related tissues, such as spleen, bone marrow, and peripheral blood leukocytes. GPR84 plays significant roles in inflammatory processes and may represent a novel drug target for the treatment of immune-mediated diseases. However, the lack of potent and specific ligands for GPR84 hindered the study of its functions and the development of potential clinical applications. Here, we report the screen of 160,000 small-molecule compounds with a calcium mobilization assay using a human embryonic kidney 293 cell line stably expressing GPR84 and Gα16, and the identification of 2-(hexylthio)pyrimidine-4,6-diol (ZQ-16) as a potent and selective agonist of GPR84 with a novel structure. ZQ-16 activates several GPR84-mediated signaling pathways, including calcium mobilization, inhibition of cAMP accumulation, phosphorylation of extracellular signal-regulated protein kinase 1/2, receptor desensitization and internalization, and receptor-β-arrestin interaction. This compound may be a useful tool to study the functions of GPR84 and a potential candidate for further structural optimization. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Lipid production of microalga Chlorella sorokiniana CY1 is improved by light source arrangement, bioreactor operation mode and deep-sea water supplements.

    PubMed

    Chen, Chun-Yen; Chang, Hsin-Yueh

    2016-03-01

    Microalgae-based biodiesel has been recognized as a sustainable and promising alternative to fossil diesel. High lipid productivity of microalgae is required for economic production of biodiesel from microalgae. This study was undertaken to enhance the growth and oil accumulation of an indigenous microalga Chlorella sorokiniana CY1 by applying engineering strategies using deep-sea water as the medium. First, the microalga was cultivated using LED as the immersed light source, and the results showed that the immersed LED could effectively enhance the oil/lipid content and final microalgal biomass concentration to 53.8% and 2.5 g/l, respectively. Next, the semi-batch photobioreactor operation with deep-sea water was shown to improve lipid content and microalgal growth over those from using batch and continuous cultures under similar operating conditions. The optimal replacement ratio was 50%, resulting in an oil/lipid content and final biomass concentration of 61.5% and 2.8 g/l, respectively. A long-term semi-batch culture utilizing 50%-replaced medium was carried out for four runs. The final biomass concentration and lipid productivity were 2.5 g/L and 112.2 mg/L/d, respectively. The fatty acid composition of the microalgal lipids was predominant by palmitic acid, stearic acid, oleic acid and linoleic acid, and this lipid quality is suitable for biodiesel production. This demonstrates that optimizing light source arrangement, bioreactor operation and deep-sea water supplements could effectively promote the lipid production of C. sorokiniana CY1 for the applications in microalgae-based biodiesel industry. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effects of medium-chain triglycerides, long-chain triglycerides, or 2-monododecanoin on fatty acid composition in the portal vein, intestinal lymph, and systemic circulation in rats.

    PubMed

    You, Yi-Qian Nancy; Ling, Pei-Ra; Qu, Jason Zhensheng; Bistrian, Bruce R

    2008-01-01

    Fatty acid absorption patterns can have a major impact on the fatty acid composition in the portal, intestinal lymph, and systemic circulation. This study sought to determine the effects of long-chain triglycerides (LCT), medium-chain triglycerides (MCT), and 2-monododecanoin (2mono) on intestinal fatty acid composition during continuous feeding over a brief period. The lipid sources were 100% LCT, 100% MCT, a 50:50 mixture of LCT and MCT (LCT/MCT), and a 50:50 mixture of LCT and 2mono (LCT/2mono). A total of 27 rats were randomly given 1 of the 4 diets at 200 kcal/kg/d, with 30% of total calories from lipids over 3 hours. MCT significantly increased each of the medium-chain fatty acids (C6:0, C8:0, and C10:0) as free fatty acids in the portal vein and about 10%/mol of C10:0 as triglycerides in the lymph compared with the other groups. There was significantly less C10:0 in lymphatic triglycerides with LCT/MCT than with MCT, but more than in the LCT and LCT/2mono diets. MCT also significantly increased the contents of C16:0, C18:0, C18:1, and C20:4 in the lymphatic triglycerides compared with all other groups including LCT/MCT. The amount of linoleic acid (C18:2) in lymphatic triglycerides followed the relative amounts of this fatty acid in the diet, with the greatest in LCT followed by LCT/MCT and LCT/2mono and least in MCT. A so-called structured lipid composed of the medium-chain fatty acid dodecanoic acid on the 2 position and long-chain fatty acids on the 1 and 3 positions appeared to be endogenously synthesized in response to the LCT/2mono diet. The original differences in MCT and LCT content in the diets were preserved in the fatty acid composition in the intestinal free fatty acids and triglycerides during feeding. In addition, the duration of lipid administration can play a role in altering fatty acid composition in the intestine.

  8. Induction of L-phenylalanine ammonia-lyase during utilization of phenylalanine as a carbon or nitrogen source in Rhodotorula glutinis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marusich, W.C.; Jensen, R.A.; Zamir, L.O.

    Rhodotorula glutinis is a convenient source of L-phenylalanine ammonia-lyase, an enzyme that is useful as a biochemical reagent in the assay of L-phenylalanine. There have been previous descriptions of induced lyase production in complex medium where induction occurs late in exponential growth, suggesting a role in secondary metabolism such as is the case in higher plants. A higher specific activity of L-phenylalanine ammonia-lyase (sixfold higher than in complex medium) can be obtained during midexponential growth in a defined medium containing L-phenylalanine as the sole source of carbon. L-phenylalanine will also induce lyase synthesis during exponential growth in minimal medium inmore » which L-phenylalanine is the sole source of nitrogen. The appearance of lyase in complex medium supplemented with L-phenylalanine is probably triggered fortuitously by exhaustion late in growth of a prime source of nitrogen. In this study, R. glutinis appeared to express a single lyase enzyme, regardless of whether induction was nitrogen signaled or carbon signaled. Thin-layer chromatographic analysis of ether extracts prepared fom cultures induced with doubly labeled (U-/sup 14/C; ring-4-/sup 3/H) L-phenylalanine provided evidence of a catabolic sequence containing cinnamic acid, benzoic acid, and 4-hydroxybenzoic acid as degradative intermediates. 3,4-Dihydroxybenzoic acid was not identified as a catabolic intermediate.« less

  9. The role of acyl carrier protein isoforms from Cuphea lanceolata seeds in the de-novo biosynthesis of medium-chain fatty acids.

    PubMed

    Schütt, B S; Brummel, M; Schuch, R; Spener, F

    1998-06-01

    To investigate the role of acyl carrier protein (ACP) in determining the fate of the acyl moieties linked to it in the course of de-novo fatty acid biosynthesis in higher plants, we carried out in vitro experiments to reconstitute the fatty acid synthase (FAS) reaction in extracts of spinach (Spinacia oleracea L.) leaves, rape (Brassica napus L.) seeds and Cuphea lanceolata Ait. seeds. The action of two major C. lanceolata ACP isoforms (ACP 1 and ACP 2) compared to ACP from Escherichia coli was monitored by saponification of the corresponding FAS products with subsequent analysis of the liberated fatty acids by high-performance liquid chromatography. In a second approach the preference of the medium-chain acyl-ACP-specific thioesterase (EC 3.1.2.14) of C. lanceolata seeds for the hydrolysis of acyl-ACPs prepared from the three ACP types was investigated. Both ACP isoforms from C. lanceolata seeds supported the synthesis of medium-chain fatty acids in a reconstituted FAS reaction of spinach leaf extracts. Compared to the isoform ACP 1, ACP 2 was more effective in supporting the synthesis of such fatty acids in the FAS reaction of rape seed extracts and caused a higher accumulation of FAS products in all experiments. No preference of the medium-chain thioesterase for one specific ACP isoform was observed. The results indicate that the presence of ACP 2 is essential for the synthesis of decanoic acid in C. lanceolata seeds, and its expression in the phase of accumulation of high levels of this fatty acid provides an additional and highly efficient cofactor for stimulating the FAS reaction.

  10. Selective deuteration for molecular insights into the digestion of medium chain triglycerides.

    PubMed

    Salentinig, Stefan; Yepuri, Nageshwar Rao; Hawley, Adrian; Boyd, Ben J; Gilbert, Elliot; Darwish, Tamim A

    2015-09-01

    Medium chain triglycerides (MCTs) are a unique form of dietary fat that have a wide range of health benefits. They are molecules with a glycerol backbone esterified with medium chain (6-12 carbon atoms) fatty acids on the two outer (sn-1 and sn-3) and the middle (sn-2) positions. During lipid digestion in the gastrointestinal tract, pancreatic lipase stereoselectively hydrolyses the ester bonds of these triglycerides on the sn-1 and sn-3 positions resulting in sn-2 monoglyceride and fatty acids as major products. However, the sn-2 monoglycerides are thermodynamically less stable than their sn-1/3 counterparts. Isomerization or fatty acid migration from the sn-2 monoglyceride to sn-1/3 monoglyceride may occur spontaneously and would lead to glycerol and fatty acid as final products. Here, tricaprin (C10) with selectively deuterated fatty acid chains was used for the first time to monitor chain migration and the stereoselectivity of the pancreatic lipase-catalyzed hydrolysis of ester bonds. The intermediate and final digestion products were studied using NMR and mass spectrometry under biologically relevant conditions. The hydrolysis of the sn-2 monocaprin to glycerol and capric acid did not occur within biologically relevant timescales and fatty acid migration occurs only in limited amounts as a result of the presence of undigested diglyceride species over long periods of time in the digestion medium. The slow kinetics for the exchange of the sn-2 fatty acid chain and the stereoselectivity of pancreatic lipase on MCTs is relevant for industrial processes that involve enzymatic interesterification and the production of high-value products such as specific structured triacylglycerols, confectionery fats and nutritional products. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Novel approach for the use of dairy industry wastes for bacterial growth media production.

    PubMed

    Kasmi, Mariam; Elleuch, Lobna; Dahmeni, Ameni; Hamdi, Moktar; Trabelsi, Ismail; Snoussi, Mejdi

    2018-04-15

    This work proposes a novel approach for the reuse and the recovery of dairy wastes valuable components. Thermal coagulation was performed for dairy effluents and the main responsible fraction for the organic matter content (protein and fat) was separated. Dairy curds were prepared for the formulation of bacterial growth media. Protein, sugar, fat and fatty acids contents have been assessed. Samples treated at 100 °C exhibited marked improvement in terms of protein (25-50%) recovery compared to those treated at 80 °C. Fatty acid analysis revealed the presence of unsaturated fatty acids (mainly oleic acid) that are essential to promote Lactobacillus growth. Previously isolated and identified bacterial strains from dairy wastes (Lactobacillus paracasei, Lactobacillus plantarum, Lactococcus lactis and Lactobacillus brevis) were investigated for their ability to grow on the formulated media. All the tested lactic acid bacteria exhibited greater bacterial growth on the formulated media supplemented with glucose only or with both glucose and yeast extract compared to the control media. By reference to the commercial growth medium, the productivity ratio of the supplemented bactofugate (B) and decreaming (D) formulated media exceeded 0.6 for L. paracasei culture. Whereas, the productivity ratio of the supplemented B medium was greater than 1 compared to the control medium for all the tested strains. As for the supplemented D medium, its productivity ratio was greater than 1 compared to the control medium for both L. paracasei and L. plantarum strains. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Utility of surface enhanced Raman spectroscopy (SERS) for elucidation and simultaneous determination of some penicillins and penicilloic acid using hydroxylamine silver nanoparticles.

    PubMed

    El-Zahry, Marwa R; Refaat, Ibrahim H; Mohamed, Horria A; Rosenberg, Erwin; Lendl, Bernhard

    2015-11-01

    Elucidation and quantitative determination of some of commonly used penicillins (ampicillin, penicillin G and carbenicillin) in the presence of their main degradation product (penicilloic acid) were developed. Forced acidic and basic degradation processes were applied at different time intervals. The formed degradation products were elucidated and quantified using surface enhanced Raman spectroscopy (SERS). Silver nanoparticles (AgNPs) prepared by reduction of silver nitrate using hydroxylamine-HCl in alkaline medium were used as SERS substrate. The results obtained in SERS were confirmed by the application of LC/MS method. The concentration range was 100-600 ng/ml in case of the studied penicillins and 100-700 ng/ml in case of penicilloic acid. An excellent correlation coefficient was found in case of ampicillin (r=0.9993) and in the case of penicilloic acid (r=0.9997). Validation procedures were carried out including precision, robustness and accuracy by comparing F- and t-values of both the proposed and reported methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  14. Mining microarray datasets in nutrition: expression of the GPR120 (n-3 fatty acid receptor/sensor) gene is down-regulated in human adipocytes by macrophage secretions.

    PubMed

    Trayhurn, Paul; Denyer, Gareth

    2012-01-01

    Microarray datasets are a rich source of information in nutritional investigation. Targeted mining of microarray data following initial, non-biased bioinformatic analysis can provide key insight into specific genes and metabolic processes of interest. Microarrays from human adipocytes were examined to explore the effects of macrophage secretions on the expression of the G-protein-coupled receptor (GPR) genes that encode fatty acid receptors/sensors. Exposure of the adipocytes to macrophage-conditioned medium for 4 or 24 h had no effect on GPR40 and GPR43 expression, but there was a marked stimulation of GPR84 expression (receptor for medium-chain fatty acids), the mRNA level increasing 13·5-fold at 24 h relative to unconditioned medium. Importantly, expression of GPR120, which encodes an n-3 PUFA receptor/sensor, was strongly inhibited by the conditioned medium (15-fold decrease in mRNA at 24 h). Macrophage secretions have major effects on the expression of fatty acid receptor/sensor genes in human adipocytes, which may lead to an augmentation of the inflammatory response in adipose tissue in obesity.

  15. Mining microarray datasets in nutrition: expression of the GPR120 (n-3 fatty acid receptor/sensor) gene is down-regulated in human adipocytes by macrophage secretions

    PubMed Central

    Trayhurn, Paul; Denyer, Gareth

    2012-01-01

    Microarray datasets are a rich source of information in nutritional investigation. Targeted mining of microarray data following initial, non-biased bioinformatic analysis can provide key insight into specific genes and metabolic processes of interest. Microarrays from human adipocytes were examined to explore the effects of macrophage secretions on the expression of the G-protein-coupled receptor (GPR) genes that encode fatty acid receptors/sensors. Exposure of the adipocytes to macrophage-conditioned medium for 4 or 24 h had no effect on GPR40 and GPR43 expression, but there was a marked stimulation of GPR84 expression (receptor for medium-chain fatty acids), the mRNA level increasing 13·5-fold at 24 h relative to unconditioned medium. Importantly, expression of GPR120, which encodes an n-3 PUFA receptor/sensor, was strongly inhibited by the conditioned medium (15-fold decrease in mRNA at 24 h). Macrophage secretions have major effects on the expression of fatty acid receptor/sensor genes in human adipocytes, which may lead to an augmentation of the inflammatory response in adipose tissue in obesity. PMID:25191551

  16. Lipids of Pseudomonas aeruginosa Cells Grown on Hydrocarbons and on Trypticase Soy Broth1

    PubMed Central

    Edmonds, Paul; Cooney, J. J.

    1969-01-01

    Lipids were extracted from cells of Pseudomonas aeruginosa grown on a pure hydrocarbon (tridecane), mixed hydrocarbons (JP-4 jet fuel), and on Trypticase Soy Broth. Total lipids produced from each substrate represented from 7.1 to 8.2% of cellular dry weight, of which 5.0 to 6.4% were obtained before cellular hydrolysis (free lipids) and 1.7 to 2.0% were extracted after cellular hydrolysis (bound lipids). Free lipids from cells grown on each medium were separated into four fractions by thin-layer chromatography. All fractions were present in cells from each type of medium, and the “neutral fraction” constituted the largest fraction. The fatty acid composition of free lipids was determined by gas-liquid chromatography. Cells grown on each medium contained saturated and unsaturated C14 to C20 fatty acids. Trace amounts of C13 fatty acids were found in tridecane-grown cells. Saturated C16 and C18 were the major acids present in all cells. Quantitative differences were found in fatty acids produced on the three media, but specific correlations between substrate carbon sources and fatty acid content of cells were not evident. Tridecane-grown cells contained only traces of C13 acid and small amounts of C15 and C17 acids, suggesting that the organism's fatty acids were derived from de novo synthesis rather than by direct incorporation of the hydrocarbon. PMID:4976464

  17. Stimulation of d- and l-lactate dehydrogenases transcriptional levels in presence of diammonium hydrogen phosphate resulting to enhanced lactic acid production by Lactobacillus strain.

    PubMed

    Singhvi, Mamata; Zendo, Takeshi; Iida, Hiroshi; Gokhale, Digambar; Sonomoto, Kenji

    2017-12-01

    The present study revealed the effect of nitrogen sources on lactic acid production and stimulation of d- and l-lactate dehydrogenases (LDH) of parent Lactobacillus lactis NCIM 2368 and its mutant RM2-24 generated after UV mutagenesis. Both the parent and mutant strains were evaluated for d-lactic acid production in control and modified media. The modified media did not show remarkable effect on lactic acid production in case of parent whereas mutant exhibited significant enhancement in d-lactic acid production along with the appearance of l-lactic acid in the broth. Both LDH activities and specific activities were found to be higher in mutant than the parent strain. These results suggested that the diammonium hydrogen phosphate in modified media triggered the expression of LDH genes leading to enhanced lactic acid production. This observation has been proved by studying the expression levels of d- and l-LDH genes of parent and mutant in control and modified media using quantitative RT-PCR technique. In case of mutant, the transcriptional levels of d-LDH and l-LDH increased ∼17 fold and ∼1.38 fold respectively in modified medium compared to the values obtained with control medium. In case of parent, no significant change in transcriptional levels of d- and l-LDH was found when the cells were grown in either control medium or modified medium. This study suggested that the mutant, RM2-24 has l-LDH gene which is expressed in presence of (NH 4 ) 2 HPO 4 resulting in l-lactic acid production. Co-production of l-lactic acid in d-lactic acid fermentation may be detrimental in the PLA production. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Bond formations by intermolecular and intramolecular trappings of acylketenes and their applications in natural product synthesis†

    PubMed Central

    Reber, Keith P.; Tilley, S. David

    2011-01-01

    The reactive intermediates known as acylketenes exhibit a rich chemistry and have been extensively utilized for many types of inter- and intramolecular bond-forming reactions within the field of organic synthesis. Characteristic reactions of acylketenes include cycloadditions, carbon–carbon bond-forming reactions, and nucleophilic capture with alcohols or amines to give β-keto acid derivatives. In particular, the intramolecular capture of acylketene intermediates with pendant nucleophiles represents a powerful method for forming both medium-sized rings and macrocycles, often in high yield. This tutorial review examines the history, generation, and reactivity of acylketenes with a special focus on their applications in the synthesis of natural products. PMID:19847338

  19. Stimulation of the activity of a novel tannase produced in white-rot fungi Phellinus pini, Fomes fomentarius, and Tyromyces pubescens by medium supplementation.

    PubMed

    Prendecka, Monika; Jaszek, Magdalena; Grąz, Marcin; Głuszak, Natalia; Małysz, Katarzyna; Nowak, Agata; Żuchowski, Jerzy; Małecka-Massalska, Teresa

    2016-09-01

    In recent years, tannase has gained increasing interest mainly because of its potential applications. One of the most important functions of tannic acid (TA) hydrolase is the release of gallic acid (GA) from complex tannins. The aim of the study was to determine the dynamic changes in tannase activity depending on the carbon source in the culture medium. An extracellular and intracellular tannase activity analysis was carried out with the use of spectrophotometric analysis and confirmed by capillary electrophoresis in cultures of white-rot fungi: Phellinus pini, Fomes fomentarius, and Tyromyces pubescens. The inducible potential of TA and rapeseed meal on the activity of tannin acyl hydrolase was confirmed during 14 days of culturing. Different effects of the tested compounds on stimulation of tannase activity in selected fungal strains have been demonstrated. We concluded that rapeseed meal was the best inducer of tannase activity in the case of P. pini. However, the highest concentrations of GA were observed after stimulation by the TA in the cultures of F. fomentarius and T. pubescens. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  20. Production and properties of an exopolysaccharide synthesized by the extreme halophilic archaeon Haloterrigena turkmenica.

    PubMed

    Squillaci, Giuseppe; Finamore, Rosario; Diana, Paola; Restaino, Odile Francesca; Schiraldi, Chiara; Arbucci, Salvatore; Ionata, Elena; La Cara, Francesco; Morana, Alessandra

    2016-01-01

    We have isolated a novel exopolysaccharide (EPS) produced by the extreme halophilic archaeon Haloterrigena turkmenica. Some features, remarkable from an industrial point of view, such as emulsifying and antioxidant properties, were investigated. H. turkmenica excreted 20.68 mg of EPS per 100 ml of culture medium when grown in usual medium supplemented with glucose. The microorganism excreted the biopolymer mainly in the middle exponential growth phase and reached the maximal production in the stationary phase. Analyses by anion exchange chromatography and SEC-TDA Viscotek indicated that the EPS was composed of two main fractions of 801.7 and 206.0 kDa. It was a sulfated heteropolysaccharide containing glucose, galactose, glucosamine, galactosamine, and glucuronic acid. Studies performed utilizing the mixture of EPS anionic fractions showed that the biopolymer had emulsifying activity towards vegetable oils comparable or superior to that exhibited by the controls, moderate antioxidant power when tested with 2,2'-diphenyl-1-picrylhydrazyl (DPPH(·)), and moisture-retention ability higher than hyaluronic acid (HA). The EPS from H. turkmenica is the first exopolysaccharide produced by an archaea to be characterized in terms of properties that can have potential biotechnological applications.

  1. Optimisation of culture conditions with respect to biotin requirement for the production of recombinant avidin in Pichia pastoris.

    PubMed

    Jungo, Carmen; Urfer, Julien; Zocchi, Andrea; Marison, Ian; von Stockar, Urs

    2007-01-20

    Due to its very high affinity to biotin, avidin is one of the most widely exploited proteins in modern biotechnological and biomedical applications. Since biotin is an essential vitamin for the growth of many microorganisms, we examined the effect of biotin deficiency on growth for a recombinant Pichia pastoris strain expressing and secreting a recombinant glycosylated avidin. The results showed that biotin deficiency lowers growth rate and biomass yield for P. pastoris. Substitution of biotin in the medium by the two structurally unrelated compounds, aspartic acid and oleic acid, which do not bind to recombinant avidin was analyzed quantitatively. These two compounds had a growth promoting effect in biotin-deficient medium, but did not replace biotin completely. Indeed, in chemostat culture, wash-out occurred after about six liquid residence times and recombinant avidin productivity was lowered. However, addition of low amounts of biotin (20 microg L(-1) of biotin for a cell density of 8 g L(-1)) resulted in stable chemostat cultures on methanol with the production of recombinant biotin-free avidin. The specific avidin production rate was 22 microg g(-1) h(-1) at a dilution rate of 0.06 h(-1).

  2. Binding mode dependent signaling for the detection of Cu2 +: An experimental and theoretical approach with practical applications

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumen; Khan, Mehebub Ali; Ganguly, Aniruddha; Masum, Abdulla Al; Alam, Md. Akhtarul; Guchhait, Nikhil

    2018-02-01

    Two amido-schiff bases (3-Hydroxy-naphthalene-2-carboxylic acid pyren-1-ylmethylene-hydrazide and Naphthalene-2-carboxylic acid pyren-1-ylmethylene-hydrazide) have been synthesized having a common structural unit and only differs by a -OH group in the naphthalene ring. Both of them can detect Cu2 + ion selectively in semi-aqueous medium in distinctly different output modes (one detects Cu2 + by naked-eye color change where as the other detects Cu2 + by fluorescence enhancement). The difference in the binding of Cu 2 + with the compounds is the reason for this observation. The detection limit is found to be micromolar region for compound which contains -OH group whereas the compound without -OH group detects copper in nano-molar region. DFT calculations have been performed in order to demonstrate the structure of the compounds and their copper complexes. Practical utility has been explored by successful paper strip response of both the compounds. The biological applications have been evaluated in RAW 264.7.

  3. A general ligand design for gold catalysis allowing ligand-directed anti-nucleophilic attack of alkynes.

    PubMed

    Wang, Yanzhao; Wang, Zhixun; Li, Yuxue; Wu, Gongde; Cao, Zheng; Zhang, Liming

    2014-04-07

    Most homogenous gold catalyses demand ≥ 0.5 mol% catalyst loading. Owing to the high cost of gold, these reactions are unlikely to be applicable in medium- or large-scale applications. Here we disclose a novel ligand design based on the privileged (1,1'-biphenyl)-2-ylphosphine framework that offers a potentially general approach to dramatically lowering catalyst loading. In this design, an amide group at the 3'-position of the ligand framework directs and promotes nucleophilic attack at the ligand gold complex-activated alkyne, which is unprecedented in homogenous gold catalysis considering the spatial challenge of using ligand to reach anti-approaching nucleophile in a linear P-Au-alkyne centroid structure. With such a ligand, the gold(I) complex becomes highly efficient in catalysing acid addition to alkynes, with a turnover number up to 99,000. Density functional theory calculations support the role of the amide moiety in directing the attack of carboxylic acid via hydrogen bonding.

  4. A General Ligand Design for Gold Catalysis allowing Ligand-Directed Anti Nucleophilic Attack of Alkynes

    PubMed Central

    Wang, Yanzhao; Wang, Zhixun; Li, Yuxue; Wu, Gongde; Cao, Zheng; Zhang, Liming

    2014-01-01

    Most homogenous gold catalyses demand ≥0.5 mol % catalyst loading. Due to the high cost of gold, these reactions are unlikely to be applicable in medium or large scale applications. Here we disclose a novel ligand design based on the privileged biphenyl-2-phosphine framework that offers a potentially general approach to dramatically lowering catalyst loading. In this design, an amide group at the 3’ position of the ligand framework directs and promotes nucleophilic attack at the ligand gold complex-activated alkyne, which is unprecedented in homogeneous gold catalysis considering the spatial challenge of using ligand to reach antiapproaching nucleophile in a linear P-Au-alkyne centroid structure. With such a ligand, the gold(I) complex becomes highly efficient in catalyzing acid addition to alkynes, with a turnover number up to 99,000. Density functional theory calculations support the role of the amide moiety in directing the attack of carboxylic acid via hydrogen bonding. PMID:24704803

  5. Efficient and low-cost alternative of lipase concentration aiming at the application in the treatment of waste cooking oils.

    PubMed

    Preczeski, Karina P; Kamanski, Angela B; Scapini, Thamarys; Camargo, Aline F; Modkoski, Tatiani A; Rossetto, Vanusa; Venturin, Bruno; Mulinari, Jéssica; Golunski, Simone M; Mossi, Altemir J; Treichel, Helen

    2018-06-01

    In this study, we evaluated the concentration of lipases from Aspergillus niger using efficient and low-cost methods aiming at application in the treatment of waste cooking oils. The change in ionic strength of the medium by the addition of salt and precipitation with ethanol increased the specific activity from 2.90 to 28.50 U/mg, resulting in a purification factor of 9.82-fold. The use of acetone resulted in a specific activity of 33.63 U/mg, resulting in a purification factor of 11.60-fold. After that, the concentrated lipase was used in the hydrolysis of waste cooking oil and 753.07 and 421.60 µmol/mL of free fatty acids were obtained for the enzyme precipitated with ethanol and acetone, respectively. The hydrolysis of waste cooking oil catalyzed by homemade purified lipase in ultrasonic media can be considered a pretreatment of oil by converting a significant amount of triglycerides into free fatty acids.

  6. 27 CFR 19.675 - Medium plant permit applications.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Medium plant permit... Obtaining A Permit § 19.675 Medium plant permit applications. (a) General. Any person wishing to establish a medium plant must file form TTB F 5110.74, Application and Permit for an Alcohol Fuel Producer Under 26 U...

  7. 27 CFR 19.675 - Medium plant permit applications.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Medium plant permit... Obtaining A Permit § 19.675 Medium plant permit applications. (a) General. Any person wishing to establish a medium plant must file form TTB F 5110.74, Application and Permit for an Alcohol Fuel Producer Under 26 U...

  8. 27 CFR 19.675 - Medium plant permit applications.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Medium plant permit... Obtaining A Permit § 19.675 Medium plant permit applications. (a) General. Any person wishing to establish a medium plant must file form TTB F 5110.74, Application and Permit for an Alcohol Fuel Producer Under 26 U...

  9. 27 CFR 19.675 - Medium plant permit applications.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Medium plant permit... Obtaining A Permit § 19.675 Medium plant permit applications. (a) General. Any person wishing to establish a medium plant must file form TTB F 5110.74, Application and Permit for an Alcohol Fuel Producer Under 26 U...

  10. A Defined, Glucose-Limited Mineral Medium for the Cultivation of Listeria spp.

    PubMed Central

    Schneebeli, Rudolf

    2013-01-01

    Members of the genus Listeria are fastidious bacteria with respect to their nutritional requirements, and several minimal media described in the literature fail to support growth of all Listeria spp. Furthermore, strict limitation by a single nutrient, e.g., the carbon source, has not been demonstrated for any of the published minimal media. This is an important prerequisite for defined studies of growth and physiology, including “omics.” Based on a theoretical analysis of previously published mineral media for Listeria, an improved, well-balanced growth medium was designed. It supports the growth, not only of all tested Listeria monocytogenes strains, but of all other Listeria species, with the exception of L. ivanovii. The growth performance of L. monocytogenes strain Scott A was tested in the newly designed medium; glucose served as the only carbon and energy source for growth, whereas neither the supplied amino acids nor the buffering and complexing components (MOPS [morpholinepropanesulfonic acid] and EDTA) supported growth. Omission of amino acids, trace elements, or vitamins, alone or in combination, resulted in considerably reduced biomass yields. Furthermore, we monitored the specific growth rates of various Listeria strains cultivated in the designed mineral medium and compared them to growth in complex medium (brain heart infusion broth [BHI]). The novel mineral medium was optimized for the commonly used strain L. monocytogenes Scott A to achieve optimum cell yields and maximum specific growth rates. This mineral medium is the first published synthetic medium for Listeria that has been shown to be strictly carbon (glucose) limited. PMID:23377938

  11. Production of propyl gallate in nonaqueous medium using cell-associated tannase of Bacillus massiliensis: effect of various parameters and statistical optimization.

    PubMed

    Aithal, Mahesh; Belur, Prasanna D

    2013-01-01

    Enzymatic synthesis of propyl gallate in an organic solvent was studied using cell-associated tannase (E.C. 3.1.1.20) of Bacillus massiliensis. Lyophilized biomass showing tannase activity was used as a biocatalyst. The influence of buffer pH and strength, water activity, temperature, biocatalyst loading, gallic acid concentration, and 1-propanol concentration was studied by the one-factor-at-a-time method. Subsequently, response surface methodology was applied based on a central composite design to determine the effects of three independent variables (biocatalyst loading, gallic acid concentration, and 1-propanol concentration) and their mutual interactions. A total of 20 experiments were conducted, and a statistical model was developed, which predicted the maximum propyl gallate yield of 20.28 μg/mL in the reaction mixture comprising 40.4 mg biocatalyst, 0.4 mM gallic acid, and 6.52 % (v/v) 1-propanol in 9.5 mL benzene at 30°C. The subsequent verification experiments established the validity of the model. Under optimal conditions, 25% conversion of gallic acid to propyl gallate was achieved on a molar basis. The absence of the need for enzyme purification and subsequent immobilization steps and good conversion efficiency makes this enzyme system an interesting one. Reports on the applications of bacterial whole cell systems for synthetic reactions in organic solvents are scarce, and perhaps this is the first report on bacterial cell-associated tannase-mediated esterification in a nonaqueous medium. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  12. Production of C4 and C5 branched-chain alcohols by engineered Escherichia. coli.

    PubMed

    Chen, Xiaoyan; Xu, Jingliang; Yang, Liu; Yuan, Zhenhong; Xiao, Shiyuan; Zhang, Yu; Liang, Cuiyi; He, Minchao; Guo, Ying

    2015-11-01

    Higher alcohols, longer chain alcohols, contain more than 3 carbon atoms, showed close energy advantages as gasoline, and were considered as the next generation substitution for chemical fuels. Higher alcohol biosynthesis by native microorganisms mainly needs gene expression of heterologous keto acid decarboxylase and alcohol dehydrogenases. In the present study, branched-chain α-keto acid decarboxylase gene from Lactococcus lactis subsp. lactis CICC 6246 (Kivd) and alcohol dehydrogenases gene from Zymomonas mobilis CICC 41465 (AdhB) were transformed into Escherichia coli for higher alcohol production. SDS-PAGE results showed these two proteins were expressed in the recombinant strains. The resulting strain was incubated in LB medium at 37 °C in Erlenmeyer flasks and much more 3-methyl-1-butanol (104 mg/L) than isobutanol (24 mg/L) was produced. However, in 5 g/L glucose-containing medium, the production of two alcohols was similar, 156 and 161 mg/L for C4 (isobutanol) and C5 (3-methyl-1-butanol) alcohol, respectively. Effects of fermentation factors including temperature, glucose content, and α-keto acid on alcohol production were also investigated. The increase of glucose content and the adding of α-keto acids facilitated the production of C4 and C5 alcohols. The enzyme activities of pure Kivd on α-ketoisovalerate and α-ketoisocaproate were 26.77 and 21.24 μmol min(-1) mg(-1), respectively. Due to its ability on decarboxylation of α-ketoisovalerate and α-ketoisocaproate, the recombinant E. coli strain showed potential application on isoamyl alcohol and isobutanol production.

  13. Establishment of an efficient in vitro regeneration protocol for rapid and mass propagation of Dendrobium chrysotoxum Lindl. using seed culture.

    PubMed

    Nongdam, Potshangbam; Tikendra, Leimapokpam

    2014-01-01

    An efficient in vitro regeneration protocol from seed culture has been established successfully for Dendrobium chrysotoxum, an epiphytic orchid having tremendous ornamental and medicinal values. Seed germination response was encouraging in Mitra (M) medium enriched with different combinations of auxins and cytokinins. Medium supplemented with 0.4% activated charcoal (AC), 2 mg/L 6-benzyl amino purine (BAP), and 2 mg/L indole-3-acetic acid (IAA) produced best seed germination percentage in 2 weeks of culture. Incorporation of higher concentration of kinetin (KN) or BAP in combination with low auxin in medium induced pronounced shooting and leaf formation. Reduction in leaf development was evident when cytokinins exist singly in medium indicating synergistic effect of auxin and cytokinin in leaf induction. Presence of elevated level of indole-3-butyric acid (IBA) or 1-naphthalene acetic acid (NAA) with low cytokinin content in medium generated more in vitro rooting, though IBA was found to be more effective in rooting induction as compared to NAA. The in vitro protocol for asymbiotic seed germination developed from the present investigation can be used for rapid mass propagation of this highly important Dendrobium orchid species.

  14. Establishment of an Efficient In Vitro Regeneration Protocol for Rapid and Mass Propagation of Dendrobium chrysotoxum Lindl. Using Seed Culture

    PubMed Central

    2014-01-01

    An efficient in vitro regeneration protocol from seed culture has been established successfully for Dendrobium chrysotoxum, an epiphytic orchid having tremendous ornamental and medicinal values. Seed germination response was encouraging in Mitra (M) medium enriched with different combinations of auxins and cytokinins. Medium supplemented with 0.4% activated charcoal (AC), 2 mg/L 6-benzyl amino purine (BAP), and 2 mg/L indole-3-acetic acid (IAA) produced best seed germination percentage in 2 weeks of culture. Incorporation of higher concentration of kinetin (KN) or BAP in combination with low auxin in medium induced pronounced shooting and leaf formation. Reduction in leaf development was evident when cytokinins exist singly in medium indicating synergistic effect of auxin and cytokinin in leaf induction. Presence of elevated level of indole-3-butyric acid (IBA) or 1-naphthalene acetic acid (NAA) with low cytokinin content in medium generated more in vitro rooting, though IBA was found to be more effective in rooting induction as compared to NAA. The in vitro protocol for asymbiotic seed germination developed from the present investigation can be used for rapid mass propagation of this highly important Dendrobium orchid species. PMID:25401154

  15. Effects of Bile Acids and Nisin on the Production of Enterotoxin by Clostridium perfringens in a Nutrient-Rich Medium.

    PubMed

    Park, Miseon; Rafii, Fatemeh

    2018-01-01

    Clostridium perfringens is the second most common cause of bacterial foodborne illness in the United States, with nearly a million cases each year. C. perfringens enterotoxin (CPE), produced during sporulation, damages intestinal epithelial cells by pore formation, which results in watery diarrhea. The effects of low concentrations of nisin and bile acids on sporulation and toxin production were investigated in C. perfringens SM101, which carries an enterotoxin gene on the chromosome, in a nutrient-rich medium. Bile acids and nisin increased production of enterotoxin in cultures; bile acids had the highest effect. Both compounds stimulated the transcription of enterotoxin and sporulation-related genes and production of spores during the early growth phase. They also delayed spore outgrowth and nisin was more inhibitory. Bile acids and nisin enhanced enterotoxin production in some but not all other C. perfringens isolates tested. Low concentrations of bile acids and nisin may act as a stress signal for the initiation of sporulation and the early transcription of sporulation-related genes in some strains of C. perfringens , which may result in increased strain-specific production of enterotoxin in those strains. This is the first report showing that nisin and bile acids stimulated the transcription of enterotoxin and sporulation-related genes in a nutrient-rich bacterial culture medium.

  16. Intestinal absorption of medium chain fatty acids: in vivo studies in pigs devoid of exocrine pancreatic secretion.

    PubMed

    Guillot, E; Lemarchal, P; Dhorne, T; Rerat, A

    1994-10-01

    In order to study the influence of pancreatic enzyme secretion on the intestinal absorption of medium-chain fatty acids (MCFA), three growing pigs (mean body-weight 61 kg) with ligated and severed pancreatic ducts were fitted with a permanent fistula in the duodenum and with two catheters in the portal vein and carotid artery respectively. An electromagnetic flow probe was also set up around the portal vein. A mixture of octanoic and decanoic acids, esterified as medium-chain triacylglycerols, together with maltose dextrine and nitrogenous fraction was continuously infused for 1 h into the duodenum. Samples of blood were withdrawn from the two vessels at regular intervals of time for 8 h and further analysed for their non-esterified octanoic and decanoic acid contents. The concentrations of non-esterified octanoic and decanoic acid in the portal blood increased slowly after the beginning of each infusion, reaching about 10 times higher values than the basal level. Only 26% of octanoic acid infused in the duodenum and 27% of decanoic acid were recovered in the portal flow throughout each experiment. The possible mechanisms underlying the appearance of MCFA in the portal blood in the absence of pancreatic enzyme secretions and the importance of duodenal absorption of MCT in such physiological conditions have been discussed.

  17. Plasmodium falciparum: differing effects of non-esterified fatty acids and phospholipids on intraerythrocytic growth in serum-free medium.

    PubMed

    Asahi, Hiroko; Izumiyama, Shinji; Tolba, Mohammed Essa Marghany; Kwansa-Bentum, Bethel

    2011-03-01

    Different combinations of non-esterified fatty acids (NEFA) had variable effects on intraerythrocytic growth of Plasmodium falciparum. All stages of the parasite cultured in medium supplemented with cis-9-octadecenoic acid (C18:1-cis-9), hexadecanoic acid (C16:0), phospholipids (Pld) and bovine albumin free of NEFA were similar to those grown in complete growth medium. Three typical growth patterns indicating suppressed schizogony (SS), suppressed formation of merozoites (SMF), and inhibited invasion of merozoites (IMI) resulted from culture in other combinations of lipids. Unsaturated or saturated NEFA with longer or shorter carbon chains than C18:1-cis-9 or C16:0, higher degree of unsaturation, and trans-forms mainly resulted in SS and SMF effects. However, IMI or partial IMI was observed with tetradecanoic acid or octadecanoic acid enriched with C18:1-cis-9, and cis-9-hexadecenoic acid plus C16:0. Isoforms of C18:1-cis-9 also mainly resulted in partial IMI. SMF also occurred with C18:1-cis-9 plus C16:0 in the absence of Pld. Thus different NEFA exerted distinct roles in erythrocytic growth of the parasite by sustaining development at different stages. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Usefulness of organic acid produced by Exiguobacterium sp. 12/1 on neutralization of alkaline wastewater.

    PubMed

    Kulshreshtha, Niha Mohan; Kumar, Anil; Bisht, Gopal; Pasha, Santosh; Kumar, Rita

    2012-01-01

    The aim of this study was to investigate the role of organic acids produced by Exiguobacterium sp. strain 12/1 (DSM 21148) in neutralization of alkaline wastewater emanated from beverage industry. This bacterium is known to be able to grow in medium of pH as high as pH 12.0 and to neutralize alkaline industrial wastewater from pH 12.0 to pH 7.5. The initial investigation on the type of functional groups present in medium, carried out using FT-IR spectroscopy, revealed the presence of peaks corresponding to carbonyl group and hydroxyl group, suggesting the release of carboxylic acid or related metabolic product(s). The identification of specific carboxylic group, carried out using RP-HPLC, revealed the presence of a single peak in the culture supernatant with retention time most similar to formic acid. The concentration of acid produced on different carbon sources was studied as a function of time. Although acid was present in same final concentration, the rate of acid production was highest in case of medium supplemented with sucrose followed by fructose and glucose. The knowledge of metabolic products of the bacterium can be considered as a first step towards realization of its potential for large-scale bioremediation of alkaline wastewater from beverage industry.

