Science.gov

Sample records for acid metabolism genes

  1. Cadmium induces retinoic acid signaling by regulating retinoic acid metabolic gene expression.

    PubMed

    Cui, Yuxia; Freedman, Jonathan H

    2009-09-11

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, beta,beta-carotene 15,15'-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1-6 cells. In C. elegans, bcmo-1 was expressed in the intestine and was cadmium inducible. Similarly, in Hepa 1-6 cells, Bcmo1 was induced by cadmium. Retinoic acid-mediated signaling increased after 24-h exposures to 5 and 10 microm cadmium in Hepa 1-6 cells. Examination of gene expression demonstrated that the induction of retinoic acid signaling by cadmium may be mediated by overexpression of Bcmo1. Furthermore, cadmium inhibited the expression of Cyp26a1 and Cyp26b1, which are involved in retinoic acid degradation. These results indicate that cadmium-induced teratogenicity may be due to the ability of the metal to increase the levels of retinoic acid by disrupting the expression of retinoic acid-metabolizing genes. PMID:19556237

  2. Cadmium Induces Retinoic Acid Signaling by Regulating Retinoic Acid Metabolic Gene Expression*

    PubMed Central

    Cui, Yuxia; Freedman, Jonathan H.

    2009-01-01

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, β,β-carotene 15,15′-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1–6 cells. In C. elegans, bcmo-1 was expressed in the intestine and was cadmium inducible. Similarly, in Hepa 1–6 cells, Bcmo1 was induced by cadmium. Retinoic acid-mediated signaling increased after 24-h exposures to 5 and 10 μm cadmium in Hepa 1–6 cells. Examination of gene expression demonstrated that the induction of retinoic acid signaling by cadmium may be mediated by overexpression of Bcmo1. Furthermore, cadmium inhibited the expression of Cyp26a1 and Cyp26b1, which are involved in retinoic acid degradation. These results indicate that cadmium-induced teratogenicity may be due to the ability of the metal to increase the levels of retinoic acid by disrupting the expression of retinoic acid-metabolizing genes. PMID:19556237

  3. Identification and transcriptional profiling of Pseudomonas putida genes involved in furoic acid metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Furfural (2-furaldehyde) is a furan formed by dehydration of pentose sugars. Pseudomonas putida Fu1 metabolizes furfural through a pathway involving conversion to 2-oxoglutarate, via 2-furoic acid and Coenzyme A intermediates. To identify genes involved in furan metabolism, two P. putida transposo...

  4. Regulation of the expression of key genes involved in HDL metabolism by unsaturated fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to determine the effects, and possible mechanisms of action, of unsaturated fatty acids on the expression of genes involved in HDL metabolism in HepG2 cells. The mRNA concentration of target genes was assessed by real time PCR. Protein concentrations were determined by wes...

  5. Role of a liver fatty acid-binding protein gene in lipid metabolism in chicken hepatocytes.

    PubMed

    Gao, G L; Na, W; Wang, Y X; Zhang, H F; Li, H; Wang, Q G

    2015-01-01

    This study investigated the role of the chicken liver fatty acid-binding protein (L-FABP) gene in lipid metabolism in hepatocytes, and the regulatory relationships between L-FABP and genes related to lipid metabolism. The short hairpin RNA (shRNA) interference vector with L-FABP and an eukaryotic expression vector were used. Chicken hepatocytes were subjected to shRNA-mediated knockdown or L-FABP cDNA overexpression. Expression levels of lipid metabolism-related genes and biochemical parameters were detected 24, 36, 48, 60, and 72 h after transfection with the interference or overexpression plasmids for L-FABP, PPARα and L-BABP expression levels, and the total amount of cholesterol, were significantly affected by L-FABP expression. L-FABP may affect lipid metabolism by regulating PPARα and L-BABP in chicken hepatocytes. PMID:25966259

  6. DIFFERENTIAL INFLUENCE OF DISTINCT FATTY ACIDS ON CARDIOMYOCYTE METABOLIC GENE EXPRESSION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diabetes mellitus is a major risk factor for development of cardiovascular disease. Metabolic adaptation of the heart to increased fatty acids (FAs) in the diabetic milieu is mediated by induction of genes promoting FA oxidation (e.g. malonyl-CoA decarboxylase; mcd), as well as those suppressing car...

  7. Expression of genes associated with fatty acid metabolism during maturation in diploid and triploid female rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To study effects of sexual maturation on fatty acid metabolism in fish on a high nutritional plane, expression of thirty-five genes involved in fatty acid metabolism was determined in sexually maturing diploid (2N; fertile) and triploid (3N; sterile) female rainbow trout. Gene expression was assesse...

  8. Regulation of inflammatory and lipid metabolism genes by eicosapentaenoic acid-rich oil[S

    PubMed Central

    Gillies, Peter J.; Bhatia, Sujata K.; Belcher, Leigh A; Hannon, Daniel B.; Thompson, Jerry T.; Vanden Heuvel, John P.

    2012-01-01

    Omega-3-PUFAs, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are associated with prevention of various aspects of metabolic syndrome. In the present studies, the effects of oil rich in EPA on gene expression and activation of nuclear receptors was examined and compared with other ω3-PUFAs. The EPA-rich oil (EO) altered the expression of FA metabolism genes in THP-1 cells, including stearoyl CoA desaturase (SCD) and FA desaturase-1 and -2 (FASDS1 and -2). Other ω3-PUFAs resulted in a similar gene expression response for a subset of genes involved in lipid metabolism and inflammation. In reporter assays, EO activated human peroxisome proliferator-activated receptor α (PPARα) and PPARβ/γ with minimal effects on PPARγ, liver X receptor, retinoid X receptor, farnesoid X receptor, and retinoid acid receptor γ (RARγ); these effects were similar to that observed for purified EPA. When serum from a 6 week clinical intervention with dietary supplements containing olive oil (control), DHA, or two levels of EPA were applied to THP-1 cells, the expression of SCD and FADS2 decreased in the cells treated with serum from the ω3-PUFA-supplemented individuals. Taken together, these studies indicate regulation of gene expression by EO that is consistent with treating aspects of dyslipidemia and inflammation. PMID:22556214

  9. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production.

    PubMed

    Michelucci, Alessandro; Cordes, Thekla; Ghelfi, Jenny; Pailot, Arnaud; Reiling, Norbert; Goldmann, Oliver; Binz, Tina; Wegner, André; Tallam, Aravind; Rausell, Antonio; Buttini, Manuel; Linster, Carole L; Medina, Eva; Balling, Rudi; Hiller, Karsten

    2013-05-01

    Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production. PMID:23610393

  10. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production

    PubMed Central

    Michelucci, Alessandro; Cordes, Thekla; Ghelfi, Jenny; Pailot, Arnaud; Reiling, Norbert; Goldmann, Oliver; Binz, Tina; Wegner, André; Tallam, Aravind; Rausell, Antonio; Buttini, Manuel; Linster, Carole L.; Medina, Eva; Balling, Rudi; Hiller, Karsten

    2013-01-01

    Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production. PMID:23610393

  11. Increased Missense Mutation Burden of Fatty Acid Metabolism Related Genes in Nunavik Inuit Population

    PubMed Central

    Zhou, Sirui; Xiong, Lan; Xie, Pingxing; Ambalavanan, Amirthagowri; Bourassa, Cynthia V.; Dionne-Laporte, Alexandre; Spiegelman, Dan; Turcotte Gauthier, Maude; Henrion, Edouard; Diallo, Ousmane; Dion, Patrick A.; Rouleau, Guy A.

    2015-01-01

    Background Nunavik Inuit (northern Quebec, Canada) reside along the arctic coastline where for generations their daily energy intake has mainly been derived from animal fat. Given this particular diet it has been hypothesized that natural selection would lead to population specific allele frequency differences and unique variants in genes related to fatty acid metabolism. A group of genes, namely CPT1A, CPT1B, CPT1C, CPT2, CRAT and CROT, encode for three carnitine acyltransferases that are important for the oxidation of fatty acids, a critical step in their metabolism. Methods Exome sequencing and SNP array genotyping were used to examine the genetic variations in the six genes encoding for the carnitine acyltransferases in 113 Nunavik Inuit individuals. Results Altogether ten missense variants were found in genes CPT1A, CPT1B, CPT1C, CPT2 and CRAT, including three novel variants and one Inuit specific variant CPT1A p.P479L (rs80356779). The latter has the highest frequency (0.955) compared to other Inuit populations. We found that by comparison to Asians or Europeans, the Nunavik Inuit have an increased mutation burden in CPT1A, CPT2 and CRAT; there is also a high level of population differentiation based on carnitine acyltransferase gene variations between Nunavik Inuit and Asians. Conclusion The increased number and frequency of deleterious variants in these fatty acid metabolism genes in Nunavik Inuit may be the result of genetic adaptation to their diet and/or the extremely cold climate. In addition, the identification of these variants may help to understand some of the specific health risks of Nunavik Inuit. PMID:26010953

  12. Subchronic effects of valproic acid on gene expression profiles for lipid metabolism in mouse liver

    SciTech Connect

    Lee, Min-Ho |; Kim, Mingoo |; Lee, Byung-Hoon |; Kim, Ju-Han |; Kang, Kyung-Sun |; Kim, Hyung-Lae |; Yoon, Byung-Il |; Chung, Heekyoung; Kong, Gu |; Lee, Mi-Ock ||

    2008-02-01

    Valproic acid (VPA) is used clinically to treat epilepsy, however it induces hepatotoxicity such as microvesicular steatosis. Acute hepatotoxicity of VPA has been well documented by biochemical studies and microarray analysis, but little is known about the chronic effects of VPA in the liver. In the present investigation, we profiled gene expression patterns in the mouse liver after subchronic treatment with VPA. VPA was administered orally at a dose of 100 mg/kg/day or 500 mg/kg/day to ICR mice, and the livers were obtained after 1, 2, or 4 weeks. The activities of serum liver enzymes did not change, whereas triglyceride concentration increased significantly. Microarray analysis revealed that 1325 genes of a set of 32,996 individual genes were VPA responsive when examined by two-way ANOVA (P < 0.05) and fold change (> 1.5). Consistent with our previous results obtained using an acute VPA exposure model (Lee et al., Toxicol Appl Pharmacol. 220:45-59, 2007), the most significantly over-represented biological terms for these genes included lipid, fatty acid, and steroid metabolism. Biological pathway analysis suggests that the genes responsible for increased biosynthesis of cholesterol and triglyceride, and for decreased fatty acid {beta}-oxidation contribute to the abnormalities in lipid metabolism induced by subchronic VPA treatment. A comparison of the VPA-responsive genes in the acute and subchronic models extracted 15 commonly altered genes, such as Cyp4a14 and Adpn, which may have predictive power to distinguish the mode of action of hepatotoxicants. Our data provide a better understanding of the molecular mechanisms of VPA-induced hepatotoxicity and useful information to predict steatogenic hepatotoxicity.

  13. Amino Acid Metabolism Disorders

    MedlinePlus

    ... defects & other health conditions > Amino acid metabolism disorders Amino acid metabolism disorders E-mail to a friend Please ... baby’s newborn screening may include testing for certain amino acid metabolism disorders. These are rare health conditions that ...

  14. MmpL Genes Are Associated with Mycolic Acid Metabolism in Mycobacteria and Corynebacteria

    PubMed Central

    Varela, Cristian; Rittmann, Doris; Singh, Albel; Krumbach, Karin; Bhatt, Kiranmai; Eggeling, Lothar; Besra, Gurdyal S.; Bhatt, Apoorva

    2012-01-01

    Summary Mycolic acids are vital components of the cell wall of the tubercle bacillus Mycobacterium tuberculosis and are required for viability and virulence. While mycolic acid biosynthesis is studied extensively, components involved in mycolate transport remain unidentified. We investigated the role of large membrane proteins encoded by mmpL genes in mycolic acid transport in mycobacteria and the related corynebacteria. MmpL3 was found to be essential in mycobacteria and conditional depletion of MmpL3 in Mycobacterium smegmatis resulted in loss of cell wall mycolylation, and of the cell wall-associated glycolipid, trehalose dimycolate. In parallel, an accumulation of trehalose monomycolate (TMM) was observed, suggesting that mycolic acids were transported as TMM. In contrast to mycobacteria, we found redundancy in the role of two mmpL genes, in Corynebacterium glutamicum; a complete loss of trehalose-associated and cell wall bound corynomycolates was observed in an NCgl0228-NCgl2769 double mutant, but not in individual single mutants. Our studies highlight the role of mmpL genes in mycolic acid metabolism and identify potential new targets for anti-TB drug development. PMID:22520756

  15. Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers.

    PubMed

    Nath, Aritro; Chan, Christina

    2016-01-01

    Reprogramming of cellular metabolism is a hallmark feature of cancer cells. While a distinct set of processes drive metastasis when compared to tumorigenesis, it is yet unclear if genetic alterations in metabolic pathways are associated with metastatic progression of human cancers. Here, we analyzed the mutation, copy number variation and gene expression patterns of a literature-derived model of metabolic genes associated with glycolysis (Warburg effect), fatty acid metabolism (lipogenesis, oxidation, lipolysis, esterification) and fatty acid uptake in >9000 primary or metastatic tumor samples from the multi-cancer TCGA datasets. Our association analysis revealed a uniform pattern of Warburg effect mutations influencing prognosis across all tumor types, while copy number alterations in the electron transport chain gene SCO2, fatty acid uptake (CAV1, CD36) and lipogenesis (PPARA, PPARD, MLXIPL) genes were enriched in metastatic tumors. Using gene expression profiles, we established a gene-signature (CAV1, CD36, MLXIPL, CPT1C, CYP2E1) that strongly associated with epithelial-mesenchymal program across multiple cancers. Moreover, stratification of samples based on the copy number or expression profiles of the genes identified in our analysis revealed a significant effect on patient survival rates, thus confirming prominent roles of fatty acid uptake and metabolism in metastatic progression and poor prognosis of human cancers. PMID:26725848

  16. Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers

    PubMed Central

    Nath, Aritro; Chan, Christina

    2016-01-01

    Reprogramming of cellular metabolism is a hallmark feature of cancer cells. While a distinct set of processes drive metastasis when compared to tumorigenesis, it is yet unclear if genetic alterations in metabolic pathways are associated with metastatic progression of human cancers. Here, we analyzed the mutation, copy number variation and gene expression patterns of a literature-derived model of metabolic genes associated with glycolysis (Warburg effect), fatty acid metabolism (lipogenesis, oxidation, lipolysis, esterification) and fatty acid uptake in >9000 primary or metastatic tumor samples from the multi-cancer TCGA datasets. Our association analysis revealed a uniform pattern of Warburg effect mutations influencing prognosis across all tumor types, while copy number alterations in the electron transport chain gene SCO2, fatty acid uptake (CAV1, CD36) and lipogenesis (PPARA, PPARD, MLXIPL) genes were enriched in metastatic tumors. Using gene expression profiles, we established a gene-signature (CAV1, CD36, MLXIPL, CPT1C, CYP2E1) that strongly associated with epithelial-mesenchymal program across multiple cancers. Moreover, stratification of samples based on the copy number or expression profiles of the genes identified in our analysis revealed a significant effect on patient survival rates, thus confirming prominent roles of fatty acid uptake and metabolism in metastatic progression and poor prognosis of human cancers. PMID:26725848

  17. Effect of Polyunsaturated Fatty Acids on Homocysteine Metabolism through Regulating the Gene Expressions Involved in Methionine Metabolism

    PubMed Central

    Huang, Tao; Hu, Xiaojie; Khan, Nicholas; Yang, Jing; Li, Duo

    2013-01-01

    The objective was to investigate the regulatory effect of polyunsaturated fatty acids (PUFAs) on mRNA expression of key genes involved in homocysteine (Hcy) metabolism. Eighty male Sprague Dawley rats were randomly divided into eight groups. The oils were orally administered daily for 8 weeks. Plasma Hcy, phospholipids fatty acids, and mRNA expression were determined. Compared with the control group, plasma Hcy was significantly decreased in the 22:6n-3 and conjugated linoleic acid (CLA) groups; mRNA expression of Mthfr was significantly upregulated in the 22:6n-3, 20:5n-3, and 18:3n-3 groups and downregulated in the 18:2n-6 and stearolic acid (SO) groups. Mat1a was upregulated in the 22:6n-3, 20:5n-3, 18:3n-3, and CLA groups. In addition, Cbs was upregulated in the 22:6n-3, 20:5n-3, 18:3n-3 and CLA groups while downregulated in 18:2n-6 and SO groups. Dietary 22:6n-3 and CLA decrease the plasma concentration of Hcy. mRNA expression of Mthfr, Mat1a, Cbs and Pemt, Gnmt, Mtrr, and Bad is upregulated by n-3 PUFA and downregulated by n-6 PUFA. CLA upregulates mRNA expression of Mat1a and Cbs. PMID:23766724

  18. Systematic identification of genes involved in metabolic acid stress resistance in yeast and their potential as cancer targets.

    PubMed

    Shin, John J; Aftab, Qurratulain; Austin, Pamela; McQueen, Jennifer A; Poon, Tak; Li, Shu Chen; Young, Barry P; Roskelley, Calvin D; Loewen, Christopher J R

    2016-09-01

    A hallmark of all primary and metastatic tumours is their high rate of glucose uptake and glycolysis. A consequence of the glycolytic phenotype is the accumulation of metabolic acid; hence, tumour cells experience considerable intracellular acid stress. To compensate, tumour cells upregulate acid pumps, which expel the metabolic acid into the surrounding tumour environment, resulting in alkalization of intracellular pH and acidification of the tumour microenvironment. Nevertheless, we have only a limited understanding of the consequences of altered intracellular pH on cell physiology, or of the genes and pathways that respond to metabolic acid stress. We have used yeast as a genetic model for metabolic acid stress with the rationale that the metabolic changes that occur in cancer that lead to intracellular acid stress are likely fundamental. Using a quantitative systems biology approach we identified 129 genes required for optimal growth under conditions of metabolic acid stress. We identified six highly conserved protein complexes with functions related to oxidative phosphorylation (mitochondrial respiratory chain complex III and IV), mitochondrial tRNA biosynthesis [glutamyl-tRNA(Gln) amidotransferase complex], histone methylation (Set1C-COMPASS), lysosome biogenesis (AP-3 adapter complex), and mRNA processing and P-body formation (PAN complex). We tested roles for two of these, AP-3 adapter complex and PAN deadenylase complex, in resistance to acid stress using a myeloid leukaemia-derived human cell line that we determined to be acid stress resistant. Loss of either complex inhibited growth of Hap1 cells at neutral pH and caused sensitivity to acid stress, indicating that AP-3 and PAN complexes are promising new targets in the treatment of cancer. Additionally, our data suggests that tumours may be genetically sensitized to acid stress and hence susceptible to acid stress-directed therapies, as many tumours accumulate mutations in mitochondrial respiratory chain

  19. Retinoid acid-related orphan receptor γ, RORγ, participates in diurnal transcriptional regulation of lipid metabolic genes

    PubMed Central

    Takeda, Yukimasa; Kang, Hong Soon; Lih, Fred B.; Jiang, Hongfeng; Blaner, William S.; Jetten, Anton M.

    2014-01-01

    The hepatic circadian clock plays a pivotal role in regulating major aspects of energy homeostasis and lipid metabolism. In this study, we show that RORγ robustly regulates the rhythmic expression of several lipid metabolic genes, including the insulin-induced gene 2a, Insig2a, elongation of very long chain fatty acids-like 3, Elovl3 and sterol 12α-hydroxylase, Cyp8b1, by enhancing their expression at ZT20-4. The time-dependent increase in their expression correlates with the rhythmic expression pattern of RORγ. The enhanced recruitment of RORγ to ROREs in their promoter region, increased histone acetylation, and reporter and mutation analysis support the concept that RORγ regulates the transcription of several lipid metabolic genes directly by binding ROREs in their promoter regulatory region. Consistent with the disrupted expression of a number of lipid metabolic genes, loss of RORγ reduced the level of several lipids in liver and blood in a ZT-preferred manner. Particularly the whole-body bile acid pool size was considerably reduced in RORγ−/− mice in part through its regulation of several Cyp genes. Similar observations were made in liver-specific RORγ-deficient mice. Altogether, our study indicates that RORγ functions as an important link between the circadian clock and the transcriptional regulation of several metabolic genes. PMID:25143535

  20. Disorders of Amino Acid Metabolism

    MedlinePlus

    ... Aspiration Syndrome Additional Content Medical News Disorders of Amino Acid Metabolism By Lee M. Sanders, MD, MPH NOTE: ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism Amino acids are ...

  1. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue

    PubMed Central

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio

    2015-01-01

    Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males’ subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole. PMID:26587356

  2. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue.

    PubMed

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio; Alemany, Marià

    2015-01-01

    Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males' subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole. PMID:26587356

  3. rre37 Overexpression Alters Gene Expression Related to the Tricarboxylic Acid Cycle and Pyruvate Metabolism in Synechocystis sp. PCC 6803

    PubMed Central

    Iijima, Hiroko; Watanabe, Atsuko; Takanobu, Junko; Hirai, Masami Yokota; Osanai, Takashi

    2014-01-01

    The tricarboxylic acid (TCA) cycle and pyruvate metabolism of cyanobacteria are unique and important from the perspectives of biology and biotechnology research. Rre37, a response regulator induced by nitrogen depletion, activates gene expression related to sugar catabolism. Our previous microarray analysis has suggested that Rre37 controls the transcription of genes involved in sugar catabolism, pyruvate metabolism, and the TCA cycle. In this study, quantitative real-time PCR was used to measure the transcript levels of 12 TCA cycle genes and 13 pyruvate metabolism genes. The transcripts of 6 genes (acnB, icd, ppc, pyk1, me, and pta) increased after 4 h of nitrogen depletion in the wild-type GT strain but the induction was abolished by rre37 overexpression. The repression of gene expression of fumC, ddh, and ackA caused by nitrogen depletion was abolished by rre37 overexpression. The expression of me was differently affected by rre37 overexpression, compared to the other 24 genes. These results indicate that Rre37 differently controls the genes of the TCA cycle and pyruvate metabolism, implying the key reaction of the primary in this unicellular cyanobacterium. PMID:25614900

  4. The rice OsLpa1 gene encodse a novel protein involved in phytic acid metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rice low phytic acid 1 (OsLpa1) gene was originally identified using a forward genetics approach. Mutation of this gene resulted in a 45% reduction in rice seed phytic acid with a molar-equivalent increase in inorganic phosphorus; however, the rice lpa1 mutant does not appear to differ significa...

  5. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering.

    PubMed

    Chen, Yingying; Stabryla, Lisa; Wei, Na

    2016-01-01

    Development of acetic acid-resistant Saccharomyces cerevisiae is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge due to limited information on effective genetic perturbation targets for improving acetic acid resistance in the yeast. This study employed a genomic-library-based inverse metabolic engineering approach to successfully identify a novel gene target, WHI2 (encoding a cytoplasmatic globular scaffold protein), which elicited improved acetic acid resistance in S. cerevisiae. Overexpression of WHI2 significantly improved glucose and/or xylose fermentation under acetic acid stress in engineered yeast. The WHI2-overexpressing strain had 5-times-higher specific ethanol productivity than the control in glucose fermentation with acetic acid. Analysis of the expression of WHI2 gene products (including protein and transcript) determined that acetic acid induced endogenous expression of Whi2 in S. cerevisiae. Meanwhile, the whi2Δ mutant strain had substantially higher susceptibility to acetic acid than the wild type, suggesting the important role of Whi2 in the acetic acid response in S. cerevisiae. Additionally, overexpression of WHI2 and of a cognate phosphatase gene, PSR1, had a synergistic effect in improving acetic acid resistance, suggesting that Whi2 might function in combination with Psr1 to elicit the acetic acid resistance mechanism. These results improve our understanding of the yeast response to acetic acid stress and provide a new strategy to breed acetic acid-resistant yeast strains for renewable biofuel production. PMID:26826231

  6. Amino Acid Metabolism Disorders

    MedlinePlus

    Metabolism is the process your body uses to make energy from the food you eat. Food is ... One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup ...

  7. Identification of differences in human and great ape phytanic acid metabolism that could influence gene expression profiles and physiological functions

    PubMed Central

    2010-01-01

    Background It has been proposed that anatomical differences in human and great ape guts arose in response to species-specific diets and energy demands. To investigate functional genomic consequences of these differences, we compared their physiological levels of phytanic acid, a branched chain fatty acid that can be derived from the microbial degradation of chlorophyll in ruminant guts. Humans who accumulate large stores of phytanic acid commonly develop cerebellar ataxia, peripheral polyneuropathy, and retinitis pigmentosa in addition to other medical conditions. Furthermore, phytanic acid is an activator of the PPAR-alpha transcription factor that influences the expression of genes relevant to lipid metabolism. Results Despite their trace dietary phytanic acid intake, all great ape species had elevated red blood cell (RBC) phytanic acid levels relative to humans on diverse diets. Unlike humans, chimpanzees showed sexual dimorphism in RBC phytanic acid levels, which were higher in males relative to females. Cultured skin fibroblasts from all species had a robust capacity to degrade phytanic acid. We provide indirect evidence that great apes, in contrast to humans, derive significant amounts of phytanic acid from the hindgut fermentation of plant materials. This would represent a novel reduction of metabolic activity in humans relative to the great apes. Conclusion We identified differences in the physiological levels of phytanic acid in humans and great apes and propose this is causally related to their gut anatomies and microbiomes. Phytanic acid levels could contribute to cross-species and sex-specific differences in human and great ape transcriptomes, especially those related to lipid metabolism. Based on the medical conditions caused by phytanic acid accumulation, we suggest that differences in phytanic acid metabolism could influence the functions of human and great ape nervous, cardiovascular, and skeletal systems. PMID:20932325

  8. Exploiting natural variation of secondary metabolism identifies a gene controlling the glycosylation diversity of dihydroxybenzoic acids in Arabidopsis thaliana.

    PubMed

    Li, Xu; Svedin, Elisabeth; Mo, Huaping; Atwell, Susanna; Dilkes, Brian P; Chapple, Clint

    2014-11-01

    Plant secondary metabolism is an active research area because of the unique and important roles the specialized metabolites have in the interaction of plants with their biotic and abiotic environment, the diversity and complexity of the compounds and their importance to human medicine. Thousands of natural accessions of Arabidopsis thaliana characterized with increasing genomic precision are available, providing new opportunities to explore the biochemical and genetic mechanisms affecting variation in secondary metabolism within this model species. In this study, we focused on four aromatic metabolites that were differentially accumulated among 96 Arabidopsis natural accessions as revealed by leaf metabolic profiling. Using UV, mass spectrometry, and NMR data, we identified these four compounds as different dihydroxybenzoic acid (DHBA) glycosides, namely 2,5-dihydroxybenzoic acid (gentisic acid) 5-O-β-D-glucoside, 2,3-dihydroxybenzoic acid 3-O-β-D-glucoside, 2,5-dihydroxybenzoic acid 5-O-β-D-xyloside, and 2,3-dihydroxybenzoic acid 3-O-β-D-xyloside. Quantitative trait locus (QTL) mapping using recombinant inbred lines generated from C24 and Col-0 revealed a major-effect QTL controlling the relative proportion of xylosides vs. glucosides. Association mapping identified markers linked to a gene encoding a UDP glycosyltransferase gene. Analysis of Transfer DNA (T-DNA) knockout lines verified that this gene is required for DHBA xylosylation in planta and recombinant protein was able to xylosylate DHBA in vitro. This study demonstrates that exploiting natural variation of secondary metabolism is a powerful approach for gene function discovery. PMID:25173843

  9. Analysis of the Metabolic Pathways Affected by Poly(γ-glutamic Acid) in Arabidopsis thaliana Based on GeneChip Microarray.

    PubMed

    Xu, Zongqi; Lei, Peng; Feng, Xiaohai; Li, Sha; Xu, Hong

    2016-08-17

    Plant growth is promoted by poly(γ-glutamic acid) (γ-PGA). However, the molecular mechanism underlying such promotion is not yet well understood. Therefore, we used GeneChip microarrays to explore the effects of γ-PGA on gene transcription in Arabidopsis thaliana. Our results revealed 299 genes significantly regulated by γ-PGA. These differently expressed genes participate mainly in metabolic and cellular processes and in stimuli responses. The metabolic pathways linked to these differently expressed genes were also investigated. A total of 64 of the 299 differently expressed genes were shown to be directly involved in 24 pathways such as brassinosteroid biosynthesis, α-linolenic acid metabolism, phenylpropanoid biosynthesis, and nitrogen metabolism, all of which were influenced by γ-PGA. The analysis demonstrated that γ-PGA promoted nitrogen assimilation and biosynthesis of brassinosteroids, jasmonic acid, and lignins, providing a better explanation for why γ-PGA promotes growth and enhances stress tolerance in plants. PMID:27465513

  10. Differential influence of distinct fatty acids on cardiomyocyte metabolic gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diabetes mellitus increases risk for cardiovascular disease, and exposes the heart to high plasma fatty acid (FA) levels, which induce genes promoting FA oxidation (e.g., malonyl-CoA decarboxylase; mcd), as well as those suppressing carbohydrate oxidation (e.g., pyruvate dehydrogenase kinase 4; pdk4...

  11. Adipose tissue transcriptional response of lipid metabolism genes in growing Iberian pigs fed oleic acid v. carbohydrate enriched diets.

    PubMed

    Benítez, R; Núñez, Y; Fernández, A; Isabel, B; Rodríguez, C; Daza, A; López-Bote, C; Silió, L; Óvilo, C

    2016-06-01

    Diet influences animal body and tissue composition due to direct deposition and to the nutrients effects on metabolism. The influence of specific nutrients on the molecular regulation of lipogenesis is not well characterized and is known to be influenced by many factors including timing and physiological status. A trial was performed to study the effects of different dietary energy sources on lipogenic genes transcription in ham adipose tissue of Iberian pigs, at different growth periods and on feeding/fasting situations. A total of 27 Iberian male pigs of 28 kg BW were allocated to two separate groups and fed with different isocaloric feeding regimens: standard diet with carbohydrates as energy source (CH) or diet enriched with high oleic sunflower oil (HO). Ham subcutaneous adipose tissue was sampled by biopsy at growing (44 kg mean BW) and finishing (100 kg mean BW) periods. The first sampling was performed on fasted animals, while the last sampling was performed twice, with animals fasted overnight and 3 h after refeeding. Effects of diet, growth period and feeding/fasting status on gene expression were explored quantifying the expression of a panel of key genes implicated in lipogenesis and lipid metabolism processes. Quantitative PCR revealed several differentially expressed genes according to diet, with similar results at both timings: RXRG, LEP and FABP5 genes were upregulated in HO group while ME1, FASN, ACACA and ELOVL6 were upregulated in CH. The diet effect on ME1 gene expression was conditional on feeding/fasting status, with the higher ME1 gene expression in CH than HO groups, observed only in fasting samples. Results are compatible with a higher de novo endogenous synthesis of fatty acids (FA) in the carbohydrate-supplemented group and a higher FA transport in the oleic acid-supplemented group. Growth period significantly affected the expression of most of the studied genes, with all but PPARG showing higher expression in finishing pigs according to

  12. Maternal Factors Are Associated with the Expression of Placental Genes Involved in Amino Acid Metabolism and Transport

    PubMed Central

    Day, Pricilla E.; Ntani, Georgia; Crozier, Sarah R.; Mahon, Pam A.; Inskip, Hazel M.; Cooper, Cyrus; Harvey, Nicholas C.; Godfrey, Keith M.; Hanson, Mark A.; Lewis, Rohan M.; Cleal, Jane K.

    2015-01-01

    Introduction Maternal environment and lifestyle factors may modify placental function to match the mother’s capacity to support the demands of fetal growth. Much remains to be understood about maternal influences on placental metabolic and amino acid transporter gene expression. We investigated the influences of maternal lifestyle and body composition (e.g. fat and muscle content) on a selection of metabolic and amino acid transporter genes and their associations with fetal growth. Methods RNA was extracted from 102 term Southampton Women’s Survey placental samples. Expression of nine metabolic, seven exchange, eight accumulative and three facilitated transporter genes was analyzed using quantitative real-time PCR. Results Increased placental LAT2 (p = 0.01), y+LAT2 (p = 0.03), aspartate aminotransferase 2 (p = 0.02) and decreased aspartate aminotransferase 1 (p = 0.04) mRNA expression associated with pre-pregnancy maternal smoking. Placental mRNA expression of TAT1 (p = 0.01), ASCT1 (p = 0.03), mitochondrial branched chain aminotransferase (p = 0.02) and glutamine synthetase (p = 0.05) was positively associated with maternal strenuous exercise. Increased glutamine synthetase mRNA expression (r = 0.20, p = 0.05) associated with higher maternal diet quality (prudent dietary pattern) pre-pregnancy. Lower LAT4 (r = -0.25, p = 0.05) and aspartate aminotransferase 2 mRNA expression (r = -0.28, p = 0.01) associated with higher early pregnancy diet quality. Lower placental ASCT1 mRNA expression associated with measures of increased maternal fat mass, including pre-pregnancy BMI (r = -0.26, p = 0.01). Lower placental mRNA expression of alanine aminotransferase 2 associated with greater neonatal adiposity, for example neonatal subscapular skinfold thickness (r = -0.33, p = 0.001). Conclusion A number of maternal influences have been linked with outcomes in childhood, independently of neonatal size; our finding of associations between placental expression of transporter

  13. Nucleotide sequence of the fadR gene, a multifunctional regulator of fatty acid metabolism in Escherichia coli.

    PubMed Central

    DiRusso, C C

    1988-01-01

    The Escherichia coli fadR gene is a multifunctional regulator of fatty acid and acetate metabolism. In the present work the nucleotide sequence of the 1.3 kb DNA fragment which encodes FadR has been determined. The coding sequence of the fadR gene is 714 nucleotides long and is preceded by a typical E. coli ribosome binding site and is followed by a sequence predicted to be sufficient for factor-independent chain termination. Primer extension experiments demonstrated that the transcription of the fadR gene initiates with an adenine nucleotide 33 nucleotides upstream from the predicted start of translation. The derived fadR peptide has a calculated molecular weight of 26,972. This is in reasonable agreement with the apparent molecular weight of 29,000 previously estimated on the basis of maxi-cell analysis of plasmid encoded proteins. There is a segment of twenty amino acids within the predicted peptide which resembles the DNA recognition and binding site of many transcriptional regulatory proteins. Images PMID:2843809

  14. Omega-3 fatty acids partially revert the metabolic gene expression profile induced by long-term calorie restriction.

    PubMed

    López-Domínguez, José Alberto; Cánovas, Ángela; Medrano, Juan F; Islas-Trejo, Alma; Kim, Kyoungmi; Taylor, Sandra L; Villalba, José Manuel; López-Lluch, Guillermo; Navas, Plácido; Ramsey, Jon J

    2016-05-01

    Calorie restriction (CR) consistently extends longevity and delays age-related diseases across several animal models. We have previously shown that different dietary fat sources can modulate life span and mitochondrial ultrastructure, function and membrane fatty acid composition in mice maintained on a 40% CR. In particular, animals consuming lard as the main fat source (CR-Lard) lived longer than CR mice consuming diets with soybean oil (CR-Soy) or fish oil (CR-Fish) as the predominant lipid source. In the present work, a transcriptomic analysis in the liver and skeletal muscle was performed in order to elucidate possible mechanisms underlying the changes in energy metabolism and longevity induced by dietary fat in CR mice. After 8 months of CR, transcription downstream of several mediators of inflammation was inhibited in liver. In contrast, proinflammatory signaling was increased in the CR-Fish versus other CR groups. Dietary fish oil induced a gene expression pattern consistent with increased transcriptional regulation by several cytokines (TNF, GM-CSF, TGF-β) and sex hormones when compared to the other CR groups. The CR-Fish also had lower expression of genes involved in fatty acid biosynthesis and increased expression of mitochondrial and peroxisomal fatty acid β-oxidation genes than the other CR diet groups. Our data suggest that a diet high in n-3 PUFA, partially reverts CR-related changes in gene expression of key processes, such as inflammation and steroid hormone signaling, and this may mitigate life span extension with CR in mice consuming diets high in fish oil. PMID:26875793

  15. Mimp/Mtch2, an Obesity Susceptibility Gene, Induces Alteration of Fatty Acid Metabolism in Transgenic Mice

    PubMed Central

    Tsarfaty, Galia; Kaufman, Dafna; Horev, Judith; Resau, James H.; Tsarfaty, Ilan

    2016-01-01

    Objective Metabolic dysfunctions, such as fatty liver, obesity and insulin resistance, are among the most common contemporary diseases worldwide, and their prevalence is continuously rising. Mimp/Mtch2 is a mitochondrial carrier protein homologue, which localizes to the mitochondria and induces mitochondrial depolarization. Mimp/Mtch2 single-nucleotide polymorphism is associated with obesity in humans and its loss in mice muscle protects from obesity. Our aim was to study the effects of Mimp/Mtch2 overexpression in vivo. Methods Transgenic mice overexpressing Mimp/Mtch2-GFP were characterized and monitored for lipid accumulation, weight and blood glucose levels. Transgenic mice liver and kidneys were used for gene expression analysis. Results Mimp/Mtch2-GFP transgenic mice express high levels of fatty acid synthase and of β-oxidation genes and develop fatty livers and kidneys. Moreover, high-fat diet–fed Mimp/Mtch2 mice exhibit high blood glucose levels. Our results also show that Mimp/Mtch2 is involved in lipid accumulation and uptake in cells and perhaps in human obesity. Conclusions Mimp/Mtch2 alters lipid metabolism and may play a role in the onset of obesity and development of insulin resistance. PMID:27359329

  16. Effect of α-linolenic acid and DHA intake on lipogenesis and gene expression involved in fatty acid metabolism in growing-finishing pigs.

    PubMed

    De Tonnac, A; Labussière, E; Vincent, A; Mourot, J

    2016-07-01

    The regulation of lipogenesis mechanisms related to consumption of n-3 PUFA is poorly understood. The aim of the present study was to find out whether α-linolenic acid (ALA) or DHA uptake can have an effect on activities and gene expressions of enzymes involved in lipid metabolism in the liver, subcutaneous adipose tissue and longissimus dorsi (LD) muscle of growing-finishing pigs. Six groups of ten pigs received one of six experimental diets supplemented with rapeseed oil in the control diet, extruded linseed, microalgae or a mixture of both to implement different levels of ALA and DHA with the same content in total n-3. Results were analysed for linear and quadratic effects of DHA intake. The results showed that activities of malic enzyme (ME) and fatty acid synthase (FAS) decreased linearly in the liver with dietary DHA. Although the expression of the genes of these enzymes and their activities were poorly correlated, ME and FAS expressions also decreased linearly with DHA intake. The intake of DHA down-regulates the expressions of other genes involved in fatty acid (FA) metabolism in some tissues of pigs, such as fatty acid desaturase 2 and sterol-regulatory element binding transcription factor 1 in the liver and 2,4-dienoyl CoA reductase 2 in the LD muscle. FA oxidation in the LD muscle and FA synthesis decreased in the liver with increasing amount of dietary DHA, whereas a retroconversion of DHA into EPA seems to be set up in this last tissue. PMID:27181335

  17. GeoChip-Based Analysis of the Functional Gene Diversity and Metabolic Potential of Microbial Communities in Acid Mine Drainage▿ †

    PubMed Central

    Xie, Jianping; He, Zhili; Liu, Xinxing; Liu, Xueduan; Van Nostrand, Joy D.; Deng, Ye; Wu, Liyou; Zhou, Jizhong; Qiu, Guanzhou

    2011-01-01

    Acid mine drainage (AMD) is an extreme environment, usually with low pH and high concentrations of metals. Although the phylogenetic diversity of AMD microbial communities has been examined extensively, little is known about their functional gene diversity and metabolic potential. In this study, a comprehensive functional gene array (GeoChip 2.0) was used to analyze the functional diversity, composition, structure, and metabolic potential of AMD microbial communities from three copper mines in China. GeoChip data indicated that these microbial communities were functionally diverse as measured by the number of genes detected, gene overlapping, unique genes, and various diversity indices. Almost all key functional gene categories targeted by GeoChip 2.0 were detected in the AMD microbial communities, including carbon fixation, carbon degradation, methane generation, nitrogen fixation, nitrification, denitrification, ammonification, nitrogen reduction, sulfur metabolism, metal resistance, and organic contaminant degradation, which suggested that the functional gene diversity was higher than was previously thought. Mantel test results indicated that AMD microbial communities are shaped largely by surrounding environmental factors (e.g., S, Mg, and Cu). Functional genes (e.g., narG and norB) and several key functional processes (e.g., methane generation, ammonification, denitrification, sulfite reduction, and organic contaminant degradation) were significantly (P < 0.10) correlated with environmental variables. This study presents an overview of functional gene diversity and the structure of AMD microbial communities and also provides insights into our understanding of metabolic potential in AMD ecosystems. PMID:21097602

  18. Aspergillus flavus Blast2GO gene ontology database: elevated growth temperature alters amino acid metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The availability of a representative gene ontology (GO) database is a prerequisite for a successful functional genomics study. Using online Blast2GO resources we constructed a GO database of Aspergillus flavus. Of the predicted total 13,485 A. flavus genes 8,987 were annotated with GO terms. The mea...

  19. NF-E2-related factor 2 deletion facilitates hepatic fatty acids metabolism disorder induced by high-fat diet via regulating related genes in mice.

    PubMed

    Wang, Xinghe; Li, Chunyan; Xu, Shang; Ishfaq, Muhammad; Zhang, Xiuying

    2016-08-01

    There is increasing evidence that Nrf2 participates in hepatic fatty acid metabolism in non-alcoholic fatty liver disease; however, the mechanism remains unclear. We investigated the role of Nrf2 in hepatic fatty acid metabolism disorder induced by high-fat diet (HFD). Mice fed HFD developed hepatic steatosis and exhibited Nrf2 deficiency. Change of fatty acid composition mediated by Nrf2 deletion was observed predominantly in the liver and not the serum. HFD-induced variations in hepatic 18-carbon and 22-carbon fatty acids were enhanced by Nrf2 deficiency. In the HFD group, Nrf2 deficiency led to increases in the mRNA expression of PPARα, FXR, FAS, LXR and ACC-1, while levels of PGC-1α and Srebp-1c mRNA were decreased. Nrf2 mRNA expression was enhanced in the liver of HFD-induced wild type mice, whereas it was undetectable in Nrf2-null mice. These results suggest that Nrf2 deficiency induced by HFD promoted hepatic fatty acid metabolism disorder by altering 18-carbon and 22-carbon fatty acid composition. Changes in fatty acid content were also associated with alteration of the transcription of genes involved in hepatic fatty acid metabolism. PMID:27311796

  20. Eicosapentaenoic acid regulates brown adipose tissue gene expression and metabolism in high fat fed mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown adipose tissue (BAT) is a thermogenic tissue, a key regulator of energy balance and a potential therapeutic target for obesity. We previously reported that eicosapentaenoic acid (EPA) reduced high fat (HF) diet-induced obesity and insulin resistance in mice, independent of energy intake. We hy...

  1. Knockout of the p-Coumarate Decarboxylase Gene from Lactobacillus plantarum Reveals the Existence of Two Other Inducible Enzymatic Activities Involved in Phenolic Acid Metabolism

    PubMed Central

    Barthelmebs, Lise; Divies, Charles; Cavin, Jean-François

    2000-01-01

    Lactobacillus plantarum NC8 contains a pdc gene coding for p-coumaric acid decarboxylase activity (PDC). A food grade mutant, designated LPD1, in which the chromosomal pdc gene was replaced with the deleted pdc gene copy, was obtained by a two-step homologous recombination process using an unstable replicative vector. The LPD1 mutant strain remained able to weakly metabolize p-coumaric and ferulic acids into vinyl derivatives or into substituted phenyl propionic acids. We have shown that L. plantarum has a second acid phenol decarboxylase enzyme, better induced with ferulic acid than with p-coumaric acid, which also displays inducible acid phenol reductase activity that is mostly active when glucose is added. Those two enzymatic activities are in competition for p-coumaric and ferulic acid degradation, and the ratio of the corresponding derivatives depends on induction conditions. Moreover, PDC appeared to decarboxylate ferulic acid in vitro with a specific activity of about 10 nmol · min−1 · mg−1 in the presence of ammonium sulfate. Finally, PDC activity was shown to confer a selective advantage on LPNC8 grown in acidic media supplemented with p-coumaric acid, compared to the LPD1 mutant devoid of PDC activity. PMID:10919793

  2. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: Modulation of cardiac PPAR-{alpha}-mediated transcription of fatty acid metabolic genes

    SciTech Connect

    Huang, Tom H.-W.; Yang Qinglin; Harada, Masaki; Uberai, Jasna; Radford, Jane; Li, George Q.; Yamahara, Johji; Roufogalis, Basil D.; Li Yuhao . E-mail: yuhao@pharm.usyd.edu.au

    2006-01-15

    Excess cardiac triglyceride accumulation in diabetes and obesity induces lipotoxicity, which predisposes the myocytes to death. On the other hand, increased cardiac fatty acid (FA) oxidation plays a role in the development of myocardial dysfunction in diabetes. PPAR-{alpha} plays an important role in maintaining homeostasis of lipid metabolism. We have previously demonstrated that the extract from Salacia oblonga root (SOE), an Ayurvedic anti-diabetic and anti-obesity medicine, improves hyperlipidemia in Zucker diabetic fatty (ZDF) rats (a genetic model of type 2 diabetes and obesity) and possesses PPAR-{alpha} activating properties. Here we demonstrate that chronic oral administration of SOE reduces cardiac triglyceride and FA contents and decreases the Oil red O-stained area in the myocardium of ZDF rats, which parallels the effects on plasma triglyceride and FA levels. Furthermore, the treatment suppressed cardiac overexpression of both FA transporter protein-1 mRNA and protein in ZDF rats, suggesting inhibition of increased cardiac FA uptake as the basis for decreased cardiac FA levels. Additionally, the treatment also inhibited overexpression in ZDF rat heart of PPAR-{alpha} mRNA and protein and carnitine palmitoyltransferase-1, acyl-CoA oxidase and 5'-AMP-activated protein kinase mRNAs and restored the downregulated acetyl-CoA carboxylase mRNA. These results suggest that SOE inhibits cardiac FA oxidation in ZDF rats. Thus, our findings suggest that improvement by SOE of excess cardiac lipid accumulation and increased cardiac FA oxidation in diabetes and obesity occurs by reduction of cardiac FA uptake, thereby modulating cardiac PPAR-{alpha}-mediated FA metabolic gene transcription.

  3. Rapid effects of essential fatty acid deficiency on growth and development parameters and transcription of key fatty acid metabolism genes in juvenile barramundi (Lates calcarifer).

    PubMed

    Salini, Michael J; Turchini, Giovanni M; Wade, Nicholas M; Glencross, Brett D

    2015-12-14

    Barramundi (Lates calcarifer), a catadromous teleost of significant and growing commercial importance, are reported to have limited fatty acid bioconversion capability and therefore require preformed long-chain PUFA (LC-PUFA) as dietary essential fatty acid (EFA). In this study, the response of juvenile barramundi (47·0 g/fish initial weight) fed isolipidic and isoenergetic diets with 8·2% added oil was tested. The experimental test diets were either devoid of fish oil (FO), and thus with no n-3 LC-PUFA (FO FREE diet), or with a low inclusion of FO (FO LOW diet). These were compared against a control diet containing only FO (FO CTRL diet) as the added lipid source, over an 8-week period. Interim samples and measurements were taken fortnightly during the trial in order to define the aetiology of the onset and progression of EFA deficiency. After 2 weeks, the fish fed the FO FREE and FO LOW diets had significantly lower live-weights, and after 8 weeks significant differences were detected for all performance parameters. The fish fed the FO FREE diet also had a significantly higher incidence of external abnormalities. The transcription of several genes involved in fatty acid metabolism was affected after 2 weeks of feeding, showing a rapid nutritional regulation. This experiment documents the aetiology of the onset and the progression of EFA deficiency in juvenile barramundi and demonstrates that such deficiencies can be detected within 2 weeks in juvenile fish. PMID:26411329

  4. Added value of next generation gene panel analysis for patients with elevated methylmalonic acid and no clinical diagnosis following functional studies of vitamin B12 metabolism.

    PubMed

    Pupavac, Mihaela; Tian, Xia; Chu, Jordan; Wang, Guoli; Feng, Yanming; Chen, Stella; Fenter, Remington; Zhang, Victor W; Wang, Jing; Watkins, David; Wong, Lee-Jun; Rosenblatt, David S

    2016-03-01

    Next generation sequencing (NGS) based gene panel testing is increasingly available as a molecular diagnostic approach for inborn errors of metabolism. Over the past 40 years patients have been referred to the Vitamin B12 Clinical Research Laboratory at McGill University for diagnosis of inborn errors of cobalamin metabolism by functional studies in cultured fibroblasts. DNA samples from patients in which no diagnosis was made by these studies were tested by a NGS gene panel to determine whether any molecular diagnoses could be made. 131 DNA samples from patients with elevated methylmalonic acid and no diagnosis following functional studies of cobalamin metabolism were analyzed using the 24 gene extended cobalamin metabolism NGS based panel developed by Baylor Miraca Genetics Laboratories. Gene panel testing identified two or more variants in a single gene in 16/131 patients. Eight patients had pathogenic findings, one had a finding of uncertain significance, and seven had benign findings. Of the patients with pathogenic findings, five had mutations in ACSF3, two in SUCLG1 and one in TCN2. Thus, the NGS gene panel allowed for the presumptive diagnosis of 8 additional patients for which a diagnosis was not made by the functional assays. PMID:26827111

  5. Role of GlnR in Acid-Mediated Repression of Genes Encoding Proteins Involved in Glutamine and Glutamate Metabolism in Streptococcus mutans▿ †

    PubMed Central

    Chen , Pei-Min; Chen, Yi-Ywan M.; Yu, Sung-Liang; Sher, Singh; Lai, Chern-Hsiung; Chia, Jean-San

    2010-01-01

    The acid tolerance response (ATR) is one of the major virulence traits of Streptococcus mutans. In this study, the role of GlnR in acid-mediated gene repression that affects the adaptive ATR in S. mutans was investigated. Using a whole-genome microarray and in silico analyses, we demonstrated that GlnR and the GlnR box (ATGTNAN7TNACAT) were involved in the transcriptional repression of clusters of genes encoding proteins involved in glutamine and glutamate metabolism under acidic challenge. Reverse transcription-PCR (RT-PCR) analysis revealed that the coordinated regulation of the GlnR regulon occurred 5 min after acid treatment and that prolonged acid exposure (30 min) resulted in further reduction in expression. A lower level but consistent reduction in response to acidic pH was also observed in chemostat-grown cells, confirming the negative regulation of GlnR. The repression by GlnR through the GlnR box in response to acidic pH was further confirmed in the citBZC operon, containing genes encoding the first three enzymes in the glutamine/glutamate biosynthesis pathway. The survival rate of the GlnR-deficient mutant at pH 2.8 was more than 10-fold lower than that in the wild-type strain 45 min after acid treatment, suggesting that the GlnR regulon participates in S. mutans ATR. It is hypothesized that downregulation of the synthesis of the amino acid precursors in response to acid challenge would promote citrate metabolism to pyruvate, with the consumption of H+ and potential ATP synthesis. Such regulation will ensure an optimal acid adaption in S. mutans. PMID:20173059

  6. Soy protein diet alters expression of hepatic genes regulating fatty acid and thyroid hormone metabolism in the male rat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined effects of soy protein (SPI) and the isoflavone genistein (GEN) on mRNA expression of key lipid metabolism and thyroid hormone system genes in young adult, male Sprague-Dawley rats. SPI-fed rats had less retroperitoneal fat and less hepato-steatosis than casein (CAS, control protein)-...

  7. Salicylic Acid Biosynthesis and Metabolism

    PubMed Central

    Dempsey, D'Maris Amick; Vlot, A. Corina; Wildermuth, Mary C.; Klessig, Daniel F.

    2011-01-01

    Salicylic acid (SA) has been shown to regulate various aspects of growth and development; it also serves as a critical signal for activating disease resistance in Arabidopsis thaliana and other plant species. This review surveys the mechanisms involved in the biosynthesis and metabolism of this critical plant hormone. While a complete biosynthetic route has yet to be established, stressed Arabidopsis appear to synthesize SA primarily via an isochorismate-utilizing pathway in the chloroplast. A distinct pathway utilizing phenylalanine as the substrate also may contribute to SA accumulation, although to a much lesser extent. Once synthesized, free SA levels can be regulated by a variety of chemical modifications. Many of these modifications inactivate SA; however, some confer novel properties that may aid in long distance SA transport or the activation of stress responses complementary to those induced by free SA. In addition, a number of factors that directly or indirectly regulate the expression of SA biosynthetic genes or that influence the rate of SA catabolism have been identified. An integrated model, encompassing current knowledge of SA metabolism in Arabidopsis, as well as the influence other plant hormones exert on SA metabolism, is presented. PMID:22303280

  8. Effects of sexual maturation and feeding level on fatty acid metabolism gene expression in muscle, liver, and visceral adipose tissue of diploid and triploid rainbow trout, Oncorhynchus mykiss.

    PubMed

    Manor, Meghan L; Cleveland, Beth M; Weber, Gregory M; Kenney, P Brett

    2015-01-01

    In many cultured fish species, such as salmonids, gonadal development occurs at the expense of stored energy and nutrients, including lipids. However, mechanisms regulating nutrient repartitioning during sexual maturation are not well understood. This study compared sexually maturing diploid (2N) and sterile triploid (3N) female rainbow trout to investigate effects of sexual maturation on expression of 35 genes involved in fatty acid metabolism, including genes within fatty acid synthesis, β-oxidation, and cofactors of the mTOR and PPAR signaling pathways, in liver, white muscle, and visceral adipose tissue. Diploid fish were fed at different rations (0.25% and 0.50% tank biomass, and satiation) to determine effects of ration on gene expression. Gene expression was affected by ration level only in white muscle; erk and acat2 had higher expression in fish fed higher rations. On the other hand, sexual maturation affected gene expression across all three tissue types. Data indicate 2N fish have higher expression of β-oxidation genes within white muscle and within visceral adipose tissue. These findings support enhanced fatty acid mobilization within these tissues during sexual maturation. Higher expression of fatty acid synthesis genes in 3N female liver is associated with higher expression of mTOR cofactors and pparγ, which reflects continued deposition of lipids in these fish. Furthermore, greater expression of genes involved in β-oxidation pathways across ration levels in 2N females suggests that sexual maturation and the associated maturation-related signals are stronger regulators of lipid metabolism-related genes rather the rations applied in the current study. PMID:25242626

  9. Phylogenomic reconstruction of archaeal fatty acid metabolism

    PubMed Central

    Dibrova, Daria V.; Galperin, Michael Y.; Mulkidjanian, Armen Y.

    2014-01-01

    While certain archaea appear to synthesize and/or metabolize fatty acids, the respective pathways still remain obscure. By analyzing the genomic distribution of the key lipid-related enzymes, we were able to identify the likely components of the archaeal pathway of fatty acid metabolism, namely, a combination of the enzymes of bacterial-type β-oxidation of fatty acids (acyl-CoA-dehydrogenase, enoyl-CoA hydratase, and 3-hydroxyacyl-CoA dehydrogenase) with paralogs of the archaeal acetyl-CoA C-acetyltransferase, an enzyme of the mevalonate biosynthesis pathway. These three β-oxidation enzymes working in the reverse direction could potentially catalyze biosynthesis of fatty acids, with paralogs of acetyl-CoA C-acetyltransferase performing addition of C2 fragments. The presence in archaea of the genes for energy-transducing membrane enzyme complexes, such as cytochrome bc complex, cytochrome c oxidase, and diverse rhodopsins, was found to correlate with the presence of the proposed system of fatty acid biosynthesis. We speculate that because these membrane complexes functionally depend on fatty acid chains, their genes could have been acquired via lateral gene transfer from bacteria only by those archaea that already possessed a system of fatty acid biosynthesis. The proposed pathway of archaeal fatty acid metabolism operates in extreme conditions and therefore might be of interest in the context of biofuel production and other industrial applications. PMID:24818264

  10. Treatment of Amino Acid Metabolism Disorders

    MedlinePlus

    ... Treatment of amino acid metabolism disorders Treatment of amino acid metabolism disorders E-mail to a friend Please ... this page It's been added to your dashboard . Amino acid metabolism disorders are rare health conditions that affect ...

  11. Conserved and Divergent Rhythms of Crassulacean Acid Metabolism-Related and Core Clock Gene Expression in the Cactus Opuntia ficus-indica1[C][W

    PubMed Central

    Mallona, Izaskun; Egea-Cortines, Marcos; Weiss, Julia

    2011-01-01

    The cactus Opuntia ficus-indica is a constitutive Crassulacean acid metabolism (CAM) species. Current knowledge of CAM metabolism suggests that the enzyme phosphoenolpyruvate carboxylase kinase (PPCK) is circadian regulated at the transcriptional level, whereas phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), NADP-malic enzyme (NADP-ME), and pyruvate phosphate dikinase (PPDK) are posttranslationally controlled. As little transcriptomic data are available from obligate CAM plants, we created an expressed sequence tag database derived from different organs and developmental stages. Sequences were assembled, compared with sequences in the National Center for Biotechnology Information nonredundant database for identification of putative orthologs, and mapped using Kyoto Encyclopedia of Genes and Genomes Orthology and Gene Ontology. We identified genes involved in circadian regulation and CAM metabolism for transcriptomic analysis in plants grown in long days. We identified stable reference genes for quantitative polymerase chain reaction and found that OfiSAND, like its counterpart in Arabidopsis (Arabidopsis thaliana), and OfiTUB are generally appropriate standards for use in the quantification of gene expression in O. ficus-indica. Three kinds of expression profiles were found: transcripts of OfiPPCK oscillated with a 24-h periodicity; transcripts of the light-active OfiNADP-ME and OfiPPDK genes adapted to 12-h cycles, while transcript accumulation patterns of OfiPEPC and OfiMDH were arrhythmic. Expression of the circadian clock gene OfiTOC1, similar to Arabidopsis, oscillated with a 24-h periodicity, peaking at night. Expression of OfiCCA1 and OfiPRR9, unlike in Arabidopsis, adapted best to a 12-h rhythm, suggesting that circadian clock gene interactions differ from those of Arabidopsis. Our results indicate that the evolution of CAM metabolism could be the result of modified circadian regulation at both the transcriptional and posttranscriptional

  12. Lipoic Acid Metabolism in Microbial Pathogens

    PubMed Central

    Spalding, Maroya D.; Prigge, Sean T.

    2010-01-01

    Summary: Lipoic acid [(R)-5-(1,2-dithiolan-3-yl)pentanoic acid] is an enzyme cofactor required for intermediate metabolism in free-living cells. Lipoic acid was discovered nearly 60 years ago and was shown to be covalently attached to proteins in several multicomponent dehydrogenases. Cells can acquire lipoate (the deprotonated charge form of lipoic acid that dominates at physiological pH) through either scavenging or de novo synthesis. Microbial pathogens implement these basic lipoylation strategies with a surprising variety of adaptations which can affect pathogenesis and virulence. Similarly, lipoylated proteins are responsible for effects beyond their classical roles in catalysis. These include roles in oxidative defense, bacterial sporulation, and gene expression. This review surveys the role of lipoate metabolism in bacterial, fungal, and protozoan pathogens and how these organisms have employed this metabolism to adapt to niche environments. PMID:20508247

  13. Transgenesis of humanized fat1 promotes n-3 polyunsaturated fatty acid synthesis and expression of genes involved in lipid metabolism in goat cells.

    PubMed

    Fan, Yixuan; Ren, Caifang; Wang, Zhibo; Jia, Ruoxin; Wang, Dan; Zhang, Yanli; Zhang, Guomin; Wan, Yongjie; Huang, Mingrui; Wang, Feng

    2016-01-15

    The n-3 fatty acid desaturase gene fat1 codes for the n-3 desaturase enzyme, which can convert n-6 polyunsaturated fatty acids (PUFAs) to n-3 PUFAs. The n-3 PUFAs are essential components required for normal cellular function and have preventive and therapeutic effects on many diseases. Goat is an important domestic animal for human consumption of meat and milk. To elevate the concentrations of n-3 PUFAs and examine the regulatory mechanism of fat1 in PUFA metabolism in goat cells, we successfully constructed a humanized fat1 expression vector and confirmed the efficient expression of fat1 in goat ear skin-derived fibroblast cells (GEFCs) by qRT-PCR and Western blot analysis. Fatty acid analysis showed that fat1 overexpression significantly increased the levels of total n-3 PUFAs and decreased the levels of total n-6 PUFAs in GEFCs. In addition, qRT-PCR results indicate that the FADS1 and FADS2 desaturase genes, ELOV2 and ELOV5 elongase genes, ACO and CPT1 oxidation genes, and PPARa and PPARγ transcription factors are up-regulated, and transcription factors of SREBP-1c gene are down-regulated in the fat1 transgenic goat cells. Overall, fat1-overexpression resulted in an increase in the n-3 fatty acids and altered expression of PUFA synthesis related genes in GEFCs. This work lays a foundation for both the production of fat1 transgenic goats and further study of the mechanism of fat1 function in the PUFAs metabolism. PMID:26474750

  14. Virus-induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by γ-aminobutyric acid metabolic pathway.

    PubMed

    Bao, Hexigeduleng; Chen, Xianyang; Lv, Sulian; Jiang, Ping; Feng, Juanjuan; Fan, Pengxiang; Nie, Lingling; Li, Yinxin

    2015-03-01

    γ-Aminobutyric acid (GABA) accumulates in many plant species in response to environmental stress. However, the physiological function of GABA or its metabolic pathway (GABA shunt) in plants remains largely unclear. Here, the genes, including glutamate decarboxylases (SlGADs), GABA transaminases (SlGABA-Ts) and succinic semialdehyde dehydrogenase (SlSSADH), controlling three steps of the metabolic pathway of GABA, were studied through virus-induced gene silencing approach in tomato. Silencing of SlGADs (GABA biosynthetic genes) and SlGABA-Ts (GABA catabolic genes) led to increased accumulation of reactive oxygen species (ROS) as well as salt sensitivity under 200 mm NaCl treatment. Targeted quantitative analysis of metabolites revealed that GABA decreased and increased in the SlGADs- and SlGABA-Ts-silenced plants, respectively, whereas succinate (the final product of GABA metabolism) decreased in both silenced plants. Contrarily, SlSSADH-silenced plants, also defective in GABA degradation process, showed dwarf phenotype, curled leaves and enhanced accumulation of ROS in normal conditions, suggesting the involvement of a bypath for succinic semialdehyde catabolism to γ-hydroxybutyrate as reported previously in Arabidopsis, were less sensitive to salt stress. These results suggest that GABA shunt is involved in salt tolerance of tomato, probably by affecting the homeostasis of metabolites such as succinate and γ-hydroxybutyrate and subsequent ROS accumulation under salt stress. PMID:25074245

  15. Differences in growth, fillet quality, and fatty acid metabolism-related gene expression between juvenile male and female rainbow trout.

    PubMed

    Manor, Meghan L; Cleveland, Beth M; Kenney, P Brett; Yao, Jianbo; Leeds, Tim

    2015-04-01

    Sexual maturation occurs at the expense of stored energy and nutrients, including lipids; however, little is known regarding sex effects on nutrient regulatory mechanisms in rainbow trout prior to maturity. Thirty-two, 14-month-old, male and female rainbow trout were sampled for growth, carcass yield, fillet composition, and gene expression of liver, white muscle, and visceral adipose tissue. Growth parameters, including gonadosomatic index, were not affected by sex. Females had higher percent separable muscle yield, but there were no sex effects on fillet proximate composition. Fillet shear force indicated females produce firmer fillets than males. Male livers had greater expression of three cofactors within the mTOR signaling pathway that act to inhibit TORC1 assembly; mo25, rictor, and pras40. Male liver also exhibited increased expression of β-oxidation genes cpt1b and ehhadh. These findings are indicative of increased mitochondrial β-oxidation in male liver. Females exhibited increased expression of the mTOR cofactor raptor in white muscle and had higher expression levels of several genes within the fatty acid synthesis pathway, including gpat, srebp1, scd1, and cd36. Female muscle also had increased expression of β-oxidation genes cpt1d and cpt2. Increased expression of both fatty acid synthesis and β-oxidation genes suggests female muscle may have greater fatty acid turnover. Differences between sexes were primarily associated with variation of gene expression within the mTOR signaling pathway. Overall, data suggest there is differential regulation of gene expression in male and female rainbow trout tissues prior to the onset of sexual maturity that may lead to nutrient repartitioning during maturation. PMID:25673423

  16. Mycobacterium Lysine ε-aminotransferase is a novel alarmone metabolism related persister gene via dysregulating the intracellular amino acid level

    PubMed Central

    Duan, Xiangke; Li, Yunsong; Du, Qinglin; Huang, Qinqin; Guo, Siyao; Xu, Mengmeng; Lin, Yanping; Liu, Zhidong; Xie, Jianping

    2016-01-01

    Bacterial persisters, usually slow-growing, non-replicating cells highly tolerant to antibiotics, play a crucial role contributing to the recalcitrance of chronic infections and treatment failure. Understanding the molecular mechanism of persister cells formation and maintenance would obviously inspire the discovery of new antibiotics. The significant upregulation of Mycobacterium tuberculosis Rv3290c, a highly conserved mycobacterial lysine ε-aminotransferase (LAT) during hypoxia persistent model, suggested a role of LAT in persistence. To test this, a lat deleted Mycobacterium smegmatis was constructed. The expression of transcriptional regulator leucine-responsive regulatory protein (LrpA) and the amino acids abundance in M. smegmatis lat deletion mutants were lowered. Thus, the persistence capacity of the deletion mutant was impaired upon norfloxacin exposure under nutrient starvation. In summary, our study firstly reported the involvement of mycobacterium LAT in persister formation, and possibly through altering the intracellular amino acid metabolism balance. PMID:26806099

  17. Mycobacterium Lysine ε-aminotransferase is a novel alarmone metabolism related persister gene via dysregulating the intracellular amino acid level.

    PubMed

    Duan, Xiangke; Li, Yunsong; Du, Qinglin; Huang, Qinqin; Guo, Siyao; Xu, Mengmeng; Lin, Yanping; Liu, Zhidong; Xie, Jianping

    2016-01-01

    Bacterial persisters, usually slow-growing, non-replicating cells highly tolerant to antibiotics, play a crucial role contributing to the recalcitrance of chronic infections and treatment failure. Understanding the molecular mechanism of persister cells formation and maintenance would obviously inspire the discovery of new antibiotics. The significant upregulation of Mycobacterium tuberculosis Rv3290c, a highly conserved mycobacterial lysine ε-aminotransferase (LAT) during hypoxia persistent model, suggested a role of LAT in persistence. To test this, a lat deleted Mycobacterium smegmatis was constructed. The expression of transcriptional regulator leucine-responsive regulatory protein (LrpA) and the amino acids abundance in M. smegmatis lat deletion mutants were lowered. Thus, the persistence capacity of the deletion mutant was impaired upon norfloxacin exposure under nutrient starvation. In summary, our study firstly reported the involvement of mycobacterium LAT in persister formation, and possibly through altering the intracellular amino acid metabolism balance. PMID:26806099

  18. NanR, a Transcriptional Regulator That Binds to the Promoters of Genes Involved in Sialic Acid Metabolism in the Anaerobic Pathogen Clostridium perfringens

    PubMed Central

    Therit, Blair; Cheung, Jackie K.; Rood, Julian I.; Melville, Stephen B.

    2015-01-01

    Among many other virulence factors, Clostridium perfringens produces three sialidases NanH, NanI and NanJ. NanH lacks a secretion signal peptide and is predicted to be an intracellular enzyme, while NanI and NanJ are secreted. Previously, we had identified part of an operon encoding NanE (epimerase) and NanA (sialic acid lyase) enzymes. Further analysis of the entire operon suggests that it encodes a complete pathway for the transport and metabolism of sialic acid along with a putative transcriptional regulator, NanR. The addition of 30 mM N-acetyl neuraminic acid (Neu5Ac) to a semi-defined medium significantly enhanced the growth yield of strain 13, suggesting that Neu5Ac can be used as a nutrient. C. perfringens strain 13 lacks a nanH gene, but has NanI- and NanJ-encoding genes. Analysis of nanI, nanJ, and nanInanJ mutants constructed by homologous recombination revealed that the expression of the major sialidase, NanI, was induced by the addition of Neu5Ac to the medium, and that in separate experiments, the same was true of a nanI-gusA transcriptional fusion. For the nanI and nanJ genes, primer extension identified three and two putative transcription start sites, respectively. Gel mobility shift assays using purified NanR and DNA from the promoter regions of the nanI and nanE genes showed high affinity, specific binding by NanR. We propose that NanR is a global regulator of sialic acid-associated genes and that it responds, in a positive feedback loop, to the concentration of sialic acid in the cell. PMID:26197388

  19. Fibroblasts from patients with Diamond-Blackfan anaemia show abnormal expression of genes involved in protein synthesis, amino acid metabolism and cancer

    PubMed Central

    Avondo, Federica; Roncaglia, Paola; Crescenzio, Nicoletta; Krmac, Helena; Garelli, Emanuela; Armiraglio, Marta; Castagnoli, Carlotta; Campagnoli, Maria Francesca; Ramenghi, Ugo; Gustincich, Stefano; Santoro, Claudio; Dianzani, Irma

    2009-01-01

    Background Diamond-Blackfan anaemia (DBA) is a rare inherited red cell hypoplasia characterised by a defect in the maturation of erythroid progenitors and in some cases associated with malformations. Patients have an increased risk of solid tumors. Mutations have been found in several ribosomal protein (RP) genes, i.e RPS19, RPS24, RPS17, RPL5, RPL11, RPL35A. Studies in haematopoietic progenitors from patients show that haplo-insufficiency of an RP impairs rRNA processing and ribosome biogenesis. DBA lymphocytes show reduced protein synthesis and fibroblasts display abnormal rRNA processing and impaired proliferation. Results To evaluate the involvement of non-haematopoietic tissues in DBA, we have analysed global gene expression in fibroblasts from DBA patients compared to healthy controls. Microarray expression profiling using Affymetrix GeneChip Human Genome U133A 2.0 Arrays revealed that 421 genes are differentially expressed in DBA patient fibroblasts. These genes include a large cluster of ribosomal proteins and factors involved in protein synthesis and amino acid metabolism, as well as genes associated to cell death, cancer and tissue development. Conclusion This analysis reports for the first time an abnormal gene expression profile in a non-haematopoietic cell type in DBA. These data support the hypothesis that DBA may be due to a defect in general or specific protein synthesis. PMID:19765279

  20. In Ovo Administration of Silver Nanoparticles and/or Amino Acids Influence Metabolism and Immune Gene Expression in Chicken Embryos

    PubMed Central

    Bhanja, Subrat K.; Hotowy, Anna; Mehra, Manish; Sawosz, Ewa; Pineda, Lane; Vadalasetty, Krishna Prasad; Kurantowicz, Natalia; Chwalibog, André

    2015-01-01

    Due to their physicochemical and biological properties, silver nanoparticles (NanoAg) have a wide range of applications. In the present study, their roles as a carrier of nutrients and an immunomodulator were tested in chicken embryos. Cysteine (Cys)+NanoAg injected embryos had smaller livers but heavier breasts on the 19th day of embryogenesis. Cys injected embryos had lower oxygen consumption compared to threonine (Thr) or NanoAg injected embryos. The energy expenditure in Thr+NanoAg, or NanoAg injected embryos was higher than Cys or Cys+NanoAg but was not different from uninjected control embryos. Relative expression of the hepatic insulin-like growth factor-I (IGF-I) gene was higher in Cys or NanoAg injected embryos after lipopolysaccharide (LPS) induction. The gene expression of hepatic tumour necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) did not differ among amino acids, NanoAg and uninjected controls in the non-LPS groups, but increased by many folds in the LPS treated NanoAg, Cys and Cys+NanoAg groups. In LPS treated spleens, TNF-α expression was also up-regulated by NanoAg, amino acids and their combinations, but interleukin-10 (IL-10) expression was down-regulated in Thr, Cys or Thr+NanoAg injected embryos. Toll like receptor-2 (TLR2) expression did not differ in NanoAg or amino acids injected embryos; however, toll like receptor-4 (TLR4) expression was higher in all treated embryos, except for Cys+NanoAg, than in uninjected control embryos. We concluded that NanoAg either alone or in combination with amino acids did not affect embryonic growth but improved immunocompetence, indicating that NanoAg and amino acid complexes can act as potential agents for the enhancement of innate and adaptive immunity in chicken. PMID:25923079

  1. Regulation of metabolic flux in Lactobacillus casei for lactic acid production by overexpressed ldhL gene with two-stage oxygen supply strategy.

    PubMed

    Ge, Xiang-Yang; Xu, Yan; Chen, Xiang; Zhang, Long-Yun

    2015-01-01

    This study describes a novel strategy to regulate the metabolic flux for lactic acid production in Lactobacillus casei. The ldhL gene encoding L-lactate dehydrogenase (L-LDH) was overexpressed in L. casei, and a two-stage oxygen supply strategy (TOS) that maintained a medium oxygen supply level during the early fermentation phase, and a low oxygen supply level in the later phase was carried out. As a consequence, a maximum L-LDH activity of 95.6 U/ml was obtained in the recombinant strain, which was over 4-fold higher than that of the initial strain. Under the TOS for L. casei (pMG-ldhL), the maximum lactic acid concentration of 159.6 g/l was obtained in 36 h, corresponding to a 62.8% increase. The results presented here provide a novel way to regulate the metabolic flux of L. casei for lactic acid production in different fermentation stages, which is available to enhance organic acid production in other strains. PMID:25179900

  2. Bile acids as metabolic regulators

    PubMed Central

    Li, Tiangang; Chiang, John Y. L.

