Science.gov

Sample records for acid metabolism energy

  1. Fatty Acids in Energy Metabolism of the Central Nervous System

    PubMed Central

    Orynbayeva, Zulfiya; Vavilin, Valentin; Lyakhovich, Vyacheslav

    2014-01-01

    In this review, we analyze the current hypotheses regarding energy metabolism in the neurons and astroglia. Recently, it was shown that up to 20% of the total brain's energy is provided by mitochondrial oxidation of fatty acids. However, the existing hypotheses consider glucose, or its derivative lactate, as the only main energy substrate for the brain. Astroglia metabolically supports the neurons by providing lactate as a substrate for neuronal mitochondria. In addition, a significant amount of neuromediators, glutamate and GABA, is transported into neurons and also serves as substrates for mitochondria. Thus, neuronal mitochondria may simultaneously oxidize several substrates. Astrocytes have to replenish the pool of neuromediators by synthesis de novo, which requires large amounts of energy. In this review, we made an attempt to reconcile β-oxidation of fatty acids by astrocytic mitochondria with the existing hypothesis on regulation of aerobic glycolysis. We suggest that, under condition of neuronal excitation, both metabolic pathways may exist simultaneously. We provide experimental evidence that isolated neuronal mitochondria may oxidize palmitoyl carnitine in the presence of other mitochondrial substrates. We also suggest that variations in the brain mitochondrial metabolic phenotype may be associated with different mtDNA haplogroups. PMID:24883315

  2. Oxalic acid alleviates chilling injury in peach fruit by regulating energy metabolism and fatty acid contents.

    PubMed

    Jin, Peng; Zhu, Hong; Wang, Lei; Shan, Timin; Zheng, Yonghua

    2014-10-15

    The effects of postharvest oxalic acid (OA) treatment on chilling injury, energy metabolism and membrane fatty acid content in 'Baifeng' peach fruit stored at 0°C were investigated. Internal browning was significantly reduced by OA treatment in peaches. OA treatment markedly inhibited the increase of ion leakage and the accumulation of malondialdehyde. Meanwhile, OA significantly increased the contents of adenosine triphosphate and energy charge in peach fruit. Enzyme activities of energy metabolism including H(+)-adenosine triphosphatase, Ca(2+)-adenosine triphosphatase, succinic dehydrogenase and cytochrome C oxidase were markedly enhanced by OA treatment. The ratio of unsaturated/saturated fatty acid in OA-treated fruit was significantly higher than that in control fruit. These results suggest that the alleviation in chilling injury by OA may be due to enhanced enzyme activities related to energy metabolism and higher levels of energy status and unsaturated/saturated fatty acid ratio. PMID:24837925

  3. Amino Acid Metabolism Disorders

    MedlinePlus

    Metabolism is the process your body uses to make energy from the food you eat. Food is ... One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup ...

  4. Fatty acids from diet and microbiota regulate energy metabolism

    PubMed Central

    Alcock, Joe; Lin, Henry C.

    2015-01-01

    A high-fat diet and elevated levels of free fatty acids are known risk factors for metabolic syndrome, insulin resistance, and visceral obesity. Although these disease associations are well established, it is unclear how different dietary fats change the risk of insulin resistance and metabolic syndrome. Here, we review emerging evidence that insulin resistance and fat storage are linked to changes in the gut microbiota. The gut microbiota and intestinal barrier function, in turn, are highly influenced by the composition of fat in the diet. We review findings that certain fats (for example, long-chain saturated fatty acids) are associated with dysbiosis, impairment of intestinal barrier function, and metabolic endotoxemia. In contrast, other fatty acids, including short-chain and certain unsaturated fatty acids, protect against dysbiosis and impairment of barrier function caused by other dietary fats. These fats may promote insulin sensitivity by inhibiting metabolic endotoxemia and dysbiosis-driven inflammation. During dysbiosis, the modulation of metabolism by diet and microbiota may represent an adaptive process that compensates for the increased fuel demands of an activated immune system. PMID:27006755

  5. Metabolomic analysis of amino acid and energy metabolism in rats supplemented with chlorogenic acid

    PubMed Central

    Ruan, Zheng; Yang, Yuhui; Zhou, Yan; Wen, Yanmei; Ding, Sheng; Liu, Gang; Wu, Xin; Deng, Zeyuan; Assaad, Houssein; Wu, Guoyao

    2016-01-01

    This study was conducted to investigate effects of chlorogenic acid (CGA) supplementation on serum and hepatic metabolomes in rats. Rats received daily intragastric administration of either CGA (60 mg/kg body weight) or distilled water (control) for 4 weeks. Growth performance, serum biochemical profiles, and hepatic morphology were measured. Additionally, serum and liver tissue extracts were analyzed for metabolomes by high-resolution 1H nuclear magnetic resonance-based metabolomics and multivariate statistics. CGA did not affect rat growth performance, serum biochemical profiles, or hepatic morphology. However, supplementation with CGA decreased serum concentrations of lactate, pyruvate, succinate, citrate, β-hydroxybutyrate and acetoacetate, while increasing serum concentrations of glycine and hepatic concentrations of glutathione. These results suggest that CGA supplementation results in perturbation of energy and amino acid metabolism in rats. We suggest that glycine and glutathione in serum may be useful biomarkers for biological properties of CGA on nitrogen metabolism in vivo. PMID:24927697

  6. Amino Acid Metabolism Disorders

    MedlinePlus

    ... defects & other health conditions > Amino acid metabolism disorders Amino acid metabolism disorders E-mail to a friend Please ... baby’s newborn screening may include testing for certain amino acid metabolism disorders. These are rare health conditions that ...

  7. Transcriptional Factors Mediating Retinoic Acid Signals in the Control of Energy Metabolism.

    PubMed

    Zhang, Rui; Wang, Yueqiao; Li, Rui; Chen, Guoxun

    2015-01-01

    Retinoic acid (RA), an active metabolite of vitamin A (VA), is important for many physiological processes including energy metabolism. This is mainly achieved through RA-regulated gene expression in metabolically active cells. RA regulates gene expression mainly through the activation of two subfamilies in the nuclear receptor superfamily, retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RAR/RXR heterodimers or RXR/RXR homodimers bind to RA response element in the promoters of RA target genes and regulate their expressions upon ligand binding. The development of metabolic diseases such as obesity and type 2 diabetes is often associated with profound changes in the expressions of genes involved in glucose and lipid metabolism in metabolically active cells. RA regulates some of these gene expressions. Recently, in vivo and in vitro studies have demonstrated that status and metabolism of VA regulate macronutrient metabolism. Some studies have shown that, in addition to RARs and RXRs, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter-transcription factor II, and peroxisome proliferator activated receptor β/δ may function as transcriptional factors mediating RA response. Herein, we summarize current progresses regarding the VA metabolism and the role of nuclear receptors in mediating RA signals, with an emphasis on their implication in energy metabolism. PMID:26110391

  8. Transcriptional Factors Mediating Retinoic Acid Signals in the Control of Energy Metabolism

    PubMed Central

    Zhang, Rui; Wang, Yueqiao; Li, Rui; Chen, Guoxun

    2015-01-01

    Retinoic acid (RA), an active metabolite of vitamin A (VA), is important for many physiological processes including energy metabolism. This is mainly achieved through RA-regulated gene expression in metabolically active cells. RA regulates gene expression mainly through the activation of two subfamilies in the nuclear receptor superfamily, retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RAR/RXR heterodimers or RXR/RXR homodimers bind to RA response element in the promoters of RA target genes and regulate their expressions upon ligand binding. The development of metabolic diseases such as obesity and type 2 diabetes is often associated with profound changes in the expressions of genes involved in glucose and lipid metabolism in metabolically active cells. RA regulates some of these gene expressions. Recently, in vivo and in vitro studies have demonstrated that status and metabolism of VA regulate macronutrient metabolism. Some studies have shown that, in addition to RARs and RXRs, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter-transcription factor II, and peroxisome proliferator activated receptor β/δ may function as transcriptional factors mediating RA response. Herein, we summarize current progresses regarding the VA metabolism and the role of nuclear receptors in mediating RA signals, with an emphasis on their implication in energy metabolism. PMID:26110391

  9. Disorders of Amino Acid Metabolism

    MedlinePlus

    ... Aspiration Syndrome Additional Content Medical News Disorders of Amino Acid Metabolism By Lee M. Sanders, MD, MPH NOTE: ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism Amino acids are ...

  10. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective.

    PubMed

    Schönfeld, Peter; Wojtczak, Lech

    2016-06-01

    Short- and medium-chain fatty acids (SCFAs and MCFAs), independently of their cellular signaling functions, are important substrates of the energy metabolism and anabolic processes in mammals. SCFAs are mostly generated by colonic bacteria and are predominantly metabolized by enterocytes and liver, whereas MCFAs arise mostly from dietary triglycerides, among them milk and dairy products. A common feature of SCFAs and MCFAs is their carnitine-independent uptake and intramitochondrial activation to acyl-CoA thioesters. Contrary to long-chain fatty acids, the cellular metabolism of SCFAs and MCFAs depends to a lesser extent on fatty acid-binding proteins. SCFAs and MCFAs modulate tissue metabolism of carbohydrates and lipids, as manifested by a mostly inhibitory effect on glycolysis and stimulation of lipogenesis or gluconeogenesis. SCFAs and MCFAs exert no or only weak protonophoric and lytic activities in mitochondria and do not significantly impair the electron transport in the respiratory chain. SCFAs and MCFAs modulate mitochondrial energy production by two mechanisms: they provide reducing equivalents to the respiratory chain and partly decrease efficacy of oxidative ATP synthesis. PMID:27080715

  11. Lipoic acid: energy metabolism and redox regulation of transcription and cell signaling

    PubMed Central

    Packer, Lester; Cadenas, Enrique

    2011-01-01

    The role of R-α-lipoic acid as a cofactor (lipoyllysine) in mitochondrial energy metabolism is well established. Lipoic acid non-covalently bound and exogenously administered to cells or supplemented in the diet is a potent modulator of the cell’s redox status. The diversity of beneficial effects of lipoic acid in a variety of tissues can be mechanistically viewed in terms of thiol/disulfide exchange reactions that modulate the environment’s redox and energy status. Lipoic acid-driven thiol/disulfide exchange reactions appear critical for the modulation of proteins involved in cell signaling and transcription factors. This review emphasizes the effects of lipoic acid on PI3K and AMPK signaling and related transcriptional pathways that are integrated by PGC-1α, a critical regulator of energy homoestasis. The effects of lipoic acid on the neuronal energy-redox axis are largely reviewed in terms of their outcomes for aging and age-related neurodegenerative diseases. PMID:21297908

  12. On the origin of 3-methylglutaconic acid in disorders of mitochondrial energy metabolism.

    PubMed

    Ikon, Nikita; Ryan, Robert O

    2016-09-01

    3-methylglutaconic acid (3MGA)-uria occurs in numerous inborn errors of metabolism (IEM) associated with compromised mitochondrial energy metabolism. This organic acid arises from thioester cleavage of 3-methylglutaconyl CoA (3MG CoA), an intermediate in leucine catabolism. In individuals harboring mutations in 3MG CoA hydratase (i.e., primary 3MGA-uria), dietary leucine is the source of 3MGA. In secondary 3MGA-uria, however, no leucine metabolism defects have been reported. While others have suggested 3MGA arises from aberrant isoprenoid shunting from cytosol to mitochondria, an alternative route posits that 3MG CoA arises in three steps from mitochondrial acetyl CoA. Support for this biosynthetic route in IEMs is seen by its regulated occurrence in microorganisms. The fungus, Ustilago maydis, the myxobacterium, Myxococcus xanthus and the marine cyanobacterium, Lyngbya majuscule, generate 3MG CoA (or acyl carrier protein derivative) in the biosynthesis of iron chelating siderophores, iso-odd chain fatty acids and polyketide/nonribosomal peptide products, respectively. The existence of this biosynthetic machinery in these organisms supports a model wherein, under conditions of mitochondrial dysfunction, accumulation of acetyl CoA in the inner mitochondrial space as a result of inefficient fuel utilization drives de novo synthesis of 3MG CoA. Since humans lack the downstream biosynthetic capability of the organisms mentioned above, as 3MG CoA levels rise, thioester hydrolysis yields 3MGA, which is excreted in urine as unspent fuel. Understanding the metabolic origins of 3MGA may increase its utility as a biomarker. PMID:27091556

  13. Hypochlorous acid-promoted loss of metabolic energy in Escherichia coli

    SciTech Connect

    Barrette, W.C. Jr.; Albrich, J.M.; Hurst, J.K.

    1987-10-01

    Oxidation of Escherichia coli by hypochlorous acid (HOCl) or chloramine (NH/sub 2/Cl) gives rise to massive hydrolysis of cytosolic nucleotide phosphoanhydride bonds, although no immediate change occurs in either the nucleotide pool size or the concentrations of extracellular end products of AMP catabolism. Titrimetric curves of the extent of hydrolysis coincide with curves for loss of cell viability, e.g., reduction in the adenylate energy charge from 0.8 to 0.1-0.2 accompanies loss of 99% of the bacterial CFU. The oxidative damage caused by HOCl is irreversible within 100 ms of exposure of the organism, although nucleotide phosphate bond hydrolysis requires several minutes to reach completion. Neither HOCl nor NH/sub 2/Cl reacts directly with nucleotides to hydrolyze phosphoanhydride bonds. Loss of viability is also accompanied by inhibition of induction of beta-galactosidase. The proton motive force, determined from the distribution of /sup 14/C-radiolabeled lipophilic ions, declines with incremental addition of HOCl after loss of respiratory function; severalfold more oxidant is required for the dissipation of the proton motive force than for loss of viability. These observations establish a causal link between loss of metabolic energy and cellular death and indicate that the mechanisms of oxidant-induced nucleotide phosphate bond hydrolysis are indirect and that they probably involve damage to the energy-transducing and transport proteins located in the bacterial plasma membrane.

  14. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism

    PubMed Central

    den Besten, Gijs; van Eunen, Karen; Groen, Albert K.; Venema, Koen; Reijngoud, Dirk-Jan; Bakker, Barbara M.

    2013-01-01

    Short-chain fatty acids (SCFAs), the end products of fermentation of dietary fibers by the anaerobic intestinal microbiota, have been shown to exert multiple beneficial effects on mammalian energy metabolism. The mechanisms underlying these effects are the subject of intensive research and encompass the complex interplay between diet, gut microbiota, and host energy metabolism. This review summarizes the role of SCFAs in host energy metabolism, starting from the production by the gut microbiota to the uptake by the host and ending with the effects on host metabolism. There are interesting leads on the underlying molecular mechanisms, but there are also many apparently contradictory results. A coherent understanding of the multilevel network in which SCFAs exert their effects is hampered by the lack of quantitative data on actual fluxes of SCFAs and metabolic processes regulated by SCFAs. In this review we address questions that, when answered, will bring us a great step forward in elucidating the role of SCFAs in mammalian energy metabolism. PMID:23821742

  15. Nuclear receptors in bile acid metabolism

    PubMed Central

    Li, Tiangang; Chiang, John Y. L.

    2013-01-01

    Bile acids are signaling molecules that activate nuclear receptors, such as farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, and vitamin D receptor, and play a critical role in the regulation of lipid, glucose, energy, and drug metabolism. These xenobiotic/endobiotic-sensing nuclear receptors regulate phase I oxidation, phase II conjugation, and phase III transport in bile acid and drug metabolism in the digestive system. Integration of bile acid metabolism with drug metabolism controls absorption, transport, and metabolism of nutrients and drugs to maintain metabolic homeostasis and also protects against liver injury, inflammation, and related metabolic diseases, such as nonalcoholic fatty liver disease, diabetes, and obesity. Bile-acid–based drugs targeting nuclear receptors are in clinical trials for treating cholestatic liver diseases and fatty liver disease. PMID:23330546

  16. Perturbation of energy metabolism by fatty-acid derivative AIC-47 and imatinib in BCR-ABL-harboring leukemic cells.

    PubMed

    Shinohara, Haruka; Kumazaki, Minami; Minami, Yosuke; Ito, Yuko; Sugito, Nobuhiko; Kuranaga, Yuki; Taniguchi, Kohei; Yamada, Nami; Otsuki, Yoshinori; Naoe, Tomoki; Akao, Yukihiro

    2016-02-01

    In Ph-positive leukemia, imatinib brought marked clinical improvement; however, further improvement is needed to prevent relapse. Cancer cells efficiently use limited energy sources, and drugs targeting cellular metabolism improve the efficacy of therapy. In this study, we characterized the effects of novel anti-cancer fatty-acid derivative AIC-47 and imatinib, focusing on cancer-specific energy metabolism in chronic myeloid leukemia cells. AIC-47 and imatinib in combination exhibited a significant synergic cytotoxicity. Imatinib inhibited only the phosphorylation of BCR-ABL; whereas AIC-47 suppressed the expression of the protein itself. Both AIC-47 and imatinib modulated the expression of pyruvate kinase M (PKM) isoforms from PKM2 to PKM1 through the down-regulation of polypyrimidine tract-binding protein 1 (PTBP1). PTBP1 functions as alternative splicing repressor of PKM1, resulting in expression of PKM2, which is an inactive form of pyruvate kinase for the last step of glycolysis. Although inactivation of BCR-ABL by imatinib strongly suppressed glycolysis, compensatory fatty-acid oxidation (FAO) activation supported glucose-independent cell survival by up-regulating CPT1C, the rate-limiting FAO enzyme. In contrast, AIC-47 inhibited the expression of CPT1C and directly fatty-acid metabolism. These findings were also observed in the CD34(+) fraction of Ph-positive acute lymphoblastic leukemia cells. These results suggest that AIC-47 in combination with imatinib strengthened the attack on cancer energy metabolism, in terms of both glycolysis and compensatory activation of FAO. PMID:26607903

  17. Maleic Acid – but Not Structurally Related Methylmalonic Acid – Interrupts Energy Metabolism by Impaired Calcium Homeostasis

    PubMed Central

    Wang, Bei-Tzu; Okun, Jürgen Günther; Kölker, Stefan; Morath, Marina Alexandra; Sauer, Sven Wolfgang

    2015-01-01

    Maleic acid (MA) has been shown to induce Fanconi syndrome via disturbance of renal energy homeostasis, though the underlying pathomechanism is still under debate. Our study aimed to examine the pathomechanism underlying maleic acid-induced nephrotoxicity. Methylmalonic acid (MMA) is structurally similar to MA and accumulates in patients affected with methymalonic aciduria, a defect in the degradation of branched-chain amino acids, odd-chain fatty acids and cholesterol, which is associated with the development of tubulointerstitial nephritis resulting in chronic renal failure. We therefore used MMA application as a control experiment in our study and stressed hPTECs with MA and MMA to further validate the specificity of our findings. MMA did not show any toxic effects on proximal tubule cells, whereas maleic acid induced concentration-dependent and time-dependent cell death shown by increased lactate dehydrogenase release as well as ethidium homodimer and calcein acetoxymethyl ester staining. The toxic effect of MA was blocked by administration of single amino acids, in particular L-alanine and L-glutamate. MA application further resulted in severe impairment of cellular energy homeostasis on the level of glycolysis, respiratory chain, and citric acid cycle resulting in ATP depletion. As underlying mechanism we could identify disturbance of calcium homeostasis. MA toxicity was critically dependent on calcium levels in culture medium and blocked by the extra- and intracellular calcium chelators EGTA and BAPTA-AM respectively. Moreover, MA-induced cell death was associated with activation of calcium-dependent calpain proteases. In summary, our study shows a comprehensive pathomechanistic concept for MA-induced dysfunction and damage of human proximal tubule cells. PMID:26086473

  18. Treatment of Amino Acid Metabolism Disorders

    MedlinePlus

    ... Treatment of amino acid metabolism disorders Treatment of amino acid metabolism disorders E-mail to a friend Please ... this page It's been added to your dashboard . Amino acid metabolism disorders are rare health conditions that affect ...

  19. Metabolic energy required for flight

    NASA Technical Reports Server (NTRS)

    Lane, H. W.; Gretebeck, R. J.

    1994-01-01

    This paper reviews data available from U.S. and U.S.S.R. studies on energy metabolism in the microgravity of space flight. Energy utilization and energy availability in space seem to be similar to those on Earth. However, negative nitrogen balances in space in the presence of adequate energy and protein intakes and in-flight exercise, suggest that lean body mass decreases in space. Metabolic studies during simulated (bed rest) and actual microgravity have shown changes in blood glucose, fatty acids, and insulin levels, suggesting that energy metabolism may be altered during flight. Future research should focus on the interactions of lean body mass, diet, and exercise in spaced and their roles in energy metabolism during space flight.

  20. Mechanotransduction in primary human osteoarthritic chondrocytes is mediated by metabolism of energy, lipids, and amino acids.

    PubMed

    Zignego, Donald L; Hilmer, Jonathan K; June, Ronald K

    2015-12-16

    Chondrocytes are the sole cell type found in articular cartilage and are repeatedly subjected to mechanical loading in vivo. We hypothesized that physiological dynamic compression results in changes in energy metabolism to produce proteins for maintenance of the pericellular and extracellular matrices. The objective of this study was to develop an in-depth understanding for the short term (<30min) chondrocyte response to sub-injurious, physiological compression by analyzing metabolomic profiles for human chondrocytes harvested from femoral heads of osteoarthritic donors. Cell-seeded agarose constructs were randomly assigned to experimental groups, and dynamic compression was applied for 0, 15, or 30min. Following dynamic compression, metabolites were extracted and detected by HPLC-MS. Untargeted analyzes examined changes in global metabolomics profiles and targeted analysis examined the expression of specific metabolites related to central energy metabolism. We identified hundreds of metabolites that were regulated by applied compression, and we report the detection of 16 molecules not found in existing metabolite databases. We observed patient-specific mechanotransduction with aging dependence. Targeted studies found a transient increase in the ratio of NADP+ to NADPH and an initial decrease in the ratio of GDP to GTP, suggesting a flux of energy into the TCA cycle. By characterizing metabolomics profiles of primary chondrocytes in response to applied dynamic compression, this study provides insight into how OA chondrocytes respond to mechanical load. These results are consistent with increases in glycolytic energy utilization by mechanically induced signaling, and add substantial new data to a complex picture of how chondrocytes transduce mechanical loads. PMID:26573901

  1. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs

    PubMed Central

    Zhou, Lufang; Cabrera, Marco E; Huang, Hazel; Yuan, Celvie L; Monika, Duda K; Sharma, Naveen; Bian, Fang; Stanley, William C

    2007-01-01

    Steady state concentrations of ATP and ADP in vivo are similar at low and high cardiac workloads; however, the mechanisms that regulate the activation of substrate metabolism and oxidative phosphorylation that supports this stability are poorly understood. We tested the hypotheses that (1) there is parallel activation of mitochondrial and cytosolic dehydrogenases in the transition from low to high workload, which increases NADH/NAD+ ratio in both compartments, and (2) this response does not require an increase in fatty acid oxidation (FAO). Anaesthetized pigs were subjected to either sham treatment, or an abrupt increase in cardiac workload for 5 min with dobutamine infusion and aortic constriction. Myocardial oxygen consumption and FAO were increased 3- and 2-fold, respectively, but ATP and ADP concentrations did not change. NADH-generating pathways were rapidly activated in both the cytosol and mitochondria, as seen in a 40% depletion in glycogen stores, a 3.6-fold activation of pyruvate dehydrogenase, and a 50% increase in tissue NADH/NAD+. Simulations from a multicompartmental computational model of cardiac energy metabolism predicted that parallel activation of glycolysis and mitochondrial metabolism results in an increase in the NADH/NAD+ ratio in both cytosol and mitochondria. FAO was blocked by 75% in a third group of pigs, and a similar increase in and the NAHD/NAD+ ratio was observed. In conclusion, in the transition to a high cardiac workload there is rapid parallel activation of substrate oxidation that results in an increase in the NADH/NAD+ ratio. PMID:17185335

  2. Energy Metabolism in the Liver

    PubMed Central

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic activity is tightly controlled by insulin and other metabolic hormones. Glucose is metabolized into pyruvate through glycolysis in the cytoplasm, and pyruvate is completely oxidized to generate ATP through the TCA cycle and oxidative phosphorylation in the mitochondria. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and cholesterol esters in hepatocytes, and these complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as VLDL particles. In the fasted state, the liver secretes glucose through both breakdown of glycogen (glycogenolysis) and de novo glucose synthesis (gluconeogenesis). During pronged fasting, hepatic gluconeogenesis is the primary source of endogenous glucose production. Fasting also promotes lipolysis in adipose tissue to release nonesterified fatty acids which are converted into ketone bodies in the liver though mitochondrial β oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver metabolic processes are tightly regulated by neuronal and hormonal systems. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis, but suppresses gluconeogenesis; glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze the rate-limiting steps of liver metabolic processes, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases (NAFLD). PMID:24692138

  3. Bile acids as metabolic regulators

    PubMed Central

    Li, Tiangang; Chiang, John Y. L.

    2015-01-01

    Summary Small molecule ligands that target to TGR5 and FXR have shown promise in treating various metabolic and inflammation-related human diseases. New insights into the mechanisms underlying the bariatric surgery and bile acid sequestrant treatment suggest that targeting the enterohepatic circulation to modulate gut-liver bile acid signaling, incretin production and microbiota represents a new strategy to treat obesity and type-2 diabetes. PMID:25584736

  4. Phylogenomic reconstruction of archaeal fatty acid metabolism

    PubMed Central

    Dibrova, Daria V.; Galperin, Michael Y.; Mulkidjanian, Armen Y.

    2014-01-01

    While certain archaea appear to synthesize and/or metabolize fatty acids, the respective pathways still remain obscure. By analyzing the genomic distribution of the key lipid-related enzymes, we were able to identify the likely components of the archaeal pathway of fatty acid metabolism, namely, a combination of the enzymes of bacterial-type β-oxidation of fatty acids (acyl-CoA-dehydrogenase, enoyl-CoA hydratase, and 3-hydroxyacyl-CoA dehydrogenase) with paralogs of the archaeal acetyl-CoA C-acetyltransferase, an enzyme of the mevalonate biosynthesis pathway. These three β-oxidation enzymes working in the reverse direction could potentially catalyze biosynthesis of fatty acids, with paralogs of acetyl-CoA C-acetyltransferase performing addition of C2 fragments. The presence in archaea of the genes for energy-transducing membrane enzyme complexes, such as cytochrome bc complex, cytochrome c oxidase, and diverse rhodopsins, was found to correlate with the presence of the proposed system of fatty acid biosynthesis. We speculate that because these membrane complexes functionally depend on fatty acid chains, their genes could have been acquired via lateral gene transfer from bacteria only by those archaea that already possessed a system of fatty acid biosynthesis. The proposed pathway of archaeal fatty acid metabolism operates in extreme conditions and therefore might be of interest in the context of biofuel production and other industrial applications. PMID:24818264

  5. Computational Approaches for Understanding Energy Metabolism

    PubMed Central

    Shestov, Alexander A; Barker, Brandon; Gu, Zhenglong; Locasale, Jason W

    2013-01-01

    There has been a surge of interest in understanding the regulation of metabolic networks involved in disease in recent years. Quantitative models are increasingly being used to i nterrogate the metabolic pathways that are contained within this complex disease biology. At the core of this effort is the mathematical modeling of central carbon metabolism involving glycolysis and the citric acid cycle (referred to as energy metabolism). Here we discuss several approaches used to quantitatively model metabolic pathways relating to energy metabolism and discuss their formalisms, successes, and limitations. PMID:23897661

  6. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    PubMed

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin. PMID:27348124

  7. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells

    PubMed Central

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin. PMID:27348124

  8. Regulation of uric acid metabolism and excretion.

    PubMed

    Maiuolo, Jessica; Oppedisano, Francesca; Gratteri, Santo; Muscoli, Carolina; Mollace, Vincenzo

    2016-06-15

    Purines perform many important functions in the cell, being the formation of the monomeric precursors of nucleic acids DNA and RNA the most relevant one. Purines which also contribute to modulate energy metabolism and signal transduction, are structural components of some coenzymes and have been shown to play important roles in the physiology of platelets, muscles and neurotransmission. All cells require a balanced quantity of purines for growth, proliferation and survival. Under physiological conditions the enzymes involved in the purine metabolism maintain in the cell a balanced ratio between their synthesis and degradation. In humans the final compound of purines catabolism is uric acid. All other mammals possess the enzyme uricase that converts uric acid to allantoin that is easily eliminated through urine. Overproduction of uric acid, generated from the metabolism of purines, has been proven to play emerging roles in human disease. In fact the increase of serum uric acid is inversely associated with disease severity and especially with cardiovascular disease states. This review describes the enzymatic pathways involved in the degradation of purines, getting into their structure and biochemistry until the uric acid formation. PMID:26316329

  9. Energy and metabolism.

    PubMed

    Suarez, Raul K

    2012-10-01

    Although firmly grounded in metabolic biochemistry, the study of energy metabolism has gone well beyond this discipline and become integrative and comparative as well as ecological and evolutionary in scope. At the cellular level, ATP is hydrolyzed by energy-expending processes and resynthesized by pathways in bioenergetics. A significant development in the study of bioenergetics is the realization that fluxes through pathways as well as metabolic rates in cells, tissues, organs, and whole organisms are "system properties." Therefore, studies of energy metabolism have become, increasingly, experiments in systems biology. A significant challenge continues to be the integration of phenomena over multiple levels of organization. Body mass and temperature are said to account for most of the variation in metabolic rates found in nature. A mechanistic foundation for the understanding of these patterns is outlined. It is emphasized that evolution, leading to adaptation to diverse lifestyles and environments, has resulted in a tremendous amount of deviation from popularly accepted scaling "rules." This is especially so in the deep sea which constitutes most of the biosphere. PMID:23720257

  10. Supplementation of guanidinoacetic acid to broiler diets: effects on performance, carcass characteristics, meat quality, and energy metabolism.

    PubMed

    Michiels, J; Maertens, L; Buyse, J; Lemme, A; Rademacher, M; Dierick, N A; De Smet, S

    2012-02-01

    Creatine, (CREA) a central constituent in energy metabolism, is obtained from dietary animal protein or de novo synthesis from guanidinoacetic acid (GAA). Especially in all-vegetable diets, supplemental CREA or GAA may restore the CREA availability in tissues, and hence, improve performance. In this study, 768 one-d-old male Ross 308 broilers were assigned to 1 of 4 diets: negative control, all-vegetable corn-soybean-based; negative control supplemented with either 0.6 or 1.2 g of GAA per kilogram of feed; and positive control (60, 30, and 30 g/kg of fish meal in the starter, grower, and finisher diets, respectively). Each treatment was replicated in 6 pens of 32 birds each. At the end of the grower period (d 26), 2 birds per pen were euthanized for metabolic measurements. Four broilers per pen were selected at slaughter age (d 39) to determine carcass characteristics and meat quality. Compared with the negative control, GAA supplementation resulted in an improved gain:feed ratio (P < 0.05) and ADG (P < 0.05; + 2.7 and + 2.2% for GAA at 0.6 and 1.2 g/kg, respectively) throughout the entire period. Breast meat yield was higher for the GAA diets compared with that of the negative control birds (P < 0.05; 30.6 vs. 29.4%) and was comparable with that of the positive control birds (30.2%). With regard to meat quality, lower ultimate pH values, higher cooking and press fluid losses, and higher color L* values were observed for the GAA diets compared with those of the negative control diet (P < 0.05). These effects were small, however. The GAA and CREA levels in breast meat were lower and higher, respectively, in GAA-fed birds compared with those of the control birds (P < 0.01). The diets did not affect plasma metabolic traits, except that plasma insulin-like growth factor I concentrations were almost twice as high in animals fed 1.2 g/kg of GAA compared with those of all other treatments. The GAA included in all-vegetable diets improved animal performance for the whole

  11. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose.

    PubMed

    Hibbs, John B; Vavrin, Zdenek; Cox, James E

    2016-08-01

    Complex metabolism is thought to occur exclusively in the crowded intracellular environment. Here we report that diluted enzymes from lysed human leukocytes produce extracellular energy. Our findings involve two pathways: the purine nucleotide catabolic pathway and the pentose phosphate pathway, which function together to generate energy as NADPH. Glucose6P fuel for NADPH production is generated from structural ribose of purine ribonucleoside monophosphates, ADP, and ADP-ribose. NADPH drives glutathione reductase to reduce an oxidized glutathione disulfide-glutathione redox couple. Acid phosphatases initiate ribose5P salvage from purine ribonucleoside monophosphates, and transaldolase controls the direction of carbon chain flow through the nonoxidative branch of the pentose phosphate pathway. These metabolic control points are regulated by pH. Biologically, this energy conserving metabolism could function in perturbed extracellular spaces. PMID:26895212

  12. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose

    PubMed Central

    Hibbs, John B.; Vavrin, Zdenek; Cox, James E.

    2016-01-01

    Complex metabolism is thought to occur exclusively in the crowded intracellular environment. Here we report that diluted enzymes from lysed human leukocytes produce extracellular energy. Our findings involve two pathways: the purine nucleotide catabolic pathway and the pentose phosphate pathway, which function together to generate energy as NADPH. Glucose6P fuel for NADPH production is generated from structural ribose of purine ribonucleoside monophosphates, ADP, and ADP-ribose. NADPH drives glutathione reductase to reduce an oxidized glutathione disulfide-glutathione redox couple. Acid phosphatases initiate ribose5P salvage from purine ribonucleoside monophosphates, and transaldolase controls the direction of carbon chain flow through the nonoxidative branch of the pentose phosphate pathway. These metabolic control points are regulated by pH. Biologically, this energy conserving metabolism could function in perturbed extracellular spaces. PMID:26895212

  13. Salicylic Acid Biosynthesis and Metabolism

    PubMed Central

    Dempsey, D'Maris Amick; Vlot, A. Corina; Wildermuth, Mary C.; Klessig, Daniel F.

    2011-01-01

    Salicylic acid (SA) has been shown to regulate various aspects of growth and development; it also serves as a critical signal for activating disease resistance in Arabidopsis thaliana and other plant species. This review surveys the mechanisms involved in the biosynthesis and metabolism of this critical plant hormone. While a complete biosynthetic route has yet to be established, stressed Arabidopsis appear to synthesize SA primarily via an isochorismate-utilizing pathway in the chloroplast. A distinct pathway utilizing phenylalanine as the substrate also may contribute to SA accumulation, although to a much lesser extent. Once synthesized, free SA levels can be regulated by a variety of chemical modifications. Many of these modifications inactivate SA; however, some confer novel properties that may aid in long distance SA transport or the activation of stress responses complementary to those induced by free SA. In addition, a number of factors that directly or indirectly regulate the expression of SA biosynthetic genes or that influence the rate of SA catabolism have been identified. An integrated model, encompassing current knowledge of SA metabolism in Arabidopsis, as well as the influence other plant hormones exert on SA metabolism, is presented. PMID:22303280

  14. An Impaired Respiratory Electron Chain Triggers Down-regulation of the Energy Metabolism and De-ubiquitination of Solute Carrier Amino Acid Transporters.

    PubMed

    Aretz, Ina; Hardt, Christopher; Wittig, Ilka; Meierhofer, David

    2016-05-01

    Hundreds of genes have been associated with respiratory chain disease (RCD), the most common inborn error of metabolism so far. Elimination of the respiratory electron chain by depleting the entire mitochondrial DNA (mtDNA, ρ(0) cells) has therefore one of the most severe impacts on the energy metabolism in eukaryotic cells. In this study, proteomic data sets including the post-translational modifications (PTMs) phosphorylation and ubiquitination were integrated with metabolomic data sets and selected enzyme activities in the osteosarcoma cell line 143B.TK(-) A shotgun based SILAC LC-MS proteomics and a targeted metabolomics approach was applied to elucidate the consequences of the ρ(0) state. Pathway and protein-protein interaction (PPI) network analyses revealed a nonuniform down-regulation of the respiratory electron chain, the tricarboxylic acid (TCA) cycle, and the pyruvate metabolism in ρ(0) cells. Metabolites of the TCA cycle were dysregulated, such as a reduction of citric acid and cis-aconitic acid (six and 2.5-fold), and an increase of lactic acid, oxalacetic acid (both twofold), and succinic acid (fivefold) in ρ(0) cells. Signaling pathways such as GPCR, EGFR, G12/13 alpha, and Rho GTPases were up-regulated in ρ(0) cells, which could be indicative for the mitochondrial retrograde response, a pathway of communication from mitochondria to the nucleus. This was supported by our phosphoproteome data, which revealed two main processes, GTPase-related signal transduction and cytoskeleton organization. Furthermore, a general de-ubiquitination in ρ(0) cells was observed, for example, 80S ribosomal proteins were in average threefold and SLC amino acid transporters fivefold de-ubiquitinated. The latter might cause the observed significant increase of amino acid levels in ρ(0) cells. We conclude that an elimination of the respiratory electron chain, e.g. mtDNA depletion, not only leads to an uneven down-regulation of mitochondrial energy pathways, but also

  15. Palmitic acid interferes with energy metabolism balance by adversely switching the SIRT1-CD36-fatty acid pathway to the PKC zeta-GLUT4-glucose pathway in cardiomyoblasts.

    PubMed

    Chen, Yeh-Peng; Tsai, Chia-Wen; Shen, Chia-Yao; Day, Cecilia-Hsuan; Yeh, Yu-Lan; Chen, Ray-Jade; Ho, Tsung-Jung; Padma, V Vijaya; Kuo, Wei-Wen; Huang, Chih-Yang

    2016-05-01

    Metabolic regulation is inextricably linked with cardiac function. Fatty acid metabolism is a significant mechanism for creating energy for the heart. However, cardiomyocytes are able to switch the fatty acids or glucose, depending on different situations, such as ischemia or anoxia. Lipotoxicity in obesity causes impairments in energy metabolism and apoptosis in cardiomyocytes. We utilized the treatment of H9c2 cardiomyoblast cells palmitic acid (PA) as a model for hyperlipidemia to investigate the signaling mechanisms involved in these processes. Our results show PA induces time- and dose-dependent lipotoxicity in H9c2 cells. Moreover, PA enhances cluster of differentiation 36 (CD36) and reduces glucose transporter type 4 (GLUT4) pathway protein levels following a short period of treatment, but cells switch from CD36 back to the GLUT4 pathway after during long-term exposure to PA. As sirtuin 1 (SIRT1) and protein kinase Cζ (PKCζ) play important roles in CD36 and GLUT4 translocation, we used the SIRT1 activator resveratrol and si-PKCζ to identify the switches in metabolism. Although PA reduced CD36 and increased GLUT4 metabolic pathway proteins, when we pretreated cells with resveratrol to activate SIRT1 or transfected si-PKCζ, both were able to significantly increase CD36 metabolic pathway proteins and reduce GLUT4 pathway proteins. High-fat diets affect energy metabolism pathways in both normal and aging rats and involve switching the energy source from the CD36 pathway to GLUT4. In conclusion, PA and high-fat diets cause lipotoxicity in vivo and in vitro and adversely switch the energy source from the CD36 pathway to the GLUT4 pathway. PMID:27133433

  16. Enhancement of energy production by black ginger extract containing polymethoxy flavonoids in myocytes through improving glucose, lactic acid and lipid metabolism.

    PubMed

    Toda, Kazuya; Takeda, Shogo; Hitoe, Shoketsu; Nakamura, Seikou; Matsuda, Hisashi; Shimoda, Hiroshi

    2016-04-01

    Enhancement of muscular energy production is thought to improve locomotive functions and prevent metabolic syndromes including diabetes and lipidemia. Black ginger (Kaempferia parviflora) has been cultivated for traditional medicine in Thailand. Recent studies have shown that black ginger extract (KPE) activated brown adipocytes and lipolysis in white adipose tissue, which may cure obesity-related dysfunction of lipid metabolism. However, the effect of KPE on glucose and lipid utilization in muscle cells has not been examined yet. Hence, we evaluated the effect of KPE and its constituents on energy metabolism in pre-differentiated (p) and differentiated (d) C2C12 myoblasts. KPE (0.1-10 μg/ml) was added to pC2C12 cells in the differentiation process for a week or used to treat dC2C12 cells for 24 h. After culturing, parameters of glucose and lipid metabolism and mitochondrial biogenesis were assessed. In terms of the results, KPE enhanced the uptake of 2-deoxyglucose and lactic acid as well as the mRNA expression of glucose transporter (GLUT) 4 and monocarboxylate transporter (MCT) 1 in both types of cells. The expression of peroxisome proliferator-activated receptor γ coactivator (PGC)-1α was enhanced in pC2C12 cells. In addition, KPE enhanced the production of ATP and mitochondrial biogenesis. Polymethoxy flavonoids in KPE including 5-hydroxy-7-methoxyflavone, 5-hydroxy-3,7,4'-trimethoxyflavone and 5,7-dimethoxyflavone enhanced the expression of GLUT4 and PGC-1α. Moreover, KPE and 5,7-dimethoxyflavone enhanced the phosphorylation of 5'AMP-activated protein kinase (AMPK). In conclusion, KPE and its polymethoxy flavonoids were found to enhance energy metabolism in myocytes. KPE may improve the dysfunction of muscle metabolism that leads to metabolic syndrome and locomotive dysfunction. PMID:26581843

  17. Effects of an energy-dense diet and nicotinic acid supplementation on production and metabolic variables of primiparous or multiparous cows in periparturient period.

    PubMed

    Tienken, Reka; Kersten, Susanne; Frahm, Jana; Meyer, Ulrich; Locher, Lena; Rehage, Jürgen; Huber, Korinna; Kenéz, Ákos; Sauerwein, Helga; Mielenz, Manfred; Dänicke, Sven

    2015-01-01

    It is well observed that feeding energy-dense diets in dairy cows during the dry period can cause metabolic imbalances after parturition. Especially dairy cows with high body condition score (BCS) and fed an energy-dense diet were prone to develop production diseases due to metabolic disturbances postpartum. An experiment was conducted to determine the effects of an energy-dense diet and nicotinic acid (NA) on production and metabolic variables of primiparous and multiparous cows in late pregnancy and early lactation which were not pre-selected for high BCS. Thirty-six multiparous and 20 primiparous German Holstein cows with equal body conditions were fed with energy-dense (60% concentrate/40% roughage mixture; HC group) or adequate (30% concentrate/70% roughage mixture; LC group) diets prepartum. After parturition, concentrate proportion was dropped to 30% for all HC and LC groups and was increased to 50% within 16 days for LC and within 24 days for HC cows. In addition, half of the cows per group received 24 g NA supplement per day and cow aimed to attenuate the lipid mobilisation postpartum. Feeding energy-dense diets to late-pregnant dairy cows elevated the dry matter (p < 0.001) and energy intake (p < 0.001) as well as the energy balance (p < 0.001) without affecting the BCS (p = 0.265) during this period. However, this did not result in any metabolic deviation postpartum as the effects of prepartum concentrate feeding were not carried over into postpartum period. Multiparous cows responded more profoundly to energy-dense feeding prepartum compared with primiparous cows, and parity-related differences in the transition from late pregnancy to lactation were obvious pre- and postpartum. The supplementation with 24 g NA did not reveal any effect on energy metabolism. This study clearly showed that energy-dense feeding prepartum did not result in metabolic imbalances postpartum in multiparous and primiparous cows not selected for high BCS. A genetic

  18. Bile Acid Signaling in Metabolic Disease and Drug Therapy

    PubMed Central

    Li, Tiangang

    2014-01-01

    Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid–activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein–coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver. PMID:25073467

  19. Intestinal metabolism of sulfur amino acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gastrointestinal tract (GIT) is a metabolically significant site of sulfur amino acid (SAA) metabolism in the body and metabolizes approx. 20% of the dietary methionine intake that is mainly transmethylated to homocysteine and transsulfurated to cysteine. The GIT accounts for approx. 25% of the ...

  20. Influence of myristic acid supplementation on energy, fatty acid and calcium metabolism of sheep as affected by dietary calcium and forage : concentrate ratio.

    PubMed

    Machmüller, A; Kreuzer, M

    2005-08-01

    In a 6 x 6 Latin square arrangement, sheep of 41 kg body weight were fed myristic acid [C14:0; 50 g/kg dry matter (DM)] supplemented to two basal diets of forage : concentrate ratios of 1 : 1.5 and 1 : 0.5 and adjusted to dietary calcium (Ca) contents of either 4.2 or 9.0 g/kg DM (the latter only together with C14:0 supplementation). Various variables of energy, fatty acid and Ca metabolism were determined in combined digestibility and respiratory chamber measurements. With C14:0 addition the energy loss via the faeces increased (p < 0.05, post hoc test) without affecting energy digestibility of the complete diet. The apparent digestibility of supplemented C14:0 was higher (p < 0.01) with approximately 0.8 in the forage-based diet than in the concentrate-based diet (approximately 0.6). The elevated levels of plasma C14:0 were mainly accompanied by reduced C18:0 and C18:1 levels. The estimated apparent content of metabolizable energy (ME) of added C14:0 was either 24.5 MJ/kg (concentrate-based diet) or 32.1 MJ/kg (forage-based diet). Extra Ca equalized these differences between basal diets and ME contents amounted to 33.0 MJ/kg on average. As expected from corresponding slight shifts in energy metabolizability, the total efficiency of ME utilization increased (p < 0.1) with C14:0. The lower level of dietary Ca was still within the range recommended, but adding C14:0 to the concentrate-based diet reduced Ca retention in the body of the sheep from 0.9 to -0.1 g/day because of an impaired (p < 0.05, post hoc test) net Ca absorption, whereas no effect was found with the forage-based diet. With C14:0 addition, plasma total phosphorus (P) and serum calcitrol levels increased (p < 0.05, post hoc test) while Ca concentrations did not clearly reflect the reduced net Ca absorption. Increasing the dietary Ca content prevented adverse effects on Ca retention in the concentrate-based diet and improved Ca retention in the forage-based diet. In conclusion, the C14

  1. Biosynthesis and metabolism of salicylic acid

    SciTech Connect

    Lee, H.; Leon, J.; Raskin, I.

    1995-05-09

    Pathways of salicylic acid (SA) biosynthesis and metabolism in tobacco have been recently identified. SA, an endogenous regulator of disease resistance, is a product of phenylpropanoid metabolism formed via decarboxylation of trans-cinnamic acid to benzoic acid and its subsequent 2-hydroxylation to SA. In tobacco mosaic virus-inoculated tobacco leaves, newly synthesized SA is rapidly metabolized to SA O-{beta}-D-glucoside and methyl salicylate. Two key enzymes involved in SA biosynthesis and metabolism: benzoic acid 2-hydroxylase, which converts benzoic acid to SA, and UDPglucose:SA glucosyltransferase (EC 2.4.1.35), which catalyzes conversion of SA to SA glucoside have been partially purified and characterized. Progress in enzymology and molecular biology of SA biosynthesis and metabolism will provide a better understanding of signal transduction pathway involved in plant disease resistance. 62 refs., 1 fig.

  2. Glycolysis in energy metabolism during seizures.

    PubMed

    Yang, Heng; Wu, Jiongxing; Guo, Ren; Peng, Yufen; Zheng, Wen; Liu, Ding; Song, Zhi

    2013-05-15

    Studies have shown that glycolysis increases during seizures, and that the glycolytic metabolite lactic acid can be used as an energy source. However, how lactic acid provides energy for seizures and how it can participate in the termination of seizures remains unclear. We reviewed possible mechanisms of glycolysis involved in seizure onset. Results showed that lactic acid was involved in seizure onset and provided energy at early stages. As seizures progress, lactic acid reduces the pH of tissue and induces metabolic acidosis, which terminates the seizure. The specific mechanism of lactic acid-induced acidosis involves several aspects, which include lactic acid-induced inhibition of the glycolytic enzyme 6-diphosphate kinase-1, inhibition of the N-methyl-D-aspartate receptor, activation of the acid-sensitive 1A ion channel, strengthening of the receptive mechanism of the inhibitory neurotransmitter γ-minobutyric acid, and changes in the intra- and extracellular environment. PMID:25206426

  3. Intestinal transport and metabolism of bile acids

    PubMed Central

    Dawson, Paul A.; Karpen, Saul J.

    2015-01-01

    In addition to their classical roles as detergents to aid in the process of digestion, bile acids have been identified as important signaling molecules that function through various nuclear and G protein-coupled receptors to regulate a myriad of cellular and molecular functions across both metabolic and nonmetabolic pathways. Signaling via these pathways will vary depending on the tissue and the concentration and chemical structure of the bile acid species. Important determinants of the size and composition of the bile acid pool are their efficient enterohepatic recirculation, their host and microbial metabolism, and the homeostatic feedback mechanisms connecting hepatocytes, enterocytes, and the luminal microbiota. This review focuses on the mammalian intestine, discussing the physiology of bile acid transport, the metabolism of bile acids in the gut, and new developments in our understanding of how intestinal metabolism, particularly by the gut microbiota, affects bile acid signaling. PMID:25210150

  4. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    PubMed

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-01

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis. PMID:26398285

  5. Light to liquid fuel: theoretical and realized energy conversion efficiency of plants using crassulacean acid metabolism (CAM) in arid conditions.

    PubMed

    Davis, Sarah C; LeBauer, David S; Long, Stephen P

    2014-07-01

    There has been little attention paid to crassulacean acid metabolism (CAM) as a mechanism for bioenergy crop tolerance to water limitation, in part, because potential yields of CAM plants have been assumed to be lower than those of most commonly studied bioenergy crops. The photochemical efficiency, water-use efficiency (WUE), biomass production, and fuel yield potentials of CAM, C3, and C4 plants that are considered or already in use for bioenergy are reviewed here. The theoretical photosynthetic efficiency of CAM plants can be similar to or greater than other photosynthetic pathways. In arid conditions, the greater WUE of CAM species results in theoretical biomass yield potentials that are 147% greater than C4 species. The realized yields of CAM plants are similar to the theoretical yields that account for water-limiting conditions. CAM plants can potentially be viable commercial bioenergy crops, but additional direct yield measurements from field trials of CAM species are still needed. PMID:24744431

  6. Diversity of Microbial Sialic Acid Metabolism

    PubMed Central

    Vimr, Eric R.; Kalivoda, Kathryn A.; Deszo, Eric L.; Steenbergen, Susan M.

    2004-01-01

    Sialic acids are structurally unique nine-carbon keto sugars occupying the interface between the host and commensal or pathogenic microorganisms. An important function of host sialic acid is to regulate innate immunity, and microbes have evolved various strategies for subverting this process by decorating their surfaces with sialylated oligosaccharides that mimic those of the host. These subversive strategies include a de novo synthetic pathway and at least two truncated pathways that depend on scavenging host-derived intermediates. A fourth strategy involves modification of sialidases so that instead of transferring sialic acid to water (hydrolysis), a second active site is created for binding alternative acceptors. Sialic acids also are excellent sources of carbon, nitrogen, energy, and precursors of cell wall biosynthesis. The catabolic strategies for exploiting host sialic acids as nutritional sources are as diverse as the biosynthetic mechanisms, including examples of horizontal gene transfer and multiple transport systems. Finally, as compounds coating the surfaces of virtually every vertebrate cell, sialic acids provide information about the host environment that, at least in Escherichia coli, is interpreted by the global regulator encoded by nanR. In addition to regulating the catabolism of sialic acids through the nan operon, NanR controls at least two other operons of unknown function and appears to participate in the regulation of type 1 fimbrial phase variation. Sialic acid is, therefore, a host molecule to be copied (molecular mimicry), eaten (nutrition), and interpreted (cell signaling) by diverse metabolic machinery in all major groups of mammalian pathogens and commensals. PMID:15007099

  7. Light Scattering as an Indicator of the Energy State in Leaves of the Crassulacean Acid Metabolism Plant Kalanchoë pinnata1

    PubMed Central

    Köster, Sigrid; Winter, Klaus

    1985-01-01

    Both transmittance changes in a weak beam of green light (light scattering) and the slow decay of chlorophyll a fluorescence were used as indicators of the energy state of leaves of a Crassulacean acid metabolism plant, Kalanchoë pinnata, at frequent intervals during 12-hour light/12-hour dark cycles. To induce light scattering and fluorescence changes, leaves were exposed to red light for 6 minutes. When measurements were made during the light period, the leaves were kept in darkness for 6 minutes before illumination. In the middle of the light period, when malic acid decarboxylation was very active and stomatal conductance was low, light scattering changes were small and indicated that the energy state of leaves was low. This result was supported by determination of adenylate levels. Light scattering and ATP/ADP ratios increased during the late light period when the tissue was deacidified. Illumination produced maximum light scattering changes between the 2nd and 5th hour of the dark period, when rates of dark CO2 fixation were highest. Light scattering and fluorescence measurements taken from leaves, which were illuminated with red or far-red light in the presence or absence of O2 showed that, in addition to linear electron transport, K. pinnata has the potential for both cyclic and pseudocyclic electron transport. The results are relevant with regard to the high ATP demand during Crassulacean acid metabolism. PMID:16664443

  8. Intestinal metabolism of sulfur amino acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gastrointestinal tract (GIT) serves a key function in the digestion of dietary protein and absorption of amino acids. However, the GIT is also an important site of amino acid metabolism in the body. Methionine is an indispensable amino acid and must be supplied in the diet. In addition, consider...

  9. Influence of Exercise on the Metabolic Profile Caused by 28 days of Bed Rest with Energy Deficit and Amino Acid Supplementation in Healthy Men

    PubMed Central

    Brooks, Naomi E.; Cadena, Samuel M.; Cloutier, Gregory; Vega-López, Sonia; Roubenoff, Ronenn; Castaneda-Sceppa, Carmen

    2014-01-01

    Objective Muscle loss and metabolic changes occur with disuse [i.e. bed rest (BR)]. We hypothesized that BR would lead to a metabolically unhealthy profile defined by: increased circulating tumor necrosis factor (TNF)-α, decreased circulating insulin-like-growth-factor (IGF)-1, decreased HDL-cholesterol, and decreased muscle density (MD; measured by mid-thigh computerized tomography). Methods We investigated the metabolic profile after 28 days of BR with 8±6% energy deficit in male individuals (30-55 years) randomized to resistance exercise with amino acid supplementation (RT, n=24) or amino acid supplementation alone (EAA, n=7). Upper and lower body exercises were performed in the horizontal position. Blood samples were taken at baseline, after 28 days of BR and 14 days of recovery. Results We found a shift toward a metabolically unfavourable profile after BR [compared to baseline (BLN)] in both groups as shown by decreased HDL-cholesterol levels (EAA: BLN: 39±4 vs. BR: 32±2 mg/dL, RT: BLN: 39±1 vs. BR: 32±1 mg/dL; p<0.001) and Low MD (EAA: BLN: 27±4 vs. BR: 22±3 cm2, RT: BLN: 28±2 vs. BR: 23±2 cm2; p<0.001). A healthier metabolic profile was maintained with exercise, including NormalMD (EAA: BLN: 124±6 vs. BR: 110±5 cm2, RT: BLN: 132±3 vs. BR: 131±4 cm2; p<0.001, time-by-group); although, exercise did not completely alleviate the unfavourable metabolic changes seen with BR. Interestingly, both groups had increased plasma IGF-1 levels (EAA: BLN:168±22 vs. BR 213±20 ng/mL, RT: BLN:180±10 vs. BR: 219±13 ng/mL; p<0.001) and neither group showed TNFα changes (p>0.05). Conclusions We conclude that RT can be incorporated to potentially offset the metabolic complications of BR. PMID:25317071

  10. Amino Acids as Metabolic Substrates during Cardiac Ischemia

    PubMed Central

    Drake, Kenneth J.; Sidorov, Veniamin Y.; McGuinness, Owen P.; Wasserman, David H.; Wikswo, John P.

    2013-01-01

    The heart is well known as a metabolic omnivore in that it is capable of consuming fatty acids, glucose, ketone bodies, pyruvate, lactate, amino acids and even its own constituent proteins, in order of decreasing preference. The energy from these substrates supports not only mechanical contraction, but also the various transmembrane pumps and transporters required for ionic homeostasis, electrical activity, metabolism and catabolism. Cardiac ischemia – for example, due to compromise of the coronary vasculature or end-stage heart failure – will alter both electrical and metabolic activity. While the effects of myocardial ischemia on electrical propagation and stability have been studied in depth, the effects of ischemia on metabolic substrate preference has not been fully appreciated: oxygen deprivation during ischemia will significantly alter the relative ability of the heart to utilize each of these substrates. Although changes in cardiac metabolism are understood to be an underlying component in almost all cardiac myopathies, the potential contribution of amino acids in maintaining cardiac electrical conductance and stability during ischemia is underappreciated. Despite clear evidence that amino acids exert cardioprotective effects in ischemia and other cardiac disorders, their role in the metabolism of the ischemic heart has yet to be fully elucidated. This review synthesizes the current literature of the metabolic contribution of amino acids during ischemia by analyzing relevant historical and recent research. PMID:23354395

  11. Pre-storage application of oxalic acid alleviates chilling injury in mango fruit by modulating proline metabolism and energy status under chilling stress.

    PubMed

    Li, Peiyan; Zheng, Xiaolin; Liu, Yan; Zhu, Yuyan

    2014-01-01

    Effects of oxalic acid on chilling injury, proline metabolism and energy status in mango fruit were investigated after mango fruit (Mangifera indica L. cv. Zill) were dipped in 5mM oxalic acid solution for 10min at 25°C and then stored at low temperature (10±0.5°C) for 49days thereafter transferred to 25°C for 4days. Pre-storage application of oxalic acid apparently inhibited the development of chilling injury, notably elevated proline accumulation actually associated with increase in Δ(1)-pyrroline-5-carboxylate synthetase (P5CS) activity and decrease in proline dehydrogenase (PDH) activity in the peel and the flesh, without activation of ornithine-δ-aminotransferase (OAT) activity, and maintained high ATP level and energy charge in the flesh during storage. It was suggested that these effects of oxalic acid might collectively contribute to improving chilling tolerance, thereby alleviating chilling injury and maintaining quality of mango fruit in long term cold storage. PMID:24001814

  12. 2-Hydroxy Acids in Plant Metabolism

    PubMed Central

    Maurino, Veronica G.; Engqvist, Martin K. M.

    2015-01-01

    Glycolate, malate, lactate, and 2-hydroxyglutarate are important 2-hydroxy acids (2HA) in plant metabolism. Most of them can be found as D- and L-stereoisomers. These 2HA play an integral role in plant primary metabolism, where they are involved in fundamental pathways such as photorespiration, tricarboxylic acid cycle, glyoxylate cycle, methylglyoxal pathway, and lysine catabolism. Recent molecular studies in Arabidopsis thaliana have helped elucidate the participation of these 2HA in in plant metabolism and physiology. In this chapter, we summarize the current knowledge about the metabolic pathways and cellular processes in which they are involved, focusing on the proteins that participate in their metabolism and cellular/intracellular transport in Arabidopsis. PMID:26380567

  13. Digital Cushion Fatty Acid Composition and Lipid Metabolism Gene Network Expression in Holstein Dairy Cows Fed a High-Energy Diet.

    PubMed

    Iqbal, Zeeshan Muhammad; Akbar, Haji; Hosseini, Afshin; Bichi Ruspoli Forteguerri, Elena; Osorio, Johan S; Loor, Juan J

    2016-01-01

    The hoof digital cushion is a complex structure composed of adipose tissue beneath the distal phalanx, i.e. axial, middle and abaxial fat pad. The major role of these fat depots is dampening compression of the corium underneath the cushion. The study aimed to determine expression of target genes and fatty acid profiles in the hoof of non-pregnant dry Holstein cows fed low (CON) or high-energy (OVE) diets. The middle fat pad of the hoof digital cushion was collected soon after slaughter. Despite the lack of effect on expression of the transcription regulators SREBF1 and PPARG, the expression of the lipogenic enzymes ACACA, FASN, SCD, and DGAT2 was upregulated with OVE. Along with the upregulation of G6PD and IDH1, important for NADPH synthesis during lipogenesis, and the basal glucose transporter SLC2A1, these data indicated a pro-lipogenic response in the digital cushion with OVE. The expression of the lipid droplet-associated protein PLIN2 was upregulated while expression of lipolytic enzymes (ATGL, ABDH5, and LIPE) only tended to be upregulated with OVE. Therefore, OVE induced lipogenesis, lipid droplet formation, and lipolysis, albeit to different extents. Although concentration of monounsaturated fatty acids (MUFA) did not differ, among the polyunsaturated fatty acids (PUFA), the concentration of 20:5n3 was lower with OVE. Among the saturated fatty acids, 20:0 concentration was greater with OVE. Although data indicated that the hoof digital cushion metabolic transcriptome is responsive to higher-energy diets, this did not translate into marked differences in the fatty acid composition. The decrease in concentration of PUFA, which could contribute to synthesis of inflammatory molecules, in OVE-fed cows indicated that feeding higher-energy diets might be detrimental for the mediation of inflammation in digital cushion. This effect could be further exacerbated by physiologic and endocrine changes during the peripartal period that favor inflammation. PMID:27441691

  14. Digital Cushion Fatty Acid Composition and Lipid Metabolism Gene Network Expression in Holstein Dairy Cows Fed a High-Energy Diet

    PubMed Central

    Iqbal, Zeeshan Muhammad; Akbar, Haji; Hosseini, Afshin; Bichi Ruspoli Forteguerri, Elena; Osorio, Johan S.

    2016-01-01

    The hoof digital cushion is a complex structure composed of adipose tissue beneath the distal phalanx, i.e. axial, middle and abaxial fat pad. The major role of these fat depots is dampening compression of the corium underneath the cushion. The study aimed to determine expression of target genes and fatty acid profiles in the hoof of non-pregnant dry Holstein cows fed low (CON) or high-energy (OVE) diets. The middle fat pad of the hoof digital cushion was collected soon after slaughter. Despite the lack of effect on expression of the transcription regulators SREBF1 and PPARG, the expression of the lipogenic enzymes ACACA, FASN, SCD, and DGAT2 was upregulated with OVE. Along with the upregulation of G6PD and IDH1, important for NADPH synthesis during lipogenesis, and the basal glucose transporter SLC2A1, these data indicated a pro-lipogenic response in the digital cushion with OVE. The expression of the lipid droplet-associated protein PLIN2 was upregulated while expression of lipolytic enzymes (ATGL, ABDH5, and LIPE) only tended to be upregulated with OVE. Therefore, OVE induced lipogenesis, lipid droplet formation, and lipolysis, albeit to different extents. Although concentration of monounsaturated fatty acids (MUFA) did not differ, among the polyunsaturated fatty acids (PUFA), the concentration of 20:5n3 was lower with OVE. Among the saturated fatty acids, 20:0 concentration was greater with OVE. Although data indicated that the hoof digital cushion metabolic transcriptome is responsive to higher-energy diets, this did not translate into marked differences in the fatty acid composition. The decrease in concentration of PUFA, which could contribute to synthesis of inflammatory molecules, in OVE-fed cows indicated that feeding higher-energy diets might be detrimental for the mediation of inflammation in digital cushion. This effect could be further exacerbated by physiologic and endocrine changes during the peripartal period that favor inflammation. PMID:27441691

  15. Lipoic Acid Metabolism in Microbial Pathogens

    PubMed Central

    Spalding, Maroya D.; Prigge, Sean T.

    2010-01-01

    Summary: Lipoic acid [(R)-5-(1,2-dithiolan-3-yl)pentanoic acid] is an enzyme cofactor required for intermediate metabolism in free-living cells. Lipoic acid was discovered nearly 60 years ago and was shown to be covalently attached to proteins in several multicomponent dehydrogenases. Cells can acquire lipoate (the deprotonated charge form of lipoic acid that dominates at physiological pH) through either scavenging or de novo synthesis. Microbial pathogens implement these basic lipoylation strategies with a surprising variety of adaptations which can affect pathogenesis and virulence. Similarly, lipoylated proteins are responsible for effects beyond their classical roles in catalysis. These include roles in oxidative defense, bacterial sporulation, and gene expression. This review surveys the role of lipoate metabolism in bacterial, fungal, and protozoan pathogens and how these organisms have employed this metabolism to adapt to niche environments. PMID:20508247

  16. Mammalian Sirtuins and Energy Metabolism

    PubMed Central

    Li, Xiaoling; Kazgan, Nevzat

    2011-01-01

    Sirtuins are highly conserved NAD+-dependent protein deacetylases and/or ADP-ribosyltransferases that can extend the lifespan of several lower model organisms including yeast, worms and flies. The seven mammalian sirtuins, SIRT1 to SIRT7, have emerged as key metabolic sensors that directly link environmental signals to mammalian metabolic homeostasis and stress response. Recent studies have shed light on the critical roles of sirtuins in mammalian energy metabolism in response to nutrient signals. This review focuses on the involvement of two nuclear sirtuins, SIRT1 and SIRT6, and three mitochondrial sirtuins, SIRT3, SIRT4, and SIRT5, in regulation of diverse metabolic processes. PMID:21614150

  17. Energy metabolism in nuclear reprogramming.

    PubMed

    Folmes, Clifford D L; Nelson, Timothy J; Terzic, Andre

    2011-12-01

    Nuclear reprogramming with stemness factors enables resetting of somatic differentiated tissue back to the pluripotent ground state. Recent evidence implicates mitochondrial restructuring and bioenergetic plasticity as key components underlying execution of orchestrated dedifferentiation and derivation of induced pluripotent stem cells. Aerobic to anaerobic transition of somatic oxidative energy metabolism into a glycolytic metabotype promotes proficient reprogramming, establishing a novel regulator of acquired stemness. Metabolomic profiling has further identified specific metabolic remodeling traits defining lineage redifferentiation of pluripotent cells. Therefore, mitochondrial biogenesis and energy metabolism comprise a vital axis for biomarker discovery, intimately reflecting the molecular dynamics fundamental for the resetting and redirection of cell fate. PMID:22103608

  18. Energy metabolism in nuclear reprogramming

    PubMed Central

    Folmes, Clifford DL; Nelson, Timothy J; Terzic, Andre

    2012-01-01

    Nuclear reprogramming with stemness factors enables resetting of somatic differentiated tissue back to the pluripotent ground state. Recent evidence implicates mitochondrial restructuring and bioenergetic plasticity as key components underlying execution of orchestrated dedifferentiation and derivation of induced pluripotent stem cells. Aerobic to anaerobic transition of somatic oxidative energy metabolism into a glycolytic metabotype promotes proficient reprogramming, establishing a novel regulator of acquired stemness. Metabolomic profiling has further identified specific metabolic remodeling traits defining lineage redifferentiation of pluripotent cells. Therefore, mitochondrial biogenesis and energy metabolism comprise a vital axis for biomarker discovery, intimately reflecting the molecular dynamics fundamental for the resetting and redirection of cell fate. PMID:22103608

  19. Metabolism of sinapic acid and related compounds in the rat

    PubMed Central

    Griffiths, L. A.

    1969-01-01

    1. Administration of sinapic acid to the rat results in the excretion of 3-hydroxy-5-methoxyphenylpropionic acid, dihydrosinapic acid, 3-hydroxy-5-methoxycinnamic acid and unchanged sinapic acid in the urine. The sinapic acid conjugate sinalbin is also catabolized to free sinapic acid and 3-hydroxy-5-methoxyphenylpropionic acid in the rat. 2. 3,4,5-Trimethoxycinnamic acid is metabolized in part to sinapic acid and 3-hydroxy-5-methoxyphenylpropionic acid. 3. 3,5-Dimethoxycinnamic acid is metabolized to 3-hydroxy-5-methoxycinnamic acid and 3-hydroxy-5-methoxyphenylpropionic acid. 4. The metabolic interrelationships of these compounds were studied by the administration of intermediates and a metabolic pathway is proposed. 5. The metabolism of the corresponding benzoic acids was studied, but these compounds and their metabolites were shown not to be intermediates or products of the metabolism of the related cinnamic acids. PMID:5386182

  20. Metabolism of sinapic acid and related compounds in the rat.

    PubMed

    Griffiths, L A

    1969-07-01

    1. Administration of sinapic acid to the rat results in the excretion of 3-hydroxy-5-methoxyphenylpropionic acid, dihydrosinapic acid, 3-hydroxy-5-methoxycinnamic acid and unchanged sinapic acid in the urine. The sinapic acid conjugate sinalbin is also catabolized to free sinapic acid and 3-hydroxy-5-methoxyphenylpropionic acid in the rat. 2. 3,4,5-Trimethoxycinnamic acid is metabolized in part to sinapic acid and 3-hydroxy-5-methoxyphenylpropionic acid. 3. 3,5-Dimethoxycinnamic acid is metabolized to 3-hydroxy-5-methoxycinnamic acid and 3-hydroxy-5-methoxyphenylpropionic acid. 4. The metabolic interrelationships of these compounds were studied by the administration of intermediates and a metabolic pathway is proposed. 5. The metabolism of the corresponding benzoic acids was studied, but these compounds and their metabolites were shown not to be intermediates or products of the metabolism of the related cinnamic acids. PMID:5386182

  1. Protein and amino acid metabolism in the human newborn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Birth and adaptation to extrauterine life involve major shifts in the protein and energy metabolism of the human newborn. These include a shift from a state of continuous supply of nutrients including amino acids from the mother to cyclic periodic oral intake, a change in the redox state of organs, ...

  2. Conjugated linoleic acid versus high-oleic acid sunflower oil: effects on energy metabolism, glucose tolerance, blood lipids, appetite and body composition in regularly exercising individuals.

    PubMed

    Lambert, Estelle V; Goedecke, Julia H; Bluett, Kerry; Heggie, Kerry; Claassen, Amanda; Rae, Dale E; West, Sacha; Dugas, Jonathan; Dugas, Lara; Meltzeri, Shelly; Charlton, Karen; Mohede, Inge

    2007-05-01

    The aim of this study was to measure the effects of 12 weeks of conjugated linoleic acid (CLA) supplementation on body composition, RER, RMR, blood lipid profiles, insulin sensitivity and appetite in exercising, normal-weight persons. In this double-blind, randomised, controlled trial, sixty-two non-obese subjects (twenty-five men, thirty-seven women) received either 3.9 g/d CLA or 3.9 g high-oleic acid sunflower oil for 12 weeks. Prior to and after 12 weeks of supplementation, oral glucose tolerance, blood lipid concentrations, body composition (dual-energy X-ray absorptiometry and computerised tomography scans), RMR, resting and exercising RER and appetite were measured. There were no significant effects of CLA on body composition or distribution, RMR, RER or appetite. During the oral glucose tolerance tests, mean plasma insulin concentrations (0, 30, 120 min) were significantly lower (P= 0.04) in women who supplemented with CLA (24.3 (SD 9.7) to 20.4 (SD 8.5) microU/ml) compared to high-oleic acid sunflower oil control (23.7 (SD 9.8) to 26.0 (SD 8.8) microU/ml). Serum NEFA levels in response to oral glucose were attenuated in both men and women in the CLA (P=0.001) compared to control group. However, serum total cholesterol and LDL-cholesterol concentrations decreased in both groups and HDL-cholesterol concentrations decreased in women over 12 weeks (P=0.001, P=0.02, P=0.02, respectively). In conclusion, mixed-isomer CLA supplementation had a favourable effect on serum insulin and NEFA response to oral glucose in non-obese, regularly exercising women, but there were no CLA-specific effects on body composition, energy expenditure or appetite. PMID:17381964

  3. Cellular metabolism of unnatural sialic acid precursors.

    PubMed

    Pham, Nam D; Fermaintt, Charles S; Rodriguez, Andrea C; McCombs, Janet E; Nischan, Nicole; Kohler, Jennifer J

    2015-10-01

    Carbohydrates, in addition to their metabolic functions, serve important roles as receptors, ligands, and structural molecules for diverse biological processes. Insight into carbohydrate biology and mechanisms has been aided by metabolic oligosaccharide engineering (MOE). In MOE, unnatural carbohydrate analogs with novel functional groups are incorporated into cellular glycoconjugates and used to probe biological systems. While MOE has expanded knowledge of carbohydrate biology, limited metabolism of unnatural carbohydrate analogs restricts its use. Here we assess metabolism of SiaDAz, a diazirine-modified analog of sialic acid, and its cell-permeable precursor, Ac4ManNDAz. We show that the efficiency of Ac4ManNDAz and SiaDAz metabolism depends on cell type. Our results indicate that different cell lines can have different metabolic roadblocks in the synthesis of cell surface SiaDAz. These findings point to roles for promiscuous intracellular esterases, kinases, and phosphatases during unnatural sugar metabolism and provide guidance for ways to improve MOE. PMID:25957566

  4. Intermediate Energy Metabolism of Leptospira

    PubMed Central

    Baseman, J. B.; Cox, C. D.