  19. Usefulness of Organic Acid Produced by Exiguobacterium sp. 12/1 on Neutralization of Alkaline Wastewater

    PubMed Central

    Kulshreshtha, Niha Mohan; Kumar, Anil; Bisht, Gopal; Pasha, Santosh; Kumar, Rita

    2012-01-01

    The aim of this study was to investigate the role of organic acids produced by Exiguobacterium sp. strain 12/1 (DSM 21148) in neutralization of alkaline wastewater emanated from beverage industry. This bacterium is known to be able to grow in medium of pH as high as pH 12.0 and to neutralize alkaline industrial wastewater from pH 12.0 to pH 7.5. The initial investigation on the type of functional groups present in medium, carried out using FT-IR spectroscopy, revealed the presence of peaks corresponding to carbonyl group and hydroxyl group, suggesting the release of carboxylic acid or related metabolic product(s). The identification of specific carboxylic group, carried out using RP-HPLC, revealed the presence of a single peak in the culture supernatant with retention time most similar to formic acid. The concentration of acid produced on different carbon sources was studied as a function of time. Although acid was present in same final concentration, the rate of acid production was highest in case of medium supplemented with sucrose followed by fructose and glucose. The knowledge of metabolic products of the bacterium can be considered as a first step towards realization of its potential for large-scale bioremediation of alkaline wastewater from beverage industry. PMID:22666107

  20. Evaluation of the oxolinic acid--esculin--azide medium for the isolation and enumeration of faecal streptococci in a routine monitoring programme for bathing waters.

    PubMed

    Figueras, M J; Inza, I; Polo, F; Guarro, J

    1998-10-01

    m-Enterococcus agar (m-Ent) has been generally considered the reference medium for faecal streptococci in bathing waters. However, it shows several shortcomings, and therefore it is important to test newly developed media that can guarantee more precise results. In this sense, the recently described oxolinic acid--esculin--azide agar medium (OAA) and m-enterococcus agar (m-Ent) were comparatively evaluated for the detection of faecal streptococci from seawater and fresh water. The OAA medium showed a significantly higher relative recovery percentage and specificity for both types of water than m-Ent. A similar spectrum of species was recorded from both media, Enterococcus faecium being predominant in fresh water and Enterococcus faecalis, in seawater. The superior performance of the OAA medium in both types of bathing waters, added to the fact that it does not require the use of complementary confirmative tests, makes this medium an excellent candidate to be employed for monitoring programmes.

  1. Dissociation constants, neutralization enthalpies and reactions of 3-styryl-2-mercaptopropenoic and 3-(1-naphthyl)-2-mercaptopropenoic acids.

    PubMed

    Izquierdo, A; Bosch, E; Beltran, J L

    1984-06-01

    Dissociation constants (pK(a1) and pK(a2) in water-ethanol medium for 3-styryl-2-mercaptopropenoic and 3-(1-naphthyl)-2-mercaptopropenoic acid have been determined potentiometrically, and pK(a2) for both in aqueous medium, spectrophotometrically. Neutralization enthalpies in water-ethanol medium have been determined by thermometric titration. The reactions with metal ions have been studied, and the main reactions are described. The most sensitive reactions are with titanium(IV) (pD = 7.00) and nickel(II) (pD = 6.50).

  2. Development of ovine embryos in synthetic oviductal fluid containing amino acids at oviductal fluid concentrations.

    PubMed

    Walker, S K; Hill, J L; Kleemann, D O; Nancarrow, C D

    1996-09-01

    The effects of supplementing synthetic oviductal fluid (SOF) with amino acids, at oviductal fluid concentrations, on the development of ovine in vitro-matured/in vitro-fertilized embryos was examined in three experiments. In the first, embryo development in SOF, SOF + 2% human serum (HS), SOF + 20% HS, and SOF + BSA, with and without amino acid supplementation, was examined. Development of zygotes to the blastocyst and hatching blastocyst stages was highest in medium containing 20% HS (64.8% and 54.4%, respectively) irrespective of amino acid supplementation. However, supplementation was significantly beneficial in all other media, with up to 42.1% of zygotes developing into hatching blastocysts. In these media, supplementation also significantly increased the mean number of nuclei per newly formed blastocyst (up to a mean of 70.8) and reduced the time during which blastocysts formed. Experiment 2 was an examination of the effect on embryo development of three amino acid preparations (oviduct amino acid concentrations vs. Eagle's Basal Medium (BME) essential + Minimum Essential Medium (MEM) nonessential vs. MEM essential + MEM nonessential concentrations) and the presence or absence of BSA. Both the amino acid and BSA treatments significantly influenced the percentage of zygotes that developed to the hatching blastocyst stage but not to the blastocyst stage. The preferred medium contained amino acids at oviductal fluid concentrations and BSA (54.5% hatching rate). The amino acid treatments did not significantly influence the mean number of nuclei per newly formed blastocyst, but the addition of BSA had a significant effect (70.7 +/- 1.14 vs. 75.7 +/- 1.13). In experiment 3, embryo development to Day 13 was examined after culture in SOF containing amino acids at oviductal fluid concentrations. Embryos were cultured in the presence of either BSA, polyvinyl alcohol (PVA), or no additional supplement and were transferred to recipient ewes on either Day 0 (after in vitro fertilization), 3, or 5. The addition of BSA or PVA had no significant effect, but significantly more embryos developed to Day 13 following transfer on Day 0 (60.0%) than on either Day 3 or 5 (overall 45.4%). It is concluded that SOF containing oviductal fluid concentrations of amino acids 1) facilitates the development of a high percentage (57.5%) of blastocysts, 2) improves embryo morphology compared with that observed in medium containing HS, 3) significantly improves hatching rates compared with those obtained in SOF containing commercially available preparations of amino acids, and 4) produces embryos with relatively high levels of viability to Day 13 of pregnancy.

  3. Selection of the Strain Lactobacillus acidophilus ATCC 43121 and Its Application to Brewers' Spent Grain Conversion into Lactic Acid

    PubMed Central

    Liguori, Rossana; Soccol, Carlos Ricardo; Vandenberghe, Luciana Porto de Souza; Woiciechowski, Adenise Lorenci; Ionata, Elena; Marcolongo, Loredana; Faraco, Vincenza

    2015-01-01

    Six Lactobacillus strains were analyzed to select a bacterium for conversion of brewers' spent grain (BSG) into lactic acid. Among the investigated strains, L. acidophilus ATCC 43121 showed the highest yield of lactic acid production (16.1 g/L after 48 hours) when grown in a synthetic medium. It was then analyzed for its ability to grow on the hydrolysates obtained from BSG after acid-alkaline (AAT) or aqueous ammonia soaking (AAS) pretreatment. The lactic acid production by L. acidophilus ATCC 43121 through fermentation of the hydrolysate from AAS treated BSG was 96% higher than that from the AAT treated one, although similar yields of lactic acid per consumed glucose were achieved due to a higher (46%) glucose consumption by L. acidophilus ATCC 43121 in the AAS BSG hydrolysate. It is worth noting that adding yeast extract to the BSG hydrolysates increased both the yield of lactic acid per substrate consumed and the volumetric productivity. The best results were obtained by fermentation of AAS BSG hydrolysate supplemented by yeast extract, in which the strain produced 22.16 g/L of lactic acid (yield of 0.61 g/g), 27% higher than the value (17.49 g/L) obtained in the absence of a nitrogen source. PMID:26640784

  4. Fluoride release from fluoride varnishes under acidic conditions.

    PubMed

    Lippert, F

    2014-01-01

    The aim was to investigate the in vitro fluoride release from fluoride varnishes under acidic conditions. Poly(methyl methacrylate) blocks (Perspex, n=3 per group) were painted with 80 ± 5 mg fluoride varnish (n=10) and placed into artificial saliva for 30 min. Then, blocks were placed into either 1% citric acid (pH 2.27) or 0.3% citric acid (pH 3.75) solutions (n=3 per solution and varnish) for 30 min with the solutions being replaced every 5 min. Saliva and acid solutions were analyzed for fluoride content. Data were analyzed using three-way ANOVA (varnish, solution, time). The three-way interaction was significant (p>0.0001). Fluoride release and release patterns varied considerably between varnishes. Fluoride release in saliva varied by a factor of more than 10 between varnishes. Some varnishes (CavityShield, Nupro, ProFluorid, Vanish) showed higher fluoride release in saliva than during the first 5 min of acid exposure, whereas other varnishes (Acclean, Enamel-Pro, MI Varnish, Vella) showed the opposite behavior. There was little difference between acidic solutions. Fluoride release from fluoride varnishes varies considerably and also depends on the dissolution medium. Bearing in mind the limitations of laboratory research, the consumption of acidic drinks after fluoride varnish application should be avoided to optimize the benefit/risk ratio.

  5. Effect of oxalic acid pretreatment of wood chips on manufacturing medium-density fiberboard

    Treesearch

    Xianjun Li; Zhiyong Cai; Eric Horn; Jerrold E. Winandy

    2011-01-01

    The main objective of this study was to evaluate the effect of oxalic acid (OA) wood chips pretreatment prior to refining, which is done to reduce energy used during the refining process. Selected mechanical and physical performances of medium-density fiberboard (MDF) – internal bonding (IB), modulus of elasticity (MOE), modulus of rupture (MOR), water absorption (WA)...

  6. Investigation of poly(γ-glutamic acid) production via online determination of viscosity and oxygen transfer rate in shake flasks.

    PubMed

    Regestein Née Meissner, Lena; Arndt, Julia; Palmen, Thomas G; Jestel, Tim; Mitsunaga, Hitoshi; Fukusaki, Eiichiro; Büchs, Jochen

    2017-01-01

    Poly(γ-glutamic acid) (γ-PGA) is a biopolymer with many useful properties making it applicable for instance in food and skin care industries, in wastewater treatment, in biodegradable plastics or in the pharmaceutical industry. γ-PGA is usually produced microbially by different Bacillus spp. The produced γ-PGA increases the viscosity of the fermentation broth. In case of shake flask fermentations, this results in an increase of the volumetric power input. The power input in shake flasks can be determined by measuring the torque of an orbitally rotating lab shaker. The online measurement of the volumetric power input enables to continuously monitor the formation or degradation of viscous products like γ-PGA. Combined with the online measurement of the oxygen transfer rate (OTR), the respiration activity of the organisms can be observed at the same time. Two different Bacillus licheniformis strains and three medium compositions were investigated using online volumetric power input and OTR measurements as well as thorough offline analysis. The online volumetric power input measurement clearly depicted changes in γ-PGA formation due to different medium compositions as well as differences in the production behavior of the two investigated strains. A higher citric acid concentration and the addition of trace elements to the standard medium showed a positive influence on γ-PGA production. The online power input signal was used to derive an online viscosity signal which was validated with offline determined viscosity values. The online measurement of the OTR proved to be a valuable tool to follow the respiration activity of the cultivated strains and to determine its reproducibility under different cultivation conditions. The combination of the volumetric power input and the OTR allows for an easy and reliable investigation of new strains, cultivation conditions and medium compositions for their potential in γ-PGA production. The power input signal and the derived online viscosity directly reflect changes in γ-PGA molecular weight and concentration, respectively, due to different cultivation conditions or production strains.

  7. Effects of nutrient deprivation and differentiation on the expression of growth-arrest genes (gas and gadd) in F9 embryonal carcinoma cells.

    PubMed Central

    Fleming, J V; Hay, S M; Harries, D N; Rees, W D

    1998-01-01

    The growth-arrest genes (gas and gadd) are widely expressed during mammalian embryogenesis and may be useful as markers of nutritional stress in the embryo. F9 embryonal carcinoma cells have been used to characterize the effect of serum or amino acid deficiency on growth-arrest gene expression in a differentiating embryonic cell. The differentiation markers, homeobox B2 (HoxB2), collagen type IV and laminin B2, were not induced by growth arrest. Treatment with all-trans retinoic acid (RA) produced a dose-dependent increase in alkaline phosphatase activity, which was unchanged in lysine-deficient medium and reduced in low-serum medium. Low-serum medium also reduced HoxB2 expression. There was a transient 2-6-fold increase in mRNAs for C/EBP-beta, gadd153/CHOP-10 and gas5 genes 24 h after transfer to amino-acid-deficient media. The mRNAs for the gas2 and gas6 genes began to rise slowly by 5-10-fold after a delay of approx. 24 h. The transient increases did not occur in low-serum medium where there was a much smaller and slower increase. Differentiation caused 1-2-fold increases in gas2, gas3 and gas6 mRNA levels. The transient overexpression of gas5, gadd153/CHOP-10 and CCAAT-enhancer-binding protein-beta, and the later expression of gas6 mRNAs in response to amino acid deficiency, were not affected by differentiation. RA treatment increased the expression of gas3 and caused gas2 to be transiently overexpressed in amino-acid-deficient medium. Differentiation in serum-deficient medium did not significantly alter the levels of the growth-arrest gene mRNAs. These results show that in F9 cells the growth-arrest genes are expressed sequentially as a result of nutrient stress. PMID:9461558

  8. Effects of nutrient deprivation and differentiation on the expression of growth-arrest genes (gas and gadd) in F9 embryonal carcinoma cells.

    PubMed

    Fleming, J V; Hay, S M; Harries, D N; Rees, W D

    1998-02-15

    The growth-arrest genes (gas and gadd) are widely expressed during mammalian embryogenesis and may be useful as markers of nutritional stress in the embryo. F9 embryonal carcinoma cells have been used to characterize the effect of serum or amino acid deficiency on growth-arrest gene expression in a differentiating embryonic cell. The differentiation markers, homeobox B2 (HoxB2), collagen type IV and laminin B2, were not induced by growth arrest. Treatment with all-trans retinoic acid (RA) produced a dose-dependent increase in alkaline phosphatase activity, which was unchanged in lysine-deficient medium and reduced in low-serum medium. Low-serum medium also reduced HoxB2 expression. There was a transient 2-6-fold increase in mRNAs for C/EBP-beta, gadd153/CHOP-10 and gas5 genes 24 h after transfer to amino-acid-deficient media. The mRNAs for the gas2 and gas6 genes began to rise slowly by 5-10-fold after a delay of approx. 24 h. The transient increases did not occur in low-serum medium where there was a much smaller and slower increase. Differentiation caused 1-2-fold increases in gas2, gas3 and gas6 mRNA levels. The transient overexpression of gas5, gadd153/CHOP-10 and CCAAT-enhancer-binding protein-beta, and the later expression of gas6 mRNAs in response to amino acid deficiency, were not affected by differentiation. RA treatment increased the expression of gas3 and caused gas2 to be transiently overexpressed in amino-acid-deficient medium. Differentiation in serum-deficient medium did not significantly alter the levels of the growth-arrest gene mRNAs. These results show that in F9 cells the growth-arrest genes are expressed sequentially as a result of nutrient stress.

  9. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.

    PubMed

    Juriga, Dávid; Nagy, Krisztina; Jedlovszky-Hajdú, Angéla; Perczel-Kovách, Katalin; Chen, Yong Mei; Varga, Gábor; Zrínyi, Miklós

    2016-09-14

    Development of novel biodegradable and biocompatible scaffold materials with optimal characteristics is important for both preclinical and clinical applications. The aim of the present study was to analyze the biodegradability of poly(aspartic acid)-based hydrogels, and to test their usability as scaffolds for MG-63 osteoblast-like cells. Poly(aspartic acid) was fabricated from poly(succinimide) and hydrogels were prepared using natural amines as cross-linkers (diaminobutane and cystamine). Disulfide bridges were cleaved to thiol groups and the polymer backbone was further modified with RGD sequence. Biodegradability of the hydrogels was evaluated by experiments on the base of enzymes and cell culture medium. Poly(aspartic acid) hydrogels possessing only disulfide bridges as cross-links proved to be degradable by collagenase I. The MG-63 cells showed healthy, fibroblast-like morphology on the double cross-linked and RGD modified hydrogels. Thiolated poly(aspartic acid) based hydrogels provide ideal conditions for adhesion, survival, proliferation, and migration of osteoblast-like cells. The highest viability was found on the thiolated PASP gels while the RGD motif had influence on compacted cluster formation of the cells. These biodegradable and biocompatible poly(aspartic acid)-based hydrogels are promising scaffolds for cell cultivation.

  10. Overexpression of a C4-dicarboxylate transporter is the key for rerouting citric acid to C4-dicarboxylic acid production in Aspergillus carbonarius.

    PubMed

    Yang, Lei; Christakou, Eleni; Vang, Jesper; Lübeck, Mette; Lübeck, Peter Stephensen

    2017-03-14

    C 4 -dicarboxylic acids, including malic acid, fumaric acid and succinic acid, are valuable organic acids that can be produced and secreted by a number of microorganisms. Previous studies on organic acid production by Aspergillus carbonarius, which is capable of producing high amounts of citric acid from varieties carbon sources, have revealed its potential as a fungal cell factory. Earlier attempts to reroute citric acid production into C 4 -dicarboxylic acids have been with limited success. In this study, a glucose oxidase deficient strain of A. carbonarius was used as the parental strain to overexpress a native C 4 -dicarboxylate transporter and the gene frd encoding fumarate reductase from Trypanosoma brucei individually and in combination. Impacts of the introduced genetic modifications on organic acid production were investigated in a defined medium and in a hydrolysate of wheat straw containing high concentrations of glucose and xylose. In the defined medium, overexpression of the C 4 -dicarboxylate transporter alone and in combination with the frd gene significantly increased the production of C 4 -dicarboxylic acids and reduced the accumulation of citric acid, whereas expression of the frd gene alone did not result in any significant change of organic acid production profile. In the wheat straw hydrolysate after 9 days of cultivation, similar results were obtained as in the defined medium. High amounts of malic acid and succinic acid were produced by the same strains. This study demonstrates that the key to change the citric acid production into production of C 4 -dicarboxylic acids in A. carbonarius is the C 4 -dicarboxylate transporter. Furthermore it shows that the C 4 -dicarboxylic acid production by A. carbonarius can be further increased via metabolic engineering and also shows the potential of A. carbonarius to utilize lignocellulosic biomass as substrates for C 4 -dicarboxylic acid production.

  11. Fabrication of biopolymer-based staple electrospun fibres for nanocomposite applications by particle-assisted low temperature ultrasonication.

    PubMed

    Mulky, Elias; Yazgan, Gökçe; Maniura-Weber, Katharina; Luginbuehl, Reto; Fortunato, Giuseppino; Bühlmann-Popa, Ana-Maria

    2014-12-01

    We demonstrate the fabrication of staple polymer-based fibres by the ultrasound-assisted processing of electrospun meshes. Bioabsorbable Poly-L-Lactic Acid (PLLA) was electrospun from organic solvent mixtures, yielding continuous fibres with diameters in the range of 244±78 nm. Subsequently, the obtained fibres were sonicated at low temperatures in the presence of nanoparticles in order to obtain fibres with small aspect ratios. The influence of the dispersion medium, the sonication process parameters (temperature and time) and the dimensions of the particles used on the respective length distribution of the obtained nanofibres was investigated. Hexane was identified as an optimal dispersion medium for the system studied in this work. When a cooling bath temperature of 0°C was used, a slight increase in the obtained fibres' average length and distribution was observed as compared to cooling at -80°C (54±43 μm vs 44±31 μm). Moreover, in the presence of hydroxyapatite and hydrophilic and hydrophobic TiO2 nanoparticles in the dispersion medium longer fibres were obtained (44±31 μm, 63±47 μm, and 51±52 μm). Finally, the application of the obtained PLLA-fibre-hydroxyapatite (HA) nanoparticle precursors for the fabrication of a fibre-reinforced Brushite-based cement with high compressive strength is shown. This method of obtaining nanoscaled fibre-reinforced materials opens up a wide range of perspectives for the fabrication of composites for tissue engineering applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Isolation of aquatic yeasts with the ability to neutralize acidic media, from an extremely acidic river near Japan's Kusatsu-Shirane Volcano.

    PubMed

    Mitsuya, Daisuke; Hayashi, Takuya; Wang, Yu; Tanaka, Mami; Okai, Masahiko; Ishida, Masami; Urano, Naoto

    2017-07-01

    The Yukawa River is an extremely acidic river whose waters on the east foot of the Kusatu-Shirane Volcano (in Gunma Prefecture, Japan) contain sulfate ions. Here we isolated many acid-tolerant yeasts from the Yukawa River, and some of them neutralized an acidic R2A medium containing casamino acid. Candida fluviatilis strain CeA16 had the strongest acid tolerance and neutralizing activity against the acidic medium. To clarify these phenomena, we performed neutralization tests with strain CeA16 using casamino acid, a mixture of amino acids, and 17 single amino acid solutions adjusted to pH 3.0, respectively. Strain CeA16 neutralized not only acidic casamino acid and the mixture of amino acids but also some of the acidic single amino acid solutions. Seven amino acids were strongly decomposed by strain CeA16 and simultaneously released ammonium ions. These results suggest strain CeA16 is a potential yeast as a new tool to neutralize acidic environments. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Saccharomyces cerevisiae oxidative response evaluation by cyclic voltammetry and gas chromatography-mass spectrometry.

    PubMed

    Castro, Cristiana C; Gunning, Caitriona; Oliveira, Carla M; Couto, José A; Teixeira, José A; Martins, Rui C; Ferreira, António C Silva

    2012-07-25

    This study is focused on the evaluation of the impact of Saccharomyces cerevisiae metabolism in the profile of compounds with antioxidant capacity in a synthetic wine during fermentation. A bioanalytical pipeline, which allows for biological systems fingerprinting and sample classification by combining electrochemical features with biochemical background, is proposed. To achieve this objective, alcoholic fermentations of a minimal medium supplemented with phenolic acids were evaluated daily during 11 days, for electrochemical profile, phenolic acids, and the volatile fermentation fraction, using cyclic voltametry, high-performance liquid chromatography-diode array detection, and headspace/solid-phase microextraction/gas chromatography-mass spectrometry (target and nontarget approaches), respectively. It was found that acetic acid, 2-phenylethanol, and isoamyl acetate are compounds with a significative contribution for samples metabolic variability, and the electrochemical features demonstrated redox-potential changes throughout the alcoholic fermentations, showing at the end a similar pattern to normal wines. Moreover, S. cerevisiae had the capacity of producing chlorogenic acid in the supplemented medium fermentation from simple precursors present in the minimal medium.

  14. Crystal dimension of ZSM-5 influences on para selective disproportionation of ethylbenzene.

    PubMed

    Hariharan, Srinivasan; Palanichamy, Muthaiahpillai

    2014-03-01

    Crystal size and crystal dimensions are vital role in shape selective feature. Para selective disproportionation of EthylBenzene (Dip-EB) was investigated over ZSM-5 synthesized in acidic medium. The catalysts were prepared by hydrothermal process with various Si/Al ratios (50, 75 and 100) using fluoride ion precursor. This fluoride ion precursor dissolves the ZSM-5 nutrients below it neutral pH between 4 and 6. The synthesized material was subjected into various physico chemical characterizations such as XRD, SEM, TGA and BET analyses. The XRD patterns showed high crystalline nature and their resulting SEM images were also indicate thin prismatic crystals of large dimension compared with alkaline medium synthesized one. The BET results earned good textural property. Catalytic activity of vapor phase Dip-EB was carried out between 523 and 673 K. As their result, diethylbenzene (DEB) isomers were obtained, but para selective Diethylbenzene (p-DEB) was observed higher than others. The high selectivity towards p-DEB was due to large crystal dimension of ZSM-5 catalysts synthesized in fluoride medium. Hence it is good commercial application for petrochemical feed stock production.

  15. Application of the isotope-dilution principle to the analysis of factors affecting the incorporation of [3H]uridine and [3H]cytidine into cultured lymphocytes. Evaluation of pools in serum and culture media

    PubMed Central

    Forsdyke, D. R.

    1971-01-01

    1. Rat lymph-node cells were incubated in serum and medium 199 with [5-3H]uridine or [5-3H]cytidine and acid-precipitable radioactivity was measured. Results were interpreted in terms of an isotope-dilution model. 2. Both serum and medium 199 contained pools that inhibited radioactive labelling in a competitive manner. The serum activity was diffusible and inhibited labelling with [3H]cytidine more than with [3H]uridine; in these respects the activity resembled cytidine (14μm). 3. The pools in serum and plasma were the same size; however, the rate of labelling was greater in plasma, owing to a diffusible factor. 4. Paradoxically, relatively simple media (Earle's salts and Eagle's minimum essential) appeared to have a larger pool than the more complex pyrimidine-containing medium 199; this suggests a contribution to the pool by cells in the simple media. 5. In the absence of pools the average cell was capable of incorporating 2000 radioactive nucleoside molecules/s. PMID:4947658

  16. An original method for producing acetaldehyde and diacetyl by yeast fermentation.

    PubMed

    Rosca, Irina; Petrovici, Anca Roxana; Brebu, Mihai; Stoica, Irina; Minea, Bogdan; Marangoci, Narcisa

    In this study a natural culture medium that mimics the synthetic yeast peptone glucose medium used for yeast fermentations was designed to screen and select yeasts capable of producing high levels of diacetyl and acetaldehyde. The presence of whey powder and sodium citrate in the medium along with manganese and magnesium sulfate enhanced both biomass and aroma development. A total of 52 yeasts strains were cultivated in two different culture media, namely, yeast peptone glucose medium and yeast acetaldehyde-diacetyl medium. The initial screening of the strains was based on the qualitative reaction of the acetaldehyde with Schiff's reagent (violet color) and diacetyl with Brady's reagent (yellow precipitate). The fermented culture media of 10 yeast strains were subsequently analyzed by gas chromatography to quantify the concentration of acetaldehyde and diacetyl synthesized. Total titratable acidity values indicated that a total titratable acidity of 5.5°SH, implying culture medium at basic pH, was more favorable for the acetaldehyde biosynthesis using strain D15 (Candida lipolytica; 96.05mgL -1 acetaldehyde) while a total titratable acidity value of 7°SH facilitated diacetyl flavor synthesis by strain D38 (Candida globosa; 3.58mgL -1 diacetyl). Importantly, the results presented here suggest that this can be potentially used in the baking industry. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  17. Bismuth-based oxide semiconductors: Mild synthesis and practical applications

    NASA Astrophysics Data System (ADS)

    Timmaji, Hari Krishna

    In this dissertation study, bismuth based oxide semiconductors were prepared using 'mild' synthesis techniques---electrodeposition and solution combustion synthesis. Potential environmental remediation and solar energy applications of the prepared oxides were evaluated. Bismuth vanadate (BiVO4) was prepared by electrodeposition and solution combustion synthesis. A two step electrosynthesis strategy was developed and demonstrated for the first time. In the first step, a Bi film was first electrodeposited on a Pt substrate from an acidic BiCl3 medium. Then, this film was anodically stripped in a medium containing hydrolyzed vanadium precursor, to generate Bi3+, and subsequent BiVO4 formation by in situ precipitation. The photoelectrochemical data were consistent with the in situ formation of n-type semiconductor films. In the solution combustion synthesis procedure, BiVO4 powders were prepared using bismuth nitrate pentahydrate as the bismuth precursor and either vanadium chloride or vanadium oxysulfate as the vanadium precursor. Urea, glycine, or citric acid was used as the fuel. The effect of the vanadium precursor on the photocatalytic activity of combustion synthesized BiVO 4 was evaluated in this study. Methyl orange was used as a probe to test the photocatalytic attributes of the combustion synthesized (CS) samples, and benchmarked against a commercial bismuth vanadate sample. The CS samples showed superior activity to the commercial benchmark sample, and samples derived from vanadium chloride were superior to vanadium oxysulfate counterparts. The photoelectrochemical properties of the various CS samples were also studied and these samples were shown to be useful both for environmental photocatalytic remediation and water photooxidation applications. Silver bismuth tungstate (AgBiW2O8) nanoparticles were prepared for the first time by solution combustion synthesis by using silver nitrate, bismuth nitrate, sodium tungstate as precursors for Ag, Bi, and W respectively and urea as the fuel. The photocatalytic activity of these nanoparticles was superior to a sample prepared by solid-state synthesis. The combustion-synthesized particles were subsequently modified with Pt catalyst islands using a photodeposition technique and then used for the photo-generation of syngas (CO + H2). Formic acid was used in these experiments for in situ generation of CO2 and its subsequent reduction to CO. In the absence of Pt modification, H2 was not obtained. These results were compared with those obtained with acetic acid in place of formic acid, and finally the mechanistic pathways for syngas and methane photogeneration are presented.

  18. Optimization of date syrup for enhancement of the production of citric acid using immobilized cells of Aspergillus niger

    PubMed Central

    Mostafa, Yasser S.; Alamri, Saad A.

    2012-01-01

    Date syrup as an economical source of carbohydrates and immobilized Aspergillus niger J4, which was entrapped in calcium alginate pellets, were employed for enhancing the production of citric acid. Maximum production was achieved by pre-treating date syrup with 1.5% tricalcium phosphate to remove heavy metals. The production of citric acid using a pretreated medium was 38.87% higher than an untreated one that consumed sugar. The appropriate presence of nitrogen, phosphate and magnesium appeared to be important in order for citric acid to accumulate. The production of citric acid and the consumed sugar was higher when using 0.1% ammonium nitrate as the best source of nitrogen. The production of citric acid increased significantly when 0.1 g/l of KH2PO4 was added to the medium of date syrup. The addition of magnesium sulfate at the rate of 0.20 g/l had a stimulating effect on the production of citric acid. Maximum production of citric acid was obtained when calcium chloride was absent. One of the most important benefits of immobilized cells is their ability and stability to produce citric acid under a repeated batch culture. Over four repeated batches, the production of citric acid production was maintained for 24 days when each cycle continued for 144 h. The results obtained in the repeated batch cultivation using date syrup confirmed that date syrup could be used as a medium for the industrial production of citric acid. PMID:23961184

  19. Crystallization of uric acid

    NASA Astrophysics Data System (ADS)

    Kalkura, S. Narayana; Vaidyan, V. K.; Kanakavel, M.; Ramasamy, P.

    1993-09-01

    Crystals of uric acid have been grown in tetra methoxy silane and silica gel medium. Small winged, transparent, platy crystals of uric acid of about 0.5x0.5x0.1 mm were grown and were found to be hydrated uric acid.

  20. Combination of the Auxins NAA, IBA, and IAA with GA3 Improves the Commercial Seed-Tuber Production of Potato (Solanum tuberosum L.) under In Vitro Conditions

    PubMed Central

    Kumlay, Ahmet Metin

    2014-01-01

    The study compared the effects of 1.0 × MS medium containing various concentrations of α-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA), alone or in combination with gibberellic acid (GA3) in micropropagation of three potato (Solanum tuberosum L.) cultivars Pasinler, Granola, and Caspar using binodal stem cuttings. The results testified improved regeneration on 1.0 × MS medium containing variants of NAA, IAA, and IBA plus GA3 on all cultivars. The minimum days to shoot induction on three cultivars ranged 4.25–5 d on 1.0 × MS medium containing 0.25 mg L−1  GA3 + 1 mg L−1 NAA. The longest shoots (11.8 cm), maximum number of nodes (13.50), and maximum number of leaves (11.00) were recorded on cv. Caspar on 1.0 × MS medium containing 1 mg L−1  NAA + 0.25 mg L−1 GA3. The minimum time to root induction (12.25 d) was noted on cv. Pasinler on the same medium. All of the regenerated shoots could be easily rooted. The results showed that the combined effect of various concentrations of NAA, IAA, and IBA plus GA3 was more pronounced compared to the auxins used alone. The results of this research are of significant importance for potato breeders. PMID:25028654

  1. Combination of the auxins NAA, IBA, and IAA with GA3 improves the commercial seed-tuber production of potato (Solanum tuberosum L.) under in vitro conditions.

    PubMed

    Kumlay, Ahmet Metin

    2014-01-01

    The study compared the effects of 1.0 × MS medium containing various concentrations of α-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA), alone or in combination with gibberellic acid (GA3) in micropropagation of three potato (Solanum tuberosum L.) cultivars Pasinler, Granola, and Caspar using binodal stem cuttings. The results testified improved regeneration on 1.0 × MS medium containing variants of NAA, IAA, and IBA plus GA3 on all cultivars. The minimum days to shoot induction on three cultivars ranged 4.25-5 d on 1.0 × MS medium containing 0.25 mg L(-1) GA3 + 1 mg L(-1) NAA. The longest shoots (11.8 cm), maximum number of nodes (13.50), and maximum number of leaves (11.00) were recorded on cv. Caspar on 1.0 × MS medium containing 1 mg L(-1) NAA + 0.25 mg L(-1) GA3. The minimum time to root induction (12.25 d) was noted on cv. Pasinler on the same medium. All of the regenerated shoots could be easily rooted. The results showed that the combined effect of various concentrations of NAA, IAA, and IBA plus GA3 was more pronounced compared to the auxins used alone. The results of this research are of significant importance for potato breeders.

  2. Ferrous Ion and Medium Composition Effects on Acidogenic Phase in Biobutanol Production from Molasses

    NASA Astrophysics Data System (ADS)

    Restiawaty, E.; Grinanda, D.

    2017-07-01

    Clostridium acetobutylicum B530 has ability to convert sugar into biobutanol through two phases, i.e. acidogenic and solventogenic. This fermentation process is often hampered by high raw material cost and low product yield. In order to suppress the production cost, the molasses, a byproduct of sugar cane process production, was used as carbon source in this research. Molasses has nitrogen content in a small amount, thus could be negating the beef extract component, which is expected not to affect the growth of C. acetobutylicum B530 and also can reduce the production cost. In addition, a certain amount of Fe2+ (ferrous ion), a precursor in the formation of the enzyme ferredoxin, was added to the fermentation medium to contribute in the synthesis of acetyl-CoA, so that the formation of acidogenic products such as butyric acid and acetic acid is affected. This study aimed to investigate the effect of ferrous ion and the medium composition in acidogenic phase. The addition of 20 ppm FeSO4.7H2O in the fermentation medium without beef extract can increase the concentration of butyric acid by 20% at a temperature of 35°C, while acetic acid concentration decreased by 6%. According to those results, it is expected that the product selectivity of butanol will increase in solventogenic phase. In addition, the removal of beef extract in the fermentation medium does not affect the kinetics of growth of C. acetobutylicum B530.

  3. Effect of amino acids and dipeptides on the acrosome reaction and accumulation of ammonia in porcine spermatozoa

    PubMed Central

    HOSSAIN, MD SHAROARE; AKTER, QUZI SHARMIN; SAWADA, TOMIO; AFROSE, SADIA; HAMANO, KOH‐ICHI; TSUJII, HIROTADA

    2008-01-01

    Aim:  The present study was designed to investigate the effect of amino acids and their dipeptides in the medium related to the urea cycle on the motility, viability, acrosome reaction (AR) and accumulation of ammonia in the medium over different incubation periods in porcine spermatozoa and to assess the utilization of glucose. Methods:  Porcine spermatozoa were washed, swim‐up and incubated at 37°C for 0–4 h in mTALP medium supplemented with 75–600 µmol/L ammonia. Amino acids (1.0 mmol) or their dipeptides (2.0 mmol) were added individually to the mTALP medium containing either no ammonia or 300 µmol/L of ammonia. The viability and AR of porcine spermatozoa were assessed using the triple‐staining technique and the accumulation of ammonia in the medium was measured using the indophenol method. Results:  The motility, viability and AR were adversely affected (P < 0.05) by concentrations of ammonia ≥300 µmol/L compared with the control. Supplementation of l‐alanyl‐l‐glutamine (AlaGln), l‐glycyl‐l‐glutamine (GlyGln) and AlaGln + GlyGln in the presence of 300 µmol/L ammonia significantly increase (P < 0.05) the rate of motility, viability, AR, incorporation, accumulation of ammonia and oxidation of 14C(U)‐glucose compared with the ammonia supplement control. Conclusion:  AlaGln and GlyGln in mTALP medium were more stable and effective than the individual amino acids in reducing the accumulation of ammonia, and subsequently increasing the rate of AR and the utilization of glucose in porcine spermatozoa. (Reprod Med Biol 2008; 7: 123–131) PMID:29699293

  4. Effect of amino acids and dipeptides on the acrosome reaction and accumulation of ammonia in porcine spermatozoa.

    PubMed

    Tareq, K M A; Hossain, Md Sharoare; Akter, Quzi Sharmin; Sawada, Tomio; Afrose, Sadia; Hamano, Koh-Ichi; Tsujii, Hirotada

    2008-09-01

    Aim :  The present study was designed to investigate the effect of amino acids and their dipeptides in the medium related to the urea cycle on the motility, viability, acrosome reaction (AR) and accumulation of ammonia in the medium over different incubation periods in porcine spermatozoa and to assess the utilization of glucose. Methods :  Porcine spermatozoa were washed, swim-up and incubated at 37°C for 0-4 h in mTALP medium supplemented with 75-600 µmol/L ammonia. Amino acids (1.0 mmol) or their dipeptides (2.0 mmol) were added individually to the mTALP medium containing either no ammonia or 300 µmol/L of ammonia. The viability and AR of porcine spermatozoa were assessed using the triple-staining technique and the accumulation of ammonia in the medium was measured using the indophenol method. Results :  The motility, viability and AR were adversely affected ( P  < 0.05) by concentrations of ammonia ≥300 µmol/L compared with the control. Supplementation of l-alanyl-l-glutamine (AlaGln), l-glycyl-l-glutamine (GlyGln) and AlaGln + GlyGln in the presence of 300 µmol/L ammonia significantly increase ( P  < 0.05) the rate of motility, viability, AR, incorporation, accumulation of ammonia and oxidation of 14 C(U)-glucose compared with the ammonia supplement control. Conclusion :  AlaGln and GlyGln in mTALP medium were more stable and effective than the individual amino acids in reducing the accumulation of ammonia, and subsequently increasing the rate of AR and the utilization of glucose in porcine spermatozoa. (Reprod Med Biol 2008; 7 : 123-131).

  5. Application of a statistically enhanced, novel, organic solvent stable lipase from Bacillus safensis DVL-43.

    PubMed

    Kumar, Davender; Parshad, Rajinder; Gupta, Vijay Kumar

    2014-05-01

    This paper presents the molecular identification of a newly isolated bacterial strain producing a novel and organic solvent stable lipase, statistical optimization of fermentation medium, and its application in the synthesis of ethyl laurate. On the basis of nucleotide homology and phylogenetic analysis of 16S rDNA sequence, the strain was identified as Bacillus safensis DVL-43 (Gen-bank accession number KC156603). Optimization of fermentation medium using Plackett-Burman design and response surface methodology led to 11.4-fold increase in lipase production. The lipase from B. safensis DVL-43 exhibited excellent stability in various organic solvents. The enzyme retained 100% activity after 24h incubation in xylene, DMSO and toluene, each solvent being used at a concentration of 25% (v/v). The use of partially purified DVL-43 lipase as catalyst in the synthesis of ethyl laurate, an esterification product of lauric acid and ethanol, resulted in 80% esterification in 12h under optimized conditions. The formation of ethyl laurate was confirmed using TLC and (1)H NMR. Organic solvent stable lipases exhibiting potential application in enzymatic esterification are in great demand in flavor, fine chemicals and pharma industries. We could not find any report on lipase production from B. safensis strain and its application in esterification. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Isolation and characterization of bacterium producing lipid from short-chain fatty acids.

    PubMed

    Okamura, Yoshiko; Nakai, Shota; Ohkawachi, Masahiko; Suemitsu, Masahiro; Takahashi, Hirokazu; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Nakashimada, Yutaka; Matsumoto, Mitsufumi

    2016-02-01

    Anaerobic fermentation generates propionic acid, which inhibits microbial growth and accumulates in wastewater containing increased amounts of organic matter. We therefore isolated a propionic acid-assimilating bacterium that could produce triacylglycerol, for use in wastewater treatment. Nitratireductor sp. strain OM-1 can proliferate in medium containing propionic, acetic, butyric, and valeric acids as well as glycerol, and produces triacylglycerol when both propionic and acetic acids or glycerol are present. In composite model wastewater containing acetic acid, propionic acid and glycerol, this strain shows an even higher conversion rate, suggesting that it is suitable for wastewater treatment. Further, nitrogen depletion in medium containing an acetic-propionic acid mixture resulted in the production of the light oil 2-butenoic acid 1-methylethyl ester, but not triacylglycerol. Collectively, our data indicate that strain OM-1 has the potential to reduce accumulation of activated sludge in wastewater treatment and may contribute to the production of biodiesel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. In situ NMR spectroscopy: inulin biomass conversion in ZnCl₂ molten salt hydrate medium-SnCl₄ addition controls product distribution.

    PubMed

    Wang, Yingxiong; Pedersen, Christian Marcus; Qiao, Yan; Deng, Tiansheng; Shi, Jing; Hou, Xianglin

    2015-01-22

    The dehydration of inulin biomass to the platform chemicals, 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA), in ZnCl2 molten salt hydrate medium was investigated. The influence of the Lewis acid catalyst, SnCl4, on the product distribution was examined. An in situ(1)H NMR technique was employed to follow the reaction at the molecular level. The experimental results revealed that only 5-HMF was obtained from degradation of inulin biomass in ZnCl2 molten salt hydrate medium, while the LA was gradually becoming the main product when the reaction temperature was increased in the presence of the Lewis acid catalyst SnCl4. In situ NMR spectroscopy could monitor the reaction and give valuable insight. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Commercially marketed supplements for bodybuilding athletes.

    PubMed

    Grunewald, K K; Bailey, R S

    1993-02-01

    We conducted a survey of 624 commercially available supplements targeted towards bodybuilding athletes. Over 800 performance claims were made for these supplements. Supplements include amino acids, boron, carnitine, choline, chromium, dibencozide, ferulic acid, gamma oryzanol, medium chain triglycerides, weight gain powders, Smilax compounds and yohimbine. Many performance claims advertised were not supported by published research studies. In some instances, we found no research to validate the claims; in other cases, research findings were extrapolated to inappropriate applications. For example, biological functions of some non-essential compounds were interpreted as performance claims for the supplements. Claims for others were based on their ability to enhance hormonal release or activity. We suggest that more research be conducted on this group of athletes and their nutritional needs. Furthermore, the effectiveness and safety of supplements merit further investigation.