    2015-01-01

    Summary Small molecule ligands that target to TGR5 and FXR have shown promise in treating various metabolic and inflammation-related human diseases. New insights into the mechanisms underlying the bariatric surgery and bile acid sequestrant treatment suggest that targeting the enterohepatic circulation to modulate gut-liver bile acid signaling, incretin production and microbiota represents a new strategy to treat obesity and type-2 diabetes. PMID:25584736

  3. Tang-Nai-Kang Alleviates Pre-diabetes and Metabolic Disorders and Induces a Gene Expression Switch toward Fatty Acid Oxidation in SHR.Cg-Leprcp/NDmcr Rats

    PubMed Central

    Li, Linyi; Yoshitomi, Hisae; Wei, Ying; Qin, Lingling; Zhou, Jingxin; Xu, Tunhai; Wu, Xinli; Zhou, Tian; Sun, Wen; Guo, Xiangyu; Wu, Lili; Wang, Haiyan; Zhang, Yan; Li, Chunna; Liu, Tonghua; Gao, Ming

    2015-01-01

    Increased energy intake and reduced physical activity can lead to obesity, diabetes and metabolic syndrome. Transcriptional modulation of metabolic networks has become a focus of current drug discovery research into the prevention and treatment of metabolic disorders associated with energy surplus and obesity. Tang-Nai-Kang (TNK), a mixture of five herbal plant extracts, has been shown to improve abnormal glucose metabolism in patients with pre-diabetes. Here, we report the metabolic phenotype of SHR.Cg-Leprcp/NDmcr (SHR/cp) rats treated with TNK. Pre-diabetic SHR/cp rats were randomly divided into control, TNK low-dose (1.67 g/kg) and TNK high-dose (3.24 g/kg) groups. After high-dose treatment for 2 weeks, the serum triglycerides and free fatty acids in SHR/cp rats were markedly reduced compared to controls. After 3 weeks of administration, the high dose of TNK significantly reduced the body weight and fat mass of SHR/cp rats without affecting food consumption. Serum fasting glucose and insulin levels in the TNK-treated groups decreased after 6 weeks of treatment. Furthermore, TNK-treated rats exhibited obvious improvements in glucose intolerance and insulin resistance. The improved glucose metabolism may be caused by the substantial reduction in serum lipids and body weight observed in SHR/cp rats starting at 3 weeks of TNK treatment. The mRNA expression of NAD+-dependent deacetylase sirtuin 1 (SIRT1) and genes related to fatty acid oxidation was markedly up-regulated in the muscle, liver and adipose tissue after TNK treatment. Furthermore, TNK promoted the deacetylation of two well-established SIRT1 targets, PPARγ coactivator 1α (PGC1α) and forkhead transcription factor 1 (FOXO1), and induced the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in different tissues. These observations suggested that TNK may be an alternative treatment for pre-diabetes and metabolic syndrome by inducing a gene expression switch toward fat

  4. Tang-Nai-Kang alleviates pre-diabetes and metabolic disorders and induces a gene expression switch toward fatty acid oxidation in SHR.Cg-Leprcp/NDmcr rats.

    PubMed

    Li, Linyi; Yoshitomi, Hisae; Wei, Ying; Qin, Lingling; Zhou, Jingxin; Xu, Tunhai; Wu, Xinli; Zhou, Tian; Sun, Wen; Guo, Xiangyu; Wu, Lili; Wang, Haiyan; Zhang, Yan; Li, Chunna; Liu, Tonghua; Gao, Ming

    2015-01-01

    Increased energy intake and reduced physical activity can lead to obesity, diabetes and metabolic syndrome. Transcriptional modulation of metabolic networks has become a focus of current drug discovery research into the prevention and treatment of metabolic disorders associated with energy surplus and obesity. Tang-Nai-Kang (TNK), a mixture of five herbal plant extracts, has been shown to improve abnormal glucose metabolism in patients with pre-diabetes. Here, we report the metabolic phenotype of SHR.Cg-Leprcp/NDmcr (SHR/cp) rats treated with TNK. Pre-diabetic SHR/cp rats were randomly divided into control, TNK low-dose (1.67 g/kg) and TNK high-dose (3.24 g/kg) groups. After high-dose treatment for 2 weeks, the serum triglycerides and free fatty acids in SHR/cp rats were markedly reduced compared to controls. After 3 weeks of administration, the high dose of TNK significantly reduced the body weight and fat mass of SHR/cp rats without affecting food consumption. Serum fasting glucose and insulin levels in the TNK-treated groups decreased after 6 weeks of treatment. Furthermore, TNK-treated rats exhibited obvious improvements in glucose intolerance and insulin resistance. The improved glucose metabolism may be caused by the substantial reduction in serum lipids and body weight observed in SHR/cp rats starting at 3 weeks of TNK treatment. The mRNA expression of NAD+-dependent deacetylase sirtuin 1 (SIRT1) and genes related to fatty acid oxidation was markedly up-regulated in the muscle, liver and adipose tissue after TNK treatment. Furthermore, TNK promoted the deacetylation of two well-established SIRT1 targets, PPARγ coactivator 1α (PGC1α) and forkhead transcription factor 1 (FOXO1), and induced the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in different tissues. These observations suggested that TNK may be an alternative treatment for pre-diabetes and metabolic syndrome by inducing a gene expression switch toward fat

  5. Effects of different dwarfing interstocks on key enzyme activities and the expression of genes related to malic acid metabolism in Red Fuji apples.

    PubMed

    Shi, J; Li, F F; Ma, H; Li, Z Y; Xu, J Z

    2015-01-01

    In this experiment, the test materials were 'Red Fuji' apple trees grafted onto three interstocks (No. 53, No. 111, and No. 236), which were chosen from SH40 seeding interstocks. The content of malic acid, the enzyme activities, and the expression of genes related to malic acid metabolism were determined during fruit development.The results showed that malic acid content in the ripe fruit on interstock No. 53 was higher than that in the interstock No. 111 fruit. The malate dehydrogenase (NAD-MDH) activity in apples on interstock No. 53 was highest on Day 30, Day 100, and Day 160 after bloom, and the malic enzyme (NADP-ME) activity in apples on interstock No. 111 was higher than in the interstock No. 53 fruit from Day 70 to Day 100 after bloom. The relative expression of NAD-MDH genes in interstock No. 53 fruit was higher than in No. 236 fruit on Day 100 after bloom, but the relative expression of NADP-ME in No. 236 interstock fruit was lower than in No. 53 fruit. The relative expression of NAD-MDH genes in No. 53 interstock fruit was highest on Day 160 after bloom. This might have been the main reason for the difference in the accumulation of malic acid in the ripe apples.There was a positive correlation between the relative expression of phosphoenolpyruvate carboxylase (PEPC) and the malic acid content of the fruit, and the content of malic acid in the apples was affected by the PEPC activity during the early developmental stage. PMID:26782412

  6. Matrix-based three-dimensional culture of buffalo mammary epithelial cells showed higher induction of genes related to milk protein and fatty acid metabolism.

    PubMed

    Shandilya, Umesh K; Sharma, Ankita; Sodhi, Monika; Kapila, Neha; Kishore, Amit; Mohanty, Ashok; Kataria, Ranjit; Malakar, Dhruva; Mukesh, Manishi

    2016-02-01

    Demanding transcriptomic studies in livestock animal species could be replaced by good in vitro models mimicking the function of mammary gland. Mammary epithelial cells (MEC) are the functional unit of the mammary gland. Extracellular matrix is known to be a key factor providing normal homeostasis in three-dimensional (3D) environment as important signals are lost when cells are cultured in two-dimensional (2D) environment. The aims of this study were to establish a buffalo mammary epithelial cells (BMECs) in 3D culture using extracellular matrix and to determine whether such a 3D culture model has different expression pattern than 2D counterpart. The purified MEC generated after several passages were used to establish 3D culture using Geltrex matrix. The expression of milk casein genes viz., alpha S1-casein (CSN1S1), alpha S2-casein (CSN1S2), beta-casein (CSN2), kappa-casein (CSN3); and fatty acid metabolism genes viz., butyrophilin (BTN1A1), glycerol-3-phosphate acyltransferase (GPAM), fatty acid-binding protein 3 (FABP3), and stearoyl-CoA desaturase (SCD) was assessed in 3D culture in comparison to traditional monolayer culture using qRT-PCR. Notable morphological differences were observed for BMECs grown in 3D culture in comparison to 2D culture. Morphologically, epithelial structures grown in Geltrex matrix (3D) environment showed enhanced functional differentiation in comparison to 2D culture. In 3D culture, lumen and dome-like structures were formed by day 5, whereas polarized acinus-like structure were formed within 15 days of culturing. The expression data showed higher mRNA induction of milk casein and fatty acid metabolism genes in 10-day-old 3D BMECs culture in comparison to 2D monolayer culture. The result suggests that 3D organization of epithelial cells has favorable effect on induction of milk and fatty acid metabolism-related genes. Therefore, matrix-based 3D culture of MEC that recapitulate the structural and functional context of normal tissues

  7. Impact of broiler egg storage on the relative expression of selected blastoderm genes associated with apoptosis, oxidative stress, and fatty acid metabolism.

    PubMed

    Bakst, M R; Welch, G R; Fetterer, R; Miska, K

    2016-06-01

    Cool temperature storage of eggs prior to incubation is a frequent practice by commercial broiler hatcheries. However, continued storage beyond 7 d leads to a progressive increase in the rate of early embryonic mortality. In this study, we examined the relative expression of 31 genes associated with fatty acid metabolism (8), apoptosis (7), and oxidative stress (16) pathways to better understand the basis of embryo mortality during egg storage. A total of 642 broiler eggs in 2 separate trials were subjected to the following egg treatments: stored 4 d (Control 1, C1); stored 21 d but subjected to short periods of incubation during egg storage (SPIDES); stored un-manipulated 21 d (NonSPIDES, NS); and stored 4 d then incubated for 10 h to advance the embryos to the same developmental stages as the SPIDES embryos (Control 2, C2). Hatchability trials (277 eggs) confirmed the efficacy of SPIDES compared to NS treatments in both trials. To determine relative expression of 31 selected genes, 365 blastoderms were isolated, staged, and flash frozen in batches of 5 to 10 blastoderms per vial (7 vials per egg treatment) prior to RNA extractions. Analysis of gene expression was performed using qRT-PCR and the results presented as relative expression normalized to C1. The relative expression of genes in which the SPIDES and C2 treatments were significantly up- or down-regulated in tandem indicated that the stage-specific expression of those genes was maintained by the SPIDES treatment. This study provides the relative gene expressions of blastodermal cells before and after prolonged egg storage as well as insight as to how SPIDES impacts blastodermal cell gene expression. PMID:26944957

  8. Effects of supplementation with branched-chain amino acids to low-protein diets on expression of genes related to lipid metabolism in skeletal muscle of growing pigs.

    PubMed

    Duan, Yehui; Duan, Yangmiao; Li, Fengna; Li, Yinghui; Guo, Qiuping; Ji, Yujiao; Tan, Bie; Li, Tiejun; Yin, Yulong

    2016-09-01

    Branched-chain amino acids (BCAA), including leucine (Leu), isoleucine (Ile), and valine (Val), play critical roles in energy homeostasis and lipid metabolism in addition to their other functions, such as in protein metabolism. This study investigated the effects of different dietary BCAA ratios on the intramuscular fat (IMF) content and fatty acid composition in different location of skeletal muscles, including the longissimus dorsi (LD), biceps femoris (BF), and psoas major (PM) muscles of growing pigs, and also examined the mRNA expression levels of genes involved in lipid metabolism in these muscle tissues. The experiment was performed on 40 growing pigs (Large White × Landrace) with a similar initial weight (9.85 ± 0.35 kg). The pigs were randomly assigned to one of five diets: diet A was a positive control and contained 20 % crude protein (CP) with a Leu:Ile:Val ratio of 1:0.51:0.63 according to the recommendation of the National Research Council (NRC); for diets B to E, the CP level was reduced to 17 %, and the Leu:Ile:Val ratios were 1:1:1, 1:0.75:0.75, 1:0.51:0.63, and 1:0.25:0.25, respectively. No significant difference was observed in the average feed intake and feed efficiency of the pigs fed the low protein diet (17 % CP) with BCAA treatments relative to the positive control. However, there was a tendency for increased feed efficiency of the 1:0.75:0.75 group compared with the 1:1:1 group (P = 0.09). The BCAA ratio of 1:0.75:0.75 (17 % CP) increased the IMF content of BF muscle (P < 0.01). Moreover, varied dietary BCAA supplementation with a reduced protein level had different effects on the fatty acid composition of the LD, BF, and PM muscles. The BCAA ratio of 1:0.51:0.63-1:0.75:0.75 (17 % CP) significantly lowered the ratio of n-6 to n-3 polyunsaturated fatty acid in these muscles compared with the positive control group (20 % CP). This effect was associated with an increase in mRNA expression levels of acetyl-CoA carboxylase

  9. Gene Expression and Metabolite Profiling of Developing Highbush Blueberry Fruit Indicates Transcriptional Regulation of Flavonoid Metabolism and Activation of Abscisic Acid Metabolism1[W][OA

    PubMed Central

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A.; Zaharia, L. Irina; Schernthaner, Johann P.; Gesell, Andreas; Abrams, Suzanne R.; Kennedy, James A.; Constabel, C. Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3′-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3′5′-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation

  10. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism.

    PubMed

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A; Zaharia, L Irina; Schernthaner, Johann P; Gesell, Andreas; Abrams, Suzanne R; Kennedy, James A; Constabel, C Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3'-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3'5'-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation of

  11. Metabolic engineering of Rhizopus oryzae: Effects of overexpressing pyc and pepc genes on fumaric acid biosynthesis from glucose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumaric acid, a dicarboxylic acid used as a food acidulant and in manufacturing synthetic resins, can be produced from glucose in fermentation by Rhizopus oryzae. However, the fumaric acid yield is limited by the co-production of ethanol and other byproducts. To increase fumaric acid production, ove...

  12. Altered Fatty Acid Metabolism-Related Gene Expression in Liver from Morbidly Obese Women with Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Auguet, Teresa; Berlanga, Alba; Guiu-Jurado, Esther; Martinez, Salomé; Porras, José Antonio; Aragonès, Gemma; Sabench, Fátima; Hernandez, Mercé; Aguilar, Carmen; Sirvent, Joan Josep; Del Castillo, Daniel; Richart, Cristóbal

    2014-01-01

    Lipid accumulation in the human liver seems to be a crucial mechanism in the pathogenesis and the progression of non-alcoholic fatty liver disease (NAFLD). We aimed to evaluate gene expression of different fatty acid (FA) metabolism-related genes in morbidly obese (MO) women with NAFLD. Liver expression of key genes related to de novo FA synthesis (LXRα, SREBP1c, ACC1, FAS), FA uptake and transport (PPARγ, CD36, FABP4), FA oxidation (PPARα), and inflammation (IL6, TNFα, CRP, PPARδ) were assessed by RT-qPCR in 127 MO women with normal liver histology (NL, n = 13), simple steatosis (SS, n = 47) and non-alcoholic steatohepatitis (NASH, n = 67). Liver FAS mRNA expression was significantly higher in MO NAFLD women with both SS and NASH compared to those with NL (p = 0.003, p = 0.010, respectively). Hepatic IL6 and TNFα mRNA expression was higher in NASH than in SS subjects (p = 0.033, p = 0.050, respectively). Interestingly, LXRα, ACC1 and FAS expression had an inverse relation with the grade of steatosis. These results were confirmed by western blot analysis. In conclusion, our results indicate that lipogenesis seems to be downregulated in advanced stages of SS, suggesting that, in this type of extreme obesity, the deregulation of the lipogenic pathway might be associated with the severity of steatosis. PMID:25474087

  13. Digital Cushion Fatty Acid Composition and Lipid Metabolism Gene Network Expression in Holstein Dairy Cows Fed a High-Energy Diet.

    PubMed

    Iqbal, Zeeshan Muhammad; Akbar, Haji; Hosseini, Afshin; Bichi Ruspoli Forteguerri, Elena; Osorio, Johan S; Loor, Juan J

    2016-01-01

    The hoof digital cushion is a complex structure composed of adipose tissue beneath the distal phalanx, i.e. axial, middle and abaxial fat pad. The major role of these fat depots is dampening compression of the corium underneath the cushion. The study aimed to determine expression of target genes and fatty acid profiles in the hoof of non-pregnant dry Holstein cows fed low (CON) or high-energy (OVE) diets. The middle fat pad of the hoof digital cushion was collected soon after slaughter. Despite the lack of effect on expression of the transcription regulators SREBF1 and PPARG, the expression of the lipogenic enzymes ACACA, FASN, SCD, and DGAT2 was upregulated with OVE. Along with the upregulation of G6PD and IDH1, important for NADPH synthesis during lipogenesis, and the basal glucose transporter SLC2A1, these data indicated a pro-lipogenic response in the digital cushion with OVE. The expression of the lipid droplet-associated protein PLIN2 was upregulated while expression of lipolytic enzymes (ATGL, ABDH5, and LIPE) only tended to be upregulated with OVE. Therefore, OVE induced lipogenesis, lipid droplet formation, and lipolysis, albeit to different extents. Although concentration of monounsaturated fatty acids (MUFA) did not differ, among the polyunsaturated fatty acids (PUFA), the concentration of 20:5n3 was lower with OVE. Among the saturated fatty acids, 20:0 concentration was greater with OVE. Although data indicated that the hoof digital cushion metabolic transcriptome is responsive to higher-energy diets, this did not translate into marked differences in the fatty acid composition. The decrease in concentration of PUFA, which could contribute to synthesis of inflammatory molecules, in OVE-fed cows indicated that feeding higher-energy diets might be detrimental for the mediation of inflammation in digital cushion. This effect could be further exacerbated by physiologic and endocrine changes during the peripartal period that favor inflammation. PMID:27441691

  14. Digital Cushion Fatty Acid Composition and Lipid Metabolism Gene Network Expression in Holstein Dairy Cows Fed a High-Energy Diet

    PubMed Central

    Iqbal, Zeeshan Muhammad; Akbar, Haji; Hosseini, Afshin; Bichi Ruspoli Forteguerri, Elena; Osorio, Johan S.

    2016-01-01

    The hoof digital cushion is a complex structure composed of adipose tissue beneath the distal phalanx, i.e. axial, middle and abaxial fat pad. The major role of these fat depots is dampening compression of the corium underneath the cushion. The study aimed to determine expression of target genes and fatty acid profiles in the hoof of non-pregnant dry Holstein cows fed low (CON) or high-energy (OVE) diets. The middle fat pad of the hoof digital cushion was collected soon after slaughter. Despite the lack of effect on expression of the transcription regulators SREBF1 and PPARG, the expression of the lipogenic enzymes ACACA, FASN, SCD, and DGAT2 was upregulated with OVE. Along with the upregulation of G6PD and IDH1, important for NADPH synthesis during lipogenesis, and the basal glucose transporter SLC2A1, these data indicated a pro-lipogenic response in the digital cushion with OVE. The expression of the lipid droplet-associated protein PLIN2 was upregulated while expression of lipolytic enzymes (ATGL, ABDH5, and LIPE) only tended to be upregulated with OVE. Therefore, OVE induced lipogenesis, lipid droplet formation, and lipolysis, albeit to different extents. Although concentration of monounsaturated fatty acids (MUFA) did not differ, among the polyunsaturated fatty acids (PUFA), the concentration of 20:5n3 was lower with OVE. Among the saturated fatty acids, 20:0 concentration was greater with OVE. Although data indicated that the hoof digital cushion metabolic transcriptome is responsive to higher-energy diets, this did not translate into marked differences in the fatty acid composition. The decrease in concentration of PUFA, which could contribute to synthesis of inflammatory molecules, in OVE-fed cows indicated that feeding higher-energy diets might be detrimental for the mediation of inflammation in digital cushion. This effect could be further exacerbated by physiologic and endocrine changes during the peripartal period that favor inflammation. PMID:27441691

  15. DIFFERENTIAL EXPRESSION OF RETINOIC ACID BIOSYNTHETIC AND METABOLISM GENES IN LIVERS FROM MICE TREATED WITH HEPATOTUMORIGENIC AND NON-HEPATOTUMORIGENIC CONAZOLES

    EPA Science Inventory

    Conazoles are fungicides used in crop protection and as pharmaceuticals. Triadimefon and propiconazole are hepatotumorigenic in mice, while myclobutanil is not. Previous toxicogenomic studies suggest that alteration of the retinoic acid metabolism pathway may play a key event in ...

  16. Identification of hydroxy fatty acid and triacylglycerol metabolism-related genes in lesquerella through seed transcriptome analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Castor oil is the only commercial source of hydroxy fatty acid which has industrial value. The production of castor oil is hampered by the presence of the toxin ricin in its seed. Lesquerella seed also accumulates hydroxy fatty acid and is free of ricin, thus it is being developed as a n...

  17. Changes in Free Amino Acid Concentration in Rye Grain in Response to Nitrogen and Sulfur Availability, and Expression Analysis of Genes Involved in Asparagine Metabolism.

    PubMed

    Postles, Jennifer; Curtis, Tanya Y; Powers, Stephen J; Elmore, J S; Mottram, Donald S; Halford, Nigel G

    2016-01-01

    Free asparagine plays a central role in nitrogen storage and transport in many plant species due to its relatively high ratio of nitrogen to carbon. However, it is also a precursor for acrylamide, a Class 2a carcinogen that forms during high-temperature processing and cooking. The concentration of free asparagine was shown to increase by approximately 70% in rye grain in response to severe sulfur deficiency (F-test, p = 0.004), while the concentration of both free asparagine and free glutamine increased (by almost threefold and approximately 62%, respectively) in response to nitrogen application (F-test, p < 0.001 for free asparagine; p = 0.004 for free glutamine). There were also effects of nutrient supply on other free amino acids: The concentration of free proline, for example, showed a significant (F-test, p = 0.019) effect of nitrogen interacting with sulfur, with the highest concentration occurring when the plants were deprived of both nitrogen and sulfur. Polymerase chain reaction products for several genes involved in asparagine metabolism and its regulation were amplified from rye grain cDNA. These genes were asparagine synthetase-1 (ScASN1), glutamine synthetase-1 (ScGS1), potassium-dependent asparaginase (ScASP), aspartate kinase (ScASK), and general control non-derepressible-2 (ScGCN2). The expression of these genes and of a previously described sucrose non-fermenting-1-related protein kinase-1 gene (ScSnRK1) was analyzed in flag leaf and developing grain in response to nitrogen and sulfur supply, revealing a significant (F-test, p < 0.05) effect of nitrogen supply on ScGS1 expression in the grain at 21 days post-anthesis. There was also evidence of an effect of sulfur deficiency on ScASN1 gene expression. However, although this effect was large (almost 10-fold) it was only marginally statistically significant (F-test, 0.05 < p < 0.10). The study reinforced the conclusion that nutrient availability can have a profound impact on the concentrations of

  18. Changes in Free Amino Acid Concentration in Rye Grain in Response to Nitrogen and Sulfur Availability, and Expression Analysis of Genes Involved in Asparagine Metabolism

    PubMed Central

    Postles, Jennifer; Curtis, Tanya Y.; Powers, Stephen J.; Elmore, J. S.; Mottram, Donald S.; Halford, Nigel G.

    2016-01-01

    Free asparagine plays a central role in nitrogen storage and transport in many plant species due to its relatively high ratio of nitrogen to carbon. However, it is also a precursor for acrylamide, a Class 2a carcinogen that forms during high-temperature processing and cooking. The concentration of free asparagine was shown to increase by approximately 70% in rye grain in response to severe sulfur deficiency (F-test, p = 0.004), while the concentration of both free asparagine and free glutamine increased (by almost threefold and approximately 62%, respectively) in response to nitrogen application (F-test, p < 0.001 for free asparagine; p = 0.004 for free glutamine). There were also effects of nutrient supply on other free amino acids: The concentration of free proline, for example, showed a significant (F-test, p = 0.019) effect of nitrogen interacting with sulfur, with the highest concentration occurring when the plants were deprived of both nitrogen and sulfur. Polymerase chain reaction products for several genes involved in asparagine metabolism and its regulation were amplified from rye grain cDNA. These genes were asparagine synthetase-1 (ScASN1), glutamine synthetase-1 (ScGS1), potassium-dependent asparaginase (ScASP), aspartate kinase (ScASK), and general control non-derepressible-2 (ScGCN2). The expression of these genes and of a previously described sucrose non-fermenting-1-related protein kinase-1 gene (ScSnRK1) was analyzed in flag leaf and developing grain in response to nitrogen and sulfur supply, revealing a significant (F-test, p < 0.05) effect of nitrogen supply on ScGS1 expression in the grain at 21 days post-anthesis. There was also evidence of an effect of sulfur deficiency on ScASN1 gene expression. However, although this effect was large (almost 10-fold) it was only marginally statistically significant (F-test, 0.05 < p < 0.10). The study reinforced the conclusion that nutrient availability can have a profound impact on the concentrations of

  19. Gene therapy for inhereted metabolic disorders in companion animals.

    PubMed

    Koeberl, Dwight D; Pinto, Carlos; Brown, Talmage; Chen, Y T

    2009-01-01

    Scientists first described inborn errors of metabolism, also termed inherited disorders of metabolism, early in the 20th century and since then have determined the biochemical and genetic bases of a great number of these disorders both in humans and in an increasing number of companion animals. The availability of metabolic screening tests has advanced the biochemical and genetic characterization in affected breeds of companion animals of inherited metabolic disorders involving amino acid, carbohydrate, fatty acid, and metal metabolism. Advances in gene therapy have led to the development of new treatments for inherited disorders of metabolism, and animal models have played a critical role in this research. For example, glycogen storage disease type Ia in dogs was highly responsive to adeno-associated viral vectormediated gene therapy, which prolonged survival and for more than a year prevented hypoglycemia during fasting. Gene therapy for other glycogen storage diseases and metabolic disorders will also be feasible. The establishment of a breeding colony and the ability to sustain affected animals are critical steps toward evaluating the safety and efficacy of gene therapy with clinically relevant endpoints. The further development of gene therapy for inherited disorders of metabolism could lead to curative therapy for affected humans and animals alike. PMID:19293457

  20. Intestinal metabolism of sulfur amino acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gastrointestinal tract (GIT) is a metabolically significant site of sulfur amino acid (SAA) metabolism in the body and metabolizes approx. 20% of the dietary methionine intake that is mainly transmethylated to homocysteine and transsulfurated to cysteine. The GIT accounts for approx. 25% of the ...

  1. Nuclear receptors in bile acid metabolism

    PubMed Central

    Li, Tiangang; Chiang, John Y. L.

    2013-01-01

    Bile acids are signaling molecules that activate nuclear receptors, such as farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, and vitamin D receptor, and play a critical role in the regulation of lipid, glucose, energy, and drug metabolism. These xenobiotic/endobiotic-sensing nuclear receptors regulate phase I oxidation, phase II conjugation, and phase III transport in bile acid and drug metabolism in the digestive system. Integration of bile acid metabolism with drug metabolism controls absorption, transport, and metabolism of nutrients and drugs to maintain metabolic homeostasis and also protects against liver injury, inflammation, and related metabolic diseases, such as nonalcoholic fatty liver disease, diabetes, and obesity. Bile-acid–based drugs targeting nuclear receptors are in clinical trials for treating cholestatic liver diseases and fatty liver disease. PMID:23330546

  2. Diversity of Microbial Sialic Acid Metabolism

    PubMed Central

    Vimr, Eric R.; Kalivoda, Kathryn A.; Deszo, Eric L.; Steenbergen, Susan M.

    2004-01-01

    Sialic acids are structurally unique nine-carbon keto sugars occupying the interface between the host and commensal or pathogenic microorganisms. An important function of host sialic acid is to regulate innate immunity, and microbes have evolved various strategies for subverting this process by decorating their surfaces with sialylated oligosaccharides that mimic those of the host. These subversive strategies include a de novo synthetic pathway and at least two truncated pathways that depend on scavenging host-derived intermediates. A fourth strategy involves modification of sialidases so that instead of transferring sialic acid to water (hydrolysis), a second active site is created for binding alternative acceptors. Sialic acids also are excellent sources of carbon, nitrogen, energy, and precursors of cell wall biosynthesis. The catabolic strategies for exploiting host sialic acids as nutritional sources are as diverse as the biosynthetic mechanisms, including examples of horizontal gene transfer and multiple transport systems. Finally, as compounds coating the surfaces of virtually every vertebrate cell, sialic acids provide information about the host environment that, at least in Escherichia coli, is interpreted by the global regulator encoded by nanR. In addition to regulating the catabolism of sialic acids through the nan operon, NanR controls at least two other operons of unknown function and appears to participate in the regulation of type 1 fimbrial phase variation. Sialic acid is, therefore, a host molecule to be copied (molecular mimicry), eaten (nutrition), and interpreted (cell signaling) by diverse metabolic machinery in all major groups of mammalian pathogens and commensals. PMID:15007099

  3. Biosynthesis and metabolism of salicylic acid

    SciTech Connect

    Lee, H.; Leon, J.; Raskin, I.

    1995-05-09

    Pathways of salicylic acid (SA) biosynthesis and metabolism in tobacco have been recently identified. SA, an endogenous regulator of disease resistance, is a product of phenylpropanoid metabolism formed via decarboxylation of trans-cinnamic acid to benzoic acid and its subsequent 2-hydroxylation to SA. In tobacco mosaic virus-inoculated tobacco leaves, newly synthesized SA is rapidly metabolized to SA O-{beta}-D-glucoside and methyl salicylate. Two key enzymes involved in SA biosynthesis and metabolism: benzoic acid 2-hydroxylase, which converts benzoic acid to SA, and UDPglucose:SA glucosyltransferase (EC 2.4.1.35), which catalyzes conversion of SA to SA glucoside have been partially purified and characterized. Progress in enzymology and molecular biology of SA biosynthesis and metabolism will provide a better understanding of signal transduction pathway involved in plant disease resistance. 62 refs., 1 fig.

  4. Molecular Genetics of Crassulacean Acid Metabolism.

    PubMed Central

    Cushman, J. C.; Bohnert, H. J.

    1997-01-01

    Most higher plants assimilate atmospheric CO2 through the C3 pathway of photosynthesis using ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, when CO2 availability is reduced by environmental stress conditions, the incomplete discrimination of CO2 over O2 by Rubisco leads to increased photorespiration, a process that reduces the efficiency of C3 photosynthesis. To overcome the wasteful process of photorespiration, approximately 10% of higher plant species have evolved two alternate strategies for photosynthetic CO2 assimilation, C4 photosynthesis and Crassulacean acid metabolism. Both of these biochemical pathways employ a "CO2 pump" to elevate intracellular CO2 concentrations in the vicinity of Rubisco, suppressing photorespiration and therefore improving the competitiveness of these plants under conditions of high light intensity, high temperature, or low water availability. This CO2 pump consists of a primary carboxylating enzyme, phosphoenolpyruvate carboxylase. In C4 plants, this CO2-concentrating mechanism is achieved by the coordination of two carboxylating reactions that are spatially separated into mesophyll and bundle-sheath cell types (for review, see R.T. Furbank, W.C. Taylor [1995] Plant Cell 7: 797-807;M.S.B. Ku, Y. Kano-Murakami, M. Matsuoka [1996] Plant Physiol 111: 949-957). In contrast, Crassulacean acid metabolism plants perform both carboxylation reactions within one cell type, but the two reactions are separated in time. Both pathways involve cell-specific changes in the expression of many genes that are not present in C3 plants. PMID:12223634

  5. Intestinal transport and metabolism of bile acids

    PubMed Central

    Dawson, Paul A.; Karpen, Saul J.

    2015-01-01

    In addition to their classical roles as detergents to aid in the process of digestion, bile acids have been identified as important signaling molecules that function through various nuclear and G protein-coupled receptors to regulate a myriad of cellular and molecular functions across both metabolic and nonmetabolic pathways. Signaling via these pathways will vary depending on the tissue and the concentration and chemical structure of the bile acid species. Important determinants of the size and composition of the bile acid pool are their efficient enterohepatic recirculation, their host and microbial metabolism, and the homeostatic feedback mechanisms connecting hepatocytes, enterocytes, and the luminal microbiota. This review focuses on the mammalian intestine, discussing the physiology of bile acid transport, the metabolism of bile acids in the gut, and new developments in our understanding of how intestinal metabolism, particularly by the gut microbiota, affects bile acid signaling. PMID:25210150

  6. 1α,2α-Epoxy-3β-hydroxy oleanolic acid derivatives regulation of the metabolism, haemolysis and β-lactamase gene expression in vitro and their structure-microbicidal activity relationship.

    PubMed

    Liang, Zheng-Ming; Wang, Xing-Hui; Huang, Li-Rong; Li, Qi-Ji; Guan, Tian-Qi; Hao, Xiao-Jiang; Luo, Heng; Yang, Xiao-Sheng

    2016-08-15

    Oleanolic acid (OA), one of the major pentacyclic triterpenes abundantly present in nature, is a promising compound with various biological activities, including anti-inflammatory, anti-ulcer, hepatoprotective, antidiabetic, fungicidal and antiparasitic properties. Therefore, a series of derivatives of 1α,2α-epoxy-3β-hydroxyl oleanolic acid derivatives were designed and synthesized, and their antibacterial activities were investigated in vitro. Based on these results, the compounds with antibacterial activity were screened by RT-PCR to determine whether they can regulate the expression of genes related to metabolism, haemolysis, and β-lactamase in vitro, and the structure-microbicidal activity relationship of each compound was analyzed. Our study shows that some of the modifications in the synthetic compounds, such as the introduction of an ortho-cyano-substituted benzyl group and a short chain alkyl ester at the 28-carboxyl, as well as the introduction of an acetyl group at the 3-hydroxyl group of ring A, could enhance antibacterial activity. This provides basic evidence for the optimization of 1α,2α-epoxy-3β-hydroxyl oleanolic acid derivatives. The antibacterial mechanism of the active OA derivatives appears to involve the regulation of expression of metabolism-associated genes in Escherichia coli, haemolysis-associated genes in Bacillus subtilis, metabolism-related genes in Klebsiella pneumonia and β-lactamase-associated genes in Acinetobacter baumannii. Some OA derivatives were bactericidal to three of the strains and appeared to regulate gene expression associated with metabolism, haemolysis, and β-lactamase in vitro. These newly designed OA derivatives possess unique antibacterial activities and may be potentially useful for prophylactic or therapeutic intervention of bacterial infections. PMID:27436581

  7. Allophanate hydrolase, not urease, functions in bacterial cyanuric acid metabolism.

    PubMed

    Cheng, Gang; Shapir, Nir; Sadowsky, Michael J; Wackett, Lawrence P

    2005-08-01

    Growth substrates containing an s-triazine ring are typically metabolized by bacteria to liberate 3 mol of ammonia via the intermediate cyanuric acid. Over a 25-year period, a number of original research papers and reviews have stated that cyanuric acid is metabolized in two steps to the 2-nitrogen intermediate urea. In the present study, allophanate, not urea, was shown to be the 2-nitrogen intermediate in cyanuric acid metabolism in all the bacteria examined. Six different experimental results supported this conclusion: (i) synthetic allophanate was shown to readily decarboxylate to form urea under acidic extraction and chromatography conditions used in previous studies; (ii) alkaline extraction methods were used to stabilize and detect allophanate in bacteria actively metabolizing cyanuric acid; (iii) the kinetic course of allophanate formation and disappearance was consistent with its being an intermediate in cyanuric acid metabolism, and no urea was observed in those experiments; (iv) protein extracts from cells grown on cyanuric acid contained allophanate hydrolase activity; (v) genes encoding the enzymes AtzE and AtzF, which produce and hydrolyze allophanate, respectively, were found in several cyanuric acid-metabolizing bacteria; and (vi) TrzF, an AtzF homolog found in Enterobacter cloacae strain 99, was cloned, expressed in Escherichia coli, and shown to have allophanate hydrolase activity. In addition, we have observed that there are a large number of genes homologous to atzF and trzF distributed in phylogenetically distinct bacteria. In total, the data indicate that s-triazine metabolism in a broad class of bacteria proceeds through allophanate via allophanate hydrolase, rather than through urea using urease. PMID:16085834

  8. Amino acid regulation of gene expression.

    PubMed Central

    Fafournoux, P; Bruhat, A; Jousse, C

    2000-01-01

    The impact of nutrients on gene expression in mammals has become an important area of research. Nevertheless, the current understanding of the amino acid-dependent control of gene expression is limited. Because amino acids have multiple and important functions, their homoeostasis has to be finely maintained. However, amino-acidaemia can be affected by certain nutritional conditions or various forms of stress. It follows that mammals have to adjust several of their physiological functions involved in the adaptation to amino acid availability by regulating the expression of numerous genes. The aim of the present review is to examine the role of amino acids in regulating mammalian gene expression and protein turnover. It has been reported that some genes involved in the control of growth or amino acid metabolism are regulated by amino acid availability. For instance, limitation of several amino acids greatly increases the expression of the genes encoding insulin-like growth factor binding protein-1, CHOP (C/EBP homologous protein, where C/EBP is CCAAT/enhancer binding protein) and asparagine synthetase. Elevated mRNA levels result from both an increase in the rate of transcription and an increase in mRNA stability. Several observations suggest that the amino acid regulation of gene expression observed in mammalian cells and the general control process described in yeast share common features. Moreover, amino acid response elements have been characterized in the promoters of the CHOP and asparagine synthetase genes. Taken together, the results discussed in the present review demonstrate that amino acids, by themselves, can, in concert with hormones, play an important role in the control of gene expression. PMID:10998343

  9. Intestinal metabolism of sulfur amino acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gastrointestinal tract (GIT) serves a key function in the digestion of dietary protein and absorption of amino acids. However, the GIT is also an important site of amino acid metabolism in the body. Methionine is an indispensable amino acid and must be supplied in the diet. In addition, consider...

  10. Analysis of Cytokinin Mutants and Regulation of Cytokinin Metabolic Genes Reveals Important Regulatory Roles of Cytokinins in Drought, Salt and Abscisic Acid Responses, and Abscisic Acid Biosynthesis[C][W

    PubMed Central

    Nishiyama, Rie; Watanabe, Yasuko; Fujita, Yasunari; Le, Dung Tien; Kojima, Mikiko; Werner, Tomás; Vankova, Radomira; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Kakimoto, Tatsuo; Sakakibara, Hitoshi; Schmülling, Thomas; Tran, Lam-Son Phan

    2011-01-01

    Cytokinins (CKs) regulate plant growth and development via a complex network of CK signaling. Here, we perform functional analyses with CK-deficient plants to provide direct evidence that CKs negatively regulate salt and drought stress signaling. All CK-deficient plants with reduced levels of various CKs exhibited a strong stress-tolerant phenotype that was associated with increased cell membrane integrity and abscisic acid (ABA) hypersensitivity rather than stomatal density and ABA-mediated stomatal closure. Expression of the Arabidopsis thaliana ISOPENTENYL-TRANSFERASE genes involved in the biosynthesis of bioactive CKs and the majority of the Arabidopsis CYTOKININ OXIDASES/DEHYDROGENASES genes was repressed by stress and ABA treatments, leading to a decrease in biologically active CK contents. These results demonstrate a novel mechanism for survival under abiotic stress conditions via the homeostatic regulation of steady state CK levels. Additionally, under normal conditions, although CK deficiency increased the sensitivity of plants to exogenous ABA, it caused a downregulation of key ABA biosynthetic genes, leading to a significant reduction in endogenous ABA levels in CK-deficient plants relative to the wild type. Taken together, this study provides direct evidence that mutual regulation mechanisms exist between the CK and ABA metabolism and signals underlying different processes regulating plant adaptation to stressors as well as plant growth and development. PMID:21719693

  11. Mitochondrial and Metabolic Gene Expression in the Aged Rat Heart.

    PubMed

    Barton, Gregory P; Sepe, Joseph J; McKiernan, Susan H; Aiken, Judd M; Diffee, Gary M

    2016-01-01

    Aging is associated with a decline in cardiac function. Exercise intervention has been suggested as a way to improve this decrement. Age-related decline in cardiac function is associated with decreases in fatty acid oxidation, mitochondrial function, and AMP-activated protein kinase (AMPK) activity. The molecular mechanisms involved with age-related changes in mitochondrial function and substrate metabolism are poorly understood. We determined gene expression differences in hearts of Young (6 mo), Old (33 mo), and old exercise trained (Old + EXE) (34 mo) FBN rats, using Qiagen PCR arrays for Glucose, Fatty acid, and Mitochondrial metabolism. Old rats demonstrated decreased (p < 0.05) expression for key genes in fatty acid oxidation, mitochondrial function, and AMPK signaling. There were no differences in the expression of genes involved in glucose metabolism with age. These gene expression changes occurred prior to altered protein translation as we found no differences in the protein content of peroxisome proliferator activated receptor gamma, coactivators 1 alpha (PGC-1α), peroxisome proliferator activated receptor alpha (PPARα), and AMPKα2 between young and old hearts. Four months of exercise training did not attenuate the decline in the gene expression in aged hearts. Despite this lack of change in gene expression, exercise-trained rats demonstrated increased exercise capacity compared to their sedentary counterparts. Taken together, our results show that differential expression of genes associated with fatty acid metabolism, AMPK signaling and mitochondrial function decrease in the aging heart which may play a role in age-related declines in fatty acid oxidation, AMPK activity, and mitochondrial function in the heart. PMID:27601998

  12. Mitochondrial and Metabolic Gene Expression in the Aged Rat Heart

    PubMed Central

    Barton, Gregory P.; Sepe, Joseph J.; McKiernan, Susan H.; Aiken, Judd M.; Diffee, Gary M.

    2016-01-01

    Aging is associated with a decline in cardiac function. Exercise intervention has been suggested as a way to improve this decrement. Age-related decline in cardiac function is associated with decreases in fatty acid oxidation, mitochondrial function, and AMP-activated protein kinase (AMPK) activity. The molecular mechanisms involved with age-related changes in mitochondrial function and substrate metabolism are poorly understood. We determined gene expression differences in hearts of Young (6 mo), Old (33 mo), and old exercise trained (Old + EXE) (34 mo) FBN rats, using Qiagen PCR arrays for Glucose, Fatty acid, and Mitochondrial metabolism. Old rats demonstrated decreased (p < 0.05) expression for key genes in fatty acid oxidation, mitochondrial function, and AMPK signaling. There were no differences in the expression of genes involved in glucose metabolism with age. These gene expression changes occurred prior to altered protein translation as we found no differences in the protein content of peroxisome proliferator activated receptor gamma, coactivators 1 alpha (PGC-1α), peroxisome proliferator activated receptor alpha (PPARα), and AMPKα2 between young and old hearts. Four months of exercise training did not attenuate the decline in the gene expression in aged hearts. Despite this lack of change in gene expression, exercise-trained rats demonstrated increased exercise capacity compared to their sedentary counterparts. Taken together, our results show that differential expression of genes associated with fatty acid metabolism, AMPK signaling and mitochondrial function decrease in the aging heart which may play a role in age-related declines in fatty acid oxidation, AMPK activity, and mitochondrial function in the heart. PMID:27601998

  13. 2-Hydroxy Acids in Plant Metabolism

    PubMed Central

    Maurino, Veronica G.; Engqvist, Martin K. M.

    2015-01-01

    Glycolate, malate, lactate, and 2-hydroxyglutarate are important 2-hydroxy acids (2HA) in plant metabolism. Most of them can be found as D- and L-stereoisomers. These 2HA play an integral role in plant primary metabolism, where they are involved in fundamental pathways such as photorespiration, tricarboxylic acid cycle, glyoxylate cycle, methylglyoxal pathway, and lysine catabolism. Recent molecular studies in Arabidopsis thaliana have helped elucidate the participation of these 2HA in in plant metabolism and physiology. In this chapter, we summarize the current knowledge about the metabolic pathways and cellular processes in which they are involved, focusing on the proteins that participate in their metabolism and cellular/intracellular transport in Arabidopsis. PMID:26380567

  14. Identifying lipid metabolism genes in pig liver after clenbuterol administration.

    PubMed

    Liu, Qiuyue; Zhang, Jin; Guo, Wei; Zhao, Yiqiang; Hu, Xiaoxiang; Li, Ning

    2012-01-01

    Clenbuterol is a repartition agent (beta 2-adrenoceptor agonist) that can decrease fat deposition and increase skeletal muscle growth at manageable dose. To better understand the molecular mechanism of Clenbuterol's action, GeneChips and real-time PCR were used to compare the gene expression profiles of liver tissue in pigs with/without administration of Clenbuterol. Metabolism effects and the global gene expression profiles of liver tissue from Clenbuterol-treated and untreated pigs were conducted. Function enrichment tests showed that the differentially expressed genes are enriched in glycoprotein protein, plasma membrane, fatty acid and amino acid metabolic process, and cell differentiation and signal transduction groups. Pathway mining analysis revealed that physiological pathways such as MAPK, cell adhesion molecules, and the insulin signaling pathway, were remarkably regulated when Clenbuterol was administered. Gene prioritization algorithm was used to associate a number of important differentially expressed genes with lipid metabolism in response to Clenbuterol. Genes identified as differentially expressed in this study will be candidates for further investigation of the molecular mechanisms involved in Clenbuterol's effects on adipose and skeletal muscle tissue. PMID:22652664

  15. C. elegans Metabolic Gene Regulatory Networks Govern the Cellular Economy

    PubMed Central

    Watson, Emma; Walhout, Albertha J.M.

    2014-01-01

    Diet greatly impacts metabolism in health and disease. In response to the presence or absence of specific nutrients, metabolic gene regulatory networks sense the metabolic state of the cell and regulate metabolic flux accordingly, for instance by the transcriptional control of metabolic enzymes. Here we discuss recent insights regarding metazoan metabolic regulatory networks using the nematode Caenorhabditis elegans as a model, including the modular organization of metabolic gene regulatory networks, the prominent impact of diet on the transcriptome and metabolome, specialized roles of nuclear hormone receptors in responding to dietary conditions, regulation of metabolic genes and metabolic regulators by microRNAs, and feedback between metabolic genes and their regulators. PMID:24731597

  16. Extensive Decoupling of Metabolic Genes in Cancer

    PubMed Central

    Reznik, Ed; Sander, Chris

    2015-01-01

    Tumorigenesis requires the re-organization of metabolism to support malignant proliferation. We examine how the altered metabolism of cancer cells is reflected in the rewiring of co-expression patterns among metabolic genes. Focusing on breast and clear-cell kidney tumors, we report the existence of key metabolic genes which act as hubs of differential co-expression, showing significantly different co-regulation patterns between normal and tumor states. We compare our findings to those from classical differential expression analysis, and counterintuitively observe that the extent of a gene's differential co-expression only weakly correlates with its differential expression, suggesting that the two measures probe different features of metabolism. Focusing on this discrepancy, we use changes in co-expression patterns to highlight the apparent loss of regulation by the transcription factor HNF4A in clear cell renal cell carcinoma, despite no differential expression of HNF4A. Finally, we aggregate the results of differential co-expression analysis into a Pan-Cancer analysis across seven distinct cancer types to identify pairs of metabolic genes which may be recurrently dysregulated. Among our results is a cluster of four genes, all components of the mitochondrial electron transport chain, which show significant loss of co-expression in tumor tissue, pointing to potential mitochondrial dysfunction in these tumor types. PMID:25961905

  17. Metabolism of sinapic acid and related compounds in the rat

    PubMed Central

    Griffiths, L. A.

    1969-01-01

    1. Administration of sinapic acid to the rat results in the excretion of 3-hydroxy-5-methoxyphenylpropionic acid, dihydrosinapic acid, 3-hydroxy-5-methoxycinnamic acid and unchanged sinapic acid in the urine. The sinapic acid conjugate sinalbin is also catabolized to free sinapic acid and 3-hydroxy-5-methoxyphenylpropionic acid in the rat. 2. 3,4,5-Trimethoxycinnamic acid is metabolized in part to sinapic acid and 3-hydroxy-5-methoxyphenylpropionic acid. 3. 3,5-Dimethoxycinnamic acid is metabolized to 3-hydroxy-5-methoxycinnamic acid and 3-hydroxy-5-methoxyphenylpropionic acid. 4. The metabolic interrelationships of these compounds were studied by the administration of intermediates and a metabolic pathway is proposed. 5. The metabolism of the corresponding benzoic acids was studied, but these compounds and their metabolites were shown not to be intermediates or products of the metabolism of the related cinnamic acids. PMID:5386182

  18. Metabolism of sinapic acid and related compounds in the rat.

    PubMed

    Griffiths, L A

    1969-07-01

    1. Administration of sinapic acid to the rat results in the excretion of 3-hydroxy-5-methoxyphenylpropionic acid, dihydrosinapic acid, 3-hydroxy-5-methoxycinnamic acid and unchanged sinapic acid in the urine. The sinapic acid conjugate sinalbin is also catabolized to free sinapic acid and 3-hydroxy-5-methoxyphenylpropionic acid in the rat. 2. 3,4,5-Trimethoxycinnamic acid is metabolized in part to sinapic acid and 3-hydroxy-5-methoxyphenylpropionic acid. 3. 3,5-Dimethoxycinnamic acid is metabolized to 3-hydroxy-5-methoxycinnamic acid and 3-hydroxy-5-methoxyphenylpropionic acid. 4. The metabolic interrelationships of these compounds were studied by the administration of intermediates and a metabolic pathway is proposed. 5. The metabolism of the corresponding benzoic acids was studied, but these compounds and their metabolites were shown not to be intermediates or products of the metabolism of the related cinnamic acids. PMID:5386182

  19. Bile Acids, FXR, and Metabolic Effects of Bariatric Surgery

    PubMed Central

    Noel, Olivier F.; Still, Christopher D.; Argyropoulos, George; Edwards, Michael; Gerhard, Glenn S.

    2016-01-01

    Overweight and obesity represent major risk factors for diabetes and related metabolic diseases. Obesity is associated with a chronic and progressive inflammatory response leading to the development of insulin resistance and type 2 diabetes (T2D) mellitus, although the precise mechanism mediating this inflammatory process remains poorly understood. The most effective intervention for the treatment of obesity, bariatric surgery, leads to glucose normalization and remission of T2D. Recent work in both clinical studies and animal models supports bile acids (BAs) as key mediators of these effects. BAs are involved in lipid and glucose homeostasis primarily via the farnesoid X receptor (FXR) transcription factor. BAs are also involved in regulating genes involved in inflammation, obesity, and lipid metabolism. Here, we review the novel role of BAs in bariatric surgery and the intersection between BAs and immune, obesity, weight loss, and lipid metabolism genes. PMID:27006824

  20. Bile acid metabolism and signaling in cholestasis, inflammation and cancer

    PubMed Central

    Apte, Udayan

    2015-01-01

    Bile acids are synthesized from cholesterol in the liver. Some cytochrome P450 (CYP) enzymes play key roles in bile acid synthesis. Bile acids are physiological detergent molecules, so are highly cytotoxic. They undergo enterohepatic circulation and play important roles in generating bile flow and facilitating biliary secretion of endogenous metabolites and xenobiotics and intestinal absorption of dietary fats and lipid soluble vitamins. Bile acid synthesis, transport and pool size are therefore tightly regulated under physiological conditions. In cholestasis, impaired bile flow leads to accumulation of bile acids in the liver, causing hepatocyte and biliary injury and inflammation. Chronic cholestasis is associated with fibrosis, cirrhosis and eventually liver failure. Chronic cholestasis also increases the risk of developing hepatocellular or cholangiocellular carcinomas. Extensive research in the last two decades has shown that bile acids act as signaling molecules that regulate various cellular processes. The bile acid-activated nuclear receptors are ligand-activated transcriptional factors that play critical roles in the regulation of bile acid, drug and xenobiotic metabolism. In cholestasis, these bile acid-activated receptors regulate a network of genes involved in bile acid synthesis, conjugation, transport and metabolism to alleviate bile acid-induced inflammation and injury. Additionally, bile acids are known to regulate cell growth and proliferation, and altered bile acid levels in diseased conditions have been implicated in liver injury/regeneration and tumorigenesis. We will cover the mechanisms that regulate bile acid homeostasis and detoxification during cholestasis, and the roles of bile acids in the initiation and regulation of hepatic inflammation, regeneration and carcinogenesis. PMID:26233910

  1. Regulation of uric acid metabolism and excretion.

    PubMed

    Maiuolo, Jessica; Oppedisano, Francesca; Gratteri, Santo; Muscoli, Carolina; Mollace, Vincenzo

    2016-06-15

    Purines perform many important functions in the cell, being the formation of the monomeric precursors of nucleic acids DNA and RNA the most relevant one. Purines which also contribute to modulate energy metabolism and signal transduction, are structural components of some coenzymes and have been shown to play important roles in the physiology of platelets, muscles and neurotransmission. All cells require a balanced quantity of purines for growth, proliferation and survival. Under physiological conditions the enzymes involved in the purine metabolism maintain in the cell a balanced ratio between their synthesis and degradation. In humans the final compound of purines catabolism is uric acid. All other mammals possess the enzyme uricase that converts uric acid to allantoin that is easily eliminated through urine. Overproduction of uric acid, generated from the metabolism of purines, has been proven to play emerging roles in human disease. In fact the increase of serum uric acid is inversely associated with disease severity and especially with cardiovascular disease states. This review describes the enzymatic pathways involved in the degradation of purines, getting into their structure and biochemistry until the uric acid formation. PMID:26316329

  2. Cellular metabolism of unnatural sialic acid precursors.

    PubMed

    Pham, Nam D; Fermaintt, Charles S; Rodriguez, Andrea C; McCombs, Janet E; Nischan, Nicole; Kohler, Jennifer J

    2015-10-01

    Carbohydrates, in addition to their metabolic functions, serve important roles as receptors, ligands, and structural molecules for diverse biological processes. Insight into carbohydrate biology and mechanisms has been aided by metabolic oligosaccharide engineering (MOE). In MOE, unnatural carbohydrate analogs with novel functional groups are incorporated into cellular glycoconjugates and used to probe biological systems. While MOE has expanded knowledge of carbohydrate biology, limited metabolism of unnatural carbohydrate analogs restricts its use. Here we assess metabolism of SiaDAz, a diazirine-modified analog of sialic acid, and its cell-permeable precursor, Ac4ManNDAz. We show that the efficiency of Ac4ManNDAz and SiaDAz metabolism depends on cell type. Our results indicate that different cell lines can have different metabolic roadblocks in the synthesis of cell surface SiaDAz. These findings point to roles for promiscuous intracellular esterases, kinases, and phosphatases during unnatural sugar metabolism and provide guidance for ways to improve MOE. PMID:25957566

  3. Apolipoprotein gene involved in lipid metabolism

    DOEpatents

    Rubin, Edward; Pennacchio, Len A.

    2007-07-03

    Methods and materials for studying the effects of a newly identified human gene, APOAV, and the corresponding mouse gene apoAV. The sequences of the genes are given, and transgenic animals which either contain the gene or have the endogenous gene knocked out are described. In addition, single nucleotide polymorphisms (SNPs) in the gene are described and characterized. It is demonstrated that certain SNPs are associated with diseases involving lipids and triglycerides and other metabolic diseases. These SNPs may be used alone or with SNPs from other genes to study individual risk factors. Methods for intervention in lipid diseases, including the screening of drugs to treat lipid-related or diabetic diseases are also disclosed.

  4. Expression data on liver metabolic pathway genes and proteins

    PubMed Central

    Raja Gopal Reddy, Mooli; Pavan Kumar, Chodisetti; Mahesh, Malleswarapu; Sravan Kumar, Manchiryala; Jeyakumar, Shanmugam M.

    2016-01-01

    Here, we present the expression data on various metabolic pathways of liver with special emphasize on lipid and carbohydrate metabolism and long chain polyunsaturated fatty acid (PUFA) synthesis, both at gene and protein levels. The data were obtained to understand the effect of vitamin A deficiency on the expression status (both gene and protein levels) of some of the key factors involved in lipogenesis, fatty acid oxidation, triglyceride secretion, long chain PUFA, resolvin D1 synthesis, glucose transport and glycogen synthesis of liver, using modern biology tools, such as quantitative real-time PCR (RT-PCR) and immunoblotting techniques. This data article provides the supporting evidence to the article “Vitamin A deficiency suppresses high fructose-induced triglyceride synthesis and elevates resolvin D1 levels” [1] and therefore, these data may be referred back, for comprehensive understanding and interpretations and for future studies. PMID:26909377

  5. Metabolic annotation of 2-ethylhydracrylic acid.

    PubMed

    Ryan, Robert O

    2015-08-25

    Increased levels of the organic acid, 2-ethylhydracrylic acid (2-EHA) occur in urine of subjects with impaired L(+)-isoleucine metabolism. Chiral intermediates formed during isoleucine degradation are (S) enantiomers. Blockage of (S) pathway flux drives racemization of (2S, 3S) L(+)-isoleucine and its (2S, 3R) stereoisomer, L(+)-alloisoleucine. This non-protein amino acid is metabolized to (R)-2-methylbutyryl CoA via enzymes common to branched chain amino acid degradation. Subsequently, (R) intermediates serve as alternate substrates for three valine metabolic enzymes, generating 2-EHA. Once formed, 2-EHA accumulates because it is poorly recognized by distal valine pathway enzymes. Thus, urinary 2-EHA represents a biomarker of isoleucine pathway defects. 2-EHA levels are also increased in rats exposed to the industrial solvent, ethylene glycol monomethyl ether or the neurotoxin precursor, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. In these cases, a block in (S) pathway isoleucine catabolism occurs at the level of (S)-2-methylbutyryl CoA conversion to tiglyl CoA via inhibition of electron transferring flavoprotein/ubiquinone oxidoreductase dependent reactions. Elevated urinary 2-EHA in propionyl CoA carboxylase deficiency and methylmalonic aciduria results from a buildup of distal intermediates in the (S) pathway of isoleucine degradation. In Barth syndrome and dilated cardiomyopathy with ataxia syndrome, 2-EHA is a byproduct of impeded propionyl CoA entry into the Krebs cycle. PMID:26115894

  6. Ethanol extracts of chickpeas alter the total lipid content and expression levels of genes related to fatty acid metabolism in mouse 3T3-L1 adipocytes.

    PubMed

    Shinohara, Shigeo; Gu, Yuanjun; Yang, Ying; Furuta, Yasuo; Tanaka, Masahiko; Yue, Xiaohua; Wang, Weiqing; Kitano, Masaru; Kimura, Hiroshi

    2016-08-01

    Desi-type chickpeas, which have long been used as a natural treatment for diabetes, have been reported to lower visceral adiposity, dyslipidemia and insulin resistance induced by a chronic high-fat diet in rats. In this study, in order to examine the effects of chickpeas of this type in an in vitro system, we used the 3T3-L1 mouse cell line, a subclone of Swiss 3T3 cells, which can differentiate into cells with an adipocyte-like phenotype, and we used ethanol extracts of chickpeas (ECP) instead of chickpeas. Treatment of the 3T3-L1 cells with ECP led to a decrease in the lipid content in the cells. The desaturation index, defined as monounsaturated fatty acids (MUFAs)/saturated fatty acids (SFAs), was also decreased by ECP due to an increase in the cellular content of SFAs and a decrease in the content of MUFAs. The decrease in this index may reflect a decreased reaction from SFA to MUFA, which is essential for fat storage. To confirm this hypothesis, we conducted a western blot analysis, which revealed a reduction in the amount of stearoyl-CoA desaturase 1 (SCD1), a key enzyme catalyzing the reaction from SFA to MUFA. We observed simultaneous inactivations of enzymes participating in lipogenesis, i.e., liver kinase B1 (LKB1), acetyl-CoA carboxylase (ACC) and AMPK, by phosphorylation, which may lead to the suppression of reactions from acetyl-CoA to SFA via malonyl-CoA in lipogenesis. We also investigated whether lipolysis is affected by ECP. The amount of carnitine palmitoyltransferase 1 (CPT1), an enzyme important for the oxidation of fatty acids, was increased by ECP treatment. ECP also led to an increase in uncoupling protein 2 (UCP2), reported as a key protein for the oxidation of fatty acids. All of these results obtained regarding lipogenesis and fatty acid metabolism in our in vitro system are consistent with the results previously shown in rats. We also examined the effects on SCD1 and lipid contents of ethanol extracts of Kabuli

  7. Ethanol extracts of chickpeas alter the total lipid content and expression levels of genes related to fatty acid metabolism in mouse 3T3-L1 adipocytes

    PubMed Central

    Shinohara, Shigeo; Gu, Yuanjun; Yang, Ying; Furuta, Yasuo; Tanaka, Masahiko; Yue, Xiaohua; Wang, Weiqing; Kitano, Masaru; Kimura, Hiroshi

    2016-01-01

    Desi-type chickpeas, which have long been used as a natural treatment for diabetes, have been reported to lower visceral adiposity, dyslipidemia and insulin resistance induced by a chronic high-fat diet in rats. In this study, in order to examine the effects of chickpeas of this type in an in vitro system, we used the 3T3-L1 mouse cell line, a subclone of Swiss 3T3 cells, which can differentiate into cells with an adipocyte-like phenotype, and we used ethanol extracts of chickpeas (ECP) instead of chickpeas. Treatment of the 3T3-L1 cells with ECP led to a decrease in the lipid content in the cells. The desaturation index, defined as monounsaturated fatty acids (MUFAs)/saturated fatty acids (SFAs), was also decreased by ECP due to an increase in the cellular content of SFAs and a decrease in the content of MUFAs. The decrease in this index may reflect a decreased reaction from SFA to MUFA, which is essential for fat storage. To confirm this hypothesis, we conducted a western blot analysis, which revealed a reduction in the amount of stearoyl-CoA desaturase 1 (SCD1), a key enzyme catalyzing the reaction from SFA to MUFA. We observed simultaneous inactivations of enzymes participating in lipogenesis, i.e., liver kinase B1 (LKB1), acetyl-CoA carboxylase (ACC) and AMPK, by phosphorylation, which may lead to the suppression of reactions from acetyl-CoA to SFA via malonyl-CoA in lipogenesis. We also investigated whether lipolysis is affected by ECP. The amount of carnitine palmitoyltransferase 1 (CPT1), an enzyme important for the oxidation of fatty acids, was increased by ECP treatment. ECP also led to an increase in uncoupling protein 2 (UCP2), reported as a key protein for the oxidation of fatty acids. All of these results obtained regarding lipogenesis and fatty acid metabolism in our in vitro system are consistent with the results previously shown in rats. We also examined the effects on SCD1 and lipid contents of ethanol extracts of Kabuli-type chickpeas, which are

  8. Retinoic acid: its biosynthesis and metabolism.

    PubMed

    Napoli, J L

    1999-01-01

    This article presents a model that integrates the functions of retinoid-binding proteins with retinoid metabolism. One of these proteins, the widely expressed (throughout retinoid target tissues and in all vertebrates) and highly conserved cellular retinol-binding protein (CRBP), sequesters retinol in an internal binding pocket that segregates it from the intracellular milieu. The CRBP-retinol complex appears to be the quantitatively major form of retinol in vivo, and may protect the promiscuous substrate from nonenzymatic degradation and/or non-specific enzymes. For example, at least seven types of dehydrogenases catalyze retinal synthesis from unbound retinol in vitro (NAD+ vs. NADP+ dependent, cytosolic vs. microsomal, short-chain dehydrogenases/reductases vs. medium-chain alcohol dehydrogenases). But only a fraction of these (some of the short-chain de-hydrogenases/reductases) have the fascinating additional ability of catalyzing retinal synthesis from CRBP-bound retinol as well. Similarly, CRBP and/or other retinoid-binding proteins function in the synthesis of retinal esters, the reduction of retinal generated from intestinal beta-carotene metabolism, and retinoic acid metabolism. The discussion details the evidence supporting an integrated model of retinoid-binding protein/metabolism. Also addressed are retinoid-androgen interactions and evidence incompatible with ethanol causing fetal alcohol syndrome by competing directly with retinol dehydrogenation to impair retinoic acid biosynthesis. PMID:10506831

  9. Influence of sugars and hormones on the genes involved in sucrose metabolism in maize endosperms.

    PubMed

    Ren, X D; Liu, H M; Liu, Y H; Hu, Y F; Zhang, J J; Huang, Y B

    2015-01-01

    Starch is the major storage product in the endosperm of cereals. Its synthesis is closely related to sucrose metabolism. In our previous study, we found that the expression of most of the genes involved in starch synthesis might be regulated by sugars and hormones in the maize endosperm. However, little is known regarding the transcriptional regulation of genes involved in sucrose metabolism. Thus, in this study, maize endosperms were treated with different sugars and hormones and the expression of genes involved in sucrose metabolism (including synthesis, degradation, and transport) were evaluated using real-time quantitative reverse transcription-polymerase chain reaction. We found that genes affected by different sugars and hormones were primarily regulated by abscisic acid. Sucrose and abscisic acid showed an additive effect on the expression of some genes. Differences in the transcriptional regulation of genes involved in sucrose metabolism and starch biosynthesis were observed. PMID:25867309

  10. Identification of C4 photosynthesis metabolism and regulatory-associated genes in Eleocharis vivipara by SSH.

    PubMed

    Chen, Taiyu; Ye, Rongjian; Fan, Xiaolei; Li, Xianghua; Lin, Yongjun

    2011-09-01

    This is the first effort to investigate the candidate genes involved in kranz developmental regulation and C(4) metabolic fluxes in Eleocharis vivipara, which is a leafless freshwater amphibious plant and possesses a distinct culms anatomy structure and photosynthetic pattern in contrasting environments. A terrestrial specific SSH library was constructed to investigate the genes involved in kranz anatomy developmental regulation and C(4) metabolic fluxes. A total of 73 ESTs and 56 unigenes in 384 clones were identified by array hybridization and sequencing. In total, 50 unigenes had homologous genes in the databases of rice and Arabidopsis. The real-time quantitative PCR results showed that most of the genes were accumulated in terrestrial culms and ABA-induced culms. The C(4) marker genes were stably accumulated during the culms development process in terrestrial culms. With respect to C(3) culms, C(4) photosynthesis metabolism consumed much more transporters and translocators related to ion metabolism, organic acids and carbohydrate metabolism, phosphate metabolism, amino acids metabolism, and lipids metabolism. Additionally, ten regulatory genes including five transcription factors, four receptor-like proteins, and one BURP protein were identified. These regulatory genes, which co-accumulated with the culms developmental stages, may play important roles in culms structure developmental regulation, bundle sheath chloroplast maturation, and environmental response. These results shed new light on the C(4) metabolic fluxes, environmental response, and anatomy structure developmental regulation in E. vivipara. PMID:21739352

  11. Ultraviolet and 5'fluorodeoxyuridine induced random mutagenesis in Chlorella vulgaris and its impact on fatty acid profile: a new insight on lipid-metabolizing genes and structural characterization of related proteins.

    PubMed

    Anthony, Josephine; Rangamaran, Vijaya Raghavan; Gopal, Dharani; Shivasankarasubbiah, Kumar T; Thilagam, Mary Leema J; Peter Dhassiah, Magesh; Padinjattayil, Divya Shridhar M; Valsalan, VinithKumar N; Manambrakat, Vijayakumaran; Dakshinamurthy, Sivakumar; Thirunavukkarasu, Sivaraman; Ramalingam, Kirubagaran

    2015-02-01

    The present study was aimed at randomly mutating the microalga, Chlorella vulgaris, in order to alter its cellular behaviour towards increased lipid production for efficient biodiesel production from algal biomass. Individual mutants from ultraviolet light (UV-1 (30 s exposure), UV-2 (60 s exposure) and UV-3 (90 s exposure)) and 5'fluorodeoxyuridine (5'FDU-1 (0.25 mM) and 5'FDU-2 (0.50 mM)) exposed cells were identified to explore an alternative method for lipid enhancement. A marginally significant decrease in biomass in the UV mutants; marked increase in the lipid content in UV-2 and 5'FDU-1 mutants; significant increase in saturated fatty acids level, especially in UV-2 mutant; insignificant increase in lipid production when these mutants were subjected to an additional stress of nitrogen starvation and predominantly enhanced level of unsaturated fatty acids in all the strains except UV-2 were noted. Chloroplast ultrastructural alterations and defective biosynthesis of chloroplast specific lipid constituents were observed in the mutants. Modelling of three-dimensional structures of acetyl coA carboxylase (ACCase), omega-6, plastid delta-12 and microsomal delta-12 fatty acid desaturases for the first time and ligand-interaction studies greatly substantiated our findings. A replacement of leucine by a serine residue in the acetyl coA carboxylase gene of UV-2 mutant suggests the reason behind lipid enhancement in UV-2 mutant. Higher activity of ACCase in UV-2 and 5'FDU-1 strongly proves the functional consequences of gene mutation to lipid production. In conclusion, algal mutants exhibited significant impact on biodiesel production through structural alterations in the lipid-metabolizing genes, thereby enhancing lipid production and saturated fatty acid levels. PMID:25189135

  12. Pleiotropic genes for metabolic syndrome and inflammation

    PubMed Central

    Kraja, Aldi T.; Chasman, Daniel I.; North, Kari E.; Reiner, Alexander P.; Yanek, Lisa R.; Kilpeläinen, Tuomas O.; Smith, Jennifer A.; Dehghan, Abbas; Dupuis, Josée; Johnson, Andrew D.; Feitosa, Mary F.; Tekola-Ayele, Fasil; Chu, Audrey Y.; Nolte, Ilja M.; Dastani, Zari; Morris, Andrew; Pendergrass, Sarah A.; Sun, Yan V.; Ritchie, Marylyn D.; Vaez, Ahmad; Lin, Honghuang; Ligthart, Symen; Marullo, Letizia; Rohde, Rebecca; Shao, Yaming; Ziegler, Mark A.; Im, Hae Kyung; Schnabel, Renate B.; Jørgensen, Torben; Jørgensen, Marit E.; Hansen, Torben; Pedersen, Oluf; Stolk, Ronald P.; Snieder, Harold; Hofman, Albert; Uitterlinden, Andre G.; Franco, Oscar H.; Ikram, M. Arfan; Richards, J. Brent; Rotimi, Charles; Wilson, James G.; Lange, Leslie; Ganesh, Santhi K.; Nalls, Mike; Rasmussen-Torvik, Laura J.; Pankow, James S.; Coresh, Josef; Tang, Weihong; Kao, W.H. Linda; Boerwinkle, Eric; Morrison, Alanna C.; Ridker, Paul M.; Becker, Diane M.; Rotter, Jerome I.; Kardia, Sharon L.R.; Loos, Ruth J.F.; Larson, Martin G.; Hsu, Yi-Hsiang; Province, Michael A.; Tracy, Russell; Voight, Benjamin F.; Vaidya, Dhananjay; O’Donnell, Christopher; Benjamin, Emelia J.; Alizadeh, Behrooz Z.; Prokopenko, Inga; Meigs, James B.; Borecki, Ingrid B.

    2014-01-01

    Metabolic syndrome (MetS) has become a health and financial burden worldwide. The MetS definition captures clustering of risk factors that predict higher risk for diabetes mellitus and cardiovascular disease. Our study hypothesis is that additional to genes influencing individual MetS risk factors, genetic variants exist that influence MetS and inflammatory markers forming a predisposing MetS genetic network. To test this hypothesis a staged approach was undertaken. (a) We analyzed 17 metabolic and inflammatory traits in more than 85,500 participants from 14 large epidemiological studies within the Cross Consortia Pleiotropy Group. Individuals classified with MetS (NCEP definition), versus those without, showed on average significantly different levels for most inflammatory markers studied. (b) Paired average correlations between 8 metabolic traits and 9 inflammatory markers from the same studies as above, estimated with two methods, and factor analyses on large simulated data, helped in identifying 8 combinations of traits for follow-up in meta-analyses, out of 130,305 possible combinations between metabolic traits and inflammatory markers studied. (c) We performed correlated meta-analyses for 8 metabolic traits and 6 inflammatory markers by using existing GWAS published genetic summary results, with about 2.5 million SNPs from twelve predominantly largest GWAS consortia. These analyses yielded 130 unique SNPs/genes with pleiotropic associations (a SNP/gene associating at least one metabolic trait and one inflammatory marker). Of them twenty-five variants (seven loci newly reported) are proposed as MetS candidates. They map to genes MACF1, KIAA0754, GCKR, GRB14, COBLL1, LOC646736-IRS1, SLC39A8, NELFE, SKIV2L, STK19, TFAP2B, BAZ1B, BCL7B, TBL2, MLXIPL, LPL, TRIB1, ATXN2, HECTD4, PTPN11, ZNF664, PDXDC1, FTO, MC4R and TOMM40. Based on large data evidence, we conclude that inflammation is a feature of MetS and several gene variants show pleiotropic genetic

  13. Linking uric acid metabolism to diabetic complications.

    PubMed

    Kushiyama, Akifumi; Tanaka, Kentaro; Hara, Shigeko; Kawazu, Shoji

    2014-12-15

    Hyperuricemia have been thought to be caused by the ingestion of large amounts of purines, and prevention or treatment of hyperuricemia has intended to prevent gout. Xanthine dehydrogenase/xanthine oxidase (XDH/XO) is rate-limiting enzyme of uric acid generation, and allopurinol was developed as a uric acid (UA) generation inhibitor in the 1950s and has been routinely used for gout prevention since then. Serum UA levels are an important risk factor of disease progression for various diseases, including those related to lifestyle. Recently, other UA generation inhibitors such as febuxostat and topiroxostat were launched. The emergence of these novel medications has promoted new research in the field. Lifestyle-related diseases, such as metabolic syndrome or type 2 diabetes mellitus, often have a common pathological foundation. As such, hyperuricemia is often present among these patients. Many in vitro and animal studies have implicated inflammation and oxidative stress in UA metabolism and vascular injury because XDH/XO act as one of the major source of reactive oxygen species Many studies on UA levels and associated diseases implicate involvement of UA generation in disease onset and/or progression. Interventional studies for UA generation, not UA excretion revealed XDH/XO can be the therapeutic target for vascular injury and renal dysfunction. In this review, the relationship between UA metabolism and diabetic complications is highlighted. PMID:25512781

  14. Linking uric acid metabolism to diabetic complications

    PubMed Central

    Kushiyama, Akifumi; Tanaka, Kentaro; Hara, Shigeko; Kawazu, Shoji

    2014-01-01

    Hyperuricemia have been thought to be caused by the ingestion of large amounts of purines, and prevention or treatment of hyperuricemia has intended to prevent gout. Xanthine dehydrogenase/xanthine oxidase (XDH/XO) is rate-limiting enzyme of uric acid generation, and allopurinol was developed as a uric acid (UA) generation inhibitor in the 1950s and has been routinely used for gout prevention since then. Serum UA levels are an important risk factor of disease progression for various diseases, including those related to lifestyle. Recently, other UA generation inhibitors such as febuxostat and topiroxostat were launched. The emergence of these novel medications has promoted new research in the field. Lifestyle-related diseases, such as metabolic syndrome or type 2 diabetes mellitus, often have a common pathological foundation. As such, hyperuricemia is often present among these patients. Many in vitro and animal studies have implicated inflammation and oxidative stress in UA metabolism and vascular injury because XDH/XO act as one of the major source of reactive oxygen species Many studies on UA levels and associated diseases implicate involvement of UA generation in disease onset and/or progression. Interventional studies for UA generation, not UA excretion revealed XDH/XO can be the therapeutic target for vascular injury and renal dysfunction. In this review, the relationship between UA metabolism and diabetic complications is highlighted. PMID:25512781

  15. Differential Expression of Lipid and Carbohydrate Metabolism Genes in Upper Airway versus Diaphragm Muscle

    PubMed Central

    van Lunteren, Erik; Spiegler, Sarah; Moyer, Michelle

    2010-01-01

    Study Objectives: Contractile properties of upper airway muscles influence upper airway patency, an issue of particular importance for subjects with obstructive sleep apnea. Expression of genes related to cellular energetics is, in turn, critical for the maintenance of contractile integrity over time during repetitive activation. We tested the hypothesis that sternohyoid has lower expression of genes related to lipid and carbohydrate energetic pathways than the diaphragm. Methods: Sternohyoid and diaphragm from normal adult rats were examined with gene expression arrays. Analysis focused on genes belonging to Gene Ontology (GO) groups carbohydrate metabolism and lipid metabolism. Results: There were 433 genes with at least ± 2-fold significant differential expression between sternohyoid and diaphragm, of which 192 had sternohyoid > diaphragm and 241 had diaphragm > sternohyoid expression. Among genes with higher sternohyoid expression, there was over-representation of the GO group carbohydrate metabolism (P = 0.0053, n = 13 genes, range of differential expression 2.1- to 6.2-fold) but not lipid metabolism (P = 0.44). Conversely, among genes with higher diaphragm expression, there was over-representation of the GO group lipid metabolism (P = 0.0000065, n = 32 genes, range of differential expression 2.0- to 37.9-fold) but not carbohydrate metabolism (P = 0.23). Nineteen genes with diaphragm > sternohyoid expression were related to fatty acid metabolism (P = 0.000000058), in particular fatty acid β oxidation and biosynthesis in the mitochondria. Conclusions: Sternohyoid has much lower gene expression than diaphragm for mitochondrial enzymes that participate in fatty acid oxidation and biosynthesis. This likely contributes to the lower fatigue resistance of pharyngeal upper airway muscles compared with the diaphragm. Citation: van Lunteren E; Spiegler S; Moyer M. Differential expression of lipid and carbohydrate metabolism genes in upper airway versus diaphragm

  16. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism.