    1969-01-01

    Metabolic studies were performed on three representative serotypes of Leptospira: a water isolate designated B16 and two pathogenic serotypes, pomona and schueffneri. Examination of whole cells of B16 for their ability to oxidize various substrates revealed that oleate significantly stimulated oxygen uptake. The respiratory quotient of 0.7 implied that oleate was degraded to carbon dioxide and water. Other substrates, such as carbohydrates, alcohols, intermediates of the citric acid cycle, and short-chain acids, including selected amino acids, did not stimulate endogenous respiration of whole cells. No oxygen uptake could be measured when cell-free extracts were tested with the substrates used with whole cells. Enzymatic analyses of cell-free extracts of the three strains demonstrated enzymes of the citric acid cycle, enzymes of the glycolytic and pentose pathways, and the general acyl coenzyme A dehydrogenase required for β-oxidation of fatty acids. Strain B16 and the two pathogenic serotypes appeared to possess similar metabolic capabilities. Enzymatic data might also explain the apparent inability of B16 to oxidize other substrates; kinases necessary for activation of common nonphosphorylated compounds were not detected in leptospiral extracts. These findings emphasized the dependence of leptospiral growth upon long-chain fatty acids. PMID:5776541

  5. Changes in lipid metabolism and β-adrenergic response of adipose tissues of periparturient dairy cows affected by an energy-dense diet and nicotinic acid supplementation.

    PubMed

    Kenéz, Á; Tienken, R; Locher, L; Meyer, U; Rizk, A; Rehage, J; Dänicke, S; Huber, K

    2015-08-01

    Dairy cattle will mobilize large amounts of body fat during early lactation as an effect of decreased lipogenesis and increased lipolysis. Regulation of lipid metabolism involves fatty acid synthesis from acetate and β-adrenergic-stimulated phosphorylation of hormone-sensitive lipase (HSL) and perilipin in adipocytes. Although basic mechanisms of mobilizing fat storage in transition cows are understood, we lack a sufficiently detailed understanding to declare the exact regulatory network of these in a broad range of dairy cattle. The objective of the present study was to quantify 1) protein abundance of fatty acid synthase (FAS), 2) extent of phosphorylation of HSL and perilipin in vivo, and 3) β-adrenergic stimulated lipolytic response of adipose tissues in vitro at different stages of the periparturient period. We fed 20 German Holstein cows an energy-dense or an energetically adequate diet prepartum and 0 or 24 g/d nicotinic acid (NA) supplementation. Biopsy samples of subcutaneous and retroperitoneal adipose tissue were obtained at d 42 prepartum (d -42) and at d 1, 21, and 100 postpartum (d +1, d +21, d +100, respectively). To assess β-adrenergic response, tissue samples were incubated with 1 μ isoproterenol for 90 min at 37°C. The NEFA and glycerol release, as well as HSL and perilipin phosphorylation, was measured as indicators of in vitro stimulated lipolysis. In addition, protein expression of FAS and extent of HSL and perilipin phosphorylation were measured in fresh, nonincubated samples. There was no effect of dietary energy density or NA on the observed variables. The extent of HSL and perilipin phosphorylation under isoproterenol stimulation was strongly correlated with the release of NEFA and glycerol, consistent with the functional link between β-adrenergic-stimulated protein phosphorylation and lipolysis. In the nonincubated samples, FAS protein expression was decreased at d +1 and d +21, whereas HSL and perilipin phosphorylation increased

  6. Carbohydrate and amino acid metabolism of Spironucleus vortens.

    PubMed

    Millet, Coralie O M; Lloyd, David; Coogan, Michael P; Rumsey, Joanna; Cable, Joanne

    2011-09-01

    The metabolism of Spironucleus vortens, a parasitic, diplomonad flagellate related to Giardia intestinalis, was investigated using a combination of membrane inlet mass spectrometry, (1)H NMR, (13)C NMR, bioscreen continuous growth monitoring, and ion exchange chromatography. The products of glucose-fuelled and endogenous metabolism were identified by (1)H NMR and (13)C NMR as ethanol, acetate, alanine and lactate. Mass spectrometric monitoring of gas metabolism in buffered cell suspensions showed that glucose and ethanol could be used by S. vortens as energy-generating substrates, but bioscreen automated monitoring of growth in culture medium, as well as NMR analyses, suggested that neither of these compounds are the substrates of choice for this organism. Ion-exchange chromatographic analyses of free amino-acid and amino-acid hydrolysate of growth medium revealed that, despite the availability of large pools of free amino-acids in the medium, S. vortens hydrolysed large amounts of proteins during growth. The organism produced alanine and aspartate, and utilised lysine, arginine, leucine, cysteine and urea. However, mass spectrometric and bioscreen investigations showed that addition of the utilised amino acids to diluted culture medium did not induce any significant increase in metabolic or growth rates. Moreover, as no significant amounts of ornithine were produced, and addition of arginine under aerobic conditions did not generate NO production, there was no evidence of the presence of an energy-generating, arginine dihydrolase pathway in S. vortens under in vitro conditions. PMID:21679707

  7. Metabolic annotation of 2-ethylhydracrylic acid.

    PubMed

    Ryan, Robert O

    2015-08-25

    Increased levels of the organic acid, 2-ethylhydracrylic acid (2-EHA) occur in urine of subjects with impaired L(+)-isoleucine metabolism. Chiral intermediates formed during isoleucine degradation are (S) enantiomers. Blockage of (S) pathway flux drives racemization of (2S, 3S) L(+)-isoleucine and its (2S, 3R) stereoisomer, L(+)-alloisoleucine. This non-protein amino acid is metabolized to (R)-2-methylbutyryl CoA via enzymes common to branched chain amino acid degradation. Subsequently, (R) intermediates serve as alternate substrates for three valine metabolic enzymes, generating 2-EHA. Once formed, 2-EHA accumulates because it is poorly recognized by distal valine pathway enzymes. Thus, urinary 2-EHA represents a biomarker of isoleucine pathway defects. 2-EHA levels are also increased in rats exposed to the industrial solvent, ethylene glycol monomethyl ether or the neurotoxin precursor, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. In these cases, a block in (S) pathway isoleucine catabolism occurs at the level of (S)-2-methylbutyryl CoA conversion to tiglyl CoA via inhibition of electron transferring flavoprotein/ubiquinone oxidoreductase dependent reactions. Elevated urinary 2-EHA in propionyl CoA carboxylase deficiency and methylmalonic aciduria results from a buildup of distal intermediates in the (S) pathway of isoleucine degradation. In Barth syndrome and dilated cardiomyopathy with ataxia syndrome, 2-EHA is a byproduct of impeded propionyl CoA entry into the Krebs cycle. PMID:26115894

  8. Cellular energy metabolism

    SciTech Connect

    Glaser, M.

    1991-06-01

    Studies have been carried out on adenylate kinase which is an important enzyme in determining the concentrations of the adenine nucleotides. An efficient method has been developed to clone mutant adenylate kinase genes in E. coli. Site-specific mutagenesis of the wild type gene also has been used to obtain forms of adenylate kinase with altered amino acids. The wild type and mutant forms of adenylate kinase have been overexpressed and large quantities were readily isolated. The kinetic and fluorescence properties of the different forms of adenylate kinase were characterized. This has led to a new model for the location of the AMP and ATP bindings sites on the enzyme and a proposal for the mechanism of substrate inhibition. Crystals of the wild type enzyme were obtained that diffract to at least 2.3 {angstrom} resolution. Experiments were also initiated to determine the function of adenylate kinase in vivo. In one set of experiments, E. coli strains with mutations in adenylate kinase showed large changes in cellular nucleotides after reaching the stationary phase in a low phosphate medium. This was caused by selective proteolytic degradation of the mutant adenylate kinase caused by phosphate starvation.

  9. Retinoic acid: its biosynthesis and metabolism.

    PubMed

    Napoli, J L

    1999-01-01

    This article presents a model that integrates the functions of retinoid-binding proteins with retinoid metabolism. One of these proteins, the widely expressed (throughout retinoid target tissues and in all vertebrates) and highly conserved cellular retinol-binding protein (CRBP), sequesters retinol in an internal binding pocket that segregates it from the intracellular milieu. The CRBP-retinol complex appears to be the quantitatively major form of retinol in vivo, and may protect the promiscuous substrate from nonenzymatic degradation and/or non-specific enzymes. For example, at least seven types of dehydrogenases catalyze retinal synthesis from unbound retinol in vitro (NAD+ vs. NADP+ dependent, cytosolic vs. microsomal, short-chain dehydrogenases/reductases vs. medium-chain alcohol dehydrogenases). But only a fraction of these (some of the short-chain de-hydrogenases/reductases) have the fascinating additional ability of catalyzing retinal synthesis from CRBP-bound retinol as well. Similarly, CRBP and/or other retinoid-binding proteins function in the synthesis of retinal esters, the reduction of retinal generated from intestinal beta-carotene metabolism, and retinoic acid metabolism. The discussion details the evidence supporting an integrated model of retinoid-binding protein/metabolism. Also addressed are retinoid-androgen interactions and evidence incompatible with ethanol causing fetal alcohol syndrome by competing directly with retinol dehydrogenation to impair retinoic acid biosynthesis. PMID:10506831

  10. Evaluation of endogenous acidic metabolic products associated with carbohydrate metabolism in tumor cells.

    PubMed

    Mazzio, Elizabeth A; Smith, Bruce; Soliman, Karam F A

    2010-06-01

    Tumor cells have a high tolerance for acidic and hypoxic microenvironments, also producing abundant lactic acid through accelerated glycolysis in the presence or absence of O(2). While the accumulation of lactate is thought to be a major contributor to the reduction of pH-circumscribing aggressive tumors, it is not known if other endogenous metabolic products contribute this acidity. Furthermore, anaerobic metabolism in cancer cells bears similarity to homo-fermentative lactic acid bacteria, however very little is known about an alternative pathway that may drive adenosine triphosphate (ATP) production independent of glycolysis. In this study, we quantify over 40 end-products (amines, acids, alcohols, aldehydes, or ketones) produced by malignant neuroblastoma under accelerated glycolysis (+glucose (GLU) supply 1-10 mM) +/- mitochondrial toxin; 1-methyl-4-phenylpyridinium (MPP(+)) to abate aerobic respiration to delineate differences between anaerobic vs. aerobic cell required metabolic pathways. The data show that an acceleration of anaerobic glycolysis prompts an expected reduction in extracellular pH (pH(ex)) from neutral to 6.7 +/- 0.006. Diverse metabolic acids associated with this drop in acidity were quantified by ionic exchange liquid chromatography (LC), showing concomitant rise in lactate (Ctrls 7.5 +/- 0.5 mM; +GLU 12.35 +/- 1.3 mM; +GLU + MPP 18.1 +/- 1.8 mM), acetate (Ctrl 0.84 +/- 0.13 mM: +GLU 1.3 +/- 0.15 mM; +GLU + MPP 2.7 +/- 0.4 mM), fumarate, and a-ketoglutarate (<10 microM) while a range of other metabolic organic acids remained undetected. Amino acids quantified by o-phthalaldehyde precolumn derivatization/electrochemical detection-LC show accumulation of L: -alanine (1.6 +/- .052 mM), L: -glutamate (285 +/- 9.7 microM), L: -asparagine (202 +/- 2.1 microM), and L: -aspartate (84.2 +/- 4.9 microM) produced during routine metabolism, while other amino acids remain undetected. In contrast, the data show no evidence for accumulation of acetaldehyde

  11. Amino acid metabolism and protein synthesis in malarial parasites*

    PubMed Central

    Sherman, I. W.

    1977-01-01

    Malaria-infected red cells and free parasites have limited capabilities for the biosynthesis of amino acids. Therefore, the principal amino acid sources for parasite protein synthesis are the plasma free amino acids and host cell haemoglobin. Infected cells and plasmodia incorporate exogenously supplied amino acids into protein. However, the hypothesis that amino acid utilization (from an external source) is related to availability of that amino acid in haemoglobin is without universal support: it is true for isoleucine and for Plasmodium knowlesi and P. falciparum, but not for methionine, cysteine, and other amino acids, and it does not apply to P. lophurae. More by default than by direct evidence, haemoglobin is believed to be the main amino acid reservoir available to the intraerythrocytic plasmodium. Haemoglobin, ingested via the cytostome, is held in food vacuoles where auto-oxidation takes place. As a consequence, haem is released and accumulates in the vacuole as particulate haemozoin (= malaria pigment). Current evidence favours the view that haemozoin is mainly haematin. Acid and alkaline proteases (identified in crude extracts from mammalian and avian malarias) are presumably secreted directly into the food vacuole. They then digest the denatured globin and the resulting amino acids are incorporated into parasite protein. Cell-free protein synthesizing systems have been developed using P. knowlesi and P. lophurae ribosomes. In the main these systems are typically eukaryotic. Studies of amino acid metabolism are exceedingly limited. Arginine, lysine, methionine, and proline are incorporated into protein, whereas glutamic acid is metabolized via an NADP-specific glutamic dehydrogenase. Glutamate oxidation generates NADPH and auxiliary energy (in the form of α-ketoglutarate). The role of red cell glutathione in the economy of the parasite remains obscure. Important goals for future research should be: quantitative assessment of the relative importance of

  12. Linking uric acid metabolism to diabetic complications.

    PubMed

    Kushiyama, Akifumi; Tanaka, Kentaro; Hara, Shigeko; Kawazu, Shoji

    2014-12-15

    Hyperuricemia have been thought to be caused by the ingestion of large amounts of purines, and prevention or treatment of hyperuricemia has intended to prevent gout. Xanthine dehydrogenase/xanthine oxidase (XDH/XO) is rate-limiting enzyme of uric acid generation, and allopurinol was developed as a uric acid (UA) generation inhibitor in the 1950s and has been routinely used for gout prevention since then. Serum UA levels are an important risk factor of disease progression for various diseases, including those related to lifestyle. Recently, other UA generation inhibitors such as febuxostat and topiroxostat were launched. The emergence of these novel medications has promoted new research in the field. Lifestyle-related diseases, such as metabolic syndrome or type 2 diabetes mellitus, often have a common pathological foundation. As such, hyperuricemia is often present among these patients. Many in vitro and animal studies have implicated inflammation and oxidative stress in UA metabolism and vascular injury because XDH/XO act as one of the major source of reactive oxygen species Many studies on UA levels and associated diseases implicate involvement of UA generation in disease onset and/or progression. Interventional studies for UA generation, not UA excretion revealed XDH/XO can be the therapeutic target for vascular injury and renal dysfunction. In this review, the relationship between UA metabolism and diabetic complications is highlighted. PMID:25512781

  13. Linking uric acid metabolism to diabetic complications

    PubMed Central

    Kushiyama, Akifumi; Tanaka, Kentaro; Hara, Shigeko; Kawazu, Shoji

    2014-01-01

    Hyperuricemia have been thought to be caused by the ingestion of large amounts of purines, and prevention or treatment of hyperuricemia has intended to prevent gout. Xanthine dehydrogenase/xanthine oxidase (XDH/XO) is rate-limiting enzyme of uric acid generation, and allopurinol was developed as a uric acid (UA) generation inhibitor in the 1950s and has been routinely used for gout prevention since then. Serum UA levels are an important risk factor of disease progression for various diseases, including those related to lifestyle. Recently, other UA generation inhibitors such as febuxostat and topiroxostat were launched. The emergence of these novel medications has promoted new research in the field. Lifestyle-related diseases, such as metabolic syndrome or type 2 diabetes mellitus, often have a common pathological foundation. As such, hyperuricemia is often present among these patients. Many in vitro and animal studies have implicated inflammation and oxidative stress in UA metabolism and vascular injury because XDH/XO act as one of the major source of reactive oxygen species Many studies on UA levels and associated diseases implicate involvement of UA generation in disease onset and/or progression. Interventional studies for UA generation, not UA excretion revealed XDH/XO can be the therapeutic target for vascular injury and renal dysfunction. In this review, the relationship between UA metabolism and diabetic complications is highlighted. PMID:25512781

  14. Molecular Genetics of Crassulacean Acid Metabolism.

    PubMed Central

    Cushman, J. C.; Bohnert, H. J.

    1997-01-01

    Most higher plants assimilate atmospheric CO2 through the C3 pathway of photosynthesis using ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, when CO2 availability is reduced by environmental stress conditions, the incomplete discrimination of CO2 over O2 by Rubisco leads to increased photorespiration, a process that reduces the efficiency of C3 photosynthesis. To overcome the wasteful process of photorespiration, approximately 10% of higher plant species have evolved two alternate strategies for photosynthetic CO2 assimilation, C4 photosynthesis and Crassulacean acid metabolism. Both of these biochemical pathways employ a "CO2 pump" to elevate intracellular CO2 concentrations in the vicinity of Rubisco, suppressing photorespiration and therefore improving the competitiveness of these plants under conditions of high light intensity, high temperature, or low water availability. This CO2 pump consists of a primary carboxylating enzyme, phosphoenolpyruvate carboxylase. In C4 plants, this CO2-concentrating mechanism is achieved by the coordination of two carboxylating reactions that are spatially separated into mesophyll and bundle-sheath cell types (for review, see R.T. Furbank, W.C. Taylor [1995] Plant Cell 7: 797-807;M.S.B. Ku, Y. Kano-Murakami, M. Matsuoka [1996] Plant Physiol 111: 949-957). In contrast, Crassulacean acid metabolism plants perform both carboxylation reactions within one cell type, but the two reactions are separated in time. Both pathways involve cell-specific changes in the expression of many genes that are not present in C3 plants. PMID:12223634

  15. METABOLISM OF DICARBOXYLIC ACIDS IN ACETOBACTER XYLINUM

    PubMed Central

    Benziman, Moshe; Abeliovitz, A.

    1964-01-01

    Benziman, Moshe (The Hebrew University of Jerusalem, Jerusalem, Israel), and A. Abeliovitz. Metabolism of dicarboxylic acids in Acetobacter xylinum. J. Bacteriol. 87:270–277. 1964.—During the oxidation of fumarate or l-malate by whole cells or extracts of Acetobacter xylinum grown on succinate, a keto acid accumulated in the medium in considerable amounts. This acid was identified as oxaloacetic acid (OAA). No accumulation of OAA was observed when succinate served as substrate. These phenomena could be explained by the kinetics of malate, succinate, and OAA oxidation. OAA did not inhibit malate oxidation, even when present at high concentrations. When cells were incubated with OAA or fumarate in the presence of C14O2, only the beta-carboxyl of residual OAA was found to be labeled. Evidence was obtained indicating that nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) are not directly involved in malate oxidation by cell-free extracts. The results suggest that malate oxidation in A. xylinum is irreversible, and is catalyzed by an enzyme which is not NAD- or NADP-linked. PMID:14151044

  16. Marrow fat metabolism is linked to the systemic energy metabolism

    PubMed Central

    Lecka-Czernik, Beata

    2011-01-01

    Recent advances in understanding the role of bone in the systemic regulation of energy metabolism indicate that bone marrow cells, adipocytes and osteoblasts, are involved in this process. Marrow adipocytes store significant quantities of fat and produce adipokines, leptin and adiponectin, which are known for their role in the regulation of energy metabolism, whereas osteoblasts produce osteocalcin, a bone-specific hormone that has a potential to regulate insulin production in the pancreas and adiponectin production in fat tissue. Both osteoblasts and marrow adipocytes express insulin receptor and respond to insulin-sensitizing anti-diabetic TZDs in a manner, which tightly links bone with the energy metabolism system. Metabolic profile of marrow fat resembles that of both, white and brown fat, which is reflected by its plasticity in acquiring different functions including maintenance of bone micro-environment. Marrow fat responds to physiologic and pathologic changes in energy metabolism status by changing volume and metabolic activity. This review summarizes available information on the metabolic function of marrow fat and provides hypothesis that this fat depot may acquire multiple roles depending on the local and perhaps systemic demands. These functions may include a role in bone energy maintenance and endocrine activities to serve osteogenesis during bone remodeling and bone healing. PMID:21757043

  17. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism.

    PubMed

    Wahlström, Annika; Sayin, Sama I; Marschall, Hanns-Ulrich; Bäckhed, Fredrik

    2016-07-12

    The gut microbiota is considered a metabolic "organ" that not only facilitates harvesting of nutrients and energy from the ingested food but also produces numerous metabolites that signal through their cognate receptors to regulate host metabolism. One such class of metabolites, bile acids, is produced in the liver from cholesterol and metabolized in the intestine by the gut microbiota. These bioconversions modulate the signaling properties of bile acids via the nuclear farnesoid X receptor and the G protein-coupled membrane receptor 5, which regulate numerous metabolic pathways in the host. Conversely, bile acids can modulate gut microbial composition both directly and indirectly through activation of innate immune genes in the small intestine. Thus, host metabolism can be affected through microbial modifications of bile acids, which lead to altered signaling via bile acid receptors, but also by altered microbiota composition. PMID:27320064

  18. Energy flows, metabolism and translation

    PubMed Central

    Pascal, Robert; Boiteau, Laurent

    2011-01-01

    Thermodynamics provides an essential approach to understanding how living organisms survive in an organized state despite the second law. Exchanges with the environment constantly produce large amounts of entropy compensating for their own organized state. In addition to this constraint on self-organization, the free energy delivered to the system, in terms of potential, is essential to understand how a complex chemistry based on carbon has emerged. Accordingly, the amount of free energy brought about through discrete events must reach the strength needed to induce chemical changes in which covalent bonds are reorganized. The consequence of this constraint was scrutinized in relation to both the development of a carbon metabolism and that of translation. Amino acyl adenylates involved as aminoacylation intermediates of the latter process reach one of the higher free energy levels found in biochemistry, which may be informative on the range in which energy was exchanged in essential early biochemical processes. The consistency of this range with the amount of energy needed to weaken covalent bonds involving carbon may not be accidental but the consequence of the abovementioned thermodynamic constraints. This could be useful in building scenarios for the emergence and early development of translation. PMID:21930587

  19. Metabolic mechanism of phenyllactic acid naturally occurring in Chinese pickles.

    PubMed

    Li, Xingfeng; Ning, Yawei; Liu, Dou; Yan, Aihong; Wang, Zhixin; Wang, Shijie; Miao, Ming; Zhu, Hong; Jia, Yingmin

    2015-11-01

    Phenyllactic acid, a phenolic acid phytochemical with the antimicrobial activity, was rarely reported in food besides honey and sourdough. This study evidenced a new food source of phenyllactic acid and elucidated its metabolic mechanism. Phenyllactic acid naturally occurred in Chinese pickles with concentrations ranged from 0.02 to 0.30 mM in 23 pickle samples including homemade and commercial ones. Then, lactic acid bacteria capable of metabolizing phenyllactic acid were screened from each homemade pickle and a promising strain was characterized as Lactobacillus plantarum. Moreover, the investigation of the metabolic mechanism of phenyllactic acid in pickles suggested that the yield of phenyllactic acid was positively related to the content of phenylalanine in food, and the addition of phenylalanine as precursor substance could significantly promote the production of phenyllactic acid. This investigation could provide some insights into the accumulation of phenyllactic acid in pickle for long storage life. PMID:25976820

  20. Adipose tissue fatty acid metabolism during pregnancy in swine.

    PubMed

    McNamara, J P; Dehoff, M H; Collier, R J; Bazer, F W

    1985-08-01

    In vitro adipose tissue fatty acid pool size (POOL), fatty acid release (FAR) and esterification (EST) were measured in peritoneal (PFP) and subcutaneous mammary (MFP) fat pads of swine at d 15, 30, 45, 60, 75, 90, 105 and 112 of pregnancy. Plasma free fatty acids (FFA) and triglycerides (TG) were not altered by stage of pregnancy. Basal EST in PFP was generally constant across pregnancy with a peak at d 75. Basal EST in MFP was elevated at d 30, 75 and 112. Esterification in response to norepinephrine stimulus (NE) was lower than basal rates in both fat depots. Basal FAR was constant throughout pregnancy in PFP, but elevated at d 75 and 90 in MFP. Fatty acid release in response to NE was biphasic with peaks at d 30 and in late pregnancy (in MFP, micromolar FAR in response to NE was 69.3% greater on d 75 to 112 than on d 45 to 60). Basal POOL was constant throughout pregnancy in both depots and lower than NE-stimulated POOL. All responses to NE were greater in MFP than in PFP, indicating that adipose tissue surrounding the developing mammary gland had higher metabolic activity and a greater response to NE than peritoneal adipose. Changes in fatty acid metabolism during pregnancy in swine are temporally related to published values for plasma steroids, fetal growth and mammary development. Metabolic adaptations in adipose and mannary epithelial tissue occur in synchrony with changing plasma estrogen concentrations, redirecting energy flow from maternal adipose tissue toward developing mammary and fetal tissue. PMID:4044440

  1. Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis.

    PubMed

    Zeisel, Steven H

    2013-03-01

    There are multiple identified mechanisms involved in energy metabolism, insulin resistance and adiposity, but there are here-to-fore unsuspected metabolic factors that also influence these processes. Studies in animal models suggest important links between choline/1-carbon metabolism and energy homeostasis. Rodents fed choline deficient diets become hypermetabolic. Mice with deletions in one of several different genes of choline metabolism have phenotypes that include increased metabolic rate, decreased body fat/lean mass ratio, increased insulin sensitivity, decreased ATP production by mitochondria, or decreased weight gain on a high fat diet. In addition, farmers have recognized that the addition of a metabolite of choline (betaine) to cattle and swine feed reduces body fat/lean mass ratio. Choline dietary intake in humans varies over a > three-fold range, and genetic variation exists that modifies individual requirements for this nutrient. Although there are some epidemiologic studies in humans suggesting a link between choline/1-carbon metabolism and energy metabolism, there have been no controlled studies in humans that were specifically designed to examine this relationship. PMID:23072856

  2. Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis

    PubMed Central

    Zeisel, Steven H.

    2013-01-01

    There are multiple identified mechanisms involved in energy metabolism, insulin resistance and adiposity, but there are here-to-fore unsuspected metabolic factors that also influence these processes. Studies in animal models suggest important links between choline/1-carbon metabolism and energy homeostasis. Rodents fed choline deficient diets become hypermetabolic. Mice with deletions in one of several different genes of choline metabolism have phenotypes that include increased metabolic rate, decreased body fat/lean mass ratio, increased insulin sensitivity, decreased ATP production by mitochondria, or decreased weight gain on a high fat diet. In addition, farmers have recognized that the addition of a metabolite of choline (betaine) to cattle and swine feed reduces body fat/lean mass ratio. Choline dietary intake in humans varies over a >three-fold range, and genetic variation exists that modifies individual requirements for this nutrient. Although there are some epidemiologic studies in humans suggesting a link between choline/1-carbon metabolism and energy metabolism, there have been no controlled studies in humans that were specifically designed to examine this relationship. PMID:23072856

  3. Emerging aspects of gut sulfur amino acid metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review discusses the recent evidence indicating that sulfur amino acid metabolism in gastrointestinal tissues may be linked to human health and gut disease. Studies indicate that the gastrointestinal tract metabolizes 20% of dietary methionine and that its main metabolic fate is transmethylatio...

  4. Glucagon regulation of energy metabolism.

    PubMed

    Heppner, Kristy M; Habegger, Kirk M; Day, Jonathan; Pfluger, Paul T; Perez-Tilve, Diego; Ward, Brian; Gelfanov, Vasily; Woods, Steve C; DiMarchi, Richard; Tschöp, Matthias

    2010-07-14

    Glucagon has long been known as a counter-regulatory hormone to insulin of fundamental importance to glucose homeostasis. Its prominent ability to stimulate glycogenolysis and gluconeogenesis, has historically cast this peptide as one hormone where the metabolic consequences of increasing blood glucose levels, especially in obesity, are viewed largely as being deleterious. This perspective may be changing in light of emerging data and reconsideration of historic studies, which suggest that glucagon has beneficial effects on body fat mass, food intake, and energy expenditure. In this review, we discuss the mechanisms of glucagon-mediated body weight regulation as well as possible novel therapeutic approaches in the treatment of obesity and glucose intolerance that may arise from these findings. The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009. PMID:20381509

  5. Citric acid as the last therapeutic approach in an acute life-threatening metabolic decompensation of propionic acidaemia.

    PubMed

    Siekmeyer, Manuela; Petzold-Quinque, Stefanie; Terpe, Friederike; Beblo, Skadi; Gebhardt, Rolf; Schlensog-Schuster, Franziska; Kiess, Wieland; Siekmeyer, Werner

    2013-01-01

    The tricarboxylic acid (TCA) cycle represents the key enzymatic steps in cellular energy metabolism. Once the TCA cycle is impaired in case of inherited metabolic disorders, life-threatening episodes of metabolic decompensation and severe organ failure can arise. We present the case of a 6 ½-year-old girl with propionic acidaemia during an episode of acute life-threatening metabolic decompensation and severe lactic acidosis. Citric acid given as an oral formulation showed the potential to sustain the TCA cycle flux. This therapeutic approach may become a treatment option in a situation of acute metabolic crisis, possibly preventing severe disturbance of energy metabolism. PMID:23412866

  6. Role of bile acids in the regulation of the metabolic pathways

    PubMed Central

    Taoka, Hiroki; Yokoyama, Yoko; Morimoto, Kohkichi; Kitamura, Naho; Tanigaki, Tatsuya; Takashina, Yoko; Tsubota, Kazuo; Watanabe, Mitsuhiro

    2016-01-01

    Recent studies have revealed that bile acids (BAs) are not only facilitators of dietary lipid absorption but also important signaling molecules exerting multiple physiological functions. Some major signaling pathways involving the nuclear BAs receptor farnesoid X receptor and the G protein-coupled BAs receptor TGR5/M-BAR have been identified to be the targets of BAs. BAs regulate their own homeostasis via signaling pathways. BAs also affect diverse metabolic pathways including glucose metabolism, lipid metabolism and energy expenditure. This paper suggests the mechanism of controlling metabolism via BA signaling and demonstrates that BA signaling is an attractive therapeutic target of the metabolic syndrome. PMID:27433295

  7. Role of bile acids in the regulation of the metabolic pathways.

    PubMed

    Taoka, Hiroki; Yokoyama, Yoko; Morimoto, Kohkichi; Kitamura, Naho; Tanigaki, Tatsuya; Takashina, Yoko; Tsubota, Kazuo; Watanabe, Mitsuhiro

    2016-07-10

    Recent studies have revealed that bile acids (BAs) are not only facilitators of dietary lipid absorption but also important signaling molecules exerting multiple physiological functions. Some major signaling pathways involving the nuclear BAs receptor farnesoid X receptor and the G protein-coupled BAs receptor TGR5/M-BAR have been identified to be the targets of BAs. BAs regulate their own homeostasis via signaling pathways. BAs also affect diverse metabolic pathways including glucose metabolism, lipid metabolism and energy expenditure. This paper suggests the mechanism of controlling metabolism via BA signaling and demonstrates that BA signaling is an attractive therapeutic target of the metabolic syndrome. PMID:27433295

  8. Renal acid-base metabolism after ischemia.

    PubMed

    Holloway, J C; Phifer, T; Henderson, R; Welbourne, T C

    1986-05-01

    The response of the kidney to ischemia-induced cellular acidosis was followed over the immediate one hr post-ischemia reflow period. Clearance and extraction experiments as well as measurement of cortical intracellular pH (pHi) were performed on Inactin-anesthetized Sprague-Dawley rats. Arteriovenous concentration differences and para-aminohippurate extraction were obtained by cannulating the left renal vein. Base production was monitored as bicarbonate released into the renal vein and urine; net base production was related to the renal handling of glutamine and ammonia as well as to renal oxygen consumption and pHi. After a 15 min control period, the left renal artery was snared for one-half hr followed by release and four consecutive 15 min reflow periods. During the control period, cortical cell pHi measured by [14C]-5,5-Dimethyl-2,4-Oxazolidinedione distribution was 7.07 +/- 0.08, and Q-O2 was 14.1 +/- 2.2 micromoles/min; neither net glutamine utilization nor net bicarbonate generation occurred. After 30 min of ischemia, renal tissue pH fell to 6.6 +/- 0.15. However, within 45 min of reflow, cortical cell pH returned and exceeded the control value, 7.33 +/- 0.06 vs. 7.15 +/- 0.08. This increase in pHi was associated with a significant rise in cellular metabolic rate, Q-O2 increased to 20.3 +/- 6.4 micromoles/min. Corresponding with cellular alkalosis was a net production of bicarbonate and a net ammonia uptake and glutamine release; urinary acidification was abolished. These results are consistent with a nonexcretory renal metabolic base generating mechanism governing cellular acid base homeostasis following ischemia. PMID:3723929

  9. Impulsive mathematical modeling of ascorbic acid metabolism in healthy subjects.

    PubMed

    Bachar, Mostafa; Raimann, Jochen G; Kotanko, Peter

    2016-03-01

    In this work, we develop an impulsive mathematical model of Vitamin C (ascorbic acid) metabolism in healthy subjects for daily intake over a long period of time. The model includes the dynamics of ascorbic acid plasma concentration, the ascorbic acid absorption in the intestines and a novel approach to quantify the glomerular excretion of ascorbic acid. We investigate qualitative and quantitative dynamics. We show the existence and uniqueness of the global asymptotic stability of the periodic solution. We also perform a numerical simulation for the entire time period based on published data reporting parameters reflecting ascorbic acid metabolism at different oral doses of ascorbic acid. PMID:26724712

  10. Interplay between oxidant species and energy metabolism.

    PubMed

    Quijano, Celia; Trujillo, Madia; Castro, Laura; Trostchansky, Andrés

    2016-08-01

    It has long been recognized that energy metabolism is linked to the production of reactive oxygen species (ROS) and critical enzymes allied to metabolic pathways can be affected by redox reactions. This interplay between energy metabolism and ROS becomes most apparent during the aging process and in the onset and progression of many age-related diseases (i.e. diabetes, metabolic syndrome, atherosclerosis, neurodegenerative diseases). As such, the capacity to identify metabolic pathways involved in ROS formation, as well as specific targets and oxidative modifications is crucial to our understanding of the molecular basis of age-related diseases and for the design of novel therapeutic strategies. Herein we review oxidant formation associated with the cell's energetic metabolism, key antioxidants involved in ROS detoxification, and the principal targets of oxidant species in metabolic routes and discuss their relevance in cell signaling and age-related diseases. PMID:26741399

  11. Interplay between oxidant species and energy metabolism

    PubMed Central

    Quijano, Celia; Trujillo, Madia; Castro, Laura; Trostchansky, Andrés

    2015-01-01

    It has long been recognized that energy metabolism is linked to the production of reactive oxygen species (ROS) and critical enzymes allied to metabolic pathways can be affected by redox reactions. This interplay between energy metabolism and ROS becomes most apparent during the aging process and in the onset and progression of many age-related diseases (i.e. diabetes, metabolic syndrome, atherosclerosis, neurodegenerative diseases). As such, the capacity to identify metabolic pathways involved in ROS formation, as well as specific targets and oxidative modifications is crucial to our understanding of the molecular basis of age-related diseases and for the design of novel therapeutic strategies. Herein we review oxidant formation associated with the cell's energetic metabolism, key antioxidants involved in ROS detoxification, and the principal targets of oxidant species in metabolic routes and discuss their relevance in cell signaling and age-related diseases. PMID:26741399

  12. (-)-Hydroxycitric Acid Nourishes Protein Synthesis via Altering Metabolic Directions of Amino Acids in Male Rats.

    PubMed

    Han, Ningning; Li, Longlong; Peng, Mengling; Ma, Haitian

    2016-08-01

    (-)-Hydroxycitric acid (HCA), a major active ingredient of Garcinia Cambogia extracts, had shown to suppress body weight gain and fat accumulation in animals and humans. While, the underlying mechanism of (-)-HCA has not fully understood. Thus, this study was aimed to investigate the effects of long-term supplement with (-)-HCA on body weight gain and variances of amino acid content in rats. Results showed that (-)-HCA treatment reduced body weight gain and increased feed conversion ratio in rats. The content of hepatic glycogen, muscle glycogen, and serum T4 , T3 , insulin, and Leptin were increased in (-)-HCA treatment groups. Protein content in liver and muscle were significantly increased in (-)-HCA treatment groups. Amino acid profile analysis indicated that most of amino acid contents in serum and liver, especially aromatic amino acid and branched amino acid, were higher in (-)-HCA treatment groups. However, most of the amino acid contents in muscle, especially aromatic amino acid and branched amino acid, were reduced in (-)-HCA treatment groups. These results indicated that (-)-HCA treatment could reduce body weight gain through promoting energy expenditure via regulation of thyroid hormone levels. In addition, (-)-HCA treatment could promote protein synthesis by altering the metabolic directions of amino acids. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27145492

  13. Sucrose ingestion normalizes central expression of corticotropin-releasing-factor messenger ribonucleic acid and energy balance in adrenalectomized rats: a glucocorticoid-metabolic-brain axis?

    PubMed

    Laugero, K D; Bell, M E; Bhatnagar, S; Soriano, L; Dallman, M F

    2001-07-01

    Both CRF and norepinephrine (NE) inhibit food intake and stimulate ACTH secretion and sympathetic outflow. CRF also increases anxiety; NE increases attention and cortical arousal. Adrenalectomy (ADX) changes CRF and NE activity in brain, increases ACTH secretion and sympathetic outflow and reduces food intake and weight gain; all of these effects are corrected by administration of adrenal steroids. Unexpectedly, we recently found that ADX rats drinking sucrose, but not saccharin, also have normal caloric intake, metabolism, and ACTH. Here, we show that ADX (but not sham-ADX) rats prefer to consume significantly more sucrose than saccharin. Voluntary ingestion of sucrose restores CRF and dopamine-beta-hydroxylase messenger RNA expression in brain, food intake, and caloric efficiency and fat deposition, circulating triglyceride, leptin, and insulin to normal. Our results suggest that the brains of ADX rats, cued by sucrose energy (but not by nonnutritive saccharin) maintain normal activity in systems that regulate neuroendocrine (hypothalamic-pituitary-adrenal), behavioral (feeding), and metabolic functions (fat deposition). We conclude that because sucrose ingestion, like glucocorticoid replacement, normalizes energetic and neuromodulatory effects of ADX, many of the actions of the steroids on the central nervous system under basal conditions may be indirect and mediated by signals that result from the metabolic effects of adrenal steroids. PMID:11415998

  14. The Role of Microbial Amino Acid Metabolism in Host Metabolism

    PubMed Central

    Neis, Evelien P. J. G.; Dejong, Cornelis H. C.; Rensen, Sander S.

    2015-01-01

    Disruptions in gut microbiota composition and function are increasingly implicated in the pathogenesis of obesity, insulin resistance, and type 2 diabetes mellitus. The functional output of the gut microbiota, including short-chain fatty acids and amino acids, are thought to be important modulators underlying the development of these disorders. Gut bacteria can alter the bioavailability of amino acids by utilization of several amino acids originating from both alimentary and endogenous proteins. In turn, gut bacteria also provide amino acids to the host. This could have significant implications in the context of insulin resistance and type 2 diabetes mellitus, conditions associated with elevated systemic concentrations of certain amino acids, in particular the aromatic and branched-chain amino acids. Moreover, several amino acids released by gut bacteria can serve as precursors for the synthesis of short-chain fatty acids, which also play a role in the development of obesity. In this review, we aim to compile the available evidence on the contribution of microbial amino acids to host amino acid homeostasis, and to assess the role of the gut microbiota as a determinant of amino acid and short-chain fatty acid perturbations in human obesity and type 2 diabetes mellitus. PMID:25894657

  15. Amino acid metabolism in patients with propionic acidaemia.

    PubMed

    Scholl-Bürgi, Sabine; Sass, Jörn Oliver; Zschocke, Johannes; Karall, Daniela

    2012-01-01

    Propionic acidaemia (PA) is an inborn error of intermediary metabolism caused by deficiency of propionyl-CoA carboxylase. The metabolic block leads to a profound failure of central metabolic pathways, including the urea and the citric acid cycles. This review will focus on changes in amino acid metabolism in this inborn disorder of metabolism. The first noted disturbance of amino acid metabolism was hyperglycinaemia, which is detectable in nearly all PA patients. Additionally, hyperlysinaemia is a common observation. In contrast, concentrations of branched chain amino acids, especially of isoleucine, are frequently reported as decreased. These non-proportional changes of branched-chain amino acids (BCAAs) compared with aromatic amino acids are also reflected by the Fischer's ratio (concentration ratio of BCAAs to aromatic amino acids), which is decreased in PA patients. As restricted dietary intake of valine and isoleucine as precursors of propionyl-CoA is part of the standard treatment in PA, decreased plasma concentrations of BCAAs may be a side effect of treatment. The concentration changes of the nitrogen scavenger glutamine have to be interpreted in the light of ammonia levels. In contrast to other hyperammonaemic syndromes, in PA plasma glutamine concentrations do not increase in hyperammonaemia, whereas CSF glutamine concentrations are elevated. Despite lactic acidaemia in PA patients, hyperalaninaemia is only rarely reported. The mechanisms underlying the observed changes in amino acid metabolism have not yet been elucidated, but most of the changes can be at least partly interpreted as consequence of disturbance of anaplerosis. PMID:21113738

  16. Inborn Errors of Energy Metabolism Associated with Myopathies

    PubMed Central

    Das, Anibh M.; Steuerwald, Ulrike; Illsinger, Sabine

    2010-01-01

    Inherited neuromuscular disorders affect approximately one in 3,500 children. Structural muscular defects are most common; however functional impairment of skeletal and cardiac muscle in both children and adults may be caused by inborn errors of energy metabolism as well. Patients suffering from metabolic myopathies due to compromised energy metabolism may present with exercise intolerance, muscle pain, reversible or progressive muscle weakness, and myoglobinuria. In this review, the physiology of energy metabolism in muscle is described, followed by the presentation of distinct disorders affecting skeletal and cardiac muscle: glycogen storage diseases types III, V, VII, fatty acid oxidation defects, and respiratory chain defects (i.e., mitochondriopathies). The diagnostic work-up and therapeutic options in these disorders are discussed. PMID:20589068

  17. Disturbed Amino Acid Metabolism in HIV: Association with Neuropsychiatric Symptoms

    PubMed Central

    Gostner, Johanna M.; Becker, Kathrin; Kurz, Katharina; Fuchs, Dietmar

    2015-01-01

    Blood levels of the amino acid phenylalanine, as well as of the tryptophan breakdown product kynurenine, are found to be elevated in human immunodeficiency virus type 1 (HIV-1)-infected patients. Both essential amino acids, tryptophan and phenylalanine, are important precursor molecules for neurotransmitter biosynthesis. Thus, dysregulated amino acid metabolism may be related to disease-associated neuropsychiatric symptoms, such as development of depression, fatigue, and cognitive impairment. Increased phenylalanine/tyrosine and kynurenine/tryptophan ratios are associated with immune activation in patients with HIV-1 infection and decrease upon effective antiretroviral therapy. Recent large-scale metabolic studies have confirmed the crucial involvement of tryptophan and phenylalanine metabolism in HIV-associated disease. Herein, we summarize the current status of the role of tryptophan and phenylalanine metabolism in HIV disease and discuss how inflammatory stress-associated dysregulation of amino acid metabolism may be part of the pathophysiology of common HIV-associated neuropsychiatric conditions. PMID:26236243

  18. Arachidonic acid metabolism in endotoxin tolerance.

    PubMed

    Wise, W C; Cook, J A; Halushka, P V

    1983-01-01

    The arachidonic acid metabolites thromboxane A2, a potent platelet aggregator, and prostacyclin, a potent vasodilator, are released early in endotoxin shock and may contribute to its pathologic sequelae. Plasma levels of thromboxane (Tx) A2 and prostacyclin were measured via radioimmunoassay of their stable metabolites immunoreactive (i) TxB2 and i6-keto-PGF1 alpha in tolerant and nontolerant rats after endotoxin. Long-Evans rats were made tolerant to endotoxin by four daily IV injections of S enteritidis (endotoxin) (0.1, 0.5, 1, and 5 mg/kg). In normal rats (N = 15) given LPS (IV, 15 mg/kg), only 11% survived at 24 h; in contrast, tolerant rats (N = 13) all survived even at a dose of 50 mg/kg. At 1 h, after endotoxin (15 mg/kg) IV, plasma i6-keto-PGF1 alpha in nontolerant rats was 1,005 +/- 149 pg/ml (N = 14) and continued to rise to 4,209 +/- 757 pg/ml (N = 5) (P less than 0.001) after 4 h. In tolerant rats, given endotoxin (15 mg/kg), plasma i6-keto-PGF1 alpha at 1 h was 800 +/- 203 pg/ml (N = 5) and was not significantly different (734 +/- 254 pg/ml) at 4 h. Plasma iTxB2 at both 1 and 4 h was significantly (P less than 0.01) lower in tolerant than nontolerant rats. Both iTxB2 and i6-keto-PGF1 alpha were significantly (P less than 0.01) lower in tolerant rats given 50 mg/kg IV endotoxin than nontolerant rats. Endotoxin-induced elevation in fibrin degradation products was significantly decreased (P less than 0.05) during endotoxin tolerance although there was no difference in the severity of thrombocytopenia. These composite observations demonstrate that endotoxin tolerance in the rat is associated with altered arachidonic acid metabolism. PMID:6410699

  19. Ecophysiology of Crassulacean Acid Metabolism (CAM)

    PubMed Central

    LÜTTGE, ULRICH

    2004-01-01

    • Background and Scope Crassulacean Acid Metabolism (CAM) as an ecophysiological modification of photosynthetic carbon acquisition has been reviewed extensively before. Cell biology, enzymology and the flow of carbon along various pathways and through various cellular compartments have been well documented and discussed. The present attempt at reviewing CAM once again tries to use a different approach, considering a wide range of inputs, receivers and outputs. • Input Input is given by a network of environmental parameters. Six major ones, CO2, H2O, light, temperature, nutrients and salinity, are considered in detail, which allows discussion of the effects of these factors, and combinations thereof, at the individual plant level (‘physiological aut‐ecology’). • Receivers Receivers of the environmental cues are the plant types genotypes and phenotypes, the latter including morphotypes and physiotypes. CAM genotypes largely remain ‘black boxes’, and research endeavours of genomics, producing mutants and following molecular phylogeny, are just beginning. There is no special development of CAM morphotypes except for a strong tendency for leaf or stem succulence with large cells with big vacuoles and often, but not always, special water storage tissues. Various CAM physiotypes with differing degrees of CAM expression are well characterized. • Output Output is the shaping of habitats, ecosystems and communities by CAM. A number of systems are briefly surveyed, namely aquatic systems, deserts, salinas, savannas, restingas, various types of forests, inselbergs and paramós. • Conclusions While quantitative census data for CAM diversity and biomass are largely missing, intuition suggests that the larger CAM domains are those systems which are governed by a network of interacting stress factors requiring versatile responses and not systems where a single stress factor strongly prevails. CAM is noted to be a strategy for variable, flexible and plastic

  20. Effect of cholestyramine on bile acid metabolism in normal man

    PubMed Central

    Garbutt, J. T.; Kenney, T. J.

    1972-01-01

    The effect of cholestyramine administration on the enterohepatic circulation of bile acids was studied in eight normal volunteers. In six subjects the metabolism of sodium taurocholate-14C was determined after its intravenous injection before and during the 6th wk of cholestyramine administration, 16 g/day. In two subjects, the metabolism of cholic acid-14C was observed before and during the 2nd wk of cholestyramine, 16 g/day. Bile acid sequestration resulted in a more rapid disappearance of the injected primary bile acid and its metabolic products. The composition of fasting bile acids was promptly altered by cholestyramine to predominantly glycine-conjugated trihydroxy bile acid. In four subjects, unconjugated bile acid-14C was administered during cholestyramine administration; the relative proportion of glycine-conjugated bile acid-14C before enterohepatic circulation was similar to the relative proportion of unlabeled glycine-conjugated bile acid present in duodenal contents after an overnight fast, indicating that a hepatic mechanism was responsible for the elevated ratios of glycine- to taurine-conjugated bile acid (G: T ratios) observed. The relative proportions of both dihydroxy bile acids, chenodeoxycholic and deoxycholic, were significantly reduced. Steatorrhea did not occur, and the total bile acid pool size determined after an overnight fast was unaltered by cholestyramine. These findings suggest that in normal man bile acid sequestered from the enterohepatic circulation by cholestyramine is replaced by an increase in hepatic synthesis primarily via the pathway leading to production of glycocholic acid. PMID:5080408

  1. The role of bile acids in metabolic regulation.

    PubMed

    Vítek, Libor; Haluzík, Martin

    2016-03-01

    Bile acids (BA), long believed to only have lipid-digestive functions, have emerged as novel metabolic modulators. They have important endocrine effects through multiple cytoplasmic as well as nuclear receptors in various organs and tissues. BA affect multiple functions to control energy homeostasis, as well as glucose and lipid metabolism, predominantly by activating the nuclear farnesoid X receptor and the cytoplasmic G protein-coupled BA receptor TGR5 in a variety of tissues. However, BA also are aimed at many other cellular targets in a wide array of organs and cell compartments. Their role in the pathogenesis of diabetes, obesity and other 'diseases of civilization' becomes even more clear. They also interact with the gut microbiome, with important clinical implications, further extending the complexity of their biological functions. Therefore, it is not surprising that BA metabolism is substantially modulated by bariatric surgery, a phenomenon contributing favorably to the therapeutic effects of these surgical procedures. Based on these data, several therapeutic approaches to ameliorate obesity and diabetes have been proposed to affect the cellular targets of BA. PMID:26733603

  2. Uric acid as a modulator of glucose and lipid metabolism.

    PubMed

    Lima, William Gustavo; Martins-Santos, Maria Emília Soares; Chaves, Valéria Ernestânia

    2015-09-01

    In humans, uric acid is the final oxidation product of purine catabolism. The serum uric acid level is based on the balance between the absorption, production and excretion of purine. Uric acid is similarly produced in the liver, adipose tissue and muscle and is primarily excreted through the urinary tract. Several factors, including a high-fructose diet and the use of xenobiotics and alcohol, contribute to hyperuricaemia. Hyperuricaemia belongs to a cluster of metabolic and haemodynamic abnormalities, called metabolic syndrome, characterised by abdominal obesity, glucose intolerance, insulin resistance, dyslipidaemia and hypertension. Hyperuricaemia reduction in the Pound mouse or fructose-fed rats, as well as hyperuricaemia induction by uricase inhibition in rodents and studies using cell culture have suggested that uric acid plays an important role in the development of metabolic syndrome. These studies have shown that high uric acid levels regulate the oxidative stress, inflammation and enzymes associated with glucose and lipid metabolism, suggesting a mechanism for the impairment of metabolic homeostasis. Humans lacking uricase, the enzyme responsible for uric acid degradation, are susceptible to these effects. In this review, we summarise the current knowledge of the effects of uric acid on the regulation of metabolism, primarily focusing on liver, adipose tissue and skeletal muscle. PMID:26133655

  3. Effect on morphology, oxidative stress and energy metabolism enzymes in the testes of mice after a 13-week oral administration of melamine and cyanuric acid combination.

    PubMed

    Lv, Yingjun; Liu, Zhijun; Tian, Yujie; Chen, Hongbo

    2013-03-01

    Cases of pet poisoning and infant renal calculus have attracted much attention to the toxicity of melamine and its derivatives, such as cyanuric acid. Although individually melamine and cyanuric acid have low toxicity, their simultaneous presence can cause severe damage. Little is known about their adverse effects on the reproductive system. In this study, mice were orally administrated 1, 5 or 25 mg/kg/d of both melamine and cyanuric acid for 13 weeks. Lethargy, rough hair, and reduction of food and water intake and of body and testis weight were found after exposure to the combination, and pathological changes were found in the morphology of the testes, such as disruption of the seminiferous tubule structure, decrease of the spermatogenic cell series and coagulation necrosis. Total antioxidant capacity and superoxide dismutase activities and glutathione concentration was lower and malondialdehyde concentration was higher than in control mice. The activities of malate dehydrogenase, lactate dehydrogenase and Na(+)/K(+)-ATPase were also lower in combination treated mice than in control mice. These results indicate that the combined exposure to both melamine and cyanuric acid damaged testes in mice by either a direct or indirect effect, which may be related to renal failure and secondary anorexia. Oxidative stress and lower energy production levels both contributed to the testicular damage. PMID:23220542

  4. Amino Acid Flux from Metabolic Network Benefits Protein Translation: the Role of Resource Availability

    PubMed Central

    Hu, Xiao-Pan; Yang, Yi; Ma, Bin-Guang

    2015-01-01

    Protein translation is a central step in gene expression and affected by many factors such as codon usage bias, mRNA folding energy and tRNA abundance. Despite intensive previous studies, how metabolic amino acid supply correlates with protein translation efficiency remains unknown. In this work, we estimated the amino acid flux from metabolic network for each protein in Escherichia coli and Saccharomyces cerevisiae by using Flux Balance Analysis. Integrated with the mRNA expression level, protein abundance and ribosome profiling data, we provided a detailed description of the role of amino acid supply in protein translation. Our results showed that amino acid supply positively correlates with translation efficiency and ribosome density. Moreover, with the rank-based regression model, we found that metabolic amino acid supply facilitates ribosome utilization. Based on the fact that the ribosome density change of well-amino-acid-supplied genes is smaller than poorly-amino-acid-supply genes under amino acid starvation, we reached the conclusion that amino acid supply may buffer ribosome density change against amino acid starvation and benefit maintaining a relatively stable translation environment. Our work provided new insights into the connection between metabolic amino acid supply and protein translation process by revealing a new regulation strategy that is dependent on resource availability. PMID:26056817

  5. Amino acid composition and amino acid-metabolic network in supragingival plaque.

    PubMed

    Washio, Jumpei; Ogawa, Tamaki; Suzuki, Keisuke; Tsukiboshi, Yosuke; Watanabe, Motohiro; Takahashi, Nobuhiro

    2016-01-01

    Dental plaque metabolizes both carbohydrates and amino acids. The former can be degraded to acids mainly, while the latter can be degraded to various metabolites, including ammonia, acids and amines, and associated with acid-neutralization, oral malodor and tissue inflammation. However, amino acid metabolism in dental plaque is still unclear. This study aimed to elucidate what kinds of amino acids are available as metabolic substrates and how the amino acids are metabolized in supragingival plaque, by a metabolome analysis. Amino acids and the related metabolites in supragingival plaque were extracted and quantified comprehensively by CE-TOFMS. Plaque samples were also incubated with amino acids, and the amounts of ammonia and amino acid-related metabolites were measured. The concentration of glutamate was the highest in supragingival plaque, while the ammonia-production was the highest from glutamine. The obtained metabolome profile revealed that amino acids are degraded through various metabolic pathways, including deamination, decarboxylation and transamination and that these metabolic systems may link each other, as well as with carbohydrate metabolic pathways in dental plaque ecosystem. Moreover, glutamine and glutamate might be the main source of ammonia production, as well as arginine, and contribute to pH-homeostasis and counteraction to acid-induced demineralization in supragingival plaque. PMID:27545001

  6. CACODYLIC ACID (DMAV): METABOLISM AND CARCINOGENIC MODE OF ACTION

    EPA Science Inventory

    The cacodylic acid (DMAV) issue paper discusses the metabolism and pharmacokinetics of the various arsenical chemicals; evaluates the appropriate dataset to quantify the potential cancer risk to the organic arsenical herbicides; provides an evaluation of the mode of carcinogenic...

  7. Fatty acid metabolism: Implications for diet, genetic variation, and disease

    PubMed Central

    Suburu, Janel; Gu, Zhennan; Chen, Haiqin; Chen, Wei; Zhang, Hao; Chen, Yong Q.

    2014-01-01

    Cultures across the globe, especially Western societies, are burdened by chronic diseases such as obesity, metabolic syndrome, cardiovascular disease, and cancer. Several factors, including diet, genetics, and sedentary lifestyle, are suspected culprits to the development and progression of these health maladies. Fatty acids are primary constituents of cellular physiology. Humans can acquire fatty acids by de novo synthesis from carbohydrate or protein sources or by dietary consumption. Importantly, regulation of their metabolism is critical to sustain balanced homeostasis, and perturbations of such can lead to the development of disease. Here, we review de novo and dietary fatty acid metabolism and highlight recent advances in our understanding of the relationship between dietary influences and genetic variation in fatty acid metabolism and their role in chronic diseases. PMID:24511462

  8. [The physiology and pathology of bile acid metabolism].

    PubMed

    Coraggio, F; Farro, M; Spina, M

    1980-01-01

    The biochemistry and metabolism of bile acids are briefly described together with their importance in the maintenance of biliary homeostasis. An account is given os some situations in which such metabolism is impaired: in cirrhosis of the liver, an isotope technique was used to show a fall in cholic acid (expression of liver cell damage); in cholostasis, stress is laid on reduced bile acid synthesis and a simultaneous increase in sensitivity of the bile canicular epithelium to secretin stimulation. Lastly, evidence is produced to suggest that the diarrhoea which often recurs after extensive intestinal resection is secondary to an increase in intestinal AMPc cells induced by bile acids. PMID:6257207

  9. High Photosynthetic Capacity in a Shade-Tolerant Crassulacean Acid Metabolism Plant (Implications for Sunfleck Use, Nonphotochemical Energy Dissipation, and Susceptibility to Photoinhibition).

    PubMed Central

    Skillman, J. B.; Winter, K.

    1997-01-01

    Aechmea magdalenae Andre ex Baker, a constitutive Crassulacean acid metabolism (CAM) plant from the shaded Panamanian rain forest understory, has a maximum photosynthesis rate 2 to 3 times that of co-occurring C3 species and a limited potential for photosynthetic acclimation to high light. Chlorophyll fluorescence measurements indicated that (a) compared with co-occurring C3 species, photosynthetic electron transport in A. magdalenae responded more rapidly to light flecks of moderate intensity, attained a higher steady-state rate, and maintained a lower reduction state of plastoquinone during light flecks; (b) these characteristics were associated with phase III CO2 fixation of CAM; (c) when grown in full sun, A. magdalenae was chronically photoinhibited despite a remarkably high nonphotochemical quenching capacity, indicating a large potential for photoprotection; and (d) the degree of photoinhibition was inversely proportional to the length of phase III. Results from the light fleck studies suggest that understory A. magdalenae plants can make more efficient use of sun flecks for leaf carbon gain over most of the day than co-occurring C3 species. The association between the duration of phase III and the degree of photoinhibition for A. magdalenae in high light is discussed in relation to the limited photosynthetic plasticity in this species. PMID:12223618

  10. High Photosynthetic Capacity in a Shade-Tolerant Crassulacean Acid Metabolism Plant (Implications for Sunfleck Use, Nonphotochemical Energy Dissipation, and Susceptibility to Photoinhibition).

    PubMed

    Skillman, J. B.; Winter, K.

    1997-02-01

    Aechmea magdalenae Andre ex Baker, a constitutive Crassulacean acid metabolism (CAM) plant from the shaded Panamanian rain forest understory, has a maximum photosynthesis rate 2 to 3 times that of co-occurring C3 species and a limited potential for photosynthetic acclimation to high light. Chlorophyll fluorescence measurements indicated that (a) compared with co-occurring C3 species, photosynthetic electron transport in A. magdalenae responded more rapidly to light flecks of moderate intensity, attained a higher steady-state rate, and maintained a lower reduction state of plastoquinone during light flecks; (b) these characteristics were associated with phase III CO2 fixation of CAM; (c) when grown in full sun, A. magdalenae was chronically photoinhibited despite a remarkably high nonphotochemical quenching capacity, indicating a large potential for photoprotection; and (d) the degree of photoinhibition was inversely proportional to the length of phase III. Results from the light fleck studies suggest that understory A. magdalenae plants can make more efficient use of sun flecks for leaf carbon gain over most of the day than co-occurring C3 species. The association between the duration of phase III and the degree of photoinhibition for A. magdalenae in high light is discussed in relation to the limited photosynthetic plasticity in this species. PMID:12223618

  11. Mechanism of bile acid-regulated glucose and lipid metabolism in duodenal-jejunal bypass

    PubMed Central

    Chai, Jie; Zou, Lei; Li, Xirui; Han, Dali; Wang, Shan; Hu, Sanyuan; Guan, Jie

    2015-01-01

    Bile acid plays an important role in regulating blood glucose, lipid and energy metabolism. The present study was implemented to determine the effect of duodenal-jejunal bypass (DJB) on FXR, TGR-5expression in terminal ileum and its bile acid-related mechanism on glucose and lipid metabolism. Immunohistochemistry was used to detect relative gene or protein expression in liver and intestine. Firstly, we found that expression of FXR in liver and terminal ileum of DJB group was significantly higher than that in S-DJB group (P<0.05). In addition, DJB dramatically increased the activation of TGR-5 in the liver of rats. Furthermore, PEPCK, G6Pase, FBPase 1 and GLP-1 were up-regulated by DJB. In conclusion, these results showed that bile acid ameliorated glucose and lipid metabolism through bile acid-FXR and bile acid- TGR-5 signaling pathway. PMID:26884847

  12. Allophanate hydrolase, not urease, functions in bacterial cyanuric acid metabolism.

    PubMed

    Cheng, Gang; Shapir, Nir; Sadowsky, Michael J; Wackett, Lawrence P

    2005-08-01

    Growth substrates containing an s-triazine ring are typically metabolized by bacteria to liberate 3 mol of ammonia via the intermediate cyanuric acid. Over a 25-year period, a number of original research papers and reviews have stated that cyanuric acid is metabolized in two steps to the 2-nitrogen intermediate urea. In the present study, allophanate, not urea, was shown to be the 2-nitrogen intermediate in cyanuric acid metabolism in all the bacteria examined. Six different experimental results supported this conclusion: (i) synthetic allophanate was shown to readily decarboxylate to form urea under acidic extraction and chromatography conditions used in previous studies; (ii) alkaline extraction methods were used to stabilize and detect allophanate in bacteria actively metabolizing cyanuric acid; (iii) the kinetic course of allophanate formation and disappearance was consistent with its being an intermediate in cyanuric acid metabolism, and no urea was observed in those experiments; (iv) protein extracts from cells grown on cyanuric acid contained allophanate hydrolase activity; (v) genes encoding the enzymes AtzE and AtzF, which produce and hydrolyze allophanate, respectively, were found in several cyanuric acid-metabolizing bacteria; and (vi) TrzF, an AtzF homolog found in Enterobacter cloacae strain 99, was cloned, expressed in Escherichia coli, and shown to have allophanate hydrolase activity. In addition, we have observed that there are a large number of genes homologous to atzF and trzF distributed in phylogenetically distinct bacteria. In total, the data indicate that s-triazine metabolism in a broad class of bacteria proceeds through allophanate via allophanate hydrolase, rather than through urea using urease. PMID:16085834

  13. Decreased consumption of branched chain amino acids improves metabolic health

    PubMed Central

    Arriola Apelo, Sebastian I.; Neuman, Joshua C.; Kasza, Ildiko; Schmidt, Brian A.; Cava, Edda; Spelta, Francesco; Tosti, Valeria; Syed, Faizan A.; Baar, Emma L.; Veronese, Nicola; Cottrell, Sara E.; Fenske, Rachel J.; Bertozzi, Beatrice; Brar, Harpreet K.; Pietka, Terri; Bullock, Arnold D.; Figenshau, Robert S.; Andriole, Gerald L.; Merrins, Matthew J.; Alexander, Caroline M.; Kimple, Michelle E.; Lamming, Dudley W.

    2016-01-01

    Protein restricted, high carbohydrate diets improve metabolic health in rodents, yet the precise dietary components that are responsible for these effects have not been identified. Further, the applicability of these studies to humans is unclear. Here, we demonstrate in a randomized controlled trial that a moderately protein restricted (PR) diet also improves markers of metabolic health in humans. Intriguingly, we find that feeding mice a diet specifically reduced in branched chain amino acids (BCAAs) is sufficient to improve glucose tolerance and body composition equivalently to a PR diet, via metabolically distinct pathways. Our results highlight a critical role for dietary quality at the level of amino acids in the maintenance of metabolic health, and suggest that diets specifically reduced in BCAAs, or pharmacological interventions in this pathway, may offer a translatable way to achieve many of the metabolic benefits of a PR diet. PMID:27346343

  14. Natural toxins that affect plant amino acid metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A diverse range of natural compounds interfere with the synthesis and other aspects of amino acid metabolism. Some are amino acid analogues, but most are not. This review covers a number of specific natural phytotoxic compounds by molecular target site. Inhibition of glutamine synthetase is of part...

  15. Dissecting Leishmania infantum Energy Metabolism - A Systems Perspective

    PubMed Central

    Subramanian, Abhishek; Jhawar, Jitesh; Sarkar, Ram Rup

    2015-01-01

    Leishmania infantum, causative agent of visceral leishmaniasis in humans, illustrates a complex lifecycle pertaining to two extreme environments, namely, the gut of the sandfly vector and human macrophages. Leishmania is capable of dynamically adapting and tactically switching between these critically hostile situations. The possible metabolic routes ventured by the parasite to achieve this exceptional adaptation to its varying environments are still poorly understood. In this study, we present an extensively reconstructed energy metabolism network of Leishmania infantum as an attempt to identify certain strategic metabolic routes preferred by the parasite to optimize its survival in such dynamic environments. The reconstructed network consists of 142 genes encoding for enzymes performing 237 reactions distributed across five distinct model compartments. We annotated the subcellular locations of different enzymes and their reactions on the basis of strong literature evidence and sequence-based detection of cellular localization signal within a protein sequence. To explore the diverse features of parasite metabolism the metabolic network was implemented and analyzed as a constraint-based model. Using a systems-based approach, we also put forth an extensive set of lethal reaction knockouts; some of which were validated using published data on Leishmania species. Performing a robustness analysis, the model was rigorously validated and tested for the secretion of overflow metabolites specific to Leishmania under varying extracellular oxygen uptake rate. Further, the fate of important non-essential amino acids in L. infantum metabolism was investigated. Stage-specific scenarios of L. infantum energy metabolism were incorporated in the model and key metabolic differences were outlined. Analysis of the model revealed the essentiality of glucose uptake, succinate fermentation, glutamate biosynthesis and an active TCA cycle as driving forces for parasite energy metabolism

  16. Dissecting Leishmania infantum Energy Metabolism - A Systems Perspective.

    PubMed

    Subramanian, Abhishek; Jhawar, Jitesh; Sarkar, Ram Rup

    2015-01-01

    Leishmania infantum, causative agent of visceral leishmaniasis in humans, illustrates a complex lifecycle pertaining to two extreme environments, namely, the gut of the sandfly vector and human macrophages. Leishmania is capable of dynamically adapting and tactically switching between these critically hostile situations. The possible metabolic routes ventured by the parasite to achieve this exceptional adaptation to its varying environments are still poorly understood. In this study, we present an extensively reconstructed energy metabolism network of Leishmania infantum as an attempt to identify certain strategic metabolic routes preferred by the parasite to optimize its survival in such dynamic environments. The reconstructed network consists of 142 genes encoding for enzymes performing 237 reactions distributed across five distinct model compartments. We annotated the subcellular locations of different enzymes and their reactions on the basis of strong literature evidence and sequence-based detection of cellular localization signal within a protein sequence. To explore the diverse features of parasite metabolism the metabolic network was implemented and analyzed as a constraint-based model. Using a systems-based approach, we also put forth an extensive set of lethal reaction knockouts; some of which were validated using published data on Leishmania species. Performing a robustness analysis, the model was rigorously validated and tested for the secretion of overflow metabolites specific to Leishmania under varying extracellular oxygen uptake rate. Further, the fate of important non-essential amino acids in L. infantum metabolism was investigated. Stage-specific scenarios of L. infantum energy metabolism were incorporated in the model and key metabolic differences were outlined. Analysis of the model revealed the essentiality of glucose uptake, succinate fermentation, glutamate biosynthesis and an active TCA cycle as driving forces for parasite energy metabolism

  17. Targeting mitochondrial energy metabolism with TSPO ligands.

    PubMed

    Gut, Philipp

    2015-08-01

    The translocator protein (18 kDa) (TSPO) resides on the outer mitochondrial membrane where it is believed to participate in cholesterol transport and steroid hormone synthesis. Although it is almost ubiquitously expressed, what TSPO does in non-steroidogenic tissues is largely unexplored. Recent studies report changes in glucose homoeostasis and cellular energy production when TSPO function is modulated by selective ligands or by genetic loss-of-function. This review summarizes findings that connect TSPO function with the regulation of mitochondrial energy metabolism. The juxtaposition of TSPO at the cytosolic/mitochondrial interface and the existence of endogenous ligands that are regulated by metabolism suggest that TSPO functions to adapt mitochondrial to cellular metabolism. From a pharmacological perspective the specific up-regulation of TSPO in neuro-inflammatory and injury-induced conditions make TSPO an interesting, druggable target of mitochondrial metabolism. PMID:26551690

  18. Energy metabolism of hyperthyroid gilthead sea bream Sparus aurata L.

    PubMed

    Vargas-Chacoff, Luis; Ruiz-Jarabo, Ignacio; Arjona, Francisco J; Laiz-Carrión, Raúl; Flik, Gert; Klaren, Peter H M; Mancera, Juan M

    2016-01-01

    Thyroid hormones, in particular 3,5,3'-triiodothyronine or T3, are involved in multiple physiological processes in mammals such as protein, fat and carbohydrate metabolism. However, the metabolic actions of T3 in fish are still not fully elucidated. We therefore tested the effects of T3 on Sparus aurata energy metabolism and osmoregulatory system, a hyperthyroid-induced model that was chosen. Fish were implanted with coconut oil depots (containing 0, 2.5, 5.0 and 10.0μg T3/g body weight) and sampled at day 3 and 6 post-implantation. Plasma levels of free T3 as well as glucose, lactate and triglyceride values increased with increasing doses of T3 at days 3 and 6 post-implantation. Changes in plasma and organ metabolite levels (glucose, glycogen, triglycerides, lactate and total α amino acid) and enzyme activities related to carbohydrate, lactate, amino acid and lipid pathways were detected in organs involved in metabolism (liver) and osmoregulation (gills and kidney). Our data implicate that the liver uses amino acids as an energy source in response to the T3 treatment, increasing protein catabolism and gluconeogenic pathways. The gills, the most important extruder of ammonia, are fuelled not only by amino acids, but also by lactate. The kidney differs significantly in its substrate preference from the gills, as it obtained metabolic energy from lactate but also from lipid oxidation processes. We conclude that in S. aurata lipid catabolism and protein turnover are increased as a consequence of experimentally induced hyperthyroidism, with secondary osmoregulatory effects. PMID:26419695

  19. Energy Balance and Metabolism after Cancer Treatment

    PubMed Central

    Tonorezos, Emily S.; Jones, Lee W.