  9. Biotechnological Production of Docosahexaenoic Acid Using Aurantiochytrium limacinum: Carbon Sources Comparison And Growth Characterization.

    PubMed

    Abad, Sergi; Turon, Xavier

    2015-12-05

    Aurantiochytrium limacinum, a marine heterotrophic protist/microalga has shown interesting yields of docosahexaenoic acid (DHA) when cultured with different carbon sources: glucose, pure and crude glycerol. A complete study in a lab-scale fermenter allowed for the characterization and comparison of the growth kinetic parameters corresponding to each carbon source. Artificial Marine Medium (AMM) with glucose, pure and crude glycerol offered similar biomass yields. The net growth rates (0.10-0.12 h(-1)), biomass (0.7-0.8 g cells/g Substrate) and product (0.14-0.15 g DHA/g cells) yields, as well as DHA productivity were similar using the three carbon sources. Viable potential applications to valorize crude glycerol are envisioned to avoid an environmental problem due to the excess of byproduct.

  10. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems.

    PubMed

    Thevenet, Jonathan; De Marchi, Umberto; Domingo, Jaime Santo; Christinat, Nicolas; Bultot, Laurent; Lefebvre, Gregory; Sakamoto, Kei; Descombes, Patrick; Masoodi, Mojgan; Wiederkehr, Andreas

    2016-05-01

    Medium-chain triglycerides have been used as part of a ketogenic diet effective in reducing epileptic episodes. The health benefits of the derived medium-chain fatty acids (MCFAs) are thought to result from the stimulation of liver ketogenesis providing fuel for the brain. We tested whether MCFAs have direct effects on energy metabolism in induced pluripotent stem cell-derived human astrocytes and neurons. Using single-cell imaging, we observed an acute pronounced reduction of the mitochondrial electrical potential and a concomitant drop of the NAD(P)H signal in astrocytes, but not in neurons. Despite the observed effects on mitochondrial function, MCFAs did not lower intracellular ATP levels or activate the energy sensor AMP-activated protein kinase. ATP concentrations in astrocytes were unaltered, even when blocking the respiratory chain, suggesting compensation through accelerated glycolysis. The MCFA decanoic acid (300 μM) promoted glycolysis and augmented lactate formation by 49.6%. The shorter fatty acid octanoic acid (300 μM) did not affect glycolysis but increased the rates of astrocyte ketogenesis 2.17-fold compared with that of control cells. MCFAs may have brain health benefits through the modulation of astrocyte metabolism leading to activation of shuttle systems that provide fuel to neighboring neurons in the form of lactate and ketone bodies.-Thevenet, J., De Marchi, U., Santo Domingo, J., Christinat, N., Bultot, L., Lefebvre, G., Sakamoto, K., Descombes, P., Masoodi, M., Wiederkehr, A. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. © FASEB.

  11. Improvement of n-caproic acid production with Ruminococcaceae bacterium CPB6: selection of electron acceptors and carbon sources and optimization of the culture medium.

    PubMed

    Wang, Han; Li, Xiangzhen; Wang, Yi; Tao, Yong; Lu, Shaowen; Zhu, Xiaoyu; Li, Daping

    2018-06-25

    Global energy and resource shortages make it necessary to quest for renewable resources. n-Caproic acid (CA) production based on carboxylate platform by anaerobic fermentation is booming. Recently, a novel Ruminococcaceae bacterium CPB6 is shown to be a potential biotransformation factory for CA production from lactate-containing wastewater. However, little is known about the effects of different electron acceptors (EAs) on the fermentative products of strain CPB6, as well as the optimum medium for CA production. In this study, batch experiments were performed to investigate the fermentative products of strain CPB6 in a lactate medium supplemented with different EAs and sugars. Supplementation of acetate, butyrate and sucrose dramatically increased cell growth and CA production. The addition of propionate or pentanoate resulted in the production of C5 or C7 carboxylic acid, respectively. Further, a Box-Behnken experiment was conducted to optimize the culture medium for CA production. The result indicated that a medium containing 13.30 g/L sucrose, 22.35 g/L lactate and 16.48 g/L butyrate supported high-titer CA production (16.73 g/L) with a maximum productivity of 6.50 g/L/day. This study demonstrated that strain CPB6 could produce C6-C7 carboxylic acids from lactate (as electron donor) with C2-C5 short-chain carboxylic acids (as EAs), but CA (C6 carboxylic acid) was the most major and potential product. Butyrate and sucrose were the most significant EA and carbon source respectively for CA production from lactate by strain CPB6. High titer of CA can be produced from a synthetic substrate containing sucrose, lactate and butyrate. The work provided significant implications for improving CA production in industry-scale.

  12. Characterization of bacterial diversity in an atrazine degrading enrichment culture and degradation of atrazine, cyanuric acid and biuret in industrial wastewater.

    PubMed

    Dutta, Anirban; Vasudevan, Venugopal; Nain, Lata; Singh, Neera

    2016-01-01

    An enrichment culture was used to study atrazine degradation in mineral salt medium (MSM) (T1), MSM+soil extract (1:1, v/v) (T2) and soil extract (T3). Results suggested that enrichment culture required soil extract to degrade atrazine, as after second sequential transfer only partial atrazine degradation was observed in T1 treatment while atrazine was completely degraded in T2 and T3 treatments even after fourth transfer. Culture independent polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique confirmed selective enrichment of genus Bacillus along with Pseudomonas and Burkholderia. Degradation of atrazine/metabolites in the industrial wastewater was studied at different initial concentrations of the contaminants [wastewater-water (v/v) ratio: T1, 1:9; T2, 2:8; T3, 3:7; T4, 5:5 and T5, undiluted effluent]. The initial concentrations of atrazine, cyanuric acid and biuret ranged between 5.32 and 53.92 µg mL(-1), 265.6 and 1805.2 µg mL(-1) and 1.85 and 16.12 µg mL(-1), respectively. The enrichment culture was able to completely degrade atrazine, cyanuric acid and biuret up to T4 treatment, while no appreciable degradation of contaminants was observed in the undiluted effluent (T5). Inability of enrichment culture to degrade atrazine/metabolites might be due to high concentrations of cyanuric acid. Therefore, a separate study on cyanuric acid degradation suggested: (i) no appreciable cyanuric acid degradation with accumulation of an unidentified metabolite in the medium where cyanuric acid was supplemented as the sole source of carbon and nitrogen; (ii) partial cyanuric acid degradation with accumulation of unidentified metabolite in the medium containing additional nitrogen source; and (iii) complete cyanuric acid degradation in the medium supplemented with an additional carbon source. This unidentified metabolite observed during cyanuric acid degradation and also detected in the enrichment culture inoculated wastewater samples, however, was degraded up to T4 treatments and was persistent in the T5 treatment. Probably, accumulation of this metabolite inhibited atrazine/cyanuric acid degradation by the enrichment culture in undiluted wastewater.

  13. Optimization of medium components using orthogonal arrays for Linolenic acid production by Spirulina platensis

    USDA-ARS?s Scientific Manuscript database

    This work describes the medium optimization of '-Linolenic acid (GLA) production by Spirulina platensis using one-factor and orthogonal array design methods. In the one-factor experiments, NaHCO3 (9 mg L-1), NaNO3 (13.5 mg L-1) and MgSO4•7H2O (11.85 mg L-1) proved to be the best components for GLA p...

  14. Method and apparatus for purifying nucleic acids and performing polymerase chain reaction assays using an immiscible fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koh, Chung-Yan; Light, Yooli Kim; Piccini, Matthew Ernest

    Embodiments of the present invention are directed toward devices, systems, and methods for purifying nucleic acids to conduct polymerase chain reaction (PCR) assays. In one example, a method includes generating complexes of silica beads and nucleic acids in a lysis buffer, transporting the complexes through an immiscible fluid to remove interfering compounds from the complexes, further transporting the complexes into a density medium containing components required for PCR where the nucleic acids disassociate from the silica beads, and thermocycling the contents of the density medium to achieve PCR. Signal may be detected from labeling agents in the components required formore » PCR.« less

  15. Ammonium is a key determinant on the dietary restriction of yeast chronological aging in culture medium

    PubMed Central

    Santos, Júlia; Leitão-Correia, Fernanda

    2015-01-01

    New evidences have recently emerged from studies in yeast and in higher eukaryotes showing the importance of nutrient balance in dietary regimes and its effects on longevity regulation. We have previously shown that manipulation ofammoniumconcentration in the culture and/or aging medium can drastically affect chronological lifespan (CLS) of Saccharomyces cerevisiae, especially in amino acid restricted cells. Here we describe that the CLS shortening under amino acid restriction can be completely reverted by removing ammonium from the culture medium. Furthermore, the absence of ammonium, and of any rich nitrogen source, was so effective in extending CLS that no beneficial effect could be observed by further imposing calorie restriction conditions. When present in the culture medium,ammoniumimpaired the consumption of theauxotrophy-complementing amino acidsand caused in an improper cell cycle arrest of the culture. TOR1 deletion reverted ammonium effects both in amino acid restricted and non-restricted cultures, whereas, Ras2p and Sch9p seem to have only a milder effect in the mediation ofammonium toxicity under amino acid restriction and no effect on non-restricted cultures. Our studies highlight ammonium as a key effector in the nutritional equilibrium between rich and essential nitrogen sources and glucose required for longevity promotion. PMID:25576917

  16. Optimization of Medium Using Response Surface Methodology for Lipid Production by Scenedesmus sp.

    PubMed Central

    Yang, Fangfang; Long, Lijuan; Sun, Xiumei; Wu, Hualian; Li, Tao; Xiang, Wenzhou

    2014-01-01

    Lipid production is an important indicator for assessing microalgal species for biodiesel production. In this work, the effects of medium composition on lipid production by Scenedesmus sp. were investigated using the response surface methodology. The results of a Plackett–Burman design experiment revealed that NaHCO3, NaH2PO4·2H2O and NaNO3 were three factors significantly influencing lipid production, which were further optimized by a Box–Behnken design. The optimal medium was found to contain 3.07 g L−1 NaHCO3, 15.49 mg L−1 NaH2PO4·2H2O and 803.21 mg L−1 NaNO3. Using the optimal conditions previously determined, the lipid production (304.02 mg·L−1) increased 54.64% more than that using the initial medium, which agreed well with the predicted value 309.50 mg L−1. Additionally, lipid analysis found that palmitic acid (C16:0) and oleic acid (C18:1) dominantly constituted the algal fatty acids (about 60% of the total fatty acids) and a much higher content of neutral lipid accounted for 82.32% of total lipids, which strongly proved that Scenedesmus sp. is a very promising feedstock for biodiesel production. PMID:24663113

  17. pKa Modulation in rhodamine based probes for colorimetric detection of picric acid.

    PubMed

    Nagarajan, V; Bag, Bamaprasad

    2014-12-21

    Tuning the pKa in acid sensitive rhodamine spirolactam derivatives as a function of the solvent medium resulted in the selective detection of picric acid from its lower nitro phenolic analogues and a few other carboxylic acids.

  18. Effects of Medium-Chain Triglycerides, Long-Chain Triglycerides, or 2-Monododecanoin on Fatty Acid Composition in the Portal Vein, Intestinal Lymph, and Systemic Circulation in Rats

    PubMed Central

    Nancy You, Yi-Qian; Ling, Pei-Ra; Qu, Jason Zhensheng; Bistrian, Bruce R.

    2011-01-01

    Background Fatty acid absorption patterns can have a major impact on the fatty acid composition in the portal, intestinal lymph, and systemic circulation. This study sought to determine the effects of long-chain triglycerides (LCT), medium-chain triglycerides (MCT), and 2-monododecanoin (2mono) on intestinal fatty acid composition during continuous feeding over a brief period. Methods The lipid sources were 100% LCT, 100% MCT, a 50:50 mixture of LCT and MCT (LCT/MCT), and a 50:50 mixture of LCT and 2mono (LCT/2mono). A total of 27 rats were randomly given 1 of the 4 diets at 200 kcal/kg/d, with 30% of total calories from lipids over 3 hours. Results MCT significantly increased each of the medium-chain fatty acids (C6:0, C8:0, and C10:0) as free fatty acids in the portal vein and about 10%/mol of C10:0 as triglycerides in the lymph compared with the other groups. There was significantly less C10:0 in lymphatic triglycerides with LCT/MCT than with MCT, but more than in the LCT and LCT/2mono diets. MCT also significantly increased the contents of C16:0, C18:0, C18:1, and C20:4 in the lymphatic triglycerides compared with all other groups including LCT/MCT. The amount of linoleic acid (C18:2) in lymphatic triglycerides followed the relative amounts of this fatty acid in the diet, with the greatest in LCT followed by LCT/MCT and LCT/2mono and least in MCT. A so-called structured lipid composed of the medium-chain fatty acid dodecanoic acid on the 2 position and long-chain fatty acids on the 1 and 3 positions appeared to be endogenously synthesized in response to the LCT/2mono diet. Conclusions The original differences in MCT and LCT content in the diets were preserved in the fatty acid composition in the intestinal free fatty acids and triglycerides during feeding. In addition, the duration of lipid administration can play a role in altering fatty acid composition in the intestine. PMID:18407910

  19. Stabilizing the cold plasma-stimulated medium by regulating medium’s composition

    NASA Astrophysics Data System (ADS)

    Yan, Dayun; Nourmohammadi, Niki; Bian, Ka; Murad, Ferid; Sherman, Jonathan H.; Keidar, Michael

    2016-05-01

    Over past several years, the cold plasma-stimulated medium (PSM) has shown its remarkable anti-cancer capacity in par with the direct cold plasma irradiation on cancer cells or tumor tissues. Independent of the cold plasma device, PSM has noticeable advantage of being a flexible platform in cancer treatment. Currently, the largest disadvantage of PSM is its degradation during the storage over a wide temperature range. So far, to stabilize PSM, it must be remained frozen at -80 °C. In this study, we first reveal that the degradation of PSM is mainly due to the reaction between the reactive species and specific amino acids; mainly cysteine and methionine in medium. Based on this finding, both H2O2 in PSM and the anti-cancer capacity of PSM can be significantly stabilized during the storage at 8 °C and -25 °C for at least 3 days by using phosphate-buffered saline (PBS) and cysteine/methionine-free Dulbecco’s Modified Eagle Medium (DMEM). In addition, we demonstrate that adding a tyrosine derivative, 3-Nitro-L-tyrosine, into DMEM can mitigate the degradation of PSM at 8 °C during 3 days of storage. This study provides a solid foundation for the future anti-cancer application of PSM.

  20. Anaerobic degradation of veratrylglycerol-beta-guaiacyl ether and guaiacoxyacetic acid by mixed rumen bacteria.

    PubMed Central

    Chen, W; Supanwong, K; Ohmiya, K; Shimizu, S; Kawakami, H

    1985-01-01

    Veratrylglycerol-beta-guaiacyl ether (0.2 g/liter), a lignin model compound, was found to be degraded by mixed rumen bacteria in a yeast extract medium under strictly anaerobic conditions to the extent of 19% within 24 h. Guaiacoxyacetic acid, 2-(o-methoxyphenoxy)ethanol, vanillic acid, and vanillin were detected as degradation products of veratrylglycerol-beta-guaiacyl ether by thin-layer chromatography, gas chromatography, and gas chromatography-mass spectrometry. Guaiacoxyacetic acid (0.25 g/liter), when added into the medium as a substrate, was entirely degraded within 36 h, resulting in the formation of phenoxyacetic acid, guaiacol, and phenol. These results suggest that the beta-arylether bond, an important intermonomer linkage in lignin, can be cleaved completely by these rumen anaerobes. PMID:3841472

  1. Automatic miniaturized fluorometric flow system for chemical and toxicological control of glibenclamide.

    PubMed

    Ribeiro, David S M; Prior, João A V; Taveira, Christian J M; Mendes, José M A F S; Santos, João L M

    2011-06-15

    In this work, and for the first time, it was developed an automatic and fast screening miniaturized flow system for the toxicological control of glibenclamide in beverages, with application in forensic laboratory investigations, and also, for the chemical control of commercially available pharmaceutical formulations. The automatic system exploited the multipumping flow (MPFS) concept and allowed the implementation of a new glibenclamide determination method based on the fluorometric monitoring of the drug in acidic medium (λ(ex)=301 nm; λ(em)=404 nm), in the presence of an anionic surfactant (SDS), promoting an organized micellar medium to enhance the fluorometric measurements. The developed approach assured good recoveries in the analysis of five spiked alcoholic beverages. Additionally, a good agreement was verified when comparing the results obtained in the determination of glibenclamide in five commercial pharmaceutical formulations by the proposed method and by the pharmacopoeia reference procedure. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Induction of multiple shoots from leaf segments, in vitro-flowering and fruiting of a dwarf tomato (Lycopersicon esculentum).

    PubMed

    Rao, Kokkirala Venugopal; Kiranmayee, Kasula; Pavan, Umate; Sree, Telakalapalli Jaya; Rao, Alleni V; Sadanandam, Abbagani

    2005-08-01

    Multiple shoots were induced from leaf explants of Lycopersicon esculentum cultivar MicroTom, within 20-25d, on MS medium supplemented with 8.9 microM benzylaminopurine (BAP)+1.14 microM indole-3-acetic acid (IAA). For rooting, elongated microshoots were excised and transferred onto MS medium supplemented with 4.9 microM indole-3-butyric acid (IBA). Well-developed roots and flower raceme were obtained on d 7 and 13, respectively, upon transfer of the microshoots onto rooting medium. The flowers self-fertilized in vitro and produced mature fruits in additional 15-17d of culture.

  3. A study on the swelling behavior of poly(acrylic acid) hydrogels obtained by electron beam crosslinking

    NASA Astrophysics Data System (ADS)

    Sheikh, N.; Jalili, L.; Anvari, F.

    2010-06-01

    Poly(acrylic acid) (PAA) hydrogels were prepared by using electron beam (EB) crosslinking of PAA homopolymer from its aqueous solutions. The swelling behavior of the hydrogels was studied as a function of the concentration of PAA solution, radiation dose, pH of the swelling medium and swelling time. Also the environmental pH effect on the water diffusion mode into hydrogels was investigated. These hydrogels clearly showed pH-sensitive swelling behavior with Fickian type of diffusion in the stomach-like pH medium (pH 1.3) and non-Fickian type in the intestine-like pH medium (pH 6.8).

  4. High-Yield, Zero-Leakage Expression System with a Translational Switch Using Site-Specific Unnatural Amino Acid Incorporation

    PubMed Central

    Minaba, Masaomi

    2014-01-01

    Synthetic biologists construct complex biological circuits by combinations of various genetic parts. Many genetic parts that are orthogonal to one another and are independent of existing cellular processes would be ideal for use in synthetic biology. However, our toolbox is still limited with respect to the bacterium Escherichia coli, which is important for both research and industrial use. The site-specific incorporation of unnatural amino acids is a technique that incorporates unnatural amino acids into proteins using a modified exogenous aminoacyl-tRNA synthetase/tRNA pair that is orthogonal to any native pairs in a host and is independent from other cellular functions. Focusing on the orthogonality and independency that are suitable for the genetic parts, we designed novel AND gate and translational switches using the unnatural amino acid 3-iodo-l-tyrosine incorporation system in E. coli. A translational switch was turned on after addition of 3-iodo-l-tyrosine in the culture medium within minutes and allowed tuning of switchability and translational efficiency. As an application, we also constructed a gene expression system that produced large amounts of proteins under induction conditions and exhibited zero-leakage expression under repression conditions. Similar translational switches are expected to be applicable also for eukaryotes such as yeasts, nematodes, insects, mammalian cells, and plants. PMID:24375139

  5. Micropropagation of Calophyllum brasiliense (Cambess.) from nodal segments.

    PubMed

    Silveira, S S; Cordeiro-Silva, R; Degenhardt-Goldbach, J; Quoirin, M

    2016-05-03

    Micropropagation of Calophyllum brasiliense Cambess. (Clusiaceae) is a way to overcome difficulties in achieving large-scale plant production, given the recalcitrant nature of the seeds, irregular fructification and absence of natural vegetative propagation of the species. Cultures were established using nodal segments 2 cm in length, obtained from 1-2 year old seedlings, maintained in a greenhouse. Mercury chloride and Plant Preservative Mixture™ were used in the surface sterilizing stage, better results being achieved with Plant Preservative Mixture™ incorporation in culture medium, at any concentration. Polyvinylpyrrolidone, activated charcoal, cysteine, ascorbic acid or citric acid were added to the culture medium to avoid oxidation. After 30 days of culture, polyvinylpirrolidone and ascorbic acid gave better results, eliminating oxidation in most explants. For shoot multiplication, benzylaminopurine was used in concentrations of 4.4 and 8.8 µM in Woody Plant Medium, resulting in an average of 4.43 and 4.68 shoots per explant, respectively, after 90 days. Indole-3-butyric acid and α-naphthalene acetic acid were used to induce root formation, reaching a maximum rooting rate of 24% with 20µM α-naphthalene acetic acid. For acclimatization. the rooted plants were transferred to Plantmax® substrate and cultured in a greenhouse, reaching 79% of survival after 30 days and 60% after one year.

  6. Silkworm Sericin: Properties and Biomedical Applications.

    PubMed

    Kunz, Regina Inês; Brancalhão, Rose Meire Costa; Ribeiro, Lucinéia de Fátima Chasko; Natali, Maria Raquel Marçal

    2016-01-01

    Silk sericin is a natural polymer produced by silkworm, Bombyx mori , which surrounds and keeps together two fibroin filaments in silk thread used in the cocoon. The recovery and reuse of sericin usually discarded by the textile industry not only minimizes environmental issues but also has a high scientific and commercial value. The physicochemical properties of the molecule are responsible for numerous applications in biomedicine and are influenced by the extraction method and silkworm lineage, which can lead to variations in molecular weight and amino acid concentration of sericin. The presence of highly hydrophobic amino acids and its antioxidant potential make it possible for sericin to be applied in the food and cosmetic industry. The moisturizing power allows indications as a therapeutic agent for wound healing, stimulating cell proliferation, protection against ultraviolet radiation, and formulating creams and shampoos. The antioxidant activity associated with low digestibility of sericin that expands the application in the medical field, such as antitumour, antimicrobial and anti-inflammatory agent, anticoagulant, acts in colon health, improving constipation and protects the body from obesity through improved plasma lipid profile. In addition, the properties of sericin allow its application as a culture medium and cryopreservation, in tissue engineering and for drug delivery, demonstrating its effective use, as an important biomaterial.

  7. Silkworm Sericin: Properties and Biomedical Applications

    PubMed Central

    Ribeiro, Lucinéia de Fátima Chasko

    2016-01-01

    Silk sericin is a natural polymer produced by silkworm, Bombyx mori, which surrounds and keeps together two fibroin filaments in silk thread used in the cocoon. The recovery and reuse of sericin usually discarded by the textile industry not only minimizes environmental issues but also has a high scientific and commercial value. The physicochemical properties of the molecule are responsible for numerous applications in biomedicine and are influenced by the extraction method and silkworm lineage, which can lead to variations in molecular weight and amino acid concentration of sericin. The presence of highly hydrophobic amino acids and its antioxidant potential make it possible for sericin to be applied in the food and cosmetic industry. The moisturizing power allows indications as a therapeutic agent for wound healing, stimulating cell proliferation, protection against ultraviolet radiation, and formulating creams and shampoos. The antioxidant activity associated with low digestibility of sericin that expands the application in the medical field, such as antitumour, antimicrobial and anti-inflammatory agent, anticoagulant, acts in colon health, improving constipation and protects the body from obesity through improved plasma lipid profile. In addition, the properties of sericin allow its application as a culture medium and cryopreservation, in tissue engineering and for drug delivery, demonstrating its effective use, as an important biomaterial. PMID:27965981

  8. Secretion of acid phosphatase by axenic Entamoeba histolytica NIH-200 and properties of the extracellular enzyme.

    PubMed

    Agrawal, A; Pandey, V C; Kumar, S; Sagar, P

    1989-01-01

    Entamoeba histolytica (NIH-200) secreted large amounts of acid phosphatase in its external environment when grown axenically in modified TPS-II medium. Fractionation by DEAE-cellulose chromatography of the precipitate obtained from the cell-free medium at 60% ammonium sulfate saturation yielded 3 distinct peaks of enzyme activity. The enzyme in all the peaks showed resistance to tartrate but was inhibited by fluoride, cupric chloride, ethylene diamine-tetra acetic acid, ammonium molybdate and cysteine; however, enzyme associated with different peaks differed in its polyacrylamide gel electrophoretic profiles and behavior towards concanavalin A.

  9. A halochromic stimuli-responsive reversible fluorescence switching 3, 4, 9, 10-perylene tetracarboxylic acid dye for fabricating rewritable platform

    NASA Astrophysics Data System (ADS)

    Hariharan, P. S.; Pitchaimani, J.; Madhu, Vedichi; Anthony, Savarimuthu Philip

    2017-02-01

    3, 4, 9, 10-perylene tetracarboxylic acid (PTCA), a strongly fluorescent water soluble dye with halochromic functionality showed pH dependent reversible fluorescence switching. The strong fluorescence of PTCA (Φf = 0.67) in basic medium was completely quenched upon acidification. The fluorescent PTCA has been transferred on to a solid substrate (filter paper and glass plate) that also showed reversible off-on fluorescence switching by acid/base and drying/water vapor exposure. The reversible fluorescence switching of PTCA could be of potential interest for fabricating rewritable fluorescent medium.

  10. Beta-phenylethylamine stimulates striatal acetylcholine release through activation of the AMPA glutamatergic pathway.

    PubMed

    Ishida, Kota; Murata, Mikio; Kato, Masatoshi; Utsunomiya, Iku; Hoshi, Keiko; Taguchi, Kyoji

    2005-09-01

    Using an in vivo intra-striatal microdialysis technique, we examined the effects of systemically administered beta-phenylethylamine (beta-PEA), a psychomotor stimulating trace amine, on striatal acetylcholine release in freely moving rats. Infusion of N-methyl-D-aspartic acid (NMDA; 10(-5) M) significantly increased acetylcholine release. In addition, locally applied amino-3-hydroxy-5-methylisozasole-4-propionic acid (AMPA; 10(-5) M) significantly increased acetylcholine release in the striatum. Intra-striatal application of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10(-5) M), an AMPA-type glutamatergic receptor antagonist, had little effect on acetylcholine release, while application of MK-801 (10(-5) M, 10(-6) M), an NMDA-type glutamatergic receptor antagonist, significantly reduced acetylcholine release. Acetylcholine within striatal perfusate was significantly increased by intraperitoneal administration of beta-PEA in a dose-dependent manner. This increase in acetylcholine release was completely blocked by application of CNQX (10(-5) M) through the microdialysis probe into the striatum. However, increased acetylcholine response to systemic beta-PEA was unaltered by addition of MK-801 to the perfusion medium. These results suggest a regulatory function of beta-PEA, mediated by AMPA-type glutamatergic receptors, on the release of acetylcholine in the rat striatum.

  11. Application of Organophosphonic Acids by One-Step Supercritical CO2 on 1D and 2D Semiconductors: Toward Enhanced Electrical and Sensing Performances.

    PubMed

    Bhartia, Bhavesh; Bacher, Nadav; Jayaraman, Sundaramurthy; Khatib, Salam; Song, Jing; Guo, Shifeng; Troadec, Cedric; Puniredd, Sreenivasa Reddy; Srinivasan, Madapusi Palavedu; Haick, Hossam

    2015-07-15

    Formation of dense monolayers with proven atmospheric stability using simple fabrication conditions remains a major challenge for potential applications such as (bio)sensors, solar cells, surfaces for growth of biological cells, and molecular, organic, and plastic electronics. Here, we demonstrate a single-step modification of organophosphonic acids (OPA) on 1D and 2D structures using supercritical carbon dioxide (SCCO2) as a processing medium, with high stability and significantly shorter processing times than those obtained by the conventional physisorption-chemisorption method (2.5 h vs 48-60 h).The advantages of this approach in terms of stability and atmospheric resistivity are demonstrated on various 2D materials, such as indium-tin-oxide (ITO) and 2D Si surfaces. The advantage of the reported approach on electronic and sensing devices is demonstrated by Si nanowire field effect transistors (SiNW FETs), which have shown a few orders of magnitude higher electrical and sensing performances, compared with devices obtained by conventional approaches. The compatibility of the reported approach with various materials and its simple implementation with a single reactor makes it easily scalable for various applications.

  12. Phosphate dissolving fungi: Mechanism and application in alleviation of salt stress in wheat.

    PubMed

    Gaind, Sunita

    2016-12-01

    The present investigation reveals the solubilization efficiency of tri-calcium phosphate (TCP), Udaipur rock phosphate (URP), aluminium phosphate (AP) and ferric phosphate (FP) by Aspergillus niger (ITCC 6719) and Trichoderma harzianum (ITCC 6721) as function of carbon concentrations. Increasing glucose concentration from 1 to 7% in the growth medium, though improved the phosphorus (P) solubilization significantly but each fungal strain preferred different optimum carbon concentrations for mediating solubilization of different P sources. The two fungi employed different mechanisms to reduce medium pH for release of P from TCP, AP and FP. However, URP was solubilized solely through fungal production of citric, succinic, propionic, malic and acetic acid. A linear increase in citric acid production with increasing carbon concentration was recorded during FP solubilization by T. harzianum. The cell free culture filtrate of A. niger detected high phytase and low acid phosphatase activity titre whereas results were vice versa for T. harzianum. Both the fungal strains possessed plant growth promoting attributes such as auxin and sidreophore production and could solubilize Zn. In hydroponic system (with 60mM of sodium chloride concentration), supplementation with culture filtrate from each fungal strain increased the shoot growth of wheat seedlings significantly compared to non culture filtrate control. Use of A.niger as bio-inoculant could be a sustainable approach to improve soil P availability, promote plant growth and alleviate adverse effect of salt stress. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. A one-step matrix application method for MALDI mass spectrometry imaging of bacterial colony biofilms.

    PubMed

    Li, Bin; Comi, Troy J; Si, Tong; Dunham, Sage J B; Sweedler, Jonathan V

    2016-11-01

    Matrix-assisted laser desorption/ionization imaging of biofilms cultured on agar plates is challenging because of problems related to matrix deposition onto agar. We describe a one-step, spray-based application of a 2,5-dihydroxybenzoic acid solution for direct matrix-assisted laser desorption/ionization imaging of hydrated Bacillus subtilis biofilms on agar. Using both an optimized airbrush and a home-built automatic sprayer, region-specific distributions of signaling metabolites and cannibalistic factors were visualized from B. subtilis cells cultivated on biofilm-promoting medium. The approach provides a homogeneous, relatively dry coating on hydrated samples, improving spot to spot signal repeatability compared with sieved matrix application, and is easily adapted for imaging a range of agar-based biofilms. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Effects of Bile Acids and Nisin on the Production of Enterotoxin by Clostridium perfringens in a Nutrient-Rich Medium

    PubMed Central

    Park, Miseon

    2018-01-01

    Clostridium perfringens is the second most common cause of bacterial foodborne illness in the United States, with nearly a million cases each year. C. perfringens enterotoxin (CPE), produced during sporulation, damages intestinal epithelial cells by pore formation, which results in watery diarrhea. The effects of low concentrations of nisin and bile acids on sporulation and toxin production were investigated in C. perfringens SM101, which carries an enterotoxin gene on the chromosome, in a nutrient-rich medium. Bile acids and nisin increased production of enterotoxin in cultures; bile acids had the highest effect. Both compounds stimulated the transcription of enterotoxin and sporulation-related genes and production of spores during the early growth phase. They also delayed spore outgrowth and nisin was more inhibitory. Bile acids and nisin enhanced enterotoxin production in some but not all other C. perfringens isolates tested. Low concentrations of bile acids and nisin may act as a stress signal for the initiation of sporulation and the early transcription of sporulation-related genes in some strains of C. perfringens, which may result in increased strain-specific production of enterotoxin in those strains. This is the first report showing that nisin and bile acids stimulated the transcription of enterotoxin and sporulation-related genes in a nutrient-rich bacterial culture medium. PMID:29675044

  15. Nutritional Requirements for Synthesis of Heat-Labile Enterotoxin by Enterotoxigenic Strains of Escherichia coli

    PubMed Central

    Gilligan, Peter H.; Robertson, Donald C.

    1979-01-01

    Optimal growth conditions have been established for production of heat-labile enterotoxin (LT) by both porcine and human strains of enterotoxigenic (ENT+) Escherichia coli. There were no unusual growth factor requirements, and some strains produced fairly high levels of LT in a basal salts medium containing 0.5% glucose if the pH was carefully controlled. Several amino acids markedly stimulated LT synthesis when added to the basal salts-glucose medium. Methionine and lysine were the most stimulatory for both human and porcine strains. Either aspartic acid or glutamic acid further enhanced LT synthesis in the presence of methionine and lysine, with aspartic acid being more stimulatory for porcine strains and glutamic acid more stimulatory for human strains. There were no apparent vitamin requirements and no unusual cations needed for toxin synthesis except that Fe3+ was slightly stimulatory for porcine strains. The stimulation by Fe3+ was observed only in the presence of the three amino acids, suggesting that the effect was indirect rather than on toxin synthesis. The carbon source also influenced the yield of LT. Glucose supported maximal synthesis, but other carbon sources which exhibit a high degree of catabolite repression also supported high levels of synthesis. Little or no LT was released below pH 7.0; therefore, because the pH drops during growth from 7.5 to 6.8, even in highly buffered media, it was necessary to adjust the pH to 8.0 to effect complete release of cell-associated toxin. The defined medium containing three amino acids reduced the amount of UV-absorbing material in culture supernatants about fivefold and increased LT activity for various strains from two- to fivefold over a complex Casamino Acids-yeast extract medium. Conditions found to be optimal for synthesis of LT were inhibitory for the heat-stable enterotoxin. PMID:33900

  16. Fermentation reactions of Erysipelothrix rhusiopathiae.

    PubMed

    WHITE, T G; SHUMAN, R D

    1961-10-01

    White, Thomas G. (U. S. Department of Agriculture, Ames, Iowa), and Richard D. Shuman. Fermentation reactions of Erysipelothrix rhusiopathiae. J. Bacteriol. 82:595-599. 1961.-A study was made to determine the effect of four different basal media, to which fermentable carbon compounds had been added, upon 22 selected strains of Erysipelothrix rhusiopathiae (insidiosa). Acid production was measured by (i) chemical indicator, (ii) change in pH, and (iii) production of titrable acidity. At least two determinations, usually four, were made for each test on each strain. The fermentation pattern varied according to the medium, the indicator, and the method of measuring acid production. Andrade's base plus serum was the most dependable medium because it permitted the least variation in the total number of different patterns. Of the three methods used to measure acid production, the chemical indicator gave the most valid and reproducible results. The within-strain variation was not extreme and most strains persisted in a given fermentation pattern under like conditions of growth and acid production. Results of the study indicated that, regardless of the medium and indicator routinely used, one should be familiar with the fermentation pattern of known strains of the erysipelas organism.

  17. FERMENTATION REACTIONS OF ERYSIPELOTHRIX RHUSIOPATHIAE

    PubMed Central

    White, Thomas G.; Shuman, Richard D.

    1961-01-01

    White, Thomas G. (U. S. Department of Agriculture, Ames, Iowa), and Richard D. Shuman. Fermentation reactions of Erysipelothrix rhusiopathiae. J. Bacteriol. 82:595–599. 1961.—A study was made to determine the effect of four different basal media, to which fermentable carbon compounds had been added, upon 22 selected strains of Erysipelothrix rhusiopathiae (insidiosa). Acid production was measured by (i) chemical indicator, (ii) change in pH, and (iii) production of titrable acidity. At least two determinations, usually four, were made for each test on each strain. The fermentation pattern varied according to the medium, the indicator, and the method of measuring acid production. Andrade's base plus serum was the most dependable medium because it permitted the least variation in the total number of different patterns. Of the three methods used to measure acid production, the chemical indicator gave the most valid and reproducible results. The within-strain variation was not extreme and most strains persisted in a given fermentation pattern under like conditions of growth and acid production. Results of the study indicated that, regardless of the medium and indicator routinely used, one should be familiar with the fermentation pattern of known strains of the erysipelas organism. PMID:14006576

  18. [Value of early application of different doses of amino acids in parenteral nutrition among preterm infants].

    PubMed

    Liu, Zhi-Juan; Liu, Guo-Sheng; Chen, Yong-Ge; Zhang, Hui-Li; Wu, Xue-Fen

    2015-01-01

    To study the short-term response and tolerance of different doses of amino acids in parenteral nutrition among preterm infants. This study included 86 preterm infants who had a birth weight between 1 000 to 2 000 g and were admitted to the hospital within 24 hours of birth between March 2013 and June 2014. According to the early application of different doses of amino acids, they were randomized into low-dose group (n=29, 1.0 g/kg per day with an increase of 1.0 g/kg daily and a maximum of 3.5 g/kg per day), medium-dose group (n=28, 2.0 g/kg per day with an increase of 1.0 g/kg daily and a maximum of 3.7 g/kg per day), and high-dose group (n=29, 3.0 g/kg per day with an increase of 0.5-1.0 g/kg daily and a maximum of 4.0 g/kg per day). Other routine parenteral nutrition and enteral nutrition support were also applied. The maximum weight loss was lower and the growth rate of head circumference was greater in the high-dose group than in the low-dose group (P<0.05). The infants in the medium- and high-dose groups had faster recovery of birth weight, earlier attainment of 100 kcal/(kg·d) of enteral nutrition, shorter duration of hospital stay, and less hospital cost than those in the low-dose group (P<0.05). Blood urea nitrogen (BUN) levels in the high-dose group increased compared with the other two groups 7 days after birth (P<0.05). The levels of creatinine, pH, bicarbonate, bilirubin, and transaminase and the incidence of complications showed no significant differences between groups (P>0.05). Parenteral administration of high-dose amino acids in preterm infants within 24 hours after birth can improve the short-term nutritional status of preterm infants, but there is a transient increase in BUN level.

  19. Soil and sediment sample analysis for the sequential determination of natural and anthropogenic radionuclides.

    PubMed

    Michel, H; Levent, D; Barci, V; Barci-Funel, G; Hurel, C

    2008-02-15

    A new sequential method for the determination of both natural (U, Th) and anthropogenic (Sr, Cs, Pu, Am) radionuclides has been developed for application to soil and sediment samples. The procedure was optimised using a reference sediment (IAEA-368) and reference soils (IAEA-375 and IAEA-326). Reference materials were first digested using acids (leaching), 'total' acids on hot plate, and acids in microwave in order to compare the different digestion technique. Then, the separation and purification were made by anion exchange resin and selective extraction chromatography: transuranic (TRU) and strontium (SR) resins. Natural and anthropogenic alpha radionuclides were separated by uranium and tetravalent actinide (UTEVA) resin, considering different acid elution medium. Finally, alpha and gamma semiconductor spectrometer and liquid scintillation spectrometer were used to measure radionuclide activities. The results obtained for strontium-90, cesium-137, thorium-232, uranium-238, plutonium-239+240 and americium-241 isotopes by the proposed method for the reference materials provided excellent agreement with the recommended values and good chemical recoveries. Plutonium isotopes in alpha spectrometry planchet deposits could be also analysed by ICPMS.

  20. Aqueous extracts of Mozambican plants as alternative and environmentally safe acid-base indicators.

    PubMed

    Macuvele, Domingos Lusitaneo Pier; Sithole, Gerre Zebedias Samo; Cesca, Karina; Macuvele, Suzana Lília Pinare; Matsinhe, Jonas Valente

    2016-06-01

    Indicators are substances that change color as the pH of the medium. Many of these substances are dyes of synthetic origin. The mulala plant (Euclea natalensis), which roots are commonly used by rural communities for their oral hygiene, and roseira (Hibiscus rosa-sinensis), an ornamental plant, are abundant in Mozambique. Currently, synthetic acid-base indicators are most commonly used but have environmental implications and, on the other hand, are expensive products, so the demand for natural indicators started. This study investigated the applicability of aqueous extracts of H. rosa-sinensis and E. natalensis as acid-base indicators. Ground on this work, the extracts can be used as acid-base indicators. On the basis of the absorption spectroscopy in both the UV-Vis region and previous studies, it was possible to preliminarily pinpoint anthocyanins and naphthoquinones as responsible for the shifting of colors depending on the pH range of aqueous extracts of H. rosa-sinensis and E. natalensis. These natural indicators are easily accessible, inexpensive, easy to extract, environmentally safe, and locally available.

  1. Effect of heat shock on the fatty acid and protein profiles of Cronobacter sakazakii BCRC 13988 as well as its growth and survival in the presence of various carbon, nitrogen sources and disinfectants.