    PubMed

    Wahlström, Annika; Sayin, Sama I; Marschall, Hanns-Ulrich; Bäckhed, Fredrik

    2016-07-12

    The gut microbiota is considered a metabolic "organ" that not only facilitates harvesting of nutrients and energy from the ingested food but also produces numerous metabolites that signal through their cognate receptors to regulate host metabolism. One such class of metabolites, bile acids, is produced in the liver from cholesterol and metabolized in the intestine by the gut microbiota. These bioconversions modulate the signaling properties of bile acids via the nuclear farnesoid X receptor and the G protein-coupled membrane receptor 5, which regulate numerous metabolic pathways in the host. Conversely, bile acids can modulate gut microbial composition both directly and indirectly through activation of innate immune genes in the small intestine. Thus, host metabolism can be affected through microbial modifications of bile acids, which lead to altered signaling via bile acid receptors, but also by altered microbiota composition. PMID:27320064

  17. D-Amino acid metabolism in mammals: biosynthesis, degradation and analytical aspects of the metabolic study.

    PubMed

    Ohide, Hiroko; Miyoshi, Yurika; Maruyama, Rindo; Hamase, Kenji; Konno, Ryuichi

    2011-11-01

    It was believed for long time that d-amino acids are not present in mammals. However, current technological advances and improvements in analytical instruments have enabled studies that now indicate that significant amounts of D-amino acids are present in mammals. The most abundant D-amino acids are D-serine and D-aspartate. D-Serine, which is synthesized by serine racemase and is degraded by D-amino-acid oxidase, is present in the brain and modulates neurotransmission. D-Aspartate, which is synthesized by aspartate racemase and degraded by D-aspartate oxidase, is present in the neuroendocrine and endocrine tissues and testis. It regulates the synthesis and secretion of hormones and spermatogenesis. D-Serine and D-aspartate bind to the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors and function as a coagonist and agonist, respectively. The enzymes that are involved in the synthesis and degradation of these D-amino acids are associated with neural diseases where the NMDA receptors are involved. Knockout mice for serine racemase and D-aspartate oxidase have been generated, and natural mutations in the d-amino-acid oxidase gene are present in mice and rats. These mutant animals display altered behaviors caused by enhanced or decreased NMDA receptor activity. In this article, we review currently available studies on D-amino acid metabolism in mammals and discuss analytical methods used to assay activity of amino acid racemases and D-amino-acid oxidases. PMID:21757409

  18. Metabolic Engineering of a Novel Muconic Acid Biosynthesis Pathway via 4-Hydroxybenzoic Acid in Escherichia coli

    PubMed Central

    Sengupta, Sudeshna; Goonewardena, Lakshani; Juturu, Veeresh

    2015-01-01

    cis,cis-Muconic acid (MA) is a commercially important raw material used in pharmaceuticals, functional resins, and agrochemicals. MA is also a potential platform chemical for the production of adipic acid (AA), terephthalic acid, caprolactam, and 1,6-hexanediol. A strain of Escherichia coli K-12, BW25113, was genetically modified, and a novel nonnative metabolic pathway was introduced for the synthesis of MA from glucose. The proposed pathway converted chorismate from the aromatic amino acid pathway to MA via 4-hydroxybenzoic acid (PHB). Three nonnative genes, pobA, aroY, and catA, coding for 4-hydroxybenzoate hydrolyase, protocatechuate decarboxylase, and catechol 1,2-dioxygenase, respectively, were functionally expressed in E. coli to establish the MA biosynthetic pathway. E. coli native genes ubiC, aroFFBR, aroE, and aroL were overexpressed and the genes ptsH, ptsI, crr, and pykF were deleted from the E. coli genome in order to increase the precursors of the proposed MA pathway. The final engineered E. coli strain produced nearly 170 mg/liter of MA from simple carbon sources in shake flask experiments. The proposed pathway was proved to be functionally active, and the strategy can be used for future metabolic engineering efforts for production of MA from renewable sugars. PMID:26362984

  19. Metabolic engineering of a novel muconic acid biosynthesis pathway via 4-hydroxybenzoic acid in Escherichia coli.

    PubMed

    Sengupta, Sudeshna; Jonnalagadda, Sudhakar; Goonewardena, Lakshani; Juturu, Veeresh

    2015-12-01

    cis,cis-Muconic acid (MA) is a commercially important raw material used in pharmaceuticals, functional resins, and agrochemicals. MA is also a potential platform chemical for the production of adipic acid (AA), terephthalic acid, caprolactam, and 1,6-hexanediol. A strain of Escherichia coli K-12, BW25113, was genetically modified, and a novel nonnative metabolic pathway was introduced for the synthesis of MA from glucose. The proposed pathway converted chorismate from the aromatic amino acid pathway to MA via 4-hydroxybenzoic acid (PHB). Three nonnative genes, pobA, aroY, and catA, coding for 4-hydroxybenzoate hydrolyase, protocatechuate decarboxylase, and catechol 1,2-dioxygenase, respectively, were functionally expressed in E. coli to establish the MA biosynthetic pathway. E. coli native genes ubiC, aroF(FBR), aroE, and aroL were overexpressed and the genes ptsH, ptsI, crr, and pykF were deleted from the E. coli genome in order to increase the precursors of the proposed MA pathway. The final engineered E. coli strain produced nearly 170 mg/liter of MA from simple carbon sources in shake flask experiments. The proposed pathway was proved to be functionally active, and the strategy can be used for future metabolic engineering efforts for production of MA from renewable sugars. PMID:26362984

  20. Transcriptional Factors Mediating Retinoic Acid Signals in the Control of Energy Metabolism.

    PubMed

    Zhang, Rui; Wang, Yueqiao; Li, Rui; Chen, Guoxun

    2015-01-01

    Retinoic acid (RA), an active metabolite of vitamin A (VA), is important for many physiological processes including energy metabolism. This is mainly achieved through RA-regulated gene expression in metabolically active cells. RA regulates gene expression mainly through the activation of two subfamilies in the nuclear receptor superfamily, retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RAR/RXR heterodimers or RXR/RXR homodimers bind to RA response element in the promoters of RA target genes and regulate their expressions upon ligand binding. The development of metabolic diseases such as obesity and type 2 diabetes is often associated with profound changes in the expressions of genes involved in glucose and lipid metabolism in metabolically active cells. RA regulates some of these gene expressions. Recently, in vivo and in vitro studies have demonstrated that status and metabolism of VA regulate macronutrient metabolism. Some studies have shown that, in addition to RARs and RXRs, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter-transcription factor II, and peroxisome proliferator activated receptor β/δ may function as transcriptional factors mediating RA response. Herein, we summarize current progresses regarding the VA metabolism and the role of nuclear receptors in mediating RA signals, with an emphasis on their implication in energy metabolism. PMID:26110391

  1. Transcriptional Factors Mediating Retinoic Acid Signals in the Control of Energy Metabolism

    PubMed Central

    Zhang, Rui; Wang, Yueqiao; Li, Rui; Chen, Guoxun

    2015-01-01

    Retinoic acid (RA), an active metabolite of vitamin A (VA), is important for many physiological processes including energy metabolism. This is mainly achieved through RA-regulated gene expression in metabolically active cells. RA regulates gene expression mainly through the activation of two subfamilies in the nuclear receptor superfamily, retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RAR/RXR heterodimers or RXR/RXR homodimers bind to RA response element in the promoters of RA target genes and regulate their expressions upon ligand binding. The development of metabolic diseases such as obesity and type 2 diabetes is often associated with profound changes in the expressions of genes involved in glucose and lipid metabolism in metabolically active cells. RA regulates some of these gene expressions. Recently, in vivo and in vitro studies have demonstrated that status and metabolism of VA regulate macronutrient metabolism. Some studies have shown that, in addition to RARs and RXRs, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter-transcription factor II, and peroxisome proliferator activated receptor β/δ may function as transcriptional factors mediating RA response. Herein, we summarize current progresses regarding the VA metabolism and the role of nuclear receptors in mediating RA signals, with an emphasis on their implication in energy metabolism. PMID:26110391

  2. Amino Acid Flux from Metabolic Network Benefits Protein Translation: the Role of Resource Availability

    PubMed Central

    Hu, Xiao-Pan; Yang, Yi; Ma, Bin-Guang

    2015-01-01

    Protein translation is a central step in gene expression and affected by many factors such as codon usage bias, mRNA folding energy and tRNA abundance. Despite intensive previous studies, how metabolic amino acid supply correlates with protein translation efficiency remains unknown. In this work, we estimated the amino acid flux from metabolic network for each protein in Escherichia coli and Saccharomyces cerevisiae by using Flux Balance Analysis. Integrated with the mRNA expression level, protein abundance and ribosome profiling data, we provided a detailed description of the role of amino acid supply in protein translation. Our results showed that amino acid supply positively correlates with translation efficiency and ribosome density. Moreover, with the rank-based regression model, we found that metabolic amino acid supply facilitates ribosome utilization. Based on the fact that the ribosome density change of well-amino-acid-supplied genes is smaller than poorly-amino-acid-supply genes under amino acid starvation, we reached the conclusion that amino acid supply may buffer ribosome density change against amino acid starvation and benefit maintaining a relatively stable translation environment. Our work provided new insights into the connection between metabolic amino acid supply and protein translation process by revealing a new regulation strategy that is dependent on resource availability. PMID:26056817

  3. METABOLISM OF DICARBOXYLIC ACIDS IN ACETOBACTER XYLINUM

    PubMed Central

    Benziman, Moshe; Abeliovitz, A.

    1964-01-01

    Benziman, Moshe (The Hebrew University of Jerusalem, Jerusalem, Israel), and A. Abeliovitz. Metabolism of dicarboxylic acids in Acetobacter xylinum. J. Bacteriol. 87:270–277. 1964.—During the oxidation of fumarate or l-malate by whole cells or extracts of Acetobacter xylinum grown on succinate, a keto acid accumulated in the medium in considerable amounts. This acid was identified as oxaloacetic acid (OAA). No accumulation of OAA was observed when succinate served as substrate. These phenomena could be explained by the kinetics of malate, succinate, and OAA oxidation. OAA did not inhibit malate oxidation, even when present at high concentrations. When cells were incubated with OAA or fumarate in the presence of C14O2, only the beta-carboxyl of residual OAA was found to be labeled. Evidence was obtained indicating that nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) are not directly involved in malate oxidation by cell-free extracts. The results suggest that malate oxidation in A. xylinum is irreversible, and is catalyzed by an enzyme which is not NAD- or NADP-linked. PMID:14151044

  4. Genome-wide association studies for fatty acid metabolic traits in five divergent pig populations

    PubMed Central

    Zhang, Wanchang; Bin Yang; Zhang, Junjie; Cui, Leilei; Ma, Junwu; Chen, Congying; Ai, Huashui; Xiao, Shijun; Ren, Jun; Huang, Lusheng

    2016-01-01

    Fatty acid composition profiles are important indicators of meat quality and tasting flavor. Metabolic indices of fatty acids are more authentic to reflect meat nutrition and public acceptance. To investigate the genetic mechanism of fatty acid metabolic indices in pork, we conducted genome-wide association studies (GWAS) for 33 fatty acid metabolic traits in five pig populations. We identified a total of 865 single nucleotide polymorphisms (SNPs), corresponding to 11 genome-wide significant loci on nine chromosomes and 12 suggestive loci on nine chromosomes. Our findings not only confirmed seven previously reported QTL with stronger association strength, but also revealed four novel population-specific loci, showing that investigations on intermediate phenotypes like the metabolic traits of fatty acids can increase the statistical power of GWAS for end-point phenotypes. We proposed a list of candidate genes at the identified loci, including three novel genes (FADS2, SREBF1 and PLA2G7). Further, we constructed the functional networks involving these candidate genes and deduced the potential fatty acid metabolic pathway. These findings advance our understanding of the genetic basis of fatty acid composition in pigs. The results from European hybrid commercial pigs can be immediately transited into breeding practice for beneficial fatty acid composition. PMID:27097669

  5. Genome-wide association studies for fatty acid metabolic traits in five divergent pig populations.

    PubMed

    Zhang, Wanchang; Bin Yang; Zhang, Junjie; Cui, Leilei; Ma, Junwu; Chen, Congying; Ai, Huashui; Xiao, Shijun; Ren, Jun; Huang, Lusheng

    2016-01-01

    Fatty acid composition profiles are important indicators of meat quality and tasting flavor. Metabolic indices of fatty acids are more authentic to reflect meat nutrition and public acceptance. To investigate the genetic mechanism of fatty acid metabolic indices in pork, we conducted genome-wide association studies (GWAS) for 33 fatty acid metabolic traits in five pig populations. We identified a total of 865 single nucleotide polymorphisms (SNPs), corresponding to 11 genome-wide significant loci on nine chromosomes and 12 suggestive loci on nine chromosomes. Our findings not only confirmed seven previously reported QTL with stronger association strength, but also revealed four novel population-specific loci, showing that investigations on intermediate phenotypes like the metabolic traits of fatty acids can increase the statistical power of GWAS for end-point phenotypes. We proposed a list of candidate genes at the identified loci, including three novel genes (FADS2, SREBF1 and PLA2G7). Further, we constructed the functional networks involving these candidate genes and deduced the potential fatty acid metabolic pathway. These findings advance our understanding of the genetic basis of fatty acid composition in pigs. The results from European hybrid commercial pigs can be immediately transited into breeding practice for beneficial fatty acid composition. PMID:27097669

  6. Genetic variants near the MGAT1 gene are associated with body weight, BMI and fatty acid metabolism among adults and children

    PubMed Central

    Jacobsson, J A; Rask-Andersen, M; Risérus, U; Moschonis, G; Koumpitski, A; Chrousos, G P; Lannfelt, L; Marcus, C; Gyllensten, U; Schiöth, H B; Fredriksson, R

    2012-01-01

    Objective: Recently a genome-wide association analysis from five European populations identified a polymorphism located downstream of the mannosyl-(α-1,3)-glycoprotein-β-1,2-N-acetylglucosaminyltransferase (MGAT1) gene that was associated with body-weight. In the present study, associations between MGAT1 variants combined with obesity and insulin measurements were investigated in three cohorts. Levels of fatty acids and estimated measures of Δ desaturases were also investigated among adult men. Design: Six polymorphisms downstream of MGAT1 were genotyped in a cross-sectional cohort of 1152 Swedish men. Three polymorphisms were further analyzed in a case-control study of 1076 Swedish children and in a cross-sectional study of 2249 Greek children. Results: Three polymorphisms, rs12186500 (odds ratio (OR): 1.892, 95% confidence interval (CI): 1.237–2.895, P=0.003), rs1021001 (OR: 2.102, 95% CI: 1.280–3.455, P=0.003) and rs4285184 (OR: 1.587, 95% CI: 1.024–2.459, P=0.038) were associated with a higher prevalence of obesity among the adult men and a trend for obesity was observed for rs4285184 among the Swedish (OR: 1.205, 95% CI: 0.987–1.471, P=0.067) and Greek children (OR: 1.192, 95%CI: 0.978–1.454, P=0.081). Association with body weight was observed for rs12186500 (P=0.017) and rs4285184 (P=0.024) among the men. The rs1021001 and rs4285184 were also associated with body mass index (BMI) in the two Swedish cohorts and similar trends were observed among the Greek children. The combined effect size for rs1021001 and rs4285184 on BMI z-score from a meta-analysis was 0.233 (95% CI:0.093–0.373, P=0.001) and 0.147 (95% CI:0.057–0.236, P=0.001), respectively. We further observed associations between the genetic variants and fatty acids (P<0.039) and estimated measures of Δ desaturases (P<0.040), as well as interactions for rs12186500 (P<0.019) with an effect on BMI. No association was found with homeostatic model assessment-insulin resistance in any cohort

  7. Reptile freeze tolerance: metabolism and gene expression.

    PubMed

    Storey, Kenneth B

    2006-02-01

    Terrestrially hibernating reptiles that live in seasonally cold climates need effective strategies of cold hardiness to survive the winter. Use of thermally buffered hibernacula is very important but when exposure to temperatures below 0 degrees C cannot be avoided, either freeze avoidance (supercooling) or freeze tolerance strategies can be employed, sometimes by the same species depending on environmental conditions. Several reptile species display ecologically relevant freeze tolerance, surviving for extended times with 50% or more of their total body water frozen. The use of colligative cryoprotectants by reptiles is poorly developed but metabolic and enzymatic adaptations providing anoxia tolerance and antioxidant defense are important aids to freezing survival. New studies using DNA array screening are examining the role of freeze-responsive gene expression. Three categories of freeze responsive genes have been identified from recent screenings of liver and heart from freeze-exposed (5h post-nucleation at -2.5 degrees C) hatchling painted turtles, Chrysemys picta marginata. These genes encode (a) proteins involved in iron binding, (b) enzymes of antioxidant defense, and (c) serine protease inhibitors. The same genes were up-regulated by anoxia exposure (4 h of N2 gas exposure at 5 degrees C) of the hatchlings which suggests that these defenses for freeze tolerance are aimed at counteracting the injurious effects of the ischemia imposed by plasma freezing. PMID:16321368

  8. The gut microbiota modulates host amino acid and glutathione metabolism in mice.

    PubMed

    Mardinoglu, Adil; Shoaie, Saeed; Bergentall, Mattias; Ghaffari, Pouyan; Zhang, Cheng; Larsson, Erik; Bäckhed, Fredrik; Nielsen, Jens

    2015-10-01

    The gut microbiota has been proposed as an environmental factor that promotes the progression of metabolic diseases. Here, we investigated how the gut microbiota modulates the global metabolic differences in duodenum, jejunum, ileum, colon, liver, and two white adipose tissue depots obtained from conventionally raised (CONV-R) and germ-free (GF) mice using gene expression data and tissue-specific genome-scale metabolic models (GEMs). We created a generic mouse metabolic reaction (MMR) GEM, reconstructed 28 tissue-specific GEMs based on proteomics data, and manually curated GEMs for small intestine, colon, liver, and adipose tissues. We used these functional models to determine the global metabolic differences between CONV-R and GF mice. Based on gene expression data, we found that the gut microbiota affects the host amino acid (AA) metabolism, which leads to modifications in glutathione metabolism. To validate our predictions, we measured the level of AAs and N-acetylated AAs in the hepatic portal vein of CONV-R and GF mice. Finally, we simulated the metabolic differences between the small intestine of the CONV-R and GF mice accounting for the content of the diet and relative gene expression differences. Our analyses revealed that the gut microbiota influences host amino acid and glutathione metabolism in mice. PMID:26475342

  9. The gut microbiota modulates host amino acid and glutathione metabolism in mice

    PubMed Central

    Mardinoglu, Adil; Shoaie, Saeed; Bergentall, Mattias; Ghaffari, Pouyan; Zhang, Cheng; Larsson, Erik; Bäckhed, Fredrik; Nielsen, Jens

    2015-01-01

    The gut microbiota has been proposed as an environmental factor that promotes the progression of metabolic diseases. Here, we investigated how the gut microbiota modulates the global metabolic differences in duodenum, jejunum, ileum, colon, liver, and two white adipose tissue depots obtained from conventionally raised (CONV-R) and germ-free (GF) mice using gene expression data and tissue-specific genome-scale metabolic models (GEMs). We created a generic mouse metabolic reaction (MMR) GEM, reconstructed 28 tissue-specific GEMs based on proteomics data, and manually curated GEMs for small intestine, colon, liver, and adipose tissues. We used these functional models to determine the global metabolic differences between CONV-R and GF mice. Based on gene expression data, we found that the gut microbiota affects the host amino acid (AA) metabolism, which leads to modifications in glutathione metabolism. To validate our predictions, we measured the level of AAs and N-acetylated AAs in the hepatic portal vein of CONV-R and GF mice. Finally, we simulated the metabolic differences between the small intestine of the CONV-R and GF mice accounting for the content of the diet and relative gene expression differences. Our analyses revealed that the gut microbiota influences host amino acid and glutathione metabolism in mice. PMID:26475342

  10. Metabolic mechanism of phenyllactic acid naturally occurring in Chinese pickles.

    PubMed

    Li, Xingfeng; Ning, Yawei; Liu, Dou; Yan, Aihong; Wang, Zhixin; Wang, Shijie; Miao, Ming; Zhu, Hong; Jia, Yingmin

    2015-11-01

    Phenyllactic acid, a phenolic acid phytochemical with the antimicrobial activity, was rarely reported in food besides honey and sourdough. This study evidenced a new food source of phenyllactic acid and elucidated its metabolic mechanism. Phenyllactic acid naturally occurred in Chinese pickles with concentrations ranged from 0.02 to 0.30 mM in 23 pickle samples including homemade and commercial ones. Then, lactic acid bacteria capable of metabolizing phenyllactic acid were screened from each homemade pickle and a promising strain was characterized as Lactobacillus plantarum. Moreover, the investigation of the metabolic mechanism of phenyllactic acid in pickles suggested that the yield of phenyllactic acid was positively related to the content of phenylalanine in food, and the addition of phenylalanine as precursor substance could significantly promote the production of phenyllactic acid. This investigation could provide some insights into the accumulation of phenyllactic acid in pickle for long storage life. PMID:25976820

  11. Emerging aspects of gut sulfur amino acid metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review discusses the recent evidence indicating that sulfur amino acid metabolism in gastrointestinal tissues may be linked to human health and gut disease. Studies indicate that the gastrointestinal tract metabolizes 20% of dietary methionine and that its main metabolic fate is transmethylatio...

  12. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption

    PubMed Central

    Xie, Guoxiang; Zhong, Wei; Li, Houkai; Li, Qiong; Qiu, Yunping; Zheng, Xiaojiao; Chen, Huiyuan; Zhao, Xueqing; Zhang, Shucha; Zhou, Zhanxiang; Zeisel, Steven H.; Jia, Wei

    2013-01-01

    Our understanding of the bile acid metabolism is limited by the fact that previous analyses have primarily focused on a selected few circulating bile acids; the bile acid profiles of the liver and gastrointestinal tract pools are rarely investigated. Here, we determined how chronic ethanol consumption altered the bile acids in multiple body compartments (liver, gastrointestinal tract, and serum) of rats. Rats were fed a modified Lieber-DeCarli liquid diet with 38% of calories as ethanol (the amount equivalent of 4–5 drinks in humans). While conjugated bile acids predominated in the liver (98.3%), duodenum (97.8%), and ileum (89.7%), unconjugated bile acids comprised the largest proportion of measured bile acids in serum (81.2%), the cecum (97.7%), and the rectum (97.5%). In particular, taurine-conjugated bile acids were significantly decreased in the liver and gastrointestinal tract of ethanol-treated rats, while unconjugated and glycine-conjugated species increased. Ethanol consumption caused increased expression of genes involved in bile acid biosynthesis, efflux transport, and reduced expression of genes regulating bile acid influx transport in the liver. These results provide an improved understanding of the systemic modulations of bile acid metabolism in mammals through the gut-liver axis.—Xie, G., Zhong, W., Li, H., Li, Q., Qiu, Y., Zheng, X., Chen, H., Zhao, X., Zhang, S., Zhou, Z., Zeisel, S. H., Jia, W. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. PMID:23709616

  13. Body weight, metabolism and clock genes

    PubMed Central

    2010-01-01

    Biological rhythms are present in the lives of almost all organisms ranging from plants to more evolved creatures. These oscillations allow the anticipation of many physiological and behavioral mechanisms thus enabling coordination of rhythms in a timely manner, adaption to environmental changes and more efficient organization of the cellular processes responsible for survival of both the individual and the species. Many components of energy homeostasis exhibit circadian rhythms, which are regulated by central (suprachiasmatic nucleus) and peripheral (located in other tissues) circadian clocks. Adipocyte plays an important role in the regulation of energy homeostasis, the signaling of satiety and cellular differentiation and proliferation. Also, the adipocyte circadian clock is probably involved in the control of many of these functions. Thus, circadian clocks are implicated in the control of energy balance, feeding behavior and consequently in the regulation of body weight. In this regard, alterations in clock genes and rhythms can interfere with the complex mechanism of metabolic and hormonal anticipation, contributing to multifactorial diseases such as obesity and diabetes. The aim of this review was to define circadian clocks by describing their functioning and role in the whole body and in adipocyte metabolism, as well as their influence on body weight control and the development of obesity. PMID:20712885

  14. Body weight, metabolism and clock genes.

    PubMed

    Zanquetta, Melissa M; Corrêa-Giannella, Maria Lúcia; Monteiro, Maria Beatriz; Villares, Sandra Mf

    2010-01-01

    Biological rhythms are present in the lives of almost all organisms ranging from plants to more evolved creatures. These oscillations allow the anticipation of many physiological and behavioral mechanisms thus enabling coordination of rhythms in a timely manner, adaption to environmental changes and more efficient organization of the cellular processes responsible for survival of both the individual and the species. Many components of energy homeostasis exhibit circadian rhythms, which are regulated by central (suprachiasmatic nucleus) and peripheral (located in other tissues) circadian clocks. Adipocyte plays an important role in the regulation of energy homeostasis, the signaling of satiety and cellular differentiation and proliferation. Also, the adipocyte circadian clock is probably involved in the control of many of these functions. Thus, circadian clocks are implicated in the control of energy balance, feeding behavior and consequently in the regulation of body weight. In this regard, alterations in clock genes and rhythms can interfere with the complex mechanism of metabolic and hormonal anticipation, contributing to multifactorial diseases such as obesity and diabetes. The aim of this review was to define circadian clocks by describing their functioning and role in the whole body and in adipocyte metabolism, as well as their influence on body weight control and the development of obesity. PMID:20712885

  15. Bile Acid Signaling in Metabolic Disease and Drug Therapy

    PubMed Central

    Li, Tiangang

    2014-01-01

    Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid–activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein–coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver. PMID:25073467

  16. Functional analysis of gapped microbial genomes: amino acid metabolism of Thiobacillus ferrooxidans.

    PubMed

    Selkov, E; Overbeek, R; Kogan, Y; Chu, L; Vonstein, V; Holmes, D; Silver, S; Haselkorn, R; Fonstein, M

    2000-03-28

    A gapped genome sequence of the biomining bacterium Thiobacillus ferrooxidans strain ATCC23270 was assembled from sheared DNA fragments (3.2-times coverage) into 1,912 contigs. A total of 2,712 potential genes (ORFs) were identified in 2.6 Mbp (megabase pairs) of Thiobacillus genomic sequence. Of these genes, 2,159 could be assigned functions by using the WIT-Pro/EMP genome analysis system, most with a high degree of certainty. Nine hundred of the genes have been assigned roles in metabolic pathways, producing an overview of cellular biosynthesis, bioenergetics, and catabolism. Sequence similarities, relative gene positions on the chromosome, and metabolic reconstruction (placement of gene products in metabolic pathways) were all used to aid gene assignments and for development of a functional overview. Amino acid biosynthesis was chosen to demonstrate the analytical capabilities of this approach. Only 10 expected enzymatic activities, of the nearly 150 involved in the biosynthesis of all 20 amino acids, are currently unassigned in the Thiobacillus genome. This result compares favorably with 10 missing genes for amino acid biosynthesis in the complete Escherichia coli genome. Gapped genome analysis can therefore give a decent picture of the central metabolism of a microorganism, equivalent to that of a complete sequence, at significantly lower cost. PMID:10737802

  17. Renal acid-base metabolism after ischemia.

    PubMed

    Holloway, J C; Phifer, T; Henderson, R; Welbourne, T C

    1986-05-01

    The response of the kidney to ischemia-induced cellular acidosis was followed over the immediate one hr post-ischemia reflow period. Clearance and extraction experiments as well as measurement of cortical intracellular pH (pHi) were performed on Inactin-anesthetized Sprague-Dawley rats. Arteriovenous concentration differences and para-aminohippurate extraction were obtained by cannulating the left renal vein. Base production was monitored as bicarbonate released into the renal vein and urine; net base production was related to the renal handling of glutamine and ammonia as well as to renal oxygen consumption and pHi. After a 15 min control period, the left renal artery was snared for one-half hr followed by release and four consecutive 15 min reflow periods. During the control period, cortical cell pHi measured by [14C]-5,5-Dimethyl-2,4-Oxazolidinedione distribution was 7.07 +/- 0.08, and Q-O2 was 14.1 +/- 2.2 micromoles/min; neither net glutamine utilization nor net bicarbonate generation occurred. After 30 min of ischemia, renal tissue pH fell to 6.6 +/- 0.15. However, within 45 min of reflow, cortical cell pH returned and exceeded the control value, 7.33 +/- 0.06 vs. 7.15 +/- 0.08. This increase in pHi was associated with a significant rise in cellular metabolic rate, Q-O2 increased to 20.3 +/- 6.4 micromoles/min. Corresponding with cellular alkalosis was a net production of bicarbonate and a net ammonia uptake and glutamine release; urinary acidification was abolished. These results are consistent with a nonexcretory renal metabolic base generating mechanism governing cellular acid base homeostasis following ischemia. PMID:3723929

  18. Identifying and assessing the impact of wine acid-related genes in yeast.

    PubMed

    Chidi, Boredi S; Rossouw, Debra; Bauer, Florian F

    2016-02-01

    Saccharomyces cerevisiae strains used for winemaking show a wide range of fermentation phenotypes, and the genetic background of individual strains contributes significantly to the organoleptic properties of wine. This strain-dependent impact extends to the organic acid composition of the wine, an important quality parameter. However, little is known about the genes which may impact on organic acids during grape must fermentation. To generate novel insights into the genetic regulation of this metabolic network, a subset of genes was identified based on a comparative analysis of the transcriptomes and organic acid profiles of different yeast strains showing different production levels of organic acids. These genes showed significant inter-strain differences in their transcription levels at one or more stages of fermentation and were also considered likely to influence organic acid metabolism based on existing functional annotations. Genes selected in this manner were ADH3, AAD6, SER33, ICL1, GLY1, SFC1, SER1, KGD1, AGX1, OSM1 and GPD2. Yeast strains carrying deletions for these genes were used to conduct fermentations and determine organic acid levels at various stages of alcoholic fermentation in synthetic grape must. The impact of these deletions on organic acid profiles was quantified, leading to novel insights and hypothesis generation regarding the role/s of these genes in wine yeast acid metabolism under fermentative conditions. Overall, the data contribute to our understanding of the roles of selected genes in yeast metabolism in general and of organic acid metabolism in particular. PMID:26040556

  19. Metabolism of Flavone-8-acetic Acid in Mice.

    PubMed

    Pham, Minh Hien; Auzeil, Nicolas; Regazzetti, Anne; Scherman, Daniel; Seguin, Johanne; Mignet, Nathalie; Dauzonne, Daniel; Chabot, Guy G

    2016-08-01

    Flavone-8-acetic acid (FAA) is a potent antivascular agent in mice but not in humans. Assuming that FAA was bioactivated in mice, we previously demonstrated that 6-OH-FAA was formed from FAA by mouse microsomes but not by human microsomes; its antivascular activity was 2.1- to 15.9-fold stronger than that of FAA, and its antivascular activity was mediated through the Ras homolog gene family (Rho) protein kinase A (RhoA) pathway. The present work aimed to study FAA metabolism in order to verify if 6-OH-FAA is formed in mice. Using synthesized standards and high-performance liquid chromatography (HPLC) coupled with ultraviolet (UV) detection and mass spectrometry (MS) analysis, we herein demonstrated, for the first time, that in vitro FAA and its monohydroxylated derivatives could directly undergo phase II metabolism forming glucuronides, and two FAA epoxides were mostly scavenged by NAC and GSH forming corresponding adducts. FAA was metabolized in mice. Several metabolites were formed, in particular 6-OHFAA. The antitumor activity of 6-OH-FAA in vivo is worthy of investigation. PMID:27466491

  20. Three Conazoles Increase Hepatic Microsomal Retinoic Acid Metabolism and Decrease Mouse Hepatic Retinoic Acid Levels In Vivo

    EPA Science Inventory

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with...

  1. Dietary trans fatty acid isomers differ in their effects on mammary lipid metabolism as well as lipogenic gene expression in lactating mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives were to examine the effects of several individual trans-18:1 isomers and t10c12-CLA on fat synthesis, and expression of lipogenic genes and transcription factors in liver and mammary tissues in lactating mice. Thirty lactating C57Bl6J mice were randomly assigned to 6 diets supplement...

  2. Metabolism of sulfur amino acids in Saccharomyces cerevisiae.

    PubMed Central

    Thomas, D; Surdin-Kerjan, Y

    1997-01-01

    Sulfur amino acid biosynthesis in Saccharomyces cerevisiae involves a large number of enzymes required for the de novo biosynthesis of methionine and cysteine and the recycling of organic sulfur metabolites. This review summarizes the details of these processes and analyzes the molecular data which have been acquired in this metabolic area. Sulfur biochemistry appears not to be unique through terrestrial life, and S. cerevisiae is one of the species of sulfate-assimilatory organisms possessing a larger set of enzymes for sulfur metabolism. The review also deals with several enzyme deficiencies that lead to a nutritional requirement for organic sulfur, although they do not correspond to defects within the biosynthetic pathway. In S. cerevisiae, the sulfur amino acid biosynthetic pathway is tightly controlled: in response to an increase in the amount of intracellular S-adenosylmethionine (AdoMet), transcription of the coregulated genes is turned off. The second part of the review is devoted to the molecular mechanisms underlying this regulation. The coordinated response to AdoMet requires two cis-acting promoter elements. One centers on the sequence TCACGTG, which also constitutes a component of all S. cerevisiae centromeres. Situated upstream of the sulfur genes, this element is the binding site of a transcription activation complex consisting of a basic helix-loop-helix factor, Cbf1p, and two basic leucine zipper factors, Met4p and Met28p. Molecular studies have unraveled the specific functions for each subunit of the Cbf1p-Met4p-Met28p complex as well as the modalities of its assembly on the DNA. The Cbf1p-Met4p-Met28p complex contains only one transcription activation module, the Met4p subunit. Detailed mutational analysis of Met4p has elucidated its functional organization. In addition to its activation and bZIP domains, Met4p contains two regulatory domains, called the inhibitory region and the auxiliary domain. When the level of intracellular AdoMet increases

  3. Impulsive mathematical modeling of ascorbic acid metabolism in healthy subjects.

    PubMed

    Bachar, Mostafa; Raimann, Jochen G; Kotanko, Peter

    2016-03-01

    In this work, we develop an impulsive mathematical model of Vitamin C (ascorbic acid) metabolism in healthy subjects for daily intake over a long period of time. The model includes the dynamics of ascorbic acid plasma concentration, the ascorbic acid absorption in the intestines and a novel approach to quantify the glomerular excretion of ascorbic acid. We investigate qualitative and quantitative dynamics. We show the existence and uniqueness of the global asymptotic stability of the periodic solution. We also perform a numerical simulation for the entire time period based on published data reporting parameters reflecting ascorbic acid metabolism at different oral doses of ascorbic acid. PMID:26724712

  4. Metabolic Fate of Unsaturated Glucuronic/Iduronic Acids from Glycosaminoglycans

    PubMed Central

    Maruyama, Yukie; Oiki, Sayoko; Takase, Ryuichi; Mikami, Bunzo; Murata, Kousaku; Hashimoto, Wataru

    2015-01-01

    Glycosaminoglycans in mammalian extracellular matrices are degraded to their constituents, unsaturated uronic (glucuronic/iduronic) acids and amino sugars, through successive reactions of bacterial polysaccharide lyase and unsaturated glucuronyl hydrolase. Genes coding for glycosaminoglycan-acting lyase, unsaturated glucuronyl hydrolase, and the phosphotransferase system are assembled into a cluster in the genome of pathogenic bacteria, such as streptococci and clostridia. Here, we studied the streptococcal metabolic pathway of unsaturated uronic acids and the structure/function relationship of its relevant isomerase and dehydrogenase. Two proteins (gbs1892 and gbs1891) of Streptococcus agalactiae strain NEM316 were overexpressed in Escherichia coli, purified, and characterized. 4-Deoxy-l-threo-5-hexosulose-uronate (Dhu) nonenzymatically generated from unsaturated uronic acids was converted to 2-keto-3-deoxy-d-gluconate via 3-deoxy-d-glycero-2,5-hexodiulosonate through successive reactions of gbs1892 isomerase (DhuI) and gbs1891 NADH-dependent reductase/dehydrogenase (DhuD). DhuI and DhuD enzymatically corresponded to 4-deoxy-l-threo-5-hexosulose-uronate ketol-isomerase (KduI) and 2-keto-3-deoxy-d-gluconate dehydrogenase (KduD), respectively, involved in pectin metabolism, although no or low sequence identity was observed between DhuI and KduI or between DhuD and KduD, respectively. Genes for DhuI and DhuD were found to be included in the streptococcal genetic cluster, whereas KduI and KduD are encoded in clostridia. Tertiary and quaternary structures of DhuI and DhuD were determined by x-ray crystallography. Distinct from KduI β-barrels, DhuI adopts an α/β/α-barrel structure as a basic scaffold similar to that of ribose 5-phosphate isomerase. The structure of DhuD is unable to accommodate the substrate/cofactor, suggesting that conformational changes are essential to trigger enzyme catalysis. This is the first report on the bacterial metabolism of

  5. The Role of Microbial Amino Acid Metabolism in Host Metabolism

    PubMed Central

    Neis, Evelien P. J. G.; Dejong, Cornelis H. C.; Rensen, Sander S.

    2015-01-01

    Disruptions in gut microbiota composition and function are increasingly implicated in the pathogenesis of obesity, insulin resistance, and type 2 diabetes mellitus. The functional output of the gut microbiota, including short-chain fatty acids and amino acids, are thought to be important modulators underlying the development of these disorders. Gut bacteria can alter the bioavailability of amino acids by utilization of several amino acids originating from both alimentary and endogenous proteins. In turn, gut bacteria also provide amino acids to the host. This could have significant implications in the context of insulin resistance and type 2 diabetes mellitus, conditions associated with elevated systemic concentrations of certain amino acids, in particular the aromatic and branched-chain amino acids. Moreover, several amino acids released by gut bacteria can serve as precursors for the synthesis of short-chain fatty acids, which also play a role in the development of obesity. In this review, we aim to compile the available evidence on the contribution of microbial amino acids to host amino acid homeostasis, and to assess the role of the gut microbiota as a determinant of amino acid and short-chain fatty acid perturbations in human obesity and type 2 diabetes mellitus. PMID:25894657

  6. Amino acid metabolism in patients with propionic acidaemia.

    PubMed

    Scholl-Bürgi, Sabine; Sass, Jörn Oliver; Zschocke, Johannes; Karall, Daniela

    2012-01-01

    Propionic acidaemia (PA) is an inborn error of intermediary metabolism caused by deficiency of propionyl-CoA carboxylase. The metabolic block leads to a profound failure of central metabolic pathways, including the urea and the citric acid cycles. This review will focus on changes in amino acid metabolism in this inborn disorder of metabolism. The first noted disturbance of amino acid metabolism was hyperglycinaemia, which is detectable in nearly all PA patients. Additionally, hyperlysinaemia is a common observation. In contrast, concentrations of branched chain amino acids, especially of isoleucine, are frequently reported as decreased. These non-proportional changes of branched-chain amino acids (BCAAs) compared with aromatic amino acids are also reflected by the Fischer's ratio (concentration ratio of BCAAs to aromatic amino acids), which is decreased in PA patients. As restricted dietary intake of valine and isoleucine as precursors of propionyl-CoA is part of the standard treatment in PA, decreased plasma concentrations of BCAAs may be a side effect of treatment. The concentration changes of the nitrogen scavenger glutamine have to be interpreted in the light of ammonia levels. In contrast to other hyperammonaemic syndromes, in PA plasma glutamine concentrations do not increase in hyperammonaemia, whereas CSF glutamine concentrations are elevated. Despite lactic acidaemia in PA patients, hyperalaninaemia is only rarely reported. The mechanisms underlying the observed changes in amino acid metabolism have not yet been elucidated, but most of the changes can be at least partly interpreted as consequence of disturbance of anaplerosis. PMID:21113738

  7. Mechanism of bile acid-regulated glucose and lipid metabolism in duodenal-jejunal bypass

    PubMed Central

    Chai, Jie; Zou, Lei; Li, Xirui; Han, Dali; Wang, Shan; Hu, Sanyuan; Guan, Jie

    2015-01-01

    Bile acid plays an important role in regulating blood glucose, lipid and energy metabolism. The present study was implemented to determine the effect of duodenal-jejunal bypass (DJB) on FXR, TGR-5expression in terminal ileum and its bile acid-related mechanism on glucose and lipid metabolism. Immunohistochemistry was used to detect relative gene or protein expression in liver and intestine. Firstly, we found that expression of FXR in liver and terminal ileum of DJB group was significantly higher than that in S-DJB group (P<0.05). In addition, DJB dramatically increased the activation of TGR-5 in the liver of rats. Furthermore, PEPCK, G6Pase, FBPase 1 and GLP-1 were up-regulated by DJB. In conclusion, these results showed that bile acid ameliorated glucose and lipid metabolism through bile acid-FXR and bile acid- TGR-5 signaling pathway. PMID:26884847

  8. Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9

    PubMed Central

    DeBosch, Brian J.; Kluth, Oliver; Fujiwara, Hideji; Schürmann, Annette; Moley, Kelle

    2015-01-01

    Excess circulating uric acid, a product of hepatic glycolysis and purine metabolism, often accompanies metabolic syndrome. However, whether hyperuricemia contributes to development of metabolic syndrome or is merely a by-product of other processes that cause this disorder has not been resolved. Additionally, how uric acid is cleared from the circulation is incompletely understood. Here, we present a genetic model of spontaneous, early-onset metabolic syndrome in mice lacking the enterocyte urate transporter Glut9 (encoded by the SLC2A9 gene). Glut9-deficient mice develop impaired enterocyte uric acid transport kinetics, hyperuricemia, hyperuricosuria, spontaneous hypertension, dyslipidemia, and elevated body fat. Allopurinol, a xanthine oxidase inhibitor, can reverse the hypertension and hypercholesterolemia. These data provide evidence that hyperuricemia per se could have deleterious metabolic sequelae. Moreover, these findings suggest that enterocytes may regulate whole-body metabolism, and that enterocyte urate metabolism could potentially be targeted to modulate or prevent metabolic syndrome. PMID:25100214

  9. Global Metabolic Reconstruction and Metabolic Gene Evolution in the Cattle Genome

    PubMed Central

    Kim, Woonsu; Park, Hyesun; Seo, Seongwon

    2016-01-01

    The sequence of cattle genome provided a valuable opportunity to systematically link genetic and metabolic traits of cattle. The objectives of this study were 1) to reconstruct genome-scale cattle-specific metabolic pathways based on the most recent and updated cattle genome build and 2) to identify duplicated metabolic genes in the cattle genome for better understanding of metabolic adaptations in cattle. A bioinformatic pipeline of an organism for amalgamating genomic annotations from multiple sources was updated. Using this, an amalgamated cattle genome database based on UMD_3.1, was created. The amalgamated cattle genome database is composed of a total of 33,292 genes: 19,123 consensus genes between NCBI and Ensembl databases, 8,410 and 5,493 genes only found in NCBI or Ensembl, respectively, and 266 genes from NCBI scaffolds. A metabolic reconstruction of the cattle genome and cattle pathway genome database (PGDB) was also developed using Pathway Tools, followed by an intensive manual curation. The manual curation filled or revised 68 pathway holes, deleted 36 metabolic pathways, and added 23 metabolic pathways. Consequently, the curated cattle PGDB contains 304 metabolic pathways, 2,460 reactions including 2,371 enzymatic reactions, and 4,012 enzymes. Furthermore, this study identified eight duplicated genes in 12 metabolic pathways in the cattle genome compared to human and mouse. Some of these duplicated genes are related with specific hormone biosynthesis and detoxifications. The updated genome-scale metabolic reconstruction is a useful tool for understanding biology and metabolic characteristics in cattle. There has been significant improvements in the quality of cattle genome annotations and the MetaCyc database. The duplicated metabolic genes in the cattle genome compared to human and mouse implies evolutionary changes in the cattle genome and provides a useful information for further research on understanding metabolic adaptations of cattle. PMID

  10. Disturbed Amino Acid Metabolism in HIV: Association with Neuropsychiatric Symptoms

    PubMed Central

    Gostner, Johanna M.; Becker, Kathrin; Kurz, Katharina; Fuchs, Dietmar

    2015-01-01

    Blood levels of the amino acid phenylalanine, as well as of the tryptophan breakdown product kynurenine, are found to be elevated in human immunodeficiency virus type 1 (HIV-1)-infected patients. Both essential amino acids, tryptophan and phenylalanine, are important precursor molecules for neurotransmitter biosynthesis. Thus, dysregulated amino acid metabolism may be related to disease-associated neuropsychiatric symptoms, such as development of depression, fatigue, and cognitive impairment. Increased phenylalanine/tyrosine and kynurenine/tryptophan ratios are associated with immune activation in patients with HIV-1 infection and decrease upon effective antiretroviral therapy. Recent large-scale metabolic studies have confirmed the crucial involvement of tryptophan and phenylalanine metabolism in HIV-associated disease. Herein, we summarize the current status of the role of tryptophan and phenylalanine metabolism in HIV disease and discuss how inflammatory stress-associated dysregulation of amino acid metabolism may be part of the pathophysiology of common HIV-associated neuropsychiatric conditions. PMID:26236243

  11. Improving Fatty Acid Availability for Bio-Hydrocarbon Production in Escherichia coli by Metabolic Engineering

    PubMed Central

    Lin, Fengming; Chen, Yu; Levine, Robert; Lee, Kilho; Yuan, Yingjin; Lin, Xiaoxia Nina

    2013-01-01

    Previous studies have demonstrated the feasibility of producing fatty-acid-derived hydrocarbons in Escherichia coli. However, product titers and yields remain low. In this work, we demonstrate new methods for improving fatty acid production by modifying central carbon metabolism and storing fatty acids in triacylglycerol. Based on suggestions from a computational model, we deleted seven genes involved in aerobic respiration, mixed-acid fermentation, and glyoxylate bypass (in the order of cyoA, nuoA, ndh, adhE, dld, pta, and iclR) to modify the central carbon metabolic/regulatory networks. These gene deletions led to increased total fatty acids, which were the highest in the mutants containing five or six gene knockouts. Additionally, when two key enzymes in the fatty acid biosynthesis pathway were over-expressed, we observed further increase in strain △cyoA△adhE△nuoA△ndh△pta△dld, leading to 202 mg/g dry cell weight of total fatty acids, ~250% of that in the wild-type strain. Meanwhile, we successfully introduced a triacylglycerol biosynthesis pathway into E. coli through heterologous expression of wax ester synthase/acyl-coenzyme:diacylglycerol acyltransferase (WS/DGAT) enzymes. The added pathway improved both the amount and fuel quality of the fatty acids. These new metabolic engineering strategies are providing promising directions for future investigation. PMID:24147139

  12. Ammonium Metabolism Enzymes Aid Helicobacter pylori Acid Resistance

    PubMed Central

    Miller, Erica F.

    2014-01-01

    The gastric pathogen Helicobacter pylori possesses a highly active urease to support acid tolerance. Urea hydrolysis occurs inside the cytoplasm, resulting in the production of NH3 that is immediately protonated to form NH4+. This ammonium must be metabolized or effluxed because its presence within the cell is counterproductive to the goal of raising pH while maintaining a viable proton motive force (PMF). Two compatible hypotheses for mitigating intracellular ammonium toxicity include (i) the exit of protonated ammonium outward via the UreI permease, which was shown to facilitate diffusion of both urea and ammonium, and/or (ii) the assimilation of this ammonium, which is supported by evidence that H. pylori assimilates urea nitrogen into its amino acid pools. We investigated the second hypothesis by constructing strains with altered expression of the ammonium-assimilating enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) and the ammonium-evolving periplasmic enzymes glutaminase (Ggt) and asparaginase (AsnB). H. pylori strains expressing elevated levels of either GS or GDH are more acid tolerant than the wild type, exhibit enhanced ammonium production, and are able to alkalize the medium faster than the wild type. Strains lacking the genes for either Ggt or AsnB are acid sensitive, have 8-fold-lower urea-dependent ammonium production, and are more acid sensitive than the parent. Additionally, we found that purified H. pylori GS produces glutamine in the presence of Mg2+ at a rate similar to that of unadenylated Escherichia coli GS. These data reveal that all four enzymes contribute to whole-cell acid resistance in H. pylori and are likely important for assimilation and/or efflux of urea-derived ammonium. PMID:24936052

  13. Effect of the level and type of starchy concentrate on tissue lipid metabolism, gene expression and milk fatty acid secretion in Alpine goats receiving a diet rich in sunflower-seed oil.

    PubMed

    Bernard, L; Leroux, C; Rouel, J; Bonnet, M; Chilliard, Y

    2012-04-01

    The potential benefits on human health have prompted an interest in developing nutritional strategies for reducing saturated and increasing specific unsaturated fatty acids (FA) in ruminant milk. The impact of the level and type of starchy concentrate added to diets supplemented with sunflower-seed oil on caprine milk FA composition and on mammary, omental and perirenal adipose, and liver lipid metabolism was examined in fourteen Alpine goats in a replicated 3 × 3 Latin square with 21 d experimental periods. Treatments were a grass hay-based diet with a high level of forage (F) or a high level of concentrate with either maize grain (CM) or flattened wheat (CW) as source of starch and supplemented with 130 g/d sunflower-seed oil. Milk yield was enhanced (P<0·01) and milk fat content was decreased on the CM and CW diets compared with the F diet, resulting in similar milk fat secretion. Both high-concentrate diets increased (P<0·05) milk yield of 10 : 0-16 : 0 and decreased trans-9,11-18 : 1 and cis-9, trans-11-18 : 2. The CW diet decreased (P<0·05) the output of ΣC18 and Σcis-18 : 1 and increased (P<0·05) the output of trans-10-18 : 1 in milk. The expression and/or activity of fourteen proteins involved in the major lipogenic pathways in mammary tissues and of lipogenic genes in adipose and liver tissues were similar among treatments. In conclusion, high starch concentrates alter milk FA yield via mechanisms independent of changes in mammary, liver or adipose tissue lipogenic gene expression. Furthermore, data provided indications that mammary lipogenic responses to starch-rich diets differ between caprine and bovine ruminants. PMID:21875448

  14. Microarray Analysis of the Gene Expression Profile and Lipid Metabolism in Fat-1 Transgenic Cattle.

    PubMed

    Liu, Xinfeng; Bai, Chunling; Ding, Xiangbin; Wei, Zhuying; Guo, Hong; Li, Guangpeng

    2015-01-01

    Long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs) are beneficial for human health. However, humans and mammals are unable to synthesize n-3 PUFAs because they lack the n-3 desaturase gene fat-1 and must therefore obtain this type of fatty acid through their diet. Through the production of fat-1 transgenic animals, it is possible to obtain animal products that are rich in n-3 PUFAs, such as meat and milk. The aim of this study was to analyze the gene expression profile and the mechanism of lipid metabolism in fat-1 transgenic cattle and to accumulate important basic data that are required to obtain more efficient fat-1 transgenic cattle. Transcriptome profiling of fat-1 transgenic and wild-type cattle identified differentially expressed genes that are involved in 90 biological pathways, eight pathways of which were related to lipid metabolism processes 36 genes of which were related to lipid metabolism. This analysis also identified 11 significantly enriched genes that were involved in the peroxisome proliferator-activated receptor signaling pathway. These findings were verified by quantitative polymerase chain reaction. The information obtained in this study indicated that the introduction of an exogenous fat-1 gene into cattle affects the gene expression profile and the process of lipid metabolism in these animals. These results may provide important insights into how an exogenous fat-1 gene synthesizes n-3 PUFAs in transgenic cattle and other mammals. PMID:26426396

  15. Identification of the phytosphingosine metabolic pathway leading to odd-numbered fatty acids.

    PubMed

    Kondo, Natsuki; Ohno, Yusuke; Yamagata, Maki; Obara, Takashi; Seki, Naoya; Kitamura, Takuya; Naganuma, Tatsuro; Kihara, Akio

    2014-01-01

    The long-chain base phytosphingosine is a component of sphingolipids and exists in yeast, plants and some mammalian tissues. Phytosphingosine is unique in that it possesses an additional hydroxyl group compared with other long-chain bases. However, its metabolism is unknown. Here we show that phytosphingosine is metabolized to odd-numbered fatty acids and is incorporated into glycerophospholipids both in yeast and mammalian cells. Disruption of the yeast gene encoding long-chain base 1-phosphate lyase, which catalyzes the committed step in the metabolism of phytosphingosine to glycerophospholipids, causes an ~40% reduction in the level of phosphatidylcholines that contain a C15 fatty acid. We also find that 2-hydroxypalmitic acid is an intermediate of the phytosphingosine metabolic pathway. Furthermore, we show that the yeast MPO1 gene, whose product belongs to a large, conserved protein family of unknown function, is involved in phytosphingosine metabolism. Our findings provide insights into fatty acid diversity and identify a pathway by which hydroxyl group-containing lipids are metabolized. PMID:25345524

  16. ccmGDB: a database for cancer cell metabolism genes

    PubMed Central

    Kim, Pora; Cheng, Feixiong; Zhao, Junfei; Zhao, Zhongming

    2016-01-01

    Accumulating evidence has demonstrated that rewiring of metabolism in cells is an important hallmark of cancer. The percentage of patients killed by metabolic disorder has been estimated to be 30% of the advanced-stage cancer patients. Thus, a systematic annotation of cancer cell metabolism genes is imperative. Here, we present ccmGDB (Cancer Cell Metabolism Gene DataBase), a comprehensive annotation database for cell metabolism genes in cancer, available at http://bioinfo.mc.vanderbilt.edu/ccmGDB. We assembled, curated, and integrated genetic, genomic, transcriptomic, proteomic, biological network and functional information for over 2000 cell metabolism genes in more than 30 cancer types. In total, we integrated over 260 000 somatic alterations including non-synonymous mutations, copy number variants and structural variants. We also integrated RNA-Seq data in various primary tumors, gene expression microarray data in over 1000 cancer cell lines and protein expression data. Furthermore, we constructed cancer or tissue type-specific, gene co-expression based protein interaction networks and drug-target interaction networks. Using these systematic annotations, the ccmGDB portal site provides 6 categories: gene summary, phenotypic information, somatic mutations, gene and protein expression, gene co-expression network and drug pharmacological information with a user-friendly interface for browsing and searching. ccmGDB is developed and maintained as a useful resource for the cancer research community. PMID:26519468

  17. Arachidonic acid metabolism in endotoxin tolerance.

    PubMed

    Wise, W C; Cook, J A; Halushka, P V

    1983-01-01

    The arachidonic acid metabolites thromboxane A2, a potent platelet aggregator, and prostacyclin, a potent vasodilator, are released early in endotoxin shock and may contribute to its pathologic sequelae. Plasma levels of thromboxane (Tx) A2 and prostacyclin were measured via radioimmunoassay of their stable metabolites immunoreactive (i) TxB2 and i6-keto-PGF1 alpha in tolerant and nontolerant rats after endotoxin. Long-Evans rats were made tolerant to endotoxin by four daily IV injections of S enteritidis (endotoxin) (0.1, 0.5, 1, and 5 mg/kg). In normal rats (N = 15) given LPS (IV, 15 mg/kg), only 11% survived at 24 h; in contrast, tolerant rats (N = 13) all survived even at a dose of 50 mg/kg. At 1 h, after endotoxin (15 mg/kg) IV, plasma i6-keto-PGF1 alpha in nontolerant rats was 1,005 +/- 149 pg/ml (N = 14) and continued to rise to 4,209 +/- 757 pg/ml (N = 5) (P less than 0.001) after 4 h. In tolerant rats, given endotoxin (15 mg/kg), plasma i6-keto-PGF1 alpha at 1 h was 800 +/- 203 pg/ml (N = 5) and was not significantly different (734 +/- 254 pg/ml) at 4 h. Plasma iTxB2 at both 1 and 4 h was significantly (P less than 0.01) lower in tolerant than nontolerant rats. Both iTxB2 and i6-keto-PGF1 alpha were significantly (P less than 0.01) lower in tolerant rats given 50 mg/kg IV endotoxin than nontolerant rats. Endotoxin-induced elevation in fibrin degradation products was significantly decreased (P less than 0.05) during endotoxin tolerance although there was no difference in the severity of thrombocytopenia. These composite observations demonstrate that endotoxin tolerance in the rat is associated with altered arachidonic acid metabolism. PMID:6410699

  18. Ecophysiology of Crassulacean Acid Metabolism (CAM)

    PubMed Central

    LÜTTGE, ULRICH

    2004-01-01

    • Background and Scope Crassulacean Acid Metabolism (CAM) as an ecophysiological modification of photosynthetic carbon acquisition has been reviewed extensively before. Cell biology, enzymology and the flow of carbon along various pathways and through various cellular compartments have been well documented and discussed. The present attempt at reviewing CAM once again tries to use a different approach, considering a wide range of inputs, receivers and outputs. • Input Input is given by a network of environmental parameters. Six major ones, CO2, H2O, light, temperature, nutrients and salinity, are considered in detail, which allows discussion of the effects of these factors, and combinations thereof, at the individual plant level (‘physiological aut‐ecology’). • Receivers Receivers of the environmental cues are the plant types genotypes and phenotypes, the latter including morphotypes and physiotypes. CAM genotypes largely remain ‘black boxes’, and research endeavours of genomics, producing mutants and following molecular phylogeny, are just beginning. There is no special development of CAM morphotypes except for a strong tendency for leaf or stem succulence with large cells with big vacuoles and often, but not always, special water storage tissues. Various CAM physiotypes with differing degrees of CAM expression are well characterized. • Output Output is the shaping of habitats, ecosystems and communities by CAM. A number of systems are briefly surveyed, namely aquatic systems, deserts, salinas, savannas, restingas, various types of forests, inselbergs and paramós. • Conclusions While quantitative census data for CAM diversity and biomass are largely missing, intuition suggests that the larger CAM domains are those systems which are governed by a network of interacting stress factors requiring versatile responses and not systems where a single stress factor strongly prevails. CAM is noted to be a strategy for variable, flexible and plastic

  19. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    PubMed

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-01

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis. PMID:26398285

  20. Effect of cholestyramine on bile acid metabolism in normal man

    PubMed Central

    Garbutt, J. T.; Kenney, T. J.

    1972-01-01

    The effect of cholestyramine administration on the enterohepatic circulation of bile acids was studied in eight normal volunteers. In six subjects the metabolism of sodium taurocholate-14C was determined after its intravenous injection before and during the 6th wk of cholestyramine administration, 16 g/day. In two subjects, the metabolism of cholic acid-14C was observed before and during the 2nd wk of cholestyramine, 16 g/day. Bile acid sequestration resulted in a more rapid disappearance of the injected primary bile acid and its metabolic products. The composition of fasting bile acids was promptly altered by cholestyramine to predominantly glycine-conjugated trihydroxy bile acid. In four subjects, unconjugated bile acid-14C was administered during cholestyramine administration; the relative proportion of glycine-conjugated bile acid-14C before enterohepatic circulation was similar to the relative proportion of unlabeled glycine-conjugated bile acid present in duodenal contents after an overnight fast, indicating that a hepatic mechanism was responsible for the elevated ratios of glycine- to taurine-conjugated bile acid (G: T ratios) observed. The relative proportions of both dihydroxy bile acids, chenodeoxycholic and deoxycholic, were significantly reduced. Steatorrhea did not occur, and the total bile acid pool size determined after an overnight fast was unaltered by cholestyramine. These findings suggest that in normal man bile acid sequestered from the enterohepatic circulation by cholestyramine is replaced by an increase in hepatic synthesis primarily via the pathway leading to production of glycocholic acid. PMID:5080408

  1. Mining the bitter melon (momordica charantia l.) seed transcriptome by 454 analysis of non-normalized and normalized cDNA populations for conjugated fatty acid metabolism-related genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeds of Momordica charantia (bitter melon) produce high levels of eleostearic acid, an unusual conjugated fatty acid with industrial value. Deep sequencing of non-normalized and normalized cDNAs from developing bitter melon seeds was conducted to uncover key genes required for biotechnological tran...

  2. Uric acid as a modulator of glucose and lipid metabolism.

    PubMed

    Lima, William Gustavo; Martins-Santos, Maria Emília Soares; Chaves, Valéria Ernestânia

    2015-09-01

    In humans, uric acid is the final oxidation product of purine catabolism. The serum uric acid level is based on the balance between the absorption, production and excretion of purine. Uric acid is similarly produced in the liver, adipose tissue and muscle and is primarily excreted through the urinary tract. Several factors, including a high-fructose diet and the use of xenobiotics and alcohol, contribute to hyperuricaemia. Hyperuricaemia belongs to a cluster of metabolic and haemodynamic abnormalities, called metabolic syndrome, characterised by abdominal obesity, glucose intolerance, insulin resistance, dyslipidaemia and hypertension. Hyperuricaemia reduction in the Pound mouse or fructose-fed rats, as well as hyperuricaemia induction by uricase inhibition in rodents and studies using cell culture have suggested that uric acid plays an important role in the development of metabolic syndrome. These studies have shown that high uric acid levels regulate the oxidative stress, inflammation and enzymes associated with glucose and lipid metabolism, suggesting a mechanism for the impairment of metabolic homeostasis. Humans lacking uricase, the enzyme responsible for uric acid degradation, are susceptible to these effects. In this review, we summarise the current knowledge of the effects of uric acid on the regulation of metabolism, primarily focusing on liver, adipose tissue and skeletal muscle. PMID:26133655

  3. Eicosapentaenoic acid modulates fatty acid metabolism and inflammation in Psammomys obesus.

    PubMed

    Atek-Mebarki, Feriel; Hichami, Aziz; Abdoul-Azize, Souleymane; Bitam, Arezki; Koceïr, Elhadj Ahmed; Khan, Naim Akhtar

    2015-02-01

    The desert gerbil, Psammomys obesus, is a unique polygenic animal model of metabolic syndrome (insulin resistance, obesity and type 2 diabetes), and these pathological conditions resemble to those in human beings. In this study, the animals were fed ad libitum either a natural diet (ND) which contained desertic halophile plants or a standard laboratory diet (STD) or a diet which contained eicosapentaenoic acid (EPA), hence, termed as EPA diet (EPAD). In EPAD, 50% of total lipid content was replaced by EPA oil. By employing real-time PCR, we assessed liver expression of key genes involved in fatty acid metabolism such as PPAR-α, SREBP-1c, LXR-α and CHREBP. We also studied the expression of two inflammatory genes, i.e., TNF-α and IL-1β, in liver and adipose tissue of these animals. The STD, considered to be a high caloric diet for this animal, triggered insulin resistance and high lipid levels, along with high hepatic SREBP-1c, LXR-α and CHREBP mRNA expression. TNF-α and IL-1β mRNA were also high in liver of STD fed animals. Feeding EPAD improved plasma glucose, insulin and triacylglycerol levels along with hepatic lipid composition. These observations suggest that EPA exerts beneficial effects in P. obesus. PMID:25528298

  4. ALS: A bucket of genes, environment, metabolism and unknown ingredients.

    PubMed

    Zufiría, Mónica; Gil-Bea, Francisco Javier; Fernández-Torrón, Roberto; Poza, Juan José; Muñoz-Blanco, Jose Luis; Rojas-García, Ricard; Riancho, Javier; de Munain, Adolfo López

    2016-07-01

    The scientific scenario of amyotrophic lateral sclerosis (ALS) has dramatically changed since TDP-43 aggregates were discovered in 2006 as the main component of the neuronal inclusions seen in the disease, and more recently, when the implication of C9ORF72 expansion in familial and sporadic cases of ALS and frontotemporal dementia was confirmed. These discoveries have enlarged an extense list of genes implicated in different cellular processes such as RNA processing or autophagia among others and have broaden the putative molecular targets of the disease. Some of ALS-related genes such as TARDBP or SOD1 among others have important roles in the regulation of glucose and fatty acids metabolism, so that an impairment of fatty acids (FA) consumption and ketogenic deficits during exercise in ALS patients would connect the physiopathology with some of the more intriguing epidemiological traits of the disease. The current understanding of ALS as part of a continuum with other neurodegenerative diseases and a crossroads between genetic, neurometabolic and environmental factors represent a fascinating model of interaction that could be translated to other neurodegenerative diseases. In this review we summarize the most relevant data obtained in the ten last years and the key lines for future research in ALS. PMID:27236050

  5. Amino acid composition and amino acid-metabolic network in supragingival plaque.

    PubMed

    Washio, Jumpei; Ogawa, Tamaki; Suzuki, Keisuke; Tsukiboshi, Yosuke; Watanabe, Motohiro; Takahashi, Nobuhiro

    2016-01-01

    Dental plaque metabolizes both carbohydrates and amino acids. The former can be degraded to acids mainly, while the latter can be degraded to various metabolites, including ammonia, acids and amines, and associated with acid-neutralization, oral malodor and tissue inflammation. However, amino acid metabolism in dental plaque is still unclear. This study aimed to elucidate what kinds of amino acids are available as metabolic substrates and how the amino acids are metabolized in supragingival plaque, by a metabolome analysis. Amino acids and the related metabolites in supragingival plaque were extracted and quantified comprehensively by CE-TOFMS. Plaque samples were also incubated with amino acids, and the amounts of ammonia and amino acid-related metabolites were measured. The concentration of glutamate was the highest in supragingival plaque, while the ammonia-production was the highest from glutamine. The obtained metabolome profile revealed that amino acids are degraded through various metabolic pathways, including deamination, decarboxylation and transamination and that these metabolic systems may link each other, as well as with carbohydrate metabolic pathways in dental plaque ecosystem. Moreover, glutamine and glutamate might be the main source of ammonia production, as well as arginine, and contribute to pH-homeostasis and counteraction to acid-induced demineralization in supragingival plaque. PMID:27545001

  6. CACODYLIC ACID (DMAV): METABOLISM AND CARCINOGENIC MODE OF ACTION

    EPA Science Inventory

    The cacodylic acid (DMAV) issue paper discusses the metabolism and pharmacokinetics of the various arsenical chemicals; evaluates the appropriate dataset to quantify the potential cancer risk to the organic arsenical herbicides; provides an evaluation of the mode of carcinogenic...

  7. Fatty acid metabolism: Implications for diet, genetic variation, and disease

    PubMed Central

    Suburu, Janel; Gu, Zhennan; Chen, Haiqin; Chen, Wei; Zhang, Hao; Chen, Yong Q.

    2014-01-01

    Cultures across the globe, especially Western societies, are burdened by chronic diseases such as obesity, metabolic syndrome, cardiovascular disease, and cancer. Several factors, including diet, genetics, and sedentary lifestyle, are suspected culprits to the development and progression of these health maladies. Fatty acids are primary constituents of cellular physiology. Humans can acquire fatty acids by de novo synthesis from carbohydrate or protein sources or by dietary consumption. Importantly, regulation of their metabolism is critical to sustain balanced homeostasis, and perturbations of such can lead to the development of disease. Here, we review de novo and dietary fatty acid metabolism and highlight recent advances in our understanding of the relationship between dietary influences and genetic variation in fatty acid metabolism and their role in chronic diseases. PMID:24511462

  8. Modulation of fatty acid and bile acid metabolism by PPARα protects against alcoholic liver disease

    PubMed Central

    Li, Heng-Hong; Tyburski, John B.; Wang, Yiwen; Strawn, Steve; Moon, Bo-Hyun; Kallakury, Bhaskar V. S.; Gonzalez, Frank J.; Fornace, Albert J.

    2014-01-01

    Background Chronic alcohol intake affects liver function and causes hepatic pathological changes. It has been shown that peroxisome proliferator-activated receptor α (PPARα)-null mice developed more pronounced hepatic changes than wild type (WT) mice after chronic exposure to a diet containing 4% alcohol. The remarkable similarity between the histopathology of ALD in Ppara-null model and in humans, and the fact that PPARα expression and activity in human liver are less than one-tenth of those in WT mouse liver make Ppara-null a good system to investigate ALD. Methods In this study, the Ppara-null model was used to elucidate the dynamic regulation of PPARα activity during chronic alcohol intake. Hepatic transcriptomic and metabolomic analyses were used to examine alterations of gene expression and metabolites associated with pathological changes. The changes triggered by alcohol consumption on gene expression and metabolites in Ppara-null mice were compared with those in wild-type mice. Results The results showed that in the presence of PPARα, three major metabolic pathways in mitochondria, namely the fatty acid β-oxidation, the tricarboxylic acid cycle (TCA) and the electron transfer chain, were induced in response to two-month alcohol feeding, while these responses were greatly reduced in the absence of PPARα. In line with the transcriptional modulations of these metabolic pathways, lipidomic profiling showed consistent accumulation of triglycerides in Ppara-null mice, a robust increase of hepatic cholic acid and its derivatives, and a strong induction of fibrogenesis genes exclusively in alcohol-fed Ppara-null mice. Conclusions These observations indicate that PPARα plays a protective role to enhance mitochondrial function in response to chronic alcohol consumption by adaptive transcriptional activation and suggest that activation of this nuclear receptor may be of therapeutic value in the treatment of ALD. PMID:24773203

  9. Production of γ-linolenic acid and stearidonic acid by Synechococcus sp. PCC7002 containing cyanobacterial fatty acid desaturase genes

    NASA Astrophysics Data System (ADS)

    Dong, Xuewei; He, Qingfang; Peng, Zhenying; Yu, Jinhui; Bian, Fei; Li, Youzhi; Bi, Yuping

    2015-11-01

    Genetic modification is useful for improving the nutritional qualities of cyanobacteria. To increase the total unsaturated fatty acid content, along with the ratio of ω-3/ω-6 fatty acids, genetic engineering can be used to modify fatty acid metabolism. Synechococcus sp. PCC7002, a fast-growing cyanobacterium, does not contain a Δ6 desaturase gene and is therefore unable to synthesize γ-linolenic acid (GLA) and stearidonic acid (SDA), which are important in human health. In this work, we constructed recombinant vectors Syd6D, Syd15D and Syd6Dd15D to express the Δ15 desaturase and Δ6 desaturase genes from Synechocystis PCC6803 in Synechococcus sp. PCC7002, with the aim of expressing polyunsaturated fatty acids. Overexpression of the Δ15 desaturase gene in Synechococcus resulted in 5.4 times greater accumulation of α-linolenic acid compared with the wild-type while Δ6 desaturase gene expression produced both GLA and SDA. Co-expression of the two genes resulted in low-level accumulation of GLA but much larger amounts of SDA, accounting for as much to 11.64% of the total fatty acid content.