    2013-01-01

    Unfavorable physiological, biological, and behavioral alterations during and following treatment for cancer may lead to chronic energy imbalance predisposing to a myriad of deleterious health conditions including obesity, dyslipidemia, and the metabolic syndrome. In addition to the cardiovascular and musculoskeletal effects of these conditions, energy imbalance and metabolic changes after cancer treatment can also affect cancer-related morbidity and mortality. To this end, lifestyle interventions such as diet and physical activity are especially relevant to mitigate the deleterious impact of chronic energy imbalance in cancer survivors. PMID:24331194

  20. Quantitation of myocardial fatty acid metabolism using PET

    SciTech Connect

    Bergmann, S.R.; Weinheimer, C.J.; Markham, J.; Herrero, P.

    1996-10-01

    Abnormalities of fatty acid metabolism in the heart presage contractile dysfunction and arrhythmias. This study was performed to determine whether myocardial fatty acid metabolism could be quantified noninvasively using PET and 1-{sup 11}C-palmitate. Anesthetized dogs were studied during control conditions; during administration of dobutamine; after oxfenicine; and during infusion of glucose. Dynamic PET data after administration of 1-{sup 11}C-palmitate were fitted to a four-compartment mathematical model. Modeled rates of palmitate utilization correlated closely with directly measured myocardial palmitate and total long-chain fatty acid utilization (r = 0.93 and 0.96, respectively, p < 0.001 for each) over a wide range of arterial fatty acid levels and altered patterns of myocardial substrate use (fatty acid extraction fraction ranging from 1% to 56%, glucose extraction fraction from 1% to 16% and myocardial fatty acid utilization from 1 to 484 nmole/g/min). The percent of fatty acid undergoing oxidation could also be measured. The results demonstrate the ability to quantify myocardial fatty acid utilization with PET. The approach is readily applicable for the determination of fatty acid metabolism noninvasively in patients. 37 refs., 5 figs., 4 tabs.

  1. Energy metabolism of the visual system

    PubMed Central

    Wong-Riley, Margaret T.T.

    2012-01-01

    The visual system is one of the most energetically demanding systems in the brain. The currency of energy is ATP, which is generated most efficiently from oxidative metabolism in the mitochondria. ATP supports multiple neuronal functions. Foremost is repolarization of the membrane potential after depolarization. Neuronal activity, ATP generation, blood flow, oxygen consumption, glucose utilization, and mitochondrial oxidative metabolism are all interrelated. In the retina, phototransduction, neurotransmitter utilization, and protein/organelle transport are energy-dependent, yet repolarization-after-depolarization consumes the bulk of the energy. Repolarization in photoreceptor inner segments maintains the dark current. Repolarization by all neurons along the visual pathway following depolarizing excitatory glutamatergic neurotransmission preserves cellular integrity and permits reactivation. The higher metabolic activity in the magno- versus the parvo-cellular pathway, the ON- versus the OFF-pathway in some (and the reverse in other) species, and in specialized functional representations in the visual cortex all reflect a greater emphasis on the processing of specific visual attributes. Neuronal activity and energy metabolism are tightly coupled processes at the cellular and even at the molecular levels. Deficiencies in energy metabolism, such as in diabetes, mitochondrial DNA mutation, mitochondrial protein malfunction, and oxidative stress can lead to retinopathy, visual deficits, neuronal degeneration, and eventual blindness. PMID:23226947

  2. Reduction State of Q and Nonradiative Energy Dissipation during Photosynthesis in Leaves of a Crassulacean Acid Metabolism Plant, Kalanchoë daigremontiana Hamet et Perr.

    PubMed

    Winter, K; Demmig, B

    1987-12-01

    Fluorescence was measured in leaves of the CAM plant Kalanchoë daigremontiana using a pulse modulation technique at room temperature. During a 12-h light period at 500 micromole photons per square meter per second (400-700 nanometers) in air containing 350 microbar CO(2), the component of fluorescence quenching related to the reduction state of Q, the primary electron transport acceptor of PSII, remained fairly constant and showed that only 20% of Q were in the reduced form. The reduction state was slightly increased at the onset and at the end of the light period. By contrast, the nonphotochemical component of fluorescence quenching which is a measure of the fraction of nonradiative deexcitation underwent marked diurnal changes. Nonradiative energy conversion was low during the phase of most active malic acid decarboxylation in the middle of the light period when uptake of atmospheric CO(2) was negligible, and when internal CO(2) partial pressures were higher than in air; this allowed for high rates of CO(2) reduction in the chloroplasts. Nonradiative energy conversion was high during the early and the late light period when atmospheric CO(2) was taken up and internal CO(2) partial pressures were below air level. Manipulation of the internal CO(2) partial pressure during the late light period by increasing or decreasing the external CO(2) partial pressure to 1710 and 105 microbar, respectively, led to changes in the magnitude of energy dependent fluorescence quenching which were consistent with the relationship between nonradiative energy dissipation and internal CO(2) partial pressure observed during the diurnal cycle. Again, the reduction state of Q was hardly affected by these treatments. Thus, changes in electron transport rate during the diurnal CAM cycle at a given photon flux density lead primarily to alterations in the rate of nonradiative energy dissipation, with the reduction state of Q being maintained at a relatively low and constant level. Conditions

  3. IDH1 Mutations Alter Citric Acid Cycle Metabolism and Increase Dependence on Oxidative Mitochondrial Metabolism

    PubMed Central

    Grassian, Alexandra R.; Parker, Seth J.; Davidson, Shawn M.; Divakarun, Ajit S.; Green, Courtney R.; Zhang, Xiamei; Slocum, Kelly L.; Pu, Minying; Lin, Fallon; Vickers, Chad; Joud-Caldwell, Carol; Chung, Franklin; Yin, Hong; Handly, Erika D.; Straub, Christopher; Growney, Joseph D.; Vander Heiden, Matthew G.; Murphy, Anne N.; Pagliarini, Raymond; Metallo, Christian M.

    2016-01-01

    Oncogenic mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in several types of cancer, but the metabolic consequences of these genetic changes are not fully understood. In this study, we performed 13C metabolic flux analysis on a panel of isogenic cell lines containing heterozygous IDH1/2 mutations. We observed that under hypoxic conditions, IDH1-mutant cells exhibited increased oxidative tricarboxylic acid metabolism along with decreased reductive glutamine metabolism, but not IDH2-mutant cells. However, selective inhibition of mutant IDH1 enzyme function could not reverse the defect in reductive carboxylation activity. Furthermore, this metabolic reprogramming increased the sensitivity of IDH1-mutant cells to hypoxia or electron transport chain inhibition in vitro. Lastly, IDH1-mutant cells also grew poorly as subcutaneous xenografts within a hypoxic in vivo microenvironment. Together, our results suggest therapeutic opportunities to exploit the metabolic vulnerabilities specific to IDH1 mutation. PMID:24755473

  4. Biobased organic acids production by metabolically engineered microorganisms.

    PubMed

    Chen, Yun; Nielsen, Jens

    2016-02-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed. PMID:26748037

  5. Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2014-01-01

    Polyunsaturated fatty acids (PUFA) are oxidized by cytochrome P450 epoxygenases to PUFA epoxides which function as potent lipid mediators. The major metabolic pathways of PUFA epoxides are incorporation into phospholipids and hydrolysis to the corresponding PUFA diols by soluble epoxide hydrolase. Inhibitors of soluble epoxide hydrolase stabilize PUFA epoxides and potentiate their functional effects. The epoxyeicosatrienoic acids (EETs) synthesized from arachidonic acid produce vasodilation, stimulate angiogenesis, have anti-inflammatory actions, and protect the heart against ischemia-reperfusion injury. EETs produce these functional effects by activating receptor-mediated signaling pathways and ion channels. The epoxyeicosatetraenoic acids synthesized from eicosapentaenoic acid and epoxydocosapentaenoic acids synthesized from docosahexaenoic acid are potent inhibitors of cardiac arrhythmias. Epoxydocosapentaenoic acids also inhibit angiogenesis, decrease inflammatory and neuropathic pain, and reduce tumor metastasis. These findings indicate that a number of the beneficial functions of PUFA may be due to their conversion to PUFA epoxides. PMID:25093613

  6. Mitochondrial Energy Metabolism and Thyroid Cancers.

    PubMed

    Lee, Junguee; Chang, Joon Young; Kang, Yea Eun; Yi, Shinae; Lee, Min Hee; Joung, Kyong Hye; Kim, Kun Soon; Shong, Minho

    2015-06-01

    Primary thyroid cancers including papillary, follicular, poorly differentiated, and anaplastic carcinomas show substantial differences in biological and clinical behaviors. Even in the same pathological type, there is wide variability in the clinical course of disease progression. The molecular carcinogenesis of thyroid cancer has advanced tremendously in the last decade. However, specific inhibition of oncogenic pathways did not provide a significant survival benefit in advanced progressive thyroid cancer that is resistant to radioactive iodine therapy. Accumulating evidence clearly shows that cellular energy metabolism, which is controlled by oncogenes and other tumor-related factors, is a critical factor determining the clinical phenotypes of cancer. However, the role and nature of energy metabolism in thyroid cancer remain unclear. In this article, we discuss the role of cellular energy metabolism, particularly mitochondrial energy metabolism, in thyroid cancer. Determining the molecular nature of metabolic remodeling in thyroid cancer may provide new biomarkers and therapeutic targets that may be useful in the management of refractory thyroid cancers. PMID:26194071

  7. Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids.

    PubMed

    Ferrebee, Courtney B; Dawson, Paul A

    2015-03-01

    The classical functions of bile acids include acting as detergents to facilitate the digestion and absorption of nutrients in the gut. In addition, bile acids also act as signaling molecules to regulate glucose homeostasis, lipid metabolism and energy expenditure. The signaling potential of bile acids in compartments such as the systemic circulation is regulated in part by an efficient enterohepatic circulation that functions to conserve and channel the pool of bile acids within the intestinal and hepatobiliary compartments. Changes in hepatobiliary and intestinal bile acid transport can alter the composition, size, and distribution of the bile acid pool. These alterations in turn can have significant effects on bile acid signaling and their downstream metabolic targets. This review discusses recent advances in our understanding of the inter-relationship between the enterohepatic cycling of bile acids and the metabolic consequences of signaling via bile acid-activated receptors, such as farnesoid X nuclear receptor (FXR) and the G-protein-coupled bile acid receptor (TGR5). PMID:26579438

  8. Can valproic acid be an inducer of clozapine metabolism?

    PubMed Central

    Diaz, Francisco J.; Eap, Chin B.; Ansermot, Nicolas; Crettol, Severine; Spina, Edoardo; de Leon, Jose

    2014-01-01

    Introduction Prior clozapine studies indicated no effects, mild inhibition or induction of valproic acid (VPA) on clozapine metabolism. The hypotheses that 1) VPA is a net inducer of clozapine metabolism, and 2) smoking modifies this inductive effect were tested in a therapeutic drug monitoring study. Methods After excluding strong inhibitors and inducers, 353 steady-state total clozapine (clozapine plus norclozapine) concentrations provided by 151 patients were analyzed using a random intercept linear model. Results VPA appeared to be an inducer of clozapine metabolism since total plasma clozapine concentrations in subjects taking VPA were significantly lower (27% lower; 95% confidence interval, 14% to 39%) after controlling for confounding variables including smoking (35% lower, 28% to 56%). Discussion Prospective studies are needed to definitively establish that VPA may 1) be an inducer of clozapine metabolism when induction prevails over competitive inhibition, and 2) be an inducer even in smokers who are under the influence of smoking inductive effects on clozapine metabolism. PMID:24764199

  9. Fatty acid metabolism in the regulation of T cell function.

    PubMed

    Lochner, Matthias; Berod, Luciana; Sparwasser, Tim

    2015-02-01

    The specific regulation of cellular metabolic processes is of major importance for directing immune cell differentiation and function. We review recent evidence indicating that changes in basic cellular lipid metabolism have critical effects on T cell proliferation and cell fate decisions. While induction of de novo fatty acid (FA) synthesis is essential for activation-induced proliferation and differentiation of effector T cells, FA catabolism via β-oxidation is important for the development of CD8(+) T cell memory as well as for the differentiation of CD4(+) regulatory T cells. We consider the influence of lipid metabolism and metabolic intermediates on the regulation of signaling and transcriptional pathways via post-translational modifications, and discuss how an improved understanding of FA metabolism may reveal strategies for manipulating immune responses towards therapeutic outcomes. PMID:25592731

  10. Regulation of renal amino acid transporters during metabolic acidosis.

    PubMed

    Moret, Caroline; Dave, Mital H; Schulz, Nicole; Jiang, Jean X; Verrey, Francois; Wagner, Carsten A

    2007-02-01

    The kidney plays a major role in acid-base homeostasis by adapting the excretion of acid equivalents to dietary intake and metabolism. Urinary acid excretion is mediated by the secretion of protons and titratable acids, particularly ammonia. NH(3) is synthesized in proximal tubule cells from glutamine taken up via specific amino acid transporters. We tested whether kidney amino acid transporters are regulated in mice in which metabolic acidosis was induced with NH(4)Cl. Blood gas and urine analysis confirmed metabolic acidosis. Real-time RT-PCR was performed to quantify the mRNAs of 16 amino acid transporters. The mRNA of phosphoenolpyruvate carboxykinase (PEPCK) was quantified as positive control for the regulation and that of GAPDH, as internal standard. In acidosis, the mRNA of kidney system N amino acid transporter SNAT3 (SLC38A3/SN1) showed a strong induction similar to that of PEPCK, whereas all other tested mRNAs encoding glutamine or glutamate transporters were unchanged or reduced in abundance. At the protein level, Western blotting and immunohistochemistry demonstrated an increased abundance of SNAT3 and reduced expression of the basolateral cationic amino acid/neutral amino acid exchanger subunit y(+)-LAT1 (SLC7A7). SNAT3 was localized to the basolateral membrane of the late proximal tubule S3 segment in control animals, whereas its expression was extended to the earlier S2 segment of the proximal tubule during acidosis. Our results suggest that the selective regulation of SNAT3 and y(+)LAT1 expression may serve a major role in the renal adaptation to acid secretion and thus for systemic acid-base balance. PMID:17003226

  11. Metabolism of hydroxycinnamic acids and their tartaric acid esters by Brettanomyces and Pediococcus in red wines.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Caffeic, p-coumaric, and ferulic acids and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric, respectively) are found in wines in varying concentrations. While Brettanomyces and Pediococcus can utilize the free acids, it is not known whether they can metabolize the correspon...

  12. Bile acid metabolism and signaling in cholestasis, inflammation and cancer

    PubMed Central

    Apte, Udayan

    2015-01-01

    Bile acids are synthesized from cholesterol in the liver. Some cytochrome P450 (CYP) enzymes play key roles in bile acid synthesis. Bile acids are physiological detergent molecules, so are highly cytotoxic. They undergo enterohepatic circulation and play important roles in generating bile flow and facilitating biliary secretion of endogenous metabolites and xenobiotics and intestinal absorption of dietary fats and lipid soluble vitamins. Bile acid synthesis, transport and pool size are therefore tightly regulated under physiological conditions. In cholestasis, impaired bile flow leads to accumulation of bile acids in the liver, causing hepatocyte and biliary injury and inflammation. Chronic cholestasis is associated with fibrosis, cirrhosis and eventually liver failure. Chronic cholestasis also increases the risk of developing hepatocellular or cholangiocellular carcinomas. Extensive research in the last two decades has shown that bile acids act as signaling molecules that regulate various cellular processes. The bile acid-activated nuclear receptors are ligand-activated transcriptional factors that play critical roles in the regulation of bile acid, drug and xenobiotic metabolism. In cholestasis, these bile acid-activated receptors regulate a network of genes involved in bile acid synthesis, conjugation, transport and metabolism to alleviate bile acid-induced inflammation and injury. Additionally, bile acids are known to regulate cell growth and proliferation, and altered bile acid levels in diseased conditions have been implicated in liver injury/regeneration and tumorigenesis. We will cover the mechanisms that regulate bile acid homeostasis and detoxification during cholestasis, and the roles of bile acids in the initiation and regulation of hepatic inflammation, regeneration and carcinogenesis. PMID:26233910

  13. Bone Remodeling and Energy Metabolism: New Perspectives

    PubMed Central

    de Paula, Francisco J. A.; Rosen, Clifford J.

    2013-01-01

    Bone mineral, adipose tissue and energy metabolism are interconnected by a complex and multilevel series of networks. Calcium and phosphorus are utilized for insulin secretion and synthesis of high energy compounds. Adipose tissue store lipids and cholecalciferol, which, in turn, can influence calcium balance and energy expenditure. Hormones long-thought to solely modulate energy and mineral homeostasis may influence adipocytic function. Osteoblasts are a target of insulin action in bone. Moreover, endocrine mediators, such as osteocalcin, are synthesized in the skeleton but regulate carbohydrate disposal and insulin secretion. Finally, osteoblasts and adipocytes originate from the same mesenchymal progenitor. The mutual crosstalk between osteoblasts and adipocytes within the bone marrow microenvironment plays a crucial role in bone remodeling. In the present review we provide an overview of the reciprocal control between bone and energy metabolism and its clinical implications. PMID:26273493

  14. Sodium signaling and astrocyte energy metabolism.

    PubMed

    Chatton, Jean-Yves; Magistretti, Pierre J; Barros, L Felipe

    2016-10-01

    The Na(+) gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na(+) -dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na(+) load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na(+) extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na(+) following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na(+) as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na(+) and the metabolic machinery. GLIA 2016;64:1667-1676. PMID:27027636

  15. Metabolism of Ferulic Acid by Paecilomyces variotii and Pestalotia palmarum

    PubMed Central

    Rahouti, Mohammed; Seigle-Murandi, Françoise; Steiman, Régine; Eriksson, Karl-Erik

    1989-01-01

    Ferulic acid metabolism was studied in cultures of two micromycetes producing different amounts of phenol oxidases. In cultures of the low phenol oxidase producer Paecilomyces variotii, ferulic acid was decarboxylated to 4-vinylguaiacol, which was converted to vanillin and then either oxidized to vanillic acid or reduced to vanillyl alcohol. Vanillic acid underwent simultaneously an oxidative decarboxylation to methoxyhydroquinone and a nonoxidative decarboxylation to guaiacol. Methoxyhydroquinone and guaiacol were demethylated to yield hydroxyquinol and catechol, respectively. Catechol was hydroxylated to pyrogallol. Degradation of ferulic acid by Paecilomyces variotii proceeded mainly via methoxyhydroquinone. The high phenol oxidase producer Pestalotia palmarum catabolized ferulic acid via 4-vinylguaiacol, vanillin, vanillyl alcohol, vanillic acid, and methoxyhydroquinone. However, the main reactions observed with this fungus involved polymerization reactions. Images PMID:16348018

  16. Higher plant metabolism and energetics in hypogravity: Amino acid metabolism in higher plants

    NASA Technical Reports Server (NTRS)

    Mazelis, M.

    1976-01-01

    Laboratory's investigation into the amino acid metabolism of dwarf marigolds exposed to an environment of simulated hypogravity is summarized. Using both in vivo, and/or in vitro studies, the following effects of hypogravitational stress have been shown: (1) increased proline incorporation into cell wall protein, (2) inhibition of amino acid decarboxylation, (3) decrease in glutamic acid decarboxylase activity; and (4) decrease in the relative amount of a number of soluble amino acids present in deproteinized extracts of marigold leaves. It is concluded from these data there are several rapid, major alterations in amino acid metabolism associated with hypogravitational stress in marigolds. The mechanism(s) and generality of these effects with regard to other species is still unknown.

  17. Sialic acid metabolism and sialyltransferases: natural functions and applications

    PubMed Central

    Li, Yanhong

    2012-01-01

    Sialic acids are a family of negatively charged monosaccharides which are commonly presented as the terminal residues in glycans of the glycoconjugates on eukaryotic cell surface or as components of capsular polysaccharides or lipooligosaccharides of some pathogenic bacteria. Due to their important biological and pathological functions, the biosynthesis, activation, transfer, breaking down, and recycle of sialic acids are attracting increasing attention. The understanding of the sialic acid metabolism in eukaryotes and bacteria leads to the development of metabolic engineering approaches for elucidating the important functions of sialic acid in mammalian systems and for large-scale production of sialosides using engineered bacterial cells. As the key enzymes in biosynthesis of sialylated structures, sialyltransferases have been continuously identified from various sources and characterized. Protein crystal structures of seven sialyltransferases have been reported. Wild-type sialyltransferases and their mutants have been applied with or without other sialoside biosynthetic enzymes for producing complex sialic acid-containing oligosaccharides and glycoconjugates. This mini-review focuses on current understanding and applications of sialic acid metabolism and sialyltransferases. PMID:22526796

  18. EFFECTS OF PHOSGENE EXPOSURE ON LUNG ARACHIDONIC ACID METABOLISM

    EPA Science Inventory

    Phosgene is a pulmonary toxicant that can produce lung edema, bronchoconstriction, and immune suppression following an acute exposure. he response of the lung to phosgene inhalation may be mediated through alternations in the metabolism of arachidonic acid to the biologically pot...

  19. Role of Intestinal Microflora in the Metabolism of Guanidinosuccinic Acid

    PubMed Central

    Milstien, Sheldon; Goldman, Peter

    1973-01-01

    Among a variety of bacteria isolated from the gastrointestinal tracts of rats and humans, only streptococci of group N are capable of degrading guanidinosuccinic acid added to their culture medium. The urinary excretion of guanidinosuccinic acid by germfree rats is greater than that of conventional rats. The excretion of this compound by gnotobiotic rats correlates with the capacity of their intestinal microflora to degrade guanidinosuccinic acid in culture. Thus, guanidinosuccinic acid excretion is low in rats infected exclusively with Streptococcus faecalis, and the excretion is not altered when germfree rats are infected with an organism unable to degrade guanidinosuccinic acid (Lactobacillus). These findings suggest that the intestinal microflora, particularly Streptococcus, play a role in the metabolism of guanidinosuccinic acid by the host. PMID:4196249

  20. Role of mitochondrial transamination in branched chain amino acid metabolism

    SciTech Connect

    Hutson, S.M.; Fenstermacher, D.; Mahar, C.

    1988-03-15

    Oxidative decarboxylation and transamination of 1-/sup 14/C-branched chain amino and alpha-keto acids were examined in mitochondria isolated from rat heart. Transamination was inhibited by aminooxyacetate, but not by L-cycloserine. At equimolar concentrations of alpha-ketoiso(1-/sup 14/C)valerate (KIV) and isoleucine, transamination was increased by disrupting the mitochondria with detergent which suggests transport may be one factor affecting the rate of transamination. Next, the subcellular distribution of the aminotransferase(s) was determined. Branched chain aminotransferase activity was measured using two concentrations of isoleucine as amino donor and (1-/sup 14/C)KIV as amino acceptor. The data show that branched chain aminotransferase activity is located exclusively in the mitochondria in rat heart. Metabolism of extramitochondrial branched chain alpha-keto acids was examined using 20 microM (1-/sup 14/C)KIV and alpha-ketoiso(1-/sup 14/C)caproate (KIC). There was rapid uptake and oxidation of labeled branched chain alpha-keto acid, and, regardless of the experimental condition, greater than 90% of the labeled keto acid substrate was metabolized during the 20-min incubation. When a branched chain amino acid (200 microM) or glutamate (5 mM) was present, 30-40% of the labeled keto acid was transaminated while the remainder was oxidized. Provision of an alternate amino acceptor in the form of alpha-keto-glutarate (0.5 mM) decreased transamination of the labeled KIV or KIC and increased oxidation. Metabolism of intramitochondrially generated branched chain alpha-keto acids was studied using (1-/sup 14/C)leucine and (1-/sup 14/C)valine. Essentially all of the labeled branched chain alpha-keto acid produced by transamination of (1-/sup 14/C)leucine or (1-/sup 14/C)valine with a low concentration of unlabeled branched chain alpha-keto acid (20 microM) was oxidized.

  1. Intestinal amino acid metabolism in neonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The portal-drained viscera (stomach, intestine, pancreas, and spleen) have a much higher rate of both energy expenditure and protein synthesis than can be estimated on the basis of their weight. A high utilization rate of dietary nutrients by the portal-drained viscera might result in a low systemic...

  2. Leptin regulates energy metabolism in MCF-7 breast cancer cells.

    PubMed

    Blanquer-Rosselló, Maria del Mar; Oliver, Jordi; Sastre-Serra, Jorge; Valle, Adamo; Roca, Pilar

    2016-03-01

    Obesity is known to be a poorer prognosis factor for breast cancer in postmenopausal women. Among the diverse endocrine factors associated to obesity, leptin has received special attention since it promotes breast cancer cell growth and invasiveness, processes which force cells to adapt their metabolism to satisfy the increased demands of energy and biosynthetic intermediates. Taking this into account, our aim was to explore the effects of leptin in the metabolism of MCF-7 breast cancer cells. Polarographic analysis revealed that leptin increased oxygen consumption rate and cellular ATP levels were more dependent on mitochondrial oxidative metabolism in leptin-treated cells compared to the more glycolytic control cells. Experiments with selective inhibitors of glycolysis (2-DG), fatty acid oxidation (etomoxir) or aminoacid deprivation showed that ATP levels were more reliant on fatty acid oxidation. In agreement, levels of key proteins involved in lipid catabolism (FAT/CD36, CPT1, PPARα) and phosphorylation of the energy sensor AMPK were increased by leptin. Regarding glucose, cellular uptake was not affected by leptin, but lactate release was deeply repressed. Analysis of pyruvate dehydrogenase (PDH), lactate dehydrogenase (LDH) and pyruvate carboxylase (PC) together with the pentose-phosphate pathway enzyme glucose-6 phosphate dehydrogenase (G6PDH) revealed that leptin favors the use of glucose for biosynthesis. These results point towards a role of leptin in metabolic reprogramming, consisting of an enhanced use of glucose for biosynthesis and lipids for energy production. This metabolic adaptations induced by leptin may provide benefits for MCF-7 growth and give support to the reverse Warburg effect described in breast cancer. PMID:26772821

  3. [Energy metabolism and myocardial function in myocardiodystrophy].

    PubMed

    Temirova, K V; Kurlygina, L A; Zavodskaia, I S; Novikova, N A

    1976-09-01

    A total of 92 patients with chronic tonsilitis and cardiovascular changes were subjected to clinical observations, ECG analysis, potassium and nitroglycerine tests, and studies of the lactic acid level and creatinekinase activity as indces of myocardial metabolism. The examinations were conducted prior to and following tonsillectomy. In a majority of patients a correlation was revealed between the degree of ECG changes and the serum lactic acid level, as well as between the ECG improvement and a reduction of the lactic acid level following tonsillectomy. Three stages of tonsillogenic myocardiodystrophy were distinguished. The obtained data indicate the rationale of the used tests for the evaluation of the myocardial meabolism alterations and of the efficacy of treatment of chronic tonsillitis patients. PMID:1011536

  4. Recent Advances in Targeting Tumor Energy Metabolism with Tumor Acidosis as a Biomarker of Drug Efficacy

    PubMed Central

    Akhenblit, Paul J; Pagel, Mark D

    2016-01-01

    Cancer cells employ a deregulated cellular metabolism to leverage survival and growth advantages. The unique tumor energy metabolism presents itself as a promising target for chemotherapy. A pool of tumor energy metabolism targeting agents has been developed after several decades of efforts. This review will cover glucose and fatty acid metabolism, PI3K/AKT/mTOR, HIF-1 and glutamine pathways in tumor energy metabolism, and how they are being exploited for treatments and therapies by promising pre-clinical or clinical drugs being developed or investigated. Additionally, acidification of the tumor extracellular microenvironment is hypothesized to be the result of active tumor metabolism. This implies that tumor extracellular pH (pHe) can be a biomarker for assessing the efficacy of therapies that target tumor metabolism. Several translational molecular imaging methods (PET, MRI) for interrogating tumor acidification and its suppression are discussed as well. PMID:26962408

  5. Synergistic anticancer properties of docosahexaenoic acid and 5-fluorouracil through interference with energy metabolism and cell cycle arrest in human gastric cancer cell line AGS cells

    PubMed Central

    Gao, Kun; Liang, Qi; Zhao, Zhi-Hao; Li, You-Fen; Wang, Shu-Feng

    2016-01-01

    AIM: To explore the synergistic effect of docosahexaenoic acid (DHA)/5-fluorouracil (5-FU) on the human gastric cancer cell line AGS and examine the underlying mechanism. METHODS: AGS cells were cultured and treated with a series of concentrations of DHA and 5-FU alone or in combination for 24 and 48 h. To investigate the synergistic effect of DHA and 5-FU on AGS cells, the inhibition of cell proliferation was determined by MTT assay and cell morphology. Flow cytometric analysis was also used to assess cell cycle distribution, and the expression of mitochondrial electron transfer chain complexes (METCs) I, II and V in AGS cells was further determined by Western blot analysis. RESULTS: DHA and 5-FU alone or in combination could markedly suppress the proliferation of AGS cells in a significant time and dose-dependent manner. DHA markedly strengthened the antiproliferative effect of 5-FU, decreasing the IC50 by 3.56-2.15-fold in an apparent synergy. The morphological changes of the cells were characterized by shrinkage, cell membrane blebbing and decreased adherence. Cell cycle analysis showed a shift of cells into the G0/G1 phase from the S phase following treatment with DHA or 5-FU (G0/G1 phase: 30.04% ± 1.54% vs 49.05% ± 6.41% and 63.39% ± 6.83%, respectively, P < 0.05; S phase: 56.76% ± 3.14% vs 34.75% ± 2.35% and 25.63% ± 2.21%, respectively, P < 0.05). Combination treatment of DHA and 5-FU resulted in a significantly larger shift toward the G0/G1 phase and subsequent reduction in S phase (G0/G1 phase: 69.06% ± 2.63% vs 49.05% ± 6.41% and 63.39% ± 6.83%, respectively, P < 0.05; S phase: 19.80% ± 4.30% vs 34.75% ± 2.35% and 25.63% ± 2.21%, respectively, P < 0.05). This synergy was also reflected in the significant downregulation of the expression of METCs in AGS cells. CONCLUSION: Synergistic anticancer properties of DHA and 5-FU may involve interference with energy production of AGS cells via downregulation of METCs and cell cycle arrest. PMID

  6. Transport, metabolism, and effect of chronic feeding of lagodeoxycholic acid. A new, natural bile acid.

    PubMed

    Schmassmann, A; Angellotti, M A; Clerici, C; Hofmann, A F; Ton-Nu, H T; Schteingart, C D; Marcus, S N; Hagey, L R; Rossi, S S; Aigner, A

    1990-10-01

    Ursodeoxycholic acid, the 7 beta-hydroxy epimer of chenodeoxycholic acid, is more hydrophilic and less hepatotoxic than chenodeoxycholic acid. Because "lagodeoxycholic acid," the 12 beta-hydroxy epimer of deoxycholic acid, is also more hydrophilic than deoxycholic acid, it was hypothesized that it should also be less hepatotoxic than deoxycholic acid. To test this, lagodeoxycholic acid was synthesized, and its transport and metabolism were examined in the rat, rabbit, and hamster. The taurine conjugate of lagodeoxycholic acid was moderately well transported by the perfused rat ileum (Tmax = 2 mumol/min.kg). In rats and hamsters with biliary fistulas, the taurine conjugate of lagodeoxycholic acid was well transported by the liver with a Tmax greater than 20 mumol/min.kg; for the taurine conjugate of deoxycholic acid, doses infused at a rate greater than 2.5 mumol/min.kg are known to cause cholestasis and death. Hepatic biotransformation of lagodeoxycholic acid in the rabbit was limited to conjugation with glycine; in the hamster, lagodeoxycholic acid was conjugated with glycine or taurine; in addition, 7-hydroxylation occurred to a slight extent (approximately 10%). When lagodeoxycholic acid was instilled in the rabbit colon, it was absorbed as such although within hours it was progressively epimerized by bacteria to deoxycholic acid. When injected intravenously and allowed to circulate enterohepatically, lagodeoxycholic acid was largely epimerized to deoxycholic acid in 24 hours. Surgical creation of a distal ileostomy abolished epimerization in the rabbit, indicating that exposure to colonic bacterial enzymes was required for the epimerization. Lagodeoxycholic acid was administered for 3 weeks at a dose of 180 mumol/day (0.1% by weight of a chow diet; 2-4 times the endogenous bile acid synthesis rate); other groups received identical doses of deoxycholic acid (hamster) or cholyltaurine, a known precursor of deoxycholic acid (rabbit). After 3 weeks of

  7. Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions.

    PubMed

    Sheng, Jiayuan; Feng, Xueyang

    2015-01-01

    Fatty acid-derived biofuels can be a better solution than bioethanol to replace petroleum fuel, since they have similar energy content and combustion properties as current transportation fuels. The environmentally friendly microbial fermentation process has been used to synthesize advanced biofuels from renewable feedstock. Due to their robustness as well as the high tolerance to fermentation inhibitors and phage contamination, yeast strains such as Saccharomyces cerevisiae and Yarrowia lipolytica have attracted tremendous attention in recent studies regarding the production of fatty acid-derived biofuels, including fatty acids, fatty acid ethyl esters, fatty alcohols, and fatty alkanes. However, the native yeast strains cannot produce fatty acids and fatty acid-derived biofuels in large quantities. To this end, we have summarized recent publications in this review on metabolic engineering of yeast strains to improve the production of fatty acid-derived biofuels, identified the bottlenecks that limit the productivity of biofuels, and categorized the appropriate approaches to overcome these obstacles. PMID:26106371

  8. Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions

    PubMed Central

    Sheng, Jiayuan; Feng, Xueyang

    2015-01-01

    Fatty acid-derived biofuels can be a better solution than bioethanol to replace petroleum fuel, since they have similar energy content and combustion properties as current transportation fuels. The environmentally friendly microbial fermentation process has been used to synthesize advanced biofuels from renewable feedstock. Due to their robustness as well as the high tolerance to fermentation inhibitors and phage contamination, yeast strains such as Saccharomyces cerevisiae and Yarrowia lipolytica have attracted tremendous attention in recent studies regarding the production of fatty acid-derived biofuels, including fatty acids, fatty acid ethyl esters, fatty alcohols, and fatty alkanes. However, the native yeast strains cannot produce fatty acids and fatty acid-derived biofuels in large quantities. To this end, we have summarized recent publications in this review on metabolic engineering of yeast strains to improve the production of fatty acid-derived biofuels, identified the bottlenecks that limit the productivity of biofuels, and categorized the appropriate approaches to overcome these obstacles. PMID:26106371

  9. Metabolic evolution of Escherichia coli strains that produce organic acids

    DOEpatents

    Grabar, Tammy; Gong, Wei; Yocum, R Rogers

    2014-10-28

    This invention relates to the metabolic evolution of a microbial organism previously optimized for producing an organic acid in commercially significant quantities under fermentative conditions using a hexose sugar as sole source of carbon in a minimal mineral medium. As a result of this metabolic evolution, the microbial organism acquires the ability to use pentose sugars derived from cellulosic materials for its growth while retaining the original growth kinetics, the rate of organic acid production and the ability to use hexose sugars as a source of carbon. This invention also discloses the genetic change in the microorganism that confers the ability to use both the hexose and pentose sugars simultaneously in the production of commercially significant quantities of organic acids.

  10. Metabolism of lithocholic and chenodeoxycholic acids in the squirrel monkey

    SciTech Connect

    Suzuki, H.; Hamada, M.; Kato, F.

    1985-09-01

    Metabolism of lithocholic acid (LCA) and chenodeoxycholic acid (CDCA) was studied in the squirrel monkey to clarify the mechanism of the lack of toxicity of CDCA in this animal. Radioactive LCA was administered to squirrel monkeys with biliary fistula. Most radioactivity was excreted in the bile in the form of unsulfated lithocholyltaurine. The squirrel monkey thus differs from humans and chimpanzees, which efficiently sulfate LCA, and is similar to the rhesus monkey and baboon in that LCA is poorly sulfated. When labeled CDCA was orally administered to squirrel monkeys, less than 20% of the dosed radioactivity was recovered as LCA and its further metabolites in feces over 3 days, indicating that bacterial metabolism of CDCA into LCA is strikingly less than in other animals and in humans. It therefore appears that LCA, known as a hepatotoxic secondary bile acid, is not accumulated in the squirrel monkey, not because of its rapid turnover through sulfation, but because of the low order of its production.

  11. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders.

    PubMed

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response. PMID:27148161

  12. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders

    PubMed Central

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response. PMID:27148161

  13. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage.

    PubMed

    Bai, Cheng; Reilly, Charles C; Wood, Bruce W

    2006-02-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan. PMID:16415214

  14. Energy metabolism in neuroblastoma and Wilms tumor

    PubMed Central

    Aminzadeh, Sepideh; Vidali, Silvia; Sperl, Wolfgang; Feichtinger, René G.

    2015-01-01

    To support high proliferation, the majority of cancer cells undergo fundamental metabolic changes such as increasing their glucose uptake and shifting to glycolysis for ATP production at the expense of far more efficient mitochondrial energy production by oxidative phosphorylation (OXPHOS), which at first glance is a paradox. This phenomenon is known as the Warburg effect. However, enhanced glycolysis is necessary to provide building blocks for anabolic growth. Apart from the generation of ATP, intermediates of glycolysis serve as precursors for a variety of biosynthetic pathways essential for cell proliferation. In the last 10-15 years the field of tumor metabolism has experienced an enormous boom in interest. It is now well established that tumor suppressor genes and oncogenes often play a central role in the regulation of cellular metabolism. Therefore, they significantly contribute to the manifestation of the Warburg effect. While much attention has focused on adult solid tumors, so far there has been comparatively little effort directed at elucidation of the mechanism responsible for the Warburg effect in childhood cancers. In this review we focus on metabolic pathways in neuroblastoma (NB) and Wilms tumor (WT), the two most frequent solid tumors in children. Both tumor types show alterations of the OXPHOS system and glycolytic features. Chromosomal alterations and activation of oncogenes like MYC or inactivation of tumor suppressor genes like TP53 can in part explain the changes of energy metabolism in these cancers. The strict dependence of cancer cells on glucose metabolism is a fairly common feature among otherwise biologically diverse types of cancer. Therefore, inhibition of glycolysis or starvation of cancer cells through glucose deprivation via a high-fat low-carbohydrate diet may be a promising avenue for future adjuvant therapeutic strategies. PMID:26835356

  15. Myocardial Energy Substrate Metabolism in Heart Failure : from Pathways to Therapeutic Targets.

    PubMed

    Fukushima, Arata; Milner, Kenneth; Gupta, Abhishek; Lopaschuk, Gary D

    2015-01-01

    Despite recent advances in therapy, heart failure remains a major cause of mortality and morbidity and is a growing healthcare burden worldwide. Alterations in myocardial energy substrate metabolism are a hallmark of heart failure, and are associated with an energy deficit in the failing heart. Previous studies have shown that a metabolic shift from mitochondrial oxidative metabolism to glycolysis, as well as an uncoupling between glycolysis and glucose oxidation, plays a crucial role in the development of cardiac inefficiency and functional impairment in heart failure. Therefore, optimizing energy substrate utilization, particularly by increasing mitochondrial glucose oxidation, can be a potentially promising approach to decrease the severity of heart failure by improving mechanical cardiac efficiency. One approach to stimulating myocardial glucose oxidation is to inhibit fatty acid oxidation. This review will overview the physiological regulation of both myocardial fatty acid and glucose oxidation in the heart, and will discuss what alterations in myocardial energy substrate metabolism occur in the failing heart. Furthermore, lysine acetylation has been recently identified as a novel post-translational pathway by which mitochondrial enzymes involved in all aspects of cardiac energy metabolism can be regulated. Thus, we will also discuss the effect of acetylation of metabolic enzymes on myocardial energy substrate preference in the settings of heart failure. Finally, we will focus on pharmacological interventions that target enzymes involved in fatty acid uptake, fatty acid oxidation, transcriptional regulation of fatty acid oxidation, and glucose oxidation to treat heart failure. PMID:26166604

  16. Metabolism

    MedlinePlus

    ... digestive system called enzymes break proteins down into amino acids, fats into fatty acids, and carbohydrates into simple ... for example, glucose). In addition to sugar, both amino acids and fatty acids can be used as energy ...

  17. Metabolism

    MedlinePlus

    ... digestive system called enzymes break proteins down into amino acids, fats into fatty acids, and carbohydrates into simple ... e.g., glucose). In addition to sugar, both amino acids and fatty acids can be used as energy ...

  18. Taurocholic acid metabolism by gut microbes and colon cancer.

    PubMed

    Ridlon, Jason M; Wolf, Patricia G; Gaskins, H Rex

    2016-05-01

    Colorectal cancer (CRC) is one of the most frequent causes of cancer death worldwide and is associated with adoption of a diet high in animal protein and saturated fat. Saturated fat induces increased bile secretion into the intestine. Increased bile secretion selects for populations of gut microbes capable of altering the bile acid pool, generating tumor-promoting secondary bile acids such as deoxycholic acid and lithocholic acid. Epidemiological evidence suggests CRC is associated with increased levels of DCA in serum, bile, and stool. Mechanisms by which secondary bile acids promote CRC are explored. Furthermore, in humans bile acid conjugation can vary by diet. Vegetarian diets favor glycine conjugation while diets high in animal protein favor taurine conjugation. Metabolism of taurine conjugated bile acids by gut microbes generates hydrogen sulfide, a genotoxic compound. Thus, taurocholic acid has the potential to stimulate intestinal bacteria capable of converting taurine and cholic acid to hydrogen sulfide and deoxycholic acid, a genotoxin and tumor-promoter, respectively. PMID:27003186

  19. Metabolic engineering of Yarrowia lipolytica for itaconic acid production.

    PubMed

    Blazeck, John; Hill, Andrew; Jamoussi, Mariam; Pan, Anny; Miller, Jarrett; Alper, Hal S

    2015-11-01

    Itaconic acid is a naturally produced organic acid with diverse applications as a replacement for petroleum derived products. However, its industrial viability as a bio-replacement has been restricted due to limitations with native producers. In this light, Yarrowia lipolytica is an excellent potential candidate for itaconic acid production due to its innate capacity to accumulate citric acid cycle intermediates and tolerance to lower pH. Here, we demonstrate the capacity to produce itaconic acid in Y. lipolytica through heterologous expression of the itaconic acid synthesis enzyme, resulting in an initial titer of 33 mg/L. Further optimizations of this strain via metabolic pathway engineering, enzyme localization, and media optimization strategies enabled 4.6g/L of itaconic acid to be produced in bioreactors, representing a 140-fold improvement over initial titer. Moreover, these fermentation conditions did not require additional nutrient supplementation and utilized a low pH condition that enabled the acid form of itaconic acid to be produced. Overall yields (0.058 g/g yield from glucose) and maximum productivity of 0.045 g/L/h still provide areas for future strain improvement. Nevertheless, this work demonstrates that Y. lipolytica has the potential to serve as an industrially relevant platform for itaconic acid production. PMID:26384571

  20. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism

    PubMed Central

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-01-01

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism. PMID:26964832

  1. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism.

    PubMed

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-01-01

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism. PMID:26964832

  2. Fatty acid metabolism in pulmonary arterial hypertension: role in right ventricular dysfunction and hypertrophy

    PubMed Central

    2015-01-01

    Abstract Pulmonary arterial hypertension (PAH) is a complex, multifactorial disease in which an increase in pulmonary vascular resistance leads to increased afterload on the right ventricle (RV), causing right heart failure and death. Our understanding of the pathophysiology of RV dysfunction in PAH is limited but is constantly improving. Increasing evidence suggests that in PAH RV dysfunction is associated with various components of metabolic syndrome, such as insulin resistance, hyperglycemia, and dyslipidemia. The relationship between RV dysfunction and fatty acid/glucose metabolites is multifaceted, and in PAH it is characterized by a shift in utilization of energy sources toward increased glucose utilization and reduced fatty acid consumption. RV dysfunction may be caused by maladaptive fatty acid metabolism resulting from an increase in fatty acid uptake by fatty acid transporter molecule CD36 and an imbalance between glucose and fatty acid oxidation in mitochondria. This leads to lipid accumulation in the form of triglycerides, diacylglycerol, and ceramides in the cytoplasm, hallmarks of lipotoxicity. Current interventions in animal models focus on improving RV dysfunction through altering fatty acid oxidation rates and limiting lipid accumulation, but more specific and effective therapies may be available in the coming years based on current research. In conclusion, a deeper understanding of the complex mechanisms of the metabolic remodeling of the RV will aid in the development of targeted treatments for RV failure in PAH. PMID:26064451

  3. Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production.

    PubMed

    Blazeck, John; Miller, Jarrett; Pan, Anny; Gengler, Jon; Holden, Clinton; Jamoussi, Mariam; Alper, Hal S

    2014-10-01

    Renewable alternatives for petroleum-derived chemicals are achievable through biosynthetic production. Here, we utilize Saccharomyces cerevisiae to enable the synthesis of itaconic acid, a molecule with diverse applications as a petrochemical replacement. We first optimize pathway expression within S. cerevisiae through the use of a hybrid promoter. Next, we utilize sequential, in silico computational genome-scanning to identify beneficial genetic perturbations that are metabolically distant from the itaconic acid synthesis pathway. In this manner, we successfully identify three non-obvious genetic targets (∆ade3 ∆bna2 ∆tes1) that successively improve itaconic acid titer. We establish that focused manipulations of upstream pathway enzymes (localized refactoring) and enzyme re-localization to both mitochondria and cytosol fail to improve itaconic acid titers. Finally, we establish a higher cell density fermentation that ultimately achieves itaconic acid titer of 168 mg/L, a sevenfold improvement over initial conditions. This work represents an attempt to increase itaconic acid production in yeast and demonstrates the successful utilization of computationally guided genetic manipulation to increase metabolic capacity. PMID:24997118

  4. Energy Metabolism and Human Dosimetry of Tritium

    SciTech Connect

    Galeriu, D.; Takeda, H.; Melintescu, A.; Trivedi, A

    2005-07-15

    In the frame of current revision of human dosimetry of {sup 14}C and tritium, undertaken by the International Commission of Radiological Protection, we propose a novel approach based on energy metabolism and a simple biokinetic model for the dynamics of dietary intake (organic {sup 14}C, tritiated water and Organically Bound Tritium-OBT). The model predicts increased doses for HTO and OBT comparing to ICRP recommendations, supporting recent findings.

  5. Bile Acids, FXR, and Metabolic Effects of Bariatric Surgery

    PubMed Central

    Noel, Olivier F.; Still, Christopher D.; Argyropoulos, George; Edwards, Michael; Gerhard, Glenn S.

    2016-01-01

    Overweight and obesity represent major risk factors for diabetes and related metabolic diseases. Obesity is associated with a chronic and progressive inflammatory response leading to the development of insulin resistance and type 2 diabetes (T2D) mellitus, although the precise mechanism mediating this inflammatory process remains poorly understood. The most effective intervention for the treatment of obesity, bariatric surgery, leads to glucose normalization and remission of T2D. Recent work in both clinical studies and animal models supports bile acids (BAs) as key mediators of these effects. BAs are involved in lipid and glucose homeostasis primarily via the farnesoid X receptor (FXR) transcription factor. BAs are also involved in regulating genes involved in inflammation, obesity, and lipid metabolism. Here, we review the novel role of BAs in bariatric surgery and the intersection between BAs and immune, obesity, weight loss, and lipid metabolism genes. PMID:27006824

  6. Oleanolic acid and ursolic acid affect peptidoglycan metabolism in Listeria monocytogenes.

    PubMed

    Kurek, Anna; Grudniak, Anna M; Szwed, Magdalena; Klicka, Anna; Samluk, Lukasz; Wolska, Krystyna I; Janiszowska, Wirginia; Popowska, Magdalena

    2010-01-01

    The plant pentacyclic triterpenoids, oleanolic and ursolic acids, inhibit the growth and survival of many bacteria, particularly Gram-positive species, including pathogenic ones. The effect of these compounds on the facultative human pathogen Listeria monocytogenes was examined. Both acids affected cell morphology and enhanced autolysis of the bacterial cells. Autolysis of isolated cell walls was inhibited by oleanolic acid, but the inhibitory activity of ursolic acid was less pronounced. Both compounds inhibited peptidoglycan turnover and quantitatively affected the profile of muropeptides obtained after digestion of peptidoglycan with mutanolysin. These results suggest that peptidoglycan metabolism is a cellular target of oleanolic and ursolic acids. PMID:19894138

  7. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance.

    PubMed

    Meesapyodsuk, Dauenpen; Chen, Yan; Ng, Siew Hon; Chen, Jianan; Qiu, Xiao

    2015-11-01

    Ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) has many specialized uses in bioproduct industries, while castor bean is currently the only commercial source for the fatty acid. This report describes metabolic engineering of a microbial system (Pichia pastoris) to produce ricinoleic acid using a "push" (synthesis) and "pull" (assembly) strategy. CpFAH, a fatty acid hydroxylase from Claviceps purpurea, was used for synthesis of ricinoleic acid, and CpDGAT1, a diacylglycerol acyl transferase for the triacylglycerol synthesis from the same species, was used for assembly of the fatty acid. Coexpression of CpFAH and CpDGAT1 produced higher lipid contents and ricinoleic acid levels than expression of CpFAH alone. Coexpression in a mutant haploid strain defective in the Δ12 desaturase activity resulted in a higher level of ricinoleic acid than that in the diploid strain. Intriguingly, the ricinoleic acid produced was mainly distributed in the neutral lipid fractions, particularly the free fatty acid form, but with little in the polar lipids. This work demonstrates the effectiveness of the metabolic engineering strategy and excellent capacity of the microbial system for production of ricinoleic acid as an alternative to plant sources for industrial uses. PMID:26323290

  8. Phenoloxidase production and vanillic acid metabolism by Zygomycetes.

    PubMed

    Seigle-Murandi, F; Guiraud, P; Steiman, R; Benoit-Guyod, J L

    1992-04-01

    The ability of 23 strains of Zygomycetes to produce extracellular phenoloxidases was examined on solid media by using 10 different reagents. The results varied depending on the reagent and indicated that most of the strains were devoid of phenoloxidase activity. The production of inducible phenoloxidases was demonstrated by the Bavendamm reaction. The study of the biotransformation of vanillic acid in synthetic medium indicated that the reaction most often obtained was the reduction of vanillic acid to vanillyl alcohol. Helicostylum piriforme and Rhizopus microsporus var. chinensis completely metabolized vanillic acid while good transformation was obtained with Absidia spinosa, Cunninghamella bainieri, Mucor bacilliformis, Mucor plumbeus, Rhizopus arrhizus, Rhizopus stolonifer, Syncephalastrum racemosum and Zygorhynchus moelleri. Other strains did not degrade or poorly degraded vanillic acid. Decarboxylation and demethoxylation of this compound was independent of the production of phenoloxidases as in the case of white-rot fungi. Other enzymatic systems might be implicated in this phenomenon. PMID:1602986

  9. Effects of fructose on the energy metabolism and acid-base status of the perfused starved-rat liver. A 31phosphorus nuclear magnetic resonance study.

    PubMed Central

    Iles, R A; Griffiths, J R; Stevens, A N; Gadian, D G; Porteous, R

    1980-01-01

    Fructose metabolism has been studied with 31P n.m.r. in perfused livers from rats starved for 48h. The time course of changes in liver ATP, Pi and sugar phosphate (fructose l-phosphate) concentrations, and intracellular pH were followed in each perfusion after infusion of fructose to give an initial concentration of either 5mM or 10mM. Rapid falls in the concentrations of ATP and Pi and intracellular pH occurred after infusion of fructose, reaching a minimum after 4-5 min, which was lower in the 10mM group than in the 5mM group. These changes were accompanied by a rapid rise in fructose 1-phosphate, reaching a plateau also after 4-5 min. At both concentrations of fructose, after the early falls, some recovery of ATP, Pi and intracellular pH occurred; this was complete for Pi and intracellular pH in the 5mM-fructose experiments (within 12-30 min). Complete restoration of ATP to the pre-fructose value was not achieved in either the 5mM of 10mM groups. Measurements of the uptake of lactate by the liver indicated that the fall in intracellular pH was caused primarily by production of protons accompanying the formation of lactate from fructose with possibly a transient contribution generated during the rise in fructose 1-phosphate. PMID:7305897

  10. Mechanisms of triglyceride metabolism in patients with bile acid diarrhea.

    PubMed

    Sagar, Nidhi Midhu; McFarlane, Michael; Nwokolo, Chuka; Bardhan, Karna Dev; Arasaradnam, Ramesh Pulendran

    2016-08-14

    Bile acids (BAs) are essential for the absorption of lipids. BA synthesis is inhibited through intestinal farnesoid X receptor (FXR) activity. BA sequestration is known to influence BA metabolism and control serum lipid concentrations. Animal data has demonstrated a regulatory role for the FXR in triglyceride metabolism. FXR inhibits hepatic lipogenesis by inhibiting the expression of sterol regulatory element binding protein 1c via small heterodimer primer activity. Conversely, FXR promotes free fatty acids oxidation by inducing the expression of peroxisome proliferator-activated receptor α. FXR can reduce the expression of microsomal triglyceride transfer protein, which regulates the assembly of very low-density lipoproteins (VLDL). FXR activation in turn promotes the clearance of circulating triglycerides by inducing apolipoprotein C-II, very low-density lipoproteins receptor (VLDL-R) and the expression of Syndecan-1 together with the repression of apolipoprotein C-III, which increases lipoprotein lipase activity. There is currently minimal clinical data on triglyceride metabolism in patients with bile acid diarrhoea (BAD). Emerging data suggests that a third of patients with BAD have hypertriglyceridemia. Further research is required to establish the risk of hypertriglyceridaemia in patients with BAD and elicit the mechanisms behind this, allowing for targeted treatment. PMID:27570415

  11. Mechanisms of triglyceride metabolism in patients with bile acid diarrhea

    PubMed Central

    Sagar, Nidhi Midhu; McFarlane, Michael; Nwokolo, Chuka; Bardhan, Karna Dev; Arasaradnam, Ramesh Pulendran

    2016-01-01

    Bile acids (BAs) are essential for the absorption of lipids. BA synthesis is inhibited through intestinal farnesoid X receptor (FXR) activity. BA sequestration is known to influence BA metabolism and control serum lipid concentrations. Animal data has demonstrated a regulatory role for the FXR in triglyceride metabolism. FXR inhibits hepatic lipogenesis by inhibiting the expression of sterol regulatory element binding protein 1c via small heterodimer primer activity. Conversely, FXR promotes free fatty acids oxidation by inducing the expression of peroxisome proliferator-activated receptor α. FXR can reduce the expression of microsomal triglyceride transfer protein, which regulates the assembly of very low-density lipoproteins (VLDL). FXR activation in turn promotes the clearance of circulating triglycerides by inducing apolipoprotein C-II, very low-density lipoproteins receptor (VLDL-R) and the expression of Syndecan-1 together with the repression of apolipoprotein C-III, which increases lipoprotein lipase activity. There is currently minimal clinical data on triglyceride metabolism in patients with bile acid diarrhoea (BAD). Emerging data suggests that a third of patients with BAD have hypertriglyceridemia. Further research is required to establish the risk of hypertriglyceridaemia in patients with BAD and elicit the mechanisms behind this, allowing for targeted treatment. PMID:27570415

  12. Transport and metabolism of glycolic acid by Chlamydomonas reinhardtii

    SciTech Connect

    Wilson, B.J.

    1987-01-01

    In order to understand the excretion of glycolate from Chlamydomonas reinhardtii, the conditions affecting glycolate synthesis and metabolism were investigated. Although glycolate is synthesized only in the light, the metabolism occurs in the light and dark with greater metabolism in the light due to refixation of photorespiratory CO/sub 2/. The amount of internal glycolate will affect the metabolism of externally added glycolate. When glycolate synthesis exceeds the metabolic capacity, glycolate is excreted from the cell. The transport of glycolate into the cells occurs very rapidly. Equilibrium is achieved at 4/sup 0/C within the time cells are pelleted by the silicone oil centrifugation technique through a layer of (/sup 14/C) glycolate. Glycolate uptake does not show the same time, temperature and pH dependencies as diffusion of benzoate. Uptake can be inhibited by treatment of cells with N-ethylmaleimide and stimulated in the presence of valino-mycin/KCl. Acetate and lactate are taken up as quickly as glycolate. The hypothesis was made that glycolate is transported by a protein carrier that transports monocarboxylic acids. The equilibrium concentration of glycolate is dependent on the cell density, implying that there may be a large number of transporter sites and that uptake is limited by substrate availability.

  13. Ancestral genetic complexity of arachidonic acid metabolism in Metazoa.

    PubMed

    Yuan, Dongjuan; Zou, Qiuqiong; Yu, Ting; Song, Cuikai; Huang, Shengfeng; Chen, Shangwu; Ren, Zhenghua; Xu, Anlong

    2014-09-01

    Eicosanoids play an important role in inducing complex and crucial physiological processes in animals. Eicosanoid biosynthesis in animals is widely reported; however, eicosanoid production in invertebrate tissue is remarkably different to vertebrates and in certain respects remains elusive. We, for the first time, compared the orthologs involved in arachidonic acid (AA) metabolism in 14 species of invertebrates and 3 species of vertebrates. Based on parsimony, a complex AA-metabolic system may have existed in the common ancestor of the Metazoa, and then expanded and diversified through invertebrate lineages. A primary vertebrate-like AA-metabolic system via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) pathways was further identified in the basal chordate, amphioxus. The expression profiling of AA-metabolic enzymes and lipidomic analysis of eicosanoid production in the tissues of amphioxus supported our supposition. Thus, we proposed that the ancestral complexity of AA-metabolic network diversified with the different lineages of invertebrates, adapting with the diversity of body plans and ecological opportunity, and arriving at the vertebrate-like pattern in the basal chordate, amphioxus. PMID:24801744

  14. Light quality modulates metabolic synchronization over the diel phases of crassulacean acid metabolism

    PubMed Central

    Ceusters, Johan; Borland, Anne M.; Taybi, Tahar; Frans, Mario; Godts, Christof; De Proft, Maurice P.

    2014-01-01

    Temporal compartmentation of carboxylation processes is a defining feature of crassulacean acid metabolism and involves circadian control of key metabolic and transport steps that regulate the supply and demand for carbon over a 24h cycle. Recent insights on the molecular workings of the circadian clock and its connection with environmental inputs raise new questions on the importance of light quality and, by analogy, certain photoreceptors for synchronizing the metabolic components of CAM. The present work tested the hypothesis that optimal coupling of stomatal conductance, net CO2 uptake, and the reciprocal turnover of carbohydrates and organic acids over the diel CAM cycle requires both blue and red light input signals. Contrasting monochromatic wavelengths of blue, green, and red light (i.e. 475, 530, 630nm) with low fluence rates (10 μmol m–2 s–1) were administered for 16 hours each diel cycle for a total treatment time of 48 hours to the obligate CAM bromeliad, Aechmea ‘Maya’. Of the light treatments imposed, low-fluence blue light was a key determinant in regulating stomatal responses, organic acid mobilization from the vacuole, and daytime decarboxylation. However, the reciprocal relationship between starch and organic acid turnover that is typical for CAM was uncoupled under low-fluence blue light. Under low-fluence red or green light, the diel turnover of storage carbohydrates was orchestrated in line with the requirements of CAM, but a consistent delay in acid consumption at dawn compared with plants under white or low-fluence blue light was noted. Consistent with the acknowledged influences of both red and blue light as input signals for the circadian clock, the data stress the importance of both red and blue-light signalling pathways for synchronizing the metabolic and physiological components of CAM over the day/night cycle. PMID:24803500

  15. Light quality modulates metabolic synchronization over the diel phases of crassulacean acid metabolism.

    PubMed

    Ceusters, Johan; Borland, Anne M; Taybi, Tahar; Frans, Mario; Godts, Christof; De Proft, Maurice P

    2014-07-01

    Temporal compartmentation of carboxylation processes is a defining feature of crassulacean acid metabolism and involves circadian control of key metabolic and transport steps that regulate the supply and demand for carbon over a 24h cycle. Recent insights on the molecular workings of the circadian clock and its connection with environmental inputs raise new questions on the importance of light quality and, by analogy, certain photoreceptors for synchronizing the metabolic components of CAM. The present work tested the hypothesis that optimal coupling of stomatal conductance, net CO2 uptake, and the reciprocal turnover of carbohydrates and organic acids over the diel CAM cycle requires both blue and red light input signals. Contrasting monochromatic wavelengths of blue, green, and red light (i.e. 475, 530, 630nm) with low fluence rates (10 μmol m(-2) s(-1)) were administered for 16 hours each diel cycle for a total treatment time of 48 hours to the obligate CAM bromeliad, Aechmea 'Maya'. Of the light treatments imposed, low-fluence blue light was a key determinant in regulating stomatal responses, organic acid mobilization from the vacuole, and daytime decarboxylation. However, the reciprocal relationship between starch and organic acid turnover that is typical for CAM was uncoupled under low-fluence blue light. Under low-fluence red or green light, the diel turnover of storage carbohydrates was orchestrated in line with the requirements of CAM, but a consistent delay in acid consumption at dawn compared with plants under white or low-fluence blue light was noted. Consistent with the acknowledged influences of both red and blue light as input signals for the circadian clock, the data stress the importance of both red and blue-light signalling pathways for synchronizing the metabolic and physiological components of CAM over the day/night cycle. PMID:24803500

  16. Energy metabolic dysfunction as a carcinogenic factor in cancer cells.

    PubMed

    Sun, Yongyan; Shi, Zhenhua; Lian, Huiyong; Cai, Peng

    2016-12-01

    Cancer, as a leading cause of death, has attracted enormous public attention. Reprogramming of cellular energy metabolism is deemed to be one of the principal hallmarks of cancer. In this article, we reviewed the mutual relationships among environmental pollution factors, energy metabolic dysfunction, and various cancers. We found that most environmental pollution factors could induce cancers mainly by disturbing the energy metabolism. By triggering microenvironment alteration, energy metabolic dysfunction can be treated as a factor in carcinogenesis. Thus, we put forward that energy metabolism might be as a key point for studying carcinogenesis and tumor development to propose new methods for cancer prevention and therapy. PMID:27053249

  17. D-Amino acid metabolism in mammals: biosynthesis, degradation and analytical aspects of the metabolic study.

    PubMed

    Ohide, Hiroko; Miyoshi, Yurika; Maruyama, Rindo; Hamase, Kenji; Konno, Ryuichi

    2011-11-01

    It was believed for long time that d-amino acids are not present in mammals. However, current technological advances and improvements in analytical instruments have enabled studies that now indicate that significant amounts of D-amino acids are present in mammals. The most abundant D-amino acids are D-serine and D-aspartate. D-Serine, which is synthesized by serine racemase and is degraded by D-amino-acid oxidase, is present in the brain and modulates neurotransmission. D-Aspartate, which is synthesized by aspartate racemase and degraded by D-aspartate oxidase, is present in the neuroendocrine and endocrine tissues and testis. It regulates the synthesis and secretion of hormones and spermatogenesis. D-Serine and D-aspartate bind to the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors and function as a coagonist and agonist, respectively. The enzymes that are involved in the synthesis and degradation of these D-amino acids are associated with neural diseases where the NMDA receptors are involved. Knockout mice for serine racemase and D-aspartate oxidase have been generated, and natural mutations in the d-amino-acid oxidase gene are present in mice and rats. These mutant animals display altered behaviors caused by enhanced or decreased NMDA receptor activity. In this article, we review currently available studies on D-amino acid metabolism in mammals and discuss analytical methods used to assay activity of amino acid racemases and D-amino-acid oxidases. PMID:21757409

  18. Circulating follistatin in relation to energy metabolism.

    PubMed

    Hansen, Jakob Schiøler; Plomgaard, Peter

    2016-09-15

    Recently, substantial evidence has emerged that the liver contributes significantly to the circulating levels of follistatin and that circulating follistatin is tightly regulated by the glucagon-to-insulin ratio. Both observations are based on investigations of healthy subjects. These novel findings challenge the present view of circulating follistatin in human physiology, being that circulating follistatin is a result of spill-over from para/autocrine actions in various tissues and cells. Follistatin as a liver-derived protein under the regulation of glucagon-to-insulin ratio suggests a relation to energy metabolism. In this narrative review, we attempt to reconcile the existing findings on circulating follistatin with the novel concept that circulating follistatin is a liver-derived molecule regulated by the glucagon-to-insulin ratio. The picture emerging is that conditions associated with elevated levels of circulating follistatin have a metabolic denominator with decreased insulin sensitivity and/or hyperglucagoneimia. PMID:27264073

  19. Metabolic engineering of biocatalysts for carboxylic acids production

    PubMed Central

    Liu, Ping; Jarboe, Laura R.

    2012-01-01

    Fermentation of renewable feedstocks by microbes to produce sustainable fuels and chemicals has the potential to replace petrochemical-based production. For example, carboxylic acids produced by microbial fermentation can be used to generate primary building blocks of industrial chemicals by either enzymatic or chemical catalysis. In order to achieve the titer, yield and productivity values required for economically viable processes, the carboxylic acid-producing microbes need to be robust and well-performing. Traditional strain development methods based on mutagenesis have proven useful in the selection of desirable microbial behavior, such as robustness and carboxylic acid production. On the other hand, rationally-based metabolic engineering, like genetic manipulation for pathway design, has becoming increasingly important to this field and has been used for the production of several organic acids, such as succinic acid, malic acid and lactic acid. This review investigates recent works on Saccharomyces cerevisiae and Escherichia coli, as well as the strategies to improve tolerance towards these chemicals. PMID:24688671

  20. Radiometric measurement of differential metabolism of fatty acid by mycobacteria

    SciTech Connect

    Camargo, E.E.; Kertcher, J.A.; Larson, S.M.; Tepper, B.S.; Wagner, H.N. Jr.

    1982-06-01

    An assay system has been developed based on automated radiometric quantification of /sup 14/CO2 produced through oxidation of (1-/sup 14/C) fatty acids by mycobacteria. Two stains of M. tuberculosis (H37Rv and Erdman) and one of M. bovis (BCG) in 7H9 medium (ADC) with 1.0 microCi of one of the fatty acids (butyric, hexanoic, octanoic, decanoic, lauric, myristic, palmitic, stearic, oleic, linoleic and linolenic) were studied. Results previously published on M. lepraemurium (Hawaiian) were also included for comparison. Both strains of M. tuberculosis had maximum /sup 14/CO2 production from hexanoic acid. Oxidation of butyric and avid oxidation of lauric acids were also found with the H37Rv strain but not with Erdman. In contrast, /sup 14/CO2 production by M. bovis was greatest from lauric and somewhat less from decanoic acid. M. lepraemurium showed increasing oxidation rates from myristic, decanoic and lauric acids. Assimilation studies of M. tuberculosis H37Rv confirmed that most of the oxidized substrates were converted into by-products with no change in those from which no oxidation was found. These data suggest that the radiometric measurement of differential fatty acid metabolism may provide a basis of strain identification of the genus Mycobacterium.

  1. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control

    PubMed Central

    Xu, Peng; Li, Lingyun; Zhang, Fuming; Stephanopoulos, Gregory; Koffas, Mattheos

    2014-01-01

    Global energy demand and environmental concerns have stimulated increasing efforts to produce carbon-neutral fuels directly from renewable resources. Microbially derived aliphatic hydrocarbons, the petroleum-replica fuels, have emerged as promising alternatives to meet this goal. However, engineering metabolic pathways with high productivity and yield requires dynamic redistribution of cellular resources and optimal control of pathway expression. Here we report a genetically encoded metabolic switch that enables dynamic regulation of fatty acids (FA) biosynthesis in Escherichia coli. The engineered strains were able to dynamically compensate the critical enzymes involved in the supply and consumption of malonyl-CoA and efficiently redirect carbon flux toward FA biosynthesis. Implementation of this metabolic control resulted in an oscillatory malonyl-CoA pattern and a balanced metabolism between cell growth and product formation, yielding 15.7- and 2.1-fold improvement in FA titer compared with the wild-type strain and the strain carrying the uncontrolled metabolic pathway. This study provides a new paradigm in metabolic engineering to control and optimize metabolic pathways facilitating the high-yield production of other malonyl-CoA–derived compounds. PMID:25049420

  2. Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism[S

    PubMed Central

    Van Veldhoven, Paul P.