    PubMed

    Li, Po-Ting; Hsiao, Wan-Ling; Yu, Roch-Chui; Chou, Cheng-Chun

    2013-12-01

    In the present study, Cronobacter sakazakii, a foodborne pathogen, was first subjected to heat shock at 47 °C for 15 min. Effect of heat shock on the fatty acid and protein profiles, carbon and nitrogen source requirements as well as the susceptibilities of C. sakazakii to Clidox-S, a chlorine-containing disinfectant and Quatricide, a quaternary ammonium compound were investigated. Results revealed that heat shock increased the proportion of myristic acid (14:0), palmitic acid (16:0) and the ratio of saturated fatty acid to unsaturated fatty acid, while reducing the proportion of palmitoleic acid (16:1) and cis-vacceric acid (18:1). In addition, eleven proteins showed enhanced expression, while one protein showed decreased expression in the heat-shocked compared to the non-heat-shocked cells. Non-heat-shocked cells in the medium supplemented with beef extract exhibited the highest maximum population. On the contrary, the highest maximum population of heat-shocked C. sakazakii was noted in the medium having either tryptone or yeast extract as the nitrogen source. Among the various carbon sources examined, the growth of the test organism, regardless of heat shock, was greatest in the medium having glucose as the carbon source. Furthermore, heat shock enhanced the resistance of C. sakazakii to Clidox-S or Quatricide. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Shikonin Production by Callus Culture of Onosma bulbotrichom as Active Pharmaceutical Ingredient

    PubMed Central

    Bagheri, Fereshteh; Tahvilian, Reza; Karimi, Naser; Chalabi, Maryam; Azami, Mahsa

    2018-01-01

    The objective of this research was in-vitro germination and callus induction of Onosma bulbotrichum (O. bulbotrichum) as a medicinal herb which belongs to Boraginaceae family. For germination, the seeds were cultured on growth regulator-free MS medium and for callus induction, seeds were sown on modified MS medium containing different concentrations of kinetin (kn)- Indole-3-acetic acid (IAA) and kn- 2,4-D (2,4-dichlorophenoxyacetic acid), respectively. The plates were maintained in the dark at growth chamber. After 7 days seed germination on hormone-free medium and after 10 days callus initiation on modified medium in the presence of hormones was occurred. The maximum pigmented callus (100%) was observed on modified MS medium with a combination of 0.2 mg.L-1 IAA + 2.10 mg.L-1 kn. Shikonin determination was performed by HPLC method. In addition, total hydroxynaphtoquinons as polyphenols in sum of callus and culture medium were measured by spectrophotometric method and revealed that total naphtoquinones content at IAA was more than 2, 4-D. PMID:29881407

  3. Density-dependent regulation of growth of BSC-1 cells in cell culture: growth inhibitors formed by the cells.

    PubMed Central

    Holley, R W; Armour, R; Baldwin, J H

    1978-01-01

    Inhibitors formed by a monkey epithelial cell line, BSC-1, play an important role in limiting growth at high cell densities. At least three inhibitors are formed: lactic acid, ammonia, and an unidentified inhibitor that may be an unstable protein. The unidentified inhibitor is destroyed by shaking the conditioned medium, by bubbling gas through the medium, or by heating or storing the medium in the absence of cells. The concentrations of lactic acid and ammonia that accumulate in conditioned medium inhibit growth when added to fresh medium. These results, together with earlier studies, indicate that density-dependent regulation of growth of BSC-1 cells results from the combined effects of (a) inhibitors formed by the cells, (b) decreased availability of receptor sites for serum growth factors as the cells become crowded, and (c) limiting concentrations of low molecular weight nutrients in the medium. In contrast, density-dependent regulation of growth in 3T3 mouse embryo fibroblasts results almost entirely from inactivation of serum factors. PMID:273914

  4. Preservation of acidified cucumbers with a combination of fumaric acid and cinnamaldehyde that target lactic acid bacteria and yeasts

    USDA-ARS?s Scientific Manuscript database

    The naturally occurring compound, fumaric acid, was evaluated as a potential preservative for the long-term storage of cucumbers. Fumaric acid inhibited growth of lactic acid bacteria (LAB) in an acidified cucumber juice medium model system resembling conditions that could allow preservation of cucu...

  5. 21 CFR 184.1025 - Caprylic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...] is the chemical name for octanoic acid. It is considered to be a short or medium chain fatty acid. It... fermentation and fractional distillation of the volatile fatty acids present in coconut oil. (b) The ingredient... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Caprylic acid. 184.1025 Section 184.1025 Food and...

  6. Internal gas and liquid distributor for electrodeionization device

    DOEpatents

    Lin, YuPo J.; Snyder, Seth W.; Henry, Michael P.; Datta, Saurav

    2016-05-17

    The present invention provides a resin-wafer electrodeionization (RW-EDI) apparatus including cathode and anode electrodes separated by a plurality of porous solid ion exchange resin wafers, which when in use are filled with an aqueous fluid. The apparatus includes one or more wafers comprising a basic ion exchange medium, and preferably includes one or more wafers comprising an acidic ion exchange medium. The wafers are separated from one another by ion exchange membranes. The gas and aqueous fluid are introduced into each basic wafer via a porous gas distributor which disperses the gas as micro-sized bubbles laterally throughout the distributor before entering the wafer. The fluid within the acidic and/or basic ion exchange wafers preferably includes, or is in contact with, a carbonic anhydrase (CA) enzyme or inorganic catalyst to facilitate conversion of bicarbonate ion to carbon dioxide within the acidic medium.

  7. Nitrogen Metabolism in Plant Cell Suspension Cultures

    PubMed Central

    Behrend, Josef; Mateles, Richard I.

    1976-01-01

    Tobacco cells (Nicotiana tabacum) are capable of growth on ammonia as a sole nitrogen source only when succinate, malate, fumarate, citrate, α-ketoglutarate, glutamate, or pyruvate is added to the growth medium. A ratio between the molar concentrations of ammonia to succinate (as a complementary organic acid) in the growth medium of 1.5 was optimal. Succinate had no effect on the rate of uptake of ammonia from the medium into the cells although it did affect the intracellular concentration of ammonia. However, the changes were not sufficient to explain inhibition of growth as being due to ammonia toxicity. The radioactivity from 14C-succinate was incorporated into malate, glutamate, and aspartate within 2 minutes. It appears that the role of organic acids is neither connected to ammonium transport nor to relief of ammonia toxicity, but may be related to the need for additional carbon skeletons for synthesis of amino acids. PMID:16659706

  8. Development of an industrializable fermentation process for propionic acid production.

    PubMed

    Stowers, Chris C; Cox, Brad M; Rodriguez, Brandon A

    2014-05-01

    Propionic acid (PA) is a short-chain fatty acid with wide industrial application including uses in pharmaceuticals, herbicides, cosmetics, and food preservatives. As a three-carbon building block, PA also has potential as a precursor for high-volume commodity chemicals such as propylene. Currently, most PA is manufactured through petrochemical routes, which can be tied to increasing prices and volatility due to difficulty in demand forecasting and feedstock availability. Herein described are research advancements to develop an industrially feasible, renewable route to PA. Seventeen Propionibacterium strains were screened using glucose and sucrose as the carbon source to identify the best platform strain. Propionibacterium acidipropionici ATCC 4875 was selected as the platform strain and subsequent fermentation optimization studies were performed to maximize productivity and yield. Fermentation productivity was improved three-fold to exceed 2 g/l/h by densifying the inoculum source. Byproduct levels, particularly lactic and succinic acid, were reduced by optimizing fermentor headspace pressure and shear. Following achievement of commercially viable productivities, the lab-grade medium components were replaced with industrial counterparts to further reduce fermentation costs. A pure enzymatically treated corn mash (ECM) medium improved the apparent PA yield to 0.6 g/g (PA produced/glucose consumed), but it came at the cost of reduced productivity. Supplementation of ECM with cyanocobalamin restored productivity to near lab-grade media levels. The optimized ECM recipe achieved a productivity of 0.5 g/l/h with an apparent PA yield of 0.60 g/g corresponding to a media cost <1 USD/kg of PA. These improvements significantly narrow the gap between the fermentation and incumbent petrochemical processes, which is estimated to have a manufacturing cost of 0.82 USD/kg in 2017.

  9. Isolation and lipid degradation profile of Raoultella planticola strain 232-2 capable of efficiently catabolizing edible oils under acidic conditions.

    PubMed

    Sugimori, Daisuke; Watanabe, Mika; Utsue, Tomohiro

    2013-01-01

    The lipids (fats and oils) degradation capabilities of soil microorganisms were investigated for possible application in treatment of lipids-contaminated wastewater. We isolated a strain of the bacterium Raoultella planticola strain 232-2 that is capable of efficiently catabolizing lipids under acidic conditions such as in grease traps in restaurants and food processing plants. The strain 232-2 efficiently catabolized a mixture (mixed lipids) of commercial vegetable oil, lard, and beef tallow (1:1:1, w/w/w) at 20-35 °C, pH 3-9, and 1,000-5,000 ppm lipid content. Highly effective degradation rate was observed at 35 °C and pH 4.0, and the 24-h degradation rate was 62.5 ± 10.5 % for 3,000 ppm mixed lipids. The 24-h degradation rate for 3,000 ppm commercial vegetable oil, lard, beef tallow, mixed lipids, and oleic acid was 71.8 %, 58.7 %, 56.1 %, 55.3 ± 8.5 %, and 91.9 % at pH 4 and 30 °C, respectively. R. planticola NBRC14939 (type strain) was also able to efficiently catabolize the lipids after repeated subculturing. The composition of the culture medium strongly influenced the degradation efficiency, with yeast extract supporting more complete dissimilation than BactoPeptone or beef extract. The acid tolerance of strain 232-2 is proposed to result from neutralization of the culture medium by urease-mediated decomposition of urea to NH(3). The rate of lipids degradation increased with the rates of neutralization and cell growth. Efficient lipids degradation using strain 232-2 has been achieved in the batch treatment of a restaurant wastewater.

  10. A salting out system for improving the efficiency of the headspace solid-phase microextraction of short and medium chain free fatty acids.

    PubMed

    Fiorini, Dennis; Pacetti, Deborah; Gabbianelli, Rosita; Gabrielli, Serena; Ballini, Roberto

    2015-08-28

    Given the importance of short and medium chain free fatty acids (FFAs) in several fields, this study sought to improve the extraction efficiency of the solid-phase microextraction (SPME) of FFAs by evaluating salting out agents that appear promising for this application. The salts ammonium sulfate ((NH4)2SO4) and sodium dihydrogen phosphate (NaH2PO4) were tried on their own and in combination (3.7/1), in four different total amounts, as salting out agents in the headspace-SPME-gas chromatographic (HS-SPME-GC) analysis of the FFAs from acetic acid (C2) to decanoic acid (C10). Their performance in a model system of an aqueous standard mixture of FFAs at a pH of 3.5 was compared to that of the more commonly used sodium chloride (NaCl) and sodium sulfate (Na2SO4). All of the salts and salt systems evaluated, in proper amount, gave improved results compared to NaCl (saturated), which instead gave interesting results only for the least volatile FFAs C8 and C10. For C2-C6, the salt system that gave the best results compared to NaCl was (NH4)2SO4/NaH2PO4, in the highest of the four amounts evaluated, with factor increases between 1.2 and 4.1-fold, and NaH2PO4, between 1.0 and 4.3-fold. The SPME extraction efficiency given by the mixture (NH4)2SO4/NaH2PO4 was also assessed on biological and food samples, confirming that overall it performed better than NaCl. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Potential of Pseudomonas putida PCI2 for the Protection of Tomato Plants Against Fungal Pathogens.

    PubMed

    Pastor, Nicolás; Masciarelli, Oscar; Fischer, Sonia; Luna, Virginia; Rovera, Marisa

    2016-09-01

    Tomato is one of the most economically attractive vegetable crops due to its high yields. Diseases cause significant losses in tomato production worldwide. We carried out Polymerase Chain Reaction studies to detect the presence of genes encoding antifungal compounds in the DNA of Pseudomonas putida strain PCI2. We also used liquid chromatography-electrospray tandem mass spectrometry to detect and quantify the production of compounds that increase the resistance of plants to diseases from culture supernatants of PCI2. In addition, we investigated the presence of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase in PCI2. Finally, PCI2 was used for inoculation of tomato seeds to study its potential biocontrol activity against Fusarium oxysporum MR193. The obtained results showed that no fragments for the encoding genes of hydrogen cyanide, pyoluteorin, 2,4-diacetylphloroglucinol, pyrrolnitrin, or phenazine-1-carboxylic acid were amplified from the DNA of PCI2. On the other hand, PCI2 produced salicylic acid and jasmonic acid in Luria-Bertani medium and grew in a culture medium containing ACC as the sole nitrogen source. We observed a reduction in disease incidence from 53.33 % in the pathogen control to 30 % in tomato plants pre-inoculated with PCI2 as well as increases in shoot and root dry weights in inoculated plants, as compared to the pathogenicity control. This study suggests that inoculation of tomato seeds with P. putida PCI2 increases the resistance of plants to root rot caused by F. oxysporum and that PCI2 produces compounds that may be involved at different levels in increasing such resistance. Thus, PCI2 could represent a non-contaminating management strategy potentially applicable in vegetable crops such as tomato.

  12. Effect of stress induced by suboptimal growth factors on survival of Escherichia coli O157:H7.

    PubMed

    Uyttendaele, M; Taverniers, I; Debevere, J

    2001-05-21

    This study investigated the growth and survival of E. coli O157:H7 exposed to a combination of suboptimal factors (22 degrees C, 7 degrees C, -18 degrees C/0.5% NaCl, 5.0% NaCl/pH 7.0, pH 5.4, pH 4.5/addition of lactic acid) in a simulation medium for red meat (beef gravy). Prolonged survival was noted as the imposed stress was more severe, and as multiple growth factors became suboptimal. At a defined temperature (7 degrees C or -18 degrees C), survival was prolonged at the more acid, more suboptimal pH (pH 4.5 > pH 5.4 > pH 7.0) while at a defined pH (pH 4.5), better survival was observed at 7 degrees C than at 22 degrees C. This suggests that application of the hurdle concept for preservation of food may inhibit outgrowth but induce prolonged survival of E. coli O157:H7 in minimal processed foods. At both 22 degrees C and 7 degrees C, the addition of lactic acid instead of HCl to reduce pH (to pH 4.5) resulted in a more rapid decrease of E. coli O157:H7. High survival was observed in beef gravy, pH 5.4 at -18 degrees C (simulation of frozen meat)-reduction of log 3.0 to log 1.9 after 43 days--and in beef gravy, pH 4.5 and 5% NaCl at 7 degrees C (simulation of a fermented dried meat product kept in refrigeration)--less than 1 log reduction in 43 days. In these circumstances, however, a high degree of sublethal damage of the bacterial cells was noted. The degree of sublethal damage can be estimated from the difference in recovery of the pathogen on the non-selective TSA medium and the selective SMAC medium.

  13. Somatic embryogenesis from leaf explants of Australian fan flower, Scaevola aemula R. Br.

    PubMed

    Wang, Y-H; Bhalla, P L

    2004-01-01

    Somatic embryogenesis from leaf explants of Scaevola aemula R. Br. was achieved. Somatic embryos were induced from explants cultured on MS medium supplemented with 0.2 mg/ 2,4-dichlorophenoxyacetic acid and 0.2-0.5 mg/l 6-benzylaminopurine (BAP). Various developmental stages of somatic embryos were found on this medium-from globular embryos to germinated embryos. The transfer of globular embryos to MS medium containing 0.5 mg/l BAP resulted in a high frequency of shoot regeneration. Leaf explants cultured on MS medium containing different combinations of BAP and alpha-naphthaleneacetic acid formed adventitious shoots and roots. Histological examination confirmed the process of somatic embryogenesis. Induction of somatic embryogenesis in Scaevola provides a system for studying embryogenesis in Australian native plants and will facilitate the improvement of these plants using genetic transformation techniques.

  14. Production and Properties of a Thermostable, pH-Stable Exo-Polygalacturonase Using Aureobasidium pullulans Isolated from Saharan Soil of Algeria Grown on Tomato Pomace.

    PubMed

    Bennamoun, Leila; Hiligsmann, Serge; Dakhmouche, Scheherazad; Ait-Kaki, Amel; Labbani, Fatima-Zohra Kenza; Nouadri, Tahar; Meraihi, Zahia; Turchetti, Benedetta; Buzzini, Pietro; Thonart, Philippe

    2016-10-29

    Polygalacturonase is a valuable biocatalyst for several industrial applications. Production of polygalacturonase using the Aureobasidium pullulans stain isolated from Saharan soil of Algeria was investigated. Its capacity to produce polygalacturonase was assessed under submerged culture using tomato pomace as an abundant agro-industrial substrate. Optimization of the medium components, which enhance polygalacturonase activity of the strain Aureobasidium pullulans , was achieved with the aid of response surface methodology. The composition of the optimized medium was as follows: tomato pomace 40 g/L, lactose 1.84 g/L, CaCl₂0.09 g/L and pH 5.16. Practical validation of the optimum medium provided polygalacturonase activity of 22.05 U/mL, which was 5-fold higher than in unoptimized conditions. Batch cultivation in a 20 L bioreactor performed with the optimal nutrients and conditions resulted in a high polygalacturonase content (25.75 U/mL). The enzyme showed stability over a range of temperature (5-90 °C) with an optimum temperature of 60 °C with pH 5.0, exhibiting 100% residual activity after 1h at 60 °C. This enzyme was stable at a broad pH range (5.0-10). The enzyme proved to be an exo-polygalacturonase, releasing galacturonic acid by hydrolysis of polygalacturonic acid. Moreover, the exo-polygalacturonase was able to enhance the clarification of both apple and citrus juice. As a result, an economical polygalacturonase production process was defined and proposed using an industrial food by-product.

  15. The influence of naphthaleneacetic acid (NAA) and coumarin on flavonoid production by fungus Phellinus sp.: modeling of production kinetic profiles.

    PubMed

    Ma, Xiao-Kui; Li, Le; Peterson, Eric Charles; Ruan, Tingting; Duan, Xiaoyi

    2015-11-01

    For the purpose of improving the fungal production of flavonoids, the influence of naphthaleneacetic acid (NAA) and coumarin on flavonoid production by fungus Phellinus sp. P0988 was investigated by developing the corresponding kinetics of flavonoid production in a 7-L bioreactor. Phellinus sp. was confirmed to form flavonoids in pellets and broth when cultivated in basic medium, and the optimum concentration of NAA and coumarin in medium for flavonoid production were determined to be 0.03 and 0.02 g/L, respectively. The developed unstructured mathematical models were in good agreement with the experimental results with respect to flavonoid production kinetic profiles with NAA and coumarin supplementation at optimum levels and revealed significant accuracy in terms of statistical consistency and robustness. Analysis of these kinetic processes indicated that NAA and coumarin supplementations imposed a stronger positive influence on flavonoid production and substrate consumption compared to their effects on cell growth. The separate addition of NAA and coumarin resulted in enhancements in final product accumulation and productivity, achieving final flavonoid concentrations of 3.60 and 2.75 g/L, respectively, and glucose consumption showed a significant decrease compared to the non-supplemented control as well. Also, the separate presence of NAA and coumarin respectively decreased maintenance coefficients (M s) from 2.48 in the control to 1.39 and 0.22, representing decreases of 43.9 and 91.1 %, respectively. The current study is the first known application of mathematical kinetic models to explore the influence of medium components adding on flavonoid production by fungi.

  16. Production and Properties of a Thermostable, pH—Stable Exo-Polygalacturonase Using Aureobasidium pullulans Isolated from Saharan Soil of Algeria Grown on Tomato Pomace

    PubMed Central

    Bennamoun, Leila; Hiligsmann, Serge; Dakhmouche, Scheherazad; Ait-Kaki, Amel; Labbani, Fatima-Zohra Kenza; Nouadri, Tahar; Meraihi, Zahia; Turchetti, Benedetta; Buzzini, Pietro; Thonart, Philippe

    2016-01-01

    Polygalacturonase is a valuable biocatalyst for several industrial applications. Production of polygalacturonase using the Aureobasidium pullulans stain isolated from Saharan soil of Algeria was investigated. Its capacity to produce polygalacturonase was assessed under submerged culture using tomato pomace as an abundant agro-industrial substrate. Optimization of the medium components, which enhance polygalacturonase activity of the strain Aureobasidium pullulans, was achieved with the aid of response surface methodology. The composition of the optimized medium was as follows: tomato pomace 40 g/L, lactose 1.84 g/L, CaCl20.09 g/L and pH 5.16. Practical validation of the optimum medium provided polygalacturonase activity of 22.05 U/mL, which was 5-fold higher than in unoptimized conditions. Batch cultivation in a 20 L bioreactor performed with the optimal nutrients and conditions resulted in a high polygalacturonase content (25.75 U/mL). The enzyme showed stability over a range of temperature (5–90 °C) with an optimum temperature of 60 °C with pH 5.0, exhibiting 100% residual activity after 1h at 60 °C. This enzyme was stable at a broad pH range (5.0–10). The enzyme proved to be an exo-polygalacturonase, releasing galacturonic acid by hydrolysis of polygalacturonic acid. Moreover, the exo-polygalacturonase was able to enhance the clarification of both apple and citrus juice. As a result, an economical polygalacturonase production process was defined and proposed using an industrial food by-product. PMID:28231166

  17. Dephosphorylation and quantification of organic phosphorus in poultry litter by purified phytic-acid high affinity Aspergillus phosphohydrolases.

    PubMed

    Dao, Thanh H; Hoang, Khanh Q

    2008-08-01

    Extracellular phosphohydrolases mediate the dephosphorylation of phosphoesters and influence bioavailability and loss of agricultural P to the environment to pose risks of impairment of sensitive aquatic ecosystems. Induction and culture of five strains of Aspergillus were conducted to develop a source of high-affinity and robust phosphohydrolases for detecting environmental P and quantifying bioactive P pools in heterogeneous environmental specimens. Enzyme stability and activity against organic P in poultry litter were evaluated in 71 samples collected across poultry producing regions of Arkansas, Maryland, and Oklahoma of the US Differences existed in strains' adaptability to fermentation medium as they showed a wide range of phytate-degrading activity. Phosphohydrolases from Aspergillus ficuum had highest activity when the strain was cultured on a primarily chemical medium, compared to Aspergillus oryzae which preferred a wheat bran-based organic medium. Kinetics parameters of A. ficuum enzymes (K(m)=210 microM; V(max) of 407 nmol s(-1)) indicated phytic acid-degrading potential equivalent to that of commercial preparations. Purified A. ficuum phosphohydrolases effectively quantified litter bioactive P pools, showing that organic P occurred at an average of 54 (+/-14)% of total P, compared to inorganic phosphates, which averaged 41 (+/-12)%. Litter management and land application options must consider the high water-extractable and organic P concentrations and the biological availability of the organic enzyme-labile P pool. Robustness of A. ficuum enzymes and simplicity of the in situ ligand-based enzyme assay may thus increase routine assessment of litter bioactive P composition to sense for on-farm accumulation of such environmentally-sensitive P forms.

  18. Methodology of analysis of very weak acids by isotachophoresis with electrospray-ionization mass-spectrometric detection: Anionic electrolyte systems for the medium-alkaline pH range.

    PubMed

    Malá, Zdena; Gebauer, Petr

    2018-01-15

    This work describes for the first time a functional electrolyte system setup for anionic isotachophoresis (ITP) with electrospray-ionization mass-spectrometric (ESI-MS) detection in the neutral to medium-alkaline pH range. So far no application was published on the analysis of very weak acids by anionic ITP-MS although there is a broad spectrum of potential analytes with pK a values in the range 5-10, where application of this technique promises interesting gains in both sensitivity and specificity. The problem so far was the lack of anionic ESI-compatible ITP systems in the mentioned pH range as all typical volatile anionic system components are fully ionized at neutral and alkaline pH and thus too fast to suit as terminators. We propose an original solution of the problem based on the combination of two ITP methods: (i) use of the hydroxyl ion as a natural and ESI-compatible terminator, and (ii) use of configurations based on moving-boundary ITP. The former method ensures effective stacking of analytes by an alkaline terminator of sufficiently low mobility and the latter offers increased flexibility for tuning of the separation window and selectivity according to actual needs. A theoretical description of the proposed model is presented and applied to the design of very simple functional electrolyte configurations. The properties of example systems are demonstrated by both computer simulation and experiments with a group of model analytes. Potential effects of carbon dioxide present in the solutions are demonstrated for particular systems. Experimental results confirm that the proposed methodology is well capable of performing sensitive and selective ITP-MS analyses of very weak acidic analytes (e.g. sulfonamides or chlorophenols). Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Extra-pancreatic invasion induces lipolytic and fibrotic changes in the adipose microenvironment, with released fatty acids enhancing the invasiveness of pancreatic cancer cells

    PubMed Central

    Okumura, Takashi; Ohuchida, Kenoki; Sada, Masafumi; Abe, Toshiya; Endo, Sho; Koikawa, Kazuhiro; Iwamoto, Chika; Miura, Daisuke; Mizuuchi, Yusuke; Moriyama, Taiki; Nakata, Kohei; Miyasaka, Yoshihiro; Manabe, Tatsuya; Ohtsuka, Takao; Nagai, Eishi; Mizumoto, Kazuhiro; Oda, Yoshinao; Hashizume, Makoto; Nakamura, Masafumi

    2017-01-01

    Pancreatic cancer progression involves components of the tumor microenvironment, including stellate cells, immune cells, endothelial cells, and the extracellular matrix. Although peripancreatic fat is the main stromal component involved in extra-pancreatic invasion, its roles in local invasion and metastasis of pancreatic cancer remain unclear. This study investigated the role of adipose tissue in pancreatic cancer progression using genetically engineered mice (Pdx1-Cre; LSL-KrasG12D; Trp53R172H/+) and an in vitro model of organotypic fat invasion. Mice fed a high fat diet had significantly larger primary pancreatic tumors and a significantly higher rate of distant organ metastasis than mice fed a standard diet. In the organotypic fat invasion model, pancreatic cancer cell clusters were smaller and more elongated in shape and showed increased fibrosis. Adipose tissue-derived conditioned medium enhanced pancreatic cancer cell invasiveness and gemcitabine resistance, as well as inducing morphologic changes in cancer cells and increasing the numbers of lipid droplets in their cytoplasm. The concentrations of oleic, palmitoleic, and linoleic acids were higher in adipose tissue-derived conditioned medium than in normal medium, with these fatty acids significantly enhancing the migration of cancer cells. Mature adipocytes were smaller and the concentration of fatty acids in the medium higher when these cells were co-cultured with cancer cells. These findings indicate that lipolytic and fibrotic changes in peripancreatic adipose tissue enhance local invasiveness and metastasis via adipocyte-released fatty acids. Inhibition of fatty acid uptake by cancer cells may be a novel therapy targeting interactions between cancer and stromal cells. PMID:28407685

  20. Chemically Defined and Xeno-Free Cryopreservation of Human Adipose-Derived Stem Cells

    PubMed Central

    López, Melany; Bollag, Roni J.; Yu, Jack C.; Isales, Carlos M.; Eroglu, Ali

    2016-01-01

    The stromal compartment of adipose tissue harbors multipotent cells known as adipose-derived stem cells (ASCs). These cells can differentiate into various lineages including osteogenic, chrondrogenic, adipogenic, and neurogenic; this cellular fraction may be easily obtained in large quantities through a clinically safe liposuction procedure. Therefore, ASCs offer exceptional opportunities for tissue engineering and regenerative medicine. However, current practices involving ASCs typically use fetal bovine serum (FBS)-based cryopreservation solutions that are associated with risks of immunological reactions and of transmitting infectious diseases and prions. To realize clinical applications of ASCs, serum- and xeno-free defined cryopreservation methods are needed. To this end, an animal product-free chemically defined cryopreservation medium was formulated by adding two antioxidants (reduced glutathione and ascorbic acid 2-phosphate), two polymers (PVA and ficoll), two permeating cryoprotectants (ethylene glycol and dimethylsulfoxide), a disaccharide (trehalose), and a calcium chelator (EGTA) to HEPES-buffered DMEM/F12. To limit the number of experimental groups, the concentration of trehalose, both polymers, and EGTA was fixed while the presence of the permeating CPAs and antioxidants was varied. ASCs suspended either in different versions of the defined medium or in the conventional undefined cryopreservation medium (10% dimethylsulfoxide+10% DMEM/F12+80% serum) were cooled to -70°C at 1°C/min before being plunged into liquid nitrogen. Samples were thawed either in air or in a water bath at 37°C. The presence of antioxidants along with 3.5% concentration of each penetrating cryoprotectant improved the freezing outcome to the level of the undefined cryopreservation medium, but the plating efficiency was still lower than that of unfrozen controls. Subsequently, increasing the concentration of both permeating cryoprotectants to 5% further improved the plating efficiency to the level of unfrozen controls. Moreover, ASCs cryopreserved in this defined medium retained their multipotency and chromosomal normality. These results are of significance for tissue engineering and clinical applications of stem cells. PMID:27010403

  1. Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium.

    PubMed

    de Oliveira, Fernanda Midori; Segatelli, Mariana Gava; Tarley, César Ricardo Teixeira

    2016-02-01

    In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium(pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers.

  2. Development of Competence of Haemophilus influenzae

    PubMed Central

    Spencer, Hugh T.; Herriott, Roger M.

    1965-01-01

    Spencer, Hugh T. (The Johns Hopkins University School of Hygiene and Public Health, Baltimore, Md.), and Roger M. Herriott. Development of competence of Haemophilus influenzae. J. Bacteriol. 90:911–920. 1965.—A chemically defined nongrowth medium was developed for the induction of competence of Haemophilus influenzae by a stepdown procedure. Cells grown logarithmically in Heart Infusion Broth became competent after being transferred to a medium which consisted of amino acids, sodium fumarate, and inorganic salts. Chloramphenicol (2 μg/ml) or l-valine (1 μg/ml) in the nongrowth medium inhibited development of competence. The inhibitory action of l-valine was reversed by comparable concentrations of l-isoleucine. Kinetic studies of the development of competence showed a variable capacity of competent cells to take up deoxyribonucleic acid and reaffirmed earlier findings that competence was not transmissible in H. influenzae. Addition of nicotinamide adenine dinucleotide, thiamine, calcium pantothenate, uracil, and hypoxanthine to the medium for competence resulted in a minimal growth medium in which reduced levels of competence were developed. PMID:5294817

  3. 40 CFR 428.60 - Applicability; description of the medium-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... medium-sized general molded, extruded, and fabricated rubber plants subcategory. 428.60 Section 428.60... RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.60 Applicability; description of the medium-sized general molded, extruded, and...

  4. 40 CFR 428.60 - Applicability; description of the medium-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... medium-sized general molded, extruded, and fabricated rubber plants subcategory. 428.60 Section 428.60... (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.60 Applicability; description of the medium-sized general molded...

  5. 40 CFR 428.60 - Applicability; description of the medium-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... medium-sized general molded, extruded, and fabricated rubber plants subcategory. 428.60 Section 428.60... (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.60 Applicability; description of the medium-sized general molded...

  6. Enzymatic Acylation of Anthocyanins Isolated from Alpine Bearberry ( Arctostaphylos alpina) and Lipophilic Properties, Thermostability, and Antioxidant Capacity of the Derivatives.

    PubMed

    Yang, Wei; Kortesniemi, Maaria; Yang, Baoru; Zheng, Jie

    2018-03-21

    Cyanidin-3- O-galactoside (cy-gal) isolated from alpine bearberry ( Arctostaphylos alpine L.) was enzymatically acylated with saturated fatty acids of different chain lengths with Candida antarctica lipase immobilized on acrylic resin (Novozyme 435). The acylation reaction was optimized by considering the reaction medium, acyl donor, substrate molar ratio, reaction temperature, and reaction time. The highest conversion yield of 73% was obtained by reacting cy-gal with lauric acid (molar ratio of 1:10) in tert-butanol at 60 °C for 72 h. A novel compound was synthesized, which was identified as cyanidin-3- O-(6″-dodecanoyl)galactoside by mass spectrometry and nuclear magnetic resonance. Introducing lauric acid into cy-gal significantly improved both the lipophilicity and thermostability and substantially preserved the ultraviolet-visible absorbance and antioxidant properties. The research provides important insight in expanding the application of natural anthocyanins in the cosmetic and food industries.

  7. Effects of Terminal Sterilization on PEG-Based Bioresorbable Polymers Used in Biomedical Applications.

    PubMed

    Bhatnagar, Divya; Dube, Koustubh; Damodaran, Vinod B; Subramanian, Ganesan; Aston, Kenneth; Halperin, Frederick; Mao, Meiyu; Pricer, Kurt; Murthy, N Sanjeeva; Kohn, Joachim

    2016-10-01

    The effects of ethylene oxide (EO), vaporized hydrogen peroxide (VHP), gamma (γ) radiation, and electron-beam (E-beam) on the physiochemical and morphological properties of medical device polymers are investigated. Polymers with ether, carbonate, carboxylic acid, amide and ester functionalities are selected from a family of poly(ethylene glycol) (PEG) containing tyrosine-derived polycarbonates (TyrPCs) to include slow, medium, fast, and ultrafast degrading polymers. Poly(lactic acid) (PLA) is used for comparison. Molecular weight ( M w ) of all tested polymers decreases upon gamma and E-beam, and this effect becomes more pronounced at higher PEG content. Gamma sterilization increases the glass transition temperature of polymers with high PEG content. EO esterifies the carboxylic acid groups in desaminotyrosol-tyrosine (DT) and causes significant degradation. VHP causes hydroxylation of the phenyl ring, and hydrolytic degradation. This study signifies the importance of the chemical composition when selecting a sterilization method, and provides suggested conditions for each of the sterilization methods.

  8. Effect of oxidoreduction potential on aroma biosynthesis by lactic acid bacteria in nonfat yogurt.

    PubMed

    Martin, F; Cachon, R; Pernin, K; De Coninck, J; Gervais, P; Guichard, E; Cayot, N

    2011-02-01

    The aim of this study was to investigate the effect of oxidoreduction potential (Eh) on the biosynthesis of aroma compounds by lactic acid bacteria in non-fat yogurt. The study was done with yogurts fermented by Lactobacillus bulgaricus and Streptococcus thermophilus. The Eh was modified by the application of different gaseous conditions (air, nitrogen, and nitrogen/hydrogen). Acetaldehyde, dimethyl sulfide, diacetyl, and pentane-2,3-dione, as the major endogenous odorant compounds of yogurt, were chosen as tracers for the biosynthesis of aroma compounds by lactic acid bacteria. Oxidative conditions favored the production of acetaldehyde, dimethyl sulfide, and diketones (diacetyl and pentane-2,3-dione). The Eh of the medium influences aroma production in yogurt by modifying the metabolic pathways of Lb. bulgaricus and Strep. thermophilus. The use of Eh as a control parameter during yogurt production could permit the control of aroma formation. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. YfdW and YfdU Are Required for Oxalate-Induced Acid Tolerance in Escherichia coli K-12

    PubMed Central

    Fontenot, Elise M.; Ezelle, Karen E.; Gabreski, Lauren N.; Giglio, Eleanor R.; McAfee, John M.; Mills, Alexandria C.; Qureshi, Maryam N.; Salmon, Kristin M.

    2013-01-01

    Escherichia coli has several mechanisms for surviving low-pH stress. We report that oxalic acid, a small-chain organic acid (SCOA), induces a moderate acid tolerance response (ATR) in two ways. Adaptation of E. coli K-12 at pH 5.5 with 50 mM oxalate and inclusion of 25 mM oxalate in pH 3.0 minimal challenge medium separately conferred protection, with 67% ± 7% and 87% ± 17% survival after 2 h, respectively. The combination of oxalate adaptation and oxalate supplementation in the challenge medium resulted in increased survival over adaptation or oxalate in the challenge medium alone. The enzymes YfdW, a formyl coenzyme A (CoA) transferase, and YfdU, an oxalyl-CoA decarboxylase, are required for the adaptation effect but not during challenge. Unlike other SCOAs, this oxalate ATR is not a part of the RpoS regulon but appears to be linked to the signal protein GadE. We theorize that this oxalate ATR could enhance the pathogenesis of virulent E. coli consumed with oxalate-containing foods like spinach. PMID:23335415

  10. Nitrogen effects on proteins, chlorophylls and fatty acids during the growth of Arthrospira platensis.

    PubMed

    Ayachi, Samah; El Abed, Amor; Dhifi, Wissal; Marzouk, Brahim

    2007-06-01

    Spirulina platensis (=Arthrospira platensis) is a tunisian strain which has been isolated for the first time in Oued Essed (Sousse, Sidi Bou Ali). Biomass evolution, proteins, chlorophylls and fatty acids composition of this alga were monitored by varying nitrogen concentrations in the culture medium. Nitrogen stress was provoked by adding sodium nitrate (NaNO3) in the culture medium with concentrations varying from 0 to 5 g/l. Results obtained showed that nitrogen depletion increased total proteins and total chlorophylls. The addition of NaNO3 (5g/l) led to an increase of total fatty acids amounts and modify fatty acids composition. Optimal quantities of palmitic, gamma -linolenic and oleic acids were obtained with NaNO3 free-cultures. Thus, the tunisian strain has valuable biological substances, worthy to determine the optimal conditions for its propagation.

  11. A comparison of the metabolic fate of Fatty acids of different chain lengths in developing oilseeds.

    PubMed

    Battey, J F; Ohlrogge, J B

    1989-07-01

    To determine if medium and long chain fatty acids can be appropriately metabolized by species that normally produce 16 and 18 carbon fatty acids, homogenates of developing Cuphea wrightii, Carthamus tinctorius, and Crambe abyssinica seeds were incubated with radiolabeled lauric, palmitic, oleic, and erucic acids. In all three species, acyl-CoA synthetase showed broad substrate specificity in synthesis of acyl-coenzyme A (CoA) from any of the fatty acids presented. In Carthamus, two- to fivefold less of the foreign FAs, lauric, and erucic acid was incorporated into acyl-CoAs than palmitic and oleic acid. Lauric and erucic acid also supported less glycerolipid synthesis in Carthamus than palmitic and oleic acid, but the rate of acyl-CoA synthesis did not control rate of glycerolipid synthesis. In all species examined, medium and long chain fatty acids were incorporated predominantly into triacylglycerols and were almost excluded from phospholipid synthesis, whereas palmitic and oleic acid were found predominantly in polar lipids. However, the rate of esterification of unusual fatty acids to triacylglycerol is slow in species that do not normally synthesize these acyl substrates.

  12. A Comparison of the Metabolic Fate of Fatty Acids of Different Chain Lengths in Developing Oilseeds

    PubMed Central

    Battey, James F.; Ohlrogge, John B.

    1989-01-01

    To determine if medium and long chain fatty acids can be appropriately metabolized by species that normally produce 16 and 18 carbon fatty acids, homogenates of developing Cuphea wrightii, Carthamus tinctorius, and Crambe abyssinica seeds were incubated with radiolabeled lauric, palmitic, oleic, and erucic acids. In all three species, acyl-CoA synthetase showed broad substrate specificity in synthesis of acyl-coenzyme A (CoA) from any of the fatty acids presented. In Carthamus, two- to fivefold less of the foreign FAs, lauric, and erucic acid was incorporated into acyl-CoAs than palmitic and oleic acid. Lauric and erucic acid also supported less glycerolipid synthesis in Carthamus than palmitic and oleic acid, but the rate of acyl-CoA synthesis did not control rate of glycerolipid synthesis. In all species examined, medium and long chain fatty acids were incorporated predominantly into triacylglycerols and were almost excluded from phospholipid synthesis, whereas palmitic and oleic acid were found predominantly in polar lipids. However, the rate of esterification of unusual fatty acids to triacylglycerol is slow in species that do not normally synthesize these acyl substrates. PMID:16666885

  13. [Phosphate solubilization of Aureobasidium pullulan F4 and its mechanism].

    PubMed

    Wang, Dan; Zhan, Jing; Sun, Qing-Ye

    2014-07-01

    The Aureobasidium pullulans F4 was isolated from the rhizosphere of Hippochaete ramosissimum in Tongguanshan mine wasteland in Tongling City, Anhui Province. Liquid culture was conducted with four kinds of phosphorus sources, calcium phosphate, aluminum phosphate, ferric phosphate and rock phosphate to determine the pH, dissolved phosphorus, phosphorus in the bacteria and organic acid in the solution. The results showed that the phosphate solubilization by A. pullulans F4 varied with phosphorus sources, which decreased in order of aluminum phosphate > ferric phosphate, calcium phosphate > rock phosphate. The amounts of dissolved phosphorus in the different treatments were all higher than 200 mg x L(-1). The pH of the medium dropped immediately in 48 h, and the aluminum phosphate and ferric phosphate treatments showed a greater decrease in pH than the calcium phosphate and rock phosphate treatments. The organic acid synthesized by A. pullulans F4 included oxalic acid, citric acid and tartaric acid, and oxalic acid, among which oxalic acid was the dominated component. The phosphate dissolving capacity of A. pullulans F4 showed no significant correlation with organic acid, but significantly correlated with the pH. The available phosphorus was significantly improved with the combined application of A. pullulans F4 and glucose, suggesting A. pullulans F4 was a potent candidate for remediation of copper mine wastelands.

  14. Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Zheng, Dao-Qiong; Wu, Xue-Chang; Wang, Pin-Mei; Chi, Xiao-Qin; Tao, Xiang-Lin; Li, Ping; Jiang, Xin-Hang; Zhao, Yu-Hua

    2011-03-01

    Acetic acid existing in a culture medium is one of the most limiting constraints in yeast growth and viability during ethanol fermentation. To improve acetic acid tolerance in Saccharomyces cerevisiae strains, a drug resistance marker-aided genome shuffling approach with higher screen efficiency of shuffled mutants was developed in this work. Through two rounds of genome shuffling of ultraviolet mutants derived from the original strain 308, we obtained a shuffled strain YZ2, which shows significantly faster growth and higher cell viability under acetic acid stress. Ethanol production of YZ2 (within 60 h) was 21.6% higher than that of 308 when 0.5% (v/v) acetic acid was added to fermentation medium. Membrane integrity, higher in vivo activity of the H+-ATPase, and lower oxidative damage after acetic acid treatment are the possible reasons for the acetic acid-tolerance phenotype of YZ2. These results indicated that this novel genome shuffling approach is powerful to rapidly improve the complex traits of industrial yeast strains.