  10. Production of γ-linolenic acid and stearidonic acid by Synechococcus sp. PCC7002 containing cyanobacterial fatty acid desaturase genes

    NASA Astrophysics Data System (ADS)

    Dong, Xuewei; He, Qingfang; Peng, Zhenying; Yu, Jinhui; Bian, Fei; Li, Youzhi; Bi, Yuping

    2016-07-01

    Genetic modification is useful for improving the nutritional qualities of cyanobacteria. To increase the total unsaturated fatty acid content, along with the ratio of ω-3/ω-6 fatty acids, genetic engineering can be used to modify fatty acid metabolism. Synechococcus sp. PCC7002, a fast-growing cyanobacterium, does not contain a Δ6 desaturase gene and is therefore unable to synthesize γ-linolenic acid (GLA) and stearidonic acid (SDA), which are important in human health. In this work, we constructed recombinant vectors Syd6D, Syd15D and Syd6Dd15D to express the Δ15 desaturase and Δ6 desaturase genes from Synechocystis PCC6803 in Synechococcus sp. PCC7002, with the aim of expressing polyunsaturated fatty acids. Overexpression of the Δ15 desaturase gene in Synechococcus resulted in 5.4 times greater accumulation of α-linolenic acid compared with the wild-type while Δ6 desaturase gene expression produced both GLA and SDA. Co-expression of the two genes resulted in low-level accumulation of GLA but much larger amounts of SDA, accounting for as much to 11.64% of the total fatty acid content.

  11. Gene Expression in Plant Lipid Metabolism in Arabidopsis Seedlings

    PubMed Central

    Hsiao, An-Shan; Haslam, Richard P.; Michaelson, Louise V.; Liao, Pan; Napier, Johnathan A.; Chye, Mee-Len

    2014-01-01

    Events in plant lipid metabolism are important during seedling establishment. As it has not been experimentally verified whether lipid metabolism in 2- and 5-day-old Arabidopsis thaliana seedlings is diurnally-controlled, quantitative real-time PCR analysis was used to investigate the expression of target genes in acyl-lipid transfer, β-oxidation and triacylglycerol (TAG) synthesis and hydrolysis in wild-type Arabidopsis WS and Col-0. In both WS and Col-0, ACYL-COA-BINDING PROTEIN3 (ACBP3), DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1) and DGAT3 showed diurnal control in 2- and 5-day-old seedlings. Also, COMATOSE (CTS) was diurnally regulated in 2-day-old seedlings and LONG-CHAIN ACYL-COA SYNTHETASE6 (LACS6) in 5-day-old seedlings in both WS and Col-0. Subsequently, the effect of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) from the core clock system was examined using the cca1lhy mutant and CCA1-overexpressing (CCA1-OX) lines versus wild-type WS and Col-0, respectively. Results revealed differential gene expression in lipid metabolism between 2- and 5-day-old mutant and wild-type WS seedlings, as well as between CCA1-OX and wild-type Col-0. Of the ACBPs, ACBP3 displayed the most significant changes between cca1lhy and WS and between CCA1-OX and Col-0, consistent with previous reports that ACBP3 is greatly affected by light/dark cycling. Evidence of oil body retention in 4- and 5-day-old seedlings of the cca1lhy mutant in comparison to WS indicated the effect of cca1lhy on storage lipid reserve mobilization. Lipid profiling revealed differences in primary lipid metabolism, namely in TAG, fatty acid methyl ester and acyl-CoA contents amongst cca1lhy, CCA1-OX, and wild-type seedlings. Taken together, this study demonstrates that lipid metabolism is subject to diurnal regulation in the early stages of seedling development in Arabidopsis. PMID:25264899

  12. [The physiology and pathology of bile acid metabolism].

    PubMed

    Coraggio, F; Farro, M; Spina, M

    1980-01-01

    The biochemistry and metabolism of bile acids are briefly described together with their importance in the maintenance of biliary homeostasis. An account is given os some situations in which such metabolism is impaired: in cirrhosis of the liver, an isotope technique was used to show a fall in cholic acid (expression of liver cell damage); in cholostasis, stress is laid on reduced bile acid synthesis and a simultaneous increase in sensitivity of the bile canicular epithelium to secretin stimulation. Lastly, evidence is produced to suggest that the diarrhoea which often recurs after extensive intestinal resection is secondary to an increase in intestinal AMPc cells induced by bile acids. PMID:6257207

  13. Amino Acids as Metabolic Substrates during Cardiac Ischemia

    PubMed Central

    Drake, Kenneth J.; Sidorov, Veniamin Y.; McGuinness, Owen P.; Wasserman, David H.; Wikswo, John P.

    2013-01-01

    The heart is well known as a metabolic omnivore in that it is capable of consuming fatty acids, glucose, ketone bodies, pyruvate, lactate, amino acids and even its own constituent proteins, in order of decreasing preference. The energy from these substrates supports not only mechanical contraction, but also the various transmembrane pumps and transporters required for ionic homeostasis, electrical activity, metabolism and catabolism. Cardiac ischemia – for example, due to compromise of the coronary vasculature or end-stage heart failure – will alter both electrical and metabolic activity. While the effects of myocardial ischemia on electrical propagation and stability have been studied in depth, the effects of ischemia on metabolic substrate preference has not been fully appreciated: oxygen deprivation during ischemia will significantly alter the relative ability of the heart to utilize each of these substrates. Although changes in cardiac metabolism are understood to be an underlying component in almost all cardiac myopathies, the potential contribution of amino acids in maintaining cardiac electrical conductance and stability during ischemia is underappreciated. Despite clear evidence that amino acids exert cardioprotective effects in ischemia and other cardiac disorders, their role in the metabolism of the ischemic heart has yet to be fully elucidated. This review synthesizes the current literature of the metabolic contribution of amino acids during ischemia by analyzing relevant historical and recent research. PMID:23354395

  14. Deregulation of lipid metabolism pathway genes in nasopharyngeal carcinoma cells.

    PubMed

    Daker, Maelinda; Bhuvanendran, Saatheeyavaane; Ahmad, Munirah; Takada, Kenzo; Khoo, Alan Soo-Beng

    2013-03-01

    Nasopharyngeal carcinoma (NPC) is a unique tumour of epithelial origin with a distinct geographical distribution, closely associated with the Epstein‑Barr virus (EBV). EBV‑encoded RNAs (EBERs) are small non‑polyadenylated RNAs that are abundantly expressed in latent EBV‑infected NPC cells. To study the role of EBERs in NPC, we established stable expression of EBERs in HK1, an EBV‑negative NPC cell line. Cells expressing EBERs consistently exhibited an increased growth rate. However, EBERs did not confer resistance towards cisplatin‑induced apoptosis or promote migration or invasion ability in the cells tested. Using microarray gene expression profiling, we identified potential candidate genes that were deregulated in NPC cells expressing EBERs. Gene Ontology analysis of the data set revealed that EBERs upregulate the cellular lipid metabolic process. Upregulation of low‑density lipoprotein receptor (LDLR) and fatty acid synthase (FASN) was observed in EBER‑expressing cells. NPC cells exhibited LDL‑dependent cell proliferation. In addition, a polyphenolic flavonoid compound, quercetin, known to inhibit FASN, was found to inhibit proliferation of NPC cells. PMID:23292678

  15. Acid Stress-Mediated Metabolic Shift in Lactobacillus sanfranciscensis LSCE1 ▿

    PubMed Central

    Serrazanetti, Diana I.; Ndagijimana, Maurice; Sado-Kamdem, Sylvain L.; Corsetti, Aldo; Vogel, Rudi F.; Ehrmann, Matthias; Guerzoni, M. Elisabetta

    2011-01-01

    Lactobacillus sanfranciscensis LSCE1 was selected as a target organism originating from recurrently refreshed sourdough to study the metabolic rerouting associated with the acid stress exposure during sourdough fermentation. In particular, the acid stress induced a metabolic shift toward overproduction of 3-methylbutanoic and 2-methylbutanoic acids accompanied by reduced sugar consumption and primary carbohydrate metabolite production. The fate of labeled leucine, the role of different nutrients and precursors, and the expression of the genes involved in branched-chain amino acid (BCAA) catabolism were evaluated at pH 3.6 and 5.8. The novel application of the program XCMS to the solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) data allowed accurate separation and quantification of 2-methylbutanoic and 3-methylbutanoic acids, generally reported as a cumulative datum. The metabolites coming from BCAA catabolism increased up to seven times under acid stress. The gene expression analysis confirmed that some genes associated with BCAA catabolism were overexpressed under acid conditions. The experiment with labeled leucine showed that 2-methylbutanoic acid originated also from leucine. While the overproduction of 3-methylbutanoic acid under acid stress can be attributed to the need to maintain redox balance, the rationale for the production of 2-methylbutanoic acid from leucine can be found in a newly proposed biosynthesis pathway leading to 2-methylbutanoic acid and 3 mol of ATP per mol of leucine. Leucine catabolism to 3-methylbutanoic and 2-methylbutanoic acids suggests that the switch from sugar to amino acid catabolism supports growth in L. sanfranciscensis in restricted environments such as sourdough characterized by acid stress and recurrent carbon starvation. PMID:21335381

  16. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature

    PubMed Central

    Norambuena, Fernando; Morais, Sofia; Emery, James A.; Turchini, Giovanni M.

    2015-01-01

    Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad–time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature

  17. Gene Therapy for the Treatment of Neurological Disorders: Metabolic Disorders

    PubMed Central

    Gessler, Dominic J.; Gao, Guangping

    2016-01-01

    Metabolic disorders comprise a large group of heterogeneous diseases ranging from very prevalent diseases such as diabetes mellitus to rare genetic disorders like Canavan Disease. Whether either of these diseases is amendable by gene therapy depends to a large degree on the knowledge of their pathomechanism, availability of the therapeutic gene, vector selection, and availability of suitable animal models. In this book chapter, we review three metabolic disorders of the central nervous system (CNS; Canavan Disease, Niemann–Pick disease and Phenylketonuria) to give examples for primary and secondary metabolic disorders of the brain and the attempts that have been made to use adeno-associated virus (AAV) based gene therapy for treatment. Finally, we highlight commonalities and obstacles in the development of gene therapy for metabolic disorders of the CNS exemplified by those three diseases. PMID:26611604

  18. Decreased consumption of branched chain amino acids improves metabolic health

    PubMed Central

    Arriola Apelo, Sebastian I.; Neuman, Joshua C.; Kasza, Ildiko; Schmidt, Brian A.; Cava, Edda; Spelta, Francesco; Tosti, Valeria; Syed, Faizan A.; Baar, Emma L.; Veronese, Nicola; Cottrell, Sara E.; Fenske, Rachel J.; Bertozzi, Beatrice; Brar, Harpreet K.; Pietka, Terri; Bullock, Arnold D.; Figenshau, Robert S.; Andriole, Gerald L.; Merrins, Matthew J.; Alexander, Caroline M.; Kimple, Michelle E.; Lamming, Dudley W.

    2016-01-01

    Protein restricted, high carbohydrate diets improve metabolic health in rodents, yet the precise dietary components that are responsible for these effects have not been identified. Further, the applicability of these studies to humans is unclear. Here, we demonstrate in a randomized controlled trial that a moderately protein restricted (PR) diet also improves markers of metabolic health in humans. Intriguingly, we find that feeding mice a diet specifically reduced in branched chain amino acids (BCAAs) is sufficient to improve glucose tolerance and body composition equivalently to a PR diet, via metabolically distinct pathways. Our results highlight a critical role for dietary quality at the level of amino acids in the maintenance of metabolic health, and suggest that diets specifically reduced in BCAAs, or pharmacological interventions in this pathway, may offer a translatable way to achieve many of the metabolic benefits of a PR diet. PMID:27346343

  19. Effect of sunflower-seed oil and linseed oil on tissue lipid metabolism, gene expression, and milk fatty acid secretion in Alpine goats fed maize silage-based diets.

    PubMed

    Bernard, L; Bonnet, M; Leroux, C; Shingfield, K J; Chilliard, Y

    2009-12-01

    Lipid in the diet is known to enhance milk fat secretion and alter milk fatty acid composition in lactating goats. In the current experiment, the contribution of peripheral tissue and mammary gland lipid metabolism to changes in milk fat composition from plant oils was examined. Fourteen Alpine goats in midlactation were used in a 3 x 3 Latin square design with 28-d experimental periods. Treatments comprised maize silage-based diets containing no additional oil (M), sunflower-seed oil (MSO; 6.1% of diet DM), or linseed oil (MLO; 6.2% of diet DM). Compared with the control, milk yield was greater in goats fed MSO (3.37 and 3.62 kg/d, respectively), whereas MLO enhanced milk fat content (+3.9 g/kg), resulting in a 14% increase in milk fat secretion. Both MSO and MLO increased milk lactose secretion by 12 and 8%, respectively, compared with M. Relative to the control, plant oils decreased C10 to C16 secretion (32 and 24%, respectively, for MSO and MLO) and enhanced C18 output in milk (ca. 110%). Diets MSO and MLO increased cis-9 18:1 secretion in milk by 25 and 31%, respectively, compared with M. The outputs of trans-11 18:1 and cis-9, trans-11 18:2 in milk were increased 8.34- and 6.02-fold for MSO and 5.58- and 3.71-fold for MLO compared with M, and MSO increased trans-10 18:1 and trans-10, cis-12 18:2 secretion. Plant oils decreased milk fat cis-9 14:1/14:0; cis-9 16:1/16:0; cis-9 18:1/18:0; and cis-9, trans-11 18:2/trans-11 18:1 concentration ratios but had no effect on mammary stearoyl-CoA desaturase mRNA or activity. Furthermore, changes in milk fatty acid secretion were not associated with alterations in mammary acetyl-CoA carboxylase mRNA and activity, abundance of mRNA encoding for lipoprotein lipase and fatty acid synthase, or malic enzyme and glycerol-3-phosphate dehydrogenase activity in mammary tissue. Mammary lipoprotein lipase activity was increased with MSO relative to MLO. Treatments had no effect on glucose-6-phosphate dehydrogenase, malic enzyme

  20. Natural toxins that affect plant amino acid metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A diverse range of natural compounds interfere with the synthesis and other aspects of amino acid metabolism. Some are amino acid analogues, but most are not. This review covers a number of specific natural phytotoxic compounds by molecular target site. Inhibition of glutamine synthetase is of part...

  1. Fatty acid metabolism pathway play an important role in carcinogenesis of human colorectal cancers by Microarray-Bioinformatics analysis.

    PubMed

    Yeh, Ching-Sheng; Wang, Jaw-Yuan; Cheng, Tian-Lu; Juan, Chin-Hung; Wu, Chan-Han; Lin, Shiu-Ru

    2006-02-28

    The present study systematically explored metabolic pathways and altered expressions of genes speculatively participating in colorectal carcinogenesis by using a Microarray-Bioinformatic analysis methods. The results revealed that 157 genes were up-regulated and 281 genes were down-regulated in colorectal cancer (CRC). Gene Ontology (GO) and relevant bioinformatics tools indicated that the functional category to which 438 genes (12%; 438/3800) of the most frequent alteration belonged was metabolism. The analysis of 10 colorectal cancer tissue specimens demonstrated that genes involved in fatty acid metabolic pathways had high rates of overexpression. In addition, we stimulated CRL-1790 cell line with linoleic acid (a polyunsaturated fatty acid) for 12, 24, 48 and 72 h. Cell proliferation was elevated by 5, 25, 28 and 31% (P<0.05), respectively. Further analyses revealed that the genes increasingly expressed in the cell line included enoyl-Coenzyme A, hydratase/3-hydroxyacyl Coenzyme A dehydrogenase (EHHADH), enoyl Coenzyme A hydratase, short chain, 1, mitochondrial (ECHS1); glutaryl-Coenzyme A dehydrogenase (GCDH), acyl-Coenzyme A oxidase 2, branched chain (ACOX2); acyl-Coenzyme A dehydrogenase, C-2 to C-3 short chain precursor (ACADS); carnitine palmitoyltransferase 1B (CPT1B), acyl-CoA synthetase long-chain family member 5 (ACSL5), and cytochrome P450, family 4, subfamily A, and polypeptide 11 (CYP4A11) genes. This indicated that the stimulating effect of linoleic acid on cell proliferation was due to interference with the metabolic pathway of fatty acid metabolism. In conclusion, genes with altered expression levels in CRC were mainly associated with fatty acid metabolic pathways speculated to have an important role linked to carcinogenesis. PMID:15885896

  2. Genetic background of uric acid metabolism in a patient with severe chronic tophaceous gout.

    PubMed

    Petru, Lenka; Pavelcova, Katerina; Sebesta, Ivan; Stiburkova, Blanka

    2016-09-01

    Hyperuricemia depends on the balance of endogenous production and renal excretion of uric acid. Transporters for urate are located in the proximal tubule where uric acid is secreted and extensively reabsorbed: secretion is principally ensured by the highly variable ABCG2 gene. Enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) plays a central role in purine metabolism and its deficiency is an X-linked inherited metabolic disorder associated with clinical manifestations of purine overproduction. Here we report the case of a middle-aged man with severe chronic tophaceous gout with a poor response to allopurinol and requiring repeated surgical intervention. We identified the causal mutations in the HPRT1 gene, variant c.481G>T (p.A161S), and in the crucial urate transporter ABCG2, a heterozygous variant c.421C>A (p.Q141K). This case shows the value of an analysis of the genetic background of serum uric acid. PMID:27288985

  3. KDM4C and ATF4 Cooperate in Transcriptional Control of Amino Acid Metabolism.

    PubMed

    Zhao, Erhu; Ding, Jane; Xia, Yingfeng; Liu, Mengling; Ye, Bingwei; Choi, Jeong-Hyeon; Yan, Chunhong; Dong, Zheng; Huang, Shuang; Zha, Yunhong; Yang, Liqun; Cui, Hongjuan; Ding, Han-Fei

    2016-01-26

    The histone lysine demethylase KDM4C is often overexpressed in cancers primarily through gene amplification. The molecular mechanisms of KDM4C action in tumorigenesis are not well defined. Here, we report that KDM4C transcriptionally activates amino acid biosynthesis and transport, leading to a significant increase in intracellular amino acid levels. Examination of the serine-glycine synthesis pathway reveals that KDM4C epigenetically activates the pathway genes under steady-state and serine deprivation conditions by removing the repressive histone modification H3 lysine 9 (H3K9) trimethylation. This action of KDM4C requires ATF4, a transcriptional master regulator of amino acid metabolism and stress responses. KDM4C activates ATF4 transcription and interacts with ATF4 to target serine pathway genes for transcriptional activation. We further present evidence for KDM4C in transcriptional coordination of amino acid metabolism and cell proliferation. These findings suggest a molecular mechanism linking KDM4C-mediated H3K9 demethylation and ATF4-mediated transactivation in reprogramming amino acid metabolism for cancer cell proliferation. PMID:26774480

  4. KDM4C and ATF4 Cooperate in Transcriptional Control of Amino Acid Metabolism

    PubMed Central

    Xia, Yingfeng; Liu, Mengling; Ye, Bingwei; Choi, Jeong-Hyeon; Yan, Chunhong; Dong, Zheng; Huang, Shuang; Zha, Yunhong; Yang, Liqun; Cui, Hongjuan; Ding, Han-Fei

    2015-01-01

    SUMMARY The histone lysine demethylase KDM4C is often overexpressed in cancers primarily through gene amplification. The molecular mechanisms of KDM4C action in tumorigenesis are not well defined. Here we report that KDM4C transcriptionally activates amino acid biosynthesis and transport, leading to a significant increase in intracellular amino acid levels. Examination of the serine-glycine synthesis pathway reveals that KDM4C epigenetically activates the pathway genes under steady-state and serine deprivation conditions by removing the repressive histone modification H3 lysine 9 (H3K9) trimethylation. This action of KDM4C requires ATF4, a transcriptional master regulator of amino acid metabolism and stress responses. KDM4C activates ATF4 transcription and interacts with ATF4 to target serine pathway genes for transcriptional activation. We further present evidence for KDM4C in transcriptional coordination of amino acid metabolism and cell proliferation. These findings suggest a molecular mechanism linking KDM4C-mediated H3K9 demethylation and ATF4-mediated transactivation in reprogramming amino acid metabolism for cancer cell proliferation. PMID:26774480

  5. Quantitation of myocardial fatty acid metabolism using PET

    SciTech Connect

    Bergmann, S.R.; Weinheimer, C.J.; Markham, J.; Herrero, P.

    1996-10-01

    Abnormalities of fatty acid metabolism in the heart presage contractile dysfunction and arrhythmias. This study was performed to determine whether myocardial fatty acid metabolism could be quantified noninvasively using PET and 1-{sup 11}C-palmitate. Anesthetized dogs were studied during control conditions; during administration of dobutamine; after oxfenicine; and during infusion of glucose. Dynamic PET data after administration of 1-{sup 11}C-palmitate were fitted to a four-compartment mathematical model. Modeled rates of palmitate utilization correlated closely with directly measured myocardial palmitate and total long-chain fatty acid utilization (r = 0.93 and 0.96, respectively, p < 0.001 for each) over a wide range of arterial fatty acid levels and altered patterns of myocardial substrate use (fatty acid extraction fraction ranging from 1% to 56%, glucose extraction fraction from 1% to 16% and myocardial fatty acid utilization from 1 to 484 nmole/g/min). The percent of fatty acid undergoing oxidation could also be measured. The results demonstrate the ability to quantify myocardial fatty acid utilization with PET. The approach is readily applicable for the determination of fatty acid metabolism noninvasively in patients. 37 refs., 5 figs., 4 tabs.

  6. Using a Genome-Scale Metabolic Model of Enterococcus faecalis V583 To Assess Amino Acid Uptake and Its Impact on Central Metabolism

    PubMed Central

    Solheim, Margrete; van Grinsven, Koen W. A.; Olivier, Brett G.; Levering, Jennifer; Grosseholz, Ruth; Hugenholtz, Jeroen; Holo, Helge; Nes, Ingolf; Teusink, Bas; Kummer, Ursula

    2014-01-01

    Increasing antibiotic resistance in pathogenic bacteria necessitates the development of new medication strategies. Interfering with the metabolic network of the pathogen can provide novel drug targets but simultaneously requires a deeper and more detailed organism-specific understanding of the metabolism, which is often surprisingly sparse. In light of this, we reconstructed a genome-scale metabolic model of the pathogen Enterococcus faecalis V583. The manually curated metabolic network comprises 642 metabolites and 706 reactions. We experimentally determined metabolic profiles of E. faecalis grown in chemically defined medium in an anaerobic chemostat setup at different dilution rates and calculated the net uptake and product fluxes to constrain the model. We computed growth-associated energy and maintenance parameters and studied flux distributions through the metabolic network. Amino acid auxotrophies were identified experimentally for model validation and revealed seven essential amino acids. In addition, the important metabolic hub of glutamine/glutamate was altered by constructing a glutamine synthetase knockout mutant. The metabolic profile showed a slight shift in the fermentation pattern toward ethanol production and increased uptake rates of multiple amino acids, especially l-glutamine and l-glutamate. The model was used to understand the altered flux distributions in the mutant and provided an explanation for the experimentally observed redirection of the metabolic flux. We further highlighted the importance of gene-regulatory effects on the redirection of the metabolic fluxes upon perturbation. The genome-scale metabolic model presented here includes gene-protein-reaction associations, allowing a further use for biotechnological applications, for studying essential genes, proteins, or reactions, and the search for novel drug targets. PMID:25527553

  7. IDH1 Mutations Alter Citric Acid Cycle Metabolism and Increase Dependence on Oxidative Mitochondrial Metabolism

    PubMed Central

    Grassian, Alexandra R.; Parker, Seth J.; Davidson, Shawn M.; Divakarun, Ajit S.; Green, Courtney R.; Zhang, Xiamei; Slocum, Kelly L.; Pu, Minying; Lin, Fallon; Vickers, Chad; Joud-Caldwell, Carol; Chung, Franklin; Yin, Hong; Handly, Erika D.; Straub, Christopher; Growney, Joseph D.; Vander Heiden, Matthew G.; Murphy, Anne N.; Pagliarini, Raymond; Metallo, Christian M.

    2016-01-01

    Oncogenic mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in several types of cancer, but the metabolic consequences of these genetic changes are not fully understood. In this study, we performed 13C metabolic flux analysis on a panel of isogenic cell lines containing heterozygous IDH1/2 mutations. We observed that under hypoxic conditions, IDH1-mutant cells exhibited increased oxidative tricarboxylic acid metabolism along with decreased reductive glutamine metabolism, but not IDH2-mutant cells. However, selective inhibition of mutant IDH1 enzyme function could not reverse the defect in reductive carboxylation activity. Furthermore, this metabolic reprogramming increased the sensitivity of IDH1-mutant cells to hypoxia or electron transport chain inhibition in vitro. Lastly, IDH1-mutant cells also grew poorly as subcutaneous xenografts within a hypoxic in vivo microenvironment. Together, our results suggest therapeutic opportunities to exploit the metabolic vulnerabilities specific to IDH1 mutation. PMID:24755473

  8. Leptin receptor polymorphisms interact with polyunsaturated fatty acids to augment risk of insulin resistance and metabolic syndrome in adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The leptin receptor (LEPR) is associated with insulin resistance, a key feature of metabolic syndrome (MetS). Gene-fatty acid interactions may affect MetS risk. The objective was to investigate the relationship among LEPR polymorphisms, insulin resistance, andMetSrisk and whether plasma fatty acids,...

  9. Polyunsaturated fatty acids and gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose of review. This review focuses on the effect(s) of n-3 polyunsaturated fatty acids (PUFA) on gene transcription as determined from data generated using cDNA microarrays. Introduced within the past decade, this methodology allows detection of the expression of thousands of genes simultaneo...

  10. Biobased organic acids production by metabolically engineered microorganisms.

    PubMed

    Chen, Yun; Nielsen, Jens

    2016-02-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed. PMID:26748037

  11. Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2014-01-01

    Polyunsaturated fatty acids (PUFA) are oxidized by cytochrome P450 epoxygenases to PUFA epoxides which function as potent lipid mediators. The major metabolic pathways of PUFA epoxides are incorporation into phospholipids and hydrolysis to the corresponding PUFA diols by soluble epoxide hydrolase. Inhibitors of soluble epoxide hydrolase stabilize PUFA epoxides and potentiate their functional effects. The epoxyeicosatrienoic acids (EETs) synthesized from arachidonic acid produce vasodilation, stimulate angiogenesis, have anti-inflammatory actions, and protect the heart against ischemia-reperfusion injury. EETs produce these functional effects by activating receptor-mediated signaling pathways and ion channels. The epoxyeicosatetraenoic acids synthesized from eicosapentaenoic acid and epoxydocosapentaenoic acids synthesized from docosahexaenoic acid are potent inhibitors of cardiac arrhythmias. Epoxydocosapentaenoic acids also inhibit angiogenesis, decrease inflammatory and neuropathic pain, and reduce tumor metastasis. These findings indicate that a number of the beneficial functions of PUFA may be due to their conversion to PUFA epoxides. PMID:25093613

  12. Can valproic acid be an inducer of clozapine metabolism?

    PubMed Central

    Diaz, Francisco J.; Eap, Chin B.; Ansermot, Nicolas; Crettol, Severine; Spina, Edoardo; de Leon, Jose

    2014-01-01

    Introduction Prior clozapine studies indicated no effects, mild inhibition or induction of valproic acid (VPA) on clozapine metabolism. The hypotheses that 1) VPA is a net inducer of clozapine metabolism, and 2) smoking modifies this inductive effect were tested in a therapeutic drug monitoring study. Methods After excluding strong inhibitors and inducers, 353 steady-state total clozapine (clozapine plus norclozapine) concentrations provided by 151 patients were analyzed using a random intercept linear model. Results VPA appeared to be an inducer of clozapine metabolism since total plasma clozapine concentrations in subjects taking VPA were significantly lower (27% lower; 95% confidence interval, 14% to 39%) after controlling for confounding variables including smoking (35% lower, 28% to 56%). Discussion Prospective studies are needed to definitively establish that VPA may 1) be an inducer of clozapine metabolism when induction prevails over competitive inhibition, and 2) be an inducer even in smokers who are under the influence of smoking inductive effects on clozapine metabolism. PMID:24764199

  13. Fatty acid metabolism in the regulation of T cell function.

    PubMed

    Lochner, Matthias; Berod, Luciana; Sparwasser, Tim

    2015-02-01

    The specific regulation of cellular metabolic processes is of major importance for directing immune cell differentiation and function. We review recent evidence indicating that changes in basic cellular lipid metabolism have critical effects on T cell proliferation and cell fate decisions. While induction of de novo fatty acid (FA) synthesis is essential for activation-induced proliferation and differentiation of effector T cells, FA catabolism via β-oxidation is important for the development of CD8(+) T cell memory as well as for the differentiation of CD4(+) regulatory T cells. We consider the influence of lipid metabolism and metabolic intermediates on the regulation of signaling and transcriptional pathways via post-translational modifications, and discuss how an improved understanding of FA metabolism may reveal strategies for manipulating immune responses towards therapeutic outcomes. PMID:25592731

  14. Ontogeny of Hepatic Energy Metabolism Genes in Mice as Revealed by RNA-Sequencing

    PubMed Central

    Renaud, Helen J.; Cui, Yue Julia; Lu, Hong; Zhong, Xiao-bo; Klaassen, Curtis D.

    2014-01-01

    The liver plays a central role in metabolic homeostasis by coordinating synthesis, storage, breakdown, and redistribution of nutrients. Hepatic energy metabolism is dynamically regulated throughout different life stages due to different demands for energy during growth and development. However, changes in gene expression patterns throughout ontogeny for factors important in hepatic energy metabolism are not well understood. We performed detailed transcript analysis of energy metabolism genes during various stages of liver development in mice. Livers from male C57BL/6J mice were collected at twelve ages, including perinatal and postnatal time points (n = 3/age). The mRNA was quantified by RNA-Sequencing, with transcript abundance estimated by Cufflinks. One thousand sixty energy metabolism genes were examined; 794 were above detection, of which 627 were significantly changed during at least one developmental age compared to adult liver. Two-way hierarchical clustering revealed three major clusters dependent on age: GD17.5–Day 5 (perinatal-enriched), Day 10–Day 20 (pre-weaning-enriched), and Day 25–Day 60 (adolescence/adulthood-enriched). Clustering analysis of cumulative mRNA expression values for individual pathways of energy metabolism revealed three patterns of enrichment: glycolysis, ketogenesis, and glycogenesis were all perinatally-enriched; glycogenolysis was the only pathway enriched during pre-weaning ages; whereas lipid droplet metabolism, cholesterol and bile acid metabolism, gluconeogenesis, and lipid metabolism were all enriched in adolescence/adulthood. This study reveals novel findings such as the divergent expression of the fatty acid β-oxidation enzymes Acyl-CoA oxidase 1 and Carnitine palmitoyltransferase 1a, indicating a switch from mitochondrial to peroxisomal β-oxidation after weaning; as well as the dynamic ontogeny of genes implicated in obesity such as Stearoyl-CoA desaturase 1 and Elongation of very long chain fatty acids-like 3

  15. Fatty acids from diet and microbiota regulate energy metabolism

    PubMed Central

    Alcock, Joe; Lin, Henry C.

    2015-01-01

    A high-fat diet and elevated levels of free fatty acids are known risk factors for metabolic syndrome, insulin resistance, and visceral obesity. Although these disease associations are well established, it is unclear how different dietary fats change the risk of insulin resistance and metabolic syndrome. Here, we review emerging evidence that insulin resistance and fat storage are linked to changes in the gut microbiota. The gut microbiota and intestinal barrier function, in turn, are highly influenced by the composition of fat in the diet. We review findings that certain fats (for example, long-chain saturated fatty acids) are associated with dysbiosis, impairment of intestinal barrier function, and metabolic endotoxemia. In contrast, other fatty acids, including short-chain and certain unsaturated fatty acids, protect against dysbiosis and impairment of barrier function caused by other dietary fats. These fats may promote insulin sensitivity by inhibiting metabolic endotoxemia and dysbiosis-driven inflammation. During dysbiosis, the modulation of metabolism by diet and microbiota may represent an adaptive process that compensates for the increased fuel demands of an activated immune system. PMID:27006755

  16. Effects of ADMA on gene expression and metabolism in serum-starved LoVo cells.

    PubMed

    Zheng, Ningning; Wang, Ke; He, Jiaojiao; Qiu, Yunping; Xie, Guoxiang; Su, Mingming; Jia, Wei; Li, Houkai

    2016-01-01

    Serum starvation is a typical way for inducing tumor cell apoptosis and stress. Asymmetric dimethylarginine (ADMA) is an endogenous metabolite. Our previous study reveals the plasma ADMA level is elevated in colon cancer patients, which can attenuate serum starvation-induced apoptosis in LoVo cells. In current study, we evaluated the effects of ADMA on gene expression and metabolism in serum-starved LoVo cells with gene microarray and metabolomic approaches. Our results indicated that 96 h serum starvation induced comprehensive alterations at transcriptional level, and most of them were restored by ADMA. The main signaling pathways induced by serum starvation included cancers-related pathways, pathways in cell death, apoptosis, and cell cycle etc. Meanwhile, the metabolomic data showed serum-starved cells were clearly separated with control cells, but not with ADMA-treated cells in PCA model. The identified differential metabolites indicated serum starvation significantly suppressed TCA cycle, altered glucose and fatty acids metabolism, as well as nucleic acids metabolism. However, very few differential metabolites were identified between ADMA and serum-starved cells. In summary, our current results indicated serum starvation profoundly altered the gene expression and metabolism of LoVo cells, whereas ADMA could restore most of the changes at transcriptional level, but not at metabolic level. PMID:27180883

  17. Effects of ADMA on gene expression and metabolism in serum-starved LoVo cells

    PubMed Central

    Zheng, Ningning; Wang, Ke; He, Jiaojiao; Qiu, Yunping; Xie, Guoxiang; Su, Mingming; Jia, Wei; Li, Houkai

    2016-01-01

    Serum starvation is a typical way for inducing tumor cell apoptosis and stress. Asymmetric dimethylarginine (ADMA) is an endogenous metabolite. Our previous study reveals the plasma ADMA level is elevated in colon cancer patients, which can attenuate serum starvation-induced apoptosis in LoVo cells. In current study, we evaluated the effects of ADMA on gene expression and metabolism in serum-starved LoVo cells with gene microarray and metabolomic approaches. Our results indicated that 96 h serum starvation induced comprehensive alterations at transcriptional level, and most of them were restored by ADMA. The main signaling pathways induced by serum starvation included cancers-related pathways, pathways in cell death, apoptosis, and cell cycle etc. Meanwhile, the metabolomic data showed serum-starved cells were clearly separated with control cells, but not with ADMA-treated cells in PCA model. The identified differential metabolites indicated serum starvation significantly suppressed TCA cycle, altered glucose and fatty acids metabolism, as well as nucleic acids metabolism. However, very few differential metabolites were identified between ADMA and serum-starved cells. In summary, our current results indicated serum starvation profoundly altered the gene expression and metabolism of LoVo cells, whereas ADMA could restore most of the changes at transcriptional level, but not at metabolic level. PMID:27180883

  18. Regulation of renal amino acid transporters during metabolic acidosis.

    PubMed

    Moret, Caroline; Dave, Mital H; Schulz, Nicole; Jiang, Jean X; Verrey, Francois; Wagner, Carsten A

    2007-02-01

    The kidney plays a major role in acid-base homeostasis by adapting the excretion of acid equivalents to dietary intake and metabolism. Urinary acid excretion is mediated by the secretion of protons and titratable acids, particularly ammonia. NH(3) is synthesized in proximal tubule cells from glutamine taken up via specific amino acid transporters. We tested whether kidney amino acid transporters are regulated in mice in which metabolic acidosis was induced with NH(4)Cl. Blood gas and urine analysis confirmed metabolic acidosis. Real-time RT-PCR was performed to quantify the mRNAs of 16 amino acid transporters. The mRNA of phosphoenolpyruvate carboxykinase (PEPCK) was quantified as positive control for the regulation and that of GAPDH, as internal standard. In acidosis, the mRNA of kidney system N amino acid transporter SNAT3 (SLC38A3/SN1) showed a strong induction similar to that of PEPCK, whereas all other tested mRNAs encoding glutamine or glutamate transporters were unchanged or reduced in abundance. At the protein level, Western blotting and immunohistochemistry demonstrated an increased abundance of SNAT3 and reduced expression of the basolateral cationic amino acid/neutral amino acid exchanger subunit y(+)-LAT1 (SLC7A7). SNAT3 was localized to the basolateral membrane of the late proximal tubule S3 segment in control animals, whereas its expression was extended to the earlier S2 segment of the proximal tubule during acidosis. Our results suggest that the selective regulation of SNAT3 and y(+)LAT1 expression may serve a major role in the renal adaptation to acid secretion and thus for systemic acid-base balance. PMID:17003226

  19. Nordihydroguaiaretic acid improves metabolic dysregulation and aberrant hepatic lipid metabolism in mice by both PPARα-dependent and -independent pathways

    PubMed Central

    Zhang, Haiyan; Shen, Wen-Jun; Cortez, Yuan; Kraemer, Fredric B.

    2013-01-01

    Creosote bush-derived nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, possesses antioxidant properties and functions as a potent antihyperlipidemic agent in rodent models. Here, we examined the effect of chronic NDGA treatment of ob/ob mice on plasma dyslipidemia, hepatic steatosis, and changes in hepatic gene expression. Feeding ob/ob mice a chow diet supplemented with either low (0.83 g/kg diet) or high-dose (2.5 g/kg diet) NDGA for 16 wk significantly improved plasma triglyceride (TG), inflammatory chemokine levels, hyperinsulinemia, insulin sensitivity, and glucose intolerance. NDGA treatment caused a marked reduction in liver weight and TG content, while enhancing rates of fatty acid oxidation. Microarray analysis of hepatic gene expression demonstrated that NDGA treatment altered genes for lipid metabolism, with genes involved in fatty acid catabolism most significantly increased. NDGA upregulated the mRNA and nuclear protein levels of peroxisome proliferator-activated receptor α (PPARα), and the activated (phosphorylated) form of AMP-activated kinase. NDGA increased PPARα promoter activity in AML12 hepatocytes and also prevented the fatty acid suppression of PPARα expression. In contrast, PPARα siRNA abrogated the stimulatory effect of NDGA on fatty acid catabolism. Likewise, no stimulatory effect of NDGA on hepatic fatty acid oxidation was observed in the livers of PPARα-deficient mice, but the ability of NDGA to reverse fatty liver conditions was unaffected. In conclusion, the beneficial actions of NDGA on dyslipidemia and hepatic steatosis in ob/ob mice are exerted primarily through enhanced fatty acid oxidation via PPARα-dependent pathways. However, PPARα-independent pathways also contribute to NDGA's action to ameliorate hepatic steatosis. PMID:23104557

  20. Deciphering the link between salicylic acid signaling and sphingolipid metabolism

    PubMed Central

    Sánchez-Rangel, Diana; Rivas-San Vicente, Mariana; de la Torre-Hernández, M. Eugenia; Nájera-Martínez, Manuela; Plasencia, Javier

    2015-01-01

    The field of plant sphingolipid biology has evolved in recent years. Sphingolipids are abundant in cell membranes, and genetic analyses revealed essential roles for these lipids in plant growth, development, and responses to abiotic and biotic stress. Salicylic acid (SA) is a key signaling molecule that is required for induction of defense-related genes and rapid and localized cell death at the site of pathogen infection (hypersensitive response) during incompatible host–pathogen interactions. Conceivably, while levels of SA rapidly increase upon pathogen infection for defense activation, they must be tightly regulated during plant growth and development in the absence of pathogens. Genetic and biochemical evidence suggest that the sphingolipid intermediates, long-chain sphingoid bases, and ceramides, play a role in regulating SA accumulation in plant cells. However, how signals generated from the perturbation of these key sphingolipid intermediates are transduced into the activation of the SA pathway has long remained to be an interesting open question. At least four types of molecules – MAP kinase 6, reactive oxygen species, free calcium, and nitric oxide – could constitute a mechanistic link between sphingolipid metabolism and SA accumulation and signaling. PMID:25806037

  1. Metabolism of hydroxycinnamic acids and their tartaric acid esters by Brettanomyces and Pediococcus in red wines.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Caffeic, p-coumaric, and ferulic acids and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric, respectively) are found in wines in varying concentrations. While Brettanomyces and Pediococcus can utilize the free acids, it is not known whether they can metabolize the correspon...

  2. Mass spectrometry characterisation of fatty acids from metabolically engineered soybean seeds.

    PubMed

    Murad, André M; Vianna, Giovanni R; Machado, Alex M; da Cunha, Nicolau B; Coelho, Cíntia M; Lacerda, Valquiria A M; Coelho, Marly C; Rech, Elibio L

    2014-05-01

    Improving the quality and performance of soybean oil as biodiesel depends on the chemical composition of its fatty acids and requires an increase in monounsaturated acids and a reduction in polyunsaturated acids. Despite its current use as a source of biofuel, soybean oil contains an average of 25 % oleic acid and 13 % palmitic acid, which negatively impacts its oxidative stability and freezing point, causing a high rate of nitrogen oxide emission. Gas chromatography and ion mobility mass spectrometry were conducted on soybean fatty acids from metabolically engineered seed extracts to determine the nature of the structural oleic and palmitic acids. The soybean genes FAD2-1 and FatB were placed under the control of the 35SCaMV constitutive promoter, introduced to soybean embryonic axes by particle bombardment and down-regulated using RNA interference technology. Results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 94.58 %) and a reduction in palmitic acid (to <3 %) in their seed oil content. No structural differences were observed between the fatty acids of the transgenic and non-transgenic oil extracts. PMID:24652150

  3. Metabolism of Ferulic Acid by Paecilomyces variotii and Pestalotia palmarum

    PubMed Central

    Rahouti, Mohammed; Seigle-Murandi, Françoise; Steiman, Régine; Eriksson, Karl-Erik

    1989-01-01

    Ferulic acid metabolism was studied in cultures of two micromycetes producing different amounts of phenol oxidases. In cultures of the low phenol oxidase producer Paecilomyces variotii, ferulic acid was decarboxylated to 4-vinylguaiacol, which was converted to vanillin and then either oxidized to vanillic acid or reduced to vanillyl alcohol. Vanillic acid underwent simultaneously an oxidative decarboxylation to methoxyhydroquinone and a nonoxidative decarboxylation to guaiacol. Methoxyhydroquinone and guaiacol were demethylated to yield hydroxyquinol and catechol, respectively. Catechol was hydroxylated to pyrogallol. Degradation of ferulic acid by Paecilomyces variotii proceeded mainly via methoxyhydroquinone. The high phenol oxidase producer Pestalotia palmarum catabolized ferulic acid via 4-vinylguaiacol, vanillin, vanillyl alcohol, vanillic acid, and methoxyhydroquinone. However, the main reactions observed with this fungus involved polymerization reactions. Images PMID:16348018

  4. Folate: metabolism, genes, polymorphisms and the associated diseases.

    PubMed

    Nazki, Fakhira Hassan; Sameer, Aga Syed; Ganaie, Bashir Ahmad

    2014-01-01

    Folate being an important vitamin of B Complex group in our diet plays an important role not only in the synthesis of DNA but also in the maintenance of methylation reactions in the cells. Folate metabolism is influenced by several processes especially its dietary intake and the polymorphisms of the associated genes involved. Aberrant folate metabolism, therefore, affects both methylation as well as the DNA synthesis processes, both of which have been implicated in the development of various diseases. This paper reviews the current knowledge of the processes involved in folate metabolism and consequences of deviant folate metabolism, particular emphasis is given to the polymorphic genes which have been implicated in the development of various diseases in humans, like vascular diseases, Down's syndrome, neural tube defects, psychiatric disorders and cancers. PMID:24091066

  5. Higher plant metabolism and energetics in hypogravity: Amino acid metabolism in higher plants

    NASA Technical Reports Server (NTRS)

    Mazelis, M.

    1976-01-01

    Laboratory's investigation into the amino acid metabolism of dwarf marigolds exposed to an environment of simulated hypogravity is summarized. Using both in vivo, and/or in vitro studies, the following effects of hypogravitational stress have been shown: (1) increased proline incorporation into cell wall protein, (2) inhibition of amino acid decarboxylation, (3) decrease in glutamic acid decarboxylase activity; and (4) decrease in the relative amount of a number of soluble amino acids present in deproteinized extracts of marigold leaves. It is concluded from these data there are several rapid, major alterations in amino acid metabolism associated with hypogravitational stress in marigolds. The mechanism(s) and generality of these effects with regard to other species is still unknown.

  6. Conjugated linoleic acids influence fatty acid metabolism in ovine ruminal epithelial cells.

    PubMed

    Masur, F; Benesch, F; Pfannkuche, H; Fuhrmann, H; Gäbel, G

    2016-04-01

    Conjugated linoleic acids (CLA), particularly cis-9,trans-11 (c9t11) and trans-10,cis-12 (t10c12), are used as feed additives to adapt to constantly increasing demands on the performance of lactating cows. Under these feeding conditions, the rumen wall, and the rumen epithelial cells (REC) in particular, are directly exposed to high amounts of CLA. This study determined the effect of CLA on the fatty acid (FA) metabolism of REC and expression of genes known to be modulated by FA. Cultured REC were incubated with c9t11, t10c12, and the structurally similar FA linoleic acid (LA), oleic acid (OA), and trans-vaccenic acid (TVA) for 48 h at a concentration of 100µM. Cellular FA levels were determined by gas chromatography. Messenger RNA expression levels of stearoyl-CoA desaturase (SCD) and monocarboxylate transporter (MCT) 1 and 4 were quantified by reverse transcription-quantitative PCR. Fatty acid evaluation revealed significant effects of CLA, LA, OA, and TVA on the amount of FA metabolites of β-oxidation and elongation and of metabolites related to desaturation by SCD. The observed changes in FA content point (among others) to the ability of REC to synthesize c9t11 from TVA endogenously. The mRNA expression levels of SCD identified a decrease after CLA, LA, OA, or TVA treatment. In line with the changes in mRNA expression, we found reduced amounts of C16:1n-7 cis-9 and C18:1n-9 cis-9, the main products of SCD. The expression of MCT1 mRNA increased after c9t11 and t10c12 treatment, and CLA c9t11 induced an upregulation of MCT4. Application of peroxisome proliferator-activated receptor (PPAR) α antagonist suggested that activation of PPARα is involved in the changes of MCT1, MCT4, and SCD mRNA expression induced by c9t11. Participation of PPARγ in the changes of MCT1 and SCD mRNA expression was shown by the application of the respective antagonist. The study demonstrates that exposure to CLA affects both FA metabolism and regulatory pathways within REC. PMID

  7. Evaluation of endogenous acidic metabolic products associated with carbohydrate metabolism in tumor cells.

    PubMed

    Mazzio, Elizabeth A; Smith, Bruce; Soliman, Karam F A

    2010-06-01

    Tumor cells have a high tolerance for acidic and hypoxic microenvironments, also producing abundant lactic acid through accelerated glycolysis in the presence or absence of O(2). While the accumulation of lactate is thought to be a major contributor to the reduction of pH-circumscribing aggressive tumors, it is not known if other endogenous metabolic products contribute this acidity. Furthermore, anaerobic metabolism in cancer cells bears similarity to homo-fermentative lactic acid bacteria, however very little is known about an alternative pathway that may drive adenosine triphosphate (ATP) production independent of glycolysis. In this study, we quantify over 40 end-products (amines, acids, alcohols, aldehydes, or ketones) produced by malignant neuroblastoma under accelerated glycolysis (+glucose (GLU) supply 1-10 mM) +/- mitochondrial toxin; 1-methyl-4-phenylpyridinium (MPP(+)) to abate aerobic respiration to delineate differences between anaerobic vs. aerobic cell required metabolic pathways. The data show that an acceleration of anaerobic glycolysis prompts an expected reduction in extracellular pH (pH(ex)) from neutral to 6.7 +/- 0.006. Diverse metabolic acids associated with this drop in acidity were quantified by ionic exchange liquid chromatography (LC), showing concomitant rise in lactate (Ctrls 7.5 +/- 0.5 mM; +GLU 12.35 +/- 1.3 mM; +GLU + MPP 18.1 +/- 1.8 mM), acetate (Ctrl 0.84 +/- 0.13 mM: +GLU 1.3 +/- 0.15 mM; +GLU + MPP 2.7 +/- 0.4 mM), fumarate, and a-ketoglutarate (<10 microM) while a range of other metabolic organic acids remained undetected. Amino acids quantified by o-phthalaldehyde precolumn derivatization/electrochemical detection-LC show accumulation of L: -alanine (1.6 +/- .052 mM), L: -glutamate (285 +/- 9.7 microM), L: -asparagine (202 +/- 2.1 microM), and L: -aspartate (84.2 +/- 4.9 microM) produced during routine metabolism, while other amino acids remain undetected. In contrast, the data show no evidence for accumulation of acetaldehyde

  8. Sialic acid metabolism and sialyltransferases: natural functions and applications

    PubMed Central

    Li, Yanhong

    2012-01-01

    Sialic acids are a family of negatively charged monosaccharides which are commonly presented as the terminal residues in glycans of the glycoconjugates on eukaryotic cell surface or as components of capsular polysaccharides or lipooligosaccharides of some pathogenic bacteria. Due to their important biological and pathological functions, the biosynthesis, activation, transfer, breaking down, and recycle of sialic acids are attracting increasing attention. The understanding of the sialic acid metabolism in eukaryotes and bacteria leads to the development of metabolic engineering approaches for elucidating the important functions of sialic acid in mammalian systems and for large-scale production of sialosides using engineered bacterial cells. As the key enzymes in biosynthesis of sialylated structures, sialyltransferases have been continuously identified from various sources and characterized. Protein crystal structures of seven sialyltransferases have been reported. Wild-type sialyltransferases and their mutants have been applied with or without other sialoside biosynthetic enzymes for producing complex sialic acid-containing oligosaccharides and glycoconjugates. This mini-review focuses on current understanding and applications of sialic acid metabolism and sialyltransferases. PMID:22526796

  9. Amino acid metabolism and protein synthesis in malarial parasites*

    PubMed Central

    Sherman, I. W.

    1977-01-01

    Malaria-infected red cells and free parasites have limited capabilities for the biosynthesis of amino acids. Therefore, the principal amino acid sources for parasite protein synthesis are the plasma free amino acids and host cell haemoglobin. Infected cells and plasmodia incorporate exogenously supplied amino acids into protein. However, the hypothesis that amino acid utilization (from an external source) is related to availability of that amino acid in haemoglobin is without universal support: it is true for isoleucine and for Plasmodium knowlesi and P. falciparum, but not for methionine, cysteine, and other amino acids, and it does not apply to P. lophurae. More by default than by direct evidence, haemoglobin is believed to be the main amino acid reservoir available to the intraerythrocytic plasmodium. Haemoglobin, ingested via the cytostome, is held in food vacuoles where auto-oxidation takes place. As a consequence, haem is released and accumulates in the vacuole as particulate haemozoin (= malaria pigment). Current evidence favours the view that haemozoin is mainly haematin. Acid and alkaline proteases (identified in crude extracts from mammalian and avian malarias) are presumably secreted directly into the food vacuole. They then digest the denatured globin and the resulting amino acids are incorporated into parasite protein. Cell-free protein synthesizing systems have been developed using P. knowlesi and P. lophurae ribosomes. In the main these systems are typically eukaryotic. Studies of amino acid metabolism are exceedingly limited. Arginine, lysine, methionine, and proline are incorporated into protein, whereas glutamic acid is metabolized via an NADP-specific glutamic dehydrogenase. Glutamate oxidation generates NADPH and auxiliary energy (in the form of α-ketoglutarate). The role of red cell glutathione in the economy of the parasite remains obscure. Important goals for future research should be: quantitative assessment of the relative importance of

  10. Induction of nodD Gene in a Betarhizobium Isolate, Cupriavidus sp. of Mimosa pudica, by Root Nodule Phenolic Acids.

    PubMed

    Mandal, Santi M; Chakraborty, Dipjyoti; Dutta, Suhrid R; Ghosh, Ananta K; Pati, Bikas R; Korpole, Suresh; Paul, Debarati

    2016-06-01

    A range of phenolic acids, viz., p-coumaric acid, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, protocatechuic acid, caffeic acid, ferulic acid, and cinnamic acid have been isolated and identified by LC-MS analysis in the roots and root nodules of Mimosa pudica. The effects of identified phenolic acids on the regulation of nodulation (nod) genes have been evaluated in a betarhizobium isolate of M. pudica root nodule. Protocatechuic acid and p-hydroxybenzoic acid were most effective in inducing nod gene, whereas caffeic acid had no significant effect. Phenylalanine ammonia lyase, peroxidase, and polyphenol oxidase activities were estimated, indicating regulation and metabolism of phenolic acids in root nodules. These results showed that nodD gene expression of betarhizobium is regulated by simple phenolic acids such as protocatechuic acid and p-hydroxybenzoic acid present in host root nodule and sustains nodule organogenesis. PMID:26897126

  11. ACC2 gene polymorphisms, metabolic syndrome, and gene-nutrient interactions with dietary fat

    PubMed Central

    Phillips, Catherine M.; Goumidi, Louisa; Bertrais, Sandrine; Field, Martyn R.; Cupples, L. Adrienne; Ordovas, Jose M.; McMonagle, Jolene; Defoort, Catherine; Lovegrove, Julie A.; Drevon, Christian A.; Blaak, Ellen E.; Kiec-Wilk, Beata; Riserus, Ulf; Lopez-Miranda, Jose; McManus, Ross; Hercberg, Serge; Lairon, Denis; Planells, Richard; Roche, Helen M.

    2010-01-01

    Acetyl-CoA carboxylase β (ACC2) plays a key role in fatty acid synthesis and oxidation pathways. Disturbance of these pathways is associated with impaired insulin responsiveness and metabolic syndrome (MetS). Gene-nutrient interactions may affect MetS risk. This study determined the relationship between ACC2 polymorphisms (rs2075263, rs2268387, rs2284685, rs2284689, rs2300453, rs3742023, rs3742026, rs4766587, and rs6606697) and MetS risk, and whether dietary fatty acids modulate this in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1754). Minor A allele carriers of rs4766587 had increased MetS risk (OR 1.29 [CI 1.08, 1.58], P = 0.0064) compared with the GG homozygotes, which may in part be explained by their increased body mass index (BMI), abdominal obesity, and impaired insulin sensitivity (P < 0.05). MetS risk was modulated by dietary fat intake (P = 0.04 for gene-nutrient interaction), where risk conferred by the A allele was exacerbated among individuals with a high-fat intake (>35% energy) (OR 1.62 [CI 1.05, 2.50], P = 0.027), particularly a high intake (>5.5% energy) of n-6 polyunsaturated fat (PUFA) (OR 1.82 [CI 1.14, 2.94], P = 0.01; P = 0.05 for gene-nutrient interaction). Saturated and monounsaturated fat intake did not modulate MetS risk. Importantly, we replicated some of these findings in an independent cohort. In conclusion, the ACC2 rs4766587 polymorphism influences MetS risk, which was modulated by dietary fat, suggesting novel gene-nutrient interactions. PMID:20855566

  12. Metabolic Enzymes Moonlighting in the Nucleus: Metabolic Regulation of Gene Transcription.

    PubMed

    Boukouris, Aristeidis E; Zervopoulos, Sotirios D; Michelakis, Evangelos D

    2016-08-01

    During evolution, cells acquired the ability to sense and adapt to varying environmental conditions, particularly in terms of fuel supply. Adaptation to fuel availability is crucial for major cell decisions and requires metabolic alterations and differential gene expression that are often epigenetically driven. A new mechanistic link between metabolic flux and regulation of gene expression is through moonlighting of metabolic enzymes in the nucleus. This facilitates delivery of membrane-impermeable or unstable metabolites to the nucleus, including key substrates for epigenetic mechanisms such as acetyl-CoA which is used in histone acetylation. This metabolism-epigenetics axis facilitates adaptation to a changing environment in normal (e.g., development, stem cell differentiation) and disease states (e.g., cancer), providing a potential novel therapeutic target. PMID:27345518

  13. EFFECTS OF PHOSGENE EXPOSURE ON LUNG ARACHIDONIC ACID METABOLISM

    EPA Science Inventory

    Phosgene is a pulmonary toxicant that can produce lung edema, bronchoconstriction, and immune suppression following an acute exposure. he response of the lung to phosgene inhalation may be mediated through alternations in the metabolism of arachidonic acid to the biologically pot...

  14. Protein and amino acid metabolism in the human newborn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Birth and adaptation to extrauterine life involve major shifts in the protein and energy metabolism of the human newborn. These include a shift from a state of continuous supply of nutrients including amino acids from the mother to cyclic periodic oral intake, a change in the redox state of organs, ...

  15. Carbohydrate and amino acid metabolism of Spironucleus vortens.

    PubMed

    Millet, Coralie O M; Lloyd, David; Coogan, Michael P; Rumsey, Joanna; Cable, Joanne

    2011-09-01

    The metabolism of Spironucleus vortens, a parasitic, diplomonad flagellate related to Giardia intestinalis, was investigated using a combination of membrane inlet mass spectrometry, (1)H NMR, (13)C NMR, bioscreen continuous growth monitoring, and ion exchange chromatography. The products of glucose-fuelled and endogenous metabolism were identified by (1)H NMR and (13)C NMR as ethanol, acetate, alanine and lactate. Mass spectrometric monitoring of gas metabolism in buffered cell suspensions showed that glucose and ethanol could be used by S. vortens as energy-generating substrates, but bioscreen automated monitoring of growth in culture medium, as well as NMR analyses, suggested that neither of these compounds are the substrates of choice for this organism. Ion-exchange chromatographic analyses of free amino-acid and amino-acid hydrolysate of growth medium revealed that, despite the availability of large pools of free amino-acids in the medium, S. vortens hydrolysed large amounts of proteins during growth. The organism produced alanine and aspartate, and utilised lysine, arginine, leucine, cysteine and urea. However, mass spectrometric and bioscreen investigations showed that addition of the utilised amino acids to diluted culture medium did not induce any significant increase in metabolic or growth rates. Moreover, as no significant amounts of ornithine were produced, and addition of arginine under aerobic conditions did not generate NO production, there was no evidence of the presence of an energy-generating, arginine dihydrolase pathway in S. vortens under in vitro conditions. PMID:21679707

  16. Role of Intestinal Microflora in the Metabolism of Guanidinosuccinic Acid

    PubMed Central

    Milstien, Sheldon; Goldman, Peter

    1973-01-01

    Among a variety of bacteria isolated from the gastrointestinal tracts of rats and humans, only streptococci of group N are capable of degrading guanidinosuccinic acid added to their culture medium. The urinary excretion of guanidinosuccinic acid by germfree rats is greater than that of conventional rats. The excretion of this compound by gnotobiotic rats correlates with the capacity of their intestinal microflora to degrade guanidinosuccinic acid in culture. Thus, guanidinosuccinic acid excretion is low in rats infected exclusively with Streptococcus faecalis, and the excretion is not altered when germfree rats are infected with an organism unable to degrade guanidinosuccinic acid (Lactobacillus). These findings suggest that the intestinal microflora, particularly Streptococcus, play a role in the metabolism of guanidinosuccinic acid by the host. PMID:4196249

  17. Bioenergetic cues shift FXR splicing towards FXRα2 to modulate hepatic lipolysis and fatty acid metabolism

    PubMed Central

    Correia, Jorge C.; Massart, Julie; de Boer, Jan Freark; Porsmyr-Palmertz, Margareta; Martínez-Redondo, Vicente; Agudelo, Leandro Z.; Sinha, Indranil; Meierhofer, David; Ribeiro, Vera; Björnholm, Marie; Sauer, Sascha; Dahlman-Wright, Karin; Zierath, Juleen R.; Groen, Albert K.; Ruas, Jorge L.

    2015-01-01

    Objective Farnesoid X receptor (FXR) plays a prominent role in hepatic lipid metabolism. The FXR gene encodes four proteins with structural differences suggestive of discrete biological functions about which little is known. Methods We expressed each FXR variant in primary hepatocytes and evaluated global gene expression, lipid profile, and metabolic fluxes. Gene delivery of FXR variants to Fxr−/− mouse liver was performed to evaluate their role in vivo. The effects of fasting and physical exercise on hepatic Fxr splicing were determined. Results We show that FXR splice isoforms regulate largely different gene sets and have specific effects on hepatic metabolism. FXRα2 (but not α1) activates a broad transcriptional program in hepatocytes conducive to lipolysis, fatty acid oxidation, and ketogenesis. Consequently, FXRα2 decreases cellular lipid accumulation and improves cellular insulin signaling to AKT. FXRα2 expression in Fxr−/− mouse liver activates a similar gene program and robustly decreases hepatic triglyceride levels. On the other hand, FXRα1 reduces hepatic triglyceride content to a lesser extent and does so through regulation of lipogenic gene expression. Bioenergetic cues, such as fasting and exercise, dynamically regulate Fxr splicing in mouse liver to increase Fxrα2 expression. Conclusions Our results show that the main FXR variants in human liver (α1 and α2) reduce hepatic lipid accumulation through distinct mechanisms and to different degrees. Taking this novel mechanism into account could greatly improve the pharmacological targeting and therapeutic efficacy of FXR agonists. PMID:26909306

  18. Comparative Transcriptome Analysis Reveals the Influence of Abscisic Acid on the Metabolism of Pigments, Ascorbic Acid and Folic Acid during Strawberry Fruit Ripening

    PubMed Central

    Luo, Zisheng; Mou, Wangshu; Mao, Linchun; Ying, Tiejin

    2015-01-01

    A comprehensive investigation of abscisic acid (ABA) biosynthesis and its influence on other important phytochemicals is critical for understanding the versatile roles that ABA plays during strawberry fruit ripening. Using RNA-seq technology, we sampled strawberry fruit in response to ABA or nordihydroguaiaretic acid (NDGA; an ABA biosynthesis blocker) treatment during ripening and assessed the expression changes of genes involved in the metabolism of pigments, ascorbic acid (AsA) and folic acid in the receptacles. The transcriptome analysis identified a lot of genes differentially expressed in response to ABA or NDGA treatment. In particular, genes in the anthocyanin biosynthesis pathway were actively regulated by ABA, with the exception of the gene encoding cinnamate 4-hydroxylase. Chlorophyll degradation was accelerated by ABA mainly owing to the higher expression of gene encoding pheide a oxygenase. The decrease of β-carotene content was accelerated by ABA treatment and delayed by NDGA. A high negative correlation rate was found between ABA and β-carotene content, indicating the importance of the requirement for ABA synthesis during fruit ripening. In addition, evaluation on the folate biosynthetic pathway indicate that ABA might have minor function in this nutrient’s biosynthesis process, however, it might be involved in its homeostasis. Surprisingly, though AsA content accumulated during fruit ripening, expressions of genes involved in its biosynthesis in the receptacles were significantly lower in ABA-treated fruits. This transcriptome analysis expands our understanding of ABA’s role in phytochemical metabolism during strawberry fruit ripening and the regulatory mechanisms of ABA on these pathways were discussed. Our study provides a wealth of genetic information in the metabolism pathways and may be helpful for molecular manipulation in the future. PMID:26053069

  19. Comparative Transcriptome Analysis Reveals the Influence of Abscisic Acid on the Metabolism of Pigments, Ascorbic Acid and Folic Acid during Strawberry Fruit Ripening.

    PubMed

    Li, Dongdong; Li, Li; Luo, Zisheng; Mou, Wangshu; Mao, Linchun; Ying, Tiejin

    2015-01-01

    A comprehensive investigation of abscisic acid (ABA) biosynthesis and its influence on other important phytochemicals is critical for understanding the versatile roles that ABA plays during strawberry fruit ripening. Using RNA-seq technology, we sampled strawberry fruit in response to ABA or nordihydroguaiaretic acid (NDGA; an ABA biosynthesis blocker) treatment during ripening and assessed the expression changes of genes involved in the metabolism of pigments, ascorbic acid (AsA) and folic acid in the receptacles. The transcriptome analysis identified a lot of genes differentially expressed in response to ABA or NDGA treatment. In particular, genes in the anthocyanin biosynthesis pathway were actively regulated by ABA, with the exception of the gene encoding cinnamate 4-hydroxylase. Chlorophyll degradation was accelerated by ABA mainly owing to the higher expression of gene encoding pheide a oxygenase. The decrease of β-carotene content was accelerated by ABA treatment and delayed by NDGA. A high negative correlation rate was found between ABA and β-carotene content, indicating the importance of the requirement for ABA synthesis during fruit ripening. In addition, evaluation on the folate biosynthetic pathway indicate that ABA might have minor function in this nutrient's biosynthesis process, however, it might be involved in its homeostasis. Surprisingly, though AsA content accumulated during fruit ripening, expressions of genes involved in its biosynthesis in the receptacles were significantly lower in ABA-treated fruits. This transcriptome analysis expands our understanding of ABA's role in phytochemical metabolism during strawberry fruit ripening and the regulatory mechanisms of ABA on these pathways were discussed. Our study provides a wealth of genetic information in the metabolism pathways and may be helpful for molecular manipulation in the future. PMID:26053069

  20. Radiation Exposure Alters Expression of Metabolic Enzyme Genes In Mice

    NASA Technical Reports Server (NTRS)

    Wotring, Virginia E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2010-01-01

    Most pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Because of the importance of the liver in drug metabolism it is important to understand the effects of spaceflight on the enzymes of the liver. Exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. This study is an effort to examine the effects of adaptive mechanisms that may be triggered by early exposure to low radiation doses. Using procedures approved by the JSC Animal Care & Use Committee, C57 male mice were exposed to Cs-137 in groups: controls, low dose (50 mGy), high dose (6Gy) and a fourth group that received both radiation doses separated by 24 hours. Animals were anesthetized and sacrificed 4 hours after their last radiation exposure. Livers were removed immediately and flash-frozen in liquid nitrogen. Tissue was homogenized, RNA extracted and purified (Absolutely RNA, Agilent). Quality of RNA samples was evaluated (Agilent Bioanalyzer 2100). Complementary DNA was prepared from high-quality RNA samples, and used to run RT-qPCR screening arrays for DNA Repair and Drug Metabolism (SuperArray, SABiosciences/Qiagen; BioRad Cfx96 qPCR System). Of 91 drug metabolism genes examined, expression of 7 was altered by at least one treatment condition. Genes that had elevated expression include those that metabolize promethazine and steroids (4-8-fold), many that reduce oxidation products, and one that reduces heavy metal exposure (greater than 200-fold). Of the 91 DNA repair and general metabolism genes examined, expression of 14 was altered by at least one treatment condition. These gene expression changes are likely homeostatic and could lead to development of new radioprotective countermeasures.

  1. Role of mitochondrial transamination in branched chain amino acid metabolism

    SciTech Connect

    Hutson, S.M.; Fenstermacher, D.; Mahar, C.

    1988-03-15

    Oxidative decarboxylation and transamination of 1-/sup 14/C-branched chain amino and alpha-keto acids were examined in mitochondria isolated from rat heart. Transamination was inhibited by aminooxyacetate, but not by L-cycloserine. At equimolar concentrations of alpha-ketoiso(1-/sup 14/C)valerate (KIV) and isoleucine, transamination was increased by disrupting the mitochondria with detergent which suggests transport may be one factor affecting the rate of transamination. Next, the subcellular distribution of the aminotransferase(s) was determined. Branched chain aminotransferase activity was measured using two concentrations of isoleucine as amino donor and (1-/sup 14/C)KIV as amino acceptor. The data show that branched chain aminotransferase activity is located exclusively in the mitochondria in rat heart. Metabolism of extramitochondrial branched chain alpha-keto acids was examined using 20 microM (1-/sup 14/C)KIV and alpha-ketoiso(1-/sup 14/C)caproate (KIC). There was rapid uptake and oxidation of labeled branched chain alpha-keto acid, and, regardless of the experimental condition, greater than 90% of the labeled keto acid substrate was metabolized during the 20-min incubation. When a branched chain amino acid (200 microM) or glutamate (5 mM) was present, 30-40% of the labeled keto acid was transaminated while the remainder was oxidized. Provision of an alternate amino acceptor in the form of alpha-keto-glutarate (0.5 mM) decreased transamination of the labeled KIV or KIC and increased oxidation. Metabolism of intramitochondrially generated branched chain alpha-keto acids was studied using (1-/sup 14/C)leucine and (1-/sup 14/C)valine. Essentially all of the labeled branched chain alpha-keto acid produced by transamination of (1-/sup 14/C)leucine or (1-/sup 14/C)valine with a low concentration of unlabeled branched chain alpha-keto acid (20 microM) was oxidized.

  2. A metabolic gene cluster in Lotus japonicus discloses novel enzyme functions and products in triterpene biosynthesis.

    PubMed

    Krokida, Afrodite; Delis, Costas; Geisler, Katrin; Garagounis, Constantine; Tsikou, Daniela; Peña-Rodríguez, Luis M; Katsarou, Dimitra; Field, Ben; Osbourn, Anne E; Papadopoulou, Kalliope K

    2013-11-01

    Genes for triterpene biosynthetic pathways exist as metabolic gene clusters in oat and Arabidopsis thaliana plants. We characterized the presence of an analogous gene cluster in the model legume Lotus japonicus. In the genomic regions flanking the oxidosqualene cyclase AMY2 gene, genes for two different classes of cytochrome P450 and a gene predicted to encode a reductase were identified. Functional characterization of the cluster genes was pursued by heterologous expression in Nicotiana benthamiana. The gene expression pattern was studied under different developmental and environmental conditions. The physiological role of the gene cluster in nodulation and plant development was studied in knockdown experiments. A novel triterpene structure, dihydrolupeol, was produced by AMY2. A new plant cytochrome P450, CYP71D353, which catalyses the formation of 20-hydroxybetulinic acid in a sequential three-step oxidation of 20-hydroxylupeol was characterized. The genes within the cluster are highly co-expressed during root and nodule development, in hormone-treated plants and under various environmental stresses. A transcriptional gene silencing mechanism that appears to be involved in the regulation of the cluster genes was also revealed. A tightly co-regulated cluster of functionally related genes is involved in legume triterpene biosynthesis, with a possible role in plant development. PMID:23909862

  3. Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death

    PubMed Central

    2016-01-01

    Little is known about the regulation of nonapoptotic cell death. Using massive insertional mutagenesis of haploid KBM7 cells we identified nine genes involved in small-molecule-induced nonapoptotic cell death, including mediators of fatty acid metabolism (ACSL4) and lipid remodeling (LPCAT3) in ferroptosis. One novel compound, CIL56, triggered cell death dependent upon the rate-limiting de novo lipid synthetic enzyme ACC1. These results provide insight into the genetic regulation of cell death and highlight the central role of lipid metabolism in nonapoptotic cell death. PMID:25965523

  4. The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism.

    PubMed

    Zhang, Qingzhu; Li, Yanqiang; Xu, Tao; Srivastava, Ashish Kumar; Wang, Dong; Zeng, Liang; Yang, Lan; He, Li; Zhang, Heng; Zheng, Zhimin; Yang, Dong-Lei; Zhao, Cheng; Dong, Juan; Gong, Zhizhong; Liu, Renyi; Zhu, Jian-Kang

    2016-01-01

    In plants, hybrid vigor is influenced by genetic and epigenetic mechanisms; however, the molecular pathways are poorly understood. We investigated the potential contributions of epigenetic regulators to heterosis in Arabidposis and found that the chromatin remodeler DECREASED DNA METHYLATION 1 (DDM1) affects early seedling growth heterosis in Col/C24 hybrids. ddm1 mutants showed impaired heterosis and increased expression of non-additively expressed genes related to salicylic acid metabolism. Interestingly, our data suggest that salicylic acid is a hormetic regulator of seedling growth heterosis, and that hybrid vigor arises from crosses that produce optimal salicylic acid levels. Although DNA methylation failed to correlate with differential non-additively expressed gene expression, we uncovered DDM1 as an epigenetic link between salicylic acid metabolism and heterosis, and propose that the endogenous salicylic acid levels of parental plants can be used to predict the heterotic outcome. Salicylic acid protects plants from pathogens and abiotic stress. Thus, our findings suggest that stress-induced hormesis, which has been associated with increased longevity in other organisms, may underlie specific hybrid vigor traits. PMID:27551435

  5. The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism

    PubMed Central

    Zhang, Qingzhu; Li, Yanqiang; Xu, Tao; Srivastava, Ashish Kumar; Wang, Dong; Zeng, Liang; Yang, Lan; He, Li; Zhang, Heng; Zheng, Zhimin; Yang, Dong-Lei; Zhao, Cheng; Dong, Juan; Gong, Zhizhong; Liu, Renyi; Zhu, Jian-Kang

    2016-01-01

    In plants, hybrid vigor is influenced by genetic and epigenetic mechanisms; however, the molecular pathways are poorly understood. We investigated the potential contributions of epigenetic regulators to heterosis in Arabidposis and found that the chromatin remodeler DECREASED DNA METHYLATION 1 (DDM1) affects early seedling growth heterosis in Col/C24 hybrids. ddm1 mutants showed impaired heterosis and increased expression of non-additively expressed genes related to salicylic acid metabolism. Interestingly, our data suggest that salicylic acid is a hormetic regulator of seedling growth heterosis, and that hybrid vigor arises from crosses that produce optimal salicylic acid levels. Although DNA methylation failed to correlate with differential non-additively expressed gene expression, we uncovered DDM1 as an epigenetic link between salicylic acid metabolism and heterosis, and propose that the endogenous salicylic acid levels of parental plants can be used to predict the heterotic outcome. Salicylic acid protects plants from pathogens and abiotic stress. Thus, our findings suggest that stress-induced hormesis, which has been associated with increased longevity in other organisms, may underlie specific hybrid vigor traits. PMID:27551435

  6. The heparan and heparin metabolism pathway is involved in regulation of fatty acid composition.

    PubMed

    Jiang, Zhihua; Michal, Jennifer J; Wu, Xiao-Lin; Pan, Zengxiang; MacNeil, Michael D

    2011-01-01

    Six genes involved in the heparan sulfate and heparin metabolism pathway, DSEL (dermatan sulfate epimerase-like), EXTL1 (exostoses (multiple)-like 1), HS6ST1 (heparan sulfate 6-O-sulfotransferase 1), HS6ST3 (heparan sulfate 6-O-sulfotransferase 3), NDST3 (N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 3), and SULT1A1 (sulfotransferase family, cytosolic, 1A, phenol-preferring, member 1), were investigated for their associations with muscle lipid composition using cattle as a model organism. Nineteen single nucleotide polymorphisms (SNPs)/multiple nucleotide length polymorphisms (MNLPs) were identified in five of these six genes. Six of these mutations were then genotyped on 246 Wagyu x Limousin F(2) animals, which were measured for 5 carcass, 6 eating quality and 8 fatty acid composition traits. Association analysis revealed that DSEL, EXTL1 and HS6ST1 significantly affected two stearoyl-CoA desaturase activity indices, the amount of conjugated linoleic acid (CLA), and the relative amount of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) in skeletal muscle (P<0.05). In particular, HS6ST1 joined our previously reported SCD1 and UQCRC1 genes to form a three gene network for one of the stearoyl-CoA desaturase activity indices. These results provide evidence that genes involved in heparan sulfate and heparin metabolism are also involved in regulation of lipid metabolism in bovine muscle. Whether the SNPs affected heparan sulfate proteoglycan structure is unknown and warrants further investigation. PMID:21647334

  7. Transport, metabolism, and effect of chronic feeding of lagodeoxycholic acid. A new, natural bile acid.

    PubMed

    Schmassmann, A; Angellotti, M A; Clerici, C; Hofmann, A F; Ton-Nu, H T; Schteingart, C D; Marcus, S N; Hagey, L R; Rossi, S S; Aigner, A

    1990-10-01

    Ursodeoxycholic acid, the 7 beta-hydroxy epimer of chenodeoxycholic acid, is more hydrophilic and less hepatotoxic than chenodeoxycholic acid. Because "lagodeoxycholic acid," the 12 beta-hydroxy epimer of deoxycholic acid, is also more hydrophilic than deoxycholic acid, it was hypothesized that it should also be less hepatotoxic than deoxycholic acid. To test this, lagodeoxycholic acid was synthesized, and its transport and metabolism were examined in the rat, rabbit, and hamster. The taurine conjugate of lagodeoxycholic acid was moderately well transported by the perfused rat ileum (Tmax = 2 mumol/min.kg). In rats and hamsters with biliary fistulas, the taurine conjugate of lagodeoxycholic acid was well transported by the liver with a Tmax greater than 20 mumol/min.kg; for the taurine conjugate of deoxycholic acid, doses infused at a rate greater than 2.5 mumol/min.kg are known to cause cholestasis and death. Hepatic biotransformation of lagodeoxycholic acid in the rabbit was limited to conjugation with glycine; in the hamster, lagodeoxycholic acid was conjugated with glycine or taurine; in addition, 7-hydroxylation occurred to a slight extent (approximately 10%). When lagodeoxycholic acid was instilled in the rabbit colon, it was absorbed as such although within hours it was progressively epimerized by bacteria to deoxycholic acid. When injected intravenously and allowed to circulate enterohepatically, lagodeoxycholic acid was largely epimerized to deoxycholic acid in 24 hours. Surgical creation of a distal ileostomy abolished epimerization in the rabbit, indicating that exposure to colonic bacterial enzymes was required for the epimerization. Lagodeoxycholic acid was administered for 3 weeks at a dose of 180 mumol/day (0.1% by weight of a chow diet; 2-4 times the endogenous bile acid synthesis rate); other groups received identical doses of deoxycholic acid (hamster) or cholyltaurine, a known precursor of deoxycholic acid (rabbit). After 3 weeks of

  8. Metabolic evolution of Escherichia coli strains that produce organic acids

    DOEpatents

    Grabar, Tammy; Gong, Wei; Yocum, R Rogers

    2014-10-28

    This invention relates to the metabolic evolution of a microbial organism previously optimized for producing an organic acid in commercially significant quantities under fermentative conditions using a hexose sugar as sole source of carbon in a minimal mineral medium. As a result of this metabolic evolution, the microbial organism acquires the ability to use pentose sugars derived from cellulosic materials for its growth while retaining the original growth kinetics, the rate of organic acid production and the ability to use hexose sugars as a source of carbon. This invention also discloses the genetic change in the microorganism that confers the ability to use both the hexose and pentose sugars simultaneously in the production of commercially significant quantities of organic acids.