    2010-01-01

    In humans, peroxisomes harbor a complex set of enzymes acting on various lipophilic carboxylic acids, organized in two basic pathways, α-oxidation and β-oxidation; the latter pathway can also handle ω-oxidized compounds. Some oxidation products are crucial to human health (primary bile acids and polyunsaturated FAs), whereas other substrates have to be degraded in order to avoid neuropathology at a later age (very long-chain FAs and xenobiotic phytanic acid and pristanic acid). Whereas total absence of peroxisomes is lethal, single peroxisomal protein deficiencies can present with a mild or severe phenotype and are more informative to understand the pathogenic factors. The currently known single protein deficiencies equal about one-fourth of the number of proteins involved in peroxisomal FA metabolism. The biochemical properties of these proteins are highlighted, followed by an overview of the known diseases. PMID:20558530

  3. Branched-Chain Amino Acid Metabolism in Arabidopsis thaliana

    PubMed Central

    Binder, Stefan

    2010-01-01

    Valine, leucine and isoleucine form the small group of branched-chain amino acids (BCAAs) classified by their small branched hydrocarbon residues. Unlike animals, plants are able to de novo synthesize these amino acids from pyruvate, 2-oxobutanoate and acetyl-CoA. In plants, biosynthesis follows the typical reaction pathways established for the formation of these amino acids in microorganisms. Val and Ile are synthesized in two parallel pathways using a single set of enzymes. The pathway to Leu branches of from the final intermediate of Val biosynthesis. The formation of this amino acid requires a three-step pathway generating a 2-oxoacid elongated by a methylene group. In Arabidopsis thaliana and other Brassicaceae, a homologous three-step pathway is also involved in Met chain elongation required for the biosynthesis of aliphatic glucosinolates, an important class of specialized metabolites in Brassicaceae. This is a prime example for the evolutionary relationship of pathways from primary and specialized metabolism. Similar to animals, plants also have the ability to degrade BCAAs. The importance of BCAA turnover has long been unclear, but now it seems apparent that the breakdown process might by relevant under certain environmental conditions. In this review, I summarize the current knowledge about BCAA metabolism, its regulation and its particular features in Arabidopsis thaliana. PMID:22303262

  4. Using a Genome-Scale Metabolic Model of Enterococcus faecalis V583 To Assess Amino Acid Uptake and Its Impact on Central Metabolism

    PubMed Central

    Solheim, Margrete; van Grinsven, Koen W. A.; Olivier, Brett G.; Levering, Jennifer; Grosseholz, Ruth; Hugenholtz, Jeroen; Holo, Helge; Nes, Ingolf; Teusink, Bas; Kummer, Ursula

    2014-01-01

    Increasing antibiotic resistance in pathogenic bacteria necessitates the development of new medication strategies. Interfering with the metabolic network of the pathogen can provide novel drug targets but simultaneously requires a deeper and more detailed organism-specific understanding of the metabolism, which is often surprisingly sparse. In light of this, we reconstructed a genome-scale metabolic model of the pathogen Enterococcus faecalis V583. The manually curated metabolic network comprises 642 metabolites and 706 reactions. We experimentally determined metabolic profiles of E. faecalis grown in chemically defined medium in an anaerobic chemostat setup at different dilution rates and calculated the net uptake and product fluxes to constrain the model. We computed growth-associated energy and maintenance parameters and studied flux distributions through the metabolic network. Amino acid auxotrophies were identified experimentally for model validation and revealed seven essential amino acids. In addition, the important metabolic hub of glutamine/glutamate was altered by constructing a glutamine synthetase knockout mutant. The metabolic profile showed a slight shift in the fermentation pattern toward ethanol production and increased uptake rates of multiple amino acids, especially l-glutamine and l-glutamate. The model was used to understand the altered flux distributions in the mutant and provided an explanation for the experimentally observed redirection of the metabolic flux. We further highlighted the importance of gene-regulatory effects on the redirection of the metabolic fluxes upon perturbation. The genome-scale metabolic model presented here includes gene-protein-reaction associations, allowing a further use for biotechnological applications, for studying essential genes, proteins, or reactions, and the search for novel drug targets. PMID:25527553

  5. Adipose tissue n-3 fatty acids and metabolic syndrome

    PubMed Central

    Cespedes, Elizabeth; Baylin, Ana; Campos, Hannia

    2014-01-01

    Background Evidence regarding the relationship of n-3 fatty acids (FA) to type 2 diabetes (T2D) and metabolic syndrome components (MetS) is inconsistent. Objective To examine associations of adipose tissue n-3 FA with MetS. Design We studied 1611 participants without prior history of diabetes or heart disease who were participants in a population-based case-control study of diet and heart disease (The Costa Rica Heart Study). We calculated prevalence ratios (PR) and 95% confidence intervals (CI) for MetS by quartile of n-3 FA in adipose tissue derived mainly from plants [α-Linolenic acid (ALA)], fish [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)], or metabolism [docosapentaenoic acid (DPA), as well as the EPA:ALA ratio, a surrogate marker of delta-6 desaturase activity]. Results N-3 FA levels in adipose tissue were associated with MetS prevalence in opposite directions. The PR (95% CI) for the highest compared to the lowest quartile adjusted for age, sex, BMI, residence, lifestyle, diet and other fatty acids were 0.60 (0.44, 0.81) for ALA, 1.43 (1.12, 1.82) for EPA, 1.63 (1.22, 2.18) for DPA, and 1.47 (1.14, 1.88) for EPA:ALA, all p for trend <0.05. Although these associations were no longer significant (except DPA) after adjustment for BMI, ALA and DPA were associated with lower glucose and higher triglyceride levels, p<0.05 (respectively). Conclusions These results suggest that ALA could exert a modest protective benefit, while EPA and DHA are not implicated in MetS. The positive associations for DPA and MetS could reflect higher delta-6 desaturase activity caused by increased adiposity. PMID:25097001

  6. Influence of Carotino oil on in vitro rumen fermentation, metabolism and apparent biohydrogenation of fatty acids.

    PubMed

    Adeyemi, Kazeem Dauda; Ebrahimi, Mahdi; Samsudin, Anjas Asmara; Alimon, Abd Razak; Karim, Roselina; Karsani, Saiful Anuar; Sazili, Awis Qurni

    2015-03-01

    The study appraised the effects of Carotino oil on in vitro rumen fermentation, gas production, metabolism and apparent biohydrogenation of oleic, linoleic and linolenic acids. Carotino oil was added to a basal diet (50% concentrate and 50% oil palm frond) at the rate of 0, 2, 4, 6 and 8% dry matter of the diet. Rumen inoculum was obtained from three fistulated Boer bucks and incubated with 200 mg of each treatment for 24 h at 39°C. Gas production, fermentation kinetics, in vitro organic matter digestibility (IVOMD), volatile fatty acids (VFA), in vitro dry matter digestibility (IVDMD), metabolizable energy and free fatty acids were determined. Carotino oil did not affect (P > 0.05) gas production, metabolizable energy, pH, IVOMD, IVDMD, methane, total and individual VFAs. However, Carotino oil decreased (P < 0.05) the biohydrogenation of linoleic and linolenic acids but enhanced (P < 0.05) the biohydrogenation of oleic acid. After 24 h incubation, the concentrations of stearic, palmitic, pentadecanoic, myristic, myristoleic and lauric acids decreased (P < 0.05) while the concentration of linolenic, linoleic, oleic and transvaccenic acids and conjugated linoleic acid (CLAc9t11) increased (P < 0.05) with increasing levels of Carotino oil. Carotino oil seems to enhance the accumulation of beneficial unsaturated fatty acids without disrupting rumen fermentation. PMID:25377536

  7. [Modifications in myocardial energy metabolism in diabetic patients

    NASA Technical Reports Server (NTRS)

    Grynberg, A.

    2001-01-01

    The capacity of cardiac myocyte to regulate ATP production to face any change in energy demand is a major determinant of cardiac function. Because FA is the main heart fuel (although the most expensive one in oxygen, and prompt to induce deleterious effects), this process is based on a balanced fatty acid (FA) metabolism. Several pathological situations are associated with an accumulation of FA or derivatives, or with an excessive b-oxidation. The diabetic cardiomyocyte is characterised by an over consumption of FA. The control of the FA/glucose balance clearly appears as a new strategy for cytoprotection, particularly in diabetes and requires a reduced FA contribution to ATP production. Cardiac myocytes can control FA mitochondrial entry, but display weak ability to control FA uptake, thus the fate of non beta-oxidized FA appear as a new impairment for the cell. Both the trigger and the regulation of cardiac contraction result from membrane activity, and the other major FA function in the myocardium is their role in membrane homeostasis, through the phospholipid synthesis and remodeling pathways. Sudden death, hypercatecholaminemia, diabetes and heart failure have been associated with an altered PUFA content in cardiac membranes. Experimental data suggest that the 2 metabolic pathways involved in membrane homeostasis may represent therapeutic targets for cytoprotection. The drugs that increase cardiac phospholipid turnover (trimetazidine, ranolazine,...) display anti-ischemic non hemodynamic effect. This effect is based on a redirection of FA utilization towards phospholipid synthesis, which decrease their availability for energy production. A nutritional approach gave also promising results. Besides its anti-arrhythmic effect, the dietary docosahexaenoic acid is able to reduce FA energy consumption and hence oxygen demand. The cardiac metabolic pathways involving FA should be considered as a whole, precariously balanced. The diabetic heart being characterised by

  8. In vitro metabolism and metabolic effects of ajulemic acid, a synthetic cannabinoid agonist.

    PubMed

    Burstein, Sumner H; Tepper, Mark A

    2013-12-01

    Ajulemic acid is a synthetic analog of Δ(8)-THC-11-oic acid, the terminal metabolite of Δ(8)-THC. Unlike Δ(9)-THC, the psychoactive principle of Cannabis, it shows potent anti-inflammatory action and has minimal CNS cannabimimetic activity. Its in vitro metabolism by hepatocytes from rats, dogs, cynomolgus monkeys and humans was studied and the results are reported here. Five metabolites, M1 to M5, were observed in human hepatocyte incubations. One metabolite, M5, a glucuronide, was observed in the chromatogram of canine hepatocyte incubations. In monkey hepatocyte incubations, M5 was observed in the chromatograms of both the 120 and 240 min samples, trace metabolite M1 (side-chain hydroxyl) was observed in the 120 min samples, and trace metabolite M4 (side-chain dehydrogenation) was observed in the 240 min samples. No metabolites were found in the rat hepatocyte incubations. Unchanged amounts of ajulemic acid detected after the 2-h incubation were 103%, 90%, 86%, and 83% for rat, dog, monkey, and human hepatocytes, respectively. Additional studies were done to ascertain if ajulemic acid can inhibit the activities of five principal human cytochrome P450 isozymes; CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4/5. In contrast to the phytocannabinoids Δ(9)-THC and CBD, no significant inhibition of cytochrome activity was observed. These data further support the conclusions reached in earlier reports on ajulemic acid's high margin of safety and suggest that it undergoes minimal metabolism and is not likely to interfere with the normal metabolism of drugs or endogenous substances. PMID:25505570

  9. In vitro metabolism and metabolic effects of ajulemic acid, a synthetic cannabinoid agonist

    PubMed Central

    Burstein, Sumner H; Tepper, Mark A

    2013-01-01

    Ajulemic acid is a synthetic analog of Δ8-THC-11-oic acid, the terminal metabolite of Δ8-THC. Unlike Δ9-THC, the psychoactive principle of Cannabis, it shows potent anti-inflammatory action and has minimal CNS cannabimimetic activity. Its in vitro metabolism by hepatocytes from rats, dogs, cynomolgus monkeys and humans was studied and the results are reported here. Five metabolites, M1 to M5, were observed in human hepatocyte incubations. One metabolite, M5, a glucuronide, was observed in the chromatogram of canine hepatocyte incubations. In monkey hepatocyte incubations, M5 was observed in the chromatograms of both the 120 and 240 min samples, trace metabolite M1 (side-chain hydroxyl) was observed in the 120 min samples, and trace metabolite M4 (side-chain dehydrogenation) was observed in the 240 min samples. No metabolites were found in the rat hepatocyte incubations. Unchanged amounts of ajulemic acid detected after the 2-h incubation were 103%, 90%, 86%, and 83% for rat, dog, monkey, and human hepatocytes, respectively. Additional studies were done to ascertain if ajulemic acid can inhibit the activities of five principal human cytochrome P450 isozymes; CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4/5. In contrast to the phytocannabinoids Δ9-THC and CBD, no significant inhibition of cytochrome activity was observed. These data further support the conclusions reached in earlier reports on ajulemic acid's high margin of safety and suggest that it undergoes minimal metabolism and is not likely to interfere with the normal metabolism of drugs or endogenous substances. PMID:25505570

  10. Metabolic modeling of fumaric acid production by Rhizopus arrhizus

    SciTech Connect

    Gangl, I.C.; Weigand, W.W.; Keller, F.A.

    1991-12-31

    A metabolic model is developed for fumaric acid production by Rhizopus arrhizus. The model describes the reaction network and the extents of reaction in terms of the concentrations of the measurable species. The proposed pathway consists of the Embden-Meyerhof pathway and two pathways to FA production, both of which require CO{sub 2} fixation (the forward and the reverse TCA cycles). Relationships among the measurable quantities, in addition to those obtainable by a macroscopic mass balance, are found by invoking a pseudo-steady-state assumption on the nonaccumulating species in the pathway. Applications of the metabolic model, such as verifying the proposed pathway, obtaining the theoretical yield and selectivity, and detecting experimental errors, are discussed.

  11. Distinct Effects of Sorbic Acid and Acetic Acid on the Electrophysiology and Metabolism of Bacillus subtilis

    PubMed Central

    van Beilen, J. W. A.; Teixeira de Mattos, M. J.; Hellingwerf, K. J.

    2014-01-01

    Sorbic acid and acetic acid are among the weak organic acid preservatives most commonly used to improve the microbiological stability of foods. They have similar pKa values, but sorbic acid is a far more potent preservative. Weak organic acids are most effective at low pH. Under these circumstances, they are assumed to diffuse across the membrane as neutral undissociated acids. We show here that the level of initial intracellular acidification depends on the concentration of undissociated acid and less on the nature of the acid. Recovery of the internal pH depends on the presence of an energy source, but acidification of the cytosol causes a decrease in glucose flux. Furthermore, sorbic acid is a more potent uncoupler of the membrane potential than acetic acid. Together these effects may also slow the rate of ATP synthesis significantly and may thus (partially) explain sorbic acid's effectiveness. PMID:25038097

  12. Presystemic metabolism and intestinal absorption of antipsoriatic fumaric acid esters.

    PubMed

    Werdenberg, D; Joshi, R; Wolffram, S; Merkle, H P; Langguth, P

    2003-09-01

    Psoriasis is a chronic inflammatory skin disease. Its treatment is based on the inhibition of proliferation of epidermal cells and interference in the inflammatory process. A new systemic antipsoriasis drug, which consists of dimethylfumarate and ethylhydrogenfumarate in the form of their calcium, magnesium and zinc salts has been introduced in Europe with successful results. In the present study, a homologous series of mono- and diesters of fumaric acid has been studied with respect to the sites and kinetics of presystemic ester degradation using pancreas extract, intestinal perfusate, intestinal homogenate and liver S9 fraction. In addition, intestinal permeability has been determined using isolated intestinal mucosa as well as Caco-2 cell monolayers, in order to obtain estimates of the fraction of the dose absorbed for these compounds. Relationships between the physicochemical properties of the fumaric acid esters and their biological responses were investigated. The uncharged diester dimethylfumarate displayed a high presystemic metabolic lability in all metabolism models. It also showed the highest permeability in the Caco-2 cell model. However, in permeation experiments with intestinal mucosa in Ussing-type chambers, no undegraded DMF was found on the receiver side, indicating complete metabolism in the intestinal tissue. The intestinal permeability of the monoesters methyl hydrogen fumarate, ethyl hydrogen fumarate, n-propylhydrogen fumarate and n-pentyl hydrogen fumarate increased with an increase in their lipophilicity, however, their presystemic metabolism rates likewise increased with increasing ester chain length. It is concluded that for fumarates, an increase in intestinal permeability of the more lipophilic derivatives is counterbalanced by an increase in first-pass extraction. PMID:12973823

  13. Effect of dietary fatty acids on metabolic rate and nonshivering thermogenesis in golden hamsters.

    PubMed

    Jefimow, Małgorzata; Wojciechowski, Michał S

    2014-02-01

    Hibernating rodents prior to winter tend to select food rich in polyunsaturated fatty acids (PUFA). Several studies found that such diet may positively affect their winter energy budget by enhancing torpor episodes. However, the effect of composition of dietary fatty acids (FA) on metabolism of normothermic heterotherms is poorly understood. Thus we tested whether diets different in FA composition affect metabolic rate (MR) and the capacity for nonshivering thermogenesis (NST) in normothermic golden hamsters (Mesocricetus auratus). Animals were housed in outdoor enclosures from May 2010 to April 2011 and fed a diet enriched with PUFA (i.e., standard food supplemented weekly with sunflower and flax seeds) or with saturated and monounsaturated fatty acids (SFA/MUFA, standard food supplemented with mealworms). Since diet rich in PUFA results in lower MR in hibernating animals, we predicted that PUFA-rich diet would have similar effect on MR of normothermic hamsters, that is, normothermic hamsters on the PUFA diet would have lower metabolic rate in cold and higher NST capacity than hamsters supplemented with SFA/MUFA. Indeed, in winter resting metabolic rate (RMR) below the lower critical temperature was higher and NST capacity was lower in SFA/MUFA-supplemented animals than in PUFA-supplemented ones. These results suggest that the increased capacity for NST in PUFA-supplemented hamsters enables them lower RMR below the lower critical temperature of the thermoneural zone. PMID:24151228

  14. Exploring De Novo metabolic pathways from pyruvate to propionic acid.

    PubMed

    Stine, Andrew; Zhang, Miaomin; Ro, Soo; Clendennen, Stephanie; Shelton, Michael C; Tyo, Keith E J; Broadbelt, Linda J

    2016-03-01

    Industrial biotechnology provides an efficient, sustainable solution for chemical production. However, designing biochemical pathways based solely on known reactions does not exploit its full potential. Enzymes are known to accept non-native substrates, which may allow novel, advantageous reactions. We have previously developed a computational program named Biological Network Integrated Computational Explorer (BNICE) to predict promiscuous enzyme activities and design synthetic pathways, using generalized reaction rules curated from biochemical reaction databases. Here, we use BNICE to design pathways synthesizing propionic acid from pyruvate. The currently known natural pathways produce undesirable by-products lactic acid and succinic acid, reducing their economic viability. BNICE predicted seven pathways containing four reaction steps or less, five of which avoid these by-products. Among the 16 biochemical reactions comprising these pathways, 44% were validated by literature references. More than 28% of these known reactions were not in the BNICE training dataset, showing that BNICE was able to predict novel enzyme substrates. Most of the pathways included the intermediate acrylic acid. As acrylic acid bioproduction has been well advanced, we focused on the critical step of reducing acrylic acid to propionic acid. We experimentally validated that Oye2p from Saccharomyces cerevisiae can catalyze this reaction at a slow turnover rate (10(-3) s(-1) ), which was unknown to occur with this enzyme, and is an important finding for further propionic acid metabolic engineering. These results validate BNICE as a pathway-searching tool that can predict previously unknown promiscuous enzyme activities and show that computational methods can elucidate novel biochemical pathways for industrial applications. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:303-311, 2016. PMID:26821575

  15. Polyphosphate - an ancient energy source and active metabolic regulator

    PubMed Central

    2011-01-01

    There are a several molecules on Earth that effectively store energy within their covalent bonds, and one of these energy-rich molecules is polyphosphate. In microbial cells, polyphosphate granules are synthesised for both energy and phosphate storage and are degraded to produce nucleotide triphosphate or phosphate. Energy released from these energetic carriers is used by the cell for production of all vital molecules such as amino acids, nucleobases, sugars and lipids. Polyphosphate chains directly regulate some processes in the cell and are used as phosphate donors in gene regulation. These two processes, energetic metabolism and regulation, are orchestrated by polyphosphate kinases. Polyphosphate kinases (PPKs) can currently be categorized into three groups (PPK1, PPK2 and PPK3) according their functionality; they can also be divided into three groups according their homology (EcPPK1, PaPPK2 and ScVTC). This review discusses historical information, similarities and differences, biochemical characteristics, roles in stress response regulation and possible applications in the biotechnology industry of these enzymes. At the end of the review, a hypothesis is discussed in view of synthetic biology applications that states polyphosphate and calcium-rich organelles have endosymbiotic origins from ancient protocells that metabolized polyphosphate. PMID:21816086

  16. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies. PMID:25902192

  17. Stearoyl-CoA Desaturase-1: Is It the Link between Sulfur Amino Acids and Lipid Metabolism?

    PubMed Central

    Poloni, Soraia; Blom, Henk J.; Schwartz, Ida V. D.

    2015-01-01

    An association between sulfur amino acids (methionine, cysteine, homocysteine and taurine) and lipid metabolism has been described in several experimental and population-based studies. Changes in the metabolism of these amino acids influence serum lipoprotein concentrations, although the underlying mechanisms are still poorly understood. However, recent evidence has suggested that the enzyme stearoyl-CoA desaturase-1 (SCD-1) may be the link between these two metabolic pathways. SCD-1 is a key enzyme for the synthesis of monounsaturated fatty acids. Its main substrates C16:0 and C18:0 and products palmitoleic acid (C16:1) and oleic acid (C18:1) are the most abundant fatty acids in triglycerides, cholesterol esters and membrane phospholipids. A significant suppression of SCD-1 has been observed in several animal models with disrupted sulfur amino acid metabolism, and the activity of SCD-1 is also associated with the levels of these amino acids in humans. This enzyme also appears to be involved in the etiology of metabolic syndromes because its suppression results in decreased fat deposits (regardless of food intake), improved insulin sensitivity and higher basal energy expenditure. Interestingly, this anti-obesogenic phenotype has also been described in humans and animals with sulfur amino acid disorders, which is consistent with the hypothesis that SCD-1 activity is influenced by these amino acids, in particularly cysteine, which is a strong and independent predictor of SCD-1 activity and fat storage. In this narrative review, we discuss the evidence linking sulfur amino acids, SCD-1 and lipid metabolism. PMID:26046927

  18. Bile Acid-Activated Receptors, Intestinal Microbiota, and the Treatment of Metabolic Disorders.

    PubMed

    Fiorucci, Stefano; Distrutti, Eleonora

    2015-11-01

    The composition of the bile acid pool is a function of the microbial metabolism of bile acids in the intestine. Perturbations of the microbiota shape the bile acid pool and modulate the activity of bile acid-activated receptors (BARs) even beyond the gastrointestinal tract, triggering various metabolic axes and altering host metabolism. Bile acids, in turn, can also regulate the composition of the gut microbiome at the highest taxonomic levels. Primary bile acids from the host are preferential ligands for the farnesoid X receptor (FXR), while secondary bile acids from the microbiota are ligands for G-protein-coupled bile acid receptor 1 (GPBAR1). In this review, we examine the role of bile acid signaling in the regulation of intestinal microbiota and how changes in bile acid composition affect human metabolism. Bile acids may offer novel therapeutic modalities in inflammation, obesity, and diabetes. PMID:26481828

  19. Amino acid supplementation alters bone metabolism during simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Zwart, S. R.; Davis-Street, J. E.; Paddon-Jones, D.; Ferrando, A. A.; Wolfe, R. R.; Smith, S. M.

    2005-01-01

    High-protein and acidogenic diets induce hypercalciuria. Foods or supplements with excess sulfur-containing amino acids increase endogenous sulfuric acid production and therefore have the potential to increase calcium excretion and alter bone metabolism. In this study, effects of an amino acid/carbohydrate supplement on bone resorption were examined during bed rest. Thirteen subjects were divided at random into two groups: a control group (Con, n = 6) and an amino acid-supplemented group (AA, n = 7) who consumed an extra 49.5 g essential amino acids and 90 g carbohydrate per day for 28 days. Urine was collected for n-telopeptide (NTX), deoxypyridinoline (DPD), calcium, and pH determinations. Bone mineral content was determined and potential renal acid load was calculated. Bone-specific alkaline phosphatase was measured in serum samples collected on day 1 (immediately before bed rest) and on day 28. Potential renal acid load was higher in the AA group than in the Con group during bed rest (P < 0.05). For all subjects, during bed rest urinary NTX and DPD concentrations were greater than pre-bed rest levels (P < 0.05). Urinary NTX and DPD tended to be higher in the AA group (P = 0.073 and P = 0.056, respectively). During bed rest, urinary calcium was greater than baseline levels (P < 0.05) in the AA group but not the Con group. Total bone mineral content was lower after bed rest than before bed rest in the AA group but not the Con group (P < 0.05). During bed rest, urinary pH decreased (P < 0.05), and it was lower in the AA group than the Con group. These data suggest that bone resorption increased, without changes in bone formation, in the AA group.

  20. Metabolic interactions between vitamin A and conjugated linoleic acid.

    PubMed

    Carta, Gianfranca; Murru, Elisabetta; Cordeddu, Lina; Ortiz, Berenice; Giordano, Elena; Belury, Martha A; Quadro, Loredana; Banni, Sebastiano

    2014-01-01

    Lipid-soluble molecules share several aspects of their physiology due to their common adaptations to a hydrophilic environment, and may interact to regulate their action in a tissue-specific manner. Dietary conjugated linoleic acid (CLA) is a fatty acid with a conjugated diene structure that is found in low concentrations in ruminant products and available as a nutritional supplement. CLA has been shown to increase tissue levels of retinol (vitamin A alcohol) and its sole specific circulating carrier protein retinol-binding protein (RBP or RBP4). However, the precise mechanism of this action has not been elucidated yet. Here, we provide a summary of the current knowledge in this specific area of research and speculate that retinol and CLA may compete for catabolic pathways modulated by the activity of PPAR-α and RXR heterodimer. We also present preliminary data that may position PPAR-α at the crossroads between the metabolism of lipids and vitamin A. PMID:24667133

  1. Rh2E2, a novel metabolic suppressor, specifically inhibits energy-based metabolism of tumor cells

    PubMed Central

    Bai, Li-Ping; Jiang, Zhi-Hong; Guo, Yue; Kong, Ah-Ng Tony; Wang, Rui; Kam, Richard Kin Ting; Law, Betty Yuen Kwan; Hsiao, Wendy Wen Luen; Chan, Ka Man; Wang, Jingrong; Chan, Rick Wai Kit; Guo, Jianru; Zhang, Wei; Yen, Feng Gen; Zhou, Hua; Leung, Elaine Lai Han; Yu, Zhiling; Liu, Liang

    2016-01-01

    Energy metabolism in cancer cells is often increased to meet their higher proliferative rate and biosynthesis demands. Suppressing cancer cell metabolism using agents like metformin has become an attractive strategy for treating cancer patients. We showed that a novel ginsenoside derivative, Rh2E2, is as effective as aspirin in preventing the development of AOM/DSS-induced colorectal cancer and suppresses tumor growth and metastasis in a LLC-1 xenograft. A sub-chronic and acute toxicity LD50 test of Rh2E2 showed no harmful reactions at the maximum oral dosage of 5000 mg/kg body weight in mice. Proteomic profiling revealed that Rh2E2 specifically inhibited ATP production in cancer cells via down-regulation of metabolic enzymes involving glycolysis, fatty acid β-oxidation and the tricarboxylic acid cycle, leading to specific cytotoxicity and S-phase cell cycle arrest in cancer cells. Those findings suggest that Rh2E2 possesses a novel and safe anti-metabolic agent for cancer patients by specific reduction of energy-based metabolism in cancer cells. PMID:26799418

  2. Rh2E2, a novel metabolic suppressor, specifically inhibits energy-based metabolism of tumor cells.

    PubMed

    Wong, Vincent Kam Wai; Dong, Hang; Liang, Xu; Bai, Li-Ping; Jiang, Zhi-Hong; Guo, Yue; Kong, Ah Ng Tony; Wang, Rui; Kam, Richard Kin Ting; Law, Betty Yuen Kwan; Hsiao, Wendy Wen Luen; Chan, Ka Man; Wang, Jingrong; Chan, Rick Wai Kit; Guo, Jianru; Zhang, Wei; Yen, Feng Gen; Zhou, Hua; Leung, Elaine Lai Han; Yu, Zhiling; Liu, Liang

    2016-03-01

    Energy metabolism in cancer cells is often increased to meet their higher proliferative rate and biosynthesis demands. Suppressing cancer cell metabolism using agents like metformin has become an attractive strategy for treating cancer patients. We showed that a novel ginsenoside derivative, Rh2E2, is as effective as aspirin in preventing the development of AOM/DSS-induced colorectal cancer and suppresses tumor growth and metastasis in a LLC-1 xenograft. A sub-chronic and acute toxicity LD50 test of Rh2E2 showed no harmful reactions at the maximum oral dosage of 5000 mg/kg body weight in mice. Proteomic profiling revealed that Rh2E2 specifically inhibited ATP production in cancer cells via down-regulation of metabolic enzymes involving glycolysis, fatty acid β-oxidation and the tricarboxylic acid cycle, leading to specific cytotoxicity and S-phase cell cycle arrest in cancer cells. Those findings suggest that Rh2E2 possesses a novel and safe anti-metabolic agent for cancer patients by specific reduction of energy-based metabolism in cancer cells. PMID:26799418

  3. Protein Analysis of Sapienic Acid-Treated Porphyromonas gingivalis Suggests Differential Regulation of Multiple Metabolic Pathways

    PubMed Central

    Dawson, Deborah V.; Blanchette, Derek R.; Drake, David R.; Wertz, Philip W.; Brogden, Kim A.

    2015-01-01

    ABSTRACT Lipids endogenous to skin and mucosal surfaces exhibit potent antimicrobial activity against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Our previous work demonstrated the antimicrobial activity of the fatty acid sapienic acid (C16:1Δ6) against P. gingivalis and found that sapienic acid treatment alters both protein and lipid composition from those in controls. In this study, we further examined whole-cell protein differences between sapienic acid-treated bacteria and untreated controls, and we utilized open-source functional association and annotation programs to explore potential mechanisms for the antimicrobial activity of sapienic acid. Our analyses indicated that sapienic acid treatment induces a unique stress response in P. gingivalis resulting in differential expression of proteins involved in a variety of metabolic pathways. This network of differentially regulated proteins was enriched in protein-protein interactions (P = 2.98 × 10−8), including six KEGG pathways (P value ranges, 2.30 × 10−5 to 0.05) and four Gene Ontology (GO) molecular functions (P value ranges, 0.02 to 0.04), with multiple suggestive enriched relationships in KEGG pathways and GO molecular functions. Upregulated metabolic pathways suggest increases in energy production, lipid metabolism, iron acquisition and processing, and respiration. Combined with a suggested preferential metabolism of serine, which is necessary for fatty acid biosynthesis, these data support our previous findings that the site of sapienic acid antimicrobial activity is likely at the bacterial membrane. IMPORTANCE P. gingivalis is an important opportunistic pathogen implicated in periodontitis. Affecting nearly 50% of the population, periodontitis is treatable, but the resulting damage is irreversible and eventually progresses to tooth loss. There is a great need for natural products that can be used to treat and/or prevent the overgrowth of

  4. Energy metabolism and the high-altitude environment.

    PubMed

    Murray, Andrew J

    2016-01-01

    At high altitude the barometric pressure falls, challenging oxygen delivery to the tissues. Thus, whilst hypoxia is not the only physiological stress encountered at high altitude, low arterial P(O2) is a sustained feature, even after allowing adequate time for acclimatization. Cardiac and skeletal muscle energy metabolism is altered in subjects at, or returning from, high altitude. In the heart, energetic reserve falls, as indicated by lower phosphocreatine-to-ATP ratios. The underlying mechanism is unknown, but in the hypoxic rat heart fatty acid oxidation and respiratory capacity are decreased, whilst pyruvate oxidation is also lower after sustained hypoxic exposure. In skeletal muscle, there is not a consensus. With prolonged exposure to extreme high altitude (>5500 m) a loss of muscle mitochondrial density is seen, but this was not observed in a simulated ascent of Everest in hypobaric chambers. At more moderate high altitude, decreased respiratory capacity may occur without changes in mitochondrial volume density, and fat oxidation may be downregulated, although this is not seen in all studies. The underlying mechanisms, including the possible role of hypoxia-signalling pathways, remain to be resolved, particularly in light of confounding factors in the high-altitude environment. In high-altitude-adapted Tibetan natives, however, there is evidence of natural selection centred around the hypoxia-inducible factor pathway, and metabolic features in this population (e.g. low cardiac phosphocreatine-to-ATP ratios, increased cardiac glucose uptake and lower muscle mitochondrial densities) share similarities with those in acclimatized lowlanders, supporting a possible role for the hypoxia-inducible factor pathway in the metabolic response of cardiac and skeletal muscle energy metabolism to high altitude. PMID:26315373

  5. Metabolism of Flavone-8-acetic Acid in Mice.

    PubMed

    Pham, Minh Hien; Auzeil, Nicolas; Regazzetti, Anne; Scherman, Daniel; Seguin, Johanne; Mignet, Nathalie; Dauzonne, Daniel; Chabot, Guy G

    2016-08-01

    Flavone-8-acetic acid (FAA) is a potent antivascular agent in mice but not in humans. Assuming that FAA was bioactivated in mice, we previously demonstrated that 6-OH-FAA was formed from FAA by mouse microsomes but not by human microsomes; its antivascular activity was 2.1- to 15.9-fold stronger than that of FAA, and its antivascular activity was mediated through the Ras homolog gene family (Rho) protein kinase A (RhoA) pathway. The present work aimed to study FAA metabolism in order to verify if 6-OH-FAA is formed in mice. Using synthesized standards and high-performance liquid chromatography (HPLC) coupled with ultraviolet (UV) detection and mass spectrometry (MS) analysis, we herein demonstrated, for the first time, that in vitro FAA and its monohydroxylated derivatives could directly undergo phase II metabolism forming glucuronides, and two FAA epoxides were mostly scavenged by NAC and GSH forming corresponding adducts. FAA was metabolized in mice. Several metabolites were formed, in particular 6-OHFAA. The antitumor activity of 6-OH-FAA in vivo is worthy of investigation. PMID:27466491

  6. Effects of obeticholic acid on lipoprotein metabolism in healthy volunteers.

    PubMed

    Pencek, R; Marmon, T; Roth, J D; Liberman, A; Hooshmand-Rad, R; Young, M A

    2016-09-01

    The bile acid analogue obeticholic acid (OCA) is a selective farnesoid X receptor (FXR) agonist in development for treatment of several chronic liver diseases. FXR activation regulates lipoprotein homeostasis. The effects of OCA on cholesterol and lipoprotein metabolism in healthy individuals were assessed. Two phase I studies were conducted to evaluate the effects of repeated oral doses of 5, 10 or 25 mg OCA on lipid variables after 14 or 20 days of consecutive administration in 68 healthy adults. Changes in HDL and LDL cholesterol levels were examined, in addition to nuclear magnetic resonance analysis of particle sizes and sub-fraction concentrations. OCA elicited changes in circulating cholesterol and particle size of LDL and HDL. OCA decreased HDL cholesterol and increased LDL cholesterol, independently of dose. HDL particle concentrations declined as a result of a reduction in medium and small HDL. Total LDL particle concentrations increased because of an increase in large LDL particles. Changes in lipoprotein metabolism attributable to OCA in healthy individuals were found to be consistent with previously reported changes in patients receiving OCA with non-alcoholic fatty liver disease or non-alcoholic steatohepatitis. PMID:27109453

  7. Altered arachidonic acid metabolism and platelet size in atopic subjects

    SciTech Connect

    Audera, C.; Rocklin, R.; Vaillancourt, R.; Jakubowski, J.A.; Deykin, D.

    1988-03-01

    The release and metabolism of endogenous arachidonic acid (AA) in physiologically activated platelets obtained from 11 atopic patients with allergic rhinitis and/or asthma was compared to that of sex- and age-matched nonatopic controls. Prelabeled (/sup 3/H)AA platelets were stimulated with thrombin or collagen and the amount of free (/sup 3/H)AA and radiolabeled metabolites released were measured by high-performance liquid chromatography. The results obtained indicate that although the incorporation of (/sup 3/H)AA into platelet phospholipids and total release of /sup 3/H-radioactivity upon stimulation were comparable in the two groups, the percentage of /sup 3/H-radioactivity released from platelets as free AA was significantly lower (P less than 0.01) in the atopic group. The reduction in free (/sup 3/H)AA was accompanied by an increase (P less than 0.01) in the percentage of /sup 3/H-radioactivity released as cyclooxygenase products in atopic platelets (compared to nonatopic cells) after stimulation with 10 and 25 micrograms/ml collagen. The amount of platelet lipoxygenase product released was comparable between the two groups. Although the blood platelet counts were similar, the mean platelet volume was statistically higher (P less than 0.01) in the atopic group. These results indicate that arachidonic acid metabolism in atopic platelets is altered, the pathophysiological significance of which remains to be clarified.

  8. Bile Acid Alters Male Mouse Fertility in Metabolic Syndrome Context

    PubMed Central

    Baptissart, Marine; De Haze, Angélique; Vaz, Frederic; Kulik, Wim; Damon-Soubeyrand, Christelle; Baron, Silvère; Caira, Françoise; Volle, David H.

    2015-01-01

    Bile acids have recently been demonstrated as molecules with endocrine activities controlling several physiological functions such as immunity and glucose homeostases. They act mainly through two receptors, the nuclear receptor Farnesol-X-Receptor alpha (FXRα) and the G-protein coupled receptor (TGR5). These recent studies have led to the idea that molecules derived from bile acids (BAs) and targeting their receptors must be good targets for treatment of metabolic diseases such as obesity or diabetes. Thus it might be important to decipher the potential long term impact of such treatment on different physiological functions. Indeed, BAs have recently been demonstrated to alter male fertility. Here we demonstrate that in mice with overweight induced by high fat diet, BA exposure leads to increased rate of male infertility. This is associated with the altered germ cell proliferation, default of testicular endocrine function and abnormalities in cell-cell interaction within the seminiferous epithelium. Even if the identification of the exact molecular mechanisms will need more studies, the present results suggest that both FXRα and TGR5 might be involved. We believed that this work is of particular interest regarding the potential consequences on future approaches for the treatment of metabolic diseases. PMID:26439743

  9. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism.

    PubMed

    Yen, Chi-Liang Eric; Nelson, David W; Yen, Mei-I

    2015-03-01

    The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation. PMID:25231105

  10. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism

    PubMed Central

    Yen, Chi-Liang Eric; Nelson, David W.; Yen, Mei-I

    2015-01-01

    The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation. PMID:25231105

  11. Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes1234

    PubMed Central

    Mozaffarian, Dariush; Cao, Haiming; King, Irena B; Lemaitre, Rozenn N; Song, Xiaoling; Siscovick, David S; Hotamisligil, Gökhan S

    2010-01-01

    Background: Animal experiments suggest that circulating palmitoleic acid (cis-16:1n–7) from adipocyte de novo fatty acid synthesis may directly regulate insulin resistance and metabolic dysregulation. Objective: We investigated the independent determinants of circulating palmitoleate in free-living humans and whether palmitoleate is related to lower metabolic risk and the incidence of diabetes. Design: In a prospective cohort of 3630 US men and women in the Cardiovascular Health Study, plasma phospholipid fatty acids, anthropometric variables, blood lipids, inflammatory markers, and glucose and insulin concentrations were measured between 1992 and 2006 by using standardized methods. Independent determinants of plasma phospholipid palmitoleate and relations of palmitoleate with metabolic risk factors were investigated by using multivariable-adjusted linear regression. Relations with incident diabetes (296 incident cases) were investigated by using Cox proportional hazards. Results: The mean (±SD) palmitoleate value was 0.49 ± 0.20% (range: 0.11–2.55%) of total fatty acids. Greater body mass index, carbohydrate intake, protein intake, and alcohol use were each independent lifestyle correlates of higher palmitoleate concentrations. In multivariable analyses that adjusted for these factors and other potential confounders, higher palmitoleate concentrations were independently associated with lower LDL cholesterol (P < 0.001), higher HDL cholesterol (P < 0.001), lower total:HDL-cholesterol ratio (P = 0.04), and lower fibrinogen (P < 0.001). However, palmitoleate was also associated with higher triglycerides (P < 0.001) and (in men only) with greater insulin resistance (P < 0.001). Palmitoleate was not significantly associated with incident diabetes. Conclusions: Adiposity (energy imbalance), carbohydrate consumption, and alcohol use—even within typical ranges—are associated with higher circulating palmitoleate concentrations. Circulating palmitoleate is

  12. Metabolism

    MedlinePlus

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson BH. Principles of Anatomy and Physiology . 14th ed. Hoboken, NJ: John H Wiley and Sons; 2013: ...

  13. Ammonium Metabolism Enzymes Aid Helicobacter pylori Acid Resistance

    PubMed Central

    Miller, Erica F.

    2014-01-01

    The gastric pathogen Helicobacter pylori possesses a highly active urease to support acid tolerance. Urea hydrolysis occurs inside the cytoplasm, resulting in the production of NH3 that is immediately protonated to form NH4+. This ammonium must be metabolized or effluxed because its presence within the cell is counterproductive to the goal of raising pH while maintaining a viable proton motive force (PMF). Two compatible hypotheses for mitigating intracellular ammonium toxicity include (i) the exit of protonated ammonium outward via the UreI permease, which was shown to facilitate diffusion of both urea and ammonium, and/or (ii) the assimilation of this ammonium, which is supported by evidence that H. pylori assimilates urea nitrogen into its amino acid pools. We investigated the second hypothesis by constructing strains with altered expression of the ammonium-assimilating enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) and the ammonium-evolving periplasmic enzymes glutaminase (Ggt) and asparaginase (AsnB). H. pylori strains expressing elevated levels of either GS or GDH are more acid tolerant than the wild type, exhibit enhanced ammonium production, and are able to alkalize the medium faster than the wild type. Strains lacking the genes for either Ggt or AsnB are acid sensitive, have 8-fold-lower urea-dependent ammonium production, and are more acid sensitive than the parent. Additionally, we found that purified H. pylori GS produces glutamine in the presence of Mg2+ at a rate similar to that of unadenylated Escherichia coli GS. These data reveal that all four enzymes contribute to whole-cell acid resistance in H. pylori and are likely important for assimilation and/or efflux of urea-derived ammonium. PMID:24936052

  14. Energy metabolism in the acquisition and maintenance of stemness.

    PubMed

    Folmes, Clifford D L; Terzic, Andre

    2016-04-01

    Energy metabolism is traditionally considered a reactive homeostatic system addressing stage-specific cellular energy needs. There is however growing appreciation of metabolic pathways in the active control of vital cell functions. Case in point, the stem cell lifecycle--from maintenance and acquisition of stemness to lineage commitment and specification--is increasingly recognized as a metabolism-dependent process. Indeed, metabolic reprogramming is an early contributor to the orchestrated departure from or reacquisition of stemness. Recent advances in metabolomics have helped decipher the identity and dynamics of metabolic fluxes implicated in fueling cell fate choices by regulating the epigenetic and transcriptional identity of a cell. Metabolic cues, internal and/or external to the stem cell niche, facilitate progenitor pool restitution, long-term tissue renewal or ensure adoption of cytoprotective behavior. Convergence of energy metabolism with stem cell fate regulation opens a new avenue in understanding primordial developmental biology principles with future applications in regenerative medicine practice. PMID:26868758

  15. Metabolic Fate of Unsaturated Glucuronic/Iduronic Acids from Glycosaminoglycans

    PubMed Central

    Maruyama, Yukie; Oiki, Sayoko; Takase, Ryuichi; Mikami, Bunzo; Murata, Kousaku; Hashimoto, Wataru

    2015-01-01

    Glycosaminoglycans in mammalian extracellular matrices are degraded to their constituents, unsaturated uronic (glucuronic/iduronic) acids and amino sugars, through successive reactions of bacterial polysaccharide lyase and unsaturated glucuronyl hydrolase. Genes coding for glycosaminoglycan-acting lyase, unsaturated glucuronyl hydrolase, and the phosphotransferase system are assembled into a cluster in the genome of pathogenic bacteria, such as streptococci and clostridia. Here, we studied the streptococcal metabolic pathway of unsaturated uronic acids and the structure/function relationship of its relevant isomerase and dehydrogenase. Two proteins (gbs1892 and gbs1891) of Streptococcus agalactiae strain NEM316 were overexpressed in Escherichia coli, purified, and characterized. 4-Deoxy-l-threo-5-hexosulose-uronate (Dhu) nonenzymatically generated from unsaturated uronic acids was converted to 2-keto-3-deoxy-d-gluconate via 3-deoxy-d-glycero-2,5-hexodiulosonate through successive reactions of gbs1892 isomerase (DhuI) and gbs1891 NADH-dependent reductase/dehydrogenase (DhuD). DhuI and DhuD enzymatically corresponded to 4-deoxy-l-threo-5-hexosulose-uronate ketol-isomerase (KduI) and 2-keto-3-deoxy-d-gluconate dehydrogenase (KduD), respectively, involved in pectin metabolism, although no or low sequence identity was observed between DhuI and KduI or between DhuD and KduD, respectively. Genes for DhuI and DhuD were found to be included in the streptococcal genetic cluster, whereas KduI and KduD are encoded in clostridia. Tertiary and quaternary structures of DhuI and DhuD were determined by x-ray crystallography. Distinct from KduI β-barrels, DhuI adopts an α/β/α-barrel structure as a basic scaffold similar to that of ribose 5-phosphate isomerase. The structure of DhuD is unable to accommodate the substrate/cofactor, suggesting that conformational changes are essential to trigger enzyme catalysis. This is the first report on the bacterial metabolism of

  16. Calcineurin Links Mitochondrial Elongation with Energy Metabolism.

    PubMed

    Pfluger, Paul T; Kabra, Dhiraj G; Aichler, Michaela; Schriever, Sonja C; Pfuhlmann, Katrin; García, Verónica Casquero; Lehti, Maarit; Weber, Jon; Kutschke, Maria; Rozman, Jan; Elrod, John W; Hevener, Andrea L; Feuchtinger, Annette; Hrabě de Angelis, Martin; Walch, Axel; Rollmann, Stephanie M; Aronow, Bruce J; Müller, Timo D; Perez-Tilve, Diego; Jastroch, Martin; De Luca, Maria; Molkentin, Jeffery D; Tschöp, Matthias H

    2015-11-01

    Canonical protein phosphatase 3/calcineurin signaling is central to numerous physiological processes. Here we provide evidence that calcineurin plays a pivotal role in controlling systemic energy and body weight homeostasis. Knockdown of calcineurin in Drosophila melanogaster led to a decrease in body weight and energy stores, and increased energy expenditure. In mice, global deficiency of catalytic subunit Ppp3cb, and tissue-specific ablation of regulatory subunit Ppp3r1 from skeletal muscle, but not adipose tissue or liver, led to protection from high-fat-diet-induced obesity and comorbid sequelæ. Ser637 hyperphosphorylation of dynamin-related protein 1 (Drp1) in skeletal muscle of calcineurin-deficient mice was associated with mitochondrial elongation into power-cable-shaped filaments and increased mitochondrial respiration, but also with attenuated exercise performance. Our data suggest that calcineurin acts as highly conserved pivot for the adaptive metabolic responses to environmental changes such as high-fat, high-sugar diets or exercise. PMID:26411342

  17. Recent Progress on Bile Acid Receptor Modulators for Treatment of Metabolic Diseases.

    PubMed

    Xu, Yanping

    2016-07-28

    Bile acids are steroid-derived molecules synthesized in the liver, secreted from hepatocytes into the bile canaliculi, and subsequently stored in the gall bladder. During the feeding, bile flows into the duodenum, where it contributes to the solubilization and digestion of lipid-soluble nutrients. After a meal, bile-acid levels increase in the intestine, liver, and also in the systemic circulation. Therefore, serum bile-acid levels serve as an important sensing mechanism for nutrient and energy. Recent studies have described bile acids as versatile signaling molecules endowed with systemic endocrine functions. Bile acids are ligands for G-protein coupled receptors (GPCRs) such as TGR5 (also known as GPBAR1, M-BAR, and BG37) and nuclear hormone receptors including farnesoid X receptor (FXR; also known as NR1H4). Acting through these diverse signaling pathways, bile acids regulate triglyceride, cholesterol, glucose homeostasis, and energy expenditure. These bile-acid-controlled signaling pathways have become the source of promising novel drug targets to treat common metabolic and hepatic diseases. PMID:26878262

  18. Untangling the complex relationship between dietary acid load and glucocorticoid metabolism.

    PubMed

    Weiner, I David

    2016-08-01

    The kidney's maintenance of the metabolic component of acid-base homeostasis is critical for normal health. The study by Esche and colleagues in this issue of Kidney International shows that normal children with higher levels of renal net acid excretion and of dietary acid loads have stimulation of glucocorticoid hormone metabolism. Thus, normal variations in dietary acid intake and renal net acid excretion have important biological correlates. PMID:27418088

  19. Metabolic effects and distribution space of flufenamic acid in the isolated perfused rat liver.

    PubMed

    Lopez, C H; Bracht, A; Yamamoto, N S; dos Santos, M D

    1998-11-01

    The following aspects were investigated in the present work: (a) the action of flufenamic acid on hepatic metabolism (oxygen uptake, glycolysis, gluconeogenesis, uricogenesis and glycogenolysis), (b) the action of flufenamic acid on the cellular adenine nucleotide levels, and (c) the transport and distribution space of flufenamic acid in the liver parenchyma. The experimental system was the isolated perfused rat liver. Perfusion was accomplished in an open, non-recirculating system. The perfusion fluid was Krebs/Henseleit-bicarbonate buffer (pH 7.4), saturated with a mixture of oxygen and carbon dioxide (95:5) by means of a membrane oxygenator and heated to 37 degrees C. The distribution space of flufenamic acid was measured by means of the multiple-indicator dilution technique with constant infusion (step input) of [3H]water plus flufenamic acid. The results of the present work indicate that the metabolic effects of flufenamic acid are the consequence of an uncoupling of oxidative phosphorylation, a conclusion based on the following observations: (a) flufenamic acid increased oxygen uptake, a common property of all uncouplers; (b) the drug also increased glycolysis and glycogenolysis in livers from fed rats (these are expected compensatory phenomena for the decreased mitochondrial ATP formation); (c) flufenamic acid inhibited glucose production from fructose, an energy-dependent process; (d) the cellular ATP levels were decreased by flufenamic acid whereas the AMP levels were increased; and (e) the total adenine nucleotide content was decreased by flufenamic acid and uric acid production was stimulated. Indicator-dilution experiments with flufenamic acid revealed that this substance undergoes flow-limited distribution in the liver and that its apparent distribution space greatly exceeds the aqueous space of the liver. Flufenamic acid changed its behaviour when the portal concentration was increased from 25 to 50 microM. At 25 microM the initial upslope of the

  20. Myocardial metabolism of pantothenic acid in chronically diabetic rats.

    PubMed

    Beinlich, C J; Naumovitz, R D; Song, W O; Neely, J R

    1990-03-01

    Transport and metabolism of [3H]pantothenic acid ([3H]Pa) was investigated in hearts from control and streptozotocin-induced diabetic rats. In isolated perfused hearts from control animals, the transport of [3H]Pa was linear over 3 h of perfusion when 11 mM glucose was the only exogenous substrate. The in vitro transport of [3H]Pa by hearts from 48-h diabetic rats was reduced by 65% compared to controls and was linear over 2 h of perfusion with no further accumulation of Pa during the third hour. The defect in transport observed in vitro could be corrected by in vivo treatment with 4 U Lente insulin/day for 2 days. In vitro addition of insulin in the presence of 11 mM glucose or 11 mM glucose plus 1.2 mM palmitate had no effect on [3H]Pa transport in hearts from 48-h diabetic rats during 3 h of perfusion. Accumulation of [3H]Pa was not inhibited by inclusion of 0.7 mM amino acids, 1 mM carnitine, 50 microM mersalic acid or 1 mM panthenol, pantoyllactone or pantoyltaurine. Uptake was inhibited by 1 mM nonanoic, octanoic or heptanoic acid, 0.1 mM biotin or 0.25 mM probenecid, suggesting a requirement for the terminal carboxyl group for transport. Transport of pantothenic acid was reduced in hearts from diabetic rats within 24 h of injection of streptozotocin. In vitro accumulation of [3H]Pa decreased to 10% of control 1 week after streptozotocin injection and then remained at 30% of the control value over 10 weeks.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2141362

  1. Metabolism of hydroxycinnamic acids and esters by Brettanomyces in different red wines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Depending on the cultivars and other factors, differing concentrations of hydroxycinnamic acids (caffeic, p-coumaric, and ferulic acids) and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric acid, respectively) are found in red wines. Hydroxycinnamic acids are metabolized by...

  2. Clostridium sticklandii, a specialist in amino acid degradation:revisiting its metabolism through its genome sequence

    PubMed Central

    2010-01-01

    Background Clostridium sticklandii belongs to a cluster of non-pathogenic proteolytic clostridia which utilize amino acids as carbon and energy sources. Isolated by T.C. Stadtman in 1954, it has been generally regarded as a "gold mine" for novel biochemical reactions and is used as a model organism for studying metabolic aspects such as the Stickland reaction, coenzyme-B12- and selenium-dependent reactions of amino acids. With the goal of revisiting its carbon, nitrogen, and energy metabolism, and comparing studies with other clostridia, its genome has been sequenced and analyzed. Results C. sticklandii is one of the best biochemically studied proteolytic clostridial species. Useful additional information has been obtained from the sequencing and annotation of its genome, which is presented in this paper. Besides, experimental procedures reveal that C. sticklandii degrades amino acids in a preferential and sequential way. The organism prefers threonine, arginine, serine, cysteine, proline, and glycine, whereas glutamate, aspartate and alanine are excreted. Energy conservation is primarily obtained by substrate-level phosphorylation in fermentative pathways. The reactions catalyzed by different ferredoxin oxidoreductases and the exergonic NADH-dependent reduction of crotonyl-CoA point to a possible chemiosmotic energy conservation via the Rnf complex. C. sticklandii possesses both the F-type and V-type ATPases. The discovery of an as yet unrecognized selenoprotein in the D-proline reductase operon suggests a more detailed mechanism for NADH-dependent D-proline reduction. A rather unusual metabolic feature is the presence of genes for all the enzymes involved in two different CO2-fixation pathways: C. sticklandii harbours both the glycine synthase/glycine reductase and the Wood-Ljungdahl pathways. This unusual pathway combination has retrospectively been observed in only four other sequenced microorganisms. Conclusions Analysis of the C. sticklandii genome and

  3. Respiration, respiratory metabolism and energy consumption under weightless conditions

    NASA Technical Reports Server (NTRS)

    Kasyan, I. I.; Makarov, G. F.

    1975-01-01

    Changes in the physiological indices of respiration, respiratory metabolism and energy consumption in spacecrews under weightlessness conditions manifest themselves in increased metabolic rates, higher pulmonary ventilation volume, oxygen consumption and carbon dioxide elimination, energy consumption levels in proportion to reduction in neuroemotional and psychic stress, adaptation to weightlessness and work-rest cycles, and finally in a relative stabilization of metabolic processes due to hemodynamic shifts.

  4. Metabolism of sulfur amino acids in Saccharomyces cerevisiae.

    PubMed Central

    Thomas, D; Surdin-Kerjan, Y

    1997-01-01

    Sulfur amino acid biosynthesis in Saccharomyces cerevisiae involves a large number of enzymes required for the de novo biosynthesis of methionine and cysteine and the recycling of organic sulfur metabolites. This review summarizes the details of these processes and analyzes the molecular data which have been acquired in this metabolic area. Sulfur biochemistry appears not to be unique through terrestrial life, and S. cerevisiae is one of the species of sulfate-assimilatory organisms possessing a larger set of enzymes for sulfur metabolism. The review also deals with several enzyme deficiencies that lead to a nutritional requirement for organic sulfur, although they do not correspond to defects within the biosynthetic pathway. In S. cerevisiae, the sulfur amino acid biosynthetic pathway is tightly controlled: in response to an increase in the amount of intracellular S-adenosylmethionine (AdoMet), transcription of the coregulated genes is turned off. The second part of the review is devoted to the molecular mechanisms underlying this regulation. The coordinated response to AdoMet requires two cis-acting promoter elements. One centers on the sequence TCACGTG, which also constitutes a component of all S. cerevisiae centromeres. Situated upstream of the sulfur genes, this element is the binding site of a transcription activation complex consisting of a basic helix-loop-helix factor, Cbf1p, and two basic leucine zipper factors, Met4p and Met28p. Molecular studies have unraveled the specific functions for each subunit of the Cbf1p-Met4p-Met28p complex as well as the modalities of its assembly on the DNA. The Cbf1p-Met4p-Met28p complex contains only one transcription activation module, the Met4p subunit. Detailed mutational analysis of Met4p has elucidated its functional organization. In addition to its activation and bZIP domains, Met4p contains two regulatory domains, called the inhibitory region and the auxiliary domain. When the level of intracellular AdoMet increases

  5. Metabolic energy requirements for space flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.

    1992-01-01

    The international space community, including the USSR, Japan, Germany, the European Space Agency, and the US, is preparing for extended stays in space. Much of the research planned for space will be tended by humans, thus, maintaining adequate nutritional status during long stays in space has lately become an issue of much interest. Historically, it appears that minimum nutritional requirements are being met during stays in space. Thus far, crewmembers have been able to consume food adequate for maintaining nominal performance in microgravity. The physiological data obtained from ground-based and flight research that may enable us to understand the biochemical alterations that effect energy utilization and performance. Focus is on energy utilization during the Apollo lunar missions, Skylab's extended space lab missions, and Space Shuttle flights. Available data includes those recorded during intra- and extravehicular activities as well as during microgravity simulation (bed rest). Data on metabolism during flight and during bed rest are discussed, with a follow-up on human gastrointestinal function.

  6. Identification of differences in human and great ape phytanic acid metabolism that could influence gene expression profiles and physiological functions

    PubMed Central

    2010-01-01

    Background It has been proposed that anatomical differences in human and great ape guts arose in response to species-specific diets and energy demands. To investigate functional genomic consequences of these differences, we compared their physiological levels of phytanic acid, a branched chain fatty acid that can be derived from the microbial degradation of chlorophyll in ruminant guts. Humans who accumulate large stores of phytanic acid commonly develop cerebellar ataxia, peripheral polyneuropathy, and retinitis pigmentosa in addition to other medical conditions. Furthermore, phytanic acid is an activator of the PPAR-alpha transcription factor that influences the expression of genes relevant to lipid metabolism. Results Despite their trace dietary phytanic acid intake, all great ape species had elevated red blood cell (RBC) phytanic acid levels relative to humans on diverse diets. Unlike humans, chimpanzees showed sexual dimorphism in RBC phytanic acid levels, which were higher in males relative to females. Cultured skin fibroblasts from all species had a robust capacity to degrade phytanic acid. We provide indirect evidence that great apes, in contrast to humans, derive significant amounts of phytanic acid from the hindgut fermentation of plant materials. This would represent a novel reduction of metabolic activity in humans relative to the great apes. Conclusion We identified differences in the physiological levels of phytanic acid in humans and great apes and propose this is causally related to their gut anatomies and microbiomes. Phytanic acid levels could contribute to cross-species and sex-specific differences in human and great ape transcriptomes, especially those related to lipid metabolism. Based on the medical conditions caused by phytanic acid accumulation, we suggest that differences in phytanic acid metabolism could influence the functions of human and great ape nervous, cardiovascular, and skeletal systems. PMID:20932325

  7. Metabolic Engineering of a Novel Muconic Acid Biosynthesis Pathway via 4-Hydroxybenzoic Acid in Escherichia coli

    PubMed Central

    Sengupta, Sudeshna; Goonewardena, Lakshani; Juturu, Veeresh

    2015-01-01

    cis,cis-Muconic acid (MA) is a commercially important raw material used in pharmaceuticals, functional resins, and agrochemicals. MA is also a potential platform chemical for the production of adipic acid (AA), terephthalic acid, caprolactam, and 1,6-hexanediol. A strain of Escherichia coli K-12, BW25113, was genetically modified, and a novel nonnative metabolic pathway was introduced for the synthesis of MA from glucose. The proposed pathway converted chorismate from the aromatic amino acid pathway to MA via 4-hydroxybenzoic acid (PHB). Three nonnative genes, pobA, aroY, and catA, coding for 4-hydroxybenzoate hydrolyase, protocatechuate decarboxylase, and catechol 1,2-dioxygenase, respectively, were functionally expressed in E. coli to establish the MA biosynthetic pathway. E. coli native genes ubiC, aroFFBR, aroE, and aroL were overexpressed and the genes ptsH, ptsI, crr, and pykF were deleted from the E. coli genome in order to increase the precursors of the proposed MA pathway. The final engineered E. coli strain produced nearly 170 mg/liter of MA from simple carbon sources in shake flask experiments. The proposed pathway was proved to be functionally active, and the strategy can be used for future metabolic engineering efforts for production of MA from renewable sugars. PMID:26362984

  8. Metabolic engineering of a novel muconic acid biosynthesis pathway via 4-hydroxybenzoic acid in Escherichia coli.

    PubMed

    Sengupta, Sudeshna; Jonnalagadda, Sudhakar; Goonewardena, Lakshani; Juturu, Veeresh

    2015-12-01

    cis,cis-Muconic acid (MA) is a commercially important raw material used in pharmaceuticals, functional resins, and agrochemicals. MA is also a potential platform chemical for the production of adipic acid (AA), terephthalic acid, caprolactam, and 1,6-hexanediol. A strain of Escherichia coli K-12, BW25113, was genetically modified, and a novel nonnative metabolic pathway was introduced for the synthesis of MA from glucose. The proposed pathway converted chorismate from the aromatic amino acid pathway to MA via 4-hydroxybenzoic acid (PHB). Three nonnative genes, pobA, aroY, and catA, coding for 4-hydroxybenzoate hydrolyase, protocatechuate decarboxylase, and catechol 1,2-dioxygenase, respectively, were functionally expressed in E. coli to establish the MA biosynthetic pathway. E. coli native genes ubiC, aroF(FBR), aroE, and aroL were overexpressed and the genes ptsH, ptsI, crr, and pykF were deleted from the E. coli genome in order to increase the precursors of the proposed MA pathway. The final engineered E. coli strain produced nearly 170 mg/liter of MA from simple carbon sources in shake flask experiments. The proposed pathway was proved to be functionally active, and the strategy can be used for future metabolic engineering efforts for production of MA from renewable sugars. PMID:26362984

  9. Cadmium induces retinoic acid signaling by regulating retinoic acid metabolic gene expression.

    PubMed

    Cui, Yuxia; Freedman, Jonathan H

    2009-09-11

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, beta,beta-carotene 15,15'-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1-6 cells. In C. elegans, bcmo-1 was expressed in the intestine and was cadmium inducible. Similarly, in Hepa 1-6 cells, Bcmo1 was induced by cadmium. Retinoic acid-mediated signaling increased after 24-h exposures to 5 and 10 microm cadmium in Hepa 1-6 cells. Examination of gene expression demonstrated that the induction of retinoic acid signaling by cadmium may be mediated by overexpression of Bcmo1. Furthermore, cadmium inhibited the expression of Cyp26a1 and Cyp26b1, which are involved in retinoic acid degradation. These results indicate that cadmium-induced teratogenicity may be due to the ability of the metal to increase the levels of retinoic acid by disrupting the expression of retinoic acid-metabolizing genes. PMID:19556237

  10. Cadmium Induces Retinoic Acid Signaling by Regulating Retinoic Acid Metabolic Gene Expression*

    PubMed Central

    Cui, Yuxia; Freedman, Jonathan H.

    2009-01-01

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, β,β-carotene 15,15′-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1–6 cells. In C. elegans, bcmo-1 was expressed in the intestine and was cadmium inducible. Similarly, in Hepa 1–6 cells, Bcmo1 was induced by cadmium. Retinoic acid-mediated signaling increased after 24-h exposures to 5 and 10 μm cadmium in Hepa 1–6 cells. Examination of gene expression demonstrated that the induction of retinoic acid signaling by cadmium may be mediated by overexpression of Bcmo1. Furthermore, cadmium inhibited the expression of Cyp26a1 and Cyp26b1, which are involved in retinoic acid degradation. These results indicate that cadmium-induced teratogenicity may be due to the ability of the metal to increase the levels of retinoic acid by disrupting the expression of retinoic acid-metabolizing genes. PMID:19556237

  11. Phosphoenolpyruvate Carboxykinase in Plants Exhibiting Crassulacean Acid Metabolism 1

    PubMed Central

    Dittrich, P.; Campbell, Wilbur H.; Black, C. C.

    1973-01-01

    Phosphoenolpyruvate carboxykinase has been found in significant activities in a number of plants exhibiting Crassulacean acid metabolism. Thirty-five species were surveyed for phosphoenolpyruvate carboxykinase, phosphoenolpyruvate carboxylase, ribulose diphosphate carboxylase, malic enzyme, and malate dehydrogenase (NAD). Plants which showed high activities of malic enzyme contained no detectable phosphoenolpyruvate carboxykinase, while plants with high activities of the latter enzyme contained little malic enzyme. It is proposed that phosphoenolpyruvate carboxykinase acts as a decarboxylase during the light period, furnishing CO2 for the pentose cycle and phosphoenolpyruvate for gluconeogenesis. Some properties of phosphoenolpyruvate carboxykinase in crude extracts of pineapple leaves were investigated. The enzyme required Mn2+, Mg2+, and ATP for maximum activity. About 60% of the activity could be pelleted, along with chloroplasts and mitochondria, in extracts from leaves kept in the dark overnight. PMID:16658562

  12. Engineering crassulacean acid metabolism to improve water-use efficiency

    PubMed Central

    Borland, Anne M.; Hartwell, James; Weston, David J.; Schlauch, Karen A.; Tschaplinski, Timothy J.; Tuskan, Gerald A.; Yang, Xiaohan; Cushman, John C.

    2014-01-01

    Climatic extremes threaten agricultural sustainability worldwide. One approach to increase plant water-use efficiency is to introduce crassulacean acid metabolism (CAM) into C3 crops. Such a task requires comprehensive systems-level understanding of the enzymatic and regulatory pathways underpinning this temporal CO2 pump. Here, we review the progress that has been made in achieving this goal. Given that CAM arose through multiple independent evolutionary origins, comparative transcriptomics and genomics of taxonomically diverse CAM species are being used to define the genetic ‘parts list’ required to operate the core CAM functional modules of nocturnal carboxylation, daytime decarboxylation, and inverse stomatal regulation. Engineered CAM offers the potential to sustain plant productivity for food, feed, fiber, and biofuel production in hotter and drier climates. PMID:24559590

  13. Engineering crassulacean acid metabolism to improve water-use efficiency.

    PubMed

    Borland, Anne M; Hartwell, James; Weston, David J; Schlauch, Karen A; Tschaplinski, Timothy J; Tuskan, Gerald A; Yang, Xiaohan; Cushman, John C

    2014-05-01

    Climatic extremes threaten agricultural sustainability worldwide. One approach to increase plant water-use efficiency (WUE) is to introduce crassulacean acid metabolism (CAM) into C3 crops. Such a task requires comprehensive systems-level understanding of the enzymatic and regulatory pathways underpinning this temporal CO2 pump. Here we review the progress that has been made in achieving this goal. Given that CAM arose through multiple independent evolutionary origins, comparative transcriptomics and genomics of taxonomically diverse CAM species are being used to define the genetic 'parts list' required to operate the core CAM functional modules of nocturnal carboxylation, diurnal decarboxylation, and inverse stomatal regulation. Engineered CAM offers the potential to sustain plant productivity for food, feed, fiber, and biofuel production in hotter and drier climates. PMID:24559590

  14. Microbial diversity and metabolic networks in acid mine drainage habitats

    PubMed Central

    Méndez-García, Celia; Peláez, Ana I.; Mesa, Victoria; Sánchez, Jesús; Golyshina, Olga V.; Ferrer, Manuel

    2015-01-01

    Acid mine drainage (AMD) emplacements are low-complexity natural systems. Low-pH conditions appear to be the main factor underlying the limited diversity of the microbial populations thriving in these environments, although temperature, ionic composition, total organic carbon, and dissolved oxygen are also considered to significantly influence their microbial life. This natural reduction in diversity driven by extreme conditions was reflected in several studies on the microbial populations inhabiting the various micro-environments present in such ecosystems. Early studies based on the physiology of the autochthonous microbiota and the growing success of omics-based methodologies have enabled a better understanding of microbial ecology and function in low-pH mine outflows; however, complementary omics-derived data should be included to completely describe their microbial ecology. Furthermore, recent updates on the distribution of eukaryotes and archaea recovered through sterile filtering (herein referred to as filterable fraction) in these environments demand their inclusion in the microbial characterization of AMD systems. In this review, we present a complete overview of the bacterial, archaeal (including filterable fraction), and eukaryotic diversity in these ecosystems, and include a thorough depiction of the metabolism and element cycling in AMD habitats. We also review different metabolic network structures at the organismal level, which is necessary to disentangle the role of each member of the AMD communities described thus far. PMID:26074887

  15. Energy Metabolism of Human Neutrophils during Phagocytosis

    PubMed Central

    Borregaard, Niels; Herlin, Troels

    1982-01-01

    Detailed quantitative studies were performed on the generation and utilization of energy by resting and phagocytosing human neutrophils. The ATP content was 1.9 fmol/cell, was constant during rest, and was not influenced by the presence or absence of glucose in the medium. The intracellular content of phosphocreatine was less than 0.2 fmol/cell. In the presence of glucose, ATP was generated almost exclusively from lactate produced from glucose taken up from the surrounding medium. The amount of lactate produced could account for 85% of the glucose taken up by the cells, and the intracellular glycosyl store, glycogen, was not drawn upon. The rate of ATP generation as calculated from the rate of lactate production was 1.3 fmol/cell/min. During phagocytosis, there was no measurable increase in glucose consumption or lactate production, and the ATP content fell rapidly to 0.8 fmol/cell. This disappearance of ATP was apparently irreversible since no corresponding increase in ADP or AMP was observed. It therefore appears that this phagocytosis-induced fall in ATP concentration represents all the extra energy utilized in human neutrophils in the presence of glucose. In the absence of glucose, the rate of ATP generation in the resting cell was considerably smaller, 0.75 fmol/cell per min, as calculated from the rate of glycolysis, which is sustained exclusively by glycogenolysis. Under this condition, however, phagocytosis induces significant enhancement of glycogenolysis and the rate of lactate production is increased by 60%, raising the rate of ATP generation to 1.2 fmol/cell per min. Nonetheless, the ATP content drops significantly from 1.9 to 1.0 fmol/cell. Neutrophils from patients with chronic granulomatous disease have the same rate of glycolysis and the same ATP content as normal cells, thus confirming that the defective respiration of these cells does not affect their energy metabolism. PMID:7107894

  16. Use of carglumic acid in the treatment of hyperammonaemia during metabolic decompensation of patients with propionic acidaemia.