  15. The influence of L-phenylalanine, methyl jasmonate and sucrose concentration on the accumulation of phenolic acids in Exacum affine Balf. f. ex Regel shoot culture.

    PubMed

    Skrzypczak-Pietraszek, Ewa; Słota, Joanna; Pietraszek, Jacek

    2014-01-01

    Phenolic acids are an important group of plant secondary metabolites with various, valuable therapeutic properties. Apart from plants growing in the open air, tissue cultures can be an alternative source of the secondary metabolites. The yield of their accumulation in in vitro cultures can be increased by different methods, including culture medium supplementation with precursors, elicitors and changing the standard amounts of the medium components. The purpose of this study was to investigate the influence of the precursor (L-phenylalanine), the elicitor (methyl jasmonate) and a higher sucrose concentration on the phenolic acids accumulation in the agitated shoot cultures of Exacum affine Balf. f. ex Regel (Gentianaceae). Qualitative and quantitative analyses of the phenolic acids in methanolic extracts from the biomass were conducted by applying the HPLC method. Fourteen phenolic acids and cinnamic acid were found in all samples. The total content of free phenolic acids increased from approximately 0.242% to 0.635% (2.6-fold) and the total content of the whole phenolic acids (free and bound) - from 0.712% to 1.160% (1.6-fold). The studies show that the best variant for the accumulation of most of the identified phenolic acids contained 6% of sucrose (double the standard amount), L-phenylalanine 1.6 gL(-1) of medium and methyl jasmonate 100 μM. The analysis of the results in the experiment presented here showed that it is possible to increase the accumulation of the phenolic acids in Exacum affine shoot cultures - by adding the precursor (L-phenylalanine), the elicitor (methyl jasmonate) and by increasing the sucrose concentration.

  16. A membrane-associated adenylate cyclase modulates lactate dehydrogenase and creatine kinase activities required for bull sperm capacitation induced by hyaluronic acid.

    PubMed

    Fernández, Silvina; Córdoba, Mariana

    2017-04-01

    Hyaluronic acid, as well as heparin, is a glycosaminoglycan present in the female genital tract of cattle. The aim of this study was to evaluate oxidative metabolism and intracellular signals mediated by a membrane-associated adenylate cyclase (mAC), in sperm capacitation with hyaluronic acid and heparin, in cryopreserved bull sperm. The mAC inhibitor, 2',5'-dideoxyadenosine, was used in the present study. Lactate dehydrogenase (LDH) and creatine kinase (CK) activities and lactate concentration were determined spectrophotometrically in the incubation medium. Capacitation and acrosome reaction were evaluated by chlortetracycline technique, while plasma membrane and acrosome integrity were determined by trypan blue stain/differential interference contrast microscopy. Heparin capacitated samples had a significant decrease in LDH and CK activities, while in hyaluronic acid capacitated samples LDH and CK activities both increased compared to control samples, in heparin and hyaluronic acid capacitation conditions, respectively. A significant increase in lactate concentration in the incubation medium occurred in hyaluronic acid-treated sperm samples compared to heparin treatment, indicating this energetic metabolite is produced during capacitation. The LDH and CK enzyme activities and lactate concentrations in the incubation medium were decreased with 2',5'-dideoxyadenosine treatment in hyaluronic acid samples. The mAC inhibitor significantly inhibited heparin-induced capacitation of sperm cells, but did not completely inhibit hyaluronic acid capacitation. Therefore, hyaluronic acid and heparin are physiological glycosaminoglycans capable of inducing in vitro capacitation in cryopreserved bull sperm, stimulating different enzymatic pathways and intracellular signals modulated by a mAC. Hyaluronic acid induces sperm capacitation involving LDH and CK activities, thereby reducing oxidative metabolism, and this process is mediated by mAC. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride

    PubMed Central

    Roe, Charles R.; Sweetman, Lawrence; Roe, Diane S.; David, France; Brunengraber, Henri

    2002-01-01

    The current dietary treatment of long-chain fatty acid oxidation defects (high carbohydrate with medium-even-chain triglycerides and reduced amounts of long-chain fats) fails, in many cases, to prevent cardiomyopathy, rhabdomyolysis, and muscle weakness. We hypothesized that the apparent defect in energy production results from a depletion of the catalytic intermediates of the citric acid cycle via leakage through cell membranes (cataplerosis). We further hypothesized that replacing dietary medium-even-chain fatty acids (precursors of acetyl-CoA) by medium-odd-chain fatty acids (precursors of acetyl-CoA and anaplerotic propionyl-CoA) would restore energy production and improve cardiac and skeletal muscle function. We fed subjects with long-chain defects a controlled diet in which the fat component was switched from medium-even-chain triglycerides to triheptanoin. In three patients with very-long-chain acyl-CoA dehydrogenase deficiency, this treatment led rapidly to clinical improvement that included the permanent disappearance of chronic cardiomyopathy, rhabdomyolysis, and muscle weakness (for more than 2 years in one child), and of rhabdomyolysis and weakness in the others. There was no evidence of propionyl overload in these patients. The treatment has been well tolerated for up to 26 months and opens new avenues for the management of patients with mitochondrial fat oxidation disorders. PMID:12122118

  18. Induction of L-phenylalanine ammonia-lyase during utilization of phenylalanine as a carbon or nitrogen source in Rhodotorula glutinis.

    PubMed Central

    Marusich, W C; Jensen, R A; Zamir, L O

    1981-01-01

    Rhodotorula glutinis is a convenient source of L-phenylalanine ammonia-lyase, an enzyme that is useful as a biochemical reagent in the assay of L-phenylalanine. There have been previous descriptions of induced lyase production in complex medium where induction occurs late in exponential growth, suggesting a role in secondary metabolism such as is the case in higher plants. A higher specific activity of L-phenylalanine ammonia-lyase (sixfold higher than a complex medium) can be obtained during midexponential growth in a defined medium containing L-phenylalanine as the sole source of carbon. L-Phenylalanine will also induce lyase synthesis during exponential growth in minimal in which L-phenylalanine is the sole source of nitrogen. The appearance of lyase in complex medium supplemented with L-phenylalanine is probably triggered fortuitously by exhaustion late in growth of a prime source of nitrogen. In this study, R. glutinis appeared to express a single lyase enzyme, regardless of whether induction was nitrogen signaled or carbon signaled. Thin-layer chromatographic analysis of ether extracts prepared from cultures induced with doubly labeled (U-14C; ring-4-3H) L-phenylalanine provided evidence of a catabolic sequence containing cinnamic acid, benzoic acid, and 4-hydroxybenzoic acid as degradative intermediates. 3,4-Dihydroxybenzoic acid was not identified as a catabolic intermediate. PMID:7195398

  19. Inhibition of Growth of Candida albicans by a Lysozyme-chitosan Conjugate, LYZOX and its Combination with Decanoic Acid.

    PubMed

    Kageshima, Hiroki; Hayama, Kazumi; Takahashi, Miki; Abe, Miho; Yamada, Tsuyoshi; Saito, Akira; Hirano, Shoichiro; Murakami, Yoichi; Abe, Shigeru

    2017-01-01

    A lysozyme-chitosan conjugate preparation (LYZOX), produced from egg white lysozyme and chitosan by Maillard reaction, is a commercial product developed as a cosmetic ingredient or food additive. Effects of LYZOX on in vitro growth of Candida albicans were examined. C. albicans cells were treated with LYZOX for 3 hrs, and then washed and cultured for an additional 16 hrs in modified RPMI1640 medium. Mycelial growth of C. albicans was clearly inhibited by more than 100 μg/ml of LYZOX in a concentration-dependent manner. On the other hand, corresponding concentration of chitosan or lysozyme or their mixture only scarcely showed clear inhibitory effect. Similarly, anti-Candida activity of the combination of LYZOX and decanoic acid, a middle-chain fatty acid, was also examined. Inhibitory activity of this combination against mycelial growth of C. albicans was very potent and appeared synergistic, since fractionated inhibitory concentration (FIC) index for 70% growth inhibition was calculated to be 0.20. Oral application of this combination improved the symptoms of Candida-infected-tongue in an experimental murine candidiasis model. On the basis of these results, the possible application of LYZOX as a new functional product with anti-candida activity was discussed.

  20. Utilizing biotechnology in producing fats and oils with various nutritional properties.

    PubMed

    Flickinger, Brent D

    2007-01-01

    The role of dietary fat in health and wellness continues to evolve. In today's environment, trans fatty acids and obesity are issues that are impacted by dietary fat. In response to new information in these areas, changes in the amount and composition of edible fats and oils have occurred and are occurring. These compositional changes include variation in fatty acid composition and innovation in fat structure. Soybean, canola, and sunflower are examples of oilseeds with varied fatty acid composition, including mid-oleic, high-oleic, and low-linolenic traits. These trait-enhanced oils are aimed to displace partially hydrogenated vegetable oils primarily in frying applications. Examples of oils with innovation in fat structure include enzyme interesterified (EIE) fats and oils and diacylglycerol oil. EIE fats are a commercial edible fat innovation, where a lipase is used to modify the fat structure of a blend of hard fat and liquid oil. EIE fats are aimed to displace partially hydrogenated vegetable oils in baking and spread applications. Diacylglycerol and medium-chain triglyceride (MCT)-based oils are commercial edible oil innovations. Diacylglycerol and MCT-based oils are aimed for individuals looking to store less of these fats as body fat when they are used in place of traditional cooking and salad oils.

  1. Mixed monofunctional extractants for trivalent actinide/lanthanide separations: TALSPEAK-MME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Aaron T.; Nash, Kenneth L.

    The basic features of an f-element extraction process based on a solvent composed of equimolar mixtures of Cyanex-923 (a mixed trialkyl phosphine oxide) and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) extractants in n-dodecane are investigated in this report. This system, which combines features of the TRPO and TALSPEAK processes, is based on co-extraction of trivalent lanthanides and actinides from 0.1 to 1.0 M HNO 3 followed by application of a buffered aminopolycarboxylate solution strip to accomplish a Reverse TALSPEAK selective removal of actinides. This mixed-extractant medium could enable a simplified approach to selective trivalent f-element extraction and actinide partitioning in amore » single process. As compared with other combined process applications in development for more compact actinide partitioning processes (DIAMEX-SANEX, GANEX, TRUSPEAK, ALSEP), this combination features only monofunctional extractants with high solubility limits and comparatively low molar mass. Selective actinide stripping from the loaded extractant phase is done using a glycine-buffered solution containing N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) or triethylenetetramine-N,N,N',N'',N''',N'''-hexaacetic acid (TTHA). Lastly, the results reported provide evidence for simplified interactions between the two extractants and demonstrate a pathway toward using mixed monofunctional extractants to separate trivalent actinides (An) from fission product lanthanides (Ln).« less

  2. Mixed monofunctional extractants for trivalent actinide/lanthanide separations: TALSPEAK-MME

    DOE PAGES

    Johnson, Aaron T.; Nash, Kenneth L.

    2015-08-20

    The basic features of an f-element extraction process based on a solvent composed of equimolar mixtures of Cyanex-923 (a mixed trialkyl phosphine oxide) and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) extractants in n-dodecane are investigated in this report. This system, which combines features of the TRPO and TALSPEAK processes, is based on co-extraction of trivalent lanthanides and actinides from 0.1 to 1.0 M HNO 3 followed by application of a buffered aminopolycarboxylate solution strip to accomplish a Reverse TALSPEAK selective removal of actinides. This mixed-extractant medium could enable a simplified approach to selective trivalent f-element extraction and actinide partitioning in amore » single process. As compared with other combined process applications in development for more compact actinide partitioning processes (DIAMEX-SANEX, GANEX, TRUSPEAK, ALSEP), this combination features only monofunctional extractants with high solubility limits and comparatively low molar mass. Selective actinide stripping from the loaded extractant phase is done using a glycine-buffered solution containing N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) or triethylenetetramine-N,N,N',N'',N''',N'''-hexaacetic acid (TTHA). Lastly, the results reported provide evidence for simplified interactions between the two extractants and demonstrate a pathway toward using mixed monofunctional extractants to separate trivalent actinides (An) from fission product lanthanides (Ln).« less

  3. Effects of calcium channel blockers on the contractility of the filariid Acanthocheilonema viteae.

    PubMed

    Christ, D; Stillson, T

    1992-01-01

    The role of calcium in muscle contractility was explored in the filarial nematode Acanthocheilonema viteae (Dipetalonema viteae). The parasite was slit open longitudinally and mounted in a smooth-muscle chamber that had been filled with aerated (95% N2/5% CO2) physiological solution at 37 degrees C. Nifedipine (10(-6) M) and cadmium (3 x 10(-5) M) reduced the spontaneous isotonic contractions of A. viteae, whereas verapamil (10(-5) M) and diltiazem (10(-5) M) enhanced them. The effects of nifedipine and verapamil did not appear to be due to the solvent ethanol. All of the drugs reduced the maximal contraction induced by acetylcholine (ACh, 10(-5) M), although nifedipine was the most potent. After the exposure of worm preparations to a calcium-free medium containing ethyleneglycol-bis-(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA, 10(-4) M) for 1 h, application of ACh (10(-5) M) induced a small, transient contraction. Subsequent applications of ACh in this medium had no effect. Thus, the nematode muscle contraction appears to depend on extracellular calcium. Nifedipine, diltiazem, and verapamil could act by reducing the calcium influx across the muscle membrane.

  4. Biotechnological Production of Docosahexaenoic Acid Using Aurantiochytrium limacinum: Carbon Sources Comparison And Growth Characterization

    PubMed Central

    Abad, Sergi; Turon, Xavier

    2015-01-01

    Aurantiochytrium limacinum, a marine heterotrophic protist/microalga has shown interesting yields of docosahexaenoic acid (DHA) when cultured with different carbon sources: glucose, pure and crude glycerol. A complete study in a lab-scale fermenter allowed for the characterization and comparison of the growth kinetic parameters corresponding to each carbon source. Artificial Marine Medium (AMM) with glucose, pure and crude glycerol offered similar biomass yields. The net growth rates (0.10–0.12 h−1), biomass (0.7–0.8 g cells/g Substrate) and product (0.14–0.15 g DHA/g cells) yields, as well as DHA productivity were similar using the three carbon sources. Viable potential applications to valorize crude glycerol are envisioned to avoid an environmental problem due to the excess of byproduct. PMID:26690180

  5. Ibuprofen-loaded poly(lactic-co-glycolic acid) films for controlled drug release.

    PubMed

    Pang, Jianmei; Luan, Yuxia; Li, Feifei; Cai, Xiaoqing; Du, Jimin; Li, Zhonghao

    2011-01-01

    Ibuprofen- (IBU) loaded biocompatible poly(lactic-co-glycolic acid) (PLGA) films were prepared by spreading polymer/ibuprofen solution on the nonsolvent surface. By controlling the weight ratio of drug and polymer, different drug loading polymer films can be obtained. The synthesized ibuprofen-loaded PLGA films were characterized with scanning electron microscopy, powder X-ray diffraction, and differential scanning calorimetry. The drug release behavior of the as-prepared IBU-loaded PLGA films was studied to reveal their potential application in drug delivery systems. The results show the feasibility of the as-obtained films for controlling drug release. Furthermore, the drug release rate of the film could be controlled by the drug loading content and the release medium. The development of a biodegradable ibuprofen system, based on films, should be of great interest in drug delivery systems.

  6. A quasi-universal medium to break the aerobic/anaerobic bacterial culture dichotomy in clinical microbiology.

    PubMed

    Dione, N; Khelaifia, S; La Scola, B; Lagier, J C; Raoult, D

    2016-01-01

    In the mid-19th century, the dichotomy between aerobic and anaerobic bacteria was introduced. Nevertheless, the aerobic growth of strictly anaerobic bacterial species such as Ruminococcus gnavus and Fusobacterium necrophorum, in a culture medium containing antioxidants, was recently demonstrated. We tested aerobically the culture of 623 bacterial strains from 276 bacterial species including 82 strictly anaerobic, 154 facultative anaerobic, 31 aerobic and nine microaerophilic bacterial species as well as ten fungi. The basic culture medium was based on Schaedler agar supplemented with 1 g/L ascorbic acid and 0.1 g/L glutathione (R-medium). We successively optimized this media, adding 0.4 g/L uric acid, using separate autoclaving of the component, or adding haemin 0.1 g/L or α-ketoglutarate 2 g/L. In the basic medium, 237 bacterial species and ten fungal species grew but with no growth of 36 bacterial species, including 22 strict anaerobes. Adding uric acid allowed the growth of 14 further species including eight strict anaerobes, while separate autoclaving allowed the growth of all tested bacterial strains. To extend its potential use for fastidious bacteria, we added haemin for Haemophilus influenzae, Haemophilus parainfluenzae and Eikenella corrodens and α-ketoglutarate for Legionella pneumophila. This medium allowed the growth of all tested strains with the exception of Mycobacterium tuberculosis and Mycobacterium bovis. Testing primoculture and more fastidious species will constitute the main work to be done, but R-medium coupled with a rapid identification method (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) will facilitate the anaerobic culture in clinical microbiology laboratories. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Phenotypic and genotypic characterization of lactic acid bacteria from traditional cheese in Khorramabad city of Iran with probiotic potential.

    PubMed

    Ghahremani, Enayat; Mardani, Mahnaz; Rezapour, Sadegh

    2015-03-01

    Lactic acid bacteria (LAB) with proteolitic activity are used as aromatic and antibacterial substances, cholesterol reduces, bile salt hydrolyses, and probiotic. The aims of this project were to isolate and identify natural LAB flora involved in traditional fermentation in cheeses of Khoramabad city and also to survey their probiotic potential. In order to achieve this goal, LAB were isolated and characterized using phenotypic and genotypic methods (PCR-sequencing); in the next stage, they were analyzed lowering cholesterol medium, hydrolysis of the bile, resistance to bile-resistant PH acidic stomach. At the end of the study, 88 cocci and 3 bacill were found: 58 Enterococcus faecium, 16 Enterococcus hirae, 5 Lactococcus lactis, 3 Lactobacillus plantarum, and 9 undetermined. The probiotic results of the bacteria had effects on the reduction of cholesterol, resistance to stomach acid, had relative antibacterial effects, and some strains had effects on hydrolyzing the bile. For further identification, the PCR method and the application of 16s-DNA-ITS genes and its sequencing were found useful. This study showed that lactic acid bacteria in the traditional cheese of the Khorramabad city have relative probiotic effect and that these lactic acid bacteria in fermented milk are suitable.

  8. Sequential Mixed Cultures: From Syngas to Malic Acid

    PubMed Central

    Oswald, Florian; Dörsam, Stefan; Veith, Nicolas; Zwick, Michaela; Neumann, Anke; Ochsenreither, Katrin; Syldatk, Christoph

    2016-01-01

    Synthesis gas (syngas) fermentation using acetogenic bacteria is an approach for production of bulk chemicals like acetate, ethanol, butanol, or 2,3-butandiol avoiding the fuel vs. food debate by using carbon monoxide, carbon dioxide, and hydrogen from gasification of biomass or industrial waste gases. Suffering from energetic limitations, yields of C4-molecules produced by syngas fermentation are quite low compared with ABE fermentation using sugars as a substrate. On the other hand, fungal production of malic acid has high yields of product per gram metabolized substrate but is currently limited to sugar containing substrates. In this study, it was possible to show that Aspergilus oryzae is able to produce malic acid using acetate as sole carbon source which is a main product of acetogenic syngas fermentation. Bioreactor cultivations were conducted in 2.5 L stirred tank reactors. During the syngas fermentation part of the sequential mixed culture, Clostridium ljungdahlii was grown in modified Tanner medium and sparged with 20 mL/min of artificial syngas mimicking a composition of clean syngas from entrained bed gasification of straw (32.5 vol-% CO, 32.5 vol-% H2, 16 vol-% CO2, and 19 vol-% N2) using a microsparger. Syngas consumption was monitored via automated gas chromatographic measurement of the off-gas. For the fungal fermentation part gas sparging was switched to 0.6 L/min of air and a standard sparger. Ammonia content of medium for syngas fermentation was reduced to 0.33 g/L NH4Cl to meet the requirements for fungal production of dicarboxylic acids. Malic acid production performance of A. oryzae in organic acid production medium and syngas medium with acetate as sole carbon source was verified and gave YP∕S values of 0.28 g/g and 0.37 g/g respectively. Growth and acetate formation of C. ljungdahlii during syngas fermentation were not affected by the reduced ammonia content and 66 % of the consumed syngas was converted to acetate. The overall conversion of CO and H2 into malic acid was calculated to be 3.5 g malic acid per mol of consumed syngas or 0.22 g malic acid per gram of syngas. PMID:27445993

  9. [Determination of peracetic acid and hydrogen peroxide in a preparation].

    PubMed

    Bodiroga, Milanka; Ognjanović, Jasminka

    2002-01-01

    Iodometric and permanganometric titrations were used for determination of peracetic acid and hydrogen peroxide (H2O2) in the mixture. Two procedures were described and compared. Titrations could be done in only one vessel, in the same reaction mixture, when iodometric titration of peracetic acid was continued after the permanganometric titration of H2O2, (procedure A). Peracetic acid and H2O2, as oxidizing agents, reacted with potassium iodide in an acid medium, evolving iodine. This reaction was used for the quantitative iodometric determination of total peroxide in procedure B. H2O2 reacted with potassium permanganate in acid medium, but peracetic acid did not react under the same conditions. That made possible the selective permanganometric determination of H2O2 in the presence of peracetic acid. The procedure B was performed in two titration vessels (KV = 3.4% for peracetic acid, 0.6% for H2O2). The procedure A for iodometric determination of peracetic acid in one titration vessel after permanganometric titration of H2O2 was recommended (KV = 2.5% for peracetic acid, 0.45% for H2O2).

  10. Design of an efficient medium for heterologous protein production in Yarrowia lipolytica: case of human interferon alpha 2b.

    PubMed

    Gasmi, Najla; Ayed, Atef; Nicaud, Jean-Marc; Kallel, Héla

    2011-05-20

    The non conventional yeast Yarrowia lipolytica has aroused a strong industrial interest for heterologous protein production. However most of the studies describing recombinant protein production by this yeast rely on the use of complex media, such media are not convenient for large scale production particularly for products intended for pharmaceutical applications. In addition medium composition can also affect the production yield. Hence it is necessary to design an efficient medium for therapeutic protein expression by this host. Five different media, including four minimal media and a complex medium, were assessed in shake flasks for the production of human interferon alpha 2b (hIFN α2b) by Y. lipolytica under the control of POX2 promoter inducible with oleic acid. The chemically defined medium SM4 formulated by Invitrogen for Pichia pastoris growth was the most suitable. Using statistical experimental design this medium was further optimized. The selected minimal medium consisting in SM4 supplemented with 10 mg/l FeCl₃, 1 g/l glutamate, 5 ml/l PTM1 (Pichia Trace Metals) solution and a vitamin solution composed of myo-inositol, thiamin and biotin was called GNY medium. Compared to shake flask, bioreactor culture in GNY medium resulted in 416-fold increase of hIFN α2b production and 2-fold increase of the biological activity. Furthermore, SM4 enrichment with 5 ml/l PTM1 solution contributed to protect hIFN α2b against the degradation by the 28 kDa protease identified by zymography gel in culture supernatant. The screening of the inhibitory effect of the trace elements present in PTM1 solution on the activity of this protease was achieved using a Box-Behnken design. Statistical data analysis showed that FeCl₃ and MnSO₄ had the most inhibitory effect. We have designed an efficient medium for large scale production of heterologous proteins by Y. lipolytica. The optimized medium GNY is suitable for the production of hIFN α2b with the advantage that no complex nitrogen sources with non-defined composition were required.

  11. Influence of organic supplements on production of shoot and callus biomass and accumulation of bacoside in Bacopa monniera (L.) Pennell.

    PubMed

    Parale, Anuradha; Barmukh, Rajkumar; Nikam, Tukaram

    2010-04-01

    Production of valuable secondary metabolites through plant cell or organ culture is the best suited alternative to extraction of whole plant material and to increase production of secondary metabolites in in-vitro systems, feeding precursor or intermediate metabolites is an obvious and popular approach. The present investigation was aimed to study the influence of feeding of organic supplements, glycine (0-125 μM), ferulic acid (0-200 μM), phenylalanine (0-200 μM), α-ketoglutaric acid (0-200 μM) and pyruvic acid (0-200 μM) on production of bacoside-A (a triterpenoid type secondary metabolite responsible for cognition effects) in shoot and callus biomass of Bacopa monniera (L.) Pennell. The shoots were raised in liquid Murashige and Skoog's (MS) medium fortified with 5 μM 6-benzyladenine (BA) and callus biomass on agar solidified MS medium containing 1 μM 2,4-dichlorophenoxyacetic acid (2,4 -D) in conjunction with 5 μM 1-napthaleneacetic acid (NAA). Among the organic supplements used, 100 μM pyruvic acid effectively enhanced the production of bacoside-A in shoot as well as callus biomass. The bacoside-A content in in-vitro raised shoot biomass was 4.0 and 1.2 times higher as compared to control and shoot biomass of naturally grown plants respectively. Inclusion of pyruvic acid in MS medium for in-vitro shoot cultures of B. monniera, can be adapted for enhanced production of bacoside-A.

  12. Cereal-based biorefinery development: utilisation of wheat milling by-products for the production of succinic acid.

    PubMed

    Dorado, M Pilar; Lin, Sze Ki Carol; Koutinas, Apostolis; Du, Chenyu; Wang, Ruohang; Webb, Colin

    2009-08-10

    A novel wheat-based bioprocess for the production of a nutrient-complete feedstock for the fermentative succinic acid production by Actinobacillus succinogenes has been developed. Wheat was fractionated into bran, middlings and flour. The bran fraction, which would normally be a waste product of the wheat milling industry, was used as the sole medium in two solid-state fermentations (SSF) of Aspergillus awamori and Aspergillus oryzae that produce enzyme complexes rich in amylolytic and proteolytic enzymes, respectively. The resulting fermentation solids were then used as crude enzyme sources, by adding directly to an aqueous suspension of milled bran and middlings fractions (wheat flour milling by-products) to generate a hydrolysate containing over 95g/L glucose, 25g/L maltose and 300mg/L free amino nitrogen (FAN). This hydrolysate was then used as the sole medium for A. succinogenes fermentations, which led to the production of 50.6g/L succinic acid. Supplementation of the medium with yeast extract did not significantly improve succinic acid production though increasing the inoculum concentration to 20% did result in the production of 62.1g/L succinic acid. Results indicated that A. succinogenes cells were able to utilise glucose and maltose in the wheat hydrolysate for cell growth and succinic acid production. The proposed process could be potentially integrated into a wheat-milling process to upgrade the wheat flour milling by-products (WFMB) into succinic acid, one of the future platform chemicals of a sustainable chemical industry.

  13. PHAGE FORMATION IN STAPHYLOCOCCUS MUSCAE CULTURES

    PubMed Central

    Price, Winston H.

    1949-01-01

    1. The total nucleic acid synthesized by normal and by infected S. muscae suspensions is approximately the same. This is true for either lag phase cells or log phase cells. 2. The amount of nucleic acid synthesized per cell in normal cultures increases during the lag period and remains fairly constant during log growth. 3. The amount of nucleic acid synthesized per cell by infected cells increases during the whole course of the infection. 4. Infected cells synthesize less RNA and more DNA than normal cells. The ratio of RNA/DNA is larger in lag phase cells than in log phase cells. 5. Normal cells release neither ribonucleic acid nor desoxyribonucleic acid into the medium. 6. Infected cells release both ribonucleic acid and desoxyribonucleic acid into the medium. The time and extent of release depend upon the physiological state of the cells. 7. Infected lag phase cells may or may not show an increased RNA content. They release RNA, but not DNA, into the medium well before observable cellular lysis and before any virus is liberated. At virus liberation, the cell RNA content falls to a value below that initially present, while DNA, which increased during infection falls to approximately the original value. 8. Infected log cells show a continuous loss of cell RNA and a loss of DNA a short time after infection. At the time of virus liberation the cell RNA value is well below that initially present and the cells begin to lyse. PMID:18139006

  14. Low pH increases the yield of exosome isolation.

    PubMed

    Ban, Jae-Jun; Lee, Mijung; Im, Wooseok; Kim, Manho

    2015-05-22

    Exosomes are the extracellular vesicles secreted by various cells. Exosomes mediate intercellular communication by delivering a variety of molecules between cells. Cancer cell derived exosomes seem to be related with tumor progression and metastasis. Tumor microenvironment is thought to be acidic and this low pH controls exosome physiology, leading to tumor progression. Despite the importance of microenvironmental pH on exosome, most of exosome studies have been performed without regard to pH. Therefore, the difference of exosome stability and yield of isolation by different pH need to be studied. In this research, we investigated the yield of total exosomal protein and RNA after incubation in acidic, neutral and alkaline conditioned medium. Representative exosome markers were investigated by western blot after incubation of exosomes in different pH. As a result, the concentrations of exosomal protein and nucleic acid were significantly increased after incubation in the acidic medium compared with neutral medium. The higher levels of exosome markers including CD9, CD63 and HSP70 were observed after incubation in an acidic environment. On the other hand, no exosomal protein, exosomal RNA and exosome markers have been detected after incubation in an alkaline condition. In summary, our results indicate that the acidic condition is the favorable environment for existence and isolation of exosomes. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Agdc1p – a Gallic Acid Decarboxylase Involved in the Degradation of Tannic Acid in the Yeast Blastobotrys (Arxula) adeninivorans

    PubMed Central

    Meier, Anna K.; Worch, Sebastian; Böer, Erik; Hartmann, Anja; Mascher, Martin; Marzec, Marek; Scholz, Uwe; Riechen, Jan; Baronian, Kim; Schauer, Frieder; Bode, Rüdiger; Kunze, Gotthard

    2017-01-01

    Tannins and hydroxylated aromatic acids, such as gallic acid (3,4,5-trihydroxybenzoic acid), are plant secondary metabolites which protect plants against herbivores and plant-associated microorganisms. Some microbes, such as the yeast Arxula adeninivorans are resistant to these antimicrobial substances and are able to use tannins and gallic acid as carbon sources. In this study, the Arxula gallic acid decarboxylase (Agdc1p) which degrades gallic acid to pyrogallol was characterized and its function in tannin catabolism analyzed. The enzyme has a higher affinity for gallic acid (Km −0.7 ± 0.2 mM, kcat −42.0 ± 8.2 s−1) than to protocatechuic acid (3,4-dihydroxybenzoic acid) (Km −3.2 ± 0.2 mM, kcat −44.0 ± 3.2 s−1). Other hydroxylated aromatic acids, such as 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid are not gallic acid decarboxylase substrates. A. adeninivorans G1212/YRC102-AYNI1-AGDC1, which expresses the AGDC1 gene under the control of the strong nitrate inducible AYNI1 promoter achieved a maximum gallic acid decarboxylase activity of 1064.4 U/l and 97.5 U/g of dry cell weight in yeast grown in minimal medium with nitrate as nitrogen source and glucose as carbon source. In the same medium, gallic acid decarboxylase activity was not detected for the control strain G1212/YRC102 with AGDC1 expression under the control of the endogenous promoter. Gene expression analysis showed that AGDC1 is induced by gallic acid and protocatechuic acid. In contrast to G1212/YRC102-AYNI1-AGDC1 and G1212/YRC102, A. adeninivorans G1234 [Δagdc1] is not able to grow on medium with gallic acid as carbon source but can grow in presence of protocatechuic acid. This confirms that Agdc1p plays an essential role in the tannic acid catabolism and could be useful in the production of catechol and cis,cis-muconic acid. However, the protocatechuic acid catabolism via Agdc1p to catechol seems to be not the only degradation pathway. PMID:28966611

  16. Agdc1p - a Gallic Acid Decarboxylase Involved in the Degradation of Tannic Acid in the Yeast Blastobotrys (Arxula) adeninivorans.

    PubMed

    Meier, Anna K; Worch, Sebastian; Böer, Erik; Hartmann, Anja; Mascher, Martin; Marzec, Marek; Scholz, Uwe; Riechen, Jan; Baronian, Kim; Schauer, Frieder; Bode, Rüdiger; Kunze, Gotthard

    2017-01-01

    Tannins and hydroxylated aromatic acids, such as gallic acid (3,4,5-trihydroxybenzoic acid), are plant secondary metabolites which protect plants against herbivores and plant-associated microorganisms. Some microbes, such as the yeast Arxula adeninivorans are resistant to these antimicrobial substances and are able to use tannins and gallic acid as carbon sources. In this study, the Arxula gallic acid decarboxylase (Agdc1p) which degrades gallic acid to pyrogallol was characterized and its function in tannin catabolism analyzed. The enzyme has a higher affinity for gallic acid (K m -0.7 ± 0.2 mM, k cat -42.0 ± 8.2 s -1 ) than to protocatechuic acid (3,4-dihydroxybenzoic acid) (K m -3.2 ± 0.2 mM, k cat -44.0 ± 3.2 s -1 ). Other hydroxylated aromatic acids, such as 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid are not gallic acid decarboxylase substrates. A. adeninivorans G1212/YRC102-AYNI1-AGDC1, which expresses the AGDC1 gene under the control of the strong nitrate inducible AYNI1 promoter achieved a maximum gallic acid decarboxylase activity of 1064.4 U/l and 97.5 U/g of dry cell weight in yeast grown in minimal medium with nitrate as nitrogen source and glucose as carbon source. In the same medium, gallic acid decarboxylase activity was not detected for the control strain G1212/YRC102 with AGDC1 expression under the control of the endogenous promoter. Gene expression analysis showed that AGDC1 is induced by gallic acid and protocatechuic acid. In contrast to G1212/YRC102-AYNI1-AGDC1 and G1212/YRC102, A. adeninivorans G1234 [Δ agdc1 ] is not able to grow on medium with gallic acid as carbon source but can grow in presence of protocatechuic acid. This confirms that Agdc1p plays an essential role in the tannic acid catabolism and could be useful in the production of catechol and cis,cis -muconic acid. However, the protocatechuic acid catabolism via Agdc1p to catechol seems to be not the only degradation pathway.

  17. [Effects of simulating acid rain on photosynthesis and chlorophyll fluorescence parameters of Quercus glauca Quercus glauca].

    PubMed

    Wang, Sai; Yi, Li-Ta; Yu, Shu-Quan; Zhang, Chao; Shi, Jing-Jing

    2014-08-01

    At three levels of simulated acid rainfall intensities with pH values of 2.5 (severe), 40 (medium) and 5.6 (light) respectively, the responses of chlorophyll fluorescence and photosynthetic parameters of Quercus glauca seedlings were studied in three acid rainfall treatments, i. e. only the aboveground of seedlings exposed to acid rain (T1), both of the seedlings and soil exposed to acid rain (T2), only the soil exposed to acid rain (T3) compared with blank control (CK). Under the severe acid rainfall, T1 significantly inhibited chlorophyll synthesis, and thus reduced the primary photochemical efficiency of PS II ( F(v)/F(m)), potential activity of PS II (F(v)/F(o)) , apparent quantum (Y), net photosynthetic rate (P(n)), and transpiration rate (T(r)), but increased the light compensation point (LCP) and dark respiration rate (R(d)) of Q. glauca seedlings. T2 inhibited, but T3 played a little enhancement on the aforementioned parameters of Q. glauca seedlings. Under the conditions of medium and light acid rainfall intensities, the above parameters in the three treatments were higher than that of CK, except with lower R(d). The chlorophyll fluorescence and photosynthetic parameters showed a similar tendency in the three treatments, i. e. T2>T3 >T1. It indicated that T1 had the strongest inhibition on seedlings in condition of the severe acid rainfall, while T2 had the most dramatic facilitating effect on seedlings under the medium and light acid rainfall. Intensity of acid rainfall had significant influences on SPAD, F(v)/F(m), F(v)/F(o), Y, P(n), T(r), and maximum photosynthetic rate (A(max)), whereas treatments of acid rainfall affected SPAD, F(v)/F(m), Y, P(n), T(r), A(max) and light saturation point (LSP). The interaction of acid rainfall intensities and treatments played significant effects on SPAD, F(v)/F(m), Y, P(n) and A(max).

  18. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders.

    PubMed

    Augustin, Katrin; Khabbush, Aziza; Williams, Sophie; Eaton, Simon; Orford, Michael; Cross, J Helen; Heales, Simon J R; Walker, Matthew C; Williams, Robin S B

    2018-01-01

    High-fat, low-carbohydrate diets, known as ketogenic diets, have been used as a non-pharmacological treatment for refractory epilepsy. A key mechanism of this treatment is thought to be the generation of ketones, which provide brain cells (neurons and astrocytes) with an energy source that is more efficient than glucose, resulting in beneficial downstream metabolic changes, such as increasing adenosine levels, which might have effects on seizure control. However, some studies have challenged the central role of ketones because medium-chain fatty acids, which are part of a commonly used variation of the diet (the medium-chain triglyceride ketogenic diet), have been shown to directly inhibit AMPA receptors (glutamate receptors), and to change cell energetics through mitochondrial biogenesis. Through these mechanisms, medium-chain fatty acids rather than ketones are likely to block seizure onset and raise seizure threshold. The mechanisms underlying the ketogenic diet might also have roles in other disorders, such as preventing neurodegeneration in Alzheimer's disease, the proliferation and spread of cancer, and insulin resistance in type 2 diabetes. Analysing medium-chain fatty acids in future ketogenic diet studies will provide further insights into their importance in modified forms of the diet. Moreover, the results of these studies could facilitate the development of new pharmacological and dietary therapies for epilepsy and other disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Increased dipicolinic acid production with an enhanced spoVF operon in Bacillus subtilis and medium optimization.

    PubMed

    Takahashi, Fumikazu; Sumitomo, Nobuyuki; Hagihara, Hiroshi; Ozaki, Katsuya

    2015-01-01

    Dipicolinic acid (DPA) is a multi-functional agent for cosmetics, antimicrobial products, detergents, and functional polymers. The aim of this study was to design a new method for producing DPA from renewable material. The Bacillus subtilis spoVF operon encodes enzymes for DPA synthase and the part of lysine biosynthetic pathway. However, DPA is only synthesized in the sporulation phase, so the productivity of DPA is low level. Here, we report that DPA synthase was expressed in vegetative cells, and DPA was produced in the culture medium by replacement of the spoVFA promoter with other highly expressed promoter in B. subtilis vegetative cells, such as spoVG promoter. DPA levels were increased in the culture medium of genetically modified strains. DPA productivity was significantly improved up to 29.14 g/L in 72 h culture by improving the medium composition using a two-step optimization technique with the Taguchi methodology.

  20. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition.

    PubMed

    Adamakis, Ioannis-Dimosthenis; Lazaridis, Polykarpos A; Terzopoulou, Evangelia; Torofias, Stylianos; Valari, Maria; Kalaitzi, Photeini; Rousonikolos, Vasilis; Gkoutzikostas, Dimitris; Zouboulis, Anastasios; Zalidis, Georgios; Triantafyllidis, Konstantinos S

    2018-06-01

    A systematic study of the effect of nitrogen levels in the cultivation medium of Chlorella vulgaris microalgae grown in photobioreactor (PBR) on biomass productivity, biochemical and elemental composition, fatty acid profile, heating value (HHV), and composition of the algae-derived fast pyrolysis (bio-oil) is presented in this work. A relatively high biomass productivity and cell concentration (1.5 g of dry biomass per liter of cultivation medium and 120 × 10 6 cells/ml, respectively) were achieved after 30 h of cultivation under N-rich medium. On the other hand, the highest lipid content (ca. 36 wt.% on dry biomass) was obtained under N-depletion cultivation conditions. The medium and low N levels favored also the increased concentration of the saturated and mono-unsaturated C16:0 and C18:1(n-9) fatty acids (FA) in the lipid/oil fraction, thus providing a raw lipid feedstock that can be more efficiently converted to high-quality biodiesel or green diesel (via hydrotreatment). In terms of overall lipid productivity, taking in consideration both the biomass concentration in the medium and the content of lipids on dry biomass, the most effective system was the N-rich one. The thermal (non-catalytic) pyrolysis of Chlorella vulgaris microalgae produced a highly complex bio-oil composition, including fatty acids, phenolics, ethers, ketones, etc., as well as aromatics, alkanes, and nitrogen compounds (pyrroles and amides), originating from the lipid, protein, and carbohydrate fractions of the microalgae. However, the catalytic fast pyrolysis using a highly acidic ZSM-5 zeolite, afforded a bio-oil enriched in mono-aromatics (BTX), reducing at the same time significantly oxygenated compounds such as phenolics, acids, ethers, and ketones. These effects were even more pronounced in the catalytic fast pyrolysis of Chlorella vulgaris residual biomass (after extraction of lipids), thus showing for the first time the potential of transforming this low value by-product towards high added value platform chemicals.

  1. Chemical evolution. XXI - The amino acids released on hydrolysis of HCN oligomers

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Wos, J. D.; Nooner, D. W.; Oro, J.

    1974-01-01

    Major amino acids released by hydrolysis of acidic and basic HCN oligomers are identified by chromatography as Gly, Asp, and diaminosuccinic acid. Smaller amounts of Ala, Ile and alpha-aminoisobutyric acid are also detected. The amino acids released did not change appreciably when the hydrolysis medium was changed from neutral to acidic or basic. The presence of both meso and d, l-diaminosuccinic acids was established by paper chromatography and on an amino acid analyzer.