  9. Metabolism of lithocholic and chenodeoxycholic acids in the squirrel monkey

    SciTech Connect

    Suzuki, H.; Hamada, M.; Kato, F.

    1985-09-01

    Metabolism of lithocholic acid (LCA) and chenodeoxycholic acid (CDCA) was studied in the squirrel monkey to clarify the mechanism of the lack of toxicity of CDCA in this animal. Radioactive LCA was administered to squirrel monkeys with biliary fistula. Most radioactivity was excreted in the bile in the form of unsulfated lithocholyltaurine. The squirrel monkey thus differs from humans and chimpanzees, which efficiently sulfate LCA, and is similar to the rhesus monkey and baboon in that LCA is poorly sulfated. When labeled CDCA was orally administered to squirrel monkeys, less than 20% of the dosed radioactivity was recovered as LCA and its further metabolites in feces over 3 days, indicating that bacterial metabolism of CDCA into LCA is strikingly less than in other animals and in humans. It therefore appears that LCA, known as a hepatotoxic secondary bile acid, is not accumulated in the squirrel monkey, not because of its rapid turnover through sulfation, but because of the low order of its production.

  10. Role of Free Fatty Acid Receptor 2 (FFAR2) in the Regulation of Metabolic Homeostasis.

    PubMed

    Mohammad, Sameer

    2015-01-01

    Besides being an important source of fuel and structural components of biological membranes, free fatty acids (FFAs) are known to display a wide variety of roles that include modulation of receptor signaling and regulation of gene expression among many. FFAs play a significant role in maintaining metabolic homeostasis by activating specific G-Protein Coupled Receptors (GPCRs) in pancreatic β cells, immune cells, white adipose tissue, intestine and several other tissues. Free Fatty acid receptor 2 (FFAR2) also known as GPR43 belongs to this group of GPCRs and has been shown to participate in a number of important biological activities. FFAR2 is activated by short-chain fatty acids (SCFAs) such as acetate, propionate and butyrate. SCFAs are formed in the distal gut by bacterial fermentation of macro-fibrous material that escapes digestion in the upper gastrointestinal tract and enters the colon and have been shown to play vital role in the immune regulation and metabolic homeostasis. FFAR2 and other free fatty acid receptors are considered key components of the body's nutrient sensing mechanism and targeting these receptors is assumed to offer novel therapies for the management of diabetes and other metabolic disorders. This review aims to summarize the current state of our understanding of FFAR2 biology with a particular focus on its role in metabolic homeostasis. PMID:25850624

  11. Expression of fatty acid synthesis genes and fatty acid accumulation in haematococcus pluvialis under different stressors

    PubMed Central

    2012-01-01

    Background Biofuel has been the focus of intensive global research over the past few years. The development of 4th generation biofuel production (algae-to-biofuels) based on metabolic engineering of algae is still in its infancy, one of the main barriers is our lacking of understanding of microalgal growth, metabolism and biofuel production. Although fatty acid (FA) biosynthesis pathway genes have been all cloned and biosynthesis pathway was built up in some higher plants, the molecular mechanism for its regulation in microalgae is far away from elucidation. Results We cloned main key genes for FA biosynthesis in Haematococcus pluvialis, a green microalga as a potential biodiesel feedstock, and investigated the correlations between their expression alternation and FA composition and content detected by GC-MS under different stress treatments, such as nitrogen depletion, salinity, high or low temperature. Our results showed that high temperature, high salinity, and nitrogen depletion treatments played significant roles in promoting microalgal FA synthesis, while FA qualities were not changed much. Correlation analysis showed that acyl carrier protein (ACP), 3-ketoacyl-ACP-synthase (KAS), and acyl-ACP thioesterase (FATA) gene expression had significant correlations with monounsaturated FA (MUFA) synthesis and polyunsaturated FA (PUFA) synthesis. Conclusions We proposed that ACP, KAS, and FATA in H. pluvialis may play an important role in FA synthesis and may be rate limiting genes, which probably could be modified for the further study of metabolic engineering to improve microalgal biofuel quality and production. PMID:22448811

  12. Adipose tissue gene expression and metabolic health of obese adults.

    PubMed

    Das, S K; Ma, L; Sharma, N K

    2015-05-01

    Obese subjects with a similar body mass index (BMI) exhibit substantial heterogeneity in gluco- and cardiometabolic heath phenotypes. However, defining genes that underlie the heterogeneity of metabolic features among obese individuals and determining metabolically healthy and unhealthy phenotypes remain challenging. We conducted unsupervised hierarchical clustering analysis of subcutaneous adipose tissue transcripts from 30 obese men and women ⩾40 years old. Despite similar BMIs in all subjects, we found two distinct subgroups, one metabolically healthy (group 1) and one metabolically unhealthy (group 2). Subjects in group 2 showed significantly higher total cholesterol (P=0.005), low-density lipoprotein cholesterol (P=0.006), 2-h insulin during oral glucose tolerance test (P=0.015) and lower insulin sensitivity (SI, P=0.029) compared with group 1. We identified significant upregulation of 141 genes (for example, MMP9 and SPP1) and downregulation of 17 genes (for example, NDRG4 and GINS3) in group 2 subjects. Intriguingly, these differentially expressed transcripts were enriched for genes involved in cardiovascular disease-related processes (P=2.81 × 10(-11)-3.74 × 10(-02)) and pathways involved in immune and inflammatory response (P=8.32 × 10(-5)-0.04). Two downregulated genes, NDRG4 and GINS3, have been located in a genomic interval associated with cardiac repolarization in published GWASs and zebra fish knockout models. Our study provides evidence that perturbations in the adipose tissue gene expression network are important in defining metabolic health in obese subjects. PMID:25520251

  13. Adaptations to Climate in Candidate Genes for Common Metabolic Disorders

    PubMed Central

    Hancock, Angela M; Witonsky, David B; Gordon, Adam S; Eshel, Gidon; Pritchard, Jonathan K; Coop, Graham; Di Rienzo, Anna

    2008-01-01

    Evolutionary pressures due to variation in climate play an important role in shaping phenotypic variation among and within species and have been shown to influence variation in phenotypes such as body shape and size among humans. Genes involved in energy metabolism are likely to be central to heat and cold tolerance. To test the hypothesis that climate shaped variation in metabolism genes in humans, we used a bioinformatics approach based on network theory to select 82 candidate genes for common metabolic disorders. We genotyped 873 tag SNPs in these genes in 54 worldwide populations (including the 52 in the Human Genome Diversity Project panel) and found correlations with climate variables using rank correlation analysis and a newly developed method termed Bayesian geographic analysis. In addition, we genotyped 210 carefully matched control SNPs to provide an empirical null distribution for spatial patterns of allele frequency due to population history alone. For nearly all climate variables, we found an excess of genic SNPs in the tail of the distributions of the test statistics compared to the control SNPs, implying that metabolic genes as a group show signals of spatially varying selection. Among our strongest signals were several SNPs (e.g., LEPR R109K, FABP2 A54T) that had previously been associated with phenotypes directly related to cold tolerance. Since variation in climate may be correlated with other aspects of environmental variation, it is possible that some of the signals that we detected reflect selective pressures other than climate. Nevertheless, our results are consistent with the idea that climate has been an important selective pressure acting on candidate genes for common metabolic disorders. PMID:18282109

  14. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage.

    PubMed

    Bai, Cheng; Reilly, Charles C; Wood, Bruce W

    2006-02-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan. PMID:16415214

  15. Folate and One-Carbon Metabolism Gene Polymorphisms and Their Associations With Oral Facial Clefts

    PubMed Central

    Boyles, Abee L.; Wilcox, Allen J.; Taylor, Jack A.; Meyer, Klaus; Fredriksen, Åse; Ueland, Per Magne; Drevon, Christian A.; Vollset, Stein Emil; Lie, Rolv Terje

    2008-01-01

    Folate metabolism plays a critical role in embryonic development. Prenatal folate supplementation reduces the risk of neural tube defects and probably oral facial clefts. Previous studies of related metabolic genes have associated polymorphisms in cystathionine-beta-synthase (CBS) and 5,10-methylenetetrahydrofolate reductase (MTHFR) with cleft risk. We explored associations between genes related to one-carbon metabolism and clefts in a Norwegian population-based study that included 362 families with cleft lip with or without cleft palate (CL/P) and 191 families with cleft palate only (CPO). We previously showed a 39% reduction in risk of CL/P with folic acid supplementation in this population. In the present study we genotyped 12 polymorphisms in nine genes related to one-carbon metabolism and looked for associations of clefting risk with fetal polymorphisms, maternal polymorphisms, as well as parent-of-origin effects, using combined likelihood-ratio tests (LRT). We also stratified by maternal periconceptional intake of folic acid (>400 μg) to explore gene-exposure interactions. We found a reduced risk of CL/P with mothers who carried the CBS C699T variant (rs234706); relative risk was 0.94 with one copy of the T allele (95% CI 0.63-1.4) and 0.50 (95% CI 0.26-0.96) with two copies (P = 0.008). We found no evidence of interaction of this variant with folate status. We saw no evidence of risk from the MTHFR C677T variant (rs1801133) either overall or after stratifying by maternal folate intake. No associations were found between any of the polymorphisms and CPO. Genetic variations in the nine metabolic genes examined here do not confer a substantial degree of risk for clefts. Published 2008 Wiley-Liss, Inc.† PMID:18203168

  16. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica.

    PubMed

    Xue, Zhixiong; Sharpe, Pamela L; Hong, Seung-Pyo; Yadav, Narendra S; Xie, Dongming; Short, David R; Damude, Howard G; Rupert, Ross A; Seip, John E; Wang, Jamie; Pollak, Dana W; Bostick, Michael W; Bosak, Melissa D; Macool, Daniel J; Hollerbach, Dieter H; Zhang, Hongxiang; Arcilla, Dennis M; Bledsoe, Sidney A; Croker, Kevin; McCord, Elizabeth F; Tyreus, Bjorn D; Jackson, Ethel N; Zhu, Quinn

    2013-08-01

    The availability of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is currently limited because they are produced mainly by marine fisheries that cannot keep pace with the demands of the growing market for these products. A sustainable non-animal source of EPA and DHA is needed. Metabolic engineering of the oleaginous yeast Yarrowia lipolytica resulted in a strain that produced EPA at 15% of dry cell weight. The engineered yeast lipid comprises EPA at 56.6% and saturated fatty acids at less than 5% by weight, which are the highest and the lowest percentages, respectively, among known EPA sources. Inactivation of the peroxisome biogenesis gene PEX10 was crucial in obtaining high EPA yields and may increase the yields of other commercially desirable lipid-related products. This technology platform enables the production of lipids with tailored fatty acid compositions and provides a sustainable source of EPA. PMID:23873085

  17. HexR Controls Glucose-Responsive Genes and Central Carbon Metabolism in Neisseria meningitidis

    PubMed Central

    Antunes, Ana; Golfieri, Giacomo; Ferlicca, Francesca; Giuliani, Marzia M.; Scarlato, Vincenzo

    2015-01-01

    ABSTRACT Neisseria meningitidis, an exclusively human pathogen and the leading cause of bacterial meningitis, must adapt to different host niches during human infection. N. meningitidis can utilize a restricted range of carbon sources, including lactate, glucose, and pyruvate, whose concentrations vary in host niches. Microarray analysis of N. meningitidis grown in a chemically defined medium in the presence or absence of glucose allowed us to identify genes regulated by carbon source availability. Most such genes are implicated in energy metabolism and transport, and some are implicated in virulence. In particular, genes involved in glucose catabolism were upregulated, whereas genes involved in the tricarboxylic acid cycle were downregulated. Several genes encoding surface-exposed proteins, including the MafA adhesins and Neisseria surface protein A, were upregulated in the presence of glucose. Our microarray analysis led to the identification of a glucose-responsive hexR-like transcriptional regulator that controls genes of the central carbon metabolism of N. meningitidis in response to glucose. We characterized the HexR regulon and showed that the hexR gene is accountable for some of the glucose-responsive regulation; in vitro assays with the purified protein showed that HexR binds to the promoters of the central metabolic operons of the bacterium. Based on DNA sequence alignment of the target sites, we propose a 17-bp pseudopalindromic consensus HexR binding motif. Furthermore, N. meningitidis strains lacking hexR expression were deficient in establishing successful bacteremia in an infant rat model of infection, indicating the importance of this regulator for the survival of this pathogen in vivo. IMPORTANCE Neisseria meningitidis grows on a limited range of nutrients during infection. We analyzed the gene expression of N. meningitidis in response to glucose, the main energy source available in human blood, and we found that glucose regulates many genes

  18. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    PubMed

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin. PMID:27348124

  19. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells

    PubMed Central

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin. PMID:27348124

  20. [Gene therapy for the treatment of inborn errors of metabolism].

    PubMed

    Pérez-López, Jordi

    2014-06-16

    Due to the enzymatic defect in inborn errors of metabolism, there is a blockage in the metabolic pathways and an accumulation of toxic metabolites. Currently available therapies include dietary restriction, empowering of alternative metabolic pathways, and the replacement of the deficient enzyme by cell transplantation, liver transplantation or administration of the purified enzyme. Gene therapy, using the transfer in the body of the correct copy of the altered gene by a vector, is emerging as a promising treatment. However, the difficulty of vectors currently used to cross the blood brain barrier, the immune response, the cellular toxicity and potential oncogenesis are some limitations that could greatly limit its potential clinical application in human beings. PMID:23932565

  1. Sucrose metabolism gene families and their biological functions

    PubMed Central

    Jiang, Shu-Ye; Chi, Yun-Hua; Wang, Ji-Zhou; Zhou, Jun-Xia; Cheng, Yan-Song; Zhang, Bao-Lan; Ma, Ali; Vanitha, Jeevanandam; Ramachandran, Srinivasan

    2015-01-01

    Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions. PMID:26616172

  2. Taurocholic acid metabolism by gut microbes and colon cancer.

    PubMed

    Ridlon, Jason M; Wolf, Patricia G; Gaskins, H Rex

    2016-05-01

    Colorectal cancer (CRC) is one of the most frequent causes of cancer death worldwide and is associated with adoption of a diet high in animal protein and saturated fat. Saturated fat induces increased bile secretion into the intestine. Increased bile secretion selects for populations of gut microbes capable of altering the bile acid pool, generating tumor-promoting secondary bile acids such as deoxycholic acid and lithocholic acid. Epidemiological evidence suggests CRC is associated with increased levels of DCA in serum, bile, and stool. Mechanisms by which secondary bile acids promote CRC are explored. Furthermore, in humans bile acid conjugation can vary by diet. Vegetarian diets favor glycine conjugation while diets high in animal protein favor taurine conjugation. Metabolism of taurine conjugated bile acids by gut microbes generates hydrogen sulfide, a genotoxic compound. Thus, taurocholic acid has the potential to stimulate intestinal bacteria capable of converting taurine and cholic acid to hydrogen sulfide and deoxycholic acid, a genotoxin and tumor-promoter, respectively. PMID:27003186

  3. Metabolic engineering of Yarrowia lipolytica for itaconic acid production.

    PubMed

    Blazeck, John; Hill, Andrew; Jamoussi, Mariam; Pan, Anny; Miller, Jarrett; Alper, Hal S

    2015-11-01

    Itaconic acid is a naturally produced organic acid with diverse applications as a replacement for petroleum derived products. However, its industrial viability as a bio-replacement has been restricted due to limitations with native producers. In this light, Yarrowia lipolytica is an excellent potential candidate for itaconic acid production due to its innate capacity to accumulate citric acid cycle intermediates and tolerance to lower pH. Here, we demonstrate the capacity to produce itaconic acid in Y. lipolytica through heterologous expression of the itaconic acid synthesis enzyme, resulting in an initial titer of 33 mg/L. Further optimizations of this strain via metabolic pathway engineering, enzyme localization, and media optimization strategies enabled 4.6g/L of itaconic acid to be produced in bioreactors, representing a 140-fold improvement over initial titer. Moreover, these fermentation conditions did not require additional nutrient supplementation and utilized a low pH condition that enabled the acid form of itaconic acid to be produced. Overall yields (0.058 g/g yield from glucose) and maximum productivity of 0.045 g/L/h still provide areas for future strain improvement. Nevertheless, this work demonstrates that Y. lipolytica has the potential to serve as an industrially relevant platform for itaconic acid production. PMID:26384571

  4. Bridging the gap between gene expression and metabolic phenotype via kinetic models

    PubMed Central

    2013-01-01

    Background Despite the close association between gene expression and metabolism, experimental evidence shows that gene expression levels alone cannot predict metabolic phenotypes, indicating a knowledge gap in our understanding of how these processes are connected. Here, we present a method that integrates transcriptome, fluxome, and metabolome data using kinetic models to create a mechanistic link between gene expression and metabolism. Results We developed a modeling framework to construct kinetic models that connect the transcriptional and metabolic responses of a cell to exogenous perturbations. The framework allowed us to avoid extensive experimental characterization, literature mining, and optimization problems by estimating most model parameters directly from fluxome and transcriptome data. We applied the framework to investigate how gene expression changes led to observed phenotypic alterations of Saccharomyces cerevisiae treated with weak organic acids (i.e., acetate, benzoate, propionate, or sorbate) and the histidine synthesis inhibitor 3-aminotriazole under steady-state conditions. We found that the transcriptional response led to alterations in yeast metabolism that mimicked measured metabolic fluxes and concentration changes. Further analyses generated mechanistic insights of how S. cerevisiae responds to these stresses. In particular, these results suggest that S. cerevisiae uses different regulation strategies for responding to these insults: regulation of two reactions accounted for most of the tolerance to the four weak organic acids, whereas the response to 3-aminotriazole was distributed among multiple reactions. Moreover, we observed that the magnitude of the gene expression changes was not directly correlated with their effect on the ability of S. cerevisiae to grow under these treatments. In addition, we identified another potential mechanism of action of 3-aminotriazole associated with the depletion of tetrahydrofolate. Conclusions Our

  5. Insulin resistance is associated with altered amino acid metabolism and adipose tissue dysfunction in normoglycemic women

    PubMed Central

    Wiklund, Petri; Zhang, Xiaobo; Pekkala, Satu; Autio, Reija; Kong, Lingjia; Yang, Yifan; Keinänen-Kiukaanniemi, Sirkka; Alen, Markku; Cheng, Sulin

    2016-01-01

    Insulin resistance is associated adiposity, but the mechanisms are not fully understood. In this study, we aimed to identify early metabolic alterations associated with insulin resistance in normoglycemic women with varying degree of adiposity. One-hundred and ten young and middle-aged women were divided into low and high IR groups based on their median HOMA-IR (0.9 ± 0.4 vs. 2.8 ± 1.2). Body composition was assessed using DXA, skeletal muscle and liver fat by proton magnetic resonance spectroscopy, serum metabolites by nuclear magnetic resonance spectroscopy and adipose tissue and skeletal muscle gene expression by microarrays. High HOMA-IR subjects had higher serum branched-chain amino acid concentrations (BCAA) (p < 0.05 for both). Gene expression analysis of subcutaneous adipose tissue revealed significant down-regulation of genes related to BCAA catabolism and mitochondrial energy metabolism and up-regulation of several inflammation-related pathways in high HOMA-IR subjects (p < 0.05 for all), but no differentially expressed genes in skeletal muscle were found. In conclusion, in normoglycemic women insulin resistance was associated with increased serum BCAA concentrations, down-regulation of mitochondrial energy metabolism and increased expression of inflammation-related genes in the adipose tissue. PMID:27080554

  6. Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production.

    PubMed

    Blazeck, John; Miller, Jarrett; Pan, Anny; Gengler, Jon; Holden, Clinton; Jamoussi, Mariam; Alper, Hal S

    2014-10-01

    Renewable alternatives for petroleum-derived chemicals are achievable through biosynthetic production. Here, we utilize Saccharomyces cerevisiae to enable the synthesis of itaconic acid, a molecule with diverse applications as a petrochemical replacement. We first optimize pathway expression within S. cerevisiae through the use of a hybrid promoter. Next, we utilize sequential, in silico computational genome-scanning to identify beneficial genetic perturbations that are metabolically distant from the itaconic acid synthesis pathway. In this manner, we successfully identify three non-obvious genetic targets (∆ade3 ∆bna2 ∆tes1) that successively improve itaconic acid titer. We establish that focused manipulations of upstream pathway enzymes (localized refactoring) and enzyme re-localization to both mitochondria and cytosol fail to improve itaconic acid titers. Finally, we establish a higher cell density fermentation that ultimately achieves itaconic acid titer of 168 mg/L, a sevenfold improvement over initial conditions. This work represents an attempt to increase itaconic acid production in yeast and demonstrates the successful utilization of computationally guided genetic manipulation to increase metabolic capacity. PMID:24997118

  7. Changes in Liver Metabolic Gene Expression from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Peters, C. P.; Wotring, Virginia E.

    2011-01-01

    Radiation exposure is one of the unique physiological challenges of human spaceflight that is not encountered on earth. While radiation exposure is known to impart physiological stresses and alter normal function, it is unclear how it specifically affects drug metabolism. A major concern is that the actions of medications used in spaceflight may deviate from the expectations formed from terrestrial use. This concern was investigated at the molecular level by analyzing how gamma radiation exposure affected gene expression in the livers of mice. Three different doses of radiation were administered and after various intervals of recovery time, gene expression was measured with RT-qPCR screening arrays for drug metabolism and DNA repair. After examining the results of 192 genes total from each of 72 mice, 65 genes were found to be significantly affected by at least one of the doses of radiation. In general, the genes affected are involved in the metabolism of drugs with lipid or steroid hormone-like structures, as well as the maintenance of redox homeostasis and repair of DNA damage.

  8. Oxalic acid alleviates chilling injury in peach fruit by regulating energy metabolism and fatty acid contents.

    PubMed

    Jin, Peng; Zhu, Hong; Wang, Lei; Shan, Timin; Zheng, Yonghua

    2014-10-15

    The effects of postharvest oxalic acid (OA) treatment on chilling injury, energy metabolism and membrane fatty acid content in 'Baifeng' peach fruit stored at 0°C were investigated. Internal browning was significantly reduced by OA treatment in peaches. OA treatment markedly inhibited the increase of ion leakage and the accumulation of malondialdehyde. Meanwhile, OA significantly increased the contents of adenosine triphosphate and energy charge in peach fruit. Enzyme activities of energy metabolism including H(+)-adenosine triphosphatase, Ca(2+)-adenosine triphosphatase, succinic dehydrogenase and cytochrome C oxidase were markedly enhanced by OA treatment. The ratio of unsaturated/saturated fatty acid in OA-treated fruit was significantly higher than that in control fruit. These results suggest that the alleviation in chilling injury by OA may be due to enhanced enzyme activities related to energy metabolism and higher levels of energy status and unsaturated/saturated fatty acid ratio. PMID:24837925

  9. Genes in Glucose Metabolism and Association With Spina Bifida

    PubMed Central

    Davidson, Christina M.; Northrup, Hope; King, Terri M.; Fletcher, Jack M.; Townsend, Irene; Tyerman, Gayle H.

    2008-01-01

    The authors tested single nucleotide polymorphisms (SNPs) in coding sequences of candidate genes involved in glucose metabolism and obesity for associations with spina bifida (SB). Coding SNPs on 12 candidate genes was investigated. Genotyping was performed on 507 children with SB and their parents plus anonymous control DNAs from Hispanic and Caucasian individuals. The transmission disequilibrium test was performed to test for genetic associations between transmission of alleles and SB in the offspring (P < .05). A statistically significant association between Lys481 of HK1 (G allele), Arg109Lys of LEPR (G allele), and Pro196 of GLUT1 (A allele) was found (P = .019, .039 and .040, respectively). Three SNPs on 3 genes involved with glucose metabolism and obesity may be associated with increased susceptibility to SB. PMID:18212354

  10. Lactococcus lactis Metabolism and Gene Expression during Growth on Plant Tissues

    PubMed Central

    Golomb, Benjamin L.

    2014-01-01

    Lactic acid bacteria have been isolated from living, harvested, and fermented plant materials; however, the adaptations these bacteria possess for growth on plant tissues are largely unknown. In this study, we investigated plant habitat-specific traits of Lactococcus lactis during growth in an Arabidopsis thaliana leaf tissue lysate (ATL). L. lactis KF147, a strain originally isolated from plants, exhibited a higher growth rate and reached 7.9-fold-greater cell densities during growth in ATL than the dairy-associated strain L. lactis IL1403. Transcriptome profiling (RNA-seq) of KF147 identified 853 induced and 264 repressed genes during growth in ATL compared to that in GM17 laboratory culture medium. Genes induced in ATL included those involved in the arginine deiminase pathway and a total of 140 carbohydrate transport and metabolism genes, many of which are involved in xylose, arabinose, cellobiose, and hemicellulose metabolism. The induction of those genes corresponded with L. lactis KF147 nutrient consumption and production of metabolic end products in ATL as measured by gas chromatography-time of flight mass spectrometry (GC-TOF/MS) untargeted metabolomic profiling. To assess the importance of specific plant-inducible genes for L. lactis growth in ATL, xylose metabolism was targeted for gene knockout mutagenesis. Wild-type L. lactis strain KF147 but not an xylA deletion mutant was able to grow using xylose as the sole carbon source. However, both strains grew to similarly high levels in ATL, indicating redundancy in L. lactis carbohydrate metabolism on plant tissues. These findings show that certain strains of L. lactis are well adapted for growth on plants and possess specific traits relevant for plant-based food, fuel, and feed fermentations. PMID:25384484

  11. Vitamin B12 and omega-3 fatty acids together regulate lipid metabolism in Wistar rats.

    PubMed

    Khaire, Amrita; Rathod, Richa; Kale, Anvita; Joshi, Sadhana

    2015-08-01

    Our recent study indicates that maternal vitamin B12 and omega-3 fatty acid status influence plasma and erythrocyte fatty acid profile in dams. The present study examines the effects of prenatal and postnatal vitamin B12 and omega-3 fatty acid status on lipid metabolism in the offspring. Pregnant dams were divided into five groups: Control; Vitamin B12 deficient (BD); Vitamin B12 supplemented (BS); Vitamin B12 deficient group supplemented with omega-3 fatty acids (BDO); Vitamin B12 supplemented group with omega-3 fatty acids (BSO). The offspring were continued on the same diets till 3 month of age. Vitamin B12 deficiency increased cholesterol levels (p<0.01) but reduced docosahexaenoic acid (DHA) (p<0.05), liver mRNA levels of acetyl CoA carboxylase-1 (ACC-1) (p<0.05) and carnitine palmitoyltransferase-1 (CPT-1) (p<0.01) in the offspring. Omega-3 fatty acid supplementation to this group normalized cholesterol but not mRNA levels of ACC-1 and CPT-1. Vitamin B12 supplementation normalized the levels cholesterol to that of control but increased plasma triglyceride (p<0.01) and reduced liver mRNA levels of adiponectin, ACC-1, and CPT-1 (p<0.01 for all). Supplementation of both vitamin B12 and omega-3 fatty acid normalized triglyceride and mRNA levels of all the above genes. Prenatal and postnatal vitamin B12 and omega-3 fatty acids together play a crucial role in regulating the genes involved in lipid metabolism in adult offspring. PMID:26003565

  12. Oleanolic acid and ursolic acid affect peptidoglycan metabolism in Listeria monocytogenes.

    PubMed

    Kurek, Anna; Grudniak, Anna M; Szwed, Magdalena; Klicka, Anna; Samluk, Lukasz; Wolska, Krystyna I; Janiszowska, Wirginia; Popowska, Magdalena

    2010-01-01

    The plant pentacyclic triterpenoids, oleanolic and ursolic acids, inhibit the growth and survival of many bacteria, particularly Gram-positive species, including pathogenic ones. The effect of these compounds on the facultative human pathogen Listeria monocytogenes was examined. Both acids affected cell morphology and enhanced autolysis of the bacterial cells. Autolysis of isolated cell walls was inhibited by oleanolic acid, but the inhibitory activity of ursolic acid was less pronounced. Both compounds inhibited peptidoglycan turnover and quantitatively affected the profile of muropeptides obtained after digestion of peptidoglycan with mutanolysin. These results suggest that peptidoglycan metabolism is a cellular target of oleanolic and ursolic acids. PMID:19894138

  13. Intra-myocellular fatty acid metabolism plays a critical role in mediating responses to dietary restriction in Drosophila melanogaster

    PubMed Central

    Katewa, Subhash D.; Demontis, Fabio; Kolipinski, Marysia; Hubbard, Allan; Gill, Matthew S.; Perrimon, Norbert; Melov, Simon; Kapahi, Pankaj

    2012-01-01

    Summary Changes in fat content have been associated with dietary restriction (DR), but whether they play a causal role in mediating various responses to DR remains unknown. We demonstrate that upon DR, Drosophila melanogaster shift their metabolism towards increasing both fatty acid synthesis and breakdown, which is required for various responses to DR. Inhibition of fatty acid synthesis or oxidation genes specifically in the muscle tissue inhibited lifespan extension upon DR. Furthermore, DR enhances spontaneous activity of flies which was found to be dependent on the enhanced fatty acid metabolism. This increase in activity was found to be at least partially required for the lifespan extension upon DR. Over-expression of adipokinetic hormone (dAKH), the functional ortholog of glucagon, enhances fat metabolism, spontaneous activity and lifespan. Together, these results suggest that enhanced fat metabolism in the muscle and physical activity play a key role in the protective effects of DR. PMID:22768842

  14. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance.

    PubMed

    Meesapyodsuk, Dauenpen; Chen, Yan; Ng, Siew Hon; Chen, Jianan; Qiu, Xiao

    2015-11-01

    Ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) has many specialized uses in bioproduct industries, while castor bean is currently the only commercial source for the fatty acid. This report describes metabolic engineering of a microbial system (Pichia pastoris) to produce ricinoleic acid using a "push" (synthesis) and "pull" (assembly) strategy. CpFAH, a fatty acid hydroxylase from Claviceps purpurea, was used for synthesis of ricinoleic acid, and CpDGAT1, a diacylglycerol acyl transferase for the triacylglycerol synthesis from the same species, was used for assembly of the fatty acid. Coexpression of CpFAH and CpDGAT1 produced higher lipid contents and ricinoleic acid levels than expression of CpFAH alone. Coexpression in a mutant haploid strain defective in the Δ12 desaturase activity resulted in a higher level of ricinoleic acid than that in the diploid strain. Intriguingly, the ricinoleic acid produced was mainly distributed in the neutral lipid fractions, particularly the free fatty acid form, but with little in the polar lipids. This work demonstrates the effectiveness of the metabolic engineering strategy and excellent capacity of the microbial system for production of ricinoleic acid as an alternative to plant sources for industrial uses. PMID:26323290

  15. Fumaric Acid Production in Saccharomyces cerevisiae by In Silico Aided Metabolic Engineering

    PubMed Central

    Xu, Guoqiang; Zou, Wei; Chen, Xiulai; Xu, Nan; Liu, Liming; Chen, Jian

    2012-01-01

    Fumaric acid (FA) is a promising biomass-derived building-block chemical. Bio-based FA production from renewable feedstock is a promising and sustainable alternative to petroleum-based chemical synthesis. Here we report on FA production by direct fermentation using metabolically engineered Saccharomyces cerevisiae with the aid of in silico analysis of a genome-scale metabolic model. First, FUM1 was selected as the target gene on the basis of extensive literature mining. Flux balance analysis (FBA) revealed that FUM1 deletion can lead to FA production and slightly lower growth of S. cerevisiae. The engineered S. cerevisiae strain obtained by deleting FUM1 can produce FA up to a concentration of 610±31 mg L–1 without any apparent change in growth in fed-batch culture. FT-IR and 1H and 13C NMR spectra confirmed that FA was synthesized by the engineered S. cerevisiae strain. FBA identified pyruvate carboxylase as one of the factors limiting higher FA production. When the RoPYC gene was introduced, S. cerevisiae produced 1134±48 mg L–1 FA. Furthermore, the final engineered S. cerevisiae strain was able to produce 1675±52 mg L–1 FA in batch culture when the SFC1 gene encoding a succinate–fumarate transporter was introduced. These results demonstrate that the model shows great predictive capability for metabolic engineering. Moreover, FA production in S. cerevisiae can be efficiently developed with the aid of in silico metabolic engineering. PMID:23300594

  16. Bile acids and sphingosine-1-phosphate receptor 2 in hepatic lipid metabolism.

    PubMed

    Kwong, Eric; Li, Yunzhou; Hylemon, Phillip B; Zhou, Huiping

    2015-03-01

    The liver is the central organ involved in lipid metabolism. Dyslipidemia and its related disorders, including non-alcoholic fatty liver disease (NAFLD), obesity and other metabolic diseases, are of increasing public health concern due to their increasing prevalence in the population. Besides their well-characterized functions in cholesterol homoeostasis and nutrient absorption, bile acids are also important metabolic regulators and function as signaling hormones by activating specific nuclear receptors, G-protein coupled receptors, and multiple signaling pathways. Recent studies identified a new signaling pathway by which conjugated bile acids (CBA) activate the extracellular regulated protein kinases (ERK1/2) and protein kinase B (AKT) signaling pathway via sphingosine-1-phosphate receptor 2 (S1PR2). CBA-induced activation of S1PR2 is a key regulator of sphingosine kinase 2 (SphK2) and hepatic gene expression. This review focuses on recent findings related to the role of bile acids/S1PR2-mediated signaling pathways in regulating hepatic lipid metabolism. PMID:26579441

  17. The small RNA Aar in Acinetobacter baylyi: a putative regulator of amino acid metabolism.

    PubMed

    Schilling, Dominik; Findeiss, Sven; Richter, Andreas S; Taylor, Jennifer A; Gerischer, Ulrike

    2010-09-01

    Small non-coding RNAs (sRNAs) are key players in prokaryotic metabolic circuits, allowing the cell to adapt to changing environmental conditions. Regulatory interference by sRNAs in cellular metabolism is often facilitated by the Sm-like protein Hfq. A search for novel sRNAs in A. baylyi intergenic regions was performed by a biocomputational screening. One candidate, Aar, encoded between trpS and sucD showed Hfq dependency in Northern blot analysis. Aar was expressed strongly during stationary growth phase in minimal medium; in contrast, in complex medium, strongest expression was in the exponential growth phase. Whereas over-expression of Aar in trans did not affect bacterial growth, seven mRNA targets predicted by two in silico approaches were upregulated in stationary growth phase. All seven mRNAs are involved in A. baylyi amino acid metabolism. A putative binding site for Lrp, the global regulator of branched-chain amino acids in E. coli, was observed within the aar gene. Both facts imply an Aar participation in amino acid metabolism. PMID:20559624

  18. Phenoloxidase production and vanillic acid metabolism by Zygomycetes.

    PubMed

    Seigle-Murandi, F; Guiraud, P; Steiman, R; Benoit-Guyod, J L

    1992-04-01

    The ability of 23 strains of Zygomycetes to produce extracellular phenoloxidases was examined on solid media by using 10 different reagents. The results varied depending on the reagent and indicated that most of the strains were devoid of phenoloxidase activity. The production of inducible phenoloxidases was demonstrated by the Bavendamm reaction. The study of the biotransformation of vanillic acid in synthetic medium indicated that the reaction most often obtained was the reduction of vanillic acid to vanillyl alcohol. Helicostylum piriforme and Rhizopus microsporus var. chinensis completely metabolized vanillic acid while good transformation was obtained with Absidia spinosa, Cunninghamella bainieri, Mucor bacilliformis, Mucor plumbeus, Rhizopus arrhizus, Rhizopus stolonifer, Syncephalastrum racemosum and Zygorhynchus moelleri. Other strains did not degrade or poorly degraded vanillic acid. Decarboxylation and demethoxylation of this compound was independent of the production of phenoloxidases as in the case of white-rot fungi. Other enzymatic systems might be implicated in this phenomenon. PMID:1602986

  19. Fatty Acids in Energy Metabolism of the Central Nervous System

    PubMed Central

    Orynbayeva, Zulfiya; Vavilin, Valentin; Lyakhovich, Vyacheslav

    2014-01-01

    In this review, we analyze the current hypotheses regarding energy metabolism in the neurons and astroglia. Recently, it was shown that up to 20% of the total brain's energy is provided by mitochondrial oxidation of fatty acids. However, the existing hypotheses consider glucose, or its derivative lactate, as the only main energy substrate for the brain. Astroglia metabolically supports the neurons by providing lactate as a substrate for neuronal mitochondria. In addition, a significant amount of neuromediators, glutamate and GABA, is transported into neurons and also serves as substrates for mitochondria. Thus, neuronal mitochondria may simultaneously oxidize several substrates. Astrocytes have to replenish the pool of neuromediators by synthesis de novo, which requires large amounts of energy. In this review, we made an attempt to reconcile β-oxidation of fatty acids by astrocytic mitochondria with the existing hypothesis on regulation of aerobic glycolysis. We suggest that, under condition of neuronal excitation, both metabolic pathways may exist simultaneously. We provide experimental evidence that isolated neuronal mitochondria may oxidize palmitoyl carnitine in the presence of other mitochondrial substrates. We also suggest that variations in the brain mitochondrial metabolic phenotype may be associated with different mtDNA haplogroups. PMID:24883315

  20. Challenges in the production of itaconic acid by metabolically engineered Escherichia coli.

    PubMed

    Yamamoto, Kouhei; Nagata, Keisuke; Ohara, Hitomi; Aso, Yuji

    2015-01-01

    Metabolic engineering allows the production of a variety of high-value chemicals in heterologous hosts. For example, itaconic acid (IA) has been produced in several microorganisms, such as Escherichia coli, Aspergillus niger, and Synechocystis sp. through the expression of cis-aconitate decarboxylase gene (cad) from Aspergillus terreus. Recently, we showed that inactivation of the isocitrate dehydrogenase gene and overexpression of the aconitase gene dramatically enhanced the production levels of IA in E. coli expressing cad. Furthermore, we demonstrated that it is possible to produce IA directly from starch by engineered E. coli that additionally expresses the α-amylase gene from Streptococcus bovis. In this study, we sum up our findings regarding the challenges of IA production in E. coli. PMID:26176321

  1. Challenges in the production of itaconic acid by metabolically engineered Escherichia coli

    PubMed Central

    Yamamoto, Kouhei; Nagata, Keisuke; Ohara, Hitomi; Aso, Yuji

    2015-01-01

    Metabolic engineering allows the production of a variety of high-value chemicals in heterologous hosts. For example, itaconic acid (IA) has been produced in several microorganisms, such as Escherichia coli, Aspergillus niger, and Synechocystis sp. through the expression of cis-aconitate decarboxylase gene (cad) from Aspergillus terreus. Recently, we showed that inactivation of the isocitrate dehydrogenase gene and overexpression of the aconitase gene dramatically enhanced the production levels of IA in E. coli expressing cad. Furthermore, we demonstrated that it is possible to produce IA directly from starch by engineered E. coli that additionally expresses the α-amylase gene from Streptococcus bovis. In this study, we sum up our findings regarding the challenges of IA production in E. coli. PMID:26176321

  2. Changes in Liver Metabolic Gene Expression from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Peters, C. P.; Wotring, V. E.

    2012-01-01

    Increased exposure to radiation is one physiological stressor associated with spaceflight. While known to alter normal physiological function, how radiation affects metabolism of administered medications is unclear. Crew health could be affected if the actions of medications used in spaceflight deviated from expectations formed during terrestrial medication use. Three different doses of gamma radiation (50 mGy - 6.05 Gy) and a sham were administered to groups of 6 mice each, and after various intervals of recovery time, liver gene expression was measured with RT-qPCR arrays for drug metabolism and DNA repair enzymes. Results indicated approx.65 genes of the 190 tested were significantly affected by at least one of the radiation doses. Many of the affected genes are involved in the metabolism of drugs with hydrophobic or steroid-like structures, maintenance of redox homeostasis and repair of DNA damage. Most affected genes returned to near control expression levels by 7 days post-treatment. With 6 Gy exposure, metallothionein expression was 132-fold more than control at the 4 hr time point, and fell at each later time point (11-fold at 24 hrs, and 8-fold at 7 days). In contrast, Cyp17a1 showed a 4-fold elevation at 4 hrs after exposure and remained constant for 7 days.

  3. Mechanisms of triglyceride metabolism in patients with bile acid diarrhea.

    PubMed

    Sagar, Nidhi Midhu; McFarlane, Michael; Nwokolo, Chuka; Bardhan, Karna Dev; Arasaradnam, Ramesh Pulendran

    2016-08-14

    Bile acids (BAs) are essential for the absorption of lipids. BA synthesis is inhibited through intestinal farnesoid X receptor (FXR) activity. BA sequestration is known to influence BA metabolism and control serum lipid concentrations. Animal data has demonstrated a regulatory role for the FXR in triglyceride metabolism. FXR inhibits hepatic lipogenesis by inhibiting the expression of sterol regulatory element binding protein 1c via small heterodimer primer activity. Conversely, FXR promotes free fatty acids oxidation by inducing the expression of peroxisome proliferator-activated receptor α. FXR can reduce the expression of microsomal triglyceride transfer protein, which regulates the assembly of very low-density lipoproteins (VLDL). FXR activation in turn promotes the clearance of circulating triglycerides by inducing apolipoprotein C-II, very low-density lipoproteins receptor (VLDL-R) and the expression of Syndecan-1 together with the repression of apolipoprotein C-III, which increases lipoprotein lipase activity. There is currently minimal clinical data on triglyceride metabolism in patients with bile acid diarrhoea (BAD). Emerging data suggests that a third of patients with BAD have hypertriglyceridemia. Further research is required to establish the risk of hypertriglyceridaemia in patients with BAD and elicit the mechanisms behind this, allowing for targeted treatment. PMID:27570415

  4. Mechanisms of triglyceride metabolism in patients with bile acid diarrhea

    PubMed Central

    Sagar, Nidhi Midhu; McFarlane, Michael; Nwokolo, Chuka; Bardhan, Karna Dev; Arasaradnam, Ramesh Pulendran

    2016-01-01

    Bile acids (BAs) are essential for the absorption of lipids. BA synthesis is inhibited through intestinal farnesoid X receptor (FXR) activity. BA sequestration is known to influence BA metabolism and control serum lipid concentrations. Animal data has demonstrated a regulatory role for the FXR in triglyceride metabolism. FXR inhibits hepatic lipogenesis by inhibiting the expression of sterol regulatory element binding protein 1c via small heterodimer primer activity. Conversely, FXR promotes free fatty acids oxidation by inducing the expression of peroxisome proliferator-activated receptor α. FXR can reduce the expression of microsomal triglyceride transfer protein, which regulates the assembly of very low-density lipoproteins (VLDL). FXR activation in turn promotes the clearance of circulating triglycerides by inducing apolipoprotein C-II, very low-density lipoproteins receptor (VLDL-R) and the expression of Syndecan-1 together with the repression of apolipoprotein C-III, which increases lipoprotein lipase activity. There is currently minimal clinical data on triglyceride metabolism in patients with bile acid diarrhoea (BAD). Emerging data suggests that a third of patients with BAD have hypertriglyceridemia. Further research is required to establish the risk of hypertriglyceridaemia in patients with BAD and elicit the mechanisms behind this, allowing for targeted treatment. PMID:27570415

  5. Transport and metabolism of glycolic acid by Chlamydomonas reinhardtii

    SciTech Connect

    Wilson, B.J.

    1987-01-01

    In order to understand the excretion of glycolate from Chlamydomonas reinhardtii, the conditions affecting glycolate synthesis and metabolism were investigated. Although glycolate is synthesized only in the light, the metabolism occurs in the light and dark with greater metabolism in the light due to refixation of photorespiratory CO/sub 2/. The amount of internal glycolate will affect the metabolism of externally added glycolate. When glycolate synthesis exceeds the metabolic capacity, glycolate is excreted from the cell. The transport of glycolate into the cells occurs very rapidly. Equilibrium is achieved at 4/sup 0/C within the time cells are pelleted by the silicone oil centrifugation technique through a layer of (/sup 14/C) glycolate. Glycolate uptake does not show the same time, temperature and pH dependencies as diffusion of benzoate. Uptake can be inhibited by treatment of cells with N-ethylmaleimide and stimulated in the presence of valino-mycin/KCl. Acetate and lactate are taken up as quickly as glycolate. The hypothesis was made that glycolate is transported by a protein carrier that transports monocarboxylic acids. The equilibrium concentration of glycolate is dependent on the cell density, implying that there may be a large number of transporter sites and that uptake is limited by substrate availability.

  6. Ancestral genetic complexity of arachidonic acid metabolism in Metazoa.

    PubMed

    Yuan, Dongjuan; Zou, Qiuqiong; Yu, Ting; Song, Cuikai; Huang, Shengfeng; Chen, Shangwu; Ren, Zhenghua; Xu, Anlong

    2014-09-01

    Eicosanoids play an important role in inducing complex and crucial physiological processes in animals. Eicosanoid biosynthesis in animals is widely reported; however, eicosanoid production in invertebrate tissue is remarkably different to vertebrates and in certain respects remains elusive. We, for the first time, compared the orthologs involved in arachidonic acid (AA) metabolism in 14 species of invertebrates and 3 species of vertebrates. Based on parsimony, a complex AA-metabolic system may have existed in the common ancestor of the Metazoa, and then expanded and diversified through invertebrate lineages. A primary vertebrate-like AA-metabolic system via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) pathways was further identified in the basal chordate, amphioxus. The expression profiling of AA-metabolic enzymes and lipidomic analysis of eicosanoid production in the tissues of amphioxus supported our supposition. Thus, we proposed that the ancestral complexity of AA-metabolic network diversified with the different lineages of invertebrates, adapting with the diversity of body plans and ecological opportunity, and arriving at the vertebrate-like pattern in the basal chordate, amphioxus. PMID:24801744

  7. Phosphonate Analogs of 2-Oxoglutarate Perturb Metabolism and Gene Expression in Illuminated Arabidopsis Leaves

    PubMed Central

    Araújo, Wagner L.; Tohge, Takayuki; Nunes-Nesi, Adriano; Daloso, Danilo M.; Nimick, Mhairi; Krahnert, Ina; Bunik, Victoria I.; Moorhead, Greg B. G.; Fernie, Alisdair R.

    2012-01-01

    Although the role of the 2-oxoglutarate dehydrogenase complex (2-OGDHC) has previously been demonstrated in plant heterotrophic tissues its role in photosynthetically active tissues remains poorly understood. By using a combination of metabolite and transcript profiles we here investigated the function of 2-OGDHC in leaves of Arabidopsis thaliana via use of specific phosphonate inhibitors of the enzyme. Incubation of leaf disks with the inhibitors revealed that they produced the anticipated effects on the in situ enzyme activity. In vitro experiments revealed that succinyl phosphonate (SP) and a carboxy ethyl ester of SP are slow-binding inhibitors of the 2-OGDHC. Our results indicate that the reduced respiration rates are associated with changes in the regulation of metabolic and signaling pathways leading to an imbalance in carbon-nitrogen metabolism and cell homeostasis. The inducible alteration of primary metabolism was associated with altered expression of genes belonging to networks of amino acids, plant respiration, and sugar metabolism. In addition, by using isothermal titration calorimetry we excluded the possibility that the changes in gene expression resulted from an effect on 2-oxoglutarate (2OG) binding to the carbon/ATP sensing protein PII. We also demonstrated that the 2OG degradation by the 2-oxoglutarate dehydrogenase strongly influences the distribution of intermediates of the tricarboxylic acid (TCA) cycle and the GABA shunt. Our results indicate that the TCA cycle activity is clearly working in a non-cyclic manner upon 2-OGDHC inhibition during the light period. PMID:22876250

  8. Light quality modulates metabolic synchronization over the diel phases of crassulacean acid metabolism

    PubMed Central

    Ceusters, Johan; Borland, Anne M.; Taybi, Tahar; Frans, Mario; Godts, Christof; De Proft, Maurice P.

    2014-01-01

    Temporal compartmentation of carboxylation processes is a defining feature of crassulacean acid metabolism and involves circadian control of key metabolic and transport steps that regulate the supply and demand for carbon over a 24h cycle. Recent insights on the molecular workings of the circadian clock and its connection with environmental inputs raise new questions on the importance of light quality and, by analogy, certain photoreceptors for synchronizing the metabolic components of CAM. The present work tested the hypothesis that optimal coupling of stomatal conductance, net CO2 uptake, and the reciprocal turnover of carbohydrates and organic acids over the diel CAM cycle requires both blue and red light input signals. Contrasting monochromatic wavelengths of blue, green, and red light (i.e. 475, 530, 630nm) with low fluence rates (10 μmol m–2 s–1) were administered for 16 hours each diel cycle for a total treatment time of 48 hours to the obligate CAM bromeliad, Aechmea ‘Maya’. Of the light treatments imposed, low-fluence blue light was a key determinant in regulating stomatal responses, organic acid mobilization from the vacuole, and daytime decarboxylation. However, the reciprocal relationship between starch and organic acid turnover that is typical for CAM was uncoupled under low-fluence blue light. Under low-fluence red or green light, the diel turnover of storage carbohydrates was orchestrated in line with the requirements of CAM, but a consistent delay in acid consumption at dawn compared with plants under white or low-fluence blue light was noted. Consistent with the acknowledged influences of both red and blue light as input signals for the circadian clock, the data stress the importance of both red and blue-light signalling pathways for synchronizing the metabolic and physiological components of CAM over the day/night cycle. PMID:24803500

  9. Light quality modulates metabolic synchronization over the diel phases of crassulacean acid metabolism.

    PubMed

    Ceusters, Johan; Borland, Anne M; Taybi, Tahar; Frans, Mario; Godts, Christof; De Proft, Maurice P

    2014-07-01

    Temporal compartmentation of carboxylation processes is a defining feature of crassulacean acid metabolism and involves circadian control of key metabolic and transport steps that regulate the supply and demand for carbon over a 24h cycle. Recent insights on the molecular workings of the circadian clock and its connection with environmental inputs raise new questions on the importance of light quality and, by analogy, certain photoreceptors for synchronizing the metabolic components of CAM. The present work tested the hypothesis that optimal coupling of stomatal conductance, net CO2 uptake, and the reciprocal turnover of carbohydrates and organic acids over the diel CAM cycle requires both blue and red light input signals. Contrasting monochromatic wavelengths of blue, green, and red light (i.e. 475, 530, 630nm) with low fluence rates (10 μmol m(-2) s(-1)) were administered for 16 hours each diel cycle for a total treatment time of 48 hours to the obligate CAM bromeliad, Aechmea 'Maya'. Of the light treatments imposed, low-fluence blue light was a key determinant in regulating stomatal responses, organic acid mobilization from the vacuole, and daytime decarboxylation. However, the reciprocal relationship between starch and organic acid turnover that is typical for CAM was uncoupled under low-fluence blue light. Under low-fluence red or green light, the diel turnover of storage carbohydrates was orchestrated in line with the requirements of CAM, but a consistent delay in acid consumption at dawn compared with plants under white or low-fluence blue light was noted. Consistent with the acknowledged influences of both red and blue light as input signals for the circadian clock, the data stress the importance of both red and blue-light signalling pathways for synchronizing the metabolic and physiological components of CAM over the day/night cycle. PMID:24803500

  10. Maternal-fetal metabolic gene-gene interactions and risk of neural tube defects.

    PubMed

    Lupo, Philip J; Mitchell, Laura E; Canfield, Mark A; Shaw, Gary M; Olshan, Andrew F; Finnell, Richard H; Zhu, Huiping

    2014-01-01

    Single-gene analyses indicate that maternal genes associated with metabolic conditions (e.g., obesity) may influence the risk of neural tube defects (NTDs). However, to our knowledge, there have been no assessments of maternal-fetal metabolic gene-gene interactions and NTDs. We investigated 23 single nucleotide polymorphisms among 7 maternal metabolic genes (ADRB3, ENPP1, FTO, LEP, PPARG, PPARGC1A, and TCF7L2) and 2 fetal metabolic genes (SLC2A2 and UCP2). Samples were obtained from 737 NTD case-parent triads included in the National Birth Defects Prevention Study for birth years 1999-2007. We used a 2-step approach to evaluate maternal-fetal gene-gene interactions. First, a case-only approach was applied to screen all potential maternal and fetal interactions (n = 76), as this design provides greater power in the assessment of gene-gene interactions compared to other approaches. Specifically, ordinal logistic regression was used to calculate the odds ratio (OR) and 95% confidence interval (CI) for each maternal-fetal gene-gene interaction, assuming a log-additive model of inheritance. Due to the number of comparisons, we calculated a corrected p-value (q-value) using the false discovery rate. Second, we confirmed all statistically significant interactions (q < 0.05) using a log-linear approach among case-parent triads. In step 1, there were 5 maternal-fetal gene-gene interactions with q < 0.05. The "top hit" was an interaction between maternal ENPP1 rs1044498 and fetal SLC2A2 rs6785233 (interaction OR = 3.65, 95% CI: 2.32-5.74, p = 2.09×10(-8), q=0.001), which was confirmed in step 2 (p = 0.00004). Our findings suggest that maternal metabolic genes associated with hyperglycemia and insulin resistance and fetal metabolic genes involved in glucose homeostasis may interact to increase the risk of NTDs. PMID:24332798

  11. Fasting-induced liver GADD45β restrains hepatic fatty acid uptake and improves metabolic health.

    PubMed

    Fuhrmeister, Jessica; Zota, Annika; Sijmonsma, Tjeerd P; Seibert, Oksana; Cıngır, Şahika; Schmidt, Kathrin; Vallon, Nicola; de Guia, Roldan M; Niopek, Katharina; Berriel Diaz, Mauricio; Maida, Adriano; Blüher, Matthias; Okun, Jürgen G; Herzig, Stephan; Rose, Adam J

    2016-01-01

    Recent studies have demonstrated that repeated short-term nutrient withdrawal (i.e. fasting) has pleiotropic actions to promote organismal health and longevity. Despite this, the molecular physiological mechanisms by which fasting is protective against metabolic disease are largely unknown. Here, we show that, metabolic control, particularly systemic and liver lipid metabolism, is aberrantly regulated in the fasted state in mouse models of metabolic dysfunction. Liver transcript assays between lean/healthy and obese/diabetic mice in fasted and fed states uncovered "growth arrest and DNA damage-inducible" GADD45β as a dysregulated gene transcript during fasting in several models of metabolic dysfunction including ageing, obesity/pre-diabetes and type 2 diabetes, in both mice and humans. Using whole-body knockout mice as well as liver/hepatocyte-specific gain- and loss-of-function strategies, we revealed a role for liver GADD45β in the coordination of liver fatty acid uptake, through cytoplasmic retention of FABP1, ultimately impacting obesity-driven hyperglycaemia. In summary, fasting stress-induced GADD45β represents a liver-specific molecular event promoting adaptive metabolic function. PMID:27137487

  12. Adipose tissue fatty acid metabolism during pregnancy in swine.

    PubMed

    McNamara, J P; Dehoff, M H; Collier, R J; Bazer, F W

    1985-08-01

    In vitro adipose tissue fatty acid pool size (POOL), fatty acid release (FAR) and esterification (EST) were measured in peritoneal (PFP) and subcutaneous mammary (MFP) fat pads of swine at d 15, 30, 45, 60, 75, 90, 105 and 112 of pregnancy. Plasma free fatty acids (FFA) and triglycerides (TG) were not altered by stage of pregnancy. Basal EST in PFP was generally constant across pregnancy with a peak at d 75. Basal EST in MFP was elevated at d 30, 75 and 112. Esterification in response to norepinephrine stimulus (NE) was lower than basal rates in both fat depots. Basal FAR was constant throughout pregnancy in PFP, but elevated at d 75 and 90 in MFP. Fatty acid release in response to NE was biphasic with peaks at d 30 and in late pregnancy (in MFP, micromolar FAR in response to NE was 69.3% greater on d 75 to 112 than on d 45 to 60). Basal POOL was constant throughout pregnancy in both depots and lower than NE-stimulated POOL. All responses to NE were greater in MFP than in PFP, indicating that adipose tissue surrounding the developing mammary gland had higher metabolic activity and a greater response to NE than peritoneal adipose. Changes in fatty acid metabolism during pregnancy in swine are temporally related to published values for plasma steroids, fetal growth and mammary development. Metabolic adaptations in adipose and mannary epithelial tissue occur in synchrony with changing plasma estrogen concentrations, redirecting energy flow from maternal adipose tissue toward developing mammary and fetal tissue. PMID:4044440

  13. Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability.

    PubMed

    Figueroa, Carlos M; Feil, Regina; Ishihara, Hirofumi; Watanabe, Mutsumi; Kölling, Katharina; Krause, Ursula; Höhne, Melanie; Encke, Beatrice; Plaxton, William C; Zeeman, Samuel C; Li, Zhi; Schulze, Waltraud X; Hoefgen, Rainer; Stitt, Mark; Lunn, John E

    2016-02-01

    Trehalose 6-phosphate (Tre6P) is an essential signal metabolite in plants, linking growth and development to carbon metabolism. The sucrose-Tre6P nexus model postulates that Tre6P acts as both a signal and negative feedback regulator of sucrose levels. To test this model, short-term metabolic responses to induced increases in Tre6P levels were investigated in Arabidopsis thaliana plants expressing the Escherichia coli Tre6P synthase gene (otsA) under the control of an ethanol-inducible promoter. Increased Tre6P levels led to a transient decrease in sucrose content, post-translational activation of nitrate reductase and phosphoenolpyruvate carboxylase, and increased levels of organic and amino acids. Radio-isotope ((14)CO2) and stable isotope ((13)CO2) labelling experiments showed no change in the rates of photoassimilate export in plants with elevated Tre6P, but increased labelling of organic acids. We conclude that high Tre6P levels decrease sucrose levels by stimulating nitrate assimilation and anaplerotic synthesis of organic acids, thereby diverting photoassimilates away from sucrose to generate carbon skeletons and fixed nitrogen for amino acid synthesis. These results are consistent with the sucrose-Tre6P nexus model, and implicate Tre6P in coordinating carbon and nitrogen metabolism in plants. PMID:26714615

  14. Gene-Based Mapping and Pathway Analysis of Metabolic Traits in Dairy Cows

    PubMed Central

    Ha, Ngoc-Thuy; Gross, Josef Johann; van Dorland, Annette; Tetens, Jens; Thaller, Georg; Schlather, Martin; Bruckmaier, Rupert; Simianer, Henner

    2015-01-01

    The metabolic adaptation of dairy cows during the transition period has been studied intensively in the last decades. However, until now, only few studies have paid attention to the genetic aspects of this process. Here, we present the results of a gene-based mapping and pathway analysis with the measurements of three key metabolites, (1) non-esterified fatty acids (NEFA), (2) beta-hydroxybutyrate (BHBA) and (3) glucose, characterizing the metabolic adaptability of dairy cows before and after calving. In contrast to the conventional single-marker approach, we identify 99 significant and biologically sensible genes associated with at least one of the considered phenotypes and thus giving evidence for a genetic basis of the metabolic adaptability. Moreover, our results strongly suggest three pathways involved in the metabolism of steroids and lipids are potential candidates for the adaptive regulation of dairy cows in their early lactation. From our perspective, a closer investigation of our findings will lead to a step forward in understanding the variability in the metabolic adaptability of dairy cows in their early lactation. PMID:25789767

  15. [Succinic acid production from sucrose and sugarcane molasses by metabolically engineered Escherichia coli].

    PubMed

    Li, Feng; Ma, Jiangfeng; Wu, Mingke; Ji, Yaliang; Chen, Wufang; Ren, Xinyi; Jiang, Min

    2015-04-01

    Sugarcane molasses containing large amounts of sucrose is an economical substrate for succinic acid production. However, Escherichia coli AFP111 cannot metabolize sucrose although it is a promising candidate for succinic acid production. To achieve sucrose utilizing ability, we cloned and expressed cscBKA genes encoding sucrose permease, fructokinase and invertase of non-PTS sucrose-utilization system from E. coli W in E. coli AFP111 to generate a recombinant strain AFP111/pMD19T-cscBKA. After 72 h of anaerobic fermentation of the recombinant in serum bottles, 20 g/L sucrose was consumed and 12 g/L succinic acid was produced. During dual-phase fermentation comprised of initial aerobic growth phase followed by anaerobic fermentation phase, the concentration of succinic acid from sucrose and sugarcane molasses was 34 g/L and 30 g/L, respectively, at 30 h of anaerobic phase in a 3 L fermentor. The results show that the introduction of non-PTS sucrose-utilization system has sucrose-metabolizing capability for cell growth and succinic acid production, and can use cheap sugarcane molasses to produce succinic acid. PMID:26380410

  16. Three conazoles increase hepatic microsomal retinoic acid metabolism and decrease mouse hepatic retinoic acid levels in vivo

    SciTech Connect

    Chen, P.-J.; Padgett, William T.; Moore, Tanya; Winnik, Witold; Lambert, Guy R.; Thai, Sheau-Fung; Hester, Susan D.; Nesnow, Stephen

    2009-01-15

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with cancer-preventative properties (Ward et al., Toxicol. Pathol. 2006; 34:863-78). The goals of this study were to examine effects of propiconazole, triadimefon, and myclobutanil, three triazole-containing conazoles, on the microsomal metabolism of atRA, the associated hepatic cytochrome P450 (P450) enzyme(s) involved in atRA metabolism, and their effects on hepatic atRA levels in vivo. The in vitro metabolism of atRA was quantitatively measured in liver microsomes from male CD-1 mice following four daily intraperitoneal injections of propiconazole (210 mg/kg/d), triadimefon (257 mg/kg/d) or myclobutanil (270 mg/kg/d). The formation of both 4-hydroxy-atRA and 4-oxo-atRA were significantly increased by all three conazoles. Propiconazole-induced microsomes possessed slightly greater metabolizing activities compared to myclobutanil-induced microsomes. Both propiconazole and triadimefon treatment induced greater formation of 4-hydroxy-atRA compared to myclobutanil treatment. Chemical and immuno-inhibition metabolism studies suggested that Cyp26a1, Cyp2b, and Cyp3a, but not Cyp1a1 proteins were involved in atRA metabolism. Cyp2b10/20 and Cyp3a11 genes were significantly over-expressed in the livers of both triadimefon- and propiconazole-treated mice while Cyp26a1, Cyp2c65 and Cyp1a2 genes were over-expressed in the livers of either triadimefon- or propiconazole-treated mice, and Cyp2b10/20 and Cyp3a13 genes were over-expressed in the livers of myclobutanil-treated mice. Western blot analyses indicated conazole induced-increases in Cyp2b and Cyp3a proteins. All three conazoles decreased hepatic atRA tissue levels ranging from 45-67%. The possible implications of these changes in hepatic atRA levels

  17. Metabolic engineering of biocatalysts for carboxylic acids production

    PubMed Central

    Liu, Ping; Jarboe, Laura R.

    2012-01-01

    Fermentation of renewable feedstocks by microbes to produce sustainable fuels and chemicals has the potential to replace petrochemical-based production. For example, carboxylic acids produced by microbial fermentation can be used to generate primary building blocks of industrial chemicals by either enzymatic or chemical catalysis. In order to achieve the titer, yield and productivity values required for economically viable processes, the carboxylic acid-producing microbes need to be robust and well-performing. Traditional strain development methods based on mutagenesis have proven useful in the selection of desirable microbial behavior, such as robustness and carboxylic acid production. On the other hand, rationally-based metabolic engineering, like genetic manipulation for pathway design, has becoming increasingly important to this field and has been used for the production of several organic acids, such as succinic acid, malic acid and lactic acid. This review investigates recent works on Saccharomyces cerevisiae and Escherichia coli, as well as the strategies to improve tolerance towards these chemicals. PMID:24688671

  18. Radiometric measurement of differential metabolism of fatty acid by mycobacteria

    SciTech Connect

    Camargo, E.E.; Kertcher, J.A.; Larson, S.M.; Tepper, B.S.; Wagner, H.N. Jr.

    1982-06-01

    An assay system has been developed based on automated radiometric quantification of /sup 14/CO2 produced through oxidation of (1-/sup 14/C) fatty acids by mycobacteria. Two stains of M. tuberculosis (H37Rv and Erdman) and one of M. bovis (BCG) in 7H9 medium (ADC) with 1.0 microCi of one of the fatty acids (butyric, hexanoic, octanoic, decanoic, lauric, myristic, palmitic, stearic, oleic, linoleic and linolenic) were studied. Results previously published on M. lepraemurium (Hawaiian) were also included for comparison. Both strains of M. tuberculosis had maximum /sup 14/CO2 production from hexanoic acid. Oxidation of butyric and avid oxidation of lauric acids were also found with the H37Rv strain but not with Erdman. In contrast, /sup 14/CO2 production by M. bovis was greatest from lauric and somewhat less from decanoic acid. M. lepraemurium showed increasing oxidation rates from myristic, decanoic and lauric acids. Assimilation studies of M. tuberculosis H37Rv confirmed that most of the oxidized substrates were converted into by-products with no change in those from which no oxidation was found. These data suggest that the radiometric measurement of differential fatty acid metabolism may provide a basis of strain identification of the genus Mycobacterium.

  19. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    SciTech Connect

    Kamei, Yuka; Tamura, Takayuki; Yoshida, Ryo; Ohta, Shinji; Fukusaki, Eiichiro; Mukai, Yukio

    2011-04-01

    Highlights: {yields}We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. {yields} Deletion of the UGA1 or GAD1 genes extends replicative lifespan. {yields} Addition of GABA to wild-type cultures has no effect on lifespan. {yields} Intracellular GABA levels do not differ in longevity mutants and wild-type cells. {yields} Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for {gamma}-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The {Delta}uga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for {Delta}uga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of {sup 1}H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan

  20. Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism[S

    PubMed Central

    Van Veldhoven, Paul P.

    2010-01-01

    In humans, peroxisomes harbor a complex set of enzymes acting on various lipophilic carboxylic acids, organized in two basic pathways, α-oxidation and β-oxidation; the latter pathway can also handle ω-oxidized compounds. Some oxidation products are crucial to human health (primary bile acids and polyunsaturated FAs), whereas other substrates have to be degraded in order to avoid neuropathology at a later age (very long-chain FAs and xenobiotic phytanic acid and pristanic acid). Whereas total absence of peroxisomes is lethal, single peroxisomal protein deficiencies can present with a mild or severe phenotype and are more informative to understand the pathogenic factors. The currently known single protein deficiencies equal about one-fourth of the number of proteins involved in peroxisomal FA metabolism. The biochemical properties of these proteins are highlighted, followed by an overview of the known diseases. PMID:20558530

  1. Regulation of gene expression by a metabolic enzyme.

    PubMed

    Hall, David A; Zhu, Heng; Zhu, Xiaowei; Royce, Thomas; Gerstein, Mark; Snyder, Michael

    2004-10-15

    Gene expression in eukaryotes is normally believed to be controlled by transcriptional regulators that activate genes encoding structural proteins and enzymes. To identify previously unrecognized DNA binding activities, a yeast proteome microarray was screened with DNA probes; Arg5,6, a well-characterized mitochondrial enzyme involved in arginine biosynthesis, was identified. Chromatin immunoprecipitation experiments revealed that Arg5,6 is associated with specific nuclear and mitochondrial loci in vivo, and Arg5,6 binds to specific fragments in vitro. Deletion of Arg5,6 causes altered transcript levels of both nuclear and mitochondrial target genes. These results indicate that metabolic enzymes can directly regulate eukaryotic gene expression. PMID:15486299

  2. Branched-Chain Amino Acid Metabolism in Arabidopsis thaliana

    PubMed Central

    Binder, Stefan

    2010-01-01

    Valine, leucine and isoleucine form the small group of branched-chain amino acids (BCAAs) classified by their small branched hydrocarbon residues. Unlike animals, plants are able to de novo synthesize these amino acids from pyruvate, 2-oxobutanoate and acetyl-CoA. In plants, biosynthesis follows the typical reaction pathways established for the formation of these amino acids in microorganisms. Val and Ile are synthesized in two parallel pathways using a single set of enzymes. The pathway to Leu branches of from the final intermediate of Val biosynthesis. The formation of this amino acid requires a three-step pathway generating a 2-oxoacid elongated by a methylene group. In Arabidopsis thaliana and other Brassicaceae, a homologous three-step pathway is also involved in Met chain elongation required for the biosynthesis of aliphatic glucosinolates, an important class of specialized metabolites in Brassicaceae. This is a prime example for the evolutionary relationship of pathways from primary and specialized metabolism. Similar to animals, plants also have the ability to degrade BCAAs. The importance of BCAA turnover has long been unclear, but now it seems apparent that the breakdown process might by relevant under certain environmental conditions. In this review, I summarize the current knowledge about BCAA metabolism, its regulation and its particular features in Arabidopsis thaliana. PMID:22303262

  3. Physiologic and metabolic safety of butyrylcholinesterase gene therapy in mice.

    PubMed

    Murthy, Vishakantha; Gao, Yang; Geng, Liyi; LeBrasseur, Nathan K; White, Thomas A; Parks, Robin J; Brimijoin, Stephen

    2014-07-16

    In continuing efforts to develop gene transfer of human butyrylcholinesterase (BChE) as therapy for cocaine addiction, we conducted wide-ranging studies of physiological and metabolic safety. For that purpose, mice were given injections of adeno-associated virus (AAV) vector or helper-dependent adenoviral (hdAD) vector encoding human or mouse BChE mutated for optimal cocaine hydrolysis. Age-matched controls received saline or AAV-luciferase control vector. At times when transduced BChE was abundant, physiologic and metabolic parameters in conscious animals were evaluated by non-invasive Echo-MRI and an automated "Comprehensive Laboratory Animal Monitoring System" (CLAMS). Despite high vector doses (up to 10(13) particles per mouse) and high levels of transgene protein in the plasma (∼1500-fold above baseline), the CLAMS apparatus revealed no adverse physiologic or metabolic effects. Likewise, body composition determined by Echo-MRI, and glucose tolerance remained normal. A CLAMS study of vector-treated mice given 40 mg/kg cocaine showed none of the physiologic and metabolic fluctuations exhibited in controls. We conclude that neither the tested vectors nor great excesses of circulating BChE affect general physiology directly, while they protect mice from disturbance by cocaine. Hence, viral gene transfer of BChE appears benign and worth exploring as a therapy for cocaine abuse and possibly other disorders as well. PMID:24892251

  4. Hormone metabolism genes and mammographic density in Singapore Chinese women

    PubMed Central

    Lee, Eunjung; Su, Yu-Chen; Lewinger, Juan Pablo; Hsu, Chris; Van den Berg, David; Ursin, Giske; Koh, Woon-Puay; Yuan, Jian-Min; Stram, Daniel O.; Yu, Mimi C.; Wu, Anna H.