    PubMed

    Abacan, M; Boneh, A

    2013-08-01

    Propionic acidaemia (PA) results from propionyl-CoA carboxylase deficiency. During metabolic decompensation, the accumulation of propionyl-CoA causes secondary hyperammonaemia through N-acetylglutamate synthetase inactivation. Carglumic acid, a structural analogue of N-acetylglutamate, was given to patients with PA (n=3) during episodes of metabolic decompensation (n=8; age range: birth to 4years), in addition to high energy/low protein intake and carnitine. Plasma ammonia concentrations normalised within 6-19h. Carglumic acid was well tolerated with no side effects noted. PMID:23791308

  17. Ursodeoxycholic Acid Ameliorates Fructose-Induced Metabolic Syndrome in Rats

    PubMed Central

    2014-01-01

    The metabolic syndrome (MS) is characterized by insulin resistance, dyslipidemia and hypertension. It is associated with increased risk of cardiovascular diseases and type-2 diabetes. Consumption of fructose is linked to increased prevalence of MS. Ursodeoxycholic acid (UDCA) is a steroid bile acid with antioxidant, anti-inflammatory activities and has been shown to improve insulin resistance. The current study aims to investigate the effect of UDCA (150 mg/kg) on MS induced in rats by fructose administration (10%) in drinking water for 12 weeks. The effects of UDCA were compared to fenofibrate (100 mg/kg), an agonist of PPAR-α receptors. Treatment with UDCA or fenofibrate started from the 6th week after fructose administration once daily. Fructose administration resulted in significant increase in body weight, elevations of blood glucose, serum insulin, cholesterol, triglycerides, advanced glycation end products (AGEs), uric acid levels, insulin resistance index and blood pressure compared to control rats. Moreover, fructose increased oxidative stress in aortic tissues indicated by significant increases of malondialdehyde (MDA), expression of iNOS and reduction of reduced glutathione (GSH) content. These disturbances were associated with decreased eNOS expression, increased infiltration of leukocytes and loss of aortic vascular elasticity. Treatment with UDCA successfully ameliorated the deleterious effects of fructose. The protective effect of UDCA could be attributed to its ability to decrease uric acid level, improve insulin resistance and diminish oxidative stress in vascular tissues. These results might support possible clinical application of UDCA in MS patients especially those present with liver diseases, taking into account its tolerability and safety. However, further investigations on human subjects are needed before the clinical application of UDCA for this indication. PMID:25202970

  18. Energy metabolism in intestinal epithelial cells during maturation along the crypt-villus axis

    PubMed Central

    Yang, Huansheng; Wang, Xiaocheng; Xiong, Xia; Yin, Yulong

    2016-01-01

    Intestinal epithelial cells continuously migrate and mature along crypt-villus axis (CVA), while the changes in energy metabolism during maturation are unclear in neonates. The present study was conducted to test the hypothesis that the energy metabolism in intestinal epithelial cells would be changed during maturation along CVA in neonates. Eight 21-day-old suckling piglets were used. Intestinal epithelial cells were isolated sequentially along CVA, and proteomics was used to analyze the changes in proteins expression in epithelial cells along CVA. The identified differentially expressed proteins were mainly involved in cellular process, metabolic process, biological regulation, pigmentation, multicellular organizational process and so on. The energy metabolism in intestinal epithelial cells of piglets was increased from the bottom of crypt to the top of villi. Moreover, the expression of proteins related to the metabolism of glucose, most of amino acids, and fatty acids was increased in intestinal epithelial cells during maturation along CVA, while the expression of proteins related to glutamine metabolism was decreased from crypt to villus tip. The expression of proteins involved in citrate cycle was also increased intestinal epithelial cells during maturation along CVA. Moreover, dietary supplementation with different energy sources had different effects on intestinal structure of weaned piglets. PMID:27558220

  19. Energy metabolism in intestinal epithelial cells during maturation along the crypt-villus axis.

    PubMed

    Yang, Huansheng; Wang, Xiaocheng; Xiong, Xia; Yin, Yulong

    2016-01-01

    Intestinal epithelial cells continuously migrate and mature along crypt-villus axis (CVA), while the changes in energy metabolism during maturation are unclear in neonates. The present study was conducted to test the hypothesis that the energy metabolism in intestinal epithelial cells would be changed during maturation along CVA in neonates. Eight 21-day-old suckling piglets were used. Intestinal epithelial cells were isolated sequentially along CVA, and proteomics was used to analyze the changes in proteins expression in epithelial cells along CVA. The identified differentially expressed proteins were mainly involved in cellular process, metabolic process, biological regulation, pigmentation, multicellular organizational process and so on. The energy metabolism in intestinal epithelial cells of piglets was increased from the bottom of crypt to the top of villi. Moreover, the expression of proteins related to the metabolism of glucose, most of amino acids, and fatty acids was increased in intestinal epithelial cells during maturation along CVA, while the expression of proteins related to glutamine metabolism was decreased from crypt to villus tip. The expression of proteins involved in citrate cycle was also increased intestinal epithelial cells during maturation along CVA. Moreover, dietary supplementation with different energy sources had different effects on intestinal structure of weaned piglets. PMID:27558220

  20. BRAIN-SPECIFIC CARNITINE PALMITOYLTRANSFERASE-1C: ROLE IN CNS FATTY ACID METABOLISM, FOOD INTAKE AND BODY WEIGHT

    PubMed Central

    Wolfgang, Michael J.; Cha, Seung Hun; Millington, David S.; Cline, Gary; Shulman, Gerald I; Suwa, Akira; Asaumi, Makoto; Kurama, Takeshi; Shimokawa, Teruhiko; Lane, M. Daniel

    2014-01-01

    While the brain does not utilize fatty acids as a primary energy source, recent evidence shows that intermediates of fatty acid metabolism serve as hypothalamic sensors of energy status. Increased hypothalamic malonyl-CoA, an intermediate in fatty acid synthesis, is indicative of energy surplus and leads to the suppression of food intake and increased energy expenditure. Malonyl-CoA functions as an inhibitor of CPT1, a mitochondrial outer membrane enzyme that initiates translocation of fatty acids into mitochondria for oxidation. The mammalian brain expresses a unique homologous CPT1, CPT1c, that binds malonyl-CoA tightly but does not support fatty acid oxidation in vivo, in hypothalamic explants or in heterologous cell culture systems. CPT1c KO mice under fasted or refed conditions do not exhibit an altered CNS transcriptome of genes known to be involved in fatty acid metabolism. CPT1c KO mice exhibit normal levels of metabolites and of hypothalamic malonyl-CoA and fatty acyl-CoA levels either in the fasted or refed states. However, CPT1c KO mice exhibit decreased food intake and lower body weight than WT littermates. In contrast, CPT1c KO mice gain excessive body weight and body fat when fed a high-fat diet while maintaining lower or equivalent food intake. Heterozygous mice display an intermediate phenotype. These findings provide further evidence that CPT1c plays a role in maintaining energy homeostasis, but not through altered fatty acid oxidation. PMID:18248603

  1. A dynamic computer model of the metabolic and regulatory processes in Crassulacean acid metabolism.

    PubMed

    Nungesser, D; Kluge, M; Tolle, H; Oppelt, W

    1984-09-01

    The paper describes a computer model which is capable of simulating the typical phenomena of Crassulacean acid metabolism (CAM). The model is based on a simplified scheme of the metabolic processes of CAM described earlier in the literature. The evolution of the model proceeded in the following steps, namely i) a verbal description of CAM in the form of a scheme integrating the metabolic and regulatory CAM processes at the cellular level of the cell, and transcription of the scheme into a block diagram; ii) the stepwise transformation of the block diagram into a structural model, represented by a system of differential equations; this was later used as the dynamic model. In the first attempt to construct the dynamic model, it appeared to be useful to accept the following simplifications: i) All reactions involved were considered to be of the first order. ii) Sequences of reactions, in which the intermediary products appeared to be of minor importance, were summarized in a single step. iii) All reactions were considered to proceed irreversibly in the main direction. iv) The mathematical formulations, usually used in describing enzyme regulations (for instance, competitive or allosteric behaviour), were replaced in the model by a uniformly simplified equation which independent of the actual mechanism, described activation by the multiplication of the velocity constant with an activating factor, and inhibition by division of the velocity constant by an inhibiting factor. v) From the manifold interactions between the plants and their environment, at present, only two factors have been selected to act as input parameters of the model, namely, the CO2 concentration in the air and light. Our studies showed that the model was capable of simulating not only some basic phenomena of CAM such as the diurnal rhythms of malic acid and starch, and the diurnal pattern of net CO2 exchange, but also alterations in the pool sizes of phosphoenolpyruvate, glucose-6-phosphate and

  2. Glucose and amino acid metabolism in rat brain during sustained hypoglycemia

    SciTech Connect

    Wong, K.L.; Tyce, G.M.

    1983-04-01

    The metabolism of glucose in brains during sustained hypoglycemia was studied. (U-/sup 14/C)Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. In the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia.

  3. Uric acid in metabolic syndrome: From an innocent bystander to a central player

    PubMed Central

    Kanbay, Mehmet; Jensen, Thomas; Solak, Yalcin; Le, Myphuong; Roncal-Jimenez, Carlos; Rivard, Chris; Lanaspa, Miguel A.; Nakagawa, Takahiko; Johnson, Richard J.

    2016-01-01

    Uric acid, once viewed as an inert metabolic end-product of purine metabolism, has been recently incriminated in a number of chronic disease states, including hypertension, metabolic syndrome, diabetes, non-alcoholic fatty liver disease, and chronic kidney disease. Several experimental and clinical studies support a role for uric acid as a contributory causal factor in these conditions. Here we discuss some of the major mechanisms linking uric acid to metabolic and cardiovascular diseases. At this time the key to understanding the importance of uric acid in these diseases will be the conduct of large clinical trials in which the effect of lowering uric acid on hard clinical outcomes is assessed. Elevated uric acid may turn out to be one of the more important remediable risk factors for metabolic and cardiovascular diseases. PMID:26703429

  4. Energy metabolism and hindbrain AMPK: regulation by estradiol.

    PubMed

    Briski, Karen P; Ibrahim, Baher A; Tamrakar, Pratistha

    2014-03-01

    Nerve cell energy status is screened within multiple classically defined hypothalamic and hindbrain components of the energy balance control network, including the hindbrain dorsal vagal complex (DVC). Signals of caudal DVC origin have a physiological role in glucostasis, e.g., maintenance of optimal supply of the critical substrate fuel, glucose, through control of motor functions such as fuel consumption and gluco-counterregulatory hormone secretion. A2 noradrenergic neurons are a likely source of these signals as combinatory laser microdissection/high-sensitivity Western blotting reveals expression of multiple biomarkers for metabolic sensing, including adenosine 5'-monophosphate-activated protein kinase (AMPK). Hypoglycemia elicits estradiol-dependent sex differences in A2 AMPK activation as phospho-AMPK (pAMPK) expression is augmented in male and ovariectomized (OVX) female, but not estrogen-replaced, OVX rats. This dichotomy may reflect, in part, estradiol-mediated up-regulation of glycolytic and tricarboxylic acid cycle enzyme expression during hypoglycemia. Our new model for short-term feeding abstinence has physiological relevance to planned (dieting) or unplanned (meal delay) interruption of consumption in modern life, which is negatively correlated with appetite control and obesity, and is useful for investigating how estrogen may mitigate the effects of disrupted fuel acquisition on energy balance via actions within the DVC. Estradiol reduces DVC AMPK activity after local delivery of the AMP mimic, 5-aminoimidazole-4-carboxamide-riboside, or cessation of feeding for 12 h but elevates pAMPK expression when these treatments are combined. These data suggest that estrogen maintains cellular energy stability over periods of suspended fuel acquisition and yet optimizes, by DVC AMPK-dependent mechanisms, counter-regulatory responses to metabolic challenges that occur during short-span feeding abstinence. PMID:25372736

  5. Ethyl pyruvate protects against sepsis by regulating energy metabolism

    PubMed Central

    Kang, Hongjun; Mao, Zhi; Zhao, Yan; Yin, Ting; Song, Qing; Pan, Liang; Hu, Xin; Hu, Jie; Zhou, Feihu

    2016-01-01

    Background Ethyl pyruvate (EP) is a derivative of pyruvic acid that has been demonstrated to be a potential scavenger of reactive oxygen species as well as an anti-inflammatory agent. In this study, we investigated the protective effects of EP and its role in regulating the energy metabolism in the livers of cecal-ligation-and-puncture-induced septic mice. Methods The animals were treated intraperitoneally with 0.2 mL of Ringer’s lactate solution or an equivalent volume of Ringer’s lactate solution containing EP immediately after cecal ligation and puncture. Each mouse in the Sham group was only subjected to a laparotomy. At 30-, 60-, 180-, and 360-minute time points, we measured the histopathological alterations of the intestines, and the plasma levels of interleukin (IL)-1β, IL-6, IL-10, and tumor necrosis factor-α, and the total antioxidative capacity, malondialdehyde content, and lactate and lactate/pyruvate levels in livers. Furthermore, we detected the levels of adenosine triphosphate, total adenylate, and energy charge in the livers. Results Our results demonstrated that the administration of EP significantly improved the survival rate and reduced intestinal histological alterations. EP inhibited the plasma levels of IL-1β, IL-6, and tumor necrosis factor-α and increased the IL-10 level. EP significantly inhibited the elevation of the malondialdehyde, lactate, and lactate/pyruvate levels and enhanced the total antioxidative capacity levels in the liver tissues. The downregulation of the adenosine triphosphate, total adenylate, and energy charge levels in the liver tissues was reversed in the septic mice treated with EP. Conclusion The results suggest that EP administration effectively modulates the energy metabolism, which may be an important component in treatment of sepsis. PMID:26966369

  6. A failure in energy metabolism and antioxidant uptake precede symptoms of Huntington's disease in mice.

    PubMed

    Acuña, Aníbal I; Esparza, Magdalena; Kramm, Carlos; Beltrán, Felipe A; Parra, Alejandra V; Cepeda, Carlos; Toro, Carlos A; Vidal, René L; Hetz, Claudio; Concha, Ilona I; Brauchi, Sebastián; Levine, Michael S; Castro, Maite A

    2013-01-01

    Huntington's disease has been associated with a failure in energy metabolism and oxidative damage. Ascorbic acid is a powerful antioxidant highly concentrated in the brain where it acts as a messenger, modulating neuronal metabolism. Using an electrophysiological approach in R6/2 HD slices, we observe an abnormal ascorbic acid flux from astrocytes to neurons, which is responsible for alterations in neuronal metabolic substrate preferences. Here using striatal neurons derived from knock-in mice expressing mutant huntingtin (STHdhQ cells), we study ascorbic acid transport. When extracellular ascorbic acid concentration increases, as occurs during synaptic activity, ascorbic acid transporter 2 (SVCT2) translocates to the plasma membrane, ensuring optimal ascorbic acid uptake for neurons. In contrast, SVCT2 from cells that mimic HD symptoms (dubbed HD cells) fails to reach the plasma membrane under the same conditions. We reason that an early impairment of ascorbic acid uptake in HD neurons could lead to early metabolic failure promoting neuronal death. PMID:24336051

  7. Ontogeny of Hepatic Energy Metabolism Genes in Mice as Revealed by RNA-Sequencing

    PubMed Central

    Renaud, Helen J.; Cui, Yue Julia; Lu, Hong; Zhong, Xiao-bo; Klaassen, Curtis D.

    2014-01-01

    The liver plays a central role in metabolic homeostasis by coordinating synthesis, storage, breakdown, and redistribution of nutrients. Hepatic energy metabolism is dynamically regulated throughout different life stages due to different demands for energy during growth and development. However, changes in gene expression patterns throughout ontogeny for factors important in hepatic energy metabolism are not well understood. We performed detailed transcript analysis of energy metabolism genes during various stages of liver development in mice. Livers from male C57BL/6J mice were collected at twelve ages, including perinatal and postnatal time points (n = 3/age). The mRNA was quantified by RNA-Sequencing, with transcript abundance estimated by Cufflinks. One thousand sixty energy metabolism genes were examined; 794 were above detection, of which 627 were significantly changed during at least one developmental age compared to adult liver. Two-way hierarchical clustering revealed three major clusters dependent on age: GD17.5–Day 5 (perinatal-enriched), Day 10–Day 20 (pre-weaning-enriched), and Day 25–Day 60 (adolescence/adulthood-enriched). Clustering analysis of cumulative mRNA expression values for individual pathways of energy metabolism revealed three patterns of enrichment: glycolysis, ketogenesis, and glycogenesis were all perinatally-enriched; glycogenolysis was the only pathway enriched during pre-weaning ages; whereas lipid droplet metabolism, cholesterol and bile acid metabolism, gluconeogenesis, and lipid metabolism were all enriched in adolescence/adulthood. This study reveals novel findings such as the divergent expression of the fatty acid β-oxidation enzymes Acyl-CoA oxidase 1 and Carnitine palmitoyltransferase 1a, indicating a switch from mitochondrial to peroxisomal β-oxidation after weaning; as well as the dynamic ontogeny of genes implicated in obesity such as Stearoyl-CoA desaturase 1 and Elongation of very long chain fatty acids-like 3

  8. Reprogramming of energy metabolism as a driver of aging

    PubMed Central

    Feng, Zhaoyang; Berger, Nathan A.; Trubitsyn, Alexander

    2016-01-01

    Aging is characterized by progressive loss of cellular function and integrity. It has been thought to be driven by stochastic molecular damage. However, genetic and environmental maneuvers enhancing mitochondrial function or inhibiting glycolysis extend lifespan and promote healthy aging in many species. In post-fertile Caenorhabditis elegans, a progressive decline in phosphoenolpyruvate carboxykinase with age, and a reciprocal increase in pyruvate kinase shunt energy metabolism from oxidative metabolism to anaerobic glycolysis. This reduces the efficiency and total of energy generation. As a result, energy-dependent physical activity and other cellular functions decrease due to unmatched energy demand and supply. In return, decrease in physical activity accelerates this metabolic shift, forming a vicious cycle. This metabolic event is a determinant of aging, and is retarded by caloric restriction to counteract aging. In this review, we summarize these and other evidence supporting the idea that metabolic reprogramming is a driver of aging. We also suggest strategies to test this hypothesis PMID:26919253

  9. Reprogramming of energy metabolism as a driver of aging.

    PubMed

    Feng, Zhaoyang; Hanson, Richard W; Berger, Nathan A; Trubitsyn, Alexander

    2016-03-29

    Aging is characterized by progressive loss of cellular function and integrity. It has been thought to be driven by stochastic molecular damage. However, genetic and environmental maneuvers enhancing mitochondrial function or inhibiting glycolysis extend lifespan and promote healthy aging in many species. In post-fertile Caenorhabditis elegans, a progressive decline in phosphoenolpyruvate carboxykinase with age, and a reciprocal increase in pyruvate kinase shunt energy metabolism from oxidative metabolism to anaerobic glycolysis. This reduces the efficiency and total of energy generation. As a result, energy-dependent physical activity and other cellular functions decrease due to unmatched energy demand and supply. In return, decrease in physical activity accelerates this metabolic shift, forming a vicious cycle. This metabolic event is a determinant of aging, and is retarded by caloric restriction to counteract aging. In this review, we summarize these and other evidence supporting the idea that metabolic reprogramming is a driver of aging. We also suggest strategies to test this hypothesis. PMID:26919253

  10. The metabolism of aromatic acids by micro-organisms. Metabolic pathways in the fungi

    PubMed Central

    Cain, R. B.; Bilton, R. F.; Darrah, Josephine A.

    1968-01-01

    1. The metabolic pathways of aromatic-ring fission were examined in a range of fungal genera that utilize several compounds related to lignin. 2. Most of the genera, after growth on p-hydroxybenzoate, protocatechuate or compounds that are degraded to the latter (e.g. caffeate, ferulate or vanillate), rapidly oxidized these compounds, but not catechol. 3. Such genera possessed a protocatechuate 3,4-oxygenase and accumulated β-carboxymuconate as the product of protocatechuate oxidation. This enzyme had a high pH optimum in most organisms; the Rhodotorula enzyme was competitively inhibited by catechol. 4. β-Carboxymuconate was converted by all competent fungi into β-carboxymuconolactone, which was isolated and characterized. None of the fungi produced or utilized at significant rates the corresponding bacterial intermediate γ-carboxymuconolactone. 5. The lactonizing enzymes of Rhodotorula and Neurospora crassa had a pH optimum near 5·5 and approximate molecular weights of 19000 and 190000 respectively. 6. The fungi did not degrade the isomeric (+)-muconolactone, γ-carboxymethylenebutanolide or β-oxoadipate enol lactone at significant rates, and thus differ radically from bacteria, where β-oxoadipate enol lactone is the precursor of β-oxoadipate in all strains examined. 7. The end product of β-carboxymuconolactone metabolism by extracts was β-oxoadipate. 8. Evidence for a coenzyme A derivative of β-oxoadipate was found during further metabolism of this keto acid. 9. A few anomalous fungi, after growth on p-hydroxybenzoate, had no protocatechuate 3,4-oxygenase, but possessed all the enzymes of the catechol pathway. Catechol was detected in the growth medium in one instance. 10. A strain of Penicillium sp. formed pyruvate but no β-oxoadipate from protocatechuate, suggesting the existence also of a `meta' type of ring cleavage among fungi. PMID:5691754

  11. Obesity and cancer progression: is there a role of fatty acid metabolism?

    PubMed

    Balaban, Seher; Lee, Lisa S; Schreuder, Mark; Hoy, Andrew J

    2015-01-01

    Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression. PMID:25866768

  12. Obesity and Cancer Progression: Is There a Role of Fatty Acid Metabolism?

    PubMed Central

    Balaban, Seher; Lee, Lisa S.; Schreuder, Mark; Hoy, Andrew J.

    2015-01-01

    Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression. PMID:25866768

  13. Targeting amino acid metabolism in cancer growth and anti-tumor immune response

    PubMed Central

    Ananieva, Elitsa

    2015-01-01

    Recent advances in amino acid metabolism have revealed that targeting amino acid metabolic enzymes in cancer therapy is a promising strategy for the development of novel therapeutic agents. There are currently several drugs in clinical trials that specifically target amino acid metabolic pathways in tumor cells. In the context of the tumor microenvironment, however, tumor cells form metabolic relationships with immune cells, and they often compete for common nutrients. Many tumors evolved to escape immune surveillance by taking advantage of their metabolic flexibility and redirecting nutrients for their own advantage. This review outlines the most recent advances in targeting amino acid metabolic pathways in cancer therapy while giving consideration to the impact these pathways may have on the anti-tumor immune response. PMID:26629311

  14. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids.

    PubMed

    Mourtzakis, Marina; Saltin, Bengt; Graham, Terry; Pilegaard, Henriette

    2006-06-01

    During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline in pyruvate production could affect tricarboxycylic acid cycle flux as well as gluconeogenesis. To enhance our understanding of these interactions, we studied the time course of changes in substrate utilization in six men who cycled at 44+/-1% peak oxygen consumption (mean+/-SE) until exhaustion (exhaustion at 3 h 23 min+/-11 min). Femoral arterial and venous blood, blood flow measurements, and muscle samples were obtained hourly during exercise and recovery (3 h). Carbohydrate oxidation peaked at 30 min of exercise and subsequently decreased for the remainder of the exercise bout (P<0.05). PDH activity peaked at 2 h of exercise, whereas pyruvate production peaked at 1 h of exercise and was reduced (approximately 30%) thereafter, suggesting that pyruvate availability primarily accounted for reduced carbohydrate oxidation. Increased free fatty acid uptake (P<0.05) was also associated with decreasing PDH activity (P<0.05) and increased PDH kinase 4 mRNA (P<0.05) during exercise and recovery. At 1 h of exercise, pyruvate production was greatest and was closely linked to glutamate, which was the predominant amino acid taken up during exercise and recovery. Alanine and glutamine were also associated with pyruvate metabolism, and they comprised approximately 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism in early exercise. PMID:16424076

  15. Metabolomics revealed diurnal heat stress and zinc supplementation-induced changes in amino acid, lipid, and microbial metabolism.

    PubMed

    Wang, Lei; Urriola, Pedro E; Luo, Zhao-Hui; Rambo, Zachary J; Wilson, Mark E; Torrison, Jerry L; Shurson, Gerald C; Chen, Chi

    2016-01-01

    Heat stress (HS) dramatically disrupts the events in energy and nutrient metabolism, many of which requires zinc (Zn) as a cofactor. In this study, metabolic effects of HS and Zn supplementation were evaluated by examining growth performance, blood chemistry, and metabolomes of crossbred gilts fed with ZnNeg (no Zn supplementation), ZnIO (120 ppm ZnSO4), or ZnAA (60 ppm ZnSO4 + 60 ppm zinc amino acid complex) diets under diurnal HS or thermal-neutral (TN) condition. The results showed that growth performance was reduced by HS but not by Zn supplementation. Among measured serum biochemicals, HS was found to increase creatinine but decrease blood urea nitrogen (BUN) level. Metabolomic analysis indicated that HS greatly affected diverse metabolites associated with amino acid, lipid, and microbial metabolism, including urea cycle metabolites, essential amino acids, phospholipids, medium-chain dicarboxylic acids, fatty acid amides, and secondary bile acids. More importantly, many changes in these metabolite markers were correlated with both acute and adaptive responses to HS. Relative to HS-induced metabolic effects, Zn supplementation-associated effects were much more limited. A prominent observation was that ZnIO diet, potentially through its influences on microbial metabolism, yielded different responses to HS compared with two other diets, which included higher levels of short-chain fatty acids (SCFAs) in cecal fluid and higher levels of lysine in the liver and feces. Overall, comprehensive metabolomic analysis identified novel metabolite markers associated with HS and Zn supplementation, which could guide further investigation on the mechanisms of these metabolic effects. PMID:26755737

  16. Modulation of fatty acid metabolism is involved in the alleviation of isoproterenol-induced rat heart failure by fenofibrate.

    PubMed

    Li, Ping; Luo, Shike; Pan, Chunji; Cheng, Xiaoshu

    2015-12-01

    Heart failure is a disease predominantly caused by an energy metabolic disorder in cardiomyocytes. The present study investigated the inhibitory effects of fenofibrate (FF) on isoproterenol (ISO)‑induced hear failure in rats, and examined the underlying mechanisms. The rats were divided into CON, ISO (HF model), FF and FF+ISO (HF animals pretreated with FF) groups. The cardiac structure and function of the rats were assessed, and contents of free fatty acids and glucose metabolic products were determined. In addition, myocardial cells were isolated from neonatal rats and used in vitro to investigate the mechanisms by which FF relieves heart failure. Western blot analysis was performed to quantify the expression levels of peroxisome proliferator‑activated receptor (PPAR)α and uncoupling protein 2 (UCP2). FF effectively alleviated the ISO‑induced cardiac structural damage, functional decline, and fatty acid and carbohydrate metabolic abnormalities. Compared with the ISO group, the serum levels of brain natriuretic peptide (BNP), free fatty acids, lactic acid and pyruvic acid were decreased in the FF animals. In the cultured myocardial cells, lactic acid and pyruvic acid contents were lower in the supernatants obtained from the FF animals, with lower levels of mitochondrial ROS production and cell necrosis, compared with the ISO group, whereas PPARα upregulation and UCP2 downregulation occurred in the FF+ISO group. The results demonstrated that FF efficiently alleviated heart failure in the ISO‑induced rat model, possibly via promoting fatty acid oxidation. PMID:26497978

  17. Metabolism of nonesterified and esterified hydroxycinnamic acids in red wines by Brettanomyces bruxellensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While Brettanomyces can metabolize non–esterified hydroxycinnamic acids found in grape musts/wines (caffeic, p–coumaric, and ferulic acids), it was not known whether this yeast could utilize the corresponding tartaric acid esters (caftaric, p–coutaric, and fertaric acids, respectively). Red wines fr...

  18. Effect of abscisic acid on the linoleic acid metabolism in developing maize embryos

    SciTech Connect

    Abian, J.; Gelpi, E.; Pages, M. )

    1991-04-01

    Partially purified protein extracts from maize (Zea mays L.) embryos, whether treated or not with abscisic acid (ABA), were incubated with linoleic acid (LA) and 1-({sup 14}C)LA. The resulting LA metabolites were monitored by high performance liquid chromatography with a radioactivity detector and identified by gas chromatography-mass spectrometry. {alpha}- and {gamma}-ketol metabolites arising from 9-lipoxygenase activity were the more abundant compounds detected in the incubates, although the corresponding metabolites produced by 13-lipoxygenase were also present in the samples. In addition, a group of stereoisomers originating form two isomeric trihydroxy acids (9,12,13-trihydroxy-10-octadecenoic and 9,10,13-trihydroxy-11-octadecenoic acids) are described. Important variations in the relative proportions of the LA metabolites were observed depending on the embryo developmental stage and on ABA treatment. Two new ABA-induced compounds have been detected. These compounds are present in embryos at all developmental stages, being more abundant in old (60 days) embryos. Furthermore, ABA induction of these compounds is maximum at very young development stages, decreasing as maturation progresses. A tentative structure for these compounds (10-oxo-9,13-dihydroxy-11-octadecenoic acid and 12-oxo-9,13-dihydroxy-10-octadecenoic acid) is also provided. This study revealed an early stage in maize embryogenesis characterized by a higher relative sensitivity to ABA. The physiological importance of ABA on LA metabolism is discussed.

  19. Retrobiosynthetic nuclear magnetic resonance analysis of amino acid biosynthesis and intermediary metabolism. Metabolic flux in developing maize kernels.

    PubMed

    Glawischnig, E; Gierl, A; Tomas, A; Bacher, A; Eisenreich, W

    2001-03-01

    Information on metabolic networks could provide the basis for the design of targets for metabolic engineering. To study metabolic flux in cereals, developing maize (Zea mays) kernels were grown in sterile culture on medium containing [U-(13)C(6)]glucose or [1,2-(13)C(2)]acetate. After growth, amino acids, lipids, and sitosterol were isolated from kernels as well as from the cobs, and their (13)C isotopomer compositions were determined by quantitative nuclear magnetic resonance spectroscopy. The highly specific labeling patterns were used to analyze the metabolic pathways leading to amino acids and the triterpene on a quantitative basis. The data show that serine is generated from phosphoglycerate, as well as from glycine. Lysine is formed entirely via the diaminopimelate pathway and sitosterol is synthesized entirely via the mevalonate route. The labeling data of amino acids and sitosterol were used to reconstruct the labeling patterns of key metabolic intermediates (e.g. acetyl-coenzyme A, pyruvate, phosphoenolpyruvate, erythrose 4-phosphate, and Rib 5-phosphate) that revealed quantitative information about carbon flux in the intermediary metabolism of developing maize kernels. Exogenous acetate served as an efficient precursor of sitosterol, as well as of amino acids of the aspartate and glutamate family; in comparison, metabolites formed in the plastidic compartments showed low acetate incorporation. PMID:11244098

  20. Functional Analysis of Free Fatty Acid Receptor GPR120 in Human Eosinophils: Implications in Metabolic Homeostasis

    PubMed Central

    Konno, Yasunori; Ueki, Shigeharu; Takeda, Masahide; Kobayashi, Yoshiki; Tamaki, Mami; Moritoki, Yuki; Oyamada, Hajime; Itoga, Masamichi; Kayaba, Hiroyuki; Omokawa, Ayumi; Hirokawa, Makoto

    2015-01-01

    Recent evidence has shown that eosinophils play an important role in metabolic homeostasis through Th2 cytokine production. GPR120 (FFA4) is a G protein-coupled receptor (GPCR) for long-chain fatty acids that functions as a regulator of physiological energy metabolism. In the present study, we aimed to investigate whether human eosinophils express GPR120 and, if present, whether it possesses a functional capacity on eosinophils. Eosinophils isolated from peripheral venous blood expressed GPR120 at both the mRNA and protein levels. Stimulation with a synthetic GPR120 agonist, GW9508, induced rapid down-regulation of cell surface expression of GPR120, suggesting ligand-dependent receptor internalization. Although GPR120 activation did not induce eosinophil chemotactic response and degranulation, we found that GW9508 inhibited eosinophil spontaneous apoptosis and Fas receptor expression. The anti-apoptotic effect was attenuated by phosphoinositide 3-kinase (PI3K) inhibitors and was associated with inhibition of caspase-3 activity. Eosinophil response investigated using ELISpot assay indicated that stimulation with a GPR120 agonist induced IL-4 secretion. These findings demonstrate the novel functional properties of fatty acid sensor GPR120 on human eosinophils and indicate the previously unrecognized link between nutrient metabolism and the immune system. PMID:25790291

  1. Gallic acid and gallic acid derivatives: effects on drug metabolizing enzymes.

    PubMed

    Ow, Yin-Yin; Stupans, Ieva

    2003-06-01

    Gallic acid and its structurally related compounds are found widely distributed in fruits and plants. Gallic acid, and its catechin derivatives are also present as one of the main phenolic components of both black and green tea. Esters of gallic acid have a diverse range of industrial uses, as antioxidants in food, in cosmetics and in the pharmaceutical industry. In addition, gallic acid is employed as a source material for inks, paints and colour developers. Studies utilising these compounds have found them to possess many potential therapeutic properties including anti-cancer and antimicrobial properties. In this review, studies of the effects of gallic acid, its esters, and gallic acid catechin derivatives on Phase I and Phase II enzymes are examined. Many published reports of the effects of the in vitro effects of gallic acid and its derivatives on drug metabolising enzymes concern effects directly on substrate (generally drug or mutagen) metabolism or indirectly through observed effects in Ames tests. In the case of the Ames test an antimutagenic effect may be observed through inhibition of CYP activation of indirectly acting mutagens and/or by scavenging of metabolically generated mutagenic electrophiles. There has been considerable interest in the in vivo effects of the gallate esters because of their incorporation into foodstuffs as antioxidants and in the catechin gallates with their potential role as chemoprotective agents. Principally an induction of Phase II enzymes has been observed however more recent studies using HepG2 cells and primary cultures of human hepatocytes provide evidence for the overall complexity of actions of individual components versus complex mixtures, such as those in food. Further systematic studies of mechanisms of induction and inhibition of drug metabolising enzymes by this group of compounds are warranted in the light of their distribution and consequent ingestion, current uses and suggested therapeutic potential. However, it

  2. Global Profiling of Protein Lysine Malonylation in Escherichia coli Reveals Its Role in Energy Metabolism.

    PubMed

    Qian, Lili; Nie, Litong; Chen, Ming; Liu, Ping; Zhu, Jun; Zhai, Linhui; Tao, Sheng-Ce; Cheng, Zhongyi; Zhao, Yingming; Tan, Minjia

    2016-06-01

    Protein lysine malonylation is a recently identified post-translational modification (PTM), which is evolutionarily conserved from bacteria to mammals. Although analysis of lysine malonylome in mammalians suggested that this modification was related to energy metabolism, the substrates and biological roles of malonylation in prokaryotes are still poorly understood. In this study, we performed qualitative and quantitative analyses to globally identify lysine malonylation substrates in Escherichia coli. We identified 1745 malonylation sites in 594 proteins in E. coli, representing the first and largest malonylome data set in prokaryotes up to date. Bioinformatic analyses showed that lysine malonylation was significantly enriched in protein translation, energy metabolism pathways and fatty acid biosynthesis, implying the potential roles of protein malonylation in bacterial physiology. Quantitative proteomics by fatty acid synthase inhibition in both auxotrophic and prototrophic E. coli strains revealed that lysine malonylation is closely associated with E. coli fatty acid metabolism. Protein structural analysis and mutagenesis experiment suggested malonylation could impact enzymatic activity of citrate synthase, a key enzyme in citric acid (TCA) cycle. Further comparative analysis among lysine malonylome, succinylome and acetylome data showed that these three modifications could participate in some similar enriched metabolism pathways, but they could also possibly play distinct roles such as in fatty acid synthesis. These data expanded our knowledge of lysine malonylation in prokaryotes, providing a resource for functional study of lysine malonylation in bacteria. PMID:27183143

  3. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals.

    PubMed

    Runguphan, Weerawat; Keasling, Jay D

    2014-01-01

    As the serious effects of global climate change become apparent and access to fossil fuels becomes more limited, metabolic engineers and synthetic biologists are looking towards greener sources for transportation fuels. In recent years, microbial production of high-energy fuels by economically efficient bioprocesses has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we engineered the budding yeast Saccharomyces cerevisiae to produce fatty acid-derived biofuels and chemicals from simple sugars. Specifically, we overexpressed all three fatty acid biosynthesis genes, namely acetyl-CoA carboxylase (ACC1), fatty acid synthase 1 (FAS1) and fatty acid synthase 2 (FAS2), in S. cerevisiae. When coupled to triacylglycerol (TAG) production, the engineered strain accumulated lipid to more than 17% of its dry cell weight, a four-fold improvement over the control strain. Understanding that TAG cannot be used directly as fuels, we also engineered S. cerevisiae to produce drop-in fuels and chemicals. Altering the terminal "converting enzyme" in the engineered strain led to the production of free fatty acids at a titer of approximately 400 mg/L, fatty alcohols at approximately 100mg/L and fatty acid ethyl esters (biodiesel) at approximately 5 mg/L directly from simple sugars. We envision that our approach will provide a scalable, controllable and economic route to this important class of chemicals. PMID:23899824

  4. Vaccenic acid metabolism in the liver of rat and bovine.

    PubMed

    Gruffat, Dominique; De La Torre, Anne; Chardigny, Jean-Michel; Durand, Denys; Loreau, Olivier; Bauchart, Dominique

    2005-03-01

    Hepatic metabolism of vaccenic acid (VA), especially its conversion into CLA, was studied in the bovine (ruminant species that synthesizes CLA) and in the rat (model for non-ruminant) by using the in vitro technique of liver explants. Liver tissue samples were collected from fed animals (5 male Wistar rats and 5 Charolais steers) and incubated at 37 degrees C for 17 h under an atmosphere of 95% O2/5% CO2 in medium supplemented with 0.75 mM of FA mixture and with 55 microM [1-14C]VA. VA uptake was about sixfold lower in bovine than in rat liver slices (P< 0.01). For both species, VA that was oxidized to partial oxidation products represented about 20% of VA incorporated by cells. The chemical structure of VA was not modified in bovine liver cells, whereas in rat liver cells, 3.2% of VA was converted into 16:0 and only 0.33% into CLA. The extent of esterification of VA was similar for both animal species (70-80% of incorporated VA). Secretion of VA as part of VLDL particles was very low and similar in rat and bovine liver (around 0.07% of incorporated VA). In conclusion, characteristics of the hepatic metabolism of VA were similar for rat and bovine animals, the liver not being involved in tissue VA conversion into CLA in spite of its high capacity for FA desaturation especially in the rat. This indicates that endogenous synthesis of CLA should take place exclusively in peripheral tissues. PMID:15957256

  5. Arachidonic acid metabolism in silica-stimulated bovine alveolar macrophages

    SciTech Connect

    Englen, M.D.

    1989-01-01

    The in vitro production of arachidonic acid (AA) metabolites in adherent bovine alveolar macrophages (BAM) incubated with silica was investigated. BAM were pre-labelled with {sup 3}H-AA, and lipid metabolites released into the culture medium were analyzed by high performance liquid chromatography (HPLC). Lactate dehydrogenase (LDH) release was simultaneously assayed to provide an indication of cell injury. Increasing doses of silica selectively stimulated the 5-lipoxygenase pathway of AA metabolism, while cyclooxygenase metabolite output was suppressed. LDH release increased in a linear, dose-dependent fashion over the range of silica doses used. Moreover, within 15 min following addition of a high silica dose, a shift to the production of 5-lipoxygenase metabolites occurred, accompanied by a reduction in cyclooxygenase products. This rapid alteration in AA metabolism preceded cell injury. To examine the relationship between cytotoxicity and AA metabolite release by BAM exposed to silicas with different cytotoxic and fibrogenic activities, BAM were exposed to different doses of DQ-12, Minusil-5, and Sigma silicas, and carbonyl iron beads. The median effective dose (ED{sub 50}) of each particulate to stimulate the release of AA metabolites and LDH was calculated. The ED{sub 50} values for DQ-12, Minusil-5, and Sigma silica showed that the relative cytotoxicities of the different silicas for BAM corresponded to the relative potencies of the silicas to elicit 5-lipoxygenase metabolites from BAM. These results indicate that the cytotoxic, and presumed fibrogenic potential, of a silica is correlated with the potency to stimulate the release of leukotrienes from AM.

  6. Metabolism of Cyclohexane Carboxylic Acid by Alcaligenes Strain W1

    PubMed Central

    Taylor, David G.; Trudgill, Peter W.

    1978-01-01

    Thirty-three microorganisms capable of growth with cyclohexane carboxylate as the sole source of carbon were isolated from mud, water, and soil samples from the Aberystwyth area. Preliminary screening and whole-cell oxidation studies suggested that, with one exception, all of the strains metabolized the growth substrate by beta-oxidation of the coenzyme A ester. This single distinctive strain, able to oxidize rapidly trans-4-hydroxycyclohexane carboxylate, 4-ketocyclohexane carboxylate, p-hydroxybenzoate, and protocatechuate when grown with cyclohexane carboxylate, was classified as a strain of Alcaligenes and given the number W1. Enzymes capable of converting cyclohexane carboxylate to p-hydroxybenzoate were induced by growth with the alicyclic acid and included the first unambiguous specimen of a cyclohexane carboxylate hydroxylase. Because it is a very fragile protein, attempts to stabilize the cyclohexane carboxylate hydroxylase so that a purification procedure could be developed have consistently failed. In limited studies with crude cell extracts, we found that hydroxylation occurred at the 4 position, probably yielding the trans isomer of 4-hydroxycyclohexane carboxylate. Simultaneous measurement of oxygen consumption and reduced nicotinamide adenine dinucleotide oxidation, coupled with an assessment of reactant stoichiometry, showed the enzyme to be a mixed-function oxygenase. Mass spectral analysis enabled the conversion of cyclohexane carboxylate to p-hydroxybenzoate by cell extracts to be established unequivocally, and all of our data were consistent with the pathway: cyclohexane carboxylate → trans-4-hydroxycyclohexane carboxylate → 4-ketocyclohexane carboxylate → p-hydroxybenzoate. The further metabolism of p-hydroxybenzoate proceeded by meta fission and by the oxidative branch of the 2-hydroxy-4-carboxymuconic semialde-hyde-cleaving pathway. PMID:207665

  7. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut.

    PubMed

    Joyce, Susan A; MacSharry, John; Casey, Patrick G; Kinsella, Michael; Murphy, Eileen F; Shanahan, Fergus; Hill, Colin; Gahan, Cormac G M

    2014-05-20

    Alterations in the gastrointestinal microbiota have been implicated in obesity in mice and humans, but the key microbial functions influencing host energy metabolism and adiposity remain to be determined. Despite an increased understanding of the genetic content of the gastrointestinal microbiome, functional analyses of common microbial gene sets are required. We established a controlled expression system for the parallel functional analysis of microbial alleles in the murine gut. Using this approach we show that bacterial bile salt hydrolase (BSH) mediates a microbe-host dialogue that functionally regulates host lipid metabolism and plays a profound role in cholesterol metabolism and weight gain in the host. Expression of cloned BSH enzymes in the gastrointestinal tract of gnotobiotic or conventionally raised mice significantly altered plasma bile acid signatures and regulated transcription of key genes involved in lipid metabolism (Pparγ, Angptl4), cholesterol metabolism (Abcg5/8), gastrointestinal homeostasis (RegIIIγ), and circadian rhythm (Dbp, Per1/2) in the liver or small intestine. High-level expression of BSH in conventionally raised mice resulted in a significant reduction in host weight gain, plasma cholesterol, and liver triglycerides, demonstrating the overall impact of elevated BSH activity on host physiology. In addition, BSH activity in vivo varied according to BSH allele group, indicating that subtle differences in activity can have significant effects on the host. In summary, we demonstrate that bacterial BSH activity significantly impacts the systemic metabolic processes and adiposity in the host and represents a key mechanistic target for the control of obesity and hypercholesterolemia. PMID:24799697

  8. The Gut Microbiota Modulates Energy Metabolism in the Hibernating Brown Bear Ursus arctos.

    PubMed

    Sommer, Felix; Ståhlman, Marcus; Ilkayeva, Olga; Arnemo, Jon M; Kindberg, Jonas; Josefsson, Johan; Newgard, Christopher B; Fröbert, Ole; Bäckhed, Fredrik

    2016-02-23

    Hibernation is an adaptation that helps many animals to conserve energy during food shortage in winter. Brown bears double their fat depots during summer and use these stored lipids during hibernation. Although bears seasonally become obese, they remain metabolically healthy. We analyzed the microbiota of free-ranging brown bears during their active phase and hibernation. Compared to the active phase, hibernation microbiota had reduced diversity, reduced levels of Firmicutes and Actinobacteria, and increased levels of Bacteroidetes. Several metabolites involved in lipid metabolism, including triglycerides, cholesterol, and bile acids, were also affected by hibernation. Transplantation of the bear microbiota from summer and winter to germ-free mice transferred some of the seasonal metabolic features and demonstrated that the summer microbiota promoted adiposity without impairing glucose tolerance, suggesting that seasonal variation in the microbiota may contribute to host energy metabolism in the hibernating brown bear. PMID:26854221

  9. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature

    PubMed Central

    Norambuena, Fernando; Morais, Sofia; Emery, James A.; Turchini, Giovanni M.

    2015-01-01

    Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad–time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature

  10. D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants)

    SciTech Connect

    Loewus, F.A. . Inst. of Biological Chemistry); Seib, P.A. . Dept. of Grain Science and Industry)

    1991-01-01

    The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogs of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.

  11. D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants). Final report

    SciTech Connect

    Loewus, F.A.; Seib, P.A.

    1991-12-31

    The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogs of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.

  12. Analysis of metabolic energy utilization in the Skylab astronauts

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1977-01-01

    Skylab biomedical data regarding man's metabolic processes for extended periods of weightlessness is presented. The data was used in an integrated metabolic balance analysis which included analysis of Skylab water balance, electrolyte balance, evaporative water loss, and body composition. A theoretical analysis of energy utilization in man is presented. The results of the analysis are presented in tabular and graphic format.

  13. Energy metabolism of the developing brain

    SciTech Connect

    Abrams, R.M.; Hutchison, A.A.

    1985-04-01

    Cerebral metabolism in utero and in the neonatal period remains incompletely understood. A major investigative technique uses /sup 14/C deoxyglucose. Species differences, behavioral states and gestational age all have an impact. Hormonal and sensory stimuli have potential influences. The use of this new investigative technique in the human will allow detailed study of the effects of a variety of pathophysiologic events and possibly of drug therapy on cerebral glucose metabolism.

  14. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism.

    PubMed

    Patti, Mary-Elizabeth; Houten, Sander M; Bianco, Antonio C; Bernier, Raquel; Larsen, P Reed; Holst, Jens J; Badman, Michael K; Maratos-Flier, Eleftheria; Mun, Edward C; Pihlajamaki, Jussi; Auwerx, Johan; Goldfine, Allison B

    2009-09-01

    The multifactorial mechanisms promoting weight loss and improved metabolism following Roux-en-Y gastric bypass (GB) surgery remain incompletely understood. Recent rodent studies suggest that bile acids can mediate energy homeostasis by activating the G-protein coupled receptor TGR5 and the type 2 thyroid hormone deiodinase. Altered gastrointestinal anatomy following GB could affect enterohepatic recirculation of bile acids. We assessed whether circulating bile acid concentrations differ in patients who previously underwent GB, which might then contribute to improved metabolic homeostasis. We performed cross-sectional analysis of fasting serum bile acid composition and both fasting and post-meal metabolic variables, in three subject groups: (i) post-GB surgery (n = 9), (ii) without GB matched to preoperative BMI of the index cohort (n = 5), and (iii) without GB matched to current BMI of the index cohort (n = 10). Total serum bile acid concentrations were higher in GB (8.90 +/- 4.84 micromol/l) than in both overweight (3.59 +/- 1.95, P = 0.005, Ov) and severely obese (3.86 +/- 1.51, P = 0.045, MOb). Bile acid subfractions taurochenodeoxycholic, taurodeoxycholic, glycocholic, glycochenodeoxycholic, and glycodeoxycholic acids were all significantly higher in GB compared to Ov (P < 0.05). Total bile acids were inversely correlated with 2-h post-meal glucose (r = -0.59, P < 0.003) and fasting triglycerides (r = -0.40, P = 0.05), and positively correlated with adiponectin (r = -0.48, P < 0.02) and peak glucagon-like peptide-1 (GLP-1) (r = 0.58, P < 0.003). Total bile acids strongly correlated inversely with thyrotropic hormone (TSH) (r = -0.57, P = 0.004). Together, our data suggest that altered bile acid levels and composition may contribute to improved glucose and lipid metabolism in patients who have had GB. PMID:19360006

  15. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish.

    PubMed

    Semova, Ivana; Carten, Juliana D; Stombaugh, Jesse; Mackey, Lantz C; Knight, Rob; Farber, Steven A; Rawls, John F

    2012-09-13

    Regulation of intestinal dietary fat absorption is critical to maintaining energy balance. While intestinal microbiota clearly impact the host's energy balance, their role in intestinal absorption and extraintestinal metabolism of dietary fat is less clear. Using in vivo imaging of fluorescent fatty acid (FA) analogs delivered to gnotobiotic zebrafish hosts, we reveal that microbiota stimulate FA uptake and lipid droplet (LD) formation in the intestinal epithelium and liver. Microbiota increase epithelial LD number in a diet-dependent manner. The presence of food led to the intestinal enrichment of bacteria from the phylum Firmicutes. Diet-enriched Firmicutes and their products were sufficient to increase epithelial LD number, whereas LD size was increased by other bacterial types. Thus, different members of the intestinal microbiota promote FA absorption via distinct mechanisms. Diet-induced alterations in microbiota composition might influence fat absorption, providing mechanistic insight into how microbiota-diet interactions regulate host energy balance. PMID:22980325

  16. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish

    PubMed Central

    Semova, Ivana; Carten, Juliana D.; Stombaugh, Jesse; Mackey, Lantz C.; Knight, Rob; Farber, Steven A.; Rawls, John F.

    2012-01-01

    SUMMARY Regulation of intestinal dietary fat absorption is critical to maintaining energy balance. While intestinal microbiota clearly impact the host’s energy balance, their role in intestinal absorption and extra-intestinal metabolism of dietary fat is less clear. Using in vivo imaging of fluorescent fatty acid (FA) analogs delivered to gnotobiotic zebrafish hosts, we reveal that microbiota stimulate FA uptake and lipid droplet (LD) formation in the intestinal epithelium and liver. Microbiota increase epithelial LD number in a diet-dependent manner. The presence of food led to the intestinal enrichment of bacteria from the phylum Firmicutes. Diet-enriched Firmicutes and their products were sufficient to increase epithelial LD number, whereas LD size was increased by other bacterial types. Thus, different members of the intestinal microbiota promote FA absorption via distinct mechanisms. Diet-induced alterations in microbiota composition might influence fat absorption, providing mechanistic insight into how microbiota-diet interactions regulate host energy balance. PMID:22980325

  17. Effect of Selection for High Activity-Related Metabolism on Membrane Phospholipid Fatty Acid Composition in Bank Voles.

    PubMed

    Stawski, Clare; Valencak, Teresa G; Ruf, Thomas; Sadowska, Edyta T; Dheyongera, Geoffrey; Rudolf, Agata; Maiti, Uttaran; Koteja, Paweł

    2015-01-01

    Endothermy, high basal metabolic rates (BMRs), and high locomotor-related metabolism were important steps in the evolution of mammals. It has been proposed that the composition of membrane phospholipid fatty acids plays an important role in energy metabolism and exercise muscle physiology. In particular, the membrane pacemaker theory of metabolism suggests that an increase in cell membrane fatty acid unsaturation would result in an increase in BMR. We aimed to determine whether membrane phospholipid fatty acid composition of heart, liver, and gastrocnemius muscles differed between lines of bank voles selected for high swim-induced aerobic metabolism-which also evolved an increased BMR-and unselected control lines. Proportions of fatty acids significantly differed among the organs: liver was the least unsaturated, whereas the gastrocnemius muscles were most unsaturated. However, fatty acid proportions of the heart and liver did not differ significantly between selected and control lines. In gastrocnemius muscles, significant differences between selection directions were found: compared to control lines, membranes of selected voles were richer in saturated C18:0 and unsaturated C18:2n-6 and C18:3n-3, whereas the pattern was reversed for saturated C16:0 and unsaturated C20:4n-6. Neither unsaturation index nor other combined indexes of fatty acid proportions differed between lines. Thus, our results do not support the membrane pacemaker hypothesis. However, the differences between selected and control lines in gastrocnemius muscles reflect chain lengths rather than number of double bonds and are probably related to differences in locomotor activity per se rather than to differences in the basal or routine metabolic rate. PMID:26658414

  18. High Production of 3-Hydroxypropionic Acid in Klebsiella pneumoniae by Systematic Optimization of Glycerol Metabolism

    PubMed Central

    Li, Ying; Wang, Xi; Ge, Xizhen; Tian, Pingfang

    2016-01-01

    3-Hydroxypropionic acid (3-HP) is an important platform chemical proposed by the United States Department of Energy. 3-HP can be converted to a series of bulk chemicals. Biological production of 3-HP has made great progress in recent years. However, low yield of 3-HP restricts its commercialization. In this study, systematic optimization was conducted towards high-yield production of 3-HP in Klebsiella pneumoniae. We first investigated appropriate promoters for the key enzyme (aldehyde dehydrogenase, ALDH) in 3-HP biosynthesis, and found that IPTG-inducible tac promoter enabled overexpression of an endogenous ALDH (PuuC) in K. pneumoniae. We optimized the metabolic flux and found that blocking the synthesis of lactic acid and acetic acid significantly increased the production of 3-HP. Additionally, fermentation conditions were optimized and scaled-up cultivation were investigated. The highest 3-HP titer was observed at 83.8 g/L with a high conversion ratio of 54% on substrate glycerol. Furthermore, a flux distribution model of glycerol metabolism in K. pneumoniae was proposed based on in silico analysis. To our knowledge, this is the highest 3-HP production in K. pneumoniae. This work has significantly advanced biological production of 3-HP from renewable carbon sources. PMID:27230116

  19. High Production of 3-Hydroxypropionic Acid in Klebsiella pneumoniae by Systematic Optimization of Glycerol Metabolism.

    PubMed

    Li, Ying; Wang, Xi; Ge, Xizhen; Tian, Pingfang

    2016-01-01

    3-Hydroxypropionic acid (3-HP) is an important platform chemical proposed by the United States Department of Energy. 3-HP can be converted to a series of bulk chemicals. Biological production of 3-HP has made great progress in recent years. However, low yield of 3-HP restricts its commercialization. In this study, systematic optimization was conducted towards high-yield production of 3-HP in Klebsiella pneumoniae. We first investigated appropriate promoters for the key enzyme (aldehyde dehydrogenase, ALDH) in 3-HP biosynthesis, and found that IPTG-inducible tac promoter enabled overexpression of an endogenous ALDH (PuuC) in K. pneumoniae. We optimized the metabolic flux and found that blocking the synthesis of lactic acid and acetic acid significantly increased the production of 3-HP. Additionally, fermentation conditions were optimized and scaled-up cultivation were investigated. The highest 3-HP titer was observed at 83.8 g/L with a high conversion ratio of 54% on substrate glycerol. Furthermore, a flux distribution model of glycerol metabolism in K. pneumoniae was proposed based on in silico analysis. To our knowledge, this is the highest 3-HP production in K. pneumoniae. This work has significantly advanced biological production of 3-HP from renewable carbon sources. PMID:27230116

  20. Insulin resistance is associated with altered amino acid metabolism and adipose tissue dysfunction in normoglycemic women

    PubMed Central

    Wiklund, Petri; Zhang, Xiaobo; Pekkala, Satu; Autio, Reija; Kong, Lingjia; Yang, Yifan; Keinänen-Kiukaanniemi, Sirkka; Alen, Markku; Cheng, Sulin

    2016-01-01

    Insulin resistance is associated adiposity, but the mechanisms are not fully understood. In this study, we aimed to identify early metabolic alterations associated with insulin resistance in normoglycemic women with varying degree of adiposity. One-hundred and ten young and middle-aged women were divided into low and high IR groups based on their median HOMA-IR (0.9 ± 0.4 vs. 2.8 ± 1.2). Body composition was assessed using DXA, skeletal muscle and liver fat by proton magnetic resonance spectroscopy, serum metabolites by nuclear magnetic resonance spectroscopy and adipose tissue and skeletal muscle gene expression by microarrays. High HOMA-IR subjects had higher serum branched-chain amino acid concentrations (BCAA) (p < 0.05 for both). Gene expression analysis of subcutaneous adipose tissue revealed significant down-regulation of genes related to BCAA catabolism and mitochondrial energy metabolism and up-regulation of several inflammation-related pathways in high HOMA-IR subjects (p < 0.05 for all), but no differentially expressed genes in skeletal muscle were found. In conclusion, in normoglycemic women insulin resistance was associated with increased serum BCAA concentrations, down-regulation of mitochondrial energy metabolism and increased expression of inflammation-related genes in the adipose tissue. PMID:27080554

  1. Modelling chronotaxicity of cellular energy metabolism to facilitate the identification of altered metabolic states

    PubMed Central

    Lancaster, Gemma; Suprunenko, Yevhen F.; Jenkins, Kirsten; Stefanovska, Aneta

    2016-01-01

    Altered cellular energy metabolism is a hallmark of many diseases, one notable example being cancer. Here, we focus on the identification of the transition from healthy to abnormal metabolic states. To do this, we study the dynamics of energy production in a cell. Due to the thermodynamic openness of a living cell, the inability to instantaneously match fluctuating supply and demand in energy metabolism results in nonautonomous time-varying oscillatory dynamics. However, such oscillatory dynamics is often neglected and treated as stochastic. Based on experimental evidence of metabolic oscillations, we show that changes in metabolic state can be described robustly by alterations in the chronotaxicity of the corresponding metabolic oscillations, i.e. the ability of an oscillator to resist external perturbations. We also present a method for the identification of chronotaxicity, applicable to general oscillatory signals and, importantly, apply this to real experimental data. Evidence of chronotaxicity was found in glycolytic oscillations in real yeast cells, verifying that chronotaxicity could be used to study transitions between metabolic states. PMID:27483987

  2. Modelling chronotaxicity of cellular energy metabolism to facilitate the identification of altered metabolic states.

    PubMed

    Lancaster, Gemma; Suprunenko, Yevhen F; Jenkins, Kirsten; Stefanovska, Aneta

    2016-01-01

    Altered cellular energy metabolism is a hallmark of many diseases, one notable example being cancer. Here, we focus on the identification of the transition from healthy to abnormal metabolic states. To do this, we study the dynamics of energy production in a cell. Due to the thermodynamic openness of a living cell, the inability to instantaneously match fluctuating supply and demand in energy metabolism results in nonautonomous time-varying oscillatory dynamics. However, such oscillatory dynamics is often neglected and treated as stochastic. Based on experimental evidence of metabolic oscillations, we show that changes in metabolic state can be described robustly by alterations in the chronotaxicity of the corresponding metabolic oscillations, i.e. the ability of an oscillator to resist external perturbations. We also present a method for the identification of chronotaxicity, applicable to general oscillatory signals and, importantly, apply this to real experimental data. Evidence of chronotaxicity was found in glycolytic oscillations in real yeast cells, verifying that chronotaxicity could be used to study transitions between metabolic states. PMID:27483987

  3. Deciphering the link between salicylic acid signaling and sphingolipid metabolism

    PubMed Central

    Sánchez-Rangel, Diana; Rivas-San Vicente, Mariana; de la Torre-Hernández, M. Eugenia; Nájera-Martínez, Manuela; Plasencia, Javier

    2015-01-01

    The field of plant sphingolipid biology has evolved in recent years. Sphingolipids are abundant in cell membranes, and genetic analyses revealed essential roles for these lipids in plant growth, development, and responses to abiotic and biotic stress. Salicylic acid (SA) is a key signaling molecule that is required for induction of defense-related genes and rapid and localized cell death at the site of pathogen infection (hypersensitive response) during incompatible host–pathogen interactions. Conceivably, while levels of SA rapidly increase upon pathogen infection for defense activation, they must be tightly regulated during plant growth and development in the absence of pathogens. Genetic and biochemical evidence suggest that the sphingolipid intermediates, long-chain sphingoid bases, and ceramides, play a role in regulating SA accumulation in plant cells. However, how signals generated from the perturbation of these key sphingolipid intermediates are transduced into the activation of the SA pathway has long remained to be an interesting open question. At least four types of molecules – MAP kinase 6, reactive oxygen species, free calcium, and nitric oxide – could constitute a mechanistic link between sphingolipid metabolism and SA accumulation and signaling. PMID:25806037

  4. Perturbed Energy Metabolism and Neuronal Circuit Dysfunction in Cognitive Impairment

    PubMed Central

    Kapogiannis, Dimitrios; Mattson, Mark P.

    2010-01-01

    Summary Epidemiological, neuropathological and functional neuroimaging evidence implicates global and regional derangements in brain metabolism and energetics in the pathogenesis of cognitive impairment. Nerve cell microcircuits are modified adaptively by excitatory and inhibitory synaptic activity and neurotrophic factors. Aging and Alzheimer’s disease (AD) cause perturbations in cellular energy metabolism, level of excitation/inhibition and neurotrophic factor release that overwhelm compensatory mechanisms and result in neuronal microcircuit and brain network dysfunction. A prolonged positive energy balance impairs the ability of neurons to respond adaptively to oxidative and metabolic stress. Experimental studies in animals demonstrate how derangements related to chronic positive energy balance, such as diabetes, set the stage for accelerated cognitive aging and AD. Therapeutic interventions to allay cognitive dysfunction that target energy metabolism and adaptive stress responses (such as neurotrophin signaling) have shown efficacy in animal models and preliminary studies in humans. PMID:21147038

  5. Fatty acid metabolism and the basis of brown adipose tissue function

    PubMed Central

    Calderon-Dominguez, María; Mir, Joan F.; Fucho, Raquel; Weber, Minéia; Serra, Dolors; Herrero, Laura

    2016-01-01

    ABSTRACT Obesity has reached epidemic proportions, leading to severe associated pathologies such as insulin resistance, cardiovascular disease, cancer and type 2 diabetes. Adipose tissue has become crucial due to its involvement in the pathogenesis of obesity-induced insulin resistance, and traditionally white adipose tissue has captured the most attention. However in the last decade the presence and activity of heat-generating brown adipose tissue (BAT) in adult humans has been rediscovered. BAT decreases with age and in obese and diabetic patients. It has thus attracted strong scientific interest, and any strategy to increase its mass or activity might lead to new therapeutic approaches to obesity and associated metabolic diseases. In this review we highlight the mechanisms of fatty acid uptake, trafficking and oxidation in brown fat thermogenesis. We focus on BAT's morphological and functional characteristics and fatty acid synthesis, storage, oxidation and use as a source of energy. PMID:27386151

  6. Fatty acid metabolism and the basis of brown adipose tissue function.

    PubMed

    Calderon-Dominguez, María; Mir, Joan F; Fucho, Raquel; Weber, Minéia; Serra, Dolors; Herrero, Laura

    2016-01-01

    Obesity has reached epidemic proportions, leading to severe associated pathologies such as insulin resistance, cardiovascular disease, cancer and type 2 diabetes. Adipose tissue has become crucial due to its involvement in the pathogenesis of obesity-induced insulin resistance, and traditionally white adipose tissue has captured the most attention. However in the last decade the presence and activity of heat-generating brown adipose tissue (BAT) in adult humans has been rediscovered. BAT decreases with age and in obese and diabetic patients. It has thus attracted strong scientific interest, and any strategy to increase its mass or activity might lead to new therapeutic approaches to obesity and associated metabolic diseases. In this review we highlight the mechanisms of fatty acid uptake, trafficking and oxidation in brown fat thermogenesis. We focus on BAT's morphological and functional characteristics and fatty acid synthesis, storage, oxidation and use as a source of energy. PMID:27386151

  7. Disorders of Carbohydrate Metabolism

    MedlinePlus

    ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism Carbohydrates are sugars. ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism NOTE: This is ...

  8. Energy Metabolism in a Matched Model of Radiation Resistance for Head and Neck Squamous Cell Cancer

    PubMed Central

    Mims, Jade; Bansal, Nidhi; Bharadwaj, Manish S.; Chen, Xiaofei; Molina, Anthony J.; Tsang, Allen W.; Furdui, Cristina M.

    2015-01-01

    While radiation therapy is commonly used for treating cancer, radiation resistance can limit long-term control of the disease. In this study, we investigated the reprogramming of the energy metabolism in radiosensitive and radioresistant head and neck squamous cell carcinomas (HNSCC) using a preclinical matched model of radiation resistance. Our investigation found that radioresistant rSCC-61 cells: 1. They display increased glucose uptake and decreased fatty acid uptake; 2. They deviate from the classical Warburg effect by diverting the glycolytic flux into the pentose phosphate pathway; 3. They are more dependent on glucose than glutamine metabolism to support growth; 4. They have decreased mitochondrial oxidative phosphorylation; 5. They have enhanced fatty acid biosynthesis by increasing the expression of fatty acid synthase; and 6. They utilize endogenous fatty acids to meet the energy demands for proliferation. Inhibition of fatty acid synthase with orlistat or FASN siRNA resulted in increased cytotoxicity and sensitivity to radiation in rSCC-61 cells. These results demonstrate the potential of combination therapy using radiation and orlistat or other inhibitors of lipid and energy metabolism for treating radiation resistance in HNSCC. PMID:25738895

  9. Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges.

    PubMed

    Abbott, Derek A; Zelle, Rintze M; Pronk, Jack T; van Maris, Antonius J A

    2009-12-01

    To meet the demands of future generations for chemicals and energy and to reduce the environmental footprint of the chemical industry, alternatives for petrochemistry are required. Microbial conversion of renewable feedstocks has a huge potential for cleaner, sustainable industrial production of fuels and chemicals. Microbial production of organic acids is a promising approach for production of chemical building blocks that can replace their petrochemically derived equivalents. Although Saccharomyces cerevisiae does not naturally produce organic acids in large quantities, its robustness, pH tolerance, simple nutrient requirements and long history as an industrial workhorse make it an excellent candidate biocatalyst for such processes. Genetic engineering, along with evolution and selection, has been successfully used to divert carbon from ethanol, the natural endproduct of S. cerevisiae, to pyruvate. Further engineering, which included expression of heterologous enzymes and transporters, yielded strains capable of producing lactate and malate from pyruvate. Besides these metabolic engineering strategies, this review discusses the impact of transport and energetics as well as the tolerance towards these organic acids. In addition to recent progress in engineering S. cerevisiae for organic acid production, the key limitations and challenges are discussed in the context of sustainable industrial production of organic acids from renewable feedstocks. PMID:19566685

  10. Micromanaging metabolism-a role for miRNAs in teleost energy metabolism.

    PubMed

    Mennigen, Jan A

    2016-09-01

    MicroRNAs (miRNAs) are small, non-protein coding RNA sequences, which are found in most eukaryotes. Since their initial discovery, miRNAs have emerged as important regulators of many biological processes. One of the most important processes profoundly regulated by miRNAs is energy metabolism. Traditionally, metabolic functions of miRNAs have been studied in genome-sequenced mammalian organisms, especially the mouse model. However, partially driven by commercial interest in aquaculture, increasingly feasible large-scale molecular techniques have resulted in the characterization of miRNA repertoires, and importantly, several genome sequences of several (commercially important) teleost species, which also hold important roles as research models in the comparative physiology of energy metabolism. This review aims to introduce the recent advances in miRNA research in teleost fish and to describe the current knowledge of miRNA function in teleost energy metabolism. The most pressing research needs and questions to determine metabolic roles of miRNAs in teleost models are presented, as well as applicable technical approaches and current bottlenecks. Rainbow trout, which possess the advantages of newly available molecular tools and a long history as comparative research model in teleost energy metabolism, are discussed as a promising research model to address these questions. PMID:26384523

  11. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*

    PubMed Central

    Carrer, Michele; Liu, Ning; Grueter, Chad E.; Williams, Andrew H.; Frisard, Madlyn I.; Hulver, Matthew W.; Bassel-Duby, Rhonda; Olson, Eric N.

    2012-01-01

    Obesity and metabolic syndrome are associated with mitochondrial dysfunction and deranged regulation of metabolic genes. Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) is a transcriptional coactivator that regulates metabolism and mitochondrial biogenesis through stimulation of nuclear hormone receptors and other transcription factors. We report that the PGC-1β gene encodes two microRNAs (miRNAs), miR-378 and miR-378*, which counterbalance the metabolic actions of PGC-1β. Mice genetically lacking miR-378 and miR-378* are resistant to high-fat diet-induced obesity and exhibit enhanced mitochondrial fatty acid metabolism and elevated oxidative capacity of insulin-target tissues. Among the many targets of these miRNAs, carnitine O-acetyltransferase, a mitochondrial enzyme involved in fatty acid metabolism, and MED13, a component of the Mediator complex that controls nuclear hormone receptor activity, are repressed by miR-378 and miR-378*, respectively, and are elevated in the livers of miR-378/378* KO mice. Consistent with these targets as contributors to the metabolic actions of miR-378 and miR-378*, previous studies have implicated carnitine O-acetyltransferase and MED13 in metabolic syndrome and obesity. Our findings identify miR-378 and miR-378* as integral components of a regulatory circuit that functions under conditions of metabolic stress to control systemic energy homeostasis and the overall oxidative capacity of insulin target tissues. Thus, these miRNAs provide potential targets for pharmacologic intervention in obesity and metabolic syndrome. PMID:22949648

  12. Metabolically inert perfluorinated fatty acids directly activate uncoupling protein 1 in brown-fat mitochondria.

    PubMed

    Shabalina, Irina G; Kalinovich, Anastasia V; Cannon, Barbara; Nedergaard, Jan

    2016-05-01

    The metabolically inert perfluorinated fatty acids perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) can display fatty acid-like activity in biological systems. The uncoupling protein 1 (UCP1) in brown adipose tissue is physiologically (re)activated by fatty acids, including octanoate. This leads to bioenergetically uncoupled energy dissipation (heat production, thermogenesis). We have examined here the possibility that PFOA/PFOS can directly (re)activate UCP1 in isolated mouse brown-fat mitochondria. In wild-type brown-fat mitochondria, PFOS and PFOA overcame GDP-inhibited thermogenesis, leading to increased oxygen consumption and dissipated membrane potential. The absence of this effect in brown-fat mitochondria from UCP1-ablated mice indicated that it occurred through activation of UCP1. A competitive type of inhibition by increased GDP concentrations indicated interaction with the same mechanistic site as that utilized by fatty acids. No effect was observed in heart mitochondria, i.e., in mitochondria without UCP1. The stimulatory effect of PFOA/PFOS was not secondary to non-specific mitochondrial membrane permeabilization or to ROS production. Thus, metabolic effects of perfluorinated fatty acids could include direct brown adipose tissue (UCP1) activation. The possibility that this may lead to unwarranted extra heat production and thus extra utilization of food resources, leading to decreased fitness in mammalian wildlife, is discussed, as well as possible negative effects in humans. However, a possibility to utilize PFOA-/PFOS-like substances for activating UCP1 therapeutically in obesity-prone humans may also be envisaged. PMID:26041126

  13. Sex differences in substrate metabolism and energy homeostasis.

    PubMed

    Cortright, R N; Koves, T R

    2000-08-01

    Females differ remarkably from males in the mechanisms that regulate substrate utilization and energy homeostasis. Females appear to be less affected in terms of growth and loss of body tissues when subjected to chronic periods of negative energy balance. The physiological trade-off appears to be a stronger propensity toward retention of fat mass during times of energy surfeit. The mechanism(s) that account for sex differences in energy metabolism are not known but most likely involve the sex steroids. Recent discoveries in the areas of endocrinology and metabolism may provide new insights into differences in the control of food intake and energy conservation between the sexes. Finally, the study of the mechanism(s) involved in the regulation of skeletal muscle lipid metabolism represents a new frontier in skeletal muscle bioenergetics, and new discoveries may provide further explanations for the observed sex differences in substrate utilization and response(s) to alterations in energy homeostasis. PMID:10953067

  14. Chromatographic analysis of amino and organic acids in physiological fluids to detect inborn errors of metabolism.

    PubMed

    Woontner, Michael; Goodman, Stephen I

    2006-11-01

    This unit describes methods for the preparation of samples for analysis of physiological amino acids and organic acids. Amino acids are analyzed by ion-exchange chromatography using an automated system. Organic acids are analyzed by gas-chromatography/mass spectrometry (GC-MS). Analysis of amino and organic acids is necessary to detect and monitor the treatment of many inborn errors of metabolism. PMID:18428392

  15. Eicosapentaenoic acid modulates fatty acid metabolism and inflammation in Psammomys obesus.

    PubMed

    Atek-Mebarki, Feriel; Hichami, Aziz; Abdoul-Azize, Souleymane; Bitam, Arezki; Koceïr, Elhadj Ahmed; Khan, Naim Akhtar

    2015-02-01

    The desert gerbil, Psammomys obesus, is a unique polygenic animal model of metabolic syndrome (insulin resistance, obesity and type 2 diabetes), and these pathological conditions resemble to those in human beings. In this study, the animals were fed ad libitum either a natural diet (ND) which contained desertic halophile plants or a standard laboratory diet (STD) or a diet which contained eicosapentaenoic acid (EPA), hence, termed as EPA diet (EPAD). In EPAD, 50% of total lipid content was replaced by EPA oil. By employing real-time PCR, we assessed liver expression of key genes involved in fatty acid metabolism such as PPAR-α, SREBP-1c, LXR-α and CHREBP. We also studied the expression of two inflammatory genes, i.e., TNF-α and IL-1β, in liver and adipose tissue of these animals. The STD, considered to be a high caloric diet for this animal, triggered insulin resistance and high lipid levels, along with high hepatic SREBP-1c, LXR-α and CHREBP mRNA expression. TNF-α and IL-1β mRNA were also high in liver of STD fed animals. Feeding EPAD improved plasma glucose, insulin and triacylglycerol levels along with hepatic lipid composition. These observations suggest that EPA exerts beneficial effects in P. obesus. PMID:25528298

  16. Increased Missense Mutation Burden of Fatty Acid Metabolism Related Genes in Nunavik Inuit Population

    PubMed Central

    Zhou, Sirui; Xiong, Lan; Xie, Pingxing; Ambalavanan, Amirthagowri; Bourassa, Cynthia V.; Dionne-Laporte, Alexandre; Spiegelman, Dan; Turcotte Gauthier, Maude; Henrion, Edouard; Diallo, Ousmane; Dion, Patrick A.; Rouleau, Guy A.