  2. Relationship between pH and Medium Dissolved Solids in Terms of Growth and Metabolism of Lactobacilli and Saccharomyces cerevisiae during Ethanol Production

    PubMed Central

    Narendranath, Neelakantam V.; Power, Ronan

    2005-01-01

    The specific growth rates of four species of lactobacilli decreased linearly with increases in the concentration of dissolved solids (sugars) in liquid growth medium. This was most likely due to the osmotic stress exerted by the sugars on the bacteria. The reduction in growth rates corresponded to decreased lactic acid production. Medium pH was another factor studied. As the medium pH decreased from 5.5 to 4.0, there was a reduction in the specific growth rate of lactobacilli and a corresponding decrease in the lactic acid produced. In contrast, medium pH did not have any significant effect on the specific growth rate of yeast at any particular concentration of dissolved solids in the medium. However, medium pH had a significant (P < 0.001) effect on ethanol production. A medium pH of 5.5 resulted in maximal ethanol production in all media with different concentrations of dissolved solids. When the data were analyzed as a 4 (pH levels) by 4 (concentrations of dissolved solids) factorial experiment, there was no synergistic effect (P > 0.2923) observed between pH of the medium and concentration of dissolved solids of the medium in reducing bacterial growth and metabolism. The data suggest that reduction of initial medium pH to 4.0 for the control of lactobacilli during ethanol production is not a good practice as there is a reduction (P < 0.001) in the ethanol produced by the yeast at pH 4.0. Setting the mash (medium) with ≥30% (wt/vol) dissolved solids at a pH of 5.0 to 5.5 will minimize the effects of bacterial contamination and maximize ethanol production by yeast. PMID:15870306

  3. Effects of metabolic pathway precursors and polydimethylsiloxane (PDMS) on poly-(gamma)-glutamic acid production by Bacillus subtilis BL53.

    PubMed

    de Cesaro, Alessandra; da Silva, Suse Botelho; Ayub, Marco Antônio Záchia

    2014-09-01

    The aims of this study were to evaluate the effects of the addition of metabolic precursors and polydimethylsiloxane (PDMS) as an oxygen carrier to cultures of Bacillus subtilis BL53 during the production of γ-PGA. Kinetics analyses of cultivations of different media showed that B. subtilis BL53 is an exogenous glutamic acid-dependent strain. When the metabolic pathway precursors of γ-PGA synthesis, L-glutamine and a-ketoglutaric acid, were added to the culture medium, production of the biopolymer was increased by 20 % considering the medium without these precursors. The addition of 10 % of the oxygen carrier PDMS to cultures caused a two-fold increase in the volumetric oxygen mass transfer coefficient (kLa), improving γ-PGA production and productivity. Finally, bioreactor cultures of B. subtilis BL53 adopting the combination of optimized medium E, added of glutamine, α-ketoglutaric acid, and PDMS, showed a productivity of 1 g L(-1) h(-1) of g-PGA after only 24 h of cultivation. Results of this study suggest that the use of metabolic pathway precursors glutamine and a-ketolgutaric acid, combined with the addition of PDMS as an oxygen carrier in bioreactors, can improve γ-PGA production and productivity by Bacillus strains .

  4. Production of Fumaric Acid in 20-Liter Fermentors

    PubMed Central

    Rhodes, R. A.; Lagoda, A. A.; Misenheimer, T. J.; Smith, M. L.; Anderson, R. F.; Jackson, R. W.

    1962-01-01

    The conditions necessary for the production of fumaric acid in 20-liter fermentors by fermentation of glucose with Rhizopus arrhizus strain NRRL 2582 were determined. Continuous neutralization of fumaric acid was necessary for optimal yields. Yields of the calcium salt were in excess of 65 g of fumaric acid from 100 g of sugar consumed during fermentation of sugar concentrations of 10 to 16%. Conditions established for calcium fumarate production include a simple mineral salts medium, 0.5 v:v:min aeration rate, 300 rev/min agitation rate in a baffled tank, 33 C incubation temperature, CaCO3 to neutralize the acid formed, and a 4 to 5% (v/v) vegetative inoculum. A suitable procedure and medium for the preparation of a vigorous vegetative inoculum were established. The tendency for calcium fumarate fermentations to foam excessively was controlled with a proper antifoam agent added prior to sterilization of the medium and again at daily intervals during fermentation. The production of soluble sodium or potassium fumarates was inhibited when the concentration of fumarates reached 3.5 to 4.0%. No means of overcoming this inhibition was found. Starches and certain other grain-derived carbohydrates were fermented to form calcium fumarate in flask experiments with approximately the same efficiency as was glucose. PMID:16349614

  5. An efficient regeneration and rapid micropropagation protocol for Almond using dormant axillary buds as explants.

    PubMed

    Choudhary, Ravish; Chaudhury, Rekha; Malik, Surendra Kumar; Sharma, Kailash Chandra

    2015-07-01

    An efficient in vitro protocol was standardized for Almond (Prunus dulcis) propagation using dormant axillary buds as explants. Explants were cultured on Murashige and Skoog (MS) and woody plant medium (WPM) supplemented with different concentration/combination(s) of phytohormones. MS basal medium showed lowest shoot induction and took longest duration for shoot initiation. Multiple shoots were induced in MS medium supplemented with the combination of BAP (0.5 mgL(-1)). Cultures showed poor response for rooting in all combinations of plant growth regulators (PGRs) and took 90 days for initiation. Rooting was higher in half strength of MS than in full-strength. The highest root induction (33.33%) was recorded in half MS medium supplemented with 0.1 mgL(-1) IBA (indole-3-butyric acid) followed by full strength of MS medium (20%) supplemented with IBA (0.1 mgL(-1)). α-Naphthalene acetic acid (NAA) was less effective for rooting than IBA. The highest root induction (25%) was found in half strength of MS medium supplemented with 0.1 mgL(-1) NAA followed by full strength of MS medium (20%). The protocol developed would be of use in mass propagation of almond and also support in vitro conservation.

  6. Inhibitory Effects of Caffeic Acid, a Coffee-Related Organic Acid, on the Propagation of Hepatitis C Virus.

    PubMed

    Tanida, Isei; Shirasago, Yoshitaka; Suzuki, Ryosuke; Abe, Ryo; Wakita, Takaji; Hanada, Kentaro; Fukasawa, Masayoshi

    2015-01-01

    Multipurpose cohort studies have demonstrated that coffee consumption reduces the risk of hepatocellular carcinoma (HCC). Given that one of the main causes of HCC is hepatitis C virus (HCV) infection, we examined the effect of caffeic acid, a major organic acid derived from coffee, on the propagation of HCV using an in vitro naïve HCV particle-infection and production system within human hepatoma-derived Huh-7.5.1-8 cells. When cells were treated with 1% coffee extract or 0.1% caffeic acid for 1-h post HCV infection, the amount of HCV particles released into the medium at 3 and 4 days post-infection considerably decreased. In addition, HCV-infected cells cultured with 0.001% caffeic acid for 4 days, also released less HCV particles into the medium. Caffeic acid treatment inhibited the initial stage of HCV infection (i.e., between virion entry and the translation of the RNA genome) in both HCV genotypes 1b and 2a. These results suggest that the treatment of cells with caffeic acid may inhibit HCV propagation.

  7. Extraction of nucleic acids from yeast cells and plant tissues using ethanol as medium for sample preservation and cell disruption.

    PubMed

    Linke, Bettina; Schröder, Kersten; Arter, Juliane; Gasperazzo, Tatiana; Woehlecke, Holger; Ehwald, Rudolf

    2010-09-01

    Here we report that dehydrated ethanol is an excellent medium for both in situ preservation of nucleic acids and cell disruption of plant and yeast cells. Cell disruption was strongly facilitated by prior dehydration of the ethanol using dehydrated zeolite. Following removal of ethanol, nucleic acids were extracted from the homogenate pellet using denaturing buffers. The method provided DNA and RNA of high yield and integrity. Whereas cell wall disruption was essential for extraction of DNA and large RNA molecules, smaller molecules such as tRNAs could be selectively extracted from undisrupted, ethanol-treated yeast cells. Our results demonstrate the utility of absolute ethanol for sample fixation, cell membrane and cell wall disruption, as well as preservation of nucleic acids during sample storage.

  8. 1-Aminocyclopropane-1-carboxylic acid concentrations in shoot-forming and non-shoot-forming tobacco callus cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grady, K.L.; Bassham, J.A.

    1982-09-01

    Shoot-forming tobacco (Nicotiana tabacum var. Wisconsin 38) callus tissues contain significantly lower concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid compared to non-shoot-forming callus tissues. This difference is evident 1 day after subculture to shoot-forming or non-shoot-forming medium, and is maintained through the first week of growth. The lack of auxin in shoot-forming medium is the probable cause for this difference in ACC concentrations.

  9. Microenvironmental pH measurement during sodium naproxenate dissolution in acidic medium by UV/vis imaging.

    PubMed

    Østergaard, Jesper; Jensen, Henrik; Larsen, Susan W; Larsen, Claus; Lenke, Jim

    2014-11-01

    Variable dissolution from sodium salts of drugs containing a carboxylic acid group after passing the acidic environment of the stomach may affect oral bioavailability. The aim of the present proof of concept study was to investigate pH effects in relation to the dissolution of sodium naproxenate in 0.01M hydrochloric acid. For this purpose a UV/vis imaging-based approach capable of measuring microenvironmental pH in the vicinity of the solid drug compact as well as monitoring drug dissolution was developed. Using a pH indicating dye real-time spatially resolved measurement of pH was achieved. Sodium naproxenate, can significantly alter the local pH of the dissolution medium, is eventually neutralized and precipitates as the acidic species naproxen. The developed approach is considered useful for detailed studies of pH dependent dissolution phenomena in dissolution testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Estolides Synthesis Catalyzed by Immobilized Lipases

    PubMed Central

    Aguieiras, Erika C. G.; Veloso, Cláudia O.; Bevilaqua, Juliana V.; Rosas, Danielle O.; da Silva, Mônica A. P.; Langone, Marta A. P.

    2011-01-01

    Estolides are vegetable-oil-based lubricants obtained from oleic acid or any source of hydroxy fatty acids. In this work, the estolides synthesis from oleic acid and methyl ricinoleate (biodiesel from castor oil), using immobilized commercial lipases (Novozym 435, Lipozyme RM-IM, and Lipozyme TL-IM) in a solvent-free medium was investigated. Acid value was used to monitor the reaction progress by determining the consumption of acid present in the medium. Novozym 435 showed the best performance. Water removal improved the conversion. Novozym 435 was more active at atmospheric pressure. Novozym 435 was reused four times with conversion reaching 15% after the fourth reaction at 80°C. Estolides produced under the reaction conditions used in this work presented good properties, such as, low temperature properties as pour point (−24°C), viscosity (23.9 cSt at 40°C and 5.2 cSt at 100°C), and viscosity index (153). PMID:21755040

  11. [Process development for continuous ethanol fermentation by the flocculating yeast under stillage backset conditions].

    PubMed

    Zi, Lihan; Liu, Chenguang; Bai, Fengwu

    2014-02-01

    Propionic acid, a major inhibitor to yeast cells, was accumulated during continuous ethanol fermentation from corn meal hydrolysate by the flocculating yeast under stillage backset conditions. Based on its inhibition mechanism in yeast cells, strategies were developed for alleviating this effect. Firstly, high temperature processes such as medium sterilization generated more propionic acid, which should be avoided. Propionic acid was reduced significantly during ethanol fermentation without medium sterilization, and concentrations of biomass and ethanol increased by 59.3% and 7.4%, respectively. Secondly, the running time of stillage backset should be controlled so that propionic acid accumulated would be lower than its half inhibition concentration IC50 (40 mmol/L). Finally, because low pH augmented propionic acid inhibition in yeast cells, a higher pH of 5.5 was validated to be suitable for ethanol fermentation under the stillage backset condition.

  12. The Effect of Fermentation Time with Probiotic Bacteria on Organic Fertilizer as Daphnia magna Cultured Medium towards Nutrient Quality, Biomass Production and Growth Performance Enhancement

    NASA Astrophysics Data System (ADS)

    Endar Herawati, Vivi; Agung Nugroho, Ristiawan; Pinandoyo; Darmanto, YS; Hutabarat, Johannes

    2018-02-01

    The nutrient quality and growth performance of D. magna are highly depend on the organic fertilizer which is used in its culture medium. The objective of this study was to identify the best fermentation time by using probiotic bacteria on organic fertilizer as mass culture medium to improve its nutrient quality, biomass production, and growth performance. This study was conducted using completely randomized experimental design with five treatments and three repetitions. Organic fertilizers used cultured medium with chicken manure, rejected bread and tofu waste fermented by probiotic bacteria then cultured for 0, 7, 14, 21 and 28 days. The results showed that medium which used 25% chicken manure, 25% tofu waste and 50% rejected bread cultured for 28 days created the highest biomass production, population density and nutrient content of D. magna those are 233,980 ind/L for population density; 134.60 grams for biomass production, 0.574% specific growth rate; 68.06% protein content and 6.91% fat. The highest fatty acid profile is 4.83% linoleic and 3.54% linolenic acid. The highest essential amino acid is 53.94 ppm lysine. In general, the content of ammonia, DO, temperature, and pH during the study were in the good range of D. magna life. The conclusion of this research is medium which used 25% chicken manure, 25% tofu waste and 50% rejected bread cultured for 28 days created the highest biomass production, population and nutrient content of D. magna.

  13. Caprylic acid and medium-chain triglycerides inhibit IL-8 gene transcription in Caco-2 cells: comparison with the potent histone deacetylase inhibitor trichostatin A

    PubMed Central

    Hoshimoto, Aihiro; Suzuki, Yasuo; Katsuno, Tatsuro; Nakajima, Hiroshi; Saito, Yasushi

    2002-01-01

    Medium-chain triglyceride (MCT) is often administered to patients with Crohn's disease (CD) or short-bowel syndrome. However, little is known about the effects of medium-chain fatty acids (MCFAs) and MCT on intestinal inflammation. In this study we examined whether caprylic acid, one of the MCFAs, and MCT suppress IL-8 secretion by differentiated Caco-2 cells.We found for the first time that caprylic acid and MCT suppress IL-8 secretion by Caco-2 cells at the transcriptional level when precultured together for 24 h. We also tried to clarify the mechanism of IL-8 gene inhibition by examining the activation of NF-κB and other transcription factors by electrophoretic mobility shift assay (EMSA), and found that caprylic acid did not modulate their activation.The result of dual-luciferase assay using Caco-2 cells transfected with IL-8 promoter/luciferase reporter plasmid revealed that caprylic acid inhibited the activation of IL-8 promoter.Similar results were observed when cells were precultured with the well-known potent histone deacetylase inhibitor trichostatin A (TSA).We examined the state of H4 acetylation in IL-8 promoter using the technique known as chromatin immunoprecipitation (Chr-IP). TSA rapidly induced H4 acetylation in IL-8 promoter chromatin, whereas caprylic acid did not. These results suggest that the inhibition of IL-8 gene transcription induced by caprylic acid and TSA does not necessarily require the marked suppression of transcription factors, and the mechanism of inhibition of IL-8 gene transcription may be different between caprylic acid and TSA. PMID:12010777

  14. Effect of acetic acid in recycling water on ethanol production for cassava in an integrated ethanol-methane fermentation process.

    PubMed

    Yang, Xinchao; Wang, Ke; Zhang, Jianhua; Tang, Lei; Mao, Zhonggui

    2016-11-01

    Recently, the integrated ethanol-methane fermentation process has been studied to prevent wastewater pollution. However, when the anaerobic digestion reaction runs poorly, acetic acid will accumulate in the recycling water. In this paper, we studied the effect of low concentration of acetic acid (≤25 mM) on ethanol fermentation at different initial pH values (4.2, 5.2 or 6.2). At an initial pH of 4.2, ethanol yields increased by 3.0% and glycerol yields decreased by 33.6% as the acetic acid concentration was increased from 0 to 25 mM. Raising the concentration of acetic acid to 25 mM increased the buffering capacity of the medium without obvious effects on biomass production in the cassava medium. Acetic acid was metabolized by Saccharomyces cerevisiae for the reason that the final concentration of acetic acid was 38.17% lower than initial concentration at pH 5.2 when 25 mM acetic acid was added. These results confirmed that a low concentration of acetic acid in the process stimulated ethanol fermentation. Thus, reducing the acetic acid concentration to a controlled low level is more advantageous than completely removing it.

  15. Optimization of critical medium components using response surface methodology for phenazine-1-carboxylic acid production by Pseudomonas sp. M-18Q.

    PubMed

    Yuan, Li-Li; Li, Ya-Qian; Wang, Yi; Zhang, Xue-Hong; Xu, Yu-Quan

    2008-03-01

    The optimal flask-shaking batch fermentation medium for phenazine-1-carboxylic acid (PCA) production by Pseudomonas sp. M-18Q, a qscR chromosomal inactivated mutant of the strain M18 was studied using statistical experimental design and analysis. The Plackett-Burman design (PBD) was used to evaluate the effects of eight medium components on the production of PCA, which showed that glucose and soytone were the most significant ingredients (P<0.05). The steepest ascent experiment was adopted to determine the optimal region of the medium composition. The optimum composition of the fermentation medium for maximum PCA yield, as determined on the basis of a five-level two-factor central composite design (CCD), was obtained by response surface methodology (RSM). The high correlation between the predicted and observed values indicated the validity of the model. A maximum PCA yield of 1240 mg/l was obtained at 17.81 g/l glucose and 11.47 g/l soytone, and the production was increased by 65.3% compared with that using the original medium, which was at 750 mg/l.

  16. Improved chemically defined basal medium (CMRL-1969) for primary monkey kidney and human diploid cells.

    PubMed

    Healy, G M; Teleki, S; von Seefried, A; Walton, M J; Macmorine, H G

    1971-01-01

    An improved tissue culture basal medium, CMRL-1969, supplemented with serum, has been evaluated by measuring the growth responses of primary cultures of trypsin-dispersed monkey kidney cells (PMKC) and of an established culture of a human diploid cell strain (HDCS). Medium H597, an early modification of medium 199 which has been used successfully in the preparation of poliomyelitis vaccine for 15 years, was used for comparison. In addition, parallel testing was done with Basal Medium Eagle (BME) widely used for the growth of HDCS. The improvements in basal medium CMRL-1969 are attributed to changes in amino acid concentrations, in vitamin composition, and, in particular, to enhanced buffering capacity. The latter has been achieved by the use of free-base amino acids and by increasing the dibasic sodium phosphate. The new medium has already been used to advantage for the production of polioviruses in PMKC where equivalent titers were obtained from cultures initiated with 70% of the number of cells required with earlier media. The population-doubling time was reduced in this system. Also, with small inocula of HDCS, the time required to obtain maximum cell yield was shorter with CMRL-1969 than with BME. Both media were supplemented with 10% calf serum. Maximum cell yields after repeated subcultivation in the new basal medium were greatly increased and the stability of the strain, as shown by chromosomal analysis, was not affected. Basal medium CMRL-1969 can be prepared easily in liquid or powdered form.

  17. Inhibition effects of chlorogenic acid on benign prostatic hyperplasia in mice.

    PubMed

    Huang, Ya; Chen, Huaguo; Zhou, Xin; Wu, Xingdong; Hu, Enming; Jiang, Zhengmeng

    2017-08-15

    This study aimed to evaluate the inhibitory effects and explore mechanisms of chlorogenic acid against testosterone-induced benign prostatic hyperplasia (BPH) in mice. Benign prostatic hyperplasia model was induced in experimental groups by daily subcutaneous injections of testosterone propionate (7.5mg/kg/d) consecutively for 14 d. A total of 60 mice were randomly divided into six groups: (Group 1) normal control group, (Group 2) benign prostatic hyperplasia model control group, (Group 3) benign prostatic hyperplasia mice treated with finasteride at a dose of 1mg/kg, (Group 4) benign prostatic hyperplasia mice treated with chlorogenic acid at dose levels of 0.8mg/kg (low dose group), (Group 5) benign prostatic hyperplasia mice treated with chlorogenic acid at dose levels of 1.6mg/kg (medium dose group) and (Group 6) benign prostatic hyperplasia mice treated with chlorogenic acid at dose levels of 3.2mg/kg (high dose group). Animals were sacrificed on the scheduled termination, pick out the eyeball to get blood, then prostates were weighed and prostatic index were determined. Then the serum acid phosphatase (ACP), prostatic acid phosphatase (PACP) and typeⅡ5-alpha-reductase (SRD5A2) levels were measured and observed morphological changes of the prostate. Comparing with benign prostatic hyperplasia model group, the high and medium dose of chlorogenic acid could significantly reduce prostate index and levels of acid phosphatase, prostatic acid phosphatase and typeⅡ5-alpha-reductase (P<0.05 or P<0.01). These findings were supported by histopathological observations of prostate tissues. Histopathological examination also indicated that chlorogenic acid treatment at the high and medium doses inhibited testosterone-induced prostatic hyperplasia. The results indicated that chlorogenic acid exhibited restraining effect on benign prostatic hyperplasia model animals, and its mechanism might be related to inhibit typeⅡ5-alpha reductase activity. Copyright © 2017. Published by Elsevier B.V.

  18. Tannic acid degradation by Klebsiella strains isolated from goat feces

    PubMed Central

    Tahmourespour, Arezoo; Tabatabaee, Nooroldin; Khalkhali, Hossein; Amini, Imane

    2016-01-01

    Background and Objectives: Tannins are toxic polyphenols that either bind and precipitate or condense proteins. The high tannin content of some plants is the preliminary limitation of using them as a ruminant feed. So, the aim of this study was the isolation and characterization of tannic acid degrading bacterial strains from goat feces before and after feeding on Pistachio-Soft Hulls as tannin rich diet (TRD). Materials and Methods: Bacterial strains capable of utilizing tannic acid as sole carbon and energy source were isolated and characterized from goat feces before and after feeding on TRD. Tannase activity, maximum tolerable concentration and biodegradation potential were assessed. Results: Four tannase positive isolates were identified as Klebsiella pneumoniae. Isolated strains showed the maximum tolerable concentration of 64g/L of tannin. The tannic acid degradation percentage at a concentration of 15.0 g/L reached a maximum of 68% after 24 h incubation, and more than 98% after 72 h incubation. The pH of the medium also decreased along with tannic acid utilization. Conclusions: It is obvious that TRD induced adaptive responses. Thus, while the bacteria were able to degrade and detoxify the tannic acids, they had to adapt in the presence of high concentrations of tannic acid. So, these isolates have an amazing potential for application in bioremediation, waste water treatment, also reduction of tannins antinutritional effects in animal feeds. PMID:27092220

  19. 21 CFR 184.1848 - Starter distillate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a medium consisting of skim milk usually fortified with about 0.1 percent citric acid: Streptococcus... formate, ethyl acetate, acetone, ethyl alcohol, 2-butanone, acetic acid, and acetoin. (b) The ingredient...

  20. 21 CFR 184.1848 - Starter distillate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... a medium consisting of skim milk usually fortified with about 0.1 percent citric acid: Streptococcus... formate, ethyl acetate, acetone, ethyl alcohol, 2-butanone, acetic acid, and acetoin. (b) The ingredient...

  1. 21 CFR 184.1848 - Starter distillate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a medium consisting of skim milk usually fortified with about 0.1 percent citric acid: Streptococcus... formate, ethyl acetate, acetone, ethyl alcohol, 2-butanone, acetic acid, and acetoin. (b) The ingredient...

  2. 21 CFR 184.1848 - Starter distillate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... a medium consisting of skim milk usually fortified with about 0.1 percent citric acid: Streptococcus... formate, ethyl acetate, acetone, ethyl alcohol, 2-butanone, acetic acid, and acetoin. (b) The ingredient...

  3. Inhibition of Escherichia coli O157:H7 and Salmonella enterica on spinach and identification of antimicrobial substances produced by a commercial Lactic Acid Bacteria food safety intervention.

    PubMed

    Cálix-Lara, Thelma F; Rajendran, Mahitha; Talcott, Stephen T; Smith, Stephen B; Miller, Rhonda K; Castillo, Alejandro; Sturino, Joseph M; Taylor, T Matthew

    2014-04-01

    The microbiological safety of fresh produce is of concern for the U.S. food supply. Members of the Lactic Acid Bacteria (LAB) have been reported to antagonize pathogens by competing for nutrients and by secretion of substances with antimicrobial activity, including organic acids, peroxides, and antimicrobial polypeptides. The objectives of this research were to: (i) determine the capacity of a commercial LAB food antimicrobial to inhibit Escherichia coli O157:H7 and Salmonella enterica on spinach leaf surfaces, and (ii) identify antimicrobial substances produced in vitro by the LAB comprising the food antimicrobial. Pathogens were inoculated on freshly harvested spinach, followed by application of the LAB antimicrobial. Treated spinach was aerobically incubated up to 12 days at 7 °C and surviving pathogens enumerated via selective/differential plating. l-Lactic acid and a bacteriocin-like inhibitory substance (BLIS) were detected and quantified from cell-free fermentates obtained from LAB-inoculated liquid microbiological medium. Application of 8.0 log10 CFU/g LAB produced significant (p < 0.05) reductions in E. coli O157:H7 and Salmonella populations on spinach of 1.6 and 1.9 log10 CFU/g, respectively. It was concluded the LAB antimicrobial inhibited foodborne pathogens on spinach during refrigerated storage, likely the result of the production of metabolites with antimicrobial activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Polyphenol fatty acid esters as serine protease inhibitors: a quantum-chemical QSAR analysis.

    PubMed

    Viskupicova, Jana; Danihelova, Martina; Majekova, Magdalena; Liptaj, Tibor; Sturdik, Ernest

    2012-12-01

    We investigated the ability of polyphenol fatty acid esters to inhibit the activity of serine proteases trypsin, thrombin, elastase and urokinase. Potent protease inhibition in micromolar range was displayed by rutin and rutin derivatives esterified with medium and long chain, mono- and polyunsaturated fatty acids (1e-m), followed by phloridzin and esculin esters with medium and long fatty acid chain length (2a-d, 3a-d), while unmodified compounds showed only little or no effect. QSAR study of the compounds tested provided the most significant parameters for individual inhibition activities, i.e. number of hydrogen bond donors for urokinase, molecular volume for thrombin, and solvation energy for elastase. According to the statistical analysis, the action of elastase inhibitors is opposed to those of urokinase and thrombin. Cluster analysis showed two groups of compounds: original polyphenols together with rutin esters with short fatty acid chain length and rutin esters with long fatty acid chain length.

  5. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland; Chendrayan, Krishnachetty; Quinby, Helen L.

    1988-01-01

    The present invention relates to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rate of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 .mu.moles of lead as lead oxide was 0.042 .mu.moles ml.sup.-1 hr.sup.-1. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids.

  6. Medium chain and behenic acid incorporated structured lipids from sal, mango and kokum fats by lipase acidolysis.

    PubMed

    Bebarta, Biranchi; M, Jhansi; Kotasthane, Pranitha; Sunkireddy, Yella Reddy

    2013-01-15

    Medium chain (MC) and behenic fatty acids were incorporated into kokum, sal and mango fats using 1,3-specific lipase catalysed acidolysis. The incorporation of fatty acids increased with increase in concentration of fatty acids and duration of reaction. The order of incorporation of fatty acids was C22:0>C10:0>C8:0, to the extent of 53%, 42.5%, 35.8%, respectively, after 16 h, using kokum as substrate. The same trend was observed with sal or mango fats as substrates though the percentages incorporated were different. The modified products with higher contents of MC were liquids with no solid fats, even at 0°C, and which showed low cloud point due to an increase in triacylglycerols containing lower chain fatty acids. The modified products after incorporating both MC and C22:0 showed long melting ranges and were suitable for use in bakery, confectionery, etc. as vanaspati substitutes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. [The influence of low partial oxygen pressure on the biolodical process of mesenchymal stromal cells].

    PubMed

    Berezovskyĭ, V Ia; Plotnikova, L M; Vesel'skyĭ, S P; Litovka, I H

    2014-01-01

    The influence of low partial oxygen pressure (Po2) on the amino acid composition in culture medium of human mesenchymal stromal cell (MSC) lines 4BL has been studied. At 23 mm Hg (3% oxygen), a significant decrease (by 31%) in the concentration of proline and hydroxyproline was registered. Under these conditions, the concentration of serine and aspartic acid decreased by 45% compared to the control. Maximum consumption of free amino acids from the culture medium required for the synthesis of collagen (proline and hydroxyproline by 42%, serine and aspartic acid by 62%) was observed at a gas-phase Po2 of 38 mm Hg (5% O2). At Po2 76 mm Hg (10% O2), a lack of amino acids proline and hydroxyproline was only 21%, while that of glutamine and alanine amounted 12% compared to the control. This intensity ratio of consumption of amino acids may indicate that the maximum of MSC vital functions occurs at Po2 38 mm Hg.

  8. Deposition and maturation of eggs of Schistosoma mansoni in vitro: importance of fatty acids in serum-free media.

    PubMed

    Newport, G R; Weller, T H

    1982-03-01

    A serum-free medium which supports miracidial development in some eggs deposited by adult Schistosoma mansoni in vitro is described. Derivation of the medium involved examination of the supportiveness of nine chemically defined media, selection of one promoting the highest degree of worm oviposition, and supplementation of the latter with various serum fractions. The serum fraction supporting egg maturation was nondialyzable, and precipitated at 50-60% ammonium sulfate saturation. This fraction could be replaced by bovine serum albumin; however, the supportive activity disappeared if this material was delipidated. Addition of soybean lecithin, or stearic acid, to fatty-acid-free, albumin-supplemented media yielded intermediate results, while similar addition of other nonesterified fatty acids proved non stimulatory. A fatty acid mixture, rich in stearic acid, was then developed which, when added to delipidated-albumin supplemented media, supported a degree of egg development comparable to that obtained with media supplemented with 8% newborn calf serum.

  9. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum

    PubMed Central

    Heinrich, Daniel; Raberg, Matthias; Fricke, Philipp; Kenny, Shane T.; Morales-Gamez, Laura; Babu, Ramesh P.; O'Connor, Kevin E.

    2016-01-01

    ABSTRACT The purple nonsulfur alphaproteobacterium Rhodospirillum rubrum S1 was genetically engineered to synthesize a heteropolymer of mainly 3-hydroxydecanoic acid and 3-hydroxyoctanoic acid [P(3HD-co-3HO)] from CO- and CO2-containing artificial synthesis gas (syngas). For this, genes from Pseudomonas putida KT2440 coding for a 3-hydroxyacyl acyl carrier protein (ACP) thioesterase (phaG), a medium-chain-length (MCL) fatty acid coenzyme A (CoA) ligase (PP_0763), and an MCL polyhydroxyalkanoate (PHA) synthase (phaC1) were cloned and expressed under the control of the CO-inducible promoter PcooF from R. rubrum S1 in a PHA-negative mutant of R. rubrum. P(3HD-co-3HO) was accumulated to up to 7.1% (wt/wt) of the cell dry weight by a recombinant mutant strain utilizing exclusively the provided gaseous feedstock syngas. In addition to an increased synthesis of these medium-chain-length PHAs (PHAMCL), enhanced gene expression through the PcooF promoter also led to an increased molar fraction of 3HO in the synthesized copolymer compared with the Plac promoter, which regulated expression on the original vector. The recombinant strains were able to partially degrade the polymer, and the deletion of phaZ2, which codes for a PHA depolymerase most likely involved in intracellular PHA degradation, did not reduce mobilization of the accumulated polymer significantly. However, an amino acid exchange in the active site of PhaZ2 led to a slight increase in PHAMCL accumulation. The accumulated polymer was isolated; it exhibited a molecular mass of 124.3 kDa and a melting point of 49.6°C. With the metabolically engineered strains presented in this proof-of-principle study, we demonstrated the synthesis of elastomeric second-generation biopolymers from renewable feedstocks not competing with human nutrition. IMPORTANCE Polyhydroxyalkanoates (PHAs) are natural biodegradable polymers (biopolymers) showing properties similar to those of commonly produced petroleum-based nondegradable polymers. The utilization of cheap substrates for the microbial production of PHAs is crucial to lower production costs. Feedstock not competing with human nutrition is highly favorable. Syngas, a mixture of carbon monoxide, carbon dioxide, and hydrogen, can be obtained by pyrolysis of organic waste and can be utilized for PHA synthesis by several kinds of bacteria. Up to now, the biosynthesis of PHAs from syngas has been limited to short-chain-length PHAs, which results in a stiff and brittle material. In this study, the syngas-utilizing bacterium Rhodospirillum rubrum was genetically modified to synthesize a polymer which consisted of medium-chain-length constituents, resulting in a rubber-like material. This study reports the establishment of a microbial synthesis of these so-called medium-chain-length PHAs from syngas and therefore potentially extends the applications of syngas-derived PHAs. PMID:27520812

  10. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum.

    PubMed

    Heinrich, Daniel; Raberg, Matthias; Fricke, Philipp; Kenny, Shane T; Morales-Gamez, Laura; Babu, Ramesh P; O'Connor, Kevin E; Steinbüchel, Alexander

    2016-10-15

    The purple nonsulfur alphaproteobacterium Rhodospirillum rubrum S1 was genetically engineered to synthesize a heteropolymer of mainly 3-hydroxydecanoic acid and 3-hydroxyoctanoic acid [P(3HD-co-3HO)] from CO- and CO 2 -containing artificial synthesis gas (syngas). For this, genes from Pseudomonas putida KT2440 coding for a 3-hydroxyacyl acyl carrier protein (ACP) thioesterase (phaG), a medium-chain-length (MCL) fatty acid coenzyme A (CoA) ligase (PP_0763), and an MCL polyhydroxyalkanoate (PHA) synthase (phaC1) were cloned and expressed under the control of the CO-inducible promoter P cooF from R. rubrum S1 in a PHA-negative mutant of R. rubrum P(3HD-co-3HO) was accumulated to up to 7.1% (wt/wt) of the cell dry weight by a recombinant mutant strain utilizing exclusively the provided gaseous feedstock syngas. In addition to an increased synthesis of these medium-chain-length PHAs (PHA MCL ), enhanced gene expression through the P cooF promoter also led to an increased molar fraction of 3HO in the synthesized copolymer compared with the P lac promoter, which regulated expression on the original vector. The recombinant strains were able to partially degrade the polymer, and the deletion of phaZ2, which codes for a PHA depolymerase most likely involved in intracellular PHA degradation, did not reduce mobilization of the accumulated polymer significantly. However, an amino acid exchange in the active site of PhaZ2 led to a slight increase in PHA MCL accumulation. The accumulated polymer was isolated; it exhibited a molecular mass of 124.3 kDa and a melting point of 49.6°C. With the metabolically engineered strains presented in this proof-of-principle study, we demonstrated the synthesis of elastomeric second-generation biopolymers from renewable feedstocks not competing with human nutrition. Polyhydroxyalkanoates (PHAs) are natural biodegradable polymers (biopolymers) showing properties similar to those of commonly produced petroleum-based nondegradable polymers. The utilization of cheap substrates for the microbial production of PHAs is crucial to lower production costs. Feedstock not competing with human nutrition is highly favorable. Syngas, a mixture of carbon monoxide, carbon dioxide, and hydrogen, can be obtained by pyrolysis of organic waste and can be utilized for PHA synthesis by several kinds of bacteria. Up to now, the biosynthesis of PHAs from syngas has been limited to short-chain-length PHAs, which results in a stiff and brittle material. In this study, the syngas-utilizing bacterium Rhodospirillum rubrum was genetically modified to synthesize a polymer which consisted of medium-chain-length constituents, resulting in a rubber-like material. This study reports the establishment of a microbial synthesis of these so-called medium-chain-length PHAs from syngas and therefore potentially extends the applications of syngas-derived PHAs. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Synthesis of dodecylamine-functionalized graphene quantum dots and their application as stabilizers in an emulsion polymerization of styrene.

    PubMed

    Xuan, Wang; Ruiyi, Li; Zaijun, Li; Junkang, Liu

    2017-11-01

    Pickering emulsions have attracted considerable interest due to their potential applications in many fields, such as the food, pharmaceutical, petroleum and cosmetics industries. The study reports the synthesis of dodecylamine-functionalized graphene quantum dots (d-GQDs) and their implementation as stabilizers in an emulsion polymerization of styrene. First, d-GQDs are prepared by thermal pyrolysis of citric acid and dodecylamine in 0.1M ammonium hydroxide. The resulting d-GQDs consist of small graphene sheets with abundant amino, carboxyl, acylamino, hydroxyl and alkyl chains on the edge. The amphiphilic structure gives the d-GQDs high surface activity. The addition of d-GQDs can reduce the surface tension of water to 30.8mNm -1 and the interfacial tension of paraffin oil/water to 0.0182mNm -1 . The surface activity is much better than that of previously reported solid particle surfactants for Pickering emulsions and is close to that of sodium dodecylbenzenesulfonate, which is, a classical organic surfactants. Then, d-GQDs are employed as solid particle surfactants for stabilizing styrene-in-water emulsions. The emulsions exhibit excellent stability at pH 7. However, stability is lost when the pH is more than 9 or less than 4. The pH-switchable behaviour can be attributed to the protonation of amino groups in a weak acid medium and dissociation of carboxyl groups in a weak base medium. Finally, 2,2'-azobis(2-methylpropionitrile) is introduced into the Pickering emulsions to trigger emulsion polymerization of styrene. The as-prepared polystyrene spheres display a uniform morphology with a narrow diameter distribution. The fluorescent d-GQDs coated their surfaces. This study presents an approach for the fabrication of amphiphilic GQDs and GQDs-based functional materials, which have a wide range of potential applications in emulsion polymerization, as well as in sensors, catalysts, and energy storage. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A genetically stable rooting protocol for propagating a threatened medicinal plant—Celastrus paniculatus

    PubMed Central

    Phulwaria, Mahendra; Rai, Manoj K.; Patel, Ashok Kumar; Kataria, Vinod; Shekhawat, N. S.

    2012-01-01

    Celastrus paniculatus, belonging to the family Celastraceae, is an important medicinal plant of India. Owing to the ever-increasing demand from the pharmaceutical industry, the species is being overexploited, thereby threatening its stock in the wild. Poor seed viability coupled with low germination restricts its propagation through sexual means. Thus, alternative approaches such as in vitro techniques are highly desirable for large-scale propagation of this medicinally important plant. Nodal segments, obtained from a 12-year-old mature plant, were used as explants for multiple shoot induction. Shoot multiplication was achieved by repeated transfer of mother explants and subculturing of in vitro produced shoot clumps on Murashige and Skoog's (MS) medium supplemented with various concentrations of 6-benzylaminopurine (BAP) alone or in combination with auxin (indole-3-acetic acid (IAA) or α-naphthalene acetic acid (NAA)). The maximum number of shoots (47.75 ± 2.58) was observed on MS medium supplemented with BAP (0.5 mg L−1) and IAA (0.1 mg L−1). In vitro raised shoots were rooted under ex vitro conditions after treating them with indole-3-butyric acid (300 mg L−1) for 3 min. Over 95 % of plantlets acclimatized successfully. The genetic fidelity of the regenerated plants was assessed using random amplified polymorphic DNA. No polymorphism was detected in regenerated plants and the mother plant, revealing the genetic fidelity of the in vitro raised plantlets. The protocol discussed could be effectively employed for large-scale multiplication of C. paniculatus. Its commercial application could be realized for the large-scale multiplication and supply to the State Forest Department.

  13. Sulphates Removal from Acid Mine Drainage

    NASA Astrophysics Data System (ADS)

    Luptáková, Alena; Mačingová, Eva; Kotuličová, Ingrida; Rudzanová, Dominika

    2016-10-01

    Acid mine drainage (AMD) are a worldwide problem leading to ecological destruction in river basins and the contamination of water sources. AMD are characterized by low pH and high content of heavy metals and sulphates. In order to minimize negative impacts of AMD appropriate treatment techniques has to be chosen. Treatment processes are focused on neutralizing, stabilizing and removing pollutants. From this reason efficient and environmental friendly methods are needed to be developed in order to reduce heavy metals as well as sulphates. Various methods are used for remediation of acid mine drainage, but any of them have been applied under commercial-scale conditions. Their application depends on geochemical, technical, natural, financial, and other factors. The aim of the present work was to interpret the study of biological methods for sulphates removal from AMD out-flowing from the shaft Pech of the deposit Smolmk in Slovak Republic. In the experimental works AMD were used after removal of heavy metals by precipitation and sorption using the synthetic sorbent Slovakite. The base of the studied method for the sulphates elimination was the anaerobic bacterial sulphate reduction using sulphate-reducing bacteria (SRB) genera Desulfovibrio. SRB represent a group of bacteria that uses sulphates as a terminal electron acceptor for their metabolism. These bacteria realize the conversion of sulphate to hydrogen sulphide under anaerobic conditions. For the purposes of experiments a few variants of the selective medium DSM-63 culture media were used in term of the sulphates and sodium lactate contents in the selective medium as well as sulphates in the studied AMD.

  14. In vitro propagation and assessment of the genetic fidelity of Musa acuminata (AAA) cv. Vaibalhla derived from immature male flowers.