    2014-01-01

    Background Female steroid hormone levels and exogenous hormone use influence breast cancer risk. We investigated the association between genetic variation in the hormone metabolism and signaling pathway and mammographic density (MD), a strong predictor of breast cancer risk. Methods We genotyped 161 SNPs in 15 hormone metabolism pathway gene regions and evaluated MD in 2,038 Singapore Chinese women. Linear regression analysis was used to investigate SNP-MD association. An overall pathway summary was obtained using the adaptive ranked truncated product test. Results We did not find any of the individually tested SNPs to be associated with MD after a multiple testing correction. There was no evidence of an overall effect on MD of genetic variation in the hormone metabolism pathway. Conclusions In this cross-sectional study, genetic variation in hormone metabolism pathway was not associated with MD in Singapore Chinese women. Impact Consistent with existing data from Caucasian populations, polymorphisms in hormone pathway genes are not likely to be strong predictors of MD in Asian women. PMID:23429186

  5. Metabolic engineering of Pseudomonas putida for production of docosahexaenoic acid based on a myxobacterial PUFA synthase.

    PubMed

    Gemperlein, Katja; Zipf, Gregor; Bernauer, Hubert S; Müller, Rolf; Wenzel, Silke C

    2016-01-01

    Long-chain polyunsaturated fatty acids (LC-PUFAs) can be produced de novo via polyketide synthase-like enzymes known as PUFA synthases, which are encoded by pfa biosynthetic gene clusters originally discovered from marine microorganisms. Recently similar gene clusters were detected and characterized in terrestrial myxobacteria revealing several striking differences. As the identified myxobacterial producers are difficult to handle genetically and grow very slowly we aimed to establish heterologous expression platforms for myxobacterial PUFA synthases. Here we report the heterologous expression of the pfa gene cluster from Aetherobacter fasciculatus (SBSr002) in the phylogenetically distant model host bacteria Escherichia coli and Pseudomonas putida. The latter host turned out to be the more promising PUFA producer revealing higher production rates of n-6 docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). After several rounds of genetic engineering of expression plasmids combined with metabolic engineering of P. putida, DHA production yields were eventually increased more than threefold. Additionally, we applied synthetic biology approaches to redesign and construct artificial versions of the A. fasciculatus pfa gene cluster, which to the best of our knowledge represents the first example of a polyketide-like biosynthetic gene cluster modulated and synthesized for P. putida. Combination with the engineering efforts described above led to a further increase in LC-PUFA production yields. The established production platform based on synthetic DNA now sets the stage for flexible engineering of the complex PUFA synthase. PMID:26617065

  6. Using mathematical models to understand metabolism, genes, and disease.

    PubMed

    Nijhout, H Frederik; Best, Janet A; Reed, Michael C

    2015-01-01

    Mathematical models are a useful tool for investigating a large number of questions in metabolism, genetics, and gene-environment interactions. A model based on the underlying biology and biochemistry is a platform for in silico biological experimentation that can reveal the causal chain of events that connect variation in one quantity to variation in another. We discuss how we construct such models, how we have used them to investigate homeostatic mechanisms, gene-environment interactions, and genotype-phenotype mapping, and how they can be used in precision and personalized medicine. PMID:26400419

  7. Protein Analysis of Sapienic Acid-Treated Porphyromonas gingivalis Suggests Differential Regulation of Multiple Metabolic Pathways

    PubMed Central

    Dawson, Deborah V.; Blanchette, Derek R.; Drake, David R.; Wertz, Philip W.; Brogden, Kim A.

    2015-01-01

    ABSTRACT Lipids endogenous to skin and mucosal surfaces exhibit potent antimicrobial activity against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Our previous work demonstrated the antimicrobial activity of the fatty acid sapienic acid (C16:1Δ6) against P. gingivalis and found that sapienic acid treatment alters both protein and lipid composition from those in controls. In this study, we further examined whole-cell protein differences between sapienic acid-treated bacteria and untreated controls, and we utilized open-source functional association and annotation programs to explore potential mechanisms for the antimicrobial activity of sapienic acid. Our analyses indicated that sapienic acid treatment induces a unique stress response in P. gingivalis resulting in differential expression of proteins involved in a variety of metabolic pathways. This network of differentially regulated proteins was enriched in protein-protein interactions (P = 2.98 × 10−8), including six KEGG pathways (P value ranges, 2.30 × 10−5 to 0.05) and four Gene Ontology (GO) molecular functions (P value ranges, 0.02 to 0.04), with multiple suggestive enriched relationships in KEGG pathways and GO molecular functions. Upregulated metabolic pathways suggest increases in energy production, lipid metabolism, iron acquisition and processing, and respiration. Combined with a suggested preferential metabolism of serine, which is necessary for fatty acid biosynthesis, these data support our previous findings that the site of sapienic acid antimicrobial activity is likely at the bacterial membrane. IMPORTANCE P. gingivalis is an important opportunistic pathogen implicated in periodontitis. Affecting nearly 50% of the population, periodontitis is treatable, but the resulting damage is irreversible and eventually progresses to tooth loss. There is a great need for natural products that can be used to treat and/or prevent the overgrowth of

  8. Conservation of lipid metabolic gene transcriptional regulatory networks in fish and mammals.

    PubMed

    Carmona-Antoñanzas, Greta; Tocher, Douglas R; Martinez-Rubio, Laura; Leaver, Michael J

    2014-01-15

    Lipid content and composition in aquafeeds have changed rapidly as a result of the recent drive to replace ecologically limited marine ingredients, fishmeal and fish oil (FO). Terrestrial plant products are the most economic and sustainable alternative; however, plant meals and oils are devoid of physiologically important cholesterol and long-chain polyunsaturated fatty acids (LC-PUFA), eicosapentaenoic (EPA), docosahexaenoic (DHA) and arachidonic (ARA) acids. Although replacement of dietary FO with vegetable oil (VO) has little effect on growth in Atlantic salmon (Salmo salar), several studies have shown major effects on the activity and expression of genes involved in lipid homeostasis. In vertebrates, sterols and LC-PUFA play crucial roles in lipid metabolism by direct interaction with lipid-sensing transcription factors (TFs) and consequent regulation of target genes. The primary aim of the present study was to elucidate the role of key TFs in the transcriptional regulation of lipid metabolism in fish by transfection and overexpression of TFs. The results show that the expression of genes of LC-PUFA biosynthesis (elovl and fads2) and cholesterol metabolism (abca1) are regulated by Lxr and Srebp TFs in salmon, indicating highly conserved regulatory mechanism across vertebrates. In addition, srebp1 and srebp2 mRNA respond to replacement of dietary FO with VO. Thus, Atlantic salmon adjust lipid metabolism in response to dietary lipid composition through the transcriptional regulation of gene expression. It may be possible to further increase efficient and effective use of sustainable alternatives to marine products in aquaculture by considering these important molecular interactions when formulating diets. PMID:24177230

  9. FSH and bFGF regulate the expression of genes involved in Sertoli cell energetic metabolism.

    PubMed

    Regueira, Mariana; Riera, María Fernanda; Galardo, María Noel; Camberos, María Del Carmen; Pellizzari, Eliana Herminia; Cigorraga, Selva Beatriz; Meroni, Silvina Beatriz

    2015-10-01

    The purpose of this study was to investigate if FSH and bFGF regulate fatty acid (FA) metabolism and mitochondrial biogenesis in Sertoli cells (SC). SC cultures obtained from 20-day-old rats were incubated with 100ng/ml FSH or 30ng/ml bFGF for 6, 12, 24 and 48h. The expression of genes involved in transport and metabolism of FA such as: fatty acid transporter CD36 (FAT/CD36), carnitine-palmitoyltransferase 1 (CPT1), long- and medium-chain 3-hydroxyacyl-CoA dehydrogenases (LCAD, MCAD), and of genes involved in mitochondrial biogenesis such as: nuclear respiratory factors 1 and 2 (NRF1, NRF2) and transcription factor A (Tfam), was analyzed. FSH stimulated FAT/CD36, CPT1, MCAD, NRF1, NRF2 and Tfam mRNA levels while bFGF only stimulated CPT1 expression. A possible participation of PPARβ/δ activation in the regulation of gene expression and lactate production was then evaluated. SC cultures were incubated with FSH or bFGF in the presence of the PPARβ/δ antagonist GSK3787 (GSK; 20μM). bFGF stimulation of CPT1 expression and lactate production were inhibited by GSK. On the other hand, FSH effects were not inhibited by GSK indicating that FSH regulates the expression of genes involved in FA transport and metabolism and in mitochondrial biogenesis, independently of PPARβ/δ activation. FA oxidation and mitochondrial biogenesis as well as lactate production are essential for the energetic metabolism of the seminiferous tubule. The fact that these processes are regulated by hormones in a different way reflects the multifarious regulation of molecular mechanisms involved in Sertoli cell function. PMID:26315388

  10. Adipose tissue n-3 fatty acids and metabolic syndrome

    PubMed Central

    Cespedes, Elizabeth; Baylin, Ana; Campos, Hannia

    2014-01-01

    Background Evidence regarding the relationship of n-3 fatty acids (FA) to type 2 diabetes (T2D) and metabolic syndrome components (MetS) is inconsistent. Objective To examine associations of adipose tissue n-3 FA with MetS. Design We studied 1611 participants without prior history of diabetes or heart disease who were participants in a population-based case-control study of diet and heart disease (The Costa Rica Heart Study). We calculated prevalence ratios (PR) and 95% confidence intervals (CI) for MetS by quartile of n-3 FA in adipose tissue derived mainly from plants [α-Linolenic acid (ALA)], fish [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)], or metabolism [docosapentaenoic acid (DPA), as well as the EPA:ALA ratio, a surrogate marker of delta-6 desaturase activity]. Results N-3 FA levels in adipose tissue were associated with MetS prevalence in opposite directions. The PR (95% CI) for the highest compared to the lowest quartile adjusted for age, sex, BMI, residence, lifestyle, diet and other fatty acids were 0.60 (0.44, 0.81) for ALA, 1.43 (1.12, 1.82) for EPA, 1.63 (1.22, 2.18) for DPA, and 1.47 (1.14, 1.88) for EPA:ALA, all p for trend <0.05. Although these associations were no longer significant (except DPA) after adjustment for BMI, ALA and DPA were associated with lower glucose and higher triglyceride levels, p<0.05 (respectively). Conclusions These results suggest that ALA could exert a modest protective benefit, while EPA and DHA are not implicated in MetS. The positive associations for DPA and MetS could reflect higher delta-6 desaturase activity caused by increased adiposity. PMID:25097001

  11. Coordinated patterns of gene expression for substrate and energy metabolism in skeletal muscle of diabetic mice

    PubMed Central

    Yechoor, Vijay K.; Patti, Mary-Elizabeth; Saccone, Robert; Kahn, C. Ronald

    2002-01-01

    Metabolic abnormalities underlying diabetes are primarily the result of the lack of adequate insulin action and the associated changes in protein phosphorylation and gene expression. To define the full set of alterations in gene expression in skeletal muscle caused by diabetes and the loss of insulin action, we have used Affymetrix oligonucleotide microarrays and streptozotocin-diabetic mice. Of the genes studied, 235 were identified as changed in diabetes, with 129 genes up-regulated and 106 down-regulated. Analysis revealed a coordinated regulation at key steps in glucose and lipid metabolism, mitochondrial electron transport, transcriptional regulation, and protein trafficking. mRNAs for all of the enzymes of the fatty acid β-oxidation pathway were increased, whereas those for GLUT4, hexokinase II, the E1 component of the pyruvate dehydrogenase complex, and subunits of all four complexes of the mitochondrial electron transport chain were all coordinately down-regulated. Only about half of the alterations in gene expression in diabetic mice could be corrected toward normal after 3 days of insulin treatment and euglycemia. These data point to as of yet undefined mechanisms for highly coordinated regulation of gene expression by insulin and potential new targets for therapy of diabetes mellitus. PMID:12149437

  12. NANOG Metabolically Reprograms Tumor-Initiating Stem-like Cells through Tumorigenic Changes in Oxidative Phosphorylation and Fatty Acid Metabolism.

    PubMed

    Chen, Chia-Lin; Uthaya Kumar, Dinesh Babu; Punj, Vasu; Xu, Jun; Sher, Linda; Tahara, Stanley M; Hess, Sonja; Machida, Keigo

    2016-01-12

    Stem cell markers, including NANOG, have been implicated in various cancers; however, the functional contribution of NANOG to cancer pathogenesis has remained unclear. Here, we show that NANOG is induced by Toll-like receptor 4 (TLR4) signaling via phosphorylation of E2F1 and that downregulation of Nanog slows down hepatocellular carcinoma (HCC) progression induced by alcohol western diet and hepatitis C virus protein in mice. NANOG ChIP-seq analyses reveal that NANOG regulates the expression of genes involved in mitochondrial metabolic pathways required to maintain tumor-initiating stem-like cells (TICs). NANOG represses mitochondrial oxidative phosphorylation (OXPHOS) genes, as well as ROS generation, and activates fatty acid oxidation (FAO) to support TIC self-renewal and drug resistance. Restoration of OXPHOS activity and inhibition of FAO renders TICs susceptible to a standard care chemotherapy drug for HCC, sorafenib. This study provides insights into the mechanisms of NANOG-mediated generation of TICs, tumorigenesis, and chemoresistance through reprogramming of mitochondrial metabolism. PMID:26724859

  13. In vitro metabolism and metabolic effects of ajulemic acid, a synthetic cannabinoid agonist.

    PubMed

    Burstein, Sumner H; Tepper, Mark A

    2013-12-01

    Ajulemic acid is a synthetic analog of Δ(8)-THC-11-oic acid, the terminal metabolite of Δ(8)-THC. Unlike Δ(9)-THC, the psychoactive principle of Cannabis, it shows potent anti-inflammatory action and has minimal CNS cannabimimetic activity. Its in vitro metabolism by hepatocytes from rats, dogs, cynomolgus monkeys and humans was studied and the results are reported here. Five metabolites, M1 to M5, were observed in human hepatocyte incubations. One metabolite, M5, a glucuronide, was observed in the chromatogram of canine hepatocyte incubations. In monkey hepatocyte incubations, M5 was observed in the chromatograms of both the 120 and 240 min samples, trace metabolite M1 (side-chain hydroxyl) was observed in the 120 min samples, and trace metabolite M4 (side-chain dehydrogenation) was observed in the 240 min samples. No metabolites were found in the rat hepatocyte incubations. Unchanged amounts of ajulemic acid detected after the 2-h incubation were 103%, 90%, 86%, and 83% for rat, dog, monkey, and human hepatocytes, respectively. Additional studies were done to ascertain if ajulemic acid can inhibit the activities of five principal human cytochrome P450 isozymes; CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4/5. In contrast to the phytocannabinoids Δ(9)-THC and CBD, no significant inhibition of cytochrome activity was observed. These data further support the conclusions reached in earlier reports on ajulemic acid's high margin of safety and suggest that it undergoes minimal metabolism and is not likely to interfere with the normal metabolism of drugs or endogenous substances. PMID:25505570

  14. In vitro metabolism and metabolic effects of ajulemic acid, a synthetic cannabinoid agonist

    PubMed Central

    Burstein, Sumner H; Tepper, Mark A

    2013-01-01

    Ajulemic acid is a synthetic analog of Δ8-THC-11-oic acid, the terminal metabolite of Δ8-THC. Unlike Δ9-THC, the psychoactive principle of Cannabis, it shows potent anti-inflammatory action and has minimal CNS cannabimimetic activity. Its in vitro metabolism by hepatocytes from rats, dogs, cynomolgus monkeys and humans was studied and the results are reported here. Five metabolites, M1 to M5, were observed in human hepatocyte incubations. One metabolite, M5, a glucuronide, was observed in the chromatogram of canine hepatocyte incubations. In monkey hepatocyte incubations, M5 was observed in the chromatograms of both the 120 and 240 min samples, trace metabolite M1 (side-chain hydroxyl) was observed in the 120 min samples, and trace metabolite M4 (side-chain dehydrogenation) was observed in the 240 min samples. No metabolites were found in the rat hepatocyte incubations. Unchanged amounts of ajulemic acid detected after the 2-h incubation were 103%, 90%, 86%, and 83% for rat, dog, monkey, and human hepatocytes, respectively. Additional studies were done to ascertain if ajulemic acid can inhibit the activities of five principal human cytochrome P450 isozymes; CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4/5. In contrast to the phytocannabinoids Δ9-THC and CBD, no significant inhibition of cytochrome activity was observed. These data further support the conclusions reached in earlier reports on ajulemic acid's high margin of safety and suggest that it undergoes minimal metabolism and is not likely to interfere with the normal metabolism of drugs or endogenous substances. PMID:25505570

  15. Evolutionary Rate Heterogeneity of Primary and Secondary Metabolic Pathway Genes in Arabidopsis thaliana

    PubMed Central

    Mukherjee, Dola; Mukherjee, Ashutosh; Ghosh, Tapash Chandra

    2016-01-01

    Primary metabolism is essential to plants for growth and development, and secondary metabolism helps plants to interact with the environment. Many plant metabolites are industrially important. These metabolites are produced by plants through complex metabolic pathways. Lack of knowledge about these pathways is hindering the successful breeding practices for these metabolites. For a better knowledge of the metabolism in plants as a whole, evolutionary rate variation of primary and secondary metabolic pathway genes is a prerequisite. In this study, evolutionary rate variation of primary and secondary metabolic pathway genes has been analyzed in the model plant Arabidopsis thaliana. Primary metabolic pathway genes were found to be more conserved than secondary metabolic pathway genes. Several factors such as gene structure, expression level, tissue specificity, multifunctionality, and domain number are the key factors behind this evolutionary rate variation. This study will help to better understand the evolutionary dynamics of plant metabolism. PMID:26556590

  16. Retinoblastoma Protein Knockdown Favors Oxidative Metabolism and Glucose and Fatty Acid Disposal in Muscle Cells.

    PubMed

    Petrov, Petar D; Ribot, Joan; López-Mejía, Isabel C; Fajas, Lluís; Palou, Andreu; Bonet, M Luisa

    2016-03-01

    Deficiency in the retinoblastoma protein (Rb) favors leanness and a healthy metabolic profile in mice largely attributed to activation of oxidative metabolism in white and brown adipose tissues. Less is known about Rb modulation of skeletal muscle metabolism. This was studied here by transiently knocking down Rb expression in differentiated C2C12 myotubes using small interfering RNAs. Compared with control cells transfected with non-targeting RNAs, myotubes silenced for Rb (by 80-90%) had increased expression of genes related to fatty acid uptake and oxidation such as Cd36 and Cpt1b (by 61% and 42%, respectively), increased Mitofusin 2 protein content (∼2.5-fold increase), increased mitochondrial to nuclear DNA ratio (by 48%), increased oxygen consumption (by 65%) and decreased intracellular lipid accumulation. Rb silenced myotubes also displayed up-regulated levels of glucose transporter type 4 expression (∼5-fold increase), increased basal glucose uptake, and enhanced insulin-induced Akt phosphorylation. Interestingly, exercise in mice led to increased Rb phosphorylation (inactivation) in skeletal muscle as evidenced by immunohistochemistry analysis. In conclusion, the silencing of Rb enhances mitochondrial oxidative metabolism and fatty acid and glucose disposal in skeletal myotubes, and changes in Rb status may contribute to muscle physiological adaptation to exercise. PMID:26241807

  17. Diet-gene interactions and PUFA metabolism: a potential contributor to health disparities and human diseases.

    PubMed

    Chilton, Floyd H; Murphy, Robert C; Wilson, Bryan A; Sergeant, Susan; Ainsworth, Hannah; Seeds, Michael C; Mathias, Rasika A

    2014-05-01

    The "modern western" diet (MWD) has increased the onset and progression of chronic human diseases as qualitatively and quantitatively maladaptive dietary components give rise to obesity and destructive gene-diet interactions. There has been a three-fold increase in dietary levels of the omega-6 (n-6) 18 carbon (C18), polyunsaturated fatty acid (PUFA) linoleic acid (LA; 18:2n-6), with the addition of cooking oils and processed foods to the MWD. Intense debate has emerged regarding the impact of this increase on human health. Recent studies have uncovered population-related genetic variation in the LCPUFA biosynthetic pathway (especially within the fatty acid desaturase gene (FADS) cluster) that is associated with levels of circulating and tissue PUFAs and several biomarkers and clinical endpoints of cardiovascular disease (CVD). Importantly, populations of African descent have higher frequencies of variants associated with elevated levels of arachidonic acid (ARA), CVD biomarkers and disease endpoints. Additionally, nutrigenomic interactions between dietary n-6 PUFAs and variants in genes that encode for enzymes that mobilize and metabolize ARA to eicosanoids have been identified. These observations raise important questions of whether gene-PUFA interactions are differentially driving the risk of cardiovascular and other diseases in diverse populations, and contributing to health disparities, especially in African American populations. PMID:24853887

  18. Hypolipidemic effect of dietary pea proteins: Impact on genes regulating hepatic lipid metabolism.

    PubMed

    Rigamonti, Elena; Parolini, Cinzia; Marchesi, Marta; Diani, Erika; Brambilla, Stefano; Sirtori, Cesare R; Chiesa, Giulia

    2010-05-01

    Controversial data on the lipid-lowering effect of dietary pea proteins have been provided and the mechanisms behind this effect are not completely understood. The aim of the study was to evaluate a possible hypolipidemic activity of a pea protein isolate and to determine whether pea proteins could affect the hepatic lipid metabolism through regulation of genes involved in cholesterol and fatty acid homeostasis. Rats were fed Nath's hypercholesterolemic diets for 28 days, the protein sources being casein or a pea protein isolate from Pisum sativum. After 14 and 28 days of dietary treatment, rats fed pea proteins had markedly lower plasma cholesterol and triglyceride levels than rats fed casein (p<0.05). Pea protein-fed rats displayed higher hepatic mRNA levels of LDL receptor versus those fed casein (p<0.05). Hepatic mRNA concentration of genes involved in fatty acids synthesis, such as fatty acid synthase and stearoyl-CoA desaturase, was lower in pea protein-fed rats than in rats fed casein (p<0.05). In conclusion, the present study demonstrates a marked cholesterol and triglyceride-lowering activity of pea proteins in rats. Moreover, pea proteins appear to affect cellular lipid homeostasis by upregulating genes involved in hepatic cholesterol uptake and by downregulating fatty acid synthesis genes. PMID:20077421

  19. Long-chain acyl-CoA synthetase in fatty acid metabolism involved in liver and other diseases: An update

    PubMed Central

    Yan, Sheng; Yang, Xue-Feng; Liu, Hao-Lei; Fu, Nian; Ouyang, Yan; Qing, Kai

    2015-01-01

    Long-chain acyl-CoA synthetase (ACSL) family members include five different ACSL isoforms, each encoded by a separate gene and have multiple spliced variants. ACSLs on endoplasmic reticulum and mitochondrial outer membrance catalyze fatty acids with chain lengths from 12 to 20 carbon atoms to form acyl-CoAs, which are lipid metabolic intermediates and involved in fatty acid metabolism, membrane modifications and various physiological processes. Gain- or loss-of-function studies have shown that the expression of individual ACSL isoforms can alter the distribution and amount of intracellular fatty acids. Changes in the types and amounts of fatty acids, in turn, can alter the expression of intracellular ACSLs. ACSL family members affect not only the proliferation of normal cells, but the proliferation of malignant tumor cells. They also regulate cell apoptosis through different signaling pathways and molecular mechanisms. ACSL members have individual functions in fatty acid metabolism in different types of cells depending on substrate preferences, subcellular location and tissue specificity, thus contributing to liver diseases and metabolic diseases, such as fatty liver disease, obesity, atherosclerosis and diabetes. They are also linked to neurological disorders and other diseases. However, the mechanisms are unclear. This review addresses new findings in the classification and properties of ACSLs and the fatty acid metabolism-associated effects of ACSLs in diseases. PMID:25834313

  20. A Low Phytic Acid Barley Mutation Alters Gene Expression in Early Seed Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley (Hordeum vulgare L.) low phytic acid (lpa) mutants have reduced levels of seed phytate, the most abundant form of phosphorus in seeds, and increases in seed inorganic phosphorus. To understand how lpa mutations affect metabolic and developmental processes during seed growth, gene expression ...

  1. Metabolic modeling of fumaric acid production by Rhizopus arrhizus

    SciTech Connect

    Gangl, I.C.; Weigand, W.W.; Keller, F.A.

    1991-12-31

    A metabolic model is developed for fumaric acid production by Rhizopus arrhizus. The model describes the reaction network and the extents of reaction in terms of the concentrations of the measurable species. The proposed pathway consists of the Embden-Meyerhof pathway and two pathways to FA production, both of which require CO{sub 2} fixation (the forward and the reverse TCA cycles). Relationships among the measurable quantities, in addition to those obtainable by a macroscopic mass balance, are found by invoking a pseudo-steady-state assumption on the nonaccumulating species in the pathway. Applications of the metabolic model, such as verifying the proposed pathway, obtaining the theoretical yield and selectivity, and detecting experimental errors, are discussed.

  2. Presystemic metabolism and intestinal absorption of antipsoriatic fumaric acid esters.

    PubMed

    Werdenberg, D; Joshi, R; Wolffram, S; Merkle, H P; Langguth, P

    2003-09-01

    Psoriasis is a chronic inflammatory skin disease. Its treatment is based on the inhibition of proliferation of epidermal cells and interference in the inflammatory process. A new systemic antipsoriasis drug, which consists of dimethylfumarate and ethylhydrogenfumarate in the form of their calcium, magnesium and zinc salts has been introduced in Europe with successful results. In the present study, a homologous series of mono- and diesters of fumaric acid has been studied with respect to the sites and kinetics of presystemic ester degradation using pancreas extract, intestinal perfusate, intestinal homogenate and liver S9 fraction. In addition, intestinal permeability has been determined using isolated intestinal mucosa as well as Caco-2 cell monolayers, in order to obtain estimates of the fraction of the dose absorbed for these compounds. Relationships between the physicochemical properties of the fumaric acid esters and their biological responses were investigated. The uncharged diester dimethylfumarate displayed a high presystemic metabolic lability in all metabolism models. It also showed the highest permeability in the Caco-2 cell model. However, in permeation experiments with intestinal mucosa in Ussing-type chambers, no undegraded DMF was found on the receiver side, indicating complete metabolism in the intestinal tissue. The intestinal permeability of the monoesters methyl hydrogen fumarate, ethyl hydrogen fumarate, n-propylhydrogen fumarate and n-pentyl hydrogen fumarate increased with an increase in their lipophilicity, however, their presystemic metabolism rates likewise increased with increasing ester chain length. It is concluded that for fumarates, an increase in intestinal permeability of the more lipophilic derivatives is counterbalanced by an increase in first-pass extraction. PMID:12973823

  3. Exploring De Novo metabolic pathways from pyruvate to propionic acid.

    PubMed

    Stine, Andrew; Zhang, Miaomin; Ro, Soo; Clendennen, Stephanie; Shelton, Michael C; Tyo, Keith E J; Broadbelt, Linda J

    2016-03-01

    Industrial biotechnology provides an efficient, sustainable solution for chemical production. However, designing biochemical pathways based solely on known reactions does not exploit its full potential. Enzymes are known to accept non-native substrates, which may allow novel, advantageous reactions. We have previously developed a computational program named Biological Network Integrated Computational Explorer (BNICE) to predict promiscuous enzyme activities and design synthetic pathways, using generalized reaction rules curated from biochemical reaction databases. Here, we use BNICE to design pathways synthesizing propionic acid from pyruvate. The currently known natural pathways produce undesirable by-products lactic acid and succinic acid, reducing their economic viability. BNICE predicted seven pathways containing four reaction steps or less, five of which avoid these by-products. Among the 16 biochemical reactions comprising these pathways, 44% were validated by literature references. More than 28% of these known reactions were not in the BNICE training dataset, showing that BNICE was able to predict novel enzyme substrates. Most of the pathways included the intermediate acrylic acid. As acrylic acid bioproduction has been well advanced, we focused on the critical step of reducing acrylic acid to propionic acid. We experimentally validated that Oye2p from Saccharomyces cerevisiae can catalyze this reaction at a slow turnover rate (10(-3) s(-1) ), which was unknown to occur with this enzyme, and is an important finding for further propionic acid metabolic engineering. These results validate BNICE as a pathway-searching tool that can predict previously unknown promiscuous enzyme activities and show that computational methods can elucidate novel biochemical pathways for industrial applications. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:303-311, 2016. PMID:26821575

  4. Regulation of Amino Acid, Nucleotide, and Phosphate Metabolism in Saccharomyces cerevisiae

    PubMed Central

    Ljungdahl, Per O.; Daignan-Fornier, Bertrand

    2012-01-01

    Ever since the beginning of biochemical analysis, yeast has been a pioneering model for studying the regulation of eukaryotic metabolism. During the last three decades, the combination of powerful yeast genetics and genome-wide approaches has led to a more integrated view of metabolic regulation. Multiple layers of regulation, from suprapathway control to individual gene responses, have been discovered. Constitutive and dedicated systems that are critical in sensing of the intra- and extracellular environment have been identified, and there is a growing awareness of their involvement in the highly regulated intracellular compartmentalization of proteins and metabolites. This review focuses on recent developments in the field of amino acid, nucleotide, and phosphate metabolism and provides illustrative examples of how yeast cells combine a variety of mechanisms to achieve coordinated regulation of multiple metabolic pathways. Importantly, common schemes have emerged, which reveal mechanisms conserved among various pathways, such as those involved in metabolite sensing and transcriptional regulation by noncoding RNAs or by metabolic intermediates. Thanks to the remarkable sophistication offered by the yeast experimental system, a picture of the intimate connections between the metabolomic and the transcriptome is becoming clear. PMID:22419079

  5. Overexpression of c-myc in diabetic mice restores altered expression of the transcription factor genes that regulate liver metabolism.

    PubMed Central

    Riu, Efren; Ferre, Tura; Mas, Alex; Hidalgo, Antonio; Franckhauser, Sylvie; Bosch, Fatima

    2002-01-01

    Overexpression of the c-Myc transcription factor in liver induces glucose uptake and utilization. Here we examined the effects of c- myc overexpression on the expression of hepatocyte-specific transcription factor genes which regulate the expression of genes controlling hepatic metabolism. At 4 months after streptozotocin (STZ) treatment, most diabetic control mice were highly hyperglycaemic and died, whereas in STZ-treated transgenic mice hyperglycaemia was markedly lower, the serum levels of beta-hydroxybutyrate, triacylglycerols and non-esterified fatty acids were normal, and they had greater viability in the absence of insulin. Furthermore, long-term STZ-treated transgenic mice showed similar glucose utilization and storage to healthy controls. This was consistent with the expression of glycolytic genes becoming normalized. In addition, restoration of gene expression of the transcription factor, sterol receptor element binding protein 1c, was observed in the livers of these transgenic mice. Further, in STZ-treated transgenic mice the expression of genes involved in the control of gluconeogenesis (phosphoenolpyruvate carbokykinase), ketogenesis (3-hydroxy-3-methylglutaryl-CoA synthase) and energy metabolism (uncoupling protein 2) had returned to normal. These findings were correlated with decreased expression of genes encoding the transcription factors hepatocyte nuclear factor 3gamma, peroxisome proliferator-activated receptor alpha and retinoid X receptor. These results indicate that c- myc overexpression may counteract diabetic changes by controlling hepatic glucose metabolism, both directly by altering the expression of metabolic genes and through the expression of key transcription factor genes. PMID:12230428

  6. Role of Energy Metabolism in the Brown Fat Gene Program

    PubMed Central

    Nam, Minwoo; Cooper, Marcus P.

    2015-01-01

    In murine and human brown adipose tissue (BAT), mitochondria are powerful generators of heat that safely metabolize fat, a feature that has great promise in the fight against obesity and diabetes. Recent studies suggest that the actions of mitochondria extend beyond their conventional role as generators of heat. There is mounting evidence that impaired mitochondrial respiratory capacity is accompanied by attenuated expression of Ucp1 and other BAT-selective genes, implying that mitochondria exert transcriptional control over the brown fat gene program. In this review, we discuss the current understanding of brown fat mitochondria, their potential role in transcriptional control of the brown fat gene program, and potential strategies to treat obesity in humans by leveraging thermogenesis in brown adipocytes. PMID:26175716

  7. Establishing a herbicide-metabolizing enzyme library in Beckmannia syzigachne to identify genes associated with metabolic resistance.

    PubMed

    Pan, Lang; Gao, Haitao; Xia, Wenwen; Zhang, Teng; Dong, Liyao

    2016-04-01

    Non-target site resistance (NTSR) to herbicides is an increasing concern for weed control. Metabolic herbicide resistance is an important mechanism for NTSR. However, little is known about metabolic resistance at the genetic level. In this study, we have identified three fenoxaprop-P-ethyl-resistant American sloughgrass (Beckmannia syzigachne Steud.) populations, in which the molecular basis for NTSR remains unclear. To reveal the mechanisms of metabolic resistance, the genes likely to be involved in herbicide metabolism (e.g. for cytochrome P450s, esterases, hydrolases, oxidases, peroxidases, glutathione S-transferases, glycosyltransferases, and transporter proteins) were isolated using transcriptome sequencing, in combination with RT-PCR (reverse transcription-PCR) and RACE (rapid amplification of cDNA ends). Consequently, we established a herbicide-metabolizing enzyme library containing at least 332 genes, and each of these genes was cloned and the sequence and the expression level compared between the fenoxaprop-P-ethyl-resistant and susceptible populations. Fifteen metabolic enzyme genes were found to be possibly involved in fenoxaprop-P-ethyl resistance. In addition, we found five metabolizing enzyme genes that have a different gene sequence in plants of susceptible versus resistant B. syzigachne populations. These genes may be major candidates for herbicide metabolic resistance. This established metabolic enzyme library represents an important step forward towards a better understanding of herbicide metabolism and metabolic resistance in this and possibly other closely related weed species. This new information may help to understand weed metabolic resistance and to develop novel strategies of weed management. PMID:26739863

  8. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut.

    PubMed

    Joyce, Susan A; MacSharry, John; Casey, Patrick G; Kinsella, Michael; Murphy, Eileen F; Shanahan, Fergus; Hill, Colin; Gahan, Cormac G M

    2014-05-20

    Alterations in the gastrointestinal microbiota have been implicated in obesity in mice and humans, but the key microbial functions influencing host energy metabolism and adiposity remain to be determined. Despite an increased understanding of the genetic content of the gastrointestinal microbiome, functional analyses of common microbial gene sets are required. We established a controlled expression system for the parallel functional analysis of microbial alleles in the murine gut. Using this approach we show that bacterial bile salt hydrolase (BSH) mediates a microbe-host dialogue that functionally regulates host lipid metabolism and plays a profound role in cholesterol metabolism and weight gain in the host. Expression of cloned BSH enzymes in the gastrointestinal tract of gnotobiotic or conventionally raised mice significantly altered plasma bile acid signatures and regulated transcription of key genes involved in lipid metabolism (Pparγ, Angptl4), cholesterol metabolism (Abcg5/8), gastrointestinal homeostasis (RegIIIγ), and circadian rhythm (Dbp, Per1/2) in the liver or small intestine. High-level expression of BSH in conventionally raised mice resulted in a significant reduction in host weight gain, plasma cholesterol, and liver triglycerides, demonstrating the overall impact of elevated BSH activity on host physiology. In addition, BSH activity in vivo varied according to BSH allele group, indicating that subtle differences in activity can have significant effects on the host. In summary, we demonstrate that bacterial BSH activity significantly impacts the systemic metabolic processes and adiposity in the host and represents a key mechanistic target for the control of obesity and hypercholesterolemia. PMID:24799697

  9. Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid.

    PubMed

    Di Gioia, Diana; Luziatelli, Francesca; Negroni, Andrea; Ficca, Anna Grazia; Fava, Fabio; Ruzzi, Maurizio

    2011-12-20

    Vanillin is one of the most important flavors in the food industry and there is great interest in its production through biotechnological processes starting from natural substrates such as ferulic acid. Among bacteria, recombinant Escherichia coli strains are the most efficient vanillin producers, whereas Pseudomonas spp. strains, although possessing a broader metabolic versatility, rapidly metabolize various phenolic compounds including vanillin. In order to develop a robust Pseudomonas strain that can produce vanillin in high yields and at high productivity, the vanillin dehydrogenase (vdh)-encoding gene of Pseudomonas fluorescens BF13 strain was inactivated via targeted mutagenesis. The results demonstrated that engineered derivatives of strain BF13 accumulate vanillin if inactivation of vdh is associated with concurrent expression of structural genes for feruloyl-CoA synthetase (fcs) and hydratase/aldolase (ech) from a low-copy plasmid. The conversion of ferulic acid to vanillin was enhanced by optimization of growth conditions, growth phase and parameters of the bioconversion process. The developed strain produced up to 8.41 mM vanillin, which is the highest final titer of vanillin produced by a Pseudomonas strain to date and opens new perspectives in the use of bacterial biocatalysts for biotechnological production of vanillin from agro-industrial wastes which contain ferulic acid. PMID:21875627

  10. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies. PMID:25902192

  11. Comparative Transcriptomics Reveals Jasmonic Acid-Associated Metabolism Related to Cotton Fiber Initiation.

    PubMed

    Wang, Liman; Zhu, Youmin; Hu, Wenjing; Zhang, Xueying; Cai, Caiping; Guo, Wangzhen

    2015-01-01

    Analysis of mutants and gene expression patterns provides a powerful approach for investigating genes involved in key stages of plant fiber development. In this study, lintless-fuzzless XinWX and linted-fuzzless XinFLM with a single genetic locus difference for lint were used to identify differentially expressed genes. Scanning electron microscopy showed fiber initiation in XinFLM at 0 days post anthesis (DPA). Fiber transcriptional profiling of the lines at three initiation developmental stages (-1, 0, 1 DPA) was performed using an oligonucleotide microarray. Loop comparisons of the differentially expressed genes within and between the lines was carried out, and functional classification and enrichment analysis showed that gene expression patterns during fiber initiation were heavily associated with hormone metabolism, transcription factor regulation, lipid transport, and asparagine biosynthetic processes, as previously reported. Further, four members of the allene-oxide cyclase (AOC) family that function in jasmonate biosynthesis were parallel up-regulation in fiber initiation, especially at -1 DPA, compared to other tissues and organs in linted-fuzzed TM-1. Real time-quantitative PCR (RT-qPCR) analysis in different fiber mutant lines revealed that AOCs were up-regulated higher at -1 DPA in lintless-fuzzless than that in linted-fuzzless and linted-fuzzed materials, and transcription of the AOCs was increased under jasmonic acid (JA) treatment. Expression analysis of JA biosynthesis-associated genes between XinWX and XinFLM showed that they were up-regulated during fiber initiation in the fuzzless-lintless mutant. Taken together, jasmonic acid-associated metabolism was related to cotton fiber initiation. Parallel up-regulation of AOCs expression may be important for normal fiber initiation development, while overproduction of AOCs might disrupt normal fiber development. PMID:26079621

  12. Comparative Transcriptomics Reveals Jasmonic Acid-Associated Metabolism Related to Cotton Fiber Initiation

    PubMed Central

    Wang, Liman; Zhu, Youmin; Hu, Wenjing; Zhang, Xueying; Cai, Caiping; Guo, Wangzhen

    2015-01-01

    Analysis of mutants and gene expression patterns provides a powerful approach for investigating genes involved in key stages of plant fiber development. In this study, lintless-fuzzless XinWX and linted-fuzzless XinFLM with a single genetic locus difference for lint were used to identify differentially expressed genes. Scanning electron microscopy showed fiber initiation in XinFLM at 0 days post anthesis (DPA). Fiber transcriptional profiling of the lines at three initiation developmental stages (-1, 0, 1 DPA) was performed using an oligonucleotide microarray. Loop comparisons of the differentially expressed genes within and between the lines was carried out, and functional classification and enrichment analysis showed that gene expression patterns during fiber initiation were heavily associated with hormone metabolism, transcription factor regulation, lipid transport, and asparagine biosynthetic processes, as previously reported. Further, four members of the allene-oxide cyclase (AOC) family that function in jasmonate biosynthesis were parallel up-regulation in fiber initiation, especially at -1 DPA, compared to other tissues and organs in linted-fuzzed TM-1. Real time-quantitative PCR (RT-qPCR) analysis in different fiber mutant lines revealed that AOCs were up-regulated higher at -1 DPA in lintless-fuzzless than that in linted-fuzzless and linted-fuzzed materials, and transcription of the AOCs was increased under jasmonic acid (JA) treatment. Expression analysis of JA biosynthesis-associated genes between XinWX and XinFLM showed that they were up-regulated during fiber initiation in the fuzzless-lintless mutant. Taken together, jasmonic acid-associated metabolism was related to cotton fiber initiation. Parallel up-regulation of AOCs expression may be important for normal fiber initiation development, while overproduction of AOCs might disrupt normal fiber development. PMID:26079621

  13. Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries

    PubMed Central

    2009-01-01

    Background Fresh fruits are well accepted as a good source of the dietary antioxidant ascorbic acid (Asc, Vitamin C). However, fruits such as grapes do not accumulate exceptionally high quantities of Asc. Grapes, unlike most other cultivated fruits do however use Asc as a precursor for the synthesis of both oxalic (OA) and tartaric acids (TA). TA is a commercially important product in the wine industry and due to its acidifying effect on crushed juice it can influence the organoleptic properties of the wine. Despite the interest in Asc accumulation in fruits, little is known about the mechanisms whereby Asc concentration is regulated. The purpose of this study was to gain insights into Asc metabolism in wine grapes (Vitis vinifera c.v. Shiraz.) and thus ascertain whether the developmental demand for TA and OA synthesis influences Asc accumulation in the berry. Results We provide evidence for developmentally differentiated up-regulation of Asc biosynthetic pathways and subsequent fluctuations in Asc, TA and OA accumulation. Rapid accumulation of Asc and a low Asc to dehydroascorbate (DHA) ratio in young berries was co-ordinated with up-regulation of three of the primary Asc biosynthetic (Smirnoff-Wheeler) pathway genes. Immature berries synthesised Asc in-situ from the primary pathway precursors D-mannose and L-galactose. Immature berries also accumulated TA in early berry development in co-ordination with up-regulation of a TA biosynthetic gene. In contrast, ripe berries have up-regulated expression of the alternative Asc biosynthetic pathway gene D-galacturonic acid reductase with only residual expression of Smirnoff-Wheeler Asc biosynthetic pathway genes and of the TA biosynthetic gene. The ripening phase was further associated with up-regulation of Asc recycling genes, a secondary phase of increased accumulation of Asc and an increase in the Asc to DHA ratio. Conclusion We demonstrate strong developmental regulation of Asc biosynthetic, recycling and catabolic

  14. Targeted disruption of retinoic acid receptor alpha (RAR alpha) and RAR gamma results in receptor-specific alterations in retinoic acid-mediated differentiation and retinoic acid metabolism.

    PubMed Central

    Boylan, J F; Lufkin, T; Achkar, C C; Taneja, R; Chambon, P; Gudas, L J

    1995-01-01

    F9 embryonic teratocarcinoma stem cells differentiate into an epithelial cell type called extraembryonic endoderm when treated with retinoic acid (RA), a derivative of retinol (vitamin A). This differentiation is presumably mediated through the actions of retinoid receptors, the RARs and RXRs. To delineate the functions of each of the different retinoid receptors in this model system, we have generated F9 cell lines in which both copies of either the RAR alpha gene or the RAR gamma gene are disrupted by homologous recombination. The absence of RAR alpha is associated with a reduction in the RA-induced expression of both the CRABP-II and Hoxb-1 (formerly 2.9) genes. The absence of RAR gamma is associated with a loss of the RA-inducible expression of the Hoxa-1 (formerly Hox-1.6), Hoxa-3 (formerly Hox-1.5), laminin B1, collagen IV (alpha 1), GATA-4, and BMP-2 genes. Furthermore, the loss of RAR gamma is associated with a reduction in the metabolism of all-trans-RA to more polar derivatives, while the loss of RAR alpha is associated with an increase in metabolism of RA relative to wild-type F9 cells. Thus, each of these RARs exhibits some specificity with respect to the regulation of differentiation-specific gene expression. These results provide an explanation for the expression of multiple RAR types within one cell type and suggest that each RAR has specific functions. PMID:7823950

  15. Bile Acid-Activated Receptors, Intestinal Microbiota, and the Treatment of Metabolic Disorders.

    PubMed

    Fiorucci, Stefano; Distrutti, Eleonora

    2015-11-01

    The composition of the bile acid pool is a function of the microbial metabolism of bile acids in the intestine. Perturbations of the microbiota shape the bile acid pool and modulate the activity of bile acid-activated receptors (BARs) even beyond the gastrointestinal tract, triggering various metabolic axes and altering host metabolism. Bile acids, in turn, can also regulate the composition of the gut microbiome at the highest taxonomic levels. Primary bile acids from the host are preferential ligands for the farnesoid X receptor (FXR), while secondary bile acids from the microbiota are ligands for G-protein-coupled bile acid receptor 1 (GPBAR1). In this review, we examine the role of bile acid signaling in the regulation of intestinal microbiota and how changes in bile acid composition affect human metabolism. Bile acids may offer novel therapeutic modalities in inflammation, obesity, and diabetes. PMID:26481828

  16. A Balanced Tissue Composition Reveals New Metabolic and Gene Expression Markers in Prostate Cancer

    PubMed Central

    Tessem, May-Britt; Bertilsson, Helena; Angelsen, Anders; Bathen, Tone F.; Drabløs, Finn; Rye, Morten Beck

    2016-01-01

    Molecular analysis of patient tissue samples is essential to characterize the in vivo variability in human cancers which are not accessible in cell-lines or animal models. This applies particularly to studies of tumor metabolism. The challenge is, however, the complex mixture of various tissue types within each sample, such as benign epithelium, stroma and cancer tissue, which can introduce systematic biases when cancers are compared to normal samples. In this study we apply a simple strategy to remove such biases using sample selections where the average content of stroma tissue is balanced between the sample groups. The strategy is applied to a prostate cancer patient cohort where data from MR spectroscopy and gene expression have been collected from and integrated on the exact same tissue samples. We reveal in vivo changes in cancer-relevant metabolic pathways which are otherwise hidden in the data due to tissue confounding. In particular, lowered levels of putrescine are connected to increased expression of SRM, reduced levels of citrate are attributed to upregulation of genes promoting fatty acid synthesis, and increased succinate levels coincide with reduced expression of SUCLA2 and SDHD. In addition, the strategy also highlights important metabolic differences between the stroma, epithelium and prostate cancer. These results show that important in vivo metabolic features of cancer can be revealed from patient data only if the heterogeneous tissue composition is properly accounted for in the analysis. PMID:27100877

  17. A Balanced Tissue Composition Reveals New Metabolic and Gene Expression Markers in Prostate Cancer.

    PubMed

    Tessem, May-Britt; Bertilsson, Helena; Angelsen, Anders; Bathen, Tone F; Drabløs, Finn; Rye, Morten Beck

    2016-01-01

    Molecular analysis of patient tissue samples is essential to characterize the in vivo variability in human cancers which are not accessible in cell-lines or animal models. This applies particularly to studies of tumor metabolism. The challenge is, however, the complex mixture of various tissue types within each sample, such as benign epithelium, stroma and cancer tissue, which can introduce systematic biases when cancers are compared to normal samples. In this study we apply a simple strategy to remove such biases using sample selections where the average content of stroma tissue is balanced between the sample groups. The strategy is applied to a prostate cancer patient cohort where data from MR spectroscopy and gene expression have been collected from and integrated on the exact same tissue samples. We reveal in vivo changes in cancer-relevant metabolic pathways which are otherwise hidden in the data due to tissue confounding. In particular, lowered levels of putrescine are connected to increased expression of SRM, reduced levels of citrate are attributed to upregulation of genes promoting fatty acid synthesis, and increased succinate levels coincide with reduced expression of SUCLA2 and SDHD. In addition, the strategy also highlights important metabolic differences between the stroma, epithelium and prostate cancer. These results show that important in vivo metabolic features of cancer can be revealed from patient data only if the heterogeneous tissue composition is properly accounted for in the analysis. PMID:27100877

  18. The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L.

    PubMed Central

    2012-01-01

    Background Carotenoids are a heterogeneous group of plant isoprenoids primarily involved in photosynthesis. In plants the cleavage of carotenoids leads to the formation of the phytohormones abscisic acid and strigolactone, and C13-norisoprenoids involved in the characteristic flavour and aroma compounds in flowers and fruits and are of specific importance in the varietal character of grapes and wine. This work extends the previous reports of carotenoid gene expression and photosynthetic pigment analysis by providing an up-to-date pathway analysis and an important framework for the analysis of carotenoid metabolic pathways in grapevine. Results Comparative genomics was used to identify 42 genes putatively involved in carotenoid biosynthesis/catabolism in grapevine. The genes are distributed on 16 of the 19 chromosomes and have been localised to the physical map of the heterozygous ENTAV115 grapevine sequence. Nine of the genes occur as single copies whereas the rest of the carotenoid metabolic genes have more than one paralogue. The cDNA copies of eleven corresponding genes from Vitis vinifera L. cv. Pinotage were characterised, and four where shown to be functional. Microarrays provided expression profiles of 39 accessions in the metabolic pathway during three berry developmental stages in Sauvignon blanc, whereas an optimised HPLC analysis provided the concentrations of individual carotenoids. This provides evidence of the functioning of the lutein epoxide cycle and the respective genes in grapevine. Similarly, orthologues of genes leading to the formation of strigolactone involved in shoot branching inhibition were identified: CCD7, CCD8 and MAX1. Moreover, the isoforms typically have different expression patterns, confirming the complex regulation of the pathway. Of particular interest is the expression pattern of the three VvNCEDs: Our results support previous findings that VvNCED3 is likely the isoform linked to ABA content in berries. Conclusions The

  19. Amino acid supplementation alters bone metabolism during simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Zwart, S. R.; Davis-Street, J. E.; Paddon-Jones, D.; Ferrando, A. A.; Wolfe, R. R.; Smith, S. M.

    2005-01-01

    High-protein and acidogenic diets induce hypercalciuria. Foods or supplements with excess sulfur-containing amino acids increase endogenous sulfuric acid production and therefore have the potential to increase calcium excretion and alter bone metabolism. In this study, effects of an amino acid/carbohydrate supplement on bone resorption were examined during bed rest. Thirteen subjects were divided at random into two groups: a control group (Con, n = 6) and an amino acid-supplemented group (AA, n = 7) who consumed an extra 49.5 g essential amino acids and 90 g carbohydrate per day for 28 days. Urine was collected for n-telopeptide (NTX), deoxypyridinoline (DPD), calcium, and pH determinations. Bone mineral content was determined and potential renal acid load was calculated. Bone-specific alkaline phosphatase was measured in serum samples collected on day 1 (immediately before bed rest) and on day 28. Potential renal acid load was higher in the AA group than in the Con group during bed rest (P < 0.05). For all subjects, during bed rest urinary NTX and DPD concentrations were greater than pre-bed rest levels (P < 0.05). Urinary NTX and DPD tended to be higher in the AA group (P = 0.073 and P = 0.056, respectively). During bed rest, urinary calcium was greater than baseline levels (P < 0.05) in the AA group but not the Con group. Total bone mineral content was lower after bed rest than before bed rest in the AA group but not the Con group (P < 0.05). During bed rest, urinary pH decreased (P < 0.05), and it was lower in the AA group than the Con group. These data suggest that bone resorption increased, without changes in bone formation, in the AA group.

  20. Metabolic interactions between vitamin A and conjugated linoleic acid.

    PubMed

    Carta, Gianfranca; Murru, Elisabetta; Cordeddu, Lina; Ortiz, Berenice; Giordano, Elena; Belury, Martha A; Quadro, Loredana; Banni, Sebastiano

    2014-01-01

    Lipid-soluble molecules share several aspects of their physiology due to their common adaptations to a hydrophilic environment, and may interact to regulate their action in a tissue-specific manner. Dietary conjugated linoleic acid (CLA) is a fatty acid with a conjugated diene structure that is found in low concentrations in ruminant products and available as a nutritional supplement. CLA has been shown to increase tissue levels of retinol (vitamin A alcohol) and its sole specific circulating carrier protein retinol-binding protein (RBP or RBP4). However, the precise mechanism of this action has not been elucidated yet. Here, we provide a summary of the current knowledge in this specific area of research and speculate that retinol and CLA may compete for catabolic pathways modulated by the activity of PPAR-α and RXR heterodimer. We also present preliminary data that may position PPAR-α at the crossroads between the metabolism of lipids and vitamin A. PMID:24667133

  1. Drug Metabolizing Enzyme and Transporter Gene Variation, Nicotine Metabolism, Prospective Abstinence, and Cigarette Consumption.

    PubMed

    Bergen, Andrew W; Michel, Martha; Nishita, Denise; Krasnow, Ruth; Javitz, Harold S; Conneely, Karen N; Lessov-Schlaggar, Christina N; Hops, Hyman; Zhu, Andy Z X; Baurley, James W; McClure, Jennifer B; Hall, Sharon M; Baker, Timothy B; Conti, David V; Benowitz, Neal L; Lerman, Caryn; Tyndale, Rachel F; Swan, Gary E

    2015-01-01

    The Nicotine Metabolite Ratio (NMR, ratio of trans-3'-hydroxycotinine and cotinine), has previously been associated with CYP2A6 activity, response to smoking cessation treatments, and cigarette consumption. We searched for drug metabolizing enzyme and transporter (DMET) gene variation associated with the NMR and prospective abstinence in 2,946 participants of laboratory studies of nicotine metabolism and of clinical trials of smoking cessation therapies. Stage I was a meta-analysis of the association of 507 common single nucleotide polymorphisms (SNPs) at 173 DMET genes with the NMR in 449 participants of two laboratory studies. Nominally significant associations were identified in ten genes after adjustment for intragenic SNPs; CYP2A6 and two CYP2A6 SNPs attained experiment-wide significance adjusted for correlated SNPs (CYP2A6 PACT=4.1E-7, rs4803381 PACT=4.5E-5, rs1137115, PACT=1.2E-3). Stage II was mega-regression analyses of 10 DMET SNPs with pretreatment NMR and prospective abstinence in up to 2,497 participants from eight trials. rs4803381 and rs1137115 SNPs were associated with pretreatment NMR at genome-wide significance. In post-hoc analyses of CYP2A6 SNPs, we observed nominally significant association with: abstinence in one pharmacotherapy arm; cigarette consumption among all trial participants; and lung cancer in four case:control studies. CYP2A6 minor alleles were associated with reduced NMR, CPD, and lung cancer risk. We confirmed the major role that CYP2A6 plays in nicotine metabolism, and made novel findings with respect to genome-wide significance and associations with CPD, abstinence and lung cancer risk. Additional multivariate analyses with patient variables and genetic modeling will improve prediction of nicotine metabolism, disease risk and smoking cessation treatment prognosis. PMID:26132489

  2. Drug Metabolizing Enzyme and Transporter Gene Variation, Nicotine Metabolism, Prospective Abstinence, and Cigarette Consumption

    PubMed Central

    Bergen, Andrew W.; Michel, Martha; Nishita, Denise; Krasnow, Ruth; Javitz, Harold S.; Conneely, Karen N.; Lessov-Schlaggar, Christina N.; Hops, Hyman; Zhu, Andy Z. X.; Baurley, James W.; McClure, Jennifer B.; Hall, Sharon M.; Baker, Timothy B.; Conti, David V.; Benowitz, Neal L.; Lerman, Caryn; Tyndale, Rachel F.; Swan, Gary E.

    2015-01-01

    The Nicotine Metabolite Ratio (NMR, ratio of trans-3’-hydroxycotinine and cotinine), has previously been associated with CYP2A6 activity, response to smoking cessation treatments, and cigarette consumption. We searched for drug metabolizing enzyme and transporter (DMET) gene variation associated with the NMR and prospective abstinence in 2,946 participants of laboratory studies of nicotine metabolism and of clinical trials of smoking cessation therapies. Stage I was a meta-analysis of the association of 507 common single nucleotide polymorphisms (SNPs) at 173 DMET genes with the NMR in 449 participants of two laboratory studies. Nominally significant associations were identified in ten genes after adjustment for intragenic SNPs; CYP2A6 and two CYP2A6 SNPs attained experiment-wide significance adjusted for correlated SNPs (CYP2A6 PACT=4.1E-7, rs4803381 PACT=4.5E-5, rs1137115, PACT=1.2E-3). Stage II was mega-regression analyses of 10 DMET SNPs with pretreatment NMR and prospective abstinence in up to 2,497 participants from eight trials. rs4803381 and rs1137115 SNPs were associated with pretreatment NMR at genome-wide significance. In post-hoc analyses of CYP2A6 SNPs, we observed nominally significant association with: abstinence in one pharmacotherapy arm; cigarette consumption among all trial participants; and lung cancer in four case:control studies. CYP2A6 minor alleles were associated with reduced NMR, CPD, and lung cancer risk. We confirmed the major role that CYP2A6 plays in nicotine metabolism, and made novel findings with respect to genome-wide significance and associations with CPD, abstinence and lung cancer risk. Additional multivariate analyses with patient variables and genetic modeling will improve prediction of nicotine metabolism, disease risk and smoking cessation treatment prognosis. PMID:26132489

  3. Nutritional and Hormonal Regulation of Citrate and Carnitine/Acylcarnitine Transporters: Two Mitochondrial Carriers Involved in Fatty Acid Metabolism.

    PubMed

    Giudetti, Anna M; Stanca, Eleonora; Siculella, Luisa; Gnoni, Gabriele V; Damiano, Fabrizio

    2016-01-01

    The transport of solutes across the inner mitochondrial membrane is catalyzed by a family of nuclear-encoded membrane-embedded proteins called mitochondrial carriers (MCs). The citrate carrier (CiC) and the carnitine/acylcarnitine transporter (CACT) are two members of the MCs family involved in fatty acid metabolism. By conveying acetyl-coenzyme A, in the form of citrate, from the mitochondria to the cytosol, CiC contributes to fatty acid and cholesterol synthesis; CACT allows fatty acid oxidation, transporting cytosolic fatty acids, in the form of acylcarnitines, into the mitochondrial matrix. Fatty acid synthesis and oxidation are inversely regulated so that when fatty acid synthesis is activated, the catabolism of fatty acids is turned-off. Malonyl-CoA, produced by acetyl-coenzyme A carboxylase, a key enzyme of cytosolic fatty acid synthesis, represents a regulator of both metabolic pathways. CiC and CACT activity and expression are regulated by different nutritional and hormonal conditions. Defects in the corresponding genes have been directly linked to various human diseases. This review will assess the current understanding of CiC and CACT regulation; underlining their roles in physio-pathological conditions. Emphasis will be placed on the molecular basis of the regulation of CiC and CACT associated with fatty acid metabolism. PMID:27231907

  4. Nutritional and Hormonal Regulation of Citrate and Carnitine/Acylcarnitine Transporters: Two Mitochondrial Carriers Involved in Fatty Acid Metabolism

    PubMed Central

    Giudetti, Anna M.; Stanca, Eleonora; Siculella, Luisa; Gnoni, Gabriele V.; Damiano, Fabrizio

    2016-01-01

    The transport of solutes across the inner mitochondrial membrane is catalyzed by a family of nuclear-encoded membrane-embedded proteins called mitochondrial carriers (MCs). The citrate carrier (CiC) and the carnitine/acylcarnitine transporter (CACT) are two members of the MCs family involved in fatty acid metabolism. By conveying acetyl-coenzyme A, in the form of citrate, from the mitochondria to the cytosol, CiC contributes to fatty acid and cholesterol synthesis; CACT allows fatty acid oxidation, transporting cytosolic fatty acids, in the form of acylcarnitines, into the mitochondrial matrix. Fatty acid synthesis and oxidation are inversely regulated so that when fatty acid synthesis is activated, the catabolism of fatty acids is turned-off. Malonyl-CoA, produced by acetyl-coenzyme A carboxylase, a key enzyme of cytosolic fatty acid synthesis, represents a regulator of both metabolic pathways. CiC and CACT activity and expression are regulated by different nutritional and hormonal conditions. Defects in the corresponding genes have been directly linked to various human diseases. This review will assess the current understanding of CiC and CACT regulation; underlining their roles in physio-pathological conditions. Emphasis will be placed on the molecular basis of the regulation of CiC and CACT associated with fatty acid metabolism. PMID:27231907

  5. Linked gene networks involved in nitrogen and carbon metabolism and levels of water-soluble carbohydrate accumulation in wheat stems.

    PubMed

    McIntyre, C Lynne; Casu, Rosanne E; Rattey, Allan; Dreccer, M Fernanda; Kam, Jason W; van Herwaarden, Anthony F; Shorter, Ray; Xue, Gang Ping

    2011-12-01

    High levels of water-soluble carbohydrates (WSC) provide an important source of stored assimilate for grain filling in wheat. To better understand the interaction between carbohydrate metabolism and other metabolic processes associated with the WSC trait, a genome-wide expression analysis was performed using eight field-grown lines from the high and low phenotypic tails of a wheat population segregating for WSC and the Affymetrix wheat genome array. The 259 differentially expressed probe sets could be assigned to 26 functional category bins, as defined using MapMan software. There were major differences in the categories to which the differentially expressed probe sets were assigned; for example, probe sets upregulated in high relative to low WSC lines were assigned to category bins such as amino acid metabolism, protein degradation and transport and to be involved in starch synthesis-related processes (carbohydrate metabolism bin), whereas downregulated probe sets were assigned to cell wall-related bins, amino acid synthesis and stress and were involved in sucrose breakdown. Using the set of differentially expressed genes as input, chemical-protein network analyses demonstrated a linkage between starch and N metabolism via pyridoxal phosphate. Twelve C and N metabolism-related genes were selected for analysis of their expression response to varying N and water treatments in the field in the four high and four low WSC progeny lines; the two nitrogen/amino acid metabolism genes demonstrated a consistent negative association between their level of expression and level of WSC. Our results suggest that the assimilation of nitrogen into amino acids is an important factor that influences the levels of WSC in the stems of field-grown wheat. PMID:21789636

  6. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering.

    PubMed

    Crook, Nathan C; Schmitz, Alexander C; Alper, Hal S

    2014-05-16

    Reduction of endogenous gene expression is a fundamental operation of metabolic engineering, yet current methods for gene knockdown (i.e., genome editing) remain laborious and slow, especially in yeast. In contrast, RNA interference allows facile and tunable gene knockdown via a simple plasmid transformation step, enabling metabolic engineers to rapidly prototype knockdown strategies in multiple strains before expending significant cost to undertake genome editing. Although RNAi is naturally present in a myriad of eukaryotes, it has only been recently implemented in Saccharomyces cerevisiae as a heterologous pathway and so has not yet been optimized as a metabolic engineering tool. In this study, we elucidate a set of design principles for the construction of hairpin RNA expression cassettes in yeast and implement RNA interference to quickly identify routes for improvement of itaconic acid production in this organism. The approach developed here enables rapid prototyping of knockdown strategies and thus accelerates and reduces the cost of the design-build-test cycle in yeast. PMID:24328131

  7. Bhlhe40 Represses PGC-1α Activity on Metabolic Gene Promoters in Myogenic Cells

    PubMed Central

    Chung, Shih Ying; Kao, Chien Han; Villarroya, Francesc; Chang, Hsin Yu; Chang, Hsuan Chia; Hsiao, Sheng Pin; Liou, Gunn-Guang

    2015-01-01

    PGC-1α is a transcriptional coactivator promoting oxidative metabolism in many tissues. Its expression in skeletal muscle (SKM) is induced by hypoxia and reactive oxidative species (ROS) generated during exercise, suggesting that PGC-1α might mediate the cross talk between oxidative metabolism and cellular responses to hypoxia and ROS. Here we found that PGC-1α directly interacted with Bhlhe40, a basic helix-loop-helix (bHLH) transcriptional repressor induced by hypoxia, and protects SKM from ROS damage, and they cooccupied PGC-1α-targeted gene promoters/enhancers, which in turn repressed PGC-1α transactivational activity. Bhlhe40 repressed PGC-1α activity through recruiting histone deacetylases (HDACs) and preventing the relief of PGC-1α intramolecular repression caused by its own intrinsic suppressor domain. Knockdown of Bhlhe40 mRNA increased levels of ROS, fatty acid oxidation, mitochondrial DNA, and expression of PGC-1α target genes. Similar effects were also observed when the Bhlhe40-mediated repression was rescued by a dominantly active form of the PGC-1α-interacting domain (PID) from Bhlhe40. We further found that Bhlhe40-mediated repression can be largely relieved by exercise, in which its recruitment to PGC-1α-targeted cis elements was significantly reduced. These observations suggest that Bhlhe40 is a novel regulator of PGC-1α activity repressing oxidative metabolism gene expression and mitochondrion biogenesis in sedentary SKM. PMID:25963661

  8. Systems approaches to unraveling plant metabolism: identifying biosynthetic genes of secondary metabolic pathways.

    PubMed

    Spiering, Martin J; Kaur, Bhavneet; Parsons, James F; Eisenstein, Edward

    2014-01-01

    The diversity of useful compounds produced by plant secondary metabolism has stimulated broad systems biology approaches to identify the genes involved in their biosynthesis. Systems biology studies in non-model plants pose interesting but addressable challenges, and have been greatly facilitated by the ability to grow and maintain plants, develop laboratory culture systems, and profile key metabolites in order to identify critical genes involved their biosynthesis. In this chapter we describe a suite of approaches that have been useful in Actaea racemosa (L.; syn. Cimicifuga racemosa, Nutt., black coshosh), a non-model medicinal plant with no genome sequence and little horticultural information available, that have led to the development of initial gene-metabolite relationships for the production of several bioactive metabolites in this multicomponent botanical therapeutic, and that can be readily applied to a wide variety of under-characterized medicinal plants. PMID:24218220

  9. The role of bile acids in metabolic regulation.

    PubMed

    Vítek, Libor; Haluzík, Martin

    2016-03-01

    Bile acids (BA), long believed to only have lipid-digestive functions, have emerged as novel metabolic modulators. They have important endocrine effects through multiple cytoplasmic as well as nuclear receptors in various organs and tissues. BA affect multiple functions to control energy homeostasis, as well as glucose and lipid metabolism, predominantly by activating the nuclear farnesoid X receptor and the cytoplasmic G protein-coupled BA receptor TGR5 in a variety of tissues. However, BA also are aimed at many other cellular targets in a wide array of organs and cell compartments. Their role in the pathogenesis of diabetes, obesity and other 'diseases of civilization' becomes even more clear. They also interact with the gut microbiome, with important clinical implications, further extending the complexity of their biological functions. Therefore, it is not surprising that BA metabolism is substantially modulated by bariatric surgery, a phenomenon contributing favorably to the therapeutic effects of these surgical procedures. Based on these data, several therapeutic approaches to ameliorate obesity and diabetes have been proposed to affect the cellular targets of BA. PMID:26733603

  10. Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids.

    PubMed

    Yu, Ai-Qun; Juwono, Nina Kurniasih Pratomo; Foo, Jee Loon; Leong, Susanna Su Jan; Chang, Matthew Wook

    2016-03-01

    Short branched-chain fatty acids (SBCFAs, C4-6) are versatile platform intermediates for the production of value-added products in the chemical industry. Currently, SBCFAs are mainly synthesized chemically, which can be costly and may cause environmental pollution. In order to develop an economical and environmentally friendly route for SBCFA production, we engineered Saccharomyces cerevisiae, a model eukaryotic microorganism of industrial significance, for the overproduction of SBCFAs. In particular, we employed a combinatorial metabolic engineering approach to optimize the native Ehrlich pathway in S. cerevisiae. First, chromosome-based combinatorial gene overexpression led to a 28.7-fold increase in the titer of SBCFAs. Second, deletion of key genes in competing pathways improved the production of SBCFAs to 387.4 mg/L, a 31.2-fold increase compared to the wild-type. Third, overexpression of the ATP-binding cassette (ABC) transporter PDR12 increased the secretion of SBCFAs. Taken together, we demonstrated that the combinatorial metabolic engineering approach used in this study effectively improved SBCFA biosynthesis in S. cerevisiae through the incorporation of a chromosome-based combinatorial gene overexpression strategy, elimination of genes in competitive pathways and overexpression of a native transporter. We envision that this strategy could also be applied to the production of other chemicals in S. cerevisiae and may be extended to other microbes for strain improvement. PMID:26721212

  11. Effects of obeticholic acid on lipoprotein metabolism in healthy volunteers.

    PubMed

    Pencek, R; Marmon, T; Roth, J D; Liberman, A; Hooshmand-Rad, R; Young, M A

    2016-09-01

    The bile acid analogue obeticholic acid (OCA) is a selective farnesoid X receptor (FXR) agonist in development for treatment of several chronic liver diseases. FXR activation regulates lipoprotein homeostasis. The effects of OCA on cholesterol and lipoprotein metabolism in healthy individuals were assessed. Two phase I studies were conducted to evaluate the effects of repeated oral doses of 5, 10 or 25 mg OCA on lipid variables after 14 or 20 days of consecutive administration in 68 healthy adults. Changes in HDL and LDL cholesterol levels were examined, in addition to nuclear magnetic resonance analysis of particle sizes and sub-fraction concentrations. OCA elicited changes in circulating cholesterol and particle size of LDL and HDL. OCA decreased HDL cholesterol and increased LDL cholesterol, independently of dose. HDL particle concentrations declined as a result of a reduction in medium and small HDL. Total LDL particle concentrations increased because of an increase in large LDL particles. Changes in lipoprotein metabolism attributable to OCA in healthy individuals were found to be consistent with previously reported changes in patients receiving OCA with non-alcoholic fatty liver disease or non-alcoholic steatohepatitis. PMID:27109453

  12. Altered arachidonic acid metabolism and platelet size in atopic subjects

    SciTech Connect

    Audera, C.; Rocklin, R.; Vaillancourt, R.; Jakubowski, J.A.; Deykin, D.

    1988-03-01

    The release and metabolism of endogenous arachidonic acid (AA) in physiologically activated platelets obtained from 11 atopic patients with allergic rhinitis and/or asthma was compared to that of sex- and age-matched nonatopic controls. Prelabeled (/sup 3/H)AA platelets were stimulated with thrombin or collagen and the amount of free (/sup 3/H)AA and radiolabeled metabolites released were measured by high-performance liquid chromatography. The results obtained indicate that although the incorporation of (/sup 3/H)AA into platelet phospholipids and total release of /sup 3/H-radioactivity upon stimulation were comparable in the two groups, the percentage of /sup 3/H-radioactivity released from platelets as free AA was significantly lower (P less than 0.01) in the atopic group. The reduction in free (/sup 3/H)AA was accompanied by an increase (P less than 0.01) in the percentage of /sup 3/H-radioactivity released as cyclooxygenase products in atopic platelets (compared to nonatopic cells) after stimulation with 10 and 25 micrograms/ml collagen. The amount of platelet lipoxygenase product released was comparable between the two groups. Although the blood platelet counts were similar, the mean platelet volume was statistically higher (P less than 0.01) in the atopic group. These results indicate that arachidonic acid metabolism in atopic platelets is altered, the pathophysiological significance of which remains to be clarified.

  13. Bile Acid Alters Male Mouse Fertility in Metabolic Syndrome Context

    PubMed Central

    Baptissart, Marine; De Haze, Angélique; Vaz, Frederic; Kulik, Wim; Damon-Soubeyrand, Christelle; Baron, Silvère; Caira, Françoise; Volle, David H.

    2015-01-01

    Bile acids have recently been demonstrated as molecules with endocrine activities controlling several physiological functions such as immunity and glucose homeostases. They act mainly through two receptors, the nuclear receptor Farnesol-X-Receptor alpha (FXRα) and the G-protein coupled receptor (TGR5). These recent studies have led to the idea that molecules derived from bile acids (BAs) and targeting their receptors must be good targets for treatment of metabolic diseases such as obesity or diabetes. Thus it might be important to decipher the potential long term impact of such treatment on different physiological functions. Indeed, BAs have recently been demonstrated to alter male fertility. Here we demonstrate that in mice with overweight induced by high fat diet, BA exposure leads to increased rate of male infertility. This is associated with the altered germ cell proliferation, default of testicular endocrine function and abnormalities in cell-cell interaction within the seminiferous epithelium. Even if the identification of the exact molecular mechanisms will need more studies, the present results suggest that both FXRα and TGR5 might be involved. We believed that this work is of particular interest regarding the potential consequences on future approaches for the treatment of metabolic diseases. PMID:26439743

  14. A Genome-Wide Screen Indicates Correlation between Differentiation and Expression of Metabolism Related Genes

    PubMed Central

    Shende, Akhilesh; Singh, Anupama; Meena, Anil; Ghosal, Ritika; Ranganathan, Madhav; Bandyopadhyay, Amitabha

    2013-01-01

    Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation. PMID:23717462

  15. (-)-Hydroxycitric Acid Nourishes Protein Synthesis via Altering Metabolic Directions of Amino Acids in Male Rats.