    2015-01-01

    Background Nunavik Inuit (northern Quebec, Canada) reside along the arctic coastline where for generations their daily energy intake has mainly been derived from animal fat. Given this particular diet it has been hypothesized that natural selection would lead to population specific allele frequency differences and unique variants in genes related to fatty acid metabolism. A group of genes, namely CPT1A, CPT1B, CPT1C, CPT2, CRAT and CROT, encode for three carnitine acyltransferases that are important for the oxidation of fatty acids, a critical step in their metabolism. Methods Exome sequencing and SNP array genotyping were used to examine the genetic variations in the six genes encoding for the carnitine acyltransferases in 113 Nunavik Inuit individuals. Results Altogether ten missense variants were found in genes CPT1A, CPT1B, CPT1C, CPT2 and CRAT, including three novel variants and one Inuit specific variant CPT1A p.P479L (rs80356779). The latter has the highest frequency (0.955) compared to other Inuit populations. We found that by comparison to Asians or Europeans, the Nunavik Inuit have an increased mutation burden in CPT1A, CPT2 and CRAT; there is also a high level of population differentiation based on carnitine acyltransferase gene variations between Nunavik Inuit and Asians. Conclusion The increased number and frequency of deleterious variants in these fatty acid metabolism genes in Nunavik Inuit may be the result of genetic adaptation to their diet and/or the extremely cold climate. In addition, the identification of these variants may help to understand some of the specific health risks of Nunavik Inuit. PMID:26010953

  17. Influence of Amino Acid Metabolism on Embryonic Stem Cell Function and Differentiation.

    PubMed

    Kilberg, Michael S; Terada, Naohiro; Shan, Jixiu

    2016-07-01

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have promise in regenerative medicine because of their ability to differentiate into all 3 primary germ layers. This review describes recent advances in the understanding of the link between the metabolism of ESCs/iPSCs and their maintenance/differentiation in the cell culture setting, with particular emphasis on amino acid (AA) metabolism. ESCs are endowed with unique metabolic features with regard to energy consumption, metabolite flux through particular pathways, and macromolecular synthesis. Therefore, nutrient availability has a strong influence on stem cell growth, self-renewal, and lineage specification, both in vivo and in vitro. Evidence from several laboratories has documented that self-renewal and differentiation of mouse ESCs are critically dependent on proline metabolism, with downstream metabolites possibly serving as signal molecules. Likewise, catabolism of either threonine (mouse) or methionine (human) is required for growth and differentiation of ESCs because these AAs serve as precursors for donor molecules used in histone methylation and acetylation. Epigenetic mechanisms are recognized as critical steps in differentiation, and AA metabolism in ESCs appears to modulate these epigenetic processes. Recent reports also document that, in vitro, the nutrient composition of the culture medium in which ESCs are differentiated into embryoid bodies can influence lineage specification, leading to enrichment of a specific cell type. Although research designed to direct tissue specification of differentiating embryoid bodies in culture is still in its infancy, early results indicate that manipulation of the nutrient milieu can promote or suppress the formation of specific cell lineages. PMID:27422515

  18. Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate

    PubMed Central

    Rafalski, Victoria A.; Mancini, Elena; Brunet, Anne

    2012-01-01

    Summary Metabolism is influenced by age, food intake, and conditions such as diabetes and obesity. How do physiological or pathological metabolic changes influence stem cells, which are crucial for tissue homeostasis? This Commentary reviews recent evidence that stem cells have different metabolic demands than differentiated cells, and that the molecular mechanisms that control stem cell self-renewal and differentiation are functionally connected to the metabolic state of the cell and the surrounding stem cell niche. Furthermore, we present how energy-sensing signaling molecules and metabolism regulators are implicated in the regulation of stem cell self-renewal and differentiation. Finally, we discuss the emerging literature on the metabolism of induced pluripotent stem cells and how manipulating metabolic pathways might aid cellular reprogramming. Determining how energy metabolism regulates stem cell fate should shed light on the decline in tissue regeneration that occurs during aging and facilitate the development of therapies for degenerative or metabolic diseases. PMID:23420198

  19. Photoperiodism and Crassulacean acid metabolism : II. Relations between leaf aging and photoperiod in Crassulacean acid metabolism induction.

    PubMed

    Brulfert, J; Guerrier, D; Queiroz, O

    1982-05-01

    Measurements of net CO2 exchange, malate accumulation, properties and capacity of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in leaves of different ages of two short-day dependent Crassulacean acid metabolism (CAM) plants (Kalanchoe blossfeldiana v. Poelln. Tom thumb and K. velutina Welw.) show that, in both species: a) young leaves from plants grown under long days display a CO2 exchange pattern typical of C3 plants; b) leaf aging promotes CAM under long-day conditions; c) short-day treatment induces CAM in young leaves to a higher degree than aging under long days; d) at least in K. blossfeldiana, the PEPC form developed with leaf aging under long days and the enzyme form synthetized de novo in young leaves grown under short days were shown to have similar properties. Short days also promote CAM in older leaves though at a lesser extent than in young leaves: The result is that this photoperiodic treatment increases the general level of CAM performance by the whole plant. The physiological meaning of the control of PEPC capacity by photoperiodism could be to afford a precisely timed seasonal increase in CAM potentiality, enabling the plant to immediately optimize its response to the onset of drought periods. PMID:24276160

  20. Impact of metabolism and growth phase on the hydrogen isotopic composition of microbial fatty acids

    PubMed Central

    Heinzelmann, Sandra M.; Villanueva, Laura; Sinke-Schoen, Danielle; Sinninghe Damsté, Jaap S.; Schouten, Stefan; van der Meer, Marcel T. J.

    2015-01-01

    Microorganisms are involved in all elemental cycles and therefore it is important to study their metabolism in the natural environment. A recent technique to investigate this is the hydrogen isotopic composition of microbial fatty acids, i.e., heterotrophic microorganisms produce fatty acids enriched in deuterium (D) while photoautotrophic and chemoautotrophic microorganisms produce fatty acids depleted in D compared to the water in the culture medium (growth water). However, the impact of factors other than metabolism have not been investigated. Here, we evaluate the impact of growth phase compared to metabolism on the hydrogen isotopic composition of fatty acids of different environmentally relevant microorganisms with heterotrophic, photoautotrophic and chemoautotrophic metabolisms. Fatty acids produced by heterotrophs are enriched in D compared to growth water with εlipid/water between 82 and 359‰ when grown on glucose or acetate, respectively. Photoautotrophs (εlipid/water between −149 and −264‰) and chemoautotrophs (εlipid/water between −217 and −275‰) produce fatty acids depleted in D. Fatty acids become, in general, enriched by between 4 and 46‰ with growth phase which is minor compared to the influence of metabolisms. Therefore, the D/H ratio of fatty acids is a promising tool to investigate community metabolisms in nature. PMID:26005437

  1. Novel biomarkers of the metabolism of caffeic acid derivatives in vivo.

    PubMed

    Rechner, A R; Spencer, J P; Kuhnle, G; Hahn, U; Rice-Evans, C A

    2001-06-01

    The purpose of this study was to investigate biomarkers of the bioavailability and metabolism of hydroxycinnamate derivatives through the determination of the pharmacokinetics of their urinary elimination and identification of the metabolites excreted. Coffee was used as a rich source of caffeic acid derivatives and human supplementation was undertaken. The results show a highly significant increase in the excretion of ferulic, isoferulic, dihydroferulic acid (3-(4-hydroxy-3-methoxyphenyl)-propionic acid), and vanillic acid postsupplementation relative to the levels presupplementation. Thus, ferulic, isoferulic, and dihydroferulic acids are specific biomarkers for the bioavailability and metabolism of dietary caffeic acid esters. Isoferulic acid is a unique biomarker as it is not a dietary component, however, dihydroferulic acid may well derive from other flavonoids with a structurally related B-ring. 3-Hydroxyhippuric acid has also been identified as an indicator for bioavailability and metabolism of phenolic compounds, and shows a highly significant excretion increase postsupplementation. The results reveal isoferulic acid (and possibly dihydroferulic acid) as novel markers of caffeoyl quinic acid metabolism. PMID:11368919

  2. Conjugated linoleic acids influence fatty acid metabolism in ovine ruminal epithelial cells.

    PubMed

    Masur, F; Benesch, F; Pfannkuche, H; Fuhrmann, H; Gäbel, G

    2016-04-01

    Conjugated linoleic acids (CLA), particularly cis-9,trans-11 (c9t11) and trans-10,cis-12 (t10c12), are used as feed additives to adapt to constantly increasing demands on the performance of lactating cows. Under these feeding conditions, the rumen wall, and the rumen epithelial cells (REC) in particular, are directly exposed to high amounts of CLA. This study determined the effect of CLA on the fatty acid (FA) metabolism of REC and expression of genes known to be modulated by FA. Cultured REC were incubated with c9t11, t10c12, and the structurally similar FA linoleic acid (LA), oleic acid (OA), and trans-vaccenic acid (TVA) for 48 h at a concentration of 100µM. Cellular FA levels were determined by gas chromatography. Messenger RNA expression levels of stearoyl-CoA desaturase (SCD) and monocarboxylate transporter (MCT) 1 and 4 were quantified by reverse transcription-quantitative PCR. Fatty acid evaluation revealed significant effects of CLA, LA, OA, and TVA on the amount of FA metabolites of β-oxidation and elongation and of metabolites related to desaturation by SCD. The observed changes in FA content point (among others) to the ability of REC to synthesize c9t11 from TVA endogenously. The mRNA expression levels of SCD identified a decrease after CLA, LA, OA, or TVA treatment. In line with the changes in mRNA expression, we found reduced amounts of C16:1n-7 cis-9 and C18:1n-9 cis-9, the main products of SCD. The expression of MCT1 mRNA increased after c9t11 and t10c12 treatment, and CLA c9t11 induced an upregulation of MCT4. Application of peroxisome proliferator-activated receptor (PPAR) α antagonist suggested that activation of PPARα is involved in the changes of MCT1, MCT4, and SCD mRNA expression induced by c9t11. Participation of PPARγ in the changes of MCT1 and SCD mRNA expression was shown by the application of the respective antagonist. The study demonstrates that exposure to CLA affects both FA metabolism and regulatory pathways within REC. PMID

  3. Adaptive changes in amino acid metabolism permit normal longevity in mice consuming a low-carbohydrate ketogenic diet.

    PubMed

    Douris, Nicholas; Melman, Tamar; Pecherer, Jordan M; Pissios, Pavlos; Flier, Jeffrey S; Cantley, Lewis C; Locasale, Jason W; Maratos-Flier, Eleftheria

    2015-10-01

    Ingestion of very low-carbohydrate ketogenic diets (KD) is associated with weight loss, lowering of glucose and insulin levels and improved systemic insulin sensitivity. However, the beneficial effects of long-term feeding have been the subject of debate. We therefore studied the effects of lifelong consumption of this diet in mice. Complete metabolic analyses were performed after 8 and 80weeks on the diet. In addition we performed a serum metabolomic analysis and examined hepatic gene expression. Lifelong consumption of KD had no effect on morbidity or mortality (KD vs. Chow, 676 vs. 630days) despite hepatic steatosis and inflammation in KD mice. The KD fed mice lost weight initially as previously reported (Kennnedy et al., 2007) and remained lighter and had less fat mass; KD consuming mice had higher levels of energy expenditure, improved glucose homeostasis and higher circulating levels of β-hydroxybutyrate and triglycerides than chow-fed controls. Hepatic expression of the critical metabolic regulators including fibroblast growth factor 21 were also higher in KD-fed mice while expression levels of lipogenic enzymes such as stearoyl-CoA desaturase-1 was reduced. Metabolomic analysis revealed compensatory changes in amino acid metabolism, primarily involving down-regulation of catabolic processes, demonstrating that mice eating KD can shift amino acid metabolism to conserve amino acid levels. Long-term KD feeding caused profound and persistent metabolic changes, the majority of which are seen as health promoting, and had no adverse effects on survival in mice. PMID:26170063

  4. Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways.

    PubMed

    Domingos, Sara; Scafidi, Pietro; Cardoso, Vania; Leitao, Antonio E; Di Lorenzo, Rosario; Oliveira, Cristina M; Goulao, Luis F

    2015-01-01

    Understanding abscission is both a biological and an agronomic challenge. Flower abscission induced independently by shade and gibberellic acid (GAc) sprays was monitored in grapevine (Vitis vinifera L.) growing under a soilless greenhouse system during two seasonal growing conditions, in an early and late production cycle. Physiological and metabolic changes triggered by each of the two distinct stimuli were determined. Environmental conditions exerted a significant effect on fruit set as showed by the higher natural drop rate recorded in the late production cycle with respect to the early cycle. Shade and GAc treatments increased the percentage of flower drop compared to the control, and at a similar degree, during the late production cycle. The reduction of leaf gas exchanges under shade conditions was not observed in GAc treated vines. The metabolic profile assessed in samples collected during the late cycle differently affected primary and secondary metabolisms and showed that most of the treatment-resulting variations occurred in opposite trends in inflorescences unbalanced in either hormonal or energy deficit abscission-inducing signals. Particularly concerning carbohydrates metabolism, sucrose, glucose, tricarboxylic acid metabolites and intermediates of the raffinose family oligosaccharides pathway were lower in shaded and higher in GAc samples. Altered oxidative stress remediation mechanisms and indolacetic acid (IAA) concentration were identified as abscission signatures common to both stimuli. According to the global analysis performed, we report that grape flower abscission mechanisms triggered by GAc application and C-starvation are not based on the same metabolic pathways. PMID:26157448

  5. Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways

    PubMed Central

    Domingos, Sara; Scafidi, Pietro; Cardoso, Vania; Leitao, Antonio E.; Di Lorenzo, Rosario; Oliveira, Cristina M.; Goulao, Luis F.

    2015-01-01

    Understanding abscission is both a biological and an agronomic challenge. Flower abscission induced independently by shade and gibberellic acid (GAc) sprays was monitored in grapevine (Vitis vinifera L.) growing under a soilless greenhouse system during two seasonal growing conditions, in an early and late production cycle. Physiological and metabolic changes triggered by each of the two distinct stimuli were determined. Environmental conditions exerted a significant effect on fruit set as showed by the higher natural drop rate recorded in the late production cycle with respect to the early cycle. Shade and GAc treatments increased the percentage of flower drop compared to the control, and at a similar degree, during the late production cycle. The reduction of leaf gas exchanges under shade conditions was not observed in GAc treated vines. The metabolic profile assessed in samples collected during the late cycle differently affected primary and secondary metabolisms and showed that most of the treatment-resulting variations occurred in opposite trends in inflorescences unbalanced in either hormonal or energy deficit abscission-inducing signals. Particularly concerning carbohydrates metabolism, sucrose, glucose, tricarboxylic acid metabolites and intermediates of the raffinose family oligosaccharides pathway were lower in shaded and higher in GAc samples. Altered oxidative stress remediation mechanisms and indolacetic acid (IAA) concentration were identified as abscission signatures common to both stimuli. According to the global analysis performed, we report that grape flower abscission mechanisms triggered by GAc application and C-starvation are not based on the same metabolic pathways. PMID:26157448

  6. Nitrate Acts as a Signal to Induce Organic Acid Metabolism and Repress Starch Metabolism in Tobacco.

    PubMed Central

    Scheible, W. R.; Gonzalez-Fontes, A.; Lauerer, M.; Muller-Rober, B.; Caboche, M.; Stitt, M.

    1997-01-01

    Nia30(145) transformants with very low nitrate reductase activity provide an in vivo screen to identify processes that are regulated by nitrate. Nia30(145) resembles nitrate-limited wild-type plants with respect to growth rate and protein and amino acid content but accumulates large amounts of nitrate when it is grown on high nitrate. The transcripts for nitrate reductase (NR), nitrite reductase, cytosolic glutamine synthetase, and glutamate synthase increased; NR and nitrite reductase activity increased in leaves and roots; and glutamine synthetase activity increased in roots. The transcripts for phosphoenolpyruvate carboxylase, cytosolic pyruvate kinase, citrate synthase, and NADP-isocitrate dehydrogenase increased; phosphoenolpyruvate carboxylase activity increased; and malate, citrate, isocitrate, and [alpha]-oxoglutarate accumulated in leaves and roots. There was a decrease of the ADP-glucose pyrophosphorylase transcript and activity, and starch decreased in the leaves and roots. After adding 12 mM nitrate to nitrate-limited Nia30(145), the transcripts for NR and phosphoenolpyruvate carboxylase increased, and the transcripts for ADP-glucose pyrophosphorylase decreased within 2 and 4 hr, respectively. Starch was remobilized at almost the same rate as in wild-type plants, even though growth was not stimulated in Nia30(145). It is proposed that nitrate acts as a signal to initiate coordinated changes in carbon and nitrogen metabolism. PMID:12237366

  7. An in vitro metabolic system of gut flora and the metabolism of ginsenoside Rg3 and cholic acid.

    PubMed

    Zhao, Chunyan; Sun, Runbin; Cao, Bei; Gu, Shenghua; Zhao, Jieyu; Liu, Linsheng; Wang, Xinwen; Zha, Weibin; Yu, Xiaoyi; Xiao, Wenjing; Mao, Yong; Ge, Chun; Ju, Jiaqi; Aa, Lixiang; Fei, Fei; Ding, Yi; Aa, Jiye; Wang, Guangji

    2014-06-01

    For orally administered drugs, the metabolism of a drug by the gut flora plays an important role in the bioavailability, activation and disposition of the drug in vivo. However, no in vitro system is currently available to evaluate the metabolism of a drug by the gut flora before the drug is absorbed into the body. This paper presents an in vitro metabolic system in an anaerobic environment that could be used to evaluate the metabolism of an endogenous compound, cholic acid, and a xenobiotic compound, ginsenoside Rg3. We showed that the proliferation of the anaerobic bacteria of the gut content of hamsters produced a similar composition of gut flora in a culture medium for yeast to that in vivo. Incubation of ginsenoside Rg3 and cholic acid in the anaerobic in vitro system efficiently produced the metabolites Rh2 and deoxycholic acid, respectively, similar to those seen in the gut content in vivo. In comparison with in vivo analysis, this anaerobic in vitro metabolic system is convenient, reproducible, economic and animal saving, and can easily be applied to assess the transformation and disposition of a drug before it enters into the circulatory system. PMID:23749587

  8. [Consequences of intravesical obstruction on detrusor muscle energy metabolism].

    PubMed

    Dahmani, Laurent; Bruyère, Franck; Ouaki, Frédéric; Pires, Christophe; Irani, Jacques; Doré, Bertrand

    2002-09-01

    Alteration of the emptying function of the bladder observed during the natural history of benign prostatic hyperplasia may be related to a biochemical disorder, more specifically a disorder of energy metabolism. Under conditions of obstruction, the bladder is no longer able to contract effectively as it is unable to produce a sufficient quantity of energy. This energy dysfunction is induced by anaerobic diversion of glucose metabolism. The key element of this disturbance is the mitochondrion. Morphological studies have demonstrated degeneration of this organelle controlling energy metabolism. This intracellular alteration is also reflected by functional changes. Disturbances of the various mitochondrial energy producing cycles appear to be responsible for detrusor dysfunction. Further investigations are necessary, especially clinical studies to corroborate these experimental findings. A better knowledge of the pathophysiology of vesical functional consequences of BPH would allow the use of new therapeutic categories of drugs. PMID:12463112

  9. Crassulacean acid metabolism-cycling in Euphorbia milii

    PubMed Central

    Herrera, Ana

    2013-01-01

    Crassulacean acid metabolism (CAM) occurs in many Euphorbiaceae, particularly Euphorbia, a genus with C3 and C4 species as well. With the aim of contributing to our knowledge of the evolution of CAM in this genus, this study examined the possible occurrence of CAM in Euphorbia milii, a species with leaf succulence and drought tolerance suggestive of this carbon fixation pathway. Leaf anatomy consisted of a palisade parenchyma, a spongy parenchyma and a bundle sheath with chloroplasts, which indicates the possible functioning of C2 photosynthesis. No evidence of nocturnal CO2 fixation was found in plants of E. milii either watered or under drought; watered plants had a low nocturnal respiration rate (R). After 12 days without watering, the photosynthetic rate (PN) decreased 85 % and nocturnal R was nearly zero. Nocturnal H+ accumulation (ΔH+) in watered plants was 18 ± 2 (corresponding to malate) and 18 ± 4 (citrate) μmol H+ (g fresh mass)−1. Respiratory CO2 recycling through acid synthesis contributed to a night-time water saving of 2 and 86 % in watered plants and plants under drought, respectively. Carbon isotopic composition (δ13C) was −25.2 ± 0.7 ‰ in leaves and −24.7 ± 0.1 ‰ in stems. Evidence was found for the operation of weak CAM in E. milii, with statistically significant ΔH+, no nocturnal CO2 uptake and values of δ13C intermediate between C3 and constitutive CAM plants; ΔH+ was apparently attributable to both malate and citrate. The results suggest that daily malate accumulation results from recycling of part of the nocturnal respiratory CO2, which helps explain the occurrence of an intermediate value of leaf δ13C. Euphorbia milii can be considered as a CAM-cycling species. The significance of the operation of CAM-cycling in E. milii lies in water conservation, rather than carbon acquisition. The possible occurrence of C2 photosynthesis merits research. PMID:23596548

  10. Crassulacean acid metabolism-cycling in Euphorbia milii.

    PubMed

    Herrera, Ana

    2013-01-01

    Crassulacean acid metabolism (CAM) occurs in many Euphorbiaceae, particularly Euphorbia, a genus with C3 and C4 species as well. With the aim of contributing to our knowledge of the evolution of CAM in this genus, this study examined the possible occurrence of CAM in Euphorbia milii, a species with leaf succulence and drought tolerance suggestive of this carbon fixation pathway. Leaf anatomy consisted of a palisade parenchyma, a spongy parenchyma and a bundle sheath with chloroplasts, which indicates the possible functioning of C2 photosynthesis. No evidence of nocturnal CO2 fixation was found in plants of E. milii either watered or under drought; watered plants had a low nocturnal respiration rate (R). After 12 days without watering, the photosynthetic rate (P N) decreased 85 % and nocturnal R was nearly zero. Nocturnal H(+) accumulation (ΔH(+)) in watered plants was 18 ± 2 (corresponding to malate) and 18 ± 4 (citrate) μmol H(+) (g fresh mass)(-1). Respiratory CO2 recycling through acid synthesis contributed to a night-time water saving of 2 and 86 % in watered plants and plants under drought, respectively. Carbon isotopic composition (δ(13)C) was -25.2 ± 0.7 ‰ in leaves and -24.7 ± 0.1 ‰ in stems. Evidence was found for the operation of weak CAM in E. milii, with statistically significant ΔH(+), no nocturnal CO2 uptake and values of δ(13)C intermediate between C3 and constitutive CAM plants; ΔH(+) was apparently attributable to both malate and citrate. The results suggest that daily malate accumulation results from recycling of part of the nocturnal respiratory CO2, which helps explain the occurrence of an intermediate value of leaf δ(13)C. Euphorbia milii can be considered as a CAM-cycling species. The significance of the operation of CAM-cycling in E. milii lies in water conservation, rather than carbon acquisition. The possible occurrence of C2 photosynthesis merits research. PMID:23596548

  11. Modulation of fatty acid and bile acid metabolism by PPARα protects against alcoholic liver disease

    PubMed Central

    Li, Heng-Hong; Tyburski, John B.; Wang, Yiwen; Strawn, Steve; Moon, Bo-Hyun; Kallakury, Bhaskar V. S.; Gonzalez, Frank J.; Fornace, Albert J.

    2014-01-01

    Background Chronic alcohol intake affects liver function and causes hepatic pathological changes. It has been shown that peroxisome proliferator-activated receptor α (PPARα)-null mice developed more pronounced hepatic changes than wild type (WT) mice after chronic exposure to a diet containing 4% alcohol. The remarkable similarity between the histopathology of ALD in Ppara-null model and in humans, and the fact that PPARα expression and activity in human liver are less than one-tenth of those in WT mouse liver make Ppara-null a good system to investigate ALD. Methods In this study, the Ppara-null model was used to elucidate the dynamic regulation of PPARα activity during chronic alcohol intake. Hepatic transcriptomic and metabolomic analyses were used to examine alterations of gene expression and metabolites associated with pathological changes. The changes triggered by alcohol consumption on gene expression and metabolites in Ppara-null mice were compared with those in wild-type mice. Results The results showed that in the presence of PPARα, three major metabolic pathways in mitochondria, namely the fatty acid β-oxidation, the tricarboxylic acid cycle (TCA) and the electron transfer chain, were induced in response to two-month alcohol feeding, while these responses were greatly reduced in the absence of PPARα. In line with the transcriptional modulations of these metabolic pathways, lipidomic profiling showed consistent accumulation of triglycerides in Ppara-null mice, a robust increase of hepatic cholic acid and its derivatives, and a strong induction of fibrogenesis genes exclusively in alcohol-fed Ppara-null mice. Conclusions These observations indicate that PPARα plays a protective role to enhance mitochondrial function in response to chronic alcohol consumption by adaptive transcriptional activation and suggest that activation of this nuclear receptor may be of therapeutic value in the treatment of ALD. PMID:24773203

  12. Human Skeletal Muscle Protein Metabolism Responses to Amino Acid Nutrition.

    PubMed

    Mitchell, W Kyle; Wilkinson, Daniel J; Phillips, Bethan E; Lund, Jonathan N; Smith, Kenneth; Atherton, Philip J

    2016-07-01

    Healthy individuals maintain remarkably constant skeletal muscle mass across much of adult life, suggesting the existence of robust homeostatic mechanisms. Muscle exists in dynamic equilibrium whereby the influx of amino acids (AAs) and the resulting increases in muscle protein synthesis (MPS) associated with the intake of dietary proteins cancel out the efflux of AAs from muscle protein breakdown that occurs between meals. Dysregulated proteostasis is evident with aging, especially beyond the sixth decade of life. Women and men aged 75 y lose muscle mass at a rate of ∼0.7% and 1%/y, respectively (sarcopenia), and lose strength 2- to 5-fold faster (dynapenia) as muscle "quality" decreases. Factors contributing to the disruption of an otherwise robust proteostatic system represent targets for potential therapies that promote healthy aging. Understanding age-related impairments in anabolic responses to AAs and identifying strategies to mitigate these factors constitute major areas of interest. Numerous studies have aimed to identify 1) the influence of distinct protein sources on absorption kinetics and muscle anabolism, 2) the latency and time course of MPS responses to protein/AAs, 3) the impacts of protein/AA intake on muscle microvascular recruitment, and 4) the role of certain AAs (e.g., leucine) as signaling molecules, which are able to trigger anabolic pathways in tissues. This review aims to discuss these 4 issues listed, to provide historical and modern perspectives of AAs as modulators of human skeletal muscle protein metabolism, to describe how advances in stable isotope/mass spectrometric approaches and instrumentation have underpinned these advances, and to highlight relevant differences between young adults and older individuals. Whenever possible, observations are based on human studies, with additional consideration of relevant nonhuman studies. PMID:27422520

  13. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    PubMed Central

    2010-01-01

    Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine); we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1) Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2) VeA coordinates the biosynthesis of secondary

  14. Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas--changes in metabolic pathways and thermal response.

    PubMed

    Lannig, Gisela; Eilers, Silke; Pörtner, Hans O; Sokolova, Inna M; Bock, Christian

    2010-01-01

    Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell, synergistic effects of elevated temperature and CO₂-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO₂ levels (partial pressure of CO₂ in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated PCo₂ and 15 °C hemolymph pH fell (pH(e) = 7.1 ± 0.2 (CO₂-group) vs. 7.6 ± 0.1 (control)) and P(e)CO₂ values in hemolymph increased (0.5 ± 0.2 kPa (CO₂-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO₂-incubated oysters ([HCO₃⁻](e) = 1.8 ± 0.3 mM (CO₂-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pH(e) did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO₂-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO₂-incubated group. Investigation in isolated gill cells revealed a similar temperature dependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using ¹H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy

  15. Impact of Ocean Acidification on Energy Metabolism of Oyster, Crassostrea gigas—Changes in Metabolic Pathways and Thermal Response

    PubMed Central

    Lannig, Gisela; Eilers, Silke; Pörtner, Hans O.; Sokolova, Inna M.; Bock, Christian

    2010-01-01

    Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell [1], synergistic effects of elevated temperature and CO2-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO2 levels (partial pressure of CO2 in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated Pco2 and 15 °C hemolymph pH fell (pHe = 7.1 ± 0.2 (CO2-group) vs. 7.6 ± 0.1 (control)) and Peco2 values in hemolymph increased (0.5 ± 0.2 kPa (CO2-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO2-incubated oysters ([HCO− 3]e = 1.8 ± 0.3 mM (CO2-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pHe did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO2-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO2-incubated group. Investigation in isolated gill cells revealed a similar temperaturedependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using 1H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy metabolism in oysters and

  16. Substrate availability regulates energy metabolism via transcriptional mechanism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study investigated the mechanisms by which enhanced substrate availability regulates cardiac metabolism and function. Chronic elevation of intracellular glucose levels were achieved by overexpressing GLUT1 in mouse hearts (TG), while chronic elevation of fatty acids (FA) availability wer...

  17. Effect of dietary Fatty acids on human lipoprotein metabolism: a comprehensive update.

    PubMed

    Ooi, Esther M M; Watts, Gerald F; Ng, Theodore W K; Barrett, P Hugh R

    2015-06-01

    Dyslipidemia is a major risk factor for cardiovascular disease (CVD). Dietary fatty-acid composition regulates lipids and lipoprotein metabolism and may confer CVD benefit. This review updates understanding of the effect of dietary fatty-acids on human lipoprotein metabolism. In elderly participants with hyperlipidemia, high n-3 polyunsaturated fatty-acids (PUFA) consumption diminished hepatic triglyceride-rich lipoprotein (TRL) secretion and enhanced TRL to low-density lipoprotein (LDL) conversion. n-3 PUFA also decreased TRL-apoB-48 concentration by decreasing TRL-apoB-48 secretion. High n-6 PUFA intake decreased very low-density lipoprotein (VLDL) cholesterol and triglyceride concentrations by up-regulating VLDL lipolysis and uptake. In a study of healthy subjects, the intake of saturated fatty-acids with increased palmitic acid at the sn-2 position was associated with decreased postprandial lipemia. Low medium-chain triglyceride may not appreciably alter TRL metabolism. Replacing carbohydrate with monounsaturated fatty-acids increased TRL catabolism. Trans-fatty-acid decreased LDL and enhanced high-density lipoprotein catabolism. Interactions between APOE genotype and n-3 PUFA in regulating lipid responses were also described. The major advances in understanding the effect of dietary fatty-acids on lipoprotein metabolism has centered on n-3 PUFA. This knowledge emphasizes the importance of regulating lipoprotein metabolism as a mode to improve plasma lipids and potentially CVD risk. Additional studies are required to better characterize the cardiometabolic effects of other dietary fatty-acids. PMID:26043038

  18. Plasma free fatty acid metabolism during storage of platelet concentrates for transfusion.

    PubMed

    Cesar, J; DiMinno, G; Alam, I; Silver, M; Murphy, S

    1987-01-01

    New containers allow storage of platelet concentrates (PC) at 22 degrees C for up to 7 days, during which glycolytic and oxidative metabolism is vigorous. Recent evidence suggests that 85 percent of adenosine triphosphate regeneration is based on oxidative metabolism and that substrates other than glucose may be used. Because platelets can oxidize free fatty acids (FFA) as a possible source of energy during storage, the authors studied their availability, distribution, and turnover. Plasma FFA concentration was unchanged after 1 day of PC storage but significantly increased on Days 3, 5, and 7. Platelet-free plasma (PFP) stored under the same conditions as PC demonstrated a progressive increase in FFA, suggesting that some of the FFA accumulating in PC were derived from plasma rather than platelets. Indeed, during PC storage, plasma triglycerides decreased significantly, suggesting that they are a possible source of the increased levels of FFA found on Day 3 and thereafter. Thus, PC have a plasma FFA pool available continuously for oxidation during storage. Studies with radiolabeled palmitate suggested that FFA oxidation by platelets occurs during storage. The current findings show that plasma FFA could be a significant substrate for oxidative metabolism during storage of PC and that the oxidized FFA are replenished at least in part from plasma. These results may allow platelet storage to be improved, particularly in synthetic media. PMID:3629676

  19. Uncoupling of fatty acid and glucose metabolism in malignant lymphoma: a PET study.

    PubMed

    Nuutinen, J; Minn, H; Bergman, J; Haaparanta, M; Ruotasalainen, U; Laine, H; Knuuti, J

    1999-05-01

    Increased use of glucose through glycolysis is characteristic for neoplastic growth while the significance of serum-free fatty acids for regulation of energy metabolism in cancer is poorly understood. We studied whether serum-free fatty acids (FFA) interfere with glycolytic metabolism of lymphoproliferative neoplasms as assessed with 2-F18-fluoro-2-deoxy-D-glucose ([F18]FDG) and positron emission tomography (PET). Twelve patients with newly diagnosed non-Hodgkin's lymphoma (n = 9) or Hodgkin's disease (n = 3) participated in this study before start of oncologic treatment. Each patient underwent two [F18]FDG PET studies within 1 week after overnight fast: once during high fasting serum FFA concentrations and once after reduction of serum FFA by administration of acipimox. Acipimox is a nicotinic acid derivative that inhibits lipolysis in peripheral tissues and induces a striking reduction in circulating FFA concentration. In all cases, dynamic PET imaging over the tumour area was performed for 60 min after injection of [F18]FDG. Both graphical analysis (rMR(FDG)) and single scan approach (SUV) were used to compare tumour uptake of [F18]FDG under high fasting FFA concentrations and after pharmacologically decreased FFA concentrations. Serum FFA concentrations were reduced significantly from 0.92+/-0.42 mmol I(-1)at baseline to 0.26+/-0.31 mmol I(-1) after acipimox administration (P = 0.0003). Plasma glucose, serum insulin and lactate concentrations were similar during both approaches. The retention of glucose analogue [F18]FDG in tumour was similar between baseline and acipimox studies. Median rMR(FDG) of a total of 12 involved lymph nodes in 12 patients was 21.9 micromol 100 g(-1) min(-1) (range 8.7-82.5) at baseline and 20.1 micromol 100 g(-1) min(-1)(range 10.7-81.7) after acipimox. The respective values for median SUV were 7.8 (range 3.6-18.6) and 6.0 (range 4.1-20.2). As expected, [F18]FDG uptake in myocardium was clearly enhanced by acipimox due to reduction of

  20. Induction of Crassulacean Acid Metabolism in the Facultative Halophyte Mesembryanthemum crystallinum by Abscisic Acid 1

    PubMed Central

    Chu, Chun; Dai, Ziyu; Ku, Maurice S. B.; Edwards, Gerald E.

    1990-01-01

    The facultative halophyte, Mesembryanthemum crystallinum, shifts its mode of carbon assimilation from the C3 pathway to Crassulacean acid metabolism (CAM) in response to water stress. In this study, exogenously applied abscisic acid (ABA), at micromolar concentrations, could partially substitute for water stress in induction of CAM in this species. ABA at concentrations of 5 to 10 micromolar, when applied to leaves or to the roots in hydroponic culture or in soil, induced the expression of CAM within days (as indicated by the nocturnal accumulation of total titratable acidity and malate). After applying ABA there was also an increase in phosphoenolpyruvate carboxylase and NADP-malic enzyme activities. The degree and time course of induction by ABA were comparable to those induced by salt and water stress. Electrophoretic analyses of leaf soluble protein indicate that the increases in phosphoenolpyruvate carboxylase activity during the induction by ABA, salt, and water stress are due to an increase in the quantity of the enzyme protein. ABA may be a factor in the stress-induced expression of CAM in M. crystallinum, serving as a functional link between stress and biochemical adaptation. Images Figure 9 PMID:16667587

  1. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    PubMed

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-22

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  2. Metabolic compensation during high energy output in fasting, lactating grey seals (Halichoerus grypus): metabolic ceilings revisited.

    PubMed Central

    Mellish, J A; Iverson, S J; Bowen, W D

    2000-01-01

    Lactation is the most energetically expensive period for female mammals and is associated with some of the highest sustained metabolic rates (SusMR) in vertebrates (reported as total energy throughput). Females typically deal with this energy demand by increasing food intake and the structure of the alimentary tract may act as the central constraint to ceilings on SusMR at about seven times resting or standard metabolic rate (SMR). However, demands of lactation may also be met by using a form of metabolic compensation such as reducing locomotor activities or entering torpor. In some phocid seals, cetaceans and bears, females fast throughout lactation and thus cannot offset the high energetic costs of lactation through increased food intake. We demonstrate that fasting grey seal females sustain, for several weeks, one of the highest total daily energy expenditures (DEE; 7.4 x SMR) reported in mammals, while progressively reducing maintenance metabolic expenditures during lactation through means not explained by reduction in lean body mass or behavioural changes. Simultaneously, the energy-exported in milk is progressively increased, associated with increased lipoprotein lipase activity in the mammary gland, resulting in greater offspring growth. Our results suggest that females use compensatory mechanisms to help meet the extraordinary energetic costs of lactation. Additionally, although the concepts of SusMR and ceilings on total DEE may be somewhat different in fasting lactating species, our data on phocid seals demonstrate that metabolic ceilings on milk energy output, in general, are not constrained by the same kind of peripheral limitations as are other energy-consuming tissues. In phocid seals, the high ceilings on DEE during lactation, coupled with metabolic compensation, are undoubtedly important factors enabling shortened lactation. PMID:10902691

  3. Wnt-Lrp5 Signaling Regulates Fatty Acid Metabolism in the Osteoblast

    PubMed Central

    Frey, Julie L.; Li, Zhu; Ellis, Jessica M.; Zhang, Qian; Farber, Charles R.; Aja, Susan; Wolfgang, Michael J.; Clemens, Thomas L.

    2015-01-01

    The Wnt coreceptors Lrp5 and Lrp6 are essential for normal postnatal bone accrual and osteoblast function. In this study, we identify a previously unrecognized skeletal function unique to Lrp5 that enables osteoblasts to oxidize fatty acids. Mice lacking the Lrp5 coreceptor specifically in osteoblasts and osteocytes exhibit the expected reductions in postnatal bone mass but also exhibit an increase in body fat with corresponding reductions in energy expenditure. Conversely, mice expressing a high bone mass mutant Lrp5 allele are leaner with reduced plasma triglyceride and free fatty acid levels. In this context, Wnt-initiated signals downstream of Lrp5, but not the closely related Lrp6 coreceptor, regulate the activation of β-catenin and thereby induce the expression of key enzymes required for fatty acid β-oxidation. These results suggest that Wnt-Lrp5 signaling regulates basic cellular activities beyond those associated with fate specification and differentiation in bone and that the skeleton influences global energy homeostasis via mechanisms independent of osteocalcin and glucose metabolism. PMID:25802278

  4. How to Do It. Plant Eco-Physiology: Experiments on Crassulacean Acid Metabolism, Using Minimal Equipment.

    ERIC Educational Resources Information Center

    Friend, Douglas J. C.

    1990-01-01

    Features of Crassulacean Acid Metabolism plants are presented. Investigations of a complex eco-physiological plant adaptation to the problems of growth in an arid environment are discussed. Materials and procedures for these investigations are described. (CW)

  5. BIOCONCENTRATION AND METABOLISM OF ALL-TRANS RETINOIC ACID BY RANA SYLVATICA AND RANA CLAMITANS TADPOLES

    EPA Science Inventory

    Retinoids, which are Vitamin A derivatives, are important signaling molecules that regulate processes critical for development in all vertebrates. The objective of our study was to examine uptake and metabolism of all-trans retinoic acid...

  6. Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein

    SciTech Connect

    Shaikh, AfshanS.; Tang, YinjieJ.; Mukhopadhyay, Aindrila; Martin, Hector Garcia; Gin, Jennifer; Benke, Peter; Keasling, Jay D.

    2009-09-14

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  7. Energy metabolism in developing chicken lymphocytes is altered during the embryonic to posthatch transition.

    PubMed

    Rudrappa, Shashidhara G; Humphrey, Brooke D

    2007-02-01

    Adequate energy status in lymphocytes is vital for their development. The ability of developing chicken lymphocytes to acquire and metabolize energy substrates was determined during embryonic days (e) and neonatal days (d) of life when primary-energy substrate metabolism is altered at the whole-animal level. In 3 experiments, bursacytes and thymocytes were isolated on e17, e20, d1, d3, d7, or d14 to analyze markers associated with glucose, glutamine, and lipid metabolism. Bursacyte glucose transporter-3 (Glut-3) mRNA abundance increased from d1 to d14 and hexokinase-1 (HK-1) mRNA abundance was maximum on e20 (P<0.05). Thymocyte Glut-1, Glut-3, and HK-1 mRNA abundance increased from e17 to d14 (P<0.05). HK enzyme activity increased from e20 to d3 in bursacytes and d3 to d7 in thymocytes (P<0.05). Glucose uptake by bursacytes and thymocytes was greater on d14 compared to d1 and d7 (P<0.05). Bursacyte and thymocyte sodium coupled neutral amino acid transporter-2 and glutaminase (GA) mRNA abundance increased from e20 to d7 (P<0.05). GA enzyme activity increased from e20 to d7 in bursacytes (P<0.05) and did not change in thymocytes. Carnitine palmitoyl transferase enzyme activity did not change over time in either cell type. These studies suggest that developing B and T lymphocytes adapt their metabolism during the first 2 wk after hatch. Developing lymphocytes increase glucose metabolism with no change in fatty acid metabolism and bursacytes, but not thymocytes, increase glutamine metabolism. Understanding the factors that regulate lymphocyte development in neonatal chicks may help promote their adaptive immune responses to pathogens in early life. PMID:17237322

  8. Activation of bile acid signaling improves metabolic phenotypes in high-fat diet-induced obese mice.

    PubMed

    Pierre, Joseph F; Martinez, Kristina B; Ye, Honggang; Nadimpalli, Anuradha; Morton, Timothy C; Yang, Jinghui; Wang, Qiang; Patno, Noelle; Chang, Eugene B; Yin, Deng Ping

    2016-08-01

    The metabolic benefits induced by gastric bypass, currently the most effective treatment for morbid obesity, are associated with bile acid (BA) delivery to the distal intestine. However, mechanistic insights into BA signaling in the mediation of metabolic benefits remain an area of study. The bile diversion () mouse model, in which the gallbladder is anastomosed to the distal jejunum, was used to test the specific role of BA in the regulation of glucose and lipid homeostasis. Metabolic phenotype, including body weight and composition, glucose tolerance, energy expenditure, thermogenesis genes, total BA and BA composition in the circulation and portal vein, and gut microbiota were examined. BD improves the metabolic phenotype, which is in accord with increased circulating primary BAs and regulation of enterohormones. BD-induced hypertrophy of the proximal intestine in the absence of BA was reversed by BA oral gavage, but without influencing BD metabolic benefits. BD-enhanced energy expenditure was associated with elevated TGR5, D2, and thermogenic genes, including UCP1, PRDM16, PGC-1α, PGC-1β, and PDGFRα in epididymal white adipose tissue (WAT) and inguinal WAT, but not in brown adipose tissue. BD resulted in an altered gut microbiota profile (i.e., Firmicutes bacteria were decreased, Bacteroidetes were increased, and Akkermansia was positively correlated with higher levels of circulating primary BAs). Our study demonstrates that enhancement of BA signaling regulates glucose and lipid homeostasis, promotes thermogenesis, and modulates the gut microbiota, which collectively resulted in an improved metabolic phenotype. PMID:27340128

  9. Origins of metabolic complications in obesity: adipose tissue and free fatty acid trafficking

    PubMed Central

    Mittendorfer, Bettina

    2013-01-01

    Purpose of review Obesity is associated with a number of serious medical complications that are risk factors for cardiovascular disease (e.g., insulin resistance, dyslipidemia and liver fat accumulation). Alterations in fatty acid trafficking, both between tissues and within cells, represent a key feature in the pathophysiology of the metabolic complications in obese subjects. The ways by which fatty acid “re-routing” may affect metabolic function are summarized in this article. Recent findings Ectopic fat accumulation (i.e., fat accumulation in non-adipose tissues) appears to be a key feature distinguishing metabolically healthy from metabolically abnormal subjects. This observation has led to the believe that an imbalance in fatty acid trafficking away from adipose tissue towards non-adipose tissues is a primary cause for the development of metabolic alterations in obese subjects. More recently, however, it has become apparent that fatty acid trafficking with within non-adipose tissues cells (i.e., towards storage - in the form of triglycerides - and oxidation) may be equally important in determining risk for development of metabolic disease. Summary The pathophysiology of the metabolic alterations associated with obesity is probably multifactorial within a complex network of coordinated physiological responses. Only through the integration of multiple concepts will it be possible to further our understanding in this area and to help prevent the metabolic alterations associated with obesity. PMID:21849896

  10. Modulating the gut flora alters amino acid metabolism in neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intestinal microbes consume and produce amino acids (AA). This may impact intestinal threonine (THR) metabolism necessary for adequate gut function. We hypothesized that modulating the gut flora results in an alteration of intestinal THR utilization and hence whole body AA metabolism. Neonatal pigs ...

  11. Identification and transcriptional profiling of Pseudomonas putida genes involved in furoic acid metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Furfural (2-furaldehyde) is a furan formed by dehydration of pentose sugars. Pseudomonas putida Fu1 metabolizes furfural through a pathway involving conversion to 2-oxoglutarate, via 2-furoic acid and Coenzyme A intermediates. To identify genes involved in furan metabolism, two P. putida transposo...

  12. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism

    PubMed Central

    Park, Hyeong-Kyu; Ahima, Rexford S.

    2014-01-01

    Leptin is secreted by adipose tissue and regulates energy homeostasis, neuroendocrine function, metabolism, immune function and other systems through its effects on the central nervous system and peripheral tissues. Leptin administration has been shown to restore metabolic and neuroendocrine abnormalities in individuals with leptin-deficient states, including hypothalamic amenorrhea and lipoatrophy. In contrast, obese individuals are resistant to leptin. Recombinant leptin is beneficial in patients with congenital leptin deficiency or generalized lipodystrophy. However, further research on molecular mediators of leptin resistance is needed for the development of targeted leptin sensitizing therapies for obesity and related metabolic diseases. PMID:25199978

  13. Genome-wide association studies for fatty acid metabolic traits in five divergent pig populations

    PubMed Central

    Zhang, Wanchang; Bin Yang; Zhang, Junjie; Cui, Leilei; Ma, Junwu; Chen, Congying; Ai, Huashui; Xiao, Shijun; Ren, Jun; Huang, Lusheng

    2016-01-01

    Fatty acid composition profiles are important indicators of meat quality and tasting flavor. Metabolic indices of fatty acids are more authentic to reflect meat nutrition and public acceptance. To investigate the genetic mechanism of fatty acid metabolic indices in pork, we conducted genome-wide association studies (GWAS) for 33 fatty acid metabolic traits in five pig populations. We identified a total of 865 single nucleotide polymorphisms (SNPs), corresponding to 11 genome-wide significant loci on nine chromosomes and 12 suggestive loci on nine chromosomes. Our findings not only confirmed seven previously reported QTL with stronger association strength, but also revealed four novel population-specific loci, showing that investigations on intermediate phenotypes like the metabolic traits of fatty acids can increase the statistical power of GWAS for end-point phenotypes. We proposed a list of candidate genes at the identified loci, including three novel genes (FADS2, SREBF1 and PLA2G7). Further, we constructed the functional networks involving these candidate genes and deduced the potential fatty acid metabolic pathway. These findings advance our understanding of the genetic basis of fatty acid composition in pigs. The results from European hybrid commercial pigs can be immediately transited into breeding practice for beneficial fatty acid composition. PMID:27097669

  14. Genome-wide association studies for fatty acid metabolic traits in five divergent pig populations.

    PubMed

    Zhang, Wanchang; Bin Yang; Zhang, Junjie; Cui, Leilei; Ma, Junwu; Chen, Congying; Ai, Huashui; Xiao, Shijun; Ren, Jun; Huang, Lusheng

    2016-01-01

    Fatty acid composition profiles are important indicators of meat quality and tasting flavor. Metabolic indices of fatty acids are more authentic to reflect meat nutrition and public acceptance. To investigate the genetic mechanism of fatty acid metabolic indices in pork, we conducted genome-wide association studies (GWAS) for 33 fatty acid metabolic traits in five pig populations. We identified a total of 865 single nucleotide polymorphisms (SNPs), corresponding to 11 genome-wide significant loci on nine chromosomes and 12 suggestive loci on nine chromosomes. Our findings not only confirmed seven previously reported QTL with stronger association strength, but also revealed four novel population-specific loci, showing that investigations on intermediate phenotypes like the metabolic traits of fatty acids can increase the statistical power of GWAS for end-point phenotypes. We proposed a list of candidate genes at the identified loci, including three novel genes (FADS2, SREBF1 and PLA2G7). Further, we constructed the functional networks involving these candidate genes and deduced the potential fatty acid metabolic pathway. These findings advance our understanding of the genetic basis of fatty acid composition in pigs. The results from European hybrid commercial pigs can be immediately transited into breeding practice for beneficial fatty acid composition. PMID:27097669

  15. The effect of trinitrobenzene sulfonic acid (TNB) on colonocyte arachidonic acid metabolism.

    PubMed

    Stratton, M D; Sexe, R; Peterson, B; Kaminski, D L; Li, A P; Longo, W E

    1996-02-01

    In previous studies we found that luminal perfusion of the isolated left colon of the rabbit with the hapten, trinitrobenzene, resulted in the production of an acute inflammatory process associated with alterations in eicosanoid metabolism. As the colitis was attenuated by cyclooxygenase inhibitors it is possible that the inflammation was mediated by arachidonic acid metabolites. In the present study it was intended to evaluate the effect of trinitrobenzene on eicosanoid metabolism in transformed human colonic cells by exposing Caco-2++ cells to various doses of trinitrobenzene. Cell injury was evaluated by measuring lactate dehydrogenase levels and cyclooxygenase and lipoxygenase activity was evaluated by measuring prostanoid and leukotriene production. In separate experiments resting and trinitrobenzene stimulated cells were treated with indomethacin and dexamethasone. Trinitrobenzene produced increased prostaglandin E2 and 6-keto prostaglandin F1alpha++ and increased lactate dehydrogenase levels. Leukotriene B4 was significantly increased compared to control values at the highest TNB concentration administered. Indomethacin inhibited the lactate dehydrogenase and prostanoid changes, suggesting that the inflammatory changes produced were mediated by the prostanoids. Dexamethasone administered for 1 hr prior to trinitrobenzene decreased the 6-keto prostaglandin F1alpha but did not alter trinitrobenzene produced changes in lactate dehydrogenase concentrations. Exposure of Caco-2 cells to dexamethasone for 24 hr decreased the trinitrobenzene produced lactate dehydrogenase and eicosanoid changes. The results suggest that trinitrobenzene produces an acute injury to Caco-2 cells that may be mediated by the cyclooxygenase enzymes. PMID:8598672

  16. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption

    PubMed Central

    Xie, Guoxiang; Zhong, Wei; Li, Houkai; Li, Qiong; Qiu, Yunping; Zheng, Xiaojiao; Chen, Huiyuan; Zhao, Xueqing; Zhang, Shucha; Zhou, Zhanxiang; Zeisel, Steven H.; Jia, Wei

    2013-01-01

    Our understanding of the bile acid metabolism is limited by the fact that previous analyses have primarily focused on a selected few circulating bile acids; the bile acid profiles of the liver and gastrointestinal tract pools are rarely investigated. Here, we determined how chronic ethanol consumption altered the bile acids in multiple body compartments (liver, gastrointestinal tract, and serum) of rats. Rats were fed a modified Lieber-DeCarli liquid diet with 38% of calories as ethanol (the amount equivalent of 4–5 drinks in humans). While conjugated bile acids predominated in the liver (98.3%), duodenum (97.8%), and ileum (89.7%), unconjugated bile acids comprised the largest proportion of measured bile acids in serum (81.2%), the cecum (97.7%), and the rectum (97.5%). In particular, taurine-conjugated bile acids were significantly decreased in the liver and gastrointestinal tract of ethanol-treated rats, while unconjugated and glycine-conjugated species increased. Ethanol consumption caused increased expression of genes involved in bile acid biosynthesis, efflux transport, and reduced expression of genes regulating bile acid influx transport in the liver. These results provide an improved understanding of the systemic modulations of bile acid metabolism in mammals through the gut-liver axis.—Xie, G., Zhong, W., Li, H., Li, Q., Qiu, Y., Zheng, X., Chen, H., Zhao, X., Zhang, S., Zhou, Z., Zeisel, S. H., Jia, W. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. PMID:23709616

  17. Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes

    PubMed Central

    Müller, Miklós; Mentel, Marek; van Hellemond, Jaap J.; Henze, Katrin; Woehle, Christian; Gould, Sven B.; Yu, Re-Young; van der Giezen, Mark

    2012-01-01

    Summary: Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified. PMID:22688819

  18. Fatty Acid Biosynthesis Revisited: Structure Elucidation and Metabolic Engineering

    PubMed Central

    Beld, Joris; Lee, D. John

    2014-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases’ many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  19. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering.

    PubMed

    Beld, Joris; Lee, D John; Burkart, Michael D

    2015-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  20. Evolution of energy metabolism and its compartmentation in Kinetoplastida

    PubMed Central

    Hannaert, Véronique; Bringaud, Frédéric; Opperdoes, Fred R; Michels, Paul AM

    2003-01-01

    Kinetoplastida are protozoan organisms that probably diverged early in evolution from other eukaryotes. They are characterized by a number of unique features with respect to their energy and carbohydrate metabolism. These organisms possess peculiar peroxisomes, called glycosomes, which play a central role in this metabolism; the organelles harbour enzymes of several catabolic and anabolic routes, including major parts of the glycolytic and pentosephosphate pathways. The kinetoplastid mitochondrion is also unusual with regard to both its structural and functional properties. In this review, we describe the unique compartmentation of metabolism in Kinetoplastida and the metabolic properties resulting from this compartmentation. We discuss the evidence for our recently proposed hypothesis that a common ancestor of Kinetoplastida and Euglenida acquired a photosynthetic alga as an endosymbiont, contrary to the earlier notion that this event occurred at a later stage of evolution, in the Euglenida lineage alone. The endosymbiont was subsequently lost from the kinetoplastid lineage but, during that process, some of its pathways of energy and carbohydrate metabolism were sequestered in the kinetoplastid peroxisomes, which consequently became glycosomes. The evolution of the kinetoplastid glycosomes and the possible selective advantages of these organelles for Kinetoplastida are discussed. We propose that the possession of glycosomes provided metabolic flexibility that has been important for the organisms to adapt easily to changing environmental conditions. It is likely that metabolic flexibility has been an important selective advantage for many kinetoplastid species during their evolution into the highly successful parasites today found in many divergent taxonomic groups. Also addressed is the evolution of the kinetoplastid mitochondrion, from a supposedly pluripotent organelle, attributed to a single endosymbiotic event that resulted in all mitochondria and

  1. Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in Ralstonia eutropha on short chain fatty acids.

    PubMed

    Yu, Jian; Si, Yingtao

    2004-01-01

    Short chain fatty acids such as acetic, propionic, and butyric acids can be synthesized into polyhydroxyalkanoates (PHAs) by Ralstonia eutropha. Metabolic carbon fluxes of the acids in living cells have significant effect on the yield, composition, and thermomechanical properties of PHA bioplastics. Based on the general knowledge of central metabolism pathways and the unusual metabolic pathways in R. eutropha, a metabolic network of 41 bioreactions is constructed to analyze the carbon fluxes on utilization of the short chain fatty acids. In fed-batch cultures with constant feeding of acid media, carbon metabolism and distribution in R. eutropha were measured involving CO2, PHA biopolymers, and residual cell mass. As the cells underwent unsteady state metabolism and PHA biosynthesis under nitrogen-limited conditions, accumulative carbon balance was applied for pseudo-steady-state analysis of the metabolic carbon fluxes. Cofactor NADP/NADPH balanced between PHA synthesis and the C3/C4 pathway provided an independent constraint for solution of the underdetermined metabolic network. A major portion of propionyl-CoA was directed to pyruvate via the 2-methylcitrate cycle and further decarboxylated to acetyl-CoA. Only a small amount of propionate carbon (<15% carbon) was directly condensed with acetyl-CoA for 3-hydroxyvalerate. The ratio of glyoxylate shunt to TCA cycle varies from 0 to 0.25, depending on the intracellular acetyl-CoA level and acetic acid in the medium. Malate is the node of the C3/C4 pathway and TCA cycle and its decarboxylation to dehydrogenation ranges from 0.33 to 1.28 in response to the demands on NADPH and oxaloacetate for short chain fatty acids utilization. PMID:15296425

  2. The effect of fluid mechanical stress on cellular arachidonic acid metabolism

    NASA Technical Reports Server (NTRS)

    Mcintire, L. V.; Frangos, J. A.; Rhee, B. G.; Eskin, S. G.; Hall, E. R.

    1987-01-01

    The effect of sublytic levels of mechanical perturations of cells on cell metabolism were investigated by analyzing the products of arachidonic acid (used as a marker metabolite) in blood platelets, polymorphonuclear leucocytes, and cultured umbilical-vein endothelial cells after the suspensions of these cells were subjected to a shear stress in a modified viscometer. It is shown that the sublytic levels of mechanical stress stimulated the arachidonic acid metabolism in all these cell types. Possible biological implications of this stress-metabolism coupling are discussed.

  3. Retinoid acid-related orphan receptor γ, RORγ, participates in diurnal transcriptional regulation of lipid metabolic genes

    PubMed Central

    Takeda, Yukimasa; Kang, Hong Soon; Lih, Fred B.; Jiang, Hongfeng; Blaner, William S.; Jetten, Anton M.

    2014-01-01

    The hepatic circadian clock plays a pivotal role in regulating major aspects of energy homeostasis and lipid metabolism. In this study, we show that RORγ robustly regulates the rhythmic expression of several lipid metabolic genes, including the insulin-induced gene 2a, Insig2a, elongation of very long chain fatty acids-like 3, Elovl3 and sterol 12α-hydroxylase, Cyp8b1, by enhancing their expression at ZT20-4. The time-dependent increase in their expression correlates with the rhythmic expression pattern of RORγ. The enhanced recruitment of RORγ to ROREs in their promoter region, increased histone acetylation, and reporter and mutation analysis support the concept that RORγ regulates the transcription of several lipid metabolic genes directly by binding ROREs in their promoter regulatory region. Consistent with the disrupted expression of a number of lipid metabolic genes, loss of RORγ reduced the level of several lipids in liver and blood in a ZT-preferred manner. Particularly the whole-body bile acid pool size was considerably reduced in RORγ−/− mice in part through its regulation of several Cyp genes. Similar observations were made in liver-specific RORγ-deficient mice. Altogether, our study indicates that RORγ functions as an important link between the circadian clock and the transcriptional regulation of several metabolic genes. PMID:25143535

  4. The cyanobacterial amino acid β-N-methylamino-l-alanine perturbs the intermediary metabolism in neonatal rats.

    PubMed

    Engskog, Mikael K R; Karlsson, Oskar; Haglöf, Jakob; Elmsjö, Albert; Brittebo, Eva; Arvidsson, Torbjörn; Pettersson, Curt

    2013-10-01

    The neurotoxic amino acid β-N-methylamino-l-alanine (BMAA) is produced by most cyanobacteria. BMAA is considered as a potential health threat because of its putative role in neurodegenerative diseases. We have previously observed cognitive disturbances and morphological brain changes in adult rodents exposed to BMAA during the development. The aim of this study was to characterize changes of major intermediary metabolites in serum following neonatal exposure to BMAA using a non-targeted metabolomic approach. NMR spectroscopy was used to obtain serum metabolic profiles from neonatal rats exposed to BMAA (40, 150, 460mg/kg) or vehicle on postnatal days 9-10. Multivariate data analysis of binned NMR data indicated metabolic pattern differences between the different treatment groups. In particular five metabolites, d-glucose, lactate, 3-hydroxybutyrate, creatine and acetate, were changed in serum of BMAA-treated neonatal rats. These metabolites are associated with changes in energy metabolism and amino acid metabolism. Further statistical analysis disclosed that all the identified serum metabolites in the lowest dose group were significantly (p<0.05) decreased. The neonatal rat model used in this study is so far the only animal model that displays significant biochemical and behavioral effects after a low short-term dose of BMAA. The demonstrated perturbation of intermediary metabolism may contribute to BMAA-induced developmental changes that result in long-term effects on adult brain function. PMID:23886855

  5. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    NASA Technical Reports Server (NTRS)

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  6. The rabbit pulmonary cytochrome P450 arachidonic acid metabolic pathway: characterization and significance.

    PubMed Central

    Zeldin, D C; Plitman, J D; Kobayashi, J; Miller, R F; Snapper, J R; Falck, J R; Szarek, J L; Philpot, R M; Capdevila, J H

    1995-01-01

    Cytochrome P450 metabolizes arachidonic acid to several unique and biologically active compounds in rabbit liver and kidney. Microsomal fractions prepared from rabbit lung homogenates metabolized arachidonic acid through cytochrome P450 pathways, yielding cis-epoxyeicosatrienoic acids (EETs) and their hydration products, vic-dihydroxyeicosatrienoic acids, mid-chain cis-trans conjugated dienols, and 19- and 20-hydroxyeicosatetraenoic acids. Inhibition studies using polyclonal antibodies prepared against purified CYP2B4 demonstrated 100% inhibition of arachidonic acid epoxide formation. Purified CYP2B4, reconstituted in the presence of NADPH-cytochrome P450 reductase and cytochrome b5, metabolized arachidonic acid, producing primarily EETs. EETs were detected in lung homogenate using gas chromatography/mass spectroscopy, providing evidence for the in vivo pulmonary cytochrome P450 epoxidation of arachidonic acid. Chiral analysis of these lung EETs demonstrated a preference for the 14(R),15(S)-, 11(S),12(R)-, and 8(S),9(R)-EET enantiomers. Both EETs and vic-dihydroxyeicosatrienoic acids were detected in bronchoalveolar lavage fluid. At micromolar concentrations, methylated 5,6-EET and 8,9-EET significantly relaxed histamine-contracted guinea pig hilar bronchi in vitro. In contrast, 20-hydroxyeicosatetraenoic acid caused contraction to near maximal tension. We conclude that CYP2B4, an abundant rabbit lung cytochrome P450 enzyme, is the primary constitutive pulmonary arachidonic acid epoxygenase and that these locally produced, biologically active eicosanoids may be involved in maintaining homeostasis within the lung. Images PMID:7738183

  7. Effects of monocrotaline on energy metabolism in the rat liver.

    PubMed

    Mingatto, Fábio Erminio; Maioli, Marcos Antonio; Bracht, Adelar; Ishii-Iwamoto, Emy Luiza

    2008-11-10

    Monocrotaline (MCT) is a pyrrolizidine alkaloid present in the plants of the Crotalaria species that causes cytotoxicity and genotoxicity in animals and humans, and it is hepatically metabolized to the alkylating agent dehydromonocrotaline by cytochrome P-450. The exact cellular and molecular mechanisms of MCT-induced tissue injury remain unclear. We previously demonstrated that dehydromonocrotaline, but not monocrotaline, inhibits the activity of NADH-dehydrogenase at micromolar concentrations in isolated liver mitochondria, an effect associated with significantly reduced ATP synthesis. Impairment of energy metabolism is expected to lead to several alterations in cell metabolism. In this work, the action of different concentrations of monocrotaline (250, 500, and 750microM) on energy metabolism-linked parameters was investigated in isolated perfused rat livers. In the fed state, monocrotaline increased glycogenolysis and glycolysis, whereas in the livers of fasted rats, it decreased gluconeogenesis and urea synthesis from l-alanine. These metabolic alterations were only found in livers of phenobarbital-treated rats, indicating that active metabolites including dehydromonocrotaline were responsible for the observed activity. Our findings indicate that hepatic metabolic changes may be implicated, partly at least, in the hepatotoxicity of monocrotaline in animals and humans. PMID:18835426

  8. Decreased Consumption of Branched-Chain Amino Acids Improves Metabolic Health.

    PubMed

    Fontana, Luigi; Cummings, Nicole E; Arriola Apelo, Sebastian I; Neuman, Joshua C; Kasza, Ildiko; Schmidt, Brian A; Cava, Edda; Spelta, Francesco; Tosti, Valeria; Syed, Faizan A; Baar, Emma L; Veronese, Nicola; Cottrell, Sara E; Fenske, Rachel J; Bertozzi, Beatrice; Brar, Harpreet K; Pietka, Terri; Bullock, Arnold D; Figenshau, Robert S; Andriole, Gerald L; Merrins, Matthew J; Alexander, Caroline M; Kimple, Michelle E; Lamming, Dudley W

    2016-07-12

    Protein-restricted (PR), high-carbohydrate diets improve metabolic health in rodents, yet the precise dietary components that are responsible for these effects have not been identified. Furthermore, the applicability of these studies to humans is unclear. Here, we demonstrate in a randomized controlled trial that a moderate PR diet also improves markers of metabolic health in humans. Intriguingly, we find that feeding mice a diet specifically reduced in branched-chain amino acids (BCAAs) is sufficient to improve glucose tolerance and body composition equivalently to a PR diet via metabolically distinct pathways. Our results highlight a critical role for dietary quality at the level of amino acids in the maintenance of metabolic health and suggest that diets specifically reduced in BCAAs, or pharmacological interventions in this pathway, may offer a translatable way to achieve many of the metabolic benefits of a PR diet. PMID:27346343

  9. Lysophosphatidic acid synthesis and phospholipid metabolism in rat mast cells

    SciTech Connect

    Fagan, D.L.

    1986-01-01

    The role of lysophosphatidic acid in mast cell response to antigen was investigated using an isolated rat serosal mast cell model. The cells were incubated with monoclonal murine immunoglobulin E to the dinitrophenyl hapten and prelabeled with /sup 32/P-orthophosphate or /sup 3/H-fatty acids. Lysophosphatidic acid was isolated form cell extracts by 2-dimensional thin-layer chromatography, and the incorporated radioactivity was assessed by liquid scintillation counting. Lysophosphatidic acid labeling with /sup 32/P was increased 2-4 fold within 5 minutes after the addition of antigen or three other mast cell agonists. Functional group analyses unequivocally showed that the labeled compound was lysophosphatidic acid. Lysophosphatidic acid synthesis was dependent on the activity of diacylglycerol lipase, suggesting formation from monoacylglycerol. In addition, the studies of lysophosphatidic acid synthesis suggest that the addition of antigen to mast cells may initiate more than one route of phospholipid degradation and resynthesis. Whatever the origin of lysophosphatidic acid, the results of this study demonstrated that lysophosphatidic acid synthesis is stimulated by a variety of mast cell agonists. Dose-response, kinetic, and pharmacologic studies showed close concordance between histamine release and lysophosphatidic acid labeling responses. These observations provide strong evidence that lysophosphatidic acid plays an important role in mast cell activation.

  10. The Energy Metabolism in Caenorhabditis elegans under The Extremely Low-Frequency Electromagnetic Field Exposure

    NASA Astrophysics Data System (ADS)

    Shi, Zhenhua; Yu, Hui; Sun, Yongyan; Yang, Chuanjun; Lian, Huiyong; Cai, Peng

    2015-02-01

    A literal mountain of documentation generated in the past five decades showing unmistakable health hazards associated with extremely low-frequency electromagnetic fields (ELF-EMFs) exposure. However, the relation between energy mechanism and ELF-EMF exposure is poorly understood. In this study, Caenorhabditis elegans was exposed to 50 Hz ELF-EMF at intensities of 0.5, 1, 2, and 3 mT, respectively. Their metabolite variations were analyzed by GC-TOF/MS-based metabolomics. Although minimal metabolic variations and no regular pattern were observed, the contents of energy metabolism-related metabolites such as pyruvic acid, fumaric acid, and L-malic acid were elevated in all the treatments. The expressions of nineteen related genes that encode glycolytic enzymes were analyzed by using quantitative real-time PCR. Only genes encoding GAPDH were significantly upregulated (P < 0.01), and this result was further confirmed by western blot analysis. The enzyme activity of GAPDH was increased (P < 0.01), whereas the total intracellular ATP level was decreased. While no significant difference in lifespan, hatching rate and reproduction, worms exposed to ELF-EMF exhibited less food consumption compared with that of the control (P < 0.01). In conclusion, C. elegans exposed to ELF-EMF have enhanced energy metabolism and restricted dietary, which might contribute to the resistance against exogenous ELF-EMF stress.

  11. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean

    PubMed Central

    Kanobe, Charles; McCarville, Michael T.; O’Neal, Matthew E.; Tylka, Gregory L.; MacIntosh, Gustavo C.

    2015-01-01

    The soybean aphid (Aphis glycines Matsumura) is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of “metabolic hijacking” by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor. PMID:26684003

  12. Energy metabolism of Macaca mulatta during spaceflight

    NASA Technical Reports Server (NTRS)

    Hoban-Higgins, T. M.; Stein, T. P.; Dotsenko, M. A.; Korolkov, V. I.; Fuller, C. A.

    2000-01-01

    The mean daily energy expenditure rates of two rhesus monkeys (Macaca mulatta) were determined during spaceflight on the joint U.S./Russian Bion 11 mission by the doubly labeled water (DLW, 2H218O) method. Control values were obtained from two studies performed under flight-like conditions (n = 4). The mean inflight energy expenditure for the two Bion 11 monkeys was 81.3 kcal/kg/day, which was higher than that seen previously. The average energy expenditure (77.6 +/- 4.4 kcal/kg/day) for the four ground control monkeys was slightly lower than had been measured previously.

  13. Interactions between prebiotics, probiotics, polyunsaturated fatty acids and polyphenols: diet or supplementation for metabolic syndrome prevention?