    PubMed

    Hrahsel, Lalremsiami; Basu, Adreeja; Sahoo, Lingaraj; Thangjam, Robert

    2014-02-01

    An efficient in vitro propagation method has been developed for the first time for Musa acuminata (AAA) cv. Vaibalhla, an economically important banana cultivar of Mizoram, India. Immature male flowers were used as explants. Murashige and Skoog's (MS) medium supplemented with plant growth regulators (PGRs) were used for the regeneration process. Out of different PGR combinations, MS medium supplemented with 2 mg L(-1) 6-benzylaminopurine (BAP) + 0.5 mg L(-1) α-naphthalene acetic acid (NAA) was optimal for production of white bud-like structures (WBLS). On this medium, explants produced the highest number of buds per explant (4.30). The highest percentage (77.77) and number (3.51) of shoot formation from each explants was observed in MS medium supplemented with 2 mg L(-1) kinetin + 0.5 mg L(-1) NAA. While MS medium supplemented with a combination of 2 mg L(-1) BAP + 0.5 mg L(-1) NAA showed the maximum shoot length (14.44 cm). Rooting efficiency of the shoots was highest in the MS basal medium without any PGRs. The plantlets were hardened successfully in the greenhouse with 96% survival rate. Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers were employed to assess the genetic stability of in vitro regenerated plantlets of M. acuminata (AAA) cv. Vaibalhla. Eight RAPD and 8 ISSR primers were successfully used for the analysis from the 40 RAPD and 30 ISSR primers screened initially. The amplified products were monomorphic across all the regenerated plants and were similar to the mother plant. The present standardised protocol will find application in mass production, conservation and genetic transformation studies of this commercially important banana.

  15. EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI

    PubMed Central

    Marr, Allen G.; Ingraham, John L.

    1962-01-01

    Marr, Allen G. (University of California, Davis) and John L. Ingraham. Effect of temperature on composition of fatty acids in Escherichia coli. J. Bacteriol. 84:1260–1267. 1962.—Variations in the temperature of growth and in the composition of the medium alter the proportions of individual fatty acids in the lipids of Escherichia coli. As the temperature of growth is lowered, the proportion of unsaturated fatty acids (hexadecenoic and octadecenoic acids) increases. The increase in content of unsaturated acids with a decrease in temperature of growth occurs in both minimal and complex media. Cells harvested in the stationary phase contained large amounts of cyclopropane fatty acids (methylenehexadecanoic and methylene octadecanoic acids) in comparison with cells harvested during exponential growth. Cells grown in a chemostat, limited by the concentration of ammonium salts, show a much higher content of saturated fatty acids (principally palmitic acid) than do cells harvested from an exponentially-growing batch culture in the same medium. Cells grown in a chemostat, limited by the concentration of glucose, show a slightly higher content of unsaturated fatty acids than cells from the corresponding batch culture. The results do not indicate a direct relation between fatty acid composition and minimal growth temperature. PMID:16561982

  16. In vitro micropropagation of Dracaena sanderiana Sander ex Mast: An important indoor ornamental plant

    PubMed Central

    Aslam, Junaid; Mujib, Abdul; Sharma, Maheshwar Prasad

    2012-01-01

    A protocol has been developed for in vitro plant regeneration from a nodal explant of Dracaena sanderiana Sander ex Mast. Nodal explant showed high callus induction potentiality on MS medium supplemented with 6.78 μM 2,4-dichlorophenoxyacetic acid (2,4-D) followed by 46.5 μM chlorophenoxy acetic acid (CPA). The highest frequency of shoot regeneration (85%) and number of shoots per explant (5.6) were obtained on medium supplemented with 7.84 μM N6-benzylaminopurine (BA). Rooting was high on MS solid compared to liquid medium when added with 7.38 μM indole-3-butyric acid (IBA). Fifty percent of the roots were also directly rooted as microcuttings on soil rite, sand and peat mixture (1:1:1). In vitro and ex vitro raised plantlets were used for acclimatization. More than 90% of the plantlets was successfully acclimatized and established in plastic pots. Ex vitro transferred plantlets were normal without any phenotypic aberrations. PMID:23961221

  17. Micropropagation of Salvia wagneriana Polak and hairy root cultures with rosmarinic acid production.

    PubMed

    Ruffoni, Barbara; Bertoli, Alessandra; Pistelli, Laura; Pistelli, Luisa

    2016-01-04

    Salvia wagneriana Polak is a tropical species native to Central America, well adapted to grow in the Mediterranean basin for garden decoration. Micropropagation has been assessed from axillary shoots of adult plants using a Murashige and Skoog basal medium, with the addition of 1.33-μM 6-benzylaminopurine for shoot proliferation; the subsequent rooting phase occurred in plant growth regulator-free medium. The plants were successfully acclimatised with high survival frequency. Hairy roots were induced after co-cultivation of leaf lamina and petiole fragments with Agrobacterium rhizogenes and confirmed by PCR. The establishment and proliferation of the selected HRD3 line were obtained in hormone-free liquid medium and the production of rosmarinic acid (RA) was evaluated after elicitation. The analysis of RA was performed by LC-ESI-DAD-MS in the hydroalcoholic extracts. The addition of casein hydrolysate increased the RA production, whereas no enrichment was observed after the elicitation with jasmonic acid.

  18. In vitro micropropagation of Dracaena sanderiana Sander ex Mast: An important indoor ornamental plant.

    PubMed

    Aslam, Junaid; Mujib, Abdul; Sharma, Maheshwar Prasad

    2013-01-01

    A protocol has been developed for in vitro plant regeneration from a nodal explant of Dracaena sanderiana Sander ex Mast. Nodal explant showed high callus induction potentiality on MS medium supplemented with 6.78 μM 2,4-dichlorophenoxyacetic acid (2,4-D) followed by 46.5 μM chlorophenoxy acetic acid (CPA). The highest frequency of shoot regeneration (85%) and number of shoots per explant (5.6) were obtained on medium supplemented with 7.84 μM N(6)-benzylaminopurine (BA). Rooting was high on MS solid compared to liquid medium when added with 7.38 μM indole-3-butyric acid (IBA). Fifty percent of the roots were also directly rooted as microcuttings on soil rite, sand and peat mixture (1:1:1). In vitro and ex vitro raised plantlets were used for acclimatization. More than 90% of the plantlets was successfully acclimatized and established in plastic pots. Ex vitro transferred plantlets were normal without any phenotypic aberrations.

  19. Plant regeneration from protoplasts ofVicia narbonensis via somatic embryogenesis and shoot organogenesis.

    PubMed

    Tegeder, M; Kohn, H; Nibbe, M; Schieder, O; Pickardt, T

    1996-11-01

    Protoplasts ofVicia narbonensis isolated from epicotyls and shoot tips of etiolated seedlings were embedded in 1.4% sodium-alginate at a final density of 2.5×10(5) protoplasts/ml and cultivated in Kao and Michayluk-medium containing 0.5 mg/I of each of 2,4- dichlorophenoxyacetic acid, naphthylacetic acid and 6 -benzylaminopurine. A division frequency of 36% and a plating efficiency of 0.40-0.5% were obtained. Six weeks after embedding, protoplast-derived calluses were transferred onto gelrite-solidified Murashige and Skoog-media containing various growth regulators. Regeneration of plants was achieved via two morphologically distinguishable pathways. A two step protocol (initially on medium with a high auxin concentration followed by a culture phase with lowered auxin amount) was used to regenerate somatic embryos, whereas cultivation on medium containing thidiazuron and naphthylacetic acid resulted in shoot morphogenesis. Mature plants were recovered from both somatic embryos as well as from thidiazuron-induced shoots.

  20. Influence of calcium on fungal growth, hyphal morphology and citric acid production in Aspergillus niger.

    PubMed

    Pera, L M; Callieri, D A

    1997-01-01

    Addition of 0.5 g/L CaCl2 to the fermentation medium lowered the final biomass dry mass by 35% and increased the uptake of phosphate and sucrose, and the production of citric acid by 15, 35 and 50%, respectively. In a medium deprived of Ca2+ the microorganism displayed both a pelleted and a filamentous form of growth, the hyphae being scarcely branched, without bulbous cells. An addition of Ca2+ induced a pelleted form of growth, highly branched hyphae and numerous bulbous cells. Bulbous cells growing in the presence of Ca2+ exhibited cell walls composed of laminated layers, and featured vesicles associated with the wall and/or the cell membrane, containing numerous inclusions. The cytotoxic effect of high concentrations of citric acid in the medium as well as an increase of the activity of N-acetyl-beta-D-glucosaminidase, a lytic enzyme, might be involved in these morphological changes.

  1. Effects of soya fatty acids on cassava ethanol fermentation.

    PubMed

    Xiao, Dongguang; Wu, Shuai; Zhu, Xudong; Chen, Yefu; Guo, Xuewu

    2010-01-01

    Ethanol tolerance is a key trait of microbes in bioethanol production. Previous studies have shown that soya flour contributed to the increase of ethanol tolerance of yeast cells. In this paper, the mechanism of this ethanol tolerance improvement was investigated in cassava ethanol fermentation supplemented with soya flour or defatted soya flour, respectively. Experiment results showed that ethanol tolerance of cells from soya flour supplemented medium increased by 4-6% (v/v) than the control with defatted soya flour. Microscopic observation found that soya flour can retain the cell shape while dramatic elongations of cells were observed with the defatted soya flour supplemented medium. Unsaturated fatty acids (UFAs) compositions of cell membrane were analyzed and the UFAs amounts increased significantly in all tested strains grown in soya flour supplemented medium. Growth study also showed that soya flour stimulated the cell growth rate by approximately tenfolds at 72-h fermentation. All these results suggested that soya fatty acids play an important role to protect yeast cells from ethanol stress during fermentation process.

  2. Unusual kinetics of poly(ethylene glycol) oxidation with cerium(IV) ions in sulfuric acid medium and implications for copolymer synthesis.

    PubMed

    Szymański, Jan K; Temprano-Coleto, Fernando; Pérez-Mercader, Juan

    2015-03-14

    The cerium(IV)-alcohol couple in an acidic medium is an example of a redox system capable of initiating free radical polymerization. When the alcohol has a polymeric nature, the outcome of such a process is a block copolymer, a member of a class of compounds possessing many useful properties. The most common polymer with a terminal -OH group is poly(ethylene glycol) (PEG); however, the detailed mechanism of its reaction with cerium(IV) remains underexplored. In this paper, we report our findings for this reaction based on spectrophotometric measurements and kinetic modeling. We find that both the reaction order and the net rate constant for the oxidation process depend strongly on the nature of the acidic medium used. In order to account for the experimental observations, we postulate that protonation of PEG decreases its affinity for some of the cerium(IV)-sulfate complexes formed in the system.

  3. 40 CFR 141.81 - Applicability of corrosion control treatment steps to small, medium-size and large water systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... treatment steps to small, medium-size and large water systems. 141.81 Section 141.81 Protection of... to small, medium-size and large water systems. (a) Systems shall complete the applicable corrosion...) or (b)(3) of this section. (2) A small system (serving ≤3300 persons) and a medium-size system...

  4. 40 CFR 141.81 - Applicability of corrosion control treatment steps to small, medium-size and large water systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... treatment steps to small, medium-size and large water systems. 141.81 Section 141.81 Protection of... to small, medium-size and large water systems. (a) Systems shall complete the applicable corrosion...) or (b)(3) of this section. (2) A small system (serving ≤3300 persons) and a medium-size system...

  5. 40 CFR 141.81 - Applicability of corrosion control treatment steps to small, medium-size and large water systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... treatment steps to small, medium-size and large water systems. 141.81 Section 141.81 Protection of... to small, medium-size and large water systems. (a) Systems shall complete the applicable corrosion...) or (b)(3) of this section. (2) A small system (serving ≤3300 persons) and a medium-size system...

  6. 40 CFR 141.81 - Applicability of corrosion control treatment steps to small, medium-size and large water systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... treatment steps to small, medium-size and large water systems. 141.81 Section 141.81 Protection of... to small, medium-size and large water systems. (a) Systems shall complete the applicable corrosion...) or (b)(3) of this section. (2) A small system (serving ≤3300 persons) and a medium-size system...

  7. Organic syntheses employing supercritical carbon dioxide as a reaction solvent

    NASA Technical Reports Server (NTRS)

    Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)

    1991-01-01

    Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.

  8. Organic syntheses employing supercritical carbon dioxide as a reaction solvent

    NASA Technical Reports Server (NTRS)

    Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)

    1993-01-01

    Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.

  9. Amphiphilic Polyurethane Hydrogels as Smart Carriers for Acidic Hydrophobic Drugs.

    PubMed

    Fonseca, Lucas P; Trinca, Rafael B; Isabel Felisberti, Maria

    2018-05-14

    Amphiphilic hydrogels are widely reported as systems with great potential for controlled drug release. Nevertheless, the majority of studies make use of functionalization or attachment of drugs to the polymer chains. In this study, we propose a strategy of combining amphiphilic polyurethanes with pH-responsive drugs to develop smart drug carriers. While the amphiphilic character of the polymer imparts an efficient load of hydrophobic and hydrophilic drugs, the drug's characteristics determine the selectivity of the medium delivery. Drug loading and release behavior as well as hydrolytic degradation of chemically crosslinked polyurethane hydrogels based on PEG and PCL-triol (PU (polyurethane) hydrogels) synthesized by an easy one-pot route were studied. PU hydrogels have been shown to successfully load the hydrophobic acidic drug sodium diclofenac, reaching a partition coefficient of 8 between the most hydrophobic PU and diclofenac/ethanol solutions. Moreover, an oral administration simulation was conducted by changing the environment from an acidic to a neutral medium. PU hydrogels release less than 5 % of the drug in an acidic medium; however, in a PBS pH 7.4 solution, diclofenac is delivered in a sustained fashion for up to 40 hours, achieving 80% of cumulative release. Copyright © 2018. Published by Elsevier B.V.

  10. Growth and survival of cowpea rhizobia in acid, aluminum-rich soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartel, P.G.; Alexander, M.

    1983-01-01

    A study was undertaken to determine whether Al-sensitive cowpea Rhizobium survives in acid, Al-rich soils. The lower pH limit for growth of 20 strains in a defined liquid medium varied from pH 4.2 to less than pH 3.6. The mean lower limit for growth was pH 3.9. Several of the strains clumped in this medium at pH 4.5. Of 11 strains that were tested for tolerance to high levels of Al in a defined liquid medium at pH 4.5, nine tolerated 75 ..mu..M Al, and the other two were sensitive to levels above 15 ..mu..M. Three strains, one Al-tolerant, onemore » Al-sensitive, and one Al-tolerant or Al-sensitive depending on the presence of vitamins in the medium, were selected for studies in Al-rich sterile and nonsterile soils. These rhizobia did not survive in soils of less than pH 4.7 sterilized by /sup 60/Co irradiation. When inoculated into sterile soil at pH 4.7, the consistently sensitive strain initially failed to proliferate and then grew slowly, but populations of the other two rhizobia increased rapidly. No consistent relationship was found between the Al tolerance of these three rhizobia and their growth and survival in four acid, Al-rich soils. The data suggest that Al is of minor importance to growth and survival of cowpea Rhizobium strains in acid soils. 16 references, 4 figures, 1 table.« less

  11. The Oxidation of Ascorbic Acid by Hexacyanoferrate(III) Ion in Acidic Aqueous Media.

    ERIC Educational Resources Information Center

    Martins, Luis J. A.; da Costa, J. Barbosa

    1988-01-01

    Describes a kinetic and mechanistic investigation of ascorbic acid by a substitution-inert complex in acidic medium suitable for the undergraduate level. Discusses obtaining the second order rate constant for the rate determining step at a given temperature and comparison with the value predicted on the basis of the Marcus cross-relation. (CW)

  12. Targeted Drug Delivery and Treatment of Endoparasites with Biocompatible Particles of pH-Responsive Structure.

    PubMed

    Mathews, Patrick D; Fernandes Patta, Ana C M; Gonçalves, Joao V; Gama, Gabriella Dos Santos; Garcia, Irene Teresinha Santos; Mertins, Omar

    2018-02-12

    Biomaterials conceived for vectorization of bioactives are currently considered for biomedical, biological, and environmental applications. We have produced a pH-sensitive biomaterial composed of natural source alginate and chitosan polysaccharides for application as a drug delivery system via oral administration. The composite particle preparation was in situ monitored by means of isothermal titration calorimetry. The strong interaction established between the macromolecules during particle assembly led to 0.60 alginate/chitosan effective binding sites with an intense exothermic effect and negative enthalpy variation on the order of a thousand kcal/mol. In the presence of model drugs mebendazole and ivermectin, with relatively small and large structures, respectively, mebendazole reduced the amount of chitosan monomers available to interact with alginate by 27%, which was not observed for ivermectin. Nevertheless, a state of intense negative Gibbs energy and large entropic decrease was achieved, providing evidence that formation of particles is thermodynamically driven and favored. Small-angle X-ray scattering provided further evidence of similar surface aspects independent of the presence of drug. The physical responses of the particles to pH variation comprise partial hydration, swelling, and the predominance of positive surface charge in strong acid medium, whereas ionization followed by deprotonation leads to compaction and charge reversal rather than new swelling in mild and slightly acidic mediums, respectively. In vivo performance was evaluated in the treatment of endoparasites in Corydoras fish. Systematically with a daily base oral administration, particles significantly reduced the infections over 15 days of treatment. The experiments provide evidence that utilizing particles granted and boosted the action of the antiparasitic drugs, leading to substantial reduction or elimination of infection. Hence, the pH-responsive particles represent a biomaterial with prominent characteristics that is promising for the development of targeted oral drug delivery.

  13. The potential of flow-through microdialysis for probing low-molecular weight organic anions in rhizosphere soil solution.

    PubMed

    Sulyok, Michael; Miró, Manuel; Stingeder, Gerhard; Koellensperger, Gunda

    2005-08-01

    In this paper, flow-through microdialysis is presented as a novel analytical tool for automatic sampling of low molecular weight organic anions (LMWOA), such as oxalate and citrate, in solid samples of environmental concern. The microsampling methodology involves the implantation of dedicated capillary-type probes offering unrivalled spatial resolution (ca. 200μm) in definite soil sites. These passive samplers are aimed at monitoring local processes, such as the release of organic acids occurring in the rhizosphere environment, in nearly real-time. The influence of chemical and physical variables (composition and flow rate of the perfusion liquid, ionic strength and pH of the outer medium and presence of metal ions therein) was assessed in vitro using liquid-phase assays. On the other hand, the resistance of the external solid medium to mass transfer, and the actual applicability of in vivo calibration methods were investigated using quartz sand as an inert model soil. Microdialysers furnished with 3cm long semipermeable tubular membranes were perfused with 0.01M NaNO 3 at a flow rate of 2.0μl/min, yielding dialysis recoveries ≥45% for both assayed LMWOAs in simulated background soil electrolyte solutions, and ≥24% in the interstitial liquid of complex solid samples. Full knowledge of the fate of LMWOAs in soils was obtained through the application of stimulus-response approaches that mimic the discrete exudation pulses of roots. Highly time-resolved microdialysates were used to discern readily available species such as free carboxylic anions and LMW metal-organic acid complexes from adsorbed, precipitated or mineralised analyte species in a variety of soil samples containing variable amounts of organic matter, exchangeable cations and different levels of metal pollution.

  14. Acylcarnitines as markers of exercise-associated fuel partitioning, xenometabolism, and potential signals to muscle afferent neurons

    USDA-ARS?s Scientific Manuscript database

    With insulin-resistance or type 2 diabetes mellitus, mismatches between mitochondrial fatty acid fuel delivery and oxidative phosphorylation/tricarboxylic acid cycle activity may contribute to inordinate accumulation of short- or medium-chain acylcarnitine fatty acid derivatives (markers of incomple...

  15. Electrochemical synthesis of formic acid from CO2 catalyzed by Shewanella oneidensis MR-1 whole-cell biocatalyst.

    PubMed

    Le, Quang Anh Tuan; Kim, Hee Gon; Kim, Yong Hwan

    2018-09-01

    The electro-biocatalytic conversion of CO 2 into formic acid using whole-cell and isolated biocatalysts is useful as an alternative route for CO 2 sequestration. In this study, Shewanella oneidensis MR-1 (S. oneidensis MR-1), a facultative aerobic bacterium that has been extensively studied for its utility as biofuel cells as well as for the detoxification of heavy metal oxides (i.e., MnO 2 , uranium), has been applied for the first time as a whole-cell biocatalyst for formic acid synthesis from gaseous CO 2 and electrons supplied from an electrode. S. oneidensis MR-1, when aerobically grown in Luria-Bertani (LB) medium, exhibited its ability as a whole-cell biocatalyst for the conversion of CO 2 into formic acid with moderate productivity of 0.59 mM h -1 for 24 h. In addition, an optimization of growth conditions of S. oneidensis MR-1 resulted in a remarkable increase in productivity. The CO 2 reduction reaction catalyzed by S. oneidensis MR-1, when anaerobically grown in newly optimized LB medium supplemented with fumarate and nitrate, exhibited 3.2-fold higher productivity (1.9 mM h -1 for 72 h) compared to that grown aerobically in only LB medium. Furthermore, the average conversion rate of formic acid synthesis catalyzed by S. oneidensis MR-1 when grown in the optimal medium over a period of 72 h was 3.8 mM h -1  g -1 wet-cell, which is 9.6-fold higher than that catalyzed by Methylobacterium extorquens AM1 whole-cells in our previous study. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Enhanced production of phenolic acids in cell suspension culture of Salvia leriifolia Benth. using growth regulators and sucrose.

    PubMed

    Modarres, Masoomeh; Esmaeilzadeh Bahabadi, Sedigheh; Taghavizadeh Yazdi, Mohammad Ehsan

    2018-04-01

    Salvia leriifolia Benth. (Lamiaceae) is an endangered medicinal plant with hypoglycemic, anti-inflammatory and analgesic properties. Many of the beneficial effects of Salvia spp. are attributed to the phenolic compounds. In the present study, an efficient procedure has been developed for establishment of cell suspension culture of S. leriifolia as a strategy to obtain an in vitro phenolic acids producing cell line for the first time. The effect of growth regulators and various concentrations of sucrose have been analyzed, to optimize biomass growth and phenolic acids production. The callus used for this purpose was obtained from leaves of 15-day-old in vitro seedlings, on Murashige and Skoog (MS) basal medium supplemented with different hormone balances including benzylaminopurine (BAP) and indole butyric acid (IBA); 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin (KIN); naphthaleneacetic acid (NAA) and BAP. Modified MS medium supplemented with 5 mg/L BAP and 5 mg/L NAA was the optimal condition for callus formation with the highest induction rate (100%), the best callus growth and the highest phenolic acids content. No callus induction was observed in combinations of IBA and BAP. Cell suspension cultures were established by transferring 0.5 g of callus to 30 mL liquid MS medium supplemented with 5 mg/L BAP and 5 mg/L NAA. Dynamics of phenolic acids production has been investigated during the growth cycle of the suspension cultures. The maximum content of caffeic acid and salvianolic acid B were observed on the 15th day of the cultivation cycle while the highest amount of rosmarinic acid was observed on the first day. In response to various sucrose concentrations, cell cultures with 40 g/L sucrose not only produced the highest dry biomass but also the highest induction of caffeic acid and salvianolic acid B. The highest amount of rosmarinic acid was observed in media containing 50 g/L sucrose. These prepared cell suspension cultures provided a useful system for further enhanced production of phenolic acids at a large scale.

  17. In vitro propagation and assessment of genetic stability of acclimated plantlets of Cornus alba L. using RAPD and ISSR markers.

    PubMed

    Ilczuk, Agnieszka; Jacygrad, Ewelina

    2016-01-01

    Cornus alba L. (white dogwood) is an important ornamental shrub having a wide range of applications such as reforestation programs and soil retention systems. The vegetative propagation of dogwood by cuttings may be slow, difficult, and cultivar dependent; therefore, an improved micropropagation method was developed. Nodal stem segments of C. alba cultivars 'Aurea' and 'Elegantissima' were cultured on media enriched with six different sources of macronutrients. Media were supplemented with either N 6 -benzyladenine (BA) or thidiazuron (TDZ) in combination with 1-naphthaleneacetic acid (NAA). Regardless of the cultivar, the best shoot proliferation was observed on Lloyd and McCown medium (woody plant medium (WPM)) at pH 6.2, containing 1.0 mg L -1 BA, 0.1 mg L -1 NAA, and 20-30 g L -1 sucrose. Rooting of regenerated shoots was achieved by an in vitro method when different concentrations of NAA or indole-3-butyric acid (IBA) were tested. Microcuttings were rooted for 8 wk on medium enriched with 0.25 mg L -1 NAA and potted into P9 containers in the greenhouse. The final survival rate of the plants after 20 wk was 80% for 'Aurea' and 90% for 'Elegantissima'. Genetic stability of the micropropagated plants was confirmed by using two DNA-based molecular marker techniques. A total of 30 random amplified polymorphic DNA (RAPD) and 20 inter-simple sequence repeat (ISSR) primers resulted in 197-199 and 184-187 distinct and reproducible band classes, respectively, in 'Aurea' and 'Elegantissima' plantlets. All of the RAPD and ISSR profiles were monomorphic and comparable with the mother plant.

  18. Rapid assessment of Oenococcus oeni activity by measuring intracellular pH and membrane potential by flow cytometry, and its application to the more effective control of malolactic fermentation.

    PubMed

    Bouix, M; Ghorbal, S

    2015-01-16

    The aim of this study is to highlight the changes in the physiological cellular state of Oenococcus oeni during malolactic fermentation (MLF), and to use its cellular parameters to improve existing knowledge of O. oeni behaviour and to more effectively control the performance of the bacteria during MLF in wine. To do this, measurements of intracellular pH, transmembrane potential and vitality were performed using flow cytometry with different fluorescent probes: CFDA-SE and CDCF, DiBAC and CFDA, respectively. The kinetics of the cellular changes in these parameters were determined during MLF in FT80 synthetic medium and in white wine, as were the kinetics of malic acid consumption. pHin measurement throughout the entire growth shows that the pH was equal to the pH of the culture medium during the early stage, increased to pH6 in the exponential phase, and then decreased to equilibrate with the pH of the medium in the late stationary phase. Membrane potential increased in early MLF and then decreased. The decrease in pHin and membrane potential occurred when all of the malic acid was consumed. Finally, we showed that the higher the ΔpH (pHin-pHex) in O. oeni cells was, the shorter the lag phase of the MLF was. To better manage the initiation of MLF in wines, the physiological state of O. oeni cells must be taken into account. These results allow us to understand the sometimes random initiation of MLF in wines inoculated with O. oeni and to suggest ways to improve this control. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Addition of citrate to Acidithiobacillus ferrooxidans cultures enables precipitate-free growth at elevated pH and reduces ferric inhibition.

    PubMed

    Li, Xiaozheng; Mercado, Roel; Kernan, Timothy; West, Alan C; Banta, Scott

    2014-10-01

    Acidithiobacillus ferrooxidans is an acidophilic chemolithoautotroph that is important in biomining and other biotechnological operations. The cells are able to oxidize inorganic iron, but the insolubility and product inhibition by Fe(3+) complicates characterization of these cultures. Here we explore the growth kinetics of A. ferrooxidans in iron-based medium in a pH range from 1.6 to 2.2. It was found that as the pH was increased from 1.6 to 2.0, the maintenance coefficient decreased while both the growth kinetics and maximum cell yield increased in the precipitate-free, low Fe(2+) concentration medium. In higher iron media a similar trend was observed at low pH, but the formation of precipitates at higher pH (2.0) hampered cell growth and lowered the specific growth rate and maximum cell yield. In order to eliminate ferric precipitates, chelating agents were introduced into the medium. Citric acid was found to be relatively non-toxic and did not appear to interfere with iron oxidation at a maximum concentration of 70 mM. Inclusion of citric acid prevented precipitation and A. ferrooxidans growth parameters resumed their trends as a function of pH. The addition of citrate also decreased the apparent substrate saturation constant (KS ) indicating a reduction in the competitive inhibition of growth by ferric ions. These results indicate that continuous cultures of A. ferrooxidans in the presence of citrate at elevated pH will enable enhanced cell yields and productivities. This will be critical as these cells are used in the development of new biotechnological applications such as electrofuel production. © 2014 Wiley Periodicals, Inc.

  20. Photokinetic Drug Delivery: Light-Enhanced Permeation in an In Vitro Eye Model.

    PubMed

    Godley, Bernard F; Kraft, Edward R; Giannos, Steven A; Zhao, Zhen-Yang; Haag, Anthony M; Wen, Julie W

    2015-12-01

    To investigate light-enhanced molecular movement as a potential technology for drug delivery. To do this, we developed an in vitro eye model while representing similar concentration gradient conditions and compositions found in the eye. The eye model unit was fabricated by inserting a cross-linked type I collagen membrane in a spectrophotometer cuvette with 1% hyaluronic acid as the drug recipient medium. Photokinetic delivery was studied by illuminating 1 mg/mL methotrexate (MTX) placed in the drug donor compartment on top of the membrane, with noncoherent 450 nm light at 8.2 mW from an LED source pulsed at 25 cycles per second, placed in contact with the solution. A modified UV-visual spectrophotometer was employed to rapidly determine the concentration of MTX, at progressive 1 mm distances away from the membrane, within the viscous recipient medium of the model eye after 1 h. A defined, progressive concentration gradient was observed within the nonagitated drug recipient media, diminishing with greater distances from the membrane. Transport of MTX through the membrane was significantly enhanced (ranging from 2 to 3 times, P < 0.05 to P ≤ 0.001) by photokinetic methods compared with control conditions by determining drug concentrations at 4 defined distances from the membrane. According to scanning electron microscopy images, no structural damage or shunts were created on the surface of the cross-linked gelatin membrane. The application of pulsed noncoherent visible light significantly enhances the permeation of MTX through a cross-linked collagen membrane and hyaluronic acid recipient medium without causing structural damage to the membrane.

  1. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, A.J.; Dodge, C.; Chendrayan, K.; Quinby, H.L.

    1987-04-16

    The present invention related to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rat of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 ..mu..moles of lead as lead oxide was 0.042 ..mu..moles m1/sup /-/1/ hr/sup /-/1/. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of the strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids. 4 figs., 3 tabs.

  2. Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106.

    PubMed

    Ye, Lidan; Zhou, Xingding; Hudari, Mohammad Sufian Bin; Li, Zhi; Wu, Jin Chuan

    2013-03-01

    Cost-effective production of optically pure lactic acid from lignocellulose sugars is commercially attractive but challenging. Bacillus coagulans C106 was isolated from environment and used to produce l-lactic acid from xylose at 50°C and pH 6.0 in mineral salts medium containing 1-2% (w/v) of yeast extract without sterilizing the medium before fermentation. In batch fermentation with 85g/L of xylose, lactic acid titer and productivity reached 83.6g/L and 7.5g/Lh, respectively. When fed-batch (120+80+60g/L) fermentation was applied, they reached 215.7g/L and 4.0g/Lh, respectively. In both cases, the lactic acid yield and optical purity reached 95% and 99.6%, respectively. The lactic acid titer and productivity on xylose are the highest among those ever reported. Ca(OH)2 was found to be a better neutralizing agent than NaOH in terms of its giving higher lactic acid titer (1.2-fold) and productivity (1.8-fold) under the same conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene.

    PubMed

    An, Jieun; Kwon, Hyeji; Kim, Eunjung; Lee, Young Mi; Ko, Hyeok Jin; Park, Hongjae; Choi, In-Geol; Kim, Sooah; Kim, Kyoung Heon; Kim, Wankee; Choi, Wonja

    2015-03-01

    Screening a library of overexpressing mutant alleles of the TATA-binding gene SPT15 yielded two Saccharomyces cerevisiae strains (MRRC 3252 and 3253) with enhanced tolerance to acetic acid. They were also tolerant to propionic acid and hydrogen peroxide. Transcriptome profile analysis identified 58 upregulated genes and 106 downregulated genes in MRRC 3252. Stress- and protein synthesis-related transcription factors were predominantly enriched in the upregulated and downregulated genes respectively. Eight deletion mutants for some of the highly downregulated genes were acetic acid-tolerant. The level of intracellular reactive oxygen species was considerably lessened in MRRC 3252 and 3253 upon exposure to acetic acid. Metabolome profile analysis revealed that intracellular concentrations of 5 and 102 metabolites were increased and decreased, respectively, in MRRC 3252, featuring a large increase of urea and a significant decrease of amino acids. The dur1/2Δmutant, in which the urea degradation gene DUR1/2 is deleted, displayed enhanced tolerance to acetic acid. Enhanced tolerance to acetic acid was also observed on the medium containing a low concentration of amino acids. Taken together, this study identified two SPT15 alleles, nine gene deletions and low concentration of amino acids in the medium that confer enhanced tolerance to acetic acid. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Heterologous surface display on lactic acid bacteria: non-GMO alternative?

    PubMed Central

    Zadravec, Petra; Štrukelj, Borut; Berlec, Aleš

    2015-01-01

    Lactic acid bacteria (LAB) are food-grade hosts for surface display with potential applications in food and therapy. Alternative approaches to surface display on LAB would avoid the use of recombinant DNA technology and genetically-modified organism (GMO)-related regulatory requirements. Non-covalent surface display of proteins can be achieved by fusing them to various cell-wall binding domains, of which the Lysine motif domain (LysM) is particularly well studied. Fusion proteins have been isolated from recombinant bacteria or from their growth medium and displayed on unmodified bacteria, enabling heterologous surface display. This was demonstrated on non-viable cells devoid of protein content, termed bacteria-like particles, and on various species of genus Lactobacillus. Of the latter, Lactobacillus salivarius ATCC 11741 was recently shown to be particularly amenable for LysM-mediated display. Possible regulatory implications of heterologous surface display are discussed, particularly those relevant for the European Union. PMID:25880164

  5. Biopolymer stabilized water dispersible polyaniline for supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Anbalagan, Amarnath Chellachamy; Sawant, Shilpa Nandkishor

    2018-04-01

    Polyaniline colloidal nanoparticles (PANI CNs) were synthesized, employing biopolymer pectin (Pec) as a stabilizer along with hydrochloric acid dopant and ammonium persulfate oxidant. Chemical nature and electronic structure was studied by FT-IR and UV-visible spectroscopy respectively. FE-SEM revealed spindle like morphology of PANI CNs and displayed the nearly discrete particles without aggregation, showing stabilizing capacity of the Pec. Cyclic voltammetry and galvanostatic charge-discharge measurements demonstrated the electroactivity and supercapacitive property of the PANI CNs in 1 M HCl. The specific capacitance of PANI CNs in 1 M HCl at 1.5 A/g was found to be 197 F/g, where 70% of specific capacitance was retained even after 1000 cycles. These findings establish the feasibility of using the PANI CNs as a potential material for energy storage in aqueous acidic medium. Furthermore, this colloidal dispersion can find potential application in electrodes of flexible supercapacitor device and printable electronics.

  6. Heterologous surface display on lactic acid bacteria: non-GMO alternative?

    PubMed

    Zadravec, Petra; Štrukelj, Borut; Berlec, Aleš

    2015-01-01

    Lactic acid bacteria (LAB) are food-grade hosts for surface display with potential applications in food and therapy. Alternative approaches to surface display on LAB would avoid the use of recombinant DNA technology and genetically-modified organism (GMO)-related regulatory requirements. Non-covalent surface display of proteins can be achieved by fusing them to various cell-wall binding domains, of which the Lysine motif domain (LysM) is particularly well studied. Fusion proteins have been isolated from recombinant bacteria or from their growth medium and displayed on unmodified bacteria, enabling heterologous surface display. This was demonstrated on non-viable cells devoid of protein content, termed bacteria-like particles, and on various species of genus Lactobacillus. Of the latter, Lactobacillus salivarius ATCC 11741 was recently shown to be particularly amenable for LysM-mediated display. Possible regulatory implications of heterologous surface display are discussed, particularly those relevant for the European Union.

  7. An Engineered Device for Indoleacetic Acid Production under Quorum Sensing Signals Enables Cupriavidus pinatubonensis JMP134 To Stimulate Plant Growth.

    PubMed

    Zúñiga, Ana; Fuente, Francisco de la; Federici, Fernán; Lionne, Corinne; Bônnet, Jérome; de Lorenzo, Victor; González, Bernardo

    2018-06-15

    The environmental effects of chemical fertilizers and pesticides have encouraged the quest for new strategies to increase crop productivity with minimal impacts on the natural medium. Plant growth promoting rhizobacteria (PGPR) can contribute to this endeavor by improving fitness through better nutrition acquisition and stress tolerance. Using the neutral (non PGPR) rhizobacterium Cupriavidus pinatubonensis JMP134 as the host, we engineered a regulatory forward loop that triggered the synthesis of the phytohormone indole-3-acetic acid (IAA) in a manner dependent on quorum sensing (QS) signals. Implementation of the device in JMP134 yielded synthesis of IAA in an autoregulated manner, improving the growth of the roots of inoculated Arabidopsis thaliana. These results not only demonstrated the value of the designed genetic module, but also validated C. pinatubonensis JMP134 as a suitable vehicle for agricultural applications, as it is amenable to genetic manipulations.

  8. Intestinal absorption and liver uptake of medium-chain fatty acids in non-anaesthetized pigs.

    PubMed

    Guillot, E; Vaugelade, P; Lemarchal, P; Rérat, A

    1993-03-01

    In order to study the rate of intestinal absorption and hepatic uptake of medium-chain fatty acids (MCFA), six growing pigs, mean body weight 65 kg, were fitted with a permanent fistula in the duodenum and with three catheters in the portal vein, carotid artery and hepatic vein respectively. Two electromagnetic flow probes were also set up, one around the portal vein and one around the hepatic artery. A mixture of octanoic and decanoic acids, esterified as medium-chain triacylglycerols, together with maltose dextrine and a nitrogenous fraction was continuously infused for 1 h into the duodenum. Samples of blood were withdrawn from the three vessels at regular intervals for 12 h and further analysed for their non-esterified octanoic and decanoic acid contents. The concentration of non-esterified octanoic and decanoic acids in the portal blood rose sharply after the beginning of each infusion and showed a biphasic time-course with two maximum values, one after 15 min and a later one between 75 and 90 min. Only 65% of octanoic acid infused into the duodenum and 54% of decanoic acid were recovered in the portal flow throughout each experiment. The amounts of non-esterified MCFA taken up per h by the liver were close to those absorbed from the gut via the portal vein within the same periods of time, showing that the liver is the main site of utilization of MCFA in pigs. These results have been discussed with a special emphasis laid on the possible mechanisms of the biphasic time-course of MCFA absorption and the incomplete recovery in the portal blood of the infused fatty acids.

  9. Polyamines and fatty acids in sucrose precultured banana meristems and correlation with survival rate after cryopreservation.

    PubMed

    Ramon, Mathew; Geuns, Jan M C; Swennen, Rony; Pannis, Bart

    2002-01-01

    Polyamines and fatty acids were studied in proliferating meristem cultures of 3 banana cultivars with high (Cachaco), medium (Williams Bronze free) and low (Mbwazirume) survival rates after cryopreservation. A 2-week preculture on medium containing 0.4 M sucrose which is essential to obtain survival after cryopreservation resulted in increased polyamine levels, especially putrescine. This increase in putrescine content was positively correlated with the survival rate after simple freezing or after vitrification. The total fatty acid content also increased after a 0.4 M sucrose pretreatment. However, only the ratio of unsaturated/saturated fatty acids correlated positively with the survival rate after cryopreservation. This is the first report showing a correlation of both putrescine increase and level of unsaturation of membrane lipids after sucrose treatment with survival rate after cryopreservation.

  10. Synchronous fluorescence determination of ferulic acid with Ce(IV) and sodium tripolyphosphate.

    PubMed

    Meng, F; Liu, P; Huang, F; Wang, L; Wu, X; Shen, L

    2014-05-01

    In this study, a synchronous fluorescence detection method for ferulic acid (FA) is proposed based on a redox reaction between FA and Ce(IV) sulfate in dilute sulfuric acid medium at room temperature. It was found that FA could reduce Ce(IV) to Ce(III) in acidic medium, and sodium tripolyphosphate could further enhance the intrinsic fluorescence of the Ce(III) produced. The enhanced extent of synchronous fluorescence intensity was in proportion to the concentration of FA over the range 3.0 × 10(-8) to 1.0 × 10(-5) mol/L. The corresponding limit of determination (S/N = 3) was 1.3 × 10(-8) mol/L. The proposed method was applied to the determination of sodium ferulate for injection sample with satisfactory results. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Cuphea: a new plant source of medium-chain fatty acids.

    PubMed

    Graham, S A

    1989-01-01

    The plant genus Cuphea (family Lythraceae) promises to provide a new source of industrially and nutritionally important medium-chain fatty acids, especially of lauric acid now supplied exclusively by coconut and palm kernel oils from foreign sources. The seed lipids of Cuphea were first discovered in the 1960s to contain high percentages of several medium-chain fatty acids, including caprylic, capric, lauric, and myristic acid. Research is still in the early stages, but it is intensifying toward the goal of developing the genus into a new temperate climate crop for production of specialty oils. Given the diversity of Cuphea seed lipid composition and the wide ecological and distributional range of the genus, it may be possible to tailor crops to produce selected fatty acids on demand under a variety of growing conditions. Cuphea comprises about 260 species, most native to the New World tropics. Its morphology, classification, chromosome numbers, distribution, ecology, and folk uses are presented. Seed structure is described and seed lipid composition for 73 species is summarized. Problems in domestication and agronomic progress are reviewed. Knowledge of the biosynthetic mechanism controlling the lipids produced by Cuphea remains very limited. Future research in this area, and particularly successful employment of gene transfer techniques, may allow genes controlling the mechanism to be transferred to an already established seed oil producer such as rapeseed. Presently, both traditional plant breeding techniques and newer biotechnological methods are directed toward Cuphea oilseed development.