    PubMed

    Han, Ningning; Li, Longlong; Peng, Mengling; Ma, Haitian

    2016-08-01

    (-)-Hydroxycitric acid (HCA), a major active ingredient of Garcinia Cambogia extracts, had shown to suppress body weight gain and fat accumulation in animals and humans. While, the underlying mechanism of (-)-HCA has not fully understood. Thus, this study was aimed to investigate the effects of long-term supplement with (-)-HCA on body weight gain and variances of amino acid content in rats. Results showed that (-)-HCA treatment reduced body weight gain and increased feed conversion ratio in rats. The content of hepatic glycogen, muscle glycogen, and serum T4 , T3 , insulin, and Leptin were increased in (-)-HCA treatment groups. Protein content in liver and muscle were significantly increased in (-)-HCA treatment groups. Amino acid profile analysis indicated that most of amino acid contents in serum and liver, especially aromatic amino acid and branched amino acid, were higher in (-)-HCA treatment groups. However, most of the amino acid contents in muscle, especially aromatic amino acid and branched amino acid, were reduced in (-)-HCA treatment groups. These results indicated that (-)-HCA treatment could reduce body weight gain through promoting energy expenditure via regulation of thyroid hormone levels. In addition, (-)-HCA treatment could promote protein synthesis by altering the metabolic directions of amino acids. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27145492

  16. Production of free monounsaturated fatty acids by metabolically engineered Escherichia coli

    PubMed Central

    2014-01-01

    Background Monounsaturated fatty acids (MUFAs) are the best components for biodiesel when considering the low temperature fluidity and oxidative stability. However, biodiesel derived from vegetable oils or microbial lipids always consists of significant amounts of polyunsaturated and saturated fatty acids (SFAs) alkyl esters, which hampers its practical applications. Therefore, the fatty acid composition should be modified to increase MUFA contents as well as enhancing oil and lipid production. Results The model microorganism Escherichia coli was engineered to produce free MUFAs. The fatty acyl-ACP thioesterase (AtFatA) and fatty acid desaturase (SSI2) from Arabidopsis thaliana were heterologously expressed in E. coli BL21 star(DE3) to specifically release free unsaturated fatty acids (UFAs) and convert SFAs to UFAs. In addition, the endogenous fadD gene (encoding acyl-CoA synthetase) was disrupted to block fatty acid catabolism while the native acetyl-CoA carboxylase (ACCase) was overexpressed to increase the malonyl coenzyme A (malonyl-CoA) pool and boost fatty acid biosynthesis. The finally engineered strain BL21ΔfadD/pE-AtFatAssi2&pA-acc produced 82.6 mg/L free fatty acids (FFAs) under shake-flask conditions and FFAs yield on glucose reached about 3.3% of the theoretical yield. Two types of MUFAs, palmitoleate (16:1Δ9) and cis-vaccenate (18:1Δ11) made up more than 75% of the FFA profiles. Fed-batch fermentation of this strain further enhanced FFAs production to a titer of 1.27 g/L without affecting fatty acid compositions. Conclusions This study demonstrated the possibility to regulate fatty acid composition by using metabolic engineering approaches. FFAs produced by the recombinant E. coli strain consisted of high-level MUFAs and biodiesel manufactured from these fatty acids would be more suitable for current diesel engines. PMID:24716602

  17. A Branch Point of Streptomyces Sulfur Amino Acid Metabolism Controls the Production of Albomycin

    PubMed Central

    Kulkarni, Aditya; Zeng, Yu; Zhou, Wei; Van Lanen, Steven; Zhang, Weiwen

    2015-01-01

    Albomycin (ABM), also known as grisein, is a sulfur-containing metabolite produced by Streptomyces griseus ATCC 700974. Genes predicted to be involved in the biosynthesis of ABM and ABM-like molecules are found in the genomes of other actinomycetes. ABM has potent antibacterial activity, and as a result, many attempts have been made to develop ABM into a drug since the last century. Although the productivity of S. griseus can be increased with random mutagenesis methods, understanding of Streptomyces sulfur amino acid (SAA) metabolism, which supplies a precursor for ABM biosynthesis, could lead to improved and stable production. We previously characterized the gene cluster (abm) in the genome-sequenced S. griseus strain and proposed that the sulfur atom of ABM is derived from either cysteine (Cys) or homocysteine (Hcy). The gene product, AbmD, appears to be an important link between primary and secondary sulfur metabolic pathways. Here, we show that propargylglycine or iron supplementation in growth media increased ABM production by significantly changing the relative concentrations of intracellular Cys and Hcy. An SAA metabolic network of S. griseus was constructed. Pathways toward increasing Hcy were shown to positively impact ABM production. The abmD gene and five genes that increased the Hcy/Cys ratio were assembled downstream of hrdBp promoter sequences and integrated into the chromosome for overexpression. The ABM titer of one engineered strain, SCAK3, in a chemically defined medium was consistently improved to levels ∼400% of the wild type. Finally, we analyzed the production and growth of SCAK3 in shake flasks for further process development. PMID:26519385

  18. A Branch Point of Streptomyces Sulfur Amino Acid Metabolism Controls the Production of Albomycin.

    PubMed

    Kulkarni, Aditya; Zeng, Yu; Zhou, Wei; Van Lanen, Steven; Zhang, Weiwen; Chen, Shawn

    2016-01-01

    Albomycin (ABM), also known as grisein, is a sulfur-containing metabolite produced by Streptomyces griseus ATCC 700974. Genes predicted to be involved in the biosynthesis of ABM and ABM-like molecules are found in the genomes of other actinomycetes. ABM has potent antibacterial activity, and as a result, many attempts have been made to develop ABM into a drug since the last century. Although the productivity of S. griseus can be increased with random mutagenesis methods, understanding of Streptomyces sulfur amino acid (SAA) metabolism, which supplies a precursor for ABM biosynthesis, could lead to improved and stable production. We previously characterized the gene cluster (abm) in the genome-sequenced S. griseus strain and proposed that the sulfur atom of ABM is derived from either cysteine (Cys) or homocysteine (Hcy). The gene product, AbmD, appears to be an important link between primary and secondary sulfur metabolic pathways. Here, we show that propargylglycine or iron supplementation in growth media increased ABM production by significantly changing the relative concentrations of intracellular Cys and Hcy. An SAA metabolic network of S. griseus was constructed. Pathways toward increasing Hcy were shown to positively impact ABM production. The abmD gene and five genes that increased the Hcy/Cys ratio were assembled downstream of hrdBp promoter sequences and integrated into the chromosome for overexpression. The ABM titer of one engineered strain, SCAK3, in a chemically defined medium was consistently improved to levels ∼400% of the wild type. Finally, we analyzed the production and growth of SCAK3 in shake flasks for further process development. PMID:26519385

  19. Gene expression analysis in mitochondria from chagasic mice: alterations in specific metabolic pathways

    PubMed Central

    2004-01-01

    Cardiac hypertrophy and remodelling in chagasic disease might be associated with mitochondrial dysfunction. In the present study, we characterized the cardiac metabolic responses to Trypanosoma cruzi infection and progressive disease severity using a custom-designed mitoarray (mitochondrial function-related gene array). Mitoarrays consisting of known, well-characterized mitochondrial function-related cDNAs were hybridized with 32P-labelled cDNA probes generated from the myocardium of mice during immediate early, acute and chronic phases of infection and disease development. The mitoarray successfully identified novel aspects of the T. cruzi-induced alterations in the expression of the genes related to mitochondrial function and biogenesis that were further confirmed by real-time reverse transcriptase–PCRs. Of note is the up-regulation of transcripts essential for fatty acid metabolism associated with repression of the mRNAs for pyruvate dehydrogenase complex in infected hearts. We observed no statistically significant changes in mRNAs for the enzymes of tricarboxylic acid cycle. These results suggest that fatty acid metabolism compensates the pyruvate dehydrogenase complex deficiencies for the supply of acetyl-CoA for a tricarboxylic acid cycle, and chagasic hearts may not be limited in reduced energy (NADH and FADH2). The observation of a decrease in mRNA level for several subunits of the respiratory chain complexes by mitoarray as well as global genome analysis suggests a limitation in mitochondrial oxidative phosphorylation-mediated ATP-generation capacity as the probable basis for cardiac homoeostasis in chagasic disease. PMID:15101819

  20. Ascorbic acid recycling by cultured beta cells: effects of increased glucose metabolism.

    PubMed

    Steffner, Robert J; Wu, Lan; Powers, Alvin C; May, James M

    2004-11-15

    Ascorbic acid is necessary for optimal insulin secretion from pancreatic islets. We evaluated ascorbate recycling and whether it is impaired by increased glucose metabolism in the rat beta-cell line INS-1. INS-1 cells, engineered with the potential for overexpression of glucokinase under the control of a tetracycline-inducible gene expression system, took up and reduced dehydroascorbic acid to ascorbate in a concentration-dependent manner that was optimal in the presence of physiologic D-glucose concentrations. Ascorbate uptake did not affect intracellular GSH concentrations. Whereas depletion of GSH in culture to levels about 25% of normal also did not affect the ability of the cells to reduce dehydroascorbic acid, more severe acute GSH depletion to less than 10% of normal levels did impair dehydroascorbic acid reduction. Culture of inducible cells in 11.8 mM D-glucose and doxycycline for 48 h enhanced glucokinase activity, increased glucose utilization, abolished D-glucose-dependent insulin secretion, and increased generation of reactive oxygen species. The latter may have contributed to subsequent decreases in the ability of the cells both to maintain intracellular ascorbate and to recycle it from dehydroascorbic acid. Cultured beta cells have a high capacity to recycle ascorbate, but this is sensitive to oxidant stress generated by increased glucose metabolism due to culture in high glucose concentrations and increased glucokinase expression. Impaired ascorbate recycling as a result of increased glucose metabolism may have implications for the role of ascorbate in insulin secretion in diabetes mellitus and may partially explain glucose toxicity in beta cells. PMID:15477012

  1. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration.

    PubMed

    de Jong, Bouke Wim; Shi, Shuobo; Valle-Rodríguez, Juan Octavio; Siewers, Verena; Nielsen, Jens

    2015-03-01

    Fatty acid ethyl esters are fatty acid derived molecules similar to first generation biodiesel (fatty acid methyl esters; FAMEs) which can be produced in a microbial cell factory. Saccharomyces cerevisiae is a suitable candidate for microbial large scale and long term cultivations, which is the typical industrial production setting for biofuels. It is crucial to conserve the metabolic design of the cell factory during industrial cultivation conditions that require extensive propagation. Genetic modifications therefore have to be introduced in a stable manner. Here, several metabolic engineering strategies for improved production of fatty acid ethyl esters in S. cerevisiae were combined and the genes were stably expressed from the organisms' chromosomes. A wax ester synthase (ws2) was expressed in different yeast strains with an engineered acetyl-CoA and fatty acid metabolism. Thus, we compared expression of ws2 with and without overexpression of alcohol dehydrogenase (ADH2), acetaldehyde dehydrogenase (ALD6) and acetyl-CoA synthetase (acs SE (L641P) ) and further evaluated additional overexpression of a mutant version of acetyl-CoA decarboxylase (ACC1 (S1157A,S659A) ) and the acyl-CoA binding protein (ACB1). The combined engineering efforts of the implementation of ws2, ADH2, ALD6 and acs SE (L641P) , ACC1 (S1157A,S659A) and ACB1 in a S. cerevisiae strain lacking storage lipid formation (are1Δ, are2Δ, dga1Δ and lro1Δ) and β-oxidation (pox1Δ) resulted in a 4.1-fold improvement compared with sole expression of ws2 in S. cerevisiae. PMID:25422103

  2. Phytanic acid, a novel activator of uncoupling protein-1 gene transcription and brown adipocyte differentiation.

    PubMed Central

    Schlüter, Agatha; Barberá, Maria José; Iglesias, Roser; Giralt, Marta; Villarroya, Francesc

    2002-01-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a phytol-derived branched-chain fatty acid present in dietary products. Phytanic acid increased uncoupling protein-1 (UCP1) mRNA expression in brown adipocytes differentiated in culture. Phytanic acid induced the expression of the UCP1 gene promoter, which was enhanced by co-transfection with a retinoid X receptor (RXR) expression vector but not with other expression vectors driving peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma or a form of RXR devoid of ligand-dependent sensitivity. The effect of phytanic acid on the UCP1 gene required the 5' enhancer region of the gene and the effects of phytanic acid were mediated in an additive manner by three binding sites for RXR. Moreover, phytanic acid activates brown adipocyte differentiation: long-term exposure of brown preadipocytes to phytanic acid promoted the acquisition of the brown adipocyte morphology and caused a co-ordinate induction of the mRNAs for gene markers of brown adipocyte differentiation, such as UCP1, adipocyte lipid-binding protein aP2, lipoprotein lipase, the glucose transporter GLUT4 or subunit II of cytochrome c oxidase. In conclusion, phytanic acid is a natural product of phytol metabolism that activates brown adipocyte thermogenic function. It constitutes a potential nutritional signal linking dietary status to adaptive thermogenesis. PMID:11829740

  3. Integrated bioinformatics to decipher the ascorbic acid metabolic network in tomato.

    PubMed

    Ruggieri, Valentino; Bostan, Hamed; Barone, Amalia; Frusciante, Luigi; Chiusano, Maria Luisa

    2016-07-01

    Ascorbic acid is involved in a plethora of reactions in both plant and animal metabolism. It plays an essential role neutralizing free radicals and acting as enzyme co-factor in several reaction. Since humans are ascorbate auxotrophs, enhancing the nutritional quality of a widely consumed vegetable like tomato is a desirable goal. Although the main reactions of the ascorbate biosynthesis, recycling and translocation pathways have been characterized, the assignment of tomato genes to each enzymatic step of the entire network has never been reported to date. By integrating bioinformatics approaches, omics resources and transcriptome collections today available for tomato, this study provides an overview on the architecture of the ascorbate pathway. In particular, 237 tomato loci were associated with the different enzymatic steps of the network, establishing the first comprehensive reference collection of candidate genes based on the recently released tomato gene annotation. The co-expression analyses performed by using RNA-Seq data supported the functional investigation of main expression patterns for the candidate genes and highlighted a coordinated spatial-temporal regulation of genes of the different pathways across tissues and developmental stages. Taken together these results provide evidence of a complex interplaying mechanism and highlight the pivotal role of functional related genes. The definition of genes contributing to alternative pathways and their expression profiles corroborates previous hypothesis on mechanisms of accumulation of ascorbate in the later stages of fruit ripening. Results and evidences here provided may facilitate the development of novel strategies for biofortification of tomato fruit with Vitamin C and offer an example framework for similar studies concerning other metabolic pathways and species. PMID:27007138

  4. Untangling the complex relationship between dietary acid load and glucocorticoid metabolism.

    PubMed

    Weiner, I David

    2016-08-01

    The kidney's maintenance of the metabolic component of acid-base homeostasis is critical for normal health. The study by Esche and colleagues in this issue of Kidney International shows that normal children with higher levels of renal net acid excretion and of dietary acid loads have stimulation of glucocorticoid hormone metabolism. Thus, normal variations in dietary acid intake and renal net acid excretion have important biological correlates. PMID:27418088

  5. Combined treatment with caffeic and ferulic acid from Baccharis uncinella C. DC. (Asteraceae) protects against metabolic syndrome in mice

    PubMed Central

    Bocco, B.M.; Fernandes, G.W.; Lorena, F.B.; Cysneiros, R.M.; Christoffolete, M.A.; Grecco, S.S.; Lancellotti, C.L.; Romoff, P.; Lago, J.H.G.; Bianco, A.C.; Ribeiro, M.O.

    2016-01-01

    Fractionation of the EtOH extract from aerial parts of Baccharis uncinella C. DC. (Asteraceae) led to isolation of caffeic and ferulic acids, which were identified from spectroscopic and spectrometric evidence. These compounds exhibit antioxidant and anti-inflammatory properties and have been shown to be effective in the prevention/treatment of metabolic syndrome. This study investigated whether the combined treatment of caffeic and ferulic acids exhibits a more significant beneficial effect in a mouse model with metabolic syndrome. The combination treatment with caffeic and ferulic acids was tested for 60 days in C57 mice kept on a high-fat (40%) diet. The data obtained indicated that treatment with caffeic and ferulic acids prevented gain in body weight induced by the high-fat diet and improved hyperglycemia, hypercholesterolemia and hypertriglyceridemia. The expression of a number of metabolically relevant genes was affected in the liver of these animals, showing that caffeic and ferulic acid treatment results in increased cholesterol uptake and reduced hepatic triglyceride synthesis in the liver, which is a likely explanation for the prevention of hepatic steatosis. In conclusion, the combined treatment of caffeic and ferulic acids displayed major positive effects towards prevention of multiple aspects of the metabolic syndrome and liver steatosis in an obese mouse model. PMID:26840707

  6. Combined treatment with caffeic and ferulic acid from Baccharis uncinella C. DC. (Asteraceae) protects against metabolic syndrome in mice.

    PubMed

    Bocco, B M; Fernandes, G W; Lorena, F B; Cysneiros, R M; Christoffolete, M A; Grecco, S S; Lancellotti, C L; Romoff, P; Lago, J H G; Bianco, A C; Ribeiro, M O

    2016-03-01

    Fractionation of the EtOH extract from aerial parts of Baccharis uncinella C. DC. (Asteraceae) led to isolation of caffeic and ferulic acids, which were identified from spectroscopic and spectrometric evidence. These compounds exhibit antioxidant and anti-inflammatory properties and have been shown to be effective in the prevention/treatment of metabolic syndrome. This study investigated whether the combined treatment of caffeic and ferulic acids exhibits a more significant beneficial effect in a mouse model with metabolic syndrome. The combination treatment with caffeic and ferulic acids was tested for 60 days in C57 mice kept on a high-fat (40%) diet. The data obtained indicated that treatment with caffeic and ferulic acids prevented gain in body weight induced by the high-fat diet and improved hyperglycemia, hypercholesterolemia and hypertriglyceridemia. The expression of a number of metabolically relevant genes was affected in the liver of these animals, showing that caffeic and ferulic acid treatment results in increased cholesterol uptake and reduced hepatic triglyceride synthesis in the liver, which is a likely explanation for the prevention of hepatic steatosis. In conclusion, the combined treatment of caffeic and ferulic acids displayed major positive effects towards prevention of multiple aspects of the metabolic syndrome and liver steatosis in an obese mouse model. PMID:26840707

  7. Metabolic gene expression shift by Listeria monocytogenes in coculture biofilms.

    PubMed

    Tirumalai, Prem Saran

    2015-05-01

    Coculture communities of microbes are more realistic and common in nature than in laboratory-grown pure cultures. In a mixed community, when resources with a potential role in growth are shared, conflict (as a consequence of competition) or cooperation is certain. In our study, this situation of conflict and cooperation was explored to understand the population dynamics and community behavior of Listeria monocytogenes. The social behavioral response of L. monocytogenes to the presence of Bacillus subtilis was studied in terms of divergence in gene expression of L. monocytogenes. It is evident from the results that social behavior of L. monocytogenes changes from competition for survival in broth to cooperation and coexistence in biofilm. Furthermore, the gene expression pattern is clearly indicative of L. monocytogenes switching from aerobic to fermentative metabolism in broth and biofilm conditions, respectively. PMID:25776109

  8. Clinical aggressiveness of malignant gliomas is linked to augmented metabolism of amino acids.

    PubMed

    Panosyan, Eduard H; Lasky, Joseph L; Lin, Henry J; Lai, Albert; Hai, Yang; Guo, Xiuqing; Quinn, Michael; Nelson, Stanley F; Cloughesy, Timothy F; Nghiemphu, P Leia

    2016-05-01

    Glutamine, glutamate, asparagine, and aspartate are involved in an enzyme-network that controls nitrogen metabolism. Branched-chain-amino-acid aminotransferase-1 (BCAT1) promotes proliferation of gliomas with wild-type IDH1 and is closely connected to the network. We hypothesized that metabolism of asparagine, glutamine, and branched-chain-amino-acids is associated with progression of malignant gliomas. Gene expression for asparagine synthetase (ASNS), glutaminase (GLS), and BCAT1 were analyzed in 164 gliomas from 156 patients [33-anaplastic gliomas (AG) and 131-glioblastomas (GBM), 64 of which were recurrent GBMs]. ASNS and GLS were twofold higher in GBMs versus AGs. BCAT1 was also higher in GBMs. ASNS expression was twofold higher in recurrent versus new GBMs. Five patients had serial samples: 4-showed higher ASNS and 3-higher GLS at recurrence. We analyzed grade and treatment in 4 groups: (1) low ASNS, GLS, and BCAT1 (n = 96); (2) low ASNS and GLS, but high BCAT1 (n = 26); (3) high ASNS or GLS, but low BCAT1 (n = 25); and (4) high ASNS or GLS and high BCAT1 (n = 17). Ninety-one  % of patients (29/32) with grade-III lesions were in group 1. In contrast, 95 % of patients (62/65) in groups 2-4 had GBMs. Treatment was similar in 4 groups (radiotherapy-80 %; temozolomide-30 %; other chemotherapy-50 %). High expression of ASNS, GLS, and BCAT1 were each associated with poor survival in the entire group. The combination of lower ASNS, GLS, and BCAT1 levels correlated with better survival for newly diagnosed GBMs (66 patients; P = 0.0039). Only tumors with lower enzymes showed improved outcome with temozolomide. IDH1(WT) gliomas had higher expression of these genes. Manipulation of amino acid metabolism in malignant gliomas may be further studied for therapeutics development. PMID:26922345

  9. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production

    SciTech Connect

    Zeikus, J.G.; Jain, M.

    1993-12-31

    The project deals with understanding the fundamental biochemical mechanisms that physiologically control and regulate carbon and electron flow in anaerobic chemosynthetic bacteria that couple metabolism of single carbon compounds and hydrogen to the production of organic acids (formic, acetic, butyric, and succinic) or methane. The authors compare the regulation of carbon dioxide and hydrogen metabolism by fermentation, enzyme, and electron carrier analysis using Butyribacterium methylotrophicum, Anaeroblospirillum succiniciproducens, Methanosarcina barkeri, and a newly isolated tri-culture composed of a syntrophic butyrate degrader strain IB, Methanosarcina mazei and Methanobacterium formicicum as model systems. To understand the regulation of hydrogen metabolism during butyrate production or acetate degradation, hydrogenase activity in B. methylotrophicum or M. barkeri is measured in relation to growth substrate and pH; hydrogenase is purified and characterized to investigate number of hydrogenases; their localization and functions; and, their sequences are determined. To understand the mechanism for catabolic CO{sub 2} fixation to succinate the PEP carboxykinase enzyme and gene of A. succiniciproducens are purified and characterized. Genetically engineered strains of Escherichia coli containing the phosphoenolpyruvate (PEP) carboxykinase gene are examined for their ability to produce succinate in high yield. To understand the mechanism of fatty acid degradation by syntrophic acetogens during mixed culture methanogenesis formate and hydrogen production are characterized by radio tracer studies. It is intended that these studies provide strategies to improve anaerobic fermentations used for the production of organic acids or methane and, new basic understanding on catabolic CO{sub 2} fixation mechanisms and on the function of hydrogenase in anaerobic bacteria.

  10. Maternal smoking, xenobiotic metabolizing enzyme gene variants, and gastroschisis risk.

    PubMed

    Jenkins, Mary M; Reefhuis, Jennita; Gallagher, Margaret L; Mulle, Jennifer G; Hoffmann, Thomas J; Koontz, Deborah A; Sturchio, Cynthia; Rasmussen, Sonja A; Witte, John S; Richter, Patricia; Honein, Margaret A

    2014-06-01

    Maternal smoking during pregnancy is one proposed risk factor for gastroschisis, but reported associations have been modest, suggesting that differences in genetic susceptibility might play a role. We included 108 non-Hispanic white and 62 Hispanic families who had infants with gastroschisis, and 1,147 non-Hispanic white and 337 Hispanic families who had liveborn infants with no major structural birth defects (controls) in these analyses. DNA was extracted from buccal cells collected from infants and mothers, and information on periconceptional smoking history was obtained from maternal interviews, as part of the National Birth Defects Prevention Study. We analyzed five polymorphisms in three genes that code for enzymes involved in metabolism of some cigarette smoke constituents (CYP1A1, CYP1A2, and NAT2). Logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) independently for maternal smoking and maternal and infant gene variants, and to assess joint associations of maternal smoking and maternal or infant gene variants with gastroschisis. In analyses adjusted for maternal age at delivery and stratified by maternal race-ethnicity, we identified three suggestive associations among 30 potential associations with sufficient numbers to calculate ORs: CYP1A1*2A for non-Hispanic white mothers who smoked periconceptionally (aOR = 0.38, 95% CI 0.15-0.98), and NAT2*6 for Hispanic non-smoking mothers (aOR = 2.17, 95% CI 1.12-4.19) and their infants (aOR = 2.11, 95% CI 1.00-4.48). This analysis does not support the occurrence of effect modification between periconceptional maternal smoking and most of the xenobiotic metabolizing enzyme gene variants assessed. PMID:24668907

  11. Metabolomic Analyses of Leishmania Reveal Multiple Species Differences and Large Differences in Amino Acid Metabolism

    PubMed Central

    Wang, Lijie; Zhang, Tong; Watson, David G.; Silva, Ana Marta; Coombs, Graham H.

    2015-01-01

    Comparative genomic analyses of Leishmania species have revealed relatively minor heterogeneity amongst recognised housekeeping genes and yet the species cause distinct infections and pathogenesis in their mammalian hosts. To gain greater information on the biochemical variation between species, and insights into possible metabolic mechanisms underpinning visceral and cutaneous leishmaniasis, we have undertaken in this study a comparative analysis of the metabolomes of promastigotes of L. donovani, L. major and L. mexicana. The analysis revealed 64 metabolites with confirmed identity differing 3-fold or more between the cell extracts of species, with 161 putatively identified metabolites differing similarly. Analysis of the media from cultures revealed an at least 3-fold difference in use or excretion of 43 metabolites of confirmed identity and 87 putatively identified metabolites that differed to a similar extent. Strikingly large differences were detected in their extent of amino acid use and metabolism, especially for tryptophan, aspartate, arginine and proline. Major pathways of tryptophan and arginine catabolism were shown to be to indole-3-lactate and arginic acid, respectively, which were excreted. The data presented provide clear evidence on the value of global metabolomic analyses in detecting species-specific metabolic features, thus application of this technology should be a major contributor to gaining greater understanding of how pathogens are adapted to infecting their hosts. PMID:26368322

  12. Self-Immolative Polycations as Gene Delivery Vectors and Prodrugs Targeting Polyamine Metabolism in Cancer

    PubMed Central

    2015-01-01

    Polycations are explored as carriers to deliver therapeutic nucleic acids. Polycations are conventionally pharmacological inert with the sole function of delivering therapeutic cargo. This study reports synthesis of a self-immolative polycation (DSS-BEN) based on a polyamine analogue drug N1,N11-bisethylnorspermine (BENSpm). The polycation was designed to function dually as a gene delivery carrier and a prodrug targeting dysregulated polyamine metabolism in cancer. Using a combination of NMR and HPLC, we confirm that the self-immolative polycation undergoes intracellular degradation into the parent drug BENSpm. The released BENSpm depletes cellular levels of spermidine and spermine and upregulates polyamine catabolic enzymes spermine/spermidine N1-acetyltransferase (SSAT) and spermine oxidase (SMO). The synthesized polycations form polyplexes with DNA and facilitate efficient transfection. Taking advantage of the ability of BENSpm to sensitize cancer cells to TNFα-induced apoptosis, we show that DSS-BEN enhances the cell killing activity of TNFα gene therapy. The reported findings validate DSS-BEN as a dual-function delivery system that can deliver a therapeutic gene and improve the outcome of gene therapy as a result of the intracellular degradation of DSS-BEN to BENSpm and the subsequent beneficial effect of BENSpm on dysregulated polyamine metabolism in cancer. PMID:25153488

  13. Myocardial metabolism of pantothenic acid in chronically diabetic rats.

    PubMed

    Beinlich, C J; Naumovitz, R D; Song, W O; Neely, J R

    1990-03-01

    Transport and metabolism of [3H]pantothenic acid ([3H]Pa) was investigated in hearts from control and streptozotocin-induced diabetic rats. In isolated perfused hearts from control animals, the transport of [3H]Pa was linear over 3 h of perfusion when 11 mM glucose was the only exogenous substrate. The in vitro transport of [3H]Pa by hearts from 48-h diabetic rats was reduced by 65% compared to controls and was linear over 2 h of perfusion with no further accumulation of Pa during the third hour. The defect in transport observed in vitro could be corrected by in vivo treatment with 4 U Lente insulin/day for 2 days. In vitro addition of insulin in the presence of 11 mM glucose or 11 mM glucose plus 1.2 mM palmitate had no effect on [3H]Pa transport in hearts from 48-h diabetic rats during 3 h of perfusion. Accumulation of [3H]Pa was not inhibited by inclusion of 0.7 mM amino acids, 1 mM carnitine, 50 microM mersalic acid or 1 mM panthenol, pantoyllactone or pantoyltaurine. Uptake was inhibited by 1 mM nonanoic, octanoic or heptanoic acid, 0.1 mM biotin or 0.25 mM probenecid, suggesting a requirement for the terminal carboxyl group for transport. Transport of pantothenic acid was reduced in hearts from diabetic rats within 24 h of injection of streptozotocin. In vitro accumulation of [3H]Pa decreased to 10% of control 1 week after streptozotocin injection and then remained at 30% of the control value over 10 weeks.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2141362

  14. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals.

    PubMed

    Runguphan, Weerawat; Keasling, Jay D

    2014-01-01

    As the serious effects of global climate change become apparent and access to fossil fuels becomes more limited, metabolic engineers and synthetic biologists are looking towards greener sources for transportation fuels. In recent years, microbial production of high-energy fuels by economically efficient bioprocesses has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we engineered the budding yeast Saccharomyces cerevisiae to produce fatty acid-derived biofuels and chemicals from simple sugars. Specifically, we overexpressed all three fatty acid biosynthesis genes, namely acetyl-CoA carboxylase (ACC1), fatty acid synthase 1 (FAS1) and fatty acid synthase 2 (FAS2), in S. cerevisiae. When coupled to triacylglycerol (TAG) production, the engineered strain accumulated lipid to more than 17% of its dry cell weight, a four-fold improvement over the control strain. Understanding that TAG cannot be used directly as fuels, we also engineered S. cerevisiae to produce drop-in fuels and chemicals. Altering the terminal "converting enzyme" in the engineered strain led to the production of free fatty acids at a titer of approximately 400 mg/L, fatty alcohols at approximately 100mg/L and fatty acid ethyl esters (biodiesel) at approximately 5 mg/L directly from simple sugars. We envision that our approach will provide a scalable, controllable and economic route to this important class of chemicals. PMID:23899824

  15. Metabolism of hydroxycinnamic acids and esters by Brettanomyces in different red wines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Depending on the cultivars and other factors, differing concentrations of hydroxycinnamic acids (caffeic, p-coumaric, and ferulic acids) and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric acid, respectively) are found in red wines. Hydroxycinnamic acids are metabolized by...

  16. A Systems Genetics Approach Identifies Gene Regulatory Networks Associated with Fatty Acid Composition in Brassica rapa Seed.

    PubMed

    Basnet, Ram Kumar; Del Carpio, Dunia Pino; Xiao, Dong; Bucher, Johan; Jin, Mina; Boyle, Kerry; Fobert, Pierre; Visser, Richard G F; Maliepaard, Chris; Bonnema, Guusje

    2016-01-01

    Fatty acids in seeds affect seed germination and seedling vigor, and fatty acid composition determines the quality of seed oil. In this study, quantitative trait locus (QTL) mapping of fatty acid and transcript abundance was integrated with gene network analysis to unravel the genetic regulation of seed fatty acid composition in a Brassica rapa doubled haploid population from a cross between a yellow sarson oil type and a black-seeded pak choi. The distribution of major QTLs for fatty acids showed a relationship with the fatty acid types: linkage group A03 for monounsaturated fatty acids, A04 for saturated fatty acids, and A05 for polyunsaturated fatty acids. Using a genetical genomics approach, expression quantitative trait locus (eQTL) hotspots were found at major fatty acid QTLs on linkage groups A03, A04, A05, and A09. An eQTL-guided gene coexpression network of lipid metabolism-related genes showed major hubs at the genes BrPLA2-ALPHA, BrWD-40, a number of seed storage protein genes, and the transcription factor BrMD-2, suggesting essential roles for these genes in lipid metabolism. Three subnetworks were extracted for the economically important and most abundant fatty acids erucic, oleic, linoleic, and linolenic acids. Network analysis, combined with comparison of the genome positions of cis- or trans-eQTLs with fatty acid QTLs, allowed the identification of candidate genes for genetic regulation of these fatty acids. The generated insights in the genetic architecture of fatty acid composition and the underlying complex gene regulatory networks in B. rapa seeds are discussed. PMID:26518343

  17. Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana.

    PubMed Central

    Lam, H M; Peng, S S; Coruzzi, G M

    1994-01-01

    Here, we characterize a cDNA encoding a glutamine-dependent asparagine synthetase (ASN1) from Arabidopsis thaliana and assess the effects of metabolic regulation on ASN1 mRNA levels. Sequence analysis shows that the predicted ASN1 peptide contains a purF-type glutamine-binding domain. Southern blot experiments and cDNA clone analysis suggest that ASN1 is the only gene encoding glutamine-dependent asparagine synthetase in A. thaliana. The ASN1 gene is expressed predominantly in shoot tissues, where light has a negative effect on its mRNA accumulation. This negative effect of light on ASN1 mRNA levels was shown to be mediated, at least in part, via the photoreceptor phytochrome. We also investigated whether light-induced changes in nitrogen to carbon ratios might exert a metabolic regulation of the ASN1 mRNA accumulation. These experiments demonstrated that the accumulation of ASN1 mRNA in dark-grown plants is strongly repressed by the presence of exogenous sucrose. Moreover, this sucrose repression of ASN1 expression can be partially rescued by supplementation with exogenous amino acids such as asparagine, glutamine, and glutamate. These findings suggest that the expression of the ASN1 gene is under the metabolic control of the nitrogen to carbon ratio in cells. This is consistent with the fact that asparagine, synthesized by the ASN1 gene product, is a favored compound for nitrogen storage and nitrogen transport in dark-grown plants. We have put forth a working model suggesting that when nitrogen to carbon ratios are high, the gene product of ASN1 functions to re-direct the flow of nitrogen into asparagine, which acts as a shunt for storage and/or long-distance transport of nitrogen. PMID:7846154

  18. Metabolic gene regulation in a dynamically changing environment.

    PubMed

    Bennett, Matthew R; Pang, Wyming Lee; Ostroff, Natalie A; Baumgartner, Bridget L; Nayak, Sujata; Tsimring, Lev S; Hasty, Jeff

    2008-08-28

    Natural selection dictates that cells constantly adapt to dynamically changing environments in a context-dependent manner. Gene-regulatory networks often mediate the cellular response to perturbation, and an understanding of cellular adaptation will require experimental approaches aimed at subjecting cells to a dynamic environment that mimics their natural habitat. Here we monitor the response of Saccharomyces cerevisiae metabolic gene regulation to periodic changes in the external carbon source by using a microfluidic platform that allows precise, dynamic control over environmental conditions. We show that the metabolic system acts as a low-pass filter that reliably responds to a slowly changing environment, while effectively ignoring fast fluctuations. The sensitive low-frequency response was significantly faster than in predictions arising from our computational modelling, and this discrepancy was resolved by the discovery that two key galactose transcripts possess half-lives that depend on the carbon source. Finally, to explore how induction characteristics affect frequency response, we compare two S. cerevisiae strains and show that they have the same frequency response despite having markedly different induction properties. This suggests that although certain characteristics of the complex networks may differ when probed in a static environment, the system has been optimized for a robust response to a dynamically changing environment. PMID:18668041

  19. Escherichia coli genes whose products are involved in selenium metabolism

    SciTech Connect

    Leinfelder, W.; Forchhammer, K.; Zinoni, F.; Sawers, G.; Mandrand-Berthelot, M.A.; Boeck, A.

    1988-02-01

    Mutants of Escherichia coli were isolated which were affected in the formation of both formate dehydrogenase N (phenazine methosulfate reducing) (FDN/sub N/) and formate dehydrogenase H (benzylviologen reducing) (FDH/sub H/). They were analyzed, together with previously characterized pleiotropic fdh mutants (fdhA, fdhB, and fdhC), for their ability to incorporate selenium into the selenopolypeptide subunits of FDH/sub N/ and FDH/sub H/. Results of this study support the notion that the pleiotropic fdh mutants analyzed possess a lesion in the gene(s) encoding the biosynthesis or the incorporation of selenocysteine. The gene complementing the defect in one of the isolated mutants was cloned from a cosmid library. Subclones were tested for complementation of other pleiotropic fdh mutants. The results revealed that the mutations in the eight isolates fell into two complementation groups, one of them containing the fdhA mutation. fdhB, fdhC, and two of the new fdh isolates do not belong to these complementation groups. A new nomenclature (sel) is proposed for pleiotropic fdh mutations affecting selenium metabolism. Four genes have been identified so far: selA and selB (at the fdhA locus), selC (previously fdhC), and selD (previously fdhB).

  20. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism.

    PubMed

    Cao, Weijia; Ma, Weichao; Wang, Xin; Zhang, Bowen; Cao, Xun; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-01-01

    Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of gene source and the optimization of gene expression was first employed to regulate the synthetic pathway of cinnamic acid, which showed a 3.53-fold increase in pinocembrin production (7.76 mg/L) occurred with the alleviation of cinnamic acid accumulation in the engineered E. coli. Then, the downstream pathway that consuming cinnamic acid was optimized by the site-directed mutagenesis of chalcone synthase and cofactor engineering. S165M mutant of chalcone synthase could efficiently improve the pinocembrin production, and allowed the product titer of pinocembrin increased to 40.05 mg/L coupled with the malonyl-CoA engineering. With a two-phase pH fermentation strategy, the cultivation of the optimized strain resulted in a final pinocembrin titer of 67.81 mg/L. The results and engineering strategies demonstrated here would hold promise for the titer improvement of other flavonoids. PMID:27586788

  1. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism

    PubMed Central

    Cao, Weijia; Ma, Weichao; Wang, Xin; Zhang, Bowen; Cao, Xun; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-01-01

    Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of gene source and the optimization of gene expression was first employed to regulate the synthetic pathway of cinnamic acid, which showed a 3.53-fold increase in pinocembrin production (7.76 mg/L) occurred with the alleviation of cinnamic acid accumulation in the engineered E. coli. Then, the downstream pathway that consuming cinnamic acid was optimized by the site-directed mutagenesis of chalcone synthase and cofactor engineering. S165M mutant of chalcone synthase could efficiently improve the pinocembrin production, and allowed the product titer of pinocembrin increased to 40.05 mg/L coupled with the malonyl-CoA engineering. With a two-phase pH fermentation strategy, the cultivation of the optimized strain resulted in a final pinocembrin titer of 67.81 mg/L. The results and engineering strategies demonstrated here would hold promise for the titer improvement of other flavonoids. PMID:27586788

  2. Homofermentative production of D-lactic acid from sucrose by a metabolically engineered Escherichia coli.

    PubMed

    Wang, Yongze; Tian, Tian; Zhao, Jinfang; Wang, Jinhua; Yan, Tao; Xu, Liyuan; Liu, Zao; Garza, Erin; Iverson, Andrew; Manow, Ryan; Finan, Chris; Zhou, Shengde

    2012-11-01

    Escherichia coli W, a sucrose-positive strain, was engineered for the homofermentative production of D-lactic acid through chromosomal deletion of the competing fermentative pathway genes (adhE, frdABCD, pta, pflB, aldA) and the repressor gene (cscR) of the sucrose operon, and metabolic evolution for improved anaerobic cell growth. The resulting strain, HBUT-D, efficiently fermented 100 g sucrose l(-1) into 85 g D-lactic acid l(-1) in 72-84 h in mineral salts medium with a volumetric productivity of ~1 g l(-1) h(-1), a product yield of 85 % and D-lactic acid optical purity of 98.3 %, and with a minor by-product of 4 g acetate l(-1). HBUT-D thus has great potential for production of D-lactic acid using an inexpensive substrate, such as sugar cane and/or beet molasses, which are primarily composed of sucrose. PMID:22791225

  3. Metabolomic analysis of amino acid and energy metabolism in rats supplemented with chlorogenic acid

    PubMed Central

    Ruan, Zheng; Yang, Yuhui; Zhou, Yan; Wen, Yanmei; Ding, Sheng; Liu, Gang; Wu, Xin; Deng, Zeyuan; Assaad, Houssein; Wu, Guoyao

    2016-01-01

    This study was conducted to investigate effects of chlorogenic acid (CGA) supplementation on serum and hepatic metabolomes in rats. Rats received daily intragastric administration of either CGA (60 mg/kg body weight) or distilled water (control) for 4 weeks. Growth performance, serum biochemical profiles, and hepatic morphology were measured. Additionally, serum and liver tissue extracts were analyzed for metabolomes by high-resolution 1H nuclear magnetic resonance-based metabolomics and multivariate statistics. CGA did not affect rat growth performance, serum biochemical profiles, or hepatic morphology. However, supplementation with CGA decreased serum concentrations of lactate, pyruvate, succinate, citrate, β-hydroxybutyrate and acetoacetate, while increasing serum concentrations of glycine and hepatic concentrations of glutathione. These results suggest that CGA supplementation results in perturbation of energy and amino acid metabolism in rats. We suggest that glycine and glutathione in serum may be useful biomarkers for biological properties of CGA on nitrogen metabolism in vivo. PMID:24927697

  4. Directed Evolution of Metabolic Pathways in Microbial Populations. I. Modification of the Acid Phosphatase Ph Optimum in S. CEREVISIAE

    PubMed Central

    Francis, J. C.; Hansche, P. E.

    1972-01-01

    An experimental system for directing the evolution of enzymes and metabolic pathways in microbial populations is proposed and an initial test of its power is provided.—The test involved an attempt to genetically enhance certain functional properties of the enzyme acid phosphatase in S. cerevisiae by constructing an environment in which the functional changes desired would be "adaptive". Naturally occurring mutations in a population of 109 cells were automatically and continuously screened, over 1,000 generations, for their effect on the efficiency (Km) and activity of acid phosphatase at pH 6, and for their effect on the efficiency of orthophosphate metabolism.—The first adaptation observed, M1, was due to a single mutational event that effected a 30% increase in the efficiency of orthophosphate metabolism. The second, M2, effected an adaptive shift in the pH optimum of acid phosphatase and an increase in its activity over a wide range of pH values (an increment of 60% at pH 6). M2 was shown to result from a single mutational event in the region of the acid phosphatase structural gene. The third, M3, effected cell clumping, an adaptation to the culture apparatus that had no effect on phosphate metabolism.—The power of this system for directing the evolution of enzymes and of metabolic pathways is discussed in terms of the kinetic properties of the experimental system and in terms of the results obtained. PMID:4552227

  5. Hepatic SRC-1 Activity Orchestrates Transcriptional Circuitries of Amino Acid Pathways with Potential Relevance for Human Metabolic Pathogenesis

    PubMed Central

    Tannour-Louet, Mounia; York, Brian; Tang, Ke; Stashi, Erin; Bouguerra, Hichem; Zhou, Suoling; Yu, Hui; Wong, Lee-Jun C.; Stevens, Robert D.; Xu, Jianming; Newgard, Christopher B.; O'Malley, Bert W.

    2014-01-01

    Disturbances in amino acid metabolism are increasingly recognized as being associated with, and serving as prognostic markers for chronic human diseases, such as cancer or type 2 diabetes. In the current study, a quantitative metabolomics profiling strategy revealed global impairment in amino acid metabolism in mice deleted for the transcriptional coactivator steroid receptor coactivator (SRC)-1. Aberrations were hepatic in origin, because selective reexpression of SRC-1 in the liver of SRC-1 null mice largely restored amino acids concentrations to normal levels. Cistromic analysis of SRC-1 binding sites in hepatic tissues confirmed a prominent influence of this coregulator on transcriptional programs regulating amino acid metabolism. More specifically, SRC-1 markedly impacted tyrosine levels and was found to regulate the transcriptional activity of the tyrosine aminotransferase (TAT) gene, which encodes the rate-limiting enzyme of tyrosine catabolism. Consequently, SRC-1 null mice displayed low TAT expression and presented with hypertyrosinemia and corneal alterations, 2 clinical features observed in the human syndrome of TAT deficiency. A heterozygous missense variant of SRC-1 (p.P1272S) that is known to alter its coactivation potential, was found in patients harboring idiopathic tyrosinemia-like disorders and may therefore represent one risk factor for their clinical symptoms. Hence, we reinforce the concept that SRC-1 is a central factor in the fine orchestration of multiple pathways of intermediary metabolism, suggesting it as a potential therapeutic target that may be exploitable in human metabolic diseases and cancer. PMID:25148457

  6. Model-guided metabolic gene knockout of gnd for enhanced succinate production in Escherichia coli from glucose and glycerol substrates.

    PubMed

    Mienda, Bashir Sajo; Shamsir, Mohd Shahir; Illias, Rosli Md

    2016-04-01

    The metabolic role of 6-phosphogluconate dehydrogenase (gnd) under anaerobic conditions with respect to succinate production in Escherichia coli remained largely unspecified. Herein we report what are to our knowledge the first metabolic gene knockout of gnd to have increased succinic acid production using both glucose and glycerol substrates in E. coli. Guided by a genome scale metabolic model, we engineered the E. coli host metabolism to enhance anaerobic production of succinic acid by deleting the gnd gene, considering its location in the boundary of oxidative and non-oxidative pentose phosphate pathway. This strategy induced either the activation of malic enzyme, causing up-regulation of phosphoenolpyruvate carboxylase (ppc) and down regulation of phosphoenolpyruvate carboxykinase (ppck) and/or prevents the decarboxylation of 6 phosphogluconate to increase the pool of glyceraldehyde-3-phosphate (GAP) that is required for the formation of phosphoenolpyruvate (PEP). This approach produced a mutant strain BMS2 with succinic acid production titers of 0.35gl(-1) and 1.40gl(-1) from glucose and glycerol substrates respectively. This work further clearly elucidates and informs other studies that the gnd gene, is a novel deletion target for increasing succinate production in E. coli under anaerobic condition using glucose and glycerol carbon sources. The knowledge gained in this study would help in E. coli and other microbial strains development for increasing succinate production and/or other industrial chemicals. PMID:26878126

  7. Characterization of the first enzyme in 2,4-dichlorophenoxyacetic acid metabolism.

    PubMed Central

    Hausinger, R P; Fukumori, F

    1995-01-01

    This paper reviews the properties of the Alcaligenes eutrophus JMP134 tfdA gene product, the enzyme responsible for the first step in 2,4-dichlorophenoxyacetic acid (2,4-D) biodegradation. The gene was overexpressed in Escherichia coli and several of its enzymatic properties were characterized. Although this enzyme catalyzes a hydroxylation reaction, it is not a monooxygenase. Rather, TfdA is an Fe(II) and alpha-ketoglutarate-dependent dioxygenase that metabolizes the latter cosubstrate to succinate and carbon dioxide. A variety of other phenoxyacetates and alpha-ketoacids can be used by the enzyme, but the greatest catalytic efficiencies were found using 2,4-D and alpha-ketoglutarate. The enzyme possesses multiple essential histidine residues, whereas catalytically essential cysteine and lysine groups do not appear to be present. PMID:8565907

  8. The Effect of Elevated Concentrations of Fructose 2,6-Bisphosphate on Carbon Metabolism during Deacidification in the Crassulacean Acid Metabolism Plant Kalanchöe daigremontiana.

    PubMed

    Truesdale; Toldi; Scott

    1999-11-01

    In C(3) plants, the metabolite fructose 2,6-bisphosphate (Fru 2,6-P(2)) has an important role in the regulation of carbon partitioning during photosynthesis. To investigate the impact of Fru 2,6-P(2) on carbon metabolism during Crassulacean acid metabolism (CAM), we have developed an Agrobacterium tumefaciens-mediated transformation system in order to alter genetically the obligate CAM plant Kalanchöe daigremontiana. To our knowledge, this is the first report to use genetic manipulation of a CAM species to increase our understanding of this important form of plant metabolism. Transgenic plants were generated containing a modified rat liver 6-phosphofructo-2-kinase gene. In the plants analyzed the activity of 6-phosphofructo-2-kinase ranged from 175% to 198% of that observed in wild-type plants, resulting in Fru 2,6-P(2) concentrations that were 228% to 350% of wild-type plants after 2 h of illumination. A range of metabolic measurements were made on these transgenic plants to investigate the possible roles of Fru 2,6-P(2) during Suc, starch, and malic acid metabolism across the deacidification period of CAM. The results suggest that Fru 2,6-P(2) plays a major role in regulating partitioning between Suc and starch synthesis during photosynthesis. However, alterations in Fru 2,6-P(2) levels had little effect on malate mobilization during CAM fluxes. PMID:10557245

  9. Gene Expression Levels Are Correlated with Synonymous Codon Usage, Amino Acid Composition, and Gene Architecture in the Red Flour Beetle, Tribolium castaneum

    PubMed Central

    Williford, Anna; Demuth, Jeffery P.

    2012-01-01

    Gene expression levels correlate with multiple aspects of gene sequence and gene structure in phylogenetically diverse taxa, suggesting an important role of gene expression levels in the evolution of protein-coding genes. Here we present results of a genome-wide study of the influence of gene expression on synonymous codon usage, amino acid composition, and gene structure in the red flour beetle, Tribolium castaneum. Consistent with the action of translational selection, we find that synonymous codon usage bias increases with gene expression. However, the correspondence between tRNA gene copy number and optimal codons is weak. At the amino acid level, translational selection is suggested by the positive correlation between tRNA gene numbers and amino acid usage, which is stronger for highly expressed genes. In addition, there is a clear trend for increased use of metabolically cheaper, less complex amino acids as gene expression increases. tRNA gene numbers also correlate negatively with amino acid size/complexity (S/C) score indicating the coupling between translational selection and selection to minimize the use of large/complex amino acids. Interestingly, the analysis of 10 additional genomes suggests that the correlation between tRNA gene numbers and amino acid S/C score is widespread and might be explained by selection against negative consequences of protein misfolding. At the level of gene structure, three major trends are detected: 1) complete coding region length increases across low and intermediate expression levels but decreases in highly expressed genes; 2) the average intron size shows the opposite trend, first decreasing with expression, followed by a slight increase in highly expressed genes; and 3) intron density remains nearly constant across all expression levels. These changes in gene architecture are only in partial agreement with selection favoring reduced cost of biosynthesis. PMID:22826459

  10. Acyl-CoA N-acyltransferase influences fertility by regulating lipid metabolism and jasmonic acid biogenesis in cotton

    PubMed Central

    Fu, Wenfeng; Shen, Ying; Hao, Juan; Wu, Jianyong; Ke, Liping; Wu, Caiyun; Huang, Kai; Luo, Binglun; Xu, Mingfeng; Cheng, Xiaofei; Zhou, Xueping; Sun, Jie; Xing, Chaozhu; Sun, Yuqiang

    2015-01-01

    Cotton (Gossypium spp.) is an important economic crop and there is obvious heterosis in cotton, fertility has played an important role in this heterosis. However, the genes that exhibit critical roles in anther development and fertility are not well understood. Here, we report an acyl-CoA N-acyltransferase (EC2.3; GhACNAT) that plays a key role in anther development and fertility. Suppression of GhACNAT by virus-induced gene silencing in transgenic cotton (G. hirsutum L. cv. C312) resulted in indehiscent anthers that were full of pollen, diminished filaments and stamens, and plant sterility. We found GhACNAT was involved in lipid metabolism and jasmonic acid (JA) biosynthesis. The genes differentially expressed in GhACNAT-silenced plants and C312 were mainly involved in catalytic activity and transcription regulator activity in lipid metabolism. In GhACNAT-silenced plants, the expression levels of genes involved in lipid metabolism and jasmonic acid biosynthesis were significantly changed, the amount of JA in leaves and reproductive organs was significantly decreased compared with the amounts in C312. Treatments with exogenous methyl jasmonate rescued anther dehiscence and pollen release in GhACNAT-silenced plants and caused self-fertility. The GhACNAT gene may play an important role in controlling cotton fertility by regulating the pathways of lipid synthesis and JA biogenesis. PMID:26134787

  11. Investigation of gene expressions related to cholesterol metabolism in rats fed diets enriched in n-6 or n-3 fatty acid with a cholesterol after long-term feeding using quantitative-competitive RT-PCR analysis.

    PubMed

    Fukushima, M; Shimada, K; Ohashi, E; Saitoh, H; Sonoyama, K; Sekikawa, M; Nakano, M

    2001-06-01

    We have developed a method to quantitate hepatic apolipoprotein (apo) B, LDL receptor, 3-hydroxy-3-methylglutary coenzyme A reductase (HMG-CoA reductase) and cholesterol 7alpha-hydroxylase mRNA expression in rats fed a cholesterol-enriched diet after long-term feeding using competitive RT-RCR. Rats (8 wk of age) fed a conventional diet were shifted to diets containing 10% perilla oil (PEO, oleic acid+linoleic acid+alpha-linolenic acid), borage oil (BRO, oleic acid+linoleic acid+gamma-linolenic acid), evening primrose oil (EPO, linoleic acid+gamma-linolenic acid), mixed oil (MIO, oleic acid+linoleic acid+gamma-linolenic acid+alpha-linolenic acid), or palm oil (PLO, palmitic acid+oleic acid+linoleic acid) with 0.5% cholesterol for 15 wk. There were no significant differences in the food intake and body weight gain among the groups. The liver weight in the PEO and PLO groups was significantly higher than other groups. The serum total cholesterol and very low density lipoprotein (VLDL)+intermediate density lipoprotein (IDL)+low density lipoprotein (LDL)-cholesterol concentrations were consistently higher in PLO group than in the other groups. The serum high density lipoprotein cholesterol concentration was significantly lower in the PEO group than in the other groups. The liver cholesterol concentration group was significantly higher in the PEO than in the other groups. There were no significant differences in the hepatic LDL receptor mRNA level among the groups. Hepatic apo B, HMG-CoA reductase and cholesterol 7alpha-hydroxylase mRNA levels were not affected by the experimental conditions. However, hepatic cholesterol 7alpha-hydroxylase mRNA level in the PEO and MIO groups tended to be higher than in the other groups. The fecal cholesterol extraction was significantly higher in the MIO and PLO groups than in the PEO and EPO groups and the total bile acid extraction was significantly higher in the PEO and MIO groups than in the PLO group. The results of this study

  12. Predicted Highly Expressed Genes in the Genomes of Streptomyces Coelicolor and Streptomyces Avermitilis and the Implications for their Metabolism.

    SciTech Connect

    Wu, Gang; Culley, David E.; Zhang, Weiwen

    2005-06-01

    SUMMARY-Highly expressed genes in bacteria often have a stronger codon bias than genes expressed at lower levels. In this study, a comparative analysis of predicted highly expressed (PHX) genes in the Streptomyces coelicolor and S. avermitilis genomes was performed using the codon adaptation index (CAI) as a numerical estimator of gene expression level. Although it has been suggested that there is little heterogeneity in codon usage in G+C rich bacteria, considerable heterogeneity was found among genes in two G+C rich Streptomyces genomes. Using ribosomal protein (RP) genes as references, ~10% of the genes were predicted to be PHX genes using a CAI cutoff value of greater than 0.78 and 0.75 in S. coelicolor and S. avermitilis, respectively. Most of the PHX genes were found to be located within the conserved cores of the Streptomyces linear chromosomes. The predicted PHX genes showed good agreement with the experimental data on expression levels collected by proteomic analysis (Hesketh et al., 2002). Among all PHX genes, 368 were conserved in both genomes. These represented most of the genes essential for cell growth, including those involved in protein and DNA biosynthesis, amino acid metabolism, central intermediary and energy metabolisms. Only a few genes directly involved in biosynthesis of secondary metabolites were predicted to be PHX genes. Correspondence analysis showed that the genes responsible for biosynthesis of secondary metabolites possessed different codon usage patterns from RP genes, suggesting that they were either under strong translational selection that may have driven the codon preference in another direction, or they were acquired by horizontal transfer during their origin and evolution. Nevertheless, several key genes responsible for producing precursors for secondary metabolites, such as crotonyl-CoA reductase and propionyl-CoA carboxylase, and genes necessary for initiation of secondary metabolism, such as adenosylmethionine synthetase were

  13. Phosphoenolpyruvate Carboxykinase in Plants Exhibiting Crassulacean Acid Metabolism 1

    PubMed Central

    Dittrich, P.; Campbell, Wilbur H.; Black, C. C.

    1973-01-01

    Phosphoenolpyruvate carboxykinase has been found in significant activities in a number of plants exhibiting Crassulacean acid metabolism. Thirty-five species were surveyed for phosphoenolpyruvate carboxykinase, phosphoenolpyruvate carboxylase, ribulose diphosphate carboxylase, malic enzyme, and malate dehydrogenase (NAD). Plants which showed high activities of malic enzyme contained no detectable phosphoenolpyruvate carboxykinase, while plants with high activities of the latter enzyme contained little malic enzyme. It is proposed that phosphoenolpyruvate carboxykinase acts as a decarboxylase during the light period, furnishing CO2 for the pentose cycle and phosphoenolpyruvate for gluconeogenesis. Some properties of phosphoenolpyruvate carboxykinase in crude extracts of pineapple leaves were investigated. The enzyme required Mn2+, Mg2+, and ATP for maximum activity. About 60% of the activity could be pelleted, along with chloroplasts and mitochondria, in extracts from leaves kept in the dark overnight. PMID:16658562

  14. Engineering crassulacean acid metabolism to improve water-use efficiency

    PubMed Central

    Borland, Anne M.; Hartwell, James; Weston, David J.; Schlauch, Karen A.; Tschaplinski, Timothy J.; Tuskan, Gerald A.; Yang, Xiaohan; Cushman, John C.

    2014-01-01

    Climatic extremes threaten agricultural sustainability worldwide. One approach to increase plant water-use efficiency is to introduce crassulacean acid metabolism (CAM) into C3 crops. Such a task requires comprehensive systems-level understanding of the enzymatic and regulatory pathways underpinning this temporal CO2 pump. Here, we review the progress that has been made in achieving this goal. Given that CAM arose through multiple independent evolutionary origins, comparative transcriptomics and genomics of taxonomically diverse CAM species are being used to define the genetic ‘parts list’ required to operate the core CAM functional modules of nocturnal carboxylation, daytime decarboxylation, and inverse stomatal regulation. Engineered CAM offers the potential to sustain plant productivity for food, feed, fiber, and biofuel production in hotter and drier climates. PMID:24559590

  15. Engineering crassulacean acid metabolism to improve water-use efficiency.

    PubMed

    Borland, Anne M; Hartwell, James; Weston, David J; Schlauch, Karen A; Tschaplinski, Timothy J; Tuskan, Gerald A; Yang, Xiaohan; Cushman, John C

    2014-05-01

    Climatic extremes threaten agricultural sustainability worldwide. One approach to increase plant water-use efficiency (WUE) is to introduce crassulacean acid metabolism (CAM) into C3 crops. Such a task requires comprehensive systems-level understanding of the enzymatic and regulatory pathways underpinning this temporal CO2 pump. Here we review the progress that has been made in achieving this goal. Given that CAM arose through multiple independent evolutionary origins, comparative transcriptomics and genomics of taxonomically diverse CAM species are being used to define the genetic 'parts list' required to operate the core CAM functional modules of nocturnal carboxylation, diurnal decarboxylation, and inverse stomatal regulation. Engineered CAM offers the potential to sustain plant productivity for food, feed, fiber, and biofuel production in hotter and drier climates. PMID:24559590

  16. Comparative genomics of lactic acid bacteria reveals a niche-specific gene set

    PubMed Central

    2009-01-01

    Background The recently sequenced genome of Lactobacillus helveticus DPC4571 [1] revealed a dairy organism with significant homology (75% of genes are homologous) to a probiotic bacteria Lb. acidophilus NCFM [2]. This led us to hypothesise that a group of genes could be determined which could define an organism's niche. Results Taking 11 fully sequenced lactic acid bacteria (LAB) as our target, (3 dairy LAB, 5 gut LAB and 3 multi-niche LAB), we demonstrated that the presence or absence of certain genes involved in sugar metabolism, the proteolytic system, and restriction modification enzymes were pivotal in suggesting the niche of a strain. We identified 9 niche specific genes, of which 6 are dairy specific and 3 are gut specific. The dairy specific genes identified in Lactobacillus helveticus DPC4571 were lhv_1161 and lhv_1171, encoding components of the proteolytic system, lhv_1031 lhv_1152, lhv_1978 and lhv_0028 encoding restriction endonuclease genes, while bile salt hydrolase genes lba_0892 and lba_1078, and the sugar metabolism gene lba_1689 from Lb. acidophilus NCFM were identified as gut specific genes. Conclusion Comparative analysis revealed that if an organism had homologs to the dairy specific geneset, it probably came from a dairy environment, whilst if it had homologs to gut specific genes, it was highly likely to be of intestinal origin. We propose that this "barcode" of 9 genes will be a useful initial guide to researchers in the LAB field to indicate an organism's ability to occupy a specific niche. PMID:19265535

  17. Microbial diversity and metabolic networks in acid mine drainage habitats

    PubMed Central

    Méndez-García, Celia; Peláez, Ana I.; Mesa, Victoria; Sánchez, Jesús; Golyshina, Olga V.; Ferrer, Manuel

    2015-01-01

    Acid mine drainage (AMD) emplacements are low-complexity natural systems. Low-pH conditions appear to be the main factor underlying the limited diversity of the microbial populations thriving in these environments, although temperature, ionic composition, total organic carbon, and dissolved oxygen are also considered to significantly influence their microbial life. This natural reduction in diversity driven by extreme conditions was reflected in several studies on the microbial populations inhabiting the various micro-environments present in such ecosystems. Early studies based on the physiology of the autochthonous microbiota and the growing success of omics-based methodologies have enabled a better understanding of microbial ecology and function in low-pH mine outflows; however, complementary omics-derived data should be included to completely describe their microbial ecology. Furthermore, recent updates on the distribution of eukaryotes and archaea recovered through sterile filtering (herein referred to as filterable fraction) in these environments demand their inclusion in the microbial characterization of AMD systems. In this review, we present a complete overview of the bacterial, archaeal (including filterable fraction), and eukaryotic diversity in these ecosystems, and include a thorough depiction of the metabolism and element cycling in AMD habitats. We also review different metabolic network structures at the organismal level, which is necessary to disentangle the role of each member of the AMD communities described thus far. PMID:26074887

  18. [The retrospection of nucleic acids metabolism research before the 1950s].

    PubMed

    Zhang, He

    2015-09-01

    People found the guanine in the 1840s and the nucleic acid in the 1860s. But they did not know the relationship between them. Later, people found various bases, confirmed the relationship between bases and nucleic acids, and understood the three basic processes of katabolic metabolism of nucleic acids by a number of scientists, especially with Kossel's efforts. In the 1940s, Kalckar isolated and identified some key enzymes of nucleotides metabolism, as well as Buchanan and Greenberg found the two processes of synthesis of nucleotides. The model of DNA double helix came out in 1953. Kornberg proved DNA is self-replicating in 1956. Stahl, Meselson and Vinograd found the semiconservative replication mechanism of DNA in 1958. At the same time, Ochoa found the polynucleotide phosphorylase, the enzyme can catalyze the synthesis of RNA, and synthesized RNA in 1955. Kornberg synthesized DNA on the basis of Ochoa's work in 1956. So far people found the processes of genetic information flow from DNA to RNA. It contributed to the comprehensive recognition and exploration of the pathways of genetic information and made the research of gene expression and regulation possible. PMID:26813094

  19. Gene expression analysis of Corynebacterium glutamicum subjected to long-term lactic acid adaptation.

    PubMed

    Jakob, Kinga; Satorhelyi, Peter; Lange, Christian; Wendisch, Volker F; Silakowski, Barbara; Scherer, Siegfried; Neuhaus, Klaus

    2007-08-01

    Corynebacteria form an important part of the red smear cheese microbial surface consortium. To gain a better understanding of molecular adaptation due to low pH induced by lactose fermentation, the global gene expression profile of Corynebacterium glutamicum adapted to pH 5.7 with lactic acid under continuous growth in a chemostat was characterized by DNA microarray analysis. Expression of a total of 116 genes was increased and that of 90 genes was decreased compared to pH 7.5 without lactic acid, representing 7% of the genes in the genome. The up-regulated genes encode mainly transcriptional regulators, proteins responsible for export, import, and metabolism, and several proteins of unknown function. As much as 45% of the up-regulated open reading frames code for hypothetical proteins. These results were validated using real-time reverse transcription-PCR. To characterize the functions of 38 up-regulated genes, 36 single-crossover disruption mutants were generated and analyzed for their lactic acid sensitivities. However, only a sigB knockout mutant showed a highly significant negative effect on growth at low pH, suggesting a function in organic-acid adaptation. A sigE mutant already displayed growth retardation at neutral pH but grew better at acidic pH than the sigB mutant. The lack of acid-sensitive phenotypes in 34 out of 36 disrupted genes suggests either a considerable redundancy in acid adaptation response or coincidental effects. Other up-regulated genes included genes for ion transporters and metabolic pathways, including carbohydrate and respiratory metabolism. The enhanced expression of the nrd (ribonucleotide reductase) operon and a DNA ATPase repair protein implies a cellular response to combat acid-induced DNA damage. Surprisingly, multiple iron uptake systems (totaling 15% of the genes induced >or=2-fold) were induced at low pH. This induction was shown to be coincidental and could be attributed to iron-sequestering effects in complex media at low p

  20. Gene Expression Analysis of Corynebacterium glutamicum Subjected to Long-Term Lactic Acid Adaptation▿ ¶

    PubMed Central

    Jakob, Kinga; Satorhelyi, Peter; Lange, Christian; Wendisch, Volker F.; Silakowski, Barbara; Scherer, Siegfried; Neuhaus, Klaus

    2007-01-01

    Corynebacteria form an important part of the red smear cheese microbial surface consortium. To gain a better understanding of molecular adaptation due to low pH induced by lactose fermentation, the global gene expression profile of Corynebacterium glutamicum adapted to pH 5.7 with lactic acid under continuous growth in a chemostat was characterized by DNA microarray analysis. Expression of a total of 116 genes was increased and that of 90 genes was decreased compared to pH 7.5 without lactic acid, representing 7% of the genes in the genome. The up-regulated genes encode mainly transcriptional regulators, proteins responsible for export, import, and metabolism, and several proteins of unknown function. As much as 45% of the up-regulated open reading frames code for hypothetical proteins. These results were validated using real-time reverse transcription-PCR. To characterize the functions of 38 up-regulated genes, 36 single-crossover disruption mutants were generated and analyzed for their lactic acid sensitivities. However, only a sigB knockout mutant showed a highly significant negative effect on growth at low pH, suggesting a function in organic-acid adaptation. A sigE mutant already displayed growth retardation at neutral pH but grew better at acidic pH than the sigB mutant. The lack of acid-sensitive phenotypes in 34 out of 36 disrupted genes suggests either a considerable redundancy in acid adaptation response or coincidental effects. Other up-regulated genes included genes for ion transporters and metabolic pathways, including carbohydrate and respiratory metabolism. The enhanced expression of the nrd (ribonucleotide reductase) operon and a DNA ATPase repair protein implies a cellular response to combat acid-induced DNA damage. Surprisingly, multiple iron uptake systems (totaling 15% of the genes induced ≥2-fold) were induced at low pH. This induction was shown to be coincidental and could be attributed to iron-sequestering effects in complex media at low p

  1. Chronic unpredictive mild stress leads to altered hepatic metabolic profile and gene expression

    PubMed Central

    Jia, Hong-mei; Li, Qi; Zhou, Chao; Yu, Meng; Yang, Yong; Zhang, Hong-wu; Ding, Gang; Shang, Hai; Zou, Zhong-mei

    2016-01-01

    Depression is a complex disease characterized by a series of pathological changes. Research on depression is mainly focused on the changes in brain, but not on liver. Therefore, we initially explored the metabolic profiles of hepatic extracts from rats treated with chronic unpredictive mild stress (CUMS) by UPLC-Q-TOF/MS. Using multivariate statistical analysis, a total of 26 altered metabolites distinguishing CUMS-induced depression from normal control were identified. Using two-stage receiver operating characteristic (ROC) analysis, 18 metabolites were recognized as potential biomarkers related to CUMS-induced depression via 12 metabolic pathways. Subsequently, we detected the mRNA expressions levels of apoptosis-associated genes such as Bax and Bcl-2 and four key enzymes including Pla2g15, Pnpla6, Baat and Gad1 involved in phospholipid and primary bile acid biosynthesis in liver tissues of CUMS rats by real-time qRT-PCR assay. The expression levels of Bax, Bcl-2, Pla2g15, Pnpla6 and Gad1 mRNA were 1.43,1.68, 1.74, 1.67 and 1.42-fold higher, and those of Baat, Bax/Bcl-2 ratio mRNA were 0.83, 0.85-fold lower in CUMS rats compared with normal control. Results of liver-targeted metabonomics and mRNA expression demonstrated that CUMS-induced depression leads to variations in hepatic metabolic profile and gene expression, and ultimately results in liver injury. PMID:27006086

  2. Sulfate metabolism in Tuber borchii: characterization of a putative sulfate transporter and the homocysteine synthase genes.

    PubMed

    Zeppa, Sabrina; Marchionni, C; Saltarelli, R; Guidi, C; Ceccaroli, P; Pierleoni, R; Zambonelli, A; Stocchi, V

    2010-04-01

    The homocysteine synthase (tbhos) and putative sulfate transporter (tbsul1) genes have been characterized in order to understand the sulfate metabolism and regulation in the ectomycorrhizal fungus Tuber borchii. The analyses of tbsul1 and tbhos nucleotide and deduced amino acid sequences led to the identification of the typical domains shown in homologous proteins. Sulfate starvation condition upregulates both genes. The real-time PCR assay of tbsul1 revealed that gene expression was about threefold higher in mycelia grown under sulfate starvation for 2 days than in the mycelial control and in the same starvation condition, the sulfate uptake increased. Real-time PCR and enzymatic assays showed regulation of tbhos when sulfur sources were lacking, suggesting that a transcriptional regulation of this gene rather than a post-transcriptional one occurred. Furthermore, the tbsul1 and tbhos expression patterns were evaluated during the truffle life cycle, revealing an over-expression in the mature ascomata for both genes. In the ectomycorrhizal tissue, only tbhos was upregulated suggesting its substantial role in T. borchii cysteine synthesis. The regulation of tbsul1 and tbhos occurs primarily at the transcriptional level both during vegetative and fruiting phases and these genes could be directly involved in VOCs production. PMID:20039042

  3. Ursodeoxycholic Acid Ameliorates Fructose-Induced Metabolic Syndrome in Rats

    PubMed Central

    2014-01-01

    The metabolic syndrome (MS) is characterized by insulin resistance, dyslipidemia and hypertension. It is associated with increased risk of cardiovascular diseases and type-2 diabetes. Consumption of fructose is linked to increased prevalence of MS. Ursodeoxycholic acid (UDCA) is a steroid bile acid with antioxidant, anti-inflammatory activities and has been shown to improve insulin resistance. The current study aims to investigate the effect of UDCA (150 mg/kg) on MS induced in rats by fructose administration (10%) in drinking water for 12 weeks. The effects of UDCA were compared to fenofibrate (100 mg/kg), an agonist of PPAR-α receptors. Treatment with UDCA or fenofibrate started from the 6th week after fructose administration once daily. Fructose administration resulted in significant increase in body weight, elevations of blood glucose, serum insulin, cholesterol, triglycerides, advanced glycation end products (AGEs), uric acid levels, insulin resistance index and blood pressure compared to control rats. Moreover, fructose increased oxidative stress in aortic tissues indicated by significant increases of malondialdehyde (MDA), expression of iNOS and reduction of reduced glutathione (GSH) content. These disturbances were associated with decreased eNOS expression, increased infiltration of leukocytes and loss of aortic vascular elasticity. Treatment with UDCA successfully ameliorated the deleterious effects of fructose. The protective effect of UDCA could be attributed to its ability to decrease uric acid level, improve insulin resistance and diminish oxidative stress in vascular tissues. These results might support possible clinical application of UDCA in MS patients especially those present with liver diseases, taking into account its tolerability and safety. However, further investigations on human subjects are needed before the clinical application of UDCA for this indication. PMID:25202970

  4. Salmonella Modulates Metabolism during Growth under Conditions that Induce Expression of Virulence Genes

    PubMed Central

    Kim, Young-Mo; Schmidt, Brian J.; Kidwai, Afshan S.; Jones, Marcus B.; Deatherage Kaiser, Brooke L.; Brewer, Heather M.; Mitchell, Hugh D.; Palsson, Bernhard O.; McDermott, Jason E.; Heffron, Fred; Smith, Richard D.; Peterson, Scott N.; Ansong, Charles; Hyduke, Daniel R.; Metz, Thomas O.; Adkins, Joshua N.