    PubMed

    Peluso, Ilaria; Romanelli, Luca; Palmery, Maura

    2014-05-01

    The metabolic syndrome can be prevented by the Mediterranean diet, characterized by fiber, omega-3 polyunsaturated fatty acids and polyphenols. However, the composition of the Mediterranean diet, which can be viewed as a natural multiple supplement, is poorly controlled, and its beneficial effects poorly predictable. The metabolic syndrome is associated with intestinal dysbiosis and the gut microbioma seems to be the main target and player in the interactions occurring between probiotics, prebiotics, omega 3 polyunsaturated fatty acids, and polyphenols. From the reviewed evidence, it is reasonable to manage growth and metabolism of gut microflora with specific prebiotics and polyphenols. Even though the healthy properties of functional foods and nutraceuticals still need to be fully elucidated, available data suggest that well-designed supplements, containing the better ratio of omega-3 polyunsaturated fatty acids and antioxidants, specific probiotic strains, and selected polyphenols and prebiotics, could be useful in metabolic syndrome prevention and treatment. PMID:24467635

  14. Carbon and energy metabolism of atp mutants of Escherichia coli.

    PubMed

    Jensen, P R; Michelsen, O

    1992-12-01

    The membrane-bound H(+)-ATPase plays a key role in free-energy transduction of biological systems. We report how the carbon and energy metabolism of Escherichia coli changes in response to deletion of the atp operon that encodes this enzyme. Compared with the isogenic wild-type strain, the growth rate and growth yield were decreased less than expected for a shift from oxidative phosphorylation to glycolysis alone as a source of ATP. Moreover, the respiration rate of a atp deletion strain was increased by 40% compared with the wild-type strain. This result is surprising, since the atp deletion strain is not able to utilize the resulting proton motive force for ATP synthesis. Indeed, the ratio of ATP concentration to ADP concentration was decreased from 19 in the wild type to 7 in the atp mutant, and the membrane potential of the atp deletion strain was increased by 20%, confirming that the respiration rate was not controlled by the magnitude of the opposing membrane potential. The level of type b cytochromes in the mutant cells was 80% higher than the level in the wild-type cells, suggesting that the increased respiration was caused by an increase in the expression of the respiratory genes. The atp deletion strain produced twice as much by-product (acetate) and exhibited increased flow through the tricarboxylic acid cycle and the glycolytic pathway. These three changes all lead to an increase in substrate level phosphorylation; the first two changes also lead to increased production of reducing equivalents. We interpret these data as indicating that E. coli makes use of its ability to respire even if it cannot directly couple this ability to ATP synthesis; by respiring away excess reducing equivalents E. coli enhances substrate level ATP synthesis. PMID:1447134

  15. Carbon and energy metabolism of atp mutants of Escherichia coli.

    PubMed Central

    Jensen, P R; Michelsen, O

    1992-01-01

    The membrane-bound H(+)-ATPase plays a key role in free-energy transduction of biological systems. We report how the carbon and energy metabolism of Escherichia coli changes in response to deletion of the atp operon that encodes this enzyme. Compared with the isogenic wild-type strain, the growth rate and growth yield were decreased less than expected for a shift from oxidative phosphorylation to glycolysis alone as a source of ATP. Moreover, the respiration rate of a atp deletion strain was increased by 40% compared with the wild-type strain. This result is surprising, since the atp deletion strain is not able to utilize the resulting proton motive force for ATP synthesis. Indeed, the ratio of ATP concentration to ADP concentration was decreased from 19 in the wild type to 7 in the atp mutant, and the membrane potential of the atp deletion strain was increased by 20%, confirming that the respiration rate was not controlled by the magnitude of the opposing membrane potential. The level of type b cytochromes in the mutant cells was 80% higher than the level in the wild-type cells, suggesting that the increased respiration was caused by an increase in the expression of the respiratory genes. The atp deletion strain produced twice as much by-product (acetate) and exhibited increased flow through the tricarboxylic acid cycle and the glycolytic pathway. These three changes all lead to an increase in substrate level phosphorylation; the first two changes also lead to increased production of reducing equivalents. We interpret these data as indicating that E. coli makes use of its ability to respire even if it cannot directly couple this ability to ATP synthesis; by respiring away excess reducing equivalents E. coli enhances substrate level ATP synthesis. PMID:1447134

  16. Interactive effect of galanin-like peptide (GALP) and spontaneous exercise on energy metabolism.

    PubMed

    Ito, Kazuo; Kageyama, Haruaki; Hirako, Satoshi; Wang, Lihua; Takenoya, Fumiko; Ogawa, Tetsuro; Shioda, Seiji

    2013-11-01

    Galanin-like peptide (GALP) is a neuropeptide involved in energy metabolism. The interactive effect of GALP and exercise on energy metabolism has not been investigated. The aim of this study was to determine if energy metabolism in spontaneously exercising mice could be promoted by intracerebroventricular (ICV) GALP administration. Changes in respiratory exchange ratio in response to GALP ICV administration indicated that lipids were primarily consumed followed by a continuous consumption of glucose throughout the dark period in non-exercising mice. In mice permitted to spontaneously exercise on a running-wheel, GALP ICV administration increased the consumed oxygen volume and heat production level from 5 to 11h after administration. These effects occurred independently from the total running distance. The interaction between GALP ICV administration and spontaneous exercise decreased body weight within 24h (F(1,16)=5.772, p<0.05), with no significant interaction observed regarding food and water intake or total distance. Energy metabolism-related enzymes were assessed in liver and skeletal muscle samples, with a significant interaction on mRNA expression between GALP ICV administration and spontaneous exercise observed in phosphoenolpyruvate carboxykinase (F(1,16)=18.602, p<0.001) that regulates gluconeogenesis and glucose transporter-4 (F(1,16)=21.092, p<0.001). GALP significantly decreased the mRNA expression of sterol regulatory element-binding protein-1c (p<0.05) that regulates fatty acid synthesis regardless of spontaneous exercise with no changes to acetyl-CoA carboxylase a and fatty acid synthetase. These results indicate the GALP ICV administration can further promote energy metabolism when administered to spontaneously exercising mice. PMID:24055807

  17. The gut microbiota modulates host amino acid and glutathione metabolism in mice.

    PubMed

    Mardinoglu, Adil; Shoaie, Saeed; Bergentall, Mattias; Ghaffari, Pouyan; Zhang, Cheng; Larsson, Erik; Bäckhed, Fredrik; Nielsen, Jens

    2015-10-01

    The gut microbiota has been proposed as an environmental factor that promotes the progression of metabolic diseases. Here, we investigated how the gut microbiota modulates the global metabolic differences in duodenum, jejunum, ileum, colon, liver, and two white adipose tissue depots obtained from conventionally raised (CONV-R) and germ-free (GF) mice using gene expression data and tissue-specific genome-scale metabolic models (GEMs). We created a generic mouse metabolic reaction (MMR) GEM, reconstructed 28 tissue-specific GEMs based on proteomics data, and manually curated GEMs for small intestine, colon, liver, and adipose tissues. We used these functional models to determine the global metabolic differences between CONV-R and GF mice. Based on gene expression data, we found that the gut microbiota affects the host amino acid (AA) metabolism, which leads to modifications in glutathione metabolism. To validate our predictions, we measured the level of AAs and N-acetylated AAs in the hepatic portal vein of CONV-R and GF mice. Finally, we simulated the metabolic differences between the small intestine of the CONV-R and GF mice accounting for the content of the diet and relative gene expression differences. Our analyses revealed that the gut microbiota influences host amino acid and glutathione metabolism in mice. PMID:26475342

  18. The gut microbiota modulates host amino acid and glutathione metabolism in mice

    PubMed Central

    Mardinoglu, Adil; Shoaie, Saeed; Bergentall, Mattias; Ghaffari, Pouyan; Zhang, Cheng; Larsson, Erik; Bäckhed, Fredrik; Nielsen, Jens

    2015-01-01

    The gut microbiota has been proposed as an environmental factor that promotes the progression of metabolic diseases. Here, we investigated how the gut microbiota modulates the global metabolic differences in duodenum, jejunum, ileum, colon, liver, and two white adipose tissue depots obtained from conventionally raised (CONV-R) and germ-free (GF) mice using gene expression data and tissue-specific genome-scale metabolic models (GEMs). We created a generic mouse metabolic reaction (MMR) GEM, reconstructed 28 tissue-specific GEMs based on proteomics data, and manually curated GEMs for small intestine, colon, liver, and adipose tissues. We used these functional models to determine the global metabolic differences between CONV-R and GF mice. Based on gene expression data, we found that the gut microbiota affects the host amino acid (AA) metabolism, which leads to modifications in glutathione metabolism. To validate our predictions, we measured the level of AAs and N-acetylated AAs in the hepatic portal vein of CONV-R and GF mice. Finally, we simulated the metabolic differences between the small intestine of the CONV-R and GF mice accounting for the content of the diet and relative gene expression differences. Our analyses revealed that the gut microbiota influences host amino acid and glutathione metabolism in mice. PMID:26475342

  19. Weight loss is associated with plasma free amino acid alterations in subjects with metabolic syndrome

    PubMed Central

    Tochikubo, O; Nakamura, H; Jinzu, H; Nagao, K; Yoshida, H; Kageyama, N; Miyano, H

    2016-01-01

    Objectives: The prevalence of metabolic syndrome is increasing worldwide, especially in Asian populations. Early detection and effective intervention are vital. Plasma free amino acid profile is a potential biomarker for the early detection for lifestyle-related diseases. However, little is known about whether the altered plasma free amino acid profiles in subjects with metabolic syndrome are related to the effectiveness of dietary and exercise interventions. Methods: Eighty-five Japanese subjects who fulfilled the Japanese diagnostic criteria for metabolic syndrome were enrolled in a 3-month diet and exercise intervention. The plasma free amino acid concentrations and metabolic variables were measured, and the relationships between plasma free amino acid profiles, metabolic variables and the extent of body weight reduction were investigated. Those who lost more than 3% of body weight were compared with those who lost less than 3%. Results: Baseline levels of most amino acids in the subset that went on to lose <3% body weight were markedly lower compared with the counterpart, although both groups showed similar proportional pattern of plasma amino acid profiles. The weight loss induced by the diet and exercise intervention normalized plasma free amino acid profiles. For those with a high degree of weight loss, those changes were also associated with improvement in blood pressure, triglyceride and hemoglobin A1c levels. Conclusions: These data suggest that among Japanese adults meeting the criteria for metabolic syndrome, baseline plasma free amino acid profiles may differ in ways that predict who will be more vs less beneficially responsive to a standard diet and exercise program. Plasma free amino acid profiles may also be useful as markers for monitoring the risks of developing lifestyle-related diseases and measuring improvement in physiological states. PMID:26926588

  20. Intestinal bile acid sensing is linked to key endocrine and metabolic signalng pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bile acids have historically been considered to mainly function in cholesterol homeostasis and facilitate fat digestion in the gastrointestinal tract. Recent discoveries show that bile acids also function as signaling molecules that exert diverse endocrine and metabolic actions by activating G prote...

  1. Red blood cell fatty acid composition and the metabolic syndrome: NHLBI GOLDN study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different fatty acids may vary in their effect on the metabolic syndrome (MetS). We tested whether fatty acid classes measured in red blood cells (RBC) are associated with the MetS or its components. Included were men (n=497, 49+/-16 y) and women (n=539, 48+/-16 y) from 187 families in the Genetics ...

  2. Short term effects of dietary medium-chain fatty acids and n-3 long-chain polyunsaturated fatty acids on the fat metabolism of healthy volunteers

    PubMed Central

    Beermann, Christopher; Jelinek, J; Reinecker, T; Hauenschild, A; Boehm, G; Klör, H-U

    2003-01-01

    Background The amount and quality of dietary fatty acids can modulate the fat metabolism. Objective This dietary intervention is based on the different metabolic pathways of long-chain saturated fatty acids (LCFA), which are mostly stored in adipocytic triacylglycerols, medium-chain fatty acids (MCFA) which are preferentially available for hepatic mitochondrial β-oxidation and n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) suggested to modulate fat oxidation and storage by stimulating the peroxisomal β-oxidation. Combined dietary MCFA and n-3 LCPUFA without LCFA may synergistically stimulate fatty acid oxidation resulting in blood lipid clearance and LCFA release from adipocytes. Design In a short term, parallel, randomized, double-blind trial effects on the fatty acid metabolism of 10 healthy volunteers (Body Mass Index 25–30) of a formula containing 72% MCFA and 22% n-3 LCPUFA without LCFA (intake: 1.500 kcal/day; fat: 55.5% of energy) were measured in comparison to an isoenergetic formula with equal fat amount and LCFA dominated lipid profile. Results The plasma triacylglycerol (p < 0.1) and cholesterol (p < 0.05) content decreased in the test group. The n-3/n-6 LCPUFA (≥ C 20) ratio increased (p < 0.0001) after 4 days treatment. The LCFA content was similar in both groups despite missing LCFA in the test formula indicating LCFA release from adipocytes into the plasma. Both groups significantly reduced body weight considerably 4 kg (p < 0.01) and fat mass up to 50% of weight loss (p < 0.05). Conclusion Combined dietary 72% MCFA and 22% n-3 LCPUFA without LCFA stimulate the fatty acid oxidation and release from adipocytes without affecting any safety parameters measured. PMID:14622442

  3. Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution

    PubMed Central

    Liu, Jianguo; Wang, Qunhui; Zou, Hui; Liu, Yingying; Wang, Juan; Gan, Kemin; Xiang, Juan

    2013-01-01

    The 13C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden–Meyerhof–Parnas (EMP) to produce lactic acid, whereas 36.4% of the glucose entered the pentose phosphate metabolic pathway (HMP). After solid–liquid separation of the KWSS, the addition of Fe3+ during fermentation enhanced the NADPH production efficiency and increased the NADH content. The flux to the EMP was also effectively increased. Compared with the control (60.6% flux to EMP without Fe3+ addition), the flux to the EMP with the addition of Fe3+ (74.3%) increased by 23.8%. In the subsequent pyruvate metabolism, Fe3+ also increased lactate dehydrogenase activity, and inhibited alcohol dehydrogenase, pyruvate dehydrogenase and pyruvate carboxylase, thereby increasing the lactic acid production to 9.03 g l−1, an increase of 8% compared with the control. All other organic acid by-products were lower than in the control. However, the addition of Zn2+ showed an opposite effect, decreasing the lactic acid production. In conclusion it is feasible and effective means using GC-MS, isotope experiment and MATLAB software to integrate research the metabolic flux distribution of lactic acid bacteria, and the results provide the theoretical foundation for similar metabolic flux distribution. PMID:23489617

  4. Salvage syntheses and their relationship to nucleic acid metabolism

    PubMed Central

    Königk, E.

    1977-01-01

    The intraerythrocytic stages of plasmodia are capable of synthesizing purine nucleotides and apparently deoxycytidylate by salvage syntheses. Data obtained by studying the incorporation of radioactive precursor molecules into intact cells and kinetic experiments on purified enzyme preparations suggest biosynthetic routes which, generally, are similar to those of the host's cell metabolism. However, details on the regulation of both the uptake of nucleosides and bases into the intraerythrocytic stages of plasmodia and of the metabolic routes involved in this incorporation are still lacking. PMID:303949

  5. Docosahexaenoic Acid Levels in Blood and Metabolic Syndrome in Obese Children: Is There a Link?

    PubMed Central

    Lassandro, Carlotta; Banderali, Giuseppe; Radaelli, Giovanni; Borghi, Elisa; Moretti, Francesca; Verduci, Elvira

    2015-01-01

    Prevalence of metabolic syndrome is increasing in the pediatric population. Considering the different existing criteria to define metabolic syndrome, the use of the International Diabetes Federation (IDF) criteria has been suggested in children. Docosahexaenoic acid (DHA) has been associated with beneficial effects on health. The evidence about the relationship of DHA status in blood and components of the metabolic syndrome is unclear. This review discusses the possible association between DHA content in plasma and erythrocytes and components of the metabolic syndrome included in the IDF criteria (obesity, alteration of glucose metabolism, blood lipid profile, and blood pressure) and non-alcoholic fatty liver disease in obese children. The current evidence is inconsistent and no definitive conclusion can be drawn in the pediatric population. Well-designed longitudinal and powered trials need to clarify the possible association between blood DHA status and metabolic syndrome. PMID:26307979

  6. Metabolism of fatty acids in rat brain in microsomal membranes

    SciTech Connect

    Aeberhard, E.E.; Gan-Elepano, M.; Mead, J.F.

    1980-01-01

    Using a technique in which substrate fatty acids are incorporated into microsomal membranes followd by comparison of their rates of desaturation or elongation with those of exogenous added fatty acids it has been found that the desaturation rate is more rapid for the membrane-bound substrate than for the added fatty acid. Moreover, the product of the membrane-bound substrate is incorporated into membrane phospholipid whereas the product of the exogenous substrate is found in di- and triacyl glycerols and in free fatty acids as well. These and other findings point to a normal sequence of reaction of membrane liqids with membrane-bound substrates involving transfer of fatty acid from phospholipid to the coupled enzyme systems without ready equilibration with the free fatty acid pool.

  7. Glucose Regulates Hypothalamic Long-chain Fatty Acid Metabolism via AMP-activated Kinase (AMPK) in Neurons and Astrocytes*

    PubMed Central

    Taïb, Bouchra; Bouyakdan, Khalil; Hryhorczuk, Cécile; Rodaros, Demetra; Fulton, Stephanie; Alquier, Thierry

    2013-01-01

    Hypothalamic controls of energy balance rely on the detection of circulating nutrients such as glucose and long-chain fatty acids (LCFA) by the mediobasal hypothalamus (MBH). LCFA metabolism in the MBH plays a key role in the control of food intake and glucose homeostasis, yet it is not known if glucose regulates LCFA oxidation and esterification in the MBH and, if so, which hypothalamic cell type(s) and intracellular signaling mechanisms are involved. The aim of this study was to determine the impact of glucose on LCFA metabolism, assess the role of AMP-activated Kinase (AMPK), and to establish if changes in LCFA metabolism and its regulation by glucose vary as a function of the kind of LCFA, cell type, and brain region. We show that glucose inhibits palmitate oxidation via AMPK in hypothalamic neuronal cell lines, primary hypothalamic astrocyte cultures, and MBH slices ex vivo but not in cortical astrocytes and slice preparations. In contrast, oleate oxidation was not affected by glucose or AMPK inhibition in MBH slices. In addition, our results show that glucose increases palmitate, but not oleate, esterification into neutral lipids in neurons and MBH slices but not in hypothalamic astrocytes. These findings reveal for the first time the metabolic fate of different LCFA in the MBH, demonstrate AMPK-dependent glucose regulation of LCFA oxidation in both astrocytes and neurons, and establish metabolic coupling of glucose and LCFA as a distinguishing feature of hypothalamic nuclei critical for the control of energy balance. PMID:24240094

  8. Changes in arachidonic acid metabolism in UV-irradiated hairless mouse skin

    SciTech Connect

    Ruzicka, T.; Walter, J.F.; Printz, M.P.

    1983-10-01

    This study was conducted to investigate the metabolism of arachidonic acid in the skin of hairless mice exposed to UVA, PUVA, UVB, and UVC irradiation. The main products of arachidonic acid in the epidermis were hydroxyeicosatetraenoic acid (HETE), PGE2, and PGD2. Dermis displayed a lower lipoxygenase activity (expressed as HETE production) than the epidermis and showed no detectable cyclooxygenase activity, i.e., no prostaglandin production. The main changes observed in UV-induced inflammatory reactions were as follows. 1. A 5-fold increase in dermal HETE production in PUVA-treated animals and a 29% reduction in epidermal HETE formation after UVC treatment. 2. A marked decrease of PGD2 and a marked increase of PGE2 formation due to alterations of PGH2 metabolism in the UVB-treated group; however, cyclooxygenase activity was unchanged. These changes in arachidonic acid metabolism in the skin may be of pathophysiologic importance in UV-induced inflammatory reaction.

  9. Therapeutic Implications of Targeting Energy Metabolism in Breast Cancer

    PubMed Central

    Sakharkar, Meena K.; Shashni, Babita; Sharma, Karun; Dhillon, Sarinder K.; Ranjekar, Prabhakar R.; Sakharkar, Kishore R.

    2013-01-01

    PPARs are ligand activated transcription factors. PPARγ agonists have been reported as a new and potentially efficacious treatment of inflammation, diabetes, obesity, cancer, AD, and schizophrenia. Since cancer cells show dysregulation of glycolysis they are potentially manageable through changes in metabolic environment. Interestingly, several of the genes involved in maintaining the metabolic environment and the central energy generation pathway are regulated or predicted to be regulated by PPARγ. The use of synthetic PPARγ ligands as drugs and their recent withdrawal/restricted usage highlight the lack of understanding of the molecular basis of these drugs, their off-target effects, and their network. These data further underscores the complexity of nuclear receptor signalling mechanisms. This paper will discuss the function and role of PPARγ in energy metabolism and cancer biology in general and its emergence as a promising therapeutic target in breast cancer. PMID:23431283

  10. Comparative nutrition and metabolism: Explication of open questions with emphasis on protein and amino acids

    PubMed Central

    Baker, David H.

    2005-01-01

    The 20th century saw numerous important discoveries in the nutritional sciences. Nonetheless, many unresolved questions still remain. Fifteen questions dealing with amino acid nutrition and metabolism are posed in this review. The first six deal with the functionality of sulfur amino acids (methionine and cysteine) and related compounds. Other unresolved problems that are discussed include priorities of use for amino acids having multiple functions; interactions among lysine, niacin and tryptophan; amino acid contributions to requirements from gut biosynthesis; the potential for gluconeogenesis to divert amino acids away from protein synthesis; the unique nutritional and metabolic idiosyncrasies of feline species, with emphasis on arginine; controversies surrounding human amino acid requirements; and the potential for maternal diet to influence sex ratio of offspring. PMID:16326801

  11. Deficits in docosahexaenoic acid and associated elevations in the metabolism of arachidonic acid and saturated fatty acids in the postmortem orbitofrontal cortex of patients with bipolar disorder.

    PubMed

    McNamara, Robert K; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Stanford, Kevin E; Hahn, Chang-Gyu; Richtand, Neil M

    2008-09-30

    Previous antemortem and postmortem tissue fatty acid composition studies have observed significant deficits in the omega-3 fatty acid docosahexaenoic acid (DHA, 22:6n-3) in red blood cell (RBC) and postmortem cortical membranes of patients with unipolar depression. In the present study, we determined the fatty acid composition of postmortem orbitofrontal cortex (OFC, Brodmann area 10) of patients with bipolar disorder (n=18) and age-matched normal controls (n=19) by gas chromatography. After correction for multiple comparisons, DHA (-24%), arachidonic acid (-14%), and stearic acid (C18:0) (-4.5%) compositions were significantly lower, and cis-vaccenic acid (18:1n-7) (+12.5%) composition significantly higher, in the OFC of bipolar patients relative to normal controls. Based on metabolite:precursor ratios, significant elevations in arachidonic acid, stearic acid, and palmitic acid conversion/metabolism were observed in the OFC of bipolar patients, and were inversely correlated with DHA composition. Deficits in OFC DHA and arachidonic acid composition, and elevations in arachidonic acid metabolism, were numerically (but not significantly) greater in drug-free bipolar patients relative to patients treated with mood-stabilizer or antipsychotic medications. OFC DHA and arachidonic acid deficits were greater in patients plus normal controls with high vs. low alcohol abuse severity. These results add to a growing body of evidence implicating omega-3 fatty acid deficiency as well as the OFC in the pathoaetiology of bipolar disorder. PMID:18715653

  12. Erythrocyte Energy Metabolism in Hereditary Spherocytosis*

    PubMed Central

    Reed, Claude F.; Young, Lawrence E.

    1967-01-01

    The incorporation of extracellular orthophosphate-32P into cellular ATP, 2,3-diphosphoglyceric acid, and inorganic phosphate has been measured over a period of 6 hours in vitro in red blood cells from normal subjects and from patients with hereditary spherocytosis who had undergone splenectomy. The pattern of labeling of the intracellular compounds was found to be the same in both types of red blood cells, as reported by other workers using much shorter periods of incubation. In addition, in the present study it was possible to compare the net flux of extracellular phosphate into ATP between the two groups of erythrocytes. These latter results suggest that the actual turnover rate of ATP was not abnormal in these patients with hereditary spherocytosis. PMID:6027083

  13. DIFFERENCES IN ARACHIDONIC ACID METABOLISM BY HUMAN MYELOMONCYTIC CELL LINES

    EPA Science Inventory

    The production of arachidonic acid metabolites by the HL60, ML3, and U937 human phagocyte cell lines were determined after incubation with interferongamma (IFNg; 500 U/ml) or vehicle for 4 days. ells were prelabeled with tritiated arachidonic acid for 4 hours, and media supernata...

  14. Bile acid signaling in lipid metabolism: metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice.

    PubMed

    Qi, Yunpeng; Jiang, Changtao; Cheng, Jie; Krausz, Kristopher W; Li, Tiangang; Ferrell, Jessica M; Gonzalez, Frank J; Chiang, John Y L

    2015-01-01

    Bile acid synthesis is the major pathway for catabolism of cholesterol. Cholesterol 7α-hydroxylase (CYP7A1) is the rate-limiting enzyme in the bile acid biosynthetic pathway in the liver and plays an important role in regulating lipid, glucose and energy metabolism. Transgenic mice overexpressing CYP7A1 (CYP7A1-tg mice) were resistant to high-fat diet (HFD)-induced obesity, fatty liver, and diabetes. However the mechanism of resistance to HFD-induced obesity of CYP7A1-tg mice has not been determined. In this study, metabolomic and lipidomic profiles of CYP7A1-tg mice were analyzed to explore the metabolic alterations in CYP7A1-tg mice that govern the protection against obesity and insulin resistance by using ultra-performance liquid chromatography-coupled with electrospray ionization quadrupole time-of-flight mass spectrometry combined with multivariate analyses. Lipidomics analysis identified seven lipid markers including lysophosphatidylcholines, phosphatidylcholines, sphingomyelins and ceramides that were significantly decreased in serum of HFD-fed CYP7A1-tg mice. Metabolomics analysis identified 13 metabolites in bile acid synthesis including taurochenodeoxycholic acid, taurodeoxycholic acid, tauroursodeoxycholic acid, taurocholic acid, and tauro-β-muricholic acid (T-β-MCA) that differed between CYP7A1-tg and wild-type mice. Notably, T-β-MCA, an antagonist of the farnesoid X receptor (FXR) was significantly increased in intestine of CYP7A1-tg mice. This study suggests that reducing 12α-hydroxylated bile acids and increasing intestinal T-β-MCA may reduce high fat diet-induced increase of phospholipids, sphingomyelins and ceramides, and ameliorate diabetes and obesity. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics. PMID:24796972

  15. Bile acid signaling in lipid metabolism: Metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice

    PubMed Central

    Qi, Yunpeng; Jiang, Changtao; Cheng, Jie; Krausz, Kristopher W.; Li, Tiangang; Ferrell, Jessica M.; Gonzalez, Frank J.; Chiang, John Y.L.

    2014-01-01

    Bile acid synthesis is the major pathway for catabolism of cholesterol. Cholesterol 7α-hydroxylase (CYP7A1) is the rate-limiting enzyme in the bile acid biosynthetic pathway in the liver and plays an important role in regulating lipid, glucose and energy metabolism. Transgenic mice overexpressing CYP7A1 (CYP7A1-tg mice) were resistant to high-fat diet (HFD)-induced obesity, fatty liver, and diabetes. However the mechanism of resistance to HFD-induced obesity of CYP7A1-tg mice has not been determined. In this study, metabolomic and lipidomic profiles of CYP7A1-tg mice were analyzed to explore the metabolic alterations in CYP7A1-tg mice that govern the protection against obesity and insulin resistance by using ultra-performance liquid chromatography-coupled with electrospray ionization quadrupole time-of-flight mass spectrometry combined with multivariate analyses. Lipidomics analysis identified seven lipid markers including lysophosphatidylcholines, phosphatidylcholines, sphingomyelins and ceramides that were significantly decreased in serum of HFD-fed CYP7A1-tg mice. Metabolomics analysis identified 13 metabolites in bile acid synthesis including taurochenodeoxycholic acid, taurodeoxycholic acid, tauroursodeoxycholic acid, taurocholic acid, and tauro-β-muricholic acid (T-β-MCA) that differed between CYP7A1-tg and wild-type mice. Notably, T-β-MCA, an antagonist of the farnesoid X receptor (FXR) was significantly increased in intestine of CYP7A1-tg mice. This study suggests that reducing 12α-hydroxylated bile acids and increasing intestinal T-β-MCA may reduce high fat diet-induced increase of phospholipids, sphingomyelins and ceramides, and ameliorate diabetes and obesity. PMID:24796972

  16. Metabolism of acetyl-L-carnitine for energy and neurotransmitter synthesis in the immature rat brain

    PubMed Central

    Scafidi, Susanna; Fiskum, Gary; Lindauer, Steven L.; Bamford, Penelope; Shi, Da; Hopkins, Irene; McKenna, Mary C.

    2016-01-01

    Acetyl-L-carnitine (ALCAR) is an endogenous metabolic intermediate that facilitates the influx and efflux of acetyl groups across the mitochondrial inner membrane. Exogenously administered ALCAR has been used as a nutritional supplement and also as an experimental drug with reported neuroprotective properties and effects on brain metabolism. The aim of this study was to determine oxidative metabolism of ALCAR in the immature rat forebrain. Metabolism was studied in 21 day old rat brain at 15, 60 and 120 minutes after an intraperitoneal injection of [2-13C]acetyl-L-carnitine. The amount, pattern, and fractional enrichment of 13C-labeled metabolites were determined by ex vivo 13C-NMR spectroscopy. Metabolism of the acetyl moiety from [2-13C]ALCAR via the tricarboxylic acid (TCA) cycle led to incorporation of label into the C4, C3 and C2 positions of glutamate (GLU), glutamine (GLN) and GABA. Labeling patterns indicated that [2-13C]ALCAR was metabolized by both neurons and glia; however, the percent enrichment was higher in GLN and GABA than in GLU, demonstrating high metabolism in astrocytes and GABAergic neurons. Incorporation of label into the C3 position of alanine, both C3 and C2 of lactate, and the C1 and C5 positions of glutamate and glutamine demonstrated that [2-13C]ALCAR was actively metabolized via the pyruvate recycling pathway. The enrichment of metabolites with 13C from metabolism of ALCAR was highest in alanine C3 (10%) and lactate C3 (9%), with considerable enrichment in GABA C4 (8%), GLN C3 (~4%) and GLN C5 (5%). Overall, our 13C-NMR studies reveal that the acetyl moiety of ALCAR is metabolized for energy in both astrocytes and neurons and the label incorporated into the neurotransmitters glutamate and GABA. Cycling ratios showed prolonged cycling of carbon from the acetyl moiety of ALCAR in the TCA cycle. Labeling of compounds formed from metabolism of [2-13C]ALCAR via the pyruvate recycling pathway was higher than values reported for other

  17. Identification of the phytosphingosine metabolic pathway leading to odd-numbered fatty acids.

    PubMed

    Kondo, Natsuki; Ohno, Yusuke; Yamagata, Maki; Obara, Takashi; Seki, Naoya; Kitamura, Takuya; Naganuma, Tatsuro; Kihara, Akio

    2014-01-01

    The long-chain base phytosphingosine is a component of sphingolipids and exists in yeast, plants and some mammalian tissues. Phytosphingosine is unique in that it possesses an additional hydroxyl group compared with other long-chain bases. However, its metabolism is unknown. Here we show that phytosphingosine is metabolized to odd-numbered fatty acids and is incorporated into glycerophospholipids both in yeast and mammalian cells. Disruption of the yeast gene encoding long-chain base 1-phosphate lyase, which catalyzes the committed step in the metabolism of phytosphingosine to glycerophospholipids, causes an ~40% reduction in the level of phosphatidylcholines that contain a C15 fatty acid. We also find that 2-hydroxypalmitic acid is an intermediate of the phytosphingosine metabolic pathway. Furthermore, we show that the yeast MPO1 gene, whose product belongs to a large, conserved protein family of unknown function, is involved in phytosphingosine metabolism. Our findings provide insights into fatty acid diversity and identify a pathway by which hydroxyl group-containing lipids are metabolized. PMID:25345524

  18. Myocardial mechanical dysfunction following endotoxemia: role of changes in energy substrate metabolism.

    PubMed

    Soraya, Hamid; Masoud, Waleed G T; Gandhi, Manoj; Garjani, Alireza; Clanachan, Alexander S

    2016-03-01

    Cardiovascular depression due to endotoxemia remains a major cause of mortality in intensive care patients. To determine whether drug-induced alterations in cardiac metabolism may be a viable strategy to reduce endotoxemia-mediated cardiac dysfunction, we assessed endotoxemia-induced changes in glucose and fatty acid metabolism under aerobic and post-ischemic conditions. Endotoxemia was induced in male Sprague-Dawley rats by lipopolysaccharide (Escherichia coli 0111:B4c, 4 mg/kg, i.p.) 6 h prior to heart removal for ex vivo assessment of left ventricular (LV) work and rates of glucose metabolism (glucose uptake, glycogen synthesis, glycolysis and glucose oxidation) and palmitate oxidation. Under aerobic conditions, endotoxemic hearts had impaired LV function as judged by echocardiography in vivo (% ejection fraction, 66.0 ± 3.2 vs 78.0 ± 2.1, p < 0.05) or by LV work ex vivo (2.14 ± 0.16 vs 3.28 ± 0.16, Joules min(-1) g dry wt(-1), p < 0.05). However, rates of glucose uptake, glycogen synthesis, glycolysis, and glucose oxidation were not altered. Palmitate oxidation was lower in endotoxemic hearts in proportion to the decreased workload, thus metabolic efficiency was unaffected. In hearts reperfused following global ischemia, untreated hearts had impaired recovery of LV work (52.3 ± 9.4 %) whereas endotoxemic hearts had significantly higher recovery (105.6 ± 11.3 %, p < 0.05). During reperfusion, fatty acid oxidation, acetyl CoA production and metabolic efficiency were similar in both groups. As impaired cardiac function appeared unrelated to depression of energy substrate oxidation, it is unlikely that drug-induced acceleration of fatty acid oxidation will improve mechanical function. The beneficial repartitioning of glucose metabolism in reperfused endotoxemic hearts may contribute to the cardioprotected phenotype. PMID:26926341

  19. Uric Acid Levels Can Predict Metabolic Syndrome and Hypertension in Adolescents: A 10-Year Longitudinal Study

    PubMed Central

    Sun, Hai-Lun; Pei, Dee; Lue, Ko-Huang; Chen, Yen-Lin

    2015-01-01

    The relationships between uric acid and chronic disease risk factors such as metabolic syndrome, type 2 diabetes mellitus, and hypertension have been studied in adults. However, whether these relationships exist in adolescents is unknown. We randomly selected 8,005 subjects who were between 10 to 15 years old at baseline. Measurements of uric acid were used to predict the future occurrence of metabolic syndrome, hypertension, and type 2 diabetes. In total, 5,748 adolescents were enrolled and followed for a median of 7.2 years. Using cutoff points of uric acid for males and females (7.3 and 6.2 mg/dl, respectively), a high level of uric acid was either the second or third best predictor for hypertension in both genders (hazard ratio: 2.920 for males, 5.222 for females; p<0.05). However, uric acid levels failed to predict type 2 diabetes mellitus, and only predicted metabolic syndrome in males (hazard ratio: 1.658; p<0.05). The same results were found in multivariate adjusted analysis. In conclusion, a high level of uric acid indicated a higher likelihood of developing hypertension in both genders and metabolic syndrome in males after 10 years of follow-up. However, uric acid levels did not affect the occurrence of type 2 diabetes in both genders. PMID:26618358

  20. Uric Acid Levels Can Predict Metabolic Syndrome and Hypertension in Adolescents: A 10-Year Longitudinal Study.

    PubMed

    Sun, Hai-Lun; Pei, Dee; Lue, Ko-Huang; Chen, Yen-Lin

    2015-01-01

    The relationships between uric acid and chronic disease risk factors such as metabolic syndrome, type 2 diabetes mellitus, and hypertension have been studied in adults. However, whether these relationships exist in adolescents is unknown. We randomly selected 8,005 subjects who were between 10 to 15 years old at baseline. Measurements of uric acid were used to predict the future occurrence of metabolic syndrome, hypertension, and type 2 diabetes. In total, 5,748 adolescents were enrolled and followed for a median of 7.2 years. Using cutoff points of uric acid for males and females (7.3 and 6.2 mg/dl, respectively), a high level of uric acid was either the second or third best predictor for hypertension in both genders (hazard ratio: 2.920 for males, 5.222 for females; p<0.05). However, uric acid levels failed to predict type 2 diabetes mellitus, and only predicted metabolic syndrome in males (hazard ratio: 1.658; p<0.05). The same results were found in multivariate adjusted analysis. In conclusion, a high level of uric acid indicated a higher likelihood of developing hypertension in both genders and metabolic syndrome in males after 10 years of follow-up. However, uric acid levels did not affect the occurrence of type 2 diabetes in both genders. PMID:26618358

  1. Bifidobacterium breve with α-Linolenic Acid and Linoleic Acid Alters Fatty Acid Metabolism in the Maternal Separation Model of Irritable Bowel Syndrome

    PubMed Central

    Barrett, Eoin; Fitzgerald, Patrick; Dinan, Timothy G.; Cryan, John F.; Ross, R. Paul; Quigley, Eamonn M.; Shanahan, Fergus; Kiely, Barry; Fitzgerald, Gerald F.; O'Toole, Paul W.; Stanton, Catherine

    2012-01-01

    The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15) were orally gavaged with either B. breve DPC6330 (109 microorganisms/day) alone or in combination with 0.5% (w/w) linoleic acid & 0.5% (w/w) α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11) in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05). Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11) in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05), whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05) compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01) and α-linolenic acid in adipose tissue (p<0.001), whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05), and α-linolenic acid in adipose tissue (p<0.001). B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated rats

  2. Inorganic Polyphosphate and Energy Metabolism in Mammalian Cells*

    PubMed Central

    Pavlov, Evgeny; Aschar-Sobbi, Roozbeh; Campanella, Michelangelo; Turner, Raymond J.; Gómez-García, María R.; Abramov, Andrey Y.

    2010-01-01

    Inorganic polyphosphate (poly P) is a polymer made from as few as 10 to several hundred phosphate molecules linked by phosphoanhydride bonds similar to ATP. Poly P is ubiquitous in all mammalian organisms, where it plays multiple physiological roles. The metabolism of poly P in mammalian organisms is not well understood. We have examined the mechanism of poly P production and the role of this polymer in cell energy metabolism. Poly P levels in mitochondria and intact cells were estimated using a fluorescent molecular probe, 4′,6-diamidino-2-phenylindole. Poly P levels were dependent on the metabolic state of the mitochondria. Poly P levels were increased by substrates of respiration and in turn reduced by mitochondrial inhibitor (rotenone) or an uncoupler (carbonyl cyanide p-trifluoromethoxyphenylhydrazone). Oligomycin, an inhibitor of mitochondrial ATP-synthase, blocked the production of poly P. Enzymatic depletion of poly P from cells significantly altered the rate of ATP metabolism. We propose the existence of a feedback mechanism where poly P production and cell energy metabolism regulate each other. PMID:20124409

  3. INCAP studies of energy, amino acids, and protein.

    PubMed

    Viteri, Fernando E

    2010-03-01

    This Special Issue summarizes the results of several studies aimed at providing information on a series of questions related to the adequate protein and energy intakes that allow adequate growth and function in children and work performance and productivity in adults. The effect of different sources of protein on nitrogen balance and the requirements of essential amino acids in young children were also explored in fully recovered, previously malnourished children housed in the Metabolic Ward of the Biomedical Division of INCAP. The following are the main results of these investigations: Animal experiments and studies in children recovering from protein-energy malnutrition (PEM) strongly suggest that even when requirements of all nutrients are satisfied, inactivity reduces the rate of linear growth and physical activity improves it as well as lean body mass repletion. The effects of different energy intakes on nitrogen balance demonstrated how energy intake modifies the need to ingest different amounts of protein to satisfy protein requirements. Insensible nitrogen losses in preschool children and their relation to protein intake was demonstrated. The quality of even "good protein sources" modifies the amount needed to satisfy nitrogen requirements, and corn and bean-based diets can satisfy protein needs for health and even growth of young children. Essential amino acid requirements of 2-year-old children was assessed by diverse measurements of nitrogen metabolism and amino acid levels in blood, and were found lower than those recommended by FAO-WHO. In rural adult populations the relationship between energy and protein intake, productivity and body composition, and the impact of environmental hygiene on nitrogen balance was demonstrated and measured. PMID:20461903

  4. HBx regulates fatty acid oxidation to promote hepatocellular carcinoma survival during metabolic stress

    PubMed Central

    Huang, Shuai; Zhang, Hui-Lu; Qin, Chen-Jie; Zhao, Ling-Hao; Fu, Gong-Bo; Zhou, Xu; Wang, Xian-Ming; Tang, Liang; Wen, Wen; Yang, Wen; Tang, Shan-Hua; Cao, Dan; Guo, Lin-Na; Zeng, Min; Wu, Meng-Chao; Yan, He-Xin; Wang, Hong-Yang

    2016-01-01

    Due to a high rate of nutrient consumption and inadequate vascularization, hepatocellular carcinoma (HCC) cells constantly undergo metabolic stress during tumor development. Hepatitis B virus (HBV) X protein (HBx) has been implicated in the pathogenesis of HBV-induced HCC. In this study, we investigated the functional roles of HBx in HCC adaptation to metabolic stress. Up-regulation of HBx increased the intracellular ATP and NADPH generation, and induced the resistance to glucose deprivation, whereas depletion of HBx via siRNA abolished these effects and conferred HCC cells sensitive to glucose restriction. Though HBx did not affect the glycolysis and oxidative phosphorylation capacity of HCC cells under normal culture conditions, it facilitated fatty acid oxidation (FAO) in the absence of glucose, which maintained NADPH and ATP levels. Further investigation showed that HBx expression, under glucose deprivation, stimulated phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) via a calcium/CaMKK-dependent pathway, which was required for the activation of FAO. Conversely, inhibition of FAO by etomoxir (ETO) restored the sensitivity of HBx-expressing cells to glucose deficiency in vitro and retarded xenograft tumor formation in vivo. Finally, HBx-induced activation of the AMPK and FAO pathways were also observed in xenograft tumors and HBV-associated HCC specimens. Our data suggest that HBx plays a key role in the maintenance of redox and energy homeostasis by activating FAO, which is critical for HCC cell survival under conditions of metabolic stress and might be exploited for therapeutic benefit. PMID:26744319

  5. Nitric oxide and platelet energy metabolism.

    PubMed

    Tomasiak, Marian; Stelmach, Halina; Rusak, Tomasz; Wysocka, Jolanta

    2004-01-01

    This study was undertaken to determine whether nitric oxide (NO) can affect platelet responses through the inhibition of energy production. It was found that NO donors: S-nitroso-N-acetylpenicyllamine, SNAP, (5-50 microM) and sodium nitroprusside, SNP, (5-100 microM) inhibited collagen- and ADP-induced aggregation of porcine platelets. The corresponding IC50 values for SNAP and SNP varied from 5 to 30 microM and from 9 to 75 microM, respectively. Collagen- and thrombin-induced platelet secretion was inhibited by SNAP (IC50 = 50 microM) and by SNP (IC50 = 100 microM). SNAP (20-100 microM), SNP (10-200 microM) and collagen (20 microg/ml) stimulated glycolysis in intact platelets. The degree of glycolysis stimulation exerted by NO donors was similar to that produced by respiratory chain inhibitors (cyanide and antimycin A) or uncouplers (2,4-dinitrophenol). Neither the NO donors nor the respiratory chain blockers affected glycolysis in platelet homogenate. SNAP (20-100 microM) and SNP (50-200 microM) inhibited oxygen consumption by platelets. The effect of SNP and SNAP on glycolysis and respiration was not reduced by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, a selective inhibitor of NO-stimulated guanylate cyclase. SNAP (5-100 microM) and SNP (10-300 microM) inhibited the activity of platelet cytochrome oxidase and had no effect on NADH:ubiquinone oxidoreductase and succinate dehydrogenase. Blocking of the mitochondrial energy production by antimycin A slightly affected collagen-evoked aggregation and strongly inhibited platelet secretion. The results indicate that: 1) in porcine platelets NO is able to diminish mitochondrial energy production through the inhibition of cytochrome oxidase, 2) the inhibitory effect of NO on platelet secretion (but not aggregation) can be attributed to the reduction of mitochondrial energy production. PMID:15448739

  6. Three Conazoles Increase Hepatic Microsomal Retinoic Acid Metabolism and Decrease Mouse Hepatic Retinoic Acid Levels In Vivo

    EPA Science Inventory

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with...

  7. Leucine disposal rate for assessment of amino acid metabolism in maintenance hemodialysis patients

    PubMed Central

    Denny, Gerald B.; Deger, Serpil M.; Chen, Guanhua; Bian, Aihua; Sha, Feng; Booker, Cindy; Kesler, Jaclyn T.; David, Sthuthi; Ellis, Charles D.; Ikizler, T. Alp

    2016-01-01

    Background Protein energy wasting (PEW) is common in patients undergoing maintenance hemodialysis (MHD) and closely associated with poor outcomes. Insulin resistance and associated alterations in amino acid metabolism are potential pathways leading to PEW. We hypothesized that the measurement of leucine disposal during a hyperinsulinemic- euglycemic-euaminoacidemic clamp (HEAC) procedure would accurately measure the sensitivity to insulin for its actions on concomitant carbohydrate and protein metabolism in MHD patients. Methods We examined 35 MHD patients and 17 control subjects with normal kidney function by hyperinsulinemic-euglycemic clamp (HEGC) followed by HEAC clamp procedure to obtain leucine disposal rate (LDR) along with isotope tracer methodology to assess whole body protein turnover. Results The glucose disposal rate (GDR) by HEGC was 5.1 ± 2.1 mg/kg/min for the MHD patients compared to 6.3 ± 3.9 mg/kg/min for the controls (p = 0.38). The LDR during HEAC was 0.09 ± 0.03 mg/kg/min for the MHD patients compared to 0.11 ± 0.05 mg/kg/min for the controls (p = 0.009). The LDR level was correlated with whole body protein synthesis (r = 0.25; p = 0.08), with whole body protein breakdown (r = −0.38 p = 0.01) and net protein balance (r = 0.85; p < 0.001) in the overall study population. Correlations remained significant in subgroup analysis. The GDR derived by HEGC and LDR correlated well in the controls (r = 0.79, p < 0.001), but less so in the MHD patients (r = 0.58, p < 0.001). Conclusions Leucine disposal rate reliably measures amino acid utilization in MHD patients and controls in response to high dose insulin. PMID:27413537

  8. Anti-Inflammation Effects and Potential Mechanism of Saikosaponins by Regulating Nicotinate and Nicotinamide Metabolism and Arachidonic Acid Metabolism.

    PubMed

    Ma, Yu; Bao, Yongrui; Wang, Shuai; Li, Tianjiao; Chang, Xin; Yang, Guanlin; Meng, Xiansheng

    2016-08-01

    Inflammation is an important immune response; however, excessive inflammation causes severe tissue damages and secondary inflammatory injuries. The long-term and ongoing uses of routinely used drugs such as non-steroidal anti-inflammatory drugs (NSAIDS) are associated with serious adverse reactions, and not all patients have a well response to them. Consequently, therapeutic products with more safer and less adverse reaction are constantly being sought. Radix Bupleuri, a well-known traditional Chinese medicine (TCM), has been reported to have anti-inflammatory effects. However, saikosaponins (SS) as the main pharmacodynamic active ingredient, their pharmacological effects and action mechanism in anti-inflammation have not been reported frequently. This study aimed to explore the anti-inflammatory activity of SS and clarify the potential mechanism in acute inflammatory mice induced by subcutaneous injection of formalin in hind paws. Paw edema was detected as an index to evaluate the anti-inflammatory efficacy of SS. Then, a metabolomic method was used to investigate the changed metabolites and potential mechanism of SS. Metabolite profiling was performed by high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). The detection and identification of the changed metabolites were systematically analyzed by multivariate data and pathway analysis. As a result, 12 different potential biomarkers associated with SS in anti-inflammation were identified, including nicotinate, niacinamide, arachidonic acid (AA), and 20-carboxy-leukotriene B4, which are associated with nicotinate and nicotinamide metabolism and arachidonic acid metabolism. The expression levels of biomarkers were effectively modulated towards the normal range by SS. It indicated that SS show their effective anti-inflammatory effects through regulating nicotinate and nicotinamide metabolism and arachidonic acid metabolism. PMID:27251379

  9. Targeting energy metabolism in brain cancer: review and hypothesis

    PubMed Central

    Seyfried, Thomas N; Mukherjee, Purna

    2005-01-01

    Malignant brain tumors are a significant health problem in children and adults and are often unmanageable. As a metabolic disorder involving the dysregulation of glycolysis and respiration, malignant brain cancer is potentially manageable through changes in metabolic environment. A radically different approach to brain cancer management is proposed that combines metabolic control analysis with the evolutionarily conserved capacity of normal cells to survive extreme shifts in physiological environment. In contrast to malignant brain tumors that are largely dependent on glycolysis for energy, normal neurons and glia readily transition to ketone bodies (β-hydroxybutyrate) for energy in vivo when glucose levels are reduced. The bioenergetic transition from glucose to ketone bodies metabolically targets brain tumors through integrated anti-inflammatory, anti-angiogenic, and pro-apoptotic mechanisms. The approach focuses more on the genomic flexibility of normal cells than on the genomic defects of tumor cells and is supported from recent studies in orthotopic mouse brain tumor models and in human pediatric astrocytoma treated with dietary energy restriction and the ketogenic diet. PMID:16242042

  10. The stimulation of arachidonic acid metabolism in human platelets by hydrodynamic stresses

    NASA Technical Reports Server (NTRS)

    Rajagopalan, Sridhar; Mcintire, Larry V.; Hall, Elizabeth R.; Wu, Kenneth K.

    1988-01-01

    The effects of stimulating human platelets by thrombin and by hydrodynamic stresses on the platelets' arachidonic acid metabolism were investigated using (1-C-14)-arachidonic acid label and a specially designed viscometer that ensured laminar shear flow with a nearly uniform shear rate throughout the flow region. It was found that platelets activated by thrombin formed principally thromboxane A2, 12-hydroxy 5,8,10-heptadecatrienoic acid and 12-hydroxy 5,8,10,14-eicosatetraenoic acid (12-HETE). On the other hand, platelets activated by shear, formed only 12-HETE (although arachidonic acid metabolism was stimulated); no cyclooxygenase metabolites were detected. Results indicate that platelets may greatly increase their 12-HETE production when activated by passage through a high-stress region of the circulation, such as an atherosclerotic stenosis.

  11. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems.

    PubMed

    Thevenet, Jonathan; De Marchi, Umberto; Domingo, Jaime Santo; Christinat, Nicolas; Bultot, Laurent; Lefebvre, Gregory; Sakamoto, Kei; Descombes, Patrick; Masoodi, Mojgan; Wiederkehr, Andreas

    2016-05-01

    Medium-chain triglycerides have been used as part of a ketogenic diet effective in reducing epileptic episodes. The health benefits of the derived medium-chain fatty acids (MCFAs) are thought to result from the stimulation of liver ketogenesis providing fuel for the brain. We tested whether MCFAs have direct effects on energy metabolism in induced pluripotent stem cell-derived human astrocytes and neurons. Using single-cell imaging, we observed an acute pronounced reduction of the mitochondrial electrical potential and a concomitant drop of the NAD(P)H signal in astrocytes, but not in neurons. Despite the observed effects on mitochondrial function, MCFAs did not lower intracellular ATP levels or activate the energy sensor AMP-activated protein kinase. ATP concentrations in astrocytes were unaltered, even when blocking the respiratory chain, suggesting compensation through accelerated glycolysis. The MCFA decanoic acid (300 μM) promoted glycolysis and augmented lactate formation by 49.6%. The shorter fatty acid octanoic acid (300 μM) did not affect glycolysis but increased the rates of astrocyte ketogenesis 2.17-fold compared with that of control cells. MCFAs may have brain health benefits through the modulation of astrocyte metabolism leading to activation of shuttle systems that provide fuel to neighboring neurons in the form of lactate and ketone bodies.-Thevenet, J., De Marchi, U., Santo Domingo, J., Christinat, N., Bultot, L., Lefebvre, G., Sakamoto, K., Descombes, P., Masoodi, M., Wiederkehr, A. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. PMID:26839375

  12. Aromatic and volatile acid intermediates observed during anaerobic metabolism of lignin-derived oligomers

    SciTech Connect

    Colberg, P.J.; Young, L.Y.

    1985-02-01

    Anaerobic enrichment cultures acclimated for 2 years to use a /sup 14/C-labeled, lignin-derived substrate with a molecular weight of 600 as a sole source of carbon were characterized by capillary and packed column gas chromatography. After acclimation, several of the active methanogenic organisms were inhibited with 2-bromoethanesulfonic acid, which suppressed methane formation and enhanced accumulation of a series of metabolic intermediates. Volatile fatty acids levels in 2-bromoethansulfonic acid-amended cultures were 10 times greater than those in the uninhibited, methane-forming organisms with acetate as the predominant component. Furthermore, in the 2-bromoethanesulfonic acid-amended organisms, almost half of the original substrate carbon was metabolized to 10 monaromatic compounds, with the most appreciable quantities accumulated as cinnamic, benzoic, caffeic, vanillic, and ferulic acids. 2-Bromoethanesulfonic acid seemed to effectively block CH/sub 4/ formation in the anaerobic food chain, resulting in the observed buildup of volatile fatty acids and monoaromatic intermediates. Neither fatty acids nor aromatic compounds were detected in the oligolignol substrate before its metabolism, suggesting that these anaerobic organisms have the ability to mediate the cleavage of the ..beta..-aryl-ether bond, the most common intermonomeric linkage in lignin, with the subsequent release of the observed constituent aromatic monomers.

  13. Improving Fatty Acid Availability for Bio-Hydrocarbon Production in Escherichia coli by Metabolic Engineering

    PubMed Central

    Lin, Fengming; Chen, Yu; Levine, Robert; Lee, Kilho; Yuan, Yingjin; Lin, Xiaoxia Nina

    2013-01-01

    Previous studies have demonstrated the feasibility of producing fatty-acid-derived hydrocarbons in Escherichia coli. However, product titers and yields remain low. In this work, we demonstrate new methods for improving fatty acid production by modifying central carbon metabolism and storing fatty acids in triacylglycerol. Based on suggestions from a computational model, we deleted seven genes involved in aerobic respiration, mixed-acid fermentation, and glyoxylate bypass (in the order of cyoA, nuoA, ndh, adhE, dld, pta, and iclR) to modify the central carbon metabolic/regulatory networks. These gene deletions led to increased total fatty acids, which were the highest in the mutants containing five or six gene knockouts. Additionally, when two key enzymes in the fatty acid biosynthesis pathway were over-expressed, we observed further increase in strain △cyoA△adhE△nuoA△ndh△pta△dld, leading to 202 mg/g dry cell weight of total fatty acids, ~250% of that in the wild-type strain. Meanwhile, we successfully introduced a triacylglycerol biosynthesis pathway into E. coli through heterologous expression of wax ester synthase/acyl-coenzyme:diacylglycerol acyltransferase (WS/DGAT) enzymes. The added pathway improved both the amount and fuel quality of the fatty acids. These new metabolic engineering strategies are providing promising directions for future investigation. PMID:24147139

  14. Disrupting proton dynamics and energy metabolism for cancer therapy.

    PubMed

    Parks, Scott K; Chiche, Johanna; Pouysségur, Jacques

    2013-09-01

    Intense interest in the 'Warburg effect' has been revived by the discovery that hypoxia-inducible factor 1 (HIF1) reprogrammes pyruvate oxidation to lactic acid conversion; lactic acid is the end product of fermentative glycolysis. The most aggressive and invasive cancers, which are often hypoxic, rely on exacerbated glycolysis to meet the increased demand for ATP and biosynthetic precursors and also rely on robust pH-regulating systems to combat the excessive generation of lactic and carbonic acids. In this Review, we present the key pH-regulating systems and synthesize recent advances in strategies that combine the disruption of pH control with bioenergetic mechanisms. We discuss the possibility of exploiting, in rapidly growing tumours, acute cell death by 'metabolic catastrophe'. PMID:23969692

  15. Effect of extracellular fatty acids on lipid metabolism in cultured rabbit articular chondrocytes

    SciTech Connect

    Nagao, M.; Ishii, S.; Murata, Y.; Akino, T. )

    1991-05-01

    Rabbit articular chondrocytes were cultured for 8 h in the presence of various concentrations (5-500 microM) of {sup 14}C oleic, {sup 14}C linoleic, and {sup 3H} arachidonic acids. The radioactive unsaturated fatty acids were incorporated into triacylglycerol (TG) and phosphatidylcholine (PC) in a concentration-dependent manner; more fatty acids were incorporated into TG than into PC, at higher concentrations of extracellular fatty acids. Among these fatty acids, arachidonic acid was incorporated into TG much more than into PC, in spite of a very low concentration of arachidonic acid in TG. After transfer of the labeled cells to maintenance medium, the radioactivity in TG declined rapidly and {sup 3}H arachidonic acid radioactivity in PC increased continuously during the chase time periods. Palmitoyl-unsaturated species were mainly formed in PC when cultured at a concentration of 5 microM of each fatty acid. However, when cultured at 500 microM, unsaturated-unsaturated species, specific for each unsaturated fatty acid were actively formed. These findings indicate that (1) fatty acid composition of TG and PC in articular chondrocytes is influenced by the degree of fatty acid supply, (2) formation and turnover of TG plays a role in fatty acid metabolism of cells, and (3) fatty acid pairing in PC is modulated by extracellular fatty acid concentrations.

  16. Respiratory CO(2) as Carbon Source for Nocturnal Acid Synthesis at High Temperatures in Three Species Exhibiting Crassulacean Acid Metabolism.

    PubMed

    Winter, K; Schröppel-Meier, G; Caldwell, M M

    1986-06-01

    TEMPERATURE EFFECTS ON NOCTURNAL CARBON GAIN AND NOCTURNAL ACID ACCUMULATION WERE STUDIED IN THREE SPECIES OF PLANTS EXHIBITING CRASSULACEAN ACID METABOLISM: Mamillaria woodsii, Opuntia vulgaris, and Kalanchoë daigremontiana. Under conditions of high soil moisture, nocturnal CO(2) gain and acid accumulation had temperature optima at 15 to 20 degrees C. Between 5 and 15 degrees C, uptake of atmospheric CO(2) largely accounted for acid accumulation. At higher tissue temperatures, acid accumulation exceeded net carbon gain indicating that acid synthesis was partly due to recycling of respiratory CO(2). When plants were kept in CO(2)-free air, acid accumulation based on respiratory CO(2) was highest at 25 to 35 degrees C. Net acid synthesis occurred up to 45 degrees C, although the nocturnal carbon balance became largely negative above 25 to 35 degrees C. Under conditions of water stress, net CO(2) exchange and nocturnal acid accumulation were reduced. Acid accumulation was proportionally more decreased at low than at high temperatures. Acid accumulation was either similar over the whole temperature range (5-45 degrees C) or showed an optimum at high temperatures, although net carbon balance became very negative with increasing tissue temperatures. Conservation of carbon by recycling respiratory CO(2) was temperature dependent. At 30 degrees C, about 80% of the dark respiratory CO(2) was conserved by dark CO(2) fixation, in both well irrigated and water stressed plants. PMID:16664827

  17. The absorption and metabolism of modified amino acids in processed foods.

    PubMed

    Finot, Paul-André

    2005-01-01

    The chemical reactions involved in the modifications of amino acids in processed food proteins are described. They concern the Maillard reaction, reaction with polyphenols and tannins, formation of lysinoalanine during alkaline and heat treatments, formation of isopeptides, oxidation reaction of the sulfur amino acids, and isomerization of the L-amino acids into their D-form. Information on the digestion, absorption, and urinary excretion of the reaction products obtained by using conventional nutritional tests is given. The studies that have been made on the metabolism of these molecules by using a radioisotopic approach to follow their kinetics in the organism after ingestion are also reviewed. This approach provides unique data on the quantitation of the metabolic pathways and on the kinetics of the metabolic processes involved. PMID:16001868

  18. Myocardial imaging and metabolic studies with (17-/sup 123/I)iodoheptadecanoic acid

    SciTech Connect

    Freundlieb, C.; Hoeck, A.; Vyska, K.; Feinendegen, L.E.; Machulla, H.J.; Stoecklin, G.

    1980-11-01

    After intravenous administration of the stearic acid analogue (17-/sup 123/I)iodoheptadecanoic acid (I-123 HA), myocardial metabolism was studied in ten normal individuals, eight patients with coronary artery disease and three patients with congestive heart failure. High-quality images were obtained in sequential scintigraphy of I-123 metabolically bound in myocardial tissue. Infarcted zones as well as ischemic regions are indicated by reduced tracer uptake. Iodine-123 in the blood pool and interstitial space consists mainly of radioiodide that is liberated by fatty-acid metabolism and was corrected for. Using the proposed correction not only are the images improved but the uptake and elimination of the I-123 in the myocardial cells can be followed. The average disappearance half-time of I-123 HA from the myocardium of normal persons was 24 +- 4.7 min. In patients with coronary artery disease significant differences between myocardial regions were observed.

  19. Organization of hepatic nitrogen metabolism and its relation to acid-base homeostasis.

    PubMed

    Häussinger, D

    1990-11-16

    Hepatic and renal nitrogen metabolism are linked by an interorgan glutamine flux, coupling both renal ammoniagenesis and hepatic ureogenesis to systemic acid base regulation. This is because protein breakdown produces equimolar amounts of NH4+ and HCO3-. A hepatic role in this interorgan team effort is based upon the tissue-specific presence of urea synthesis, which represents a major irreversible pathway for removal of metabolically generated bicarbonate. A sensitive and complex control of bicarbonate disposal via ureogenesis by the extracellular acid-base status creates a feed-back control loop between the acid-base status and the rate of bicarbonate elimination. This bicarbonate-homeostatic mechanism operates without threat of hyperammonemia, because a sophisticated structural and functional organisation of ammonia-metabolizing pathways in the liver acinus uncouples urea synthesis from the vital need to eliminate potentially toxic ammonia. PMID:2126308

  20. PPARs Integrate the Mammalian Clock and Energy Metabolism

    PubMed Central

    Chen, Lihong; Yang, Guangrui

    2014-01-01

    Peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptors that function as transcription factors regulating the expression of numerous target genes. PPARs play an essential role in various physiological and pathological processes, especially in energy metabolism. It has long been known that metabolism and circadian clocks are tightly intertwined. However, the mechanism of how they influence each other is not fully understood. Recently, all three PPAR isoforms were found to be rhythmically expressed in given mouse tissues. Among them, PPARα and PPARγ are direct regulators of core clock components, Bmal1 and Rev-erbα, and, conversely, PPARα is also a direct Bmal1 target gene. More importantly, recent studies using knockout mice revealed that all PPARs exert given functions in a circadian manner. These findings demonstrated a novel role of PPARs as regulators in correlating circadian rhythm and metabolism. In this review, we summarize advances in our understanding of PPARs in circadian regulation. PMID:24693278

  1. Riboflavin supplementation improves energy metabolism in mice exposed to acute hypoxia.

    PubMed

    Wang, Y P; Wei, J Y; Yang, J J; Gao, W N; Wu, J Q; Guo, C J

    2014-01-01

    This study investigated the effects of riboflavin on energy metabolism in hypoxic mice. Kunming mice were fed diets containing riboflavin at doses of 6, 12, 24 and 48 mg/kg, respectively for 2 weeks before exposure to a simulated altitude of 6000 m for 8 h. Changes of riboflavin status and energy metabolism were assessed biochemically. Simultaneously, a (1)H nuclear magnetic resonance (NMR) based metabolomic technique was used to track the changes of plasma metabolic profiling. It was found that the content of hepatic riboflavin was decreased and erythrocyte glutathione activation coefficient was elevated significantly under hypoxic condition. Meanwhile, increased plasma pyruvate, lactate, beta-hydroxybutyrate and urea, as well as decreased plasma carnitine were observed. Riboflavin supplementation improved riboflavin status remarkably in hypoxic mice and decreased plasma levels of pyruvate, free fatty acids and beta-hydroxybutyrate significantly. Plasma carnitine was increased in response to riboflavin supplementation. Results obtained from (1)H NMR analysis were basically in line with the data from biochemical assays and remarkable changes in plasma taurine, choline and some other metabolites were also indicated. It was concluded that riboflavin requirement was increased under acute hypoxic condition and riboflavin supplementation was effective in improving energy metabolism in hypoxic mice. PMID:24564599

  2. TGF-β-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury.

    PubMed

    Matsubara, Tsutomu; Tanaka, Naoki; Sato, Misako; Kang, Dong Wook; Krausz, Kristopher W; Flanders, Kathleen C; Ikeda, Kazuo; Luecke, Hans; Wakefield, Lalage M; Gonzalez, Frank J

    2012-12-01

    Transforming growth factor-β (TGFβ) is activated as a result of liver injury, such as cholestasis. However, its influence on endogenous metabolism is not known. This study demonstrated that TGFβ regulates hepatic phospholipid and bile acid homeostasis through MAD homolog 3 (SMAD3) activation as revealed by lithocholic acid-induced experimental intrahepatic cholestasis. Lithocholic acid (LCA) induced expression of TGFB1 and the receptors TGFBR1 and TGFBR2 in the liver. In addition, immunohistochemistry revealed higher TGFβ expression around the portal vein after LCA exposure and diminished SMAD3 phosphorylation in hepatocytes from Smad3-null mice. Serum metabolomics indicated increased bile acids and decreased lysophosphatidylcholine (LPC) after LCA exposure. Interestingly, in Smad3-null mice, the metabolic alteration was attenuated. LCA-induced lysophosphatidylcholine acyltransferase 4 (LPCAT4) and organic solute transporter β (OSTβ) expression were markedly decreased in Smad3-null mice, whereas TGFβ induced LPCAT4 and OSTβ expression in primary mouse hepatocytes. In addition, introduction of SMAD3 enhanced the TGFβ-induced LPCAT4 and OSTβ expression in the human hepatocellular carcinoma cell line HepG2. In conclusion, considering that Smad3-null mice showed attenuated serum ALP activity, a diagnostic indicator of cholangiocyte injury, these results strongly support the view that TGFβ-SMAD3 signaling mediates an alteration in phospholipid and bile acid metabolism following hepatic inflammation with the biliary injury. PMID:23034213

  3. Heparin, free fatty acids and an increased metabolic demand for oxygen.

    PubMed

    Jung, R T; Shetty, P S; James, W P

    1980-05-01

    Obese and lean subjects were given heparin with or without Intralipid in order to assess the effect of heparin on plasma concentration of free fatty acids (FFA) and oxidative metabolism. The FFA response depended on the triglyceride concentration and was associated with a prompt rise in oxygen consumption. Plasma catecholamines did not alter after heparin and the increase in oxygen uptake was proportional to the rise in FFA. The use of heparin, therefore, has metabolic disadvantages which may outweigh the potential benefits, for example in the management of myocardial infarction where heparin may increase the metabolic demand on the heart by increasing FFA levels. PMID:7443592

  4. Heparin, free fatty acids and an increased metabolic demand for oxygen.

    PubMed Central

    Jung, R. T.; Shetty, P. S.; James, W. P.

    1980-01-01

    Obese and lean subjects were given heparin with or without Intralipid in order to assess the effect of heparin on plasma concentration of free fatty acids (FFA) and oxidative metabolism. The FFA response depended on the triglyceride concentration and was associated with a prompt rise in oxygen consumption. Plasma catecholamines did not alter after heparin and the increase in oxygen uptake was proportional to the rise in FFA. The use of heparin, therefore, has metabolic disadvantages which may outweigh the potential benefits, for example in the management of myocardial infarction where heparin may increase the metabolic demand on the heart by increasing FFA levels. PMID:7443592

  5. A failure in energy metabolism and antioxidant uptake precede symptoms of Huntington’s disease in mice

    NASA Astrophysics Data System (ADS)

    Acuña, Aníbal I.; Esparza, Magdalena; Kramm, Carlos; Beltrán, Felipe A.; Parra, Alejandra V.; Cepeda, Carlos; Toro, Carlos A.; Vidal, René L.; Hetz, Claudio; Concha, Ilona I.; Brauchi, Sebastián; Levine, Michael S.; Castro, Maite A.

    2013-12-01

    Huntington’s disease has been associated with a failure in energy metabolism and oxidative damage. Ascorbic acid is a powerful antioxidant highly concentrated in the brain where it acts as a messenger, modulating neuronal metabolism. Using an electrophysiological approach in R6/2 HD slices, we observe an abnormal ascorbic acid flux from astrocytes to neurons, which is responsible for alterations in neuronal metabolic substrate preferences. Here using striatal neurons derived from knock-in mice expressing mutant huntingtin (STHdhQ cells), we study ascorbic acid transport. When extracellular ascorbic acid concentration increases, as occurs during synaptic activity, ascorbic acid transporter 2 (SVCT2) translocates to the plasma membrane, ensuring optimal ascorbic acid uptake for neurons. In contrast, SVCT2 from cells that mimic HD symptoms (dubbed HD cells) fails to reach the plasma membrane under the same conditions. We reason that an early impairment of ascorbic acid uptake in HD neurons could lead to early metabolic failure promoting neuronal death.

  6. A failure in energy metabolism and antioxidant uptake precede symptoms of Huntington’s disease in mice

    PubMed Central

    Acuña, Aníbal I.; Esparza, Magdalena; Kramm, Carlos; Beltrán, Felipe A.; Parra, Alejandra V.; Cepeda, Carlos; Toro, Carlos A.; Vidal, René L.; Hetz, Claudio; Concha, Ilona I.; Brauchi, Sebastián; Levine, Michael S.; Castro, Maite A.