  12. L: (+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans.

    PubMed

    Ou, Mark S; Ingram, Lonnie O; Shanmugam, K T

    2011-05-01

    Lactic acid is used as an additive in foods, pharmaceuticals, and cosmetics, and is also an industrial chemical. Optically pure lactic acid is increasingly used as a renewable bio-based product to replace petroleum-based plastics. However, current production of lactic acid depends on carbohydrate feedstocks that have alternate uses as foods. The use of non-food feedstocks by current commercial biocatalysts is limited by inefficient pathways for pentose utilization. B. coagulans strain 36D1 is a thermotolerant bacterium that can grow and efficiently ferment pentoses using the pentose-phosphate pathway and all other sugar constituents of lignocellulosic biomass at 50°C and pH 5.0, conditions that also favor simultaneous enzymatic saccharification and fermentation (SSF) of cellulose. Using this bacterial biocatalyst, high levels (150-180 g l(-1)) of lactic acid were produced from xylose and glucose with minimal by-products in mineral salts medium. In a fed-batch SSF of crystalline cellulose with fungal enzymes and B. coagulans, lactic acid titer was 80 g l(-1) and the yield was close to 80%. These results demonstrate that B. coagulans can effectively ferment non-food carbohydrates from lignocellulose to L: (+)-lactic acid at sufficient concentrations for commercial application. The high temperature fermentation of pentoses and hexoses to lactic acid by B. coagulans has these additional advantages: reduction in cellulase loading in SSF of cellulose with a decrease in enzyme cost in the process and a reduction in contamination of large-scale fermentations.

  13. Investigation of Gas-Sensing Property of Acid-Deposited Polyaniline Thin-Film Sensors for Detecting H2S and SO2

    PubMed Central

    Dong, Xingchen; Zhang, Xiaoxing; Wu, Xiaoqing; Cui, Hao; Chen, Dachang

    2016-01-01

    Latent insulation defects introduced in manufacturing process of gas-insulated switchgears can lead to partial discharge during long-time operation, even to insulation fault if partial discharge develops further. Monitoring of decomposed components of SF6, insulating medium of gas-insulated switchgear, is a feasible method of early-warning to avoid the occurrence of sudden fault. Polyaniline thin-film with protonic acid deposited possesses wide application prospects in the gas-sensing field. Polyaniline thin-film sensors with only sulfosalicylic acid deposited and with both hydrochloric acid and sulfosalicylic acid deposited were prepared by chemical oxidative polymerization method. Gas-sensing experiment was carried out to test properties of new sensors when exposed to H2S and SO2, two decomposed products of SF6 under discharge. The gas-sensing properties of these two sensors were compared with that of a hydrochloric acid deposited sensor. Results show that the hydrochloric acid and sulfosalicylic acid deposited polyaniline thin-film sensor shows the most outstanding sensitivity and selectivity to H2S and SO2 when concentration of gases range from 10 to 100 μL/L, with sensitivity changing linearly with concentration of gases. The sensor also possesses excellent long-time and thermal stability. This research lays the foundation for preparing practical gas-sensing devices to detect H2S and SO2 in gas-insulated switchgears at room temperature. PMID:27834895

  14. A Simple Method to Reduce both Lactic Acid and Ammonium Production in Industrial Animal Cell Culture

    PubMed Central

    Freund, Nathaniel W.; Croughan, Matthew S.

    2018-01-01

    Fed-batch animal cell culture is the most common method for commercial production of recombinant proteins. However, higher cell densities in these platforms are still limited due to factors such as excessive ammonium production, lactic acid production, nutrient limitation, and/or hyperosmotic stress related to nutrient feeds and base additions to control pH. To partly overcome these factors, we investigated a simple method to reduce both ammonium and lactic acid production—termed Lactate Supplementation and Adaptation (LSA) technology—through the use of CHO cells adapted to a lactate-supplemented medium. Using this simple method, we achieved a reduction of nearly 100% in lactic acid production with a simultaneous 50% reduction in ammonium production in batch shaker flasks cultures. In subsequent fed-batch bioreactor cultures, lactic acid production and base addition were both reduced eight-fold. Viable cell densities of 35 million cells per mL and integral viable cell days of 273 million cell-days per mL were achieved, both among the highest currently reported for a fed-batch animal cell culture. Investigating the benefits of LSA technology in animal cell culture is worthy of further consideration and may lead to process conditions more favorable for advanced industrial applications. PMID:29382079

  15. A Simple Method to Reduce both Lactic Acid and Ammonium Production in Industrial Animal Cell Culture.

    PubMed

    Freund, Nathaniel W; Croughan, Matthew S

    2018-01-28

    Fed-batch animal cell culture is the most common method for commercial production of recombinant proteins. However, higher cell densities in these platforms are still limited due to factors such as excessive ammonium production, lactic acid production, nutrient limitation, and/or hyperosmotic stress related to nutrient feeds and base additions to control pH. To partly overcome these factors, we investigated a simple method to reduce both ammonium and lactic acid production-termed Lactate Supplementation and Adaptation (LSA) technology-through the use of CHO cells adapted to a lactate-supplemented medium. Using this simple method, we achieved a reduction of nearly 100% in lactic acid production with a simultaneous 50% reduction in ammonium production in batch shaker flasks cultures. In subsequent fed-batch bioreactor cultures, lactic acid production and base addition were both reduced eight-fold. Viable cell densities of 35 million cells per mL and integral viable cell days of 273 million cell-days per mL were achieved, both among the highest currently reported for a fed-batch animal cell culture. Investigating the benefits of LSA technology in animal cell culture is worthy of further consideration and may lead to process conditions more favorable for advanced industrial applications.

  16. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media.

    PubMed

    Ng, Choong Hey; Yang, Kun-Lin

    2016-01-01

    Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Macrolide Antibiotics Exhibit Cytotoxic Effect under Amino Acid-Depleted Culture Condition by Blocking Autophagy Flux in Head and Neck Squamous Cell Carcinoma Cell Lines

    PubMed Central

    Hirasawa, Kazuhiro; Moriya, Shota; Miyahara, Kana; Kazama, Hiromi; Hirota, Ayako; Takemura, Jun; Abe, Akihisa; Inazu, Masato; Hiramoto, Masaki; Tsukahara, Kiyoaki

    2016-01-01

    Autophagy, a self-digestive system for cytoplasmic components, is required to maintain the amino acid pool for cellular homeostasis. We previously reported that the macrolide antibiotics azithromycin (AZM) and clarithromycin (CAM) have an inhibitory effect on autophagy flux, and they potently enhance the cytocidal effect of various anticancer reagents in vitro. This suggests that macrolide antibiotics can be used as an adjuvant for cancer chemotherapy. Since cancer cells require a larger metabolic demand than normal cells because of their exuberant growth, upregulated autophagy in tumor cells has now become the target for cancer therapy. In the present study, we examined whether macrolides exhibit cytotoxic effect under an amino acid-starving condition in head and neck squamous cancer cell lines such as CAL 27 and Detroit 562 as models of solid tumors with an upregulated autophagy in the central region owing to hypovascularity. AZM and CAM induced cell death under the amino acid-depleted (AAD) culture condition in these cell lines along with CHOP upregulation, although they showed no cytotoxicity under the complete culture medium. CHOP knockdown by siRNA in the CAL 27 cells significantly suppressed macrolide-induced cell death under the AAD culture condition. CHOP-/- murine embryonic fibroblast (MEF) cell lines also attenuated AZM-induced cell death compared with CHOP+/+ MEF cell lines. Using a tet-off atg5 MEF cell line, knockout of atg5, an essential gene for autophagy, also induced cell death and CHOP in the AAD culture medium but not in the complete culture medium. This suggest that macrolide-induced cell death via CHOP induction is dependent on autophagy inhibition. The cytotoxicity of macrolide with CHOP induction was completely cancelled by the addition of amino acids in the culture medium, indicating that the cytotoxicity is due to the insufficient amino acid pool. These data suggest the possibility of using macrolides for “tumor-starving therapy”. PMID:27977675

  18. Decolorization of acid, disperse and reactive dyes by Trametes versicolor CBR43.

    PubMed

    Yang, Seung-Ok; Sodaneath, Hong; Lee, Jung-In; Jung, Hyekyeng; Choi, Jin-Hee; Ryu, Hee Wook; Cho, Kyung-Suk

    2017-07-29

    The mycoremediation has been considered as a promising method for decolorizing dye wastewater. To explore new bioresource for mycoremediation, a new white-rot fungus that could decolorize various dyes commonly used in textile industries was isolated, and its ligninolytic enzyme activity and decolorization capacity were characterized. The isolated CBR43 was identified as Trametes versicolor based on the morphological properties of its fruit body and spores, as well as through partial 18S rDNA gene sequences. Isolated CBR43 displayed high activities of laccase and Mn-dependent peroxidase, whereas its lignin peroxidase activity was relatively low. These ligninolytic enzyme activities in potato dextrose broth (PDB) medium were enhanced by the addition of yeast extract (1-10 g L -1 ). In particular, lignin peroxidase activity was increased more than 5 times in the PDB medium amended with 10 g L -1 of yeast extract. The CBR43 decolorized more than 90% of 200 mg L -1 acid dyes (red 114, blue 62 and black 172) and reactive dyes (red 120, blue 4, orange 16 and black 5) within 6 days in the PDB medium. CBR43 decolorized 67% of 200 mg L -1 acid orange 7 within 9 days. The decolorization efficiencies for disperse dyes (red 1, orange 3 and black 1) were 51-80% within 9 days. The CBR43 could effectively decolorize high concentrations of acid blue 62 and acid black 172 (500-700 mg L -1 ). The maximum dye decolorization rate was obtained at 28°C, pH 5, and 150 rpm in the PDB medium. T. versicolor CBR43 had high laccase and Mn-dependent peroxidase activities, and could decolorize a wide variety of dyes such as acid, disperse and reactive textile dyes. This fungus had decolorizing activities of azo-type dyes as well as anthraquinone-type dyes. T. versicolor CBR43 is one of promising bioresources for the decolorization of textile wastewater including various dyes.

  19. Inhibition of urease activity in the urinary tract pathogen Staphylococcus saprophyticus.

    PubMed

    Loes, A N; Ruyle, L; Arvizu, M; Gresko, K E; Wilson, A L; Deutch, C E

    2014-01-01

    Urease is a virulence factor for the Gram-positive urinary tract pathogen Staphylococcus saprophyticus. The susceptibility of this enzyme to chemical inhibition was determined using soluble extracts of Staph. saprophyticus strain ATCC 15305. Acetohydroxamic acid (Ki = 8.2 μg ml(-1) = 0.106 mmol l(-1) ) and DL-phenylalanine hydroxamic acid (Ki = 21 μg ml(-1) = 0.116 mmol l(-1) ) inhibited urease activity competitively. The phosphorodiamidate fluorofamide also caused competitive inhibition (Ki = 0.12 μg ml(-1) = 0.553 μmol l(-1) = 0.000553 mmol l(-1) ), but the imidazole omeprazole had no effect. Two flavonoids found in green tea extract [(+)-catechin hydrate (Ki = 357 μg ml(-1) = 1.23 mmol l(-1) ) and (-)-epigallocatechin gallate (Ki = 210 μg ml(-1) = 0.460 mmol l(-1) )] gave mixed inhibition. Acetohydroxamic acid, DL-phenylalanine hydroxamic acid, fluorofamide, (+)-catechin hydrate and (-)-epigallocatechin gallate also inhibited urease activity in whole cells of strains ATCC 15305, ATCC 35552 and ATCC 49907 grown in a rich medium or an artificial urine medium. Addition of acetohydroxamic acid or fluorofamide to cultures of Staph. saprophyticus in an artificial urine medium delayed the increase in pH that normally occurs during growth. These results suggest that urease inhibitors may be useful for treating urinary tract infections caused by Staph. saprophyticus. The enzyme urease is a virulence factor for the Gram-positive urinary tract pathogen Staphylococcus saprophyticus. We have shown that urease activity in cell-free extracts and whole bacterial cells is susceptible to inhibition by hydroxamates, phosphorodiamidates and flavonoids, but not by imidazoles. Acetohydroxamic acid and fluorofamide in particular can temporarily delay the increase in pH that occurs when Staph. saprophyticus is grown in an artificial urine medium. These results suggest that urease inhibitors may be useful as chemotherapeutic agents for the treatment of urinary tract infections caused by this micro-organism. © 2013 The Society for Applied Microbiology.

  20. Continuous hydrolysis of Cuphea seed oil in subcritical water

    USDA-ARS?s Scientific Manuscript database

    Cuphea seed oil (CSO) is a source of medium chain fatty acids for use in chemical manufacturing, including detergents, shampoos and lubricants. Cuphea seed oil is high in decanoic acid and this fatty acid is especially useful in the preparation of estolide biobased lubricants, which have excellent ...

  1. Rapid, general synthesis of PdPt bimetallic alloy nanosponges and their enhanced catalytic performance for ethanol/methanol electrooxidation in an alkaline medium.

    PubMed

    Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun

    2013-01-14

    We have demonstrated a rapid and general strategy to synthesize novel three-dimensional PdPt bimetallic alloy nanosponges in the absence of a capping agent. Significantly, the as-prepared PdPt bimetallic alloy nanosponges exhibited greatly enhanced activity and stability towards ethanol/methanol electrooxidation in an alkaline medium, which demonstrates the potential of applying these PdPt bimetallic alloy nanosponges as effective electrocatalysts for direct alcohol fuel cells. In addition, this simple method has also been applied for the synthesis of AuPt, AuPd bimetallic, and AuPtPd trimetallic alloy nanosponges. The as-synthesized three-dimensional bimetallic/trimetallic alloy nanosponges, because of their convenient preparation, well-defined sponge-like network, large-scale production, and high electrocatalytic performance for ethanol/methanol electrooxidation, may find promising potential applications in various fields, such as formic acid oxidation or oxygen reduction reactions, electrochemical sensors, and hydrogen-gas sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Green synthesis of isopropyl myristate in novel single phase medium Part II: Packed bed reactor (PBR) studies.

    PubMed

    Vadgama, Rajeshkumar N; Odaneth, Annamma A; Lali, Arvind M

    2015-12-01

    Isopropyl myristate is a useful functional molecule responding to the requirements of numerous fields of application in cosmetic, pharmaceutical and food industry. In the present work, lipase-catalyzed production of isopropyl myristate by esterification of myristic acid with isopropyl alcohol (molar ratio of 1:15) in the homogenous reaction medium was performed on a bench-scale packed bed reactors, in order to obtain suitable reaction performance data for upscaling. An immobilized lipase B from Candida antartica was used as the biocatalyst based on our previous study. The process intensification resulted in a clean and green synthesis process comprising a series of packed bed reactors of immobilized enzyme and water dehydrant. In addition, use of the single phase reaction system facilitates efficient recovery of the product with no effluent generated and recyclability of unreacted substrates. The single phase reaction system coupled with a continuous operating bioreactor ensures a stable operational life for the enzyme.

  3. Application of ozonated piggery wastewater for cultivation of oil-rich Chlorella pyrenoidosa.

    PubMed

    Gan, Ke; Mou, Xiaoqing; Xu, Yan; Wang, Haiying

    2014-11-01

    Ozonated and autoclaved piggery wastewaters were compared for cultivation of oil-rich Chlorella pyrenoidosa by measuring nutrient removal from the medium and growth rate and lipid production of the microalgae. The removal rates of chemical oxygen demand, NH4(+)-N, total nitrogen and total phosphorus by C. pyrenoidosa were not influenced by both sterilisation methods. The specific growth rate and biomass of C. pyrenoidosa were determined by analysing the chlorophyll concentration for eliminating the disturbance of bacteria growth in culture system. Bacteria raised from the residue in the ozonated medium achieved 30% of the total microorganisms at the end of cultivation. They reduced the growth of C. pyrenoidosa by 10.4%, but contributed to a faster decline of the nutrient content on the first day. Lipid production and fatty acid profile did not change markedly in both sterilisation methods. The results suggest that ozonation is acceptable for piggery wastewater treatment for C. pyrenoidosa cultivation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Vaginal Lactobacillus Inhibits HIV-1 Replication in Human Tissues Ex Vivo

    PubMed Central

    Ñahui Palomino, Rogers A.; Zicari, Sonia; Vanpouille, Christophe; Vitali, Beatrice; Margolis, Leonid

    2017-01-01

    Lactobacillus species, which dominate vaginal microbiota of healthy reproductive-age women, lower the risks of sexually transmitted infections, including the risk of human immunodeficiency virus (HIV) acquisition. The exact mechanisms of this protection remain to be understood. Here, we investigated these mechanisms in the context of human cervico-vaginal and lymphoid tissues ex vivo. We found that all six Lactobacillus strains tested in these systems significantly suppressed HIV type-1 (HIV-1) infection. We identified at least three factors that mediated this suppression: (i) Acidification of the medium. The pH of the undiluted medium conditioned by lactobacilli was between 3.8 and 4.6. Acidification of the culture medium with hydrochloric acid (HCl) to this pH in control experiments was sufficient to abrogate HIV-1 replication. However, the pH of the Lactobacillus-conditioned medium (CM) diluted fivefold, which reached ∼6.9, was also suppressive for HIV-1 infection, while in control experiments HIV-1 infection was not abrogated when the pH of the medium was brought to 6.9 through the use of HCl. This suggested the existence of other factors responsible for HIV-1 inhibition by lactobacilli. (ii) Lactic acid. There was a correlation between the concentration of lactic acid in the Lactobacillus-CM and its ability to suppress HIV-1 infection in human tissues ex vivo. Addition of lactic acid isomers D and L to tissue culture medium at the concentration that corresponded to their amount released by lactobacilli resulted in HIV-1 inhibition. Isomer L was produced in higher quantities than isomer D and was mostly responsible for HIV-1 inhibition. These results indicate that lactic acid, in particular its L-isomer, inhibits HIV-1 independently of lowering of the pH. (iii) Virucidal effect. Incubation of HIV-1 in Lactobacillus-CM significantly suppressed viral infectivity for human tissues ex vivo. Finally, lactobacilli adsorb HIV-1, serving as a sink decreasing the number of free virions. In summary, we found that lactobacilli inhibit HIV-1 replication in human tissue ex vivo by multiple mechanisms. Further studies are needed to evaluate the potential of altering the spectra of vaginal microbiota as an effective strategy to enhance vaginal health. Human tissues ex vivo may serve as a test system for these strategies. PMID:28579980

  5. Heavy isotope labeling study of the turnover of forskolin-stimulated adenylate cyclase in BC/sup 3/H1 cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhelal, R.; Bockaert, J.; Mermet-Bouvier, R.

    1987-06-25

    We have used the method of heavy isotope labeling to study the metabolic turnover of adenylate cyclase in a nonfusing muscle cell line, the BC/sup 3/H1 cells. These cells contains an adenylate cyclase coupled to beta-adrenergic receptors and highly stimulated by forskolin, a potent activator of the enzyme. After transfer of the cells from normal medium to heavy medium (a medium containing heavy labeled amino acids, /sup 3/H, /sup 13/C, /sup 15/N), heavy isotope-labeled adenylate cyclase molecules progressively replace pre-existing light molecules. In sucrose gradient differential sedimentation, after a 5-day switch in heavy medium, the enzyme exhibited a higher massmore » (s = 8.40 +/- 0.03 S, n = 13) compared to the control enzyme. Indeed, the increase in the sedimentation coefficient of the heavy molecules was due to the synthesis of new molecules of adenylate cyclase labeled with heavy isotope amino acids since in the presence of cycloheximide, an inhibitor of protein synthesis, no change in the sedimentation pattern of the forskolin-stimulated adenylate cyclase occurred. After incorporation of heavy isotope amino acids in the adenylate cyclase molecules, the kinetics parameters of the enzyme did not change. However, adenylate cyclase from cells incubated with heavy medium exhibits an activity about 2-fold lower than control. After switching the cells to the heavy medium, the decrease of the activity of the enzyme occurred during the first 24 h and thereafter remained at a steady state for at least 4 days. In contrast, 24 h after the switch, the sedimentation coefficient of forskolin-stimulated adenylate cyclase was progressively shifted to a higher value.« less

  6. Optimization of culture medium for novel cell-associated tannase production from Bacillus massiliensis using response surface methodology.

    PubMed

    Belur, Prasanna D; Goud, Rakesh; Goudar, Dinesh C

    2012-02-01

    Naturally immobilized tannase (tannin acyl hydrolase, E.C. 3.1.1.20) has many advantages, as it avoids the expensive and laborious operation of isolation, purification, and immobilization, plus it is highly stable in adverse pH and temperature. However, in the case of cell-associated enzymes, since the enzyme is associated with the biomass, separation of the pure biomass is necessary. However, tannic acid, a known inducer of tannase, forms insoluble complexes with media proteins, making it difficult to separate pure biomass. Therefore, this study optimizes the production of cell-associated tannase using a "protein-tannin complex" free media. An exploratory study was first conducted in shake-flasks to select the inducer, carbon source, and nitrogen sources. As a result it was found that gallic acid induces tannase synthesis, a tryptose broth gives higher biomass, and lactose supplementation is beneficial. The medium was then optimized using response surface methodology based on the full factorial central composite design in a 3 l bioreactor. A 2(3) factorial design augmented by 7 axial points (alpha = 1.682) and 2 replicates at the center point was implemented in 17 experiments. A mathematical model was also developed to show the effect of each medium component and their interactions on the production of cell-associated tannase. The validity of the proposed model was verified, and the optimized medium was shown to produce maximum cell-associated tannase activity of 9.65 U/l, which is 93.8% higher than the activity in the basal medium, after 12 h at pH 5.0, 30 degrees C. The optimum medium consists of 38 g/l lactose, 50 g/l tryptose, and 2.8 g/l gallic acid.

  7. Micropropagation of an exotic ornamental plant, Calathea crotalifera, for production of high quality plantlets.

    PubMed

    Rozali, Shahril Efzueni; Rashid, Kamaludin A; Taha, Rosna Mat

    2014-01-01

    A successful protocol was established for micropropagation in two selected varieties of exotic ornamental plants, Calathea crotalifera. The effects of different sterilization techniques, explant type, and the combination and concentration of plant growth regulators on shoots induction were studied. The axillary shoot buds explants sprouted from rhizomes in soil free conditions showed high induction rate of shoots with lowest contamination percentage when treated with combination of 30% (v/v) NaOCl, 70% (v/v) ethanol, and 0.3% (w/v) HgCl2. In the present study, the highest number of multiple shoots was obtained in MS basal medium supplemented with 3.5 mg/L 6-Benzylaminopurine (BAP), 1.0 mg/L 1-Naphthaleneacetic acid (NAA), 3% sucrose, and 6 g/L plant agar for both varieties and was used as multiplication medium. Microshoots were highly induced when the young shoot bud explants were incised longitudinally prior subculture. Chlorophyll analysis was studied to test the effects of activated charcoal and L-glutamine on reduction of necrosis problem. The maximum roots induction was recorded on MS medium supplemented with 1.0 mg/L 1-Naphthaleneacetic acid (NAA) compared to indolebutyric acid (IBA). The complete regenerated plantlets were successfully acclimatized in the soilless medium under greenhouse condition. This is the first report of rapid mass propagation for C. crotalifera.

  8. Improved Chemically Defined Basal Medium (CMRL-1969) for Primary Monkey Kidney and Human Diploid Cells 1

    PubMed Central

    Healy, G. M.; Teleki, S.; Seefried, A. V.; Walton, M. J.; Macmorine, H. G.

    1971-01-01

    An improved tissue culture basal medium, CMRL-1969, supplemented with serum, has been evaluated by measuring the growth responses of primary cultures of trypsin-dispersed monkey kidney cells (PMKC) and of an established culture of a human diploid cell strain (HDCS). Medium H597, an early modification of medium 199 which has been used successfully in the preparation of poliomyelitis vaccine for 15 years, was used for comparison. In addition, parallel testing was done with Basal Medium Eagle (BME) widely used for the growth of HDCS. The improvements in basal medium CMRL-1969 are attributed to changes in amino acid concentrations, in vitamin composition, and, in particular, to enhanced buffering capacity. The latter has been achieved by the use of free-base amino acids and by increasing the dibasic sodium phosphate. The new medium has already been used to advantage for the production of polioviruses in PMKC where equivalent titers were obtained from cultures initiated with 70% of the number of cells required with earlier media. The population-doubling time was reduced in this system. Also, with small inocula of HDCS, the time required to obtain maximum cell yield was shorter with CMRL-1969 than with BME. Both media were supplemented with 10% calf serum. Maximum cell yields after repeated subcultivation in the new basal medium were greatly increased and the stability of the strain, as shown by chromosomal analysis, was not affected. Basal medium CMRL-1969 can be prepared easily in liquid or powdered form. PMID:4322279

  9. Plant regeneration from hypocotyl- and anther-derived callus of berseem clover. [Trifolium alexandrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mokhtarzedeh, A.; Constantin, M.J.

    1978-01-01

    Plants were regenerated from hypocotyl and anther explants of berseem clover (Trifolium alexandrinum L.) on Murashige and Skoog (MS) medium containing various combinations of plant growth regulators. The most efficient production of plants from hypocotyl explants involved: callus induction on MS medium with 1.0 mg/liter of naphthaleneacetic acid (NAA) and 1.5 mg/liter 6-furfurylaminopurine (KIN); callus increase on MS medium with 2.0 mg/liter of NAA and 0.1 mg/liter of N/sup 6/-(..delta../sup 2/-isopentenyl) adenine (2iP); induction of shoots on MS medium with 0.5 mg/liter each of NAA and KIN followed by induction of roots on MS medium with 1.0 mg/liter of indoleaceticmore » acid (IAA) and 0.1 mg/liter of 6-benzylaminopurine (BAP). Suspension cultures in liquid MS medium containing 2.0 mg/liter of NAA and 0.2 mg/liter of 2iP provided filterable cell preparations with 45% viable cells, 4% of which gave rise to colonies within 3 weeks after transfer to agar plates. Shoot development was observed when callus from the colonies was cultured on MS medium with 0.5 mg/liter of NAA and KIN. Preliminary results indicate that cells of root tips from hypocotyl- and anther-derived callus have the expected diploid and haploid number of chromosomes (2n = 16 and n = 8, respectively).« less

  10. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Bai, Tongshuo; Dai, Letian; Wang, Fuwei; Tao, Jinjin; Meng, Shiting; Hu, Yunxiao; Wang, Shimei; Hu, Shuijin

    2016-04-01

    Phosphate solubilizing fungi (PSF) have huge potentials in enhancing release of phosphorus from fertilizer. Two PSF (NJDL-03 and NJDL-12) were isolated and identified as Penicillium oxalicum and Aspergillus niger respectively in this study. The quantification and identification of organic acids were performed by HPLC. Total concentrations of organic acids secreted by NJDL-03 and NJDL-12 are ~4000 and ~10,000 mg/L with pH values of 3.6 and 2.4 respectively after five-days culture. Oxalic acid dominates acidity in the medium due to its high concentration and high acidity constant. The two fungi were also cultured for five days with the initial pH values of the medium varied from 6.5 to 1.5. The biomass reached the maximum when the initial pH values are 4.5 for NJDL-03 and 2.5 for NJDL-12. The organic acids for NJDL-12 reach the maximum at the initial pH = 5.5. However, the acids by NJDL-03 continue to decrease and proliferation of the fungus terminates at pH = 2.5. The citric acid production increases significantly for NJDL-12 at acidic environment, whereas formic and oxalic acids decrease sharply for both two fungi. This study shows that NJDL-12 has higher ability in acid production and has stronger adaptability to acidic environment than NJDL-03.

  11. Enzyme-mediated hyaluronic acid-tyramine hydrogels for the propagation of human embryonic stem cells in 3D.

    PubMed

    Xu, Keming; Narayanan, Karthikeyan; Lee, Fan; Bae, Ki Hyun; Gao, Shujun; Kurisawa, Motoichi

    2015-09-01

    The propagation of human embryonic stem cells (hESCs) in three-dimensional (3D) scaffolds facilitates the cell expansion process and supplies pluripotent cells of high quality for broad-spectrum applications in regenerative medicine. Herein, we report an enzyme-mediated hyaluronic acid-tyramine (HA-Tyr) hydrogel that encapsulated and propagated hESCs in 3D. HA-Tyr hydrogels were formed by crosslinking the tyramine moieties with horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). By changing the HRP and H2O2 concentration, we prepared HA-Tyr hydrogels of different mechanical strength and studied the self-renewal properties of hESCs in these scaffolds. We observed that both the chemical composition and mechanical strength of substrates were important factors affecting cell proliferation and pluripotency. The HA-Tyr hydrogel with a compressive modulus of ∼350Pa supported the proliferation of hESCs at the pluripotent state in both mTeSR1 medium and mouse embryonic fibroblast (MEF)-conditioned medium. Immunohistochemical analyses revealed that hESCs proliferated well and formed spheroid structures in 3D, without undergoing apoptosis. The hESCs cultured in HA-Tyr hydrogels showed high expression of CD44 and pluripotency markers. These cells exhibited the capability to form cell derivatives of all three embryonic germ layers in vitro and in vivo. In addition, the genetic integrity of the hESCs was unaffected in the 3D cultivation system. The scope of this study is to provide a stable 3D cultivation system for the expansion of human embryonic stem cells (hESCs) towards clinical applications. We report an enzyme mediated hyaluronic acid-tyramine (HA-Tyr) hydrogel that encapsulated and propagated hESCs in 3D. Unlike other HA-based photo-crosslinked hydrogel systems reported, we investigated the effects of mechanical strength of hydrogels on the self-renewal properties of hESCs in 3D. Then, we characterized hESCs cultured in hydrogels with lower mechanical strength that best supported the self-renewal of hESCs. Hence, we demonstrated a reliable approach for the controlled propagation of hESCs in 3D. We believe that such an approach would facilitate the development of stem cell-based therapy towards clinical applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Amine content of vaginal fluid from untreated and treated patients with nonspecific vaginitis.

    PubMed Central

    Chen, K C; Forsyth, P S; Buchanan, T M; Holmes, K K

    1979-01-01

    We examined the vaginal washings from patients with nonspecific vaginitis (NSV) to seek biochemical markers and possible explanations for the signs and symptoms of this syndrome. Seven amines were identified including methylamine, isobutylamine, putrescine, cadaverine, histamine, tyramine, and phenethylamine. These amines may contribute to the symptoms of NSV and may contribute to the elevated pH of the vaginal discharge. They may also be partly responsible for the "fishy" odor that is characteristic of vaginal discharges from these patients. Among the seven amines, putrescine and cadaverine were the most abundant and were present in all vaginal discharges from each of ten patients before treatment. These amines are produced in vitro during growth of mixed vaginal bacteria in chemically defined medium, presumably by decarboxylation of the corresponding amino acids. We hypothesize the anaerobic vaginal organisms, previously shown to be quantitatively increased in NSV, are responsible for the amine production, because metronidazole inhibited the production of amines by vaginal bacteria in vitro, and Haemophilus vaginalis did not produce amines. H. vaginalis did release high concentrations of pyruvic acid and of amino acids during growth in peptone-starch-dextrose medium, whereas, other vaginal flora consumed both pyruvic acid and amino acids in the same medium during growth. These findings suggest that a symbiotic relationship may exist between H. vaginalis and other vaginal flora in patients with NSV. Images PMID:447831

  13. Bioconversion of R-(+)-limonene to perillic acid by the yeast Yarrowia lipolytica

    PubMed Central

    Ferrara, Maria Antonieta; Almeida, Débora S.; Siani, Antonio C.; Lucchetti, Leonardo; Lacerda, Paulo S.B.; Freitas, André; Tappin, Marcelo R.R.; Bon, Elba P.S.

    2013-01-01

    Perillyl derivatives are increasingly important due to their flavouring and antimicrobial properties as well as their potential as anticancer agents. These terpenoid species, which are present in limited amounts in plants, may be obtained via bioconversion of selected monoterpene hydrocarbons. In this study, seventeen yeast strains were screened for their ability to oxidize the exocyclic methyl group in the p-menthene moiety of limonene into perillic acid. Of the yeast tested, the highest efficiency was observed for Yarrowia lipolytica ATCC 18942. The conversion of R (+)-limonene by Y. lipolytica was evaluated by varying the pH (3 to 8) and the temperature (25 to 30 °C) in a reaction medium containing 0.5% v/v limonene and 10 g/L of stationary phase cells (dry weight). The best results, corresponding to 564 mg/L of perillic acid, were obtained in buffered medium at pH 7.1 that was incubated at 25 °C for 48 h. The stepwise addition of limonene increased the perillic acid concentration by over 50%, reaching 855 mg/L, whereas the addition of glucose or surfactant to the reaction medium did not improve the bioconversion process. The use of Y. lipolytica showed promise for ease of further downstream processing, as perillic acid was the sole oxidised product of the bioconversion reaction. Moreover, bioprocesses using safe and easy to cultivate yeast cells have been favoured in industry. PMID:24688495

  14. Endogenous hormones response to cytokinins with regard to organogenesis in explants of peach (Prunus persica L. Batsch) cultivars and rootstocks (P. persica × Prunus dulcis).

    PubMed

    Pérez-Jiménez, Margarita; Cantero-Navarro, Elena; Pérez-Alfocea, Francisco; Cos-Terrer, José

    2014-11-01

    Organogenesis in peach (Prunus persica L. Batsch) and peach rootstocks (P. persica × Prunus dulcis) has been achieved and the action of the regeneration medium on 7 phytohormones, zeatin (Z), zeatin riboside (ZR), indole-3-acetic acid (IAA), abscisic acid (ABA), ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), salicylic acid (SA), and jasmonic acid (JA), has been studied using High performance liquid chromatography - mass spectrometry (HPLC-MS/MS). Three scion peach cultivars, 'UFO-3', 'Flariba' and 'Alice Bigi', and the peach × almond rootstocks 'Garnem' and 'GF677' were cultured in two different media, Murashige and Skoog supplemented with plant growth regulators (PGRs) (regeneration medium) and without PGRs (control medium), in order to study the effects of the media and/or genotypes in the endogenous hormones content and their role in organogenesis. The highest regeneration rate was obtained with the peach × almond rootstocks and showed a lower content of Z, IAA, ABA, ACC and JA. Only Z, ZR and IAA were affected by the action of the culture media. This study shows which hormones are external PGRs-dependent and what is the weight of the genotype and hormones in peach organogenesis that provide an avenue to manipulate in vitro organogenesis in peach. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Electrochemical incineration of diclofenac in neutral aqueous medium by anodic oxidation using Pt and boron-doped diamond anodes.

    PubMed

    Brillas, Enric; Garcia-Segura, Sergi; Skoumal, Marcel; Arias, Conchita

    2010-04-01

    The degradation of diclofenac, a common non-steroidal anti-inflammatory drug, in aqueous medium has been studied by anodic oxidation (AO) using an undivided cell with a Pt or boron-doped diamond (BDD) anode. Operating without pH regulation, AO with Pt acidifies the solution with precipitation of its protonated form, whereas using BDD, the solution becomes alkaline and only attains partial mineralization. Total incineration of low contents of the drug is feasible by AO with BDD in a neutral buffer medium of pH 6.5. Comparative treatment with Pt gives poor decontamination. The diclofenac decay always follows a pseudo first-order reaction. The increase in current for AO with BDD accelerates the degradative process, but decreases its efficiency. 2-Hydroxyphenylacetic acid, 2,5-dihydroxyphenylacetic acid, 2,6-dichloroaniline and 2,6-dichlorohydroquinone have been identified as aromatic intermediates. For AO with Pt, high amounts of malic, succinic, tartaric and oxalic acids are accumulated in the bulk and the N-derivatives produced are rapidly destroyed with loss of NH4+. When BDD is employed, some carboxylic acids are also accumulated in small extent, with a larger persistence of oxalic and oxamic acids. The process involves the formation of different N-derivatives that slowly release NH4+ and NO3(-) ions. Chloride ion is lost in all cases. 2010 Elsevier Ltd. All rights reserved.

  16. High-Molecular Compounds (Selected Articles).

    DTIC Science & Technology

    1987-08-24

    Polymethacrylic Acid and Polyvinyl Alcohol, by I.F. Yefremov, E.B. D’yakonova, A.A. Spartakov, A.A. Trusov ._’ . Us’yarov...polyoctafluoroamyl methacrylate) was converted into polymethacrylic acid by hydrolysis in an alkaline medium. The poly acid was methylated by diazomethane...Institute im. Lensovet Submitted 25 Apr 66 In a low-concentrated aqueous solution of polymethacrylic acid (PHAK) and polyvinyl alcohol (PVS) mixed

  17. High hydrostatic pressure increases amino acid requirements in the piezo-hyperthermophilic archaeon Thermococcus barophilus.

    PubMed

    Cario, Anaïs; Lormières, Florence; Xiang, Xiao; Oger, Philippe

    2015-11-01

    We have established a defined growth medium for the piezophilic hyperthermophilic archaeon Thermococcus barophilus, which allows growth yields of ca. 10(8) cells/ml under both atmospheric and high hydrostatic pressure. Our results demonstrate a major impact of hydrostatic pressure on amino acid metabolism, with increases from 3 amino acids required at atmospheric pressure to 17 at 40 MPa. We observe in T. barophilus and other Thermococcales a similar discrepancy between the presence/absence of amino acid synthesis pathways and amino acid requirements, which supports the existence of alternate, but yet unknown, amino acid synthesis pathways, and may explain the low number of essential amino acids observed in T. barophilus and other Thermococcales. T. barophilus displays a strong metabolic preference for organic polymers such as polypeptides and chitin, which may constitute a more readily available resource of carbon and energy in situ in deep-sea hydrothermal vents. We hypothesize that the low energy yields of fermentation of organic polymers, together with energetic constraints imposed by high hydrostatic pressure, may render de novo synthesis of amino acids ecologically unfavorable. Induction of this metabolic switch to amino acid recycling can explain the requirement for non-essential amino acids by Thermococcales for efficient growth in defined medium. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production.

    PubMed

    Scervino, J M; Papinutti, V L; Godoy, M S; Rodriguez, M A; Della Monica, I; Recchi, M; Pettinari, M J; Godeas, A M

    2011-05-01

    To study phosphate solubilization in Penicillium purpurogenum as function of medium pH, and carbon and nitrogen concentrations. Tricalcium phosphate (CP) solubilization efficiency of P. purpurogenum was evaluated at acid or alkaline pH using different C and N sources. Glucose- and (NH(4) )(2) SO(4) -based media showed the highest P solubilization values followed by fructose. P. purpurogenum solubilizing ability was higher in cultures grown at pH 6·5 than cultures at pH 8·5. Organic acids were detected in both alkaline and neutral media, but the relative percentages of each organic acid differed. Highest P release coincided with the highest organic acids production peak, especially gluconic acid. When P. purpurogenum grew in alkaline media, the nature and concentration of organic acids changed at different N and C concentrations. A factorial categorical experimental design showed that the highest P-solubilizing activity, coinciding with the highest organic acid production, corresponded to the highest C concentration and lowest N concentration. The results described in the present study show that medium pH and carbon and nitrogen concentrations modulate the P solubilization efficiency of P. purpurogenum through the production of organic acids and particularly that of gluconic acid. In the P solubilization optimization studies, glucose and (NH(4) )(2) SO(4) as C and N sources allowed a higher solubilization efficiency at high pH. This organism is a potentially proficient soil inoculant, especially in P-poor alkaline soils where other P solubilizers fail to release soluble P. Further work is necessary to elucidate whether these results can be extrapolated to natural soil ecosystems, where different pH values are present. Penicillium purpurogenum could be used to develop a bioprocess for the manufacture of phosphatic fertilizer with phosphate calcium minerals. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  19. Rhodotorula taiwanensis MD1149 produces hypoacetylated PEFA compounds with increased surface activity compared to Rhodotorula babjevae MD1169.

    PubMed

    Lyman, Mathew; Rubinfeld, Bonnee; Leif, Roald; Mulcahy, Heather; Dugan, Lawrence; Souza, Brian

    2018-01-01

    Biosurfactants have several desirable characteristics in the industrial sector: detergency, antimicrobial effects, skin hydration, and emulsibility. Several yeast glycolipids are currently being utilized in these capacities: sophorolipids, ustilagic acid, and mannosylerythritol lipids (MELs). An emerging class of glycolipids, termed polyol esters of fatty acids (PEFA), have recently been reported for Rhodotorula babjevae, a basidiomycetous yeast species that secretes hyperacetylated congeners of PEFA (typically with 3-6 acetylation modifications). While screening Rhodotorula species for surfactant production, we identified a new environmental isolate identified as Rhodotorula taiwanensis MD1149 that dropped the surface tension of the liquid medium, indicating that it produced a potent biosurfactant. Acid depolymerization of the purified biosurfactants, followed by gas chromatography-mass spectrometry (GC-MS) analysis revealed that the biosurfactants were composed of PEFA compounds composed mainly of mannitol and arabitol esters of 3-hydroxy fatty acid, 3-methoxy fatty acid, and fatty acids with a single double bond; chain lengths were mainly C16 and C18. Liquid chromatography-mass spectrometry (LC-MS) confirmed the predicted accurate mass of these compounds. Interestingly, PEFA compounds produced by Rhodotorula taiwanensis MD1149 were more surface active due to their hypoacetylation profile (0-4 acetylation modifications) compared to Rhodotorula babjevae MD1169. These disparate surface active properties, based on acetylation, change the hydrophilic-lipophilic balance (HLB) of these compounds, and their potential utility within industrial applications.

  20. Mutation and Selection of Lactobacillus plantarum Strains That Do Not Produce Carbon Dioxide from Malate †

    PubMed Central

    Daeschel, M. A.; McFeeters, R. F.; Fleming, H. P.; Klaenhammer, T. R.; Sanozky, R. B.

    1984-01-01

    A differential medium was developed to distinguish between malate-decarboxylating (MDC+) and -non-decarboxylating (MDC−) strains of Lactobacillus plantarum. MDC− strains produced a visible acid reaction in the medium, whereas MDC+ strains did not. Use of the medium allowed for rapid screening and isolation of mutagenized cells that had lost the ability to produce CO2 from malate. PMID:16346479

Top