    2013-01-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes to virulence in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Furthermore, analyses of omics data in the context of the metabolic model indicated rewiring of the metabolic network to support pathways associated with virulence. For example, cellular concentrations of polyamines were perturbed, as well as the predicted capacity for secretion and uptake. PMID:23559334

  5. A dynamic computer model of the metabolic and regulatory processes in Crassulacean acid metabolism.

    PubMed

    Nungesser, D; Kluge, M; Tolle, H; Oppelt, W

    1984-09-01

    The paper describes a computer model which is capable of simulating the typical phenomena of Crassulacean acid metabolism (CAM). The model is based on a simplified scheme of the metabolic processes of CAM described earlier in the literature. The evolution of the model proceeded in the following steps, namely i) a verbal description of CAM in the form of a scheme integrating the metabolic and regulatory CAM processes at the cellular level of the cell, and transcription of the scheme into a block diagram; ii) the stepwise transformation of the block diagram into a structural model, represented by a system of differential equations; this was later used as the dynamic model. In the first attempt to construct the dynamic model, it appeared to be useful to accept the following simplifications: i) All reactions involved were considered to be of the first order. ii) Sequences of reactions, in which the intermediary products appeared to be of minor importance, were summarized in a single step. iii) All reactions were considered to proceed irreversibly in the main direction. iv) The mathematical formulations, usually used in describing enzyme regulations (for instance, competitive or allosteric behaviour), were replaced in the model by a uniformly simplified equation which independent of the actual mechanism, described activation by the multiplication of the velocity constant with an activating factor, and inhibition by division of the velocity constant by an inhibiting factor. v) From the manifold interactions between the plants and their environment, at present, only two factors have been selected to act as input parameters of the model, namely, the CO2 concentration in the air and light. Our studies showed that the model was capable of simulating not only some basic phenomena of CAM such as the diurnal rhythms of malic acid and starch, and the diurnal pattern of net CO2 exchange, but also alterations in the pool sizes of phosphoenolpyruvate, glucose-6-phosphate and

  6. Distinct metabolic network states manifest in the gene expression profiles of pediatric inflammatory bowel disease patients and controls

    PubMed Central

    Knecht, Carolin; Fretter, Christoph; Rosenstiel, Philip; Krawczak, Michael; Hütt, Marc-Thorsten

    2016-01-01

    Information on biological networks can greatly facilitate the function-orientated interpretation of high-throughput molecular data. Genome-wide metabolic network models of human cells, in particular, can be employed to contextualize gene expression profiles of patients with the goal of both, a better understanding of individual etiologies and an educated reclassification of (clinically defined) phenotypes. We analyzed publicly available expression profiles of intestinal tissues from treatment-naive pediatric inflammatory bowel disease (IBD) patients and age-matched control individuals, using a reaction-centric metabolic network derived from the Recon2 model. By way of defining a measure of ‘coherence’, we quantified how well individual patterns of expression changes matched the metabolic network. We observed a bimodal distribution of metabolic network coherence in both patients and controls, albeit at notably different mixture probabilities. Multidimensional scaling analysis revealed a bisectional pattern as well that overlapped widely with the metabolic network-based results. Expression differences driving the observed bimodality were related to cellular transport of thiamine and bile acid metabolism, thereby highlighting the crosstalk between metabolism and other vital pathways. We demonstrated how classical data mining and network analysis can jointly identify biologically meaningful patterns in gene expression data. PMID:27585741

  7. Distinct metabolic network states manifest in the gene expression profiles of pediatric inflammatory bowel disease patients and controls.

    PubMed

    Knecht, Carolin; Fretter, Christoph; Rosenstiel, Philip; Krawczak, Michael; Hütt, Marc-Thorsten

    2016-01-01

    Information on biological networks can greatly facilitate the function-orientated interpretation of high-throughput molecular data. Genome-wide metabolic network models of human cells, in particular, can be employed to contextualize gene expression profiles of patients with the goal of both, a better understanding of individual etiologies and an educated reclassification of (clinically defined) phenotypes. We analyzed publicly available expression profiles of intestinal tissues from treatment-naive pediatric inflammatory bowel disease (IBD) patients and age-matched control individuals, using a reaction-centric metabolic network derived from the Recon2 model. By way of defining a measure of 'coherence', we quantified how well individual patterns of expression changes matched the metabolic network. We observed a bimodal distribution of metabolic network coherence in both patients and controls, albeit at notably different mixture probabilities. Multidimensional scaling analysis revealed a bisectional pattern as well that overlapped widely with the metabolic network-based results. Expression differences driving the observed bimodality were related to cellular transport of thiamine and bile acid metabolism, thereby highlighting the crosstalk between metabolism and other vital pathways. We demonstrated how classical data mining and network analysis can jointly identify biologically meaningful patterns in gene expression data. PMID:27585741

  8. Uric acid in metabolic syndrome: From an innocent bystander to a central player

    PubMed Central

    Kanbay, Mehmet; Jensen, Thomas; Solak, Yalcin; Le, Myphuong; Roncal-Jimenez, Carlos; Rivard, Chris; Lanaspa, Miguel A.; Nakagawa, Takahiko; Johnson, Richard J.

    2016-01-01

    Uric acid, once viewed as an inert metabolic end-product of purine metabolism, has been recently incriminated in a number of chronic disease states, including hypertension, metabolic syndrome, diabetes, non-alcoholic fatty liver disease, and chronic kidney disease. Several experimental and clinical studies support a role for uric acid as a contributory causal factor in these conditions. Here we discuss some of the major mechanisms linking uric acid to metabolic and cardiovascular diseases. At this time the key to understanding the importance of uric acid in these diseases will be the conduct of large clinical trials in which the effect of lowering uric acid on hard clinical outcomes is assessed. Elevated uric acid may turn out to be one of the more important remediable risk factors for metabolic and cardiovascular diseases. PMID:26703429

  9. Gene regulation of lipid and phospholipid metabolism in Atlantic cod (Gadus morhua) larvae.

    PubMed

    Li, Keshuai; Østensen, Mari-Ann; Attramadal, Kari; Winge, Per; Sparstad, Torfinn; Bones, Atle M; Vadstein, Olav; Kjørsvik, Elin; Olsen, Yngvar

    2015-12-01

    The mechanism of essentiality of dietary phospholipid (PL) for larval fish is not clear. The main objective of the present study was to determine if the PL requirement of Atlantic cod larvae was due to any genetic impairment caused by functional immaturity. Cod larvae were sampled at 1, 3, 8, 13, 17, 18, 30, 42 and 60 days post hatch (dph) for transcriptome analysis using a recently developed microarray. The fatty acid profile and gene expression levels of cod larvae at 17 dph were compared after feeding differently enriched rotifers, which contained different DHA levels in PL. No significant differences (p<0.05) were found for the two rotifer diets in the overall gene expression level of cod larvae, their growth and survival, and their DHA levels in total lipid and PL fraction. The fatty acid data suggested that dietary EPA was elongated to DPA by cod larvae, and a threshold DHA level in PL to maintain membrane fluidity and other functions may exist. There appeared to be no major effect of development on the expression of key genes of PL biosynthesis suggesting no genetic constrain in early developmental stages. Our overall data suggested that besides the possible limited de novo PC synthesis ability in the intestine, other metabolic constraints should also be considered, especially the possible low input of bile PC as a result of immature liver. Further studies are needed to elucidate the gene expression level and enzyme activity in the PL biosynthesis pathways for specific tissue or cells. PMID:26310360

  10. Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice

    SciTech Connect

    Liu, Jie; Lu, Yuan-Fu; Zhang, Youcai; Wu, Kai Connie; Fan, Fang; Klaassen, Curtis D.

    2013-11-01

    Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by liver histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential. - Highlights: • Oleanolic acid at higher doses and long-term use may produce liver injury. • Oleanolic acid increased serum ALT, ALP, bilirubin and bile acid concentrations. • OA produced feathery degeneration, inflammation and cell death in the liver. • OA altered bile acid homeostasis, affecting bile acid synthesis and transport.

  11. Inducible Arginase 1 Deficiency in Mice Leads to Hyperargininemia and Altered Amino Acid Metabolism

    PubMed Central

    St. Amand, Tim; Kyriakopoulou, Lianna; Schulze, Andreas; Funk, Colin D.

    2013-01-01

    Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1), which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing “floxed” Arg1 mice with CreERT2 mice. The resulting mice (Arg-Cre) die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency. PMID:24224027

  12. Inducible arginase 1 deficiency in mice leads to hyperargininemia and altered amino acid metabolism.

    PubMed

    Sin, Yuan Yan; Ballantyne, Laurel L; Mukherjee, Kamalika; St Amand, Tim; Kyriakopoulou, Lianna; Schulze, Andreas; Funk, Colin D

    2013-01-01

    Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1), which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing "floxed" Arg1 mice with CreER(T2) mice. The resulting mice (Arg-Cre) die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency. PMID:24224027

  13. A Natural Light/Dark Cycle Regulation of Carbon-Nitrogen Metabolism and Gene Expression in Rice Shoots.

    PubMed

    Li, Haixing; Liang, Zhijun; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2016-01-01

    Light and temperature are two particularly important environmental cues for plant survival. Carbon and nitrogen are two essential macronutrients required for plant growth and development, and cellular carbon and nitrogen metabolism must be tightly coordinated. In order to understand how the natural light/dark cycle regulates carbon and nitrogen metabolism in rice plants, we analyzed the photosynthesis, key carbon-nitrogen metabolites, and enzyme activities, and differentially expressed genes and miRNAs involved in the carbon and nitrogen metabolic pathway in rice shoots at the following times: 2:00, 6:00, 10:00, 14:00, 18:00, and 22:00. Our results indicated that more CO2 was fixed into carbohydrates by a high net photosynthetic rate, respiratory rate, and stomatal conductance in the daytime. Although high levels of the nitrate reductase activity, free ammonium and carbohydrates were exhibited in the daytime, the protein synthesis was not significantly facilitated by the light and temperature. In mRNA sequencing, the carbon and nitrogen metabolism-related differentially expressed genes were obtained, which could be divided into eight groups: photosynthesis, TCA cycle, sugar transport, sugar metabolism, nitrogen transport, nitrogen reduction, amino acid metabolism, and nitrogen regulation. Additionally, a total of 78,306 alternative splicing events have been identified, which primarily belong to alternative 5' donor sites, alternative 3' acceptor sites, intron retention, and exon skipping. In sRNA sequencing, four carbon and nitrogen metabolism-related miRNAs (osa-miR1440b, osa-miR2876-5p, osa-miR1877 and osa-miR5799) were determined to be regulated by natural light/dark cycle. The expression level analysis showed that the four carbon and nitrogen metabolism-related miRNAs negatively regulated their target genes. These results may provide a good strategy to study how natural light/dark cycle regulates carbon and nitrogen metabolism to ensure plant growth and

  14. Clostridium sticklandii, a specialist in amino acid degradation:revisiting its metabolism through its genome sequence

    PubMed Central

    2010-01-01

    Background Clostridium sticklandii belongs to a cluster of non-pathogenic proteolytic clostridia which utilize amino acids as carbon and energy sources. Isolated by T.C. Stadtman in 1954, it has been generally regarded as a "gold mine" for novel biochemical reactions and is used as a model organism for studying metabolic aspects such as the Stickland reaction, coenzyme-B12- and selenium-dependent reactions of amino acids. With the goal of revisiting its carbon, nitrogen, and energy metabolism, and comparing studies with other clostridia, its genome has been sequenced and analyzed. Results C. sticklandii is one of the best biochemically studied proteolytic clostridial species. Useful additional information has been obtained from the sequencing and annotation of its genome, which is presented in this paper. Besides, experimental procedures reveal that C. sticklandii degrades amino acids in a preferential and sequential way. The organism prefers threonine, arginine, serine, cysteine, proline, and glycine, whereas glutamate, aspartate and alanine are excreted. Energy conservation is primarily obtained by substrate-level phosphorylation in fermentative pathways. The reactions catalyzed by different ferredoxin oxidoreductases and the exergonic NADH-dependent reduction of crotonyl-CoA point to a possible chemiosmotic energy conservation via the Rnf complex. C. sticklandii possesses both the F-type and V-type ATPases. The discovery of an as yet unrecognized selenoprotein in the D-proline reductase operon suggests a more detailed mechanism for NADH-dependent D-proline reduction. A rather unusual metabolic feature is the presence of genes for all the enzymes involved in two different CO2-fixation pathways: C. sticklandii harbours both the glycine synthase/glycine reductase and the Wood-Ljungdahl pathways. This unusual pathway combination has retrospectively been observed in only four other sequenced microorganisms. Conclusions Analysis of the C. sticklandii genome and

  15. Hepatitis B virus X protein (HBx)-induced abnormalities of nucleic acid metabolism revealed by 1H-NMR-based metabonomics

    PubMed Central

    Dan Yue; Zhang, Yuwei; Cheng, Liuliu; Ma, Jinhu; Xi, Yufeng; Yang, Liping; Su, Chao; Shao, Bin; Huang, Anliang; Xiang, Rong; Cheng, Ping

    2016-01-01

    Hepatitis B virus X protein (HBx) plays an important role in HBV-related hepatocarcinogenesis; however, mechanisms underlying HBx-mediated carcinogenesis remain unclear. In this study, an NMR-based metabolomics approach was applied to systematically investigate the effects of HBx on cell metabolism. EdU incorporation assay was conducted to examine the effects of HBx on DNA synthesis, an important feature of nucleic acid metabolism. The results revealed that HBx disrupted metabolism of glucose, lipids, and amino acids, especially nucleic acids. To understand the potential mechanism of HBx-induced abnormalities of nucleic acid metabolism, gene expression profiles of HepG2 cells expressing HBx were investigated. The results showed that 29 genes involved in DNA damage and DNA repair were differentially expressed in HBx-expressing HepG2 cells. HBx-induced DNA damage was further demonstrated by karyotyping, comet assay, Western blotting, immunofluorescence and immunohistochemistry analyses. Many studies have previously reported that DNA damage can induce abnormalities of nucleic acid metabolism. Thus, our results implied that HBx initially induces DNA damage, and then disrupts nucleic acid metabolism, which in turn blocks DNA repair and induces the occurrence of hepatocellular carcinoma (HCC). These findings further contribute to our understanding of the occurrence of HCC. PMID:27075403

  16. Metabolic and transcriptional analysis of acid stress in Lactococcus lactis, with a focus on the kinetics of lactic acid pools.

    PubMed

    Carvalho, Ana Lúcia; Turner, David L; Fonseca, Luís L; Solopova, Ana; Catarino, Teresa; Kuipers, Oscar P; Voit, Eberhard O; Neves, Ana Rute; Santos, Helena

    2013-01-01

    The effect of pH on the glucose metabolism of non-growing cells of L. lactis MG1363 was studied by in vivo NMR in the range 4.8 to 6.5. Immediate pH effects on glucose transporters and/or enzyme activities were distinguished from transcriptional/translational effects by using cells grown at the optimal pH of 6.5 or pre-adjusted to low pH by growth at 5.1. In cells grown at pH 5.1, glucose metabolism proceeds at a rate 35% higher than in non-adjusted cells at the same pH. Besides the upregulation of stress-related genes (such as dnaK and groEL), cells adjusted to low pH overexpressed H(+)-ATPase subunits as well as glycolytic genes. At sub-optimal pHs, the total intracellular pool of lactic acid reached approximately 500 mM in cells grown at optimal pH and about 700 mM in cells grown at pH 5.1. These high levels, together with good pH homeostasis (internal pH always above 6), imply intracellular accumulation of the ionized form of lactic acid (lactate anion), and the concomitant export of the equivalent protons. The average number, n, of protons exported with each lactate anion was determined directly from the kinetics of accumulation of intra- and extracellular lactic acid as monitored online by (13)C-NMR. In cells non-adjusted to low pH, n varies between 2 and 1 during glucose consumption, suggesting an inhibitory effect of intracellular lactate on proton export. We confirmed that extracellular lactate did not affect the lactate: proton stoichiometry. In adjusted cells, n was lower and varied less, indicating a different mix of lactic acid exporters less affected by the high level of intracellular lactate. A qualitative model for pH effects and acid stress adaptation is proposed on the basis of these results. PMID:23844205

  17. Metabolic and Transcriptional Analysis of Acid Stress in Lactococcus lactis, with a Focus on the Kinetics of Lactic Acid Pools

    PubMed Central

    Carvalho, Ana Lúcia; Turner, David L.; Fonseca, Luís L.; Solopova, Ana; Catarino, Teresa; Kuipers, Oscar P.; Voit, Eberhard O.; Neves, Ana Rute; Santos, Helena

    2013-01-01

    The effect of pH on the glucose metabolism of non-growing cells of L. lactis MG1363 was studied by in vivo NMR in the range 4.8 to 6.5. Immediate pH effects on glucose transporters and/or enzyme activities were distinguished from transcriptional/translational effects by using cells grown at the optimal pH of 6.5 or pre-adjusted to low pH by growth at 5.1. In cells grown at pH 5.1, glucose metabolism proceeds at a rate 35% higher than in non-adjusted cells at the same pH. Besides the upregulation of stress-related genes (such as dnaK and groEL), cells adjusted to low pH overexpressed H+-ATPase subunits as well as glycolytic genes. At sub-optimal pHs, the total intracellular pool of lactic acid reached approximately 500 mM in cells grown at optimal pH and about 700 mM in cells grown at pH 5.1. These high levels, together with good pH homeostasis (internal pH always above 6), imply intracellular accumulation of the ionized form of lactic acid (lactate anion), and the concomitant export of the equivalent protons. The average number, n, of protons exported with each lactate anion was determined directly from the kinetics of accumulation of intra- and extracellular lactic acid as monitored online by 13C-NMR. In cells non-adjusted to low pH, n varies between 2 and 1 during glucose consumption, suggesting an inhibitory effect of intracellular lactate on proton export. We confirmed that extracellular lactate did not affect the lactate: proton stoichiometry. In adjusted cells, n was lower and varied less, indicating a different mix of lactic acid exporters less affected by the high level of intracellular lactate. A qualitative model for pH effects and acid stress adaptation is proposed on the basis of these results. PMID:23844205

  18. Metabolism of Fructooligosaccharides in Lactobacillus plantarum ST-III via Differential Gene Transcription and Alteration of Cell Membrane Fluidity.

    PubMed

    Chen, Chen; Zhao, Guozhong; Chen, Wei; Guo, Benheng

    2015-11-01

    Although fructooligosaccharides (FOS) can selectively stimulate the growth and activity of probiotics and beneficially modulate the balance of intestinal microbiota, knowledge of the molecular mechanism for FOS metabolism by probiotics is still limited. Here a combined transcriptomic and physiological approach was used to survey the global alterations that occurred during the logarithmic growth of Lactobacillus plantarum ST-III using FOS or glucose as the sole carbon source. A total of 363 genes were differentially transcribed; in particular, two gene clusters were induced by FOS. Gene inactivation revealed that both of the clusters participated in the metabolism of FOS, which were transported across the membrane by two phosphotransferase systems (PTSs) and were subsequently hydrolyzed by a β-fructofuranosidase (SacA) in the cytoplasm. Combining the measurements of the transcriptome- and membrane-related features, we discovered that the genes involved in the biosynthesis of fatty acids (FAs) were repressed in cells grown on FOS; as a result, the FA profiles were altered by shortening of the carbon chains, after which membrane fluidity increased in response to FOS transport and utilization. Furthermore, incremental production of acetate was observed in both the transcriptomic and the metabolic experiments. Our results provided new insights into gene transcription, the production of metabolites, and membrane alterations that could explain FOS metabolism in L. plantarum. PMID:26319882

  19. Transcription analysis of genes involved in lipid metabolism reveals the role of chromium in reducing body fat in animal models.

    PubMed

    Sadeghi, Mostafa; Najaf Panah, Mohammad Javad; Bakhtiarizadeh, Mohammad Reza; Emami, Ali

    2015-10-01

    Chromium was proposed to be an essential trace element over 50 years ago and has been accepted as an essential element for over 30 years. The recent studies indicated that the addition of supra nutritional amounts of chromium to the diet can only be considered as having pharmacological effects. However, the precise mechanism through which chromium acts on lipid, carbohydrate, protein and nucleic acid metabolism are relatively poor studied. To uncover, at least partially, the role of chromium in lipid metabolism, in this study, we evaluated the expression status of eight important genes, involved in fat biosynthesis and lipid metabolism, in four different tissue types (liver, subcutaneous fat, visceral fat, and longissimus muscle) in domestic goat kids feeding on three different chromium levels. The quantitative real-time PCR (RT-PCR) was established for expression analyses with HSP90 gene was used as reference gene. The results showed that supplementation of goats with 1.5mg/day chromium significantly decreases the expression of the ACC1, DGAT1, FABP4, FAS, HSL, LEP genes, but does not affect the expression of the LPL and SCD1 genes in all studied tissues. This study highlights, for the first time, the role of supra nutritional levels of chromium in lipid biosynthesis and metabolism. These findings are of especial importance for improving meat quality in domestic animals. PMID:26302911

  20. Metabolism of Fructooligosaccharides in Lactobacillus plantarum ST-III via Differential Gene Transcription and Alteration of Cell Membrane Fluidity

    PubMed Central

    Chen, Chen; Zhao, Guozhong

    2015-01-01

    Although fructooligosaccharides (FOS) can selectively stimulate the growth and activity of probiotics and beneficially modulate the balance of intestinal microbiota, knowledge of the molecular mechanism for FOS metabolism by probiotics is still limited. Here a combined transcriptomic and physiological approach was used to survey the global alterations that occurred during the logarithmic growth of Lactobacillus plantarum ST-III using FOS or glucose as the sole carbon source. A total of 363 genes were differentially transcribed; in particular, two gene clusters were induced by FOS. Gene inactivation revealed that both of the clusters participated in the metabolism of FOS, which were transported across the membrane by two phosphotransferase systems (PTSs) and were subsequently hydrolyzed by a β-fructofuranosidase (SacA) in the cytoplasm. Combining the measurements of the transcriptome- and membrane-related features, we discovered that the genes involved in the biosynthesis of fatty acids (FAs) were repressed in cells grown on FOS; as a result, the FA profiles were altered by shortening of the carbon chains, after which membrane fluidity increased in response to FOS transport and utilization. Furthermore, incremental production of acetate was observed in both the transcriptomic and the metabolic experiments. Our results provided new insights into gene transcription, the production of metabolites, and membrane alterations that could explain FOS metabolism in L. plantarum. PMID:26319882

  1. The metabolism of aromatic acids by micro-organisms. Metabolic pathways in the fungi

    PubMed Central

    Cain, R. B.; Bilton, R. F.; Darrah, Josephine A.

    1968-01-01

    1. The metabolic pathways of aromatic-ring fission were examined in a range of fungal genera that utilize several compounds related to lignin. 2. Most of the genera, after growth on p-hydroxybenzoate, protocatechuate or compounds that are degraded to the latter (e.g. caffeate, ferulate or vanillate), rapidly oxidized these compounds, but not catechol. 3. Such genera possessed a protocatechuate 3,4-oxygenase and accumulated β-carboxymuconate as the product of protocatechuate oxidation. This enzyme had a high pH optimum in most organisms; the Rhodotorula enzyme was competitively inhibited by catechol. 4. β-Carboxymuconate was converted by all competent fungi into β-carboxymuconolactone, which was isolated and characterized. None of the fungi produced or utilized at significant rates the corresponding bacterial intermediate γ-carboxymuconolactone. 5. The lactonizing enzymes of Rhodotorula and Neurospora crassa had a pH optimum near 5·5 and approximate molecular weights of 19000 and 190000 respectively. 6. The fungi did not degrade the isomeric (+)-muconolactone, γ-carboxymethylenebutanolide or β-oxoadipate enol lactone at significant rates, and thus differ radically from bacteria, where β-oxoadipate enol lactone is the precursor of β-oxoadipate in all strains examined. 7. The end product of β-carboxymuconolactone metabolism by extracts was β-oxoadipate. 8. Evidence for a coenzyme A derivative of β-oxoadipate was found during further metabolism of this keto acid. 9. A few anomalous fungi, after growth on p-hydroxybenzoate, had no protocatechuate 3,4-oxygenase, but possessed all the enzymes of the catechol pathway. Catechol was detected in the growth medium in one instance. 10. A strain of Penicillium sp. formed pyruvate but no β-oxoadipate from protocatechuate, suggesting the existence also of a `meta' type of ring cleavage among fungi. PMID:5691754

  2. Obesity and cancer progression: is there a role of fatty acid metabolism?

    PubMed

    Balaban, Seher; Lee, Lisa S; Schreuder, Mark; Hoy, Andrew J

    2015-01-01

    Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression. PMID:25866768

  3. Obesity and Cancer Progression: Is There a Role of Fatty Acid Metabolism?

    PubMed Central

    Balaban, Seher; Lee, Lisa S.; Schreuder, Mark; Hoy, Andrew J.

    2015-01-01

    Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression. PMID:25866768

  4. Targeting amino acid metabolism in cancer growth and anti-tumor immune response

    PubMed Central

    Ananieva, Elitsa

    2015-01-01

    Recent advances in amino acid metabolism have revealed that targeting amino acid metabolic enzymes in cancer therapy is a promising strategy for the development of novel therapeutic agents. There are currently several drugs in clinical trials that specifically target amino acid metabolic pathways in tumor cells. In the context of the tumor microenvironment, however, tumor cells form metabolic relationships with immune cells, and they often compete for common nutrients. Many tumors evolved to escape immune surveillance by taking advantage of their metabolic flexibility and redirecting nutrients for their own advantage. This review outlines the most recent advances in targeting amino acid metabolic pathways in cancer therapy while giving consideration to the impact these pathways may have on the anti-tumor immune response. PMID:26629311

  5. Identification of novel transaminases from a 12-aminododecanoic acid-metabolizing Pseudomonas strain.

    PubMed

    Wilding, Matthew; Walsh, Ellen F A; Dorrian, Susan J; Scott, Colin

    2015-07-01

    A Pseudomonas species [Pseudomonas sp. strain amino alkanoate catabolism (AAC)] was identified that has the capacity to use 12-aminododecanoic acid, the constituent building block of homo-nylon-12, as a sole nitrogen source. Growth of Pseudomonas sp. strain AAC could also be supported using a range of additional ω-amino alkanoates. This metabolic function was shown to be most probably dependent upon one or more transaminases (TAs). Fourteen genes encoding putative TAs were identified from the genome of Pseudomonas sp. AAC. Each of the 14 genes was cloned, 11 of which were successfully expressed in Escherichia coli and tested for activity against 12-aminododecanoic acid. In addition, physiological functions were proposed for 9 of the 14 TAs. Of the 14 proteins, activity was demonstrated in 9, and of note, 3 TAs were shown to be able to catalyse the transfer of the ω-amine from 12-aminododecanoic acid to pyruvate. Based on this study, three enzymes have been identified that are promising biocatalysts for the production of nylon and related polymers. PMID:25912724

  6. Metabolically Active Eukaryotic Communities in Extremely Acidic Mine Drainage

    PubMed Central

    Baker, Brett J.; Lutz, Michelle A.; Dawson, Scott C.; Bond, Philip L.; Banfield, Jillian F.

    2004-01-01

    Acid mine drainage (AMD) microbial communities contain microbial eukaryotes (both fungi and protists) that confer a biofilm structure and impact the abundance of bacteria and archaea and the community composition via grazing and other mechanisms. Since prokaryotes impact iron oxidation rates and thus regulate AMD generation rates, it is important to analyze the fungal and protistan populations. We utilized 18S rRNA and beta-tubulin gene phylogenies and fluorescent rRNA-specific probes to characterize the eukaryotic diversity and distribution in extremely acidic (pHs 0.8 to 1.38), warm (30 to 50°C), metal-rich (up to 269 mM Fe2+, 16.8 mM Zn, 8.5 mM As, and 4.1 mM Cu) AMD solutions from the Richmond Mine at Iron Mountain, Calif. A Rhodophyta (red algae) lineage and organisms from the Vahlkampfiidae family were identified. The fungal 18S rRNA and tubulin gene sequences formed two distinct phylogenetic groups associated with the classes Dothideomycetes and Eurotiomycetes. Three fungal isolates that were closely related to the Dothideomycetes clones were obtained. We suggest the name “Acidomyces richmondensis” for these isolates. Since these ascomycete fungi were morphologically indistinguishable, rRNA-specific oligonucleotide probes were designed to target the Dothideomycetes and Eurotiomycetes via fluorescent in situ hybridization (FISH). FISH analyses indicated that Eurotiomycetes are generally more abundant than Dothideomycetes in all of the seven locations studied within the Richmond Mine system. This is the first study to combine the culture-independent detection of fungi with in situ detection and a demonstration of activity in an acidic environment. The results expand our understanding of the subsurface AMD microbial community structure. PMID:15466574

  7. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids.

    PubMed

    Mourtzakis, Marina; Saltin, Bengt; Graham, Terry; Pilegaard, Henriette

    2006-06-01

    During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline in pyruvate production could affect tricarboxycylic acid cycle flux as well as gluconeogenesis. To enhance our understanding of these interactions, we studied the time course of changes in substrate utilization in six men who cycled at 44+/-1% peak oxygen consumption (mean+/-SE) until exhaustion (exhaustion at 3 h 23 min+/-11 min). Femoral arterial and venous blood, blood flow measurements, and muscle samples were obtained hourly during exercise and recovery (3 h). Carbohydrate oxidation peaked at 30 min of exercise and subsequently decreased for the remainder of the exercise bout (P<0.05). PDH activity peaked at 2 h of exercise, whereas pyruvate production peaked at 1 h of exercise and was reduced (approximately 30%) thereafter, suggesting that pyruvate availability primarily accounted for reduced carbohydrate oxidation. Increased free fatty acid uptake (P<0.05) was also associated with decreasing PDH activity (P<0.05) and increased PDH kinase 4 mRNA (P<0.05) during exercise and recovery. At 1 h of exercise, pyruvate production was greatest and was closely linked to glutamate, which was the predominant amino acid taken up during exercise and recovery. Alanine and glutamine were also associated with pyruvate metabolism, and they comprised approximately 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism in early exercise. PMID:16424076

  8. Metabolic regulation of the plant hormone indole-3-acetic acid

    SciTech Connect

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  9. Adaptive changes in amino acid metabolism permit normal longevity in mice consuming a low-carbohydrate ketogenic diet.

    PubMed

    Douris, Nicholas; Melman, Tamar; Pecherer, Jordan M; Pissios, Pavlos; Flier, Jeffrey S; Cantley, Lewis C; Locasale, Jason W; Maratos-Flier, Eleftheria

    2015-10-01

    Ingestion of very low-carbohydrate ketogenic diets (KD) is associated with weight loss, lowering of glucose and insulin levels and improved systemic insulin sensitivity. However, the beneficial effects of long-term feeding have been the subject of debate. We therefore studied the effects of lifelong consumption of this diet in mice. Complete metabolic analyses were performed after 8 and 80weeks on the diet. In addition we performed a serum metabolomic analysis and examined hepatic gene expression. Lifelong consumption of KD had no effect on morbidity or mortality (KD vs. Chow, 676 vs. 630days) despite hepatic steatosis and inflammation in KD mice. The KD fed mice lost weight initially as previously reported (Kennnedy et al., 2007) and remained lighter and had less fat mass; KD consuming mice had higher levels of energy expenditure, improved glucose homeostasis and higher circulating levels of β-hydroxybutyrate and triglycerides than chow-fed controls. Hepatic expression of the critical metabolic regulators including fibroblast growth factor 21 were also higher in KD-fed mice while expression levels of lipogenic enzymes such as stearoyl-CoA desaturase-1 was reduced. Metabolomic analysis revealed compensatory changes in amino acid metabolism, primarily involving down-regulation of catabolic processes, demonstrating that mice eating KD can shift amino acid metabolism to conserve amino acid levels. Long-term KD feeding caused profound and persistent metabolic changes, the majority of which are seen as health promoting, and had no adverse effects on survival in mice. PMID:26170063

  10. Activation of bile acid signaling improves metabolic phenotypes in high-fat diet-induced obese mice.

    PubMed

    Pierre, Joseph F; Martinez, Kristina B; Ye, Honggang; Nadimpalli, Anuradha; Morton, Timothy C; Yang, Jinghui; Wang, Qiang; Patno, Noelle; Chang, Eugene B; Yin, Deng Ping

    2016-08-01

    The metabolic benefits induced by gastric bypass, currently the most effective treatment for morbid obesity, are associated with bile acid (BA) delivery to the distal intestine. However, mechanistic insights into BA signaling in the mediation of metabolic benefits remain an area of study. The bile diversion () mouse model, in which the gallbladder is anastomosed to the distal jejunum, was used to test the specific role of BA in the regulation of glucose and lipid homeostasis. Metabolic phenotype, including body weight and composition, glucose tolerance, energy expenditure, thermogenesis genes, total BA and BA composition in the circulation and portal vein, and gut microbiota were examined. BD improves the metabolic phenotype, which is in accord with increased circulating primary BAs and regulation of enterohormones. BD-induced hypertrophy of the proximal intestine in the absence of BA was reversed by BA oral gavage, but without influencing BD metabolic benefits. BD-enhanced energy expenditure was associated with elevated TGR5, D2, and thermogenic genes, including UCP1, PRDM16, PGC-1α, PGC-1β, and PDGFRα in epididymal white adipose tissue (WAT) and inguinal WAT, but not in brown adipose tissue. BD resulted in an altered gut microbiota profile (i.e., Firmicutes bacteria were decreased, Bacteroidetes were increased, and Akkermansia was positively correlated with higher levels of circulating primary BAs). Our study demonstrates that enhancement of BA signaling regulates glucose and lipid homeostasis, promotes thermogenesis, and modulates the gut microbiota, which collectively resulted in an improved metabolic phenotype. PMID:27340128

  11. Metabolism of nonesterified and esterified hydroxycinnamic acids in red wines by Brettanomyces bruxellensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While Brettanomyces can metabolize non–esterified hydroxycinnamic acids found in grape musts/wines (caffeic, p–coumaric, and ferulic acids), it was not known whether this yeast could utilize the corresponding tartaric acid esters (caftaric, p–coutaric, and fertaric acids, respectively). Red wines fr...

  12. Effect of abscisic acid on the linoleic acid metabolism in developing maize embryos

    SciTech Connect

    Abian, J.; Gelpi, E.; Pages, M. )

    1991-04-01

    Partially purified protein extracts from maize (Zea mays L.) embryos, whether treated or not with abscisic acid (ABA), were incubated with linoleic acid (LA) and 1-({sup 14}C)LA. The resulting LA metabolites were monitored by high performance liquid chromatography with a radioactivity detector and identified by gas chromatography-mass spectrometry. {alpha}- and {gamma}-ketol metabolites arising from 9-lipoxygenase activity were the more abundant compounds detected in the incubates, although the corresponding metabolites produced by 13-lipoxygenase were also present in the samples. In addition, a group of stereoisomers originating form two isomeric trihydroxy acids (9,12,13-trihydroxy-10-octadecenoic and 9,10,13-trihydroxy-11-octadecenoic acids) are described. Important variations in the relative proportions of the LA metabolites were observed depending on the embryo developmental stage and on ABA treatment. Two new ABA-induced compounds have been detected. These compounds are present in embryos at all developmental stages, being more abundant in old (60 days) embryos. Furthermore, ABA induction of these compounds is maximum at very young development stages, decreasing as maturation progresses. A tentative structure for these compounds (10-oxo-9,13-dihydroxy-11-octadecenoic acid and 12-oxo-9,13-dihydroxy-10-octadecenoic acid) is also provided. This study revealed an early stage in maize embryogenesis characterized by a higher relative sensitivity to ABA. The physiological importance of ABA on LA metabolism is discussed.

  13. Retrobiosynthetic nuclear magnetic resonance analysis of amino acid biosynthesis and intermediary metabolism. Metabolic flux in developing maize kernels.

    PubMed

    Glawischnig, E; Gierl, A; Tomas, A; Bacher, A; Eisenreich, W

    2001-03-01

    Information on metabolic networks could provide the basis for the design of targets for metabolic engineering. To study metabolic flux in cereals, developing maize (Zea mays) kernels were grown in sterile culture on medium containing [U-(13)C(6)]glucose or [1,2-(13)C(2)]acetate. After growth, amino acids, lipids, and sitosterol were isolated from kernels as well as from the cobs, and their (13)C isotopomer compositions were determined by quantitative nuclear magnetic resonance spectroscopy. The highly specific labeling patterns were used to analyze the metabolic pathways leading to amino acids and the triterpene on a quantitative basis. The data show that serine is generated from phosphoglycerate, as well as from glycine. Lysine is formed entirely via the diaminopimelate pathway and sitosterol is synthesized entirely via the mevalonate route. The labeling data of amino acids and sitosterol were used to reconstruct the labeling patterns of key metabolic intermediates (e.g. acetyl-coenzyme A, pyruvate, phosphoenolpyruvate, erythrose 4-phosphate, and Rib 5-phosphate) that revealed quantitative information about carbon flux in the intermediary metabolism of developing maize kernels. Exogenous acetate served as an efficient precursor of sitosterol, as well as of amino acids of the aspartate and glutamate family; in comparison, metabolites formed in the plastidic compartments showed low acetate incorporation. PMID:11244098

  14. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid.

    PubMed

    Feng, Lili; Zhang, Ya; Fu, Jing; Mao, Yufeng; Chen, Tao; Zhao, Xueming; Wang, Zhiwen

    2016-06-01

    5-Aminolevulinic acid (5-ALA) has recently attracted attention for its potential applications in the fields of medicine and agriculture. In this study, Corynebacterium glutamicum was firstly engineered for 5-ALA production via the C4 pathway. HemA encoding 5-aminolevulinic acid synthase from Rhodobacter sphaeroides was codon optimized and expressed in C. glutamicum ATCC13032, resulting in accumulation of 5-ALA. Deletion of all known genes responsible for the formation of acetate and lactate further enhanced production of 5-ALA. Overexpression of ppc gene encoding phoenolpyruvate carboxylase resulted in an accumulation of 5-ALA up to 2.06 ± 0.05 g/L. Furthermore, deletion of high-molecular-weight penicillin-binding proteins (HMW-PBPs) genes pbp1a, pbp1b, and pbp2b led to an increase in 5-ALA production of 13.53%, 29.47%, and 22.22%, respectively. Finally, 5-ALA production was enhanced to 3.14 ± 0.02 g/L in shake flask by heterologously expressing rhtA encoding threonine/homoserine exporter, and 86.77% of supplemented glycine was channeled toward 5-ALA production in shake flask. The engineered C. glutamicum ALA7 strain produced 7.53 g/L 5-ALA in a 5 L bioreactor. This study demonstrated the potential utility of C. glutamicum as a platform for metabolic production of 5-ALA. Change of cell permeability by metabolic engineering HMW-PBPs may provide a new strategy for biochemicals production in Corynebacterium glutamicum. Biotechnol. Bioeng. 2016;113: 1284-1293. © 2015 Wiley Periodicals, Inc. PMID:26616115

  15. Gallic acid and gallic acid derivatives: effects on drug metabolizing enzymes.

    PubMed

    Ow, Yin-Yin; Stupans, Ieva

    2003-06-01

    Gallic acid and its structurally related compounds are found widely distributed in fruits and plants. Gallic acid, and its catechin derivatives are also present as one of the main phenolic components of both black and green tea. Esters of gallic acid have a diverse range of industrial uses, as antioxidants in food, in cosmetics and in the pharmaceutical industry. In addition, gallic acid is employed as a source material for inks, paints and colour developers. Studies utilising these compounds have found them to possess many potential therapeutic properties including anti-cancer and antimicrobial properties. In this review, studies of the effects of gallic acid, its esters, and gallic acid catechin derivatives on Phase I and Phase II enzymes are examined. Many published reports of the effects of the in vitro effects of gallic acid and its derivatives on drug metabolising enzymes concern effects directly on substrate (generally drug or mutagen) metabolism or indirectly through observed effects in Ames tests. In the case of the Ames test an antimutagenic effect may be observed through inhibition of CYP activation of indirectly acting mutagens and/or by scavenging of metabolically generated mutagenic electrophiles. There has been considerable interest in the in vivo effects of the gallate esters because of their incorporation into foodstuffs as antioxidants and in the catechin gallates with their potential role as chemoprotective agents. Principally an induction of Phase II enzymes has been observed however more recent studies using HepG2 cells and primary cultures of human hepatocytes provide evidence for the overall complexity of actions of individual components versus complex mixtures, such as those in food. Further systematic studies of mechanisms of induction and inhibition of drug metabolising enzymes by this group of compounds are warranted in the light of their distribution and consequent ingestion, current uses and suggested therapeutic potential. However, it

  16. Vaccenic acid metabolism in the liver of rat and bovine.

    PubMed

    Gruffat, Dominique; De La Torre, Anne; Chardigny, Jean-Michel; Durand, Denys; Loreau, Olivier; Bauchart, Dominique

    2005-03-01

    Hepatic metabolism of vaccenic acid (VA), especially its conversion into CLA, was studied in the bovine (ruminant species that synthesizes CLA) and in the rat (model for non-ruminant) by using the in vitro technique of liver explants. Liver tissue samples were collected from fed animals (5 male Wistar rats and 5 Charolais steers) and incubated at 37 degrees C for 17 h under an atmosphere of 95% O2/5% CO2 in medium supplemented with 0.75 mM of FA mixture and with 55 microM [1-14C]VA. VA uptake was about sixfold lower in bovine than in rat liver slices (P< 0.01). For both species, VA that was oxidized to partial oxidation products represented about 20% of VA incorporated by cells. The chemical structure of VA was not modified in bovine liver cells, whereas in rat liver cells, 3.2% of VA was converted into 16:0 and only 0.33% into CLA. The extent of esterification of VA was similar for both animal species (70-80% of incorporated VA). Secretion of VA as part of VLDL particles was very low and similar in rat and bovine liver (around 0.07% of incorporated VA). In conclusion, characteristics of the hepatic metabolism of VA were similar for rat and bovine animals, the liver not being involved in tissue VA conversion into CLA in spite of its high capacity for FA desaturation especially in the rat. This indicates that endogenous synthesis of CLA should take place exclusively in peripheral tissues. PMID:15957256

  17. Arachidonic acid metabolism in silica-stimulated bovine alveolar macrophages

    SciTech Connect

    Englen, M.D.

    1989-01-01

    The in vitro production of arachidonic acid (AA) metabolites in adherent bovine alveolar macrophages (BAM) incubated with silica was investigated. BAM were pre-labelled with {sup 3}H-AA, and lipid metabolites released into the culture medium were analyzed by high performance liquid chromatography (HPLC). Lactate dehydrogenase (LDH) release was simultaneously assayed to provide an indication of cell injury. Increasing doses of silica selectively stimulated the 5-lipoxygenase pathway of AA metabolism, while cyclooxygenase metabolite output was suppressed. LDH release increased in a linear, dose-dependent fashion over the range of silica doses used. Moreover, within 15 min following addition of a high silica dose, a shift to the production of 5-lipoxygenase metabolites occurred, accompanied by a reduction in cyclooxygenase products. This rapid alteration in AA metabolism preceded cell injury. To examine the relationship between cytotoxicity and AA metabolite release by BAM exposed to silicas with different cytotoxic and fibrogenic activities, BAM were exposed to different doses of DQ-12, Minusil-5, and Sigma silicas, and carbonyl iron beads. The median effective dose (ED{sub 50}) of each particulate to stimulate the release of AA metabolites and LDH was calculated. The ED{sub 50} values for DQ-12, Minusil-5, and Sigma silica showed that the relative cytotoxicities of the different silicas for BAM corresponded to the relative potencies of the silicas to elicit 5-lipoxygenase metabolites from BAM. These results indicate that the cytotoxic, and presumed fibrogenic potential, of a silica is correlated with the potency to stimulate the release of leukotrienes from AM.

  18. Metabolism of Cyclohexane Carboxylic Acid by Alcaligenes Strain W1

    PubMed Central

    Taylor, David G.; Trudgill, Peter W.

    1978-01-01

    Thirty-three microorganisms capable of growth with cyclohexane carboxylate as the sole source of carbon were isolated from mud, water, and soil samples from the Aberystwyth area. Preliminary screening and whole-cell oxidation studies suggested that, with one exception, all of the strains metabolized the growth substrate by beta-oxidation of the coenzyme A ester. This single distinctive strain, able to oxidize rapidly trans-4-hydroxycyclohexane carboxylate, 4-ketocyclohexane carboxylate, p-hydroxybenzoate, and protocatechuate when grown with cyclohexane carboxylate, was classified as a strain of Alcaligenes and given the number W1. Enzymes capable of converting cyclohexane carboxylate to p-hydroxybenzoate were induced by growth with the alicyclic acid and included the first unambiguous specimen of a cyclohexane carboxylate hydroxylase. Because it is a very fragile protein, attempts to stabilize the cyclohexane carboxylate hydroxylase so that a purification procedure could be developed have consistently failed. In limited studies with crude cell extracts, we found that hydroxylation occurred at the 4 position, probably yielding the trans isomer of 4-hydroxycyclohexane carboxylate. Simultaneous measurement of oxygen consumption and reduced nicotinamide adenine dinucleotide oxidation, coupled with an assessment of reactant stoichiometry, showed the enzyme to be a mixed-function oxygenase. Mass spectral analysis enabled the conversion of cyclohexane carboxylate to p-hydroxybenzoate by cell extracts to be established unequivocally, and all of our data were consistent with the pathway: cyclohexane carboxylate → trans-4-hydroxycyclohexane carboxylate → 4-ketocyclohexane carboxylate → p-hydroxybenzoate. The further metabolism of p-hydroxybenzoate proceeded by meta fission and by the oxidative branch of the 2-hydroxy-4-carboxymuconic semialde-hyde-cleaving pathway. PMID:207665

  19. D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants)

    SciTech Connect

    Loewus, F.A. . Inst. of Biological Chemistry); Seib, P.A. . Dept. of Grain Science and Industry)

    1991-01-01

    The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogs of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.

  20. D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants). Final report

    SciTech Connect

    Loewus, F.A.; Seib, P.A.

    1991-12-31

    The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogs of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.

  1. Fungal Community Associated with Dactylopius (Hemiptera: Coccoidea: Dactylopiidae) and Its Role in Uric Acid Metabolism.

    PubMed

    Vera-Ponce de León, Arturo; Sanchez-Flores, Alejandro; Rosenblueth, Mónica; Martínez-Romero, Esperanza

    2016-01-01

    We studied fungal species associated with the carmine cochineal Dactylopius coccus and other non-domesticated Dactylopius species using culture-dependent and -independent methods. Thirty seven fungi were isolated in various culture media from insect males and females from different developmental stages and Dactylopius species. 26S rRNA genes and ITS sequences, from cultured fungal isolates revealed different species of Cryptococcus, Rhodotorula, Debaryomyces, Trametes, and Penicillium, which are genera newly associated with Dactylopius. Uric acid (UA) and uricase activity were detected in tissues extracts from different insect developmental stages. However, accumulation of high UA levels and low uricase activities were found only after antifungal treatments, suggesting an important role of fungal species in its metabolism. Additionally, uricolytic fungal isolates were identified and characterized that presumably are involved in nitrogen recycling metabolism. After metagenomic analyses from D. coccus gut and hemolymph DNA and from two published data sets, we confirmed the presence of fungal genes involved in UA catabolism, suggesting that fungi help in the nitrogen recycling process in Dactylopius by uricolysis. All these results show the importance of fungal communities in scale insects such as Dactylopius. PMID:27446001

  2. Fungal Community Associated with Dactylopius (Hemiptera: Coccoidea: Dactylopiidae) and Its Role in Uric Acid Metabolism

    PubMed Central

    Vera-Ponce de León, Arturo; Sanchez-Flores, Alejandro; Rosenblueth, Mónica; Martínez-Romero, Esperanza

    2016-01-01

    We studied fungal species associated with the carmine cochineal Dactylopius coccus and other non-domesticated Dactylopius species using culture-dependent and -independent methods. Thirty seven fungi were isolated in various culture media from insect males and females from different developmental stages and Dactylopius species. 26S rRNA genes and ITS sequences, from cultured fungal isolates revealed different species of Cryptococcus, Rhodotorula, Debaryomyces, Trametes, and Penicillium, which are genera newly associated with Dactylopius. Uric acid (UA) and uricase activity were detected in tissues extracts from different insect developmental stages. However, accumulation of high UA levels and low uricase activities were found only after antifungal treatments, suggesting an important role of fungal species in its metabolism. Additionally, uricolytic fungal isolates were identified and characterized that presumably are involved in nitrogen recycling metabolism. After metagenomic analyses from D. coccus gut and hemolymph DNA and from two published data sets, we confirmed the presence of fungal genes involved in UA catabolism, suggesting that fungi help in the nitrogen recycling process in Dactylopius by uricolysis. All these results show the importance of fungal communities in scale insects such as Dactylopius. PMID:27446001

  3. Regulation of Phosphoenolpyruvate Carboxylase and Crassulacean Acid Metabolism Induction in Mesembryanthemum crystallinum L. by Cytokinin 1

    PubMed Central

    Schmitt, Jürgen M.; Piepenbrock, Mechtild

    1992-01-01

    Phosphoenolpyruvate carboxylase (PEPCase), the key enzyme of Crassulacean acid metabolism, is induced by water stress in leaves of Mesembryanthemum crystallinum. In water-stressed plants or excised leaves, exogenous cytokinin suppresses PEPCase transcript accumulation in the leaves. Cytokinin (6-benzylaminopurine) used in concentrations from 5 to 500 micromolar (a) inhibits the upregulation of PEPCase transcripts, enzyme activity, and Crassulacean acid metabolism induction in salt-stressed intact plants when sprayed once daily during the stress period, (b) inhibits the accumulation of PEPCase mRNA in leaves from well-watered plants, (c) down-regulates PEPCase transcripts within 8 hours in prestressed, intact plants after a single spraying of an individual leaf, (d) inhibits accumulation of PEPCase transcripts in excised, wilting leaves, and (e) accelerates the net decrease of PEPCase transcripts in excised leaves from prestressed plants under rehydration conditions. When roots, the main site of cytokinin biosynthesis, are excised, PEPCase induction under drought stress is intensified. We propose that roots, acting as sensors of soil water status, may regulate PEPCase gene expression in the leaves with cytokinin as a signal transducer. ImagesFigure 2Figure 7 PMID:16669088

  4. Phosphatidic acid phosphatase and diacylglycerol acyltransferase: potential targets for metabolic engineering of microorganism oil.

    PubMed

    Jin, Hong-Hao; Jiang, Jian-Guo

    2015-04-01

    Oleaginous microorganism is becoming one of the most promising oil feedstocks for biodiesel production due to its great advantages in triglyceride (TAG) accumulation. Previous studies have shown that de novo TAG biosynthesis can be divided into two parts: the fatty acid biosynthesis pathway (the upstream part which generates acyl-CoAs) and the glycerol-3-phosphate acylation pathway (the downstream part in which three acyl groups are sequentially added onto a glycerol backbone). This review mainly focuses on two enzymes in the G3P pathway, phosphatidic acid phosphatase (PAP) and diacylglycerol acyltransferase (DGAT). The former catalyzes a dephosphorylation reaction, and the latter catalyzes a subsequent acylation reaction. Genes, functional motifs, transmembrane domains, action mechanism, and new studies of the two enzymes are discussed in detail. Furthermore, this review also covers diacylglycerol kinase, an enzyme that catalyzes the reverse reaction of diacylglycerol formation. In addition, PAP and DGAT are the conjunction points of the G3P pathway, the Kennedy pathway, and the CDP-diacylglycerol pathway (CDP-DAG pathway), and the mutual transformation between TAGs and phospholipids is discussed as well. Given that both the Kennedy and CDP-diacylglycerol pathways are in metabolic interlock (MI) with the G3P pathway, it is suggested that, via metabolic engineering, TAG accumulation can be improved by the two pathways based on the pivotal function of PAP and DGAT. PMID:25672855

  5. Drosophila spermatid individualization is sensitive to temperature and fatty acid metabolism

    PubMed Central

    Ben-David, Geulah; Miller, Eli; Steinhauer, Josefa

    2015-01-01

    Fatty acids are precursors of potent lipid signaling molecules. They are stored in membrane phospholipids and released by phospholipase A2 (PLA2). Lysophospholipid acyltransferases (ATs) oppose PLA2 by re-esterifying fatty acids into phospholipids, in a biochemical pathway known as the Lands Cycle. Drosophila Lands Cycle ATs oys and nes, as well as 7 predicted PLA2 genes, are expressed in the male reproductive tract. Oys and Nes are required for spermatid individualization. Individualization, which occurs after terminal differentiation, invests each spermatid in its own plasma membrane and removes the bulk of the cytoplasmic contents. We developed a quantitative assay to measure individualization defects. We demonstrate that individualization is sensitive to temperature and age but not to diet. Mutation of the cyclooxygenase Pxt, which metabolizes fatty acids to prostaglandins, also leads to individualization defects. In contrast, modulating phospholipid levels by mutation of the phosphatidylcholine lipase Swiss cheese (Sws) or the ethanolamine kinase Easily shocked (Eas) does not perturb individualization, nor does Sws overexpression. Our results suggest that fatty acid derived signals such as prostaglandins, whose abundance is regulated by the Lands Cycle, are important regulators of spermatogenesis. PMID:26413411

  6. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid.

    PubMed

    Brown, Stephen H; Bashkirova, Lena; Berka, Randy; Chandler, Tyler; Doty, Tammy; McCall, Keith; McCulloch, Michael; McFarland, Sarah; Thompson, Sheryl; Yaver, Debbie; Berry, Alan

    2013-10-01

    Malic acid, a petroleum-derived C4-dicarboxylic acid that is used in the food and beverage industries, is also produced by a number of microorganisms that follow a variety of metabolic routes. Several members of the genus Aspergillus utilize a two-step cytosolic pathway from pyruvate to malate known as the reductive tricarboxylic acid (rTCA) pathway. This simple and efficient pathway has a maximum theoretical yield of 2 mol malate/mol glucose when the starting pyruvate originates from glycolysis. Production of malic acid by Aspergillus oryzae NRRL 3488 was first improved by overexpression of a native C4-dicarboxylate transporter, leading to a greater than twofold increase in the rate of malate production. Overexpression of the native cytosolic alleles of pyruvate carboxylase and malate dehydrogenase, comprising the rTCA pathway, in conjunction with the transporter resulted in an additional 27 % increase in malate production rate. A strain overexpressing all three genes achieved a malate titer of 154 g/L in 164 h, corresponding to a production rate of 0.94 g/L/h, with an associated yield on glucose of 1.38 mol/mol (69 % of the theoretical maximum). This rate of malate production is the highest reported for any microbial system. PMID:23925533

  7. The mvp2 mutation affects the generative transition through the modification of transcriptome pattern, salicylic acid and cytokinin metabolism in Triticum monococcum.

    PubMed

    Boldizsár, Ákos; Vanková, Radomíra; Novák, Aliz; Kalapos, Balázs; Gulyás, Zsolt; Pál, Magda; Floková, Kristyna; Janda, Tibor; Galiba, Gábor; Kocsy, Gábor

    2016-09-01

    Wild type and mvp2 (maintained vegetative phase) deletion mutant T. monococcum plants incapable of flowering were compared in order to determine the effect of the deleted region of chromosome 5A on transcript profile and hormone metabolism. This region contains the vernalization1 (VRN1) gene, a major regulator of the vegetative/generative transition. Transcript profiling in the crowns of T. monococcum during the transition and the subsequent formation of flower primordia showed that 306 genes were affected by the mutation, 198 by the developmental phase and 14 by the interaction of these parameters. In addition, 546 genes were affected by two or three factors. The genes controlled by the deleted region encode transcription factors, antioxidants and enzymes of hormone, carbohydrate and amino acid metabolism. The observed changes in the expression of the gene encoding phenylalanine ammonia lyase (PAL) might indicate the effect of mvp2 mutation on the metabolism of salicylic acid, which was corroborated by the differences in 2-hydroxycinnamic acid and cinnamic acid contents in both of the leaves and crowns, and in the concentrations of salicylic acid and benzoic acid in crowns during the vegetative/generative transition. The amount and ratio of active cytokinins and their derivatives (ribosides, glucosides and phosphates) were affected by developmental changes as well as by mvp2 mutation, too. PMID:27450491

  8. Differential effect of fructose on fat metabolism and clock gene expression in hepatocytes vs. myotubes.

    PubMed

    Chapnik, Nava; Rozenblit-Susan, Sigal; Genzer, Yoni; Froy, Oren

    2016-08-01

    In the liver, fructose bypasses the main rate-limiting step of glycolysis at the level of phosphofructokinase, allowing it to act as an unregulated substrate for de novo lipogenesis. It has been reported that consumption of large amounts of fructose increases de novo lipogenesis in the liver. However, the effect of fructose on ectopic deposition of muscle fat has been under dispute. Our aim was to study the effect of fructose on levels of genes and proteins involved in fatty acid oxidation and synthesis in hepatocytes vs. muscle cells. In addition, as fat accumulation leads to disruption of daily rhythms, we tested the effect of fructose treatment on clock gene expression. AML-12 hepatocytes and C2C12 myotubes were treated with fructose or glucose for 2 consecutive 24-h cycles and harvested every 6h. In contrast to glucose, fructose disrupted clock gene rhythms in hepatocytes, but in myotubes, it led to more robust rhythms. Fructose led to low levels of phosphorylated AMP-activated protein kinase (pAMPK) and high levels of LIPIN1 in hepatocytes compared with glucose. In contrast, fructose led to high pAMPK and low LIPIN1 and microsomal triacylglycerol transfer protein (MTTP) levels in myotubes compared with glucose. Analysis of fat content revealed that fructose led to less fat accumulation in myotubes compared to hepatocytes. In summary, fructose shifts metabolism towards fatty acid synthesis and clock disruption in hepatocytes, but not in myotubes. PMID:27240446

  9. Diversity and Evolutionary History of Iron Metabolism Genes in Diatoms

    PubMed Central

    Groussman, Ryan D.; Parker, Micaela S.; Armbrust, E. Virginia

    2015-01-01

    Ferroproteins arose early in Earth’s history, prior to the emergence of oxygenic photosynthesis and the subsequent reduction of bioavailable iron. Today, iron availability limits primary productivity in about 30% of the world’s oceans. Diatoms, responsible for nearly half of oceanic primary production, have evolved molecular strategies for coping with variable iron concentrations. Our understanding of the evolutionary breadth of these strategies has been restricted by the limited number of species for which molecular sequence data is available. To uncover the diversity of strategies marine diatoms employ to meet cellular iron demands, we analyzed 367 newly released marine microbial eukaryotic transcriptomes, which include 47 diatom species. We focused on genes encoding proteins previously identified as having a role in iron management: iron uptake (high-affinity ferric reductase, multi-copper oxidase, and Fe(III) permease); iron storage (ferritin); iron-induced protein substitutions (flavodoxin/ferredoxin, and plastocyanin/cytochrome c6) and defense against reactive oxygen species (superoxide dismutases). Homologs encoding the high-affinity iron uptake system components were detected across the four diatom Classes suggesting an ancient origin for this pathway. Ferritin transcripts were also detected in all Classes, revealing a more widespread utilization of ferritin throughout diatoms than previously recognized. Flavodoxin and plastocyanin transcripts indicate possible alternative redox metal strategies. Predicted localization signals for ferredoxin identify multiple examples of gene transfer from the plastid to the nuclear genome. Transcripts encoding four superoxide dismutase metalloforms were detected, including a putative nickel-coordinating isozyme. Taken together, our results suggest that the majority of iron metabolism genes in diatoms appear to be vertically inherited with functional diversity achieved via possible neofunctionalization of paralogs. This

  10. Food entrains clock genes but not metabolic genes in the liver of suprachiasmatic nucleus lesioned rats.

    PubMed

    Sabath, Elizabeth; Salgado-Delgado, Roberto; Guerrero-Vargas, Natali N; Guzman-Ruiz, Mara A; del Carmen Basualdo, Maria; Escobar, Carolina; Buijs, Ruud M

    2014-08-25

    Hepatic circadian transcription, considered to be driven by the liver clock, is largely influenced by food even uncoupling it from the suprachiasmatic nucleus (SCN). In SCN lesioned rats (SCNx) we determined the influence of a physiological feeding schedule on the entrainment of clock and clock-controlled (CCG) genes in the liver. We show that clock genes and the CCG Rev-erbα and peroxisome proliferator-activated receptor alpha (PPARα) in food-scheduled intact and SCNx have a robust diurnal differential expression persisting after a 24h fast. However, hepatic nicotinamide phosphoribosyl transferase (Nampt) shows time dependent changes that are lost in intact animals under fasting; moreover, it is unresponsive to the nutrient status in SCNx, indicating a poor reliance on liver clock genes and highlighting the relevance of SCN-derived signals for its metabolic status-related expression. PMID:24983496

  11. Isolation and characterization of styrene metabolism genes from styrene-assimilating soil bacteria Rhodococcus sp. ST-5 and ST-10.

    PubMed

    Toda, Hiroshi; Itoh, Nobuya

    2012-01-01

    Styrene metabolism genes were isolated from styrene-assimilating bacteria Rhodococcus sp. ST-5 and ST-10. Strain ST-5 had a gene cluster containing four open reading frames which encoded styrene degradation enzymes. The genes showed high similarity to styABCD of Pseudomonas sp. Y2. On the other hand, strain ST-10 had only two genes which encoded styrene monooxygenase and flavin oxidoreductase (styAB). Escherichia coli transformants possessing the sty genes of strains ST-5 and ST-10 produced (S)-styrene oxide from styrene, indicating that these genes function as styrene degradation enzymes. Metabolite analysis by resting-cell reaction with gas chromatography-mass spectrometry revealed that strain ST-5 converts styrene to phenylacetaldehyde via styrene oxide by styrene oxide isomerase (styC) reaction. On the other hand, strain ST-10 lacked this enzyme, and thus accumulated styrene oxide as an intermediate. HPLC analysis showed that styrene oxide was spontaneously isomerized to phenylacetaldehyde by chemical reaction. The produced phenylacetaldehyde was converted to phenylacetic acid (PAA) in strain ST-10 as well as in strain ST-5. Furthermore, phenylacetic acid was converted to phenylacetyl-CoA by the catalysis of phenylacetate-CoA ligase in strains ST-5 and ST-10. This study proposes possible styrene metabolism pathways in Rhodococcus sp. strains ST-5 and ST-10. PMID:21996027

  12. Influence of neonatal hypothyroidism on hepatic gene expression and lipid metabolism in adulthood.

    PubMed

    Santana-Farré, Ruymán; Mirecki-Garrido, Mercedes; Bocos, Carlos; Henríquez-Hernández, Luis A; Kahlon, Nusrat; Herrera, Emilio; Norstedt, Gunnar; Parini, Paolo; Flores-Morales, Amilcar; Fernández-Pérez, Leandro

    2012-01-01

    Thyroid hormones are required for normal growth and development in mammals. Congenital-neonatal hypothyroidism (CH) has a profound impact on physiology, but its specific influence in liver is less understood. Here, we studied how CH influences the liver gene expression program in adulthood. Pregnant rats were given the antithyroid drug methimazole (MMI) from GD12 until PND30 to induce CH in male offspring. Growth defects due to CH were evident as reductions in body weight and tail length from the second week of life. Once the MMI treatment was discontinued, the feed efficiency increased in CH, and this was accompanied by significant catch-up growth. On PND80, significant reductions in body mass, tail length, and circulating IGF-I levels remained in CH rats. Conversely, the mRNA levels of known GH target genes were significantly upregulated. The serum levels of thyroid hormones, cholesterol, and triglycerides showed no significant differences. In contrast, CH rats showed significant changes in the expression of hepatic genes involved in lipid metabolism, including an increased transcription of PPARα and a reduced expression of genes involved in fatty acid and cholesterol uptake, cellular sterol efflux, triglyceride assembly, bile acid synthesis, and lipogenesis. These changes were associated with a decrease of intrahepatic lipids. Finally, CH rats responded to the onset of hypothyroidism in adulthood with a reduction of serum fatty acids and hepatic cholesteryl esters and to T3 replacement with an enhanced activation of malic enzyme. In summary, we provide in vivo evidence that neonatal hypothyroidism influences the hepatic transcriptional program and tissue sensitivity to hormone treatment in adulthood. This highlights the critical role that a euthyroid state during development plays on normal liver physiology in adulthood. PMID:22666351

  13. Influence of Neonatal Hypothyroidism on Hepatic Gene Expression and Lipid Metabolism in Adulthood

    PubMed Central

    Bocos, Carlos; Henríquez-Hernández, Luis A.; Kahlon, Nusrat; Herrera, Emilio; Norstedt, Gunnar; Parini, Paolo; Flores-Morales, Amilcar; Fernández-Pérez, Leandro

    2012-01-01

    Thyroid hormones are required for normal growth and development in mammals. Congenital-neonatal hypothyroidism (CH) has a profound impact on physiology, but its specific influence in liver is less understood. Here, we studied how CH influences the liver gene expression program in adulthood. Pregnant rats were given the antithyroid drug methimazole (MMI) from GD12 until PND30 to induce CH in male offspring. Growth defects due to CH were evident as reductions in body weight and tail length from the second week of life. Once the MMI treatment was discontinued, the feed efficiency increased in CH, and this was accompanied by significant catch-up growth. On PND80, significant reductions in body mass, tail length, and circulating IGF-I levels remained in CH rats. Conversely, the mRNA levels of known GH target genes were significantly upregulated. The serum levels of thyroid hormones, cholesterol, and triglycerides showed no significant differences. In contrast, CH rats showed significant changes in the expression of hepatic genes involved in lipid metabolism, including an increased transcription of PPARα and a reduced expression of genes involved in fatty acid and cholesterol uptake, cellular sterol efflux, triglyceride assembly, bile acid synthesis, and lipogenesis. These changes were associated with a decrease of intrahepatic lipids. Finally, CH rats responded to the onset of hypothyroidism in adulthood with a reduction of serum fatty acids and hepatic cholesteryl esters and to T3 replacement with an enhanced activation of malic enzyme. In summary, we provide in vivo evidence that neonatal hypothyroidism influences the hepatic transcriptional program and tissue sensitivity to hormone treatment in adulthood. This highlights the critical role that a euthyroid state during development plays on normal liver physiology in adulthood. PMID:22666351

  14. The metabolic background is a global player in Saccharomyces gene expression epistasis.

    PubMed

    Alam, Mohammad Tauqeer; Zelezniak, Aleksej; Mülleder, Michael; Shliaha, Pavel; Schwarz, Roland; Capuano, Floriana; Vowinckel, Jakob; Radmaneshfar, Elahe; Krüger, Antje; Calvani, Enrica; Michel, Steve; Börno, Stefan; Christen, Stefan; Patil, Kiran Raosaheb; Timmermann, Bernd; Lilley, Kathryn S; Ralser, Markus

    2016-01-01

    The regulation of gene expression in response to nutrient availability is fundamental to the genotype-phenotype relationship. The metabolic-genetic make-up of the cell, as reflected in auxotrophy, is hence likely to be a determinant of gene expression. Here, we address the importance of the metabolic-genetic background by monitoring transcriptome, proteome and metabolome in a repertoire of 16 Saccharomyces cerevisiae laboratory backgrounds, combinatorially perturbed in histidine, leucine, methionine and uracil biosynthesis. The metabolic background affected up to 85% of the coding genome. Suggesting widespread confounding, these transcriptional changes show, on average, 83% overlap between unrelated auxotrophs and 35% with previously published transcriptomes generated for non-metabolic gene knockouts. Background-dependent gene expression correlated with metabolic flux and acted, predominantly through masking or suppression, on 88% of transcriptional interactions epistatically. As a consequence, the deletion of the same metabolic gene in a different background could provoke an entirely different transcriptional response. Propagating to the proteome and scaling up at the metabolome, metabolic background dependencies reveal the prevalence of metabolism-dependent epistasis at all regulatory levels. Urging a fundamental change of the prevailing laboratory practice of using auxotrophs and nutrient supplemented media, these results reveal epistatic intertwining of metabolism with gene expression on the genomic scale. PMID:27572163

  15. Disorders of Carbohydrate Metabolism

    MedlinePlus

    ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism Carbohydrates are sugars. ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism NOTE: This is ...

  16. Gene expression of transporters and phase I/II metabolic enzymes in murine small intestine during fasting

    PubMed Central

    van den Bosch, Heleen M; Bünger, Meike; de Groot, Philip J; van der Meijde, Jolanda; Hooiveld, Guido JEJ; Müller, Michael

    2007-01-01

    Background Fasting has dramatic effects on small intestinal transport function. However, little is known on expression of intestinal transport and phase I/II metabolism genes during fasting and the role the fatty acid-activated transcription factor PPARα may play herein. We therefore investigated the effects of fasting on expression of these genes using Affymetrix GeneChip MOE430A arrays and quantitative RT-PCR. Results After 24 hours of fasting, expression levels of 33 of the 253 analyzed transporter and phase I/II metabolism genes were changed. Upregulated genes were involved in transport of energy-yielding molecules in processes such as glycogenolysis (G6pt1) and mitochondrial and peroxisomal oxidation of fatty acids (Cact, Mrs3/4, Fatp2, Cyp4a10, Cyp4b1). Other induced genes were responsible for the inactivation of the neurotransmitter serotonin (Sert, Sult1d1, Dtd, Papst2), formation of eicosanoids (Cyp2j6, Cyp4a10, Cyp4b1), or for secretion of cholesterol (Abca1 and Abcg8). Cyp3a11, typically known because of its drug metabolizing capacity, was also increased. Fasting had no pronounced effect on expression of phase II metabolic enzymes, except for glutathione S-transferases which were down-regulated. Time course studies revealed that some genes were acutely regulated, whereas expression of other genes was only affected after prolonged fasting. Finally, we identified 8 genes that were PPARα-dependently upregulated upon fasting. Conclusion We have characterized the response to fasting on expression of transporters and phase I/II metabolic enzymes in murine small intestine. Differentially expressed genes are involved in a variety of processes, which functionally can be summarized as a) increased oxidation of fat and xenobiotics, b) increased cholesterol secretion, c) increased susceptibility to electrophilic stressors, and d) reduced intestinal motility. This knowledge increases our understanding of gut physiology, and may be of relevance for e.g. pre

  17. Salmonella Modulates Metabolism During Growth under Conditions that Induce Expression of Virulence Genes

    SciTech Connect

    Kim, Young-Mo; Schmidt, Brian; Kidwai, Afshan S.; Jones, Marcus B.; Deatherage, Brooke L.; Brewer, Heather M.; Mitchell, Hugh D.; Palsson, Bernhard O.; McDermott, Jason E.; Heffron, Fred; Smith, Richard D.; Peterson, Scott N.; Ansong, Charles; Hyduke, Daniel R.; Metz, Thomas O.; Adkins, Joshua N.

    2013-04-05

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Excitingly, we observed possible sequestration of metabolites recently suggested to have immune modulating roles. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Model-guided analysis suggested that alterations in metabolism prioritized other activities necessary for pathogenesis instead, such as lipopolysaccharide biosynthesis.

  18. Gene expression profiles of murine fatty liver induced by the administration of valproic acid

    SciTech Connect

    Lee, Min-Ho; Hong, Il; Kim, Mingoo; Lee, Byung Hoon; Kim, Ju-Han; Kang, Kyung-Sun; Kim, Hyung-Lae; Yoon, Byung-Il; Chung, Heekyoung; Kong, Gu; Lee, Mi-Ock . E-mail: molee@snu.ac.kr

    2007-04-01

    Valproic acid (VPA) has been used as anticonvulsants, however, it induces hepatotoxicity such as microvesicular steatosis and necrosis in the liver. To explore the mechanisms of VPA-induced steatosis, we profiled the gene expression patterns of the mouse liver that were altered by treatment with VPA using microarray analysis. VPA was orally administered as a single dose of 100 mg/kg (low-dose) or 1000 mg/kg (high-dose) to ICR mice and the animals were killed at 6, 24, or 72 h after treatment. Serum alanine aminotransferase and aspartate aminotransferase levels were not significantly altered in the experimental animals. However, symptoms of steatosis were observed at 72 h with low-dose and at 24 h and 72 h with high-dose. After microarray data analysis, 1910 genes were selected by two-way ANOVA (P < 0.05) as VPA-responsive genes. Hierarchical clustering revealed that gene expression changes depended on the time rather than the dose of VPA treatment. Gene profiling data showed striking changes in the expression of genes associated with lipid, fatty acid, and steroid metabolism, oncogenesis, signal transduction, and development. Functional categorization of 1156 characteristically up- and down-regulated genes (cutoff > 1.5-fold) revealed that 60 genes were involved in lipid metabolism that was interconnected with biological pathways for biosynthesis of triglyceride and cholesterol, catabolism of fatty acid, and lipid transport. This gene expression profile may be associated with the known steatogenic hepatotoxicity of VPA and it may provide useful information for prediction of hepatotoxicity of unknown chemicals or new drug candidates through pattern recognition.

  19. The metabolic regulator CodY links Listeria monocytogenes metabolism to virulence by directly activating the virulence regulatory gene prfA.

    PubMed

    Lobel, Lior; Sigal, Nadejda; Borovok, Ilya; Belitsky, Boris R; Sonenshein, Abraham L; Herskovits, Anat A

    2015-02-01

    Metabolic adaptations are critical to the ability of bacterial pathogens to grow within host cells and are normally preceded by sensing of host-specific metabolic signals, which in turn can influence the pathogen's virulence state. Previously, we reported that the intracellular bacterial pathogen Listeria monocytogenes responds to low availability of branched-chain amino acids (BCAAs) within mammalian cells by up-regulating both BCAA biosynthesis and virulence genes. The induction of virulence genes required the BCAA-responsive transcription regulator, CodY, but the molecular mechanism governing this mode of regulation was unclear. In this report, we demonstrate that CodY directly binds the coding sequence of the L. monocytogenes master virulence activator gene, prfA, 15 nt downstream of its start codon, and that this binding results in up-regulation of prfA transcription specifically under low concentrations of BCAA. Mutating this site abolished CodY binding and reduced prfA transcription in macrophages, and attenuated bacterial virulence in mice. Notably, the mutated binding site did not alter prfA transcription or PrfA activity under other conditions that are known to activate PrfA, such as during growth in the presence of glucose-1-phosphate. This study highlights the tight crosstalk between L. monocytogenes metabolism and virulence, while revealing novel features of CodY-mediated regulation. PMID:25430920

  20. The metabolic regulator CodY links L. monocytogenes metabolism to virulence by directly activating the virulence regulatory gene, prfA

    PubMed Central

    Lobel, Lior; Sigal, Nadejda; Borovok, Ilya; Belitsky, Boris R.; Sonenshein, Abraham L.; Herskovits, Anat A.

    2015-01-01

    Summary Metabolic adaptations are critical to the ability of bacterial pathogens to grow within host cells and are normally preceded by sensing of host-specific metabolic signals, which in turn can influence the pathogen's virulence state. Previously, we reported that the intracellular bacterial pathogen Listeria monocytogenes responds to low availability of branched-chain amino acids (BCAA) within mammalian cells by up-regulating both BCAA biosynthesis and virulence genes. The induction of virulence genes required the BCAA-responsive transcription regulator, CodY, but the molecular mechanism governing this mode of regulation was unclear. In this report, we demonstrate that CodY directly binds the coding sequence of the L. monocytogenes master virulence activator gene, prfA, 15 nt downstream of its start codon, and that this binding results in up-regulation of prfA transcription specifically under low concentrations of BCAA. Mutating this site abolished CodY binding and reduced prfA transcription in macrophag