    2013-01-01

    Huntington’s disease has been associated with a failure in energy metabolism and oxidative damage. Ascorbic acid is a powerful antioxidant highly concentrated in the brain where it acts as a messenger, modulating neuronal metabolism. Using an electrophysiological approach in R6/2 HD slices, we observe an abnormal ascorbic acid flux from astrocytes to neurons, which is responsible for alterations in neuronal metabolic substrate preferences. Here using striatal neurons derived from knock-in mice expressing mutant huntingtin (STHdhQ cells), we study ascorbic acid transport. When extracellular ascorbic acid concentration increases, as occurs during synaptic activity, ascorbic acid transporter 2 (SVCT2) translocates to the plasma membrane, ensuring optimal ascorbic acid uptake for neurons. In contrast, SVCT2 from cells that mimic HD symptoms (dubbed HD cells) fails to reach the plasma membrane under the same conditions. We reason that an early impairment of ascorbic acid uptake in HD neurons could lead to early metabolic failure promoting neuronal death. PMID:24336051

  7. 13C NMR spectroscopy applications to brain energy metabolism

    PubMed Central

    Rodrigues, Tiago B.; Valette, Julien; Bouzier-Sore, Anne-Karine

    2013-01-01

    13C nuclear magnetic resonance (NMR) spectroscopy is the method of choice for studying brain metabolism. Indeed, the most convincing data obtained to decipher metabolic exchanges between neurons and astrocytes have been obtained using this technique, thus illustrating its power. It may be difficult for non-specialists, however, to grasp thefull implication of data presented in articles written by spectroscopists. The aim of the review is, therefore, to provide a fundamental understanding of this topic to facilitate the non-specialists in their reading of this literature. In the first part of this review, we present the metabolic fate of 13C-labeled substrates in the brain in a detailed way, including an overview of some general neurochemical principles. We also address and compare the various spectroscopic strategies that can be used to study brain metabolism. Then, we provide an overview of the 13C NMR experiments performed to analyze both intracellular and intercellular metabolic fluxes. More particularly, the role of lactate as a potential energy substrate for neurons is discussed in the light of 13C NMR data. Finally, new perspectives and applications offered by 13C hyperpolarization are described. PMID:24367329

  8. The metabolism of primary, 7-oxo, and 7 beta-hydroxy bile acids by Clostridium absonum.

    PubMed

    Sutherland, J D; Macdonald, I A

    1982-07-01

    Clostridium absonum was shown to metabolize primary bile acids to give rise to both 7-oxo bile acids and 7 beta-hydroxy (urso) bile acids. At relatively low redox potential (Eh) values, high yields of urso bile acids were achieved (60-75%). If, however, the Eh value of the culture was allowed to rise above approximately -100 mv, the 7-oxo bile acid would tend to predominate (more than 75%) and the "death phase" was accelerated. Growth of C. absonum in sterile graduated cylinders instead of in conventional Erlenmeyer flasks was effective in delaying the rise in Eh value with time (which appears largely due to diffusion of atmospheric oxygen into the medium) and in preserving a higher viable count of organisms. It is proposed that the formation of excess amounts of 7-oxo bile acid is a manifestation of oxygen toxicity and that it could be mediated by an increasing intracellular NADP:NADPH ratio. Additionally, the reaction: primary bile acid in equilibrium oxo bile acid in equilibrium urso bile acid was shown to be partially reversible. When the organisms were grown with [24-(14)C]chenodeoxycholic, -cholic, or -7-keto-lithocholic acid, this reaction could be clearly demonstrated. The addition of an equimolar concentration of deoxycholic acid (which itself is not metabolized) effectively enhanced the rate of bioconversion of cholate and 7-keto-lithocholic, but not chenodeoxycholate (whose rate of bioconversion was the fastest of the three). When the organisms were grown with urso bile acids (ursocholic or ursodeoxycholic) or with 7-keto-deoxycholic acid, very little metabolism occurred unless deoxycholic acid was added which induced formation of primary and keto bile acids. In all cases, formation of oxo bile acid from primary or urso bile acid occurred as the Eh value of the medium rose with time and could thus be delayed by the use of a cylinder instead of a flask for growing the culture. These results were rationalized by demonstrating that induction of 7 alpha- and

  9. Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria.

    PubMed

    DeWeerd, K A; Saxena, A; Nagle, D P; Suflita, J M

    1988-05-01

    O-methyl substituents of aromatic compounds can provide C1 growth substrates for facultative and strict anaerobic bacteria isolated from diverse environments. The mechanism of the bioconversion of methoxylated benzoic acids to the hydroxylated derivatives was investigated with a model substrate and cultures of one anaerobic consortium, eight strict anaerobic bacteria, and one facultative anaerobic microorganism. Using high-pressure liquid chromatography and gas chromatography-mass spectral analysis, we found that a haloaromatic dehalogenating consortium, a dehalogenating isolate from that consortium, Eubacterium limosum, and a strain of Acetobacterium woodii metabolized 3-[methoxy-18O]methoxybenzoic acid (3-anisic acid) to 3-[hydroxy-18O]hydroxybenzoic acid stoichiometrically at rates of 1.5, 3.2, 52.4, and 36.7 nmol/min per mg of protein, respectively. A different strain of Acetobacterium and strains of Syntrophococcus, Clostridium, Desulfotomaculum, Enterobacter, and an anaerobic bacterium, strain TH-001, were unable to transform this compound. The O-demethylating ability of E. limosum was induced only with appropriate methoxylated benzoates but not with D-glucose, lactate, isoleucine, or methanol. Cross-acclimation and growth experiments with E. limosum showed a rate of metabolism that was an order of magnitude slower and showed no growth with either 4-methoxysalicylic acid (2-hydroxy-4-methoxybenzoic acid) or 4-anisic acid (4-methoxybenzoic acid) when adapted to 3-anisic acid. However, A. woodii NZva-16 showed slower rates and no growth with 3- or 4-methoxysalicylic acid when adapted to 3-anisic acid in similar experiments. The results clearly indicate a methyl rather than methoxy group removal mechanism for such reactions. PMID:3389815

  10. Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria.

    PubMed Central

    DeWeerd, K A; Saxena, A; Nagle, D P; Suflita, J M

    1988-01-01

    O-methyl substituents of aromatic compounds can provide C1 growth substrates for facultative and strict anaerobic bacteria isolated from diverse environments. The mechanism of the bioconversion of methoxylated benzoic acids to the hydroxylated derivatives was investigated with a model substrate and cultures of one anaerobic consortium, eight strict anaerobic bacteria, and one facultative anaerobic microorganism. Using high-pressure liquid chromatography and gas chromatography-mass spectral analysis, we found that a haloaromatic dehalogenating consortium, a dehalogenating isolate from that consortium, Eubacterium limosum, and a strain of Acetobacterium woodii metabolized 3-[methoxy-18O]methoxybenzoic acid (3-anisic acid) to 3-[hydroxy-18O]hydroxybenzoic acid stoichiometrically at rates of 1.5, 3.2, 52.4, and 36.7 nmol/min per mg of protein, respectively. A different strain of Acetobacterium and strains of Syntrophococcus, Clostridium, Desulfotomaculum, Enterobacter, and an anaerobic bacterium, strain TH-001, were unable to transform this compound. The O-demethylating ability of E. limosum was induced only with appropriate methoxylated benzoates but not with D-glucose, lactate, isoleucine, or methanol. Cross-acclimation and growth experiments with E. limosum showed a rate of metabolism that was an order of magnitude slower and showed no growth with either 4-methoxysalicylic acid (2-hydroxy-4-methoxybenzoic acid) or 4-anisic acid (4-methoxybenzoic acid) when adapted to 3-anisic acid. However, A. woodii NZva-16 showed slower rates and no growth with 3- or 4-methoxysalicylic acid when adapted to 3-anisic acid in similar experiments. The results clearly indicate a methyl rather than methoxy group removal mechanism for such reactions. PMID:3389815

  11. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture.

    PubMed

    Shah, Mihir V; van Mastrigt, Oscar; Heijnen, Joseph J; van Gulik, Walter M

    2016-04-01

    Currently, research is being focused on the industrial-scale production of fumaric acid and other relevant organic acids from renewable feedstocks via fermentation, preferably at low pH for better product recovery. However, at low pH a large fraction of the extracellular acid is present in the undissociated form, which is lipophilic and can diffuse into the cell. There have been no studies done on the impact of high extracellular concentrations of fumaric acid under aerobic conditions in S. cerevisiae, which is a relevant issue to study for industrial-scale production. In this work we studied the uptake and metabolism of fumaric acid in S. cerevisiae in glucose-limited chemostat cultures at a cultivation pH of 3.0 (pH < pK). Steady states were achieved with different extracellular levels of fumaric acid, obtained by adding different amounts of fumaric acid to the feed medium. The experiments were carried out with the wild-type S. cerevisiae CEN.PK 113-7D and an engineered S. cerevisiae ADIS 244 expressing a heterologous dicarboxylic acid transporter (DCT-02) from Aspergillus niger, to examine whether it would be capable of exporting fumaric acid. We observed that fumaric acid entered the cells most likely via passive diffusion of the undissociated form. Approximately two-thirds of the fumaric acid in the feed was metabolized together with glucose. From metabolic flux analysis, an increased ATP dissipation was observed only at high intracellular concentrations of fumarate, possibly due to the export of fumarate via an ABC transporter. The implications of our results for the industrial-scale production of fumaric acid are discussed. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26683700

  12. Proteomic analysis of amino acid metabolism differences between wild and cultivated Panax ginseng

    PubMed Central

    Sun, Hang; Liu, Fangbing; Sun, Liwei; Liu, Jianzeng; Wang, Manying; Chen, Xuenan; Xu, Xiaohao; Ma, Rui; Feng, Kai; Jiang, Rui

    2015-01-01

    Background The present study aimed to compare the relative abundance of proteins and amino acid metabolites to explore the mechanisms underlying the difference between wild and cultivated ginseng (Panax ginseng Meyer) at the amino acid level. Methods Two-dimensional polyacrylamide gel electrophoresis and isobaric tags for relative and absolute quantitation were used to identify the differential abundance of proteins between wild and cultivated ginseng. Total amino acids in wild and cultivated ginseng were compared using an automated amino acid analyzer. The activities of amino acid metabolism-related enzymes and the contents of intermediate metabolites between wild and cultivated ginseng were measured using enzyme-linked immunosorbent assay and spectrophotometric methods. Results Our results showed that the contents of 14 types of amino acids were higher in wild ginseng compared with cultivated ginseng. The amino acid metabolism-related enzymes and their derivatives, such as glutamate decarboxylase and S-adenosylmethionine, all had high levels of accumulation in wild ginseng. The accumulation of sulfur amino acid synthesis-related proteins, such as methionine synthase, was also higher in wild ginseng. In addition, glycolysis and tricarboxylic acid cycle-related enzymes as well as their intermediates had high levels of accumulation in wild ginseng. Conclusion This study elucidates the differences in amino acids between wild and cultivated ginseng. These results will provide a reference for further studies on the medicinal functions of wild ginseng. PMID:27158231

  13. Mass spectrometry characterisation of fatty acids from metabolically engineered soybean seeds.

    PubMed

    Murad, André M; Vianna, Giovanni R; Machado, Alex M; da Cunha, Nicolau B; Coelho, Cíntia M; Lacerda, Valquiria A M; Coelho, Marly C; Rech, Elibio L

    2014-05-01

    Improving the quality and performance of soybean oil as biodiesel depends on the chemical composition of its fatty acids and requires an increase in monounsaturated acids and a reduction in polyunsaturated acids. Despite its current use as a source of biofuel, soybean oil contains an average of 25 % oleic acid and 13 % palmitic acid, which negatively impacts its oxidative stability and freezing point, causing a high rate of nitrogen oxide emission. Gas chromatography and ion mobility mass spectrometry were conducted on soybean fatty acids from metabolically engineered seed extracts to determine the nature of the structural oleic and palmitic acids. The soybean genes FAD2-1 and FatB were placed under the control of the 35SCaMV constitutive promoter, introduced to soybean embryonic axes by particle bombardment and down-regulated using RNA interference technology. Results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 94.58 %) and a reduction in palmitic acid (to <3 %) in their seed oil content. No structural differences were observed between the fatty acids of the transgenic and non-transgenic oil extracts. PMID:24652150

  14. Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9

    PubMed Central

    DeBosch, Brian J.; Kluth, Oliver; Fujiwara, Hideji; Schürmann, Annette; Moley, Kelle

    2015-01-01

    Excess circulating uric acid, a product of hepatic glycolysis and purine metabolism, often accompanies metabolic syndrome. However, whether hyperuricemia contributes to development of metabolic syndrome or is merely a by-product of other processes that cause this disorder has not been resolved. Additionally, how uric acid is cleared from the circulation is incompletely understood. Here, we present a genetic model of spontaneous, early-onset metabolic syndrome in mice lacking the enterocyte urate transporter Glut9 (encoded by the SLC2A9 gene). Glut9-deficient mice develop impaired enterocyte uric acid transport kinetics, hyperuricemia, hyperuricosuria, spontaneous hypertension, dyslipidemia, and elevated body fat. Allopurinol, a xanthine oxidase inhibitor, can reverse the hypertension and hypercholesterolemia. These data provide evidence that hyperuricemia per se could have deleterious metabolic sequelae. Moreover, these findings suggest that enterocytes may regulate whole-body metabolism, and that enterocyte urate metabolism could potentially be targeted to modulate or prevent metabolic syndrome. PMID:25100214

  15. Energy metabolism, enzymatic flux capacities, and metabolic flux rates in flying honeybees.

    PubMed Central

    Suarez, R K; Lighton, J R; Joos, B; Roberts, S P; Harrison, J F

    1996-01-01

    Honeybees rely primarily on the oxidation of hexose sugars to provide the energy required for flight. Measurement of VCO2 (equal to VO2, because VCO2/VO2 = 1.0 during carbohydrate oxidation) during flight allowed estimation of steady-state flux rates through pathways of flight muscle energy metabolism. Comparison of Vmax values for flight muscle hexokinase, phosphofructokinase, citrate synthase, and cytochrome c oxidase with rates of carbon and O2 flux during flight reveal that these enzymes operate closer to Vmax in the flight muscles of flying honeybees than in other muscles previously studied. Possible mechanistic and evolutionary implications of these findings are discussed. PMID:8901631

  16. Acetate and other Volatile Fatty Acids - Key Intermediates in marine sediment metabolism - Thermodynamic and kinetic implications

    NASA Astrophysics Data System (ADS)

    Glombitza, C.; Jaussi, M.; Røy, H.; Jørgensen, B. B.

    2014-12-01

    Volatile fatty acids (VFAs) play important roles as key intermediates in the anaerobic metabolism of subsurface microbial communities. Usually they are present in marine sediment pore water in low concentrations as a result of balanced production and consumption, both occurring in the same sediment zone. Thus their low concentrations represent a steady state condition regulated by either thermodynamics or kinetics. We have developed a novel analytical approach for the parallel measurement of several VFAs directly from marine pore water without any sample pretreatment by the use of a 2-dimensional ion chromatography coupled to mass spectrometry. In a first study we analyzed acetate, formate, and propionate in pore water from sediment cores retrieved from 5 different stations within and offshore of the Godhåbsfjord (Greenland). The sediment cores represent different sedimentological conditions, ranging from a typical marine sedimentation site to a glacier/freshwater dominated site. In addition to VFA concentrations, we measured sulfate concentrations, sulfate reduction rates, and cell abundances. We calculated the Gibbs free energy (ΔG) available for sulfate reduction (SR), as well as the VFA turnover times by the in-situ SR rates. The turnover time for acetate by SR ranged from several hours to days in the top cm of sediment and increased to several hundred years at the bottom of the SR zone. From the associated cell abundances we calculated that the VFA turnover times were significantly longer than the diffusion times of the VFA between individual cells. This shows that VFA consumption in the SR zone, and concomitantly the observed pore water concentrations, are not constrained by diffusion. DG values for SR using acetate were >36 kJ/mol which is significantly above the lower limit for anaerobic microbial energy metabolism. It thus remains unclear what controls the VFA concentrations in the sediment.

  17. Metabolic Pathway Confirmation and Discovery Through 13C-labeling of Proteinogenic Amino Acids

    PubMed Central

    You, Le; Page, Lawrence; Feng, Xueyang; Berla, Bert; Pakrasi, Himadri B.; Tang, Yinjie J.

    2012-01-01

    Microbes have complex metabolic pathways that can be investigated using biochemistry and functional genomics methods. One important technique to examine cell central metabolism and discover new enzymes is 13C-assisted metabolism analysis 1. This technique is based on isotopic labeling, whereby microbes are fed with a 13C labeled substrates. By tracing the atom transition paths between metabolites in the biochemical network, we can determine functional pathways and discover new enzymes. As a complementary method to transcriptomics and proteomics, approaches for isotopomer-assisted analysis of metabolic pathways contain three major steps 2. First, we grow cells with 13C labeled substrates. In this step, the composition of the medium and the selection of labeled substrates are two key factors. To avoid measurement noises from non-labeled carbon in nutrient supplements, a minimal medium with a sole carbon source is required. Further, the choice of a labeled substrate is based on how effectively it will elucidate the pathway being analyzed. Because novel enzymes often involve different reaction stereochemistry or intermediate products, in general, singly labeled carbon substrates are more informative for detection of novel pathways than uniformly labeled ones for detection of novel pathways3, 4. Second, we analyze amino acid labeling patterns using GC-MS. Amino acids are abundant in protein and thus can be obtained from biomass hydrolysis. Amino acids can be derivatized by N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (TBDMS) before GC separation. TBDMS derivatized amino acids can be fragmented by MS and result in different arrays of fragments. Based on the mass to charge (m/z) ratio of fragmented and unfragmented amino acids, we can deduce the possible labeled patterns of the central metabolites that are precursors of the amino acids. Third, we trace 13C carbon transitions in the proposed pathways and, based on the isotopomer data, confirm whether these

  18. Metabolism of hydroxy fatty acids in dogs with steatorrhea secondary to experimentally produced intestinal blind loops.

    PubMed

    Kim, Y S; Spritz, N

    1968-07-01

    Several aspects of the metabolism of hydroxy fatty acids were studied in dogs with steatorrhea resulting from an experimentally produced jejunal blind loop. In these animals hydroxy acids were present in the stool in amounts far above normal. These acids disappeared from the feces during tetracycline administration and after exclusion of the blind loop-both procedures that corrected the steatorrhea apparently by reducing bacterial overgrowth. Hydroxy acids persisted in higher than normal amounts, however, after administration of taurocholic acid, which also corrected the steatorrhea, but by a different mechanism. Both in normal dogs and in those with blind loops, hydroxy acid constituted a higher percentage of total fatty acids in the jejunum. A possible conclusion is that hydroxy fatty acids have an enterohepatic circulation via the portal system. When hydroxy acids were fed to normal dogs, steatorrhea was not produced and absorption in amounts similar to that of unsubstituted stearic acid was observed. Isotopic oleic and linoleic acids were converted to hydroxy acids both in vivo and during in vitro incubation with feces; stearic acid was not. These findings support the idea that hydroxy acids arise by the addition of water across double bonds, this addition being catalyzed by enzymes of intestinal bacteria. PMID:5725881

  19. Acid Stress-Mediated Metabolic Shift in Lactobacillus sanfranciscensis LSCE1 ▿

    PubMed Central

    Serrazanetti, Diana I.; Ndagijimana, Maurice; Sado-Kamdem, Sylvain L.; Corsetti, Aldo; Vogel, Rudi F.; Ehrmann, Matthias; Guerzoni, M. Elisabetta

    2011-01-01

    Lactobacillus sanfranciscensis LSCE1 was selected as a target organism originating from recurrently refreshed sourdough to study the metabolic rerouting associated with the acid stress exposure during sourdough fermentation. In particular, the acid stress induced a metabolic shift toward overproduction of 3-methylbutanoic and 2-methylbutanoic acids accompanied by reduced sugar consumption and primary carbohydrate metabolite production. The fate of labeled leucine, the role of different nutrients and precursors, and the expression of the genes involved in branched-chain amino acid (BCAA) catabolism were evaluated at pH 3.6 and 5.8. The novel application of the program XCMS to the solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) data allowed accurate separation and quantification of 2-methylbutanoic and 3-methylbutanoic acids, generally reported as a cumulative datum. The metabolites coming from BCAA catabolism increased up to seven times under acid stress. The gene expression analysis confirmed that some genes associated with BCAA catabolism were overexpressed under acid conditions. The experiment with labeled leucine showed that 2-methylbutanoic acid originated also from leucine. While the overproduction of 3-methylbutanoic acid under acid stress can be attributed to the need to maintain redox balance, the rationale for the production of 2-methylbutanoic acid from leucine can be found in a newly proposed biosynthesis pathway leading to 2-methylbutanoic acid and 3 mol of ATP per mol of leucine. Leucine catabolism to 3-methylbutanoic and 2-methylbutanoic acids suggests that the switch from sugar to amino acid catabolism supports growth in L. sanfranciscensis in restricted environments such as sourdough characterized by acid stress and recurrent carbon starvation. PMID:21335381

  20. Organic Acids as Hetrotrophic Energy Sources in Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Windman, T. O.; Zolotova, N.; Shock, E.

    2004-12-01

    Many thermophilic microbes are heterotrophs, but little is known about the organic compounds present in hydrothermal ecosystems. More is known about what these organisms will metabolize in lab experiments than what they do metabolize in nature. In an effort to bridge this gap, we have begun to incorporate organic analyses into ongoing research on Yellowstone hydrothermal ecosystems. After filtering at least a liter of hot spring water to minimize contamination, samples were collected into sixty-milliliter serum vials containing ultra-pure phosphoric acid, sodium hydroxide, or benzalkonium chloride. Approximately 80 sites were sampled spanning temperatures from 60 to 90°C and pH values from 2 to 9. Analytical data for organic acid anions (including formate, acetate, lactate, and succinate) were obtained by ion chromatography. Preliminary results indicate that concentrations of organic acids anions range from 5 to 300 ppb. These results can be used with other field and lab data (sulfate, sulfide, nitrate, ammonia, bicarbonate, pH, hydrogen) in thermodynamic calculations to evaluate the amounts of energy available in heterotrophic reactions. Preliminary results of such calculations show that sulfate reduction to sulfide coupled to succinate oxidation to bicarbonate yields about 6 kcal per mole of electrons transferred. When formate oxidation to bicarbonate or hydrogen oxidation to water is coupled to sulfate reduction there is less energy available by approximately a factor of two. A comparison with nitrate reduction to ammonia involving succinate and/or formate oxidation reveals several similarities. Using formate to reduce nitrate can yield about as much energy as nitrate reduction with hydrogen (typically 12 to 14 kcal per mole of electrons transferred), but using succinate can yield more than twice as much energy. In fact, reduction of nitrate with succinate can provide more energy than any of the inorganic nitrate reduction reactions involving sulfur, iron

  1. The Effects of Cholera Toxin on Cellular Energy Metabolism

    PubMed Central

    Snider, Rachel M.; McKenzie, Jennifer R.; Kraft, Lewis; Kozlov, Eugene; Wikswo, John P.; Cliffel, David E.

    2010-01-01

    Multianalyte microphysiometry, a real-time instrument for simultaneous measurement of metabolic analytes in a microfluidic environment, was used to explore the effects of cholera toxin (CTx). Upon exposure of CTx to PC-12 cells, anaerobic respiration was triggered, measured as increases in acid and lactate production and a decrease in the oxygen uptake. We believe the responses observed are due to a CTx-induced activation of adenylate cyclase, increasing cAMP production and resulting in a switch to anaerobic respiration. Inhibitors (H-89, brefeldin A) and stimulators (forskolin) of cAMP were employed to modulate the CTx-induced cAMP responses. The results of this study show the utility of multianalyte microphysiometry to quantitatively determine the dynamic metabolic effects of toxins and affected pathways. PMID:22069603

  2. Mechanistic modeling of aberrant energy metabolism in human disease

    PubMed Central

    Sangar, Vineet; Eddy, James A.; Simeonidis, Evangelos; Price, Nathan D.

    2012-01-01

    Dysfunction in energy metabolism—including in pathways localized to the mitochondria—has been implicated in the pathogenesis of a wide array of disorders, ranging from cancer to neurodegenerative diseases to type II diabetes. The inherent complexities of energy and mitochondrial metabolism present a significant obstacle in the effort to understand the role that these molecular processes play in the development of disease. To help unravel these complexities, systems biology methods have been applied to develop an array of computational metabolic models, ranging from mitochondria-specific processes to genome-scale cellular networks. These constraint-based (CB) models can efficiently simulate aspects of normal and aberrant metabolism in various genetic and environmental conditions. Development of these models leverages—and also provides a powerful means to integrate and interpret—information from a wide range of sources including genomics, proteomics, metabolomics, and enzyme kinetics. Here, we review a variety of mechanistic modeling studies that explore metabolic functions, deficiency disorders, and aberrant biochemical pathways in mitochondria and related regions in the cell. PMID:23112774

  3. Endogenous and dietary lipids influencing feed intake and energy metabolism of periparturient dairy cows.

    PubMed

    Kuhla, B; Metges, C C; Hammon, H M

    2016-07-01

    The high metabolic priority of the mammary gland for milk production, accompanied by limited feed intake around parturition results in a high propensity to mobilize body fat reserves. Under these conditions, fuel selection of many peripheral organs is switched, for example, from carbohydrate to fat utilization to spare glucose for milk production and to ensure partitioning of tissue- and dietary-derived nutrients toward the mammary gland. For example, muscle tissue uses nonesterified fatty acids (NEFA) but releases lactate and amino acids in a coordinated order, thereby providing precursors for milk synthesis or hepatic gluconeogenesis. Tissue metabolism and in concert, nutrient partitioning are controlled by the endocrine system involving a reduction in insulin secretion and systemic insulin sensitivity and orchestrated changes in plasma hormones such as insulin, adiponectin, insulin growth factor-I, growth hormone, glucagon, leptin, glucocorticoids, and catecholamines. However, the endocrine system is highly sensitive and responsive to an overload of fatty acids no matter if excessive NEFA supply originates from exogenous or endogenous sources. Feeding a diet containing rumen-protected fat from late lactation to calving and beyond exerts similar negative effects on energy intake, glucose and insulin concentrations as does a high extent of body fat mobilization around parturition in regard to the risk for ketosis and fatty liver development. High plasma NEFA concentrations are thought not to act directly at the brain level, but they increase the energy charge of the liver which is, signaled to the brain to diminish feed intake. Cows differing in fat mobilization during the transition phase differ in their hepatic energy charge, whole body fat oxidation, glucose metabolism, plasma ghrelin, and leptin concentrations and in feed intake several week before parturition. Hence, a high lipid load, no matter if stored, mobilized or fed, affects the endocrine system

  4. Toxic synergism between quinolinic acid and organic acids accumulating in glutaric acidemia type I and in disorders of propionate metabolism in rat brain synaptosomes: Relevance for metabolic acidemias.

    PubMed

    Colín-González, A L; Paz-Loyola, A L; Serratos, I; Seminotti, B; Ribeiro, C A J; Leipnitz, G; Souza, D O; Wajner, M; Santamaría, A

    2015-11-12

    The brain of children affected by organic acidemias develop acute neurodegeneration linked to accumulation of endogenous toxic metabolites like glutaric (GA), 3-hydroxyglutaric (3-OHGA), methylmalonic (MMA) and propionic (PA) acids. Excitotoxic and oxidative events are involved in the toxic patterns elicited by these organic acids, although their single actions cannot explain the extent of brain damage observed in organic acidemias. The characterization of co-adjuvant factors involved in the magnification of early toxic processes evoked by these metabolites is essential to infer their actions in the human brain. Alterations in the kynurenine pathway (KP) - a metabolic route devoted to degrade tryptophan to form NAD(+) - produce increased levels of the excitotoxic metabolite quinolinic acid (QUIN), which has been involved in neurodegenerative disorders. Herein we investigated the effects of subtoxic concentrations of GA, 3-OHGA, MMA and PA, either alone or in combination with QUIN, on early toxic endpoints in rat brain synaptosomes. To establish specific mechanisms, we pre-incubated synaptosomes with different protective agents, including the endogenous N-methyl-d-aspartate (NMDA) receptor antagonist kynurenic acid (KA), the antioxidant S-allylcysteine (SAC) and the nitric oxide synthase (NOS) inhibitor nitro-l-arginine methyl ester (l-NAME). While the incubation of synaptosomes with toxic metabolites at subtoxic concentrations produced no effects, their co-incubation (QUIN+GA, +3-OHGA, +MMA or +PA) decreased the mitochondrial function and increased reactive oxygen species (ROS) formation and lipid peroxidation. For all cases, this effect was partially prevented by KA and l-NAME, and completely avoided by SAC. These findings suggest that early damaging events elicited by organic acids involved in metabolic acidemias can be magnified by toxic synergism with QUIN, and this process is mostly mediated by oxidative stress, and in a lesser extent by excitotoxicity and

  5. Amino Acid Metabolism of Lemna minor L. 1

    PubMed Central

    Rhodes, David; Hogan, Austin L.; Deal, Luanne; Jamieson, Gene C.; Haworth, Philip

    1987-01-01

    Chlorsulfuron, an inhibitor of acetolactate synthase (EC 4.1.3.18) (TB Ray 1984 Plant Physiol 75: 827-831), markedly inhibited the growth of Lemna minor at concentrations of 10−8 molar and above, but had no inhibitory effects on growth at 10−9 molar. At growth inhibitory concentrations, chlorsulfuron caused a pronounced increase in total free amino acid levels within 24 hours. Valine, leucine, and isoleucine, however, became smaller percentages of the total free amino acid pool as the concentration of chlorsulfuron was increased. At concentrations of chlorsulfuron of 10−8 molar and above, a new amino acid was accumulated in the free pool. This amino acid was identified as α-amino-n-butyrate by chemical ionization and electron impact gas chromatography-mass spectrometry. The amount of α-amino-n-butyrate increased from undetectable levels in untreated plants, to as high as 840 nanomoles per gram fresh weight (2.44% of the total free pool) in plants treated with 10−4 molar chlorsulfuron for 24 hours. The accumulation of this amino acid was completely inhibited by methionine sulfoximine. Chlorsulfuron did not inhibit the methionine sulfoximine induced accumulations of valine, leucine, and isoleucine, supporting the idea that the accumulation of the branched-chain amino acids in methionine sulfoximine treated plants is the result of protein turnover rather than enhanced synthesis. Protein turnover may be primarily responsible for the failure to achieve complete depletion of valine, leucine, and isoleucine even at concentrations of chlorsulfuron some 104 times greater than that required to inhibit growth. Tracer studies with 15N demonstrate that chlorsulfuron inhibits the incorporation of 15N into valine, leucine, and isoleucine. The α-amino-n-butyrate accumulated in the presence of chlorsulfuron and [15N]H4+ was heavily labeled with 15N at early time points and appeared to be derived by transamination from a rapidly labeled amino acid such as glutamate or

  6. Division of labour: how does folate metabolism partition between one-carbon metabolism and amino acid oxidation?

    PubMed

    Brosnan, Margaret E; MacMillan, Luke; Stevens, Jennifer R; Brosnan, John T

    2015-12-01

    One-carbon metabolism is usually represented as having three canonical functions: purine synthesis, thymidylate synthesis and methylation reactions. There is however a fourth major function: the metabolism of some amino acids (serine, glycine, tryptophan and histidine), as well as choline. These substrates can provide cells with more one-carbon groups than they need for these three canonical functions. Therefore, there must be mechanisms for the disposal of these one-carbon groups (when in excess) which maintain the complement of these groups required for the canonical functions. The key enzyme for these mechanisms is 10-formyl-THF (tetrahydrofolate) dehydrogenase (both mitochondrial and cytoplasmic isoforms) which oxidizes the formyl group to CO2 with the attendant reduction of NADP(+) to NADPH and release of THF. In addition to oxidizing the excess of these compounds, this process can reduce substantial quantities of NADP(+) to NADPH. PMID:26567272

  7. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves

    NASA Astrophysics Data System (ADS)

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Dwivedi, Sanjay; Deeba, Farah; Kumar, Smita; Suman, Shankar; Adhikari, Bijan; Shukla, Yogeshwar; Trivedi, Prabodh Kumar; Pandey, Vivek; Tripathi, Rudra Deo

    2015-11-01

    Arsenic (As) contamination of water is a global concern and rice consumption is the biggest dietary exposure to human posing carcinogenic risks, predominantly in Asia. Sulfur (S) is involved in di-sulfide linkage in many proteins and plays crucial role in As detoxification. Present study explores role of variable S supply on rice leaf proteome, its inclination towards amino acids (AA) profile and non protein thiols under arsenite exposure. Analysis of 282 detected proteins on 2-DE gel revealed 113 differentially expressed proteins, out of which 80 were identified by MALDI-TOF-TOF. The identified proteins were mostly involved in glycolysis, TCA cycle, AA biosynthesis, photosynthesis, protein metabolism, stress and energy metabolism. Among these, glycolytic enzymes play a major role in AA biosynthesis that leads to change in AAs profiling. Proteins of glycolytic pathway, photosynthesis and energy metabolism were also validated by western blot analysis. Conclusively S supplementation reduced the As accumulation in shoot positively skewed thiol metabolism and glycolysis towards AA accumulation under AsIII stress.

  8. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves

    PubMed Central

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Dwivedi, Sanjay; Deeba, Farah; Kumar, Smita; Suman, Shankar; Adhikari, Bijan; Shukla, Yogeshwar; Trivedi, Prabodh Kumar; Pandey, Vivek; Tripathi, Rudra Deo

    2015-01-01

    Arsenic (As) contamination of water is a global concern and rice consumption is the biggest dietary exposure to human posing carcinogenic risks, predominantly in Asia. Sulfur (S) is involved in di-sulfide linkage in many proteins and plays crucial role in As detoxification. Present study explores role of variable S supply on rice leaf proteome, its inclination towards amino acids (AA) profile and non protein thiols under arsenite exposure. Analysis of 282 detected proteins on 2-DE gel revealed 113 differentially expressed proteins, out of which 80 were identified by MALDI-TOF-TOF. The identified proteins were mostly involved in glycolysis, TCA cycle, AA biosynthesis, photosynthesis, protein metabolism, stress and energy metabolism. Among these, glycolytic enzymes play a major role in AA biosynthesis that leads to change in AAs profiling. Proteins of glycolytic pathway, photosynthesis and energy metabolism were also validated by western blot analysis. Conclusively S supplementation reduced the As accumulation in shoot positively skewed thiol metabolism and glycolysis towards AA accumulation under AsIII stress. PMID:26552588

  9. Relation between uric acid and metabolic syndrome in subjects with cardiometabolic risk

    PubMed Central

    da Silva, Hellen Abreu; Carraro, Júlia Cristina Cardoso; Bressan, Josefina; Hermsdorff, Helen Hermana Miranda

    2015-01-01

    Objective To identify possible relations between serum uric acid levels and metabolic syndrome and its components in a population with cardiometabolic risk. Methods This cross-sectional study included 80 subjects (46 women), with mean age of 48±16 years, seen at the Cardiovascular Health Program. Results The prevalence of hyperuricemia and metabolic syndrome was 6.3% and 47.1%, respectively. Uric acid level was significantly higher in individuals with metabolic syndrome (5.1±1.6mg/dL), as compared to those with no syndrome or with pre-syndrome (3.9±1.2 and 4.1±1.3mg/dL, respectively; p<0.05). The uric acid levels were significantly higher in men presenting abdominal obesity, and among women with abdominal obesity, lower HDL-c levels and higher blood pressure (p<0.05). Conclusion Uric acid concentrations were positively related to the occurrence of metabolic syndrome and its components, and there were differences between genders. Our results indicate serum uric acid as a potential biomarker for patients with cardiometabolic risk. PMID:26018145

  10. Hydroxyoctadecadienoic acids: Oxidised derivatives of linoleic acid and their role in inflammation associated with metabolic syndrome and cancer.

    PubMed

    Vangaveti, Venkat N; Jansen, Holger; Kennedy, Richard Lee; Malabu, Usman H

    2016-08-15

    Linoleic acid (LA) is a major constituent of low-density lipoproteins. An essential fatty acid, LA is a polyunsaturated fatty acid, which is oxidised by endogenous enzymes and reactive oxygen species in the circulation. Increased levels of low-density lipoproteins coupled with oxidative stress and lack of antioxidants drive the oxidative processes. This results in synthesis of a range of oxidised derivatives, which play a vital role in regulation of inflammatory processes. The derivatives of LA include, hydroxyoctadecadienoic acids, oxo-​octadecadienoic acids, epoxy octadecadecenoic acid and epoxy-keto-octadecenoic acids. In this review, we examine the role of LA derivatives and their actions on regulation of inflammation relevant to metabolic processes associated with atherogenesis and cancer. The processes affected by LA derivatives include, alteration of airway smooth muscles and vascular wall, affecting sensitivity to pain, and regulating endogenous steroid hormones associated with metabolic syndrome. LA derivatives alter cell adhesion molecules, this initial step, is pivotal in regulating inflammatory processes involving transcription factor peroxisome proliferator-activated receptor pathways, thus, leading to alteration of metabolic processes. The derivatives are known to elicit pleiotropic effects that are either beneficial or detrimental in nature hence making it difficult to determine the exact role of these derivatives in the progress of an assumed target disorder. The key may lie in understanding the role of these derivatives at various stages of development of a disorder. Novel pharmacological approaches in altering the synthesis or introduction of synthesised LA derivatives could possibly help drive processes that could regulate inflammation in a beneficial manner. Chemical Compounds: Linoleic acid (PubChem CID: 5280450), 9- hydroxyoctadecadienoic acid (PubChem CID: 5312830), 13- hydroxyoctadecadienoic acid (PubChem CID: 6443013), 9-oxo

  11. Carbon Flow and Metabolic Specialization in the Tissue Layers of the Crassulacean Acid Metabolism Plant, Peperomia camptotricha1

    PubMed Central

    Nishio, John N.; Ting, Irwin P.

    1987-01-01

    Leaves of Peperomia camptotricha contain three distinct upper tissue layers and a one-cell thick lower epidermis. Light and dark CO2 fixation rates and the activity of ribulose bisphosphate carboxylase/oxygenase and several C4 enzymes were determined in the three distinct tissue layers. The majority of the C4 enzyme activity and dark CO2 fixation was associated with the spongy mesophyll, including the lower epidermis; and the least activity was found in the median palisade mesophyll. In contrast, the majority of the C3 activity, that is ribulose bisphosphate carboxylase/oxygenase and light CO2 fixation, was located in the palisade mesophyll. In addition, the diurnal flux in titratable acidity was greatest in the spongy mesophyll and lowest in the palisade mesophyll. The spatial separation of the C3 and C4 phases of carbon fixation in P. camptotricha suggests that this Crassulacean acid metabolism plant may have low photorespiratory rates when it exhibits daytime gas exchange (that is, when it is well watered). The results also indicate that this plant may be on an evolutionary path between a true Crassulacean acid metabolism plant and a true C4 plant. PMID:16665487

  12. Independent Effects of γ-Aminobutyric Acid Transaminase (GABAT) on Metabolic and Sleep Homeostasis*

    PubMed Central

    Maguire, Sarah E.; Rhoades, Seth; Chen, Wen-Feng; Sengupta, Arjun; Yue, Zhifeng; Lim, Jason C.; Mitchell, Claire H.; Weljie, Aalim M.; Sehgal, Amita

    2015-01-01

    Breakdown of the major sleep-promoting neurotransmitter, γ-aminobutyric acid (GABA), in the GABA shunt generates catabolites that may enter the tricarboxylic acid cycle, but it is unknown whether catabolic by-products of the GABA shunt actually support metabolic homeostasis. In Drosophila, the loss of the specific enzyme that degrades GABA, GABA transaminase (GABAT), increases sleep, and we show here that it also affects metabolism such that flies lacking GABAT fail to survive on carbohydrate media. Expression of GABAT in neurons or glia rescues this phenotype, indicating a general metabolic function for this enzyme in the brain. As GABA degradation produces two catabolic products, glutamate and succinic semialdehyde, we sought to determine which was responsible for the metabolic phenotype. Through genetic and pharmacological experiments, we determined that glutamate, rather than succinic semialdehyde, accounts for the metabolic phenotype of gabat mutants. This is supported by biochemical measurements of catabolites in wild-type and mutant animals. Using in vitro labeling assays, we found that inhibition of GABAT affects energetic pathways. Interestingly, we also observed that gaba mutants display a general disruption in bioenergetics as measured by altered levels of tricarboxylic acid cycle intermediates, NAD+/NADH, and ATP levels. Finally, we report that the effects of GABAT on sleep do not depend upon glutamate, indicating that GABAT regulates metabolic and sleep homeostasis through independent mechanisms. These data indicate a role of the GABA shunt in the development of metabolic risk and suggest that neurological disorders caused by altered glutamate or GABA may be associated with metabolic disruption. PMID:26124278

  13. Refined Analysis of Brain Energy Metabolism Using In Vivo Dynamic Enrichment of 13C Multiplets

    PubMed Central

    Dehghani M., Masoumeh; Duarte, João M. N.; Kunz, Nicolas; Gruetter, Rolf

    2016-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy in combination with the infusion of 13C-labeled precursors is a unique approach to study in vivo brain energy metabolism. Incorporating the maximum information available from in vivo localized 13C spectra is of importance to get broader knowledge on cerebral metabolic pathways. Metabolic rates can be quantitatively determined from the rate of 13C incorporation into amino acid neurotransmitters such as glutamate and glutamine using suitable mathematical models. The time course of multiplets arising from 13C-13C coupling between adjacent carbon atoms was expected to provide additional information for metabolic modeling leading to potential improvements in the estimation of metabolic parameters. The aim of the present study was to extend two-compartment neuronal/glial modeling to include dynamics of 13C isotopomers available from fine structure multiplets in 13C spectra of glutamate and glutamine measured in vivo in rats brain at 14.1 T, termed bonded cumomer approach. Incorporating the labeling time courses of 13C multiplets of glutamate and glutamine resulted in elevated precision of the estimated fluxes in rat brain as well as reduced correlations between them. PMID:26969691

  14. Reprograming of gut microbiome energy metabolism by the FUT2 Crohn's disease risk polymorphism

    PubMed Central

    Tong, Maomeng; McHardy, Ian; Ruegger, Paul; Goudarzi, Maryam; Kashyap, Purna C; Haritunians, Talin; Li, Xiaoxiao; Graeber, Thomas G; Schwager, Emma; Huttenhower, Curtis; Fornace, Albert J; Sonnenburg, Justin L; McGovern, Dermot PB; Borneman, James; Braun, Jonathan

    2014-01-01

    Fucosyltransferase 2 (FUT2) is an enzyme that is responsible for the synthesis of the H antigen in body fluids and on the intestinal mucosa. The H antigen is an oligosaccharide moiety that acts as both an attachment site and carbon source for intestinal bacteria. Non-secretors, who are homozygous for the loss-of-function alleles of FUT2 gene (sese), have increased susceptibility to Crohn's disease (CD). To characterize the effect of FUT2 polymorphism on the mucosal ecosystem, we profiled the microbiome, meta-proteome and meta-metabolome of 75 endoscopic lavage samples from the cecum and sigmoid of 39 healthy subjects (12 SeSe, 18 Sese and 9 sese). Imputed metagenomic analysis revealed perturbations of energy metabolism in the microbiome of non-secretor and heterozygote individuals, notably the enrichment of carbohydrate and lipid metabolism, cofactor and vitamin metabolism and glycan biosynthesis and metabolism-related pathways, and the depletion of amino-acid biosynthesis and metabolism. Similar changes were observed in mice bearing the FUT2−/− genotype. Metabolomic analysis of human specimens revealed concordant as well as novel changes in the levels of several metabolites. Human metaproteomic analysis indicated that these functional changes were accompanied by sub-clinical levels of inflammation in the local intestinal mucosa. Therefore, the colonic microbiota of non-secretors is altered at both the compositional and functional levels, affecting the host mucosal state and potentially explaining the association of FUT2 genotype and CD susceptibility. PMID:24781901

  15. Energy substrate metabolism among habitually violent alcoholic offenders having antisocial personality disorder.

    PubMed

    Virkkunen, Matti; Rissanen, Aila; Naukkarinen, Hannu; Franssila-Kallunki, Anja; Linnoila, Markku; Tiihonen, Jari

    2007-04-15

    A large proportion of violent offences in Western countries are attributable to antisocial personality disorder (APD). Several studies have shown abnormal lipid, carbohydrate and low cerebrospinal fluid (CSF) monoamine metabolite levels in habitually violent alcoholic offenders with APD, but it is not clear how these biochemical abnormalities are related to each other in this disorder. We aimed to study energy substrate metabolism among habitually violent offenders with APD. Insulin sensitivity (euglycemic insulin clamp), basal energy expenditure (indirect calorimetry), and CSF 5-hydroxyindoleacetic acid (5-HIAA) measurements were performed on 96 habitually violent antisocial male alcoholic offenders and on 40 normal male controls. Habitually violent, incarcerated offenders with APD had significantly lower non-oxidative glucose metabolism, basal glucagon, and free fatty acids when compared with normal controls, but glucose oxidation and CSF 5-HIAA did not differ markedly between these groups. The effect sizes for lower non-oxidative glucose metabolism among incarcerated and non-incarcerated APD subjects were 0.73 and 0.51, respectively, when compared with controls, indicating that this finding was not explained by incarceration. Habitually violent offenders with APD have markedly lower glucagon and non-oxidative glucose metabolism when compared with healthy controls, and these findings were more strongly associated with habitual violent offending than low CSF 5-HIAA levels, a well-established marker for impulsive violent behavior. Follow-up studies are needed to confirm if abnormal glucose and lipid metabolism can be used to predict violent offending over the course of the APD offender's life span. PMID:17316826

  16. Influence of dietary retrograded starch on the metabolism of neutral steroids and bile acids in rats.

    PubMed

    Verbeek, M J; De Deckere, E A; Tijburg, L B; Van Amelsvoort, J M; Beynen, A C

    1995-12-01

    Diets enriched in retrograded amylose (RS3) have been shown to lower serum cholesterol concentrations in rats. The possibility was tested that this hypocholesterolaemic effect of RS3 is caused by an increase in excretion of neutral steroids and/or bile acids. Six groups of ten rats were fed on purified diets containing either 12 or 140 g RS3/kg solid ingredients with and without added cholesterol (5g/kg). Low-RS3 diets, with and without added cholesterol, to which the bile-acid-binding resin cholestyramine (20 g/kg) was added, were used as reference. The high-RS3 diets v. the low-RS3 diets tended to reduce the increase in the total serum cholesterol concentration during the course of the experiment (P = 0.067), decreased serum triacylglycerol concentrations, raised total neutral steroids and total bile acids in caecal contents and faecal excretion of total bile acids, but lowered faecal excretion of neutral steroids. In addition, the serum concentration of total 3 alpha-bile acids was markedly raised by the high-RS3 diets. The high-RS3 diets raised the faecal excretion of lithocholic and muricholic acids, but lowered that of hyodeoxycholic acid, and increased the caecal amounts of lithocholic, ursodeoxycholic, beta-muricholic and omega-muricholic acids. Apart from the stimulation of faecal bile acids excretion, the effects of cholestyramine on bile acid metabolism differed at various points from those of RS3. Cholesterol feeding had predictable effects on cholesterol metabolism and led to greater elevating effects of RS3 on the faecal and caecal amounts of muricholic acids. The results suggest that the serum-cholesterol-lowering effect of high-RS3 diets may be explained by an increased influx of neutral steroids and bile acids into the caecum, and increased faecal excretion of bile acids, and/or by an altered intestinal bile acid profile. PMID:8562568

  17. Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism.

    PubMed

    Saab, Aiman S; Tzvetavona, Iva D; Trevisiol, Andrea; Baltan, Selva; Dibaj, Payam; Kusch, Kathrin; Möbius, Wiebke; Goetze, Bianka; Jahn, Hannah M; Huang, Wenhui; Steffens, Heinz; Schomburg, Eike D; Pérez-Samartín, Alberto; Pérez-Cerdá, Fernando; Bakhtiari, Davood; Matute, Carlos; Löwel, Siegrid; Griesinger, Christian; Hirrlinger, Johannes; Kirchhoff, Frank; Nave, Klaus-Armin

    2016-07-01

    Oligodendrocytes make myelin and support axons metabolically with lactate. However, it is unknown how glucose utilization and glycolysis are adapted to the different axonal energy demands. Spiking axons release glutamate and oligodendrocytes express NMDA receptors of unknown function. Here we show that the stimulation of oligodendroglial NMDA receptors mobilizes glucose transporter GLUT1, leading to its incorporation into the myelin compartment in vivo. When myelinated optic nerves from conditional NMDA receptor mutants are challenged with transient oxygen-glucose deprivation, they show a reduced functional recovery when returned to oxygen-glucose but are indistinguishable from wild-type when provided with oxygen-lactate. Moreover, the functional integrity of isolated optic nerves, which are electrically silent, is extended by preincubation with NMDA, mimicking axonal activity, and shortened by NMDA receptor blockers. This reveals a novel aspect of neuronal energy metabolism in which activity-dependent glutamate release enhances oligodendroglial glucose uptake and glycolytic support of fast spiking axons. PMID:27292539

  18. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways

    PubMed Central

    Barquissau, V.; Beuzelin, D.; Pisani, D.F.; Beranger, G.E.; Mairal, A.; Montagner, A.; Roussel, B.; Tavernier, G.; Marques, M.-A.; Moro, C.; Guillou, H.; Amri, E.-Z.; Langin, D.

    2016-01-01

    in PPARα-null mice displaying an impaired britening response. Conclusions Conversion of human white fat cells into brite adipocytes results in a major metabolic reprogramming inducing fatty acid anabolic and catabolic pathways. PDK4 redirects glucose from oxidation towards triglyceride synthesis and favors the use of fatty acids as energy source for uncoupling mitochondria. PMID:27110487

  19. Characterizing MttA as a mitochondrial cis-aconitic acid transporter by metabolic engineering.

    PubMed

    Steiger, Matthias G; Punt, Peter J; Ram, Arthur F J; Mattanovich, Diethard; Sauer, Michael

    2016-05-01

    The mitochondrial carrier protein MttA is involved in the biosynthesis of itaconic acid in Aspergillus terreus. In this paper, the transport specificity of MttA is analyzed making use of different metabolically engineered Aspergillus niger strains. Furthermore, the mitochondrial localization of this protein is confirmed using fluorescence microscopy. It was found that MttA preferentially transports cis-aconitic acid over citric acid and does not transport itaconic acid. The expression of MttA in selected A. niger strains results in secretion of aconitic acid. MttA can be used in further strain engineering strategies to transport cis-aconitic acid to the cytosol to produce itaconic acid or related metabolites. The microbial production of aconitic acid (9g/L) is achieved in strains expressing this transport protein. Thus, metabolic engineering can be used for both the in vivo characterization of transport protein function like MttA and to make use of this protein by creating aconitic acid producing strains. PMID:26875555

  20. Adipose Tissue Dysfunction and Altered Systemic Amino Acid Metabolism Are Associated with Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Autio, Reija; Borra, Ronald; Ojanen, Xiaowei; Xu, Leiting; Törmäkangas, Timo; Alen, Markku

    2015-01-01

    Background Fatty liver is a major cause of obesity-related morbidity and mortality. The aim of this study was to identify early metabolic alterations associated with liver fat accumulation in 50- to 55-year-old men (n = 49) and women (n = 52) with and without NAFLD. Methods Hepatic fat content was measured using proton magnetic resonance spectroscopy (1H MRS). Serum samples were analyzed using a nuclear magnetic resonance (NMR) metabolomics platform. Global gene expression profiles of adipose tissues and skeletal muscle were analyzed using Affymetrix microarrays and quantitative PCR. Muscle protein expression was analyzed by Western blot. Results Increased branched-chain amino acid (BCAA), aromatic amino acid (AAA) and orosomucoid were associated with liver fat accumulation already in its early stage, independent of sex, obesity or insulin resistance (p<0.05 for all). Significant down-regulation of BCAA catabolism and fatty acid and energy metabolism was observed in the adipose tissue of the NAFLD group (p<0.001for all), whereas no aberrant gene expression in the skeletal muscle was found. Reduced BCAA catabolic activity was inversely associated with serum BCAA and liver fat content (p<0.05 for all). Conclusions Liver fat accumulation, already in its early stage, is associated with increased serum branched-chain and aromatic amino acids. The observed associations of decreased BCAA catabolism activity, mitochondrial energy metabolism and serum BCAA concentration with liver fat content suggest that adipose tissue dysfunction may have a key role in the systemic nature of NAFLD pathogenesis. PMID:26439744

  1. New method for administration of hydrochloric acid in metabolic alkalosis.

    PubMed

    Knutsen, O H

    1983-04-30

    In a new method for peripheral intravenous infusion of hydrochloric acid the HCl is buffered in an aminoacid solution and infused with a fat emulsion. The aminoacids and the fat emulsions are stable in the presence of HCl, and the transfusion set is resistant to the chemical actin of 0.15 mol/l HCl. Two case-reports show that HCl can be administered safely through a peripheral vein. PMID:6132269

  2. Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages.

    PubMed Central

    Newsholme, P; Curi, R; Gordon, S; Newsholme, E A

    1986-01-01

    Maximum activities of some key enzymes of metabolism were studied in elicited (inflammatory) macrophages of the mouse and lymph-node lymphocytes of the rat. The activity of hexokinase in the macrophage is very high, as high as that in any other major tissue of the body, and higher than that of phosphorylase or 6-phosphofructokinase, suggesting that glucose is a more important fuel than glycogen and that the pentose phosphate pathway is also important in these cells. The latter suggestion is supported by the high activities of both glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. However, the rate of glucose utilization by 'resting' macrophages incubated in vitro is less than the 10% of the activity of 6-phosphofructokinase: this suggests that the rate of glycolysis is increased dramatically during phagocytosis or increased secretory activity. The macrophages possess higher activities of citrate synthase and oxoglutarate dehydrogenase than do lymphocytes, suggesting that the tricarboxylic acid cycle may be important in energy generation in these cells. The activity of 3-oxoacid CoA-transferase is higher in the macrophage, but that of 3-hydroxybutyrate dehydrogenase is very much lower than those in the lymphocytes. The activity of carnitine palmitoyltransferase is higher in macrophages, suggesting that fatty acids as well as acetoacetate could provide acetyl-CoA as substrate for the tricarboxylic acid cycle. No detectable rate of acetoacetate or 3-hydroxybutyrate utilization was observed during incubation of resting macrophages, but that of oleate was 1.0 nmol/h per mg of protein or about 2.2% of the activity of palmitoyltransferase. The activity of glutaminase is about 4-fold higher in macrophages than in lymphocytes, which suggests that the rate of glutamine utilization could be very high. The rate of utilization of glutamine by resting incubated macrophages was similar to that reported for rat lymphocytes, but was considerably lower than the

  3. Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis

    SciTech Connect

    Pereira, Patricia M.; He, Qiang; Valente, Filipa M.A.; Xavier, Antonio V.; Zhou, Jizhong; Pereira, Ines A.C.; Louro, Ricardo O.

    2007-11-01

    Sulphate-reducing bacteria are important players in the global sulphur and carbon cycles, with considerable economical and ecological impact. However, the process of sulphate respiration is still incompletely understood. Several mechanisms of energy conservation have been proposed, but it is unclear how the different strategies contribute to the overall process. In order to obtain a deeper insight into the energy metabolism of sulphate-reducers whole-genome microarrays were used to compare the transcriptional response of Desulfovibrio vulgaris Hildenborough grown with hydrogen/sulphate, pyruvate/sulphate, pyruvate with limiting sulphate, and lactate/thiosulphate, relative to growth in lactate/sulphate. Growth with hydrogen/sulphate showed the largest number of differentially expressed genes and the largest changes in transcript levels. In this condition the most up-regulated energy metabolism genes were those coding for the periplasmic [NiFeSe]hydrogenase, followed by the Ech hydrogenase. The results also provide evidence for the involvement of formate cycling and the recently proposed ethanol pathway during growth in hydrogen. The pathway involving CO cycling is relevant during growth on lactate and pyruvate, but not during growth in hydrogen as the most down-regulated genes were those coding for the CO-induced hydrogenase. Growth on lactate/thiosulphate reveals a down-regulation of several energymetabolism genes similar to what was observed in the presence of nitrite. This study identifies the role of several proteins involved in the energy metabolism of D. vulgaris and highlights several novel genes related to this process, revealing a more complex bioenergetic metabolism than previously considered.

  4. Spermatozoa: models for studying regulatory aspects of energy metabolism.

    PubMed

    Kamp, G; Büsselmann, G; Lauterwein, J

    1996-05-15

    Spermatozoa are highly specialized cells, and they offer advantages for studying several basic aspects of metabolic control such as the role of adenosine triphosphate-(ATP)-homeostasis for cell function, the mechanisms of fatigue and metabolic depression, the metabolic channelling through the cytoplasm and the organization and regulation of glycolytic enzymes. Spermatozoa of four species with different reproductive modes are introduced and the first results are presented: Spermatozoa of the marine worm Arenicola marina are well adapted to external fertilization in sea water with fluctuating oxygen tension: they are motile for several hours in oxygen-free sea water, even when the ATP level is dramatically reduced. Anaerobic ATP production occurs by alanine, acetate and propionate fermentation probably by the same pathways known from somatic cells of this species. Under aerobic conditions the phosphagen system might function like a shuttle for energy-rich phosphate from mitochondria to the dynein-ATPases. Storage of turkey and carp spermatozoa for several hours without exogenous substrates and oxygen results in the degradation of phosphocreatine and ATP to inorganic phosphate and adenosine monophosphate (AMP), respectively. Despite low energy charges, stored spermatozoa of both species are capable of progressive movements. In carp spermatozoa fatigue of motility is not accompanied by the dramatic acidosis one discusses as an important effect in muscle fatigue. Energy metabolism of boar spermatozoa is typically based on glycolysis consuming extracellular carbohydrates and producing lactate and protons. The sperm seem to tolerate low intracellular pH (< 6.5). The lack of a phosphagen system (no energy shuttle from mitochondria to the distal dynein-ATPases) is probably compensated by a high glycolytic ATP-production in the mitochondria-free piece of the flagellum. PMID:8641386

  5. Nicotinic acid metabolism. 2,3-Dimethylmalate lyase.

    PubMed

    Pirzer, P; Lill, U; Eggerer, H

    1979-12-01

    1) A new enzyme, 2,3-dimethylmalate lyase, was purified from Clostridium barkeri to about 80% homogeneity. Some of the properties of the enzyme are described. 2) It is shown that the 2,3-dimethylmalic acid (m.p. 143 degrees C) described in the literature represents only one racemic pair. This pair is not attacked by 2,3-dimethylmalate lyase. 3) The isolation of both racemic pairs of 2,3-dimethylmalic acid is described. Half of one pair, m.p. 104-106 degrees C, was converted to propionate and pyruvate by 2,3-dimethylmalate lyase. 4) In combination with earlier work performed by E.R. Stadtman and coworkers the results given under points 1--3 establish 2,3-dimethylmalate as an intermediate in the degradation of nicotinic acid by C. barkeri. 5) Experimental evidence indicates the 2,3-dimethylmalate lyase is no acyl-S-enzyme and that it is different in this respect as well as in quaternary structure from the apparently related enzymes citrate lyase and citramalate lyase. PMID:527937

  6. Endocrine regulation of energy metabolism by the skeleton

    PubMed Central

    Lee, Na Kyung; Sowa, Hideaki; Hinoi, Eiichi; Ferron, Mathieu; Ahn, Jong Deok; Confavreux, Cyrille; Dacquin, Romain; Mee, Patrick J.; McKee, Marc D.; Jung, Dae Young; Zhang, Zhiyou; Kim, Jason K.; Mauvais-Jarvis, Franck; Ducy, Patricia; Karsenty, Gerard

    2007-01-01

    SUMMARY The regulation of bone remodeling by an adipocyte-derived hormone implies that bone may exert a feedback control of energy homeostasis. To test this hypothesis we looked for genes expressed in osteoblasts, encoding signaling molecules and affecting energy metabolism. We show here that mice lacking the protein tyrosine phosphatase OST-PTP are hypoglycemic and protected from obesity and glucose intolerance because of an increase in β-cell proliferation, insulin secretion and insulin sensitivity. In contrast, mice lacking the osteoblast-secreted molecule osteocalcin display decreased β-cell proliferation, glucose intolerance and insulin resistance. Removing one Osteocalcin allele from OST-PTP-deficient mice corrects their metabolic phenotype. Ex vivo, osteocalcin can stimulate CyclinD1 and Insulin expression in β-cells and Adiponectin, an insulin-sensitizing adipokine, in adipocytes; in vivo osteocalcin can improve glucose tolerance. By revealing that the skeleton exerts an endocrine regulation of sugar homeostasis this study expands the biological importance of this organ and our understanding of energy metabolism. PMID:17693256

  7. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation.

    PubMed

    Baker, Candice N; Gidus, Sarah A; Price, George F; Peoples, Jessica N R; Ebert, Steven N

    2015-03-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh-/- embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. PMID:25516547

  8. Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution.

    PubMed

    Liu, Jianguo; Wang, Qunhui; Zou, Hui; Liu, Yingying; Wang, Juan; Gan, Kemin; Xiang, Juan

    2013-11-01

    The (13) C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden-Meyerhof-Parnas (EMP) to produce lactic acid, whereas 36.4% of the glucose entered the pentose phosphate metabolic pathway (HMP). After solid-liquid separation of the KWSS, the addition of Fe(3+) during fermentation enhanced the NADPH production efficiency and increased the NADH content. The flux to the EMP was also effectively increased. Compared with the control (60.6% flux to EMP without Fe(3+) addition), the flux to the EMP with the addition of Fe(3+) (74.3%) increased by 23.8%. In the subsequent pyruvate metabolism, Fe(3+) also increased lactate dehydrogenase activity, and inhibited alcohol dehydrogenase, pyruvate dehydrogenase and pyruvate carboxylase, thereby increasing the lactic acid production to 9.03 g l(-1) , an increase of 8% compared with the control. All other organic acid by-products were lower than in the control. However, the addition of Zn(2+) showed an opposite effect, decreasing the lactic acid production. In conclusion it is feasible and effective means using GC-MS, isotope experiment and MATLAB software to integrate research the metabolic flux distribution of lactic acid bacteria, and the results provide the theoretical foundation for similar metabolic flux distribution. PMID:23489617

  9. Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis

    SciTech Connect

    May, R.C.; Hara, Y.; Kelly, R.A.; Block, K.P.; Buse, M.G.; Mitch, W.E.

    1987-06-01

    Branched-chain amino acid (BCAA) metabolism is frequently abnormal in pathological conditions accompanied by chronic metabolic acidosis. To study how metabolic acidosis affects BCAA metabolism in muscle, rats were gavage fed a 14% protein diet with or without 4 mmol NH/sub 4/Cl x 100 g body wt/sup -1/ x day/sup -1/. Epitrochlearis muscles were incubated with L-(1-/sup 14/C)-valine and L-(1-/sup 14/C)leucine, and rates of decarboxylation, net transamination, and incorporation into muscle protein were measured. Plasma and muscle BCAA levels were lower in acidotic rats. Rates of valine and leucine decarboxylation and net transamination were higher in muscles from acidotic rats; these differences were associated with a 79% increase in the total activity of branched-chain ..cap alpha..-keto acid dehydrogenase and a 146% increase in the activated form of the enzyme. They conclude that acidosis affects the regulation of BCAA metabolism by enhancing flux through the transaminase and by directly stimulating oxidative catabolism through activation of branched-chain ..cap alpha..-keto acid dehydrogenase.

  10. Metabolism of Abscisic Acid in Guard Cells of Vicia faba L. and Commelina communis L. 1

    PubMed Central

    Grantz, David A.; Ho, Tuan-Hua David; Uknes, Scott J.; Cheeseman, John M.; Boyer, John S.

    1985-01-01

    Metabolism of abscisic acid (ABA) was investigated in isolated guard cells and in mesophyll tissue of Vicia faba L. and Commelina communis L. After incubation in buffer containing [G-3H]±ABA, the tissue was extracted by grinding and the metabolites separated by thin layer chromatography. Guard cells of Commelina metabolized ABA to phaseic acid (PA), dihydrophaseic acid (DPA), and alkali labile conjugates. Guard cells of Vicia formed only the conjugates. Mesophyll cells of Commelina accumulated DPA while mesophyll cells of Vicia accumulated PA. Controls showed that the observed metabolism was not due to extracellular enzyme contaminants nor to bacterial action. Metabolism of ABA in guard cells suggests a mechanism for removal of ABA, which causes stomatal closure of both species, from the stomatal complex. Conversion to metabolites which are inactive in stomatal regulation, within the cells controlling stomatal opening, might precede detectable changes in levels of ABA in bulk leaf tissue. The differences observed between Commelina and Vicia in metabolism of ABA in guard cells, and in the accumulation product in the mesophyll, may be related to differences in stomatal sensitivity to PA which have been reported for these species. Images Fig. 1 PMID:16664207

  11. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice

    PubMed Central

    Roager, Henrik M; Sulek, Karolina; Skov, Kasper; Frandsen, Henrik L; Smedsgaard, Jørn; Wilcks, Andrea; Skov, Thomas H; Villas-Boas, Silas G; Licht, Tine R

    2014-01-01

    Monocolonization of germ-free (GF) mice enables the study of specific bacterial species in vivo. Lactobacillus acidophilus NCFMTM (NCFM) is a probiotic strain; however, many of the mechanisms behind its health-promoting effect remain unknown. Here, we studied the effects of NCFM on the metabolome of jejunum, cecum, and colon of NCFM monocolonized (MC) and GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice, in particular by deconjugation. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine as especially the digestion of oligosaccharides (penta- and tetrasaccharides) was increased in MC mice. Additionally, levels of α-tocopherol acetate (vitamin E acetate) were higher in the intestine of GF mice than in MC mice, suggesting that NCFM affects the vitamin E acetate metabolism. NCFM did not digest vitamin E acetate in vitro, suggesting that direct bacterial metabolism was not the cause of the altered metabolome in vivo. Taken together, our results suggest that NCFM affects intestinal carbohydrate metabolism, bile acid metabolism and vitamin E metabolism, although it remains to be investigated whether this effect is unique to NCFM. PMID:24717228

  12. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism

    PubMed Central

    Yoon, Mee-Sup

    2016-01-01

    Insulin is required for maintenance of glucose homeostasis. Despite the importance of insulin sensitivity to metabolic health, the mechanisms that induce insulin resistance remain unclear. Branched-chain amino acids (BCAAs) belong to the essential amino acids, which are both direct and indirect nutrient signals. Even though BCAAs have been reported to improve metabolic health, an increased BCAA plasma level is associated with a high risk of metabolic disorder and future insulin resistance, or type 2 diabetes mellitus (T2DM). The activation of mammalian target of rapamycin complex 1 (mTORC1) by BCAAs has been suggested to cause insulin resistance. In addition, defective BCAA oxidative metabolism might occur in obesity, leading to a further accumulation of BCAAs and toxic intermediates. This review provides the current understanding of the mechanism of BCAA-induced mTORC1 activation, as well as the effect of mTOR activation on metabolic health in terms of insulin sensitivity. Furthermore, the effects of impaired BCAA metabolism will be discussed in detail. PMID:27376324

  13. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice.

    PubMed

    Roager, Henrik M; Sulek, Karolina; Skov, Kasper; Frandsen, Henrik L; Smedsgaard, Jørn; Wilcks, Andrea; Skov, Thomas H; Villas-Boas, Silas G; Licht, Tine R

    2014-01-01

    Monocolonization of germ-free (GF) mice enables the study of specific bacterial species in vivo. Lactobacillus acidophilus NCFM(TM) (NCFM) is a probiotic strain; however, many of the mechanisms behind its health-promoting effect remain unknown. Here, we studied the effects of NCFM on the metabolome of jejunum, cecum, and colon of NCFM monocolonized (MC) and GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice, in particular by deconjugation. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine as especially the digestion of oligosaccharides (penta- and tetrasaccharides) was increased in MC mice. Additionally, levels of α-tocopherol acetate (vitamin E acetate) were higher in the intestine of GF mice than in MC mice, suggesting that NCFM affects the vitamin E acetate metabolism. NCFM did not digest vitamin E acetate in vitro, suggesting that direct bacterial metabolism was not the cause of the altered metabolome in vivo. Taken together, our results suggest that NCFM affects intestinal carbohydrate metabolism, bile acid metabolism and vitamin E metabolism, although it remains to be investigated whether this effect is unique to NCFM. PMID:24717228

  14. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism.

    PubMed

    Yoon, Mee-Sup

    2016-01-01

    Insulin is required for maintenance of glucose homeostasis. Despite the importance of insulin sensitivity to metabolic health, the mechanisms that induce insulin resistance remain unclear. Branched-chain amino acids (BCAAs) belong to the essential amino acids, which are both direct and indirect nutrient signals. Even though BCAAs have been reported to improve metabolic health, an increased BCAA plasma level is associated with a high risk of metabolic disorder and future insulin resistance, or type 2 diabetes mellitus (T2DM). The activation of mammalian target of rapamycin complex 1 (mTORC1) by BCAAs has been suggested to cause insulin resistance. In addition, defective BCAA oxidative metabolism might occur in obesity, leading to a further accumulation of BCAAs and toxic intermediates. This review provides the current understanding of the mechanism of BCAA-induced mTORC1 activation, as well as the effect of mTOR activation on metabolic health in terms of insulin sensitivity. Furthermore, the effects of impaired BCAA metabolism will be discussed in detail. PMID:27376324

  15. Effects of the oestrous cycle on the metabolism of arachidonic acid in rat isolated lung.

    PubMed Central

    Bakhle, Y S; Zakrzewski, J T

    1982-01-01

    1. The metabolism of exogenous arachidonic acid perfused through the pulmonary circulation was investigated in lungs taken from rats at different stages of the oestrous cycle. 2. Following perfusion with [14C]arachidonic acid there was more radioactivity associated with cyclo-oxygenase products in general at pro-oestrus than at any other stage of the cycle. 3. Production of 6-oxo-prostaglandin F1 alpha and hence of prostacyclin (PGI2) was also highest at pro-oestrus. 4. Production of thromboxane B2 was highest at pro-oestrus although it was never greater than PGI2 production at any stage. 5. Radioactivity retained in lung tissue was mostly present in phospholipid and free fatty acid fractions with the distribution at pro-oestrus being different from the other stages. 6. Following perfusion with [14C]oleic acid (which is not a substrate for cyclooxygenase), variations in the distribution of label in radioactivity in lung were also observed. However, these were not related to the stages of the oestrous cycle in the same way as those associated with arachidonic acid. 7. We conclude that both pathways of arachidonic acid metabolism in lung--oxidation via cyclo-oxygenase and incorporation into phospholipid - are affected by the progress of the oestrous cycle. 8. Altered arachidonate metabolism appeared to be associated chiefly with pro-oestrus and may be linked to those hormones involved in this stage of the oestrous cycle. PMID:6809935

  16. Eddy covariance captures four-phase crassulacean acid metabolism (CAM) gas exchange signature in Agave.

    PubMed

    Owen, Nick A; Choncubhair, Órlaith Ní; Males, Jamie; Del Real Laborde, José Ignacio; Rubio-Cortés, Ramón; Griffiths, Howard; Lanigan, Gary

    2016-02-01

    Mass and energy fluxes were measured over a field of Agave tequilana in Mexico using eddy covariance (EC) methodology. Data were gathered over 252 d, including the transition from wet to dry periods. Net ecosystem exchanges (FN,EC ) displayed a crassulacean acid metabolism (CAM) rhythm that alternated from CO2 sink at night to CO2 source during the day, and partitioned canopy fluxes (FA,EC ) showed a characteristic four-phase CO2 exchange pattern. Results were cross-validated against diel changes in titratable acidity, leaf-unfurling rates, energy exchange fluxes and reported biomass yields. Projected carbon balance (g C m(-2)  year(-1) , mean ± 95% confidence interval) indicated the site was a net sink of -333 ± 24, of which contributions from soil respiration were +692 ± 7, and FA,EC was -1025 ± 25. EC estimated biomass yield was 20.1 Mg (dry) ha(-1)  year(-1) . Average integrated daily FA,EC was -234 ± 5 mmol CO2  m(-2)  d(-1) and persisted almost unchanged after 70 d of drought conditions. Regression analyses were performed on the EC data to identify the best environmental predictors of FA . Results suggest that the carbon acquisition strategy of Agave offers productivity and drought resilience advantages over conventional semi-arid C3 and C4 bioenergy candidates. PMID:26177873

  17. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera)

    PubMed Central

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-01-01

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis. PMID:27455877

  18. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera).

    PubMed

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-01-01

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis. PMID:27455877

  19. Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis.

    PubMed

    Hoefnagel, Marcel H N; Starrenburg, Marjo J C; Martens, Dirk E; Hugenholtz, Jeroen; Kleerebezem, Michiel; Van Swam, Iris I; Bongers, Roger; Westerhoff, Hans V; Snoep, Jacky L

    2002-04-01